File: | net/pf.c |
Warning: | line 477, column 6 Access to field 'timeout' results in a dereference of a null pointer (loaded from variable 'st') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: pf.c,v 1.1193 2024/01/10 16:44:30 bluhm Exp $ */ | |||
2 | ||||
3 | /* | |||
4 | * Copyright (c) 2001 Daniel Hartmeier | |||
5 | * Copyright (c) 2002 - 2013 Henning Brauer <henning@openbsd.org> | |||
6 | * All rights reserved. | |||
7 | * | |||
8 | * Redistribution and use in source and binary forms, with or without | |||
9 | * modification, are permitted provided that the following conditions | |||
10 | * are met: | |||
11 | * | |||
12 | * - Redistributions of source code must retain the above copyright | |||
13 | * notice, this list of conditions and the following disclaimer. | |||
14 | * - Redistributions in binary form must reproduce the above | |||
15 | * copyright notice, this list of conditions and the following | |||
16 | * disclaimer in the documentation and/or other materials provided | |||
17 | * with the distribution. | |||
18 | * | |||
19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
20 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
21 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |||
22 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |||
23 | * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |||
24 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |||
25 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |||
26 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
27 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |||
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |||
29 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |||
30 | * POSSIBILITY OF SUCH DAMAGE. | |||
31 | * | |||
32 | * Effort sponsored in part by the Defense Advanced Research Projects | |||
33 | * Agency (DARPA) and Air Force Research Laboratory, Air Force | |||
34 | * Materiel Command, USAF, under agreement number F30602-01-2-0537. | |||
35 | * | |||
36 | */ | |||
37 | ||||
38 | #include "bpfilter.h" | |||
39 | #include "carp.h" | |||
40 | #include "pflog.h" | |||
41 | #include "pfsync.h" | |||
42 | #include "pflow.h" | |||
43 | ||||
44 | #include <sys/param.h> | |||
45 | #include <sys/systm.h> | |||
46 | #include <sys/mbuf.h> | |||
47 | #include <sys/filio.h> | |||
48 | #include <sys/socket.h> | |||
49 | #include <sys/socketvar.h> | |||
50 | #include <sys/kernel.h> | |||
51 | #include <sys/time.h> | |||
52 | #include <sys/pool.h> | |||
53 | #include <sys/proc.h> | |||
54 | #include <sys/rwlock.h> | |||
55 | #include <sys/syslog.h> | |||
56 | ||||
57 | #include <crypto/sha2.h> | |||
58 | ||||
59 | #include <net/if.h> | |||
60 | #include <net/if_var.h> | |||
61 | #include <net/if_types.h> | |||
62 | #include <net/route.h> | |||
63 | #include <net/toeplitz.h> | |||
64 | ||||
65 | #include <netinet/in.h> | |||
66 | #include <netinet/in_var.h> | |||
67 | #include <netinet/ip.h> | |||
68 | #include <netinet/in_pcb.h> | |||
69 | #include <netinet/ip_var.h> | |||
70 | #include <netinet/ip_icmp.h> | |||
71 | #include <netinet/icmp_var.h> | |||
72 | #include <netinet/tcp.h> | |||
73 | #include <netinet/tcp_seq.h> | |||
74 | #include <netinet/tcp_timer.h> | |||
75 | #include <netinet/tcp_var.h> | |||
76 | #include <netinet/tcp_fsm.h> | |||
77 | #include <netinet/udp.h> | |||
78 | #include <netinet/udp_var.h> | |||
79 | #include <netinet/ip_divert.h> | |||
80 | ||||
81 | #ifdef INET61 | |||
82 | #include <netinet6/in6_var.h> | |||
83 | #include <netinet/ip6.h> | |||
84 | #include <netinet6/ip6_var.h> | |||
85 | #include <netinet/icmp6.h> | |||
86 | #include <netinet6/nd6.h> | |||
87 | #include <netinet6/ip6_divert.h> | |||
88 | #endif /* INET6 */ | |||
89 | ||||
90 | #include <net/pfvar.h> | |||
91 | #include <net/pfvar_priv.h> | |||
92 | ||||
93 | #if NPFLOG1 > 0 | |||
94 | #include <net/if_pflog.h> | |||
95 | #endif /* NPFLOG > 0 */ | |||
96 | ||||
97 | #if NPFLOW1 > 0 | |||
98 | #include <net/if_pflow.h> | |||
99 | #endif /* NPFLOW > 0 */ | |||
100 | ||||
101 | #if NPFSYNC1 > 0 | |||
102 | #include <net/if_pfsync.h> | |||
103 | #endif /* NPFSYNC > 0 */ | |||
104 | ||||
105 | /* | |||
106 | * Global variables | |||
107 | */ | |||
108 | struct pf_state_tree pf_statetbl; | |||
109 | struct pf_queuehead pf_queues[2]; | |||
110 | struct pf_queuehead *pf_queues_active; | |||
111 | struct pf_queuehead *pf_queues_inactive; | |||
112 | ||||
113 | struct pf_status pf_status; | |||
114 | ||||
115 | struct mutex pf_inp_mtx = MUTEX_INITIALIZER(IPL_SOFTNET){ ((void *)0), ((((0x2)) > 0x0 && ((0x2)) < 0x9 ) ? 0x9 : ((0x2))), 0x0 }; | |||
116 | ||||
117 | int pf_hdr_limit = 20; /* arbitrary limit, tune in ddb */ | |||
118 | ||||
119 | SHA2_CTX pf_tcp_secret_ctx; | |||
120 | u_char pf_tcp_secret[16]; | |||
121 | int pf_tcp_secret_init; | |||
122 | int pf_tcp_iss_off; | |||
123 | ||||
124 | enum pf_test_status { | |||
125 | PF_TEST_FAIL = -1, | |||
126 | PF_TEST_OK, | |||
127 | PF_TEST_QUICK | |||
128 | }; | |||
129 | ||||
130 | struct pf_test_ctx { | |||
131 | struct pf_pdesc *pd; | |||
132 | struct pf_rule_actions act; | |||
133 | u_int8_t icmpcode; | |||
134 | u_int8_t icmptype; | |||
135 | int icmp_dir; | |||
136 | int state_icmp; | |||
137 | int tag; | |||
138 | u_short reason; | |||
139 | struct pf_rule_item *ri; | |||
140 | struct pf_src_node *sns[PF_SN_MAX]; | |||
141 | struct pf_rule_slist rules; | |||
142 | struct pf_rule *nr; | |||
143 | struct pf_rule **rm; | |||
144 | struct pf_rule *a; | |||
145 | struct pf_rule **am; | |||
146 | struct pf_ruleset **rsm; | |||
147 | struct pf_ruleset *arsm; | |||
148 | struct pf_ruleset *aruleset; | |||
149 | struct tcphdr *th; | |||
150 | }; | |||
151 | ||||
152 | struct pool pf_src_tree_pl, pf_rule_pl, pf_queue_pl; | |||
153 | struct pool pf_state_pl, pf_state_key_pl, pf_state_item_pl; | |||
154 | struct pool pf_rule_item_pl, pf_sn_item_pl, pf_pktdelay_pl; | |||
155 | ||||
156 | void pf_add_threshold(struct pf_threshold *); | |||
157 | int pf_check_threshold(struct pf_threshold *); | |||
158 | int pf_check_tcp_cksum(struct mbuf *, int, int, | |||
159 | sa_family_t); | |||
160 | __inline void pf_cksum_fixup(u_int16_t *, u_int16_t, u_int16_t, | |||
161 | u_int8_t); | |||
162 | void pf_cksum_fixup_a(u_int16_t *, const struct pf_addr *, | |||
163 | const struct pf_addr *, sa_family_t, u_int8_t); | |||
164 | int pf_modulate_sack(struct pf_pdesc *, | |||
165 | struct pf_state_peer *); | |||
166 | int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, | |||
167 | u_int16_t *, u_int16_t *); | |||
168 | int pf_change_icmp_af(struct mbuf *, int, | |||
169 | struct pf_pdesc *, struct pf_pdesc *, | |||
170 | struct pf_addr *, struct pf_addr *, sa_family_t, | |||
171 | sa_family_t); | |||
172 | int pf_translate_a(struct pf_pdesc *, struct pf_addr *, | |||
173 | struct pf_addr *); | |||
174 | void pf_translate_icmp(struct pf_pdesc *, struct pf_addr *, | |||
175 | u_int16_t *, struct pf_addr *, struct pf_addr *, | |||
176 | u_int16_t); | |||
177 | int pf_translate_icmp_af(struct pf_pdesc*, int, void *); | |||
178 | void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, int, | |||
179 | sa_family_t, struct pf_rule *, u_int); | |||
180 | void pf_detach_state(struct pf_state *); | |||
181 | struct pf_state_key *pf_state_key_attach(struct pf_state_key *, | |||
182 | struct pf_state *, int); | |||
183 | void pf_state_key_detach(struct pf_state *, int); | |||
184 | u_int32_t pf_tcp_iss(struct pf_pdesc *); | |||
185 | void pf_rule_to_actions(struct pf_rule *, | |||
186 | struct pf_rule_actions *); | |||
187 | int pf_test_rule(struct pf_pdesc *, struct pf_rule **, | |||
188 | struct pf_state **, struct pf_rule **, | |||
189 | struct pf_ruleset **, u_short *); | |||
190 | static __inline int pf_create_state(struct pf_pdesc *, struct pf_rule *, | |||
191 | struct pf_rule *, struct pf_rule *, | |||
192 | struct pf_state_key **, struct pf_state_key **, | |||
193 | int *, struct pf_state **, int, | |||
194 | struct pf_rule_slist *, struct pf_rule_actions *, | |||
195 | struct pf_src_node **); | |||
196 | static __inline int pf_state_key_addr_setup(struct pf_pdesc *, void *, | |||
197 | int, struct pf_addr *, int, struct pf_addr *, | |||
198 | int, int); | |||
199 | int pf_state_key_setup(struct pf_pdesc *, struct | |||
200 | pf_state_key **, struct pf_state_key **, int); | |||
201 | int pf_tcp_track_full(struct pf_pdesc *, | |||
202 | struct pf_state **, u_short *, int *, int); | |||
203 | int pf_tcp_track_sloppy(struct pf_pdesc *, | |||
204 | struct pf_state **, u_short *); | |||
205 | static __inline int pf_synproxy(struct pf_pdesc *, struct pf_state **, | |||
206 | u_short *); | |||
207 | int pf_test_state(struct pf_pdesc *, struct pf_state **, | |||
208 | u_short *); | |||
209 | int pf_icmp_state_lookup(struct pf_pdesc *, | |||
210 | struct pf_state_key_cmp *, struct pf_state **, | |||
211 | u_int16_t, u_int16_t, int, int *, int, int); | |||
212 | int pf_test_state_icmp(struct pf_pdesc *, | |||
213 | struct pf_state **, u_short *); | |||
214 | u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, int, | |||
215 | u_int16_t); | |||
216 | static __inline int pf_set_rt_ifp(struct pf_state *, struct pf_addr *, | |||
217 | sa_family_t, struct pf_src_node **); | |||
218 | struct pf_divert *pf_get_divert(struct mbuf *); | |||
219 | int pf_walk_option(struct pf_pdesc *, struct ip *, | |||
220 | int, int, u_short *); | |||
221 | int pf_walk_header(struct pf_pdesc *, struct ip *, | |||
222 | u_short *); | |||
223 | int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, | |||
224 | int, int, u_short *); | |||
225 | int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, | |||
226 | u_short *); | |||
227 | void pf_print_state_parts(struct pf_state *, | |||
228 | struct pf_state_key *, struct pf_state_key *); | |||
229 | int pf_addr_wrap_neq(struct pf_addr_wrap *, | |||
230 | struct pf_addr_wrap *); | |||
231 | int pf_compare_state_keys(struct pf_state_key *, | |||
232 | struct pf_state_key *, struct pfi_kif *, u_int); | |||
233 | u_int16_t pf_pkt_hash(sa_family_t, uint8_t, | |||
234 | const struct pf_addr *, const struct pf_addr *, | |||
235 | uint16_t, uint16_t); | |||
236 | int pf_find_state(struct pf_pdesc *, | |||
237 | struct pf_state_key_cmp *, struct pf_state **); | |||
238 | int pf_src_connlimit(struct pf_state **); | |||
239 | int pf_match_rcvif(struct mbuf *, struct pf_rule *); | |||
240 | int pf_step_into_anchor(struct pf_test_ctx *, | |||
241 | struct pf_rule *); | |||
242 | int pf_match_rule(struct pf_test_ctx *, | |||
243 | struct pf_ruleset *); | |||
244 | void pf_counters_inc(int, struct pf_pdesc *, | |||
245 | struct pf_state *, struct pf_rule *, | |||
246 | struct pf_rule *); | |||
247 | ||||
248 | int pf_state_insert(struct pfi_kif *, | |||
249 | struct pf_state_key **, struct pf_state_key **, | |||
250 | struct pf_state *); | |||
251 | ||||
252 | int pf_state_key_isvalid(struct pf_state_key *); | |||
253 | struct pf_state_key *pf_state_key_ref(struct pf_state_key *); | |||
254 | void pf_state_key_unref(struct pf_state_key *); | |||
255 | void pf_state_key_link_reverse(struct pf_state_key *, | |||
256 | struct pf_state_key *); | |||
257 | void pf_state_key_unlink_reverse(struct pf_state_key *); | |||
258 | void pf_state_key_link_inpcb(struct pf_state_key *, | |||
259 | struct inpcb *); | |||
260 | void pf_state_key_unlink_inpcb(struct pf_state_key *); | |||
261 | void pf_pktenqueue_delayed(void *); | |||
262 | int32_t pf_state_expires(const struct pf_state *, uint8_t); | |||
263 | ||||
264 | #if NPFLOG1 > 0 | |||
265 | void pf_log_matches(struct pf_pdesc *, struct pf_rule *, | |||
266 | struct pf_rule *, struct pf_ruleset *, | |||
267 | struct pf_rule_slist *); | |||
268 | #endif /* NPFLOG > 0 */ | |||
269 | ||||
270 | extern struct pool pfr_ktable_pl; | |||
271 | extern struct pool pfr_kentry_pl; | |||
272 | ||||
273 | struct pf_pool_limit pf_pool_limits[PF_LIMIT_MAX] = { | |||
274 | { &pf_state_pl, PFSTATE_HIWAT100000, PFSTATE_HIWAT100000 }, | |||
275 | { &pf_src_tree_pl, PFSNODE_HIWAT10000, PFSNODE_HIWAT10000 }, | |||
276 | { &pf_frent_pl, PFFRAG_FRENT_HIWAT((256 * 1024) / 16), PFFRAG_FRENT_HIWAT((256 * 1024) / 16) }, | |||
277 | { &pfr_ktable_pl, PFR_KTABLE_HIWAT1000, PFR_KTABLE_HIWAT1000 }, | |||
278 | { &pfr_kentry_pl, PFR_KENTRY_HIWAT200000, PFR_KENTRY_HIWAT200000 }, | |||
279 | { &pf_pktdelay_pl, PF_PKTDELAY_MAXPKTS10000, PF_PKTDELAY_MAXPKTS10000 }, | |||
280 | { &pf_anchor_pl, PF_ANCHOR_HIWAT512, PF_ANCHOR_HIWAT512 } | |||
281 | }; | |||
282 | ||||
283 | #define BOUND_IFACE(r, k)((r)->rule_flag & 0x00010000) ? (k) : pfi_all \ | |||
284 | ((r)->rule_flag & PFRULE_IFBOUND0x00010000) ? (k) : pfi_all | |||
285 | ||||
286 | #define STATE_INC_COUNTERS(s)do { struct pf_rule_item *mrm; s->rule.ptr->states_cur++ ; s->rule.ptr->states_tot++; if (s->anchor.ptr != (( void *)0)) { s->anchor.ptr->states_cur++; s->anchor. ptr->states_tot++; } for((mrm) = ((&s->match_rules) ->slh_first); (mrm) != ((void *)0); (mrm) = ((mrm)->entry .sle_next)) mrm->r->states_cur++; } while (0) \ | |||
287 | do { \ | |||
288 | struct pf_rule_item *mrm; \ | |||
289 | s->rule.ptr->states_cur++; \ | |||
290 | s->rule.ptr->states_tot++; \ | |||
291 | if (s->anchor.ptr != NULL((void *)0)) { \ | |||
292 | s->anchor.ptr->states_cur++; \ | |||
293 | s->anchor.ptr->states_tot++; \ | |||
294 | } \ | |||
295 | SLIST_FOREACH(mrm, &s->match_rules, entry)for((mrm) = ((&s->match_rules)->slh_first); (mrm) != ((void *)0); (mrm) = ((mrm)->entry.sle_next)) \ | |||
296 | mrm->r->states_cur++; \ | |||
297 | } while (0) | |||
298 | ||||
299 | static __inline int pf_src_compare(struct pf_src_node *, struct pf_src_node *); | |||
300 | static inline int pf_state_compare_key(const struct pf_state_key *, | |||
301 | const struct pf_state_key *); | |||
302 | static inline int pf_state_compare_id(const struct pf_state *, | |||
303 | const struct pf_state *); | |||
304 | #ifdef INET61 | |||
305 | static __inline void pf_cksum_uncover(u_int16_t *, u_int16_t, u_int8_t); | |||
306 | static __inline void pf_cksum_cover(u_int16_t *, u_int16_t, u_int8_t); | |||
307 | #endif /* INET6 */ | |||
308 | static __inline void pf_set_protostate(struct pf_state *, int, u_int8_t); | |||
309 | ||||
310 | struct pf_src_tree tree_src_tracking; | |||
311 | ||||
312 | struct pf_state_tree_id tree_id; | |||
313 | struct pf_state_list pf_state_list = PF_STATE_LIST_INITIALIZER(pf_state_list){ .pfs_list = { ((void *)0), &(pf_state_list.pfs_list).tqh_first }, .pfs_mtx = { ((void *)0), ((((0x2)) > 0x0 && ( (0x2)) < 0x9) ? 0x9 : ((0x2))), 0x0 }, .pfs_rwl = { 0, "pfstates" }, }; | |||
314 | ||||
315 | RB_GENERATE(pf_src_tree, pf_src_node, entry, pf_src_compare)void pf_src_tree_RB_INSERT_COLOR(struct pf_src_tree *head, struct pf_src_node *elm) { struct pf_src_node *parent, *gparent, *tmp ; while ((parent = (elm)->entry.rbe_parent) && (parent )->entry.rbe_color == 1) { gparent = (parent)->entry.rbe_parent ; if (parent == (gparent)->entry.rbe_left) { tmp = (gparent )->entry.rbe_right; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry .rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0 ); elm = gparent; continue; } if ((parent)->entry.rbe_right == elm) { do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_left; if (((gparent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } else { tmp = (gparent)-> entry.rbe_left; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry. rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0) ; elm = gparent; continue; } if ((parent)->entry.rbe_left == elm) { do { (tmp) = (parent)->entry.rbe_left; if (((parent )->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)-> entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_right ; if (((gparent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } } (head->rbh_root)-> entry.rbe_color = 0; } void pf_src_tree_RB_REMOVE_COLOR(struct pf_src_tree *head, struct pf_src_node *parent, struct pf_src_node *elm) { struct pf_src_node *tmp; while ((elm == ((void *)0) || (elm)->entry.rbe_color == 0) && elm != (head)-> rbh_root) { if ((parent)->entry.rbe_left == elm) { tmp = ( parent)->entry.rbe_right; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry. rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_right ; if (((parent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (parent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_right ; } if (((tmp)->entry.rbe_left == ((void *)0) || ((tmp)-> entry.rbe_left)->entry.rbe_color == 0) && ((tmp)-> entry.rbe_right == ((void *)0) || ((tmp)->entry.rbe_right) ->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ( (tmp)->entry.rbe_right == ((void *)0) || ((tmp)->entry. rbe_right)->entry.rbe_color == 0) { struct pf_src_node *oleft ; if ((oleft = (tmp)->entry.rbe_left)) (oleft)->entry.rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oleft) = (tmp)-> entry.rbe_left; if (((tmp)->entry.rbe_left = (oleft)->entry .rbe_right)) { ((oleft)->entry.rbe_right)->entry.rbe_parent = (tmp); } do {} while (0); if (((oleft)->entry.rbe_parent = (tmp)->entry.rbe_parent)) { if ((tmp) == ((tmp)->entry .rbe_parent)->entry.rbe_left) ((tmp)->entry.rbe_parent) ->entry.rbe_left = (oleft); else ((tmp)->entry.rbe_parent )->entry.rbe_right = (oleft); } else (head)->rbh_root = (oleft); (oleft)->entry.rbe_right = (tmp); (tmp)->entry .rbe_parent = (oleft); do {} while (0); if (((oleft)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_right; } (tmp)->entry.rbe_color = (parent)->entry .rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry .rbe_right) ((tmp)->entry.rbe_right)->entry.rbe_color = 0; do { (tmp) = (parent)->entry.rbe_right; if (((parent)-> entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)->entry .rbe_left)->entry.rbe_parent = (parent); } do {} while (0) ; if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); elm = (head)->rbh_root; break; } } else { tmp = (parent)->entry.rbe_left; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry .rbe_color = 1; } while (0); do { (tmp) = (parent)->entry. rbe_left; if (((parent)->entry.rbe_left = (tmp)->entry. rbe_right)) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent)) { if ((parent) == ((parent )->entry.rbe_parent)->entry.rbe_left) ((parent)->entry .rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry .rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry.rbe_right = (parent); (parent)-> entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_left; } if (((tmp)->entry.rbe_left == ((void *)0 ) || ((tmp)->entry.rbe_left)->entry.rbe_color == 0) && ((tmp)->entry.rbe_right == ((void *)0) || ((tmp)->entry .rbe_right)->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp)->entry.rbe_left == ((void *)0) || ((tmp)-> entry.rbe_left)->entry.rbe_color == 0) { struct pf_src_node *oright; if ((oright = (tmp)->entry.rbe_right)) (oright)-> entry.rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oright ) = (tmp)->entry.rbe_right; if (((tmp)->entry.rbe_right = (oright)->entry.rbe_left)) { ((oright)->entry.rbe_left )->entry.rbe_parent = (tmp); } do {} while (0); if (((oright )->entry.rbe_parent = (tmp)->entry.rbe_parent)) { if (( tmp) == ((tmp)->entry.rbe_parent)->entry.rbe_left) ((tmp )->entry.rbe_parent)->entry.rbe_left = (oright); else ( (tmp)->entry.rbe_parent)->entry.rbe_right = (oright); } else (head)->rbh_root = (oright); (oright)->entry.rbe_left = (tmp); (tmp)->entry.rbe_parent = (oright); do {} while ( 0); if (((oright)->entry.rbe_parent)) do {} while (0); } while (0); tmp = (parent)->entry.rbe_left; } (tmp)->entry.rbe_color = (parent)->entry.rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry.rbe_left) ((tmp)->entry.rbe_left )->entry.rbe_color = 0; do { (tmp) = (parent)->entry.rbe_left ; if (((parent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); elm = (head)->rbh_root; break ; } } } if (elm) (elm)->entry.rbe_color = 0; } struct pf_src_node * pf_src_tree_RB_REMOVE(struct pf_src_tree *head, struct pf_src_node *elm) { struct pf_src_node *child, *parent, *old = elm; int color ; if ((elm)->entry.rbe_left == ((void *)0)) child = (elm)-> entry.rbe_right; else if ((elm)->entry.rbe_right == ((void *)0)) child = (elm)->entry.rbe_left; else { struct pf_src_node *left; elm = (elm)->entry.rbe_right; while ((left = (elm) ->entry.rbe_left)) elm = left; child = (elm)->entry.rbe_right ; parent = (elm)->entry.rbe_parent; color = (elm)->entry .rbe_color; if (child) (child)->entry.rbe_parent = parent; if (parent) { if ((parent)->entry.rbe_left == elm) (parent )->entry.rbe_left = child; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child ; if ((elm)->entry.rbe_parent == old) parent = elm; (elm)-> entry = (old)->entry; if ((old)->entry.rbe_parent) { if (((old)->entry.rbe_parent)->entry.rbe_left == old) ((old )->entry.rbe_parent)->entry.rbe_left = elm; else ((old) ->entry.rbe_parent)->entry.rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; ((old)->entry.rbe_left )->entry.rbe_parent = elm; if ((old)->entry.rbe_right) ( (old)->entry.rbe_right)->entry.rbe_parent = elm; if (parent ) { left = parent; do { do {} while (0); } while ((left = (left )->entry.rbe_parent)); } goto color; } parent = (elm)-> entry.rbe_parent; color = (elm)->entry.rbe_color; if (child ) (child)->entry.rbe_parent = parent; if (parent) { if ((parent )->entry.rbe_left == elm) (parent)->entry.rbe_left = child ; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child; color: if (color == 0) pf_src_tree_RB_REMOVE_COLOR (head, parent, child); return (old); } struct pf_src_node * pf_src_tree_RB_INSERT (struct pf_src_tree *head, struct pf_src_node *elm) { struct pf_src_node *tmp; struct pf_src_node *parent = ((void *)0); int comp = 0 ; tmp = (head)->rbh_root; while (tmp) { parent = tmp; comp = (pf_src_compare)(elm, parent); if (comp < 0) tmp = (tmp )->entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry .rbe_right; else return (tmp); } do { (elm)->entry.rbe_parent = parent; (elm)->entry.rbe_left = (elm)->entry.rbe_right = ((void *)0); (elm)->entry.rbe_color = 1; } while (0); if (parent != ((void *)0)) { if (comp < 0) (parent)->entry .rbe_left = elm; else (parent)->entry.rbe_right = elm; do { } while (0); } else (head)->rbh_root = elm; pf_src_tree_RB_INSERT_COLOR (head, elm); return (((void *)0)); } struct pf_src_node * pf_src_tree_RB_FIND (struct pf_src_tree *head, struct pf_src_node *elm) { struct pf_src_node *tmp = (head)->rbh_root; int comp; while (tmp) { comp = pf_src_compare (elm, tmp); if (comp < 0) tmp = (tmp)->entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (((void *)0)); } struct pf_src_node * pf_src_tree_RB_NFIND (struct pf_src_tree *head, struct pf_src_node *elm) { struct pf_src_node *tmp = (head)->rbh_root; struct pf_src_node *res = ((void *)0); int comp; while (tmp) { comp = pf_src_compare(elm, tmp ); if (comp < 0) { res = tmp; tmp = (tmp)->entry.rbe_left ; } else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (res); } struct pf_src_node * pf_src_tree_RB_NEXT (struct pf_src_node *elm) { if ((elm)->entry.rbe_right) { elm = (elm)->entry.rbe_right; while ((elm)->entry.rbe_left ) elm = (elm)->entry.rbe_left; } else { if ((elm)->entry .rbe_parent && (elm == ((elm)->entry.rbe_parent)-> entry.rbe_left)) elm = (elm)->entry.rbe_parent; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry .rbe_parent)->entry.rbe_right)) elm = (elm)->entry.rbe_parent ; elm = (elm)->entry.rbe_parent; } } return (elm); } struct pf_src_node * pf_src_tree_RB_PREV(struct pf_src_node *elm) { if ((elm)->entry.rbe_left) { elm = (elm)->entry.rbe_left ; while ((elm)->entry.rbe_right) elm = (elm)->entry.rbe_right ; } else { if ((elm)->entry.rbe_parent && (elm == ( (elm)->entry.rbe_parent)->entry.rbe_right)) elm = (elm) ->entry.rbe_parent; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left )) elm = (elm)->entry.rbe_parent; elm = (elm)->entry.rbe_parent ; } } return (elm); } struct pf_src_node * pf_src_tree_RB_MINMAX (struct pf_src_tree *head, int val) { struct pf_src_node *tmp = (head)->rbh_root; struct pf_src_node *parent = ((void * )0); while (tmp) { parent = tmp; if (val < 0) tmp = (tmp)-> entry.rbe_left; else tmp = (tmp)->entry.rbe_right; } return (parent); }; | |||
