| File: | dev/pci/drm/include/linux/llist.h |
| Warning: | line 59, column 18 Access to field 'next' results in a dereference of a null pointer (loaded from variable 'new_last') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * SPDX-License-Identifier: MIT | |||
| 3 | * | |||
| 4 | * Copyright © 2019 Intel Corporation | |||
| 5 | */ | |||
| 6 | ||||
| 7 | #include <linux/debugobjects.h> | |||
| 8 | ||||
| 9 | #include "gt/intel_context.h" | |||
| 10 | #include "gt/intel_engine_heartbeat.h" | |||
| 11 | #include "gt/intel_engine_pm.h" | |||
| 12 | #include "gt/intel_ring.h" | |||
| 13 | ||||
| 14 | #include "i915_drv.h" | |||
| 15 | #include "i915_active.h" | |||
| 16 | #include "i915_globals.h" | |||
| 17 | ||||
| 18 | /* | |||
| 19 | * Active refs memory management | |||
| 20 | * | |||
| 21 | * To be more economical with memory, we reap all the i915_active trees as | |||
| 22 | * they idle (when we know the active requests are inactive) and allocate the | |||
| 23 | * nodes from a local slab cache to hopefully reduce the fragmentation. | |||
| 24 | */ | |||
| 25 | static struct i915_global_active { | |||
| 26 | struct i915_global base; | |||
| 27 | #ifdef __linux__ | |||
| 28 | struct kmem_cache *slab_cache; | |||
| 29 | #else | |||
| 30 | struct pool slab_cache; | |||
| 31 | #endif | |||
| 32 | } global; | |||
| 33 | ||||
| 34 | struct active_node { | |||
| 35 | struct rb_node node; | |||
| 36 | struct i915_active_fence base; | |||
| 37 | struct i915_active *ref; | |||
| 38 | u64 timeline; | |||
| 39 | }; | |||
| 40 | ||||
| 41 | #define fetch_node(x)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(x) __tmp = *(volatile typeof(x) *)& (x); membar_datadep_consumer(); __tmp; })); (typeof(struct active_node ) *)( (char *)__mptr - __builtin_offsetof(typeof(struct active_node ), node) );}) rb_entry(READ_ONCE(x), typeof(struct active_node), node)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(x) __tmp = *(volatile typeof(x) *)& (x); membar_datadep_consumer(); __tmp; })); (typeof(struct active_node ) *)( (char *)__mptr - __builtin_offsetof(typeof(struct active_node ), node) );}) | |||
| 42 | ||||
| 43 | static inline struct active_node * | |||
| 44 | node_from_active(struct i915_active_fence *active) | |||
| 45 | { | |||
| 46 | return container_of(active, struct active_node, base)({ const __typeof( ((struct active_node *)0)->base ) *__mptr = (active); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, base) );}); | |||
| 47 | } | |||
| 48 | ||||
| 49 | #define take_preallocated_barriers(x)llist_del_all(&(x)->preallocated_barriers) llist_del_all(&(x)->preallocated_barriers) | |||
| 50 | ||||
| 51 | static inline bool_Bool is_barrier(const struct i915_active_fence *active) | |||
| 52 | { | |||
| 53 | return IS_ERR(rcu_access_pointer(active->fence)(active->fence)); | |||
| 54 | } | |||
| 55 | ||||
| 56 | static inline struct llist_node *barrier_to_ll(struct active_node *node) | |||
| 57 | { | |||
| 58 | GEM_BUG_ON(!is_barrier(&node->base))((void)0); | |||
| 59 | return (struct llist_node *)&node->base.cb.node; | |||
| 60 | } | |||
| 61 | ||||
| 62 | static inline struct intel_engine_cs * | |||
| 63 | __barrier_to_engine(struct active_node *node) | |||
| 64 | { | |||
| 65 | return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev)({ typeof(node->base.cb.node.prev) __tmp = *(volatile typeof (node->base.cb.node.prev) *)&(node->base.cb.node.prev ); membar_datadep_consumer(); __tmp; }); | |||
| 66 | } | |||
| 67 | ||||
| 68 | static inline struct intel_engine_cs * | |||
| 69 | barrier_to_engine(struct active_node *node) | |||
| 70 | { | |||
| 71 | GEM_BUG_ON(!is_barrier(&node->base))((void)0); | |||
| 72 | return __barrier_to_engine(node); | |||
| 73 | } | |||
| 74 | ||||
| 75 | static inline struct active_node *barrier_from_ll(struct llist_node *x) | |||
| 76 | { | |||
| 77 | return container_of((struct list_head *)x,({ const __typeof( ((struct active_node *)0)->base.cb.node ) *__mptr = ((struct list_head *)x); (struct active_node *)( (char *)__mptr - __builtin_offsetof(struct active_node, base .cb.node) );}) | |||
| 78 | struct active_node, base.cb.node)({ const __typeof( ((struct active_node *)0)->base.cb.node ) *__mptr = ((struct list_head *)x); (struct active_node *)( (char *)__mptr - __builtin_offsetof(struct active_node, base .cb.node) );}); | |||
| 79 | } | |||
| 80 | ||||
| 81 | #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)0 && IS_ENABLED(CONFIG_DEBUG_OBJECTS)0 | |||
| 82 | ||||
| 83 | static void *active_debug_hint(void *addr) | |||
| 84 | { | |||
| 85 | struct i915_active *ref = addr; | |||
| 86 | ||||
| 87 | return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; | |||
| 88 | } | |||
| 89 | ||||
| 90 | static const struct debug_obj_descr active_debug_desc = { | |||
| 91 | .name = "i915_active", | |||
| 92 | .debug_hint = active_debug_hint, | |||
| 93 | }; | |||
| 94 | ||||
| 95 | static void debug_active_init(struct i915_active *ref) | |||
| 96 | { | |||
| 97 | debug_object_init(ref, &active_debug_desc); | |||
| 98 | } | |||
| 99 | ||||
| 100 | static void debug_active_activate(struct i915_active *ref) | |||
| 101 | { | |||
| 102 | lockdep_assert_held(&ref->tree_lock)do { (void)(&ref->tree_lock); } while(0); | |||
| 103 | if (!atomic_read(&ref->count)({ typeof(*(&ref->count)) __tmp = *(volatile typeof(*( &ref->count)) *)&(*(&ref->count)); membar_datadep_consumer (); __tmp; })) /* before the first inc */ | |||
| 104 | debug_object_activate(ref, &active_debug_desc); | |||
| 105 | } | |||
| 106 | ||||
| 107 | static void debug_active_deactivate(struct i915_active *ref) | |||
| 108 | { | |||
| 109 | lockdep_assert_held(&ref->tree_lock)do { (void)(&ref->tree_lock); } while(0); | |||
| 110 | if (!atomic_read(&ref->count)({ typeof(*(&ref->count)) __tmp = *(volatile typeof(*( &ref->count)) *)&(*(&ref->count)); membar_datadep_consumer (); __tmp; })) /* after the last dec */ | |||
| 111 | debug_object_deactivate(ref, &active_debug_desc); | |||
| 112 | } | |||
| 113 | ||||
| 114 | static void debug_active_fini(struct i915_active *ref) | |||
| 115 | { | |||
| 116 | debug_object_free(ref, &active_debug_desc); | |||
| 117 | } | |||
| 118 | ||||
| 119 | static void debug_active_assert(struct i915_active *ref) | |||
| 120 | { | |||
| 121 | debug_object_assert_init(ref, &active_debug_desc); | |||
| 122 | } | |||
| 123 | ||||
| 124 | #else | |||
| 125 | ||||
| 126 | static inline void debug_active_init(struct i915_active *ref) { } | |||
| 127 | static inline void debug_active_activate(struct i915_active *ref) { } | |||
| 128 | static inline void debug_active_deactivate(struct i915_active *ref) { } | |||
| 129 | static inline void debug_active_fini(struct i915_active *ref) { } | |||
| 130 | static inline void debug_active_assert(struct i915_active *ref) { } | |||
| 131 | ||||
| 132 | #endif | |||
| 133 | ||||
| 134 | static void | |||
| 135 | __active_retire(struct i915_active *ref) | |||
| 136 | { | |||
| 137 | struct rb_root root = RB_ROOT(struct rb_root) { ((void *)0) }; | |||
| 138 | struct active_node *it, *n; | |||
| 139 | unsigned long flags; | |||
| 140 | ||||
| 141 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 142 | ||||
| 143 | /* return the unused nodes to our slabcache -- flushing the allocator */ | |||
| 144 | if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)atomic_dec_and_lock(&ref->count, &ref->tree_lock )) | |||
| 145 | return; | |||
| 146 | ||||
| 147 | GEM_BUG_ON(rcu_access_pointer(ref->excl.fence))((void)0); | |||
| 148 | debug_active_deactivate(ref); | |||
| 149 | ||||
| 150 | /* Even if we have not used the cache, we may still have a barrier */ | |||
| 151 | if (!ref->cache) | |||
| 152 | ref->cache = fetch_node(ref->tree.rb_node)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(ref->tree.rb_node) __tmp = *(volatile typeof(ref->tree.rb_node) *)&(ref->tree.rb_node); membar_datadep_consumer (); __tmp; })); (typeof(struct active_node) *)( (char *)__mptr - __builtin_offsetof(typeof(struct active_node), node) );}); | |||
| 153 | ||||
| 154 | /* Keep the MRU cached node for reuse */ | |||
| 155 | if (ref->cache) { | |||
| 156 | /* Discard all other nodes in the tree */ | |||
| 157 | rb_erase(&ref->cache->node, &ref->tree)linux_root_RB_REMOVE((struct linux_root *)(&ref->tree) , (&ref->cache->node)); | |||
