Bug Summary

File:netinet/tcp_input.c
Warning:line 3588, column 3
Value stored to 'tp' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name tcp_input.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -D CONFIG_DRM_AMD_DC_DCN3_0 -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /usr/obj/sys/arch/amd64/compile/GENERIC.MP/scan-build/2022-01-12-131800-47421-1 -x c /usr/src/sys/netinet/tcp_input.c
1/* $OpenBSD: tcp_input.c,v 1.375 2022/01/04 06:32:39 yasuoka Exp $ */
2/* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
3
4/*
5 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
33 *
34 * NRL grants permission for redistribution and use in source and binary
35 * forms, with or without modification, of the software and documentation
36 * created at NRL provided that the following conditions are met:
37 *
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgements:
45 * This product includes software developed by the University of
46 * California, Berkeley and its contributors.
47 * This product includes software developed at the Information
48 * Technology Division, US Naval Research Laboratory.
49 * 4. Neither the name of the NRL nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
57 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64 *
65 * The views and conclusions contained in the software and documentation
66 * are those of the authors and should not be interpreted as representing
67 * official policies, either expressed or implied, of the US Naval
68 * Research Laboratory (NRL).
69 */
70
71#include "pf.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/mbuf.h>
76#include <sys/protosw.h>
77#include <sys/socket.h>
78#include <sys/socketvar.h>
79#include <sys/timeout.h>
80#include <sys/kernel.h>
81#include <sys/pool.h>
82
83#include <net/if.h>
84#include <net/if_var.h>
85#include <net/route.h>
86
87#include <netinet/in.h>
88#include <netinet/ip.h>
89#include <netinet/in_pcb.h>
90#include <netinet/ip_var.h>
91#include <netinet/tcp.h>
92#include <netinet/tcp_fsm.h>
93#include <netinet/tcp_seq.h>
94#include <netinet/tcp_timer.h>
95#include <netinet/tcp_var.h>
96#include <netinet/tcp_debug.h>
97
98#if NPF1 > 0
99#include <net/pfvar.h>
100#endif
101
102struct tcpiphdr tcp_saveti;
103
104int tcp_mss_adv(struct mbuf *, int);
105int tcp_flush_queue(struct tcpcb *);
106
107#ifdef INET61
108#include <netinet6/in6_var.h>
109#include <netinet6/nd6.h>
110
111struct tcpipv6hdr tcp_saveti6;
112
113/* for the packet header length in the mbuf */
114#define M_PH_LEN(m)(((struct mbuf *)(m))->M_dat.MH.MH_pkthdr.len) (((struct mbuf *)(m))->m_pkthdrM_dat.MH.MH_pkthdr.len)
115#define M_V6_LEN(m)((((struct mbuf *)(m))->M_dat.MH.MH_pkthdr.len) - sizeof(struct
ip6_hdr))
(M_PH_LEN(m)(((struct mbuf *)(m))->M_dat.MH.MH_pkthdr.len) - sizeof(struct ip6_hdr))
116#define M_V4_LEN(m)((((struct mbuf *)(m))->M_dat.MH.MH_pkthdr.len) - sizeof(struct
ip))
(M_PH_LEN(m)(((struct mbuf *)(m))->M_dat.MH.MH_pkthdr.len) - sizeof(struct ip))
117#endif /* INET6 */
118
119int tcprexmtthresh = 3;
120int tcptv_keep_init = TCPTV_KEEP_INIT( 75*2);
121
122int tcp_rst_ppslim = 100; /* 100pps */
123int tcp_rst_ppslim_count = 0;
124struct timeval tcp_rst_ppslim_last;
125
126int tcp_ackdrop_ppslim = 100; /* 100pps */
127int tcp_ackdrop_ppslim_count = 0;
128struct timeval tcp_ackdrop_ppslim_last;
129
130#define TCP_PAWS_IDLE(24 * 24 * 60 * 60 * 2) (24 * 24 * 60 * 60 * PR_SLOWHZ2)
131
132/* for modulo comparisons of timestamps */
133#define TSTMP_LT(a,b)((int)((a)-(b)) < 0) ((int)((a)-(b)) < 0)
134#define TSTMP_GEQ(a,b)((int)((a)-(b)) >= 0) ((int)((a)-(b)) >= 0)
135
136/* for TCP SACK comparisons */
137#define SEQ_MIN(a,b)(((int)((a)-(b)) < 0) ? (a) : (b)) (SEQ_LT(a,b)((int)((a)-(b)) < 0) ? (a) : (b))
138#define SEQ_MAX(a,b)(((int)((a)-(b)) > 0) ? (a) : (b)) (SEQ_GT(a,b)((int)((a)-(b)) > 0) ? (a) : (b))
139
140/*
141 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
142 */
143#ifdef INET61
144#define ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
\
145do { \
146 if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV60x100) && \
147 rtisvalid(tp->t_inpcb->inp_route6inp_ru.ru_route6.ro_rt)) { \
148 nd6_nud_hint(tp->t_inpcb->inp_route6inp_ru.ru_route6.ro_rt); \
149 } \
150} while (0)
151#else
152#define ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
153#endif
154
155#ifdef TCP_ECN1
156/*
157 * ECN (Explicit Congestion Notification) support based on RFC3168
158 * implementation note:
159 * snd_last is used to track a recovery phase.
160 * when cwnd is reduced, snd_last is set to snd_max.
161 * while snd_last > snd_una, the sender is in a recovery phase and
162 * its cwnd should not be reduced again.
163 * snd_last follows snd_una when not in a recovery phase.
164 */
165#endif
166
167/*
168 * Macro to compute ACK transmission behavior. Delay the ACK unless
169 * we have already delayed an ACK (must send an ACK every two segments).
170 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
171 * option is enabled or when the packet is coming from a loopback
172 * interface.
173 */
174#define TCP_SETUP_ACK(tp, tiflags, m)do { struct ifnet *ifp = ((void *)0); if (m && (m->
m_hdr.mh_flags & 0x0002)) ifp = if_get(m->M_dat.MH.MH_pkthdr
.ph_ifidx); if ((((tp)->t_flags) & (0x04000000 <<
(5))) || (tcp_ack_on_push && (tiflags) & 0x08) ||
(ifp && (ifp->if_flags & 0x8))) tp->t_flags
|= 0x0001; else do { (((tp)->t_flags) |= (0x04000000 <<
(5))); timeout_add_msec(&(tp)->t_timer[(5)], (tcp_delack_msecs
)); } while (0); if_put(ifp); } while (0)
\
175do { \
176 struct ifnet *ifp = NULL((void *)0); \
177 if (m && (m->m_flagsm_hdr.mh_flags & M_PKTHDR0x0002)) \
178 ifp = if_get(m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx); \
179 if (TCP_TIMER_ISARMED(tp, TCPT_DELACK)(((tp)->t_flags) & (0x04000000 << (5))) || \
180 (tcp_ack_on_push && (tiflags) & TH_PUSH0x08) || \
181 (ifp && (ifp->if_flags & IFF_LOOPBACK0x8))) \
182 tp->t_flags |= TF_ACKNOW0x0001; \
183 else \
184 TCP_TIMER_ARM_MSEC(tp, TCPT_DELACK, tcp_delack_msecs)do { (((tp)->t_flags) |= (0x04000000 << (5))); timeout_add_msec
(&(tp)->t_timer[(5)], (tcp_delack_msecs)); } while (0)
; \
185 if_put(ifp); \
186} while (0)
187
188void tcp_sack_partialack(struct tcpcb *, struct tcphdr *);
189void tcp_newreno_partialack(struct tcpcb *, struct tcphdr *);
190
191void syn_cache_put(struct syn_cache *);
192void syn_cache_rm(struct syn_cache *);
193int syn_cache_respond(struct syn_cache *, struct mbuf *);
194void syn_cache_timer(void *);
195void syn_cache_reaper(void *);
196void syn_cache_insert(struct syn_cache *, struct tcpcb *);
197void syn_cache_reset(struct sockaddr *, struct sockaddr *,
198 struct tcphdr *, u_int);
199int syn_cache_add(struct sockaddr *, struct sockaddr *, struct tcphdr *,
200 unsigned int, struct socket *, struct mbuf *, u_char *, int,
201 struct tcp_opt_info *, tcp_seq *);
202struct socket *syn_cache_get(struct sockaddr *, struct sockaddr *,
203 struct tcphdr *, unsigned int, unsigned int, struct socket *,
204 struct mbuf *);
205struct syn_cache *syn_cache_lookup(struct sockaddr *, struct sockaddr *,
206 struct syn_cache_head **, u_int);
207
208/*
209 * Insert segment ti into reassembly queue of tcp with
210 * control block tp. Return TH_FIN if reassembly now includes
211 * a segment with FIN. The macro form does the common case inline
212 * (segment is the next to be received on an established connection,
213 * and the queue is empty), avoiding linkage into and removal
214 * from the queue and repetition of various conversions.
215 * Set DELACK for segments received in order, but ack immediately
216 * when segments are out of order (so fast retransmit can work).
217 */
218
219int
220tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
221{
222 struct tcpqent *p, *q, *nq, *tiqe;
223
224 /*
225 * Allocate a new queue entry, before we throw away any data.
226 * If we can't, just drop the packet. XXX
227 */
228 tiqe = pool_get(&tcpqe_pool, PR_NOWAIT0x0002);
229 if (tiqe == NULL((void *)0)) {
230 tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead)(*(((struct tcpqehead *)((&tp->t_segq)->tqh_last))->
tqh_last))
;
231 if (tiqe != NULL((void *)0) && th->th_seq == tp->rcv_nxt) {
232 /* Reuse last entry since new segment fills a hole */
233 m_freem(tiqe->tcpqe_m);
234 TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q)do { if (((tiqe)->tcpqe_q.tqe_next) != ((void *)0)) (tiqe)
->tcpqe_q.tqe_next->tcpqe_q.tqe_prev = (tiqe)->tcpqe_q
.tqe_prev; else (&tp->t_segq)->tqh_last = (tiqe)->
tcpqe_q.tqe_prev; *(tiqe)->tcpqe_q.tqe_prev = (tiqe)->tcpqe_q
.tqe_next; ((tiqe)->tcpqe_q.tqe_prev) = ((void *)-1); ((tiqe
)->tcpqe_q.tqe_next) = ((void *)-1); } while (0)
;
235 }
236 if (tiqe == NULL((void *)0) || th->th_seq != tp->rcv_nxt) {
237 /* Flush segment queue for this connection */
238 tcp_freeq(tp);
239 tcpstat_inc(tcps_rcvmemdrop);
240 m_freem(m);
241 return (0);
242 }
243 }
244
245 /*
246 * Find a segment which begins after this one does.
247 */
248 for (p = NULL((void *)0), q = TAILQ_FIRST(&tp->t_segq)((&tp->t_segq)->tqh_first); q != NULL((void *)0);
249 p = q, q = TAILQ_NEXT(q, tcpqe_q)((q)->tcpqe_q.tqe_next))
250 if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq)((int)((q->tcpqe_tcp->th_seq)-(th->th_seq)) > 0))
251 break;
252
253 /*
254 * If there is a preceding segment, it may provide some of
255 * our data already. If so, drop the data from the incoming
256 * segment. If it provides all of our data, drop us.
257 */
258 if (p != NULL((void *)0)) {
259 struct tcphdr *phdr = p->tcpqe_tcp;
260 int i;
261
262 /* conversion to int (in i) handles seq wraparound */
263 i = phdr->th_seq + phdr->th_reseqlenth_urp - th->th_seq;
264 if (i > 0) {
265 if (i >= *tlen) {
266 tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte,
267 *tlen);
268 m_freem(m);
269 pool_put(&tcpqe_pool, tiqe);
270 return (0);
271 }
272 m_adj(m, i);
273 *tlen -= i;
274 th->th_seq += i;
275 }
276 }
277 tcpstat_pkt(tcps_rcvoopack, tcps_rcvoobyte, *tlen);
278
279 /*
280 * While we overlap succeeding segments trim them or,
281 * if they are completely covered, dequeue them.
282 */
283 for (; q != NULL((void *)0); q = nq) {
284 struct tcphdr *qhdr = q->tcpqe_tcp;
285 int i = (th->th_seq + *tlen) - qhdr->th_seq;
286
287 if (i <= 0)
288 break;
289 if (i < qhdr->th_reseqlenth_urp) {
290 qhdr->th_seq += i;
291 qhdr->th_reseqlenth_urp -= i;
292 m_adj(q->tcpqe_m, i);
293 break;
294 }
295 nq = TAILQ_NEXT(q, tcpqe_q)((q)->tcpqe_q.tqe_next);
296 m_freem(q->tcpqe_m);
297 TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q)do { if (((q)->tcpqe_q.tqe_next) != ((void *)0)) (q)->tcpqe_q
.tqe_next->tcpqe_q.tqe_prev = (q)->tcpqe_q.tqe_prev; else
(&tp->t_segq)->tqh_last = (q)->tcpqe_q.tqe_prev
; *(q)->tcpqe_q.tqe_prev = (q)->tcpqe_q.tqe_next; ((q)->
tcpqe_q.tqe_prev) = ((void *)-1); ((q)->tcpqe_q.tqe_next) =
((void *)-1); } while (0)
;
298 pool_put(&tcpqe_pool, q);
299 }
300
301 /* Insert the new segment queue entry into place. */
302 tiqe->tcpqe_m = m;
303 th->th_reseqlenth_urp = *tlen;
304 tiqe->tcpqe_tcp = th;
305 if (p == NULL((void *)0)) {
306 TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q)do { if (((tiqe)->tcpqe_q.tqe_next = (&tp->t_segq)->
tqh_first) != ((void *)0)) (&tp->t_segq)->tqh_first
->tcpqe_q.tqe_prev = &(tiqe)->tcpqe_q.tqe_next; else
(&tp->t_segq)->tqh_last = &(tiqe)->tcpqe_q.
tqe_next; (&tp->t_segq)->tqh_first = (tiqe); (tiqe)
->tcpqe_q.tqe_prev = &(&tp->t_segq)->tqh_first
; } while (0)
;
307 } else {
308 TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q)do { if (((tiqe)->tcpqe_q.tqe_next = (p)->tcpqe_q.tqe_next
) != ((void *)0)) (tiqe)->tcpqe_q.tqe_next->tcpqe_q.tqe_prev
= &(tiqe)->tcpqe_q.tqe_next; else (&tp->t_segq
)->tqh_last = &(tiqe)->tcpqe_q.tqe_next; (p)->tcpqe_q
.tqe_next = (tiqe); (tiqe)->tcpqe_q.tqe_prev = &(p)->
tcpqe_q.tqe_next; } while (0)
;
309 }
310
311 if (th->th_seq != tp->rcv_nxt)
312 return (0);
313
314 return (tcp_flush_queue(tp));
315}
316
317int
318tcp_flush_queue(struct tcpcb *tp)
319{
320 struct socket *so = tp->t_inpcb->inp_socket;
321 struct tcpqent *q, *nq;
322 int flags;
323
324 /*
325 * Present data to user, advancing rcv_nxt through
326 * completed sequence space.
327 */
328 if (TCPS_HAVEESTABLISHED(tp->t_state)((tp->t_state) >= 4) == 0)
329 return (0);
330 q = TAILQ_FIRST(&tp->t_segq)((&tp->t_segq)->tqh_first);
331 if (q == NULL((void *)0) || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
332 return (0);
333 if (tp->t_state == TCPS_SYN_RECEIVED3 && q->tcpqe_tcp->th_reseqlenth_urp)
334 return (0);
335 do {
336 tp->rcv_nxt += q->tcpqe_tcp->th_reseqlenth_urp;
337 flags = q->tcpqe_tcp->th_flags & TH_FIN0x01;
338
339 nq = TAILQ_NEXT(q, tcpqe_q)((q)->tcpqe_q.tqe_next);
340 TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q)do { if (((q)->tcpqe_q.tqe_next) != ((void *)0)) (q)->tcpqe_q
.tqe_next->tcpqe_q.tqe_prev = (q)->tcpqe_q.tqe_prev; else
(&tp->t_segq)->tqh_last = (q)->tcpqe_q.tqe_prev
; *(q)->tcpqe_q.tqe_prev = (q)->tcpqe_q.tqe_next; ((q)->
tcpqe_q.tqe_prev) = ((void *)-1); ((q)->tcpqe_q.tqe_next) =
((void *)-1); } while (0)
;
341 ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
;
342 if (so->so_state & SS_CANTRCVMORE0x020)
343 m_freem(q->tcpqe_m);
344 else
345 sbappendstream(so, &so->so_rcv, q->tcpqe_m);
346 pool_put(&tcpqe_pool, q);
347 q = nq;
348 } while (q != NULL((void *)0) && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
349 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
350 sorwakeup(so);
351 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
352 return (flags);
353}
354
355/*
356 * TCP input routine, follows pages 65-76 of the
357 * protocol specification dated September, 1981 very closely.
358 */
359int
360tcp_input(struct mbuf **mp, int *offp, int proto, int af)
361{
362 struct mbuf *m = *mp;
363 int iphlen = *offp;
364 struct ip *ip = NULL((void *)0);
365 struct inpcb *inp = NULL((void *)0);
366 u_int8_t *optp = NULL((void *)0);
367 int optlen = 0;
368 int tlen, off;
369 struct tcpcb *otp = NULL((void *)0), *tp = NULL((void *)0);
370 int tiflags;
371 struct socket *so = NULL((void *)0);
372 int todrop, acked, ourfinisacked;
373 int hdroptlen = 0;
374 short ostate;
375 caddr_t saveti;
376 tcp_seq iss, *reuse = NULL((void *)0);
377 u_long tiwin;
378 struct tcp_opt_info opti;
379 struct tcphdr *th;
380#ifdef INET61
381 struct ip6_hdr *ip6 = NULL((void *)0);
382#endif /* INET6 */
383#ifdef TCP_ECN1
384 u_char iptos;
385#endif
386
387 tcpstat_inc(tcps_rcvtotal);
388
389 opti.ts_present = 0;
390 opti.maxseg = 0;
391
392 /*
393 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
394 */
395 if (m->m_flagsm_hdr.mh_flags & (M_BCAST0x0100|M_MCAST0x0200))
396 goto drop;
397
398 /*
399 * Get IP and TCP header together in first mbuf.
400 * Note: IP leaves IP header in first mbuf.
401 */
402 IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th))do { struct mbuf *t; int tmp; if ((m)->m_hdr.mh_len >= (
iphlen) + (sizeof(*th))) (th) = (struct tcphdr *)(((caddr_t)(
((m))->m_hdr.mh_data)) + (iphlen)); else { t = m_pulldown(
(m), (iphlen), (sizeof(*th)), &tmp); if (t) { if (t->m_hdr
.mh_len < tmp + (sizeof(*th))) panic("m_pulldown malfunction"
); (th) = (struct tcphdr *)(((caddr_t)((t)->m_hdr.mh_data)
) + tmp); } else { (th) = (struct tcphdr *)((void *)0); (m) =
((void *)0); } } } while ( 0)
;
403 if (!th) {
404 tcpstat_inc(tcps_rcvshort);
405 return IPPROTO_DONE257;
406 }
407
408 tlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len - iphlen;
409 switch (af) {
410 case AF_INET2:
411 ip = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data));
412#ifdef TCP_ECN1
413 /* save ip_tos before clearing it for checksum */
414 iptos = ip->ip_tos;
415#endif
416 break;
417#ifdef INET61
418 case AF_INET624:
419 ip6 = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data));
420#ifdef TCP_ECN1
421 iptos = (ntohl(ip6->ip6_flow)(__uint32_t)(__builtin_constant_p(ip6->ip6_ctlun.ip6_un1.ip6_un1_flow
) ? (__uint32_t)(((__uint32_t)(ip6->ip6_ctlun.ip6_un1.ip6_un1_flow
) & 0xff) << 24 | ((__uint32_t)(ip6->ip6_ctlun.ip6_un1
.ip6_un1_flow) & 0xff00) << 8 | ((__uint32_t)(ip6->
ip6_ctlun.ip6_un1.ip6_un1_flow) & 0xff0000) >> 8 | (
(__uint32_t)(ip6->ip6_ctlun.ip6_un1.ip6_un1_flow) & 0xff000000
) >> 24) : __swap32md(ip6->ip6_ctlun.ip6_un1.ip6_un1_flow
))
>> 20) & 0xff;
422#endif
423
424 /*
425 * Be proactive about unspecified IPv6 address in source.
426 * As we use all-zero to indicate unbounded/unconnected pcb,
427 * unspecified IPv6 address can be used to confuse us.
428 *
429 * Note that packets with unspecified IPv6 destination is
430 * already dropped in ip6_input.
431 */
432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)((*(const u_int32_t *)(const void *)(&(&ip6->ip6_src
)->__u6_addr.__u6_addr8[0]) == 0) && (*(const u_int32_t
*)(const void *)(&(&ip6->ip6_src)->__u6_addr.__u6_addr8
[4]) == 0) && (*(const u_int32_t *)(const void *)(&
(&ip6->ip6_src)->__u6_addr.__u6_addr8[8]) == 0) &&
(*(const u_int32_t *)(const void *)(&(&ip6->ip6_src
)->__u6_addr.__u6_addr8[12]) == 0))
) {
433 /* XXX stat */
434 goto drop;
435 }
436
437 /* Discard packets to multicast */
438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)((&ip6->ip6_dst)->__u6_addr.__u6_addr8[0] == 0xff)) {
439 /* XXX stat */
440 goto drop;
441 }
442 break;
443#endif
444 default:
445 unhandled_af(af);
446 }
447
448 /*
449 * Checksum extended TCP header and data.
450 */
451 if ((m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_TCP_CSUM_IN_OK0x0020) == 0) {
452 int sum;
453
454 if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD0x0040) {
455 tcpstat_inc(tcps_rcvbadsum);
456 goto drop;
457 }
458 tcpstat_inc(tcps_inswcsum);
459 switch (af) {
460 case AF_INET2:
461 sum = in4_cksum(m, IPPROTO_TCP6, iphlen, tlen);
462 break;
463#ifdef INET61
464 case AF_INET624:
465 sum = in6_cksum(m, IPPROTO_TCP6, sizeof(struct ip6_hdr),
466 tlen);
467 break;
468#endif
469 }
470 if (sum != 0) {
471 tcpstat_inc(tcps_rcvbadsum);
472 goto drop;
473 }
474 }
475
476 /*
477 * Check that TCP offset makes sense,
478 * pull out TCP options and adjust length. XXX
479 */
480 off = th->th_off << 2;
481 if (off < sizeof(struct tcphdr) || off > tlen) {
482 tcpstat_inc(tcps_rcvbadoff);
483 goto drop;
484 }
485 tlen -= off;
486 if (off > sizeof(struct tcphdr)) {
487 IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off)do { struct mbuf *t; int tmp; if ((m)->m_hdr.mh_len >= (
iphlen) + (off)) (th) = (struct tcphdr *)(((caddr_t)(((m))->
m_hdr.mh_data)) + (iphlen)); else { t = m_pulldown((m), (iphlen
), (off), &tmp); if (t) { if (t->m_hdr.mh_len < tmp
+ (off)) panic("m_pulldown malfunction"); (th) = (struct tcphdr
*)(((caddr_t)((t)->m_hdr.mh_data)) + tmp); } else { (th) =
(struct tcphdr *)((void *)0); (m) = ((void *)0); } } } while
( 0)
;
488 if (!th) {
489 tcpstat_inc(tcps_rcvshort);
490 return IPPROTO_DONE257;
491 }
492 optlen = off - sizeof(struct tcphdr);
493 optp = (u_int8_t *)(th + 1);
494 /*
495 * Do quick retrieval of timestamp options ("options
496 * prediction?"). If timestamp is the only option and it's
497 * formatted as recommended in RFC 1323 appendix A, we
498 * quickly get the values now and not bother calling
499 * tcp_dooptions(), etc.
500 */
501 if ((optlen == TCPOLEN_TSTAMP_APPA(10 +2) ||
502 (optlen > TCPOLEN_TSTAMP_APPA(10 +2) &&
503 optp[TCPOLEN_TSTAMP_APPA(10 +2)] == TCPOPT_EOL0)) &&
504 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR)(__uint32_t)(__builtin_constant_p((1<<24|1<<16|8<<
8|10)) ? (__uint32_t)(((__uint32_t)((1<<24|1<<16|
8<<8|10)) & 0xff) << 24 | ((__uint32_t)((1<<
24|1<<16|8<<8|10)) & 0xff00) << 8 | ((__uint32_t
)((1<<24|1<<16|8<<8|10)) & 0xff0000) >>
8 | ((__uint32_t)((1<<24|1<<16|8<<8|10)) &
0xff000000) >> 24) : __swap32md((1<<24|1<<
16|8<<8|10)))
&&
505 (th->th_flags & TH_SYN0x02) == 0) {
506 opti.ts_present = 1;
507 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4))(__uint32_t)(__builtin_constant_p(*(u_int32_t *)(optp + 4)) ?
