| File: | dev/pci/if_jme.c |
| Warning: | line 188, column 9 Although the value stored to 'val' is used in the enclosing expression, the value is never actually read from 'val' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_jme.c,v 1.55 2022/01/09 05:42:54 jsg Exp $ */ |
| 2 | /*- |
| 3 | * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> |
| 4 | * All rights reserved. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice unmodified, this list of conditions, and the following |
| 11 | * disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 17 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 20 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 22 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 23 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 24 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 25 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 26 | * SUCH DAMAGE. |
| 27 | * |
| 28 | * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $ |
| 29 | * $DragonFly: src/sys/dev/netif/jme/if_jme.c,v 1.7 2008/09/13 04:04:39 sephe Exp $ |
| 30 | */ |
| 31 | |
| 32 | #include "bpfilter.h" |
| 33 | #include "vlan.h" |
| 34 | |
| 35 | #include <sys/param.h> |
| 36 | #include <sys/endian.h> |
| 37 | #include <sys/systm.h> |
| 38 | #include <sys/sockio.h> |
| 39 | #include <sys/mbuf.h> |
| 40 | #include <sys/queue.h> |
| 41 | #include <sys/kernel.h> |
| 42 | #include <sys/device.h> |
| 43 | #include <sys/timeout.h> |
| 44 | #include <sys/socket.h> |
| 45 | |
| 46 | #include <machine/bus.h> |
| 47 | |
| 48 | #include <net/if.h> |
| 49 | #include <net/if_dl.h> |
| 50 | #include <net/if_media.h> |
| 51 | |
| 52 | #include <netinet/in.h> |
| 53 | #include <netinet/if_ether.h> |
| 54 | |
| 55 | #if NBPFILTER1 > 0 |
| 56 | #include <net/bpf.h> |
| 57 | #endif |
| 58 | |
| 59 | #include <dev/mii/miivar.h> |
| 60 | #include <dev/mii/jmphyreg.h> |
| 61 | |
| 62 | #include <dev/pci/pcireg.h> |
| 63 | #include <dev/pci/pcivar.h> |
| 64 | #include <dev/pci/pcidevs.h> |
| 65 | |
| 66 | #include <dev/pci/if_jmereg.h> |
| 67 | #include <dev/pci/if_jmevar.h> |
| 68 | |
| 69 | /* Define the following to disable printing Rx errors. */ |
| 70 | #undef JME_SHOW_ERRORS |
| 71 | |
| 72 | int jme_match(struct device *, void *, void *); |
| 73 | void jme_map_intr_vector(struct jme_softc *); |
| 74 | void jme_attach(struct device *, struct device *, void *); |
| 75 | int jme_detach(struct device *, int); |
| 76 | |
| 77 | int jme_miibus_readreg(struct device *, int, int); |
| 78 | void jme_miibus_writereg(struct device *, int, int, int); |
| 79 | void jme_miibus_statchg(struct device *); |
| 80 | |
| 81 | int jme_init(struct ifnet *); |
| 82 | int jme_ioctl(struct ifnet *, u_long, caddr_t); |
| 83 | |
| 84 | void jme_start(struct ifnet *); |
| 85 | void jme_watchdog(struct ifnet *); |
| 86 | void jme_mediastatus(struct ifnet *, struct ifmediareq *); |
| 87 | int jme_mediachange(struct ifnet *); |
| 88 | |
| 89 | int jme_intr(void *); |
| 90 | void jme_txeof(struct jme_softc *); |
| 91 | void jme_rxeof(struct jme_softc *); |
| 92 | |
| 93 | int jme_dma_alloc(struct jme_softc *); |
| 94 | void jme_dma_free(struct jme_softc *); |
| 95 | int jme_init_rx_ring(struct jme_softc *); |
| 96 | void jme_init_tx_ring(struct jme_softc *); |
| 97 | void jme_init_ssb(struct jme_softc *); |
| 98 | int jme_newbuf(struct jme_softc *, struct jme_rxdesc *); |
| 99 | int jme_encap(struct jme_softc *, struct mbuf *); |
| 100 | void jme_rxpkt(struct jme_softc *); |
| 101 | |
| 102 | void jme_tick(void *); |
| 103 | void jme_stop(struct jme_softc *); |
| 104 | void jme_reset(struct jme_softc *); |
| 105 | void jme_set_vlan(struct jme_softc *); |
| 106 | void jme_iff(struct jme_softc *); |
| 107 | void jme_stop_tx(struct jme_softc *); |
| 108 | void jme_stop_rx(struct jme_softc *); |
| 109 | void jme_mac_config(struct jme_softc *); |
| 110 | void jme_reg_macaddr(struct jme_softc *, uint8_t[]); |
| 111 | int jme_eeprom_macaddr(struct jme_softc *, uint8_t[]); |
| 112 | int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); |
| 113 | void jme_discard_rxbufs(struct jme_softc *, int, int); |
| 114 | #ifdef notyet |
| 115 | void jme_setwol(struct jme_softc *); |
| 116 | void jme_setlinkspeed(struct jme_softc *); |
| 117 | #endif |
| 118 | |
| 119 | /* |
| 120 | * Devices supported by this driver. |
| 121 | */ |
| 122 | const struct pci_matchid jme_devices[] = { |
| 123 | { PCI_VENDOR_JMICRON0x197b, PCI_PRODUCT_JMICRON_JMC2500x0250 }, |
| 124 | { PCI_VENDOR_JMICRON0x197b, PCI_PRODUCT_JMICRON_JMC2600x0260 } |
| 125 | }; |
| 126 | |
| 127 | struct cfattach jme_ca = { |
| 128 | sizeof (struct jme_softc), jme_match, jme_attach |
| 129 | }; |
| 130 | |
| 131 | struct cfdriver jme_cd = { |
| 132 | NULL((void *)0), "jme", DV_IFNET |
| 133 | }; |
| 134 | |
| 135 | int jmedebug = 0; |
| 136 | #define DPRINTF(x)do { if (jmedebug) printf x; } while (0) do { if (jmedebug) printf x; } while (0) |
| 137 | |
| 138 | /* |
| 139 | * Read a PHY register on the MII of the JMC250. |
| 140 | */ |
| 141 | int |
| 142 | jme_miibus_readreg(struct device *dev, int phy, int reg) |
| 143 | { |
| 144 | struct jme_softc *sc = (struct jme_softc *)dev; |
| 145 | uint32_t val; |
| 146 | int i; |
| 147 | |
| 148 | /* For FPGA version, PHY address 0 should be ignored. */ |
| 149 | if ((sc->jme_caps & JME_CAP_FPGA0x0001) && phy == 0) |
| 150 | return (0); |
| 151 | |
| 152 | CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0050 )), ((0x00000000 | 0x00000010 | (((phy) << 6) & 0x000007C0 ) | (((reg) << 11) & 0x0000F800))))) |
| 153 | SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0050 )), ((0x00000000 | 0x00000010 | (((phy) << 6) & 0x000007C0 ) | (((reg) << 11) & 0x0000F800))))); |
| 154 | |
| 155 | for (i = JME_PHY_TIMEOUT1000; i > 0; i--) { |
| 156 | DELAY(1)(*delay_func)(1); |
| 157 | if (((val = CSR_READ_4(sc, JME_SMI)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0050 ))))) & SMI_OP_EXECUTE0x00000010) == 0) |
| 158 | break; |
| 159 | } |
| 160 | if (i == 0) { |
| 161 | printf("%s: phy read timeout: phy %d, reg %d\n", |
| 162 | sc->sc_dev.dv_xname, phy, reg); |
| 163 | return (0); |
| 164 | } |
| 165 | |
| 166 | return ((val & SMI_DATA_MASK0xFFFF0000) >> SMI_DATA_SHIFT16); |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Write a PHY register on the MII of the JMC250. |
| 171 | */ |
| 172 | void |
| 173 | jme_miibus_writereg(struct device *dev, int phy, int reg, int val) |
| 174 | { |
| 175 | struct jme_softc *sc = (struct jme_softc *)dev; |
| 176 | int i; |
| 177 | |
| 178 | /* For FPGA version, PHY address 0 should be ignored. */ |
| 179 | if ((sc->jme_caps & JME_CAP_FPGA0x0001) && phy == 0) |
| 180 | return; |
| 181 | |
| 182 | CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0050 )), ((0x00000020 | 0x00000010 | ((val << 16) & 0xFFFF0000 ) | (((phy) << 6) & 0x000007C0) | (((reg) << 11 ) & 0x0000F800))))) |
| 183 | ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0050 )), ((0x00000020 | 0x00000010 | ((val << 16) & 0xFFFF0000 ) | (((phy) << 6) & 0x000007C0) | (((reg) << 11 ) & 0x0000F800))))) |
| 184 | SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0050 )), ((0x00000020 | 0x00000010 | ((val << 16) & 0xFFFF0000 ) | (((phy) << 6) & 0x000007C0) | (((reg) << 11 ) & 0x0000F800))))); |
| 185 | |
| 186 | for (i = JME_PHY_TIMEOUT1000; i > 0; i--) { |
| 187 | DELAY(1)(*delay_func)(1); |
| 188 | if (((val = CSR_READ_4(sc, JME_SMI)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0050 ))))) & SMI_OP_EXECUTE0x00000010) == 0) |
Although the value stored to 'val' is used in the enclosing expression, the value is never actually read from 'val' | |
| 189 | break; |
| 190 | } |
| 191 | if (i == 0) { |
| 192 | printf("%s: phy write timeout: phy %d, reg %d\n", |
| 193 | sc->sc_dev.dv_xname, phy, reg); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Callback from MII layer when media changes. |
| 199 | */ |
| 200 | void |
| 201 | jme_miibus_statchg(struct device *dev) |
| 202 | { |
| 203 | struct jme_softc *sc = (struct jme_softc *)dev; |
| 204 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 205 | struct mii_data *mii; |
| 206 | struct jme_txdesc *txd; |
| 207 | bus_addr_t paddr; |
| 208 | int i; |
| 209 | |
| 210 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
| 211 | return; |
| 212 | |
| 213 | mii = &sc->sc_miibus; |
| 214 | |
| 215 | sc->jme_flags &= ~JME_FLAG_LINK0x0008; |
| 216 | if ((mii->mii_media_status & IFM_AVALID0x0000000000000001ULL) != 0) { |
| 217 | switch (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL)) { |
| 218 | case IFM_10_T3: |
| 219 | case IFM_100_TX6: |
| 220 | sc->jme_flags |= JME_FLAG_LINK0x0008; |
| 221 | break; |
| 222 | case IFM_1000_T16: |
| 223 | if (sc->jme_caps & JME_CAP_FASTETH0x0008) |
| 224 | break; |
| 225 | sc->jme_flags |= JME_FLAG_LINK0x0008; |
| 226 | break; |
| 227 | default: |
| 228 | break; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * Disabling Rx/Tx MACs have a side-effect of resetting |
| 234 | * JME_TXNDA/JME_RXNDA register to the first address of |
| 235 | * Tx/Rx descriptor address. So driver should reset its |
| 236 | * internal producer/consumer pointer and reclaim any |
| 237 | * allocated resources. Note, just saving the value of |
| 238 | * JME_TXNDA and JME_RXNDA registers before stopping MAC |
| 239 | * and restoring JME_TXNDA/JME_RXNDA register is not |
| 240 | * sufficient to make sure correct MAC state because |
| 241 | * stopping MAC operation can take a while and hardware |
| 242 | * might have updated JME_TXNDA/JME_RXNDA registers |
| 243 | * during the stop operation. |
| 244 | */ |
| 245 | |
| 246 | /* Disable interrupts */ |
| 247 | CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x082C )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 248 | |
| 249 | /* Stop driver */ |
| 250 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 251 | ifq_clr_oactive(&ifp->if_snd); |
| 252 | ifp->if_timer = 0; |
| 253 | timeout_del(&sc->jme_tick_ch); |
| 254 | |
| 255 | /* Stop receiver/transmitter. */ |
| 256 | jme_stop_rx(sc); |
| 257 | jme_stop_tx(sc); |
| 258 | |
| 259 | jme_rxeof(sc); |
| 260 | m_freem(sc->jme_cdata.jme_rxhead); |
| 261 | JME_RXCHAIN_RESET(sc)do { (sc)->jme_cdata.jme_rxhead = ((void *)0); (sc)->jme_cdata .jme_rxtail = ((void *)0); (sc)->jme_cdata.jme_rxlen = 0; } while (0); |
| 262 | |
| 263 | jme_txeof(sc); |
| 264 | if (sc->jme_cdata.jme_tx_cnt != 0) { |
| 265 | /* Remove queued packets for transmit. */ |
| 266 | for (i = 0; i < JME_TX_RING_CNT384; i++) { |
| 267 | txd = &sc->jme_cdata.jme_txdesc[i]; |
| 268 | if (txd->tx_m != NULL((void *)0)) { |
| 269 | bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (txd ->tx_dmamap)); |
| 270 | m_freem(txd->tx_m); |
| 271 | txd->tx_m = NULL((void *)0); |
| 272 | txd->tx_ndesc = 0; |
| 273 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Reuse configured Rx descriptors and reset |
| 280 | * producer/consumer index. |
| 281 | */ |
| 282 | sc->jme_cdata.jme_rx_cons = 0; |
| 283 | |
| 284 | jme_init_tx_ring(sc); |
| 285 | |
| 286 | /* Initialize shadow status block. */ |
| 287 | jme_init_ssb(sc); |
| 288 | |
| 289 | /* Program MAC with resolved speed/duplex/flow-control. */ |
| 290 | if (sc->jme_flags & JME_FLAG_LINK0x0008) { |
| 291 | jme_mac_config(sc); |
| 292 | |
| 293 | CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr)))); |
| 294 | CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((sc->jme_txcsr)))); |
| 295 | |
| 296 | /* Set Tx ring address to the hardware. */ |
| 297 | paddr = JME_TX_RING_ADDR(sc, 0)((sc)->jme_rdata.jme_tx_ring_paddr + sizeof(struct jme_desc ) * (0)); |
| 298 | CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0008 )), ((((uint64_t) (paddr) >> 32))))); |
| 299 | CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0004 )), ((((uint64_t) (paddr) & 0xFFFFFFFF))))); |
| 300 | |
| 301 | /* Set Rx ring address to the hardware. */ |
| 302 | paddr = JME_RX_RING_ADDR(sc, 0)((sc)->jme_rdata.jme_rx_ring_paddr + sizeof(struct jme_desc ) * (0)); |
| 303 | CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0028 )), ((((uint64_t) (paddr) >> 32))))); |
| 304 | CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0024 )), ((((uint64_t) (paddr) & 0xFFFFFFFF))))); |
| 305 | |
| 306 | /* Restart receiver/transmitter. */ |
| 307 | CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr | 0x00000001 | 0x00000004)))) |
| 308 | RXCSR_RXQ_START)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr | 0x00000001 | 0x00000004)))); |
| 309 | CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((sc->jme_txcsr | 0x00000001)))); |
| 310 | } |
| 311 | |
| 312 | ifp->if_flags |= IFF_RUNNING0x40; |
| 313 | ifq_clr_oactive(&ifp->if_snd); |
| 314 | timeout_add_sec(&sc->jme_tick_ch, 1); |
| 315 | |
| 316 | /* Reenable interrupts. */ |
| 317 | CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0828 )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Get the current interface media status. |
| 322 | */ |
| 323 | void |
| 324 | jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) |
| 325 | { |
| 326 | struct jme_softc *sc = ifp->if_softc; |
| 327 | struct mii_data *mii = &sc->sc_miibus; |
| 328 | |
| 329 | mii_pollstat(mii); |
| 330 | ifmr->ifm_status = mii->mii_media_status; |
| 331 | ifmr->ifm_active = mii->mii_media_active; |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * Set hardware to newly-selected media. |
| 336 | */ |
| 337 | int |
