| File: | dev/pci/drm/i915/gt/uc/intel_huc.c |
| Warning: | line 91, column 2 Value stored to 'copied' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | // SPDX-License-Identifier: MIT |
| 2 | /* |
| 3 | * Copyright © 2016-2019 Intel Corporation |
| 4 | */ |
| 5 | |
| 6 | #include <linux/types.h> |
| 7 | |
| 8 | #include "gt/intel_gt.h" |
| 9 | #include "intel_huc.h" |
| 10 | #include "i915_drv.h" |
| 11 | |
| 12 | /** |
| 13 | * DOC: HuC |
| 14 | * |
| 15 | * The HuC is a dedicated microcontroller for usage in media HEVC (High |
| 16 | * Efficiency Video Coding) operations. Userspace can directly use the firmware |
| 17 | * capabilities by adding HuC specific commands to batch buffers. |
| 18 | * |
| 19 | * The kernel driver is only responsible for loading the HuC firmware and |
| 20 | * triggering its security authentication, which is performed by the GuC. For |
| 21 | * The GuC to correctly perform the authentication, the HuC binary must be |
| 22 | * loaded before the GuC one. Loading the HuC is optional; however, not using |
| 23 | * the HuC might negatively impact power usage and/or performance of media |
| 24 | * workloads, depending on the use-cases. |
| 25 | * |
| 26 | * See https://github.com/intel/media-driver for the latest details on HuC |
| 27 | * functionality. |
| 28 | */ |
| 29 | |
| 30 | /** |
| 31 | * DOC: HuC Memory Management |
| 32 | * |
| 33 | * Similarly to the GuC, the HuC can't do any memory allocations on its own, |
| 34 | * with the difference being that the allocations for HuC usage are handled by |
| 35 | * the userspace driver instead of the kernel one. The HuC accesses the memory |
| 36 | * via the PPGTT belonging to the context loaded on the VCS executing the |
| 37 | * HuC-specific commands. |
| 38 | */ |
| 39 | |
| 40 | void intel_huc_init_early(struct intel_huc *huc) |
| 41 | { |
| 42 | struct drm_i915_privateinteldrm_softc *i915 = huc_to_gt(huc)->i915; |
| 43 | |
| 44 | intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC); |
| 45 | |
| 46 | if (INTEL_GEN(i915)((&(i915)->__info)->gen) >= 11) { |
| 47 | huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO((const i915_reg_t){ .reg = (0xC1DC) }); |
| 48 | huc->status.mask = HUC_LOAD_SUCCESSFUL(1 << 0); |
| 49 | huc->status.value = HUC_LOAD_SUCCESSFUL(1 << 0); |
| 50 | } else { |
| 51 | huc->status.reg = HUC_STATUS2((const i915_reg_t){ .reg = (0xD3B0) }); |
| 52 | huc->status.mask = HUC_FW_VERIFIED(1<<7); |
| 53 | huc->status.value = HUC_FW_VERIFIED(1<<7); |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | static int intel_huc_rsa_data_create(struct intel_huc *huc) |
| 58 | { |
| 59 | struct intel_gt *gt = huc_to_gt(huc); |
| 60 | struct intel_guc *guc = >->uc.guc; |
| 61 | struct i915_vma *vma; |
| 62 | size_t copied; |
| 63 | void *vaddr; |
| 64 | int err; |
| 65 | |
| 66 | err = i915_inject_probe_error(gt->i915, -ENXIO)({ ((void)0); 0; }); |
| 67 | if (err) |
| 68 | return err; |
| 69 | |
| 70 | /* |
| 71 | * HuC firmware will sit above GUC_GGTT_TOP and will not map |
| 72 | * through GTT. Unfortunately, this means GuC cannot perform |
| 73 | * the HuC auth. as the rsa offset now falls within the GuC |
| 74 | * inaccessible range. We resort to perma-pinning an additional |
| 75 | * vma within the accessible range that only contains the rsa |
| 76 | * signature. The GuC can use this extra pinning to perform |