(__uint32_t)(((__uint32_t)(*(u_int32_t *)(optp + 4)) & 0xff
) << 24 | ((__uint32_t)(*(u_int32_t *)(optp + 4)) &
0xff00) << 8 | ((__uint32_t)(*(u_int32_t *)(optp + 4))
& 0xff0000) >> 8 | ((__uint32_t)(*(u_int32_t *)(optp
+ 4)) & 0xff000000) >> 24) : __swap32md(*(u_int32_t
*)(optp + 4)))
;
508 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8))(__uint32_t)(__builtin_constant_p(*(u_int32_t *)(optp + 8)) ?
(__uint32_t)(((__uint32_t)(*(u_int32_t *)(optp + 8)) & 0xff
) << 24 | ((__uint32_t)(*(u_int32_t *)(optp + 8)) &
0xff00) << 8 | ((__uint32_t)(*(u_int32_t *)(optp + 8))
& 0xff0000) >> 8 | ((__uint32_t)(*(u_int32_t *)(optp
+ 8)) & 0xff000000) >> 24) : __swap32md(*(u_int32_t
*)(optp + 8)))
;
509 optp = NULL((void *)0); /* we've parsed the options */
510 }
511 }
512 tiflags = th->th_flags;
513
514 /*
515 * Convert TCP protocol specific fields to host format.
516 */
517 th->th_seq = ntohl(th->th_seq)(__uint32_t)(__builtin_constant_p(th->th_seq) ? (__uint32_t
)(((__uint32_t)(th->th_seq) & 0xff) << 24 | ((__uint32_t
)(th->th_seq) & 0xff00) << 8 | ((__uint32_t)(th->
th_seq) & 0xff0000) >> 8 | ((__uint32_t)(th->th_seq
) & 0xff000000) >> 24) : __swap32md(th->th_seq))
;
518 th->th_ack = ntohl(th->th_ack)(__uint32_t)(__builtin_constant_p(th->th_ack) ? (__uint32_t
)(((__uint32_t)(th->th_ack) & 0xff) << 24 | ((__uint32_t
)(th->th_ack) & 0xff00) << 8 | ((__uint32_t)(th->
th_ack) & 0xff0000) >> 8 | ((__uint32_t)(th->th_ack
) & 0xff000000) >> 24) : __swap32md(th->th_ack))
;
519 th->th_win = ntohs(th->th_win)(__uint16_t)(__builtin_constant_p(th->th_win) ? (__uint16_t
)(((__uint16_t)(th->th_win) & 0xffU) << 8 | ((__uint16_t
)(th->th_win) & 0xff00U) >> 8) : __swap16md(th->
th_win))
;
520 th->th_urp = ntohs(th->th_urp)(__uint16_t)(__builtin_constant_p(th->th_urp) ? (__uint16_t
)(((__uint16_t)(th->th_urp) & 0xffU) << 8 | ((__uint16_t
)(th->th_urp) & 0xff00U) >> 8) : __swap16md(th->
th_urp))
;
521
522 /*
523 * Locate pcb for segment.
524 */
525#if NPF1 > 0
526 inp = pf_inp_lookup(m);
527#endif
528findpcb:
529 if (inp == NULL((void *)0)) {
530 switch (af) {
531#ifdef INET61
532 case AF_INET624:
533 inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
534 th->th_sport, &ip6->ip6_dst, th->th_dport,
535 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
536 break;
537#endif
538 case AF_INET2:
539 inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
540 th->th_sport, ip->ip_dst, th->th_dport,
541 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
542 break;
543 }
544 }
545 if (inp == NULL((void *)0)) {
546 tcpstat_inc(tcps_pcbhashmiss);
547 switch (af) {
548#ifdef INET61
549 case AF_INET624:
550 inp = in6_pcblookup_listen(&tcbtable, &ip6->ip6_dst,
551 th->th_dport, m, m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
552 break;
553#endif /* INET6 */
554 case AF_INET2:
555 inp = in_pcblookup_listen(&tcbtable, ip->ip_dst,
556 th->th_dport, m, m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
557 break;
558 }
559 /*
560 * If the state is CLOSED (i.e., TCB does not exist) then
561 * all data in the incoming segment is discarded.
562 * If the TCB exists but is in CLOSED state, it is embryonic,
563 * but should either do a listen or a connect soon.
564 */
565 }
566#ifdef IPSEC1
567 if (ipsec_in_use) {
568 struct m_tag *mtag;
569 struct tdb *tdb = NULL((void *)0);
570 int error;
571
572 /* Find most recent IPsec tag */
573 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE0x0001, NULL((void *)0));
574 if (mtag != NULL((void *)0)) {
575 struct tdb_ident *tdbi;
576
577 tdbi = (struct tdb_ident *)(mtag + 1);
578 tdb = gettdb(tdbi->rdomain, tdbi->spi,gettdb_dir((tdbi->rdomain),(tdbi->spi),(&tdbi->dst
),(tdbi->proto),0)
579 &tdbi->dst, tdbi->proto)gettdb_dir((tdbi->rdomain),(tdbi->spi),(&tdbi->dst
),(tdbi->proto),0)
;
580 }
581 error = ipsp_spd_lookup(m, af, iphlen, IPSP_DIRECTION_IN0x1,
582 tdb, inp, NULL((void *)0), NULL((void *)0));
583 tdb_unref(tdb);
584 if (error) {
585 tcpstat_inc(tcps_rcvnosec);
586 goto drop;
587 }
588 }
589#endif /* IPSEC */
590
591 if (inp == NULL((void *)0)) {
592 tcpstat_inc(tcps_noport);
593 goto dropwithreset_ratelim;
594 }
595
596 KASSERT(sotoinpcb(inp->inp_socket) == inp)((((struct inpcb *)(inp->inp_socket)->so_pcb) == inp) ?
(void)0 : __assert("diagnostic ", "/usr/src/sys/netinet/tcp_input.c"
, 596, "sotoinpcb(inp->inp_socket) == inp"))
;
597 KASSERT(intotcpcb(inp) == NULL || intotcpcb(inp)->t_inpcb == inp)((((struct tcpcb *)(inp)->inp_ppcb) == ((void *)0) || ((struct
tcpcb *)(inp)->inp_ppcb)->t_inpcb == inp) ? (void)0 : __assert
("diagnostic ", "/usr/src/sys/netinet/tcp_input.c", 597, "intotcpcb(inp) == NULL || intotcpcb(inp)->t_inpcb == inp"
))
;
598 soassertlocked(inp->inp_socket);
599
600 /* Check the minimum TTL for socket. */
601 switch (af) {
602 case AF_INET2:
603 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
604 goto drop;
605 break;
606#ifdef INET61
607 case AF_INET624:
608 if (inp->inp_ip6_minhliminp_ip_minttl &&
609 inp->inp_ip6_minhliminp_ip_minttl > ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim)
610 goto drop;
611 break;
612#endif
613 }
614
615 tp = intotcpcb(inp)((struct tcpcb *)(inp)->inp_ppcb);
616 if (tp == NULL((void *)0))
617 goto dropwithreset_ratelim;
618 if (tp->t_state == TCPS_CLOSED0)
619 goto drop;
620
621 /* Unscale the window into a 32-bit value. */
622 if ((tiflags & TH_SYN0x02) == 0)
623 tiwin = th->th_win << tp->snd_scale;
624 else
625 tiwin = th->th_win;
626
627 so = inp->inp_socket;
628 if (so->so_options & (SO_DEBUG0x0001|SO_ACCEPTCONN0x0002)) {
629 union syn_cache_sa src;
630 union syn_cache_sa dst;
631
632 bzero(&src, sizeof(src))__builtin_bzero((&src), (sizeof(src)));
633 bzero(&dst, sizeof(dst))__builtin_bzero((&dst), (sizeof(dst)));
634 switch (af) {
635 case AF_INET2:
636 src.sin.sin_len = sizeof(struct sockaddr_in);
637 src.sin.sin_family = AF_INET2;
638 src.sin.sin_addr = ip->ip_src;
639 src.sin.sin_port = th->th_sport;
640
641 dst.sin.sin_len = sizeof(struct sockaddr_in);
642 dst.sin.sin_family = AF_INET2;
643 dst.sin.sin_addr = ip->ip_dst;
644 dst.sin.sin_port = th->th_dport;
645 break;
646#ifdef INET61
647 case AF_INET624:
648 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
649 src.sin6.sin6_family = AF_INET624;
650 src.sin6.sin6_addr = ip6->ip6_src;
651 src.sin6.sin6_port = th->th_sport;
652
653 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
654 dst.sin6.sin6_family = AF_INET624;
655 dst.sin6.sin6_addr = ip6->ip6_dst;
656 dst.sin6.sin6_port = th->th_dport;
657 break;
658#endif /* INET6 */
659 }
660
661 if (so->so_options & SO_DEBUG0x0001) {
662 otp = tp;
663 ostate = tp->t_state;
664 switch (af) {
665#ifdef INET61
666 case AF_INET624:
667 saveti = (caddr_t) &tcp_saveti6;
668 memcpy(&tcp_saveti6.ti6_i, ip6, sizeof(*ip6))__builtin_memcpy((&tcp_saveti6.ti6_i), (ip6), (sizeof(*ip6
)))
;
669 memcpy(&tcp_saveti6.ti6_t, th, sizeof(*th))__builtin_memcpy((&tcp_saveti6.ti6_t), (th), (sizeof(*th)
))
;
670 break;
671#endif
672 case AF_INET2:
673 saveti = (caddr_t) &tcp_saveti;
674 memcpy(&tcp_saveti.ti_i, ip, sizeof(*ip))__builtin_memcpy((&tcp_saveti.ti_i), (ip), (sizeof(*ip)));
675 memcpy(&tcp_saveti.ti_t, th, sizeof(*th))__builtin_memcpy((&tcp_saveti.ti_t), (th), (sizeof(*th)));
676 break;
677 }
678 }
679 if (so->so_options & SO_ACCEPTCONN0x0002) {
680 switch (tiflags & (TH_RST0x04|TH_SYN0x02|TH_ACK0x10)) {
681
682 case TH_SYN0x02|TH_ACK0x10|TH_RST0x04:
683 case TH_SYN0x02|TH_RST0x04:
684 case TH_ACK0x10|TH_RST0x04:
685 case TH_RST0x04:
686 syn_cache_reset(&src.sa, &dst.sa, th,
687 inp->inp_rtableid);
688 goto drop;
689
690 case TH_SYN0x02|TH_ACK0x10:
691 /*
692 * Received a SYN,ACK. This should
693 * never happen while we are in
694 * LISTEN. Send an RST.
695 */
696 goto badsyn;
697
698 case TH_ACK0x10:
699 so = syn_cache_get(&src.sa, &dst.sa,
700 th, iphlen, tlen, so, m);
701 if (so == NULL((void *)0)) {
702 /*
703 * We don't have a SYN for
704 * this ACK; send an RST.
705 */
706 goto badsyn;
707 } else if (so == (struct socket *)(-1)) {
708 /*
709 * We were unable to create
710 * the connection. If the
711 * 3-way handshake was
712 * completed, and RST has
713 * been sent to the peer.
714 * Since the mbuf might be
715 * in use for the reply,
716 * do not free it.
717 */
718 m = *mp = NULL((void *)0);
719 goto drop;
720 } else {
721 /*
722 * We have created a
723 * full-blown connection.
724 */
725 tp = NULL((void *)0);
726 inp = sotoinpcb(so)((struct inpcb *)(so)->so_pcb);
727 tp = intotcpcb(inp)((struct tcpcb *)(inp)->inp_ppcb);
728 if (tp == NULL((void *)0))
729 goto badsyn; /*XXX*/
730
731 }
732 break;
733
734 default:
735 /*
736 * None of RST, SYN or ACK was set.
737 * This is an invalid packet for a
738 * TCB in LISTEN state. Send a RST.
739 */
740 goto badsyn;
741
742 case TH_SYN0x02:
743 /*
744 * Received a SYN.
745 */
746#ifdef INET61
747 /*
748 * If deprecated address is forbidden, we do
749 * not accept SYN to deprecated interface
750 * address to prevent any new inbound
751 * connection from getting established.
752 * When we do not accept SYN, we send a TCP
753 * RST, with deprecated source address (instead
754 * of dropping it). We compromise it as it is
755 * much better for peer to send a RST, and
756 * RST will be the final packet for the
757 * exchange.
758 *
759 * If we do not forbid deprecated addresses, we
760 * accept the SYN packet. RFC2462 does not
761 * suggest dropping SYN in this case.
762 * If we decipher RFC2462 5.5.4, it says like
763 * this:
764 * 1. use of deprecated addr with existing
765 * communication is okay - "SHOULD continue
766 * to be used"
767 * 2. use of it with new communication:
768 * (2a) "SHOULD NOT be used if alternate
769 * address with sufficient scope is
770 * available"
771 * (2b) nothing mentioned otherwise.
772 * Here we fall into (2b) case as we have no
773 * choice in our source address selection - we
774 * must obey the peer.
775 *
776 * The wording in RFC2462 is confusing, and
777 * there are multiple description text for
778 * deprecated address handling - worse, they
779 * are not exactly the same. I believe 5.5.4
780 * is the best one, so we follow 5.5.4.
781 */
782 if (ip6 && !ip6_use_deprecated) {
783 struct in6_ifaddr *ia6;
784 struct ifnet *ifp =
785 if_get(m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx);
786
787 if (ifp &&
788 (ia6 = in6ifa_ifpwithaddr(ifp,
789 &ip6->ip6_dst)) &&
790 (ia6->ia6_flags &
791 IN6_IFF_DEPRECATED0x10)) {
792 tp = NULL((void *)0);
793 if_put(ifp);
794 goto dropwithreset;
795 }
796 if_put(ifp);
797 }
798#endif
799
800 /*
801 * LISTEN socket received a SYN
802 * from itself? This can't possibly
803 * be valid; drop the packet.
804 */
805 if (th->th_dport == th->th_sport) {
806 switch (af) {
807#ifdef INET61
808 case AF_INET624:
809 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,(__builtin_memcmp((&(&ip6->ip6_src)->__u6_addr.
__u6_addr8[0]), (&(&ip6->ip6_dst)->__u6_addr.__u6_addr8
[0]), (sizeof(struct in6_addr))) == 0)
810 &ip6->ip6_dst)(__builtin_memcmp((&(&ip6->ip6_src)->__u6_addr.
__u6_addr8[0]), (&(&ip6->ip6_dst)->__u6_addr.__u6_addr8
[0]), (sizeof(struct in6_addr))) == 0)
) {
811 tcpstat_inc(tcps_badsyn);
812 goto drop;
813 }
814 break;
815#endif /* INET6 */
816 case AF_INET2:
817 if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
818 tcpstat_inc(tcps_badsyn);
819 goto drop;
820 }
821 break;
822 }
823 }
824
825 /*
826 * SYN looks ok; create compressed TCP
827 * state for it.
828 */
829 if (so->so_qlen > so->so_qlimit ||
830 syn_cache_add(&src.sa, &dst.sa, th, iphlen,
831 so, m, optp, optlen, &opti, reuse) == -1) {
832 tcpstat_inc(tcps_dropsyn);
833 goto drop;
834 }
835 return IPPROTO_DONE257;
836 }
837 }
838 }
839
840#ifdef DIAGNOSTIC1
841 /*
842 * Should not happen now that all embryonic connections
843 * are handled with compressed state.
844 */
845 if (tp->t_state == TCPS_LISTEN1)
846 panic("tcp_input: TCPS_LISTEN");
847#endif
848
849#if NPF1 > 0
850 pf_inp_link(m, inp);
851#endif
852
853 /*
854 * Segment received on connection.
855 * Reset idle time and keep-alive timer.
856 */
857 tp->t_rcvtime = tcp_now;
858 if (TCPS_HAVEESTABLISHED(tp->t_state)((tp->t_state) >= 4))
859 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle)do { (((tp)->t_flags) |= (0x04000000 << (2))); timeout_add_msec
(&(tp)->t_timer[(2)], (tcp_keepidle) * 500); } while (
0)
;
860
861 if (tp->sack_enable)
862 tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
863
864 /*
865 * Process options.
866 */
867#ifdef TCP_SIGNATURE1
868 if (optp || (tp->t_flags & TF_SIGNATURE0x0400))
869#else
870 if (optp)
871#endif
872 if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti,
873 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid))
874 goto drop;
875
876 if (opti.ts_present && opti.ts_ecr) {
877 int rtt_test;
878
879 /* subtract out the tcp timestamp modulator */
880 opti.ts_ecr -= tp->ts_modulate;
881
882 /* make sure ts_ecr is sensible */
883 rtt_test = tcp_now - opti.ts_ecr;
884 if (rtt_test < 0 || rtt_test > TCP_RTT_MAX(1<<9))
885 opti.ts_ecr = 0;
886 }
887
888#ifdef TCP_ECN1
889 /* if congestion experienced, set ECE bit in subsequent packets. */
890 if ((iptos & IPTOS_ECN_MASK0x03) == IPTOS_ECN_CE0x03) {
891 tp->t_flags |= TF_RCVD_CE0x00010000;
892 tcpstat_inc(tcps_ecn_rcvce);
893 }
894#endif
895 /*
896 * Header prediction: check for the two common cases
897 * of a uni-directional data xfer. If the packet has
898 * no control flags, is in-sequence, the window didn't
899 * change and we're not retransmitting, it's a
900 * candidate. If the length is zero and the ack moved
901 * forward, we're the sender side of the xfer. Just
902 * free the data acked & wake any higher level process
903 * that was blocked waiting for space. If the length
904 * is non-zero and the ack didn't move, we're the
905 * receiver side. If we're getting packets in-order
906 * (the reassembly queue is empty), add the data to
907 * the socket buffer and note that we need a delayed ack.
908 */
909 if (tp->t_state == TCPS_ESTABLISHED4 &&
910#ifdef TCP_ECN1
911 (tiflags & (TH_SYN0x02|TH_FIN0x01|TH_RST0x04|TH_URG0x20|TH_ECE0x40|TH_CWR0x80|TH_ACK0x10)) == TH_ACK0x10 &&
912#else
913 (tiflags & (TH_SYN0x02|TH_FIN0x01|TH_RST0x04|TH_URG0x20|TH_ACK0x10)) == TH_ACK0x10 &&
914#endif
915 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)((int)((opti.ts_val)-(tp->ts_recent)) >= 0)) &&
916 th->th_seq == tp->rcv_nxt &&
917 tiwin && tiwin == tp->snd_wnd &&
918 tp->snd_nxt == tp->snd_max) {
919
920 /*
921 * If last ACK falls within this segment's sequence numbers,
922 * record the timestamp.
923 * Fix from Braden, see Stevens p. 870
924 */
925 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)((int)((th->th_seq)-(tp->last_ack_sent)) <= 0)) {
926 tp->ts_recent_age = tcp_now;
927 tp->ts_recent = opti.ts_val;
928 }
929
930 if (tlen == 0) {
931 if (SEQ_GT(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) > 0) &&
932 SEQ_LEQ(th->th_ack, tp->snd_max)((int)((th->th_ack)-(tp->snd_max)) <= 0) &&
933 tp->snd_cwnd >= tp->snd_wnd &&
934 tp->t_dupacks == 0) {
935 /*
936 * this is a pure ack for outstanding data.
937 */
938 tcpstat_inc(tcps_predack);
939 if (opti.ts_present && opti.ts_ecr)
940 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
941 else if (tp->t_rtttime &&
942 SEQ_GT(th->th_ack, tp->t_rtseq)((int)((th->th_ack)-(tp->t_rtseq)) > 0))
943 tcp_xmit_timer(tp,
944 tcp_now - tp->t_rtttime);
945 acked = th->th_ack - tp->snd_una;
946 tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte,
947 acked);
948 ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
;
949 sbdrop(so, &so->so_snd, acked);
950
951 /*
952 * If we had a pending ICMP message that
953 * refers to data that have just been
954 * acknowledged, disregard the recorded ICMP
955 * message.
956 */
957 if ((tp->t_flags & TF_PMTUD_PEND0x00400000) &&
958 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq)((int)((th->th_ack)-(tp->t_pmtud_th_seq)) > 0))
959 tp->t_flags &= ~TF_PMTUD_PEND0x00400000;
960
961 /*
962 * Keep track of the largest chunk of data
963 * acknowledged since last PMTU update
964 */
965 if (tp->t_pmtud_mss_acked < acked)
966 tp->t_pmtud_mss_acked = acked;
967
968 tp->snd_una = th->th_ack;
969 /* Pull snd_wl2 up to prevent seq wrap. */
970 tp->snd_wl2 = th->th_ack;
971 /*
972 * We want snd_last to track snd_una so
973 * as to avoid sequence wraparound problems
974 * for very large transfers.
975 */
976#ifdef TCP_ECN1
977 if (SEQ_GT(tp->snd_una, tp->snd_last)((int)((tp->snd_una)-(tp->snd_last)) > 0))
978#endif
979 tp->snd_last = tp->snd_una;
980 m_freem(m);
981
982 /*
983 * If all outstanding data are acked, stop
984 * retransmit timer, otherwise restart timer
985 * using current (possibly backed-off) value.
986 * If process is waiting for space,
987 * wakeup/selwakeup/signal. If data
988 * are ready to send, let tcp_output
989 * decide between more output or persist.
990 */
991 if (tp->snd_una == tp->snd_max)
992 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
993 else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST)(((tp)->t_flags) & (0x04000000 << (1))) == 0)
994 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur)do { (((tp)->t_flags) |= (0x04000000 << (0))); timeout_add_msec
(&(tp)->t_timer[(0)], (tp->t_rxtcur) * 500); } while
(0)
;
995
996 tcp_update_sndspace(tp);
997 if (sb_notify(so, &so->so_snd)) {
998 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
999 sowwakeup(so);
1000 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1001 }
1002 if (so->so_snd.sb_cc ||
1003 tp->t_flags & TF_NEEDOUTPUT0x00800000)
1004 (void) tcp_output(tp);
1005 return IPPROTO_DONE257;
1006 }
1007 } else if (th->th_ack == tp->snd_una &&
1008 TAILQ_EMPTY(&tp->t_segq)(((&tp->t_segq)->tqh_first) == ((void *)0)) &&
1009 tlen <= sbspace(so, &so->so_rcv)) {
1010 /*
1011 * This is a pure, in-sequence data packet
1012 * with nothing on the reassembly queue and
1013 * we have enough buffer space to take it.
1014 */
1015 /* Clean receiver SACK report if present */
1016 if (tp->sack_enable && tp->rcv_numsacks)
1017 tcp_clean_sackreport(tp);
1018 tcpstat_inc(tcps_preddat);
1019 tp->rcv_nxt += tlen;
1020 /* Pull snd_wl1 and rcv_up up to prevent seq wrap. */
1021 tp->snd_wl1 = th->th_seq;
1022 /* Packet has most recent segment, no urgent exists. */
1023 tp->rcv_up = tp->rcv_nxt;
1024 tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
1025 ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
;
1026
1027 TCP_SETUP_ACK(tp, tiflags, m)do { struct ifnet *ifp = ((void *)0); if (m && (m->
m_hdr.mh_flags & 0x0002)) ifp = if_get(m->M_dat.MH.MH_pkthdr
.ph_ifidx); if ((((tp)->t_flags) & (0x04000000 <<
(5))) || (tcp_ack_on_push && (tiflags) & 0x08) ||
(ifp && (ifp->if_flags & 0x8))) tp->t_flags
|= 0x0001; else do { (((tp)->t_flags) |= (0x04000000 <<
(5))); timeout_add_msec(&(tp)->t_timer[(5)], (tcp_delack_msecs
)); } while (0); if_put(ifp); } while (0)
;
1028 /*
1029 * Drop TCP, IP headers and TCP options then add data
1030 * to socket buffer.
1031 */
1032 if (so->so_state & SS_CANTRCVMORE0x020)
1033 m_freem(m);
1034 else {
1035 if (opti.ts_present && opti.ts_ecr) {
1036 if (tp->rfbuf_ts < opti.ts_ecr &&
1037 opti.ts_ecr - tp->rfbuf_ts < hz) {
1038 tcp_update_rcvspace(tp);
1039 /* Start over with next RTT. */
1040 tp->rfbuf_cnt = 0;
1041 tp->rfbuf_ts = 0;
1042 } else
1043 tp->rfbuf_cnt += tlen;
1044 }
1045 m_adj(m, iphlen + off);
1046 sbappendstream(so, &so->so_rcv, m);
1047 }
1048 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1049 sorwakeup(so);
1050 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1051 if (tp->t_flags & (TF_ACKNOW0x0001|TF_NEEDOUTPUT0x00800000))
1052 (void) tcp_output(tp);
1053 return IPPROTO_DONE257;
1054 }
1055 }
1056
1057 /*
1058 * Compute mbuf offset to TCP data segment.
1059 */
1060 hdroptlen = iphlen + off;
1061
1062 /*
1063 * Calculate amount of space in receive window,
1064 * and then do TCP input processing.