316 | RBT_GENERATE(pf_state_tree, pf_state_key, sk_entry, pf_state_compare_key)static int pf_state_tree_RBT_COMPARE(const void *lptr, const void *rptr) { const struct pf_state_key *l = lptr, *r = rptr; return pf_state_compare_key(l, r); } static const struct rb_type pf_state_tree_RBT_INFO = { pf_state_tree_RBT_COMPARE, ((void *)0), __builtin_offsetof (struct pf_state_key, sk_entry), }; const struct rb_type *const pf_state_tree_RBT_TYPE = &pf_state_tree_RBT_INFO; | |||
317 | RBT_GENERATE(pf_state_tree_id, pf_state, entry_id, pf_state_compare_id)static int pf_state_tree_id_RBT_COMPARE(const void *lptr, const void *rptr) { const struct pf_state *l = lptr, *r = rptr; return pf_state_compare_id(l, r); } static const struct rb_type pf_state_tree_id_RBT_INFO = { pf_state_tree_id_RBT_COMPARE, ((void *)0), __builtin_offsetof (struct pf_state, entry_id), }; const struct rb_type *const pf_state_tree_id_RBT_TYPE = &pf_state_tree_id_RBT_INFO; | |||
318 | ||||
319 | int | |||
320 | pf_addr_compare(const struct pf_addr *a, const struct pf_addr *b, | |||
321 | sa_family_t af) | |||
322 | { | |||
323 | switch (af) { | |||
324 | case AF_INET2: | |||
325 | if (a->addr32pfa.addr32[0] > b->addr32pfa.addr32[0]) | |||
326 | return (1); | |||
327 | if (a->addr32pfa.addr32[0] < b->addr32pfa.addr32[0]) | |||
328 | return (-1); | |||
329 | break; | |||
330 | #ifdef INET61 | |||
331 | case AF_INET624: | |||
332 | if (a->addr32pfa.addr32[3] > b->addr32pfa.addr32[3]) | |||
333 | return (1); | |||
334 | if (a->addr32pfa.addr32[3] < b->addr32pfa.addr32[3]) | |||
335 | return (-1); | |||
336 | if (a->addr32pfa.addr32[2] > b->addr32pfa.addr32[2]) | |||
337 | return (1); | |||
338 | if (a->addr32pfa.addr32[2] < b->addr32pfa.addr32[2]) | |||
339 | return (-1); | |||
340 | if (a->addr32pfa.addr32[1] > b->addr32pfa.addr32[1]) | |||
341 | return (1); | |||
342 | if (a->addr32pfa.addr32[1] < b->addr32pfa.addr32[1]) | |||
343 | return (-1); | |||
344 | if (a->addr32pfa.addr32[0] > b->addr32pfa.addr32[0]) | |||
345 | return (1); | |||
346 | if (a->addr32pfa.addr32[0] < b->addr32pfa.addr32[0]) | |||
347 | return (-1); | |||
348 | break; | |||
349 | #endif /* INET6 */ | |||
350 | } | |||
351 | return (0); | |||
352 | } | |||
353 | ||||
354 | static __inline int | |||
355 | pf_src_compare(struct pf_src_node *a, struct pf_src_node *b) | |||
356 | { | |||
357 | int diff; | |||
358 | ||||
359 | if (a->rule.ptr > b->rule.ptr) | |||
360 | return (1); | |||
361 | if (a->rule.ptr < b->rule.ptr) | |||
362 | return (-1); | |||
363 | if ((diff = a->type - b->type) != 0) | |||
364 | return (diff); | |||
365 | if ((diff = a->af - b->af) != 0) | |||
366 | return (diff); | |||
367 | if ((diff = pf_addr_compare(&a->addr, &b->addr, a->af)) != 0) | |||
368 | return (diff); | |||
369 | return (0); | |||
370 | } | |||
371 | ||||
372 | static __inline void | |||
373 | pf_set_protostate(struct pf_state *st, int which, u_int8_t newstate) | |||
374 | { | |||
375 | if (which == PF_PEER_DST || which == PF_PEER_BOTH) | |||
376 | st->dst.state = newstate; | |||
377 | if (which == PF_PEER_DST) | |||
378 | return; | |||
379 | ||||
380 | if (st->src.state == newstate) | |||
381 | return; | |||
382 | if (st->creatorid == pf_status.hostid && | |||
383 | st->key[PF_SK_STACK]->proto == IPPROTO_TCP6 && | |||
384 | !(TCPS_HAVEESTABLISHED(st->src.state)((st->src.state) >= 4) || | |||
385 | st->src.state == TCPS_CLOSED0) && | |||
386 | (TCPS_HAVEESTABLISHED(newstate)((newstate) >= 4) || newstate == TCPS_CLOSED0)) | |||
387 | pf_status.states_halfopen--; | |||
388 | ||||
389 | st->src.state = newstate; | |||
390 | } | |||
391 | ||||
392 | void | |||
393 | pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) | |||
394 | { | |||
395 | switch (af) { | |||
396 | case AF_INET2: | |||
397 | dst->addr32pfa.addr32[0] = src->addr32pfa.addr32[0]; | |||
398 | break; | |||
399 | #ifdef INET61 | |||
400 | case AF_INET624: | |||
401 | dst->addr32pfa.addr32[0] = src->addr32pfa.addr32[0]; | |||
402 | dst->addr32pfa.addr32[1] = src->addr32pfa.addr32[1]; | |||
403 | dst->addr32pfa.addr32[2] = src->addr32pfa.addr32[2]; | |||
404 | dst->addr32pfa.addr32[3] = src->addr32pfa.addr32[3]; | |||
405 | break; | |||
406 | #endif /* INET6 */ | |||
407 | default: | |||
408 | unhandled_af(af); | |||
409 | } | |||
410 | } | |||
411 | ||||
412 | void | |||
413 | pf_init_threshold(struct pf_threshold *threshold, | |||
414 | u_int32_t limit, u_int32_t seconds) | |||
415 | { | |||
416 | threshold->limit = limit * PF_THRESHOLD_MULT1000; | |||
417 | threshold->seconds = seconds; | |||
418 | threshold->count = 0; | |||
419 | threshold->last = getuptime(); | |||
420 | } | |||
421 | ||||
422 | void | |||
423 | pf_add_threshold(struct pf_threshold *threshold) | |||
424 | { | |||
425 | u_int32_t t = getuptime(), diff = t - threshold->last; | |||
426 | ||||
427 | if (diff >= threshold->seconds) | |||
428 | threshold->count = 0; | |||
429 | else | |||
430 | threshold->count -= threshold->count * diff / | |||
431 | threshold->seconds; | |||
432 | threshold->count += PF_THRESHOLD_MULT1000; | |||
433 | threshold->last = t; | |||
434 | } | |||
435 | ||||
436 | int | |||
437 | pf_check_threshold(struct pf_threshold *threshold) | |||
438 | { | |||
439 | return (threshold->count > threshold->limit); | |||
440 | } | |||
441 | ||||
442 | void | |||
443 | pf_state_list_insert(struct pf_state_list *pfs, struct pf_state *st) | |||
444 | { | |||
445 | /* | |||
446 | * we can always put states on the end of the list. | |||
447 | * | |||
448 | * things reading the list should take a read lock, then | |||
449 | * the mutex, get the head and tail pointers, release the | |||
450 | * mutex, and then they can iterate between the head and tail. | |||
451 | */ | |||
452 | ||||
453 | pf_state_ref(st); /* get a ref for the list */ | |||
454 | ||||
455 | mtx_enter(&pfs->pfs_mtx); | |||
456 | TAILQ_INSERT_TAIL(&pfs->pfs_list, st, entry_list)do { (st)->entry_list.tqe_next = ((void *)0); (st)->entry_list .tqe_prev = (&pfs->pfs_list)->tqh_last; *(&pfs-> pfs_list)->tqh_last = (st); (&pfs->pfs_list)->tqh_last = &(st)->entry_list.tqe_next; } while (0); | |||
457 | mtx_leave(&pfs->pfs_mtx); | |||
458 | } | |||
459 | ||||
460 | void | |||
461 | pf_state_list_remove(struct pf_state_list *pfs, struct pf_state *st) | |||
462 | { | |||
463 | /* states can only be removed when the write lock is held */ | |||
464 | rw_assert_wrlock(&pfs->pfs_rwl); | |||
465 | ||||
466 | mtx_enter(&pfs->pfs_mtx); | |||
467 | TAILQ_REMOVE(&pfs->pfs_list, st, entry_list)do { if (((st)->entry_list.tqe_next) != ((void *)0)) (st)-> entry_list.tqe_next->entry_list.tqe_prev = (st)->entry_list .tqe_prev; else (&pfs->pfs_list)->tqh_last = (st)-> entry_list.tqe_prev; *(st)->entry_list.tqe_prev = (st)-> entry_list.tqe_next; ((st)->entry_list.tqe_prev) = ((void * )-1); ((st)->entry_list.tqe_next) = ((void *)-1); } while ( 0); | |||
468 | mtx_leave(&pfs->pfs_mtx); | |||
469 | ||||
470 | pf_state_unref(st); /* list no longer references the state */ | |||
471 | } | |||
472 | ||||
473 | void | |||
474 | pf_update_state_timeout(struct pf_state *st, int to) | |||
475 | { | |||
476 | mtx_enter(&st->mtx); | |||
477 | if (st->timeout != PFTM_UNLINKED) | |||
| ||||
478 | st->timeout = to; | |||
479 | mtx_leave(&st->mtx); | |||
480 | } | |||
481 | ||||
482 | int | |||
483 | pf_src_connlimit(struct pf_state **stp) | |||
484 | { | |||
485 | int bad = 0; | |||
486 | struct pf_src_node *sn; | |||
487 | ||||
488 | if ((sn = pf_get_src_node((*stp), PF_SN_NONE)) == NULL((void *)0)) | |||
489 | return (0); | |||
490 | ||||
491 | sn->conn++; | |||
492 | (*stp)->src.tcp_est = 1; | |||
493 | pf_add_threshold(&sn->conn_rate); | |||
494 | ||||
495 | if ((*stp)->rule.ptr->max_src_conn && | |||
496 | (*stp)->rule.ptr->max_src_conn < sn->conn) { | |||
497 | pf_status.lcounters[LCNT_SRCCONN3]++; | |||
498 | bad++; | |||
499 | } | |||
500 | ||||
501 | if ((*stp)->rule.ptr->max_src_conn_rate.limit && | |||
502 | pf_check_threshold(&sn->conn_rate)) { | |||
503 | pf_status.lcounters[LCNT_SRCCONNRATE4]++; | |||
504 | bad++; | |||
505 | } | |||
506 | ||||
507 | if (!bad) | |||
508 | return (0); | |||
509 | ||||
510 | if ((*stp)->rule.ptr->overload_tbl) { | |||
511 | struct pfr_addr p; | |||
512 | u_int32_t killed = 0; | |||
513 | ||||
514 | pf_status.lcounters[LCNT_OVERLOAD_TABLE5]++; | |||
515 | if (pf_status.debug >= LOG_NOTICE5) { | |||
516 | log(LOG_NOTICE5, | |||
517 | "pf: pf_src_connlimit: blocking address "); | |||
518 | pf_print_host(&sn->addr, 0, | |||
519 | (*stp)->key[PF_SK_WIRE]->af); | |||
520 | } | |||
521 | ||||
522 | memset(&p, 0, sizeof(p))__builtin_memset((&p), (0), (sizeof(p))); | |||
523 | p.pfra_af = (*stp)->key[PF_SK_WIRE]->af; | |||
524 | switch ((*stp)->key[PF_SK_WIRE]->af) { | |||
525 | case AF_INET2: | |||
526 | p.pfra_net = 32; | |||
527 | p.pfra_ip4addrpfra_u._pfra_ip4addr = sn->addr.v4pfa.v4; | |||
528 | break; | |||
529 | #ifdef INET61 | |||
530 | case AF_INET624: | |||
531 | p.pfra_net = 128; | |||
532 | p.pfra_ip6addrpfra_u._pfra_ip6addr = sn->addr.v6pfa.v6; | |||
533 | break; | |||
534 | #endif /* INET6 */ | |||
535 | } | |||
536 | ||||
537 | pfr_insert_kentry((*stp)->rule.ptr->overload_tbl, | |||
538 | &p, gettime()); | |||
539 | ||||
540 | /* kill existing states if that's required. */ | |||
541 | if ((*stp)->rule.ptr->flush) { | |||
542 | struct pf_state_key *sk; | |||
543 | struct pf_state *st; | |||
544 | ||||
545 | pf_status.lcounters[LCNT_OVERLOAD_FLUSH6]++; | |||
546 | RBT_FOREACH(st, pf_state_tree_id, &tree_id)for ((st) = pf_state_tree_id_RBT_MIN((&tree_id)); (st) != ((void *)0); (st) = pf_state_tree_id_RBT_NEXT((st))) { | |||
547 | sk = st->key[PF_SK_WIRE]; | |||
548 | /* | |||
549 | * Kill states from this source. (Only those | |||
550 | * from the same rule if PF_FLUSH_GLOBAL is not | |||
551 | * set) | |||
552 | */ | |||
553 | if (sk->af == | |||
554 | (*stp)->key[PF_SK_WIRE]->af && | |||
555 | (((*stp)->direction == PF_OUT && | |||
556 | PF_AEQ(&sn->addr, &sk->addr[1], sk->af)((sk->af == 2 && (&sn->addr)->pfa.addr32 [0] == (&sk->addr[1])->pfa.addr32[0]) || (sk->af == 24 && (&sn->addr)->pfa.addr32[3] == (& sk->addr[1])->pfa.addr32[3] && (&sn->addr )->pfa.addr32[2] == (&sk->addr[1])->pfa.addr32[2 ] && (&sn->addr)->pfa.addr32[1] == (&sk ->addr[1])->pfa.addr32[1] && (&sn->addr) ->pfa.addr32[0] == (&sk->addr[1])->pfa.addr32[0] ))) || | |||
557 | ((*stp)->direction == PF_IN && | |||
558 | PF_AEQ(&sn->addr, &sk->addr[0], sk->af)((sk->af == 2 && (&sn->addr)->pfa.addr32 [0] == (&sk->addr[0])->pfa.addr32[0]) || (sk->af == 24 && (&sn->addr)->pfa.addr32[3] == (& sk->addr[0])->pfa.addr32[3] && (&sn->addr )->pfa.addr32[2] == (&sk->addr[0])->pfa.addr32[2 ] && (&sn->addr)->pfa.addr32[1] == (&sk ->addr[0])->pfa.addr32[1] && (&sn->addr) ->pfa.addr32[0] == (&sk->addr[0])->pfa.addr32[0] )))) && | |||
559 | ((*stp)->rule.ptr->flush & | |||
560 | PF_FLUSH_GLOBAL0x02 || | |||
561 | (*stp)->rule.ptr == st->rule.ptr)) { | |||
562 | pf_update_state_timeout(st, PFTM_PURGE); | |||
563 | pf_set_protostate(st, PF_PEER_BOTH, | |||
564 | TCPS_CLOSED0); | |||
565 | killed++; | |||
566 | } | |||
567 | } | |||
568 | if (pf_status.debug >= LOG_NOTICE5) | |||
569 | addlog(", %u states killed", killed); | |||
570 | } | |||
571 | if (pf_status.debug >= LOG_NOTICE5) | |||
572 | addlog("\n"); | |||
573 | } | |||
574 | ||||
575 | /* kill this state */ | |||
576 | pf_update_state_timeout(*stp, PFTM_PURGE); | |||
577 | pf_set_protostate(*stp, PF_PEER_BOTH, TCPS_CLOSED0); | |||
578 | return (1); | |||
579 | } | |||
580 | ||||
581 | int | |||
582 | pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, | |||
583 | enum pf_sn_types type, sa_family_t af, struct pf_addr *src, | |||
584 | struct pf_addr *raddr, struct pfi_kif *kif) | |||
585 | { | |||
586 | struct pf_src_node k; | |||
587 | ||||
588 | if (*sn == NULL((void *)0)) { | |||
589 | k.af = af; | |||
590 | k.type = type; | |||
591 | pf_addrcpy(&k.addr, src, af); | |||
592 | k.rule.ptr = rule; | |||
593 | pf_status.scounters[SCNT_SRC_NODE_SEARCH0]++; | |||
594 | *sn = RB_FIND(pf_src_tree, &tree_src_tracking, &k)pf_src_tree_RB_FIND(&tree_src_tracking, &k); | |||
595 | } | |||
596 | if (*sn == NULL((void *)0)) { | |||
597 | if (!rule->max_src_nodes || | |||
598 | rule->src_nodes < rule->max_src_nodes) | |||
599 | (*sn) = pool_get(&pf_src_tree_pl, PR_NOWAIT0x0002 | PR_ZERO0x0008); | |||
600 | else | |||
601 | pf_status.lcounters[LCNT_SRCNODES2]++; | |||
602 | if ((*sn) == NULL((void *)0)) | |||
603 | return (-1); | |||
604 | ||||
605 | pf_init_threshold(&(*sn)->conn_rate, | |||
606 | rule->max_src_conn_rate.limit, | |||
607 | rule->max_src_conn_rate.seconds); | |||
608 | ||||
609 | (*sn)->type = type; | |||
610 | (*sn)->af = af; | |||
611 | (*sn)->rule.ptr = rule; | |||
612 | pf_addrcpy(&(*sn)->addr, src, af); | |||
613 | if (raddr) | |||
614 | pf_addrcpy(&(*sn)->raddr, raddr, af); | |||
615 | if (RB_INSERT(pf_src_tree,pf_src_tree_RB_INSERT(&tree_src_tracking, *sn) | |||
616 | &tree_src_tracking, *sn)pf_src_tree_RB_INSERT(&tree_src_tracking, *sn) != NULL((void *)0)) { | |||
617 | if (pf_status.debug >= LOG_NOTICE5) { | |||
618 | log(LOG_NOTICE5, | |||
619 | "pf: src_tree insert failed: "); | |||
620 | pf_print_host(&(*sn)->addr, 0, af); | |||
621 | addlog("\n"); | |||
622 | } | |||
623 | pool_put(&pf_src_tree_pl, *sn); | |||
624 | return (-1); | |||
625 | } | |||
626 | (*sn)->creation = getuptime(); | |||
627 | (*sn)->rule.ptr->src_nodes++; | |||
628 | if (kif != NULL((void *)0)) { | |||
629 | (*sn)->kif = kif; | |||
630 | pfi_kif_ref(kif, PFI_KIF_REF_SRCNODE); | |||
631 | } | |||
632 | pf_status.scounters[SCNT_SRC_NODE_INSERT1]++; | |||
633 | pf_status.src_nodes++; | |||
634 | } else { | |||
635 | if (rule->max_src_states && | |||
636 | (*sn)->states >= rule->max_src_states) { | |||
637 | pf_status.lcounters[LCNT_SRCSTATES1]++; | |||
638 | return (-1); | |||
639 | } | |||
640 | } | |||
641 | return (0); | |||
642 | } | |||
643 | ||||
644 | void | |||
645 | pf_remove_src_node(struct pf_src_node *sn) | |||
646 | { | |||
647 | if (sn->states > 0 || sn->expire > getuptime()) | |||
648 | return; | |||
649 | ||||
650 | sn->rule.ptr->src_nodes--; | |||
651 | if (sn->rule.ptr->states_cur == 0 && | |||
652 | sn->rule.ptr->src_nodes == 0) | |||
653 | pf_rm_rule(NULL((void *)0), sn->rule.ptr); | |||
654 | RB_REMOVE(pf_src_tree, &tree_src_tracking, sn)pf_src_tree_RB_REMOVE(&tree_src_tracking, sn); | |||
655 | pf_status.scounters[SCNT_SRC_NODE_REMOVALS2]++; | |||
656 | pf_status.src_nodes--; | |||
657 | pfi_kif_unref(sn->kif, PFI_KIF_REF_SRCNODE); | |||
658 | pool_put(&pf_src_tree_pl, sn); | |||
659 | } | |||
660 | ||||
661 | struct pf_src_node * | |||
662 | pf_get_src_node(struct pf_state *st, enum pf_sn_types type) | |||
663 | { | |||
664 | struct pf_sn_item *sni; | |||
665 | ||||
666 | SLIST_FOREACH(sni, &st->src_nodes, next)for((sni) = ((&st->src_nodes)->slh_first); (sni) != ((void *)0); (sni) = ((sni)->next.sle_next)) | |||
667 | if (sni->sn->type == type) | |||
668 | return (sni->sn); | |||
669 | return (NULL((void *)0)); | |||
670 | } | |||
671 | ||||
672 | void | |||
673 | pf_state_rm_src_node(struct pf_state *st, struct pf_src_node *sn) | |||
674 | { | |||
675 | struct pf_sn_item *sni, *snin, *snip = NULL((void *)0); | |||
676 | ||||
677 | for (sni = SLIST_FIRST(&st->src_nodes)((&st->src_nodes)->slh_first); sni; sni = snin) { | |||
678 | snin = SLIST_NEXT(sni, next)((sni)->next.sle_next); | |||
679 | if (sni->sn == sn) { | |||
680 | if (snip) | |||
681 | SLIST_REMOVE_AFTER(snip, next)do { (snip)->next.sle_next = (snip)->next.sle_next-> next.sle_next; } while (0); | |||
682 | else | |||
683 | SLIST_REMOVE_HEAD(&st->src_nodes, next)do { (&st->src_nodes)->slh_first = (&st->src_nodes )->slh_first->next.sle_next; } while (0); | |||
684 | pool_put(&pf_sn_item_pl, sni); | |||
685 | sni = NULL((void *)0); | |||
686 | sn->states--; | |||
687 | } | |||
688 | if (sni != NULL((void *)0)) | |||
689 | snip = sni; | |||
690 | } | |||
691 | } | |||
692 | ||||
693 | /* state table stuff */ | |||
694 | ||||
695 | static inline int | |||
696 | pf_state_compare_key(const struct pf_state_key *a, | |||
697 | const struct pf_state_key *b) | |||
698 | { | |||
699 | int diff; | |||
700 | ||||
701 | if ((diff = a->hash - b->hash) != 0) | |||
702 | return (diff); | |||
703 | if ((diff = a->proto - b->proto) != 0) | |||
704 | return (diff); | |||
705 | if ((diff = a->af - b->af) != 0) | |||
706 | return (diff); | |||
707 | if ((diff = pf_addr_compare(&a->addr[0], &b->addr[0], a->af)) != 0) | |||
708 | return (diff); | |||
709 | if ((diff = pf_addr_compare(&a->addr[1], &b->addr[1], a->af)) != 0) | |||
710 | return (diff); | |||
711 | if ((diff = a->port[0] - b->port[0]) != 0) | |||
712 | return (diff); | |||
713 | if ((diff = a->port[1] - b->port[1]) != 0) | |||
714 | return (diff); | |||
715 | if ((diff = a->rdomain - b->rdomain) != 0) | |||
716 | return (diff); | |||
717 | return (0); | |||
718 | } | |||
719 | ||||
720 | static inline int | |||
721 | pf_state_compare_id(const struct pf_state *a, const struct pf_state *b) | |||
722 | { | |||
723 | if (a->id > b->id) | |||
724 | return (1); | |||
725 | if (a->id < b->id) | |||
726 | return (-1); | |||
727 | if (a->creatorid > b->creatorid) | |||
728 | return (1); | |||
729 | if (a->creatorid < b->creatorid) | |||
730 | return (-1); | |||
731 | ||||
732 | return (0); | |||
733 | } | |||
734 | ||||
735 | /* | |||
736 | * on failure, pf_state_key_attach() releases the pf_state_key | |||
737 | * reference and returns NULL. | |||
738 | */ | |||
739 | struct pf_state_key * | |||
740 | pf_state_key_attach(struct pf_state_key *sk, struct pf_state *st, int idx) | |||
741 | { | |||
742 | struct pf_state_item *si; | |||
743 | struct pf_state_key *cur; | |||
744 | struct pf_state *oldst = NULL((void *)0); | |||
745 | ||||
746 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
747 | ||||
748 | KASSERT(st->key[idx] == NULL)((st->key[idx] == ((void *)0)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/net/pf.c", 748, "st->key[idx] == NULL")); | |||
749 | sk->sk_removed = 0; | |||
750 | cur = RBT_INSERT(pf_state_tree, &pf_statetbl, sk)pf_state_tree_RBT_INSERT(&pf_statetbl, sk); | |||
751 | if (cur != NULL((void *)0)) { | |||
752 | sk->sk_removed = 1; | |||
753 | /* key exists. check for same kif, if none, add to key */ | |||
754 | TAILQ_FOREACH(si, &cur->sk_states, si_entry)for((si) = ((&cur->sk_states)->tqh_first); (si) != ( (void *)0); (si) = ((si)->si_entry.tqe_next)) { | |||
755 | struct pf_state *sist = si->si_st; | |||