| 158 | root = ref->tree; | |||
| 159 | ||||
| 160 | /* Rebuild the tree with only the cached node */ | |||
| 161 | rb_link_node(&ref->cache->node, NULL((void *)0), &ref->tree.rb_node); | |||
| 162 | rb_insert_color(&ref->cache->node, &ref->tree)linux_root_RB_INSERT_COLOR((struct linux_root *)(&ref-> tree), (&ref->cache->node)); | |||
| 163 | GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node)((void)0); | |||
| 164 | ||||
| 165 | /* Make the cached node available for reuse with any timeline */ | |||
| 166 | if (IS_ENABLED(CONFIG_64BIT)1) | |||
| 167 | ref->cache->timeline = 0; /* needs cmpxchg(u64) */ | |||
| 168 | } | |||
| 169 | ||||
| 170 | spin_unlock_irqrestore(&ref->tree_lock, flags)do { (void)(flags); mtx_leave(&ref->tree_lock); } while (0); | |||
| 171 | ||||
| 172 | /* After the final retire, the entire struct may be freed */ | |||
| 173 | if (ref->retire) | |||
| 174 | ref->retire(ref); | |||
| 175 | ||||
| 176 | /* ... except if you wait on it, you must manage your own references! */ | |||
| 177 | wake_up_var(ref); | |||
| 178 | ||||
| 179 | /* Finally free the discarded timeline tree */ | |||
| 180 | rbtree_postorder_for_each_entry_safe(it, n, &root, node)for ((it) = (__rb_deepest_left((&root)->rb_node) ? ({ const __typeof( ((__typeof(*it) *)0)->node ) *__mptr = (__rb_deepest_left ((&root)->rb_node)); (__typeof(*it) *)( (char *)__mptr - __builtin_offsetof(__typeof(*it), node) );}) : ((void *)0) ); ((it) != ((void *)0)) && ((n) = (rb_next_postorder (&it->node) ? ({ const __typeof( ((typeof(*it) *)0)-> node ) *__mptr = (rb_next_postorder(&it->node)); (typeof (*it) *)( (char *)__mptr - __builtin_offsetof(typeof(*it), node ) );}) : ((void *)0)), 1); (it) = (n)) { | |||
| 181 | GEM_BUG_ON(i915_active_fence_isset(&it->base))((void)0); | |||
| 182 | #ifdef __linux__ | |||
| 183 | kmem_cache_free(global.slab_cache, it); | |||
| 184 | #else | |||
| 185 | pool_put(&global.slab_cache, it); | |||
| 186 | #endif | |||
| 187 | } | |||
| 188 | } | |||
| 189 | ||||
| 190 | static void | |||
| 191 | active_work(struct work_struct *wrk) | |||
| 192 | { | |||
| 193 | struct i915_active *ref = container_of(wrk, typeof(*ref), work)({ const __typeof( ((typeof(*ref) *)0)->work ) *__mptr = ( wrk); (typeof(*ref) *)( (char *)__mptr - __builtin_offsetof(typeof (*ref), work) );}); | |||
| 194 | ||||
| 195 | GEM_BUG_ON(!atomic_read(&ref->count))((void)0); | |||
| 196 | if (atomic_add_unless(&ref->count, -1, 1)) | |||
| 197 | return; | |||
| 198 | ||||
| 199 | __active_retire(ref); | |||
| 200 | } | |||
| 201 | ||||
| 202 | static void | |||
| 203 | active_retire(struct i915_active *ref) | |||
| 204 | { | |||
| 205 | GEM_BUG_ON(!atomic_read(&ref->count))((void)0); | |||
| 206 | if (atomic_add_unless(&ref->count, -1, 1)) | |||
| 207 | return; | |||
| 208 | ||||
| 209 | if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS(1UL << (0))) { | |||
| 210 | queue_work(system_unbound_wq, &ref->work); | |||
| 211 | return; | |||
| 212 | } | |||
| 213 | ||||
| 214 | __active_retire(ref); | |||
| 215 | } | |||
| 216 | ||||
| 217 | static inline struct dma_fence ** | |||
| 218 | __active_fence_slot(struct i915_active_fence *active) | |||
| 219 | { | |||
| 220 | return (struct dma_fence ** __force)&active->fence; | |||
| 221 | } | |||
| 222 | ||||
| 223 | static inline bool_Bool | |||
| 224 | active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) | |||
| 225 | { | |||
| 226 | struct i915_active_fence *active = | |||
| 227 | container_of(cb, typeof(*active), cb)({ const __typeof( ((typeof(*active) *)0)->cb ) *__mptr = ( cb); (typeof(*active) *)( (char *)__mptr - __builtin_offsetof (typeof(*active), cb) );}); | |||
| 228 | ||||
| 229 | return cmpxchg(__active_fence_slot(active), fence, NULL)__sync_val_compare_and_swap(__active_fence_slot(active), fence , ((void *)0)) == fence; | |||
| 230 | } | |||
| 231 | ||||
| 232 | static void | |||
| 233 | node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) | |||
| 234 | { | |||
| 235 | if (active_fence_cb(fence, cb)) | |||
| 236 | active_retire(container_of(cb, struct active_node, base.cb)({ const __typeof( ((struct active_node *)0)->base.cb ) *__mptr = (cb); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, base.cb) );})->ref); | |||
| 237 | } | |||
| 238 | ||||
| 239 | static void | |||
| 240 | excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) | |||
| 241 | { | |||
| 242 | if (active_fence_cb(fence, cb)) | |||
| 243 | active_retire(container_of(cb, struct i915_active, excl.cb)({ const __typeof( ((struct i915_active *)0)->excl.cb ) *__mptr = (cb); (struct i915_active *)( (char *)__mptr - __builtin_offsetof (struct i915_active, excl.cb) );})); | |||
| 244 | } | |||
| 245 | ||||
| 246 | static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) | |||
| 247 | { | |||
| 248 | struct active_node *it; | |||
| 249 | ||||
| 250 | GEM_BUG_ON(idx == 0)((void)0); /* 0 is the unordered timeline, rsvd for cache */ | |||
| 251 | ||||
| 252 | /* | |||
| 253 | * We track the most recently used timeline to skip a rbtree search | |||
| 254 | * for the common case, under typical loads we never need the rbtree | |||
| 255 | * at all. We can reuse the last slot if it is empty, that is | |||
| 256 | * after the previous activity has been retired, or if it matches the | |||
| 257 | * current timeline. | |||
| 258 | */ | |||
| 259 | it = READ_ONCE(ref->cache)({ typeof(ref->cache) __tmp = *(volatile typeof(ref->cache ) *)&(ref->cache); membar_datadep_consumer(); __tmp; } ); | |||
| 260 | if (it) { | |||
| 261 | u64 cached = READ_ONCE(it->timeline)({ typeof(it->timeline) __tmp = *(volatile typeof(it->timeline ) *)&(it->timeline); membar_datadep_consumer(); __tmp; }); | |||
| 262 | ||||
| 263 | /* Once claimed, this slot will only belong to this idx */ | |||
| 264 | if (cached == idx) | |||
| 265 | return it; | |||
| 266 | ||||
| 267 | #ifdef CONFIG_64BIT1 /* for cmpxchg(u64) */ | |||
| 268 | /* | |||
| 269 | * An unclaimed cache [.timeline=0] can only be claimed once. | |||
| 270 | * | |||
| 271 | * If the value is already non-zero, some other thread has | |||
| 272 | * claimed the cache and we know that is does not match our | |||
| 273 | * idx. If, and only if, the timeline is currently zero is it | |||
| 274 | * worth competing to claim it atomically for ourselves (for | |||
| 275 | * only the winner of that race will cmpxchg return the old | |||
| 276 | * value of 0). | |||
| 277 | */ | |||
| 278 | if (!cached && !cmpxchg(&it->timeline, 0, idx)__sync_val_compare_and_swap(&it->timeline, 0, idx)) | |||
| 279 | return it; | |||
| 280 | #endif | |||
| 281 | } | |||
| 282 | ||||
| 283 | BUILD_BUG_ON(offsetof(typeof(*it), node))extern char _ctassert[(!(__builtin_offsetof(typeof(*it), node ))) ? 1 : -1 ] __attribute__((__unused__)); | |||
| 284 | ||||
| 285 | /* While active, the tree can only be built; not destroyed */ | |||
| 286 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 287 | ||||
| 288 | it = fetch_node(ref->tree.rb_node)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(ref->tree.rb_node) __tmp = *(volatile typeof(ref->tree.rb_node) *)&(ref->tree.rb_node); membar_datadep_consumer (); __tmp; })); (typeof(struct active_node) *)( (char *)__mptr - __builtin_offsetof(typeof(struct active_node), node) );}); | |||
| 289 | while (it) { | |||
| 290 | if (it->timeline < idx) { | |||
| 291 | it = fetch_node(it->node.rb_right)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(it->node.__entry.rbe_right) __tmp = *(volatile typeof(it->node.__entry.rbe_right) *)&(it-> node.__entry.rbe_right); membar_datadep_consumer(); __tmp; }) ); (typeof(struct active_node) *)( (char *)__mptr - __builtin_offsetof (typeof(struct active_node), node) );}); | |||
| 292 | } else if (it->timeline > idx) { | |||
| 293 | it = fetch_node(it->node.rb_left)({ const __typeof( ((typeof(struct active_node) *)0)->node ) *__mptr = (({ typeof(it->node.__entry.rbe_left) __tmp = *(volatile typeof(it->node.__entry.rbe_left) *)&(it-> node.__entry.rbe_left); membar_datadep_consumer(); __tmp; })) ; (typeof(struct active_node) *)( (char *)__mptr - __builtin_offsetof (typeof(struct active_node), node) );}); | |||
| 294 | } else { | |||
| 295 | WRITE_ONCE(ref->cache, it)({ typeof(ref->cache) __tmp = (it); *(volatile typeof(ref-> cache) *)&(ref->cache) = __tmp; __tmp; }); | |||