| 338 | jme_mediachange(struct ifnet *ifp) |
| 339 | { |
| 340 | struct jme_softc *sc = ifp->if_softc; |
| 341 | struct mii_data *mii = &sc->sc_miibus; |
| 342 | int error; |
| 343 | |
| 344 | if (mii->mii_instance != 0) { |
| 345 | struct mii_softc *miisc; |
| 346 | |
| 347 | LIST_FOREACH(miisc, &mii->mii_phys, mii_list)for((miisc) = ((&mii->mii_phys)->lh_first); (miisc) != ((void *)0); (miisc) = ((miisc)->mii_list.le_next)) |
| 348 | mii_phy_reset(miisc); |
| 349 | } |
| 350 | error = mii_mediachg(mii); |
| 351 | |
| 352 | return (error); |
| 353 | } |
| 354 | |
| 355 | int |
| 356 | jme_match(struct device *dev, void *match, void *aux) |
| 357 | { |
| 358 | return pci_matchbyid((struct pci_attach_args *)aux, jme_devices, |
| 359 | sizeof (jme_devices) / sizeof (jme_devices[0])); |
| 360 | } |
| 361 | |
| 362 | int |
| 363 | jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) |
| 364 | { |
| 365 | uint32_t reg; |
| 366 | int i; |
| 367 | |
| 368 | *val = 0; |
| 369 | for (i = JME_TIMEOUT1000; i > 0; i--) { |
| 370 | reg = CSR_READ_4(sc, JME_SMBCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0440 )))); |
| 371 | if ((reg & SMBCSR_HW_BUSY_MASK0x0000000F) == SMBCSR_HW_IDLE0x00000000) |
| 372 | break; |
| 373 | DELAY(1)(*delay_func)(1); |
| 374 | } |
| 375 | |
| 376 | if (i == 0) { |
| 377 | printf("%s: EEPROM idle timeout!\n", sc->sc_dev.dv_xname); |
| 378 | return (ETIMEDOUT60); |
| 379 | } |
| 380 | |
| 381 | reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT8) & SMBINTF_ADDR_MASK0x0000FF00; |
| 382 | CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0444 )), ((reg | 0x00000020 | 0x00000010)))); |
| 383 | for (i = JME_TIMEOUT1000; i > 0; i--) { |
| 384 | DELAY(1)(*delay_func)(1); |
| 385 | reg = CSR_READ_4(sc, JME_SMBINTF)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0444 )))); |
| 386 | if ((reg & SMBINTF_CMD_TRIGGER0x00000010) == 0) |
| 387 | break; |
| 388 | } |
| 389 | |
| 390 | if (i == 0) { |
| 391 | printf("%s: EEPROM read timeout!\n", sc->sc_dev.dv_xname); |
| 392 | return (ETIMEDOUT60); |
| 393 | } |
| 394 | |
| 395 | reg = CSR_READ_4(sc, JME_SMBINTF)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0444 )))); |
| 396 | *val = (reg & SMBINTF_RD_DATA_MASK0xFF000000) >> SMBINTF_RD_DATA_SHIFT24; |
| 397 | |
| 398 | return (0); |
| 399 | } |
| 400 | |
| 401 | int |
| 402 | jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[]) |
| 403 | { |
| 404 | uint8_t fup, reg, val; |
| 405 | uint32_t offset; |
| 406 | int match; |
| 407 | |
| 408 | offset = 0; |
| 409 | if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || |
| 410 | fup != JME_EEPROM_SIG00x55) |
| 411 | return (ENOENT2); |
| 412 | if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || |
| 413 | fup != JME_EEPROM_SIG10xAA) |
| 414 | return (ENOENT2); |
| 415 | match = 0; |
| 416 | do { |
| 417 | if (jme_eeprom_read_byte(sc, offset, &fup) != 0) |
| 418 | break; |
| 419 | if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)((((0) & 0x70) << 4) | (((1) & 0x0F) << 0 )) == |
| 420 | (fup & (JME_EEPROM_FUNC_MASK0x70 | JME_EEPROM_PAGE_MASK0x0F))) { |
| 421 | if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) |
| 422 | break; |
| 423 | if (reg >= JME_PAR00x0038 && |
| 424 | reg < JME_PAR00x0038 + ETHER_ADDR_LEN6) { |
| 425 | if (jme_eeprom_read_byte(sc, offset + 2, |
| 426 | &val) != 0) |
| 427 | break; |
| 428 | eaddr[reg - JME_PAR00x0038] = val; |
| 429 | match++; |
| 430 | } |
| 431 | } |
| 432 | /* Check for the end of EEPROM descriptor. */ |
| 433 | if ((fup & JME_EEPROM_DESC_END0x80) == JME_EEPROM_DESC_END0x80) |
| 434 | break; |
| 435 | /* Try next eeprom descriptor. */ |
| 436 | offset += JME_EEPROM_DESC_BYTES3; |
| 437 | } while (match != ETHER_ADDR_LEN6 && offset < JME_EEPROM_END0xFF); |
| 438 | |
| 439 | if (match == ETHER_ADDR_LEN6) |
| 440 | return (0); |
| 441 | |
| 442 | return (ENOENT2); |
| 443 | } |
| 444 | |
| 445 | void |
| 446 | jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[]) |
| 447 | { |
| 448 | uint32_t par0, par1; |
| 449 | |
| 450 | /* Read station address. */ |
| 451 | par0 = CSR_READ_4(sc, JME_PAR0)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0038 )))); |
| 452 | par1 = CSR_READ_4(sc, JME_PAR1)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x003C )))); |
| 453 | par1 &= 0xFFFF; |
| 454 | |
| 455 | eaddr[0] = (par0 >> 0) & 0xFF; |
| 456 | eaddr[1] = (par0 >> 8) & 0xFF; |
| 457 | eaddr[2] = (par0 >> 16) & 0xFF; |
| 458 | eaddr[3] = (par0 >> 24) & 0xFF; |
| 459 | eaddr[4] = (par1 >> 0) & 0xFF; |
| 460 | eaddr[5] = (par1 >> 8) & 0xFF; |
| 461 | } |
| 462 | |
| 463 | void |
| 464 | jme_map_intr_vector(struct jme_softc *sc) |
| 465 | { |
| 466 | uint32_t map[MSINUM_NUM_INTR_SOURCE32 / JME_MSI_MESSAGES8]; |
| 467 | |
| 468 | bzero(map, sizeof(map))__builtin_bzero((map), (sizeof(map))); |
| 469 | |
| 470 | /* Map Tx interrupts source to MSI/MSIX vector 2. */ |
| 471 | map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)((0) / 8)] = |
| 472 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP)(((2) & 7) << (((0) & 7) * 4)); |
| 473 | map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)((1) / 8)] |= |
| 474 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP)(((2) & 7) << (((1) & 7) * 4)); |
| 475 | map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)((2) / 8)] |= |
| 476 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP)(((2) & 7) << (((2) & 7) * 4)); |
| 477 | map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)((3) / 8)] |= |
| 478 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP)(((2) & 7) << (((3) & 7) * 4)); |
| 479 | map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)((4) / 8)] |= |
| 480 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP)(((2) & 7) << (((4) & 7) * 4)); |
| 481 | map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)((4) / 8)] |= |
| 482 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP)(((2) & 7) << (((5) & 7) * 4)); |
| 483 | map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)((6) / 8)] |= |
| 484 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP)(((2) & 7) << (((6) & 7) * 4)); |
| 485 | map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)((7) / 8)] |= |
| 486 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP)(((2) & 7) << (((7) & 7) * 4)); |
| 487 | map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)((16) / 8)] |= |
| 488 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL)(((2) & 7) << (((16) & 7) * 4)); |
| 489 | map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)((21) / 8)] |= |
| 490 | MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO)(((2) & 7) << (((21) & 7) * 4)); |
| 491 | |
| 492 | /* Map Rx interrupts source to MSI/MSIX vector 1. */ |
| 493 | map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)((8) / 8)] = |
| 494 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP)(((1) & 7) << (((8) & 7) * 4)); |
| 495 | map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)((9) / 8)] = |
| 496 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP)(((1) & 7) << (((9) & 7) * 4)); |
| 497 | map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)((10) / 8)] = |
| 498 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP)(((1) & 7) << (((10) & 7) * 4)); |
| 499 | map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)((11) / 8)] = |
| 500 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP)(((1) & 7) << (((11) & 7) * 4)); |
| 501 | map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)((12) / 8)] = |
| 502 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY)(((1) & 7) << (((12) & 7) * 4)); |
| 503 | map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)((13) / 8)] = |
| 504 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY)(((1) & 7) << (((13) & 7) * 4)); |
| 505 | map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)((14) / 8)] = |
| 506 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY)(((1) & 7) << (((14) & 7) * 4)); |
| 507 | map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)((15) / 8)] = |
| 508 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY)(((1) & 7) << (((15) & 7) * 4)); |
| 509 | map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)((20) / 8)] = |
| 510 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL)(((1) & 7) << (((20) & 7) * 4)); |
| 511 | map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)((19) / 8)] = |
| 512 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL)(((1) & 7) << (((19) & 7) * 4)); |
| 513 | map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)((18) / 8)] = |
| 514 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL)(((1) & 7) << (((18) & 7) * 4)); |
| 515 | map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)((17) / 8)] = |
| 516 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL)(((1) & 7) << (((17) & 7) * 4)); |
| 517 | map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)((25) / 8)] = |
| 518 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO)(((1) & 7) << (((25) & 7) * 4)); |
| 519 | map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)((24) / 8)] = |
| 520 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO)(((1) & 7) << (((24) & 7) * 4)); |
| 521 | map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)((23) / 8)] = |
| 522 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO)(((1) & 7) << (((23) & 7) * 4)); |
| 523 | map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)((22) / 8)] = |
| 524 | MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO)(((1) & 7) << (((22) & 7) * 4)); |
| 525 | |
| 526 | /* Map all other interrupts source to MSI/MSIX vector 0. */ |
| 527 | CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0810 + sizeof(uint32_t) * 0)), ((map[0])))); |
| 528 | CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0810 + sizeof(uint32_t) * 1)), ((map[1])))); |
| 529 | CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0810 + sizeof(uint32_t) * 2)), ((map[2])))); |
| 530 | CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0810 + sizeof(uint32_t) * 3)), ((map[3])))); |
| 531 | } |
| 532 | |
| 533 | void |
| 534 | jme_attach(struct device *parent, struct device *self, void *aux) |
| 535 | { |
| 536 | struct jme_softc *sc = (struct jme_softc *)self; |
| 537 | struct pci_attach_args *pa = aux; |
| 538 | pci_chipset_tag_t pc = pa->pa_pc; |
| 539 | pci_intr_handle_t ih; |
| 540 | const char *intrstr; |
| 541 | pcireg_t memtype; |
| 542 | |
| 543 | struct ifnet *ifp; |
| 544 | uint32_t reg; |
| 545 | int error = 0; |
| 546 | |
| 547 | /* |
| 548 | * Allocate IO memory |
| 549 | * |
| 550 | * JMC250 supports both memory mapped and I/O register space |
| 551 | * access. Because I/O register access should use different |
| 552 | * BARs to access registers it's waste of time to use I/O |
| 553 | * register space access. JMC250 uses 16K to map entire memory |
| 554 | * space. |
| 555 | */ |
| 556 | |
| 557 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, JME_PCIR_BAR0x10); |
| 558 | if (pci_mapreg_map(pa, JME_PCIR_BAR0x10, memtype, 0, &sc->jme_mem_bt, |
| 559 | &sc->jme_mem_bh, NULL((void *)0), &sc->jme_mem_size, 0)) { |
| 560 | printf(": can't map mem space\n"); |
| 561 | return; |
| 562 | } |
| 563 | |
| 564 | if (pci_intr_map_msi(pa, &ih) == 0) |
| 565 | jme_map_intr_vector(sc); |
| 566 | else if (pci_intr_map(pa, &ih) != 0) { |
| 567 | printf(": can't map interrupt\n"); |
| 568 | return; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * Allocate IRQ |
| 573 | */ |
| 574 | intrstr = pci_intr_string(pc, ih); |
| 575 | sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET0x7, jme_intr, sc, |
| 576 | sc->sc_dev.dv_xname); |
| 577 | if (sc->sc_irq_handle == NULL((void *)0)) { |
| 578 | printf(": could not establish interrupt"); |
| 579 | if (intrstr != NULL((void *)0)) |
| 580 | printf(" at %s", intrstr); |
| 581 | printf("\n"); |
| 582 | return; |
| 583 | } |
| 584 | printf(": %s", intrstr); |
| 585 | |
| 586 | sc->sc_dmat = pa->pa_dmat; |
| 587 | sc->jme_pct = pa->pa_pc; |
| 588 | sc->jme_pcitag = pa->pa_tag; |
| 589 | |
| 590 | /* |
| 591 | * Extract FPGA revision |
| 592 | */ |
| 593 | reg = CSR_READ_4(sc, JME_CHIPMODE)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0844 )))); |
| 594 | if (((reg & CHIPMODE_FPGA_REV_MASK0xFFFF0000) >> CHIPMODE_FPGA_REV_SHIFT16) != |
| 595 | CHIPMODE_NOT_FPGA0) { |
| 596 | sc->jme_caps |= JME_CAP_FPGA0x0001; |
| 597 | |
| 598 | if (jmedebug) { |
| 599 | printf("%s: FPGA revision : 0x%04x\n", |
| 600 | sc->sc_dev.dv_xname, |
| 601 | (reg & CHIPMODE_FPGA_REV_MASK0xFFFF0000) >> |
| 602 | CHIPMODE_FPGA_REV_SHIFT16); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | sc->jme_revfm = (reg & CHIPMODE_REVFM_MASK0x00000F00) >> CHIPMODE_REVFM_SHIFT8; |
| 607 | |
| 608 | if (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_JMICRON_JMC2500x0250 && |
| 609 | PCI_REVISION(pa->pa_class)(((pa->pa_class) >> 0) & 0xff) == JME_REV_JMC250_A20x11) |
| 610 | sc->jme_workaround |= JME_WA_CRCERRORS0x0001 | JME_WA_PACKETLOSS0x0002; |
| 611 | |
| 612 | /* Reset the ethernet controller. */ |
| 613 | jme_reset(sc); |
| 614 | |
| 615 | /* Get station address. */ |
| 616 | reg = CSR_READ_4(sc, JME_SMBCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0440 )))); |
| 617 | if (reg & SMBCSR_EEPROM_PRESENT0x00000020) |
| 618 | error = jme_eeprom_macaddr(sc, sc->sc_arpcom.ac_enaddr); |
| 619 | if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT0x00000020) == 0) { |