756 | if (sist->kif == st->kif && | |||
757 | ((sist->key[PF_SK_WIRE]->af == sk->af && | |||
758 | sist->direction == st->direction) || | |||
759 | (sist->key[PF_SK_WIRE]->af != | |||
760 | sist->key[PF_SK_STACK]->af && | |||
761 | sk->af == sist->key[PF_SK_STACK]->af && | |||
762 | sist->direction != st->direction))) { | |||
763 | int reuse = 0; | |||
764 | ||||
765 | if (sk->proto == IPPROTO_TCP6 && | |||
766 | sist->src.state >= TCPS_FIN_WAIT_29 && | |||
767 | sist->dst.state >= TCPS_FIN_WAIT_29) | |||
768 | reuse = 1; | |||
769 | if (pf_status.debug >= LOG_NOTICE5) { | |||
770 | log(LOG_NOTICE5, | |||
771 | "pf: %s key attach %s on %s: ", | |||
772 | (idx == PF_SK_WIRE) ? | |||
773 | "wire" : "stack", | |||
774 | reuse ? "reuse" : "failed", | |||
775 | st->kif->pfik_name); | |||
776 | pf_print_state_parts(st, | |||
777 | (idx == PF_SK_WIRE) ? sk : NULL((void *)0), | |||
778 | (idx == PF_SK_STACK) ? sk : NULL((void *)0)); | |||
779 | addlog(", existing: "); | |||
780 | pf_print_state_parts(sist, | |||
781 | (idx == PF_SK_WIRE) ? sk : NULL((void *)0), | |||
782 | (idx == PF_SK_STACK) ? sk : NULL((void *)0)); | |||
783 | addlog("\n"); | |||
784 | } | |||
785 | if (reuse) { | |||
786 | pf_set_protostate(sist, PF_PEER_BOTH, | |||
787 | TCPS_CLOSED0); | |||
788 | /* remove late or sks can go away */ | |||
789 | oldst = sist; | |||
790 | } else { | |||
791 | pf_state_key_unref(sk); | |||
792 | return (NULL((void *)0)); /* collision! */ | |||
793 | } | |||
794 | } | |||
795 | } | |||
796 | ||||
797 | /* reuse the existing state key */ | |||
798 | pf_state_key_unref(sk); | |||
799 | sk = cur; | |||
800 | } | |||
801 | ||||
802 | if ((si = pool_get(&pf_state_item_pl, PR_NOWAIT0x0002)) == NULL((void *)0)) { | |||
803 | if (TAILQ_EMPTY(&sk->sk_states)(((&sk->sk_states)->tqh_first) == ((void *)0))) { | |||
804 | KASSERT(cur == NULL)((cur == ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/net/pf.c" , 804, "cur == NULL")); | |||
805 | RBT_REMOVE(pf_state_tree, &pf_statetbl, sk)pf_state_tree_RBT_REMOVE(&pf_statetbl, sk); | |||
806 | sk->sk_removed = 1; | |||
807 | pf_state_key_unref(sk); | |||
808 | } | |||
809 | ||||
810 | return (NULL((void *)0)); | |||
811 | } | |||
812 | ||||
813 | st->key[idx] = pf_state_key_ref(sk); /* give a ref to state */ | |||
814 | si->si_st = pf_state_ref(st); | |||
815 | ||||
816 | /* list is sorted, if-bound states before floating */ | |||
817 | if (st->kif == pfi_all) | |||
818 | TAILQ_INSERT_TAIL(&sk->sk_states, si, si_entry)do { (si)->si_entry.tqe_next = ((void *)0); (si)->si_entry .tqe_prev = (&sk->sk_states)->tqh_last; *(&sk-> sk_states)->tqh_last = (si); (&sk->sk_states)->tqh_last = &(si)->si_entry.tqe_next; } while (0); | |||
819 | else | |||
820 | TAILQ_INSERT_HEAD(&sk->sk_states, si, si_entry)do { if (((si)->si_entry.tqe_next = (&sk->sk_states )->tqh_first) != ((void *)0)) (&sk->sk_states)-> tqh_first->si_entry.tqe_prev = &(si)->si_entry.tqe_next ; else (&sk->sk_states)->tqh_last = &(si)->si_entry .tqe_next; (&sk->sk_states)->tqh_first = (si); (si) ->si_entry.tqe_prev = &(&sk->sk_states)->tqh_first ; } while (0); | |||
821 | ||||
822 | if (oldst) | |||
823 | pf_remove_state(oldst); | |||
824 | ||||
825 | /* caller owns the pf_state ref, which owns a pf_state_key ref now */ | |||
826 | return (sk); | |||
827 | } | |||
828 | ||||
829 | void | |||
830 | pf_detach_state(struct pf_state *st) | |||
831 | { | |||
832 | KASSERT(st->key[PF_SK_WIRE] != NULL)((st->key[PF_SK_WIRE] != ((void *)0)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/net/pf.c", 832, "st->key[PF_SK_WIRE] != NULL" )); | |||
833 | pf_state_key_detach(st, PF_SK_WIRE); | |||
834 | ||||
835 | KASSERT(st->key[PF_SK_STACK] != NULL)((st->key[PF_SK_STACK] != ((void *)0)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/net/pf.c", 835, "st->key[PF_SK_STACK] != NULL" )); | |||
836 | if (st->key[PF_SK_STACK] != st->key[PF_SK_WIRE]) | |||
837 | pf_state_key_detach(st, PF_SK_STACK); | |||
838 | } | |||
839 | ||||
840 | void | |||
841 | pf_state_key_detach(struct pf_state *st, int idx) | |||
842 | { | |||
843 | struct pf_state_item *si; | |||
844 | struct pf_state_key *sk; | |||
845 | ||||
846 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
847 | ||||
848 | sk = st->key[idx]; | |||
849 | if (sk == NULL((void *)0)) | |||
850 | return; | |||
851 | ||||
852 | TAILQ_FOREACH(si, &sk->sk_states, si_entry)for((si) = ((&sk->sk_states)->tqh_first); (si) != ( (void *)0); (si) = ((si)->si_entry.tqe_next)) { | |||
853 | if (si->si_st == st) | |||
854 | break; | |||
855 | } | |||
856 | if (si == NULL((void *)0)) | |||
857 | return; | |||
858 | ||||
859 | TAILQ_REMOVE(&sk->sk_states, si, si_entry)do { if (((si)->si_entry.tqe_next) != ((void *)0)) (si)-> si_entry.tqe_next->si_entry.tqe_prev = (si)->si_entry.tqe_prev ; else (&sk->sk_states)->tqh_last = (si)->si_entry .tqe_prev; *(si)->si_entry.tqe_prev = (si)->si_entry.tqe_next ; ((si)->si_entry.tqe_prev) = ((void *)-1); ((si)->si_entry .tqe_next) = ((void *)-1); } while (0); | |||
860 | pool_put(&pf_state_item_pl, si); | |||
861 | ||||
862 | if (TAILQ_EMPTY(&sk->sk_states)(((&sk->sk_states)->tqh_first) == ((void *)0))) { | |||
863 | RBT_REMOVE(pf_state_tree, &pf_statetbl, sk)pf_state_tree_RBT_REMOVE(&pf_statetbl, sk); | |||
864 | sk->sk_removed = 1; | |||
865 | pf_state_key_unlink_reverse(sk); | |||
866 | pf_state_key_unlink_inpcb(sk); | |||
867 | pf_state_key_unref(sk); | |||
868 | } | |||
869 | ||||
870 | pf_state_unref(st); | |||
871 | } | |||
872 | ||||
873 | struct pf_state_key * | |||
874 | pf_alloc_state_key(int pool_flags) | |||
875 | { | |||
876 | struct pf_state_key *sk; | |||
877 | ||||
878 | if ((sk = pool_get(&pf_state_key_pl, pool_flags)) == NULL((void *)0)) | |||
879 | return (NULL((void *)0)); | |||
880 | ||||
881 | PF_REF_INIT(sk->sk_refcnt)refcnt_init(&(sk->sk_refcnt)); | |||
882 | TAILQ_INIT(&sk->sk_states)do { (&sk->sk_states)->tqh_first = ((void *)0); (& sk->sk_states)->tqh_last = &(&sk->sk_states) ->tqh_first; } while (0); | |||
883 | sk->sk_removed = 1; | |||
884 | ||||
885 | return (sk); | |||
886 | } | |||
887 | ||||
888 | static __inline int | |||
889 | pf_state_key_addr_setup(struct pf_pdesc *pd, void *arg, int sidx, | |||
890 | struct pf_addr *saddr, int didx, struct pf_addr *daddr, int af, int multi) | |||
891 | { | |||
892 | struct pf_state_key_cmp *key = arg; | |||
893 | #ifdef INET61 | |||
894 | struct pf_addr *target; | |||
895 | ||||
896 | if (af == AF_INET2 || pd->proto != IPPROTO_ICMPV658) | |||
897 | goto copy; | |||
898 | ||||
899 | switch (pd->hdr.icmp6.icmp6_type) { | |||
900 | case ND_NEIGHBOR_SOLICIT135: | |||
901 | if (multi) | |||
902 | return (-1); | |||
903 | target = (struct pf_addr *)&pd->hdr.nd_ns.nd_ns_target; | |||
904 | daddr = target; | |||
905 | break; | |||
906 | case ND_NEIGHBOR_ADVERT136: | |||
907 | if (multi) | |||
908 | return (-1); | |||
909 | target = (struct pf_addr *)&pd->hdr.nd_ns.nd_ns_target; | |||
910 | saddr = target; | |||
911 | if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)((&pd->dst->pfa.v6)->__u6_addr.__u6_addr8[0] == 0xff )) { | |||
912 | key->addr[didx].addr32pfa.addr32[0] = 0; | |||
913 | key->addr[didx].addr32pfa.addr32[1] = 0; | |||
914 | key->addr[didx].addr32pfa.addr32[2] = 0; | |||
915 | key->addr[didx].addr32pfa.addr32[3] = 0; | |||
916 | daddr = NULL((void *)0); /* overwritten */ | |||
917 | } | |||
918 | break; | |||
919 | default: | |||
920 | if (multi) { | |||
921 | key->addr[sidx].addr32pfa.addr32[0] = __IPV6_ADDR_INT32_MLL(__uint32_t)(__builtin_constant_p(0xff020000) ? (__uint32_t)( ((__uint32_t)(0xff020000) & 0xff) << 24 | ((__uint32_t )(0xff020000) & 0xff00) << 8 | ((__uint32_t)(0xff020000 ) & 0xff0000) >> 8 | ((__uint32_t)(0xff020000) & 0xff000000) >> 24) : __swap32md(0xff020000)); | |||
922 | key->addr[sidx].addr32pfa.addr32[1] = 0; | |||
923 | key->addr[sidx].addr32pfa.addr32[2] = 0; | |||
924 | key->addr[sidx].addr32pfa.addr32[3] = __IPV6_ADDR_INT32_ONE(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); | |||
925 | saddr = NULL((void *)0); /* overwritten */ | |||
926 | } | |||
927 | } | |||
928 | copy: | |||
929 | #endif /* INET6 */ | |||
930 | if (saddr) | |||
931 | pf_addrcpy(&key->addr[sidx], saddr, af); | |||
932 | if (daddr) | |||
933 | pf_addrcpy(&key->addr[didx], daddr, af); | |||
934 | ||||
935 | return (0); | |||
936 | } | |||
937 | ||||
938 | int | |||
939 | pf_state_key_setup(struct pf_pdesc *pd, struct pf_state_key **skw, | |||
940 | struct pf_state_key **sks, int rtableid) | |||
941 | { | |||
942 | /* if returning error we MUST pool_put state keys ourselves */ | |||
943 | struct pf_state_key *sk1, *sk2; | |||
944 | u_int wrdom = pd->rdomain; | |||
945 | int afto = pd->af != pd->naf; | |||
946 | ||||
947 | if ((sk1 = pf_alloc_state_key(PR_NOWAIT0x0002 | PR_ZERO0x0008)) == NULL((void *)0)) | |||
948 | return (ENOMEM12); | |||
949 | ||||
950 | pf_state_key_addr_setup(pd, sk1, pd->sidx, pd->src, pd->didx, pd->dst, | |||
951 | pd->af, 0); | |||
952 | sk1->port[pd->sidx] = pd->osport; | |||
953 | sk1->port[pd->didx] = pd->odport; | |||
954 | sk1->proto = pd->proto; | |||
955 | sk1->af = pd->af; | |||
956 | sk1->rdomain = pd->rdomain; | |||
957 | sk1->hash = pf_pkt_hash(sk1->af, sk1->proto, | |||
958 | &sk1->addr[0], &sk1->addr[1], sk1->port[0], sk1->port[1]); | |||
959 | if (rtableid >= 0) | |||
960 | wrdom = rtable_l2(rtableid); | |||
961 | ||||
962 | if (PF_ANEQ(&pd->nsaddr, pd->src, pd->af)((pd->af == 2 && (&pd->nsaddr)->pfa.addr32 [0] != (pd->src)->pfa.addr32[0]) || (pd->af == 24 && ((&pd->nsaddr)->pfa.addr32[3] != (pd->src)-> pfa.addr32[3] || (&pd->nsaddr)->pfa.addr32[2] != (pd ->src)->pfa.addr32[2] || (&pd->nsaddr)->pfa.addr32 [1] != (pd->src)->pfa.addr32[1] || (&pd->nsaddr) ->pfa.addr32[0] != (pd->src)->pfa.addr32[0]))) || | |||
963 | PF_ANEQ(&pd->ndaddr, pd->dst, pd->af)((pd->af == 2 && (&pd->ndaddr)->pfa.addr32 [0] != (pd->dst)->pfa.addr32[0]) || (pd->af == 24 && ((&pd->ndaddr)->pfa.addr32[3] != (pd->dst)-> pfa.addr32[3] || (&pd->ndaddr)->pfa.addr32[2] != (pd ->dst)->pfa.addr32[2] || (&pd->ndaddr)->pfa.addr32 [1] != (pd->dst)->pfa.addr32[1] || (&pd->ndaddr) ->pfa.addr32[0] != (pd->dst)->pfa.addr32[0]))) || | |||
964 | pd->nsport != pd->osport || pd->ndport != pd->odport || | |||
965 | wrdom != pd->rdomain || afto) { /* NAT/NAT64 */ | |||
966 | if ((sk2 = pf_alloc_state_key(PR_NOWAIT0x0002 | PR_ZERO0x0008)) == NULL((void *)0)) { | |||
967 | pf_state_key_unref(sk1); | |||
968 | return (ENOMEM12); | |||
969 | } | |||
970 | pf_state_key_addr_setup(pd, sk2, afto ? pd->didx : pd->sidx, | |||
971 | &pd->nsaddr, afto ? pd->sidx : pd->didx, &pd->ndaddr, | |||
972 | pd->naf, 0); | |||
973 | sk2->port[afto ? pd->didx : pd->sidx] = pd->nsport; | |||
974 | sk2->port[afto ? pd->sidx : pd->didx] = pd->ndport; | |||
975 | if (afto) { | |||
976 | switch (pd->proto) { | |||
977 | case IPPROTO_ICMP1: | |||
978 | sk2->proto = IPPROTO_ICMPV658; | |||
979 | break; | |||
980 | case IPPROTO_ICMPV658: | |||
981 | sk2->proto = IPPROTO_ICMP1; | |||
982 | break; | |||
983 | default: | |||
984 | sk2->proto = pd->proto; | |||
985 | } | |||
986 | } else | |||
987 | sk2->proto = pd->proto; | |||
988 | sk2->af = pd->naf; | |||
989 | sk2->rdomain = wrdom; | |||
990 | sk2->hash = pf_pkt_hash(sk2->af, sk2->proto, | |||
991 | &sk2->addr[0], &sk2->addr[1], sk2->port[0], sk2->port[1]); | |||
992 | } else | |||
993 | sk2 = pf_state_key_ref(sk1); | |||
994 | ||||
995 | if (pd->dir == PF_IN) { | |||
996 | *skw = sk1; | |||
997 | *sks = sk2; | |||
998 | } else { | |||
999 | *sks = sk1; | |||
1000 | *skw = sk2; | |||
1001 | } | |||
1002 | ||||
1003 | if (pf_status.debug >= LOG_DEBUG7) { | |||
1004 | log(LOG_DEBUG7, "pf: key setup: "); | |||
1005 | pf_print_state_parts(NULL((void *)0), *skw, *sks); | |||
1006 | addlog("\n"); | |||
1007 | } | |||
1008 | ||||
1009 | return (0); | |||
1010 | } | |||
1011 | ||||
1012 | /* | |||
1013 | * pf_state_insert() does the following: | |||
1014 | * - links the pf_state up with pf_state_key(s). | |||
1015 | * - inserts the pf_state_keys into pf_state_tree. | |||
1016 | * - inserts the pf_state into the into pf_state_tree_id. | |||
1017 | * - tells pfsync about the state. | |||
1018 | * | |||
1019 | * pf_state_insert() owns the references to the pf_state_key structs | |||
1020 | * it is given. on failure to insert, these references are released. | |||
1021 | * on success, the caller owns a pf_state reference that allows it | |||
1022 | * to access the state keys. | |||
1023 | */ | |||
1024 | ||||
1025 | int | |||
1026 | pf_state_insert(struct pfi_kif *kif, struct pf_state_key **skwp, | |||
1027 | struct pf_state_key **sksp, struct pf_state *st) | |||
1028 | { | |||
1029 | struct pf_state_key *skw = *skwp; | |||
1030 | struct pf_state_key *sks = *sksp; | |||
1031 | int same = (skw == sks); | |||
1032 | ||||
1033 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
1034 | ||||
1035 | st->kif = kif; | |||
1036 | PF_STATE_ENTER_WRITE()do { rw_enter_write(&pf_state_lock); } while (0); | |||
1037 | ||||
1038 | skw = pf_state_key_attach(skw, st, PF_SK_WIRE); | |||
1039 | if (skw == NULL((void *)0)) { | |||
1040 | pf_state_key_unref(sks); | |||
1041 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1042 | return (-1); | |||
1043 | } | |||
1044 | ||||
1045 | if (same) { | |||
1046 | /* pf_state_key_attach might have swapped skw */ | |||
1047 | pf_state_key_unref(sks); | |||
1048 | st->key[PF_SK_STACK] = sks = pf_state_key_ref(skw); | |||
1049 | } else if (pf_state_key_attach(sks, st, PF_SK_STACK) == NULL((void *)0)) { | |||
1050 | pf_state_key_detach(st, PF_SK_WIRE); | |||
1051 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1052 | return (-1); | |||
1053 | } | |||
1054 | ||||
1055 | if (st->id == 0 && st->creatorid == 0) { | |||
1056 | st->id = htobe64(pf_status.stateid++)(__uint64_t)(__builtin_constant_p(pf_status.stateid++) ? (__uint64_t )((((__uint64_t)(pf_status.stateid++) & 0xff) << 56 ) | ((__uint64_t)(pf_status.stateid++) & 0xff00ULL) << 40 | ((__uint64_t)(pf_status.stateid++) & 0xff0000ULL) << 24 | ((__uint64_t)(pf_status.stateid++) & 0xff000000ULL) << 8 | ((__uint64_t)(pf_status.stateid++) & 0xff00000000ULL ) >> 8 | ((__uint64_t)(pf_status.stateid++) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(pf_status.stateid++) & 0xff000000000000ULL ) >> 40 | ((__uint64_t)(pf_status.stateid++) & 0xff00000000000000ULL ) >> 56) : __swap64md(pf_status.stateid++)); | |||
1057 | st->creatorid = pf_status.hostid; | |||
1058 | } | |||
1059 | if (RBT_INSERT(pf_state_tree_id, &tree_id, st)pf_state_tree_id_RBT_INSERT(&tree_id, st) != NULL((void *)0)) { | |||
1060 | if (pf_status.debug >= LOG_NOTICE5) { | |||
1061 | log(LOG_NOTICE5, "pf: state insert failed: " | |||
1062 | "id: %016llx creatorid: %08x", | |||
1063 | betoh64(st->id)(__uint64_t)(__builtin_constant_p(st->id) ? (__uint64_t)(( ((__uint64_t)(st->id) & 0xff) << 56) | ((__uint64_t )(st->id) & 0xff00ULL) << 40 | ((__uint64_t)(st-> id) & 0xff0000ULL) << 24 | ((__uint64_t)(st->id) & 0xff000000ULL) << 8 | ((__uint64_t)(st->id) & 0xff00000000ULL) >> 8 | ((__uint64_t)(st->id) & 0xff0000000000ULL) >> 24 | ((__uint64_t)(st->id) & 0xff000000000000ULL) >> 40 | ((__uint64_t)(st->id) & 0xff00000000000000ULL) >> 56) : __swap64md(st->id)), ntohl(st->creatorid)(__uint32_t)(__builtin_constant_p(st->creatorid) ? (__uint32_t )(((__uint32_t)(st->creatorid) & 0xff) << 24 | ( (__uint32_t)(st->creatorid) & 0xff00) << 8 | ((__uint32_t )(st->creatorid) & 0xff0000) >> 8 | ((__uint32_t )(st->creatorid) & 0xff000000) >> 24) : __swap32md (st->creatorid))); | |||
1064 | addlog("\n"); | |||
1065 | } | |||
1066 | pf_detach_state(st); | |||
1067 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1068 | return (-1); | |||
1069 | } | |||
1070 | pf_state_list_insert(&pf_state_list, st); | |||
1071 | pf_status.fcounters[FCNT_STATE_INSERT1]++; | |||
1072 | pf_status.states++; | |||
1073 | pfi_kif_ref(kif, PFI_KIF_REF_STATE); | |||
1074 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1075 | ||||
1076 | #if NPFSYNC1 > 0 | |||
1077 | pfsync_insert_state(st); | |||
1078 | #endif /* NPFSYNC > 0 */ | |||
1079 | ||||
1080 | *skwp = skw; | |||
1081 | *sksp = sks; | |||
1082 | ||||
1083 | return (0); | |||
1084 | } | |||
1085 | ||||
1086 | struct pf_state * | |||
1087 | pf_find_state_byid(struct pf_state_cmp *key) | |||
1088 | { | |||
1089 | pf_status.fcounters[FCNT_STATE_SEARCH0]++; | |||
1090 | ||||
1091 | return (RBT_FIND(pf_state_tree_id, &tree_id, (struct pf_state *)key)pf_state_tree_id_RBT_FIND(&tree_id, (struct pf_state *)key )); | |||
1092 | } | |||
1093 | ||||
1094 | int | |||
1095 | pf_compare_state_keys(struct pf_state_key *a, struct pf_state_key *b, | |||
1096 | struct pfi_kif *kif, u_int dir) | |||
1097 | { | |||
1098 | /* a (from hdr) and b (new) must be exact opposites of each other */ | |||
1099 | if (a->af == b->af && a->proto == b->proto && | |||
1100 | PF_AEQ(&a->addr[0], &b->addr[1], a->af)((a->af == 2 && (&a->addr[0])->pfa.addr32 [0] == (&b->addr[1])->pfa.addr32[0]) || (a->af == 24 && (&a->addr[0])->pfa.addr32[3] == (& b->addr[1])->pfa.addr32[3] && (&a->addr[ 0])->pfa.addr32[2] == (&b->addr[1])->pfa.addr32[ 2] && (&a->addr[0])->pfa.addr32[1] == (& b->addr[1])->pfa.addr32[1] && (&a->addr[ 0])->pfa.addr32[0] == (&b->addr[1])->pfa.addr32[ 0])) && | |||
1101 | PF_AEQ(&a->addr[1], &b->addr[0], a->af)((a->af == 2 && (&a->addr[1])->pfa.addr32 [0] == (&b->addr[0])->pfa.addr32[0]) || (a->af == 24 && (&a->addr[1])->pfa.addr32[3] == (& b->addr[0])->pfa.addr32[3] && (&a->addr[ 1])->pfa.addr32[2] == (&b->addr[0])->pfa.addr32[ 2] && (&a->addr[1])->pfa.addr32[1] == (& b->addr[0])->pfa.addr32[1] && (&a->addr[ 1])->pfa.addr32[0] == (&b->addr[0])->pfa.addr32[ 0])) && | |||
1102 | a->port[0] == b->port[1] && | |||
1103 | a->port[1] == b->port[0] && a->rdomain == b->rdomain) | |||
1104 | return (0); | |||
1105 | else { | |||
1106 | /* mismatch. must not happen. */ | |||
1107 | if (pf_status.debug >= LOG_ERR3) { | |||
1108 | log(LOG_ERR3, | |||
1109 | "pf: state key linking mismatch! dir=%s, " | |||
1110 | "if=%s, stored af=%u, a0: ", | |||
1111 | dir == PF_OUT ? "OUT" : "IN", | |||
1112 | kif->pfik_name, a->af); | |||
1113 | pf_print_host(&a->addr[0], a->port[0], a->af); | |||
1114 | addlog(", a1: "); | |||
1115 | pf_print_host(&a->addr[1], a->port[1], a->af); | |||
1116 | addlog(", proto=%u", a->proto); | |||
1117 | addlog(", found af=%u, a0: ", b->af); | |||
1118 | pf_print_host(&b->addr[0], b->port[0], b->af); | |||
1119 | addlog(", a1: "); | |||
1120 | pf_print_host(&b->addr[1], b->port[1], b->af); | |||
1121 | addlog(", proto=%u", b->proto); | |||
1122 | addlog("\n"); | |||
1123 | } | |||
1124 | return (-1); | |||
1125 | } | |||
1126 | } | |||
1127 | ||||
1128 | int | |||
1129 | pf_find_state(struct pf_pdesc *pd, struct pf_state_key_cmp *key, | |||
1130 | struct pf_state **stp) | |||
1131 | { | |||
1132 | struct pf_state_key *sk, *pkt_sk; | |||
1133 | struct pf_state_item *si; | |||
1134 | struct pf_state *st = NULL((void *)0); | |||
1135 | ||||
1136 | pf_status.fcounters[FCNT_STATE_SEARCH0]++; | |||
1137 | if (pf_status.debug >= LOG_DEBUG7) { | |||
1138 | log(LOG_DEBUG7, "pf: key search, %s on %s: ", | |||
1139 | pd->dir == PF_OUT ? "out" : "in", pd->kif->pfik_name); | |||
1140 | pf_print_state_parts(NULL((void *)0), (struct pf_state_key *)key, NULL((void *)0)); | |||
1141 | addlog("\n"); | |||
1142 | } | |||
1143 | ||||
1144 | pkt_sk = NULL((void *)0); | |||
1145 | sk = NULL((void *)0); | |||
1146 | if (pd->dir == PF_OUT) { | |||
1147 | /* first if block deals with outbound forwarded packet */ | |||
1148 | pkt_sk = pd->m->m_pkthdrM_dat.MH.MH_pkthdr.pf.statekey; | |||
1149 | ||||
1150 | if (!pf_state_key_isvalid(pkt_sk)) { | |||
1151 | pf_mbuf_unlink_state_key(pd->m); | |||
1152 | pkt_sk = NULL((void *)0); | |||
1153 | } | |||
1154 | ||||
1155 | if (pkt_sk && pf_state_key_isvalid(pkt_sk->sk_reverse)) | |||
1156 | sk = pkt_sk->sk_reverse; | |||
1157 | ||||
1158 | if (pkt_sk == NULL((void *)0)) { | |||
1159 | struct inpcb *inp = pd->m->m_pkthdrM_dat.MH.MH_pkthdr.pf.inp; | |||
1160 | ||||
1161 | /* here we deal with local outbound packet */ | |||
1162 | if (inp != NULL((void *)0)) { | |||
1163 | struct pf_state_key *inp_sk; | |||
1164 | ||||
1165 | mtx_enter(&pf_inp_mtx); | |||
1166 | inp_sk = inp->inp_pf_sk; | |||
1167 | if (pf_state_key_isvalid(inp_sk)) { | |||
1168 | sk = inp_sk; | |||
1169 | mtx_leave(&pf_inp_mtx); | |||
1170 | } else if (inp_sk != NULL((void *)0)) { | |||
1171 | KASSERT(inp_sk->sk_inp == inp)((inp_sk->sk_inp == inp) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/net/pf.c", 1171, "inp_sk->sk_inp == inp")); | |||
1172 | inp_sk->sk_inp = NULL((void *)0); | |||
1173 | inp->inp_pf_sk = NULL((void *)0); | |||
1174 | mtx_leave(&pf_inp_mtx); | |||
1175 | ||||
1176 | pf_state_key_unref(inp_sk); | |||
1177 | in_pcbunref(inp); | |||
1178 | } else | |||
1179 | mtx_leave(&pf_inp_mtx); | |||
1180 | } | |||
1181 | } | |||
1182 | } | |||
1183 | ||||
1184 | if (sk == NULL((void *)0)) { | |||
1185 | if ((sk = RBT_FIND(pf_state_tree, &pf_statetbl,pf_state_tree_RBT_FIND(&pf_statetbl, (struct pf_state_key *)key) | |||
1186 | (struct pf_state_key *)key)pf_state_tree_RBT_FIND(&pf_statetbl, (struct pf_state_key *)key)) == NULL((void *)0)) | |||
1187 | return (PF_DROP); | |||
1188 | if (pd->dir == PF_OUT && pkt_sk && | |||
1189 | pf_compare_state_keys(pkt_sk, sk, pd->kif, pd->dir) == 0) | |||