| 296 | break; | |||
| 297 | } | |||
| 298 | } | |||
| 299 | ||||
| 300 | /* NB: If the tree rotated beneath us, we may miss our target. */ | |||
| 301 | return it; | |||
| 302 | } | |||
| 303 | ||||
| 304 | static struct i915_active_fence * | |||
| 305 | active_instance(struct i915_active *ref, u64 idx) | |||
| 306 | { | |||
| 307 | struct active_node *node, *prealloc; | |||
| 308 | struct rb_node **p, *parent; | |||
| 309 | ||||
| 310 | node = __active_lookup(ref, idx); | |||
| 311 | if (likely(node)__builtin_expect(!!(node), 1)) | |||
| 312 | return &node->base; | |||
| 313 | ||||
| 314 | /* Preallocate a replacement, just in case */ | |||
| 315 | #ifdef __linux__ | |||
| 316 | prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL(0x0001 | 0x0004)); | |||
| 317 | #else | |||
| 318 | prealloc = pool_get(&global.slab_cache, PR_WAITOK0x0001); | |||
| 319 | #endif | |||
| 320 | if (!prealloc) | |||
| 321 | return NULL((void *)0); | |||
| 322 | ||||
| 323 | spin_lock_irq(&ref->tree_lock)mtx_enter(&ref->tree_lock); | |||
| 324 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 325 | ||||
| 326 | parent = NULL((void *)0); | |||
| 327 | p = &ref->tree.rb_node; | |||
| 328 | while (*p) { | |||
| 329 | parent = *p; | |||
| 330 | ||||
| 331 | node = rb_entry(parent, struct active_node, node)({ const __typeof( ((struct active_node *)0)->node ) *__mptr = (parent); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, node) );}); | |||
| 332 | if (node->timeline == idx) { | |||
| 333 | #ifdef __linux__ | |||
| 334 | kmem_cache_free(global.slab_cache, prealloc); | |||
| 335 | #else | |||
| 336 | pool_put(&global.slab_cache, prealloc); | |||
| 337 | #endif | |||
| 338 | goto out; | |||
| 339 | } | |||
| 340 | ||||
| 341 | if (node->timeline < idx) | |||
| 342 | p = &parent->rb_right__entry.rbe_right; | |||
| 343 | else | |||
| 344 | p = &parent->rb_left__entry.rbe_left; | |||
| 345 | } | |||
| 346 | ||||
| 347 | node = prealloc; | |||
| 348 | __i915_active_fence_init(&node->base, NULL((void *)0), node_retire); | |||
| 349 | node->ref = ref; | |||
| 350 | node->timeline = idx; | |||
| 351 | ||||
| 352 | rb_link_node(&node->node, parent, p); | |||
| 353 | rb_insert_color(&node->node, &ref->tree)linux_root_RB_INSERT_COLOR((struct linux_root *)(&ref-> tree), (&node->node)); | |||
| 354 | ||||
| 355 | out: | |||
| 356 | WRITE_ONCE(ref->cache, node)({ typeof(ref->cache) __tmp = (node); *(volatile typeof(ref ->cache) *)&(ref->cache) = __tmp; __tmp; }); | |||
| 357 | spin_unlock_irq(&ref->tree_lock)mtx_leave(&ref->tree_lock); | |||
| 358 | ||||
| 359 | return &node->base; | |||
| 360 | } | |||
| 361 | ||||
| 362 | void __i915_active_init(struct i915_active *ref, | |||
| 363 | int (*active)(struct i915_active *ref), | |||
| 364 | void (*retire)(struct i915_active *ref), | |||
| 365 | struct lock_class_key *mkey, | |||
| 366 | struct lock_class_key *wkey) | |||
| 367 | { | |||
| 368 | unsigned long bits; | |||
| 369 | ||||
| 370 | debug_active_init(ref); | |||
| 371 | ||||
| 372 | ref->flags = 0; | |||
| 373 | ref->active = active; | |||
| 374 | ref->retire = ptr_unpack_bits(retire, &bits, 2)({ unsigned long __v = (unsigned long)(retire); *(&bits) = __v & ((1UL << (2)) - 1); (typeof(retire))(__v & -(1UL << (2))); }); | |||
| 375 | if (bits & I915_ACTIVE_MAY_SLEEP(1UL << (0))) | |||
| 376 | ref->flags |= I915_ACTIVE_RETIRE_SLEEPS(1UL << (0)); | |||
| 377 | ||||
| 378 | mtx_init(&ref->tree_lock, IPL_TTY)do { (void)(((void *)0)); (void)(0); __mtx_init((&ref-> tree_lock), ((((0x9)) > 0x0 && ((0x9)) < 0x9) ? 0x9 : ((0x9)))); } while (0); | |||
| 379 | ref->tree = RB_ROOT(struct rb_root) { ((void *)0) }; | |||
| 380 | ref->cache = NULL((void *)0); | |||
| 381 | ||||
| 382 | init_llist_head(&ref->preallocated_barriers); | |||
| 383 | atomic_set(&ref->count, 0)({ typeof(*(&ref->count)) __tmp = ((0)); *(volatile typeof (*(&ref->count)) *)&(*(&ref->count)) = __tmp ; __tmp; }); | |||
| 384 | #ifdef __linux__ | |||
| 385 | __mutex_init(&ref->mutex, "i915_active", mkey); | |||
| 386 | #else | |||
| 387 | rw_init(&ref->mutex, "i915_active")_rw_init_flags(&ref->mutex, "i915_active", 0, ((void * )0)); | |||
| 388 | #endif | |||
| 389 | __i915_active_fence_init(&ref->excl, NULL((void *)0), excl_retire); | |||
| 390 | INIT_WORK(&ref->work, active_work); | |||
| 391 | #if IS_ENABLED(CONFIG_LOCKDEP)0 | |||
| 392 | lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); | |||
| 393 | #endif | |||
| 394 | } | |||
| 395 | ||||
| 396 | static bool_Bool ____active_del_barrier(struct i915_active *ref, | |||
| 397 | struct active_node *node, | |||
| 398 | struct intel_engine_cs *engine) | |||
| 399 | ||||
| 400 | { | |||
| 401 | struct llist_node *head = NULL((void *)0), *tail = NULL((void *)0); | |||
| 402 | struct llist_node *pos, *next; | |||
| 403 | ||||
| 404 | GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context)((void)0); | |||
| 405 | ||||
| 406 | /* | |||
| 407 | * Rebuild the llist excluding our node. We may perform this | |||
| 408 | * outside of the kernel_context timeline mutex and so someone | |||
| 409 | * else may be manipulating the engine->barrier_tasks, in | |||
| 410 | * which case either we or they will be upset :) | |||
| 411 | * | |||
| 412 | * A second __active_del_barrier() will report failure to claim | |||
| 413 | * the active_node and the caller will just shrug and know not to | |||
| 414 | * claim ownership of its node. | |||
| 415 | * | |||
| 416 | * A concurrent i915_request_add_active_barriers() will miss adding | |||
| 417 | * any of the tasks, but we will try again on the next -- and since | |||
| 418 | * we are actively using the barrier, we know that there will be | |||
| 419 | * at least another opportunity when we idle. | |||
| 420 | */ | |||
| 421 | llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks))for ((pos) = (llist_del_all(&engine->barrier_tasks)); ( pos) != ((void *)0) && ((next) = (pos)->next, pos) ; (pos) = (next)) { | |||
| 422 | if (node == barrier_from_ll(pos)) { | |||
| 423 | node = NULL((void *)0); | |||
| 424 | continue; | |||
| 425 | } | |||
| 426 | ||||
| 427 | pos->next = head; | |||
| 428 | head = pos; | |||
| 429 | if (!tail) | |||
| 430 | tail = pos; | |||
| 431 | } | |||
| 432 | if (head) | |||
| 433 | llist_add_batch(head, tail, &engine->barrier_tasks); | |||
| 434 | ||||
| 435 | return !node; | |||
| 436 | } | |||
| 437 | ||||
| 438 | static bool_Bool | |||
| 439 | __active_del_barrier(struct i915_active *ref, struct active_node *node) | |||
| 440 | { | |||
| 441 | return ____active_del_barrier(ref, node, barrier_to_engine(node)); | |||
| 442 | } | |||
| 443 | ||||
| 444 | static bool_Bool | |||
| 445 | replace_barrier(struct i915_active *ref, struct i915_active_fence *active) | |||
| 446 | { | |||
| 447 | if (!is_barrier(active)) /* proto-node used by our idle barrier? */ | |||
| 448 | return false0; | |||
| 449 | ||||
| 450 | /* | |||
| 451 | * This request is on the kernel_context timeline, and so | |||
| 452 | * we can use it to substitute for the pending idle-barrer | |||
| 453 | * request that we want to emit on the kernel_context. | |||
| 454 | */ | |||
| 455 | __active_del_barrier(ref, node_from_active(active)); | |||
| 456 | return true1; | |||
| 457 | } | |||
| 458 | ||||
| 459 | int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) | |||
| 460 | { | |||
| 461 | struct i915_active_fence *active; | |||
| 462 | int err; | |||
| 463 | ||||
| 464 | /* Prevent reaping in case we malloc/wait while building the tree */ | |||
| 465 | err = i915_active_acquire(ref); | |||
| 466 | if (err) | |||
| 467 | return err; | |||
| 468 | ||||
| 469 | active = active_instance(ref, idx); | |||
| 470 | if (!active) { | |||
| 471 | err = -ENOMEM12; | |||
| 472 | goto out; | |||
| 473 | } | |||
| 474 | ||||
| 475 | if (replace_barrier(ref, active)) { | |||
| 476 | RCU_INIT_POINTER(active->fence, NULL)do { (active->fence) = (((void *)0)); } while(0); | |||
| 477 | atomic_dec(&ref->count)__sync_fetch_and_sub(&ref->count, 1); | |||
| 478 | } | |||
| 479 | if (!__i915_active_fence_set(active, fence)) | |||
| 480 | __i915_active_acquire(ref); | |||
| 481 | ||||
| 482 | out: | |||
| 483 | i915_active_release(ref); | |||
| 484 | return err; | |||
| 485 | } | |||
| 486 | ||||
| 487 | static struct dma_fence * | |||
