| File: | dev/pci/drm/amd/pm/powerplay/hwmgr/ppevvmath.h |
| Warning: | line 339, column 2 Value stored to 'Y_LessThanOne' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright 2015 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | */ |
| 23 | #include <asm/div64.h> |
| 24 | |
| 25 | #define SHIFT_AMOUNT16 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ |
| 26 | |
| 27 | #define PRECISION5 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ |
| 28 | |
| 29 | #define SHIFTED_2(2 << 16) (2 << SHIFT_AMOUNT16) |
| 30 | #define PPMAX(1 << (16 - 1)) - 1 (1 << (SHIFT_AMOUNT16 - 1)) - 1 /* 32767 - Might change in the future */ |
| 31 | |
| 32 | /* ------------------------------------------------------------------------------- |
| 33 | * NEW TYPE - fINT |
| 34 | * ------------------------------------------------------------------------------- |
| 35 | * A variable of type fInt can be accessed in 3 ways using the dot (.) operator |
| 36 | * fInt A; |
| 37 | * A.full => The full number as it is. Generally not easy to read |
| 38 | * A.partial.real => Only the integer portion |
| 39 | * A.partial.decimal => Only the fractional portion |
| 40 | */ |
| 41 | typedef union _fInt { |
| 42 | int full; |
| 43 | struct _partial { |
| 44 | unsigned int decimal: SHIFT_AMOUNT16; /*Needs to always be unsigned*/ |
| 45 | int real: 32 - SHIFT_AMOUNT16; |
| 46 | } partial; |
| 47 | } fInt; |
| 48 | |
| 49 | /* ------------------------------------------------------------------------------- |
| 50 | * Function Declarations |
| 51 | * ------------------------------------------------------------------------------- |
| 52 | */ |
| 53 | static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ |
| 54 | static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ |
| 55 | static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ |
| 56 | static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ |
| 57 | |
| 58 | static fInt fNegate(fInt); /* Returns -1 * input fInt value */ |
| 59 | static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ |
| 60 | static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ |
| 61 | static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ |
| 62 | static fInt fDivide (fInt A, fInt B); /* Returns A/B */ |
| 63 | static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ |
| 64 | static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ |
| 65 | |
| 66 | static int uAbs(int); /* Returns the Absolute value of the Int */ |
| 67 | static int uPow(int base, int exponent); /* Returns base^exponent an INT */ |
| 68 | |
| 69 | static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ |
| 70 | static bool_Bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ |
| 71 | static bool_Bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ |
| 72 | |
| 73 | static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ |
| 74 | static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ |
| 75 | |
| 76 | /* Fuse decoding functions |
| 77 | * ------------------------------------------------------------------------------------- |
| 78 | */ |
| 79 | static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); |
| 80 | static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); |
| 81 | static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); |
| 82 | |
| 83 | /* Internal Support Functions - Use these ONLY for testing or adding to internal functions |
| 84 | * ------------------------------------------------------------------------------------- |
| 85 | * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. |
| 86 | */ |
| 87 | static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ |
| 88 | static fInt fNegate(fInt); |
