Bug Summary

File:dev/pci/drm/i915/i915_request.c
Warning:line 1619, column 21
Value stored to 'ring' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name i915_request.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -D CONFIG_DRM_AMD_DC_DCN3_0 -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /usr/obj/sys/arch/amd64/compile/GENERIC.MP/scan-build/2022-01-12-131800-47421-1 -x c /usr/src/sys/dev/pci/drm/i915/i915_request.c
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32
33#include "gem/i915_gem_context.h"
34#include "gt/intel_breadcrumbs.h"
35#include "gt/intel_context.h"
36#include "gt/intel_ring.h"
37#include "gt/intel_rps.h"
38
39#include "i915_active.h"
40#include "i915_drv.h"
41#include "i915_globals.h"
42#include "i915_trace.h"
43#include "intel_pm.h"
44
45struct execute_cb {
46 struct irq_work work;
47 struct i915_sw_fence *fence;
48 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 struct i915_request *signal;
50};
51
52static struct i915_global_request {
53 struct i915_global base;
54#ifdef __linux__
55 struct kmem_cache *slab_requests;
56 struct kmem_cache *slab_execute_cbs;
57#else
58 struct pool slab_requests;
59 struct pool slab_execute_cbs;
60#endif
61} global;
62
63static const char *i915_fence_get_driver_name(struct dma_fence *fence)
64{
65 return dev_name(to_request(fence)->engine->i915->drm.dev)"";
66}
67
68static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
69{
70 const struct i915_gem_context *ctx;
71
72 /*
73 * The timeline struct (as part of the ppgtt underneath a context)
74 * may be freed when the request is no longer in use by the GPU.
75 * We could extend the life of a context to beyond that of all
76 * fences, possibly keeping the hw resource around indefinitely,
77 * or we just give them a false name. Since
78 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
79 * lie seems justifiable.
80 */
81 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
82 return "signaled";
83
84 ctx = i915_request_gem_context(to_request(fence));
85 if (!ctx)
86 return "[" DRIVER_NAME"i915" "]";
87
88 return ctx->name;
89}
90
91static bool_Bool i915_fence_signaled(struct dma_fence *fence)
92{
93 return i915_request_completed(to_request(fence));
94}
95
96static bool_Bool i915_fence_enable_signaling(struct dma_fence *fence)
97{
98 return i915_request_enable_breadcrumb(to_request(fence));
99}
100
101static signed long i915_fence_wait(struct dma_fence *fence,
102 bool_Bool interruptible,
103 signed long timeout)
104{
105 return i915_request_wait(to_request(fence),
106 interruptible | I915_WAIT_PRIORITY(1UL << (1)),
107 timeout);
108}
109
110#ifdef __linux__
111struct kmem_cache *i915_request_slab_cache(void)
112{
113 return global.slab_requests;
114}
115#else
116struct pool *i915_request_slab_cache(void)
117{
118 return &global.slab_requests;
119}
120#endif
121
122static void i915_fence_release(struct dma_fence *fence)
123{
124 struct i915_request *rq = to_request(fence);
125
126 /*
127 * The request is put onto a RCU freelist (i.e. the address
128 * is immediately reused), mark the fences as being freed now.
129 * Otherwise the debugobjects for the fences are only marked as
130 * freed when the slab cache itself is freed, and so we would get
131 * caught trying to reuse dead objects.
132 */
133 i915_sw_fence_fini(&rq->submit);
134 i915_sw_fence_fini(&rq->semaphore);
135
136 /*
137 * Keep one request on each engine for reserved use under mempressure
138 *
139 * We do not hold a reference to the engine here and so have to be
140 * very careful in what rq->engine we poke. The virtual engine is
141 * referenced via the rq->context and we released that ref during
142 * i915_request_retire(), ergo we must not dereference a virtual
143 * engine here. Not that we would want to, as the only consumer of
144 * the reserved engine->request_pool is the power management parking,
145 * which must-not-fail, and that is only run on the physical engines.
146 *
147 * Since the request must have been executed to be have completed,
148 * we know that it will have been processed by the HW and will
149 * not be unsubmitted again, so rq->engine and rq->execution_mask
150 * at this point is stable. rq->execution_mask will be a single
151 * bit if the last and _only_ engine it could execution on was a
152 * physical engine, if it's multiple bits then it started on and
153 * could still be on a virtual engine. Thus if the mask is not a
154 * power-of-two we assume that rq->engine may still be a virtual
155 * engine and so a dangling invalid pointer that we cannot dereference
156 *
157 * For example, consider the flow of a bonded request through a virtual
158 * engine. The request is created with a wide engine mask (all engines
159 * that we might execute on). On processing the bond, the request mask
160 * is reduced to one or more engines. If the request is subsequently
161 * bound to a single engine, it will then be constrained to only
162 * execute on that engine and never returned to the virtual engine
163 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
164 * know that if the rq->execution_mask is a single bit, rq->engine
165 * can be a physical engine with the exact corresponding mask.
166 */
167 if (is_power_of_2(rq->execution_mask)(((rq->execution_mask) != 0) && (((rq->execution_mask
) - 1) & (rq->execution_mask)) == 0)
&&
168 !cmpxchg(&rq->engine->request_pool, NULL, rq)__sync_val_compare_and_swap(&rq->engine->request_pool
, ((void *)0), rq)
)
169 return;
170
171#ifdef __linux__
172 kmem_cache_free(global.slab_requests, rq);
173#else
174 pool_put(&global.slab_requests, rq);
175#endif
176}
177
178const struct dma_fence_ops i915_fence_ops = {
179 .get_driver_name = i915_fence_get_driver_name,
180 .get_timeline_name = i915_fence_get_timeline_name,
181 .enable_signaling = i915_fence_enable_signaling,
182 .signaled = i915_fence_signaled,
183 .wait = i915_fence_wait,
184 .release = i915_fence_release,
185};
186
187static void irq_execute_cb(struct irq_work *wrk)
188{
189 struct execute_cb *cb = container_of(wrk, typeof(*cb), work)({ const __typeof( ((typeof(*cb) *)0)->work ) *__mptr = (wrk
); (typeof(*cb) *)( (char *)__mptr - __builtin_offsetof(typeof
(*cb), work) );})
;
190
191 i915_sw_fence_complete(cb->fence);
192#ifdef __linux__
193 kmem_cache_free(global.slab_execute_cbs, cb);
194#else
195 pool_put(&global.slab_execute_cbs, cb);
196#endif
197}
198
199static void irq_execute_cb_hook(struct irq_work *wrk)
200{
201 struct execute_cb *cb = container_of(wrk, typeof(*cb), work)({ const __typeof( ((typeof(*cb) *)0)->work ) *__mptr = (wrk
); (typeof(*cb) *)( (char *)__mptr - __builtin_offsetof(typeof
(*cb), work) );})
;
202
203 cb->hook(container_of(cb->fence, struct i915_request, submit)({ const __typeof( ((struct i915_request *)0)->submit ) *__mptr
= (cb->fence); (struct i915_request *)( (char *)__mptr - __builtin_offsetof
(struct i915_request, submit) );})
,
204 &cb->signal->fence);
205 i915_request_put(cb->signal);
206
207 irq_execute_cb(wrk);
208}
209
210static __always_inline__attribute__((__always_inline__)) void
211__notify_execute_cb(struct i915_request *rq, bool_Bool (*fn)(struct irq_work *wrk))
212{
213 struct execute_cb *cb, *cn;
214
215 if (llist_empty(&rq->execute_cb))
216 return;
217
218 STUB()do { printf("%s: stub\n", __func__); } while(0);
219#ifdef notyet
220 llist_for_each_entry_safe(cb, cn,for (cb = (((llist_del_all(&rq->execute_cb))) ? ({ const
__typeof( ((__typeof(*cb) *)0)->work.llnode ) *__mptr = (
(llist_del_all(&rq->execute_cb))); (__typeof(*cb) *)( (
char *)__mptr - __builtin_offsetof(__typeof(*cb), work.llnode
) );}) : ((void *)0)); cb != ((void *)0) && (cn = ((cb
->work.llnode.next) ? ({ const __typeof( ((__typeof(*cb) *
)0)->work.llnode ) *__mptr = (cb->work.llnode.next); (__typeof
(*cb) *)( (char *)__mptr - __builtin_offsetof(__typeof(*cb), work
.llnode) );}) : ((void *)0)), cb); cb = cn)
221 llist_del_all(&rq->execute_cb),for (cb = (((llist_del_all(&rq->execute_cb))) ? ({ const
__typeof( ((__typeof(*cb) *)0)->work.llnode ) *__mptr = (
(llist_del_all(&rq->execute_cb))); (__typeof(*cb) *)( (
char *)__mptr - __builtin_offsetof(__typeof(*cb), work.llnode
) );}) : ((void *)0)); cb != ((void *)0) && (cn = ((cb
->work.llnode.next) ? ({ const __typeof( ((__typeof(*cb) *
)0)->work.llnode ) *__mptr = (cb->work.llnode.next); (__typeof
(*cb) *)( (char *)__mptr - __builtin_offsetof(__typeof(*cb), work
.llnode) );}) : ((void *)0)), cb); cb = cn)
222 work.llnode)for (cb = (((llist_del_all(&rq->execute_cb))) ? ({ const
__typeof( ((__typeof(*cb) *)0)->work.llnode ) *__mptr = (
(llist_del_all(&rq->execute_cb))); (__typeof(*cb) *)( (
char *)__mptr - __builtin_offsetof(__typeof(*cb), work.llnode
) );}) : ((void *)0)); cb != ((void *)0) && (cn = ((cb
->work.llnode.next) ? ({ const __typeof( ((__typeof(*cb) *
)0)->work.llnode ) *__mptr = (cb->work.llnode.next); (__typeof
(*cb) *)( (char *)__mptr - __builtin_offsetof(__typeof(*cb), work
.llnode) );}) : ((void *)0)), cb); cb = cn)
223 fn(&cb->work);
224#endif
225}
226
227static void __notify_execute_cb_irq(struct i915_request *rq)
228{
229 __notify_execute_cb(rq, irq_work_queue);
230}
231
232static bool_Bool irq_work_imm(struct irq_work *wrk)
233{
234#ifdef notyet
235 wrk->func(wrk);
236#else
237 STUB()do { printf("%s: stub\n", __func__); } while(0);
238#endif
239 return false0;
240}
241
242static void __notify_execute_cb_imm(struct i915_request *rq)
243{
244 __notify_execute_cb(rq, irq_work_imm);
245}
246
247static void free_capture_list(struct i915_request *request)
248{
249 struct i915_capture_list *capture;
250
251 capture = fetch_and_zero(&request->capture_list)({ typeof(*&request->capture_list) __T = *(&request
->capture_list); *(&request->capture_list) = (typeof
(*&request->capture_list))0; __T; })
;
252 while (capture) {
253 struct i915_capture_list *next = capture->next;
254
255 kfree(capture);
256 capture = next;
257 }
258}
259
260static void __i915_request_fill(struct i915_request *rq, u8 val)
261{
262 void *vaddr = rq->ring->vaddr;
263 u32 head;
264
265 head = rq->infix;
266 if (rq->postfix < head) {
267 memset(vaddr + head, val, rq->ring->size - head)__builtin_memset((vaddr + head), (val), (rq->ring->size
- head))
;
268 head = 0;
269 }
270 memset(vaddr + head, val, rq->postfix - head)__builtin_memset((vaddr + head), (val), (rq->postfix - head
))
;
271}
272
273static void remove_from_engine(struct i915_request *rq)
274{
275 struct intel_engine_cs *engine, *locked;
276
277 /*
278 * Virtual engines complicate acquiring the engine timeline lock,
279 * as their rq->engine pointer is not stable until under that
280 * engine lock. The simple ploy we use is to take the lock then
281 * check that the rq still belongs to the newly locked engine.