| 620 | if (error != 0 && (jmedebug)) { |
| 621 | printf("%s: ethernet hardware address " |
| 622 | "not found in EEPROM.\n", sc->sc_dev.dv_xname); |
| 623 | } |
| 624 | jme_reg_macaddr(sc, sc->sc_arpcom.ac_enaddr); |
| 625 | } |
| 626 | |
| 627 | printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); |
| 628 | |
| 629 | /* |
| 630 | * Save PHY address. |
| 631 | * Integrated JR0211 has fixed PHY address whereas FPGA version |
| 632 | * requires PHY probing to get correct PHY address. |
| 633 | */ |
| 634 | if ((sc->jme_caps & JME_CAP_FPGA0x0001) == 0) { |
| 635 | sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0808 )))) & |
| 636 | GPREG0_PHY_ADDR_MASK0x0000001F; |
| 637 | if (jmedebug) { |
| 638 | printf("%s: PHY is at address %d.\n", |
| 639 | sc->sc_dev.dv_xname, sc->jme_phyaddr); |
| 640 | } |
| 641 | } else { |
| 642 | sc->jme_phyaddr = 0; |
| 643 | } |
| 644 | |
| 645 | /* Set max allowable DMA size. */ |
| 646 | sc->jme_tx_dma_size = TXCSR_DMA_SIZE_5120x00000030; |
| 647 | sc->jme_rx_dma_size = RXCSR_DMA_SIZE_1280x03000000; |
| 648 | |
| 649 | #ifdef notyet |
| 650 | if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) |
| 651 | sc->jme_caps |= JME_CAP_PMCAP0x0004; |
| 652 | #endif |
| 653 | |
| 654 | /* Allocate DMA stuffs */ |
| 655 | error = jme_dma_alloc(sc); |
| 656 | if (error) |
| 657 | goto fail; |
| 658 | |
| 659 | ifp = &sc->sc_arpcom.ac_if; |
| 660 | ifp->if_softc = sc; |
| 661 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 662 | ifp->if_ioctl = jme_ioctl; |
| 663 | ifp->if_start = jme_start; |
| 664 | ifp->if_watchdog = jme_watchdog; |
| 665 | ifq_set_maxlen(&ifp->if_snd, JME_TX_RING_CNT - 1)((&ifp->if_snd)->ifq_maxlen = (384 - 1)); |
| 666 | strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ16); |
| 667 | |
| 668 | ifp->if_capabilitiesif_data.ifi_capabilities = IFCAP_VLAN_MTU0x00000010 | IFCAP_CSUM_IPv40x00000001 | |
| 669 | IFCAP_CSUM_TCPv40x00000002 | IFCAP_CSUM_UDPv40x00000004 | IFCAP_CSUM_TCPv60x00000080 | |
| 670 | IFCAP_CSUM_UDPv60x00000100; |
| 671 | |
| 672 | #if NVLAN1 > 0 |
| 673 | ifp->if_capabilitiesif_data.ifi_capabilities |= IFCAP_VLAN_HWTAGGING0x00000020; |
| 674 | #endif |
| 675 | |
| 676 | /* Set up MII bus. */ |
| 677 | sc->sc_miibus.mii_ifp = ifp; |
| 678 | sc->sc_miibus.mii_readreg = jme_miibus_readreg; |
| 679 | sc->sc_miibus.mii_writereg = jme_miibus_writereg; |
| 680 | sc->sc_miibus.mii_statchg = jme_miibus_statchg; |
| 681 | |
| 682 | ifmedia_init(&sc->sc_miibus.mii_media, 0, jme_mediachange, |
| 683 | jme_mediastatus); |
| 684 | mii_attach(self, &sc->sc_miibus, 0xffffffff, |
| 685 | sc->jme_caps & JME_CAP_FPGA0x0001 ? MII_PHY_ANY-1 : sc->jme_phyaddr, |
| 686 | MII_OFFSET_ANY-1, MIIF_DOPAUSE0x0100); |
| 687 | |
| 688 | if (LIST_FIRST(&sc->sc_miibus.mii_phys)((&sc->sc_miibus.mii_phys)->lh_first) == NULL((void *)0)) { |
| 689 | printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); |
| 690 | ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_MANUAL1ULL, |
| 691 | 0, NULL((void *)0)); |
| 692 | ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_MANUAL1ULL); |
| 693 | } else |
| 694 | ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_AUTO0ULL); |
| 695 | |
| 696 | /* |
| 697 | * Save PHYADDR for FPGA mode PHY not handled, not production hw |
| 698 | */ |
| 699 | |
| 700 | if_attach(ifp); |
| 701 | ether_ifattach(ifp); |
| 702 | |
| 703 | timeout_set(&sc->jme_tick_ch, jme_tick, sc); |
| 704 | |
| 705 | return; |
| 706 | fail: |
| 707 | jme_detach(&sc->sc_dev, 0); |
| 708 | } |
| 709 | |
| 710 | int |
| 711 | jme_detach(struct device *self, int flags) |
| 712 | { |
| 713 | struct jme_softc *sc = (struct jme_softc *)self; |
| 714 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 715 | int s; |
| 716 | |
| 717 | s = splnet()splraise(0x7); |
| 718 | jme_stop(sc); |
| 719 | splx(s)spllower(s); |
| 720 | |
| 721 | mii_detach(&sc->sc_miibus, MII_PHY_ANY-1, MII_OFFSET_ANY-1); |
| 722 | |
| 723 | /* Delete all remaining media. */ |
| 724 | ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY((uint64_t) -1)); |
| 725 | |
| 726 | ether_ifdetach(ifp); |
| 727 | if_detach(ifp); |
| 728 | jme_dma_free(sc); |
| 729 | |
| 730 | if (sc->sc_irq_handle != NULL((void *)0)) { |
| 731 | pci_intr_disestablish(sc->jme_pct, sc->sc_irq_handle); |
| 732 | sc->sc_irq_handle = NULL((void *)0); |
| 733 | } |
| 734 | |
| 735 | return (0); |
| 736 | } |
| 737 | |
| 738 | int |
| 739 | jme_dma_alloc(struct jme_softc *sc) |
| 740 | { |
| 741 | struct jme_txdesc *txd; |
| 742 | struct jme_rxdesc *rxd; |
| 743 | int error, i, nsegs; |
| 744 | |
| 745 | /* |
| 746 | * Create DMA stuffs for TX ring |
| 747 | */ |
| 748 | |
| 749 | error = bus_dmamap_create(sc->sc_dmat, JME_TX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (1), ((sizeof(struct jme_desc) * 384 )), (0), (0x0001), (&sc->jme_cdata.jme_tx_ring_map)) |
| 750 | JME_TX_RING_SIZE, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (1), ((sizeof(struct jme_desc) * 384 )), (0), (0x0001), (&sc->jme_cdata.jme_tx_ring_map)) |
| 751 | &sc->jme_cdata.jme_tx_ring_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (1), ((sizeof(struct jme_desc) * 384 )), (0), (0x0001), (&sc->jme_cdata.jme_tx_ring_map)); |
| 752 | if (error) |
| 753 | return (ENOBUFS55); |
| 754 | |
| 755 | /* Allocate DMA'able memory for TX ring */ |
| 756 | error = bus_dmamem_alloc(sc->sc_dmat, JME_TX_RING_SIZE, ETHER_ALIGN, 0,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (2), (0), (&sc->jme_rdata.jme_tx_ring_seg ), (1), (&nsegs), (0x0000)) |
| 757 | &sc->jme_rdata.jme_tx_ring_seg, 1, &nsegs,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (2), (0), (&sc->jme_rdata.jme_tx_ring_seg ), (1), (&nsegs), (0x0000)) |
| 758 | BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 384)), (2), (0), (&sc->jme_rdata.jme_tx_ring_seg ), (1), (&nsegs), (0x0000)); |
| 759 | /* XXX zero */ |
| 760 | if (error) { |
| 761 | printf("%s: could not allocate DMA'able memory for Tx ring.\n", |
| 762 | sc->sc_dev.dv_xname); |
| 763 | return error; |
| 764 | } |
| 765 | |
| 766 | error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_tx_ring_seg,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_tx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 384)), ((caddr_t *)&sc->jme_rdata.jme_tx_ring), (0x0001 )) |
| 767 | nsegs, JME_TX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_tx_ring,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_tx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 384)), ((caddr_t *)&sc->jme_rdata.jme_tx_ring), (0x0001 )) |
| 768 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_tx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 384)), ((caddr_t *)&sc->jme_rdata.jme_tx_ring), (0x0001 )); |
| 769 | if (error) |
| 770 | return (ENOBUFS55); |
| 771 | |
| 772 | /* Load the DMA map for Tx ring. */ |
| 773 | error = bus_dmamap_load(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (sc->jme_rdata.jme_tx_ring), ( (sizeof(struct jme_desc) * 384)), (((void *)0)), (0x0001)) |
| 774 | sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (sc->jme_rdata.jme_tx_ring), ( (sizeof(struct jme_desc) * 384)), (((void *)0)), (0x0001)) |
| 775 | JME_TX_RING_SIZE, NULL, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (sc->jme_rdata.jme_tx_ring), ( (sizeof(struct jme_desc) * 384)), (((void *)0)), (0x0001)); |
| 776 | if (error) { |
| 777 | printf("%s: could not load DMA'able memory for Tx ring.\n", |
| 778 | sc->sc_dev.dv_xname); |
| 779 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)&sc->jme_rdata.jme_tx_ring), (1)) |
| 780 | (bus_dma_segment_t *)&sc->jme_rdata.jme_tx_ring, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)&sc->jme_rdata.jme_tx_ring), (1)); |
| 781 | return error; |
| 782 | } |
| 783 | sc->jme_rdata.jme_tx_ring_paddr = |
| 784 | sc->jme_cdata.jme_tx_ring_map->dm_segs[0].ds_addr; |
| 785 | |
| 786 | /* |
| 787 | * Create DMA stuffs for RX ring |
| 788 | */ |
| 789 | |
| 790 | error = bus_dmamap_create(sc->sc_dmat, JME_RX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (1), ((sizeof(struct jme_desc) * 256 )), (0), (0x0001), (&sc->jme_cdata.jme_rx_ring_map)) |
| 791 | JME_RX_RING_SIZE, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (1), ((sizeof(struct jme_desc) * 256 )), (0), (0x0001), (&sc->jme_cdata.jme_rx_ring_map)) |
| 792 | &sc->jme_cdata.jme_rx_ring_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (1), ((sizeof(struct jme_desc) * 256 )), (0), (0x0001), (&sc->jme_cdata.jme_rx_ring_map)); |
| 793 | if (error) |
| 794 | return (ENOBUFS55); |
| 795 | |
| 796 | /* Allocate DMA'able memory for RX ring */ |
| 797 | error = bus_dmamem_alloc(sc->sc_dmat, JME_RX_RING_SIZE, ETHER_ALIGN, 0,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (2), (0), (&sc->jme_rdata.jme_rx_ring_seg ), (1), (&nsegs), (0x0000 | 0x1000)) |
| 798 | &sc->jme_rdata.jme_rx_ring_seg, 1, &nsegs,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (2), (0), (&sc->jme_rdata.jme_rx_ring_seg ), (1), (&nsegs), (0x0000 | 0x1000)) |
| 799 | BUS_DMA_WAITOK | BUS_DMA_ZERO)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((sizeof (struct jme_desc) * 256)), (2), (0), (&sc->jme_rdata.jme_rx_ring_seg ), (1), (&nsegs), (0x0000 | 0x1000)); |
| 800 | /* XXX zero */ |
| 801 | if (error) { |
| 802 | printf("%s: could not allocate DMA'able memory for Rx ring.\n", |
| 803 | sc->sc_dev.dv_xname); |
| 804 | return error; |
| 805 | } |
| 806 | |
| 807 | error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_rx_ring_seg,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_rx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 256)), ((caddr_t *)&sc->jme_rdata.jme_rx_ring), (0x0001 )) |
| 808 | nsegs, JME_RX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_rx_ring,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_rx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 256)), ((caddr_t *)&sc->jme_rdata.jme_rx_ring), (0x0001 )) |
| 809 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_rx_ring_seg), (nsegs), ((sizeof(struct jme_desc ) * 256)), ((caddr_t *)&sc->jme_rdata.jme_rx_ring), (0x0001 )); |
| 810 | if (error) |
| 811 | return (ENOBUFS55); |
| 812 | |
| 813 | /* Load the DMA map for Rx ring. */ |
| 814 | error = bus_dmamap_load(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (sc->jme_rdata.jme_rx_ring), ( (sizeof(struct jme_desc) * 256)), (((void *)0)), (0x0001)) |
| 815 | sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (sc->jme_rdata.jme_rx_ring), ( (sizeof(struct jme_desc) * 256)), (((void *)0)), (0x0001)) |
| 816 | JME_RX_RING_SIZE, NULL, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (sc->jme_rdata.jme_rx_ring), ( (sizeof(struct jme_desc) * 256)), (((void *)0)), (0x0001)); |
| 817 | if (error) { |
| 818 | printf("%s: could not load DMA'able memory for Rx ring.\n", |
| 819 | sc->sc_dev.dv_xname); |
| 820 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring), (1)) |
| 821 | (bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring), (1)); |
| 822 | return error; |
| 823 | } |
| 824 | sc->jme_rdata.jme_rx_ring_paddr = |
| 825 | sc->jme_cdata.jme_rx_ring_map->dm_segs[0].ds_addr; |
| 826 | |
| 827 | #if 0 |
| 828 | /* Tx/Rx descriptor queue should reside within 4GB boundary. */ |
| 829 | tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE(sizeof(struct jme_desc) * 384); |
| 830 | rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE(sizeof(struct jme_desc) * 256); |
| 831 | if ((JME_ADDR_HI(tx_ring_end)((uint64_t) (tx_ring_end) >> 32) != |
| 832 | JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)((uint64_t) (sc->jme_rdata.jme_tx_ring_paddr) >> 32)) || |
| 833 | (JME_ADDR_HI(rx_ring_end)((uint64_t) (rx_ring_end) >> 32) != |
| 834 | JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr)((uint64_t) (sc->jme_rdata.jme_rx_ring_paddr) >> 32))) { |
| 835 | printf("%s: 4GB boundary crossed, switching to 32bit " |
| 836 | "DMA address mode.\n", sc->sc_dev.dv_xname); |
| 837 | jme_dma_free(sc); |
| 838 | /* Limit DMA address space to 32bit and try again. */ |
| 839 | lowaddr = BUS_SPACE_MAXADDR_32BIT; |
| 840 | goto again; |
| 841 | } |
| 842 | #endif |
| 843 | |
| 844 | /* |
| 845 | * Create DMA stuffs for shadow status block |
| 846 | */ |
| 847 | |
| 848 | error = bus_dmamap_create(sc->sc_dmat, JME_SSB_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (sizeof (struct jme_ssb)), (1), (sizeof(struct jme_ssb)), (0), (0x0001 ), (&sc->jme_cdata.jme_ssb_map)) |
| 849 | JME_SSB_SIZE, 0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_ssb_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (sizeof (struct jme_ssb)), (1), (sizeof(struct jme_ssb)), (0), (0x0001 ), (&sc->jme_cdata.jme_ssb_map)); |
| 850 | if (error) |
| 851 | return (ENOBUFS55); |
| 852 | |
| 853 | /* Allocate DMA'able memory for shared status block. */ |
| 854 | error = bus_dmamem_alloc(sc->sc_dmat, JME_SSB_SIZE, 1, 0,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (sizeof (struct jme_ssb)), (1), (0), (&sc->jme_rdata.jme_ssb_block_seg ), (1), (&nsegs), (0x0000)) |
| 855 | &sc->jme_rdata.jme_ssb_block_seg, 1, &nsegs, BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (sizeof (struct jme_ssb)), (1), (0), (&sc->jme_rdata.jme_ssb_block_seg ), (1), (&nsegs), (0x0000)); |
| 856 | if (error) { |
| 857 | printf("%s: could not allocate DMA'able " |
| 858 | "memory for shared status block.\n", sc->sc_dev.dv_xname); |
| 859 | return error; |
| 860 | } |
| 861 | |