| 488 | __i915_active_set_fence(struct i915_active *ref, | |||
| 489 | struct i915_active_fence *active, | |||
| 490 | struct dma_fence *fence) | |||
| 491 | { | |||
| 492 | struct dma_fence *prev; | |||
| 493 | ||||
| 494 | if (replace_barrier(ref, active)) { | |||
| 495 | RCU_INIT_POINTER(active->fence, fence)do { (active->fence) = (fence); } while(0); | |||
| 496 | return NULL((void *)0); | |||
| 497 | } | |||
| 498 | ||||
| 499 | rcu_read_lock(); | |||
| 500 | prev = __i915_active_fence_set(active, fence); | |||
| 501 | if (prev) | |||
| 502 | prev = dma_fence_get_rcu(prev); | |||
| 503 | else | |||
| 504 | __i915_active_acquire(ref); | |||
| 505 | rcu_read_unlock(); | |||
| 506 | ||||
| 507 | return prev; | |||
| 508 | } | |||
| 509 | ||||
| 510 | static struct i915_active_fence * | |||
| 511 | __active_fence(struct i915_active *ref, u64 idx) | |||
| 512 | { | |||
| 513 | struct active_node *it; | |||
| 514 | ||||
| 515 | it = __active_lookup(ref, idx); | |||
| 516 | if (unlikely(!it)__builtin_expect(!!(!it), 0)) { /* Contention with parallel tree builders! */ | |||
| 517 | spin_lock_irq(&ref->tree_lock)mtx_enter(&ref->tree_lock); | |||
| 518 | it = __active_lookup(ref, idx); | |||
| 519 | spin_unlock_irq(&ref->tree_lock)mtx_leave(&ref->tree_lock); | |||
| 520 | } | |||
| 521 | GEM_BUG_ON(!it)((void)0); /* slot must be preallocated */ | |||
| 522 | ||||
| 523 | return &it->base; | |||
| 524 | } | |||
| 525 | ||||
| 526 | struct dma_fence * | |||
| 527 | __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) | |||
| 528 | { | |||
| 529 | /* Only valid while active, see i915_active_acquire_for_context() */ | |||
| 530 | return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); | |||
| 531 | } | |||
| 532 | ||||
| 533 | struct dma_fence * | |||
| 534 | i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) | |||
| 535 | { | |||
| 536 | /* We expect the caller to manage the exclusive timeline ordering */ | |||
| 537 | return __i915_active_set_fence(ref, &ref->excl, f); | |||
| 538 | } | |||
| 539 | ||||
| 540 | bool_Bool i915_active_acquire_if_busy(struct i915_active *ref) | |||
| 541 | { | |||
| 542 | debug_active_assert(ref); | |||
| 543 | return atomic_add_unless(&ref->count, 1, 0); | |||
| 544 | } | |||
| 545 | ||||
| 546 | static void __i915_active_activate(struct i915_active *ref) | |||
| 547 | { | |||
| 548 | spin_lock_irq(&ref->tree_lock)mtx_enter(&ref->tree_lock); /* __active_retire() */ | |||
| 549 | if (!atomic_fetch_inc(&ref->count)__sync_fetch_and_add(&ref->count, 1)) | |||
| 550 | debug_active_activate(ref); | |||
| 551 | spin_unlock_irq(&ref->tree_lock)mtx_leave(&ref->tree_lock); | |||
| 552 | } | |||
| 553 | ||||
| 554 | int i915_active_acquire(struct i915_active *ref) | |||
| 555 | { | |||
| 556 | int err; | |||
| 557 | ||||
| 558 | if (i915_active_acquire_if_busy(ref)) | |||
| 559 | return 0; | |||
| 560 | ||||
| 561 | if (!ref->active) { | |||
| 562 | __i915_active_activate(ref); | |||
| 563 | return 0; | |||
| 564 | } | |||
| 565 | ||||
| 566 | err = mutex_lock_interruptible(&ref->mutex); | |||
| 567 | if (err) | |||
| 568 | return err; | |||
| 569 | ||||
| 570 | if (likely(!i915_active_acquire_if_busy(ref))__builtin_expect(!!(!i915_active_acquire_if_busy(ref)), 1)) { | |||
| 571 | err = ref->active(ref); | |||
| 572 | if (!err) | |||
| 573 | __i915_active_activate(ref); | |||
| 574 | } | |||
| 575 | ||||
| 576 | mutex_unlock(&ref->mutex)rw_exit_write(&ref->mutex); | |||
| 577 | ||||
| 578 | return err; | |||
| 579 | } | |||
| 580 | ||||
| 581 | int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) | |||
| 582 | { | |||
| 583 | struct i915_active_fence *active; | |||
| 584 | int err; | |||
| 585 | ||||
| 586 | err = i915_active_acquire(ref); | |||
| 587 | if (err) | |||
| 588 | return err; | |||
| 589 | ||||
| 590 | active = active_instance(ref, idx); | |||
| 591 | if (!active) { | |||
| 592 | i915_active_release(ref); | |||
| 593 | return -ENOMEM12; | |||
| 594 | } | |||
| 595 | ||||
| 596 | return 0; /* return with active ref */ | |||
| 597 | } | |||
| 598 | ||||
| 599 | void i915_active_release(struct i915_active *ref) | |||
| 600 | { | |||
| 601 | debug_active_assert(ref); | |||
| 602 | active_retire(ref); | |||
| 603 | } | |||
| 604 | ||||
| 605 | static void enable_signaling(struct i915_active_fence *active) | |||
| 606 | { | |||
| 607 | struct dma_fence *fence; | |||
| 608 | ||||
| 609 | if (unlikely(is_barrier(active))__builtin_expect(!!(is_barrier(active)), 0)) | |||
| 610 | return; | |||
| 611 | ||||
| 612 | fence = i915_active_fence_get(active); | |||
| 613 | if (!fence) | |||
| 614 | return; | |||
| 615 | ||||
| 616 | dma_fence_enable_sw_signaling(fence); | |||
| 617 | dma_fence_put(fence); | |||
| 618 | } | |||
| 619 | ||||
| 620 | static int flush_barrier(struct active_node *it) | |||
| 621 | { | |||
| 622 | struct intel_engine_cs *engine; | |||
| 623 | ||||
| 624 | if (likely(!is_barrier(&it->base))__builtin_expect(!!(!is_barrier(&it->base)), 1)) | |||
| 625 | return 0; | |||
| 626 | ||||
| 627 | engine = __barrier_to_engine(it); | |||
| 628 | smp_rmb()do { __asm volatile("" ::: "memory"); } while (0); /* serialise with add_active_barriers */ | |||
| 629 | if (!is_barrier(&it->base)) | |||
| 630 | return 0; | |||
| 631 | ||||
| 632 | return intel_engine_flush_barriers(engine); | |||
| 633 | } | |||
| 634 | ||||
| 635 | static int flush_lazy_signals(struct i915_active *ref) | |||
| 636 | { | |||
| 637 | struct active_node *it, *n; | |||
| 638 | int err = 0; | |||
| 639 | ||||
| 640 | enable_signaling(&ref->excl); | |||
| 641 | rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node)for ((it) = (__rb_deepest_left((&ref->tree)->rb_node ) ? ({ const __typeof( ((__typeof(*it) *)0)->node ) *__mptr = (__rb_deepest_left((&ref->tree)->rb_node)); (__typeof (*it) *)( (char *)__mptr - __builtin_offsetof(__typeof(*it), node ) );}) : ((void *)0)); ((it) != ((void *)0)) && ((n) = (rb_next_postorder(&it->node) ? ({ const __typeof( (( typeof(*it) *)0)->node ) *__mptr = (rb_next_postorder(& it->node)); (typeof(*it) *)( (char *)__mptr - __builtin_offsetof (typeof(*it), node) );}) : ((void *)0)), 1); (it) = (n)) { | |||
| 642 | err = flush_barrier(it); /* unconnected idle barrier? */ | |||
| 643 | if (err) | |||
| 644 | break; | |||
| 645 | ||||
| 646 | enable_signaling(&it->base); | |||
| 647 | } | |||
| 648 | ||||
| 649 | return err; | |||
| 650 | } | |||
| 651 | ||||
| 652 | int __i915_active_wait(struct i915_active *ref, int state) | |||
| 653 | { | |||
| 654 | might_sleep()assertwaitok(); | |||
| 655 | ||||
| 656 | /* Any fence added after the wait begins will not be auto-signaled */ | |||
| 657 | if (i915_active_acquire_if_busy(ref)) { | |||
| 658 | int err; | |||
| 659 | ||||
| 660 | err = flush_lazy_signals(ref); | |||
| 661 | i915_active_release(ref); | |||
| 662 | if (err) | |||
| 663 | return err; | |||
| 664 | ||||
| 665 | if (___wait_var_event(ref, i915_active_is_idle(ref),({ long __ret = 0 ; if (state & 0x100) __ret = ({ int __ret = 0; if (!((i915_active_is_idle(ref)))) __ret = ({ long ret = 0; do { int __error; unsigned long deadline; ((!cold) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/drm/i915/i915_active.c" , 666, "!cold")); mtx_enter(&sch_mtx); deadline = jiffies + ret; __error = msleep(&var_waitq, &sch_mtx, 0x100, "drmweti", ret); ret = deadline - jiffies; if (__error == -1 || __error == 4) { ret = -4; mtx_leave(&sch_mtx); break; } if ((0) > 0 && (ret <= 0 || __error == 35)) { mtx_leave(&sch_mtx); ret = (((i915_active_is_idle(ref))) ) ? 1 : 0; break; } mtx_leave(&sch_mtx); } while (ret > 0 && !((i915_active_is_idle(ref)))); ret; }); __ret; }); else do { if (!(((i915_active_is_idle(ref))))) ({ long ret = 0; do { int __error; unsigned long deadline; ((!cold) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/drm/i915/i915_active.c" , 666, "!cold")); mtx_enter(&sch_mtx); deadline = jiffies + ret; __error = msleep(&var_waitq, &sch_mtx, 0, "drmweti" , ret); ret = deadline - jiffies; if (__error == -1 || __error == 4) { ret = -4; mtx_leave(&sch_mtx); break; } if ((0) > 0 && (ret <= 0 || __error == 35)) { mtx_leave(& sch_mtx); ret = ((((i915_active_is_idle(ref))))) ? 1 : 0; break ; } mtx_leave(&sch_mtx); } while (ret > 0 && ! (((i915_active_is_idle(ref))))); ret; }); } while (0); __ret; }) | |||