| 89 | |
| 90 | static int uGetScaledDecimal (fInt); /* Internal function */ |
| 91 | static int GetReal (fInt A); /* Internal function */ |
| 92 | |
| 93 | /* ------------------------------------------------------------------------------------- |
| 94 | * TROUBLESHOOTING INFORMATION |
| 95 | * ------------------------------------------------------------------------------------- |
| 96 | * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) |
| 97 | * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) |
| 98 | * 3) fMultiply - OutputOutOfRangeException: |
| 99 | * 4) fGetSquare - OutputOutOfRangeException: |
| 100 | * 5) fDivide - DivideByZeroException |
| 101 | * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number |
| 102 | */ |
| 103 | |
| 104 | /* ------------------------------------------------------------------------------------- |
| 105 | * START OF CODE |
| 106 | * ------------------------------------------------------------------------------------- |
| 107 | */ |
| 108 | static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ |
| 109 | { |
| 110 | uint32_t i; |
| 111 | bool_Bool bNegated = false0; |
| 112 | |
| 113 | fInt fPositiveOne = ConvertToFraction(1); |
| 114 | fInt fZERO = ConvertToFraction(0); |
| 115 | |
| 116 | fInt lower_bound = Divide(78, 10000); |
| 117 | fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ |
| 118 | fInt error_term; |
| 119 | |
| 120 | static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; |
| 121 | static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; |
| 122 | |
| 123 | if (GreaterThan(fZERO, exponent)) { |
| 124 | exponent = fNegate(exponent); |
| 125 | bNegated = true1; |
| 126 | } |
| 127 | |
| 128 | while (GreaterThan(exponent, lower_bound)) { |
| 129 | for (i = 0; i < 11; i++) { |
| 130 | if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { |
| 131 | exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); |
| 132 | solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | error_term = fAdd(fPositiveOne, exponent); |
| 138 | |
| 139 | solution = fMultiply(solution, error_term); |
| 140 | |
| 141 | if (bNegated) |
| 142 | solution = fDivide(fPositiveOne, solution); |
| 143 | |
| 144 | return solution; |
| 145 | } |
| 146 | |
| 147 | static fInt fNaturalLog(fInt value) |
| 148 | { |
| 149 | uint32_t i; |
| 150 | fInt upper_bound = Divide(8, 1000); |
| 151 | fInt fNegativeOne = ConvertToFraction(-1); |
| 152 | fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ |
| 153 | fInt error_term; |
| 154 | |
| 155 | static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; |
| 156 | static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; |
| 157 | |
| 158 | while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { |
| 159 | for (i = 0; i < 10; i++) { |
| 160 | if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { |
| 161 | value = fDivide(value, GetScaledFraction(k_array[i], 10000)); |
| 162 | solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | error_term = fAdd(fNegativeOne, value); |
| 168 | |
| 169 | return (fAdd(solution, error_term)); |
| 170 | } |
| 171 | |
| 172 | static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) |
| 173 | { |
| 174 | fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); |
| 175 | fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| 176 | |
| 177 | fInt f_decoded_value; |
| 178 | |
| 179 | f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); |
| 180 | f_decoded_value = fMultiply(f_decoded_value, f_range); |
| 181 | f_decoded_value = fAdd(f_decoded_value, f_min); |
| 182 | |
| 183 | return f_decoded_value; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) |
| 188 | { |