1190 | pf_state_key_link_reverse(sk, pkt_sk); | |||
1191 | else if (pd->dir == PF_OUT) | |||
1192 | pf_state_key_link_inpcb(sk, pd->m->m_pkthdrM_dat.MH.MH_pkthdr.pf.inp); | |||
1193 | } | |||
1194 | ||||
1195 | /* remove firewall data from outbound packet */ | |||
1196 | if (pd->dir == PF_OUT) | |||
1197 | pf_pkt_addr_changed(pd->m); | |||
1198 | ||||
1199 | /* list is sorted, if-bound states before floating ones */ | |||
1200 | TAILQ_FOREACH(si, &sk->sk_states, si_entry)for((si) = ((&sk->sk_states)->tqh_first); (si) != ( (void *)0); (si) = ((si)->si_entry.tqe_next)) { | |||
1201 | struct pf_state *sist = si->si_st; | |||
1202 | if (sist->timeout != PFTM_PURGE && | |||
1203 | (sist->kif == pfi_all || sist->kif == pd->kif) && | |||
1204 | ((sist->key[PF_SK_WIRE]->af == sist->key[PF_SK_STACK]->af && | |||
1205 | sk == (pd->dir == PF_IN ? sist->key[PF_SK_WIRE] : | |||
1206 | sist->key[PF_SK_STACK])) || | |||
1207 | (sist->key[PF_SK_WIRE]->af != sist->key[PF_SK_STACK]->af | |||
1208 | && pd->dir == PF_IN && (sk == sist->key[PF_SK_STACK] || | |||
1209 | sk == sist->key[PF_SK_WIRE])))) { | |||
1210 | st = sist; | |||
1211 | break; | |||
1212 | } | |||
1213 | } | |||
1214 | ||||
1215 | if (st == NULL((void *)0)) | |||
1216 | return (PF_DROP); | |||
1217 | if (ISSET(st->state_flags, PFSTATE_INP_UNLINKED)((st->state_flags) & (0x0400))) | |||
1218 | return (PF_DROP); | |||
1219 | ||||
1220 | if (st->rule.ptr->pktrate.limit && pd->dir == st->direction) { | |||
1221 | pf_add_threshold(&st->rule.ptr->pktrate); | |||
1222 | if (pf_check_threshold(&st->rule.ptr->pktrate)) | |||
1223 | return (PF_DROP); | |||
1224 | } | |||
1225 | ||||
1226 | *stp = st; | |||
1227 | ||||
1228 | return (PF_MATCH); | |||
1229 | } | |||
1230 | ||||
1231 | struct pf_state * | |||
1232 | pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) | |||
1233 | { | |||
1234 | struct pf_state_key *sk; | |||
1235 | struct pf_state_item *si, *ret = NULL((void *)0); | |||
1236 | ||||
1237 | pf_status.fcounters[FCNT_STATE_SEARCH0]++; | |||
1238 | ||||
1239 | sk = RBT_FIND(pf_state_tree, &pf_statetbl, (struct pf_state_key *)key)pf_state_tree_RBT_FIND(&pf_statetbl, (struct pf_state_key *)key); | |||
1240 | ||||
1241 | if (sk != NULL((void *)0)) { | |||
1242 | TAILQ_FOREACH(si, &sk->sk_states, si_entry)for((si) = ((&sk->sk_states)->tqh_first); (si) != ( (void *)0); (si) = ((si)->si_entry.tqe_next)) { | |||
1243 | struct pf_state *sist = si->si_st; | |||
1244 | if (dir == PF_INOUT || | |||
1245 | (sk == (dir == PF_IN ? sist->key[PF_SK_WIRE] : | |||
1246 | sist->key[PF_SK_STACK]))) { | |||
1247 | if (more == NULL((void *)0)) | |||
1248 | return (sist); | |||
1249 | ||||
1250 | if (ret) | |||
1251 | (*more)++; | |||
1252 | else | |||
1253 | ret = si; | |||
1254 | } | |||
1255 | } | |||
1256 | } | |||
1257 | return (ret ? ret->si_st : NULL((void *)0)); | |||
1258 | } | |||
1259 | ||||
1260 | void | |||
1261 | pf_state_peer_hton(const struct pf_state_peer *s, struct pfsync_state_peer *d) | |||
1262 | { | |||
1263 | d->seqlo = htonl(s->seqlo)(__uint32_t)(__builtin_constant_p(s->seqlo) ? (__uint32_t) (((__uint32_t)(s->seqlo) & 0xff) << 24 | ((__uint32_t )(s->seqlo) & 0xff00) << 8 | ((__uint32_t)(s-> seqlo) & 0xff0000) >> 8 | ((__uint32_t)(s->seqlo ) & 0xff000000) >> 24) : __swap32md(s->seqlo)); | |||
1264 | d->seqhi = htonl(s->seqhi)(__uint32_t)(__builtin_constant_p(s->seqhi) ? (__uint32_t) (((__uint32_t)(s->seqhi) & 0xff) << 24 | ((__uint32_t )(s->seqhi) & 0xff00) << 8 | ((__uint32_t)(s-> seqhi) & 0xff0000) >> 8 | ((__uint32_t)(s->seqhi ) & 0xff000000) >> 24) : __swap32md(s->seqhi)); | |||
1265 | d->seqdiff = htonl(s->seqdiff)(__uint32_t)(__builtin_constant_p(s->seqdiff) ? (__uint32_t )(((__uint32_t)(s->seqdiff) & 0xff) << 24 | ((__uint32_t )(s->seqdiff) & 0xff00) << 8 | ((__uint32_t)(s-> seqdiff) & 0xff0000) >> 8 | ((__uint32_t)(s->seqdiff ) & 0xff000000) >> 24) : __swap32md(s->seqdiff)); | |||
1266 | d->max_win = htons(s->max_win)(__uint16_t)(__builtin_constant_p(s->max_win) ? (__uint16_t )(((__uint16_t)(s->max_win) & 0xffU) << 8 | ((__uint16_t )(s->max_win) & 0xff00U) >> 8) : __swap16md(s-> max_win)); | |||
1267 | d->mss = htons(s->mss)(__uint16_t)(__builtin_constant_p(s->mss) ? (__uint16_t)(( (__uint16_t)(s->mss) & 0xffU) << 8 | ((__uint16_t )(s->mss) & 0xff00U) >> 8) : __swap16md(s->mss )); | |||
1268 | d->state = s->state; | |||
1269 | d->wscale = s->wscale; | |||
1270 | if (s->scrub) { | |||
1271 | d->scrub.pfss_flags = | |||
1272 | htons(s->scrub->pfss_flags & PFSS_TIMESTAMP)(__uint16_t)(__builtin_constant_p(s->scrub->pfss_flags & 0x0001) ? (__uint16_t)(((__uint16_t)(s->scrub->pfss_flags & 0x0001) & 0xffU) << 8 | ((__uint16_t)(s-> scrub->pfss_flags & 0x0001) & 0xff00U) >> 8) : __swap16md(s->scrub->pfss_flags & 0x0001)); | |||
1273 | d->scrub.pfss_ttl = (s)->scrub->pfss_ttl; | |||
1274 | d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod)(__uint32_t)(__builtin_constant_p((s)->scrub->pfss_ts_mod ) ? (__uint32_t)(((__uint32_t)((s)->scrub->pfss_ts_mod) & 0xff) << 24 | ((__uint32_t)((s)->scrub->pfss_ts_mod ) & 0xff00) << 8 | ((__uint32_t)((s)->scrub-> pfss_ts_mod) & 0xff0000) >> 8 | ((__uint32_t)((s)-> scrub->pfss_ts_mod) & 0xff000000) >> 24) : __swap32md ((s)->scrub->pfss_ts_mod)); | |||
1275 | d->scrub.scrub_flag = PFSYNC_SCRUB_FLAG_VALID0x01; | |||
1276 | } | |||
1277 | } | |||
1278 | ||||
1279 | void | |||
1280 | pf_state_peer_ntoh(const struct pfsync_state_peer *s, struct pf_state_peer *d) | |||
1281 | { | |||
1282 | d->seqlo = ntohl(s->seqlo)(__uint32_t)(__builtin_constant_p(s->seqlo) ? (__uint32_t) (((__uint32_t)(s->seqlo) & 0xff) << 24 | ((__uint32_t )(s->seqlo) & 0xff00) << 8 | ((__uint32_t)(s-> seqlo) & 0xff0000) >> 8 | ((__uint32_t)(s->seqlo ) & 0xff000000) >> 24) : __swap32md(s->seqlo)); | |||
1283 | d->seqhi = ntohl(s->seqhi)(__uint32_t)(__builtin_constant_p(s->seqhi) ? (__uint32_t) (((__uint32_t)(s->seqhi) & 0xff) << 24 | ((__uint32_t )(s->seqhi) & 0xff00) << 8 | ((__uint32_t)(s-> seqhi) & 0xff0000) >> 8 | ((__uint32_t)(s->seqhi ) & 0xff000000) >> 24) : __swap32md(s->seqhi)); | |||
1284 | d->seqdiff = ntohl(s->seqdiff)(__uint32_t)(__builtin_constant_p(s->seqdiff) ? (__uint32_t )(((__uint32_t)(s->seqdiff) & 0xff) << 24 | ((__uint32_t )(s->seqdiff) & 0xff00) << 8 | ((__uint32_t)(s-> seqdiff) & 0xff0000) >> 8 | ((__uint32_t)(s->seqdiff ) & 0xff000000) >> 24) : __swap32md(s->seqdiff)); | |||
1285 | d->max_win = ntohs(s->max_win)(__uint16_t)(__builtin_constant_p(s->max_win) ? (__uint16_t )(((__uint16_t)(s->max_win) & 0xffU) << 8 | ((__uint16_t )(s->max_win) & 0xff00U) >> 8) : __swap16md(s-> max_win)); | |||
1286 | d->mss = ntohs(s->mss)(__uint16_t)(__builtin_constant_p(s->mss) ? (__uint16_t)(( (__uint16_t)(s->mss) & 0xffU) << 8 | ((__uint16_t )(s->mss) & 0xff00U) >> 8) : __swap16md(s->mss )); | |||
1287 | d->state = s->state; | |||
1288 | d->wscale = s->wscale; | |||
1289 | if (s->scrub.scrub_flag == PFSYNC_SCRUB_FLAG_VALID0x01 && | |||
1290 | d->scrub != NULL((void *)0)) { | |||
1291 | d->scrub->pfss_flags = | |||
1292 | ntohs(s->scrub.pfss_flags)(__uint16_t)(__builtin_constant_p(s->scrub.pfss_flags) ? ( __uint16_t)(((__uint16_t)(s->scrub.pfss_flags) & 0xffU ) << 8 | ((__uint16_t)(s->scrub.pfss_flags) & 0xff00U ) >> 8) : __swap16md(s->scrub.pfss_flags)) & PFSS_TIMESTAMP0x0001; | |||
1293 | d->scrub->pfss_ttl = s->scrub.pfss_ttl; | |||
1294 | d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod)(__uint32_t)(__builtin_constant_p(s->scrub.pfss_ts_mod) ? ( __uint32_t)(((__uint32_t)(s->scrub.pfss_ts_mod) & 0xff ) << 24 | ((__uint32_t)(s->scrub.pfss_ts_mod) & 0xff00 ) << 8 | ((__uint32_t)(s->scrub.pfss_ts_mod) & 0xff0000 ) >> 8 | ((__uint32_t)(s->scrub.pfss_ts_mod) & 0xff000000 ) >> 24) : __swap32md(s->scrub.pfss_ts_mod)); | |||
1295 | } | |||
1296 | } | |||
1297 | ||||
1298 | void | |||
1299 | pf_state_export(struct pfsync_state *sp, struct pf_state *st) | |||
1300 | { | |||
1301 | int32_t expire; | |||
1302 | ||||
1303 | memset(sp, 0, sizeof(struct pfsync_state))__builtin_memset((sp), (0), (sizeof(struct pfsync_state))); | |||
1304 | ||||
1305 | /* copy from state key */ | |||
1306 | sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; | |||
1307 | sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; | |||
1308 | sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; | |||
1309 | sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; | |||
1310 | sp->key[PF_SK_WIRE].rdomain = htons(st->key[PF_SK_WIRE]->rdomain)(__uint16_t)(__builtin_constant_p(st->key[PF_SK_WIRE]-> rdomain) ? (__uint16_t)(((__uint16_t)(st->key[PF_SK_WIRE]-> rdomain) & 0xffU) << 8 | ((__uint16_t)(st->key[PF_SK_WIRE ]->rdomain) & 0xff00U) >> 8) : __swap16md(st-> key[PF_SK_WIRE]->rdomain)); | |||
1311 | sp->key[PF_SK_WIRE].af = st->key[PF_SK_WIRE]->af; | |||
1312 | sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; | |||
1313 | sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; | |||
1314 | sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; | |||
1315 | sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; | |||
1316 | sp->key[PF_SK_STACK].rdomain = htons(st->key[PF_SK_STACK]->rdomain)(__uint16_t)(__builtin_constant_p(st->key[PF_SK_STACK]-> rdomain) ? (__uint16_t)(((__uint16_t)(st->key[PF_SK_STACK] ->rdomain) & 0xffU) << 8 | ((__uint16_t)(st-> key[PF_SK_STACK]->rdomain) & 0xff00U) >> 8) : __swap16md (st->key[PF_SK_STACK]->rdomain)); | |||
1317 | sp->key[PF_SK_STACK].af = st->key[PF_SK_STACK]->af; | |||
1318 | sp->rtableid[PF_SK_WIRE] = htonl(st->rtableid[PF_SK_WIRE])(__uint32_t)(__builtin_constant_p(st->rtableid[PF_SK_WIRE] ) ? (__uint32_t)(((__uint32_t)(st->rtableid[PF_SK_WIRE]) & 0xff) << 24 | ((__uint32_t)(st->rtableid[PF_SK_WIRE ]) & 0xff00) << 8 | ((__uint32_t)(st->rtableid[PF_SK_WIRE ]) & 0xff0000) >> 8 | ((__uint32_t)(st->rtableid [PF_SK_WIRE]) & 0xff000000) >> 24) : __swap32md(st-> rtableid[PF_SK_WIRE])); | |||
1319 | sp->rtableid[PF_SK_STACK] = htonl(st->rtableid[PF_SK_STACK])(__uint32_t)(__builtin_constant_p(st->rtableid[PF_SK_STACK ]) ? (__uint32_t)(((__uint32_t)(st->rtableid[PF_SK_STACK]) & 0xff) << 24 | ((__uint32_t)(st->rtableid[PF_SK_STACK ]) & 0xff00) << 8 | ((__uint32_t)(st->rtableid[PF_SK_STACK ]) & 0xff0000) >> 8 | ((__uint32_t)(st->rtableid [PF_SK_STACK]) & 0xff000000) >> 24) : __swap32md(st ->rtableid[PF_SK_STACK])); | |||
1320 | sp->proto = st->key[PF_SK_WIRE]->proto; | |||
1321 | sp->af = st->key[PF_SK_WIRE]->af; | |||
1322 | ||||
1323 | /* copy from state */ | |||
1324 | strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); | |||
1325 | sp->rt = st->rt; | |||
1326 | sp->rt_addr = st->rt_addr; | |||
1327 | sp->creation = htonl(getuptime() - st->creation)(__uint32_t)(__builtin_constant_p(getuptime() - st->creation ) ? (__uint32_t)(((__uint32_t)(getuptime() - st->creation) & 0xff) << 24 | ((__uint32_t)(getuptime() - st-> creation) & 0xff00) << 8 | ((__uint32_t)(getuptime( ) - st->creation) & 0xff0000) >> 8 | ((__uint32_t )(getuptime() - st->creation) & 0xff000000) >> 24 ) : __swap32md(getuptime() - st->creation)); | |||
1328 | expire = pf_state_expires(st, st->timeout); | |||
1329 | if (expire <= getuptime()) | |||
1330 | sp->expire = htonl(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); | |||
1331 | else | |||
1332 | sp->expire = htonl(expire - getuptime())(__uint32_t)(__builtin_constant_p(expire - getuptime()) ? (__uint32_t )(((__uint32_t)(expire - getuptime()) & 0xff) << 24 | ((__uint32_t)(expire - getuptime()) & 0xff00) << 8 | ((__uint32_t)(expire - getuptime()) & 0xff0000) >> 8 | ((__uint32_t)(expire - getuptime()) & 0xff000000) >> 24) : __swap32md(expire - getuptime())); | |||
1333 | ||||
1334 | sp->direction = st->direction; | |||
1335 | #if NPFLOG1 > 0 | |||
1336 | sp->log = st->log; | |||
1337 | #endif /* NPFLOG > 0 */ | |||
1338 | sp->timeout = st->timeout; | |||
1339 | sp->state_flags = htons(st->state_flags)(__uint16_t)(__builtin_constant_p(st->state_flags) ? (__uint16_t )(((__uint16_t)(st->state_flags) & 0xffU) << 8 | ((__uint16_t)(st->state_flags) & 0xff00U) >> 8) : __swap16md(st->state_flags)); | |||
1340 | if (READ_ONCE(st->sync_defer)({ typeof(st->sync_defer) __tmp = *(volatile typeof(st-> sync_defer) *)&(st->sync_defer); membar_datadep_consumer (); __tmp; }) != NULL((void *)0)) | |||
1341 | sp->state_flags |= htons(PFSTATE_ACK)(__uint16_t)(__builtin_constant_p(0x0010) ? (__uint16_t)(((__uint16_t )(0x0010) & 0xffU) << 8 | ((__uint16_t)(0x0010) & 0xff00U) >> 8) : __swap16md(0x0010)); | |||
1342 | if (!SLIST_EMPTY(&st->src_nodes)(((&st->src_nodes)->slh_first) == ((void *)0))) | |||
1343 | sp->sync_flags |= PFSYNC_FLAG_SRCNODE0x04; | |||
1344 | ||||
1345 | sp->id = st->id; | |||
1346 | sp->creatorid = st->creatorid; | |||
1347 | pf_state_peer_hton(&st->src, &sp->src); | |||
1348 | pf_state_peer_hton(&st->dst, &sp->dst); | |||
1349 | ||||
1350 | if (st->rule.ptr == NULL((void *)0)) | |||
1351 | sp->rule = htonl(-1)(__uint32_t)(__builtin_constant_p(-1) ? (__uint32_t)(((__uint32_t )(-1) & 0xff) << 24 | ((__uint32_t)(-1) & 0xff00 ) << 8 | ((__uint32_t)(-1) & 0xff0000) >> 8 | ((__uint32_t)(-1) & 0xff000000) >> 24) : __swap32md (-1)); | |||
1352 | else | |||
1353 | sp->rule = htonl(st->rule.ptr->nr)(__uint32_t)(__builtin_constant_p(st->rule.ptr->nr) ? ( __uint32_t)(((__uint32_t)(st->rule.ptr->nr) & 0xff) << 24 | ((__uint32_t)(st->rule.ptr->nr) & 0xff00 ) << 8 | ((__uint32_t)(st->rule.ptr->nr) & 0xff0000 ) >> 8 | ((__uint32_t)(st->rule.ptr->nr) & 0xff000000 ) >> 24) : __swap32md(st->rule.ptr->nr)); | |||
1354 | if (st->anchor.ptr == NULL((void *)0)) | |||
1355 | sp->anchor = htonl(-1)(__uint32_t)(__builtin_constant_p(-1) ? (__uint32_t)(((__uint32_t )(-1) & 0xff) << 24 | ((__uint32_t)(-1) & 0xff00 ) << 8 | ((__uint32_t)(-1) & 0xff0000) >> 8 | ((__uint32_t)(-1) & 0xff000000) >> 24) : __swap32md (-1)); | |||
1356 | else | |||
1357 | sp->anchor = htonl(st->anchor.ptr->nr)(__uint32_t)(__builtin_constant_p(st->anchor.ptr->nr) ? (__uint32_t)(((__uint32_t)(st->anchor.ptr->nr) & 0xff ) << 24 | ((__uint32_t)(st->anchor.ptr->nr) & 0xff00) << 8 | ((__uint32_t)(st->anchor.ptr->nr) & 0xff0000) >> 8 | ((__uint32_t)(st->anchor.ptr ->nr) & 0xff000000) >> 24) : __swap32md(st->anchor .ptr->nr)); | |||
1358 | sp->nat_rule = htonl(-1)(__uint32_t)(__builtin_constant_p(-1) ? (__uint32_t)(((__uint32_t )(-1) & 0xff) << 24 | ((__uint32_t)(-1) & 0xff00 ) << 8 | ((__uint32_t)(-1) & 0xff0000) >> 8 | ((__uint32_t)(-1) & 0xff000000) >> 24) : __swap32md (-1)); /* left for compat, nat_rule is gone */ | |||
1359 | ||||
1360 | pf_state_counter_hton(st->packets[0], sp->packets[0])do { sp->packets[0][0] = (__uint32_t)(__builtin_constant_p ((st->packets[0]>>32)&0xffffffff) ? (__uint32_t) (((__uint32_t)((st->packets[0]>>32)&0xffffffff) & 0xff) << 24 | ((__uint32_t)((st->packets[0]>> 32)&0xffffffff) & 0xff00) << 8 | ((__uint32_t)( (st->packets[0]>>32)&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t)((st->packets[0]>>32)& 0xffffffff) & 0xff000000) >> 24) : __swap32md((st-> packets[0]>>32)&0xffffffff)); sp->packets[0][1] = (__uint32_t)(__builtin_constant_p(st->packets[0]&0xffffffff ) ? (__uint32_t)(((__uint32_t)(st->packets[0]&0xffffffff ) & 0xff) << 24 | ((__uint32_t)(st->packets[0]& 0xffffffff) & 0xff00) << 8 | ((__uint32_t)(st->packets [0]&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t )(st->packets[0]&0xffffffff) & 0xff000000) >> 24) : __swap32md(st->packets[0]&0xffffffff)); } while (0); | |||
1361 | pf_state_counter_hton(st->packets[1], sp->packets[1])do { sp->packets[1][0] = (__uint32_t)(__builtin_constant_p ((st->packets[1]>>32)&0xffffffff) ? (__uint32_t) (((__uint32_t)((st->packets[1]>>32)&0xffffffff) & 0xff) << 24 | ((__uint32_t)((st->packets[1]>> 32)&0xffffffff) & 0xff00) << 8 | ((__uint32_t)( (st->packets[1]>>32)&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t)((st->packets[1]>>32)& 0xffffffff) & 0xff000000) >> 24) : __swap32md((st-> packets[1]>>32)&0xffffffff)); sp->packets[1][1] = (__uint32_t)(__builtin_constant_p(st->packets[1]&0xffffffff ) ? (__uint32_t)(((__uint32_t)(st->packets[1]&0xffffffff ) & 0xff) << 24 | ((__uint32_t)(st->packets[1]& 0xffffffff) & 0xff00) << 8 | ((__uint32_t)(st->packets [1]&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t )(st->packets[1]&0xffffffff) & 0xff000000) >> 24) : __swap32md(st->packets[1]&0xffffffff)); } while (0); | |||
1362 | pf_state_counter_hton(st->bytes[0], sp->bytes[0])do { sp->bytes[0][0] = (__uint32_t)(__builtin_constant_p(( st->bytes[0]>>32)&0xffffffff) ? (__uint32_t)(((__uint32_t )((st->bytes[0]>>32)&0xffffffff) & 0xff) << 24 | ((__uint32_t)((st->bytes[0]>>32)&0xffffffff ) & 0xff00) << 8 | ((__uint32_t)((st->bytes[0]>> 32)&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t )((st->bytes[0]>>32)&0xffffffff) & 0xff000000 ) >> 24) : __swap32md((st->bytes[0]>>32)&0xffffffff )); sp->bytes[0][1] = (__uint32_t)(__builtin_constant_p(st ->bytes[0]&0xffffffff) ? (__uint32_t)(((__uint32_t)(st ->bytes[0]&0xffffffff) & 0xff) << 24 | ((__uint32_t )(st->bytes[0]&0xffffffff) & 0xff00) << 8 | ( (__uint32_t)(st->bytes[0]&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t)(st->bytes[0]&0xffffffff) & 0xff000000 ) >> 24) : __swap32md(st->bytes[0]&0xffffffff)); } while (0); | |||
1363 | pf_state_counter_hton(st->bytes[1], sp->bytes[1])do { sp->bytes[1][0] = (__uint32_t)(__builtin_constant_p(( st->bytes[1]>>32)&0xffffffff) ? (__uint32_t)(((__uint32_t )((st->bytes[1]>>32)&0xffffffff) & 0xff) << 24 | ((__uint32_t)((st->bytes[1]>>32)&0xffffffff ) & 0xff00) << 8 | ((__uint32_t)((st->bytes[1]>> 32)&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t )((st->bytes[1]>>32)&0xffffffff) & 0xff000000 ) >> 24) : __swap32md((st->bytes[1]>>32)&0xffffffff )); sp->bytes[1][1] = (__uint32_t)(__builtin_constant_p(st ->bytes[1]&0xffffffff) ? (__uint32_t)(((__uint32_t)(st ->bytes[1]&0xffffffff) & 0xff) << 24 | ((__uint32_t )(st->bytes[1]&0xffffffff) & 0xff00) << 8 | ( (__uint32_t)(st->bytes[1]&0xffffffff) & 0xff0000) >> 8 | ((__uint32_t)(st->bytes[1]&0xffffffff) & 0xff000000 ) >> 24) : __swap32md(st->bytes[1]&0xffffffff)); } while (0); | |||
1364 | ||||
1365 | sp->max_mss = htons(st->max_mss)(__uint16_t)(__builtin_constant_p(st->max_mss) ? (__uint16_t )(((__uint16_t)(st->max_mss) & 0xffU) << 8 | ((__uint16_t )(st->max_mss) & 0xff00U) >> 8) : __swap16md(st-> max_mss)); | |||
1366 | sp->min_ttl = st->min_ttl; | |||
1367 | sp->set_tos = st->set_tos; | |||
1368 | sp->set_prio[0] = st->set_prio[0]; | |||
1369 | sp->set_prio[1] = st->set_prio[1]; | |||
1370 | } | |||
1371 | ||||
1372 | int | |||
1373 | pf_state_alloc_scrub_memory(const struct pfsync_state_peer *s, | |||
1374 | struct pf_state_peer *d) | |||
1375 | { | |||
1376 | if (s->scrub.scrub_flag && d->scrub == NULL((void *)0)) | |||
1377 | return (pf_normalize_tcp_alloc(d)); | |||
1378 | ||||
1379 | return (0); | |||
1380 | } | |||
1381 | ||||
1382 | #if NPFSYNC1 > 0 | |||
1383 | int | |||
1384 | pf_state_import(const struct pfsync_state *sp, int flags) | |||
1385 | { | |||
1386 | struct pf_state *st = NULL((void *)0); | |||
1387 | struct pf_state_key *skw = NULL((void *)0), *sks = NULL((void *)0); | |||
1388 | struct pf_rule *r = NULL((void *)0); | |||
1389 | struct pfi_kif *kif; | |||
1390 | int pool_flags; | |||
1391 | int error = ENOMEM12; | |||
1392 | int n = 0; | |||
1393 | ||||
1394 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
1395 | ||||
1396 | if (sp->creatorid == 0) { | |||
1397 | DPFPRINTF(LOG_NOTICE, "%s: invalid creator id: %08x", __func__,do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "%s: invalid creator id: %08x", __func__, (__uint32_t)(__builtin_constant_p (sp->creatorid) ? (__uint32_t)(((__uint32_t)(sp->creatorid ) & 0xff) << 24 | ((__uint32_t)(sp->creatorid) & 0xff00) << 8 | ((__uint32_t)(sp->creatorid) & 0xff0000 ) >> 8 | ((__uint32_t)(sp->creatorid) & 0xff000000 ) >> 24) : __swap32md(sp->creatorid))); addlog("\n") ; } } while (0) | |||
1398 | ntohl(sp->creatorid))do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "%s: invalid creator id: %08x", __func__, (__uint32_t)(__builtin_constant_p (sp->creatorid) ? (__uint32_t)(((__uint32_t)(sp->creatorid ) & 0xff) << 24 | ((__uint32_t)(sp->creatorid) & 0xff00) << 8 | ((__uint32_t)(sp->creatorid) & 0xff0000 ) >> 8 | ((__uint32_t)(sp->creatorid) & 0xff000000 ) >> 24) : __swap32md(sp->creatorid))); addlog("\n") ; } } while (0); | |||
1399 | return (EINVAL22); | |||
1400 | } | |||
1401 | ||||
1402 | if ((kif = pfi_kif_get(sp->ifname, NULL((void *)0))) == NULL((void *)0)) { | |||
1403 | DPFPRINTF(LOG_NOTICE, "%s: unknown interface: %s", __func__,do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "%s: unknown interface: %s", __func__, sp->ifname); addlog ("\n"); } } while (0) | |||
1404 | sp->ifname)do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "%s: unknown interface: %s", __func__, sp->ifname); addlog ("\n"); } } while (0); | |||
1405 | if (flags & PFSYNC_SI_IOCTL0x01) | |||
1406 | return (EINVAL22); | |||
1407 | return (0); /* skip this state */ | |||
1408 | } | |||
1409 | ||||
1410 | if (sp->af == 0) | |||
1411 | return (0); /* skip this state */ | |||
1412 | ||||
1413 | /* | |||
1414 | * If the ruleset checksums match or the state is coming from the ioctl, | |||
1415 | * it's safe to associate the state with the rule of that number. | |||
1416 | */ | |||