1065 * Receive window is amount of space in rcv queue,
1066 * but not less than advertised window.
1067 */
1068 { int win;
1069
1070 win = sbspace(so, &so->so_rcv);
1071 if (win < 0)
1072 win = 0;
1073 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1074 }
1075
1076 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1077 tp->rfbuf_cnt = 0;
1078 tp->rfbuf_ts = 0;
1079
1080 switch (tp->t_state) {
1081
1082 /*
1083 * If the state is SYN_RECEIVED:
1084 * if seg contains SYN/ACK, send an RST.
1085 * if seg contains an ACK, but not for our SYN/ACK, send an RST
1086 */
1087
1088 case TCPS_SYN_RECEIVED3:
1089 if (tiflags & TH_ACK0x10) {
1090 if (tiflags & TH_SYN0x02) {
1091 tcpstat_inc(tcps_badsyn);
1092 goto dropwithreset;
1093 }
1094 if (SEQ_LEQ(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) <= 0) ||
1095 SEQ_GT(th->th_ack, tp->snd_max)((int)((th->th_ack)-(tp->snd_max)) > 0))
1096 goto dropwithreset;
1097 }
1098 break;
1099
1100 /*
1101 * If the state is SYN_SENT:
1102 * if seg contains an ACK, but not for our SYN, drop the input.
1103 * if seg contains a RST, then drop the connection.
1104 * if seg does not contain SYN, then drop it.
1105 * Otherwise this is an acceptable SYN segment
1106 * initialize tp->rcv_nxt and tp->irs
1107 * if seg contains ack then advance tp->snd_una
1108 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1109 * arrange for segment to be acked (eventually)
1110 * continue processing rest of data/controls, beginning with URG
1111 */
1112 case TCPS_SYN_SENT2:
1113 if ((tiflags & TH_ACK0x10) &&
1114 (SEQ_LEQ(th->th_ack, tp->iss)((int)((th->th_ack)-(tp->iss)) <= 0) ||
1115 SEQ_GT(th->th_ack, tp->snd_max)((int)((th->th_ack)-(tp->snd_max)) > 0)))
1116 goto dropwithreset;
1117 if (tiflags & TH_RST0x04) {
1118#ifdef TCP_ECN1
1119 /* if ECN is enabled, fall back to non-ecn at rexmit */
1120 if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN0x00040000))
1121 goto drop;
1122#endif
1123 if (tiflags & TH_ACK0x10)
1124 tp = tcp_drop(tp, ECONNREFUSED61);
1125 goto drop;
1126 }
1127 if ((tiflags & TH_SYN0x02) == 0)
1128 goto drop;
1129 if (tiflags & TH_ACK0x10) {
1130 tp->snd_una = th->th_ack;
1131 if (SEQ_LT(tp->snd_nxt, tp->snd_una)((int)((tp->snd_nxt)-(tp->snd_una)) < 0))
1132 tp->snd_nxt = tp->snd_una;
1133 }
1134 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
1135 tp->irs = th->th_seq;
1136 tcp_mss(tp, opti.maxseg);
1137 /* Reset initial window to 1 segment for retransmit */
1138 if (tp->t_rxtshift > 0)
1139 tp->snd_cwnd = tp->t_maxseg;
1140 tcp_rcvseqinit(tp)(tp)->rcv_adv = (tp)->rcv_nxt = (tp)->irs + 1;
1141 tp->t_flags |= TF_ACKNOW0x0001;
1142 /*
1143 * If we've sent a SACK_PERMITTED option, and the peer
1144 * also replied with one, then TF_SACK_PERMIT should have
1145 * been set in tcp_dooptions(). If it was not, disable SACKs.
1146 */
1147 if (tp->sack_enable)
1148 tp->sack_enable = tp->t_flags & TF_SACK_PERMIT0x0200;
1149#ifdef TCP_ECN1
1150 /*
1151 * if ECE is set but CWR is not set for SYN-ACK, or
1152 * both ECE and CWR are set for simultaneous open,
1153 * peer is ECN capable.
1154 */
1155 if (tcp_do_ecn) {
1156 switch (tiflags & (TH_ACK0x10|TH_ECE0x40|TH_CWR0x80)) {
1157 case TH_ACK0x10|TH_ECE0x40:
1158 case TH_ECE0x40|TH_CWR0x80:
1159 tp->t_flags |= TF_ECN_PERMIT0x00008000;
1160 tiflags &= ~(TH_ECE0x40|TH_CWR0x80);
1161 tcpstat_inc(tcps_ecn_accepts);
1162 }
1163 }
1164#endif
1165
1166 if (tiflags & TH_ACK0x10 && SEQ_GT(tp->snd_una, tp->iss)((int)((tp->snd_una)-(tp->iss)) > 0)) {
1167 tcpstat_inc(tcps_connects);
1168 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1169 soisconnected(so);
1170 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1171 tp->t_state = TCPS_ESTABLISHED4;
1172 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle)do { (((tp)->t_flags) |= (0x04000000 << (2))); timeout_add_msec
(&(tp)->t_timer[(2)], (tcp_keepidle) * 500); } while (
0)
;
1173 /* Do window scaling on this connection? */
1174 if ((tp->t_flags & (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) ==
1175 (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) {
1176 tp->snd_scale = tp->requested_s_scale;
1177 tp->rcv_scale = tp->request_r_scale;
1178 }
1179 tcp_flush_queue(tp);
1180
1181 /*
1182 * if we didn't have to retransmit the SYN,
1183 * use its rtt as our initial srtt & rtt var.
1184 */
1185 if (tp->t_rtttime)
1186 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1187 /*
1188 * Since new data was acked (the SYN), open the
1189 * congestion window by one MSS. We do this
1190 * here, because we won't go through the normal
1191 * ACK processing below. And since this is the
1192 * start of the connection, we know we are in
1193 * the exponential phase of slow-start.
1194 */
1195 tp->snd_cwnd += tp->t_maxseg;
1196 } else
1197 tp->t_state = TCPS_SYN_RECEIVED3;
1198
1199#if 0
1200trimthenstep6:
1201#endif
1202 /*
1203 * Advance th->th_seq to correspond to first data byte.
1204 * If data, trim to stay within window,
1205 * dropping FIN if necessary.
1206 */
1207 th->th_seq++;
1208 if (tlen > tp->rcv_wnd) {
1209 todrop = tlen - tp->rcv_wnd;
1210 m_adj(m, -todrop);
1211 tlen = tp->rcv_wnd;
1212 tiflags &= ~TH_FIN0x01;
1213 tcpstat_pkt(tcps_rcvpackafterwin, tcps_rcvbyteafterwin,
1214 todrop);
1215 }
1216 tp->snd_wl1 = th->th_seq - 1;
1217 tp->rcv_up = th->th_seq;
1218 goto step6;
1219 /*
1220 * If a new connection request is received while in TIME_WAIT,
1221 * drop the old connection and start over if the if the
1222 * timestamp or the sequence numbers are above the previous
1223 * ones.
1224 */
1225 case TCPS_TIME_WAIT10:
1226 if (((tiflags & (TH_SYN0x02|TH_ACK0x10)) == TH_SYN0x02) &&
1227 ((opti.ts_present &&
1228 TSTMP_LT(tp->ts_recent, opti.ts_val)((int)((tp->ts_recent)-(opti.ts_val)) < 0)) ||
1229 SEQ_GT(th->th_seq, tp->rcv_nxt)((int)((th->th_seq)-(tp->rcv_nxt)) > 0))) {
1230#if NPF1 > 0
1231 /*
1232 * The socket will be recreated but the new state
1233 * has already been linked to the socket. Remove the
1234 * link between old socket and new state.
1235 */
1236 pf_inp_unlink(inp);
1237#endif
1238 /*
1239 * Advance the iss by at least 32768, but
1240 * clear the msb in order to make sure
1241 * that SEG_LT(snd_nxt, iss).
1242 */
1243 iss = tp->snd_nxt +
1244 ((arc4random() & 0x7fffffff) | 0x8000);
1245 reuse = &iss;
1246 tp = tcp_close(tp);
1247 inp = NULL((void *)0);
1248 goto findpcb;
1249 }
1250 }
1251
1252 /*
1253 * States other than LISTEN or SYN_SENT.
1254 * First check timestamp, if present.
1255 * Then check that at least some bytes of segment are within
1256 * receive window. If segment begins before rcv_nxt,
1257 * drop leading data (and SYN); if nothing left, just ack.
1258 *
1259 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1260 * and it's less than opti.ts_recent, drop it.
1261 */
1262 if (opti.ts_present && (tiflags & TH_RST0x04) == 0 && tp->ts_recent &&
1263 TSTMP_LT(opti.ts_val, tp->ts_recent)((int)((opti.ts_val)-(tp->ts_recent)) < 0)) {
1264
1265 /* Check to see if ts_recent is over 24 days old. */
1266 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE(24 * 24 * 60 * 60 * 2)) {
1267 /*
1268 * Invalidate ts_recent. If this segment updates
1269 * ts_recent, the age will be reset later and ts_recent
1270 * will get a valid value. If it does not, setting
1271 * ts_recent to zero will at least satisfy the
1272 * requirement that zero be placed in the timestamp
1273 * echo reply when ts_recent isn't valid. The
1274 * age isn't reset until we get a valid ts_recent
1275 * because we don't want out-of-order segments to be
1276 * dropped when ts_recent is old.
1277 */
1278 tp->ts_recent = 0;
1279 } else {
1280 tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, tlen);
1281 tcpstat_inc(tcps_pawsdrop);
1282 if (tlen)
1283 goto dropafterack;
1284 goto drop;
1285 }
1286 }
1287
1288 todrop = tp->rcv_nxt - th->th_seq;
1289 if (todrop > 0) {
1290 if (tiflags & TH_SYN0x02) {
1291 tiflags &= ~TH_SYN0x02;
1292 th->th_seq++;
1293 if (th->th_urp > 1)
1294 th->th_urp--;
1295 else
1296 tiflags &= ~TH_URG0x20;
1297 todrop--;
1298 }
1299 if (todrop > tlen ||
1300 (todrop == tlen && (tiflags & TH_FIN0x01) == 0)) {
1301 /*
1302 * Any valid FIN must be to the left of the
1303 * window. At this point, FIN must be a
1304 * duplicate or out-of-sequence, so drop it.
1305 */
1306 tiflags &= ~TH_FIN0x01;
1307 /*
1308 * Send ACK to resynchronize, and drop any data,
1309 * but keep on processing for RST or ACK.
1310 */
1311 tp->t_flags |= TF_ACKNOW0x0001;
1312 todrop = tlen;
1313 tcpstat_pkt(tcps_rcvduppack, tcps_rcvdupbyte, todrop);
1314 } else {
1315 tcpstat_pkt(tcps_rcvpartduppack, tcps_rcvpartdupbyte,
1316 todrop);
1317 }
1318 hdroptlen += todrop; /* drop from head afterwards */
1319 th->th_seq += todrop;
1320 tlen -= todrop;
1321 if (th->th_urp > todrop)
1322 th->th_urp -= todrop;
1323 else {
1324 tiflags &= ~TH_URG0x20;
1325 th->th_urp = 0;
1326 }
1327 }
1328
1329 /*
1330 * If new data are received on a connection after the
1331 * user processes are gone, then RST the other end.
1332 */
1333 if ((so->so_state & SS_NOFDREF0x001) &&
1334 tp->t_state > TCPS_CLOSE_WAIT5 && tlen) {
1335 tp = tcp_close(tp);
1336 tcpstat_inc(tcps_rcvafterclose);
1337 goto dropwithreset;
1338 }
1339
1340 /*
1341 * If segment ends after window, drop trailing data
1342 * (and PUSH and FIN); if nothing left, just ACK.
1343 */
1344 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1345 if (todrop > 0) {
1346 tcpstat_inc(tcps_rcvpackafterwin);
1347 if (todrop >= tlen) {
1348 tcpstat_add(tcps_rcvbyteafterwin, tlen);
1349 /*
1350 * If window is closed can only take segments at
1351 * window edge, and have to drop data and PUSH from
1352 * incoming segments. Continue processing, but
1353 * remember to ack. Otherwise, drop segment
1354 * and ack.
1355 */
1356 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1357 tp->t_flags |= TF_ACKNOW0x0001;
1358 tcpstat_inc(tcps_rcvwinprobe);
1359 } else
1360 goto dropafterack;
1361 } else
1362 tcpstat_add(tcps_rcvbyteafterwin, todrop);
1363 m_adj(m, -todrop);
1364 tlen -= todrop;
1365 tiflags &= ~(TH_PUSH0x08|TH_FIN0x01);
1366 }
1367
1368 /*
1369 * If last ACK falls within this segment's sequence numbers,
1370 * record its timestamp if it's more recent.
1371 * NOTE that the test is modified according to the latest
1372 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1373 */
1374 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent)((int)((opti.ts_val)-(tp->ts_recent)) >= 0) &&
1375 SEQ_LEQ(th->th_seq, tp->last_ack_sent)((int)((th->th_seq)-(tp->last_ack_sent)) <= 0)) {
1376 tp->ts_recent_age = tcp_now;
1377 tp->ts_recent = opti.ts_val;
1378 }
1379
1380 /*
1381 * If the RST bit is set examine the state:
1382 * SYN_RECEIVED STATE:
1383 * If passive open, return to LISTEN state.
1384 * If active open, inform user that connection was refused.
1385 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1386 * Inform user that connection was reset, and close tcb.
1387 * CLOSING, LAST_ACK, TIME_WAIT STATES
1388 * Close the tcb.
1389 */
1390 if (tiflags & TH_RST0x04) {
1391 if (th->th_seq != tp->last_ack_sent &&
1392 th->th_seq != tp->rcv_nxt &&
1393 th->th_seq != (tp->rcv_nxt + 1))
1394 goto drop;
1395
1396 switch (tp->t_state) {
1397 case TCPS_SYN_RECEIVED3:
1398#ifdef TCP_ECN1
1399 /* if ECN is enabled, fall back to non-ecn at rexmit */
1400 if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN0x00040000))
1401 goto drop;
1402#endif
1403 so->so_error = ECONNREFUSED61;
1404 goto close;
1405
1406 case TCPS_ESTABLISHED4:
1407 case TCPS_FIN_WAIT_16:
1408 case TCPS_FIN_WAIT_29:
1409 case TCPS_CLOSE_WAIT5:
1410 so->so_error = ECONNRESET54;
1411 close:
1412 tp->t_state = TCPS_CLOSED0;
1413 tcpstat_inc(tcps_drops);
1414 tp = tcp_close(tp);
1415 goto drop;
1416 case TCPS_CLOSING7:
1417 case TCPS_LAST_ACK8:
1418 case TCPS_TIME_WAIT10:
1419 tp = tcp_close(tp);
1420 goto drop;
1421 }
1422 }
1423
1424 /*
1425 * If a SYN is in the window, then this is an
1426 * error and we ACK and drop the packet.
1427 */
1428 if (tiflags & TH_SYN0x02)
1429 goto dropafterack_ratelim;
1430
1431 /*
1432 * If the ACK bit is off we drop the segment and return.
1433 */
1434 if ((tiflags & TH_ACK0x10) == 0) {
1435 if (tp->t_flags & TF_ACKNOW0x0001)
1436 goto dropafterack;
1437 else
1438 goto drop;
1439 }
1440
1441 /*
1442 * Ack processing.
1443 */
1444 switch (tp->t_state) {
1445
1446 /*
1447 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1448 * ESTABLISHED state and continue processing.
1449 * The ACK was checked above.
1450 */
1451 case TCPS_SYN_RECEIVED3:
1452 tcpstat_inc(tcps_connects);
1453 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1454 soisconnected(so);
1455 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1456 tp->t_state = TCPS_ESTABLISHED4;
1457 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle)do { (((tp)->t_flags) |= (0x04000000 << (2))); timeout_add_msec
(&(tp)->t_timer[(2)], (tcp_keepidle) * 500); } while (
0)
;
1458 /* Do window scaling? */
1459 if ((tp->t_flags & (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) ==
1460 (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) {
1461 tp->snd_scale = tp->requested_s_scale;
1462 tp->rcv_scale = tp->request_r_scale;
1463 tiwin = th->th_win << tp->snd_scale;
1464 }
1465 tcp_flush_queue(tp);
1466 tp->snd_wl1 = th->th_seq - 1;
1467 /* fall into ... */
1468
1469 /*
1470 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1471 * ACKs. If the ack is in the range
1472 * tp->snd_una < th->th_ack <= tp->snd_max
1473 * then advance tp->snd_una to th->th_ack and drop
1474 * data from the retransmission queue. If this ACK reflects
1475 * more up to date window information we update our window information.
1476 */
1477 case TCPS_ESTABLISHED4:
1478 case TCPS_FIN_WAIT_16:
1479 case TCPS_FIN_WAIT_29:
1480 case TCPS_CLOSE_WAIT5:
1481 case TCPS_CLOSING7:
1482 case TCPS_LAST_ACK8:
1483 case TCPS_TIME_WAIT10:
1484#ifdef TCP_ECN1
1485 /*
1486 * if we receive ECE and are not already in recovery phase,
1487 * reduce cwnd by half but don't slow-start.
1488 * advance snd_last to snd_max not to reduce cwnd again
1489 * until all outstanding packets are acked.
1490 */
1491 if (tcp_do_ecn && (tiflags & TH_ECE0x40)) {
1492 if ((tp->t_flags & TF_ECN_PERMIT0x00008000) &&
1493 SEQ_GEQ(tp->snd_una, tp->snd_last)((int)((tp->snd_una)-(tp->snd_last)) >= 0)) {
1494 u_int win;
1495
1496 win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1497 if (win > 1) {
1498 tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1499 tp->snd_cwnd = tp->snd_ssthresh;
1500 tp->snd_last = tp->snd_max;
1501 tp->t_flags |= TF_SEND_CWR0x00020000;
1502 tcpstat_inc(tcps_cwr_ecn);
1503 }
1504 }
1505 tcpstat_inc(tcps_ecn_rcvece);
1506 }
1507 /*
1508 * if we receive CWR, we know that the peer has reduced
1509 * its congestion window. stop sending ecn-echo.
1510 */
1511 if ((tiflags & TH_CWR0x80)) {
1512 tp->t_flags &= ~TF_RCVD_CE0x00010000;
1513 tcpstat_inc(tcps_ecn_rcvcwr);
1514 }
1515#endif /* TCP_ECN */
1516
1517 if (SEQ_LEQ(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) <= 0)) {
1518 /*
1519 * Duplicate/old ACK processing.
1520 * Increments t_dupacks:
1521 * Pure duplicate (same seq/ack/window, no data)
1522 * Doesn't affect t_dupacks:
1523 * Data packets.
1524 * Normal window updates (window opens)
1525 * Resets t_dupacks:
1526 * New data ACKed.
1527 * Window shrinks
1528 * Old ACK
1529 */
1530 if (tlen) {
1531 /* Drop very old ACKs unless th_seq matches */
1532 if (th->th_seq != tp->rcv_nxt &&
1533 SEQ_LT(th->th_ack,((int)((th->th_ack)-(tp->snd_una - tp->max_sndwnd)) <
0)
1534 tp->snd_una - tp->max_sndwnd)((int)((th->th_ack)-(tp->snd_una - tp->max_sndwnd)) <
0)
) {
1535 tcpstat_inc(tcps_rcvacktooold);
1536 goto drop;
1537 }
1538 break;
1539 }
1540 /*
1541 * If we get an old ACK, there is probably packet
1542 * reordering going on. Be conservative and reset
1543 * t_dupacks so that we are less aggressive in
1544 * doing a fast retransmit.
1545 */
1546 if (th->th_ack != tp->snd_una) {
1547 tp->t_dupacks = 0;
1548 break;
1549 }
1550 if (tiwin == tp->snd_wnd) {
1551 tcpstat_inc(tcps_rcvdupack);
1552 /*
1553 * If we have outstanding data (other than
1554 * a window probe), this is a completely
1555 * duplicate ack (ie, window info didn't
1556 * change), the ack is the biggest we've
1557 * seen and we've seen exactly our rexmt
1558 * threshold of them, assume a packet
1559 * has been dropped and retransmit it.
1560 * Kludge snd_nxt & the congestion
1561 * window so we send only this one
1562 * packet.
1563 *
1564 * We know we're losing at the current
1565 * window size so do congestion avoidance
1566 * (set ssthresh to half the current window
1567 * and pull our congestion window back to
1568 * the new ssthresh).
1569 *
1570 * Dup acks mean that packets have left the
1571 * network (they're now cached at the receiver)
1572 * so bump cwnd by the amount in the receiver
1573 * to keep a constant cwnd packets in the
1574 * network.
1575 */
1576 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT)(((tp)->t_flags) & (0x04000000 << (0))) == 0)
1577 tp->t_dupacks = 0;
1578 else if (++tp->t_dupacks == tcprexmtthresh) {
1579 tcp_seq onxt = tp->snd_nxt;
1580 u_long win =
1581 ulmin(tp->snd_wnd, tp->snd_cwnd) /
1582 2 / tp->t_maxseg;
1583
1584 if (SEQ_LT(th->th_ack, tp->snd_last)((int)((th->th_ack)-(tp->snd_last)) < 0)){
1585 /*
1586 * False fast retx after
1587 * timeout. Do not cut window.
1588 */
1589 tp->t_dupacks = 0;
1590 goto drop;
1591 }
1592 if (win < 2)
1593 win = 2;
1594 tp->snd_ssthresh = win * tp->t_maxseg;
1595 tp->snd_last = tp->snd_max;
1596 if (tp->sack_enable) {
1597 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
1598 tp->t_rtttime = 0;
1599#ifdef TCP_ECN1
1600 tp->t_flags |= TF_SEND_CWR0x00020000;
1601#endif
1602 tcpstat_inc(tcps_cwr_frecovery);
1603 tcpstat_inc(tcps_sack_recovery_episode);
1604 /*
1605 * tcp_output() will send
1606 * oldest SACK-eligible rtx.
1607 */
1608 (void) tcp_output(tp);
1609 tp->snd_cwnd = tp->snd_ssthresh+
1610 tp->t_maxseg * tp->t_dupacks;
1611 goto drop;
1612 }
1613 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
1614 tp->t_rtttime = 0;
1615 tp->snd_nxt = th->th_ack;
1616 tp->snd_cwnd = tp->t_maxseg;
1617#ifdef TCP_ECN1
1618 tp->t_flags |= TF_SEND_CWR0x00020000;
1619#endif
1620 tcpstat_inc(tcps_cwr_frecovery);
1621 tcpstat_inc(tcps_sndrexmitfast);
1622 (void) tcp_output(tp);
1623
1624 tp->snd_cwnd = tp->snd_ssthresh +
1625 tp->t_maxseg * tp->t_dupacks;
1626 if (SEQ_GT(onxt, tp->snd_nxt)((int)((onxt)-(tp->snd_nxt)) > 0))
1627 tp->snd_nxt = onxt;
1628 goto drop;
1629 } else if (tp->t_dupacks > tcprexmtthresh) {
1630 tp->snd_cwnd += tp->t_maxseg;
1631 (void) tcp_output(tp);
1632 goto drop;
1633 }
1634 } else if (tiwin < tp->snd_wnd) {
1635 /*
1636 * The window was retracted! Previous dup
1637 * ACKs may have been due to packets arriving
1638 * after the shrunken window, not a missing
1639 * packet, so play it safe and reset t_dupacks
1640 */
1641 tp->t_dupacks = 0;
1642 }
1643 break;
1644 }
1645 /*
1646 * If the congestion window was inflated to account
1647 * for the other side's cached packets, retract it.
1648 */
1649 if (tp->t_dupacks >= tcprexmtthresh) {
1650 /* Check for a partial ACK */
1651 if (SEQ_LT(th->th_ack, tp->snd_last)((int)((th->th_ack)-(tp->snd_last)) < 0)) {
1652 if (tp->sack_enable)
1653 tcp_sack_partialack(tp, th);
1654 else
1655 tcp_newreno_partialack(tp, th);
1656 } else {
1657 /* Out of fast recovery */
1658 tp->snd_cwnd = tp->snd_ssthresh;
1659 if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1660 tp->snd_ssthresh)
1661 tp->snd_cwnd =
1662 tcp_seq_subtract(tp->snd_max,
1663 th->th_ack);
1664 tp->t_dupacks = 0;
1665 }
1666 } else {
1667 /*
1668 * Reset the duplicate ACK counter if we
1669 * were not in fast recovery.
1670 */
1671 tp->t_dupacks = 0;
1672 }
1673 if (SEQ_GT(th->th_ack, tp->snd_max)((int)((th->th_ack)-(tp->snd_max)) > 0)) {
1674 tcpstat_inc(tcps_rcvacktoomuch);
1675 goto dropafterack_ratelim;
1676 }
1677 acked = th->th_ack - tp->snd_una;
1678 tcpstat_pkt(tcps_rcvackpack, tcps_rcvackbyte, acked);
1679
1680 /*
1681 * If we have a timestamp reply, update smoothed
1682 * round trip time. If no timestamp is present but
1683 * transmit timer is running and timed sequence
1684 * number was acked, update smoothed round trip time.