| 862 | error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_ssb_block_seg,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_ssb_block_seg), (nsegs), (sizeof(struct jme_ssb )), ((caddr_t *)&sc->jme_rdata.jme_ssb_block), (0x0001 )) |
| 863 | nsegs, JME_SSB_SIZE, (caddr_t *)&sc->jme_rdata.jme_ssb_block,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_ssb_block_seg), (nsegs), (sizeof(struct jme_ssb )), ((caddr_t *)&sc->jme_rdata.jme_ssb_block), (0x0001 )) |
| 864 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->jme_rdata.jme_ssb_block_seg), (nsegs), (sizeof(struct jme_ssb )), ((caddr_t *)&sc->jme_rdata.jme_ssb_block), (0x0001 )); |
| 865 | if (error) |
| 866 | return (ENOBUFS55); |
| 867 | |
| 868 | /* Load the DMA map for shared status block */ |
| 869 | error = bus_dmamap_load(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map), (sc->jme_rdata.jme_ssb_block), (sizeof (struct jme_ssb)), (((void *)0)), (0x0001)) |
| 870 | sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map), (sc->jme_rdata.jme_ssb_block), (sizeof (struct jme_ssb)), (((void *)0)), (0x0001)) |
| 871 | JME_SSB_SIZE, NULL, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map), (sc->jme_rdata.jme_ssb_block), (sizeof (struct jme_ssb)), (((void *)0)), (0x0001)); |
| 872 | if (error) { |
| 873 | printf("%s: could not load DMA'able memory " |
| 874 | "for shared status block.\n", sc->sc_dev.dv_xname); |
| 875 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block), (1)) |
| 876 | (bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block), (1)); |
| 877 | return error; |
| 878 | } |
| 879 | sc->jme_rdata.jme_ssb_block_paddr = |
| 880 | sc->jme_cdata.jme_ssb_map->dm_segs[0].ds_addr; |
| 881 | |
| 882 | /* |
| 883 | * Create DMA stuffs for TX buffers |
| 884 | */ |
| 885 | |
| 886 | /* Create DMA maps for Tx buffers. */ |
| 887 | for (i = 0; i < JME_TX_RING_CNT384; i++) { |
| 888 | txd = &sc->jme_cdata.jme_txdesc[i]; |
| 889 | error = bus_dmamap_create(sc->sc_dmat, JME_TSO_MAXSIZE,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((65535 + sizeof(struct ether_vlan_header))), (32), (4096), (0), (0x0001 ), (&txd->tx_dmamap)) |
| 890 | JME_MAXTXSEGS, JME_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((65535 + sizeof(struct ether_vlan_header))), (32), (4096), (0), (0x0001 ), (&txd->tx_dmamap)) |
| 891 | &txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((65535 + sizeof(struct ether_vlan_header))), (32), (4096), (0), (0x0001 ), (&txd->tx_dmamap)); |
| 892 | if (error) { |
| 893 | int j; |
| 894 | |
| 895 | printf("%s: could not create %dth Tx dmamap.\n", |
| 896 | sc->sc_dev.dv_xname, i); |
| 897 | |
| 898 | for (j = 0; j < i; ++j) { |
| 899 | txd = &sc->jme_cdata.jme_txdesc[j]; |
| 900 | bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (txd ->tx_dmamap)); |
| 901 | } |
| 902 | return error; |
| 903 | } |
| 904 | |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Create DMA stuffs for RX buffers |
| 909 | */ |
| 910 | |
| 911 | /* Create DMA maps for Rx buffers. */ |
| 912 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&sc->jme_cdata .jme_rx_sparemap)) |
| 913 | 0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_rx_sparemap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&sc->jme_cdata .jme_rx_sparemap)); |
| 914 | if (error) { |
| 915 | printf("%s: could not create spare Rx dmamap.\n", |
| 916 | sc->sc_dev.dv_xname); |
| 917 | return error; |
| 918 | } |
| 919 | for (i = 0; i < JME_RX_RING_CNT256; i++) { |
| 920 | rxd = &sc->jme_cdata.jme_rxdesc[i]; |
| 921 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&rxd->rx_dmamap )) |
| 922 | 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&rxd->rx_dmamap )); |
| 923 | if (error) { |
| 924 | int j; |
| 925 | |
| 926 | printf("%s: could not create %dth Rx dmamap.\n", |
| 927 | sc->sc_dev.dv_xname, i); |
| 928 | |
| 929 | for (j = 0; j < i; ++j) { |
| 930 | rxd = &sc->jme_cdata.jme_rxdesc[j]; |
| 931 | bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (rxd ->rx_dmamap)); |
| 932 | } |
| 933 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->jme_cdata.jme_rx_sparemap)) |
| 934 | sc->jme_cdata.jme_rx_sparemap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->jme_cdata.jme_rx_sparemap)); |
| 935 | sc->jme_cdata.jme_rx_tag = NULL((void *)0); |
| 936 | return error; |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | return 0; |
| 941 | } |
| 942 | |
| 943 | void |
| 944 | jme_dma_free(struct jme_softc *sc) |
| 945 | { |
| 946 | struct jme_txdesc *txd; |
| 947 | struct jme_rxdesc *rxd; |
| 948 | int i; |
| 949 | |
| 950 | /* Tx ring */ |
| 951 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map)) |
| 952 | sc->jme_cdata.jme_tx_ring_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map)); |
| 953 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_tx_ring), (1)) |
| 954 | (bus_dma_segment_t *)sc->jme_rdata.jme_tx_ring, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_tx_ring), (1)); |
| 955 | |
| 956 | /* Rx ring */ |
| 957 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map)) |
| 958 | sc->jme_cdata.jme_rx_ring_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map)); |
| 959 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring), (1)) |
| 960 | (bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring), (1)); |
| 961 | |
| 962 | /* Tx buffers */ |
| 963 | for (i = 0; i < JME_TX_RING_CNT384; i++) { |
| 964 | txd = &sc->jme_cdata.jme_txdesc[i]; |
| 965 | bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (txd ->tx_dmamap)); |
| 966 | } |
| 967 | |
| 968 | /* Rx buffers */ |
| 969 | for (i = 0; i < JME_RX_RING_CNT256; i++) { |
| 970 | rxd = &sc->jme_cdata.jme_rxdesc[i]; |
| 971 | bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (rxd ->rx_dmamap)); |
| 972 | } |
| 973 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->jme_cdata.jme_rx_sparemap)) |
| 974 | sc->jme_cdata.jme_rx_sparemap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->jme_cdata.jme_rx_sparemap)); |
| 975 | |
| 976 | /* Shadow status block. */ |
| 977 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map)) |
| 978 | sc->jme_cdata.jme_ssb_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map)); |
| 979 | bus_dmamem_free(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block), (1)) |
| 980 | (bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), ((bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block), (1)); |
| 981 | } |
| 982 | |
| 983 | #ifdef notyet |
| 984 | /* |
| 985 | * Unlike other ethernet controllers, JMC250 requires |
| 986 | * explicit resetting link speed to 10/100Mbps as gigabit |
| 987 | * link will consume more power than 375mA. |
| 988 | * Note, we reset the link speed to 10/100Mbps with |
| 989 | * auto-negotiation but we don't know whether that operation |
| 990 | * would succeed or not as we have no control after powering |
| 991 | * off. If the renegotiation fail WOL may not work. Running |
| 992 | * at 1Gbps draws more power than 375mA at 3.3V which is |
| 993 | * specified in PCI specification and that would result in |
| 994 | * a complete shutdown of power to the ethernet controller. |
| 995 | * |
| 996 | * TODO |
| 997 | * Save current negotiated media speed/duplex/flow-control |
| 998 | * to softc and restore the same link again after resuming. |
| 999 | * PHY handling such as power down/resetting to 100Mbps |
| 1000 | * may be better handled in suspend method in phy driver. |
| 1001 | */ |
| 1002 | void |
| 1003 | jme_setlinkspeed(struct jme_softc *sc) |
| 1004 | { |
| 1005 | struct mii_data *mii; |
| 1006 | int aneg, i; |
| 1007 | |
| 1008 | JME_LOCK_ASSERT(sc); |
| 1009 | |
| 1010 | mii = &sc->sc_miibus; |
| 1011 | mii_pollstat(mii); |
| 1012 | aneg = 0; |
| 1013 | if ((mii->mii_media_status & IFM_AVALID0x0000000000000001ULL) != 0) { |
| 1014 | switch IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) { |
| 1015 | case IFM_10_T3: |
| 1016 | case IFM_100_TX6: |
| 1017 | return; |
| 1018 | case IFM_1000_T16: |
| 1019 | aneg++; |
| 1020 | default: |
| 1021 | break; |
| 1022 | } |
| 1023 | } |
| 1024 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_100T2CR, 0); |
| 1025 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_ANAR, |
| 1026 | ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); |
| 1027 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_BMCR, |
| 1028 | BMCR_AUTOEN | BMCR_STARTNEG); |
| 1029 | DELAY(1000)(*delay_func)(1000); |
| 1030 | if (aneg != 0) { |
| 1031 | /* Poll link state until jme(4) get a 10/100 link. */ |
| 1032 | for (i = 0; i < MII_ANEGTICKS_GIGE10; i++) { |
| 1033 | mii_pollstat(mii); |
| 1034 | if ((mii->mii_media_status & IFM_AVALID0x0000000000000001ULL) != 0) { |
| 1035 | switch (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL)) { |
| 1036 | case IFM_10_T3: |
| 1037 | case IFM_100_TX6: |
| 1038 | jme_mac_config(sc); |
| 1039 | return; |
| 1040 | default: |
| 1041 | break; |
| 1042 | } |
| 1043 | } |
| 1044 | JME_UNLOCK(sc); |
| 1045 | pause("jmelnk", hz); |
| 1046 | JME_LOCK(sc); |
| 1047 | } |
| 1048 | if (i == MII_ANEGTICKS_GIGE10) |
| 1049 | printf("%s: establishing link failed, " |
| 1050 | "WOL may not work!\n", sc->sc_dev.dv_xname); |
| 1051 | } |
| 1052 | /* |
| 1053 | * No link, force MAC to have 100Mbps, full-duplex link. |
| 1054 | * This is the last resort and may/may not work. |
| 1055 | */ |
| 1056 | mii->mii_media_status = IFM_AVALID0x0000000000000001ULL | IFM_ACTIVE0x0000000000000002ULL; |
| 1057 | mii->mii_media_active = IFM_ETHER0x0000000000000100ULL | IFM_100_TX6 | IFM_FDX0x0000010000000000ULL; |
| 1058 | jme_mac_config(sc); |
| 1059 | } |
| 1060 | |
| 1061 | void |
| 1062 | jme_setwol(struct jme_softc *sc) |
| 1063 | { |
| 1064 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1065 | uint32_t gpr, pmcs; |
| 1066 | uint16_t pmstat; |
| 1067 | int pmc; |
| 1068 | |
| 1069 | if (pci_find_extcap(sc->sc_dev, PCIY_PMG, &pmc) != 0) { |
| 1070 | /* No PME capability, PHY power down. */ |
| 1071 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, |
| 1072 | MII_BMCR, BMCR_PDOWN); |
| 1073 | return; |
| 1074 | } |
| 1075 | |
| 1076 | gpr = CSR_READ_4(sc, JME_GPREG0)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0808 )))) & ~GPREG0_PME_ENB0x00000020; |
| 1077 | pmcs = CSR_READ_4(sc, JME_PMCS)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0060 )))); |
| 1078 | pmcs &= ~PMCS_WOL_ENB_MASK0x0000FFFF; |
| 1079 | if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { |
| 1080 | pmcs |= PMCS_MAGIC_FRAME0x00010000 | PMCS_MAGIC_FRAME_ENB0x00000001; |
| 1081 | /* Enable PME message. */ |
| 1082 | gpr |= GPREG0_PME_ENB0x00000020; |
| 1083 | /* For gigabit controllers, reset link speed to 10/100. */ |
| 1084 | if ((sc->jme_caps & JME_CAP_FASTETH0x0008) == 0) |
| 1085 | jme_setlinkspeed(sc); |
| 1086 | } |
| 1087 | |
| 1088 | CSR_WRITE_4(sc, JME_PMCS, pmcs)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0060 )), ((pmcs)))); |
| 1089 | CSR_WRITE_4(sc, JME_GPREG0, gpr)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0808 )), ((gpr)))); |
| 1090 | |
| 1091 | /* Request PME. */ |
| 1092 | pmstat = pci_read_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, 2); |
| 1093 | pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); |
| 1094 | if ((ifp->if_capenable & IFCAP_WOL0x00008000) != 0) |
| 1095 | pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; |
| 1096 | pci_write_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); |
| 1097 | if ((ifp->if_capenable & IFCAP_WOL0x00008000) == 0) { |
| 1098 | /* No WOL, PHY power down. */ |
| 1099 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, |
| 1100 | MII_BMCR, BMCR_PDOWN); |
| 1101 | } |
| 1102 | } |
| 1103 | #endif |
| 1104 | |
| 1105 | int |
| 1106 | jme_encap(struct jme_softc *sc, struct mbuf *m) |
| 1107 | { |
| 1108 | struct jme_txdesc *txd; |
| 1109 | struct jme_desc *desc; |
| 1110 | int error, i, prod; |
| 1111 | uint32_t cflags; |
| 1112 | |
| 1113 | prod = sc->jme_cdata.jme_tx_prod; |
| 1114 | txd = &sc->jme_cdata.jme_txdesc[prod]; |
| 1115 | |
| 1116 | error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txd->tx_dmamap), (m), (0x0001)) |
| 1117 | m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txd->tx_dmamap), (m), (0x0001)); |
| 1118 | if (error != 0 && error != EFBIG27) |
| 1119 | goto drop; |
| 1120 | if (error != 0) { |
| 1121 | if (m_defrag(m, M_DONTWAIT0x0002)) { |
| 1122 | error = ENOBUFS55; |
| 1123 | goto drop; |
| 1124 | } |
| 1125 | error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txd->tx_dmamap), (m), (0x0001)) |
| 1126 | m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txd->tx_dmamap), (m), (0x0001)); |
| 1127 | if (error != 0) |
| 1128 | goto drop; |
| 1129 | } |
| 1130 | |
| 1131 | cflags = 0; |
| 1132 | |
| 1133 | /* Configure checksum offload. */ |
| 1134 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_IPV4_CSUM_OUT0x0001) |
| 1135 | cflags |= JME_TD_IPCSUM0x04000000; |
| 1136 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_TCP_CSUM_OUT0x0002) |
| 1137 | cflags |= JME_TD_TCPCSUM0x10000000; |
| 1138 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_UDP_CSUM_OUT0x0004) |
| 1139 | cflags |= JME_TD_UDPCSUM0x08000000; |
| 1140 | |
| 1141 | #if NVLAN1 > 0 |
| 1142 | /* Configure VLAN. */ |
| 1143 | if (m->m_flagsm_hdr.mh_flags & M_VLANTAG0x0020) { |
| 1144 | cflags |= (m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag & JME_TD_VLAN_MASK0x0000FFFF); |