| 666 | state, 0, 0, schedule())({ long __ret = 0 ; if (state & 0x100) __ret = ({ int __ret = 0; if (!((i915_active_is_idle(ref)))) __ret = ({ long ret = 0; do { int __error; unsigned long deadline; ((!cold) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/drm/i915/i915_active.c" , 666, "!cold")); mtx_enter(&sch_mtx); deadline = jiffies + ret; __error = msleep(&var_waitq, &sch_mtx, 0x100, "drmweti", ret); ret = deadline - jiffies; if (__error == -1 || __error == 4) { ret = -4; mtx_leave(&sch_mtx); break; } if ((0) > 0 && (ret <= 0 || __error == 35)) { mtx_leave(&sch_mtx); ret = (((i915_active_is_idle(ref))) ) ? 1 : 0; break; } mtx_leave(&sch_mtx); } while (ret > 0 && !((i915_active_is_idle(ref)))); ret; }); __ret; }); else do { if (!(((i915_active_is_idle(ref))))) ({ long ret = 0; do { int __error; unsigned long deadline; ((!cold) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/drm/i915/i915_active.c" , 666, "!cold")); mtx_enter(&sch_mtx); deadline = jiffies + ret; __error = msleep(&var_waitq, &sch_mtx, 0, "drmweti" , ret); ret = deadline - jiffies; if (__error == -1 || __error == 4) { ret = -4; mtx_leave(&sch_mtx); break; } if ((0) > 0 && (ret <= 0 || __error == 35)) { mtx_leave(& sch_mtx); ret = ((((i915_active_is_idle(ref))))) ? 1 : 0; break ; } mtx_leave(&sch_mtx); } while (ret > 0 && ! (((i915_active_is_idle(ref))))); ret; }); } while (0); __ret; })) | |||
| 667 | return -EINTR4; | |||
| 668 | } | |||
| 669 | ||||
| 670 | /* | |||
| 671 | * After the wait is complete, the caller may free the active. | |||
| 672 | * We have to flush any concurrent retirement before returning. | |||
| 673 | */ | |||
| 674 | flush_work(&ref->work); | |||
| 675 | return 0; | |||
| 676 | } | |||
| 677 | ||||
| 678 | static int __await_active(struct i915_active_fence *active, | |||
| 679 | int (*fn)(void *arg, struct dma_fence *fence), | |||
| 680 | void *arg) | |||
| 681 | { | |||
| 682 | struct dma_fence *fence; | |||
| 683 | ||||
| 684 | if (is_barrier(active)) /* XXX flush the barrier? */ | |||
| 685 | return 0; | |||
| 686 | ||||
| 687 | fence = i915_active_fence_get(active); | |||
| 688 | if (fence) { | |||
| 689 | int err; | |||
| 690 | ||||
| 691 | err = fn(arg, fence); | |||
| 692 | dma_fence_put(fence); | |||
| 693 | if (err < 0) | |||
| 694 | return err; | |||
| 695 | } | |||
| 696 | ||||
| 697 | return 0; | |||
| 698 | } | |||
| 699 | ||||
| 700 | struct wait_barrier { | |||
| 701 | struct wait_queue_entry base; | |||
| 702 | struct i915_active *ref; | |||
| 703 | }; | |||
| 704 | ||||
| 705 | static int | |||
| 706 | barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) | |||
| 707 | { | |||
| 708 | struct wait_barrier *wb = container_of(wq, typeof(*wb), base)({ const __typeof( ((typeof(*wb) *)0)->base ) *__mptr = (wq ); (typeof(*wb) *)( (char *)__mptr - __builtin_offsetof(typeof (*wb), base) );}); | |||
| 709 | ||||
| 710 | if (i915_active_is_idle(wb->ref)) { | |||
| 711 | list_del(&wq->entry); | |||
| 712 | i915_sw_fence_complete(wq->private); | |||
| 713 | kfree(wq); | |||
| 714 | } | |||
| 715 | ||||
| 716 | return 0; | |||
| 717 | } | |||
| 718 | ||||
| 719 | static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) | |||
| 720 | { | |||
| 721 | struct wait_barrier *wb; | |||
| 722 | ||||
| 723 | wb = kmalloc(sizeof(*wb), GFP_KERNEL(0x0001 | 0x0004)); | |||
| 724 | if (unlikely(!wb)__builtin_expect(!!(!wb), 0)) | |||
| 725 | return -ENOMEM12; | |||
| 726 | ||||
| 727 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 728 | if (!i915_sw_fence_await(fence)) { | |||
| 729 | kfree(wb); | |||
| 730 | return -EINVAL22; | |||
| 731 | } | |||
| 732 | ||||
| 733 | wb->base.flags = 0; | |||
| 734 | wb->base.func = barrier_wake; | |||
| 735 | wb->base.private = fence; | |||
| 736 | wb->ref = ref; | |||
| 737 | ||||
| 738 | add_wait_queue(__var_waitqueue(ref), &wb->base); | |||
| 739 | return 0; | |||
| 740 | } | |||
| 741 | ||||
| 742 | static int await_active(struct i915_active *ref, | |||
| 743 | unsigned int flags, | |||
| 744 | int (*fn)(void *arg, struct dma_fence *fence), | |||
| 745 | void *arg, struct i915_sw_fence *barrier) | |||
| 746 | { | |||
| 747 | int err = 0; | |||
| 748 | ||||
| 749 | if (!i915_active_acquire_if_busy(ref)) | |||
| 750 | return 0; | |||
| 751 | ||||
| 752 | if (flags & I915_ACTIVE_AWAIT_EXCL(1UL << (0)) && | |||
| 753 | rcu_access_pointer(ref->excl.fence)(ref->excl.fence)) { | |||
| 754 | err = __await_active(&ref->excl, fn, arg); | |||
| 755 | if (err) | |||
| 756 | goto out; | |||
| 757 | } | |||
| 758 | ||||
| 759 | if (flags & I915_ACTIVE_AWAIT_ACTIVE(1UL << (1))) { | |||
| 760 | struct active_node *it, *n; | |||
| 761 | ||||
| 762 | rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node)for ((it) = (__rb_deepest_left((&ref->tree)->rb_node ) ? ({ const __typeof( ((__typeof(*it) *)0)->node ) *__mptr = (__rb_deepest_left((&ref->tree)->rb_node)); (__typeof (*it) *)( (char *)__mptr - __builtin_offsetof(__typeof(*it), node ) );}) : ((void *)0)); ((it) != ((void *)0)) && ((n) = (rb_next_postorder(&it->node) ? ({ const __typeof( (( typeof(*it) *)0)->node ) *__mptr = (rb_next_postorder(& it->node)); (typeof(*it) *)( (char *)__mptr - __builtin_offsetof (typeof(*it), node) );}) : ((void *)0)), 1); (it) = (n)) { | |||
| 763 | err = __await_active(&it->base, fn, arg); | |||
| 764 | if (err) | |||
| 765 | goto out; | |||
| 766 | } | |||
| 767 | } | |||
| 768 | ||||
| 769 | if (flags & I915_ACTIVE_AWAIT_BARRIER(1UL << (2))) { | |||
| 770 | err = flush_lazy_signals(ref); | |||
| 771 | if (err) | |||
| 772 | goto out; | |||
| 773 | ||||
| 774 | err = __await_barrier(ref, barrier); | |||
| 775 | if (err) | |||
| 776 | goto out; | |||
| 777 | } | |||
| 778 | ||||
| 779 | out: | |||
| 780 | i915_active_release(ref); | |||
| 781 | return err; | |||
| 782 | } | |||
| 783 | ||||
| 784 | static int rq_await_fence(void *arg, struct dma_fence *fence) | |||
| 785 | { | |||
| 786 | return i915_request_await_dma_fence(arg, fence); | |||
| 787 | } | |||
| 788 | ||||
| 789 | int i915_request_await_active(struct i915_request *rq, | |||
| 790 | struct i915_active *ref, | |||
| 791 | unsigned int flags) | |||
| 792 | { | |||
| 793 | return await_active(ref, flags, rq_await_fence, rq, &rq->submit); | |||
| 794 | } | |||
| 795 | ||||
| 796 | static int sw_await_fence(void *arg, struct dma_fence *fence) | |||
| 797 | { | |||
| 798 | return i915_sw_fence_await_dma_fence(arg, fence, 0, | |||
| 799 | GFP_NOWAIT0x0002 | __GFP_NOWARN0); | |||
| 800 | } | |||
| 801 | ||||
| 802 | int i915_sw_fence_await_active(struct i915_sw_fence *fence, | |||
| 803 | struct i915_active *ref, | |||
| 804 | unsigned int flags) | |||
| 805 | { | |||
| 806 | return await_active(ref, flags, sw_await_fence, fence, fence); | |||
| 807 | } | |||
| 808 | ||||
| 809 | void i915_active_fini(struct i915_active *ref) | |||
| 810 | { | |||
| 811 | debug_active_fini(ref); | |||
| 812 | GEM_BUG_ON(atomic_read(&ref->count))((void)0); | |||
| 813 | GEM_BUG_ON(work_pending(&ref->work))((void)0); | |||
| 814 | mutex_destroy(&ref->mutex); | |||
| 815 | ||||
| 816 | if (ref->cache) | |||
| 817 | #ifdef __linux__ | |||
| 818 | kmem_cache_free(global.slab_cache, ref->cache); | |||
| 819 | #else | |||
| 820 | pool_put(&global.slab_cache, ref->cache); | |||
| 821 | #endif | |||
| 822 | } | |||
| 823 | ||||
| 824 | static inline bool_Bool is_idle_barrier(struct active_node *node, u64 idx) | |||
| 825 | { | |||
| 826 | return node->timeline == idx && !i915_active_fence_isset(&node->base); | |||
| 827 | } | |||
| 828 | ||||
| 829 | static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) | |||
| 830 | { | |||
| 831 | struct rb_node *prev, *p; | |||
| 832 | ||||
| 833 | if (RB_EMPTY_ROOT(&ref->tree)((&ref->tree)->rb_node == ((void *)0))) | |||
| 834 | return NULL((void *)0); | |||
| 835 | ||||
| 836 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 837 | ||||
| 838 | /* | |||
| 839 | * Try to reuse any existing barrier nodes already allocated for this | |||
| 840 | * i915_active, due to overlapping active phases there is likely a | |||
| 841 | * node kept alive (as we reuse before parking). We prefer to reuse | |||
| 842 | * completely idle barriers (less hassle in manipulating the llists), | |||
| 843 | * but otherwise any will do. | |||
| 844 | */ | |||
| 845 | if (ref->cache && is_idle_barrier(ref->cache, idx)) { | |||