1685 * Since we now have an rtt measurement, cancel the
1686 * timer backoff (cf., Phil Karn's retransmit alg.).
1687 * Recompute the initial retransmit timer.
1688 */
1689 if (opti.ts_present && opti.ts_ecr)
1690 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1691 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)((int)((th->th_ack)-(tp->t_rtseq)) > 0))
1692 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1693
1694 /*
1695 * If all outstanding data is acked, stop retransmit
1696 * timer and remember to restart (more output or persist).
1697 * If there is more data to be acked, restart retransmit
1698 * timer, using current (possibly backed-off) value.
1699 */
1700 if (th->th_ack == tp->snd_max) {
1701 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
1702 tp->t_flags |= TF_NEEDOUTPUT0x00800000;
1703 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST)(((tp)->t_flags) & (0x04000000 << (1))) == 0)
1704 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur)do { (((tp)->t_flags) |= (0x04000000 << (0))); timeout_add_msec
(&(tp)->t_timer[(0)], (tp->t_rxtcur) * 500); } while
(0)
;
1705 /*
1706 * When new data is acked, open the congestion window.
1707 * If the window gives us less than ssthresh packets
1708 * in flight, open exponentially (maxseg per packet).
1709 * Otherwise open linearly: maxseg per window
1710 * (maxseg^2 / cwnd per packet).
1711 */
1712 {
1713 u_int cw = tp->snd_cwnd;
1714 u_int incr = tp->t_maxseg;
1715
1716 if (cw > tp->snd_ssthresh)
1717 incr = max(incr * incr / cw, 1);
1718 if (tp->t_dupacks < tcprexmtthresh)
1719 tp->snd_cwnd = ulmin(cw + incr,
1720 TCP_MAXWIN65535 << tp->snd_scale);
1721 }
1722 ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
;
1723 if (acked > so->so_snd.sb_cc) {
1724 if (tp->snd_wnd > so->so_snd.sb_cc)
1725 tp->snd_wnd -= so->so_snd.sb_cc;
1726 else
1727 tp->snd_wnd = 0;
1728 sbdrop(so, &so->so_snd, (int)so->so_snd.sb_cc);
1729 ourfinisacked = 1;
1730 } else {
1731 sbdrop(so, &so->so_snd, acked);
1732 if (tp->snd_wnd > acked)
1733 tp->snd_wnd -= acked;
1734 else
1735 tp->snd_wnd = 0;
1736 ourfinisacked = 0;
1737 }
1738
1739 tcp_update_sndspace(tp);
1740 if (sb_notify(so, &so->so_snd)) {
1741 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1742 sowwakeup(so);
1743 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1744 }
1745
1746 /*
1747 * If we had a pending ICMP message that referred to data
1748 * that have just been acknowledged, disregard the recorded
1749 * ICMP message.
1750 */
1751 if ((tp->t_flags & TF_PMTUD_PEND0x00400000) &&
1752 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq)((int)((th->th_ack)-(tp->t_pmtud_th_seq)) > 0))
1753 tp->t_flags &= ~TF_PMTUD_PEND0x00400000;
1754
1755 /*
1756 * Keep track of the largest chunk of data acknowledged
1757 * since last PMTU update
1758 */
1759 if (tp->t_pmtud_mss_acked < acked)
1760 tp->t_pmtud_mss_acked = acked;
1761
1762 tp->snd_una = th->th_ack;
1763#ifdef TCP_ECN1
1764 /* sync snd_last with snd_una */
1765 if (SEQ_GT(tp->snd_una, tp->snd_last)((int)((tp->snd_una)-(tp->snd_last)) > 0))
1766 tp->snd_last = tp->snd_una;
1767#endif
1768 if (SEQ_LT(tp->snd_nxt, tp->snd_una)((int)((tp->snd_nxt)-(tp->snd_una)) < 0))
1769 tp->snd_nxt = tp->snd_una;
1770
1771 switch (tp->t_state) {
1772
1773 /*
1774 * In FIN_WAIT_1 STATE in addition to the processing
1775 * for the ESTABLISHED state if our FIN is now acknowledged
1776 * then enter FIN_WAIT_2.
1777 */
1778 case TCPS_FIN_WAIT_16:
1779 if (ourfinisacked) {
1780 /*
1781 * If we can't receive any more
1782 * data, then closing user can proceed.
1783 * Starting the timer is contrary to the
1784 * specification, but if we don't get a FIN
1785 * we'll hang forever.
1786 */
1787 if (so->so_state & SS_CANTRCVMORE0x020) {
1788 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1789 soisdisconnected(so);
1790 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1791 TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle)do { (((tp)->t_flags) |= (0x04000000 << (3))); timeout_add_msec
(&(tp)->t_timer[(3)], (tcp_maxidle) * 500); } while (0
)
;
1792 }
1793 tp->t_state = TCPS_FIN_WAIT_29;
1794 }
1795 break;
1796
1797 /*
1798 * In CLOSING STATE in addition to the processing for
1799 * the ESTABLISHED state if the ACK acknowledges our FIN
1800 * then enter the TIME-WAIT state, otherwise ignore
1801 * the segment.
1802 */
1803 case TCPS_CLOSING7:
1804 if (ourfinisacked) {
1805 tp->t_state = TCPS_TIME_WAIT10;
1806 tcp_canceltimers(tp);
1807 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL)do { (((tp)->t_flags) |= (0x04000000 << (3))); timeout_add_msec
(&(tp)->t_timer[(3)], (2 * ( 30*2)) * 500); } while (0
)
;
1808 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1809 soisdisconnected(so);
1810 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1811 }
1812 break;
1813
1814 /*
1815 * In LAST_ACK, we may still be waiting for data to drain
1816 * and/or to be acked, as well as for the ack of our FIN.
1817 * If our FIN is now acknowledged, delete the TCB,
1818 * enter the closed state and return.
1819 */
1820 case TCPS_LAST_ACK8:
1821 if (ourfinisacked) {
1822 tp = tcp_close(tp);
1823 goto drop;
1824 }
1825 break;
1826
1827 /*
1828 * In TIME_WAIT state the only thing that should arrive
1829 * is a retransmission of the remote FIN. Acknowledge
1830 * it and restart the finack timer.
1831 */
1832 case TCPS_TIME_WAIT10:
1833 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL)do { (((tp)->t_flags) |= (0x04000000 << (3))); timeout_add_msec
(&(tp)->t_timer[(3)], (2 * ( 30*2)) * 500); } while (0
)
;
1834 goto dropafterack;
1835 }
1836 }
1837
1838step6:
1839 /*
1840 * Update window information.
1841 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1842 */
1843 if ((tiflags & TH_ACK0x10) &&
1844 (SEQ_LT(tp->snd_wl1, th->th_seq)((int)((tp->snd_wl1)-(th->th_seq)) < 0) || (tp->snd_wl1 == th->th_seq &&
1845 (SEQ_LT(tp->snd_wl2, th->th_ack)((int)((tp->snd_wl2)-(th->th_ack)) < 0) ||
1846 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1847 /* keep track of pure window updates */
1848 if (tlen == 0 &&
1849 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1850 tcpstat_inc(tcps_rcvwinupd);
1851 tp->snd_wnd = tiwin;
1852 tp->snd_wl1 = th->th_seq;
1853 tp->snd_wl2 = th->th_ack;
1854 if (tp->snd_wnd > tp->max_sndwnd)
1855 tp->max_sndwnd = tp->snd_wnd;
1856 tp->t_flags |= TF_NEEDOUTPUT0x00800000;
1857 }
1858
1859 /*
1860 * Process segments with URG.
1861 */
1862 if ((tiflags & TH_URG0x20) && th->th_urp &&
1863 TCPS_HAVERCVDFIN(tp->t_state)((tp->t_state) >= 10) == 0) {
1864 /*
1865 * This is a kludge, but if we receive and accept
1866 * random urgent pointers, we'll crash in
1867 * soreceive. It's hard to imagine someone
1868 * actually wanting to send this much urgent data.
1869 */
1870 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1871 th->th_urp = 0; /* XXX */
1872 tiflags &= ~TH_URG0x20; /* XXX */
1873 goto dodata; /* XXX */
1874 }
1875 /*
1876 * If this segment advances the known urgent pointer,
1877 * then mark the data stream. This should not happen
1878 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1879 * a FIN has been received from the remote side.
1880 * In these states we ignore the URG.
1881 *
1882 * According to RFC961 (Assigned Protocols),
1883 * the urgent pointer points to the last octet
1884 * of urgent data. We continue, however,
1885 * to consider it to indicate the first octet
1886 * of data past the urgent section as the original
1887 * spec states (in one of two places).
1888 */
1889 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)((int)((th->th_seq+th->th_urp)-(tp->rcv_up)) > 0)) {
1890 tp->rcv_up = th->th_seq + th->th_urp;
1891 so->so_oobmark = so->so_rcv.sb_cc +
1892 (tp->rcv_up - tp->rcv_nxt) - 1;
1893 if (so->so_oobmark == 0)
1894 so->so_state |= SS_RCVATMARK0x040;
1895 sohasoutofband(so);
1896 tp->t_oobflags &= ~(TCPOOB_HAVEDATA0x01 | TCPOOB_HADDATA0x02);
1897 }
1898 /*
1899 * Remove out of band data so doesn't get presented to user.
1900 * This can happen independent of advancing the URG pointer,
1901 * but if two URG's are pending at once, some out-of-band
1902 * data may creep in... ick.
1903 */
1904 if (th->th_urp <= (u_int16_t) tlen &&
1905 (so->so_options & SO_OOBINLINE0x0100) == 0)
1906 tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
1907 } else
1908 /*
1909 * If no out of band data is expected,
1910 * pull receive urgent pointer along
1911 * with the receive window.
1912 */
1913 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)((int)((tp->rcv_nxt)-(tp->rcv_up)) > 0))
1914 tp->rcv_up = tp->rcv_nxt;
1915dodata: /* XXX */
1916
1917 /*
1918 * Process the segment text, merging it into the TCP sequencing queue,
1919 * and arranging for acknowledgment of receipt if necessary.
1920 * This process logically involves adjusting tp->rcv_wnd as data
1921 * is presented to the user (this happens in tcp_usrreq.c,
1922 * case PRU_RCVD). If a FIN has already been received on this
1923 * connection then we just ignore the text.
1924 */
1925 if ((tlen || (tiflags & TH_FIN0x01)) &&
1926 TCPS_HAVERCVDFIN(tp->t_state)((tp->t_state) >= 10) == 0) {
1927 tcp_seq laststart = th->th_seq;
1928 tcp_seq lastend = th->th_seq + tlen;
1929
1930 if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq)(((&tp->t_segq)->tqh_first) == ((void *)0)) &&
1931 tp->t_state == TCPS_ESTABLISHED4) {
1932 TCP_SETUP_ACK(tp, tiflags, m)do { struct ifnet *ifp = ((void *)0); if (m && (m->
m_hdr.mh_flags & 0x0002)) ifp = if_get(m->M_dat.MH.MH_pkthdr
.ph_ifidx); if ((((tp)->t_flags) & (0x04000000 <<
(5))) || (tcp_ack_on_push && (tiflags) & 0x08) ||
(ifp && (ifp->if_flags & 0x8))) tp->t_flags
|= 0x0001; else do { (((tp)->t_flags) |= (0x04000000 <<
(5))); timeout_add_msec(&(tp)->t_timer[(5)], (tcp_delack_msecs
)); } while (0); if_put(ifp); } while (0)
;
1933 tp->rcv_nxt += tlen;
1934 tiflags = th->th_flags & TH_FIN0x01;
1935 tcpstat_pkt(tcps_rcvpack, tcps_rcvbyte, tlen);
1936 ND6_HINT(tp)do { if (tp && tp->t_inpcb && (tp->t_inpcb
->inp_flags & 0x100) && rtisvalid(tp->t_inpcb
->inp_ru.ru_route6.ro_rt)) { nd6_nud_hint(tp->t_inpcb->
inp_ru.ru_route6.ro_rt); } } while (0)
;
1937 if (so->so_state & SS_CANTRCVMORE0x020)
1938 m_freem(m);
1939 else {
1940 m_adj(m, hdroptlen);
1941 sbappendstream(so, &so->so_rcv, m);
1942 }
1943 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1944 sorwakeup(so);
1945 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1946 } else {
1947 m_adj(m, hdroptlen);
1948 tiflags = tcp_reass(tp, th, m, &tlen);
1949 tp->t_flags |= TF_ACKNOW0x0001;
1950 }
1951 if (tp->sack_enable)
1952 tcp_update_sack_list(tp, laststart, lastend);
1953
1954 /*
1955 * variable len never referenced again in modern BSD,
1956 * so why bother computing it ??
1957 */
1958#if 0
1959 /*
1960 * Note the amount of data that peer has sent into
1961 * our window, in order to estimate the sender's
1962 * buffer size.
1963 */
1964 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1965#endif /* 0 */
1966 } else {
1967 m_freem(m);
1968 tiflags &= ~TH_FIN0x01;
1969 }
1970
1971 /*
1972 * If FIN is received ACK the FIN and let the user know
1973 * that the connection is closing. Ignore a FIN received before
1974 * the connection is fully established.
1975 */
1976 if ((tiflags & TH_FIN0x01) && TCPS_HAVEESTABLISHED(tp->t_state)((tp->t_state) >= 4)) {
1977 if (TCPS_HAVERCVDFIN(tp->t_state)((tp->t_state) >= 10) == 0) {
1978 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
1979 socantrcvmore(so);
1980 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
1981 tp->t_flags |= TF_ACKNOW0x0001;
1982 tp->rcv_nxt++;
1983 }
1984 switch (tp->t_state) {
1985
1986 /*
1987 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1988 */
1989 case TCPS_ESTABLISHED4:
1990 tp->t_state = TCPS_CLOSE_WAIT5;
1991 break;
1992
1993 /*
1994 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1995 * enter the CLOSING state.
1996 */
1997 case TCPS_FIN_WAIT_16:
1998 tp->t_state = TCPS_CLOSING7;
1999 break;
2000
2001 /*
2002 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2003 * starting the time-wait timer, turning off the other
2004 * standard timers.
2005 */
2006 case TCPS_FIN_WAIT_29:
2007 tp->t_state = TCPS_TIME_WAIT10;
2008 tcp_canceltimers(tp);
2009 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL)do { (((tp)->t_flags) |= (0x04000000 << (3))); timeout_add_msec
(&(tp)->t_timer[(3)], (2 * ( 30*2)) * 500); } while (0
)
;
2010 tp->t_flags |= TF_BLOCKOUTPUT0x01000000;
2011 soisdisconnected(so);
2012 tp->t_flags &= ~TF_BLOCKOUTPUT0x01000000;
2013 break;
2014
2015 /*
2016 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2017 */
2018 case TCPS_TIME_WAIT10:
2019 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL)do { (((tp)->t_flags) |= (0x04000000 << (3))); timeout_add_msec
(&(tp)->t_timer[(3)], (2 * ( 30*2)) * 500); } while (0
)
;
2020 break;
2021 }
2022 }
2023 if (otp)
2024 tcp_trace(TA_INPUT0, ostate, tp, otp, saveti, 0, tlen);
2025
2026 /*
2027 * Return any desired output.
2028 */
2029 if (tp->t_flags & (TF_ACKNOW0x0001|TF_NEEDOUTPUT0x00800000))
2030 (void) tcp_output(tp);
2031 return IPPROTO_DONE257;
2032
2033badsyn:
2034 /*
2035 * Received a bad SYN. Increment counters and dropwithreset.
2036 */
2037 tcpstat_inc(tcps_badsyn);
2038 tp = NULL((void *)0);
2039 goto dropwithreset;
2040
2041dropafterack_ratelim:
2042 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2043 tcp_ackdrop_ppslim) == 0) {
2044 /* XXX stat */
2045 goto drop;
2046 }
2047 /* ...fall into dropafterack... */
2048
2049dropafterack:
2050 /*
2051 * Generate an ACK dropping incoming segment if it occupies
2052 * sequence space, where the ACK reflects our state.
2053 */
2054 if (tiflags & TH_RST0x04)
2055 goto drop;
2056 m_freem(m);
2057 tp->t_flags |= TF_ACKNOW0x0001;
2058 (void) tcp_output(tp);
2059 return IPPROTO_DONE257;
2060
2061dropwithreset_ratelim:
2062 /*
2063 * We may want to rate-limit RSTs in certain situations,
2064 * particularly if we are sending an RST in response to
2065 * an attempt to connect to or otherwise communicate with
2066 * a port for which we have no socket.
2067 */
2068 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2069 tcp_rst_ppslim) == 0) {
2070 /* XXX stat */
2071 goto drop;
2072 }
2073 /* ...fall into dropwithreset... */
2074
2075dropwithreset:
2076 /*
2077 * Generate a RST, dropping incoming segment.
2078 * Make ACK acceptable to originator of segment.
2079 * Don't bother to respond to RST.
2080 */
2081 if (tiflags & TH_RST0x04)
2082 goto drop;
2083 if (tiflags & TH_ACK0x10) {
2084 tcp_respond(tp, mtod(m, caddr_t)((caddr_t)((m)->m_hdr.mh_data)), th, (tcp_seq)0, th->th_ack,
2085 TH_RST0x04, m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
2086 } else {
2087 if (tiflags & TH_SYN0x02)
2088 tlen++;
2089 tcp_respond(tp, mtod(m, caddr_t)((caddr_t)((m)->m_hdr.mh_data)), th, th->th_seq + tlen,
2090 (tcp_seq)0, TH_RST0x04|TH_ACK0x10, m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
2091 }
2092 m_freem(m);
2093 return IPPROTO_DONE257;
2094
2095drop:
2096 /*
2097 * Drop space held by incoming segment and return.
2098 */
2099 if (otp)
2100 tcp_trace(TA_DROP4, ostate, tp, otp, saveti, 0, tlen);
2101
2102 m_freem(m);
2103 return IPPROTO_DONE257;
2104}
2105
2106int
2107tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2108 struct mbuf *m, int iphlen, struct tcp_opt_info *oi,
2109 u_int rtableid)
2110{
2111 u_int16_t mss = 0;
2112 int opt, optlen;
2113#ifdef TCP_SIGNATURE1
2114 caddr_t sigp = NULL((void *)0);
2115 struct tdb *tdb = NULL((void *)0);
2116#endif /* TCP_SIGNATURE */
2117
2118 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2119 opt = cp[0];
2120 if (opt == TCPOPT_EOL0)
2121 break;
2122 if (opt == TCPOPT_NOP1)
2123 optlen = 1;
2124 else {
2125 if (cnt < 2)
2126 break;
2127 optlen = cp[1];
2128 if (optlen < 2 || optlen > cnt)
2129 break;
2130 }
2131 switch (opt) {
2132
2133 default:
2134 continue;
2135
2136 case TCPOPT_MAXSEG2:
2137 if (optlen != TCPOLEN_MAXSEG4)
2138 continue;
2139 if (!(th->th_flags & TH_SYN0x02))
2140 continue;
2141 if (TCPS_HAVERCVDSYN(tp->t_state)((tp->t_state) >= 3))
2142 continue;
2143 memcpy(&mss, cp + 2, sizeof(mss))__builtin_memcpy((&mss), (cp + 2), (sizeof(mss)));
2144 mss = ntohs(mss)(__uint16_t)(__builtin_constant_p(mss) ? (__uint16_t)(((__uint16_t
)(mss) & 0xffU) << 8 | ((__uint16_t)(mss) & 0xff00U
) >> 8) : __swap16md(mss))
;
2145 oi->maxseg = mss;
2146 break;
2147
2148 case TCPOPT_WINDOW3:
2149 if (optlen != TCPOLEN_WINDOW3)
2150 continue;
2151 if (!(th->th_flags & TH_SYN0x02))
2152 continue;
2153 if (TCPS_HAVERCVDSYN(tp->t_state)((tp->t_state) >= 3))
2154 continue;
2155 tp->t_flags |= TF_RCVD_SCALE0x0040;
2156 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT14);
2157 break;
2158
2159 case TCPOPT_TIMESTAMP8:
2160 if (optlen != TCPOLEN_TIMESTAMP10)
2161 continue;
2162 oi->ts_present = 1;
2163 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val))__builtin_memcpy((&oi->ts_val), (cp + 2), (sizeof(oi->
ts_val)))
;
2164 oi->ts_val = ntohl(oi->ts_val)(__uint32_t)(__builtin_constant_p(oi->ts_val) ? (__uint32_t
)(((__uint32_t)(oi->ts_val) & 0xff) << 24 | ((__uint32_t
)(oi->ts_val) & 0xff00) << 8 | ((__uint32_t)(oi->
ts_val) & 0xff0000) >> 8 | ((__uint32_t)(oi->ts_val
) & 0xff000000) >> 24) : __swap32md(oi->ts_val))
;
2165 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr))__builtin_memcpy((&oi->ts_ecr), (cp + 6), (sizeof(oi->
ts_ecr)))
;
2166 oi->ts_ecr = ntohl(oi->ts_ecr)(__uint32_t)(__builtin_constant_p(oi->ts_ecr) ? (__uint32_t
)(((__uint32_t)(oi->ts_ecr) & 0xff) << 24 | ((__uint32_t
)(oi->ts_ecr) & 0xff00) << 8 | ((__uint32_t)(oi->
ts_ecr) & 0xff0000) >> 8 | ((__uint32_t)(oi->ts_ecr
) & 0xff000000) >> 24) : __swap32md(oi->ts_ecr))
;
2167
2168 if (!(th->th_flags & TH_SYN0x02))
2169 continue;
2170 if (TCPS_HAVERCVDSYN(tp->t_state)((tp->t_state) >= 3))
2171 continue;
2172 /*
2173 * A timestamp received in a SYN makes
2174 * it ok to send timestamp requests and replies.
2175 */
2176 tp->t_flags |= TF_RCVD_TSTMP0x0100;
2177 tp->ts_recent = oi->ts_val;
2178 tp->ts_recent_age = tcp_now;
2179 break;
2180
2181 case TCPOPT_SACK_PERMITTED4:
2182 if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED2)
2183 continue;
2184 if (!(th->th_flags & TH_SYN0x02))
2185 continue;
2186 if (TCPS_HAVERCVDSYN(tp->t_state)((tp->t_state) >= 3))
2187 continue;
2188 /* MUST only be set on SYN */
2189 tp->t_flags |= TF_SACK_PERMIT0x0200;
2190 break;
2191 case TCPOPT_SACK5:
2192 tcp_sack_option(tp, th, cp, optlen);
2193 break;
2194#ifdef TCP_SIGNATURE1
2195 case TCPOPT_SIGNATURE19:
2196 if (optlen != TCPOLEN_SIGNATURE18)
2197 continue;
2198
2199 if (sigp && timingsafe_bcmp(sigp, cp + 2, 16))
2200 goto bad;
2201
2202 sigp = cp + 2;
2203 break;
2204#endif /* TCP_SIGNATURE */
2205 }
2206 }
2207
2208#ifdef TCP_SIGNATURE1
2209 if (tp->t_flags & TF_SIGNATURE0x0400) {
2210 union sockaddr_union src, dst;
2211
2212 memset(&src, 0, sizeof(union sockaddr_union))__builtin_memset((&src), (0), (sizeof(union sockaddr_union
)))
;
2213 memset(&dst, 0, sizeof(union sockaddr_union))__builtin_memset((&dst), (0), (sizeof(union sockaddr_union
)))
;
2214
2215 switch (tp->pf) {
2216 case 0:
2217 case AF_INET2:
2218 src.sa.sa_len = sizeof(struct sockaddr_in);
2219 src.sa.sa_family = AF_INET2;
2220 src.sin.sin_addr = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data))->ip_src;
2221 dst.sa.sa_len = sizeof(struct sockaddr_in);
2222 dst.sa.sa_family = AF_INET2;
2223 dst.sin.sin_addr = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data))->ip_dst;
2224 break;
2225#ifdef INET61
2226 case AF_INET624:
2227 src.sa.sa_len = sizeof(struct sockaddr_in6);
2228 src.sa.sa_family = AF_INET624;
2229 src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data))->ip6_src;
2230 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2231 dst.sa.sa_family = AF_INET624;
2232 dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data))->ip6_dst;
2233 break;
2234#endif /* INET6 */
2235 }
2236
2237 tdb = gettdbbysrcdst(rtable_l2(rtableid),gettdbbysrcdst_dir((rtable_l2(rtableid)),(0),(&src),(&
dst),(6),0)
2238 0, &src, &dst, IPPROTO_TCP)gettdbbysrcdst_dir((rtable_l2(rtableid)),(0),(&src),(&
dst),(6),0)
;
2239
2240 /*
2241 * We don't have an SA for this peer, so we turn off
2242 * TF_SIGNATURE on the listen socket
2243 */
2244 if (tdb == NULL((void *)0) && tp->t_state == TCPS_LISTEN1)
2245 tp->t_flags &= ~TF_SIGNATURE0x0400;
2246
2247 }
2248
2249 if ((sigp ? TF_SIGNATURE0x0400 : 0) ^ (tp->t_flags & TF_SIGNATURE0x0400)) {
2250 tcpstat_inc(tcps_rcvbadsig);
2251 goto bad;
2252 }
2253
2254 if (sigp) {
2255 char sig[16];
2256
2257 if (tdb == NULL((void *)0)) {
2258 tcpstat_inc(tcps_rcvbadsig);
2259 goto bad;
2260 }
2261
2262 if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2263 goto bad;
2264
2265 if (timingsafe_bcmp(sig, sigp, 16)) {
2266 tcpstat_inc(tcps_rcvbadsig);
2267 goto bad;
2268 }
2269
2270 tcpstat_inc(tcps_rcvgoodsig);
2271 }
2272
2273 tdb_unref(tdb);
2274#endif /* TCP_SIGNATURE */
2275
2276 return (0);
2277
2278#ifdef TCP_SIGNATURE1
2279 bad:
2280 tdb_unref(tdb);
2281#endif /* TCP_SIGNATURE */
2282 return (-1);
2283}
2284
2285u_long
2286tcp_seq_subtract(u_long a, u_long b)
2287{
2288 return ((long)(a - b));
2289}
2290
2291/*
2292 * This function is called upon receipt of new valid data (while not in header
2293 * prediction mode), and it updates the ordered list of sacks.