| 1145 | cflags |= JME_TD_VLAN_TAG0x01000000; |
| 1146 | } |
| 1147 | #endif |
| 1148 | |
| 1149 | desc = &sc->jme_rdata.jme_tx_ring[prod]; |
| 1150 | desc->flags = htole32(cflags)((__uint32_t)(cflags)); |
| 1151 | desc->buflen = 0; |
| 1152 | desc->addr_hi = htole32(m->m_pkthdr.len)((__uint32_t)(m->M_dat.MH.MH_pkthdr.len)); |
| 1153 | desc->addr_lo = 0; |
| 1154 | sc->jme_cdata.jme_tx_cnt++; |
| 1155 | JME_DESC_INC(prod, JME_TX_RING_CNT)((prod) = ((prod) + 1) % (384)); |
| 1156 | for (i = 0; i < txd->tx_dmamap->dm_nsegs; i++) { |
| 1157 | desc = &sc->jme_rdata.jme_tx_ring[prod]; |
| 1158 | desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT)((__uint32_t)(0x80000000 | 0x20000000)); |
| 1159 | desc->buflen = htole32(txd->tx_dmamap->dm_segs[i].ds_len)((__uint32_t)(txd->tx_dmamap->dm_segs[i].ds_len)); |
| 1160 | desc->addr_hi = |
| 1161 | htole32(JME_ADDR_HI(txd->tx_dmamap->dm_segs[i].ds_addr))((__uint32_t)(((uint64_t) (txd->tx_dmamap->dm_segs[i].ds_addr ) >> 32))); |
| 1162 | desc->addr_lo = |
| 1163 | htole32(JME_ADDR_LO(txd->tx_dmamap->dm_segs[i].ds_addr))((__uint32_t)(((uint64_t) (txd->tx_dmamap->dm_segs[i].ds_addr ) & 0xFFFFFFFF))); |
| 1164 | sc->jme_cdata.jme_tx_cnt++; |
| 1165 | JME_DESC_INC(prod, JME_TX_RING_CNT)((prod) = ((prod) + 1) % (384)); |
| 1166 | } |
| 1167 | |
| 1168 | /* Update producer index. */ |
| 1169 | sc->jme_cdata.jme_tx_prod = prod; |
| 1170 | /* |
| 1171 | * Finally request interrupt and give the first descriptor |
| 1172 | * ownership to hardware. |
| 1173 | */ |
| 1174 | desc = txd->tx_desc; |
| 1175 | desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR)((__uint32_t)(0x80000000 | 0x40000000)); |
| 1176 | |
| 1177 | txd->tx_m = m; |
| 1178 | txd->tx_ndesc = txd->tx_dmamap->dm_nsegs + JME_TXD_RSVD1; |
| 1179 | |
| 1180 | /* Sync descriptors. */ |
| 1181 | bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txd-> tx_dmamap), (0), (txd->tx_dmamap->dm_mapsize), (0x04)) |
| 1182 | txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txd-> tx_dmamap), (0), (txd->tx_dmamap->dm_mapsize), (0x04)); |
| 1183 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)) |
| 1184 | sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)); |
| 1185 | |
| 1186 | return (0); |
| 1187 | |
| 1188 | drop: |
| 1189 | m_freem(m); |
| 1190 | return (error); |
| 1191 | } |
| 1192 | |
| 1193 | void |
| 1194 | jme_start(struct ifnet *ifp) |
| 1195 | { |
| 1196 | struct jme_softc *sc = ifp->if_softc; |
| 1197 | struct mbuf *m; |
| 1198 | int enq = 0; |
| 1199 | |
| 1200 | /* Reclaim transmitted frames. */ |
| 1201 | if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT(384 - (((384) * 3) / 10))) |
| 1202 | jme_txeof(sc); |
| 1203 | |
| 1204 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) |
| 1205 | return; |
| 1206 | if ((sc->jme_flags & JME_FLAG_LINK0x0008) == 0) |
| 1207 | return; |
| 1208 | if (ifq_empty(&ifp->if_snd)(((&ifp->if_snd)->ifq_len) == 0)) |
| 1209 | return; |
| 1210 | |
| 1211 | for (;;) { |
| 1212 | /* |
| 1213 | * Check number of available TX descs, always |
| 1214 | * leave JME_TXD_RSVD free TX descs. |
| 1215 | */ |
| 1216 | if (sc->jme_cdata.jme_tx_cnt + JME_TXD_RSVD1 > |
| 1217 | JME_TX_RING_CNT384 - JME_TXD_RSVD1) { |
| 1218 | ifq_set_oactive(&ifp->if_snd); |
| 1219 | break; |
| 1220 | } |
| 1221 | |
| 1222 | m = ifq_dequeue(&ifp->if_snd); |
| 1223 | if (m == NULL((void *)0)) |
| 1224 | break; |
| 1225 | |
| 1226 | /* |
| 1227 | * Pack the data into the transmit ring. If we |
| 1228 | * don't have room, set the OACTIVE flag and wait |
| 1229 | * for the NIC to drain the ring. |
| 1230 | */ |
| 1231 | if (jme_encap(sc, m) != 0) { |
| 1232 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1233 | continue; |
| 1234 | } |
| 1235 | |
| 1236 | enq++; |
| 1237 | |
| 1238 | #if NBPFILTER1 > 0 |
| 1239 | /* |
| 1240 | * If there's a BPF listener, bounce a copy of this frame |
| 1241 | * to him. |
| 1242 | */ |
| 1243 | if (ifp->if_bpf != NULL((void *)0)) |
| 1244 | bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 1245 | #endif |
| 1246 | } |
| 1247 | |
| 1248 | if (enq > 0) { |
| 1249 | /* |
| 1250 | * Reading TXCSR takes very long time under heavy load |
| 1251 | * so cache TXCSR value and writes the ORed value with |
| 1252 | * the kick command to the TXCSR. This saves one register |
| 1253 | * access cycle. |
| 1254 | */ |
| 1255 | CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((sc->jme_txcsr | 0x00000001 | (0x00000001 << (8 + (0))))))) |
| 1256 | TXCSR_TXQ_N_START(TXCSR_TXQ0))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((sc->jme_txcsr | 0x00000001 | (0x00000001 << (8 + (0))))))); |
| 1257 | /* Set a timeout in case the chip goes out to lunch. */ |
| 1258 | ifp->if_timer = JME_TX_TIMEOUT5; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | void |
| 1263 | jme_watchdog(struct ifnet *ifp) |
| 1264 | { |
| 1265 | struct jme_softc *sc = ifp->if_softc; |
| 1266 | |
| 1267 | if ((sc->jme_flags & JME_FLAG_LINK0x0008) == 0) { |
| 1268 | printf("%s: watchdog timeout (missed link)\n", |
| 1269 | sc->sc_dev.dv_xname); |
| 1270 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1271 | jme_init(ifp); |
| 1272 | return; |
| 1273 | } |
| 1274 | |
| 1275 | jme_txeof(sc); |
| 1276 | if (sc->jme_cdata.jme_tx_cnt == 0) { |
| 1277 | printf("%s: watchdog timeout (missed Tx interrupts) " |
| 1278 | "-- recovering\n", sc->sc_dev.dv_xname); |
| 1279 | jme_start(ifp); |
| 1280 | return; |
| 1281 | } |
| 1282 | |
| 1283 | printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); |
| 1284 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1285 | jme_init(ifp); |
| 1286 | jme_start(ifp); |
| 1287 | } |
| 1288 | |
| 1289 | int |
| 1290 | jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 1291 | { |
| 1292 | struct jme_softc *sc = ifp->if_softc; |
| 1293 | struct mii_data *mii = &sc->sc_miibus; |
| 1294 | struct ifreq *ifr = (struct ifreq *)data; |
| 1295 | int error = 0, s; |
| 1296 | |
| 1297 | s = splnet()splraise(0x7); |
| 1298 | |
| 1299 | switch (cmd) { |
| 1300 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 1301 | ifp->if_flags |= IFF_UP0x1; |
| 1302 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 1303 | jme_init(ifp); |
| 1304 | break; |
| 1305 | |
| 1306 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 1307 | if (ifp->if_flags & IFF_UP0x1) { |
| 1308 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1309 | error = ENETRESET52; |
| 1310 | else |
| 1311 | jme_init(ifp); |
| 1312 | } else { |
| 1313 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1314 | jme_stop(sc); |
| 1315 | } |
| 1316 | break; |
| 1317 | |
| 1318 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 1319 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 1320 | error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); |
| 1321 | break; |
| 1322 | |
| 1323 | default: |
| 1324 | error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); |
| 1325 | } |
| 1326 | |
| 1327 | if (error == ENETRESET52) { |
| 1328 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1329 | jme_iff(sc); |
| 1330 | error = 0; |
| 1331 | } |
| 1332 | |
| 1333 | splx(s)spllower(s); |
| 1334 | return (error); |
| 1335 | } |
| 1336 | |
| 1337 | void |
| 1338 | jme_mac_config(struct jme_softc *sc) |
| 1339 | { |
| 1340 | struct mii_data *mii; |
| 1341 | uint32_t ghc, rxmac, txmac, txpause, gp1; |
| 1342 | int phyconf = JMPHY_CONF_DEFFIFO0x0004, hdx = 0; |
| 1343 | |
| 1344 | mii = &sc->sc_miibus; |
| 1345 | |
| 1346 | CSR_WRITE_4(sc, JME_GHC, GHC_RESET)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0054 )), ((0x40000000)))); |
| 1347 | DELAY(10)(*delay_func)(10); |
| 1348 | CSR_WRITE_4(sc, JME_GHC, 0)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0054 )), ((0)))); |
| 1349 | ghc = 0; |
| 1350 | rxmac = CSR_READ_4(sc, JME_RXMAC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0034 )))); |
| 1351 | rxmac &= ~RXMAC_FC_ENB0x00000008; |
| 1352 | txmac = CSR_READ_4(sc, JME_TXMAC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0014 )))); |
| 1353 | txmac &= ~(TXMAC_CARRIER_EXT0x00000040 | TXMAC_FRAME_BURST0x00000080); |
| 1354 | txpause = CSR_READ_4(sc, JME_TXPFC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0018 )))); |
| 1355 | txpause &= ~TXPFC_PAUSE_ENB0x00000001; |
| 1356 | if ((IFM_OPTIONS(mii->mii_media_active)((mii->mii_media_active) & (0x00000000ffff0000ULL|0x00ffff0000000000ULL )) & IFM_FDX0x0000010000000000ULL) != 0) { |
| 1357 | ghc |= GHC_FULL_DUPLEX0x00000040; |
| 1358 | rxmac &= ~RXMAC_COLL_DET_ENB0x00000020; |
| 1359 | txmac &= ~(TXMAC_COLL_ENB0x00000004 | TXMAC_CARRIER_SENSE0x00000008 | |
| 1360 | TXMAC_BACKOFF0x00000010 | TXMAC_CARRIER_EXT0x00000040 | |
| 1361 | TXMAC_FRAME_BURST0x00000080); |
| 1362 | if ((IFM_OPTIONS(mii->mii_media_active)((mii->mii_media_active) & (0x00000000ffff0000ULL|0x00ffff0000000000ULL )) & IFM_ETH_TXPAUSE0x0000000000040000ULL) != 0) |
| 1363 | txpause |= TXPFC_PAUSE_ENB0x00000001; |
| 1364 | if ((IFM_OPTIONS(mii->mii_media_active)((mii->mii_media_active) & (0x00000000ffff0000ULL|0x00ffff0000000000ULL )) & IFM_ETH_RXPAUSE0x0000000000020000ULL) != 0) |
| 1365 | rxmac |= RXMAC_FC_ENB0x00000008; |
| 1366 | /* Disable retry transmit timer/retry limit. */ |
| 1367 | CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x001C)))) & ~(0x80000000 | 0x00000080))))) |
| 1368 | ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x001C)))) & ~(0x80000000 | 0x00000080))))); |
| 1369 | } else { |
| 1370 | rxmac |= RXMAC_COLL_DET_ENB0x00000020; |
| 1371 | txmac |= TXMAC_COLL_ENB0x00000004 | TXMAC_CARRIER_SENSE0x00000008 | TXMAC_BACKOFF0x00000010; |
| 1372 | /* Enable retry transmit timer/retry limit. */ |
| 1373 | CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x001C)))) | 0x80000000 | 0x00000080)))) |
| 1374 | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x001C)))) | 0x80000000 | 0x00000080)))); |
| 1375 | } |
| 1376 | |
| 1377 | /* |
| 1378 | * Reprogram Tx/Rx MACs with resolved speed/duplex. |
| 1379 | */ |
| 1380 | gp1 = CSR_READ_4(sc, JME_GPREG1)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x080C )))); |
| 1381 | gp1 &= ~GPREG1_HALF_PATCH0x00000020; |
| 1382 | |
| 1383 | if ((IFM_OPTIONS(mii->mii_media_active)((mii->mii_media_active) & (0x00000000ffff0000ULL|0x00ffff0000000000ULL )) & IFM_FDX0x0000010000000000ULL) == 0) |
| 1384 | hdx = 1; |
| 1385 | |
| 1386 | switch (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL)) { |
| 1387 | case IFM_10_T3: |
| 1388 | ghc |= GHC_SPEED_100x00000010; |
| 1389 | if (hdx) |
| 1390 | gp1 |= GPREG1_HALF_PATCH0x00000020; |
| 1391 | break; |
| 1392 | |
| 1393 | case IFM_100_TX6: |
| 1394 | ghc |= GHC_SPEED_1000x00000020; |
| 1395 | if (hdx) |
| 1396 | gp1 |= GPREG1_HALF_PATCH0x00000020; |
| 1397 | |
| 1398 | /* |
| 1399 | * Use extended FIFO depth to workaround CRC errors |
| 1400 | * emitted by chips before JMC250B |
| 1401 | */ |
| 1402 | phyconf = JMPHY_CONF_EXTFIFO0x0000; |
| 1403 | break; |
| 1404 | |
| 1405 | case IFM_1000_T16: |
| 1406 | if (sc->jme_caps & JME_CAP_FASTETH0x0008) |
| 1407 | break; |
| 1408 | |
| 1409 | ghc |= GHC_SPEED_10000x00000030; |
| 1410 | if (hdx) |
| 1411 | txmac |= TXMAC_CARRIER_EXT0x00000040 | TXMAC_FRAME_BURST0x00000080; |
| 1412 | break; |
| 1413 | |
| 1414 | default: |
| 1415 | break; |
| 1416 | } |
| 1417 | |
| 1418 | if (sc->jme_revfm >= 2) { |
| 1419 | /* set clock sources for tx mac and offload engine */ |
| 1420 | if (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_1000_T16) |
| 1421 | ghc |= GHC_TCPCK_10000x00400000 | GHC_TXCK_10000x00100000; |
| 1422 | else |
| 1423 | ghc |= GHC_TCPCK_10_1000x00800000 | GHC_TXCK_10_1000x00200000; |
| 1424 | } |
| 1425 | |
| 1426 | CSR_WRITE_4(sc, JME_GHC, ghc)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0054 )), ((ghc)))); |
| 1427 | CSR_WRITE_4(sc, JME_RXMAC, rxmac)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0034 )), ((rxmac)))); |
| 1428 | CSR_WRITE_4(sc, JME_TXMAC, txmac)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0014 )), ((txmac)))); |
| 1429 | CSR_WRITE_4(sc, JME_TXPFC, txpause)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0018 )), ((txpause)))); |
| 1430 | |
| 1431 | if (sc->jme_workaround & JME_WA_CRCERRORS0x0001) { |
| 1432 | jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, |
| 1433 | JMPHY_CONF0x1B, phyconf); |
| 1434 | } |
| 1435 | if (sc->jme_workaround & JME_WA_PACKETLOSS0x0002) |
| 1436 | CSR_WRITE_4(sc, JME_GPREG1, gp1)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x080C )), ((gp1)))); |
| 1437 | } |
| 1438 | |
| 1439 | int |
| 1440 | jme_intr(void *xsc) |
| 1441 | { |
| 1442 | struct jme_softc *sc = xsc; |
| 1443 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1444 | uint32_t status; |
| 1445 | int claimed = 0; |
| 1446 | |
| 1447 | status = CSR_READ_4(sc, JME_INTR_REQ_STATUS)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0824 )))); |
| 1448 | if (status == 0 || status == 0xFFFFFFFF) |
| 1449 | return (0); |
| 1450 | |
| 1451 | /* Disable interrupts. */ |
| 1452 | CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x082C )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 1453 | |
| 1454 | status = CSR_READ_4(sc, JME_INTR_STATUS)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0820 )))); |
| 1455 | if ((status & JME_INTRS((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000))) == 0 || status == 0xFFFFFFFF) |
| 1456 | goto back; |
| 1457 | |
| 1458 | /* Reset PCC counter/timer and Ack interrupts. */ |