282 */
283 locked = READ_ONCE(rq->engine)({ typeof(rq->engine) __tmp = *(volatile typeof(rq->engine
) *)&(rq->engine); membar_datadep_consumer(); __tmp; }
)
;
284 spin_lock_irq(&locked->active.lock)mtx_enter(&locked->active.lock);
285 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))__builtin_expect(!!(locked != (engine = ({ typeof(rq->engine
) __tmp = *(volatile typeof(rq->engine) *)&(rq->engine
); membar_datadep_consumer(); __tmp; }))), 0)
) {
286 spin_unlock(&locked->active.lock)mtx_leave(&locked->active.lock);
287 spin_lock(&engine->active.lock)mtx_enter(&engine->active.lock);
288 locked = engine;
289 }
290 list_del_init(&rq->sched.link);
291
292 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
293 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
294
295 /* Prevent further __await_execution() registering a cb, then flush */
296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297
298 spin_unlock_irq(&locked->active.lock)mtx_leave(&locked->active.lock);
299
300 __notify_execute_cb_imm(rq);
301}
302
303bool_Bool i915_request_retire(struct i915_request *rq)
304{
305 if (!i915_request_completed(rq))
306 return false0;
307
308 RQ_TRACE(rq, "\n")do { const struct i915_request *rq__ = (rq); do { const struct
intel_engine_cs *e__ __attribute__((__unused__)) = (rq__->
engine); do { } while (0); } while (0); } while (0)
;
309
310 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit))((void)0);
311 trace_i915_request_retire(rq);
312 i915_request_mark_complete(rq);
313
314 /*
315 * We know the GPU must have read the request to have
316 * sent us the seqno + interrupt, so use the position
317 * of tail of the request to update the last known position
318 * of the GPU head.
319 *
320 * Note this requires that we are always called in request
321 * completion order.
322 */
323 GEM_BUG_ON(!list_is_first(&rq->link,((void)0)
324 &i915_request_timeline(rq)->requests))((void)0);
325 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)0)
326 /* Poison before we release our space in the ring */
327 __i915_request_fill(rq, POISON_FREE0xdf);
328 rq->ring->head = rq->postfix;
329
330 if (!i915_request_signaled(rq)) {
331 spin_lock_irq(&rq->lock)mtx_enter(&rq->lock);
332 dma_fence_signal_locked(&rq->fence);
333 spin_unlock_irq(&rq->lock)mtx_leave(&rq->lock);
334 }
335
336 if (i915_request_has_waitboost(rq)) {
337 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters))((void)0);
338 atomic_dec(&rq->engine->gt->rps.num_waiters)__sync_fetch_and_sub(&rq->engine->gt->rps.num_waiters
, 1)
;
339 }
340
341 /*
342 * We only loosely track inflight requests across preemption,
343 * and so we may find ourselves attempting to retire a _completed_
344 * request that we have removed from the HW and put back on a run
345 * queue.
346 *
347 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
348 * after removing the breadcrumb and signaling it, so that we do not
349 * inadvertently attach the breadcrumb to a completed request.
350 */
351 remove_from_engine(rq);
352 GEM_BUG_ON(!llist_empty(&rq->execute_cb))((void)0);
353
354 __list_del_entry(&rq->link)list_del(&rq->link); /* poison neither prev/next (RCU walks) */
355
356 intel_context_exit(rq->context);
357 intel_context_unpin(rq->context);
358
359 free_capture_list(rq);
360 i915_sched_node_fini(&rq->sched);
361 i915_request_put(rq);
362
363 return true1;
364}
365
366void i915_request_retire_upto(struct i915_request *rq)
367{
368 struct intel_timeline * const tl = i915_request_timeline(rq);
369 struct i915_request *tmp;
370
371 RQ_TRACE(rq, "\n")do { const struct i915_request *rq__ = (rq); do { const struct
intel_engine_cs *e__ __attribute__((__unused__)) = (rq__->
engine); do { } while (0); } while (0); } while (0)
;
372
373 GEM_BUG_ON(!i915_request_completed(rq))((void)0);
374
375 do {
376 tmp = list_first_entry(&tl->requests, typeof(*tmp), link)({ const __typeof( ((typeof(*tmp) *)0)->link ) *__mptr = (
(&tl->requests)->next); (typeof(*tmp) *)( (char *)__mptr
- __builtin_offsetof(typeof(*tmp), link) );})
;
377 } while (i915_request_retire(tmp) && tmp != rq);
378}
379
380static struct i915_request * const *
381__engine_active(struct intel_engine_cs *engine)
382{
383 return READ_ONCE(engine->execlists.active)({ typeof(engine->execlists.active) __tmp = *(volatile typeof
(engine->execlists.active) *)&(engine->execlists.active
); membar_datadep_consumer(); __tmp; })
;
384}
385
386static bool_Bool __request_in_flight(const struct i915_request *signal)
387{
388 struct i915_request * const *port, *rq;
389 bool_Bool inflight = false0;
390
391 if (!i915_request_is_ready(signal))
392 return false0;
393
394 /*
395 * Even if we have unwound the request, it may still be on
396 * the GPU (preempt-to-busy). If that request is inside an
397 * unpreemptible critical section, it will not be removed. Some
398 * GPU functions may even be stuck waiting for the paired request
399 * (__await_execution) to be submitted and cannot be preempted
400 * until the bond is executing.
401 *
402 * As we know that there are always preemption points between
403 * requests, we know that only the currently executing request
404 * may be still active even though we have cleared the flag.
405 * However, we can't rely on our tracking of ELSP[0] to know
406 * which request is currently active and so maybe stuck, as
407 * the tracking maybe an event behind. Instead assume that
408 * if the context is still inflight, then it is still active
409 * even if the active flag has been cleared.
410 *
411 * To further complicate matters, if there a pending promotion, the HW
412 * may either perform a context switch to the second inflight execlists,
413 * or it may switch to the pending set of execlists. In the case of the
414 * latter, it may send the ACK and we process the event copying the
415 * pending[] over top of inflight[], _overwriting_ our *active. Since
416 * this implies the HW is arbitrating and not struck in *active, we do
417 * not worry about complete accuracy, but we do require no read/write
418 * tearing of the pointer [the read of the pointer must be valid, even
419 * as the array is being overwritten, for which we require the writes
420 * to avoid tearing.]
421 *
422 * Note that the read of *execlists->active may race with the promotion
423 * of execlists->pending[] to execlists->inflight[], overwritting
424 * the value at *execlists->active. This is fine. The promotion implies
425 * that we received an ACK from the HW, and so the context is not
426 * stuck -- if we do not see ourselves in *active, the inflight status
427 * is valid. If instead we see ourselves being copied into *active,
428 * we are inflight and may signal the callback.
429 */
430 if (!intel_context_inflight(signal->context)({ unsigned long __v = (unsigned long)(({ typeof((signal->
context)->inflight) __tmp = *(volatile typeof((signal->
context)->inflight) *)&((signal->context)->inflight
); membar_datadep_consumer(); __tmp; })); (typeof(({ typeof((
signal->context)->inflight) __tmp = *(volatile typeof((
signal->context)->inflight) *)&((signal->context
)->inflight); membar_datadep_consumer(); __tmp; })))(__v &
-(1UL << (2))); })
)
431 return false0;
432
433 rcu_read_lock();
434 for (port = __engine_active(signal->engine);
435 (rq = READ_ONCE(*port)({ typeof(*port) __tmp = *(volatile typeof(*port) *)&(*port
); membar_datadep_consumer(); __tmp; })
); /* may race with promotion of pending[] */
436 port++) {
437 if (rq->context == signal->context) {
438 inflight = i915_seqno_passed(rq->fence.seqno,
439 signal->fence.seqno);
440 break;
441 }
442 }
443 rcu_read_unlock();
444
445 return inflight;
446}
447
448static int
449__await_execution(struct i915_request *rq,
450 struct i915_request *signal,
451 void (*hook)(struct i915_request *rq,
452 struct dma_fence *signal),
453 gfp_t gfp)
454{
455 STUB()do { printf("%s: stub\n", __func__); } while(0);
456 return -ENOSYS78;
457#ifdef notyet
458 struct execute_cb *cb;
459
460 if (i915_request_is_active(signal)) {
461 if (hook)
462 hook(rq, &signal->fence);
463 return 0;
464 }
465
466#ifdef __linux__
467 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
468#else
469 cb = pool_get(&global.slab_execute_cbs,
470 (gfp & GFP_NOWAIT0x0002) ? PR_NOWAIT0x0002 : PR_WAITOK0x0001);
471#endif
472 if (!cb)
473 return -ENOMEM12;
474
475 cb->fence = &rq->submit;
476 i915_sw_fence_await(cb->fence);
477 init_irq_work(&cb->work, irq_execute_cb);
478
479 if (hook) {
480 cb->hook = hook;
481 cb->signal = i915_request_get(signal);
482#ifdef __linux__
483 cb->work.func = irq_execute_cb_hook;
484#else
485 init_irq_work(&cb->work, irq_execute_cb_hook);
486#endif
487 }
488
489 /*
490 * Register the callback first, then see if the signaler is already
491 * active. This ensures that if we race with the
492 * __notify_execute_cb from i915_request_submit() and we are not
493 * included in that list, we get a second bite of the cherry and
494 * execute it ourselves. After this point, a future
495 * i915_request_submit() will notify us.