1417 | if (sp->rule != htonl(-1)(__uint32_t)(__builtin_constant_p(-1) ? (__uint32_t)(((__uint32_t )(-1) & 0xff) << 24 | ((__uint32_t)(-1) & 0xff00 ) << 8 | ((__uint32_t)(-1) & 0xff0000) >> 8 | ((__uint32_t)(-1) & 0xff000000) >> 24) : __swap32md (-1)) && sp->anchor == htonl(-1)(__uint32_t)(__builtin_constant_p(-1) ? (__uint32_t)(((__uint32_t )(-1) & 0xff) << 24 | ((__uint32_t)(-1) & 0xff00 ) << 8 | ((__uint32_t)(-1) & 0xff0000) >> 8 | ((__uint32_t)(-1) & 0xff000000) >> 24) : __swap32md (-1)) && | |||
1418 | (flags & (PFSYNC_SI_IOCTL0x01 | PFSYNC_SI_CKSUM0x02)) && | |||
1419 | ntohl(sp->rule)(__uint32_t)(__builtin_constant_p(sp->rule) ? (__uint32_t) (((__uint32_t)(sp->rule) & 0xff) << 24 | ((__uint32_t )(sp->rule) & 0xff00) << 8 | ((__uint32_t)(sp-> rule) & 0xff0000) >> 8 | ((__uint32_t)(sp->rule) & 0xff000000) >> 24) : __swap32md(sp->rule)) < pf_main_rulesetpf_main_anchor.ruleset.rules.active.rcount) { | |||
1420 | TAILQ_FOREACH(r, pf_main_ruleset.rules.active.ptr, entries)for((r) = ((pf_main_anchor.ruleset.rules.active.ptr)->tqh_first ); (r) != ((void *)0); (r) = ((r)->entries.tqe_next)) | |||
1421 | if (ntohl(sp->rule)(__uint32_t)(__builtin_constant_p(sp->rule) ? (__uint32_t) (((__uint32_t)(sp->rule) & 0xff) << 24 | ((__uint32_t )(sp->rule) & 0xff00) << 8 | ((__uint32_t)(sp-> rule) & 0xff0000) >> 8 | ((__uint32_t)(sp->rule) & 0xff000000) >> 24) : __swap32md(sp->rule)) == n++) | |||
1422 | break; | |||
1423 | } else | |||
1424 | r = &pf_default_rule; | |||
1425 | ||||
1426 | if ((r->max_states && r->states_cur >= r->max_states)) | |||
1427 | goto cleanup; | |||
1428 | ||||
1429 | if (flags & PFSYNC_SI_IOCTL0x01) | |||
1430 | pool_flags = PR_WAITOK0x0001 | PR_LIMITFAIL0x0004 | PR_ZERO0x0008; | |||
1431 | else | |||
1432 | pool_flags = PR_NOWAIT0x0002 | PR_LIMITFAIL0x0004 | PR_ZERO0x0008; | |||
1433 | ||||
1434 | if ((st = pool_get(&pf_state_pl, pool_flags)) == NULL((void *)0)) | |||
1435 | goto cleanup; | |||
1436 | ||||
1437 | if ((skw = pf_alloc_state_key(pool_flags)) == NULL((void *)0)) | |||
1438 | goto cleanup; | |||
1439 | ||||
1440 | if ((sp->key[PF_SK_WIRE].af && | |||
1441 | (sp->key[PF_SK_WIRE].af != sp->key[PF_SK_STACK].af)) || | |||
1442 | PF_ANEQ(&sp->key[PF_SK_WIRE].addr[0],((sp->af == 2 && (&sp->key[PF_SK_WIRE].addr [0])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr[ 0])->pfa.addr32[0]) || (sp->af == 24 && ((& sp->key[PF_SK_WIRE].addr[0])->pfa.addr32[3] != (&sp ->key[PF_SK_STACK].addr[0])->pfa.addr32[3] || (&sp-> key[PF_SK_WIRE].addr[0])->pfa.addr32[2] != (&sp->key [PF_SK_STACK].addr[0])->pfa.addr32[2] || (&sp->key[ PF_SK_WIRE].addr[0])->pfa.addr32[1] != (&sp->key[PF_SK_STACK ].addr[0])->pfa.addr32[1] || (&sp->key[PF_SK_WIRE]. addr[0])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr [0])->pfa.addr32[0]))) | |||
1443 | &sp->key[PF_SK_STACK].addr[0], sp->af)((sp->af == 2 && (&sp->key[PF_SK_WIRE].addr [0])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr[ 0])->pfa.addr32[0]) || (sp->af == 24 && ((& sp->key[PF_SK_WIRE].addr[0])->pfa.addr32[3] != (&sp ->key[PF_SK_STACK].addr[0])->pfa.addr32[3] || (&sp-> key[PF_SK_WIRE].addr[0])->pfa.addr32[2] != (&sp->key [PF_SK_STACK].addr[0])->pfa.addr32[2] || (&sp->key[ PF_SK_WIRE].addr[0])->pfa.addr32[1] != (&sp->key[PF_SK_STACK ].addr[0])->pfa.addr32[1] || (&sp->key[PF_SK_WIRE]. addr[0])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr [0])->pfa.addr32[0]))) || | |||
1444 | PF_ANEQ(&sp->key[PF_SK_WIRE].addr[1],((sp->af == 2 && (&sp->key[PF_SK_WIRE].addr [1])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr[ 1])->pfa.addr32[0]) || (sp->af == 24 && ((& sp->key[PF_SK_WIRE].addr[1])->pfa.addr32[3] != (&sp ->key[PF_SK_STACK].addr[1])->pfa.addr32[3] || (&sp-> key[PF_SK_WIRE].addr[1])->pfa.addr32[2] != (&sp->key [PF_SK_STACK].addr[1])->pfa.addr32[2] || (&sp->key[ PF_SK_WIRE].addr[1])->pfa.addr32[1] != (&sp->key[PF_SK_STACK ].addr[1])->pfa.addr32[1] || (&sp->key[PF_SK_WIRE]. addr[1])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr [1])->pfa.addr32[0]))) | |||
1445 | &sp->key[PF_SK_STACK].addr[1], sp->af)((sp->af == 2 && (&sp->key[PF_SK_WIRE].addr [1])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr[ 1])->pfa.addr32[0]) || (sp->af == 24 && ((& sp->key[PF_SK_WIRE].addr[1])->pfa.addr32[3] != (&sp ->key[PF_SK_STACK].addr[1])->pfa.addr32[3] || (&sp-> key[PF_SK_WIRE].addr[1])->pfa.addr32[2] != (&sp->key [PF_SK_STACK].addr[1])->pfa.addr32[2] || (&sp->key[ PF_SK_WIRE].addr[1])->pfa.addr32[1] != (&sp->key[PF_SK_STACK ].addr[1])->pfa.addr32[1] || (&sp->key[PF_SK_WIRE]. addr[1])->pfa.addr32[0] != (&sp->key[PF_SK_STACK].addr [1])->pfa.addr32[0]))) || | |||
1446 | sp->key[PF_SK_WIRE].port[0] != sp->key[PF_SK_STACK].port[0] || | |||
1447 | sp->key[PF_SK_WIRE].port[1] != sp->key[PF_SK_STACK].port[1] || | |||
1448 | sp->key[PF_SK_WIRE].rdomain != sp->key[PF_SK_STACK].rdomain) { | |||
1449 | if ((sks = pf_alloc_state_key(pool_flags)) == NULL((void *)0)) | |||
1450 | goto cleanup; | |||
1451 | } else | |||
1452 | sks = pf_state_key_ref(skw); | |||
1453 | ||||
1454 | /* allocate memory for scrub info */ | |||
1455 | if (pf_state_alloc_scrub_memory(&sp->src, &st->src) || | |||
1456 | pf_state_alloc_scrub_memory(&sp->dst, &st->dst)) | |||
1457 | goto cleanup; | |||
1458 | ||||
1459 | /* copy to state key(s) */ | |||
1460 | skw->addr[0] = sp->key[PF_SK_WIRE].addr[0]; | |||
1461 | skw->addr[1] = sp->key[PF_SK_WIRE].addr[1]; | |||
1462 | skw->port[0] = sp->key[PF_SK_WIRE].port[0]; | |||
1463 | skw->port[1] = sp->key[PF_SK_WIRE].port[1]; | |||
1464 | skw->rdomain = ntohs(sp->key[PF_SK_WIRE].rdomain)(__uint16_t)(__builtin_constant_p(sp->key[PF_SK_WIRE].rdomain ) ? (__uint16_t)(((__uint16_t)(sp->key[PF_SK_WIRE].rdomain ) & 0xffU) << 8 | ((__uint16_t)(sp->key[PF_SK_WIRE ].rdomain) & 0xff00U) >> 8) : __swap16md(sp->key [PF_SK_WIRE].rdomain)); | |||
1465 | skw->proto = sp->proto; | |||
1466 | if (!(skw->af = sp->key[PF_SK_WIRE].af)) | |||
1467 | skw->af = sp->af; | |||
1468 | skw->hash = pf_pkt_hash(skw->af, skw->proto, | |||
1469 | &skw->addr[0], &skw->addr[1], skw->port[0], skw->port[1]); | |||
1470 | ||||
1471 | if (sks != skw) { | |||
1472 | sks->addr[0] = sp->key[PF_SK_STACK].addr[0]; | |||
1473 | sks->addr[1] = sp->key[PF_SK_STACK].addr[1]; | |||
1474 | sks->port[0] = sp->key[PF_SK_STACK].port[0]; | |||
1475 | sks->port[1] = sp->key[PF_SK_STACK].port[1]; | |||
1476 | sks->rdomain = ntohs(sp->key[PF_SK_STACK].rdomain)(__uint16_t)(__builtin_constant_p(sp->key[PF_SK_STACK].rdomain ) ? (__uint16_t)(((__uint16_t)(sp->key[PF_SK_STACK].rdomain ) & 0xffU) << 8 | ((__uint16_t)(sp->key[PF_SK_STACK ].rdomain) & 0xff00U) >> 8) : __swap16md(sp->key [PF_SK_STACK].rdomain)); | |||
1477 | if (!(sks->af = sp->key[PF_SK_STACK].af)) | |||
1478 | sks->af = sp->af; | |||
1479 | if (sks->af != skw->af) { | |||
1480 | switch (sp->proto) { | |||
1481 | case IPPROTO_ICMP1: | |||
1482 | sks->proto = IPPROTO_ICMPV658; | |||
1483 | break; | |||
1484 | case IPPROTO_ICMPV658: | |||
1485 | sks->proto = IPPROTO_ICMP1; | |||
1486 | break; | |||
1487 | default: | |||
1488 | sks->proto = sp->proto; | |||
1489 | } | |||
1490 | } else | |||
1491 | sks->proto = sp->proto; | |||
1492 | ||||
1493 | if (((sks->af != AF_INET2) && (sks->af != AF_INET624)) || | |||
1494 | ((skw->af != AF_INET2) && (skw->af != AF_INET624))) { | |||
1495 | error = EINVAL22; | |||
1496 | goto cleanup; | |||
1497 | } | |||
1498 | ||||
1499 | sks->hash = pf_pkt_hash(sks->af, sks->proto, | |||
1500 | &sks->addr[0], &sks->addr[1], sks->port[0], sks->port[1]); | |||
1501 | ||||
1502 | } else if ((sks->af != AF_INET2) && (sks->af != AF_INET624)) { | |||
1503 | error = EINVAL22; | |||
1504 | goto cleanup; | |||
1505 | } | |||
1506 | st->rtableid[PF_SK_WIRE] = ntohl(sp->rtableid[PF_SK_WIRE])(__uint32_t)(__builtin_constant_p(sp->rtableid[PF_SK_WIRE] ) ? (__uint32_t)(((__uint32_t)(sp->rtableid[PF_SK_WIRE]) & 0xff) << 24 | ((__uint32_t)(sp->rtableid[PF_SK_WIRE ]) & 0xff00) << 8 | ((__uint32_t)(sp->rtableid[PF_SK_WIRE ]) & 0xff0000) >> 8 | ((__uint32_t)(sp->rtableid [PF_SK_WIRE]) & 0xff000000) >> 24) : __swap32md(sp-> rtableid[PF_SK_WIRE])); | |||
1507 | st->rtableid[PF_SK_STACK] = ntohl(sp->rtableid[PF_SK_STACK])(__uint32_t)(__builtin_constant_p(sp->rtableid[PF_SK_STACK ]) ? (__uint32_t)(((__uint32_t)(sp->rtableid[PF_SK_STACK]) & 0xff) << 24 | ((__uint32_t)(sp->rtableid[PF_SK_STACK ]) & 0xff00) << 8 | ((__uint32_t)(sp->rtableid[PF_SK_STACK ]) & 0xff0000) >> 8 | ((__uint32_t)(sp->rtableid [PF_SK_STACK]) & 0xff000000) >> 24) : __swap32md(sp ->rtableid[PF_SK_STACK])); | |||
1508 | ||||
1509 | /* copy to state */ | |||
1510 | st->rt_addr = sp->rt_addr; | |||
1511 | st->rt = sp->rt; | |||
1512 | st->creation = getuptime() - ntohl(sp->creation)(__uint32_t)(__builtin_constant_p(sp->creation) ? (__uint32_t )(((__uint32_t)(sp->creation) & 0xff) << 24 | (( __uint32_t)(sp->creation) & 0xff00) << 8 | ((__uint32_t )(sp->creation) & 0xff0000) >> 8 | ((__uint32_t) (sp->creation) & 0xff000000) >> 24) : __swap32md (sp->creation)); | |||
1513 | st->expire = getuptime(); | |||
1514 | if (ntohl(sp->expire)(__uint32_t)(__builtin_constant_p(sp->expire) ? (__uint32_t )(((__uint32_t)(sp->expire) & 0xff) << 24 | ((__uint32_t )(sp->expire) & 0xff00) << 8 | ((__uint32_t)(sp-> expire) & 0xff0000) >> 8 | ((__uint32_t)(sp->expire ) & 0xff000000) >> 24) : __swap32md(sp->expire))) { | |||
1515 | u_int32_t timeout; | |||
1516 | ||||
1517 | timeout = r->timeout[sp->timeout]; | |||
1518 | if (!timeout) | |||
1519 | timeout = pf_default_rule.timeout[sp->timeout]; | |||
1520 | ||||
1521 | /* sp->expire may have been adaptively scaled by export. */ | |||
1522 | st->expire -= timeout - ntohl(sp->expire)(__uint32_t)(__builtin_constant_p(sp->expire) ? (__uint32_t )(((__uint32_t)(sp->expire) & 0xff) << 24 | ((__uint32_t )(sp->expire) & 0xff00) << 8 | ((__uint32_t)(sp-> expire) & 0xff0000) >> 8 | ((__uint32_t)(sp->expire ) & 0xff000000) >> 24) : __swap32md(sp->expire)); | |||
1523 | } | |||
1524 | ||||
1525 | st->direction = sp->direction; | |||
1526 | st->log = sp->log; | |||
1527 | st->timeout = sp->timeout; | |||
1528 | st->state_flags = ntohs(sp->state_flags)(__uint16_t)(__builtin_constant_p(sp->state_flags) ? (__uint16_t )(((__uint16_t)(sp->state_flags) & 0xffU) << 8 | ((__uint16_t)(sp->state_flags) & 0xff00U) >> 8) : __swap16md(sp->state_flags)); | |||
1529 | st->max_mss = ntohs(sp->max_mss)(__uint16_t)(__builtin_constant_p(sp->max_mss) ? (__uint16_t )(((__uint16_t)(sp->max_mss) & 0xffU) << 8 | ((__uint16_t )(sp->max_mss) & 0xff00U) >> 8) : __swap16md(sp-> max_mss)); | |||
1530 | st->min_ttl = sp->min_ttl; | |||
1531 | st->set_tos = sp->set_tos; | |||
1532 | st->set_prio[0] = sp->set_prio[0]; | |||
1533 | st->set_prio[1] = sp->set_prio[1]; | |||
1534 | ||||
1535 | st->id = sp->id; | |||
1536 | st->creatorid = sp->creatorid; | |||
1537 | pf_state_peer_ntoh(&sp->src, &st->src); | |||
1538 | pf_state_peer_ntoh(&sp->dst, &st->dst); | |||
1539 | ||||
1540 | st->rule.ptr = r; | |||
1541 | st->anchor.ptr = NULL((void *)0); | |||
1542 | ||||
1543 | PF_REF_INIT(st->refcnt)refcnt_init(&(st->refcnt)); | |||
1544 | mtx_init(&st->mtx, IPL_NET)do { (void)(((void *)0)); (void)(0); __mtx_init((&st-> mtx), ((((0x4)) > 0x0 && ((0x4)) < 0x9) ? 0x9 : ((0x4)))); } while (0); | |||
1545 | ||||
1546 | /* XXX when we have anchors, use STATE_INC_COUNTERS */ | |||
1547 | r->states_cur++; | |||
1548 | r->states_tot++; | |||
1549 | ||||
1550 | st->sync_state = PFSYNC_S_NONE0xd0; | |||
1551 | st->pfsync_time = getuptime(); | |||
1552 | #if NPFSYNC1 > 0 | |||
1553 | pfsync_init_state(st, skw, sks, flags); | |||
1554 | #endif | |||
1555 | ||||
1556 | if (pf_state_insert(kif, &skw, &sks, st) != 0) { | |||
1557 | /* XXX when we have anchors, use STATE_DEC_COUNTERS */ | |||
1558 | r->states_cur--; | |||
1559 | error = EEXIST17; | |||
1560 | goto cleanup_state; | |||
1561 | } | |||
1562 | ||||
1563 | return (0); | |||
1564 | ||||
1565 | cleanup: | |||
1566 | if (skw != NULL((void *)0)) | |||
1567 | pf_state_key_unref(skw); | |||
1568 | if (sks != NULL((void *)0)) | |||
1569 | pf_state_key_unref(sks); | |||
1570 | ||||
1571 | cleanup_state: /* pf_state_insert frees the state keys */ | |||
1572 | if (st) { | |||
1573 | if (st->dst.scrub) | |||
1574 | pool_put(&pf_state_scrub_pl, st->dst.scrub); | |||
1575 | if (st->src.scrub) | |||
1576 | pool_put(&pf_state_scrub_pl, st->src.scrub); | |||
1577 | pool_put(&pf_state_pl, st); | |||
1578 | } | |||
1579 | return (error); | |||
1580 | } | |||
1581 | #endif /* NPFSYNC > 0 */ | |||
1582 | ||||
1583 | /* END state table stuff */ | |||
1584 | ||||
1585 | void pf_purge_states(void *); | |||
1586 | struct task pf_purge_states_task = | |||
1587 | TASK_INITIALIZER(pf_purge_states, NULL){{ ((void *)0), ((void *)0) }, (pf_purge_states), (((void *)0 )), 0 }; | |||
1588 | ||||
1589 | void pf_purge_states_tick(void *); | |||
1590 | struct timeout pf_purge_states_to = | |||
1591 | TIMEOUT_INITIALIZER(pf_purge_states_tick, NULL){ .to_list = { ((void *)0), ((void *)0) }, .to_abstime = { .tv_sec = 0, .tv_nsec = 0 }, .to_func = ((pf_purge_states_tick)), .to_arg = ((((void *)0))), .to_time = 0, .to_flags = (0) | 0x04, .to_kclock = ((-1)) }; | |||
1592 | ||||
1593 | unsigned int pf_purge_expired_states(unsigned int, unsigned int); | |||
1594 | ||||
1595 | /* | |||
1596 | * how many states to scan this interval. | |||
1597 | * | |||
1598 | * this is set when the timeout fires, and reduced by the task. the | |||
1599 | * task will reschedule itself until the limit is reduced to zero, | |||
1600 | * and then it adds the timeout again. | |||
1601 | */ | |||
1602 | unsigned int pf_purge_states_limit; | |||
1603 | ||||
1604 | /* | |||
1605 | * limit how many states are processed with locks held per run of | |||
1606 | * the state purge task. | |||
1607 | */ | |||
1608 | unsigned int pf_purge_states_collect = 64; | |||
1609 | ||||
1610 | void | |||
1611 | pf_purge_states_tick(void *null) | |||
1612 | { | |||
1613 | unsigned int limit = pf_status.states; | |||
1614 | unsigned int interval = pf_default_rule.timeout[PFTM_INTERVAL]; | |||
1615 | ||||
1616 | if (limit == 0) { | |||
1617 | timeout_add_sec(&pf_purge_states_to, 1); | |||
1618 | return; | |||
1619 | } | |||
1620 | ||||
1621 | /* | |||
1622 | * process a fraction of the state table every second | |||
1623 | */ | |||
1624 | ||||
1625 | if (interval > 1) | |||
1626 | limit /= interval; | |||
1627 | ||||
1628 | pf_purge_states_limit = limit; | |||
1629 | task_add(systqmp, &pf_purge_states_task); | |||
1630 | } | |||
1631 | ||||
1632 | void | |||
1633 | pf_purge_states(void *null) | |||
1634 | { | |||
1635 | unsigned int limit; | |||
1636 | unsigned int scanned; | |||
1637 | ||||
1638 | limit = pf_purge_states_limit; | |||
1639 | if (limit < pf_purge_states_collect) | |||
1640 | limit = pf_purge_states_collect; | |||
1641 | ||||
1642 | scanned = pf_purge_expired_states(limit, pf_purge_states_collect); | |||
1643 | if (scanned >= pf_purge_states_limit) { | |||
1644 | /* we've run out of states to scan this "interval" */ | |||
1645 | timeout_add_sec(&pf_purge_states_to, 1); | |||
1646 | return; | |||
1647 | } | |||
1648 | ||||
1649 | pf_purge_states_limit -= scanned; | |||
1650 | task_add(systqmp, &pf_purge_states_task); | |||
1651 | } | |||
1652 | ||||
1653 | void pf_purge_tick(void *); | |||
1654 | struct timeout pf_purge_to = | |||
1655 | TIMEOUT_INITIALIZER(pf_purge_tick, NULL){ .to_list = { ((void *)0), ((void *)0) }, .to_abstime = { .tv_sec = 0, .tv_nsec = 0 }, .to_func = ((pf_purge_tick)), .to_arg = ((((void *)0))), .to_time = 0, .to_flags = (0) | 0x04, .to_kclock = ((-1)) }; | |||
1656 | ||||
1657 | void pf_purge(void *); | |||
1658 | struct task pf_purge_task = | |||
1659 | TASK_INITIALIZER(pf_purge, NULL){{ ((void *)0), ((void *)0) }, (pf_purge), (((void *)0)), 0 }; | |||
1660 | ||||
1661 | void | |||
1662 | pf_purge_tick(void *null) | |||
1663 | { | |||
1664 | task_add(systqmp, &pf_purge_task); | |||
1665 | } | |||
1666 | ||||
1667 | void | |||
1668 | pf_purge(void *null) | |||
1669 | { | |||
1670 | unsigned int interval = max(1, pf_default_rule.timeout[PFTM_INTERVAL]); | |||
1671 | ||||
1672 | PF_LOCK()do { rw_enter_write(&pf_lock); } while (0); | |||
1673 | ||||
1674 | pf_purge_expired_src_nodes(); | |||
1675 | ||||
1676 | PF_UNLOCK()do { do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_lock),__func__); } while (0); rw_exit_write (&pf_lock); } while (0); | |||
1677 | ||||
1678 | /* | |||
1679 | * Fragments don't require PF_LOCK(), they use their own lock. | |||
1680 | */ | |||
1681 | pf_purge_expired_fragments(); | |||
1682 | ||||
1683 | /* interpret the interval as idle time between runs */ | |||
1684 | timeout_add_sec(&pf_purge_to, interval); | |||
1685 | } | |||
1686 | ||||
1687 | int32_t | |||
1688 | pf_state_expires(const struct pf_state *st, uint8_t stimeout) | |||
1689 | { | |||
1690 | u_int32_t timeout; | |||
1691 | u_int32_t start; | |||
1692 | u_int32_t end; | |||
1693 | u_int32_t states; | |||
1694 | ||||
1695 | /* | |||
1696 | * pf_state_expires is used by the state purge task to | |||
1697 | * decide if a state is a candidate for cleanup, and by the | |||
1698 | * pfsync state export code to populate an expiry time. | |||
1699 | * | |||
1700 | * this function may be called by the state purge task while | |||
1701 | * the state is being modified. avoid inconsistent reads of | |||
1702 | * state->timeout by having the caller do the read (and any | |||
1703 | * checks it needs to do on the same variable) and then pass | |||
1704 | * their view of the timeout in here for this function to use. | |||
1705 | * the only consequence of using a stale timeout value is | |||
1706 | * that the state won't be a candidate for purging until the | |||
1707 | * next pass of the purge task. | |||
1708 | */ | |||
1709 | ||||
1710 | /* handle all PFTM_* >= PFTM_MAX here */ | |||
1711 | if (stimeout >= PFTM_MAX) | |||
1712 | return (0); | |||
1713 | ||||
1714 | KASSERT(stimeout < PFTM_MAX)((stimeout < PFTM_MAX) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/net/pf.c", 1714, "stimeout < PFTM_MAX")); | |||
1715 | ||||
1716 | timeout = st->rule.ptr->timeout[stimeout]; | |||
1717 | if (!timeout) | |||
1718 | timeout = pf_default_rule.timeout[stimeout]; | |||
1719 | ||||
1720 | start = st->rule.ptr->timeout[PFTM_ADAPTIVE_START]; | |||
1721 | if (start) { | |||
1722 | end = st->rule.ptr->timeout[PFTM_ADAPTIVE_END]; | |||
1723 | states = st->rule.ptr->states_cur; | |||
1724 | } else { | |||
1725 | start = pf_default_rule.timeout[PFTM_ADAPTIVE_START]; | |||
1726 | end = pf_default_rule.timeout[PFTM_ADAPTIVE_END]; | |||
1727 | states = pf_status.states; | |||
1728 | } | |||
1729 | if (end && states > start && start < end) { | |||
1730 | if (states >= end) | |||
1731 | return (0); | |||
1732 | ||||
1733 | timeout = (u_int64_t)timeout * (end - states) / (end - start); | |||
1734 | } | |||
1735 | ||||
1736 | return (st->expire + timeout); | |||
1737 | } | |||
1738 | ||||
1739 | void | |||
1740 | pf_purge_expired_src_nodes(void) | |||
1741 | { | |||
1742 | struct pf_src_node *cur, *next; | |||
1743 | ||||
1744 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
1745 | ||||
1746 | RB_FOREACH_SAFE(cur, pf_src_tree, &tree_src_tracking, next)for ((cur) = pf_src_tree_RB_MINMAX(&tree_src_tracking, -1 ); ((cur) != ((void *)0)) && ((next) = pf_src_tree_RB_NEXT (cur), 1); (cur) = (next)) { | |||
1747 | if (cur->states == 0 && cur->expire <= getuptime()) { | |||
1748 | pf_remove_src_node(cur); | |||
1749 | } | |||
1750 | } | |||
1751 | } | |||
1752 | ||||
1753 | void | |||
1754 | pf_src_tree_remove_state(struct pf_state *st) | |||
1755 | { | |||
1756 | u_int32_t timeout; | |||
1757 | struct pf_sn_item *sni; | |||
1758 | ||||
1759 | while ((sni = SLIST_FIRST(&st->src_nodes)((&st->src_nodes)->slh_first)) != NULL((void *)0)) { | |||
1760 | SLIST_REMOVE_HEAD(&st->src_nodes, next)do { (&st->src_nodes)->slh_first = (&st->src_nodes )->slh_first->next.sle_next; } while (0); | |||
1761 | if (st->src.tcp_est) | |||
1762 | --sni->sn->conn; | |||
1763 | if (--sni->sn->states == 0) { | |||
1764 | timeout = st->rule.ptr->timeout[PFTM_SRC_NODE]; | |||
1765 | if (!timeout) | |||
1766 | timeout = | |||
1767 | pf_default_rule.timeout[PFTM_SRC_NODE]; | |||
1768 | sni->sn->expire = getuptime() + timeout; | |||
1769 | } | |||
1770 | pool_put(&pf_sn_item_pl, sni); | |||
1771 | } | |||
1772 | } | |||
1773 | ||||
1774 | void | |||
1775 | pf_remove_state(struct pf_state *st) | |||
1776 | { | |||
1777 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
1778 | ||||
1779 | mtx_enter(&st->mtx); | |||
1780 | if (st->timeout == PFTM_UNLINKED) { | |||
1781 | mtx_leave(&st->mtx); | |||
1782 | return; | |||
1783 | } | |||
1784 | st->timeout = PFTM_UNLINKED; | |||
1785 | mtx_leave(&st->mtx); | |||
1786 | ||||
1787 | /* handle load balancing related tasks */ | |||
1788 | pf_postprocess_addr(st); | |||
1789 | ||||
1790 | if (st->src.state == PF_TCPS_PROXY_DST((11)+1)) { | |||
1791 | pf_send_tcp(st->rule.ptr, st->key[PF_SK_WIRE]->af, | |||
1792 | &st->key[PF_SK_WIRE]->addr[1], | |||
1793 | &st->key[PF_SK_WIRE]->addr[0], | |||
1794 | st->key[PF_SK_WIRE]->port[1], | |||
1795 | st->key[PF_SK_WIRE]->port[0], | |||
1796 | st->src.seqhi, st->src.seqlo + 1, | |||
1797 | TH_RST0x04|TH_ACK0x10, 0, 0, 0, 1, st->tag, | |||
1798 | st->key[PF_SK_WIRE]->rdomain); | |||
1799 | } | |||
1800 | if (st->key[PF_SK_STACK]->proto == IPPROTO_TCP6) | |||
1801 | pf_set_protostate(st, PF_PEER_BOTH, TCPS_CLOSED0); | |||