| 1459 | status &= ~(INTR_TXQ_COMP(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020 | 0x00000040 | 0x00000080) | INTR_RXQ_COMP(0x00000100 | 0x00000200 | 0x00000400 | 0x00000800)); |
| 1460 | if (status & (INTR_TXQ_COAL0x00010000 | INTR_TXQ_COAL_TO0x00200000)) |
| 1461 | status |= INTR_TXQ_COAL0x00010000 | INTR_TXQ_COAL_TO0x00200000 | INTR_TXQ_COMP(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020 | 0x00000040 | 0x00000080); |
| 1462 | if (status & (INTR_RXQ_COAL(0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | INTR_RXQ_COAL_TO(0x02000000 | 0x01000000 | 0x00800000 | 0x00400000))) |
| 1463 | status |= INTR_RXQ_COAL(0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | INTR_RXQ_COAL_TO(0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | INTR_RXQ_COMP(0x00000100 | 0x00000200 | 0x00000400 | 0x00000800); |
| 1464 | CSR_WRITE_4(sc, JME_INTR_STATUS, status)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0820 )), ((status)))); |
| 1465 | |
| 1466 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 1467 | if (status & (INTR_RXQ_COAL(0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | INTR_RXQ_COAL_TO(0x02000000 | 0x01000000 | 0x00800000 | 0x00400000))) |
| 1468 | jme_rxeof(sc); |
| 1469 | |
| 1470 | if (status & INTR_RXQ_DESC_EMPTY(0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)) { |
| 1471 | /* |
| 1472 | * Notify hardware availability of new Rx buffers. |
| 1473 | * Reading RXCSR takes very long time under heavy |
| 1474 | * load so cache RXCSR value and writes the ORed |
| 1475 | * value with the kick command to the RXCSR. This |
| 1476 | * saves one register access cycle. |
| 1477 | */ |
| 1478 | CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr | 0x00000001 | 0x00000004)))) |
| 1479 | RXCSR_RX_ENB | RXCSR_RXQ_START)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr | 0x00000001 | 0x00000004)))); |
| 1480 | } |
| 1481 | |
| 1482 | if (status & (INTR_TXQ_COAL0x00010000 | INTR_TXQ_COAL_TO0x00200000)) { |
| 1483 | jme_txeof(sc); |
| 1484 | jme_start(ifp); |
| 1485 | } |
| 1486 | } |
| 1487 | claimed = 1; |
| 1488 | back: |
| 1489 | /* Reenable interrupts. */ |
| 1490 | CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0828 )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 1491 | |
| 1492 | return (claimed); |
| 1493 | } |
| 1494 | |
| 1495 | void |
| 1496 | jme_txeof(struct jme_softc *sc) |
| 1497 | { |
| 1498 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1499 | struct jme_txdesc *txd; |
| 1500 | uint32_t status; |
| 1501 | int cons, nsegs; |
| 1502 | |
| 1503 | cons = sc->jme_cdata.jme_tx_cons; |
| 1504 | if (cons == sc->jme_cdata.jme_tx_prod) |
| 1505 | return; |
| 1506 | |
| 1507 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x02)) |
| 1508 | sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x02)); |
| 1509 | |
| 1510 | /* |
| 1511 | * Go through our Tx list and free mbufs for those |
| 1512 | * frames which have been transmitted. |
| 1513 | */ |
| 1514 | while (cons != sc->jme_cdata.jme_tx_prod) { |
| 1515 | txd = &sc->jme_cdata.jme_txdesc[cons]; |
| 1516 | |
| 1517 | if (txd->tx_m == NULL((void *)0)) |
| 1518 | panic("%s: freeing NULL mbuf!", sc->sc_dev.dv_xname); |
| 1519 | |
| 1520 | status = letoh32(txd->tx_desc->flags)((__uint32_t)(txd->tx_desc->flags)); |
| 1521 | if ((status & JME_TD_OWN0x80000000) == JME_TD_OWN0x80000000) |
| 1522 | break; |
| 1523 | |
| 1524 | if (status & (JME_TD_TMOUT0x20000000 | JME_TD_RETRY_EXP0x10000000)) { |
| 1525 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1526 | } else { |
| 1527 | if (status & JME_TD_COLLISION0x08000000) { |
| 1528 | ifp->if_collisionsif_data.ifi_collisions += |
| 1529 | letoh32(txd->tx_desc->buflen)((__uint32_t)(txd->tx_desc->buflen)) & |
| 1530 | JME_TD_BUF_LEN_MASK0x0000FFFF; |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | /* |
| 1535 | * Only the first descriptor of multi-descriptor |
| 1536 | * transmission is updated so driver have to skip entire |
| 1537 | * chained buffers for the transmitted frame. In other |
| 1538 | * words, JME_TD_OWN bit is valid only at the first |
| 1539 | * descriptor of a multi-descriptor transmission. |
| 1540 | */ |
| 1541 | for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { |
| 1542 | sc->jme_rdata.jme_tx_ring[cons].flags = 0; |
| 1543 | JME_DESC_INC(cons, JME_TX_RING_CNT)((cons) = ((cons) + 1) % (384)); |
| 1544 | } |
| 1545 | |
| 1546 | /* Reclaim transferred mbufs. */ |
| 1547 | bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (txd ->tx_dmamap)); |
| 1548 | m_freem(txd->tx_m); |
| 1549 | txd->tx_m = NULL((void *)0); |
| 1550 | sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc; |
| 1551 | if (sc->jme_cdata.jme_tx_cnt < 0) |
| 1552 | panic("%s: Active Tx desc counter was garbled", |
| 1553 | sc->sc_dev.dv_xname); |
| 1554 | txd->tx_ndesc = 0; |
| 1555 | } |
| 1556 | sc->jme_cdata.jme_tx_cons = cons; |
| 1557 | |
| 1558 | if (sc->jme_cdata.jme_tx_cnt == 0) |
| 1559 | ifp->if_timer = 0; |
| 1560 | |
| 1561 | if (sc->jme_cdata.jme_tx_cnt + JME_TXD_RSVD1 <= |
| 1562 | JME_TX_RING_CNT384 - JME_TXD_RSVD1) |
| 1563 | ifq_clr_oactive(&ifp->if_snd); |
| 1564 | |
| 1565 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)) |
| 1566 | sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)); |
| 1567 | } |
| 1568 | |
| 1569 | void |
| 1570 | jme_discard_rxbufs(struct jme_softc *sc, int cons, int count) |
| 1571 | { |
| 1572 | int i; |
| 1573 | |
| 1574 | for (i = 0; i < count; ++i) { |
| 1575 | struct jme_desc *desc = &sc->jme_rdata.jme_rx_ring[cons]; |
| 1576 | |
| 1577 | desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT)((__uint32_t)(0x80000000 | 0x40000000 | 0x20000000)); |
| 1578 | desc->buflen = htole32(MCLBYTES)((__uint32_t)((1 << 11))); |
| 1579 | JME_DESC_INC(cons, JME_RX_RING_CNT)((cons) = ((cons) + 1) % (256)); |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | /* Receive a frame. */ |
| 1584 | void |
| 1585 | jme_rxpkt(struct jme_softc *sc) |
| 1586 | { |
| 1587 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1588 | struct jme_desc *desc; |
| 1589 | struct jme_rxdesc *rxd; |
| 1590 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 1591 | struct mbuf *mp, *m; |
| 1592 | uint32_t flags, status; |
| 1593 | int cons, count, nsegs; |
| 1594 | |
| 1595 | cons = sc->jme_cdata.jme_rx_cons; |
| 1596 | desc = &sc->jme_rdata.jme_rx_ring[cons]; |
| 1597 | flags = letoh32(desc->flags)((__uint32_t)(desc->flags)); |
| 1598 | status = letoh32(desc->buflen)((__uint32_t)(desc->buflen)); |
| 1599 | nsegs = JME_RX_NSEGS(status)(((status) & 0x7F000000) >> 24); |
| 1600 | |
| 1601 | if (status & JME_RX_ERR_STAT(0x00800000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00010000)) { |
| 1602 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1603 | jme_discard_rxbufs(sc, cons, nsegs); |
| 1604 | #ifdef JME_SHOW_ERRORS |
| 1605 | printf("%s : receive error = 0x%b\n", |
| 1606 | sc->sc_dev.dv_xname, JME_RX_ERR(status)(((status) & 0x00FF0000) >> 16), JME_RX_ERR_BITS"\20" "\1CRCERR\2FIFOOVRN\3RUNT\4ABORT" "\5COLL\6NBLRCVD\7GMIIERR\10"); |
| 1607 | #endif |
| 1608 | sc->jme_cdata.jme_rx_cons += nsegs; |
| 1609 | sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT256; |
| 1610 | return; |
| 1611 | } |
| 1612 | |
| 1613 | sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status)((status) & 0x0000FFFF) - JME_RX_PAD_BYTES10; |
| 1614 | for (count = 0; count < nsegs; count++, |
| 1615 | JME_DESC_INC(cons, JME_RX_RING_CNT)((cons) = ((cons) + 1) % (256))) { |
| 1616 | rxd = &sc->jme_cdata.jme_rxdesc[cons]; |
| 1617 | mp = rxd->rx_m; |
| 1618 | |
| 1619 | /* Add a new receive buffer to the ring. */ |
| 1620 | if (jme_newbuf(sc, rxd) != 0) { |
| 1621 | ifp->if_iqdropsif_data.ifi_iqdrops++; |
| 1622 | /* Reuse buffer. */ |
| 1623 | jme_discard_rxbufs(sc, cons, nsegs - count); |
| 1624 | if (sc->jme_cdata.jme_rxhead != NULL((void *)0)) { |
| 1625 | m_freem(sc->jme_cdata.jme_rxhead); |
| 1626 | JME_RXCHAIN_RESET(sc)do { (sc)->jme_cdata.jme_rxhead = ((void *)0); (sc)->jme_cdata .jme_rxtail = ((void *)0); (sc)->jme_cdata.jme_rxlen = 0; } while (0); |
| 1627 | } |
| 1628 | break; |
| 1629 | } |
| 1630 | |
| 1631 | /* |
| 1632 | * Assume we've received a full sized frame. |
| 1633 | * Actual size is fixed when we encounter the end of |
| 1634 | * multi-segmented frame. |
| 1635 | */ |
| 1636 | mp->m_lenm_hdr.mh_len = MCLBYTES(1 << 11); |
| 1637 | |
| 1638 | /* Chain received mbufs. */ |
| 1639 | if (sc->jme_cdata.jme_rxhead == NULL((void *)0)) { |
| 1640 | sc->jme_cdata.jme_rxhead = mp; |
| 1641 | sc->jme_cdata.jme_rxtail = mp; |
| 1642 | } else { |
| 1643 | /* |
| 1644 | * Receive processor can receive a maximum frame |
| 1645 | * size of 65535 bytes. |
| 1646 | */ |
| 1647 | mp->m_flagsm_hdr.mh_flags &= ~M_PKTHDR0x0002; |
| 1648 | sc->jme_cdata.jme_rxtail->m_nextm_hdr.mh_next = mp; |
| 1649 | sc->jme_cdata.jme_rxtail = mp; |
| 1650 | } |
| 1651 | |
| 1652 | if (count == nsegs - 1) { |
| 1653 | /* Last desc. for this frame. */ |
| 1654 | m = sc->jme_cdata.jme_rxhead; |
| 1655 | /* XXX assert PKTHDR? */ |
| 1656 | m->m_flagsm_hdr.mh_flags |= M_PKTHDR0x0002; |
| 1657 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = sc->jme_cdata.jme_rxlen; |
| 1658 | if (nsegs > 1) { |
| 1659 | /* Set first mbuf size. */ |
| 1660 | m->m_lenm_hdr.mh_len = MCLBYTES(1 << 11) - JME_RX_PAD_BYTES10; |
| 1661 | /* Set last mbuf size. */ |
| 1662 | mp->m_lenm_hdr.mh_len = sc->jme_cdata.jme_rxlen - |
| 1663 | ((MCLBYTES(1 << 11) - JME_RX_PAD_BYTES10) + |
| 1664 | (MCLBYTES(1 << 11) * (nsegs - 2))); |
| 1665 | } else { |
| 1666 | m->m_lenm_hdr.mh_len = sc->jme_cdata.jme_rxlen; |
| 1667 | } |
| 1668 | |
| 1669 | /* |
| 1670 | * Account for 10bytes auto padding which is used |
| 1671 | * to align IP header on 32bit boundary. Also note, |
| 1672 | * CRC bytes is automatically removed by the |
| 1673 | * hardware. |
| 1674 | */ |
| 1675 | m->m_datam_hdr.mh_data += JME_RX_PAD_BYTES10; |
| 1676 | |
| 1677 | /* Set checksum information. */ |
| 1678 | if (flags & (JME_RD_IPV40x00400000|JME_RD_IPV60x00200000)) { |
| 1679 | if ((flags & JME_RD_IPV40x00400000) && |
| 1680 | (flags & JME_RD_IPCSUM0x04000000)) |
| 1681 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 1682 | M_IPV4_CSUM_IN_OK0x0008; |
| 1683 | if ((flags & JME_RD_MORE_FRAG0x20000000) == 0 && |
| 1684 | ((flags & (JME_RD_TCP0x10000000 | JME_RD_TCPCSUM0x02000000)) == |
| 1685 | (JME_RD_TCP0x10000000 | JME_RD_TCPCSUM0x02000000) || |
| 1686 | (flags & (JME_RD_UDP0x08000000 | JME_RD_UDPCSUM0x01000000)) == |
| 1687 | (JME_RD_UDP0x08000000 | JME_RD_UDPCSUM0x01000000))) { |
| 1688 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 1689 | M_TCP_CSUM_IN_OK0x0020 | M_UDP_CSUM_IN_OK0x0080; |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | #if NVLAN1 > 0 |
| 1694 | /* Check for VLAN tagged packets. */ |
| 1695 | if (flags & JME_RD_VLAN_TAG0x00800000) { |
| 1696 | m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag = flags & JME_RD_VLAN_MASK0x0000FFFF; |
| 1697 | m->m_flagsm_hdr.mh_flags |= M_VLANTAG0x0020; |
| 1698 | } |
| 1699 | #endif |
| 1700 | |
| 1701 | ml_enqueue(&ml, m); |
| 1702 | |
| 1703 | /* Reset mbuf chains. */ |
| 1704 | JME_RXCHAIN_RESET(sc)do { (sc)->jme_cdata.jme_rxhead = ((void *)0); (sc)->jme_cdata .jme_rxtail = ((void *)0); (sc)->jme_cdata.jme_rxlen = 0; } while (0); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | if_input(ifp, &ml); |
| 1709 | |
| 1710 | sc->jme_cdata.jme_rx_cons += nsegs; |
| 1711 | sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT256; |
| 1712 | } |
| 1713 | |
| 1714 | void |
| 1715 | jme_rxeof(struct jme_softc *sc) |
| 1716 | { |
| 1717 | struct jme_desc *desc; |
| 1718 | int nsegs, prog, pktlen; |
| 1719 | |
| 1720 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x02)) |
| 1721 | sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x02)); |
| 1722 | |
| 1723 | prog = 0; |
| 1724 | for (;;) { |
| 1725 | desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons]; |
| 1726 | if ((letoh32(desc->flags)((__uint32_t)(desc->flags)) & JME_RD_OWN0x80000000) == JME_RD_OWN0x80000000) |
| 1727 | break; |
| 1728 | if ((letoh32(desc->buflen)((__uint32_t)(desc->buflen)) & JME_RD_VALID0x80000000) == 0) |
| 1729 | break; |
| 1730 | |
| 1731 | /* |
| 1732 | * Check number of segments against received bytes. |
| 1733 | * Non-matching value would indicate that hardware |
| 1734 | * is still trying to update Rx descriptors. I'm not |
| 1735 | * sure whether this check is needed. |
| 1736 | */ |
| 1737 | nsegs = JME_RX_NSEGS(letoh32(desc->buflen))(((((__uint32_t)(desc->buflen))) & 0x7F000000) >> 24); |
| 1738 | pktlen = JME_RX_BYTES(letoh32(desc->buflen))((((__uint32_t)(desc->buflen))) & 0x0000FFFF); |
| 1739 | if (nsegs != howmany(pktlen, MCLBYTES)(((pktlen) + (((1 << 11)) - 1)) / ((1 << 11)))) { |
| 1740 | printf("%s: RX fragment count(%d) " |
| 1741 | "and packet size(%d) mismatch\n", |
| 1742 | sc->sc_dev.dv_xname, nsegs, pktlen); |
| 1743 | break; |
| 1744 | } |
| 1745 | |
| 1746 | /* Received a frame. */ |
| 1747 | jme_rxpkt(sc); |
| 1748 | prog++; |
| 1749 | } |
| 1750 | |
| 1751 | if (prog > 0) { |
| 1752 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x04)) |
| 1753 | sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x04)); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | void |
| 1758 | jme_tick(void *xsc) |
| 1759 | { |
| 1760 | struct jme_softc *sc = xsc; |