496 *
497 * In i915_request_retire() we set the ACTIVE bit on a completed
498 * request (then flush the execute_cb). So by registering the
499 * callback first, then checking the ACTIVE bit, we serialise with
500 * the completed/retired request.
501 */
502 if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
503 if (i915_request_is_active(signal) ||
504 __request_in_flight(signal))
505 __notify_execute_cb_imm(signal);
506 }
507
508 return 0;
509#endif
510}
511
512static bool_Bool fatal_error(int error)
513{
514 switch (error) {
515 case 0: /* not an error! */
516 case -EAGAIN35: /* innocent victim of a GT reset (__i915_request_reset) */
517 case -ETIMEDOUT60: /* waiting for Godot (timer_i915_sw_fence_wake) */
518 return false0;
519 default:
520 return true1;
521 }
522}
523
524void __i915_request_skip(struct i915_request *rq)
525{
526 GEM_BUG_ON(!fatal_error(rq->fence.error))((void)0);
527
528 if (rq->infix == rq->postfix)
529 return;
530
531 /*
532 * As this request likely depends on state from the lost
533 * context, clear out all the user operations leaving the
534 * breadcrumb at the end (so we get the fence notifications).
535 */
536 __i915_request_fill(rq, 0);
537 rq->infix = rq->postfix;
538}
539
540void i915_request_set_error_once(struct i915_request *rq, int error)
541{
542 int old;
543
544 GEM_BUG_ON(!IS_ERR_VALUE((long)error))((void)0);
545
546 if (i915_request_signaled(rq))
547 return;
548
549 old = READ_ONCE(rq->fence.error)({ typeof(rq->fence.error) __tmp = *(volatile typeof(rq->
fence.error) *)&(rq->fence.error); membar_datadep_consumer
(); __tmp; })
;
550 do {
551 if (fatal_error(old))
552 return;
553 } while (!try_cmpxchg(&rq->fence.error, &old, error)({ __typeof(&rq->fence.error) __op = (__typeof((&rq
->fence.error)))(&old); __typeof(*(&rq->fence.error
)) __o = *__op; __typeof(*(&rq->fence.error)) __p = __sync_val_compare_and_swap
((&rq->fence.error), (__o), (error)); if (__p != __o) *
__op = __p; (__p == __o); })
);
554}
555
556bool_Bool __i915_request_submit(struct i915_request *request)
557{
558 struct intel_engine_cs *engine = request->engine;
559 bool_Bool result = false0;
560
561 RQ_TRACE(request, "\n")do { const struct i915_request *rq__ = (request); do { const struct
intel_engine_cs *e__ __attribute__((__unused__)) = (rq__->
engine); do { } while (0); } while (0); } while (0)
;
562
563 GEM_BUG_ON(!irqs_disabled())((void)0);
564 lockdep_assert_held(&engine->active.lock)do { (void)(&engine->active.lock); } while(0);
565
566 /*
567 * With the advent of preempt-to-busy, we frequently encounter
568 * requests that we have unsubmitted from HW, but left running
569 * until the next ack and so have completed in the meantime. On
570 * resubmission of that completed request, we can skip
571 * updating the payload, and execlists can even skip submitting
572 * the request.
573 *
574 * We must remove the request from the caller's priority queue,
575 * and the caller must only call us when the request is in their
576 * priority queue, under the active.lock. This ensures that the
577 * request has *not* yet been retired and we can safely move
578 * the request into the engine->active.list where it will be
579 * dropped upon retiring. (Otherwise if resubmit a *retired*
580 * request, this would be a horrible use-after-free.)
581 */
582 if (i915_request_completed(request))
583 goto xfer;
584
585 if (unlikely(intel_context_is_closed(request->context) &&__builtin_expect(!!(intel_context_is_closed(request->context
) && !intel_engine_has_heartbeat(engine)), 0)
586 !intel_engine_has_heartbeat(engine))__builtin_expect(!!(intel_context_is_closed(request->context
) && !intel_engine_has_heartbeat(engine)), 0)
)
587 intel_context_set_banned(request->context);
588
589 if (unlikely(intel_context_is_banned(request->context))__builtin_expect(!!(intel_context_is_banned(request->context
)), 0)
)
590 i915_request_set_error_once(request, -EIO5);
591
592 if (unlikely(fatal_error(request->fence.error))__builtin_expect(!!(fatal_error(request->fence.error)), 0))
593 __i915_request_skip(request);
594
595 /*
596 * Are we using semaphores when the gpu is already saturated?
597 *
598 * Using semaphores incurs a cost in having the GPU poll a
599 * memory location, busywaiting for it to change. The continual
600 * memory reads can have a noticeable impact on the rest of the
601 * system with the extra bus traffic, stalling the cpu as it too
602 * tries to access memory across the bus (perf stat -e bus-cycles).
603 *
604 * If we installed a semaphore on this request and we only submit
605 * the request after the signaler completed, that indicates the
606 * system is overloaded and using semaphores at this time only
607 * increases the amount of work we are doing. If so, we disable
608 * further use of semaphores until we are idle again, whence we
609 * optimistically try again.
610 */
611 if (request->sched.semaphores &&
612 i915_sw_fence_signaled(&request->semaphore))
613 engine->saturated |= request->sched.semaphores;
614
615 engine->emit_fini_breadcrumb(request,
616 request->ring->vaddr + request->postfix);
617
618 trace_i915_request_execute(request);
619 engine->serial++;
620 result = true1;
621
622xfer:
623 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
624 list_move_tail(&request->sched.link, &engine->active.requests);
625 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
626 }
627
628 /*
629 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
630 *
631 * In the future, perhaps when we have an active time-slicing scheduler,
632 * it will be interesting to unsubmit parallel execution and remove
633 * busywaits from the GPU until their master is restarted. This is
634 * quite hairy, we have to carefully rollback the fence and do a
635 * preempt-to-idle cycle on the target engine, all the while the
636 * master execute_cb may refire.
637 */
638 __notify_execute_cb_irq(request);
639
640 /* We may be recursing from the signal callback of another i915 fence */
641 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
642 i915_request_enable_breadcrumb(request);
643
644 return result;
645}
646
647void i915_request_submit(struct i915_request *request)
648{
649 struct intel_engine_cs *engine = request->engine;
650 unsigned long flags;
651
652 /* Will be called from irq-context when using foreign fences. */
653 spin_lock_irqsave(&engine->active.lock, flags)do { flags = 0; mtx_enter(&engine->active.lock); } while
(0)
;
654
655 __i915_request_submit(request);
656
657 spin_unlock_irqrestore(&engine->active.lock, flags)do { (void)(flags); mtx_leave(&engine->active.lock); }
while (0)
;
658}
659
660void __i915_request_unsubmit(struct i915_request *request)
661{
662 struct intel_engine_cs *engine = request->engine;
663
664 /*
665 * Only unwind in reverse order, required so that the per-context list
666 * is kept in seqno/ring order.
667 */
668 RQ_TRACE(request, "\n")do { const struct i915_request *rq__ = (request); do { const struct
intel_engine_cs *e__ __attribute__((__unused__)) = (rq__->
engine); do { } while (0); } while (0); } while (0)
;
669
670 GEM_BUG_ON(!irqs_disabled())((void)0);
671 lockdep_assert_held(&engine->active.lock)do { (void)(&engine->active.lock); } while(0);
672
673 /*
674 * Before we remove this breadcrumb from the signal list, we have
675 * to ensure that a concurrent dma_fence_enable_signaling() does not
676 * attach itself. We first mark the request as no longer active and
677 * make sure that is visible to other cores, and then remove the
678 * breadcrumb if attached.
679 */
680 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))((void)0);
681 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
682 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
683 i915_request_cancel_breadcrumb(request);
684
685 /* We've already spun, don't charge on resubmitting. */
686 if (request->sched.semaphores && i915_request_started(request))
687 request->sched.semaphores = 0;
688
689 /*
690 * We don't need to wake_up any waiters on request->execute, they
691 * will get woken by any other event or us re-adding this request
692 * to the engine timeline (__i915_request_submit()). The waiters
693 * should be quite adapt at finding that the request now has a new
694 * global_seqno to the one they went to sleep on.