| 189 | fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); |
| 190 | fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| 191 | |
| 192 | fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); |
| 193 | fInt f_CONSTANT1 = ConvertToFraction(1); |
| 194 | |
| 195 | fInt f_decoded_value; |
| 196 | |
| 197 | f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); |
| 198 | f_decoded_value = fNaturalLog(f_decoded_value); |
| 199 | f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); |
| 200 | f_decoded_value = fAdd(f_decoded_value, f_average); |
| 201 | |
| 202 | return f_decoded_value; |
| 203 | } |
| 204 | |
| 205 | static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) |
| 206 | { |
| 207 | fInt fLeakage; |
| 208 | fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| 209 | |
| 210 | fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); |
| 211 | fLeakage = fDivide(fLeakage, f_bit_max_value); |
| 212 | fLeakage = fExponential(fLeakage); |
| 213 | fLeakage = fMultiply(fLeakage, f_min); |
| 214 | |
| 215 | return fLeakage; |
| 216 | } |
| 217 | |
| 218 | static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ |
| 219 | { |
| 220 | fInt temp; |
| 221 | |
| 222 | if (X <= PPMAX(1 << (16 - 1)) - 1) |
| 223 | temp.full = (X << SHIFT_AMOUNT16); |
| 224 | else |
| 225 | temp.full = 0; |
| 226 | |
| 227 | return temp; |
| 228 | } |
| 229 | |
| 230 | static fInt fNegate(fInt X) |
| 231 | { |
| 232 | fInt CONSTANT_NEGONE = ConvertToFraction(-1); |
| 233 | return (fMultiply(X, CONSTANT_NEGONE)); |
| 234 | } |
| 235 | |
| 236 | static fInt Convert_ULONG_ToFraction(uint32_t X) |
| 237 | { |
| 238 | fInt temp; |
| 239 | |
| 240 | if (X <= PPMAX(1 << (16 - 1)) - 1) |
| 241 | temp.full = (X << SHIFT_AMOUNT16); |
| 242 | else |
| 243 | temp.full = 0; |
| 244 | |
| 245 | return temp; |
| 246 | } |
| 247 | |
| 248 | static fInt GetScaledFraction(int X, int factor) |
| 249 | { |
| 250 | int times_shifted, factor_shifted; |
| 251 | bool_Bool bNEGATED; |
| 252 | fInt fValue; |
| 253 | |
| 254 | times_shifted = 0; |
| 255 | factor_shifted = 0; |
| 256 | bNEGATED = false0; |
| 257 | |
| 258 | if (X < 0) { |
| 259 | X = -1*X; |
| 260 | bNEGATED = true1; |
| 261 | } |
| 262 | |
| 263 | if (factor < 0) { |
| 264 | factor = -1*factor; |
| 265 | bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ |
| 266 | } |
| 267 | |
| 268 | if ((X > PPMAX(1 << (16 - 1)) - 1) || factor > PPMAX(1 << (16 - 1)) - 1) { |
| 269 | if ((X/factor) <= PPMAX(1 << (16 - 1)) - 1) { |
| 270 | while (X > PPMAX(1 << (16 - 1)) - 1) { |
| 271 | X = X >> 1; |
| 272 | times_shifted++; |
| 273 | } |
| 274 | |
| 275 | while (factor > PPMAX(1 << (16 - 1)) - 1) { |
| 276 | factor = factor >> 1; |
| 277 | factor_shifted++; |
| 278 | } |
| 279 | } else { |
| 280 | fValue.full = 0; |
| 281 | return fValue; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | if (factor == 1) |
| 286 | return ConvertToFraction(X); |
| 287 | |
| 288 | fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); |
| 289 | |
| 290 | fValue.full = fValue.full << times_shifted; |
| 291 | fValue.full = fValue.full >> factor_shifted; |
| 292 | |
| 293 | return fValue; |
| 294 | } |
| 295 | |
| 296 | /* Addition using two fInts */ |
| 297 | static fInt fAdd (fInt X, fInt Y) |
| 298 | { |
| 299 | fInt Sum; |
| 300 | |
| 301 | Sum.full = X.full + Y.full; |
| 302 | |
| 303 | return Sum; |
| 304 | } |
| 305 | |
| 306 | /* Addition using two fInts */ |
| 307 | static fInt fSubtract (fInt X, fInt Y) |
| 308 | { |
| 309 | fInt Difference; |
| 310 | |
| 311 | Difference.full = X.full - Y.full; |
| 312 | |
| 313 | return Difference; |
| 314 | } |
| 315 | |
| 316 | static bool_Bool Equal(fInt A, fInt B) |
| 317 | { |
| 318 | if (A.full == B.full) |