2294 */
2295void
2296tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2297 tcp_seq rcv_lastend)
2298{
2299 /*
2300 * First reported block MUST be the most recent one. Subsequent
2301 * blocks SHOULD be in the order in which they arrived at the
2302 * receiver. These two conditions make the implementation fully
2303 * compliant with RFC 2018.
2304 */
2305 int i, j = 0, count = 0, lastpos = -1;
2306 struct sackblk sack, firstsack, temp[MAX_SACK_BLKS6];
2307
2308 /* First clean up current list of sacks */
2309 for (i = 0; i < tp->rcv_numsacks; i++) {
2310 sack = tp->sackblks[i];
2311 if (sack.start == 0 && sack.end == 0) {
2312 count++; /* count = number of blocks to be discarded */
2313 continue;
2314 }
2315 if (SEQ_LEQ(sack.end, tp->rcv_nxt)((int)((sack.end)-(tp->rcv_nxt)) <= 0)) {
2316 tp->sackblks[i].start = tp->sackblks[i].end = 0;
2317 count++;
2318 } else {
2319 temp[j].start = tp->sackblks[i].start;
2320 temp[j++].end = tp->sackblks[i].end;
2321 }
2322 }
2323 tp->rcv_numsacks -= count;
2324 if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2325 tcp_clean_sackreport(tp);
2326 if (SEQ_LT(tp->rcv_nxt, rcv_laststart)((int)((tp->rcv_nxt)-(rcv_laststart)) < 0)) {
2327 /* ==> need first sack block */
2328 tp->sackblks[0].start = rcv_laststart;
2329 tp->sackblks[0].end = rcv_lastend;
2330 tp->rcv_numsacks = 1;
2331 }
2332 return;
2333 }
2334 /* Otherwise, sack blocks are already present. */
2335 for (i = 0; i < tp->rcv_numsacks; i++)
2336 tp->sackblks[i] = temp[i]; /* first copy back sack list */
2337 if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend)((int)((tp->rcv_nxt)-(rcv_lastend)) >= 0))
2338 return; /* sack list remains unchanged */
2339 /*
2340 * From here, segment just received should be (part of) the 1st sack.
2341 * Go through list, possibly coalescing sack block entries.
2342 */
2343 firstsack.start = rcv_laststart;
2344 firstsack.end = rcv_lastend;
2345 for (i = 0; i < tp->rcv_numsacks; i++) {
2346 sack = tp->sackblks[i];
2347 if (SEQ_LT(sack.end, firstsack.start)((int)((sack.end)-(firstsack.start)) < 0) ||
2348 SEQ_GT(sack.start, firstsack.end)((int)((sack.start)-(firstsack.end)) > 0))
2349 continue; /* no overlap */
2350 if (sack.start == firstsack.start && sack.end == firstsack.end){
2351 /*
2352 * identical block; delete it here since we will
2353 * move it to the front of the list.
2354 */
2355 tp->sackblks[i].start = tp->sackblks[i].end = 0;
2356 lastpos = i; /* last posn with a zero entry */
2357 continue;
2358 }
2359 if (SEQ_LEQ(sack.start, firstsack.start)((int)((sack.start)-(firstsack.start)) <= 0))
2360 firstsack.start = sack.start; /* merge blocks */
2361 if (SEQ_GEQ(sack.end, firstsack.end)((int)((sack.end)-(firstsack.end)) >= 0))
2362 firstsack.end = sack.end; /* merge blocks */
2363 tp->sackblks[i].start = tp->sackblks[i].end = 0;
2364 lastpos = i; /* last posn with a zero entry */
2365 }
2366 if (lastpos != -1) { /* at least one merge */
2367 for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2368 sack = tp->sackblks[i];
2369 if (sack.start == 0 && sack.end == 0)
2370 continue;
2371 temp[j++] = sack;
2372 }
2373 tp->rcv_numsacks = j; /* including first blk (added later) */
2374 for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2375 tp->sackblks[i] = temp[i];
2376 } else { /* no merges -- shift sacks by 1 */
2377 if (tp->rcv_numsacks < MAX_SACK_BLKS6)
2378 tp->rcv_numsacks++;
2379 for (i = tp->rcv_numsacks-1; i > 0; i--)
2380 tp->sackblks[i] = tp->sackblks[i-1];
2381 }
2382 tp->sackblks[0] = firstsack;
2383 return;
2384}
2385
2386/*
2387 * Process the TCP SACK option. tp->snd_holes is an ordered list
2388 * of holes (oldest to newest, in terms of the sequence space).
2389 */
2390void
2391tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2392{
2393 int tmp_olen;
2394 u_char *tmp_cp;
2395 struct sackhole *cur, *p, *temp;
2396
2397 if (!tp->sack_enable)
2398 return;
2399 /* SACK without ACK doesn't make sense. */
2400 if ((th->th_flags & TH_ACK0x10) == 0)
2401 return;
2402 /* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2403 if (SEQ_LT(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) < 0) ||
2404 SEQ_GT(th->th_ack, tp->snd_max)((int)((th->th_ack)-(tp->snd_max)) > 0))
2405 return;
2406 /* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2407 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK8 != 0)
2408 return;
2409 /* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2410 tmp_cp = cp + 2;
2411 tmp_olen = optlen - 2;
2412 tcpstat_inc(tcps_sack_rcv_opts);
2413 if (tp->snd_numholes < 0)
2414 tp->snd_numholes = 0;
2415 if (tp->t_maxseg == 0)
2416 panic("tcp_sack_option"); /* Should never happen */
2417 while (tmp_olen > 0) {
2418 struct sackblk sack;
2419
2420 memcpy(&sack.start, tmp_cp, sizeof(tcp_seq))__builtin_memcpy((&sack.start), (tmp_cp), (sizeof(tcp_seq
)))
;
2421 sack.start = ntohl(sack.start)(__uint32_t)(__builtin_constant_p(sack.start) ? (__uint32_t)(
((__uint32_t)(sack.start) & 0xff) << 24 | ((__uint32_t
)(sack.start) & 0xff00) << 8 | ((__uint32_t)(sack.start
) & 0xff0000) >> 8 | ((__uint32_t)(sack.start) &
0xff000000) >> 24) : __swap32md(sack.start))
;
2422 memcpy(&sack.end, tmp_cp + sizeof(tcp_seq), sizeof(tcp_seq))__builtin_memcpy((&sack.end), (tmp_cp + sizeof(tcp_seq)),
(sizeof(tcp_seq)))
;
2423 sack.end = ntohl(sack.end)(__uint32_t)(__builtin_constant_p(sack.end) ? (__uint32_t)(((
__uint32_t)(sack.end) & 0xff) << 24 | ((__uint32_t)
(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end)
& 0xff0000) >> 8 | ((__uint32_t)(sack.end) & 0xff000000
) >> 24) : __swap32md(sack.end))
;
2424 tmp_olen -= TCPOLEN_SACK8;
2425 tmp_cp += TCPOLEN_SACK8;
2426 if (SEQ_LEQ(sack.end, sack.start)((int)((sack.end)-(sack.start)) <= 0))
2427 continue; /* bad SACK fields */
2428 if (SEQ_LEQ(sack.end, tp->snd_una)((int)((sack.end)-(tp->snd_una)) <= 0))
2429 continue; /* old block */
2430 if (SEQ_GT(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) > 0)) {
2431 if (SEQ_LT(sack.start, th->th_ack)((int)((sack.start)-(th->th_ack)) < 0))
2432 continue;
2433 }
2434 if (SEQ_GT(sack.end, tp->snd_max)((int)((sack.end)-(tp->snd_max)) > 0))
2435 continue;
2436 if (tp->snd_holes == NULL((void *)0)) { /* first hole */
2437 tp->snd_holes = (struct sackhole *)
2438 pool_get(&sackhl_pool, PR_NOWAIT0x0002);
2439 if (tp->snd_holes == NULL((void *)0)) {
2440 /* ENOBUFS, so ignore SACKed block for now */
2441 goto dropped;
2442 }
2443 cur = tp->snd_holes;
2444 cur->start = th->th_ack;
2445 cur->end = sack.start;
2446 cur->rxmit = cur->start;
2447 cur->next = NULL((void *)0);
2448 tp->snd_numholes = 1;
2449 tp->rcv_lastsack = sack.end;
2450 /*
2451 * dups is at least one. If more data has been
2452 * SACKed, it can be greater than one.
2453 */
2454 cur->dups = min(tcprexmtthresh,
2455 ((sack.end - cur->end)/tp->t_maxseg));
2456 if (cur->dups < 1)
2457 cur->dups = 1;
2458 continue; /* with next sack block */
2459 }
2460 /* Go thru list of holes: p = previous, cur = current */
2461 p = cur = tp->snd_holes;
2462 while (cur) {
2463 if (SEQ_LEQ(sack.end, cur->start)((int)((sack.end)-(cur->start)) <= 0))
2464 /* SACKs data before the current hole */
2465 break; /* no use going through more holes */
2466 if (SEQ_GEQ(sack.start, cur->end)((int)((sack.start)-(cur->end)) >= 0)) {
2467 /* SACKs data beyond the current hole */
2468 cur->dups++;
2469 if (((sack.end - cur->end)/tp->t_maxseg) >=
2470 tcprexmtthresh)
2471 cur->dups = tcprexmtthresh;
2472 p = cur;
2473 cur = cur->next;
2474 continue;
2475 }
2476 if (SEQ_LEQ(sack.start, cur->start)((int)((sack.start)-(cur->start)) <= 0)) {
2477 /* Data acks at least the beginning of hole */
2478 if (SEQ_GEQ(sack.end, cur->end)((int)((sack.end)-(cur->end)) >= 0)) {
2479 /* Acks entire hole, so delete hole */
2480 if (p != cur) {
2481 p->next = cur->next;
2482 pool_put(&sackhl_pool, cur);
2483 cur = p->next;
2484 } else {
2485 cur = cur->next;
2486 pool_put(&sackhl_pool, p);
2487 p = cur;
2488 tp->snd_holes = p;
2489 }
2490 tp->snd_numholes--;
2491 continue;
2492 }
2493 /* otherwise, move start of hole forward */
2494 cur->start = sack.end;
2495 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start)(((int)((cur->rxmit)-(cur->start)) > 0) ? (cur->rxmit
) : (cur->start))
;
2496 p = cur;
2497 cur = cur->next;
2498 continue;
2499 }
2500 /* move end of hole backward */
2501 if (SEQ_GEQ(sack.end, cur->end)((int)((sack.end)-(cur->end)) >= 0)) {
2502 cur->end = sack.start;
2503 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end)(((int)((cur->rxmit)-(cur->end)) < 0) ? (cur->rxmit
) : (cur->end))
;
2504 cur->dups++;
2505 if (((sack.end - cur->end)/tp->t_maxseg) >=
2506 tcprexmtthresh)
2507 cur->dups = tcprexmtthresh;
2508 p = cur;
2509 cur = cur->next;
2510 continue;
2511 }
2512 if (SEQ_LT(cur->start, sack.start)((int)((cur->start)-(sack.start)) < 0) &&
2513 SEQ_GT(cur->end, sack.end)((int)((cur->end)-(sack.end)) > 0)) {
2514 /*
2515 * ACKs some data in middle of a hole; need to
2516 * split current hole
2517 */
2518 if (tp->snd_numholes >= TCP_SACKHOLE_LIMIT128)
2519 goto dropped;
2520 temp = (struct sackhole *)
2521 pool_get(&sackhl_pool, PR_NOWAIT0x0002);
2522 if (temp == NULL((void *)0))
2523 goto dropped; /* ENOBUFS */
2524 temp->next = cur->next;
2525 temp->start = sack.end;
2526 temp->end = cur->end;
2527 temp->dups = cur->dups;
2528 temp->rxmit = SEQ_MAX(cur->rxmit, temp->start)(((int)((cur->rxmit)-(temp->start)) > 0) ? (cur->
rxmit) : (temp->start))
;
2529 cur->end = sack.start;
2530 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end)(((int)((cur->rxmit)-(cur->end)) < 0) ? (cur->rxmit
) : (cur->end))
;
2531 cur->dups++;
2532 if (((sack.end - cur->end)/tp->t_maxseg) >=
2533 tcprexmtthresh)
2534 cur->dups = tcprexmtthresh;
2535 cur->next = temp;
2536 p = temp;
2537 cur = p->next;
2538 tp->snd_numholes++;
2539 }
2540 }
2541 /* At this point, p points to the last hole on the list */
2542 if (SEQ_LT(tp->rcv_lastsack, sack.start)((int)((tp->rcv_lastsack)-(sack.start)) < 0)) {
2543 /*
2544 * Need to append new hole at end.
2545 * Last hole is p (and it's not NULL).
2546 */
2547 if (tp->snd_numholes >= TCP_SACKHOLE_LIMIT128)
2548 goto dropped;
2549 temp = (struct sackhole *)
2550 pool_get(&sackhl_pool, PR_NOWAIT0x0002);
2551 if (temp == NULL((void *)0))
2552 goto dropped; /* ENOBUFS */
2553 temp->start = tp->rcv_lastsack;
2554 temp->end = sack.start;
2555 temp->dups = min(tcprexmtthresh,
2556 ((sack.end - sack.start)/tp->t_maxseg));
2557 if (temp->dups < 1)
2558 temp->dups = 1;
2559 temp->rxmit = temp->start;
2560 temp->next = 0;
2561 p->next = temp;
2562 tp->rcv_lastsack = sack.end;
2563 tp->snd_numholes++;
2564 }
2565 }
2566 return;
2567dropped:
2568 tcpstat_inc(tcps_sack_drop_opts);
2569}
2570
2571/*
2572 * Delete stale (i.e, cumulatively ack'd) holes. Hole is deleted only if
2573 * it is completely acked; otherwise, tcp_sack_option(), called from
2574 * tcp_dooptions(), will fix up the hole.
2575 */
2576void
2577tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2578{
2579 if (tp->sack_enable && tp->t_state != TCPS_LISTEN1) {
2580 /* max because this could be an older ack just arrived */
2581 tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una)((int)((th->th_ack)-(tp->snd_una)) > 0) ?
2582 th->th_ack : tp->snd_una;
2583 struct sackhole *cur = tp->snd_holes;
2584 struct sackhole *prev;
2585 while (cur)
2586 if (SEQ_LEQ(cur->end, lastack)((int)((cur->end)-(lastack)) <= 0)) {
2587 prev = cur;
2588 cur = cur->next;
2589 pool_put(&sackhl_pool, prev);
2590 tp->snd_numholes--;
2591 } else if (SEQ_LT(cur->start, lastack)((int)((cur->start)-(lastack)) < 0)) {
2592 cur->start = lastack;
2593 if (SEQ_LT(cur->rxmit, cur->start)((int)((cur->rxmit)-(cur->start)) < 0))
2594 cur->rxmit = cur->start;
2595 break;
2596 } else
2597 break;
2598 tp->snd_holes = cur;
2599 }
2600}
2601
2602/*
2603 * Delete all receiver-side SACK information.
2604 */
2605void
2606tcp_clean_sackreport(struct tcpcb *tp)
2607{
2608 int i;
2609
2610 tp->rcv_numsacks = 0;
2611 for (i = 0; i < MAX_SACK_BLKS6; i++)
2612 tp->sackblks[i].start = tp->sackblks[i].end=0;
2613
2614}
2615
2616/*
2617 * Partial ack handling within a sack recovery episode. When a partial ack
2618 * arrives, turn off retransmission timer, deflate the window, do not clear
2619 * tp->t_dupacks.
2620 */
2621void
2622tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2623{
2624 /* Turn off retx. timer (will start again next segment) */
2625 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
2626 tp->t_rtttime = 0;
2627 /*
2628 * Partial window deflation. This statement relies on the
2629 * fact that tp->snd_una has not been updated yet.
2630 */
2631 if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2632 tp->snd_cwnd -= th->th_ack - tp->snd_una;
2633 tp->snd_cwnd += tp->t_maxseg;
2634 } else
2635 tp->snd_cwnd = tp->t_maxseg;
2636 tp->snd_cwnd += tp->t_maxseg;
2637 tp->t_flags |= TF_NEEDOUTPUT0x00800000;
2638}
2639
2640/*
2641 * Pull out of band byte out of a segment so
2642 * it doesn't appear in the user's data queue.
2643 * It is still reflected in the segment length for
2644 * sequencing purposes.
2645 */
2646void
2647tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2648{
2649 int cnt = off + urgent - 1;
2650
2651 while (cnt >= 0) {
2652 if (m->m_lenm_hdr.mh_len > cnt) {
2653 char *cp = mtod(m, caddr_t)((caddr_t)((m)->m_hdr.mh_data)) + cnt;
2654 struct tcpcb *tp = sototcpcb(so)(((struct tcpcb *)(((struct inpcb *)(so)->so_pcb))->inp_ppcb
))
;
2655
2656 tp->t_iobc = *cp;
2657 tp->t_oobflags |= TCPOOB_HAVEDATA0x01;
2658 memmove(cp, cp + 1, m->m_len - cnt - 1)__builtin_memmove((cp), (cp + 1), (m->m_hdr.mh_len - cnt -
1))
;
2659 m->m_lenm_hdr.mh_len--;
2660 return;
2661 }
2662 cnt -= m->m_lenm_hdr.mh_len;
2663 m = m->m_nextm_hdr.mh_next;
2664 if (m == NULL((void *)0))
2665 break;
2666 }
2667 panic("tcp_pulloutofband");
2668}
2669
2670/*
2671 * Collect new round-trip time estimate
2672 * and update averages and current timeout.
2673 */
2674void
2675tcp_xmit_timer(struct tcpcb *tp, int rtt)
2676{
2677 short delta;
2678 short rttmin;
2679
2680 if (rtt < 0)
2681 rtt = 0;
2682 else if (rtt > TCP_RTT_MAX(1<<9))
2683 rtt = TCP_RTT_MAX(1<<9);
2684
2685 tcpstat_inc(tcps_rttupdated);
2686 if (tp->t_srtt != 0) {
2687 /*
2688 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2689 * after the binary point (scaled by 4), whereas
2690 * srtt is stored as fixed point with 5 bits after the
2691 * binary point (i.e., scaled by 32). The following magic
2692 * is equivalent to the smoothing algorithm in rfc793 with
2693 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2694 * point).
2695 */
2696 delta = (rtt << TCP_RTT_BASE_SHIFT2) -
2697 (tp->t_srtt >> TCP_RTT_SHIFT3);
2698 if ((tp->t_srtt += delta) <= 0)
2699 tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT2;
2700 /*
2701 * We accumulate a smoothed rtt variance (actually, a
2702 * smoothed mean difference), then set the retransmit
2703 * timer to smoothed rtt + 4 times the smoothed variance.
2704 * rttvar is stored as fixed point with 4 bits after the
2705 * binary point (scaled by 16). The following is
2706 * equivalent to rfc793 smoothing with an alpha of .75
2707 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2708 * rfc793's wired-in beta.
2709 */
2710 if (delta < 0)
2711 delta = -delta;
2712 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT2);
2713 if ((tp->t_rttvar += delta) <= 0)
2714 tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT2;
2715 } else {
2716 /*
2717 * No rtt measurement yet - use the unsmoothed rtt.
2718 * Set the variance to half the rtt (so our first
2719 * retransmit happens at 3*rtt).
2720 */
2721 tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT3 + TCP_RTT_BASE_SHIFT2);
2722 tp->t_rttvar = (rtt + 1) <<
2723 (TCP_RTTVAR_SHIFT2 + TCP_RTT_BASE_SHIFT2 - 1);
2724 }
2725 tp->t_rtttime = 0;
2726 tp->t_rxtshift = 0;
2727
2728 /*
2729 * the retransmit should happen at rtt + 4 * rttvar.
2730 * Because of the way we do the smoothing, srtt and rttvar
2731 * will each average +1/2 tick of bias. When we compute
2732 * the retransmit timer, we want 1/2 tick of rounding and
2733 * 1 extra tick because of +-1/2 tick uncertainty in the
2734 * firing of the timer. The bias will give us exactly the
2735 * 1.5 tick we need. But, because the bias is
2736 * statistical, we have to test that we don't drop below
2737 * the minimum feasible timer (which is 2 ticks).
2738 */
2739 rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX( 64*2));
2740 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX)do { (tp->t_rxtcur) = (((((tp)->t_srtt >> 3) + (tp
)->t_rttvar) >> 2)); if ((tp->t_rxtcur) < (rttmin
)) (tp->t_rxtcur) = (rttmin); else if ((tp->t_rxtcur) >
(( 64*2))) (tp->t_rxtcur) = (( 64*2)); } while ( 0)
;
2741
2742 /*
2743 * We received an ack for a packet that wasn't retransmitted;
2744 * it is probably safe to discard any error indications we've
2745 * received recently. This isn't quite right, but close enough
2746 * for now (a route might have failed after we sent a segment,
2747 * and the return path might not be symmetrical).
2748 */
2749 tp->t_softerror = 0;
2750}
2751
2752/*
2753 * Determine a reasonable value for maxseg size.
2754 * If the route is known, check route for mtu.
2755 * If none, use an mss that can be handled on the outgoing
2756 * interface without forcing IP to fragment; if bigger than
2757 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2758 * to utilize large mbufs. If no route is found, route has no mtu,
2759 * or the destination isn't local, use a default, hopefully conservative
2760 * size (usually 512 or the default IP max size, but no more than the mtu
2761 * of the interface), as we can't discover anything about intervening
2762 * gateways or networks. We also initialize the congestion/slow start
2763 * window to be a single segment if the destination isn't local.
2764 * While looking at the routing entry, we also initialize other path-dependent
2765 * parameters from pre-set or cached values in the routing entry.
2766 *
2767 * Also take into account the space needed for options that we
2768 * send regularly. Make maxseg shorter by that amount to assure
2769 * that we can send maxseg amount of data even when the options
2770 * are present. Store the upper limit of the length of options plus
2771 * data in maxopd.
2772 *
2773 * NOTE: offer == -1 indicates that the maxseg size changed due to
2774 * Path MTU discovery.
2775 */
2776int
2777tcp_mss(struct tcpcb *tp, int offer)
2778{
2779 struct rtentry *rt;
2780 struct ifnet *ifp = NULL((void *)0);
2781 int mss, mssopt;
2782 int iphlen;
2783 struct inpcb *inp;
2784
2785 inp = tp->t_inpcb;
2786
2787 mssopt = mss = tcp_mssdflt;
2788
2789 rt = in_pcbrtentry(inp);
2790
2791 if (rt == NULL((void *)0))
2792 goto out;
2793
2794 ifp = if_get(rt->rt_ifidx);
2795 if (ifp == NULL((void *)0))
2796 goto out;
2797
2798 switch (tp->pf) {
2799#ifdef INET61
2800 case AF_INET624:
2801 iphlen = sizeof(struct ip6_hdr);
2802 break;
2803#endif
2804 case AF_INET2:
2805 iphlen = sizeof(struct ip);
2806 break;
2807 default:
2808 /* the family does not support path MTU discovery */
2809 goto out;
2810 }
2811
2812 /*
2813 * if there's an mtu associated with the route and we support
2814 * path MTU discovery for the underlying protocol family, use it.
2815 */
2816 if (rt->rt_mturt_rmx.rmx_mtu) {
2817 /*
2818 * One may wish to lower MSS to take into account options,
2819 * especially security-related options.