695 */
696}
697
698void i915_request_unsubmit(struct i915_request *request)
699{
700 struct intel_engine_cs *engine = request->engine;
701 unsigned long flags;
702
703 /* Will be called from irq-context when using foreign fences. */
704 spin_lock_irqsave(&engine->active.lock, flags)do { flags = 0; mtx_enter(&engine->active.lock); } while
(0)
;
705
706 __i915_request_unsubmit(request);
707
708 spin_unlock_irqrestore(&engine->active.lock, flags)do { (void)(flags); mtx_leave(&engine->active.lock); }
while (0)
;
709}
710
711static int __i915_sw_fence_call__attribute__((__aligned__(4)))
712submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
713{
714 struct i915_request *request =
715 container_of(fence, typeof(*request), submit)({ const __typeof( ((typeof(*request) *)0)->submit ) *__mptr
= (fence); (typeof(*request) *)( (char *)__mptr - __builtin_offsetof
(typeof(*request), submit) );})
;
716
717 switch (state) {
718 case FENCE_COMPLETE:
719 trace_i915_request_submit(request);
720
721 if (unlikely(fence->error)__builtin_expect(!!(fence->error), 0))
722 i915_request_set_error_once(request, fence->error);
723
724 /*
725 * We need to serialize use of the submit_request() callback
726 * with its hotplugging performed during an emergency
727 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
728 * critical section in order to force i915_gem_set_wedged() to
729 * wait until the submit_request() is completed before
730 * proceeding.
731 */
732 rcu_read_lock();
733 request->engine->submit_request(request);
734 rcu_read_unlock();
735 break;
736
737 case FENCE_FREE:
738 i915_request_put(request);
739 break;
740 }
741
742 return NOTIFY_DONE0;
743}
744
745static int __i915_sw_fence_call__attribute__((__aligned__(4)))
746semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
747{
748 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore)({ const __typeof( ((typeof(*rq) *)0)->semaphore ) *__mptr
= (fence); (typeof(*rq) *)( (char *)__mptr - __builtin_offsetof
(typeof(*rq), semaphore) );})
;
749
750 switch (state) {
751 case FENCE_COMPLETE:
752 break;
753
754 case FENCE_FREE:
755 i915_request_put(rq);
756 break;
757 }
758
759 return NOTIFY_DONE0;
760}
761
762static void retire_requests(struct intel_timeline *tl)
763{
764 struct i915_request *rq, *rn;
765
766 list_for_each_entry_safe(rq, rn, &tl->requests, link)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->link ) *
__mptr = ((&tl->requests)->next); (__typeof(*rq) *)
( (char *)__mptr - __builtin_offsetof(__typeof(*rq), link) );
}), rn = ({ const __typeof( ((__typeof(*rq) *)0)->link ) *
__mptr = (rq->link.next); (__typeof(*rq) *)( (char *)__mptr
- __builtin_offsetof(__typeof(*rq), link) );}); &rq->
link != (&tl->requests); rq = rn, rn = ({ const __typeof
( ((__typeof(*rn) *)0)->link ) *__mptr = (rn->link.next
); (__typeof(*rn) *)( (char *)__mptr - __builtin_offsetof(__typeof
(*rn), link) );}))
767 if (!i915_request_retire(rq))
768 break;
769}
770
771static void __i915_request_ctor(void *);
772
773static noinline__attribute__((__noinline__)) struct i915_request *
774request_alloc_slow(struct intel_timeline *tl,
775 struct i915_request **rsvd,
776 gfp_t gfp)
777{
778 struct i915_request *rq;
779
780 /* If we cannot wait, dip into our reserves */
781 if (!gfpflags_allow_blocking(gfp)) {
782 rq = xchg(rsvd, NULL)__sync_lock_test_and_set(rsvd, ((void *)0));
783 if (!rq) /* Use the normal failure path for one final WARN */
784 goto out;
785
786 return rq;
787 }
788
789 if (list_empty(&tl->requests))
790 goto out;
791
792 /* Move our oldest request to the slab-cache (if not in use!) */
793 rq = list_first_entry(&tl->requests, typeof(*rq), link)({ const __typeof( ((typeof(*rq) *)0)->link ) *__mptr = ((
&tl->requests)->next); (typeof(*rq) *)( (char *)__mptr
- __builtin_offsetof(typeof(*rq), link) );})
;
794 i915_request_retire(rq);
795
796#ifdef __linux__
797 rq = kmem_cache_alloc(global.slab_requests,
798 gfp | __GFP_RETRY_MAYFAIL0 | __GFP_NOWARN0);
799#else
800 rq = pool_get(&global.slab_requests,
801 (gfp & GFP_NOWAIT0x0002) ? PR_NOWAIT0x0002 : PR_WAITOK0x0001);
802 if (rq)
803 __i915_request_ctor(rq);
804#endif
805 if (rq)
806 return rq;
807
808 /* Ratelimit ourselves to prevent oom from malicious clients */
809 rq = list_last_entry(&tl->requests, typeof(*rq), link)({ const __typeof( ((typeof(*rq) *)0)->link ) *__mptr = ((
&tl->requests)->prev); (typeof(*rq) *)( (char *)__mptr
- __builtin_offsetof(typeof(*rq), link) );})
;
810 cond_synchronize_rcu(rq->rcustate);
811
812 /* Retire our old requests in the hope that we free some */
813 retire_requests(tl);
814
815out:
816#ifdef __linux__
817 return kmem_cache_alloc(global.slab_requests, gfp);
818#else
819 rq = pool_get(&global.slab_requests,
820 (gfp & GFP_NOWAIT0x0002) ? PR_NOWAIT0x0002 : PR_WAITOK0x0001);
821 if (rq)
822 __i915_request_ctor(rq);
823 return rq;
824#endif
825}
826
827static void __i915_request_ctor(void *arg)
828{
829 struct i915_request *rq = arg;
830
831 /*
832 * witness does not understand spin_lock_nested()
833 * order reversal in i915 with this lock
834 */
835 mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS)do { (void)(((void *)0)); (void)(0x01); __mtx_init((&rq->
lock), ((((0x9)) > 0x0 && ((0x9)) < 0x9) ? 0x9 :
((0x9)))); } while (0)
;
836 i915_sched_node_init(&rq->sched);
837 i915_sw_fence_init(&rq->submit, submit_notify)__i915_sw_fence_init((&rq->submit), (submit_notify), (
(void *)0), ((void *)0))
;
838 i915_sw_fence_init(&rq->semaphore, semaphore_notify)__i915_sw_fence_init((&rq->semaphore), (semaphore_notify
), ((void *)0), ((void *)0))
;
839
840 rq->capture_list = NULL((void *)0);
841
842 init_llist_head(&rq->execute_cb);
843}
844
845struct i915_request *
846__i915_request_create(struct intel_context *ce, gfp_t gfp)
847{
848 struct intel_timeline *tl = ce->timeline;
849 struct i915_request *rq;
850 u32 seqno;
851 int ret;
852
853 might_sleep_if(gfpflags_allow_blocking(gfp))do { if (gfpflags_allow_blocking(gfp)) assertwaitok(); } while
(0)
;
854
855 /* Check that the caller provided an already pinned context */
856 __intel_context_pin(ce);
857
858 /*
859 * Beware: Dragons be flying overhead.
860 *
861 * We use RCU to look up requests in flight. The lookups may
862 * race with the request being allocated from the slab freelist.
863 * That is the request we are writing to here, may be in the process
864 * of being read by __i915_active_request_get_rcu(). As such,
865 * we have to be very careful when overwriting the contents. During
866 * the RCU lookup, we change chase the request->engine pointer,
867 * read the request->global_seqno and increment the reference count.
868 *
869 * The reference count is incremented atomically. If it is zero,
870 * the lookup knows the request is unallocated and complete. Otherwise,
871 * it is either still in use, or has been reallocated and reset
872 * with dma_fence_init(). This increment is safe for release as we
873 * check that the request we have a reference to and matches the active
874 * request.
875 *
876 * Before we increment the refcount, we chase the request->engine
877 * pointer. We must not call kmem_cache_zalloc() or else we set
878 * that pointer to NULL and cause a crash during the lookup. If
879 * we see the request is completed (based on the value of the
880 * old engine and seqno), the lookup is complete and reports NULL.
881 * If we decide the request is not completed (new engine or seqno),
882 * then we grab a reference and double check that it is still the
883 * active request - which it won't be and restart the lookup.
884 *
885 * Do not use kmem_cache_zalloc() here!
886 */
887#ifdef __linux__
888 rq = kmem_cache_alloc(global.slab_requests,
889 gfp | __GFP_RETRY_MAYFAIL0 | __GFP_NOWARN0);
890#else
891 rq = pool_get(&global.slab_requests,
892 (gfp & GFP_NOWAIT0x0002) ? PR_NOWAIT0x0002 : PR_WAITOK0x0001);
893 if (rq)
894 __i915_request_ctor(rq);
895#endif
896 if (unlikely(!rq)__builtin_expect(!!(!rq), 0)) {
897 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
898 if (!rq) {
899 ret = -ENOMEM12;
900 goto err_unreserve;
901 }
902 }
903
904 rq->context = ce;
905 rq->engine = ce->engine;
906 rq->ring = ce->ring;
907 rq->execution_mask = ce->engine->mask;
908
909 ret = intel_timeline_get_seqno(tl, rq, &seqno);
910 if (ret)
911 goto err_free;
912
913 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
914 tl->fence_context, seqno);
915
916 RCU_INIT_POINTER(rq->timeline, tl)do { (rq->timeline) = (tl); } while(0);
917 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline)do { (rq->hwsp_cacheline) = (tl->hwsp_cacheline); } while
(0)
;
918 rq->hwsp_seqno = tl->hwsp_seqno;
919 GEM_BUG_ON(i915_request_completed(rq))((void)0);
920
921 rq->rcustate = get_state_synchronize_rcu()0; /* acts as smp_mb() */
922
923 /* We bump the ref for the fence chain */
924 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
925 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
926
927 i915_sched_node_reinit(&rq->sched);
928
929 /* No zalloc, everything must be cleared after use */
930 rq->batch = NULL((void *)0);
931 GEM_BUG_ON(rq->capture_list)((void)0);
932 GEM_BUG_ON(!llist_empty(&rq->execute_cb))((void)0);
933
934 /*
935 * Reserve space in the ring buffer for all the commands required to
936 * eventually emit this request. This is to guarantee that the
937 * i915_request_add() call can't fail. Note that the reserve may need
938 * to be redone if the request is not actually submitted straight
939 * away, e.g. because a GPU scheduler has deferred it.