| 319 | return true1; |
| 320 | else |
| 321 | return false0; |
| 322 | } |
| 323 | |
| 324 | static bool_Bool GreaterThan(fInt A, fInt B) |
| 325 | { |
| 326 | if (A.full > B.full) |
| 327 | return true1; |
| 328 | else |
| 329 | return false0; |
| 330 | } |
| 331 | |
| 332 | static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ |
| 333 | { |
| 334 | fInt Product; |
| 335 | int64_t tempProduct; |
| 336 | bool_Bool X_LessThanOne, Y_LessThanOne; |
| 337 | |
| 338 | X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); |
| 339 | Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); |
Value stored to 'Y_LessThanOne' is never read | |
| 340 | |
| 341 | /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ |
| 342 | /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION |
| 343 | |
| 344 | if (X_LessThanOne && Y_LessThanOne) { |
| 345 | Product.full = X.full * Y.full; |
| 346 | return Product |
| 347 | }*/ |
| 348 | |
| 349 | tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ |
| 350 | tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ |
| 351 | Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ |
| 352 | |
| 353 | return Product; |
| 354 | } |
| 355 | |
| 356 | static fInt fDivide (fInt X, fInt Y) |
| 357 | { |
| 358 | fInt fZERO, fQuotient; |
| 359 | int64_t longlongX, longlongY; |
| 360 | |
| 361 | fZERO = ConvertToFraction(0); |
| 362 | |
| 363 | if (Equal(Y, fZERO)) |
| 364 | return fZERO; |
| 365 | |
| 366 | longlongX = (int64_t)X.full; |
| 367 | longlongY = (int64_t)Y.full; |
| 368 | |
| 369 | longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ |
| 370 | |
| 371 | div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ |
| 372 | |
| 373 | fQuotient.full = (int)longlongX; |
| 374 | return fQuotient; |
| 375 | } |
| 376 | |
| 377 | static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ |
| 378 | { |
| 379 | fInt fullNumber, scaledDecimal, scaledReal; |
| 380 | |
| 381 | scaledReal.full = GetReal(A) * uPow(10, PRECISION5-1); /* DOUBLE CHECK THISSSS!!! */ |
| 382 | |
| 383 | scaledDecimal.full = uGetScaledDecimal(A); |
| 384 | |
| 385 | fullNumber = fAdd(scaledDecimal,scaledReal); |
| 386 | |
| 387 | return fullNumber.full; |
| 388 | } |
| 389 | |
| 390 | static fInt fGetSquare(fInt A) |
| 391 | { |
| 392 | return fMultiply(A,A); |
| 393 | } |
| 394 | |
| 395 | /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ |
| 396 | static fInt fSqrt(fInt num) |
| 397 | { |
| 398 | fInt F_divide_Fprime, Fprime; |
| 399 | fInt test; |
| 400 | fInt twoShifted; |
| 401 | int seed, counter, error; |
| 402 | fInt x_new, x_old, C, y; |
| 403 | |
| 404 | fInt fZERO = ConvertToFraction(0); |
| 405 | |
| 406 | /* (0 > num) is the same as (num < 0), i.e., num is negative */ |
| 407 | |
| 408 | if (GreaterThan(fZERO, num) || Equal(fZERO, num)) |
| 409 | return fZERO; |
| 410 | |
| 411 | C = num; |
| 412 | |
| 413 | if (num.partial.real > 3000) |
| 414 | seed = 60; |
| 415 | else if (num.partial.real > 1000) |
| 416 | seed = 30; |
| 417 | else if (num.partial.real > 100) |
| 418 | seed = 10; |
| 419 | else |
| 420 | seed = 2; |
| 421 | |
| 422 | counter = 0; |
| 423 | |
| 424 | if (Equal(num, fZERO)) /*Square Root of Zero is zero */ |
| 425 | return fZERO; |
| 426 | |
| 427 | twoShifted = ConvertToFraction(2); |
| 428 | x_new = ConvertToFraction(seed); |
| 429 | |
| 430 | do { |
| 431 | counter++; |
| 432 | |
| 433 | x_old.full = x_new.full; |
| 434 | |
| 435 | test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ |
| 436 | y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ |
| 437 | |
| 438 | Fprime = fMultiply(twoShifted, x_old); |
| 439 | F_divide_Fprime = fDivide(y, Fprime); |
| 440 | |