2820 */
2821 if (tp->pf == AF_INET624 && rt->rt_mturt_rmx.rmx_mtu < IPV6_MMTU1280) {
2822 /*
2823 * RFC2460 section 5, last paragraph: if path MTU is
2824 * smaller than 1280, use 1280 as packet size and
2825 * attach fragment header.
2826 */
2827 mss = IPV6_MMTU1280 - iphlen - sizeof(struct ip6_frag) -
2828 sizeof(struct tcphdr);
2829 } else {
2830 mss = rt->rt_mturt_rmx.rmx_mtu - iphlen -
2831 sizeof(struct tcphdr);
2832 }
2833 } else if (ifp->if_flags & IFF_LOOPBACK0x8) {
2834 mss = ifp->if_mtuif_data.ifi_mtu - iphlen - sizeof(struct tcphdr);
2835 } else if (tp->pf == AF_INET2) {
2836 if (ip_mtudisc)
2837 mss = ifp->if_mtuif_data.ifi_mtu - iphlen - sizeof(struct tcphdr);
2838 }
2839#ifdef INET61
2840 else if (tp->pf == AF_INET624) {
2841 /*
2842 * for IPv6, path MTU discovery is always turned on,
2843 * or the node must use packet size <= 1280.
2844 */
2845 mss = ifp->if_mtuif_data.ifi_mtu - iphlen - sizeof(struct tcphdr);
2846 }
2847#endif /* INET6 */
2848
2849 /* Calculate the value that we offer in TCPOPT_MAXSEG */
2850 if (offer != -1) {
2851 mssopt = ifp->if_mtuif_data.ifi_mtu - iphlen - sizeof(struct tcphdr);
2852 mssopt = max(tcp_mssdflt, mssopt);
2853 }
2854 out:
2855 if_put(ifp);
2856 /*
2857 * The current mss, t_maxseg, is initialized to the default value.
2858 * If we compute a smaller value, reduce the current mss.
2859 * If we compute a larger value, return it for use in sending
2860 * a max seg size option, but don't store it for use
2861 * unless we received an offer at least that large from peer.
2862 *
2863 * However, do not accept offers lower than the minimum of
2864 * the interface MTU and 216.
2865 */
2866 if (offer > 0)
2867 tp->t_peermss = offer;
2868 if (tp->t_peermss)
2869 mss = min(mss, max(tp->t_peermss, 216));
2870
2871 /* sanity - at least max opt. space */
2872 mss = max(mss, 64);
2873
2874 /*
2875 * maxopd stores the maximum length of data AND options
2876 * in a segment; maxseg is the amount of data in a normal
2877 * segment. We need to store this value (maxopd) apart
2878 * from maxseg, because now every segment carries options
2879 * and thus we normally have somewhat less data in segments.
2880 */
2881 tp->t_maxopd = mss;
2882
2883 if ((tp->t_flags & (TF_REQ_TSTMP0x0080|TF_NOOPT0x0008)) == TF_REQ_TSTMP0x0080 &&
2884 (tp->t_flags & TF_RCVD_TSTMP0x0100) == TF_RCVD_TSTMP0x0100)
2885 mss -= TCPOLEN_TSTAMP_APPA(10 +2);
2886#ifdef TCP_SIGNATURE1
2887 if (tp->t_flags & TF_SIGNATURE0x0400)
2888 mss -= TCPOLEN_SIGLEN(18 +2);
2889#endif
2890
2891 if (offer == -1) {
2892 /* mss changed due to Path MTU discovery */
2893 tp->t_flags &= ~TF_PMTUD_PEND0x00400000;
2894 tp->t_pmtud_mtu_sent = 0;
2895 tp->t_pmtud_mss_acked = 0;
2896 if (mss < tp->t_maxseg) {
2897 /*
2898 * Follow suggestion in RFC 2414 to reduce the
2899 * congestion window by the ratio of the old
2900 * segment size to the new segment size.
2901 */
2902 tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
2903 mss, mss);
2904 }
2905 } else if (tcp_do_rfc3390 == 2) {
2906 /* increase initial window */
2907 tp->snd_cwnd = ulmin(10 * mss, ulmax(2 * mss, 14600));
2908 } else if (tcp_do_rfc3390) {
2909 /* increase initial window */
2910 tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
2911 } else
2912 tp->snd_cwnd = mss;
2913
2914 tp->t_maxseg = mss;
2915
2916 return (offer != -1 ? mssopt : mss);
2917}
2918
2919u_int
2920tcp_hdrsz(struct tcpcb *tp)
2921{
2922 u_int hlen;
2923
2924 switch (tp->pf) {
2925#ifdef INET61
2926 case AF_INET624:
2927 hlen = sizeof(struct ip6_hdr);
2928 break;
2929#endif
2930 case AF_INET2:
2931 hlen = sizeof(struct ip);
2932 break;
2933 default:
2934 hlen = 0;
2935 break;
2936 }
2937 hlen += sizeof(struct tcphdr);
2938
2939 if ((tp->t_flags & (TF_REQ_TSTMP0x0080|TF_NOOPT0x0008)) == TF_REQ_TSTMP0x0080 &&
2940 (tp->t_flags & TF_RCVD_TSTMP0x0100) == TF_RCVD_TSTMP0x0100)
2941 hlen += TCPOLEN_TSTAMP_APPA(10 +2);
2942#ifdef TCP_SIGNATURE1
2943 if (tp->t_flags & TF_SIGNATURE0x0400)
2944 hlen += TCPOLEN_SIGLEN(18 +2);
2945#endif
2946 return (hlen);
2947}
2948
2949/*
2950 * Set connection variables based on the effective MSS.
2951 * We are passed the TCPCB for the actual connection. If we
2952 * are the server, we are called by the compressed state engine
2953 * when the 3-way handshake is complete. If we are the client,
2954 * we are called when we receive the SYN,ACK from the server.
2955 *
2956 * NOTE: The t_maxseg value must be initialized in the TCPCB
2957 * before this routine is called!
2958 */
2959void
2960tcp_mss_update(struct tcpcb *tp)
2961{
2962 int mss;
2963 u_long bufsize;
2964 struct rtentry *rt;
2965 struct socket *so;
2966
2967 so = tp->t_inpcb->inp_socket;
2968 mss = tp->t_maxseg;
2969
2970 rt = in_pcbrtentry(tp->t_inpcb);
2971
2972 if (rt == NULL((void *)0))
2973 return;
2974
2975 bufsize = so->so_snd.sb_hiwat;
2976 if (bufsize < mss) {
2977 mss = bufsize;
2978 /* Update t_maxseg and t_maxopd */
2979 tcp_mss(tp, mss);
2980 } else {
2981 bufsize = roundup(bufsize, mss)((((bufsize)+((mss)-1))/(mss))*(mss));
2982 if (bufsize > sb_max)
2983 bufsize = sb_max;
2984 (void)sbreserve(so, &so->so_snd, bufsize);
2985 }
2986
2987 bufsize = so->so_rcv.sb_hiwat;
2988 if (bufsize > mss) {
2989 bufsize = roundup(bufsize, mss)((((bufsize)+((mss)-1))/(mss))*(mss));
2990 if (bufsize > sb_max)
2991 bufsize = sb_max;
2992 (void)sbreserve(so, &so->so_rcv, bufsize);
2993 }
2994
2995}
2996
2997/*
2998 * When a partial ack arrives, force the retransmission of the
2999 * next unacknowledged segment. Do not clear tp->t_dupacks.
3000 * By setting snd_nxt to ti_ack, this forces retransmission timer
3001 * to be started again.
3002 */
3003void
3004tcp_newreno_partialack(struct tcpcb *tp, struct tcphdr *th)
3005{
3006 /*
3007 * snd_una has not been updated and the socket send buffer
3008 * not yet drained of the acked data, so we have to leave
3009 * snd_una as it was to get the correct data offset in
3010 * tcp_output().
3011 */
3012 tcp_seq onxt = tp->snd_nxt;
3013 u_long ocwnd = tp->snd_cwnd;
3014
3015 TCP_TIMER_DISARM(tp, TCPT_REXMT)do { (((tp)->t_flags) &= ~(0x04000000 << (0))); timeout_del
(&(tp)->t_timer[(0)]); } while (0)
;
3016 tp->t_rtttime = 0;
3017 tp->snd_nxt = th->th_ack;
3018 /*
3019 * Set snd_cwnd to one segment beyond acknowledged offset
3020 * (tp->snd_una not yet updated when this function is called)
3021 */
3022 tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3023 (void)tcp_output(tp);
3024 tp->snd_cwnd = ocwnd;
3025 if (SEQ_GT(onxt, tp->snd_nxt)((int)((onxt)-(tp->snd_nxt)) > 0))
3026 tp->snd_nxt = onxt;
3027 /*
3028 * Partial window deflation. Relies on fact that tp->snd_una
3029 * not updated yet.
3030 */
3031 if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3032 tp->snd_cwnd -= th->th_ack - tp->snd_una;
3033 else
3034 tp->snd_cwnd = 0;
3035 tp->snd_cwnd += tp->t_maxseg;
3036}
3037
3038int
3039tcp_mss_adv(struct mbuf *m, int af)
3040{
3041 int mss = 0;
3042 int iphlen;
3043 struct ifnet *ifp = NULL((void *)0);
3044
3045 if (m && (m->m_flagsm_hdr.mh_flags & M_PKTHDR0x0002))
3046 ifp = if_get(m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx);
3047
3048 switch (af) {
3049 case AF_INET2:
3050 if (ifp != NULL((void *)0))
3051 mss = ifp->if_mtuif_data.ifi_mtu;
3052 iphlen = sizeof(struct ip);
3053 break;
3054#ifdef INET61
3055 case AF_INET624:
3056 if (ifp != NULL((void *)0))
3057 mss = ifp->if_mtuif_data.ifi_mtu;
3058 iphlen = sizeof(struct ip6_hdr);
3059 break;
3060#endif
3061 default:
3062 unhandled_af(af);
3063 }
3064 if_put(ifp);
3065 mss = mss - iphlen - sizeof(struct tcphdr);
3066 return (max(mss, tcp_mssdflt));
3067}
3068
3069/*
3070 * TCP compressed state engine. Currently used to hold compressed
3071 * state for SYN_RECEIVED.
3072 */
3073
3074/* syn hash parameters */
3075int tcp_syn_hash_size = TCP_SYN_HASH_SIZE293;
3076int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE293*TCP_SYN_BUCKET_SIZE35;
3077int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE35;
3078int tcp_syn_use_limit = 100000;
3079
3080struct syn_cache_set tcp_syn_cache[2];
3081int tcp_syn_cache_active;
3082
3083#define SYN_HASH(sa, sp, dp, rand)(((sa)->s_addr ^ (rand)[0]) * (((((u_int32_t)(dp))<<
16) + ((u_int32_t)(sp))) ^ (rand)[4]))
\
3084 (((sa)->s_addr ^ (rand)[0]) * \
3085 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
3086#ifndef INET61
3087#define SYN_HASHALL(hash, src, dst, rand)do { switch ((src)->sa_family) { case 2: hash = (((&satosin
(src)->sin_addr)->s_addr ^ ((rand))[0]) * (((((u_int32_t
)(satosin(dst)->sin_port))<<16) + ((u_int32_t)(satosin
(src)->sin_port))) ^ ((rand))[4])); break; case 24: hash =
(((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[0] ^ ((rand))[0]) * ((&satosin6(src)->sin6_addr)->
__u6_addr.__u6_addr32[1] ^ ((rand))[1]) * ((&satosin6(src
)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((rand))[2]) *
((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((rand))[3]) * (((((u_int32_t)(satosin6(dst)->sin6_port
))<<16) + ((u_int32_t)(satosin6(src)->sin6_port))) ^
((rand))[4])); break; default: hash = 0; } } while ( 0)
\
3088do { \
3089 hash = SYN_HASH(&satosin(src)->sin_addr, \(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
3090 satosin(src)->sin_port, \(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
3091 satosin(dst)->sin_port, (rand))(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
; \
3092} while (/*CONSTCOND*/ 0)
3093#else
3094#define SYN_HASH6(sa, sp, dp, rand)(((sa)->__u6_addr.__u6_addr32[0] ^ (rand)[0]) * ((sa)->
__u6_addr.__u6_addr32[1] ^ (rand)[1]) * ((sa)->__u6_addr.__u6_addr32
[2] ^ (rand)[2]) * ((sa)->__u6_addr.__u6_addr32[3] ^ (rand
)[3]) * (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^
(rand)[4]))
\
3095 (((sa)->s6_addr32__u6_addr.__u6_addr32[0] ^ (rand)[0]) * \
3096 ((sa)->s6_addr32__u6_addr.__u6_addr32[1] ^ (rand)[1]) * \
3097 ((sa)->s6_addr32__u6_addr.__u6_addr32[2] ^ (rand)[2]) * \
3098 ((sa)->s6_addr32__u6_addr.__u6_addr32[3] ^ (rand)[3]) * \
3099 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp))) ^ (rand)[4]))
3100
3101#define SYN_HASHALL(hash, src, dst, rand)do { switch ((src)->sa_family) { case 2: hash = (((&satosin
(src)->sin_addr)->s_addr ^ ((rand))[0]) * (((((u_int32_t
)(satosin(dst)->sin_port))<<16) + ((u_int32_t)(satosin
(src)->sin_port))) ^ ((rand))[4])); break; case 24: hash =
(((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[0] ^ ((rand))[0]) * ((&satosin6(src)->sin6_addr)->
__u6_addr.__u6_addr32[1] ^ ((rand))[1]) * ((&satosin6(src
)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((rand))[2]) *
((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((rand))[3]) * (((((u_int32_t)(satosin6(dst)->sin6_port
))<<16) + ((u_int32_t)(satosin6(src)->sin6_port))) ^
((rand))[4])); break; default: hash = 0; } } while ( 0)
\
3102do { \
3103 switch ((src)->sa_family) { \
3104 case AF_INET2: \
3105 hash = SYN_HASH(&satosin(src)->sin_addr, \(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
3106 satosin(src)->sin_port, \(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
3107 satosin(dst)->sin_port, (rand))(((&satosin(src)->sin_addr)->s_addr ^ ((rand))[0]) *
(((((u_int32_t)(satosin(dst)->sin_port))<<16) + ((u_int32_t
)(satosin(src)->sin_port))) ^ ((rand))[4]))
; \
3108 break; \
3109 case AF_INET624: \
3110 hash = SYN_HASH6(&satosin6(src)->sin6_addr, \(((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[0] ^ ((rand))[0]) * ((&satosin6(src)->sin6_addr)->
__u6_addr.__u6_addr32[1] ^ ((rand))[1]) * ((&satosin6(src
)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((rand))[2]) *
((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((rand))[3]) * (((((u_int32_t)(satosin6(dst)->sin6_port
))<<16) + ((u_int32_t)(satosin6(src)->sin6_port))) ^
((rand))[4]))
3111 satosin6(src)->sin6_port, \(((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[0] ^ ((rand))[0]) * ((&satosin6(src)->sin6_addr)->
__u6_addr.__u6_addr32[1] ^ ((rand))[1]) * ((&satosin6(src
)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((rand))[2]) *
((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((rand))[3]) * (((((u_int32_t)(satosin6(dst)->sin6_port
))<<16) + ((u_int32_t)(satosin6(src)->sin6_port))) ^
((rand))[4]))
3112 satosin6(dst)->sin6_port, (rand))(((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[0] ^ ((rand))[0]) * ((&satosin6(src)->sin6_addr)->
__u6_addr.__u6_addr32[1] ^ ((rand))[1]) * ((&satosin6(src
)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((rand))[2]) *
((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((rand))[3]) * (((((u_int32_t)(satosin6(dst)->sin6_port
))<<16) + ((u_int32_t)(satosin6(src)->sin6_port))) ^
((rand))[4]))
; \
3113 break; \
3114 default: \
3115 hash = 0; \
3116 } \
3117} while (/*CONSTCOND*/0)
3118#endif /* INET6 */
3119
3120void
3121syn_cache_rm(struct syn_cache *sc)
3122{
3123 sc->sc_flags |= SCF_DEAD0x0004;
3124 TAILQ_REMOVE(&sc->sc_buckethead->sch_bucket, sc, sc_bucketq)do { if (((sc)->sc_bucketq.tqe_next) != ((void *)0)) (sc)->
sc_bucketq.tqe_next->sc_bucketq.tqe_prev = (sc)->sc_bucketq
.tqe_prev; else (&sc->sc_buckethead->sch_bucket)->
tqh_last = (sc)->sc_bucketq.tqe_prev; *(sc)->sc_bucketq
.tqe_prev = (sc)->sc_bucketq.tqe_next; ((sc)->sc_bucketq
.tqe_prev) = ((void *)-1); ((sc)->sc_bucketq.tqe_next) = (
(void *)-1); } while (0)
;
3125 sc->sc_tp = NULL((void *)0);
3126 LIST_REMOVE(sc, sc_tpq)do { if ((sc)->sc_tpq.le_next != ((void *)0)) (sc)->sc_tpq
.le_next->sc_tpq.le_prev = (sc)->sc_tpq.le_prev; *(sc)->
sc_tpq.le_prev = (sc)->sc_tpq.le_next; ((sc)->sc_tpq.le_prev
) = ((void *)-1); ((sc)->sc_tpq.le_next) = ((void *)-1); }
while (0)
;
3127 sc->sc_buckethead->sch_length--;
3128 timeout_del(&sc->sc_timer);
3129 sc->sc_set->scs_count--;
3130}
3131
3132void
3133syn_cache_put(struct syn_cache *sc)
3134{
3135 m_free(sc->sc_ipopts);
3136 if (sc->sc_route4sc_route_u.route4.ro_rt != NULL((void *)0)) {
3137 rtfree(sc->sc_route4sc_route_u.route4.ro_rt);
3138 sc->sc_route4sc_route_u.route4.ro_rt = NULL((void *)0);
3139 }
3140 timeout_set(&sc->sc_timer, syn_cache_reaper, sc);
3141 timeout_add(&sc->sc_timer, 0);
3142}
3143
3144struct pool syn_cache_pool;
3145
3146/*
3147 * We don't estimate RTT with SYNs, so each packet starts with the default
3148 * RTT and each timer step has a fixed timeout value.
3149 */
3150#define SYN_CACHE_TIMER_ARM(sc)do { do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->
sc_rxtshift]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->
sc_rxtcur) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64
*2))) ((sc)->sc_rxtcur) = (( 64*2)); } while ( 0); if (!((
&(sc)->sc_timer)->to_flags & 0x04)) timeout_set_proc
(&(sc)->sc_timer, syn_cache_timer, (sc)); timeout_add(
&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / 2)); } while
( 0)
\
3151do { \
3152 TCPT_RANGESET((sc)->sc_rxtcur, \do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->sc_rxtshift
]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->sc_rxtcur
) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64*2))) (
(sc)->sc_rxtcur) = (( 64*2)); } while ( 0)
3153 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->sc_rxtshift
]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->sc_rxtcur
) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64*2))) (
(sc)->sc_rxtcur) = (( 64*2)); } while ( 0)
3154 TCPTV_REXMTMAX)do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->sc_rxtshift
]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->sc_rxtcur
) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64*2))) (
(sc)->sc_rxtcur) = (( 64*2)); } while ( 0)
; \
3155 if (!timeout_initialized(&(sc)->sc_timer)((&(sc)->sc_timer)->to_flags & 0x04)) \
3156 timeout_set_proc(&(sc)->sc_timer, syn_cache_timer, (sc)); \
3157 timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ2)); \
3158} while (/*CONSTCOND*/0)
3159
3160#define SYN_CACHE_TIMESTAMP(sc)tcp_now + (sc)->sc_modulate tcp_now + (sc)->sc_modulate
3161
3162void
3163syn_cache_init(void)
3164{
3165 int i;
3166
3167 /* Initialize the hash buckets. */
3168 tcp_syn_cache[0].scs_buckethead = mallocarray(tcp_syn_hash_size,
3169 sizeof(struct syn_cache_head), M_SYNCACHE139, M_WAITOK0x0001|M_ZERO0x0008);
3170 tcp_syn_cache[1].scs_buckethead = mallocarray(tcp_syn_hash_size,
3171 sizeof(struct syn_cache_head), M_SYNCACHE139, M_WAITOK0x0001|M_ZERO0x0008);
3172 tcp_syn_cache[0].scs_size = tcp_syn_hash_size;
3173 tcp_syn_cache[1].scs_size = tcp_syn_hash_size;
3174 for (i = 0; i < tcp_syn_hash_size; i++) {
3175 TAILQ_INIT(&tcp_syn_cache[0].scs_buckethead[i].sch_bucket)do { (&tcp_syn_cache[0].scs_buckethead[i].sch_bucket)->
tqh_first = ((void *)0); (&tcp_syn_cache[0].scs_buckethead
[i].sch_bucket)->tqh_last = &(&tcp_syn_cache[0].scs_buckethead
[i].sch_bucket)->tqh_first; } while (0)
;
3176 TAILQ_INIT(&tcp_syn_cache[1].scs_buckethead[i].sch_bucket)do { (&tcp_syn_cache[1].scs_buckethead[i].sch_bucket)->
tqh_first = ((void *)0); (&tcp_syn_cache[1].scs_buckethead
[i].sch_bucket)->tqh_last = &(&tcp_syn_cache[1].scs_buckethead
[i].sch_bucket)->tqh_first; } while (0)
;
3177 }
3178
3179 /* Initialize the syn cache pool. */
3180 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, IPL_SOFTNET0x5,
3181 0, "syncache", NULL((void *)0));
3182}
3183
3184void
3185syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3186{
3187 struct syn_cache_set *set = &tcp_syn_cache[tcp_syn_cache_active];
3188 struct syn_cache_head *scp;
3189 struct syn_cache *sc2;
3190 int i;
3191
3192 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3193
3194 /*
3195 * If there are no entries in the hash table, reinitialize
3196 * the hash secrets. To avoid useless cache swaps and
3197 * reinitialization, use it until the limit is reached.
3198 * An empty cache is also the opportunity to resize the hash.
3199 */
3200 if (set->scs_count == 0 && set->scs_use <= 0) {
3201 set->scs_use = tcp_syn_use_limit;
3202 if (set->scs_size != tcp_syn_hash_size) {
3203 scp = mallocarray(tcp_syn_hash_size, sizeof(struct
3204 syn_cache_head), M_SYNCACHE139, M_NOWAIT0x0002|M_ZERO0x0008);
3205 if (scp == NULL((void *)0)) {
3206 /* Try again next time. */
3207 set->scs_use = 0;
3208 } else {
3209 free(set->scs_buckethead, M_SYNCACHE139,
3210 set->scs_size *
3211 sizeof(struct syn_cache_head));
3212 set->scs_buckethead = scp;
3213 set->scs_size = tcp_syn_hash_size;
3214 for (i = 0; i < tcp_syn_hash_size; i++)
3215 TAILQ_INIT(&scp[i].sch_bucket)do { (&scp[i].sch_bucket)->tqh_first = ((void *)0); (&
scp[i].sch_bucket)->tqh_last = &(&scp[i].sch_bucket
)->tqh_first; } while (0)
;
3216 }
3217 }
3218 arc4random_buf(set->scs_random, sizeof(set->scs_random));
3219 tcpstat_inc(tcps_sc_seedrandom);
3220 }
3221
3222 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa,do { switch ((&sc->sc_src.sa)->sa_family) { case 2:
sc->sc_hash = (((&satosin(&sc->sc_src.sa)->
sin_addr)->s_addr ^ ((set->scs_random))[0]) * (((((u_int32_t
)(satosin(&sc->sc_dst.sa)->sin_port))<<16) + (
(u_int32_t)(satosin(&sc->sc_src.sa)->sin_port))) ^ (
(set->scs_random))[4])); break; case 24: sc->sc_hash = (
((&satosin6(&sc->sc_src.sa)->sin6_addr)->__u6_addr
.__u6_addr32[0] ^ ((set->scs_random))[0]) * ((&satosin6
(&sc->sc_src.sa)->sin6_addr)->__u6_addr.__u6_addr32
[1] ^ ((set->scs_random))[1]) * ((&satosin6(&sc->
sc_src.sa)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((set
->scs_random))[2]) * ((&satosin6(&sc->sc_src.sa
)->sin6_addr)->__u6_addr.__u6_addr32[3] ^ ((set->scs_random
))[3]) * (((((u_int32_t)(satosin6(&sc->sc_dst.sa)->
sin6_port))<<16) + ((u_int32_t)(satosin6(&sc->sc_src
.sa)->sin6_port))) ^ ((set->scs_random))[4])); break; default
: sc->sc_hash = 0; } } while ( 0)
3223 set->scs_random)do { switch ((&sc->sc_src.sa)->sa_family) { case 2:
sc->sc_hash = (((&satosin(&sc->sc_src.sa)->
sin_addr)->s_addr ^ ((set->scs_random))[0]) * (((((u_int32_t
)(satosin(&sc->sc_dst.sa)->sin_port))<<16) + (
(u_int32_t)(satosin(&sc->sc_src.sa)->sin_port))) ^ (
(set->scs_random))[4])); break; case 24: sc->sc_hash = (
((&satosin6(&sc->sc_src.sa)->sin6_addr)->__u6_addr
.__u6_addr32[0] ^ ((set->scs_random))[0]) * ((&satosin6
(&sc->sc_src.sa)->sin6_addr)->__u6_addr.__u6_addr32
[1] ^ ((set->scs_random))[1]) * ((&satosin6(&sc->
sc_src.sa)->sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((set
->scs_random))[2]) * ((&satosin6(&sc->sc_src.sa
)->sin6_addr)->__u6_addr.__u6_addr32[3] ^ ((set->scs_random
))[3]) * (((((u_int32_t)(satosin6(&sc->sc_dst.sa)->
sin6_port))<<16) + ((u_int32_t)(satosin6(&sc->sc_src
.sa)->sin6_port))) ^ ((set->scs_random))[4])); break; default
: sc->sc_hash = 0; } } while ( 0)
;
3224 scp = &set->scs_buckethead[sc->sc_hash % set->scs_size];
3225 sc->sc_buckethead = scp;
3226
3227 /*
3228 * Make sure that we don't overflow the per-bucket
3229 * limit or the total cache size limit.