1802 | ||||
1803 | RBT_REMOVE(pf_state_tree_id, &tree_id, st)pf_state_tree_id_RBT_REMOVE(&tree_id, st); | |||
1804 | #if NPFLOW1 > 0 | |||
1805 | if (st->state_flags & PFSTATE_PFLOW0x0004) | |||
1806 | export_pflow(st); | |||
1807 | #endif /* NPFLOW > 0 */ | |||
1808 | #if NPFSYNC1 > 0 | |||
1809 | pfsync_delete_state(st); | |||
1810 | #endif /* NPFSYNC > 0 */ | |||
1811 | pf_src_tree_remove_state(st); | |||
1812 | pf_detach_state(st); | |||
1813 | } | |||
1814 | ||||
1815 | void | |||
1816 | pf_remove_divert_state(struct inpcb *inp) | |||
1817 | { | |||
1818 | struct pf_state_key *sk; | |||
1819 | struct pf_state_item *si; | |||
1820 | ||||
1821 | PF_ASSERT_UNLOCKED()do { if (rw_status(&pf_lock) == 0x0001UL) splassert_fail( 0, rw_status(&pf_lock), __func__); } while (0); | |||
1822 | ||||
1823 | if (READ_ONCE(inp->inp_pf_sk)({ typeof(inp->inp_pf_sk) __tmp = *(volatile typeof(inp-> inp_pf_sk) *)&(inp->inp_pf_sk); membar_datadep_consumer (); __tmp; }) == NULL((void *)0)) | |||
1824 | return; | |||
1825 | ||||
1826 | mtx_enter(&pf_inp_mtx); | |||
1827 | sk = pf_state_key_ref(inp->inp_pf_sk); | |||
1828 | mtx_leave(&pf_inp_mtx); | |||
1829 | if (sk == NULL((void *)0)) | |||
1830 | return; | |||
1831 | ||||
1832 | PF_LOCK()do { rw_enter_write(&pf_lock); } while (0); | |||
1833 | PF_STATE_ENTER_WRITE()do { rw_enter_write(&pf_state_lock); } while (0); | |||
1834 | TAILQ_FOREACH(si, &sk->sk_states, si_entry)for((si) = ((&sk->sk_states)->tqh_first); (si) != ( (void *)0); (si) = ((si)->si_entry.tqe_next)) { | |||
1835 | struct pf_state *sist = si->si_st; | |||
1836 | if (sk == sist->key[PF_SK_STACK] && sist->rule.ptr && | |||
1837 | (sist->rule.ptr->divert.type == PF_DIVERT_TO || | |||
1838 | sist->rule.ptr->divert.type == PF_DIVERT_REPLY)) { | |||
1839 | if (sist->key[PF_SK_STACK]->proto == IPPROTO_TCP6 && | |||
1840 | sist->key[PF_SK_WIRE] != sist->key[PF_SK_STACK]) { | |||
1841 | /* | |||
1842 | * If the local address is translated, keep | |||
1843 | * the state for "tcp.closed" seconds to | |||
1844 | * prevent its source port from being reused. | |||
1845 | */ | |||
1846 | if (sist->src.state < TCPS_FIN_WAIT_29 || | |||
1847 | sist->dst.state < TCPS_FIN_WAIT_29) { | |||
1848 | pf_set_protostate(sist, PF_PEER_BOTH, | |||
1849 | TCPS_TIME_WAIT10); | |||
1850 | pf_update_state_timeout(sist, | |||
1851 | PFTM_TCP_CLOSED); | |||
1852 | sist->expire = getuptime(); | |||
1853 | } | |||
1854 | sist->state_flags |= PFSTATE_INP_UNLINKED0x0400; | |||
1855 | } else | |||
1856 | pf_remove_state(sist); | |||
1857 | break; | |||
1858 | } | |||
1859 | } | |||
1860 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1861 | PF_UNLOCK()do { do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_lock),__func__); } while (0); rw_exit_write (&pf_lock); } while (0); | |||
1862 | ||||
1863 | pf_state_key_unref(sk); | |||
1864 | } | |||
1865 | ||||
1866 | void | |||
1867 | pf_free_state(struct pf_state *st) | |||
1868 | { | |||
1869 | struct pf_rule_item *ri; | |||
1870 | ||||
1871 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
1872 | ||||
1873 | #if NPFSYNC1 > 0 | |||
1874 | if (pfsync_state_in_use(st)) | |||
1875 | return; | |||
1876 | #endif /* NPFSYNC > 0 */ | |||
1877 | ||||
1878 | KASSERT(st->timeout == PFTM_UNLINKED)((st->timeout == PFTM_UNLINKED) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/net/pf.c", 1878, "st->timeout == PFTM_UNLINKED" )); | |||
1879 | if (--st->rule.ptr->states_cur == 0 && | |||
1880 | st->rule.ptr->src_nodes == 0) | |||
1881 | pf_rm_rule(NULL((void *)0), st->rule.ptr); | |||
1882 | if (st->anchor.ptr != NULL((void *)0)) | |||
1883 | if (--st->anchor.ptr->states_cur == 0) | |||
1884 | pf_rm_rule(NULL((void *)0), st->anchor.ptr); | |||
1885 | while ((ri = SLIST_FIRST(&st->match_rules)((&st->match_rules)->slh_first))) { | |||
1886 | SLIST_REMOVE_HEAD(&st->match_rules, entry)do { (&st->match_rules)->slh_first = (&st->match_rules )->slh_first->entry.sle_next; } while (0); | |||
1887 | if (--ri->r->states_cur == 0 && | |||
1888 | ri->r->src_nodes == 0) | |||
1889 | pf_rm_rule(NULL((void *)0), ri->r); | |||
1890 | pool_put(&pf_rule_item_pl, ri); | |||
1891 | } | |||
1892 | pf_normalize_tcp_cleanup(st); | |||
1893 | pfi_kif_unref(st->kif, PFI_KIF_REF_STATE); | |||
1894 | pf_state_list_remove(&pf_state_list, st); | |||
1895 | if (st->tag) | |||
1896 | pf_tag_unref(st->tag); | |||
1897 | pf_state_unref(st); | |||
1898 | pf_status.fcounters[FCNT_STATE_REMOVALS2]++; | |||
1899 | pf_status.states--; | |||
1900 | } | |||
1901 | ||||
1902 | unsigned int | |||
1903 | pf_purge_expired_states(const unsigned int limit, const unsigned int collect) | |||
1904 | { | |||
1905 | /* | |||
1906 | * this task/thread/context/whatever is the only thing that | |||
1907 | * removes states from the pf_state_list, so the cur reference | |||
1908 | * it holds between calls is guaranteed to still be in the | |||
1909 | * list. | |||
1910 | */ | |||
1911 | static struct pf_state *cur = NULL((void *)0); | |||
1912 | ||||
1913 | struct pf_state *head, *tail; | |||
1914 | struct pf_state *st; | |||
1915 | SLIST_HEAD(pf_state_gcl, pf_state)struct pf_state_gcl { struct pf_state *slh_first; } gcl = SLIST_HEAD_INITIALIZER(gcl){ ((void *)0) }; | |||
1916 | time_t now; | |||
1917 | unsigned int scanned; | |||
1918 | unsigned int collected = 0; | |||
1919 | ||||
1920 | PF_ASSERT_UNLOCKED()do { if (rw_status(&pf_lock) == 0x0001UL) splassert_fail( 0, rw_status(&pf_lock), __func__); } while (0); | |||
1921 | ||||
1922 | rw_enter_read(&pf_state_list.pfs_rwl); | |||
1923 | ||||
1924 | mtx_enter(&pf_state_list.pfs_mtx); | |||
1925 | head = TAILQ_FIRST(&pf_state_list.pfs_list)((&pf_state_list.pfs_list)->tqh_first); | |||
1926 | tail = TAILQ_LAST(&pf_state_list.pfs_list, pf_state_queue)(*(((struct pf_state_queue *)((&pf_state_list.pfs_list)-> tqh_last))->tqh_last)); | |||
1927 | mtx_leave(&pf_state_list.pfs_mtx); | |||
1928 | ||||
1929 | if (head == NULL((void *)0)) { | |||
1930 | /* the list is empty */ | |||
1931 | rw_exit_read(&pf_state_list.pfs_rwl); | |||
1932 | return (limit); | |||
1933 | } | |||
1934 | ||||
1935 | /* (re)start at the front of the list */ | |||
1936 | if (cur == NULL((void *)0)) | |||
1937 | cur = head; | |||
1938 | ||||
1939 | now = getuptime(); | |||
1940 | ||||
1941 | for (scanned = 0; scanned < limit; scanned++) { | |||
1942 | uint8_t stimeout = cur->timeout; | |||
1943 | unsigned int limited = 0; | |||
1944 | ||||
1945 | if ((stimeout == PFTM_UNLINKED) || | |||
1946 | (pf_state_expires(cur, stimeout) <= now)) { | |||
1947 | st = pf_state_ref(cur); | |||
1948 | SLIST_INSERT_HEAD(&gcl, st, gc_list)do { (st)->gc_list.sle_next = (&gcl)->slh_first; (& gcl)->slh_first = (st); } while (0); | |||
1949 | ||||
1950 | if (++collected >= collect) | |||
1951 | limited = 1; | |||
1952 | } | |||
1953 | ||||
1954 | /* don't iterate past the end of our view of the list */ | |||
1955 | if (cur == tail) { | |||
1956 | cur = NULL((void *)0); | |||
1957 | break; | |||
1958 | } | |||
1959 | ||||
1960 | cur = TAILQ_NEXT(cur, entry_list)((cur)->entry_list.tqe_next); | |||
1961 | ||||
1962 | /* don't spend too much time here. */ | |||
1963 | if (ISSET(READ_ONCE(curcpu()->ci_schedstate.spc_schedflags),((({ typeof(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags) __tmp = *(volatile typeof(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags) *)&(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })->ci_schedstate.spc_schedflags); membar_datadep_consumer (); __tmp; })) & (0x0002)) | |||
1964 | SPCF_SHOULDYIELD)((({ typeof(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags) __tmp = *(volatile typeof(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags) *)&(({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })->ci_schedstate.spc_schedflags); membar_datadep_consumer (); __tmp; })) & (0x0002)) || limited) | |||
1965 | break; | |||
1966 | } | |||
1967 | ||||
1968 | rw_exit_read(&pf_state_list.pfs_rwl); | |||
1969 | ||||
1970 | if (SLIST_EMPTY(&gcl)(((&gcl)->slh_first) == ((void *)0))) | |||
1971 | return (scanned); | |||
1972 | ||||
1973 | rw_enter_write(&pf_state_list.pfs_rwl); | |||
1974 | PF_LOCK()do { rw_enter_write(&pf_lock); } while (0); | |||
1975 | PF_STATE_ENTER_WRITE()do { rw_enter_write(&pf_state_lock); } while (0); | |||
1976 | SLIST_FOREACH(st, &gcl, gc_list)for((st) = ((&gcl)->slh_first); (st) != ((void *)0); ( st) = ((st)->gc_list.sle_next)) { | |||
1977 | if (st->timeout != PFTM_UNLINKED) | |||
1978 | pf_remove_state(st); | |||
1979 | ||||
1980 | pf_free_state(st); | |||
1981 | } | |||
1982 | PF_STATE_EXIT_WRITE()do { do { if (rw_status(&pf_state_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_state_lock), __func__); } while ( 0); rw_exit_write(&pf_state_lock); } while (0); | |||
1983 | PF_UNLOCK()do { do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail (0x0001UL, rw_status(&pf_lock),__func__); } while (0); rw_exit_write (&pf_lock); } while (0); | |||
1984 | rw_exit_write(&pf_state_list.pfs_rwl); | |||
1985 | ||||
1986 | while ((st = SLIST_FIRST(&gcl)((&gcl)->slh_first)) != NULL((void *)0)) { | |||
1987 | SLIST_REMOVE_HEAD(&gcl, gc_list)do { (&gcl)->slh_first = (&gcl)->slh_first-> gc_list.sle_next; } while (0); | |||
1988 | pf_state_unref(st); | |||
1989 | } | |||
1990 | ||||
1991 | return (scanned); | |||
1992 | } | |||
1993 | ||||
1994 | int | |||
1995 | pf_tbladdr_setup(struct pf_ruleset *rs, struct pf_addr_wrap *aw, int wait) | |||
1996 | { | |||
1997 | if (aw->type != PF_ADDR_TABLE) | |||
1998 | return (0); | |||
1999 | if ((aw->p.tbl = pfr_attach_table(rs, aw->v.tblname, wait)) == NULL((void *)0)) | |||
2000 | return (1); | |||
2001 | return (0); | |||
2002 | } | |||
2003 | ||||
2004 | void | |||
2005 | pf_tbladdr_remove(struct pf_addr_wrap *aw) | |||
2006 | { | |||
2007 | if (aw->type != PF_ADDR_TABLE || aw->p.tbl == NULL((void *)0)) | |||
2008 | return; | |||
2009 | pfr_detach_table(aw->p.tbl); | |||
2010 | aw->p.tbl = NULL((void *)0); | |||
2011 | } | |||
2012 | ||||
2013 | void | |||
2014 | pf_tbladdr_copyout(struct pf_addr_wrap *aw) | |||
2015 | { | |||
2016 | struct pfr_ktable *kt = aw->p.tbl; | |||
2017 | ||||
2018 | if (aw->type != PF_ADDR_TABLE || kt == NULL((void *)0)) | |||
2019 | return; | |||
2020 | if (!(kt->pfrkt_flagspfrkt_ts.pfrts_t.pfrt_flags & PFR_TFLAG_ACTIVE0x00000004) && kt->pfrkt_root != NULL((void *)0)) | |||
2021 | kt = kt->pfrkt_root; | |||
2022 | aw->p.tbl = NULL((void *)0); | |||
2023 | aw->p.tblcnt = (kt->pfrkt_flagspfrkt_ts.pfrts_t.pfrt_flags & PFR_TFLAG_ACTIVE0x00000004) ? | |||
2024 | kt->pfrkt_cntpfrkt_ts.pfrts_cnt : -1; | |||
2025 | } | |||
2026 | ||||
2027 | void | |||
2028 | pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) | |||
2029 | { | |||
2030 | switch (af) { | |||
2031 | case AF_INET2: { | |||
2032 | u_int32_t a = ntohl(addr->addr32[0])(__uint32_t)(__builtin_constant_p(addr->pfa.addr32[0]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[0])); | |||
2033 | addlog("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, | |||
2034 | (a>>8)&255, a&255); | |||
2035 | if (p) { | |||
2036 | p = ntohs(p)(__uint16_t)(__builtin_constant_p(p) ? (__uint16_t)(((__uint16_t )(p) & 0xffU) << 8 | ((__uint16_t)(p) & 0xff00U ) >> 8) : __swap16md(p)); | |||
2037 | addlog(":%u", p); | |||
2038 | } | |||
2039 | break; | |||
2040 | } | |||
2041 | #ifdef INET61 | |||
2042 | case AF_INET624: { | |||
2043 | u_int16_t b; | |||
2044 | u_int8_t i, curstart, curend, maxstart, maxend; | |||
2045 | curstart = curend = maxstart = maxend = 255; | |||
2046 | for (i = 0; i < 8; i++) { | |||
2047 | if (!addr->addr16pfa.addr16[i]) { | |||
2048 | if (curstart == 255) | |||
2049 | curstart = i; | |||
2050 | curend = i; | |||
2051 | } else { | |||
2052 | if ((curend - curstart) > | |||
2053 | (maxend - maxstart)) { | |||
2054 | maxstart = curstart; | |||
2055 | maxend = curend; | |||
2056 | } | |||
2057 | curstart = curend = 255; | |||
2058 | } | |||
2059 | } | |||
2060 | if ((curend - curstart) > | |||
2061 | (maxend - maxstart)) { | |||
2062 | maxstart = curstart; | |||
2063 | maxend = curend; | |||
2064 | } | |||
2065 | for (i = 0; i < 8; i++) { | |||
2066 | if (i >= maxstart && i <= maxend) { | |||
2067 | if (i == 0) | |||
2068 | addlog(":"); | |||
2069 | if (i == maxend) | |||
2070 | addlog(":"); | |||
2071 | } else { | |||
2072 | b = ntohs(addr->addr16[i])(__uint16_t)(__builtin_constant_p(addr->pfa.addr16[i]) ? ( __uint16_t)(((__uint16_t)(addr->pfa.addr16[i]) & 0xffU ) << 8 | ((__uint16_t)(addr->pfa.addr16[i]) & 0xff00U ) >> 8) : __swap16md(addr->pfa.addr16[i])); | |||
2073 | addlog("%x", b); | |||
2074 | if (i < 7) | |||
2075 | addlog(":"); | |||
2076 | } | |||
2077 | } | |||
2078 | if (p) { | |||
2079 | p = ntohs(p)(__uint16_t)(__builtin_constant_p(p) ? (__uint16_t)(((__uint16_t )(p) & 0xffU) << 8 | ((__uint16_t)(p) & 0xff00U ) >> 8) : __swap16md(p)); | |||
2080 | addlog("[%u]", p); | |||
2081 | } | |||
2082 | break; | |||
2083 | } | |||
2084 | #endif /* INET6 */ | |||
2085 | } | |||
2086 | } | |||
2087 | ||||
2088 | void | |||
2089 | pf_print_state(struct pf_state *st) | |||
2090 | { | |||
2091 | pf_print_state_parts(st, NULL((void *)0), NULL((void *)0)); | |||
2092 | } | |||
2093 | ||||
2094 | void | |||
2095 | pf_print_state_parts(struct pf_state *st, | |||
2096 | struct pf_state_key *skwp, struct pf_state_key *sksp) | |||
2097 | { | |||
2098 | struct pf_state_key *skw, *sks; | |||
2099 | u_int8_t proto, dir; | |||
2100 | ||||
2101 | /* Do our best to fill these, but they're skipped if NULL */ | |||
2102 | skw = skwp ? skwp : (st ? st->key[PF_SK_WIRE] : NULL((void *)0)); | |||
2103 | sks = sksp ? sksp : (st ? st->key[PF_SK_STACK] : NULL((void *)0)); | |||
2104 | proto = skw ? skw->proto : (sks ? sks->proto : 0); | |||
2105 | dir = st ? st->direction : 0; | |||
2106 | ||||
2107 | switch (proto) { | |||
2108 | case IPPROTO_IPV44: | |||
2109 | addlog("IPv4"); | |||
2110 | break; | |||
2111 | case IPPROTO_IPV641: | |||
2112 | addlog("IPv6"); | |||
2113 | break; | |||
2114 | case IPPROTO_TCP6: | |||
2115 | addlog("TCP"); | |||
2116 | break; | |||
2117 | case IPPROTO_UDP17: | |||
2118 | addlog("UDP"); | |||
2119 | break; | |||
2120 | case IPPROTO_ICMP1: | |||
2121 | addlog("ICMP"); | |||
2122 | break; | |||
2123 | case IPPROTO_ICMPV658: | |||
2124 | addlog("ICMPv6"); | |||
2125 | break; | |||
2126 | default: | |||
2127 | addlog("%u", proto); | |||
2128 | break; | |||
2129 | } | |||
2130 | switch (dir) { | |||
2131 | case PF_IN: | |||
2132 | addlog(" in"); | |||
2133 | break; | |||
2134 | case PF_OUT: | |||
2135 | addlog(" out"); | |||
2136 | break; | |||
2137 | } | |||
2138 | if (skw) { | |||
2139 | addlog(" wire: (%d) ", skw->rdomain); | |||
2140 | pf_print_host(&skw->addr[0], skw->port[0], skw->af); | |||
2141 | addlog(" "); | |||
2142 | pf_print_host(&skw->addr[1], skw->port[1], skw->af); | |||
2143 | } | |||
2144 | if (sks) { | |||
2145 | addlog(" stack: (%d) ", sks->rdomain); | |||
2146 | if (sks != skw) { | |||
2147 | pf_print_host(&sks->addr[0], sks->port[0], sks->af); | |||
2148 | addlog(" "); | |||
2149 | pf_print_host(&sks->addr[1], sks->port[1], sks->af); | |||
2150 | } else | |||
2151 | addlog("-"); | |||
2152 | } | |||
2153 | if (st) { | |||
2154 | if (proto == IPPROTO_TCP6) { | |||
2155 | addlog(" [lo=%u high=%u win=%u modulator=%u", | |||
2156 | st->src.seqlo, st->src.seqhi, | |||
2157 | st->src.max_win, st->src.seqdiff); | |||
2158 | if (st->src.wscale && st->dst.wscale) | |||
2159 | addlog(" wscale=%u", | |||
2160 | st->src.wscale & PF_WSCALE_MASK0x0f); | |||
2161 | addlog("]"); | |||
2162 | addlog(" [lo=%u high=%u win=%u modulator=%u", | |||
2163 | st->dst.seqlo, st->dst.seqhi, | |||
2164 | st->dst.max_win, st->dst.seqdiff); | |||
2165 | if (st->src.wscale && st->dst.wscale) | |||
2166 | addlog(" wscale=%u", | |||
2167 | st->dst.wscale & PF_WSCALE_MASK0x0f); | |||
2168 | addlog("]"); | |||
2169 | } | |||
2170 | addlog(" %u:%u", st->src.state, st->dst.state); | |||
2171 | if (st->rule.ptr) | |||
2172 | addlog(" @%d", st->rule.ptr->nr); | |||
2173 | } | |||
2174 | } | |||
2175 | ||||
2176 | void | |||
2177 | pf_print_flags(u_int8_t f) | |||
2178 | { | |||
2179 | if (f) | |||
2180 | addlog(" "); | |||
2181 | if (f & TH_FIN0x01) | |||
2182 | addlog("F"); | |||
2183 | if (f & TH_SYN0x02) | |||
2184 | addlog("S"); | |||
2185 | if (f & TH_RST0x04) | |||
2186 | addlog("R"); | |||
2187 | if (f & TH_PUSH0x08) | |||
2188 | addlog("P"); | |||
2189 | if (f & TH_ACK0x10) | |||
2190 | addlog("A"); | |||
2191 | if (f & TH_URG0x20) | |||
2192 | addlog("U"); | |||
2193 | if (f & TH_ECE0x40) | |||
2194 | addlog("E"); | |||
2195 | if (f & TH_CWR0x80) | |||
2196 | addlog("W"); | |||
2197 | } | |||
2198 | ||||
2199 | #define PF_SET_SKIP_STEPS(i)do { while (head[i] != cur) { head[i]->skip[i].ptr = cur; head [i] = ((head[i])->entries.tqe_next); } } while (0) \ | |||
2200 | do { \ | |||
2201 | while (head[i] != cur) { \ | |||
2202 | head[i]->skip[i].ptr = cur; \ | |||
2203 | head[i] = TAILQ_NEXT(head[i], entries)((head[i])->entries.tqe_next); \ | |||
2204 | } \ | |||
2205 | } while (0) | |||
2206 | ||||
2207 | void | |||
2208 | pf_calc_skip_steps(struct pf_rulequeue *rules) | |||
2209 | { | |||
2210 | struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT9]; | |||
2211 | int i; | |||
2212 | ||||
2213 | cur = TAILQ_FIRST(rules)((rules)->tqh_first); | |||
2214 | prev = cur; | |||
2215 | for (i = 0; i < PF_SKIP_COUNT9; ++i) | |||
2216 | head[i] = cur; | |||
2217 | while (cur != NULL((void *)0)) { | |||
2218 | if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) | |||
2219 | PF_SET_SKIP_STEPS(PF_SKIP_IFP)do { while (head[0] != cur) { head[0]->skip[0].ptr = cur; head [0] = ((head[0])->entries.tqe_next); } } while (0); | |||
2220 | if (cur->direction != prev->direction) | |||
2221 | PF_SET_SKIP_STEPS(PF_SKIP_DIR)do { while (head[1] != cur) { head[1]->skip[1].ptr = cur; head [1] = ((head[1])->entries.tqe_next); } } while (0); | |||
2222 | if (cur->onrdomain != prev->onrdomain || | |||
2223 | cur->ifnot != prev->ifnot) | |||
2224 | PF_SET_SKIP_STEPS(PF_SKIP_RDOM)do { while (head[2] != cur) { head[2]->skip[2].ptr = cur; head [2] = ((head[2])->entries.tqe_next); } } while (0); | |||
2225 | if (cur->af != prev->af) | |||
2226 | PF_SET_SKIP_STEPS(PF_SKIP_AF)do { while (head[3] != cur) { head[3]->skip[3].ptr = cur; head [3] = ((head[3])->entries.tqe_next); } } while (0); | |||
2227 | if (cur->proto != prev->proto) | |||
2228 | PF_SET_SKIP_STEPS(PF_SKIP_PROTO)do { while (head[4] != cur) { head[4]->skip[4].ptr = cur; head [4] = ((head[4])->entries.tqe_next); } } while (0); | |||
2229 | if (cur->src.neg != prev->src.neg || | |||
2230 | pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) | |||
2231 | PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR)do { while (head[5] != cur) { head[5]->skip[5].ptr = cur; head [5] = ((head[5])->entries.tqe_next); } } while (0); | |||
2232 | if (cur->dst.neg != prev->dst.neg || | |||
2233 | pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) | |||
2234 | PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR)do { while (head[6] != cur) { head[6]->skip[6].ptr = cur; head [6] = ((head[6])->entries.tqe_next); } } while (0); | |||
2235 | if (cur->src.port[0] != prev->src.port[0] || | |||
2236 | cur->src.port[1] != prev->src.port[1] || | |||
2237 | cur->src.port_op != prev->src.port_op) | |||
2238 | PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT)do { while (head[7] != cur) { head[7]->skip[7].ptr = cur; head [7] = ((head[7])->entries.tqe_next); } } while (0); | |||
2239 | if (cur->dst.port[0] != prev->dst.port[0] || | |||
2240 | cur->dst.port[1] != prev->dst.port[1] || | |||
2241 | cur->dst.port_op != prev->dst.port_op) | |||
2242 | PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT)do { while (head[8] != cur) { head[8]->skip[8].ptr = cur; head [8] = ((head[8])->entries.tqe_next); } } while (0); | |||
2243 | ||||
2244 | prev = cur; | |||
2245 | cur = TAILQ_NEXT(cur, entries)((cur)->entries.tqe_next); | |||
2246 | } | |||
2247 | for (i = 0; i < PF_SKIP_COUNT9; ++i) | |||
2248 | PF_SET_SKIP_STEPS(i)do { while (head[i] != cur) { head[i]->skip[i].ptr = cur; head [i] = ((head[i])->entries.tqe_next); } } while (0); | |||
2249 | } | |||
2250 | ||||
2251 | int | |||
2252 | pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) | |||
2253 | { | |||
2254 | if (aw1->type != aw2->type) | |||
2255 | return (1); | |||
2256 | switch (aw1->type) { | |||
2257 | case PF_ADDR_ADDRMASK: | |||
2258 | case PF_ADDR_RANGE: | |||
2259 | if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)((24 == 2 && (&aw1->v.a.addr)->pfa.addr32[0 ] != (&aw2->v.a.addr)->pfa.addr32[0]) || (24 == 24 && ((&aw1->v.a.addr)->pfa.addr32[3] != (&aw2-> v.a.addr)->pfa.addr32[3] || (&aw1->v.a.addr)->pfa .addr32[2] != (&aw2->v.a.addr)->pfa.addr32[2] || (& aw1->v.a.addr)->pfa.addr32[1] != (&aw2->v.a.addr )->pfa.addr32[1] || (&aw1->v.a.addr)->pfa.addr32 [0] != (&aw2->v.a.addr)->pfa.addr32[0])))) | |||
2260 | return (1); | |||
2261 | if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)((24 == 2 && (&aw1->v.a.mask)->pfa.addr32[0 ] != (&aw2->v.a.mask)->pfa.addr32[0]) || (24 == 24 && ((&aw1->v.a.mask)->pfa.addr32[3] != (&aw2-> v.a.mask)->pfa.addr32[3] || (&aw1->v.a.mask)->pfa .addr32[2] != (&aw2->v.a.mask)->pfa.addr32[2] || (& aw1->v.a.mask)->pfa.addr32[1] != (&aw2->v.a.mask )->pfa.addr32[1] || (&aw1->v.a.mask)->pfa.addr32 [0] != (&aw2->v.a.mask)->pfa.addr32[0])))) | |||