940 *
941 * Note that due to how we add reserved_space to intel_ring_begin()
942 * we need to double our request to ensure that if we need to wrap
943 * around inside i915_request_add() there is sufficient space at
944 * the beginning of the ring as well.
945 */
946 rq->reserved_space =
947 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
948
949 /*
950 * Record the position of the start of the request so that
951 * should we detect the updated seqno part-way through the
952 * GPU processing the request, we never over-estimate the
953 * position of the head.
954 */
955 rq->head = rq->ring->emit;
956
957 ret = rq->engine->request_alloc(rq);
958 if (ret)
959 goto err_unwind;
960
961 rq->infix = rq->ring->emit; /* end of header; start of user payload */
962
963 intel_context_mark_active(ce);
964 list_add_tail_rcu(&rq->link, &tl->requests)list_add_tail(&rq->link, &tl->requests);
965
966 return rq;
967
968err_unwind:
969 ce->ring->emit = rq->head;
970
971 /* Make sure we didn't add ourselves to external state before freeing */
972 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list))((void)0);
973 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list))((void)0);
974
975err_free:
976#ifdef __linux__
977 kmem_cache_free(global.slab_requests, rq);
978#else
979 pool_put(&global.slab_requests, rq);
980#endif
981err_unreserve:
982 intel_context_unpin(ce);
983 return ERR_PTR(ret);
984}
985
986struct i915_request *
987i915_request_create(struct intel_context *ce)
988{
989 struct i915_request *rq;
990 struct intel_timeline *tl;
991
992 tl = intel_context_timeline_lock(ce);
993 if (IS_ERR(tl))
994 return ERR_CAST(tl);
995
996 /* Move our oldest request to the slab-cache (if not in use!) */
997 rq = list_first_entry(&tl->requests, typeof(*rq), link)({ const __typeof( ((typeof(*rq) *)0)->link ) *__mptr = ((
&tl->requests)->next); (typeof(*rq) *)( (char *)__mptr
- __builtin_offsetof(typeof(*rq), link) );})
;
998 if (!list_is_last(&rq->link, &tl->requests))
999 i915_request_retire(rq);
1000
1001 intel_context_enter(ce);
1002 rq = __i915_request_create(ce, GFP_KERNEL(0x0001 | 0x0004));
1003 intel_context_exit(ce); /* active reference transferred to request */
1004 if (IS_ERR(rq))
1005 goto err_unlock;
1006
1007 /* Check that we do not interrupt ourselves with a new request */
1008 rq->cookie = lockdep_pin_lock(&tl->mutex)({ struct pin_cookie pc = {}; pc; });
1009
1010 return rq;
1011
1012err_unlock:
1013 intel_context_timeline_unlock(tl);
1014 return rq;
1015}
1016
1017static int
1018i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1019{
1020 struct dma_fence *fence;
1021 int err;
1022
1023 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)(signal->timeline))
1024 return 0;
1025
1026 if (i915_request_started(signal))
1027 return 0;
1028
1029 fence = NULL((void *)0);
1030 rcu_read_lock();
1031 spin_lock_irq(&signal->lock)mtx_enter(&signal->lock);
1032 do {
1033 struct list_head *pos = READ_ONCE(signal->link.prev)({ typeof(signal->link.prev) __tmp = *(volatile typeof(signal
->link.prev) *)&(signal->link.prev); membar_datadep_consumer
(); __tmp; })
;
1034 struct i915_request *prev;
1035
1036 /* Confirm signal has not been retired, the link is valid */
1037 if (unlikely(i915_request_started(signal))__builtin_expect(!!(i915_request_started(signal)), 0))
1038 break;
1039
1040 /* Is signal the earliest request on its timeline? */
1041 if (pos == &rcu_dereference(signal->timeline)(signal->timeline)->requests)
1042 break;
1043
1044 /*
1045 * Peek at the request before us in the timeline. That
1046 * request will only be valid before it is retired, so
1047 * after acquiring a reference to it, confirm that it is
1048 * still part of the signaler's timeline.
1049 */
1050 prev = list_entry(pos, typeof(*prev), link)({ const __typeof( ((typeof(*prev) *)0)->link ) *__mptr = (
pos); (typeof(*prev) *)( (char *)__mptr - __builtin_offsetof(
typeof(*prev), link) );})
;
1051 if (!i915_request_get_rcu(prev))
1052 break;
1053
1054 /* After the strong barrier, confirm prev is still attached */
1055 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)__builtin_expect(!!(({ typeof(prev->link.next) __tmp = *(volatile
typeof(prev->link.next) *)&(prev->link.next); membar_datadep_consumer
(); __tmp; }) != &signal->link), 0)
) {
1056 i915_request_put(prev);
1057 break;
1058 }
1059
1060 fence = &prev->fence;
1061 } while (0);
1062 spin_unlock_irq(&signal->lock)mtx_leave(&signal->lock);
1063 rcu_read_unlock();
1064 if (!fence)
1065 return 0;
1066
1067 err = 0;
1068 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1069 err = i915_sw_fence_await_dma_fence(&rq->submit,
1070 fence, 0,
1071 I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1072 dma_fence_put(fence);
1073
1074 return err;
1075}
1076
1077static intel_engine_mask_t
1078already_busywaiting(struct i915_request *rq)
1079{
1080 /*
1081 * Polling a semaphore causes bus traffic, delaying other users of
1082 * both the GPU and CPU. We want to limit the impact on others,
1083 * while taking advantage of early submission to reduce GPU
1084 * latency. Therefore we restrict ourselves to not using more
1085 * than one semaphore from each source, and not using a semaphore
1086 * if we have detected the engine is saturated (i.e. would not be
1087 * submitted early and cause bus traffic reading an already passed
1088 * semaphore).
1089 *
1090 * See the are-we-too-late? check in __i915_request_submit().
1091 */
1092 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated)({ typeof(rq->engine->saturated) __tmp = *(volatile typeof
(rq->engine->saturated) *)&(rq->engine->saturated
); membar_datadep_consumer(); __tmp; })
;
1093}
1094
1095static int
1096__emit_semaphore_wait(struct i915_request *to,
1097 struct i915_request *from,
1098 u32 seqno)
1099{
1100 const int has_token = INTEL_GEN(to->engine->i915)((&(to->engine->i915)->__info)->gen) >= 12;
1101 u32 hwsp_offset;
1102 int len, err;
1103 u32 *cs;
1104
1105 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8)((void)0);
1106 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to))((void)0);
1107
1108 /* We need to pin the signaler's HWSP until we are finished reading. */
1109 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1110 if (err)
1111 return err;
1112
1113 len = 4;
1114 if (has_token)
1115 len += 2;
1116
1117 cs = intel_ring_begin(to, len);
1118 if (IS_ERR(cs))
1119 return PTR_ERR(cs);
1120
1121 /*
1122 * Using greater-than-or-equal here means we have to worry
1123 * about seqno wraparound. To side step that issue, we swap
1124 * the timeline HWSP upon wrapping, so that everyone listening
1125 * for the old (pre-wrap) values do not see the much smaller
1126 * (post-wrap) values than they were expecting (and so wait
1127 * forever).
1128 */
1129 *cs++ = (MI_SEMAPHORE_WAIT(((0x1c) << 23) | (2)) |
1130 MI_SEMAPHORE_GLOBAL_GTT(1<<22) |
1131 MI_SEMAPHORE_POLL(1 << 15) |
1132 MI_SEMAPHORE_SAD_GTE_SDD(1 << 12)) +
1133 has_token;
1134 *cs++ = seqno;
1135 *cs++ = hwsp_offset;
1136 *cs++ = 0;
1137 if (has_token) {
1138 *cs++ = 0;
1139 *cs++ = MI_NOOP(((0) << 23) | (0));
1140 }
1141
1142 intel_ring_advance(to, cs);
1143 return 0;
1144}
1145
1146static int
1147emit_semaphore_wait(struct i915_request *to,
1148 struct i915_request *from,
1149 gfp_t gfp)
1150{
1151 const intel_engine_mask_t mask = READ_ONCE(from->engine)({ typeof(from->engine) __tmp = *(volatile typeof(from->
engine) *)&(from->engine); membar_datadep_consumer(); __tmp
; })
->mask;
1152 struct i915_sw_fence *wait = &to->submit;
1153
1154 if (!intel_context_use_semaphores(to->context))
1155 goto await_fence;
1156
1157 if (i915_request_has_initial_breadcrumb(to))
1158 goto await_fence;
1159
1160 if (!rcu_access_pointer(from->hwsp_cacheline)(from->hwsp_cacheline))
1161 goto await_fence;
1162
1163 /*
1164 * If this or its dependents are waiting on an external fence
1165 * that may fail catastrophically, then we want to avoid using
1166 * sempahores as they bypass the fence signaling metadata, and we
1167 * lose the fence->error propagation.
1168 */
1169 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN(1UL << (0)))
1170 goto await_fence;
1171
1172 /* Just emit the first semaphore we see as request space is limited. */
1173 if (already_busywaiting(to) & mask)
1174 goto await_fence;
1175
1176 if (i915_request_await_start(to, from) < 0)
1177 goto await_fence;
1178
1179 /* Only submit our spinner after the signaler is running! */
1180 if (__await_execution(to, from, NULL((void *)0), gfp))
1181 goto await_fence;
1182
1183 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1184 goto await_fence;
1185
1186 to->sched.semaphores |= mask;
1187 wait = &to->semaphore;
1188
1189await_fence:
1190 return i915_sw_fence_await_dma_fence(wait,
1191 &from->fence, 0,
1192 I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1193}
1194
1195static bool_Bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1196 struct dma_fence *fence)
1197{
1198 return __intel_timeline_sync_is_later(tl,
1199 fence->context,
1200 fence->seqno - 1);
1201}
1202
1203static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1204 const struct dma_fence *fence)
1205{
1206 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1207}
1208
1209static int
1210__i915_request_await_execution(struct i915_request *to,
1211 struct i915_request *from,
1212 void (*hook)(struct i915_request *rq,
1213 struct dma_fence *signal))
1214{
1215 int err;
1216
1217 GEM_BUG_ON(intel_context_is_barrier(from->context))((void)0);
1218
1219 /* Submit both requests at the same time */
1220 err = __await_execution(to, from, hook, I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1221 if (err)
1222 return err;
1223
1224 /* Squash repeated depenendices to the same timelines */
1225 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1226 &from->fence))
1227 return 0;
1228
1229 /*
1230 * Wait until the start of this request.