3230 */
3231 if (scp->sch_length >= tcp_syn_bucket_limit) {
3232 tcpstat_inc(tcps_sc_bucketoverflow);
3233 /*
3234 * Someone might attack our bucket hash function. Reseed
3235 * with random as soon as the passive syn cache gets empty.
3236 */
3237 set->scs_use = 0;
3238 /*
3239 * The bucket is full. Toss the oldest element in the
3240 * bucket. This will be the first entry in the bucket.
3241 */
3242 sc2 = TAILQ_FIRST(&scp->sch_bucket)((&scp->sch_bucket)->tqh_first);
3243#ifdef DIAGNOSTIC1
3244 /*
3245 * This should never happen; we should always find an
3246 * entry in our bucket.
3247 */
3248 if (sc2 == NULL((void *)0))
3249 panic("%s: bucketoverflow: impossible", __func__);
3250#endif
3251 syn_cache_rm(sc2);
3252 syn_cache_put(sc2);
3253 } else if (set->scs_count >= tcp_syn_cache_limit) {
3254 struct syn_cache_head *scp2, *sce;
3255
3256 tcpstat_inc(tcps_sc_overflowed);
3257 /*
3258 * The cache is full. Toss the oldest entry in the
3259 * first non-empty bucket we can find.
3260 *
3261 * XXX We would really like to toss the oldest
3262 * entry in the cache, but we hope that this
3263 * condition doesn't happen very often.
3264 */
3265 scp2 = scp;
3266 if (TAILQ_EMPTY(&scp2->sch_bucket)(((&scp2->sch_bucket)->tqh_first) == ((void *)0))) {
3267 sce = &set->scs_buckethead[set->scs_size];
3268 for (++scp2; scp2 != scp; scp2++) {
3269 if (scp2 >= sce)
3270 scp2 = &set->scs_buckethead[0];
3271 if (! TAILQ_EMPTY(&scp2->sch_bucket)(((&scp2->sch_bucket)->tqh_first) == ((void *)0)))
3272 break;
3273 }
3274#ifdef DIAGNOSTIC1
3275 /*
3276 * This should never happen; we should always find a
3277 * non-empty bucket.
3278 */
3279 if (scp2 == scp)
3280 panic("%s: cacheoverflow: impossible",
3281 __func__);
3282#endif
3283 }
3284 sc2 = TAILQ_FIRST(&scp2->sch_bucket)((&scp2->sch_bucket)->tqh_first);
3285 syn_cache_rm(sc2);
3286 syn_cache_put(sc2);
3287 }
3288
3289 /*
3290 * Initialize the entry's timer.
3291 */
3292 sc->sc_rxttot = 0;
3293 sc->sc_rxtshift = 0;
3294 SYN_CACHE_TIMER_ARM(sc)do { do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->
sc_rxtshift]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->
sc_rxtcur) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64
*2))) ((sc)->sc_rxtcur) = (( 64*2)); } while ( 0); if (!((
&(sc)->sc_timer)->to_flags & 0x04)) timeout_set_proc
(&(sc)->sc_timer, syn_cache_timer, (sc)); timeout_add(
&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / 2)); } while
( 0)
;
3295
3296 /* Link it from tcpcb entry */
3297 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq)do { if (((sc)->sc_tpq.le_next = (&tp->t_sc)->lh_first
) != ((void *)0)) (&tp->t_sc)->lh_first->sc_tpq.
le_prev = &(sc)->sc_tpq.le_next; (&tp->t_sc)->
lh_first = (sc); (sc)->sc_tpq.le_prev = &(&tp->
t_sc)->lh_first; } while (0)
;
3298
3299 /* Put it into the bucket. */
3300 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq)do { (sc)->sc_bucketq.tqe_next = ((void *)0); (sc)->sc_bucketq
.tqe_prev = (&scp->sch_bucket)->tqh_last; *(&scp
->sch_bucket)->tqh_last = (sc); (&scp->sch_bucket
)->tqh_last = &(sc)->sc_bucketq.tqe_next; } while (
0)
;
3301 scp->sch_length++;
3302 sc->sc_set = set;
3303 set->scs_count++;
3304 set->scs_use--;
3305
3306 tcpstat_inc(tcps_sc_added);
3307
3308 /*
3309 * If the active cache has exceeded its use limit and
3310 * the passive syn cache is empty, exchange their roles.
3311 */
3312 if (set->scs_use <= 0 &&
3313 tcp_syn_cache[!tcp_syn_cache_active].scs_count == 0)
3314 tcp_syn_cache_active = !tcp_syn_cache_active;
3315}
3316
3317/*
3318 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3319 * If we have retransmitted an entry the maximum number of times, expire
3320 * that entry.
3321 */
3322void
3323syn_cache_timer(void *arg)
3324{
3325 struct syn_cache *sc = arg;
3326
3327 NET_LOCK()do { rw_enter_write(&netlock); } while (0);
3328 if (sc->sc_flags & SCF_DEAD0x0004)
3329 goto out;
3330
3331 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)__builtin_expect(((sc->sc_rxtshift == 12) != 0), 0)) {
3332 /* Drop it -- too many retransmissions. */
3333 goto dropit;
3334 }
3335
3336 /*
3337 * Compute the total amount of time this entry has
3338 * been on a queue. If this entry has been on longer
3339 * than the keep alive timer would allow, expire it.
3340 */
3341 sc->sc_rxttot += sc->sc_rxtcur;
3342 if (sc->sc_rxttot >= tcptv_keep_init)
3343 goto dropit;
3344
3345 tcpstat_inc(tcps_sc_retransmitted);
3346 (void) syn_cache_respond(sc, NULL((void *)0));
3347
3348 /* Advance the timer back-off. */
3349 sc->sc_rxtshift++;
3350 SYN_CACHE_TIMER_ARM(sc)do { do { ((sc)->sc_rxtcur) = (( 3*2) * tcp_backoff[(sc)->
sc_rxtshift]); if (((sc)->sc_rxtcur) < (( 1*2))) ((sc)->
sc_rxtcur) = (( 1*2)); else if (((sc)->sc_rxtcur) > (( 64
*2))) ((sc)->sc_rxtcur) = (( 64*2)); } while ( 0); if (!((
&(sc)->sc_timer)->to_flags & 0x04)) timeout_set_proc
(&(sc)->sc_timer, syn_cache_timer, (sc)); timeout_add(
&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / 2)); } while
( 0)
;
3351
3352 out:
3353 NET_UNLOCK()do { rw_exit_write(&netlock); } while (0);
3354 return;
3355
3356 dropit:
3357 tcpstat_inc(tcps_sc_timed_out);
3358 syn_cache_rm(sc);
3359 syn_cache_put(sc);
3360 NET_UNLOCK()do { rw_exit_write(&netlock); } while (0);
3361}
3362
3363void
3364syn_cache_reaper(void *arg)
3365{
3366 struct syn_cache *sc = arg;
3367
3368 pool_put(&syn_cache_pool, (sc));
3369 return;
3370}
3371
3372/*
3373 * Remove syn cache created by the specified tcb entry,
3374 * because this does not make sense to keep them
3375 * (if there's no tcb entry, syn cache entry will never be used)
3376 */
3377void
3378syn_cache_cleanup(struct tcpcb *tp)
3379{
3380 struct syn_cache *sc, *nsc;
3381
3382 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3383
3384 LIST_FOREACH_SAFE(sc, &tp->t_sc, sc_tpq, nsc)for ((sc) = ((&tp->t_sc)->lh_first); (sc) &&
((nsc) = ((sc)->sc_tpq.le_next), 1); (sc) = (nsc))
{
3385#ifdef DIAGNOSTIC1
3386 if (sc->sc_tp != tp)
3387 panic("invalid sc_tp in syn_cache_cleanup");
3388#endif
3389 syn_cache_rm(sc);
3390 syn_cache_put(sc);
3391 }
3392 /* just for safety */
3393 LIST_INIT(&tp->t_sc)do { ((&tp->t_sc)->lh_first) = ((void *)0); } while
(0)
;
3394}
3395
3396/*
3397 * Find an entry in the syn cache.
3398 */
3399struct syn_cache *
3400syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3401 struct syn_cache_head **headp, u_int rtableid)
3402{
3403 struct syn_cache_set *sets[2];
3404 struct syn_cache *sc;
3405 struct syn_cache_head *scp;
3406 u_int32_t hash;
3407 int i;
3408
3409 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3410
3411 /* Check the active cache first, the passive cache is likely empty. */
3412 sets[0] = &tcp_syn_cache[tcp_syn_cache_active];
3413 sets[1] = &tcp_syn_cache[!tcp_syn_cache_active];
3414 for (i = 0; i < 2; i++) {
3415 if (sets[i]->scs_count == 0)
3416 continue;
3417 SYN_HASHALL(hash, src, dst, sets[i]->scs_random)do { switch ((src)->sa_family) { case 2: hash = (((&satosin
(src)->sin_addr)->s_addr ^ ((sets[i]->scs_random))[0
]) * (((((u_int32_t)(satosin(dst)->sin_port))<<16) +
((u_int32_t)(satosin(src)->sin_port))) ^ ((sets[i]->scs_random
))[4])); break; case 24: hash = (((&satosin6(src)->sin6_addr
)->__u6_addr.__u6_addr32[0] ^ ((sets[i]->scs_random))[0
]) * ((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[1] ^ ((sets[i]->scs_random))[1]) * ((&satosin6(src)->
sin6_addr)->__u6_addr.__u6_addr32[2] ^ ((sets[i]->scs_random
))[2]) * ((&satosin6(src)->sin6_addr)->__u6_addr.__u6_addr32
[3] ^ ((sets[i]->scs_random))[3]) * (((((u_int32_t)(satosin6
(dst)->sin6_port))<<16) + ((u_int32_t)(satosin6(src)
->sin6_port))) ^ ((sets[i]->scs_random))[4])); break; default
: hash = 0; } } while ( 0)
;
3418 scp = &sets[i]->scs_buckethead[hash % sets[i]->scs_size];
3419 *headp = scp;
3420 TAILQ_FOREACH(sc, &scp->sch_bucket, sc_bucketq)for((sc) = ((&scp->sch_bucket)->tqh_first); (sc) !=
((void *)0); (sc) = ((sc)->sc_bucketq.tqe_next))
{
3421 if (sc->sc_hash != hash)
3422 continue;
3423 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3424 !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3425 rtable_l2(rtableid) == rtable_l2(sc->sc_rtableid))
3426 return (sc);
3427 }
3428 }
3429 return (NULL((void *)0));
3430}
3431
3432/*
3433 * This function gets called when we receive an ACK for a
3434 * socket in the LISTEN state. We look up the connection
3435 * in the syn cache, and if its there, we pull it out of
3436 * the cache and turn it into a full-blown connection in
3437 * the SYN-RECEIVED state.
3438 *
3439 * The return values may not be immediately obvious, and their effects
3440 * can be subtle, so here they are:
3441 *
3442 * NULL SYN was not found in cache; caller should drop the
3443 * packet and send an RST.
3444 *
3445 * -1 We were unable to create the new connection, and are
3446 * aborting it. An ACK,RST is being sent to the peer
3447 * (unless we got screwy sequence numbers; see below),
3448 * because the 3-way handshake has been completed. Caller
3449 * should not free the mbuf, since we may be using it. If
3450 * we are not, we will free it.
3451 *
3452 * Otherwise, the return value is a pointer to the new socket
3453 * associated with the connection.
3454 */
3455struct socket *
3456syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3457 u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3458{
3459 struct syn_cache *sc;
3460 struct syn_cache_head *scp;
3461 struct inpcb *inp, *oldinp;
3462 struct tcpcb *tp = NULL((void *)0);
3463 struct mbuf *am;
3464 struct socket *oso;
3465
3466 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3467
3468 sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)((struct inpcb *)(so)->so_pcb)->inp_rtableid);
3469 if (sc == NULL((void *)0))
3470 return (NULL((void *)0));
3471
3472 /*
3473 * Verify the sequence and ack numbers. Try getting the correct
3474 * response again.
3475 */
3476 if ((th->th_ack != sc->sc_iss + 1) ||
3477 SEQ_LEQ(th->th_seq, sc->sc_irs)((int)((th->th_seq)-(sc->sc_irs)) <= 0) ||
3478 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)((int)((th->th_seq)-(sc->sc_irs + 1 + sc->sc_win)) >
0)
) {
3479 (void) syn_cache_respond(sc, m);
3480 return ((struct socket *)(-1));
3481 }
3482
3483 /* Remove this cache entry */
3484 syn_cache_rm(sc);
3485
3486 /*
3487 * Ok, create the full blown connection, and set things up
3488 * as they would have been set up if we had created the
3489 * connection when the SYN arrived. If we can't create
3490 * the connection, abort it.
3491 */
3492 oso = so;
3493 so = sonewconn(so, SS_ISCONNECTED0x002);
3494 if (so == NULL((void *)0))
3495 goto resetandabort;
3496
3497 oldinp = sotoinpcb(oso)((struct inpcb *)(oso)->so_pcb);
3498 inp = sotoinpcb(so)((struct inpcb *)(so)->so_pcb);
3499
3500#ifdef IPSEC1
3501 /*
3502 * We need to copy the required security levels
3503 * from the old pcb. Ditto for any other
3504 * IPsec-related information.
3505 */
3506 memcpy(inp->inp_seclevel, oldinp->inp_seclevel,__builtin_memcpy((inp->inp_seclevel), (oldinp->inp_seclevel
), (sizeof(oldinp->inp_seclevel)))
3507 sizeof(oldinp->inp_seclevel))__builtin_memcpy((inp->inp_seclevel), (oldinp->inp_seclevel
), (sizeof(oldinp->inp_seclevel)))
;
3508#endif /* IPSEC */
3509#ifdef INET61
3510 /*
3511 * inp still has the OLD in_pcb stuff, set the
3512 * v6-related flags on the new guy, too.
3513 */
3514 inp->inp_flags |= (oldinp->inp_flags & INP_IPV60x100);
3515 if (inp->inp_flags & INP_IPV60x100) {
3516 inp->inp_ipv6inp_hu.hu_ipv6.ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = oldinp->inp_ipv6inp_hu.hu_ipv6.ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim;
3517 inp->inp_hops = oldinp->inp_hops;
3518 } else
3519#endif /* INET6 */
3520 {
3521 inp->inp_ipinp_hu.hu_ip.ip_ttl = oldinp->inp_ipinp_hu.hu_ip.ip_ttl;
3522 }
3523
3524#if NPF1 > 0
3525 if (m->m_pkthdrM_dat.MH.MH_pkthdr.pf.flags & PF_TAG_DIVERTED0x08) {
3526 struct pf_divert *divert;
3527
3528 divert = pf_find_divert(m);
3529 KASSERT(divert != NULL)((divert != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/netinet/tcp_input.c"
, 3529, "divert != NULL"))
;
3530 inp->inp_rtableid = divert->rdomain;
3531 } else
3532#endif
3533 /* inherit rtable from listening socket */
3534 inp->inp_rtableid = sc->sc_rtableid;
3535
3536 inp->inp_lport = th->th_dport;
3537 switch (src->sa_family) {
3538#ifdef INET61
3539 case AF_INET624:
3540 inp->inp_laddr6inp_laddru.iau_addr6 = satosin6(dst)->sin6_addr;
3541 break;
3542#endif /* INET6 */
3543 case AF_INET2:
3544 inp->inp_laddrinp_laddru.iau_a4u.inaddr = satosin(dst)->sin_addr;
3545 inp->inp_options = ip_srcroute(m);
3546 if (inp->inp_options == NULL((void *)0)) {
3547 inp->inp_options = sc->sc_ipopts;
3548 sc->sc_ipopts = NULL((void *)0);
3549 }
3550 break;
3551 }
3552 in_pcbrehash(inp);
3553
3554 /*
3555 * Give the new socket our cached route reference.
3556 */
3557 if (src->sa_family == AF_INET2)
3558 inp->inp_routeinp_ru.ru_route = sc->sc_route4sc_route_u.route4; /* struct assignment */
3559#ifdef INET61
3560 else
3561 inp->inp_route6inp_ru.ru_route6 = sc->sc_route6sc_route_u.route6;
3562#endif
3563 sc->sc_route4sc_route_u.route4.ro_rt = NULL((void *)0);
3564
3565 am = m_get(M_DONTWAIT0x0002, MT_SONAME3); /* XXX */
3566 if (am == NULL((void *)0))
3567 goto resetandabort;
3568 am->m_lenm_hdr.mh_len = src->sa_len;
3569 memcpy(mtod(am, caddr_t), src, src->sa_len)__builtin_memcpy((((caddr_t)((am)->m_hdr.mh_data))), (src)
, (src->sa_len))
;
3570 if (in_pcbconnect(inp, am)) {
3571 (void) m_free(am);
3572 goto resetandabort;
3573 }
3574 (void) m_free(am);
3575
3576 tp = intotcpcb(inp)((struct tcpcb *)(inp)->inp_ppcb);
3577 tp->t_flags = sototcpcb(oso)(((struct tcpcb *)(((struct inpcb *)(oso)->so_pcb))->inp_ppcb
))
->t_flags & (TF_NOPUSH0x02000000|TF_NODELAY0x0004);
3578 if (sc->sc_request_r_scale != 15) {
3579 tp->requested_s_scale = sc->sc_requested_s_scale;
3580 tp->request_r_scale = sc->sc_request_r_scale;
3581 tp->t_flags |= TF_REQ_SCALE0x0020|TF_RCVD_SCALE0x0040;
3582 }
3583 if (sc->sc_flags & SCF_TIMESTAMP0x0002)
3584 tp->t_flags |= TF_REQ_TSTMP0x0080|TF_RCVD_TSTMP0x0100;
3585
3586 tp->t_template = tcp_template(tp);
3587 if (tp->t_template == 0) {
3588 tp = tcp_drop(tp, ENOBUFS55); /* destroys socket */
Value stored to 'tp' is never read
3589 so = NULL((void *)0);
3590 goto abort;
3591 }
3592 tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT0x0008;
3593 tp->ts_modulate = sc->sc_modulate;
3594 tp->ts_recent = sc->sc_timestamp;
3595 tp->iss = sc->sc_iss;
3596 tp->irs = sc->sc_irs;
3597 tcp_sendseqinit(tp)(tp)->snd_una = (tp)->snd_nxt = (tp)->snd_max = (tp)
->snd_up = (tp)->iss
;
3598 tp->snd_last = tp->snd_una;
3599#ifdef TCP_ECN1
3600 if (sc->sc_flags & SCF_ECN_PERMIT0x0010) {
3601 tp->t_flags |= TF_ECN_PERMIT0x00008000;
3602 tcpstat_inc(tcps_ecn_accepts);
3603 }
3604#endif
3605 if (sc->sc_flags & SCF_SACK_PERMIT0x0008)
3606 tp->t_flags |= TF_SACK_PERMIT0x0200;
3607#ifdef TCP_SIGNATURE1
3608 if (sc->sc_flags & SCF_SIGNATURE0x0020)
3609 tp->t_flags |= TF_SIGNATURE0x0400;
3610#endif
3611 tcp_rcvseqinit(tp)(tp)->rcv_adv = (tp)->rcv_nxt = (tp)->irs + 1;
3612 tp->t_state = TCPS_SYN_RECEIVED3;
3613 tp->t_rcvtime = tcp_now;
3614 TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init)do { (((tp)->t_flags) |= (0x04000000 << (2))); timeout_add_msec
(&(tp)->t_timer[(2)], (tcptv_keep_init) * 500); } while
(0)
;
3615 tcpstat_inc(tcps_accepts);
3616
3617 tcp_mss(tp, sc->sc_peermaxseg); /* sets t_maxseg */
3618 if (sc->sc_peermaxseg)
3619 tcp_mss_update(tp);
3620 /* Reset initial window to 1 segment for retransmit */
3621 if (sc->sc_rxtshift > 0)
3622 tp->snd_cwnd = tp->t_maxseg;
3623 tp->snd_wl1 = sc->sc_irs;
3624 tp->rcv_up = sc->sc_irs + 1;
3625
3626 /*
3627 * This is what would have happened in tcp_output() when
3628 * the SYN,ACK was sent.
3629 */
3630 tp->snd_up = tp->snd_una;
3631 tp->snd_max = tp->snd_nxt = tp->iss+1;
3632 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur)do { (((tp)->t_flags) |= (0x04000000 << (0))); timeout_add_msec
(&(tp)->t_timer[(0)], (tp->t_rxtcur) * 500); } while
(0)
;
3633 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv)((int)((tp->rcv_nxt + sc->sc_win)-(tp->rcv_adv)) >
0)
)
3634 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3635 tp->last_ack_sent = tp->rcv_nxt;
3636
3637 tcpstat_inc(tcps_sc_completed);
3638 syn_cache_put(sc);
3639 return (so);
3640
3641resetandabort:
3642 tcp_respond(NULL((void *)0), mtod(m, caddr_t)((caddr_t)((m)->m_hdr.mh_data)), th, (tcp_seq)0, th->th_ack, TH_RST0x04,
3643 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid);
3644abort:
3645 m_freem(m);
3646 if (so != NULL((void *)0))
3647 (void) soabort(so);
3648 syn_cache_put(sc);
3649 tcpstat_inc(tcps_sc_aborted);
3650 return ((struct socket *)(-1));
3651}
3652
3653/*
3654 * This function is called when we get a RST for a
3655 * non-existent connection, so that we can see if the
3656 * connection is in the syn cache. If it is, zap it.
3657 */
3658
3659void
3660syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3661 u_int rtableid)
3662{
3663 struct syn_cache *sc;
3664 struct syn_cache_head *scp;
3665
3666 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3667
3668 if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL((void *)0))
3669 return;
3670 if (SEQ_LT(th->th_seq, sc->sc_irs)((int)((th->th_seq)-(sc->sc_irs)) < 0) ||
3671 SEQ_GT(th->th_seq, sc->sc_irs + 1)((int)((th->th_seq)-(sc->sc_irs + 1)) > 0))
3672 return;
3673 syn_cache_rm(sc);
3674 tcpstat_inc(tcps_sc_reset);
3675 syn_cache_put(sc);
3676}
3677
3678void
3679syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3680 u_int rtableid)
3681{
3682 struct syn_cache *sc;
3683 struct syn_cache_head *scp;
3684
3685 NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl >
0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail
(0x0002UL, _s, __func__); } while (0)
;
3686
3687 if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL((void *)0))
3688 return;
3689 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3690 if (ntohl (th->th_seq)(__uint32_t)(__builtin_constant_p(th->th_seq) ? (__uint32_t
)(((__uint32_t)(th->th_seq) & 0xff) << 24 | ((__uint32_t
)(th->th_seq) & 0xff00) << 8 | ((__uint32_t)(th->
th_seq) & 0xff0000) >> 8 | ((__uint32_t)(th->th_seq
) & 0xff000000) >> 24) : __swap32md(th->th_seq))
!= sc->sc_iss) {
3691 return;
3692 }
3693
3694 /*
3695 * If we've retransmitted 3 times and this is our second error,
3696 * we remove the entry. Otherwise, we allow it to continue on.
3697 * This prevents us from incorrectly nuking an entry during a
3698 * spurious network outage.
3699 *
3700 * See tcp_notify().
3701 */
3702 if ((sc->sc_flags & SCF_UNREACH0x0001) == 0 || sc->sc_rxtshift < 3) {
3703 sc->sc_flags |= SCF_UNREACH0x0001;
3704 return;
3705 }
3706
3707 syn_cache_rm(sc);
3708 tcpstat_inc(tcps_sc_unreach);
3709 syn_cache_put(sc);
3710}
3711
3712/*
3713 * Given a LISTEN socket and an inbound SYN request, add
3714 * this to the syn cache, and send back a segment:
3715 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3716 * to the source.