2262 | return (1); | |||
2263 | return (0); | |||
2264 | case PF_ADDR_DYNIFTL: | |||
2265 | return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); | |||
2266 | case PF_ADDR_NONE: | |||
2267 | case PF_ADDR_NOROUTE: | |||
2268 | case PF_ADDR_URPFFAILED: | |||
2269 | return (0); | |||
2270 | case PF_ADDR_TABLE: | |||
2271 | return (aw1->p.tbl != aw2->p.tbl); | |||
2272 | case PF_ADDR_RTLABEL: | |||
2273 | return (aw1->v.rtlabel != aw2->v.rtlabel); | |||
2274 | default: | |||
2275 | addlog("invalid address type: %d\n", aw1->type); | |||
2276 | return (1); | |||
2277 | } | |||
2278 | } | |||
2279 | ||||
2280 | /* This algorithm computes 'a + b - c' in ones-complement using a trick to | |||
2281 | * emulate at most one ones-complement subtraction. This thereby limits net | |||
2282 | * carries/borrows to at most one, eliminating a reduction step and saving one | |||
2283 | * each of +, >>, & and ~. | |||
2284 | * | |||
2285 | * def. x mod y = x - (x//y)*y for integer x,y | |||
2286 | * def. sum = x mod 2^16 | |||
2287 | * def. accumulator = (x >> 16) mod 2^16 | |||
2288 | * | |||
2289 | * The trick works as follows: subtracting exactly one u_int16_t from the | |||
2290 | * u_int32_t x incurs at most one underflow, wrapping its upper 16-bits, the | |||
2291 | * accumulator, to 2^16 - 1. Adding this to the 16-bit sum preserves the | |||
2292 | * ones-complement borrow: | |||
2293 | * | |||
2294 | * (sum + accumulator) mod 2^16 | |||
2295 | * = { assume underflow: accumulator := 2^16 - 1 } | |||
2296 | * (sum + 2^16 - 1) mod 2^16 | |||
2297 | * = { mod } | |||
2298 | * (sum - 1) mod 2^16 | |||
2299 | * | |||
2300 | * Although this breaks for sum = 0, giving 0xffff, which is ones-complement's | |||
2301 | * other zero, not -1, that cannot occur: the 16-bit sum cannot be underflown | |||
2302 | * to zero as that requires subtraction of at least 2^16, which exceeds a | |||
2303 | * single u_int16_t's range. | |||
2304 | * | |||
2305 | * We use the following theorem to derive the implementation: | |||
2306 | * | |||
2307 | * th. (x + (y mod z)) mod z = (x + y) mod z (0) | |||
2308 | * proof. | |||
2309 | * (x + (y mod z)) mod z | |||
2310 | * = { def mod } | |||
2311 | * (x + y - (y//z)*z) mod z | |||
2312 | * = { (a + b*c) mod c = a mod c } | |||
2313 | * (x + y) mod z [end of proof] | |||
2314 | * | |||
2315 | * ... and thereby obtain: | |||
2316 | * | |||
2317 | * (sum + accumulator) mod 2^16 | |||
2318 | * = { def. accumulator, def. sum } | |||
2319 | * (x mod 2^16 + (x >> 16) mod 2^16) mod 2^16 | |||
2320 | * = { (0), twice } | |||
2321 | * (x + (x >> 16)) mod 2^16 | |||
2322 | * = { x mod 2^n = x & (2^n - 1) } | |||
2323 | * (x + (x >> 16)) & 0xffff | |||
2324 | * | |||
2325 | * Note: this serves also as a reduction step for at most one add (as the | |||
2326 | * trailing mod 2^16 prevents further reductions by destroying carries). | |||
2327 | */ | |||
2328 | __inline void | |||
2329 | pf_cksum_fixup(u_int16_t *cksum, u_int16_t was, u_int16_t now, | |||
2330 | u_int8_t proto) | |||
2331 | { | |||
2332 | u_int32_t x; | |||
2333 | const int udp = proto == IPPROTO_UDP17; | |||
2334 | ||||
2335 | x = *cksum + was - now; | |||
2336 | x = (x + (x >> 16)) & 0xffff; | |||
2337 | ||||
2338 | /* optimise: eliminate a branch when not udp */ | |||
2339 | if (udp && *cksum == 0x0000) | |||
2340 | return; | |||
2341 | if (udp && x == 0x0000) | |||
2342 | x = 0xffff; | |||
2343 | ||||
2344 | *cksum = (u_int16_t)(x); | |||
2345 | } | |||
2346 | ||||
2347 | #ifdef INET61 | |||
2348 | /* pre: coverage(cksum) is superset of coverage(covered_cksum) */ | |||
2349 | static __inline void | |||
2350 | pf_cksum_uncover(u_int16_t *cksum, u_int16_t covered_cksum, u_int8_t proto) | |||
2351 | { | |||
2352 | pf_cksum_fixup(cksum, ~covered_cksum, 0x0, proto); | |||
2353 | } | |||
2354 | ||||
2355 | /* pre: disjoint(coverage(cksum), coverage(uncovered_cksum)) */ | |||
2356 | static __inline void | |||
2357 | pf_cksum_cover(u_int16_t *cksum, u_int16_t uncovered_cksum, u_int8_t proto) | |||
2358 | { | |||
2359 | pf_cksum_fixup(cksum, 0x0, ~uncovered_cksum, proto); | |||
2360 | } | |||
2361 | #endif /* INET6 */ | |||
2362 | ||||
2363 | /* pre: *a is 16-bit aligned within its packet | |||
2364 | * | |||
2365 | * This algorithm emulates 16-bit ones-complement sums on a twos-complement | |||
2366 | * machine by conserving ones-complement's otherwise discarded carries in the | |||
2367 | * upper bits of x. These accumulated carries when added to the lower 16-bits | |||
2368 | * over at least zero 'reduction' steps then complete the ones-complement sum. | |||
2369 | * | |||
2370 | * def. sum = x mod 2^16 | |||
2371 | * def. accumulator = (x >> 16) | |||
2372 | * | |||
2373 | * At most two reduction steps | |||
2374 | * | |||
2375 | * x := sum + accumulator | |||
2376 | * = { def sum, def accumulator } | |||
2377 | * x := x mod 2^16 + (x >> 16) | |||
2378 | * = { x mod 2^n = x & (2^n - 1) } | |||
2379 | * x := (x & 0xffff) + (x >> 16) | |||
2380 | * | |||
2381 | * are necessary to incorporate the accumulated carries (at most one per add) | |||
2382 | * i.e. to reduce x < 2^16 from at most 16 carries in the upper 16 bits. | |||
2383 | * | |||
2384 | * The function is also invariant over the endian of the host. Why? | |||
2385 | * | |||
2386 | * Define the unary transpose operator ~ on a bitstring in python slice | |||
2387 | * notation as lambda m: m[P:] + m[:P] , for some constant pivot P. | |||
2388 | * | |||
2389 | * th. ~ distributes over ones-complement addition, denoted by +_1, i.e. | |||
2390 | * | |||
2391 | * ~m +_1 ~n = ~(m +_1 n) (for all bitstrings m,n of equal length) | |||
2392 | * | |||
2393 | * proof. Regard the bitstrings in m +_1 n as split at P, forming at most two | |||
2394 | * 'half-adds'. Under ones-complement addition, each half-add carries to the | |||
2395 | * other, so the sum of each half-add is unaffected by their relative | |||
2396 | * order. Therefore: | |||
2397 | * | |||
2398 | * ~m +_1 ~n | |||
2399 | * = { half-adds invariant under transposition } | |||
2400 | * ~s | |||
2401 | * = { substitute } | |||
2402 | * ~(m +_1 n) [end of proof] | |||
2403 | * | |||
2404 | * th. Summing two in-memory ones-complement 16-bit variables m,n on a machine | |||
2405 | * with the converse endian does not alter the result. | |||
2406 | * | |||
2407 | * proof. | |||
2408 | * { converse machine endian: load/store transposes, P := 8 } | |||
2409 | * ~(~m +_1 ~n) | |||
2410 | * = { ~ over +_1 } | |||
2411 | * ~~m +_1 ~~n | |||
2412 | * = { ~ is an involution } | |||
2413 | * m +_1 n [end of proof] | |||
2414 | * | |||
2415 | */ | |||
2416 | #define NEG(x)((u_int16_t)~(x)) ((u_int16_t)~(x)) | |||
2417 | void | |||
2418 | pf_cksum_fixup_a(u_int16_t *cksum, const struct pf_addr *a, | |||
2419 | const struct pf_addr *an, sa_family_t af, u_int8_t proto) | |||
2420 | { | |||
2421 | u_int32_t x; | |||
2422 | const u_int16_t *n = an->addr16pfa.addr16; | |||
2423 | const u_int16_t *o = a->addr16pfa.addr16; | |||
2424 | const int udp = proto == IPPROTO_UDP17; | |||
2425 | ||||
2426 | switch (af) { | |||
2427 | case AF_INET2: | |||
2428 | x = *cksum + o[0] + NEG(n[0])((u_int16_t)~(n[0])) + o[1] + NEG(n[1])((u_int16_t)~(n[1])); | |||
2429 | break; | |||
2430 | #ifdef INET61 | |||
2431 | case AF_INET624: | |||
2432 | x = *cksum + o[0] + NEG(n[0])((u_int16_t)~(n[0])) + o[1] + NEG(n[1])((u_int16_t)~(n[1])) +\ | |||
2433 | o[2] + NEG(n[2])((u_int16_t)~(n[2])) + o[3] + NEG(n[3])((u_int16_t)~(n[3])) +\ | |||
2434 | o[4] + NEG(n[4])((u_int16_t)~(n[4])) + o[5] + NEG(n[5])((u_int16_t)~(n[5])) +\ | |||
2435 | o[6] + NEG(n[6])((u_int16_t)~(n[6])) + o[7] + NEG(n[7])((u_int16_t)~(n[7])); | |||
2436 | break; | |||
2437 | #endif /* INET6 */ | |||
2438 | default: | |||
2439 | unhandled_af(af); | |||
2440 | } | |||
2441 | ||||
2442 | x = (x & 0xffff) + (x >> 16); | |||
2443 | x = (x & 0xffff) + (x >> 16); | |||
2444 | ||||
2445 | /* optimise: eliminate a branch when not udp */ | |||
2446 | if (udp && *cksum == 0x0000) | |||
2447 | return; | |||
2448 | if (udp && x == 0x0000) | |||
2449 | x = 0xffff; | |||
2450 | ||||
2451 | *cksum = (u_int16_t)(x); | |||
2452 | } | |||
2453 | ||||
2454 | int | |||
2455 | pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool_Bool hi) | |||
2456 | { | |||
2457 | int rewrite = 0; | |||
2458 | ||||
2459 | if (*f != v) { | |||
2460 | u_int16_t old = htons(hi ? (*f << 8) : *f)(__uint16_t)(__builtin_constant_p(hi ? (*f << 8) : *f) ? (__uint16_t)(((__uint16_t)(hi ? (*f << 8) : *f) & 0xffU ) << 8 | ((__uint16_t)(hi ? (*f << 8) : *f) & 0xff00U) >> 8) : __swap16md(hi ? (*f << 8) : *f) ); | |||
2461 | u_int16_t new = htons(hi ? ( v << 8) : v)(__uint16_t)(__builtin_constant_p(hi ? ( v << 8) : v) ? (__uint16_t)(((__uint16_t)(hi ? ( v << 8) : v) & 0xffU ) << 8 | ((__uint16_t)(hi ? ( v << 8) : v) & 0xff00U ) >> 8) : __swap16md(hi ? ( v << 8) : v)); | |||
2462 | ||||
2463 | pf_cksum_fixup(pd->pcksum, old, new, pd->proto); | |||
2464 | *f = v; | |||
2465 | rewrite = 1; | |||
2466 | } | |||
2467 | ||||
2468 | return (rewrite); | |||
2469 | } | |||
2470 | ||||
2471 | /* pre: *f is 16-bit aligned within its packet */ | |||
2472 | int | |||
2473 | pf_patch_16(struct pf_pdesc *pd, u_int16_t *f, u_int16_t v) | |||
2474 | { | |||
2475 | int rewrite = 0; | |||
2476 | ||||
2477 | if (*f != v) { | |||
2478 | pf_cksum_fixup(pd->pcksum, *f, v, pd->proto); | |||
2479 | *f = v; | |||
2480 | rewrite = 1; | |||
2481 | } | |||
2482 | ||||
2483 | return (rewrite); | |||
2484 | } | |||
2485 | ||||
2486 | int | |||
2487 | pf_patch_16_unaligned(struct pf_pdesc *pd, void *f, u_int16_t v, bool_Bool hi) | |||
2488 | { | |||
2489 | int rewrite = 0; | |||
2490 | u_int8_t *fb = (u_int8_t*)f; | |||
2491 | u_int8_t *vb = (u_int8_t*)&v; | |||
2492 | ||||
2493 | if (hi && ALIGNED_POINTER(f, u_int16_t)1) { | |||
2494 | return (pf_patch_16(pd, f, v)); /* optimise */ | |||
2495 | } | |||
2496 | ||||
2497 | rewrite += pf_patch_8(pd, fb++, *vb++, hi); | |||
2498 | rewrite += pf_patch_8(pd, fb++, *vb++,!hi); | |||
2499 | ||||
2500 | return (rewrite); | |||
2501 | } | |||
2502 | ||||
2503 | /* pre: *f is 16-bit aligned within its packet */ | |||
2504 | /* pre: pd->proto != IPPROTO_UDP */ | |||
2505 | int | |||
2506 | pf_patch_32(struct pf_pdesc *pd, u_int32_t *f, u_int32_t v) | |||
2507 | { | |||
2508 | int rewrite = 0; | |||
2509 | u_int16_t *pc = pd->pcksum; | |||
2510 | u_int8_t proto = pd->proto; | |||
2511 | ||||
2512 | /* optimise: inline udp fixup code is unused; let compiler scrub it */ | |||
2513 | if (proto == IPPROTO_UDP17) | |||
2514 | panic("%s: udp", __func__); | |||
2515 | ||||
2516 | /* optimise: skip *f != v guard; true for all use-cases */ | |||
2517 | pf_cksum_fixup(pc, *f / (1 << 16), v / (1 << 16), proto); | |||
2518 | pf_cksum_fixup(pc, *f % (1 << 16), v % (1 << 16), proto); | |||
2519 | ||||
2520 | *f = v; | |||
2521 | rewrite = 1; | |||
2522 | ||||
2523 | return (rewrite); | |||
2524 | } | |||
2525 | ||||
2526 | int | |||
2527 | pf_patch_32_unaligned(struct pf_pdesc *pd, void *f, u_int32_t v, bool_Bool hi) | |||
2528 | { | |||
2529 | int rewrite = 0; | |||
2530 | u_int8_t *fb = (u_int8_t*)f; | |||
2531 | u_int8_t *vb = (u_int8_t*)&v; | |||
2532 | ||||
2533 | if (hi && ALIGNED_POINTER(f, u_int32_t)1) { | |||
2534 | return (pf_patch_32(pd, f, v)); /* optimise */ | |||
2535 | } | |||
2536 | ||||
2537 | rewrite += pf_patch_8(pd, fb++, *vb++, hi); | |||
2538 | rewrite += pf_patch_8(pd, fb++, *vb++,!hi); | |||
2539 | rewrite += pf_patch_8(pd, fb++, *vb++, hi); | |||
2540 | rewrite += pf_patch_8(pd, fb++, *vb++,!hi); | |||
2541 | ||||
2542 | return (rewrite); | |||
2543 | } | |||
2544 | ||||
2545 | int | |||
2546 | pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, int *icmp_dir, | |||
2547 | u_int16_t *virtual_id, u_int16_t *virtual_type) | |||
2548 | { | |||
2549 | /* | |||
2550 | * ICMP types marked with PF_OUT are typically responses to | |||
2551 | * PF_IN, and will match states in the opposite direction. | |||
2552 | * PF_IN ICMP types need to match a state with that type. | |||
2553 | */ | |||
2554 | *icmp_dir = PF_OUT; | |||
2555 | ||||
2556 | /* Queries (and responses) */ | |||
2557 | switch (pd->af) { | |||
2558 | case AF_INET2: | |||
2559 | switch (type) { | |||
2560 | case ICMP_ECHO8: | |||
2561 | *icmp_dir = PF_IN; | |||
2562 | /* FALLTHROUGH */ | |||
2563 | case ICMP_ECHOREPLY0: | |||
2564 | *virtual_type = ICMP_ECHO8; | |||
2565 | *virtual_id = pd->hdr.icmp.icmp_idicmp_hun.ih_idseq.icd_id; | |||
2566 | break; | |||
2567 | ||||
2568 | case ICMP_TSTAMP13: | |||
2569 | *icmp_dir = PF_IN; | |||
2570 | /* FALLTHROUGH */ | |||
2571 | case ICMP_TSTAMPREPLY14: | |||
2572 | *virtual_type = ICMP_TSTAMP13; | |||
2573 | *virtual_id = pd->hdr.icmp.icmp_idicmp_hun.ih_idseq.icd_id; | |||
2574 | break; | |||
2575 | ||||
2576 | case ICMP_IREQ15: | |||
2577 | *icmp_dir = PF_IN; | |||
2578 | /* FALLTHROUGH */ | |||
2579 | case ICMP_IREQREPLY16: | |||
2580 | *virtual_type = ICMP_IREQ15; | |||
2581 | *virtual_id = pd->hdr.icmp.icmp_idicmp_hun.ih_idseq.icd_id; | |||
2582 | break; | |||
2583 | ||||
2584 | case ICMP_MASKREQ17: | |||
2585 | *icmp_dir = PF_IN; | |||
2586 | /* FALLTHROUGH */ | |||
2587 | case ICMP_MASKREPLY18: | |||
2588 | *virtual_type = ICMP_MASKREQ17; | |||
2589 | *virtual_id = pd->hdr.icmp.icmp_idicmp_hun.ih_idseq.icd_id; | |||
2590 | break; | |||
2591 | ||||
2592 | case ICMP_IPV6_WHEREAREYOU33: | |||
2593 | *icmp_dir = PF_IN; | |||
2594 | /* FALLTHROUGH */ | |||
2595 | case ICMP_IPV6_IAMHERE34: | |||
2596 | *virtual_type = ICMP_IPV6_WHEREAREYOU33; | |||
2597 | *virtual_id = 0; /* Nothing sane to match on! */ | |||
2598 | break; | |||
2599 | ||||
2600 | case ICMP_MOBILE_REGREQUEST35: | |||
2601 | *icmp_dir = PF_IN; | |||
2602 | /* FALLTHROUGH */ | |||
2603 | case ICMP_MOBILE_REGREPLY36: | |||
2604 | *virtual_type = ICMP_MOBILE_REGREQUEST35; | |||
2605 | *virtual_id = 0; /* Nothing sane to match on! */ | |||
2606 | break; | |||
2607 | ||||
2608 | case ICMP_ROUTERSOLICIT10: | |||
2609 | *icmp_dir = PF_IN; | |||
2610 | /* FALLTHROUGH */ | |||
2611 | case ICMP_ROUTERADVERT9: | |||
2612 | *virtual_type = ICMP_ROUTERSOLICIT10; | |||
2613 | *virtual_id = 0; /* Nothing sane to match on! */ | |||
2614 | break; | |||
2615 | ||||
2616 | /* These ICMP types map to other connections */ | |||
2617 | case ICMP_UNREACH3: | |||
2618 | case ICMP_SOURCEQUENCH4: | |||
2619 | case ICMP_REDIRECT5: | |||
2620 | case ICMP_TIMXCEED11: | |||
2621 | case ICMP_PARAMPROB12: | |||
2622 | /* These will not be used, but set them anyway */ | |||
2623 | *icmp_dir = PF_IN; | |||
2624 | *virtual_type = htons(type)(__uint16_t)(__builtin_constant_p(type) ? (__uint16_t)(((__uint16_t )(type) & 0xffU) << 8 | ((__uint16_t)(type) & 0xff00U ) >> 8) : __swap16md(type)); | |||
2625 | *virtual_id = 0; | |||
2626 | return (1); /* These types match to another state */ | |||
2627 | ||||
2628 | /* | |||
2629 | * All remaining ICMP types get their own states, | |||
2630 | * and will only match in one direction. | |||
2631 | */ | |||
2632 | default: | |||
2633 | *icmp_dir = PF_IN; | |||
2634 | *virtual_type = type; | |||
2635 | *virtual_id = 0; | |||
2636 | break; | |||
2637 | } | |||
2638 | break; | |||
2639 | #ifdef INET61 | |||
2640 | case AF_INET624: | |||
2641 | switch (type) { | |||
2642 | case ICMP6_ECHO_REQUEST128: | |||
2643 | *icmp_dir = PF_IN; | |||
2644 | /* FALLTHROUGH */ | |||
2645 | case ICMP6_ECHO_REPLY129: | |||
2646 | *virtual_type = ICMP6_ECHO_REQUEST128; | |||
2647 | *virtual_id = pd->hdr.icmp6.icmp6_idicmp6_dataun.icmp6_un_data16[0]; | |||
2648 | break; | |||
2649 | ||||
2650 | case MLD_LISTENER_QUERY130: | |||
2651 | case MLD_LISTENER_REPORT131: { | |||
2652 | struct mld_hdr *mld = &pd->hdr.mld; | |||
2653 | u_int32_t h; | |||
2654 | ||||
2655 | /* | |||
2656 | * Listener Report can be sent by clients | |||
2657 | * without an associated Listener Query. | |||
2658 | * In addition to that, when Report is sent as a | |||
2659 | * reply to a Query its source and destination | |||
2660 | * address are different. | |||
2661 | */ | |||
2662 | *icmp_dir = PF_IN; | |||
2663 | *virtual_type = MLD_LISTENER_QUERY130; | |||
2664 | /* generate fake id for these messages */ | |||
2665 | h = mld->mld_addr.s6_addr32__u6_addr.__u6_addr32[0] ^ | |||
2666 | mld->mld_addr.s6_addr32__u6_addr.__u6_addr32[1] ^ | |||
2667 | mld->mld_addr.s6_addr32__u6_addr.__u6_addr32[2] ^ | |||
2668 | mld->mld_addr.s6_addr32__u6_addr.__u6_addr32[3]; | |||
2669 | *virtual_id = (h >> 16) ^ (h & 0xffff); | |||
2670 | break; | |||
2671 | } | |||
2672 | ||||
2673 | /* | |||
2674 | * ICMP6_FQDN and ICMP6_NI query/reply are the same type as | |||
2675 | * ICMP6_WRU | |||
2676 | */ | |||
2677 | case ICMP6_WRUREQUEST139: | |||
2678 | *icmp_dir = PF_IN; | |||
2679 | /* FALLTHROUGH */ | |||
2680 | case ICMP6_WRUREPLY140: | |||
2681 | *virtual_type = ICMP6_WRUREQUEST139; | |||
2682 | *virtual_id = 0; /* Nothing sane to match on! */ | |||
2683 | break; | |||
2684 | ||||
2685 | case MLD_MTRACE201: | |||
2686 | *icmp_dir = PF_IN; | |||
2687 | /* FALLTHROUGH */ | |||
2688 | case MLD_MTRACE_RESP200: | |||
2689 | *virtual_type = MLD_MTRACE201; | |||
2690 | *virtual_id = 0; /* Nothing sane to match on! */ | |||
2691 | break; | |||
2692 | ||||
2693 | case ND_NEIGHBOR_SOLICIT135: | |||
2694 | *icmp_dir = PF_IN; | |||
2695 | /* FALLTHROUGH */ | |||
2696 | case ND_NEIGHBOR_ADVERT136: { | |||
2697 | struct nd_neighbor_solicit *nd = &pd->hdr.nd_ns; | |||
2698 | u_int32_t h; | |||
2699 | ||||
2700 | *virtual_type = ND_NEIGHBOR_SOLICIT135; | |||
2701 | /* generate fake id for these messages */ | |||
2702 | h = nd->nd_ns_target.s6_addr32__u6_addr.__u6_addr32[0] ^ | |||
2703 | nd->nd_ns_target.s6_addr32__u6_addr.__u6_addr32[1] ^ | |||
2704 | nd->nd_ns_target.s6_addr32__u6_addr.__u6_addr32[2] ^ | |||
2705 | nd->nd_ns_target.s6_addr32__u6_addr.__u6_addr32[3]; | |||
2706 | *virtual_id = (h >> 16) ^ (h & 0xffff); | |||
2707 | /* | |||
2708 | * the extra work here deals with 'keep state' option | |||
2709 | * at pass rule for unsolicited advertisement. By | |||
2710 | * returning 1 (state_icmp = 1) we override 'keep | |||
2711 | * state' to 'no state' so we don't create state for | |||
2712 | * unsolicited advertisements. No one expects answer to | |||
2713 | * unsolicited advertisements so we should be good. | |||
2714 | */ | |||
2715 | if (type == ND_NEIGHBOR_ADVERT136) { | |||
2716 | *virtual_type = htons(*virtual_type)(__uint16_t)(__builtin_constant_p(*virtual_type) ? (__uint16_t )(((__uint16_t)(*virtual_type) & 0xffU) << 8 | ((__uint16_t )(*virtual_type) & 0xff00U) >> 8) : __swap16md(*virtual_type )); | |||
2717 | return (1); | |||
2718 | } | |||
2719 | break; | |||
2720 | } | |||
2721 | ||||
2722 | /* | |||
2723 | * These ICMP types map to other connections. | |||
2724 | * ND_REDIRECT can't be in this list because the triggering | |||
2725 | * packet header is optional. | |||
2726 | */ | |||
2727 | case ICMP6_DST_UNREACH1: | |||
2728 | case ICMP6_PACKET_TOO_BIG2: | |||
2729 | case ICMP6_TIME_EXCEEDED3: | |||
2730 | case ICMP6_PARAM_PROB4: | |||
2731 | /* These will not be used, but set them anyway */ | |||
2732 | *icmp_dir = PF_IN; | |||
2733 | *virtual_type = htons(type)(__uint16_t)(__builtin_constant_p(type) ? (__uint16_t)(((__uint16_t )(type) & 0xffU) << 8 | ((__uint16_t)(type) & 0xff00U ) >> 8) : __swap16md(type)); | |||
2734 | *virtual_id = 0; | |||
2735 | return (1); /* These types match to another state */ | |||
2736 | /* | |||
2737 | * All remaining ICMP6 types get their own states, | |||
2738 | * and will only match in one direction. | |||
2739 | */ | |||
2740 | default: | |||
2741 | *icmp_dir = PF_IN; | |||
2742 | *virtual_type = type; | |||
2743 | *virtual_id = 0; | |||
2744 | break; | |||
2745 | } | |||
2746 | break; | |||
2747 | #endif /* INET6 */ | |||
2748 | } | |||
2749 | *virtual_type = htons(*virtual_type)(__uint16_t)(__builtin_constant_p(*virtual_type) ? (__uint16_t )(((__uint16_t)(*virtual_type) & 0xffU) << 8 | ((__uint16_t )(*virtual_type) & 0xff00U) >> 8) : __swap16md(*virtual_type )); | |||
2750 | return (0); /* These types match to their own state */ | |||
2751 | } | |||
2752 | ||||
2753 | void | |||
2754 | pf_translate_icmp(struct pf_pdesc *pd, struct pf_addr *qa, u_int16_t *qp, | |||
2755 | struct pf_addr *oa, struct pf_addr *na, u_int16_t np) | |||
2756 | { | |||
2757 | /* note: doesn't trouble to fixup quoted checksums, if any */ | |||
2758 | ||||
2759 | /* change quoted protocol port */ | |||
2760 | if (qp != NULL((void *)0)) | |||
2761 | pf_patch_16(pd, qp, np); | |||
2762 | ||||
2763 | /* change quoted ip address */ | |||
2764 | pf_cksum_fixup_a(pd->pcksum, qa, na, pd->af, pd->proto); | |||
2765 | pf_addrcpy(qa, na, pd->af); | |||
2766 | ||||
2767 | /* change network-header's ip address */ | |||
2768 | if (oa) | |||
2769 | pf_translate_a(pd, oa, na); | |||
2770 | } | |||
2771 | ||||
2772 | /* pre: *a is 16-bit aligned within its packet */ | |||
2773 | /* *a is a network header src/dst address */ | |||
2774 | int | |||
2775 | pf_translate_a(struct pf_pdesc *pd, struct pf_addr *a, struct pf_addr *an) | |||
2776 | { | |||
2777 | int rewrite = 0; | |||
2778 | ||||
2779 | /* warning: !PF_ANEQ != PF_AEQ */ | |||