| 1761 | struct mii_data *mii = &sc->sc_miibus; |
| 1762 | int s; |
| 1763 | |
| 1764 | s = splnet()splraise(0x7); |
| 1765 | mii_tick(mii); |
| 1766 | timeout_add_sec(&sc->jme_tick_ch, 1); |
| 1767 | splx(s)spllower(s); |
| 1768 | } |
| 1769 | |
| 1770 | void |
| 1771 | jme_reset(struct jme_softc *sc) |
| 1772 | { |
| 1773 | #ifdef foo |
| 1774 | /* Stop receiver, transmitter. */ |
| 1775 | jme_stop_rx(sc); |
| 1776 | jme_stop_tx(sc); |
| 1777 | #endif |
| 1778 | CSR_WRITE_4(sc, JME_GHC, GHC_RESET)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0054 )), ((0x40000000)))); |
| 1779 | DELAY(10)(*delay_func)(10); |
| 1780 | CSR_WRITE_4(sc, JME_GHC, 0)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0054 )), ((0)))); |
| 1781 | } |
| 1782 | |
| 1783 | int |
| 1784 | jme_init(struct ifnet *ifp) |
| 1785 | { |
| 1786 | struct jme_softc *sc = ifp->if_softc; |
| 1787 | struct mii_data *mii; |
| 1788 | uint8_t eaddr[ETHER_ADDR_LEN6]; |
| 1789 | bus_addr_t paddr; |
| 1790 | uint32_t reg; |
| 1791 | int error; |
| 1792 | |
| 1793 | /* |
| 1794 | * Cancel any pending I/O. |
| 1795 | */ |
| 1796 | jme_stop(sc); |
| 1797 | |
| 1798 | /* |
| 1799 | * Reset the chip to a known state. |
| 1800 | */ |
| 1801 | jme_reset(sc); |
| 1802 | |
| 1803 | /* Init descriptors. */ |
| 1804 | error = jme_init_rx_ring(sc); |
| 1805 | if (error != 0) { |
| 1806 | printf("%s: initialization failed: no memory for Rx buffers.\n", |
| 1807 | sc->sc_dev.dv_xname); |
| 1808 | jme_stop(sc); |
| 1809 | return (error); |
| 1810 | } |
| 1811 | jme_init_tx_ring(sc); |
| 1812 | |
| 1813 | /* Initialize shadow status block. */ |
| 1814 | jme_init_ssb(sc); |
| 1815 | |
| 1816 | /* Reprogram the station address. */ |
| 1817 | bcopy(LLADDR(ifp->if_sadl)((caddr_t)((ifp->if_sadl)->sdl_data + (ifp->if_sadl) ->sdl_nlen)), eaddr, ETHER_ADDR_LEN6); |
| 1818 | CSR_WRITE_4(sc, JME_PAR0,(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0038 )), ((eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0])))) |
| 1819 | eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0038 )), ((eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0])))); |
| 1820 | CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x003C )), ((eaddr[5] << 8 | eaddr[4])))); |
| 1821 | |
| 1822 | /* |
| 1823 | * Configure Tx queue. |
| 1824 | * Tx priority queue weight value : 0 |
| 1825 | * Tx FIFO threshold for processing next packet : 16QW |
| 1826 | * Maximum Tx DMA length : 512 |
| 1827 | * Allow Tx DMA burst. |
| 1828 | */ |
| 1829 | sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0)(((0) << 16) & 0x00070000); |
| 1830 | sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN)(((0) << 24) & 0x0F000000); |
| 1831 | sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW0x000000C0; |
| 1832 | sc->jme_txcsr |= sc->jme_tx_dma_size; |
| 1833 | sc->jme_txcsr |= TXCSR_DMA_BURST0x00000004; |
| 1834 | CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((sc->jme_txcsr)))); |
| 1835 | |
| 1836 | /* Set Tx descriptor counter. */ |
| 1837 | CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x000C )), ((384)))); |
| 1838 | |
| 1839 | /* Set Tx ring address to the hardware. */ |
| 1840 | paddr = JME_TX_RING_ADDR(sc, 0)((sc)->jme_rdata.jme_tx_ring_paddr + sizeof(struct jme_desc ) * (0)); |
| 1841 | CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0008 )), ((((uint64_t) (paddr) >> 32))))); |
| 1842 | CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0004 )), ((((uint64_t) (paddr) & 0xFFFFFFFF))))); |
| 1843 | |
| 1844 | /* Configure TxMAC parameters. */ |
| 1845 | reg = TXMAC_IFG1_DEFAULT0x20000000 | TXMAC_IFG2_DEFAULT0x40000000 | TXMAC_IFG_ENB0x00000020; |
| 1846 | reg |= TXMAC_THRESH_1_PKT0x00000300; |
| 1847 | reg |= TXMAC_CRC_ENB0x00000002 | TXMAC_PAD_ENB0x00000001; |
| 1848 | CSR_WRITE_4(sc, JME_TXMAC, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0014 )), ((reg)))); |
| 1849 | |
| 1850 | /* |
| 1851 | * Configure Rx queue. |
| 1852 | * FIFO full threshold for transmitting Tx pause packet : 128T |
| 1853 | * FIFO threshold for processing next packet : 128QW |
| 1854 | * Rx queue 0 select |
| 1855 | * Max Rx DMA length : 128 |
| 1856 | * Rx descriptor retry : 32 |
| 1857 | * Rx descriptor retry time gap : 256ns |
| 1858 | * Don't receive runt/bad frame. |
| 1859 | */ |
| 1860 | sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T0x30000000; |
| 1861 | |
| 1862 | /* |
| 1863 | * Since Rx FIFO size is 4K bytes, receiving frames larger |
| 1864 | * than 4K bytes will suffer from Rx FIFO overruns. So |
| 1865 | * decrease FIFO threshold to reduce the FIFO overruns for |
| 1866 | * frames larger than 4000 bytes. |
| 1867 | * For best performance of standard MTU sized frames use |
| 1868 | * maximum allowable FIFO threshold, which is 32QW for |
| 1869 | * chips with a full mask >= 2 otherwise 128QW. FIFO |
| 1870 | * thresholds of 64QW and 128QW are not valid for chips |
| 1871 | * with a full mask >= 2. |
| 1872 | */ |
| 1873 | if (sc->jme_revfm >= 2) |
| 1874 | sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW0x00000000; |
| 1875 | else { |
| 1876 | if ((ifp->if_mtuif_data.ifi_mtu + ETHER_HDR_LEN((6 * 2) + 2) + ETHER_CRC_LEN4 + |
| 1877 | ETHER_VLAN_ENCAP_LEN4) > JME_RX_FIFO_SIZE4000) |
| 1878 | sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW0x00000000; |
| 1879 | else |
| 1880 | sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW0x0C000000; |
| 1881 | } |
| 1882 | sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0)((0) << 16); |
| 1883 | sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT)((((32) / 4) << 8) & 0x00000F00); |
| 1884 | sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_2560x00000000 & RXCSR_DESC_RT_GAP_MASK0x0000F000; |
| 1885 | /* XXX TODO DROP_BAD */ |
| 1886 | CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((sc->jme_rxcsr)))); |
| 1887 | |
| 1888 | /* Set Rx descriptor counter. */ |
| 1889 | CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x002C )), ((256)))); |
| 1890 | |
| 1891 | /* Set Rx ring address to the hardware. */ |
| 1892 | paddr = JME_RX_RING_ADDR(sc, 0)((sc)->jme_rdata.jme_rx_ring_paddr + sizeof(struct jme_desc ) * (0)); |
| 1893 | CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0028 )), ((((uint64_t) (paddr) >> 32))))); |
| 1894 | CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0024 )), ((((uint64_t) (paddr) & 0xFFFFFFFF))))); |
| 1895 | |
| 1896 | /* Clear receive filter. */ |
| 1897 | CSR_WRITE_4(sc, JME_RXMAC, 0)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0034 )), ((0)))); |
| 1898 | |
| 1899 | /* Set up the receive filter. */ |
| 1900 | jme_iff(sc); |
| 1901 | |
| 1902 | jme_set_vlan(sc); |
| 1903 | |
| 1904 | /* |
| 1905 | * Disable all WOL bits as WOL can interfere normal Rx |
| 1906 | * operation. Also clear WOL detection status bits. |
| 1907 | */ |
| 1908 | reg = CSR_READ_4(sc, JME_PMCS)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0060 )))); |
| 1909 | reg &= ~PMCS_WOL_ENB_MASK0x0000FFFF; |
| 1910 | CSR_WRITE_4(sc, JME_PMCS, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0060 )), ((reg)))); |
| 1911 | |
| 1912 | /* |
| 1913 | * Pad 10bytes right before received frame. This will greatly |
| 1914 | * help Rx performance on strict-alignment architectures as |
| 1915 | * it does not need to copy the frame to align the payload. |
| 1916 | */ |
| 1917 | reg = CSR_READ_4(sc, JME_RXMAC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0034 )))); |
| 1918 | reg |= RXMAC_PAD_10BYTES0x00000002; |
| 1919 | reg |= RXMAC_CSUM_ENB0x00000001; |
| 1920 | CSR_WRITE_4(sc, JME_RXMAC, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0034 )), ((reg)))); |
| 1921 | |
| 1922 | /* Configure general purpose reg0 */ |
| 1923 | reg = CSR_READ_4(sc, JME_GPREG0)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0808 )))); |
| 1924 | reg &= ~GPREG0_PCC_UNIT_MASK0x00000300; |
| 1925 | /* Set PCC timer resolution to micro-seconds unit. */ |
| 1926 | reg |= GPREG0_PCC_UNIT_US0x00000200; |
| 1927 | /* |
| 1928 | * Disable all shadow register posting as we have to read |
| 1929 | * JME_INTR_STATUS register in jme_intr. Also it seems |
| 1930 | * that it's hard to synchronize interrupt status between |
| 1931 | * hardware and software with shadow posting due to |
| 1932 | * requirements of bus_dmamap_sync(9). |
| 1933 | */ |
| 1934 | reg |= GPREG0_SH_POST_DW7_DIS0x80000000 | GPREG0_SH_POST_DW6_DIS0x40000000 | |
| 1935 | GPREG0_SH_POST_DW5_DIS0x20000000 | GPREG0_SH_POST_DW4_DIS0x10000000 | |
| 1936 | GPREG0_SH_POST_DW3_DIS0x08000000 | GPREG0_SH_POST_DW2_DIS0x04000000 | |
| 1937 | GPREG0_SH_POST_DW1_DIS0x02000000 | GPREG0_SH_POST_DW0_DIS0x01000000; |
| 1938 | /* Disable posting of DW0. */ |
| 1939 | reg &= ~GPREG0_POST_DW0_ENB0x00040000; |
| 1940 | /* Clear PME message. */ |
| 1941 | reg &= ~GPREG0_PME_ENB0x00000020; |
| 1942 | /* Set PHY address. */ |
| 1943 | reg &= ~GPREG0_PHY_ADDR_MASK0x0000001F; |
| 1944 | reg |= sc->jme_phyaddr; |
| 1945 | CSR_WRITE_4(sc, JME_GPREG0, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0808 )), ((reg)))); |
| 1946 | |
| 1947 | /* Configure Tx queue 0 packet completion coalescing. */ |
| 1948 | sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT65535; |
| 1949 | reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT16) & |
| 1950 | PCCTX_COAL_TO_MASK0xFFFF0000; |
| 1951 | sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT64; |
| 1952 | reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT8) & |
| 1953 | PCCTX_COAL_PKT_MASK0x0000FF00; |
| 1954 | reg |= PCCTX_COAL_TXQ00x00000001; |
| 1955 | CSR_WRITE_4(sc, JME_PCCTX, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0840 )), ((reg)))); |
| 1956 | |
| 1957 | /* Configure Rx queue 0 packet completion coalescing. */ |
| 1958 | sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT100; |
| 1959 | reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT16) & |
| 1960 | PCCRX_COAL_TO_MASK0xFFFF0000; |
| 1961 | sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT64; |
| 1962 | reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT8) & |
| 1963 | PCCRX_COAL_PKT_MASK0x0000FF00; |
| 1964 | CSR_WRITE_4(sc, JME_PCCRX0, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0830 )), ((reg)))); |
| 1965 | |
| 1966 | /* Configure shadow status block but don't enable posting. */ |
| 1967 | paddr = sc->jme_rdata.jme_ssb_block_paddr; |
| 1968 | CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0848 )), ((((uint64_t) (paddr) >> 32))))); |
| 1969 | CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x084C )), ((((uint64_t) (paddr) & 0xFFFFFFFF))))); |
| 1970 | |
| 1971 | /* Disable Timer 1 and Timer 2. */ |
| 1972 | CSR_WRITE_4(sc, JME_TIMER1, 0)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0870 )), ((0)))); |
| 1973 | CSR_WRITE_4(sc, JME_TIMER2, 0)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0874 )), ((0)))); |
| 1974 | |
| 1975 | /* Configure retry transmit period, retry limit value. */ |
| 1976 | CSR_WRITE_4(sc, JME_TXTRHD,(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), ((((8192 << 8) & 0x7FFFFF00) | ((8 << 0) & 0))))) |
| 1977 | ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), ((((8192 << 8) & 0x7FFFFF00) | ((8 << 0) & 0))))) |
| 1978 | TXTRHD_RT_PERIOD_MASK) |(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), ((((8192 << 8) & 0x7FFFFF00) | ((8 << 0) & 0))))) |
| 1979 | ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), ((((8192 << 8) & 0x7FFFFF00) | ((8 << 0) & 0))))) |
| 1980 | TXTRHD_RT_LIMIT_SHIFT))(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x001C )), ((((8192 << 8) & 0x7FFFFF00) | ((8 << 0) & 0))))); |
| 1981 | |
| 1982 | /* Disable RSS. */ |
| 1983 | CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0C00 )), ((0x00000000)))); |
| 1984 | |
| 1985 | /* Initialize the interrupt mask. */ |
| 1986 | CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0828 )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 1987 | CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0820 )), ((0xFFFFFFFF)))); |
| 1988 | |
| 1989 | /* |
| 1990 | * Enabling Tx/Rx DMA engines and Rx queue processing is |
| 1991 | * done after detection of valid link in jme_miibus_statchg. |
| 1992 | */ |
| 1993 | sc->jme_flags &= ~JME_FLAG_LINK0x0008; |
| 1994 | |
| 1995 | /* Set the current media. */ |
| 1996 | mii = &sc->sc_miibus; |
| 1997 | mii_mediachg(mii); |
| 1998 | |
| 1999 | timeout_add_sec(&sc->jme_tick_ch, 1); |
| 2000 | |
| 2001 | ifp->if_flags |= IFF_RUNNING0x40; |
| 2002 | ifq_clr_oactive(&ifp->if_snd); |
| 2003 | |
| 2004 | return (0); |
| 2005 | } |
| 2006 | |
| 2007 | void |
| 2008 | jme_stop(struct jme_softc *sc) |
| 2009 | { |
| 2010 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 2011 | struct jme_txdesc *txd; |
| 2012 | struct jme_rxdesc *rxd; |
| 2013 | int i; |
| 2014 | |
| 2015 | /* |
| 2016 | * Mark the interface down and cancel the watchdog timer. |
| 2017 | */ |
| 2018 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 2019 | ifq_clr_oactive(&ifp->if_snd); |
| 2020 | ifp->if_timer = 0; |
| 2021 | |
| 2022 | timeout_del(&sc->jme_tick_ch); |
| 2023 | sc->jme_flags &= ~JME_FLAG_LINK0x0008; |
| 2024 | |
| 2025 | /* |
| 2026 | * Disable interrupts. |
| 2027 | */ |
| 2028 | CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x082C )), ((((0x02000000 | 0x01000000 | 0x00800000 | 0x00400000) | 0x00200000 | (0x00100000 | 0x00080000 | 0x00040000 | 0x00020000) | 0x00010000 | (0x00001000 | 0x00002000 | 0x00004000 | 0x00008000)))))); |