| 846 | p = &ref->cache->node; | |||
| 847 | goto match; | |||
| 848 | } | |||
| 849 | ||||
| 850 | prev = NULL((void *)0); | |||
| 851 | p = ref->tree.rb_node; | |||
| 852 | while (p) { | |||
| 853 | struct active_node *node = | |||
| 854 | rb_entry(p, struct active_node, node)({ const __typeof( ((struct active_node *)0)->node ) *__mptr = (p); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, node) );}); | |||
| 855 | ||||
| 856 | if (is_idle_barrier(node, idx)) | |||
| 857 | goto match; | |||
| 858 | ||||
| 859 | prev = p; | |||
| 860 | if (node->timeline < idx) | |||
| 861 | p = READ_ONCE(p->rb_right)({ typeof(p->__entry.rbe_right) __tmp = *(volatile typeof( p->__entry.rbe_right) *)&(p->__entry.rbe_right); membar_datadep_consumer (); __tmp; }); | |||
| 862 | else | |||
| 863 | p = READ_ONCE(p->rb_left)({ typeof(p->__entry.rbe_left) __tmp = *(volatile typeof(p ->__entry.rbe_left) *)&(p->__entry.rbe_left); membar_datadep_consumer (); __tmp; }); | |||
| 864 | } | |||
| 865 | ||||
| 866 | /* | |||
| 867 | * No quick match, but we did find the leftmost rb_node for the | |||
| 868 | * kernel_context. Walk the rb_tree in-order to see if there were | |||
| 869 | * any idle-barriers on this timeline that we missed, or just use | |||
| 870 | * the first pending barrier. | |||
| 871 | */ | |||
| 872 | for (p = prev; p; p = rb_next(p)linux_root_RB_NEXT((p))) { | |||
| 873 | struct active_node *node = | |||
| 874 | rb_entry(p, struct active_node, node)({ const __typeof( ((struct active_node *)0)->node ) *__mptr = (p); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, node) );}); | |||
| 875 | struct intel_engine_cs *engine; | |||
| 876 | ||||
| 877 | if (node->timeline > idx) | |||
| 878 | break; | |||
| 879 | ||||
| 880 | if (node->timeline < idx) | |||
| 881 | continue; | |||
| 882 | ||||
| 883 | if (is_idle_barrier(node, idx)) | |||
| 884 | goto match; | |||
| 885 | ||||
| 886 | /* | |||
| 887 | * The list of pending barriers is protected by the | |||
| 888 | * kernel_context timeline, which notably we do not hold | |||
| 889 | * here. i915_request_add_active_barriers() may consume | |||
| 890 | * the barrier before we claim it, so we have to check | |||
| 891 | * for success. | |||
| 892 | */ | |||
| 893 | engine = __barrier_to_engine(node); | |||
| 894 | smp_rmb()do { __asm volatile("" ::: "memory"); } while (0); /* serialise with add_active_barriers */ | |||
| 895 | if (is_barrier(&node->base) && | |||
| 896 | ____active_del_barrier(ref, node, engine)) | |||
| 897 | goto match; | |||
| 898 | } | |||
| 899 | ||||
| 900 | return NULL((void *)0); | |||
| 901 | ||||
| 902 | match: | |||
| 903 | spin_lock_irq(&ref->tree_lock)mtx_enter(&ref->tree_lock); | |||
| 904 | rb_erase(p, &ref->tree)linux_root_RB_REMOVE((struct linux_root *)(&ref->tree) , (p)); /* Hide from waits and sibling allocations */ | |||
| 905 | if (p == &ref->cache->node) | |||
| 906 | WRITE_ONCE(ref->cache, NULL)({ typeof(ref->cache) __tmp = (((void *)0)); *(volatile typeof (ref->cache) *)&(ref->cache) = __tmp; __tmp; }); | |||
| 907 | spin_unlock_irq(&ref->tree_lock)mtx_leave(&ref->tree_lock); | |||
| 908 | ||||
| 909 | return rb_entry(p, struct active_node, node)({ const __typeof( ((struct active_node *)0)->node ) *__mptr = (p); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, node) );}); | |||
| 910 | } | |||
| 911 | ||||
| 912 | int i915_active_acquire_preallocate_barrier(struct i915_active *ref, | |||
| 913 | struct intel_engine_cs *engine) | |||
| 914 | { | |||
| 915 | intel_engine_mask_t tmp, mask = engine->mask; | |||
| 916 | struct llist_node *first = NULL((void *)0), *last = NULL((void *)0); | |||
| ||||
| 917 | struct intel_gt *gt = engine->gt; | |||
| 918 | ||||
| 919 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 920 | ||||
| 921 | /* Wait until the previous preallocation is completed */ | |||
| 922 | while (!llist_empty(&ref->preallocated_barriers)) | |||
| 923 | cond_resched()do { if (({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags & 0x0002) yield (); } while (0); | |||
| 924 | ||||
| 925 | /* | |||
| 926 | * Preallocate a node for each physical engine supporting the target | |||
| 927 | * engine (remember virtual engines have more than one sibling). | |||
| 928 | * We can then use the preallocated nodes in | |||
| 929 | * i915_active_acquire_barrier() | |||
| 930 | */ | |||
| 931 | GEM_BUG_ON(!mask)((void)0); | |||
| 932 | for_each_engine_masked(engine, gt, mask, tmp)for ((tmp) = (mask) & (gt)->info.engine_mask; (tmp) ? ( (engine) = (gt)->engine[({ int __idx = ffs(tmp) - 1; tmp &= ~(1UL << (__idx)); __idx; })]), 1 : 0;) { | |||
| 933 | u64 idx = engine->kernel_context->timeline->fence_context; | |||
| 934 | struct llist_node *prev = first; | |||
| 935 | struct active_node *node; | |||
| 936 | ||||
| 937 | rcu_read_lock(); | |||
| 938 | node = reuse_idle_barrier(ref, idx); | |||
| 939 | rcu_read_unlock(); | |||
| 940 | if (!node) { | |||
| 941 | #ifdef __linux__ | |||
| 942 | node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL(0x0001 | 0x0004)); | |||
| 943 | #else | |||
| 944 | node = pool_get(&global.slab_cache, PR_WAITOK0x0001); | |||
| 945 | #endif | |||
| 946 | if (!node) | |||
| 947 | goto unwind; | |||
| 948 | ||||
| 949 | RCU_INIT_POINTER(node->base.fence, NULL)do { (node->base.fence) = (((void *)0)); } while(0); | |||
| 950 | node->base.cb.func = node_retire; | |||
| 951 | node->timeline = idx; | |||
| 952 | node->ref = ref; | |||
| 953 | } | |||
| 954 | ||||
| 955 | if (!i915_active_fence_isset(&node->base)) { | |||
| 956 | /* | |||
| 957 | * Mark this as being *our* unconnected proto-node. | |||
| 958 | * | |||
| 959 | * Since this node is not in any list, and we have | |||
| 960 | * decoupled it from the rbtree, we can reuse the | |||
| 961 | * request to indicate this is an idle-barrier node | |||
| 962 | * and then we can use the rb_node and list pointers | |||
| 963 | * for our tracking of the pending barrier. | |||
| 964 | */ | |||
| 965 | RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN))do { (node->base.fence) = (ERR_PTR(-35)); } while(0); | |||
| 966 | node->base.cb.node.prev = (void *)engine; | |||
| 967 | __i915_active_acquire(ref); | |||
| 968 | } | |||
| 969 | GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN))((void)0); | |||
| 970 | ||||
| 971 | GEM_BUG_ON(barrier_to_engine(node) != engine)((void)0); | |||
| 972 | first = barrier_to_ll(node); | |||
| 973 | first->next = prev; | |||
| 974 | if (!last) | |||
| 975 | last = first; | |||
| 976 | intel_engine_pm_get(engine); | |||
| 977 | } | |||
| 978 | ||||
| 979 | GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers))((void)0); | |||
| 980 | llist_add_batch(first, last, &ref->preallocated_barriers); | |||
| 981 | ||||
| 982 | return 0; | |||
| 983 | ||||
| 984 | unwind: | |||
| 985 | while (first) { | |||
| 986 | struct active_node *node = barrier_from_ll(first); | |||
| 987 | ||||
| 988 | first = first->next; | |||
| 989 | ||||
| 990 | atomic_dec(&ref->count)__sync_fetch_and_sub(&ref->count, 1); | |||
| 991 | intel_engine_pm_put(barrier_to_engine(node)); | |||
| 992 | ||||
| 993 | #ifdef __linux__ | |||
| 994 | kmem_cache_free(global.slab_cache, node); | |||
| 995 | #else | |||
| 996 | pool_put(&global.slab_cache, node); | |||
| 997 | #endif | |||
| 998 | } | |||
| 999 | return -ENOMEM12; | |||
| 1000 | } | |||
| 1001 | ||||
| 1002 | void i915_active_acquire_barrier(struct i915_active *ref) | |||
| 1003 | { | |||
| 1004 | struct llist_node *pos, *next; | |||
| 1005 | unsigned long flags; | |||
| 1006 | ||||
| 1007 | GEM_BUG_ON(i915_active_is_idle(ref))((void)0); | |||
| 1008 | ||||
| 1009 | /* | |||
| 1010 | * Transfer the list of preallocated barriers into the | |||
| 1011 | * i915_active rbtree, but only as proto-nodes. They will be | |||
| 1012 | * populated by i915_request_add_active_barriers() to point to the | |||
| 1013 | * request that will eventually release them. | |||
| 1014 | */ | |||
| 1015 | llist_for_each_safe(pos, next, take_preallocated_barriers(ref))for ((pos) = (llist_del_all(&(ref)->preallocated_barriers )); (pos) != ((void *)0) && ((next) = (pos)->next, pos); (pos) = (next)) { | |||
| 1016 | struct active_node *node = barrier_from_ll(pos); | |||
| 1017 | struct intel_engine_cs *engine = barrier_to_engine(node); | |||