| 77 | * the authentication since its GGTT offset will be GuC |
| 78 | * accessible. |
| 79 | */ |
| 80 | GEM_BUG_ON(huc->fw.rsa_size > PAGE_SIZE)((void)0); |
| 81 | vma = intel_guc_allocate_vma(guc, PAGE_SIZE(1 << 12)); |
| 82 | if (IS_ERR(vma)) |
| 83 | return PTR_ERR(vma); |
| 84 | |
| 85 | vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); |
| 86 | if (IS_ERR(vaddr)) { |
| 87 | i915_vma_unpin_and_release(&vma, 0); |
| 88 | return PTR_ERR(vaddr); |
| 89 | } |
| 90 | |
| 91 | copied = intel_uc_fw_copy_rsa(&huc->fw, vaddr, vma->size); |
Value stored to 'copied' is never read | |
| 92 | GEM_BUG_ON(copied < huc->fw.rsa_size)((void)0); |
| 93 | |
| 94 | i915_gem_object_unpin_map(vma->obj); |
| 95 | |
| 96 | huc->rsa_data = vma; |
| 97 | |
| 98 | return 0; |
| 99 | } |
| 100 | |
| 101 | static void intel_huc_rsa_data_destroy(struct intel_huc *huc) |
| 102 | { |
| 103 | i915_vma_unpin_and_release(&huc->rsa_data, 0); |
| 104 | } |
| 105 | |
| 106 | int intel_huc_init(struct intel_huc *huc) |
| 107 | { |
| 108 | struct drm_i915_privateinteldrm_softc *i915 = huc_to_gt(huc)->i915; |
| 109 | int err; |
| 110 | |
| 111 | err = intel_uc_fw_init(&huc->fw); |
| 112 | if (err) |
| 113 | goto out; |
| 114 | |
| 115 | /* |
| 116 | * HuC firmware image is outside GuC accessible range. |
| 117 | * Copy the RSA signature out of the image into |
| 118 | * a perma-pinned region set aside for it |
| 119 | */ |
| 120 | err = intel_huc_rsa_data_create(huc); |
| 121 | if (err) |
| 122 | goto out_fini; |
| 123 | |
| 124 | intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); |
| 125 | |
| 126 | return 0; |
| 127 | |
| 128 | out_fini: |
| 129 | intel_uc_fw_fini(&huc->fw); |
| 130 | out: |
| 131 | i915_probe_error(i915, "failed with %d\n", err)__i915_printk(i915, 0 ? "\0017" : "\0013", "failed with %d\n" , err); |
| 132 | return err; |
| 133 | } |
| 134 | |
| 135 | void intel_huc_fini(struct intel_huc *huc) |
| 136 | { |
| 137 | if (!intel_uc_fw_is_loadable(&huc->fw)) |
| 138 | return; |
| 139 | |
| 140 | intel_huc_rsa_data_destroy(huc); |
| 141 | intel_uc_fw_fini(&huc->fw); |
| 142 | } |
| 143 | |
| 144 | /** |
| 145 | * intel_huc_auth() - Authenticate HuC uCode |
| 146 | * @huc: intel_huc structure |
| 147 | * |
| 148 | * Called after HuC and GuC firmware loading during intel_uc_init_hw(). |
| 149 | * |
| 150 | * This function invokes the GuC action to authenticate the HuC firmware, |
| 151 | * passing the offset of the RSA signature to intel_guc_auth_huc(). It then |
| 152 | * waits for up to 50ms for firmware verification ACK. |
| 153 | */ |
| 154 | int intel_huc_auth(struct intel_huc *huc) |
| 155 | { |
| 156 | struct intel_gt *gt = huc_to_gt(huc); |
| 157 | struct intel_guc *guc = >->uc.guc; |
| 158 | int ret; |
| 159 | |
| 160 | GEM_BUG_ON(intel_huc_is_authenticated(huc))((void)0); |
| 161 | |
| 162 | if (!intel_uc_fw_is_loaded(&huc->fw)) |
| 163 | return -ENOEXEC8; |
| 164 | |
| 165 | ret = i915_inject_probe_error(gt->i915, -ENXIO)({ ((void)0); 0; }); |
| 166 | if (ret) |
| 167 | goto fail; |
| 168 | |
| 169 | ret = intel_guc_auth_huc(guc, |
| 170 | intel_guc_ggtt_offset(guc, huc->rsa_data)); |
| 171 | if (ret) { |
| 172 | DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret)__drm_err("HuC: GuC did not ack Auth request %d\n", ret); |
| 173 | goto fail; |
| 174 | } |
| 175 | |