| 2029 | CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0820 )), ((0xFFFFFFFF)))); |
| 2030 | |
| 2031 | /* Disable updating shadow status block. */ |
| 2032 | CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x084C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x084C)))) & ~0x00000001)))) |
| 2033 | CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x084C )), (((((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh) , ((0x084C)))) & ~0x00000001)))); |
| 2034 | |
| 2035 | /* Stop receiver, transmitter. */ |
| 2036 | jme_stop_rx(sc); |
| 2037 | jme_stop_tx(sc); |
| 2038 | |
| 2039 | #ifdef foo |
| 2040 | /* Reclaim Rx/Tx buffers that have been completed. */ |
| 2041 | jme_rxeof(sc); |
| 2042 | m_freem(sc->jme_cdata.jme_rxhead); |
| 2043 | JME_RXCHAIN_RESET(sc)do { (sc)->jme_cdata.jme_rxhead = ((void *)0); (sc)->jme_cdata .jme_rxtail = ((void *)0); (sc)->jme_cdata.jme_rxlen = 0; } while (0); |
| 2044 | jme_txeof(sc); |
| 2045 | #endif |
| 2046 | |
| 2047 | /* |
| 2048 | * Free partial finished RX segments |
| 2049 | */ |
| 2050 | m_freem(sc->jme_cdata.jme_rxhead); |
| 2051 | JME_RXCHAIN_RESET(sc)do { (sc)->jme_cdata.jme_rxhead = ((void *)0); (sc)->jme_cdata .jme_rxtail = ((void *)0); (sc)->jme_cdata.jme_rxlen = 0; } while (0); |
| 2052 | |
| 2053 | /* |
| 2054 | * Free RX and TX mbufs still in the queues. |
| 2055 | */ |
| 2056 | for (i = 0; i < JME_RX_RING_CNT256; i++) { |
| 2057 | rxd = &sc->jme_cdata.jme_rxdesc[i]; |
| 2058 | if (rxd->rx_m != NULL((void *)0)) { |
| 2059 | bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rxd ->rx_dmamap)); |
| 2060 | m_freem(rxd->rx_m); |
| 2061 | rxd->rx_m = NULL((void *)0); |
| 2062 | } |
| 2063 | } |
| 2064 | for (i = 0; i < JME_TX_RING_CNT384; i++) { |
| 2065 | txd = &sc->jme_cdata.jme_txdesc[i]; |
| 2066 | if (txd->tx_m != NULL((void *)0)) { |
| 2067 | bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (txd ->tx_dmamap)); |
| 2068 | m_freem(txd->tx_m); |
| 2069 | txd->tx_m = NULL((void *)0); |
| 2070 | txd->tx_ndesc = 0; |
| 2071 | } |
| 2072 | } |
| 2073 | } |
| 2074 | |
| 2075 | void |
| 2076 | jme_stop_tx(struct jme_softc *sc) |
| 2077 | { |
| 2078 | uint32_t reg; |
| 2079 | int i; |
| 2080 | |
| 2081 | reg = CSR_READ_4(sc, JME_TXCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0000 )))); |
| 2082 | if ((reg & TXCSR_TX_ENB0x00000001) == 0) |
| 2083 | return; |
| 2084 | reg &= ~TXCSR_TX_ENB0x00000001; |
| 2085 | CSR_WRITE_4(sc, JME_TXCSR, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0000 )), ((reg)))); |
| 2086 | for (i = JME_TIMEOUT1000; i > 0; i--) { |
| 2087 | DELAY(1)(*delay_func)(1); |
| 2088 | if ((CSR_READ_4(sc, JME_TXCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0000 )))) & TXCSR_TX_ENB0x00000001) == 0) |
| 2089 | break; |
| 2090 | } |
| 2091 | if (i == 0) |
| 2092 | printf("%s: stopping transmitter timeout!\n", |
| 2093 | sc->sc_dev.dv_xname); |
| 2094 | } |
| 2095 | |
| 2096 | void |
| 2097 | jme_stop_rx(struct jme_softc *sc) |
| 2098 | { |
| 2099 | uint32_t reg; |
| 2100 | int i; |
| 2101 | |
| 2102 | reg = CSR_READ_4(sc, JME_RXCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0020 )))); |
| 2103 | if ((reg & RXCSR_RX_ENB0x00000001) == 0) |
| 2104 | return; |
| 2105 | reg &= ~RXCSR_RX_ENB0x00000001; |
| 2106 | CSR_WRITE_4(sc, JME_RXCSR, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0020 )), ((reg)))); |
| 2107 | for (i = JME_TIMEOUT1000; i > 0; i--) { |
| 2108 | DELAY(1)(*delay_func)(1); |
| 2109 | if ((CSR_READ_4(sc, JME_RXCSR)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0020 )))) & RXCSR_RX_ENB0x00000001) == 0) |
| 2110 | break; |
| 2111 | } |
| 2112 | if (i == 0) |
| 2113 | printf("%s: stopping receiver timeout!\n", sc->sc_dev.dv_xname); |
| 2114 | } |
| 2115 | |
| 2116 | void |
| 2117 | jme_init_tx_ring(struct jme_softc *sc) |
| 2118 | { |
| 2119 | struct jme_ring_data *rd; |
| 2120 | struct jme_txdesc *txd; |
| 2121 | int i; |
| 2122 | |
| 2123 | sc->jme_cdata.jme_tx_prod = 0; |
| 2124 | sc->jme_cdata.jme_tx_cons = 0; |
| 2125 | sc->jme_cdata.jme_tx_cnt = 0; |
| 2126 | |
| 2127 | rd = &sc->jme_rdata; |
| 2128 | bzero(rd->jme_tx_ring, JME_TX_RING_SIZE)__builtin_bzero((rd->jme_tx_ring), ((sizeof(struct jme_desc ) * 384))); |
| 2129 | for (i = 0; i < JME_TX_RING_CNT384; i++) { |
| 2130 | txd = &sc->jme_cdata.jme_txdesc[i]; |
| 2131 | txd->tx_m = NULL((void *)0); |
| 2132 | txd->tx_desc = &rd->jme_tx_ring[i]; |
| 2133 | txd->tx_ndesc = 0; |
| 2134 | } |
| 2135 | |
| 2136 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)) |
| 2137 | sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_tx_ring_map), (0), (sc->jme_cdata.jme_tx_ring_map ->dm_mapsize), (0x04)); |
| 2138 | } |
| 2139 | |
| 2140 | void |
| 2141 | jme_init_ssb(struct jme_softc *sc) |
| 2142 | { |
| 2143 | struct jme_ring_data *rd; |
| 2144 | |
| 2145 | rd = &sc->jme_rdata; |
| 2146 | bzero(rd->jme_ssb_block, JME_SSB_SIZE)__builtin_bzero((rd->jme_ssb_block), (sizeof(struct jme_ssb ))); |
| 2147 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_ssb_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map), (0), (sc->jme_cdata.jme_ssb_map-> dm_mapsize), (0x04)) |
| 2148 | sc->jme_cdata.jme_ssb_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_ssb_map), (0), (sc->jme_cdata.jme_ssb_map-> dm_mapsize), (0x04)); |
| 2149 | } |
| 2150 | |
| 2151 | int |
| 2152 | jme_init_rx_ring(struct jme_softc *sc) |
| 2153 | { |
| 2154 | struct jme_ring_data *rd; |
| 2155 | struct jme_rxdesc *rxd; |
| 2156 | int i; |
| 2157 | |
| 2158 | KASSERT(sc->jme_cdata.jme_rxhead == NULL &&((sc->jme_cdata.jme_rxhead == ((void *)0) && sc-> jme_cdata.jme_rxtail == ((void *)0) && sc->jme_cdata .jme_rxlen == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_jme.c" , 2160, "sc->jme_cdata.jme_rxhead == NULL && sc->jme_cdata.jme_rxtail == NULL && sc->jme_cdata.jme_rxlen == 0" )) |
| 2159 | sc->jme_cdata.jme_rxtail == NULL &&((sc->jme_cdata.jme_rxhead == ((void *)0) && sc-> jme_cdata.jme_rxtail == ((void *)0) && sc->jme_cdata .jme_rxlen == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_jme.c" , 2160, "sc->jme_cdata.jme_rxhead == NULL && sc->jme_cdata.jme_rxtail == NULL && sc->jme_cdata.jme_rxlen == 0" )) |
| 2160 | sc->jme_cdata.jme_rxlen == 0)((sc->jme_cdata.jme_rxhead == ((void *)0) && sc-> jme_cdata.jme_rxtail == ((void *)0) && sc->jme_cdata .jme_rxlen == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_jme.c" , 2160, "sc->jme_cdata.jme_rxhead == NULL && sc->jme_cdata.jme_rxtail == NULL && sc->jme_cdata.jme_rxlen == 0" )); |
| 2161 | sc->jme_cdata.jme_rx_cons = 0; |
| 2162 | |
| 2163 | rd = &sc->jme_rdata; |
| 2164 | bzero(rd->jme_rx_ring, JME_RX_RING_SIZE)__builtin_bzero((rd->jme_rx_ring), ((sizeof(struct jme_desc ) * 256))); |
| 2165 | for (i = 0; i < JME_RX_RING_CNT256; i++) { |
| 2166 | int error; |
| 2167 | |
| 2168 | rxd = &sc->jme_cdata.jme_rxdesc[i]; |
| 2169 | rxd->rx_m = NULL((void *)0); |
| 2170 | rxd->rx_desc = &rd->jme_rx_ring[i]; |
| 2171 | error = jme_newbuf(sc, rxd); |
| 2172 | if (error) |
| 2173 | return (error); |
| 2174 | } |
| 2175 | |
| 2176 | bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x04)) |
| 2177 | sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> jme_cdata.jme_rx_ring_map), (0), (sc->jme_cdata.jme_rx_ring_map ->dm_mapsize), (0x04)); |
| 2178 | |
| 2179 | return (0); |
| 2180 | } |
| 2181 | |
| 2182 | int |
| 2183 | jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd) |
| 2184 | { |
| 2185 | struct jme_desc *desc; |
| 2186 | struct mbuf *m; |
| 2187 | bus_dmamap_t map; |
| 2188 | int error; |
| 2189 | |
| 2190 | MGETHDR(m, M_DONTWAIT, MT_DATA)m = m_gethdr((0x0002), (1)); |
| 2191 | if (m == NULL((void *)0)) |
| 2192 | return (ENOBUFS55); |
| 2193 | MCLGET(m, M_DONTWAIT)(void) m_clget((m), (0x0002), (1 << 11)); |
| 2194 | if (!(m->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
| 2195 | m_freem(m); |
| 2196 | return (ENOBUFS55); |
| 2197 | } |
| 2198 | |
| 2199 | /* |
| 2200 | * JMC250 has 64bit boundary alignment limitation so jme(4) |
| 2201 | * takes advantage of 10 bytes padding feature of hardware |
| 2202 | * in order not to copy entire frame to align IP header on |
| 2203 | * 32bit boundary. |
| 2204 | */ |
| 2205 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = MCLBYTES(1 << 11); |
| 2206 | |
| 2207 | error = bus_dmamap_load_mbuf(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( sc->jme_cdata.jme_rx_sparemap), (m), (0x0001)) |
| 2208 | sc->jme_cdata.jme_rx_sparemap, m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( sc->jme_cdata.jme_rx_sparemap), (m), (0x0001)); |
| 2209 | |
| 2210 | if (error != 0) { |
| 2211 | m_freem(m); |
| 2212 | printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname); |
| 2213 | return (error); |
| 2214 | } |
| 2215 | |
| 2216 | if (rxd->rx_m != NULL((void *)0)) { |
| 2217 | bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rxd-> rx_dmamap), (0), (rxd->rx_dmamap->dm_mapsize), (0x02)) |
| 2218 | rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rxd-> rx_dmamap), (0), (rxd->rx_dmamap->dm_mapsize), (0x02)); |
| 2219 | bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rxd ->rx_dmamap)); |
| 2220 | } |
| 2221 | map = rxd->rx_dmamap; |
| 2222 | rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap; |
| 2223 | sc->jme_cdata.jme_rx_sparemap = map; |
| 2224 | rxd->rx_m = m; |
| 2225 | |
| 2226 | desc = rxd->rx_desc; |
| 2227 | desc->buflen = htole32(rxd->rx_dmamap->dm_segs[0].ds_len)((__uint32_t)(rxd->rx_dmamap->dm_segs[0].ds_len)); |
| 2228 | desc->addr_lo = |
| 2229 | htole32(JME_ADDR_LO(rxd->rx_dmamap->dm_segs[0].ds_addr))((__uint32_t)(((uint64_t) (rxd->rx_dmamap->dm_segs[0].ds_addr ) & 0xFFFFFFFF))); |
| 2230 | desc->addr_hi = |
| 2231 | htole32(JME_ADDR_HI(rxd->rx_dmamap->dm_segs[0].ds_addr))((__uint32_t)(((uint64_t) (rxd->rx_dmamap->dm_segs[0].ds_addr ) >> 32))); |
| 2232 | desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT)((__uint32_t)(0x80000000 | 0x40000000 | 0x20000000)); |
| 2233 | |
| 2234 | return (0); |
| 2235 | } |
| 2236 | |
| 2237 | void |
| 2238 | jme_set_vlan(struct jme_softc *sc) |
| 2239 | { |
| 2240 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 2241 | uint32_t reg; |
| 2242 | |
| 2243 | reg = CSR_READ_4(sc, JME_RXMAC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0034 )))); |
| 2244 | reg &= ~RXMAC_VLAN_ENB0x00000004; |
| 2245 | if (ifp->if_capabilitiesif_data.ifi_capabilities & IFCAP_VLAN_HWTAGGING0x00000020) |
| 2246 | reg |= RXMAC_VLAN_ENB0x00000004; |
| 2247 | CSR_WRITE_4(sc, JME_RXMAC, reg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0034 )), ((reg)))); |
| 2248 | } |
| 2249 | |
| 2250 | void |
| 2251 | jme_iff(struct jme_softc *sc) |
| 2252 | { |
| 2253 | struct arpcom *ac = &sc->sc_arpcom; |
| 2254 | struct ifnet *ifp = &ac->ac_if; |
| 2255 | struct ether_multi *enm; |
| 2256 | struct ether_multistep step; |
| 2257 | uint32_t crc; |
| 2258 | uint32_t mchash[2]; |
| 2259 | uint32_t rxcfg; |
| 2260 | |
| 2261 | rxcfg = CSR_READ_4(sc, JME_RXMAC)(((sc)->jme_mem_bt)->read_4(((sc)->jme_mem_bh), ((0x0034 )))); |
| 2262 | rxcfg &= ~(RXMAC_BROADCAST0x00000400 | RXMAC_PROMISC0x00000800 | RXMAC_MULTICAST0x00000200 | |
| 2263 | RXMAC_ALLMULTI0x00000080); |
| 2264 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 2265 | |
| 2266 | /* |
| 2267 | * Always accept frames destined to our station address. |
| 2268 | * Always accept broadcast frames. |
| 2269 | */ |
| 2270 | rxcfg |= RXMAC_UNICAST0x00000100 | RXMAC_BROADCAST0x00000400; |
| 2271 | |
| 2272 | if (ifp->if_flags & IFF_PROMISC0x100 || ac->ac_multirangecnt > 0) { |
| 2273 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 2274 | if (ifp->if_flags & IFF_PROMISC0x100) |
| 2275 | rxcfg |= RXMAC_PROMISC0x00000800; |
| 2276 | else |
| 2277 | rxcfg |= RXMAC_ALLMULTI0x00000080; |
| 2278 | mchash[0] = mchash[1] = 0xFFFFFFFF; |
| 2279 | } else { |
| 2280 | /* |
| 2281 | * Set up the multicast address filter by passing all |
| 2282 | * multicast addresses through a CRC generator, and then |
| 2283 | * using the low-order 6 bits as an index into the 64 bit |
| 2284 | * multicast hash table. The high order bits select the |
| 2285 | * register, while the rest of the bits select the bit |
| 2286 | * within the register. |
| 2287 | */ |
| 2288 | rxcfg |= RXMAC_MULTICAST0x00000200; |
| 2289 | bzero(mchash, sizeof(mchash))__builtin_bzero((mchash), (sizeof(mchash))); |
| 2290 | |
| 2291 | ETHER_FIRST_MULTI(step, ac, enm)do { (step).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((step)).e_enm) != ((void *)0)) ((step )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 2292 | while (enm != NULL((void *)0)) { |
| 2293 | crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN6); |
| 2294 | |
| 2295 | /* Just want the 6 least significant bits. */ |
| 2296 | crc &= 0x3f; |
| 2297 | |
| 2298 | /* Set the corresponding bit in the hash table. */ |
| 2299 | mchash[crc >> 5] |= 1 << (crc & 0x1f); |
| 2300 | |
| 2301 | ETHER_NEXT_MULTI(step, enm)do { if (((enm) = (step).e_enm) != ((void *)0)) (step).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | CSR_WRITE_4(sc, JME_MAR0, mchash[0])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0040 )), ((mchash[0])))); |
| 2306 | CSR_WRITE_4(sc, JME_MAR1, mchash[1])(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0044 )), ((mchash[1])))); |
| 2307 | CSR_WRITE_4(sc, JME_RXMAC, rxcfg)(((sc)->jme_mem_bt)->write_4(((sc)->jme_mem_bh), ((0x0034 )), ((rxcfg)))); |
| 2308 | } |