| 1018 | struct rb_node **p, *parent; | |||
| 1019 | ||||
| 1020 | spin_lock_irqsave_nested(&ref->tree_lock, flags,do { (void)(0); flags = 0; mtx_enter(&ref->tree_lock); } while (0) | |||
| 1021 | SINGLE_DEPTH_NESTING)do { (void)(0); flags = 0; mtx_enter(&ref->tree_lock); } while (0); | |||
| 1022 | parent = NULL((void *)0); | |||
| 1023 | p = &ref->tree.rb_node; | |||
| 1024 | while (*p) { | |||
| 1025 | struct active_node *it; | |||
| 1026 | ||||
| 1027 | parent = *p; | |||
| 1028 | ||||
| 1029 | it = rb_entry(parent, struct active_node, node)({ const __typeof( ((struct active_node *)0)->node ) *__mptr = (parent); (struct active_node *)( (char *)__mptr - __builtin_offsetof (struct active_node, node) );}); | |||
| 1030 | if (it->timeline < node->timeline) | |||
| 1031 | p = &parent->rb_right__entry.rbe_right; | |||
| 1032 | else | |||
| 1033 | p = &parent->rb_left__entry.rbe_left; | |||
| 1034 | } | |||
| 1035 | rb_link_node(&node->node, parent, p); | |||
| 1036 | rb_insert_color(&node->node, &ref->tree)linux_root_RB_INSERT_COLOR((struct linux_root *)(&ref-> tree), (&node->node)); | |||
| 1037 | spin_unlock_irqrestore(&ref->tree_lock, flags)do { (void)(flags); mtx_leave(&ref->tree_lock); } while (0); | |||
| 1038 | ||||
| 1039 | GEM_BUG_ON(!intel_engine_pm_is_awake(engine))((void)0); | |||
| 1040 | llist_add(barrier_to_ll(node), &engine->barrier_tasks); | |||
| 1041 | intel_engine_pm_put_delay(engine, 1); | |||
| 1042 | } | |||
| 1043 | } | |||
| 1044 | ||||
| 1045 | static struct dma_fence **ll_to_fence_slot(struct llist_node *node) | |||
| 1046 | { | |||
| 1047 | return __active_fence_slot(&barrier_from_ll(node)->base); | |||
| 1048 | } | |||
| 1049 | ||||
| 1050 | void i915_request_add_active_barriers(struct i915_request *rq) | |||
| 1051 | { | |||
| 1052 | struct intel_engine_cs *engine = rq->engine; | |||
| 1053 | struct llist_node *node, *next; | |||
| 1054 | unsigned long flags; | |||
| 1055 | ||||
| 1056 | GEM_BUG_ON(!intel_context_is_barrier(rq->context))((void)0); | |||
| 1057 | GEM_BUG_ON(intel_engine_is_virtual(engine))((void)0); | |||
| 1058 | GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline)((void)0); | |||
| 1059 | ||||
| 1060 | node = llist_del_all(&engine->barrier_tasks); | |||
| 1061 | if (!node) | |||
| 1062 | return; | |||
| 1063 | /* | |||
| 1064 | * Attach the list of proto-fences to the in-flight request such | |||
| 1065 | * that the parent i915_active will be released when this request | |||
| 1066 | * is retired. | |||
| 1067 | */ | |||
| 1068 | spin_lock_irqsave(&rq->lock, flags)do { flags = 0; mtx_enter(&rq->lock); } while (0); | |||
| 1069 | llist_for_each_safe(node, next, node)for ((node) = (node); (node) != ((void *)0) && ((next ) = (node)->next, node); (node) = (next)) { | |||
| 1070 | /* serialise with reuse_idle_barrier */ | |||
| 1071 | smp_store_mb(*ll_to_fence_slot(node), &rq->fence)do { *ll_to_fence_slot(node) = &rq->fence; do { __asm volatile ("mfence" ::: "memory"); } while (0); } while (0); | |||
| 1072 | list_add_tail((struct list_head *)node, &rq->fence.cb_list); | |||
| 1073 | } | |||
| 1074 | spin_unlock_irqrestore(&rq->lock, flags)do { (void)(flags); mtx_leave(&rq->lock); } while (0); | |||
| 1075 | } | |||
| 1076 | ||||
| 1077 | /* | |||
| 1078 | * __i915_active_fence_set: Update the last active fence along its timeline | |||
| 1079 | * @active: the active tracker | |||
| 1080 | * @fence: the new fence (under construction) | |||
| 1081 | * | |||
| 1082 | * Records the new @fence as the last active fence along its timeline in | |||
| 1083 | * this active tracker, moving the tracking callbacks from the previous | |||
| 1084 | * fence onto this one. Returns the previous fence (if not already completed), | |||
| 1085 | * which the caller must ensure is executed before the new fence. To ensure | |||
| 1086 | * that the order of fences within the timeline of the i915_active_fence is | |||
| 1087 | * understood, it should be locked by the caller. | |||
| 1088 | */ | |||
| 1089 | struct dma_fence * | |||
| 1090 | __i915_active_fence_set(struct i915_active_fence *active, | |||
| 1091 | struct dma_fence *fence) | |||
| 1092 | { | |||
| 1093 | struct dma_fence *prev; | |||
| 1094 | unsigned long flags; | |||
| 1095 | ||||
| 1096 | if (fence == rcu_access_pointer(active->fence)(active->fence)) | |||
| 1097 | return fence; | |||
| 1098 | ||||
| 1099 | GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))((void)0); | |||
| 1100 | ||||
| 1101 | /* | |||
| 1102 | * Consider that we have two threads arriving (A and B), with | |||
| 1103 | * C already resident as the active->fence. | |||
| 1104 | * | |||
| 1105 | * A does the xchg first, and so it sees C or NULL depending | |||
| 1106 | * on the timing of the interrupt handler. If it is NULL, the | |||
| 1107 | * previous fence must have been signaled and we know that | |||
| 1108 | * we are first on the timeline. If it is still present, | |||
| 1109 | * we acquire the lock on that fence and serialise with the interrupt | |||
| 1110 | * handler, in the process removing it from any future interrupt | |||
| 1111 | * callback. A will then wait on C before executing (if present). | |||
| 1112 | * | |||
| 1113 | * As B is second, it sees A as the previous fence and so waits for | |||
| 1114 | * it to complete its transition and takes over the occupancy for | |||
| 1115 | * itself -- remembering that it needs to wait on A before executing. | |||
| 1116 | * | |||
| 1117 | * Note the strong ordering of the timeline also provides consistent | |||
| 1118 | * nesting rules for the fence->lock; the inner lock is always the | |||
| 1119 | * older lock. | |||
| 1120 | */ | |||
| 1121 | spin_lock_irqsave(fence->lock, flags)do { flags = 0; mtx_enter(fence->lock); } while (0); | |||
| 1122 | prev = xchg(__active_fence_slot(active), fence)__sync_lock_test_and_set(__active_fence_slot(active), fence); | |||
| 1123 | if (prev) { | |||
| 1124 | GEM_BUG_ON(prev == fence)((void)0); | |||
| 1125 | spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING)mtx_enter(prev->lock); | |||
| 1126 | __list_del_entry(&active->cb.node)list_del(&active->cb.node); | |||
| 1127 | spin_unlock(prev->lock)mtx_leave(prev->lock); /* serialise with prev->cb_list */ | |||
| 1128 | } | |||
| 1129 | list_add_tail(&active->cb.node, &fence->cb_list); | |||
| 1130 | spin_unlock_irqrestore(fence->lock, flags)do { (void)(flags); mtx_leave(fence->lock); } while (0); | |||
| 1131 | ||||
| 1132 | return prev; | |||
| 1133 | } | |||
| 1134 | ||||
| 1135 | int i915_active_fence_set(struct i915_active_fence *active, | |||
| 1136 | struct i915_request *rq) | |||
| 1137 | { | |||
| 1138 | struct dma_fence *fence; | |||
| 1139 | int err = 0; | |||
| 1140 | ||||
| 1141 | /* Must maintain timeline ordering wrt previous active requests */ | |||
| 1142 | rcu_read_lock(); | |||
| 1143 | fence = __i915_active_fence_set(active, &rq->fence); | |||
| 1144 | if (fence) /* but the previous fence may not belong to that timeline! */ | |||
| 1145 | fence = dma_fence_get_rcu(fence); | |||
| 1146 | rcu_read_unlock(); | |||
| 1147 | if (fence) { | |||
| 1148 | err = i915_request_await_dma_fence(rq, fence); | |||
| 1149 | dma_fence_put(fence); | |||
| 1150 | } | |||
| 1151 | ||||
| 1152 | return err; | |||
| 1153 | } | |||
| 1154 | ||||
| 1155 | void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) | |||
| 1156 | { | |||
| 1157 | active_fence_cb(fence, cb); | |||
| 1158 | } | |||
| 1159 | ||||
| 1160 | struct auto_active { | |||
| 1161 | struct i915_active base; | |||
| 1162 | struct kref ref; | |||
| 1163 | }; | |||
| 1164 | ||||
| 1165 | struct i915_active *i915_active_get(struct i915_active *ref) | |||
| 1166 | { | |||
| 1167 | struct auto_active *aa = container_of(ref, typeof(*aa), base)({ const __typeof( ((typeof(*aa) *)0)->base ) *__mptr = (ref ); (typeof(*aa) *)( (char *)__mptr - __builtin_offsetof(typeof (*aa), base) );}); | |||
| 1168 | ||||
| 1169 | kref_get(&aa->ref); | |||
| 1170 | return &aa->base; | |||
| 1171 | } | |||
| 1172 | ||||
| 1173 | static void auto_release(struct kref *ref) | |||
| 1174 | { | |||
| 1175 | struct auto_active *aa = container_of(ref, typeof(*aa), ref)({ const __typeof( ((typeof(*aa) *)0)->ref ) *__mptr = (ref ); (typeof(*aa) *)( (char *)__mptr - __builtin_offsetof(typeof (*aa), ref) );}); | |||
| 1176 | ||||