| 176 | /* Check authentication status, it should be done by now */ |
| 177 | ret = __intel_wait_for_register(gt->uncore, |
| 178 | huc->status.reg, |
| 179 | huc->status.mask, |
| 180 | huc->status.value, |
| 181 | 2, 50, NULL((void *)0)); |
| 182 | if (ret) { |
| 183 | DRM_ERROR("HuC: Firmware not verified %d\n", ret)__drm_err("HuC: Firmware not verified %d\n", ret); |
| 184 | goto fail; |
| 185 | } |
| 186 | |
| 187 | intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); |
| 188 | return 0; |
| 189 | |
| 190 | fail: |
| 191 | i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret)__i915_printk(gt->i915, 0 ? "\0017" : "\0013", "HuC: Authentication failed %d\n" , ret); |
| 192 | intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_FAIL); |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | * intel_huc_check_status() - check HuC status |
| 198 | * @huc: intel_huc structure |
| 199 | * |
| 200 | * This function reads status register to verify if HuC |
| 201 | * firmware was successfully loaded. |
| 202 | * |
| 203 | * Returns: |
| 204 | * * -ENODEV if HuC is not present on this platform, |
| 205 | * * -EOPNOTSUPP if HuC firmware is disabled, |
| 206 | * * -ENOPKG if HuC firmware was not installed, |
| 207 | * * -ENOEXEC if HuC firmware is invalid or mismatched, |
| 208 | * * 0 if HuC firmware is not running, |
| 209 | * * 1 if HuC firmware is authenticated and running. |
| 210 | */ |
| 211 | int intel_huc_check_status(struct intel_huc *huc) |
| 212 | { |
| 213 | struct intel_gt *gt = huc_to_gt(huc); |
| 214 | intel_wakeref_t wakeref; |
| 215 | u32 status = 0; |
| 216 | |
| 217 | switch (__intel_uc_fw_status(&huc->fw)) { |
| 218 | case INTEL_UC_FIRMWARE_NOT_SUPPORTED: |
| 219 | return -ENODEV19; |
| 220 | case INTEL_UC_FIRMWARE_DISABLED: |
| 221 | return -EOPNOTSUPP45; |
| 222 | case INTEL_UC_FIRMWARE_MISSING: |
| 223 | return -ENOPKG2; |
| 224 | case INTEL_UC_FIRMWARE_ERROR: |
| 225 | return -ENOEXEC8; |
| 226 | default: |
| 227 | break; |
| 228 | } |
| 229 | |
| 230 | with_intel_runtime_pm(gt->uncore->rpm, wakeref)for ((wakeref) = intel_runtime_pm_get(gt->uncore->rpm); (wakeref); intel_runtime_pm_put((gt->uncore->rpm), (wakeref )), (wakeref) = 0) |
| 231 | status = intel_uncore_read(gt->uncore, huc->status.reg); |
| 232 | |
| 233 | return (status & huc->status.mask) == huc->status.value; |
| 234 | } |
| 235 | |
| 236 | /** |
| 237 | * intel_huc_load_status - dump information about HuC load status |
| 238 | * @huc: the HuC |
| 239 | * @p: the &drm_printer |
| 240 | * |
| 241 | * Pretty printer for HuC load status. |
| 242 | */ |
| 243 | void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) |
| 244 | { |
| 245 | struct intel_gt *gt = huc_to_gt(huc); |
| 246 | intel_wakeref_t wakeref; |
| 247 | |
| 248 | if (!intel_huc_is_supported(huc)) { |
| 249 | drm_printf(p, "HuC not supported\n"); |
| 250 | return; |
| 251 | } |
| 252 | |
| 253 | if (!intel_huc_is_wanted(huc)) { |
| 254 | drm_printf(p, "HuC disabled\n"); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | intel_uc_fw_dump(&huc->fw, p); |
| 259 | |
| 260 | with_intel_runtime_pm(gt->uncore->rpm, wakeref)for ((wakeref) = intel_runtime_pm_get(gt->uncore->rpm); (wakeref); intel_runtime_pm_put((gt->uncore->rpm), (wakeref )), (wakeref) = 0) |
| 261 | drm_printf(p, "HuC status: 0x%08x\n", |
| 262 | intel_uncore_read(gt->uncore, huc->status.reg)); |
| 263 | } |