3717 *
3718 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3719 * Doing so would require that we hold onto the data and deliver it
3720 * to the application. However, if we are the target of a SYN-flood
3721 * DoS attack, an attacker could send data which would eventually
3722 * consume all available buffer space if it were ACKed. By not ACKing
3723 * the data, we avoid this DoS scenario.
3724 */
3725
3726int
3727syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3728 u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3729 struct tcp_opt_info *oi, tcp_seq *issp)
3730{
3731 struct tcpcb tb, *tp;
3732 long win;
3733 struct syn_cache *sc;
3734 struct syn_cache_head *scp;
3735 struct mbuf *ipopts;
3736
3737 tp = sototcpcb(so)(((struct tcpcb *)(((struct inpcb *)(so)->so_pcb))->inp_ppcb
))
;
3738
3739 /*
3740 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3741 *
3742 * Note this check is performed in tcp_input() very early on.
3743 */
3744
3745 /*
3746 * Initialize some local state.
3747 */
3748 win = sbspace(so, &so->so_rcv);
3749 if (win > TCP_MAXWIN65535)
3750 win = TCP_MAXWIN65535;
3751
3752 bzero(&tb, sizeof(tb))__builtin_bzero((&tb), (sizeof(tb)));
3753#ifdef TCP_SIGNATURE1
3754 if (optp || (tp->t_flags & TF_SIGNATURE0x0400)) {
3755#else
3756 if (optp) {
3757#endif
3758 tb.pf = tp->pf;
3759 tb.sack_enable = tp->sack_enable;
3760 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE0x0020|TF_REQ_TSTMP0x0080) : 0;
3761#ifdef TCP_SIGNATURE1
3762 if (tp->t_flags & TF_SIGNATURE0x0400)
3763 tb.t_flags |= TF_SIGNATURE0x0400;
3764#endif
3765 tb.t_state = TCPS_LISTEN1;
3766 if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi,
3767 sotoinpcb(so)((struct inpcb *)(so)->so_pcb)->inp_rtableid))
3768 return (-1);
3769 }
3770
3771 switch (src->sa_family) {
3772 case AF_INET2:
3773 /*
3774 * Remember the IP options, if any.
3775 */
3776 ipopts = ip_srcroute(m);
3777 break;
3778 default:
3779 ipopts = NULL((void *)0);
3780 }
3781
3782 /*
3783 * See if we already have an entry for this connection.
3784 * If we do, resend the SYN,ACK. We do not count this
3785 * as a retransmission (XXX though maybe we should).
3786 */
3787 sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)((struct inpcb *)(so)->so_pcb)->inp_rtableid);
3788 if (sc != NULL((void *)0)) {
3789 tcpstat_inc(tcps_sc_dupesyn);
3790 if (ipopts) {
3791 /*
3792 * If we were remembering a previous source route,
3793 * forget it and use the new one we've been given.
3794 */
3795 m_free(sc->sc_ipopts);
3796 sc->sc_ipopts = ipopts;
3797 }
3798 sc->sc_timestamp = tb.ts_recent;
3799 if (syn_cache_respond(sc, m) == 0) {
3800 tcpstat_inc(tcps_sndacks);
3801 tcpstat_inc(tcps_sndtotal);
3802 }
3803 return (0);
3804 }
3805
3806 sc = pool_get(&syn_cache_pool, PR_NOWAIT0x0002|PR_ZERO0x0008);
3807 if (sc == NULL((void *)0)) {
3808 m_free(ipopts);
3809 return (-1);
3810 }
3811
3812 /*
3813 * Fill in the cache, and put the necessary IP and TCP
3814 * options into the reply.
3815 */
3816 memcpy(&sc->sc_src, src, src->sa_len)__builtin_memcpy((&sc->sc_src), (src), (src->sa_len
))
;
3817 memcpy(&sc->sc_dst, dst, dst->sa_len)__builtin_memcpy((&sc->sc_dst), (dst), (dst->sa_len
))
;
3818 sc->sc_rtableid = sotoinpcb(so)((struct inpcb *)(so)->so_pcb)->inp_rtableid;
3819 sc->sc_flags = 0;
3820 sc->sc_ipopts = ipopts;
3821 sc->sc_irs = th->th_seq;
3822
3823 sc->sc_iss = issp ? *issp : arc4random();
3824 sc->sc_peermaxseg = oi->maxseg;
3825 sc->sc_ourmaxseg = tcp_mss_adv(m, sc->sc_src.sa.sa_family);
3826 sc->sc_win = win;
3827 sc->sc_timestamp = tb.ts_recent;
3828 if ((tb.t_flags & (TF_REQ_TSTMP0x0080|TF_RCVD_TSTMP0x0100)) ==
3829 (TF_REQ_TSTMP0x0080|TF_RCVD_TSTMP0x0100)) {
3830 sc->sc_flags |= SCF_TIMESTAMP0x0002;
3831 sc->sc_modulate = arc4random();
3832 }
3833 if ((tb.t_flags & (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) ==
3834 (TF_RCVD_SCALE0x0040|TF_REQ_SCALE0x0020)) {
3835 sc->sc_requested_s_scale = tb.requested_s_scale;
3836 sc->sc_request_r_scale = 0;
3837 /*
3838 * Pick the smallest possible scaling factor that
3839 * will still allow us to scale up to sb_max.
3840 *
3841 * We do this because there are broken firewalls that
3842 * will corrupt the window scale option, leading to
3843 * the other endpoint believing that our advertised
3844 * window is unscaled. At scale factors larger than
3845 * 5 the unscaled window will drop below 1500 bytes,
3846 * leading to serious problems when traversing these
3847 * broken firewalls.
3848 *
3849 * With the default sbmax of 256K, a scale factor
3850 * of 3 will be chosen by this algorithm. Those who
3851 * choose a larger sbmax should watch out
3852 * for the compatibility problems mentioned above.
3853 *
3854 * RFC1323: The Window field in a SYN (i.e., a <SYN>
3855 * or <SYN,ACK>) segment itself is never scaled.
3856 */
3857 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT14 &&
3858 (TCP_MAXWIN65535 << sc->sc_request_r_scale) < sb_max)
3859 sc->sc_request_r_scale++;
3860 } else {
3861 sc->sc_requested_s_scale = 15;
3862 sc->sc_request_r_scale = 15;
3863 }
3864#ifdef TCP_ECN1
3865 /*
3866 * if both ECE and CWR flag bits are set, peer is ECN capable.
3867 */
3868 if (tcp_do_ecn &&
3869 (th->th_flags & (TH_ECE0x40|TH_CWR0x80)) == (TH_ECE0x40|TH_CWR0x80))
3870 sc->sc_flags |= SCF_ECN_PERMIT0x0010;
3871#endif
3872 /*
3873 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
3874 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
3875 */
3876 if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT0x0200))
3877 sc->sc_flags |= SCF_SACK_PERMIT0x0008;
3878#ifdef TCP_SIGNATURE1
3879 if (tb.t_flags & TF_SIGNATURE0x0400)
3880 sc->sc_flags |= SCF_SIGNATURE0x0020;
3881#endif
3882 sc->sc_tp = tp;
3883 if (syn_cache_respond(sc, m) == 0) {
3884 syn_cache_insert(sc, tp);
3885 tcpstat_inc(tcps_sndacks);
3886 tcpstat_inc(tcps_sndtotal);
3887 } else {
3888 syn_cache_put(sc);
3889 tcpstat_inc(tcps_sc_dropped);
3890 }
3891
3892 return (0);
3893}
3894
3895int
3896syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
3897{
3898 u_int8_t *optp;
3899 int optlen, error;
3900 u_int16_t tlen;
3901 struct ip *ip = NULL((void *)0);
3902#ifdef INET61
3903 struct ip6_hdr *ip6 = NULL((void *)0);
3904#endif
3905 struct tcphdr *th;
3906 u_int hlen;
3907 struct inpcb *inp;
3908
3909 switch (sc->sc_src.sa.sa_family) {
3910 case AF_INET2:
3911 hlen = sizeof(struct ip);
3912 break;
3913#ifdef INET61
3914 case AF_INET624:
3915 hlen = sizeof(struct ip6_hdr);
3916 break;
3917#endif
3918 default:
3919 m_freem(m);
3920 return (EAFNOSUPPORT47);
3921 }
3922
3923 /* Compute the size of the TCP options. */
3924 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3925 ((sc->sc_flags & SCF_SACK_PERMIT0x0008) ? 4 : 0) +
3926#ifdef TCP_SIGNATURE1
3927 ((sc->sc_flags & SCF_SIGNATURE0x0020) ? TCPOLEN_SIGLEN(18 +2) : 0) +
3928#endif
3929 ((sc->sc_flags & SCF_TIMESTAMP0x0002) ? TCPOLEN_TSTAMP_APPA(10 +2) : 0);
3930
3931 tlen = hlen + sizeof(struct tcphdr) + optlen;
3932
3933 /*
3934 * Create the IP+TCP header from scratch.
3935 */
3936 m_freem(m);
3937#ifdef DIAGNOSTIC1
3938 if (max_linkhdr + tlen > MCLBYTES(1 << 11))
3939 return (ENOBUFS55);
3940#endif
3941 MGETHDR(m, M_DONTWAIT, MT_DATA)m = m_gethdr((0x0002), (1));
3942 if (m && max_linkhdr + tlen > MHLEN((256 - sizeof(struct m_hdr)) - sizeof(struct pkthdr))) {
3943 MCLGET(m, M_DONTWAIT)(void) m_clget((m), (0x0002), (1 << 11));
3944 if ((m->m_flagsm_hdr.mh_flags & M_EXT0x0001) == 0) {
3945 m_freem(m);
3946 m = NULL((void *)0);
3947 }
3948 }
3949 if (m == NULL((void *)0))
3950 return (ENOBUFS55);
3951
3952 /* Fixup the mbuf. */
3953 m->m_datam_hdr.mh_data += max_linkhdr;
3954 m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = tlen;
3955 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx = 0;
3956 m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid = sc->sc_rtableid;
3957 memset(mtod(m, u_char *), 0, tlen)__builtin_memset((((u_char *)((m)->m_hdr.mh_data))), (0), (
tlen))
;
3958
3959 switch (sc->sc_src.sa.sa_family) {
3960 case AF_INET2:
3961 ip = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data));
3962 ip->ip_dst = sc->sc_src.sin.sin_addr;
3963 ip->ip_src = sc->sc_dst.sin.sin_addr;
3964 ip->ip_p = IPPROTO_TCP6;
3965 th = (struct tcphdr *)(ip + 1);
3966 th->th_dport = sc->sc_src.sin.sin_port;
3967 th->th_sport = sc->sc_dst.sin.sin_port;
3968 break;
3969#ifdef INET61
3970 case AF_INET624:
3971 ip6 = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data));
3972 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3973 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3974 ip6->ip6_nxtip6_ctlun.ip6_un1.ip6_un1_nxt = IPPROTO_TCP6;
3975 /* ip6_plen will be updated in ip6_output() */
3976 th = (struct tcphdr *)(ip6 + 1);
3977 th->th_dport = sc->sc_src.sin6.sin6_port;
3978 th->th_sport = sc->sc_dst.sin6.sin6_port;
3979 break;
3980#endif
3981 default:
3982 unhandled_af(sc->sc_src.sa.sa_family);
3983 }
3984
3985 th->th_seq = htonl(sc->sc_iss)(__uint32_t)(__builtin_constant_p(sc->sc_iss) ? (__uint32_t
)(((__uint32_t)(sc->sc_iss) & 0xff) << 24 | ((__uint32_t
)(sc->sc_iss) & 0xff00) << 8 | ((__uint32_t)(sc->
sc_iss) & 0xff0000) >> 8 | ((__uint32_t)(sc->sc_iss
) & 0xff000000) >> 24) : __swap32md(sc->sc_iss))
;
3986 th->th_ack = htonl(sc->sc_irs + 1)(__uint32_t)(__builtin_constant_p(sc->sc_irs + 1) ? (__uint32_t
)(((__uint32_t)(sc->sc_irs + 1) & 0xff) << 24 | (
(__uint32_t)(sc->sc_irs + 1) & 0xff00) << 8 | ((
__uint32_t)(sc->sc_irs + 1) & 0xff0000) >> 8 | (
(__uint32_t)(sc->sc_irs + 1) & 0xff000000) >> 24
) : __swap32md(sc->sc_irs + 1))
;
3987 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3988 th->th_flags = TH_SYN0x02|TH_ACK0x10;
3989#ifdef TCP_ECN1
3990 /* Set ECE for SYN-ACK if peer supports ECN. */
3991 if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT0x0010))
3992 th->th_flags |= TH_ECE0x40;
3993#endif
3994 th->th_win = htons(sc->sc_win)(__uint16_t)(__builtin_constant_p(sc->sc_win) ? (__uint16_t
)(((__uint16_t)(sc->sc_win) & 0xffU) << 8 | ((__uint16_t
)(sc->sc_win) & 0xff00U) >> 8) : __swap16md(sc->
sc_win))
;
3995 /* th_sum already 0 */
3996 /* th_urp already 0 */
3997
3998 /* Tack on the TCP options. */
3999 optp = (u_int8_t *)(th + 1);
4000 *optp++ = TCPOPT_MAXSEG2;
4001 *optp++ = 4;
4002 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4003 *optp++ = sc->sc_ourmaxseg & 0xff;
4004
4005 /* Include SACK_PERMIT_HDR option if peer has already done so. */
4006 if (sc->sc_flags & SCF_SACK_PERMIT0x0008) {
4007 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR)(__uint32_t)(__builtin_constant_p((1<<24|1<<16|4<<
8|2)) ? (__uint32_t)(((__uint32_t)((1<<24|1<<16|4
<<8|2)) & 0xff) << 24 | ((__uint32_t)((1<<
24|1<<16|4<<8|2)) & 0xff00) << 8 | ((__uint32_t
)((1<<24|1<<16|4<<8|2)) & 0xff0000) >>
8 | ((__uint32_t)((1<<24|1<<16|4<<8|2)) &
0xff000000) >> 24) : __swap32md((1<<24|1<<
16|4<<8|2)))
;
4008 optp += 4;
4009 }
4010
4011 if (sc->sc_request_r_scale != 15) {
4012 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |(__uint32_t)(__builtin_constant_p(1 << 24 | 3 << 16
| 3 << 8 | sc->sc_request_r_scale) ? (__uint32_t)((
(__uint32_t)(1 << 24 | 3 << 16 | 3 << 8 | sc
->sc_request_r_scale) & 0xff) << 24 | ((__uint32_t
)(1 << 24 | 3 << 16 | 3 << 8 | sc->sc_request_r_scale
) & 0xff00) << 8 | ((__uint32_t)(1 << 24 | 3 <<
16 | 3 << 8 | sc->sc_request_r_scale) & 0xff0000
) >> 8 | ((__uint32_t)(1 << 24 | 3 << 16 | 3
<< 8 | sc->sc_request_r_scale) & 0xff000000) >>
24) : __swap32md(1 << 24 | 3 << 16 | 3 << 8
| sc->sc_request_r_scale))
4013 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |(__uint32_t)(__builtin_constant_p(1 << 24 | 3 << 16
| 3 << 8 | sc->sc_request_r_scale) ? (__uint32_t)((
(__uint32_t)(1 << 24 | 3 << 16 | 3 << 8 | sc
->sc_request_r_scale) & 0xff) << 24 | ((__uint32_t
)(1 << 24 | 3 << 16 | 3 << 8 | sc->sc_request_r_scale
) & 0xff00) << 8 | ((__uint32_t)(1 << 24 | 3 <<
16 | 3 << 8 | sc->sc_request_r_scale) & 0xff0000
) >> 8 | ((__uint32_t)(1 << 24 | 3 << 16 | 3
<< 8 | sc->sc_request_r_scale) & 0xff000000) >>
24) : __swap32md(1 << 24 | 3 << 16 | 3 << 8
| sc->sc_request_r_scale))
4014 sc->sc_request_r_scale)(__uint32_t)(__builtin_constant_p(1 << 24 | 3 << 16
| 3 << 8 | sc->sc_request_r_scale) ? (__uint32_t)((
(__uint32_t)(1 << 24 | 3 << 16 | 3 << 8 | sc
->sc_request_r_scale) & 0xff) << 24 | ((__uint32_t
)(1 << 24 | 3 << 16 | 3 << 8 | sc->sc_request_r_scale
) & 0xff00) << 8 | ((__uint32_t)(1 << 24 | 3 <<
16 | 3 << 8 | sc->sc_request_r_scale) & 0xff0000
) >> 8 | ((__uint32_t)(1 << 24 | 3 << 16 | 3
<< 8 | sc->sc_request_r_scale) & 0xff000000) >>
24) : __swap32md(1 << 24 | 3 << 16 | 3 << 8
| sc->sc_request_r_scale))
;
4015 optp += 4;
4016 }
4017
4018 if (sc->sc_flags & SCF_TIMESTAMP0x0002) {
4019 u_int32_t *lp = (u_int32_t *)(optp);
4020 /* Form timestamp option as shown in appendix A of RFC 1323. */
4021 *lp++ = htonl(TCPOPT_TSTAMP_HDR)(__uint32_t)(__builtin_constant_p((1<<24|1<<16|8<<
8|10)) ? (__uint32_t)(((__uint32_t)((1<<24|1<<16|
8<<8|10)) & 0xff) << 24 | ((__uint32_t)((1<<
24|1<<16|8<<8|10)) & 0xff00) << 8 | ((__uint32_t
)((1<<24|1<<16|8<<8|10)) & 0xff0000) >>
8 | ((__uint32_t)((1<<24|1<<16|8<<8|10)) &
0xff000000) >> 24) : __swap32md((1<<24|1<<
16|8<<8|10)))
;
4022 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc))(__uint32_t)(__builtin_constant_p(tcp_now + (sc)->sc_modulate
) ? (__uint32_t)(((__uint32_t)(tcp_now + (sc)->sc_modulate
) & 0xff) << 24 | ((__uint32_t)(tcp_now + (sc)->
sc_modulate) & 0xff00) << 8 | ((__uint32_t)(tcp_now
+ (sc)->sc_modulate) & 0xff0000) >> 8 | ((__uint32_t
)(tcp_now + (sc)->sc_modulate) & 0xff000000) >> 24
) : __swap32md(tcp_now + (sc)->sc_modulate))
;
4023 *lp = htonl(sc->sc_timestamp)(__uint32_t)(__builtin_constant_p(sc->sc_timestamp) ? (__uint32_t
)(((__uint32_t)(sc->sc_timestamp) & 0xff) << 24 |
((__uint32_t)(sc->sc_timestamp) & 0xff00) << 8 |
((__uint32_t)(sc->sc_timestamp) & 0xff0000) >> 8
| ((__uint32_t)(sc->sc_timestamp) & 0xff000000) >>
24) : __swap32md(sc->sc_timestamp))
;
4024 optp += TCPOLEN_TSTAMP_APPA(10 +2);
4025 }
4026
4027#ifdef TCP_SIGNATURE1
4028 if (sc->sc_flags & SCF_SIGNATURE0x0020) {
4029 union sockaddr_union src, dst;
4030 struct tdb *tdb;
4031
4032 bzero(&src, sizeof(union sockaddr_union))__builtin_bzero((&src), (sizeof(union sockaddr_union)));
4033 bzero(&dst, sizeof(union sockaddr_union))__builtin_bzero((&dst), (sizeof(union sockaddr_union)));
4034 src.sa.sa_len = sc->sc_src.sa.sa_len;
4035 src.sa.sa_family = sc->sc_src.sa.sa_family;
4036 dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4037 dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4038
4039 switch (sc->sc_src.sa.sa_family) {
4040 case 0: /*default to PF_INET*/
4041 case AF_INET2:
4042 src.sin.sin_addr = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data))->ip_src;
4043 dst.sin.sin_addr = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data))->ip_dst;
4044 break;
4045#ifdef INET61
4046 case AF_INET624:
4047 src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data))->ip6_src;
4048 dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data))->ip6_dst;
4049 break;
4050#endif /* INET6 */
4051 }
4052
4053 tdb = gettdbbysrcdst(rtable_l2(sc->sc_rtableid),gettdbbysrcdst_dir((rtable_l2(sc->sc_rtableid)),(0),(&
src),(&dst),(6),0)
4054 0, &src, &dst, IPPROTO_TCP)gettdbbysrcdst_dir((rtable_l2(sc->sc_rtableid)),(0),(&
src),(&dst),(6),0)
;
4055 if (tdb == NULL((void *)0)) {
4056 m_freem(m);
4057 return (EPERM1);
4058 }
4059
4060 /* Send signature option */
4061 *(optp++) = TCPOPT_SIGNATURE19;
4062 *(optp++) = TCPOLEN_SIGNATURE18;
4063
4064 if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4065 hlen, 0, optp) < 0) {
4066 m_freem(m);
4067 tdb_unref(tdb);
4068 return (EINVAL22);
4069 }
4070 tdb_unref(tdb);
4071 optp += 16;
4072
4073 /* Pad options list to the next 32 bit boundary and
4074 * terminate it.
4075 */
4076 *optp++ = TCPOPT_NOP1;
4077 *optp++ = TCPOPT_EOL0;
4078 }
4079#endif /* TCP_SIGNATURE */
4080
4081 /* Compute the packet's checksum. */
4082 switch (sc->sc_src.sa.sa_family) {
4083 case AF_INET2:
4084 ip->ip_len = htons(tlen - hlen)(__uint16_t)(__builtin_constant_p(tlen - hlen) ? (__uint16_t)
(((__uint16_t)(tlen - hlen) & 0xffU) << 8 | ((__uint16_t
)(tlen - hlen) & 0xff00U) >> 8) : __swap16md(tlen -
hlen))
;
4085 th->th_sum = 0;
4086 th->th_sum = in_cksum(m, tlen);
4087 break;
4088#ifdef INET61
4089 case AF_INET624:
4090 ip6->ip6_plenip6_ctlun.ip6_un1.ip6_un1_plen = htons(tlen - hlen)(__uint16_t)(__builtin_constant_p(tlen - hlen) ? (__uint16_t)
(((__uint16_t)(tlen - hlen) & 0xffU) << 8 | ((__uint16_t
)(tlen - hlen) & 0xff00U) >> 8) : __swap16md(tlen -
hlen))
;
4091 th->th_sum = 0;
4092 th->th_sum = in6_cksum(m, IPPROTO_TCP6, hlen, tlen - hlen);
4093 break;
4094#endif
4095 }
4096
4097 /* use IPsec policy and ttl from listening socket, on SYN ACK */
4098 inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL((void *)0);
4099
4100 /*
4101 * Fill in some straggling IP bits. Note the stack expects
4102 * ip_len to be in host order, for convenience.
4103 */
4104 switch (sc->sc_src.sa.sa_family) {
4105 case AF_INET2:
4106 ip->ip_len = htons(tlen)(__uint16_t)(__builtin_constant_p(tlen) ? (__uint16_t)(((__uint16_t
)(tlen) & 0xffU) << 8 | ((__uint16_t)(tlen) & 0xff00U
) >> 8) : __swap16md(tlen))
;
4107 ip->ip_ttl = inp ? inp->inp_ipinp_hu.hu_ip.ip_ttl : ip_defttl;
4108 if (inp != NULL((void *)0))
4109 ip->ip_tos = inp->inp_ipinp_hu.hu_ip.ip_tos;
4110 break;
4111#ifdef INET61
4112 case AF_INET624:
4113 ip6->ip6_vfcip6_ctlun.ip6_un2_vfc &= ~IPV6_VERSION_MASK0xf0;
4114 ip6->ip6_vfcip6_ctlun.ip6_un2_vfc |= IPV6_VERSION0x60;
4115 ip6->ip6_plenip6_ctlun.ip6_un1.ip6_un1_plen = htons(tlen - hlen)(__uint16_t)(__builtin_constant_p(tlen - hlen) ? (__uint16_t)
(((__uint16_t)(tlen - hlen) & 0xffU) << 8 | ((__uint16_t
)(tlen - hlen) & 0xff00U) >> 8) : __swap16md(tlen -
hlen))
;
4116 /* ip6_hlim will be initialized afterwards */
4117 /* leave flowlabel = 0, it is legal and require no state mgmt */
4118 break;
4119#endif
4120 }
4121
4122 switch (sc->sc_src.sa.sa_family) {
4123 case AF_INET2:
4124 error = ip_output(m, sc->sc_ipopts, &sc->sc_route4sc_route_u.route4,
4125 (ip_mtudisc ? IP_MTUDISC0x0800 : 0), NULL((void *)0), inp, 0);
4126 break;
4127#ifdef INET61
4128 case AF_INET624:
4129 ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = in6_selecthlim(inp);
4130
4131 error = ip6_output(m, NULL((void *)0) /*XXX*/, &sc->sc_route6sc_route_u.route6, 0,
4132 NULL((void *)0), NULL((void *)0));
4133 break;
4134#endif
4135 default:
4136 error = EAFNOSUPPORT47;
4137 break;
4138 }
4139 return (error);
4140}