| 441 | x_new = fSubtract(x_old, F_divide_Fprime); |
| 442 | |
| 443 | error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); |
| 444 | |
| 445 | if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ |
| 446 | return x_new; |
| 447 | |
| 448 | } while (uAbs(error) > 0); |
| 449 | |
| 450 | return (x_new); |
| 451 | } |
| 452 | |
| 453 | static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) |
| 454 | { |
| 455 | fInt *pRoots = &Roots[0]; |
| 456 | fInt temp, root_first, root_second; |
| 457 | fInt f_CONSTANT10, f_CONSTANT100; |
| 458 | |
| 459 | f_CONSTANT100 = ConvertToFraction(100); |
| 460 | f_CONSTANT10 = ConvertToFraction(10); |
| 461 | |
| 462 | while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { |
| 463 | A = fDivide(A, f_CONSTANT10); |
| 464 | B = fDivide(B, f_CONSTANT10); |
| 465 | C = fDivide(C, f_CONSTANT10); |
| 466 | } |
| 467 | |
| 468 | temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ |
| 469 | temp = fMultiply(temp, C); /* root = 4*A*C */ |
| 470 | temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ |
| 471 | temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ |
| 472 | |
| 473 | root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ |
| 474 | root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ |
| 475 | |
| 476 | root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ |
| 477 | root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ |
| 478 | |
| 479 | root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ |
| 480 | root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ |
| 481 | |
| 482 | *(pRoots + 0) = root_first; |
| 483 | *(pRoots + 1) = root_second; |
| 484 | } |
| 485 | |
| 486 | /* ----------------------------------------------------------------------------- |
| 487 | * SUPPORT FUNCTIONS |
| 488 | * ----------------------------------------------------------------------------- |
| 489 | */ |
| 490 | |
| 491 | /* Conversion Functions */ |
| 492 | static int GetReal (fInt A) |
| 493 | { |
| 494 | return (A.full >> SHIFT_AMOUNT16); |
| 495 | } |
| 496 | |
| 497 | static fInt Divide (int X, int Y) |
| 498 | { |
| 499 | fInt A, B, Quotient; |
| 500 | |
| 501 | A.full = X << SHIFT_AMOUNT16; |
| 502 | B.full = Y << SHIFT_AMOUNT16; |
| 503 | |
| 504 | Quotient = fDivide(A, B); |
| 505 | |
| 506 | return Quotient; |
| 507 | } |
| 508 | |
| 509 | static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ |
| 510 | { |
| 511 | int dec[PRECISION5]; |
| 512 | int i, scaledDecimal = 0, tmp = A.partial.decimal; |
| 513 | |
| 514 | for (i = 0; i < PRECISION5; i++) { |
| 515 | dec[i] = tmp / (1 << SHIFT_AMOUNT16); |
| 516 | tmp = tmp - ((1 << SHIFT_AMOUNT16)*dec[i]); |
| 517 | tmp *= 10; |
| 518 | scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION5 - 1 -i); |
| 519 | } |
| 520 | |
| 521 | return scaledDecimal; |
| 522 | } |
| 523 | |
| 524 | static int uPow(int base, int power) |
| 525 | { |
| 526 | if (power == 0) |
| 527 | return 1; |
| 528 | else |
| 529 | return (base)*uPow(base, power - 1); |
| 530 | } |
| 531 | |
| 532 | static int uAbs(int X) |
| 533 | { |
| 534 | if (X < 0) |
| 535 | return (X * -1); |
| 536 | else |
| 537 | return X; |
| 538 | } |
| 539 | |
| 540 | static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool_Bool error_term) |
| 541 | { |
| 542 | fInt solution; |
| 543 | |
| 544 | solution = fDivide(A, fStepSize); |
| 545 | solution.partial.decimal = 0; /*All fractional digits changes to 0 */ |
| 546 | |
| 547 | if (error_term) |
| 548 | solution.partial.real += 1; /*Error term of 1 added */ |
| 549 | |
| 550 | solution = fMultiply(solution, fStepSize); |
| 551 | solution = fAdd(solution, fStepSize); |
| 552 | |
| 553 | return solution; |
| 554 | } |
| 555 |