| 1177 | i915_active_fini(&aa->base); | |||
| 1178 | kfree(aa); | |||
| 1179 | } | |||
| 1180 | ||||
| 1181 | void i915_active_put(struct i915_active *ref) | |||
| 1182 | { | |||
| 1183 | struct auto_active *aa = container_of(ref, typeof(*aa), base)({ const __typeof( ((typeof(*aa) *)0)->base ) *__mptr = (ref ); (typeof(*aa) *)( (char *)__mptr - __builtin_offsetof(typeof (*aa), base) );}); | |||
| 1184 | ||||
| 1185 | kref_put(&aa->ref, auto_release); | |||
| 1186 | } | |||
| 1187 | ||||
| 1188 | static int auto_active(struct i915_active *ref) | |||
| 1189 | { | |||
| 1190 | i915_active_get(ref); | |||
| 1191 | return 0; | |||
| 1192 | } | |||
| 1193 | ||||
| 1194 | __i915_active_call__attribute__((__aligned__(4))) static void | |||
| 1195 | auto_retire(struct i915_active *ref) | |||
| 1196 | { | |||
| 1197 | i915_active_put(ref); | |||
| 1198 | } | |||
| 1199 | ||||
| 1200 | struct i915_active *i915_active_create(void) | |||
| 1201 | { | |||
| 1202 | struct auto_active *aa; | |||
| 1203 | ||||
| 1204 | aa = kmalloc(sizeof(*aa), GFP_KERNEL(0x0001 | 0x0004)); | |||
| 1205 | if (!aa) | |||
| 1206 | return NULL((void *)0); | |||
| 1207 | ||||
| 1208 | kref_init(&aa->ref); | |||
| 1209 | i915_active_init(&aa->base, auto_active, auto_retire)do { static struct lock_class_key __mkey; static struct lock_class_key __wkey; __i915_active_init(&aa->base, auto_active, auto_retire , &__mkey, &__wkey); } while (0); | |||
| 1210 | ||||
| 1211 | return &aa->base; | |||
| 1212 | } | |||
| 1213 | ||||
| 1214 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)0 | |||
| 1215 | #include "selftests/i915_active.c" | |||
| 1216 | #endif | |||
| 1217 | ||||
| 1218 | static void i915_global_active_shrink(void) | |||
| 1219 | { | |||
| 1220 | #ifdef notyet | |||
| 1221 | kmem_cache_shrink(global.slab_cache); | |||
| 1222 | #endif | |||
| 1223 | } | |||
| 1224 | ||||
| 1225 | static void i915_global_active_exit(void) | |||
| 1226 | { | |||
| 1227 | #ifdef __linux__ | |||
| 1228 | kmem_cache_destroy(global.slab_cache); | |||
| 1229 | #else | |||
| 1230 | pool_destroy(&global.slab_cache); | |||
| 1231 | #endif | |||
| 1232 | } | |||
| 1233 | ||||
| 1234 | static struct i915_global_active global = { { | |||
| 1235 | .shrink = i915_global_active_shrink, | |||
| 1236 | .exit = i915_global_active_exit, | |||
| 1237 | } }; | |||
| 1238 | ||||
| 1239 | int __init i915_global_active_init(void) | |||
| 1240 | { | |||
| 1241 | #ifdef __linux__ | |||
| 1242 | global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); | |||
| 1243 | if (!global.slab_cache) | |||
| 1244 | return -ENOMEM12; | |||
| 1245 | #else | |||
| 1246 | pool_init(&global.slab_cache, sizeof(struct active_node), | |||
| 1247 | CACHELINESIZE64, IPL_TTY0x9, 0, "drmsc", NULL((void *)0)); | |||
| 1248 | #endif | |||
| 1249 | ||||
| 1250 | i915_global_register(&global.base); | |||
| 1251 | return 0; | |||
| 1252 | } |
| 1 | /* Public domain. */ | |||
| 2 | ||||
| 3 | #ifndef _LINUX_LLIST_H | |||
| 4 | #define _LINUX_LLIST_H | |||
| 5 | ||||
| 6 | #include <sys/atomic.h> | |||
| 7 | ||||
| 8 | struct llist_node { | |||
| 9 | struct llist_node *next; | |||
| 10 | }; | |||
| 11 | ||||
| 12 | struct llist_head { | |||
| 13 | struct llist_node *first; | |||
| 14 | }; | |||
| 15 | ||||
| 16 | #define llist_entry(ptr, type, member)((ptr) ? ({ const __typeof( ((type *)0)->member ) *__mptr = (ptr); (type *)( (char *)__mptr - __builtin_offsetof(type, member ) );}) : ((void *)0)) \ | |||
| 17 | ((ptr) ? container_of(ptr, type, member)({ const __typeof( ((type *)0)->member ) *__mptr = (ptr); ( type *)( (char *)__mptr - __builtin_offsetof(type, member) ); }) : NULL((void *)0)) | |||
| 18 | ||||
| 19 | static inline struct llist_node * | |||
| 20 | llist_del_all(struct llist_head *head) | |||
| 21 | { | |||
| 22 | return atomic_swap_ptr(&head->first, NULL)_atomic_swap_ptr((&head->first), (((void *)0))); | |||
| 23 | } | |||
| 24 | ||||
| 25 | static inline struct llist_node * | |||
| 26 | llist_del_first(struct llist_head *head) | |||
| 27 | { | |||
| 28 | struct llist_node *first, *next; | |||
| 29 | ||||
| 30 | do { | |||
| 31 | first = head->first; | |||
| 32 | if (first == NULL((void *)0)) | |||
| 33 | return NULL((void *)0); | |||
| 34 | next = first->next; | |||
| 35 | } while (atomic_cas_ptr(&head->first, first, next)_atomic_cas_ptr((&head->first), (first), (next)) != first); | |||
| 36 | ||||
| 37 | return first; | |||
| 38 | } | |||
| 39 | ||||
| 40 | static inline bool_Bool | |||
| 41 | llist_add(struct llist_node *new, struct llist_head *head) | |||
| 42 | { | |||
| 43 | struct llist_node *first; | |||
| 44 | ||||
| 45 | do { | |||
| 46 | new->next = first = head->first; | |||
| 47 | } while (atomic_cas_ptr(&head->first, first, new)_atomic_cas_ptr((&head->first), (first), (new)) != first); | |||
| 48 | ||||
| 49 | return (first == NULL((void *)0)); | |||
| 50 | } | |||
| 51 | ||||
| 52 | static inline bool_Bool | |||
| 53 | llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, | |||
| 54 | struct llist_head *head) | |||
| 55 | { | |||
| 56 | struct llist_node *first; | |||
| 57 | ||||
| 58 | do { | |||
| 59 | new_last->next = first = head->first; | |||
| ||||
| 60 | } while (atomic_cas_ptr(&head->first, first, new_first)_atomic_cas_ptr((&head->first), (first), (new_first)) != first); | |||
| 61 | ||||
| 62 | return (first == NULL((void *)0)); | |||
| 63 | } | |||
| 64 | ||||
| 65 | static inline void | |||
| 66 | init_llist_head(struct llist_head *head) | |||
| 67 | { | |||
| 68 | head->first = NULL((void *)0); | |||
| 69 | } | |||
| 70 | ||||
| 71 | static inline bool_Bool | |||
| 72 | llist_empty(struct llist_head *head) | |||
| 73 | { | |||
| 74 | return (head->first == NULL((void *)0)); | |||
| 75 | } | |||
| 76 | ||||
| 77 | #define llist_for_each_safe(pos, n, node)for ((pos) = (node); (pos) != ((void *)0) && ((n) = ( pos)->next, pos); (pos) = (n)) \ | |||
| 78 | for ((pos) = (node); \ | |||
| 79 | (pos) != NULL((void *)0) && \ | |||
| 80 | ((n) = (pos)->next, pos); \ | |||
| 81 | (pos) = (n)) | |||
| 82 | ||||
| 83 | #define llist_for_each_entry_safe(pos, n, node, member)for (pos = (((node)) ? ({ const __typeof( ((__typeof(*pos) *) 0)->member ) *__mptr = ((node)); (__typeof(*pos) *)( (char *)__mptr - __builtin_offsetof(__typeof(*pos), member) );}) : ((void *)0)); pos != ((void *)0) && (n = ((pos->member .next) ? ({ const __typeof( ((__typeof(*pos) *)0)->member ) *__mptr = (pos->member.next); (__typeof(*pos) *)( (char * )__mptr - __builtin_offsetof(__typeof(*pos), member) );}) : ( (void *)0)), pos); pos = n) \ | |||
| 84 | for (pos = llist_entry((node), __typeof(*pos), member)(((node)) ? ({ const __typeof( ((__typeof(*pos) *)0)->member ) *__mptr = ((node)); (__typeof(*pos) *)( (char *)__mptr - __builtin_offsetof (__typeof(*pos), member) );}) : ((void *)0)); \ | |||
| 85 | pos != NULL((void *)0) && \ | |||
| 86 | (n = llist_entry(pos->member.next, __typeof(*pos), member)((pos->member.next) ? ({ const __typeof( ((__typeof(*pos) * )0)->member ) *__mptr = (pos->member.next); (__typeof(* pos) *)( (char *)__mptr - __builtin_offsetof(__typeof(*pos), member ) );}) : ((void *)0)), pos); \ | |||
| 87 | pos = n) | |||
| 88 | ||||
| 89 | #define llist_for_each_entry(pos, node, member)for ((pos) = (((node)) ? ({ const __typeof( ((__typeof(*(pos) ) *)0)->member ) *__mptr = ((node)); (__typeof(*(pos)) *)( (char *)__mptr - __builtin_offsetof(__typeof(*(pos)), member ) );}) : ((void *)0)); (pos) != ((void *)0); (pos) = (((pos)-> member.next) ? ({ const __typeof( ((__typeof(*(pos)) *)0)-> member ) *__mptr = ((pos)->member.next); (__typeof(*(pos)) *)( (char *)__mptr - __builtin_offsetof(__typeof(*(pos)), member ) );}) : ((void *)0))) \ | |||
| 90 | for ((pos) = llist_entry((node), __typeof(*(pos)), member)(((node)) ? ({ const __typeof( ((__typeof(*(pos)) *)0)->member ) *__mptr = ((node)); (__typeof(*(pos)) *)( (char *)__mptr - __builtin_offsetof(__typeof(*(pos)), member) );}) : ((void * )0)); \ | |||
| 91 | (pos) != NULL((void *)0); \ | |||
| 92 | (pos) = llist_entry((pos)->member.next, __typeof(*(pos)), member)(((pos)->member.next) ? ({ const __typeof( ((__typeof(*(pos )) *)0)->member ) *__mptr = ((pos)->member.next); (__typeof (*(pos)) *)( (char *)__mptr - __builtin_offsetof(__typeof(*(pos )), member) );}) : ((void *)0))) | |||
| 93 | ||||
| 94 | #endif |