1231 *
1232 * The execution cb fires when we submit the request to HW. But in
1233 * many cases this may be long before the request itself is ready to
1234 * run (consider that we submit 2 requests for the same context, where
1235 * the request of interest is behind an indefinite spinner). So we hook
1236 * up to both to reduce our queues and keep the execution lag minimised
1237 * in the worst case, though we hope that the await_start is elided.
1238 */
1239 err = i915_request_await_start(to, from);
1240 if (err < 0)
1241 return err;
1242
1243 /*
1244 * Ensure both start together [after all semaphores in signal]
1245 *
1246 * Now that we are queued to the HW at roughly the same time (thanks
1247 * to the execute cb) and are ready to run at roughly the same time
1248 * (thanks to the await start), our signaler may still be indefinitely
1249 * delayed by waiting on a semaphore from a remote engine. If our
1250 * signaler depends on a semaphore, so indirectly do we, and we do not
1251 * want to start our payload until our signaler also starts theirs.
1252 * So we wait.
1253 *
1254 * However, there is also a second condition for which we need to wait
1255 * for the precise start of the signaler. Consider that the signaler
1256 * was submitted in a chain of requests following another context
1257 * (with just an ordinary intra-engine fence dependency between the
1258 * two). In this case the signaler is queued to HW, but not for
1259 * immediate execution, and so we must wait until it reaches the
1260 * active slot.
1261 */
1262 if (intel_engine_has_semaphores(to->engine) &&
1263 !i915_request_has_initial_breadcrumb(to)) {
1264 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1265 if (err < 0)
1266 return err;
1267 }
1268
1269 /* Couple the dependency tree for PI on this exposed to->fence */
1270 if (to->engine->schedule) {
1271 err = i915_sched_node_add_dependency(&to->sched,
1272 &from->sched,
1273 I915_DEPENDENCY_WEAK(1UL << (2)));
1274 if (err < 0)
1275 return err;
1276 }
1277
1278 return intel_timeline_sync_set_start(i915_request_timeline(to),
1279 &from->fence);
1280}
1281
1282static void mark_external(struct i915_request *rq)
1283{
1284 /*
1285 * The downside of using semaphores is that we lose metadata passing
1286 * along the signaling chain. This is particularly nasty when we
1287 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1288 * fatal errors we want to scrub the request before it is executed,
1289 * which means that we cannot preload the request onto HW and have
1290 * it wait upon a semaphore.
1291 */
1292 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN(1UL << (0));
1293}
1294
1295static int
1296__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1297{
1298 mark_external(rq);
1299 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1300 i915_fence_context_timeout(rq->engine->i915,
1301 fence->context),
1302 I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1303}
1304
1305static int
1306i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1307{
1308 struct dma_fence *iter;
1309 int err = 0;
1310
1311 if (!to_dma_fence_chain(fence))
1312 return __i915_request_await_external(rq, fence);
1313
1314 dma_fence_chain_for_each(iter, fence)for (iter = dma_fence_get(fence); iter != ((void *)0); iter =
dma_fence_chain_next(iter))
{
1315 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1316
1317 if (!dma_fence_is_i915(chain->fence)) {
1318 err = __i915_request_await_external(rq, iter);
1319 break;
1320 }
1321
1322 err = i915_request_await_dma_fence(rq, chain->fence);
1323 if (err < 0)
1324 break;
1325 }
1326
1327 dma_fence_put(iter);
1328 return err;
1329}
1330
1331int
1332i915_request_await_execution(struct i915_request *rq,
1333 struct dma_fence *fence,
1334 void (*hook)(struct i915_request *rq,
1335 struct dma_fence *signal))
1336{
1337 struct dma_fence **child = &fence;
1338 unsigned int nchild = 1;
1339 int ret;
1340
1341 if (dma_fence_is_array(fence)) {
1342 struct dma_fence_array *array = to_dma_fence_array(fence);
1343
1344 /* XXX Error for signal-on-any fence arrays */
1345
1346 child = array->fences;
1347 nchild = array->num_fences;
1348 GEM_BUG_ON(!nchild)((void)0);
1349 }
1350
1351 do {
1352 fence = *child++;
1353 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1354 continue;
1355
1356 if (fence->context == rq->fence.context)
1357 continue;
1358
1359 /*
1360 * We don't squash repeated fence dependencies here as we
1361 * want to run our callback in all cases.
1362 */
1363
1364 if (dma_fence_is_i915(fence))
1365 ret = __i915_request_await_execution(rq,
1366 to_request(fence),
1367 hook);
1368 else
1369 ret = i915_request_await_external(rq, fence);
1370 if (ret < 0)
1371 return ret;
1372 } while (--nchild);
1373
1374 return 0;
1375}
1376
1377static int
1378await_request_submit(struct i915_request *to, struct i915_request *from)
1379{
1380 /*
1381 * If we are waiting on a virtual engine, then it may be
1382 * constrained to execute on a single engine *prior* to submission.
1383 * When it is submitted, it will be first submitted to the virtual
1384 * engine and then passed to the physical engine. We cannot allow
1385 * the waiter to be submitted immediately to the physical engine
1386 * as it may then bypass the virtual request.
1387 */
1388 if (to->engine == READ_ONCE(from->engine)({ typeof(from->engine) __tmp = *(volatile typeof(from->
engine) *)&(from->engine); membar_datadep_consumer(); __tmp
; })
)
1389 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1390 &from->submit,
1391 I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1392 else
1393 return __i915_request_await_execution(to, from, NULL((void *)0));
1394}
1395
1396static int
1397i915_request_await_request(struct i915_request *to, struct i915_request *from)
1398{
1399 int ret;
1400
1401 GEM_BUG_ON(to == from)((void)0);
1402 GEM_BUG_ON(to->timeline == from->timeline)((void)0);
1403
1404 if (i915_request_completed(from)) {
1405 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1406 return 0;
1407 }
1408
1409 if (to->engine->schedule) {
1410 ret = i915_sched_node_add_dependency(&to->sched,
1411 &from->sched,
1412 I915_DEPENDENCY_EXTERNAL(1UL << (1)));
1413 if (ret < 0)
1414 return ret;
1415 }
1416
1417 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))(((to->execution_mask | ({ typeof(from->execution_mask)
__tmp = *(volatile typeof(from->execution_mask) *)&(from
->execution_mask); membar_datadep_consumer(); __tmp; })) !=
0) && (((to->execution_mask | ({ typeof(from->
execution_mask) __tmp = *(volatile typeof(from->execution_mask
) *)&(from->execution_mask); membar_datadep_consumer()
; __tmp; })) - 1) & (to->execution_mask | ({ typeof(from
->execution_mask) __tmp = *(volatile typeof(from->execution_mask
) *)&(from->execution_mask); membar_datadep_consumer()
; __tmp; }))) == 0)
)
1418 ret = await_request_submit(to, from);
1419 else
1420 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP((0x0001 | 0x0004) | 0 | 0));
1421 if (ret < 0)
1422 return ret;
1423
1424 return 0;
1425}
1426
1427int
1428i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1429{
1430 struct dma_fence **child = &fence;
1431 unsigned int nchild = 1;
1432 int ret;
1433
1434 /*
1435 * Note that if the fence-array was created in signal-on-any mode,
1436 * we should *not* decompose it into its individual fences. However,
1437 * we don't currently store which mode the fence-array is operating
1438 * in. Fortunately, the only user of signal-on-any is private to
1439 * amdgpu and we should not see any incoming fence-array from
1440 * sync-file being in signal-on-any mode.
1441 */
1442 if (dma_fence_is_array(fence)) {
1443 struct dma_fence_array *array = to_dma_fence_array(fence);
1444
1445 child = array->fences;
1446 nchild = array->num_fences;
1447 GEM_BUG_ON(!nchild)((void)0);
1448 }
1449
1450 do {
1451 fence = *child++;
1452 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1453 continue;
1454
1455 /*
1456 * Requests on the same timeline are explicitly ordered, along
1457 * with their dependencies, by i915_request_add() which ensures
1458 * that requests are submitted in-order through each ring.
1459 */
1460 if (fence->context == rq->fence.context)
1461 continue;
1462
1463 /* Squash repeated waits to the same timelines */
1464 if (fence->context &&
1465 intel_timeline_sync_is_later(i915_request_timeline(rq),
1466 fence))
1467 continue;
1468
1469 if (dma_fence_is_i915(fence))
1470 ret = i915_request_await_request(rq, to_request(fence));
1471 else
1472 ret = i915_request_await_external(rq, fence);
1473 if (ret < 0)
1474 return ret;
1475
1476 /* Record the latest fence used against each timeline */
1477 if (fence->context)
1478 intel_timeline_sync_set(i915_request_timeline(rq),
1479 fence);
1480 } while (--nchild);
1481
1482 return 0;
1483}
1484
1485/**
1486 * i915_request_await_object - set this request to (async) wait upon a bo
1487 * @to: request we are wishing to use
1488 * @obj: object which may be in use on another ring.
1489 * @write: whether the wait is on behalf of a writer
1490 *
1491 * This code is meant to abstract object synchronization with the GPU.
1492 * Conceptually we serialise writes between engines inside the GPU.
1493 * We only allow one engine to write into a buffer at any time, but
1494 * multiple readers. To ensure each has a coherent view of memory, we must:
1495 *
1496 * - If there is an outstanding write request to the object, the new
1497 * request must wait for it to complete (either CPU or in hw, requests
1498 * on the same ring will be naturally ordered).
1499 *
1500 * - If we are a write request (pending_write_domain is set), the new
1501 * request must wait for outstanding read requests to complete.
1502 *
1503 * Returns 0 if successful, else propagates up the lower layer error.
1504 */
1505int
1506i915_request_await_object(struct i915_request *to,
1507 struct drm_i915_gem_object *obj,
1508 bool_Bool write)
1509{
1510 struct dma_fence *excl;
1511 int ret = 0;
1512
1513 if (write) {
1514 struct dma_fence **shared;
1515 unsigned int count, i;
1516
1517 ret = dma_resv_get_fences_rcu(obj->base.resv,
1518 &excl, &count, &shared);
1519 if (ret)
1520 return ret;
1521
1522 for (i = 0; i < count; i++) {
1523 ret = i915_request_await_dma_fence(to, shared[i]);
1524 if (ret)
1525 break;
1526
1527 dma_fence_put(shared[i]);
1528 }
1529
1530 for (; i < count; i++)
1531 dma_fence_put(shared[i]);
1532 kfree(shared);
1533 } else {
1534 excl = dma_resv_get_excl_rcu(obj->base.resv);
1535 }
1536
1537 if (excl) {
1538 if (ret == 0)
1539 ret = i915_request_await_dma_fence(to, excl);
1540
1541 dma_fence_put(excl);
1542 }
1543
1544 return ret;
1545}
1546
1547static struct i915_request *
1548__i915_request_add_to_timeline(struct i915_request *rq)
1549{
1550 struct intel_timeline *timeline = i915_request_timeline(rq);
1551 struct i915_request *prev;
1552
1553 /*
1554 * Dependency tracking and request ordering along the timeline
1555 * is special cased so that we can eliminate redundant ordering
1556 * operations while building the request (we know that the timeline
1557 * itself is ordered, and here we guarantee it).
1558 *
1559 * As we know we will need to emit tracking along the timeline,
1560 * we embed the hooks into our request struct -- at the cost of
1561 * having to have specialised no-allocation interfaces (which will
1562 * be beneficial elsewhere).
1563 *
1564 * A second benefit to open-coding i915_request_await_request is
1565 * that we can apply a slight variant of the rules specialised
1566 * for timelines that jump between engines (such as virtual engines).
1567 * If we consider the case of virtual engine, we must emit a dma-fence
1568 * to prevent scheduling of the second request until the first is
1569 * complete (to maximise our greedy late load balancing) and this
1570 * precludes optimising to use semaphores serialisation of a single
1571 * timeline across engines.
1572 */
1573 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1574 &rq->fence));
1575 if (prev && !i915_request_completed(prev)) {
1576 /*
1577 * The requests are supposed to be kept in order. However,
1578 * we need to be wary in case the timeline->last_request
1579 * is used as a barrier for external modification to this
1580 * context.
1581 */
1582 GEM_BUG_ON(prev->context == rq->context &&((void)0)
1583 i915_seqno_passed(prev->fence.seqno,((void)0)
1584 rq->fence.seqno))((void)0);
1585
1586 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)(((({ typeof(prev->engine) __tmp = *(volatile typeof(prev->
engine) *)&(prev->engine); membar_datadep_consumer(); __tmp
; })->mask | rq->engine->mask) != 0) && ((((
{ typeof(prev->engine) __tmp = *(volatile typeof(prev->
engine) *)&(prev->engine); membar_datadep_consumer(); __tmp
; })->mask | rq->engine->mask) - 1) & (({ typeof
(prev->engine) __tmp = *(volatile typeof(prev->engine) *
)&(prev->engine); membar_datadep_consumer(); __tmp; })
->mask | rq->engine->mask)) == 0)
)
1587 i915_sw_fence_await_sw_fence(&rq->submit,
1588 &prev->submit,
1589 &rq->submitq);
1590 else
1591 __i915_sw_fence_await_dma_fence(&rq->submit,
1592 &prev->fence,
1593 &rq->dmaq);
1594 if (rq->engine->schedule)
1595 __i915_sched_node_add_dependency(&rq->sched,
1596 &prev->sched,
1597 &rq->dep,
1598 0);
1599 }
1600
1601 /*
1602 * Make sure that no request gazumped us - if it was allocated after
1603 * our i915_request_alloc() and called __i915_request_add() before
1604 * us, the timeline will hold its seqno which is later than ours.
1605 */
1606 GEM_BUG_ON(timeline->seqno != rq->fence.seqno)((void)0);
1607
1608 return prev;
1609}
1610
1611/*
1612 * NB: This function is not allowed to fail. Doing so would mean the the
1613 * request is not being tracked for completion but the work itself is
1614 * going to happen on the hardware. This would be a Bad Thing(tm).
1615 */
1616struct i915_request *__i915_request_commit(struct i915_request *rq)
1617{
1618 struct intel_engine_cs *engine = rq->engine;
1619 struct intel_ring *ring = rq->ring;
Value stored to 'ring' during its initialization is never read
1620 u32 *cs;
1621
1622 RQ_TRACE(rq, "\n")do { const struct i915_request *rq__ = (rq); do { const struct
intel_engine_cs *e__ __attribute__((__unused__)) = (rq__->
engine); do { } while (0); } while (0); } while (0)
;
1623
1624 /*
1625 * To ensure that this call will not fail, space for its emissions
1626 * should already have been reserved in the ring buffer. Let the ring
1627 * know that it is time to use that space up.
1628 */
1629 GEM_BUG_ON(rq->reserved_space > ring->space)((void)0);
1630 rq->reserved_space = 0;
1631 rq->emitted_jiffies = jiffies;
1632
1633 /*
1634 * Record the position of the start of the breadcrumb so that
1635 * should we detect the updated seqno part-way through the
1636 * GPU processing the request, we never over-estimate the
1637 * position of the ring's HEAD.
1638 */
1639 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1640 GEM_BUG_ON(IS_ERR(cs))((void)0);
1641 rq->postfix = intel_ring_offset(rq, cs);
1642
1643 return __i915_request_add_to_timeline(rq);
1644}
1645
1646void __i915_request_queue(struct i915_request *rq,
1647 const struct i915_sched_attr *attr)
1648{
1649 /*
1650 * Let the backend know a new request has arrived that may need
1651 * to adjust the existing execution schedule due to a high priority
1652 * request - i.e. we may want to preempt the current request in order
1653 * to run a high priority dependency chain *before* we can execute this
1654 * request.
1655 *
1656 * This is called before the request is ready to run so that we can
1657 * decide whether to preempt the entire chain so that it is ready to
1658 * run at the earliest possible convenience.
1659 */
1660 if (attr && rq->engine->schedule)
1661 rq->engine->schedule(rq, attr);
1662 i915_sw_fence_commit(&rq->semaphore);
1663 i915_sw_fence_commit(&rq->submit);
1664}
1665
1666void i915_request_add(struct i915_request *rq)
1667{
1668 struct intel_timeline * const tl = i915_request_timeline(rq);
1669 struct i915_sched_attr attr = {};
1670 struct i915_gem_context *ctx;
1671
1672 lockdep_assert_held(&tl->mutex)do { (void)(&tl->mutex); } while(0);
1673 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1674
1675 trace_i915_request_add(rq);
1676 __i915_request_commit(rq);
1677
1678 /* XXX placeholder for selftests */
1679 rcu_read_lock();
1680 ctx = rcu_dereference(rq->context->gem_context)(rq->context->gem_context);
1681 if (ctx)
1682 attr = ctx->sched;
1683 rcu_read_unlock();
1684
1685 __i915_request_queue(rq, &attr);
1686
1687 mutex_unlock(&tl->mutex)rw_exit_write(&tl->mutex);
1688}
1689
1690static unsigned long local_clock_ns(unsigned int *cpu)
1691{
1692 unsigned long t;
1693
1694 /*
1695 * Cheaply and approximately convert from nanoseconds to microseconds.
1696 * The result and subsequent calculations are also defined in the same
1697 * approximate microseconds units. The principal source of timing
1698 * error here is from the simple truncation.
1699 *
1700 * Note that local_clock() is only defined wrt to the current CPU;
1701 * the comparisons are no longer valid if we switch CPUs. Instead of
1702 * blocking preemption for the entire busywait, we can detect the CPU
1703 * switch and use that as indicator of system load and a reason to
1704 * stop busywaiting, see busywait_stop().
1705 */
1706 *cpu = get_cpu()(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_cpuid)
;
1707 t = local_clock();
1708 put_cpu();
1709
1710 return t;
1711}
1712
1713static bool_Bool busywait_stop(unsigned long timeout, unsigned int cpu)
1714{
1715 unsigned int this_cpu;
1716
1717 if (time_after(local_clock_ns(&this_cpu), timeout)((long)(timeout) - (long)(local_clock_ns(&this_cpu)) <
0)
)
1718 return true1;
1719
1720 return this_cpu != cpu;
1721}
1722
1723static bool_Bool __i915_spin_request(struct i915_request * const rq, int state)
1724{
1725 unsigned long timeout_ns;
1726 unsigned int cpu;
1727
1728 /*
1729 * Only wait for the request if we know it is likely to complete.
1730 *
1731 * We don't track the timestamps around requests, nor the average
1732 * request length, so we do not have a good indicator that this
1733 * request will complete within the timeout. What we do know is the
1734 * order in which requests are executed by the context and so we can
1735 * tell if the request has been started. If the request is not even
1736 * running yet, it is a fair assumption that it will not complete
1737 * within our relatively short timeout.
1738 */
1739 if (!i915_request_is_running(rq))
1740 return false0;
1741
1742 /*
1743 * When waiting for high frequency requests, e.g. during synchronous
1744 * rendering split between the CPU and GPU, the finite amount of time
1745 * required to set up the irq and wait upon it limits the response
1746 * rate. By busywaiting on the request completion for a short while we
1747 * can service the high frequency waits as quick as possible. However,
1748 * if it is a slow request, we want to sleep as quickly as possible.
1749 * The tradeoff between waiting and sleeping is roughly the time it
1750 * takes to sleep on a request, on the order of a microsecond.
1751 */
1752
1753 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns)({ typeof(rq->engine->props.max_busywait_duration_ns) __tmp
= *(volatile typeof(rq->engine->props.max_busywait_duration_ns
) *)&(rq->engine->props.max_busywait_duration_ns); membar_datadep_consumer
(); __tmp; })
;
1754 timeout_ns += local_clock_ns(&cpu);
1755 do {
1756 if (dma_fence_is_signaled(&rq->fence))
1757 return true1;
1758
1759 if (signal_pending_state(state, current)((state) & 0x100 ? (((({struct cpu_info *__ci; asm volatile
("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct
cpu_info, ci_self))); __ci;})->ci_curproc)->p_siglist |
(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc)->p_p->ps_siglist) & ~(({struct
cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci
) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;
})->ci_curproc)->p_sigmask) : 0)
)
1760 break;
1761
1762 if (busywait_stop(timeout_ns, cpu))
1763 break;
1764
1765 cpu_relax();
1766 } while (!drm_need_resched()(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_schedstate.spc_schedflags & 0x0002)
);
1767
1768 return false0;
1769}
1770
1771struct request_wait {
1772 struct dma_fence_cb cb;
1773#ifdef __linux__
1774 struct task_struct *tsk;
1775#else
1776 struct proc *tsk;
1777#endif
1778};
1779
1780static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1781{
1782 struct request_wait *wait = container_of(cb, typeof(*wait), cb)({ const __typeof( ((typeof(*wait) *)0)->cb ) *__mptr = (cb
); (typeof(*wait) *)( (char *)__mptr - __builtin_offsetof(typeof
(*wait), cb) );})
;
1783
1784 wake_up_process(fetch_and_zero(&wait->tsk)({ typeof(*&wait->tsk) __T = *(&wait->tsk); *(&
wait->tsk) = (typeof(*&wait->tsk))0; __T; })
);
1785}
1786
1787/**
1788 * i915_request_wait - wait until execution of request has finished
1789 * @rq: the request to wait upon
1790 * @flags: how to wait
1791 * @timeout: how long to wait in jiffies
1792 *
1793 * i915_request_wait() waits for the request to be completed, for a
1794 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1795 * unbounded wait).
1796 *
1797 * Returns the remaining time (in jiffies) if the request completed, which may
1798 * be zero or -ETIME if the request is unfinished after the timeout expires.
1799 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1800 * pending before the request completes.
1801 */
1802long i915_request_wait(struct i915_request *rq,
1803 unsigned int flags,
1804 long timeout)
1805{
1806 const int state = flags & I915_WAIT_INTERRUPTIBLE(1UL << (0)) ?
1807 TASK_INTERRUPTIBLE0x100 : TASK_UNINTERRUPTIBLE0;
1808 struct request_wait wait;
1809
1810 might_sleep()assertwaitok();
1811 GEM_BUG_ON(timeout < 0)((void)0);
1812
1813 if (dma_fence_is_signaled(&rq->fence))
1814 return timeout;
1815
1816 if (!timeout)
1817 return -ETIME60;
1818
1819 trace_i915_request_wait_begin(rq, flags);
1820
1821 /*
1822 * We must never wait on the GPU while holding a lock as we
1823 * may need to perform a GPU reset. So while we don't need to
1824 * serialise wait/reset with an explicit lock, we do want
1825 * lockdep to detect potential dependency cycles.
1826 */
1827 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1828
1829 /*
1830 * Optimistic spin before touching IRQs.
1831 *
1832 * We may use a rather large value here to offset the penalty of
1833 * switching away from the active task. Frequently, the client will
1834 * wait upon an old swapbuffer to throttle itself to remain within a
1835 * frame of the gpu. If the client is running in lockstep with the gpu,
1836 * then it should not be waiting long at all, and a sleep now will incur
1837 * extra scheduler latency in producing the next frame. To try to
1838 * avoid adding the cost of enabling/disabling the interrupt to the
1839 * short wait, we first spin to see if the request would have completed
1840 * in the time taken to setup the interrupt.
1841 *
1842 * We need upto 5us to enable the irq, and upto 20us to hide the
1843 * scheduler latency of a context switch, ignoring the secondary
1844 * impacts from a context switch such as cache eviction.
1845 *
1846 * The scheme used for low-latency IO is called "hybrid interrupt
1847 * polling". The suggestion there is to sleep until just before you
1848 * expect to be woken by the device interrupt and then poll for its
1849 * completion. That requires having a good predictor for the request
1850 * duration, which we currently lack.
1851 */
1852 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT)((8000) != 0) &&
1853 __i915_spin_request(rq, state))
1854 goto out;
1855
1856 /*
1857 * This client is about to stall waiting for the GPU. In many cases
1858 * this is undesirable and limits the throughput of the system, as
1859 * many clients cannot continue processing user input/output whilst
1860 * blocked. RPS autotuning may take tens of milliseconds to respond
1861 * to the GPU load and thus incurs additional latency for the client.
1862 * We can circumvent that by promoting the GPU frequency to maximum
1863 * before we sleep. This makes the GPU throttle up much more quickly
1864 * (good for benchmarks and user experience, e.g. window animations),
1865 * but at a cost of spending more power processing the workload
1866 * (bad for battery).
1867 */
1868 if (flags & I915_WAIT_PRIORITY(1UL << (1)) && !i915_request_started(rq))
1869 intel_rps_boost(rq);
1870
1871#ifdef __linux__
1872 wait.tsk = current;
1873#else
1874 wait.tsk = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
;
1875#endif
1876 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1877 goto out;
1878
1879 /*
1880 * Flush the submission tasklet, but only if it may help this request.
1881 *
1882 * We sometimes experience some latency between the HW interrupts and
1883 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1884 * be due to lazy CS events), so lets run the tasklet manually if there
1885 * is a chance it may submit this request. If the request is not ready
1886 * to run, as it is waiting for other fences to be signaled, flushing
1887 * the tasklet is busy work without any advantage for this client.
1888 *
1889 * If the HW is being lazy, this is the last chance before we go to
1890 * sleep to catch any pending events. We will check periodically in
1891 * the heartbeat to flush the submission tasklets as a last resort
1892 * for unhappy HW.
1893 */
1894 if (i915_request_is_ready(rq))
1895 intel_engine_flush_submission(rq->engine);
1896
1897 for (;;) {
1898 set_current_state(state);
1899
1900 if (dma_fence_is_signaled(&rq->fence))
1901 break;
1902
1903 if (signal_pending_state(state, current)((state) & 0x100 ? (((({struct cpu_info *__ci; asm volatile
("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct
cpu_info, ci_self))); __ci;})->ci_curproc)->p_siglist |
(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc)->p_p->ps_siglist) & ~(({struct
cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci
) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;
})->ci_curproc)->p_sigmask) : 0)
) {
1904 timeout = -ERESTARTSYS4;
1905 break;
1906 }
1907
1908 if (!timeout) {
1909 timeout = -ETIME60;
1910 break;
1911 }
1912
1913 timeout = io_schedule_timeout(timeout)schedule_timeout(timeout);
1914 }
1915 __set_current_state(TASK_RUNNING-1);
1916
1917 if (READ_ONCE(wait.tsk)({ typeof(wait.tsk) __tmp = *(volatile typeof(wait.tsk) *)&
(wait.tsk); membar_datadep_consumer(); __tmp; })
)
1918 dma_fence_remove_callback(&rq->fence, &wait.cb);
1919 GEM_BUG_ON(!list_empty(&wait.cb.node))((void)0);
1920
1921out:
1922 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1923 trace_i915_request_wait_end(rq);
1924 return timeout;
1925}
1926
1927#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)0
1928#include "selftests/mock_request.c"
1929#include "selftests/i915_request.c"
1930#endif
1931
1932static void i915_global_request_shrink(void)
1933{
1934#ifdef notyet
1935 kmem_cache_shrink(global.slab_execute_cbs);
1936 kmem_cache_shrink(global.slab_requests);
1937#endif
1938}
1939
1940static void i915_global_request_exit(void)
1941{
1942#ifdef __linux__
1943 kmem_cache_destroy(global.slab_execute_cbs);
1944 kmem_cache_destroy(global.slab_requests);
1945#else
1946 pool_destroy(&global.slab_execute_cbs);
1947 pool_destroy(&global.slab_requests);
1948#endif
1949}
1950
1951static struct i915_global_request global = { {
1952 .shrink = i915_global_request_shrink,
1953 .exit = i915_global_request_exit,
1954} };
1955
1956int __init i915_global_request_init(void)
1957{
1958#ifdef __linux__
1959 global.slab_requests =
1960 kmem_cache_create("i915_request",
1961 sizeof(struct i915_request),
1962 __alignof__(struct i915_request),
1963 SLAB_HWCACHE_ALIGN |
1964 SLAB_RECLAIM_ACCOUNT |
1965 SLAB_TYPESAFE_BY_RCU,
1966 __i915_request_ctor);
1967 if (!global.slab_requests)
1968 return -ENOMEM12;
1969
1970 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1971 SLAB_HWCACHE_ALIGN |
1972 SLAB_RECLAIM_ACCOUNT |
1973 SLAB_TYPESAFE_BY_RCU);
1974 if (!global.slab_execute_cbs)
1975 goto err_requests;
1976#else
1977 pool_init(&global.slab_requests, sizeof(struct i915_request),
1978 CACHELINESIZE64, IPL_TTY0x9, 0, "i915_request", NULL((void *)0));
1979 pool_init(&global.slab_execute_cbs, sizeof(struct execute_cb),
1980 CACHELINESIZE64, IPL_TTY0x9, 0, "i915_exec", NULL((void *)0));
1981#endif
1982
1983 i915_global_register(&global.base);
1984 return 0;
1985
1986#ifdef __linux__
1987err_requests:
1988 kmem_cache_destroy(global.slab_requests);
1989 return -ENOMEM12;
1990#endif
1991}