2780 | if (!PF_ANEQ(a, an, pd->af)((pd->af == 2 && (a)->pfa.addr32[0] != (an)-> pfa.addr32[0]) || (pd->af == 24 && ((a)->pfa.addr32 [3] != (an)->pfa.addr32[3] || (a)->pfa.addr32[2] != (an )->pfa.addr32[2] || (a)->pfa.addr32[1] != (an)->pfa. addr32[1] || (a)->pfa.addr32[0] != (an)->pfa.addr32[0]) ))) | |||
2781 | return (0); | |||
2782 | ||||
2783 | /* fixup transport pseudo-header, if any */ | |||
2784 | switch (pd->proto) { | |||
2785 | case IPPROTO_TCP6: /* FALLTHROUGH */ | |||
2786 | case IPPROTO_UDP17: /* FALLTHROUGH */ | |||
2787 | case IPPROTO_ICMPV658: | |||
2788 | pf_cksum_fixup_a(pd->pcksum, a, an, pd->af, pd->proto); | |||
2789 | break; | |||
2790 | default: | |||
2791 | break; /* assume no pseudo-header */ | |||
2792 | } | |||
2793 | ||||
2794 | pf_addrcpy(a, an, pd->af); | |||
2795 | rewrite = 1; | |||
2796 | ||||
2797 | return (rewrite); | |||
2798 | } | |||
2799 | ||||
2800 | #ifdef INET61 | |||
2801 | /* pf_translate_af() may change pd->m, adjust local copies after calling */ | |||
2802 | int | |||
2803 | pf_translate_af(struct pf_pdesc *pd) | |||
2804 | { | |||
2805 | static const struct pf_addr zero; | |||
2806 | struct ip *ip4; | |||
2807 | struct ip6_hdr *ip6; | |||
2808 | int copyback = 0; | |||
2809 | u_int hlen, ohlen, dlen; | |||
2810 | u_int16_t *pc; | |||
2811 | u_int8_t af_proto, naf_proto; | |||
2812 | ||||
2813 | hlen = (pd->naf == AF_INET2) ? sizeof(*ip4) : sizeof(*ip6); | |||
2814 | ohlen = pd->off; | |||
2815 | dlen = pd->tot_len - pd->off; | |||
2816 | pc = pd->pcksum; | |||
2817 | ||||
2818 | af_proto = naf_proto = pd->proto; | |||
2819 | if (naf_proto == IPPROTO_ICMP1) | |||
2820 | af_proto = IPPROTO_ICMPV658; | |||
2821 | if (naf_proto == IPPROTO_ICMPV658) | |||
2822 | af_proto = IPPROTO_ICMP1; | |||
2823 | ||||
2824 | /* uncover stale pseudo-header */ | |||
2825 | switch (af_proto) { | |||
2826 | case IPPROTO_ICMPV658: | |||
2827 | /* optimise: unchanged for TCP/UDP */ | |||
2828 | pf_cksum_fixup(pc, htons(af_proto)(__uint16_t)(__builtin_constant_p(af_proto) ? (__uint16_t)((( __uint16_t)(af_proto) & 0xffU) << 8 | ((__uint16_t) (af_proto) & 0xff00U) >> 8) : __swap16md(af_proto)), 0x0, af_proto); | |||
2829 | pf_cksum_fixup(pc, htons(dlen)(__uint16_t)(__builtin_constant_p(dlen) ? (__uint16_t)(((__uint16_t )(dlen) & 0xffU) << 8 | ((__uint16_t)(dlen) & 0xff00U ) >> 8) : __swap16md(dlen)), 0x0, af_proto); | |||
2830 | /* FALLTHROUGH */ | |||
2831 | case IPPROTO_UDP17: /* FALLTHROUGH */ | |||
2832 | case IPPROTO_TCP6: | |||
2833 | pf_cksum_fixup_a(pc, pd->src, &zero, pd->af, af_proto); | |||
2834 | pf_cksum_fixup_a(pc, pd->dst, &zero, pd->af, af_proto); | |||
2835 | copyback = 1; | |||
2836 | break; | |||
2837 | default: | |||
2838 | break; /* assume no pseudo-header */ | |||
2839 | } | |||
2840 | ||||
2841 | /* replace the network header */ | |||
2842 | m_adj(pd->m, pd->off); | |||
2843 | pd->src = NULL((void *)0); | |||
2844 | pd->dst = NULL((void *)0); | |||
2845 | ||||
2846 | if ((M_PREPEND(pd->m, hlen, M_DONTWAIT)(pd->m) = m_prepend((pd->m), (hlen), (0x0002))) == NULL((void *)0)) { | |||
2847 | pd->m = NULL((void *)0); | |||
2848 | return (-1); | |||
2849 | } | |||
2850 | ||||
2851 | pd->off = hlen; | |||
2852 | pd->tot_len += hlen - ohlen; | |||
2853 | ||||
2854 | switch (pd->naf) { | |||
2855 | case AF_INET2: | |||
2856 | ip4 = mtod(pd->m, struct ip *)((struct ip *)((pd->m)->m_hdr.mh_data)); | |||
2857 | memset(ip4, 0, hlen)__builtin_memset((ip4), (0), (hlen)); | |||
2858 | ip4->ip_v = IPVERSION4; | |||
2859 | ip4->ip_hl = hlen >> 2; | |||
2860 | ip4->ip_tos = pd->tos; | |||
2861 | ip4->ip_len = htons(hlen + dlen)(__uint16_t)(__builtin_constant_p(hlen + dlen) ? (__uint16_t) (((__uint16_t)(hlen + dlen) & 0xffU) << 8 | ((__uint16_t )(hlen + dlen) & 0xff00U) >> 8) : __swap16md(hlen + dlen)); | |||
2862 | ip4->ip_id = htons(ip_randomid())(__uint16_t)(__builtin_constant_p(ip_randomid()) ? (__uint16_t )(((__uint16_t)(ip_randomid()) & 0xffU) << 8 | ((__uint16_t )(ip_randomid()) & 0xff00U) >> 8) : __swap16md(ip_randomid ())); | |||
2863 | ip4->ip_off = htons(IP_DF)(__uint16_t)(__builtin_constant_p(0x4000) ? (__uint16_t)(((__uint16_t )(0x4000) & 0xffU) << 8 | ((__uint16_t)(0x4000) & 0xff00U) >> 8) : __swap16md(0x4000)); | |||
2864 | ip4->ip_ttl = pd->ttl; | |||
2865 | ip4->ip_p = pd->proto; | |||
2866 | ip4->ip_src = pd->nsaddr.v4pfa.v4; | |||
2867 | ip4->ip_dst = pd->ndaddr.v4pfa.v4; | |||
2868 | break; | |||
2869 | case AF_INET624: | |||
2870 | ip6 = mtod(pd->m, struct ip6_hdr *)((struct ip6_hdr *)((pd->m)->m_hdr.mh_data)); | |||
2871 | memset(ip6, 0, hlen)__builtin_memset((ip6), (0), (hlen)); | |||
2872 | ip6->ip6_vfcip6_ctlun.ip6_un2_vfc = IPV6_VERSION0x60; | |||
2873 | ip6->ip6_flowip6_ctlun.ip6_un1.ip6_un1_flow |= htonl((u_int32_t)pd->tos << 20)(__uint32_t)(__builtin_constant_p((u_int32_t)pd->tos << 20) ? (__uint32_t)(((__uint32_t)((u_int32_t)pd->tos << 20) & 0xff) << 24 | ((__uint32_t)((u_int32_t)pd-> tos << 20) & 0xff00) << 8 | ((__uint32_t)((u_int32_t )pd->tos << 20) & 0xff0000) >> 8 | ((__uint32_t )((u_int32_t)pd->tos << 20) & 0xff000000) >> 24) : __swap32md((u_int32_t)pd->tos << 20)); | |||
2874 | ip6->ip6_plenip6_ctlun.ip6_un1.ip6_un1_plen = htons(dlen)(__uint16_t)(__builtin_constant_p(dlen) ? (__uint16_t)(((__uint16_t )(dlen) & 0xffU) << 8 | ((__uint16_t)(dlen) & 0xff00U ) >> 8) : __swap16md(dlen)); | |||
2875 | ip6->ip6_nxtip6_ctlun.ip6_un1.ip6_un1_nxt = pd->proto; | |||
2876 | if (!pd->ttl || pd->ttl > IPV6_DEFHLIM64) | |||
2877 | ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = IPV6_DEFHLIM64; | |||
2878 | else | |||
2879 | ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = pd->ttl; | |||
2880 | ip6->ip6_src = pd->nsaddr.v6pfa.v6; | |||
2881 | ip6->ip6_dst = pd->ndaddr.v6pfa.v6; | |||
2882 | break; | |||
2883 | default: | |||
2884 | unhandled_af(pd->naf); | |||
2885 | } | |||
2886 | ||||
2887 | /* UDP over IPv6 must be checksummed per rfc2460 p27 */ | |||
2888 | if (naf_proto == IPPROTO_UDP17 && *pc == 0x0000 && | |||
2889 | pd->naf == AF_INET624) { | |||
2890 | pd->m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= M_UDP_CSUM_OUT0x0004; | |||
2891 | } | |||
2892 | ||||
2893 | /* cover fresh pseudo-header */ | |||
2894 | switch (naf_proto) { | |||
2895 | case IPPROTO_ICMPV658: | |||
2896 | /* optimise: unchanged for TCP/UDP */ | |||
2897 | pf_cksum_fixup(pc, 0x0, htons(naf_proto)(__uint16_t)(__builtin_constant_p(naf_proto) ? (__uint16_t)(( (__uint16_t)(naf_proto) & 0xffU) << 8 | ((__uint16_t )(naf_proto) & 0xff00U) >> 8) : __swap16md(naf_proto )), naf_proto); | |||
2898 | pf_cksum_fixup(pc, 0x0, htons(dlen)(__uint16_t)(__builtin_constant_p(dlen) ? (__uint16_t)(((__uint16_t )(dlen) & 0xffU) << 8 | ((__uint16_t)(dlen) & 0xff00U ) >> 8) : __swap16md(dlen)), naf_proto); | |||
2899 | /* FALLTHROUGH */ | |||
2900 | case IPPROTO_UDP17: /* FALLTHROUGH */ | |||
2901 | case IPPROTO_TCP6: | |||
2902 | pf_cksum_fixup_a(pc, &zero, &pd->nsaddr, pd->naf, naf_proto); | |||
2903 | pf_cksum_fixup_a(pc, &zero, &pd->ndaddr, pd->naf, naf_proto); | |||
2904 | copyback = 1; | |||
2905 | break; | |||
2906 | default: | |||
2907 | break; /* assume no pseudo-header */ | |||
2908 | } | |||
2909 | ||||
2910 | /* flush pd->pcksum */ | |||
2911 | if (copyback) | |||
2912 | m_copyback(pd->m, pd->off, pd->hdrlen, &pd->hdr, M_NOWAIT0x0002); | |||
2913 | ||||
2914 | return (0); | |||
2915 | } | |||
2916 | ||||
2917 | int | |||
2918 | pf_change_icmp_af(struct mbuf *m, int ipoff2, struct pf_pdesc *pd, | |||
2919 | struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, | |||
2920 | sa_family_t af, sa_family_t naf) | |||
2921 | { | |||
2922 | struct mbuf *n = NULL((void *)0); | |||
2923 | struct ip *ip4; | |||
2924 | struct ip6_hdr *ip6; | |||
2925 | u_int hlen, ohlen, dlen; | |||
2926 | int d; | |||
2927 | ||||
2928 | if (af == naf || (af != AF_INET2 && af != AF_INET624) || | |||
2929 | (naf != AF_INET2 && naf != AF_INET624)) | |||
2930 | return (-1); | |||
2931 | ||||
2932 | /* split the mbuf chain on the quoted ip/ip6 header boundary */ | |||
2933 | if ((n = m_split(m, ipoff2, M_DONTWAIT0x0002)) == NULL((void *)0)) | |||
2934 | return (-1); | |||
2935 | ||||
2936 | /* new quoted header */ | |||
2937 | hlen = naf == AF_INET2 ? sizeof(*ip4) : sizeof(*ip6); | |||
2938 | /* old quoted header */ | |||
2939 | ohlen = pd2->off - ipoff2; | |||
2940 | ||||
2941 | /* trim old quoted header */ | |||
2942 | pf_cksum_uncover(pd->pcksum, in_cksum(n, ohlen), pd->proto); | |||
2943 | m_adj(n, ohlen); | |||
2944 | ||||
2945 | /* prepend a new, translated, quoted header */ | |||
2946 | if ((M_PREPEND(n, hlen, M_DONTWAIT)(n) = m_prepend((n), (hlen), (0x0002))) == NULL((void *)0)) | |||
2947 | return (-1); | |||
2948 | ||||
2949 | switch (naf) { | |||
2950 | case AF_INET2: | |||
2951 | ip4 = mtod(n, struct ip *)((struct ip *)((n)->m_hdr.mh_data)); | |||
2952 | memset(ip4, 0, sizeof(*ip4))__builtin_memset((ip4), (0), (sizeof(*ip4))); | |||
2953 | ip4->ip_v = IPVERSION4; | |||
2954 | ip4->ip_hl = sizeof(*ip4) >> 2; | |||
2955 | ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - ohlen)(__uint16_t)(__builtin_constant_p(sizeof(*ip4) + pd2->tot_len - ohlen) ? (__uint16_t)(((__uint16_t)(sizeof(*ip4) + pd2-> tot_len - ohlen) & 0xffU) << 8 | ((__uint16_t)(sizeof (*ip4) + pd2->tot_len - ohlen) & 0xff00U) >> 8) : __swap16md(sizeof(*ip4) + pd2->tot_len - ohlen)); | |||
2956 | ip4->ip_id = htons(ip_randomid())(__uint16_t)(__builtin_constant_p(ip_randomid()) ? (__uint16_t )(((__uint16_t)(ip_randomid()) & 0xffU) << 8 | ((__uint16_t )(ip_randomid()) & 0xff00U) >> 8) : __swap16md(ip_randomid ())); | |||
2957 | ip4->ip_off = htons(IP_DF)(__uint16_t)(__builtin_constant_p(0x4000) ? (__uint16_t)(((__uint16_t )(0x4000) & 0xffU) << 8 | ((__uint16_t)(0x4000) & 0xff00U) >> 8) : __swap16md(0x4000)); | |||
2958 | ip4->ip_ttl = pd2->ttl; | |||
2959 | if (pd2->proto == IPPROTO_ICMPV658) | |||
2960 | ip4->ip_p = IPPROTO_ICMP1; | |||
2961 | else | |||
2962 | ip4->ip_p = pd2->proto; | |||
2963 | ip4->ip_src = src->v4pfa.v4; | |||
2964 | ip4->ip_dst = dst->v4pfa.v4; | |||
2965 | in_hdr_cksum_out(n, NULL((void *)0)); | |||
2966 | break; | |||
2967 | case AF_INET624: | |||
2968 | ip6 = mtod(n, struct ip6_hdr *)((struct ip6_hdr *)((n)->m_hdr.mh_data)); | |||
2969 | memset(ip6, 0, sizeof(*ip6))__builtin_memset((ip6), (0), (sizeof(*ip6))); | |||
2970 | ip6->ip6_vfcip6_ctlun.ip6_un2_vfc = IPV6_VERSION0x60; | |||
2971 | ip6->ip6_plenip6_ctlun.ip6_un1.ip6_un1_plen = htons(pd2->tot_len - ohlen)(__uint16_t)(__builtin_constant_p(pd2->tot_len - ohlen) ? ( __uint16_t)(((__uint16_t)(pd2->tot_len - ohlen) & 0xffU ) << 8 | ((__uint16_t)(pd2->tot_len - ohlen) & 0xff00U ) >> 8) : __swap16md(pd2->tot_len - ohlen)); | |||
2972 | if (pd2->proto == IPPROTO_ICMP1) | |||
2973 | ip6->ip6_nxtip6_ctlun.ip6_un1.ip6_un1_nxt = IPPROTO_ICMPV658; | |||
2974 | else | |||
2975 | ip6->ip6_nxtip6_ctlun.ip6_un1.ip6_un1_nxt = pd2->proto; | |||
2976 | if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM64) | |||
2977 | ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = IPV6_DEFHLIM64; | |||
2978 | else | |||
2979 | ip6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = pd2->ttl; | |||
2980 | ip6->ip6_src = src->v6pfa.v6; | |||
2981 | ip6->ip6_dst = dst->v6pfa.v6; | |||
2982 | break; | |||
2983 | } | |||
2984 | ||||
2985 | /* cover new quoted header */ | |||
2986 | /* optimise: any new AF_INET header of ours sums to zero */ | |||
2987 | if (naf != AF_INET2) { | |||
2988 | pf_cksum_cover(pd->pcksum, in_cksum(n, hlen), pd->proto); | |||
2989 | } | |||
2990 | ||||
2991 | /* reattach modified quoted packet to outer header */ | |||
2992 | { | |||
2993 | int nlen = n->m_pkthdrM_dat.MH.MH_pkthdr.len; | |||
2994 | m_cat(m, n); | |||
2995 | m->m_pkthdrM_dat.MH.MH_pkthdr.len += nlen; | |||
2996 | } | |||
2997 | ||||
2998 | /* account for altered length */ | |||
2999 | d = hlen - ohlen; | |||
3000 | ||||
3001 | if (pd->proto == IPPROTO_ICMPV658) { | |||
3002 | /* fixup pseudo-header */ | |||
3003 | dlen = pd->tot_len - pd->off; | |||
3004 | pf_cksum_fixup(pd->pcksum, | |||
3005 | htons(dlen)(__uint16_t)(__builtin_constant_p(dlen) ? (__uint16_t)(((__uint16_t )(dlen) & 0xffU) << 8 | ((__uint16_t)(dlen) & 0xff00U ) >> 8) : __swap16md(dlen)), htons(dlen + d)(__uint16_t)(__builtin_constant_p(dlen + d) ? (__uint16_t)((( __uint16_t)(dlen + d) & 0xffU) << 8 | ((__uint16_t) (dlen + d) & 0xff00U) >> 8) : __swap16md(dlen + d)), pd->proto); | |||
3006 | } | |||
3007 | ||||
3008 | pd->tot_len += d; | |||
3009 | pd2->tot_len += d; | |||
3010 | pd2->off += d; | |||
3011 | ||||
3012 | /* note: not bothering to update network headers as | |||
3013 | these due for rewrite by pf_translate_af() */ | |||
3014 | ||||
3015 | return (0); | |||
3016 | } | |||
3017 | ||||
3018 | ||||
3019 | #define PTR_IP(field)(__builtin_offsetof(struct ip, field)) (offsetof(struct ip, field)__builtin_offsetof(struct ip, field)) | |||
3020 | #define PTR_IP6(field)(__builtin_offsetof(struct ip6_hdr, field)) (offsetof(struct ip6_hdr, field)__builtin_offsetof(struct ip6_hdr, field)) | |||
3021 | ||||
3022 | int | |||
3023 | pf_translate_icmp_af(struct pf_pdesc *pd, int af, void *arg) | |||
3024 | { | |||
3025 | struct icmp *icmp4; | |||
3026 | struct icmp6_hdr *icmp6; | |||
3027 | u_int32_t mtu; | |||
3028 | int32_t ptr = -1; | |||
3029 | u_int8_t type; | |||
3030 | u_int8_t code; | |||
3031 | ||||
3032 | switch (af) { | |||
3033 | case AF_INET2: | |||
3034 | icmp6 = arg; | |||
3035 | type = icmp6->icmp6_type; | |||
3036 | code = icmp6->icmp6_code; | |||
3037 | mtu = ntohl(icmp6->icmp6_mtu)(__uint32_t)(__builtin_constant_p(icmp6->icmp6_dataun.icmp6_un_data32 [0]) ? (__uint32_t)(((__uint32_t)(icmp6->icmp6_dataun.icmp6_un_data32 [0]) & 0xff) << 24 | ((__uint32_t)(icmp6->icmp6_dataun .icmp6_un_data32[0]) & 0xff00) << 8 | ((__uint32_t) (icmp6->icmp6_dataun.icmp6_un_data32[0]) & 0xff0000) >> 8 | ((__uint32_t)(icmp6->icmp6_dataun.icmp6_un_data32[0]) & 0xff000000) >> 24) : __swap32md(icmp6->icmp6_dataun .icmp6_un_data32[0])); | |||
3038 | ||||
3039 | switch (type) { | |||
3040 | case ICMP6_ECHO_REQUEST128: | |||
3041 | type = ICMP_ECHO8; | |||
3042 | break; | |||
3043 | case ICMP6_ECHO_REPLY129: | |||
3044 | type = ICMP_ECHOREPLY0; | |||
3045 | break; | |||
3046 | case ICMP6_DST_UNREACH1: | |||
3047 | type = ICMP_UNREACH3; | |||
3048 | switch (code) { | |||
3049 | case ICMP6_DST_UNREACH_NOROUTE0: | |||
3050 | case ICMP6_DST_UNREACH_BEYONDSCOPE2: | |||
3051 | case ICMP6_DST_UNREACH_ADDR3: | |||
3052 | code = ICMP_UNREACH_HOST1; | |||
3053 | break; | |||
3054 | case ICMP6_DST_UNREACH_ADMIN1: | |||
3055 | code = ICMP_UNREACH_HOST_PROHIB10; | |||
3056 | break; | |||
3057 | case ICMP6_DST_UNREACH_NOPORT4: | |||
3058 | code = ICMP_UNREACH_PORT3; | |||
3059 | break; | |||
3060 | default: | |||
3061 | return (-1); | |||
3062 | } | |||
3063 | break; | |||
3064 | case ICMP6_PACKET_TOO_BIG2: | |||
3065 | type = ICMP_UNREACH3; | |||
3066 | code = ICMP_UNREACH_NEEDFRAG4; | |||
3067 | mtu -= 20; | |||
3068 | break; | |||
3069 | case ICMP6_TIME_EXCEEDED3: | |||
3070 | type = ICMP_TIMXCEED11; | |||
3071 | break; | |||
3072 | case ICMP6_PARAM_PROB4: | |||
3073 | switch (code) { | |||
3074 | case ICMP6_PARAMPROB_HEADER0: | |||
3075 | type = ICMP_PARAMPROB12; | |||
3076 | code = ICMP_PARAMPROB_ERRATPTR0; | |||
3077 | ptr = ntohl(icmp6->icmp6_pptr)(__uint32_t)(__builtin_constant_p(icmp6->icmp6_dataun.icmp6_un_data32 [0]) ? (__uint32_t)(((__uint32_t)(icmp6->icmp6_dataun.icmp6_un_data32 [0]) & 0xff) << 24 | ((__uint32_t)(icmp6->icmp6_dataun .icmp6_un_data32[0]) & 0xff00) << 8 | ((__uint32_t) (icmp6->icmp6_dataun.icmp6_un_data32[0]) & 0xff0000) >> 8 | ((__uint32_t)(icmp6->icmp6_dataun.icmp6_un_data32[0]) & 0xff000000) >> 24) : __swap32md(icmp6->icmp6_dataun .icmp6_un_data32[0])); | |||
3078 | ||||
3079 | if (ptr == PTR_IP6(ip6_vfc)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un2_vfc))) | |||
3080 | ; /* preserve */ | |||
3081 | else if (ptr == PTR_IP6(ip6_vfc)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un2_vfc)) + 1) | |||
3082 | ptr = PTR_IP(ip_tos)(__builtin_offsetof(struct ip, ip_tos)); | |||
3083 | else if (ptr == PTR_IP6(ip6_plen)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_plen )) || | |||
3084 | ptr == PTR_IP6(ip6_plen)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_plen )) + 1) | |||
3085 | ptr = PTR_IP(ip_len)(__builtin_offsetof(struct ip, ip_len)); | |||
3086 | else if (ptr == PTR_IP6(ip6_nxt)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_nxt ))) | |||
3087 | ptr = PTR_IP(ip_p)(__builtin_offsetof(struct ip, ip_p)); | |||
3088 | else if (ptr == PTR_IP6(ip6_hlim)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_hlim ))) | |||
3089 | ptr = PTR_IP(ip_ttl)(__builtin_offsetof(struct ip, ip_ttl)); | |||
3090 | else if (ptr >= PTR_IP6(ip6_src)(__builtin_offsetof(struct ip6_hdr, ip6_src)) && | |||
3091 | ptr < PTR_IP6(ip6_dst)(__builtin_offsetof(struct ip6_hdr, ip6_dst))) | |||
3092 | ptr = PTR_IP(ip_src)(__builtin_offsetof(struct ip, ip_src)); | |||
3093 | else if (ptr >= PTR_IP6(ip6_dst)(__builtin_offsetof(struct ip6_hdr, ip6_dst)) && | |||
3094 | ptr < sizeof(struct ip6_hdr)) | |||
3095 | ptr = PTR_IP(ip_dst)(__builtin_offsetof(struct ip, ip_dst)); | |||
3096 | else { | |||
3097 | return (-1); | |||
3098 | } | |||
3099 | break; | |||
3100 | case ICMP6_PARAMPROB_NEXTHEADER1: | |||
3101 | type = ICMP_UNREACH3; | |||
3102 | code = ICMP_UNREACH_PROTOCOL2; | |||
3103 | break; | |||
3104 | default: | |||
3105 | return (-1); | |||
3106 | } | |||
3107 | break; | |||
3108 | default: | |||
3109 | return (-1); | |||
3110 | } | |||
3111 | ||||
3112 | pf_patch_8(pd, &icmp6->icmp6_type, type, PF_HI(1)); | |||
3113 | pf_patch_8(pd, &icmp6->icmp6_code, code, PF_LO(!(1))); | |||
3114 | ||||
3115 | /* aligns well with a icmpv4 nextmtu */ | |||
3116 | pf_patch_32(pd, &icmp6->icmp6_mtuicmp6_dataun.icmp6_un_data32[0], htonl(mtu)(__uint32_t)(__builtin_constant_p(mtu) ? (__uint32_t)(((__uint32_t )(mtu) & 0xff) << 24 | ((__uint32_t)(mtu) & 0xff00 ) << 8 | ((__uint32_t)(mtu) & 0xff0000) >> 8 | ((__uint32_t)(mtu) & 0xff000000) >> 24) : __swap32md (mtu))); | |||
3117 | ||||
3118 | /* icmpv4 pptr is a one most significant byte */ | |||
3119 | if (ptr >= 0) | |||
3120 | pf_patch_32(pd, &icmp6->icmp6_pptricmp6_dataun.icmp6_un_data32[0], htonl(ptr << 24)(__uint32_t)(__builtin_constant_p(ptr << 24) ? (__uint32_t )(((__uint32_t)(ptr << 24) & 0xff) << 24 | (( __uint32_t)(ptr << 24) & 0xff00) << 8 | ((__uint32_t )(ptr << 24) & 0xff0000) >> 8 | ((__uint32_t) (ptr << 24) & 0xff000000) >> 24) : __swap32md (ptr << 24))); | |||
3121 | break; | |||
3122 | case AF_INET624: | |||
3123 | icmp4 = arg; | |||
3124 | type = icmp4->icmp_type; | |||
3125 | code = icmp4->icmp_code; | |||
3126 | mtu = ntohs(icmp4->icmp_nextmtu)(__uint16_t)(__builtin_constant_p(icmp4->icmp_hun.ih_pmtu. ipm_nextmtu) ? (__uint16_t)(((__uint16_t)(icmp4->icmp_hun. ih_pmtu.ipm_nextmtu) & 0xffU) << 8 | ((__uint16_t)( icmp4->icmp_hun.ih_pmtu.ipm_nextmtu) & 0xff00U) >> 8) : __swap16md(icmp4->icmp_hun.ih_pmtu.ipm_nextmtu)); | |||
3127 | ||||
3128 | switch (type) { | |||
3129 | case ICMP_ECHO8: | |||
3130 | type = ICMP6_ECHO_REQUEST128; | |||
3131 | break; | |||
3132 | case ICMP_ECHOREPLY0: | |||
3133 | type = ICMP6_ECHO_REPLY129; | |||
3134 | break; | |||
3135 | case ICMP_UNREACH3: | |||
3136 | type = ICMP6_DST_UNREACH1; | |||
3137 | switch (code) { | |||
3138 | case ICMP_UNREACH_NET0: | |||
3139 | case ICMP_UNREACH_HOST1: | |||
3140 | case ICMP_UNREACH_NET_UNKNOWN6: | |||
3141 | case ICMP_UNREACH_HOST_UNKNOWN7: | |||
3142 | case ICMP_UNREACH_ISOLATED8: | |||
3143 | case ICMP_UNREACH_TOSNET11: | |||
3144 | case ICMP_UNREACH_TOSHOST12: | |||
3145 | code = ICMP6_DST_UNREACH_NOROUTE0; | |||
3146 | break; | |||
3147 | case ICMP_UNREACH_PORT3: | |||
3148 | code = ICMP6_DST_UNREACH_NOPORT4; | |||
3149 | break; | |||
3150 | case ICMP_UNREACH_NET_PROHIB9: | |||
3151 | case ICMP_UNREACH_HOST_PROHIB10: | |||
3152 | case ICMP_UNREACH_FILTER_PROHIB13: | |||
3153 | case ICMP_UNREACH_PRECEDENCE_CUTOFF15: | |||
3154 | code = ICMP6_DST_UNREACH_ADMIN1; | |||
3155 | break; | |||
3156 | case ICMP_UNREACH_PROTOCOL2: | |||
3157 | type = ICMP6_PARAM_PROB4; | |||
3158 | code = ICMP6_PARAMPROB_NEXTHEADER1; | |||
3159 | ptr = offsetof(struct ip6_hdr, ip6_nxt)__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_nxt ); | |||
3160 | break; | |||
3161 | case ICMP_UNREACH_NEEDFRAG4: | |||
3162 | type = ICMP6_PACKET_TOO_BIG2; | |||
3163 | code = 0; | |||
3164 | mtu += 20; | |||
3165 | break; | |||
3166 | default: | |||
3167 | return (-1); | |||
3168 | } | |||
3169 | break; | |||
3170 | case ICMP_TIMXCEED11: | |||
3171 | type = ICMP6_TIME_EXCEEDED3; | |||
3172 | break; | |||
3173 | case ICMP_PARAMPROB12: | |||
3174 | type = ICMP6_PARAM_PROB4; | |||
3175 | switch (code) { | |||
3176 | case ICMP_PARAMPROB_ERRATPTR0: | |||
3177 | code = ICMP6_PARAMPROB_HEADER0; | |||
3178 | break; | |||
3179 | case ICMP_PARAMPROB_LENGTH2: | |||
3180 | code = ICMP6_PARAMPROB_HEADER0; | |||
3181 | break; | |||
3182 | default: | |||
3183 | return (-1); | |||
3184 | } | |||
3185 | ||||
3186 | ptr = icmp4->icmp_pptricmp_hun.ih_pptr; | |||
3187 | if (ptr == 0 || ptr == PTR_IP(ip_tos)(__builtin_offsetof(struct ip, ip_tos))) | |||
3188 | ; /* preserve */ | |||
3189 | else if (ptr == PTR_IP(ip_len)(__builtin_offsetof(struct ip, ip_len)) || | |||
3190 | ptr == PTR_IP(ip_len)(__builtin_offsetof(struct ip, ip_len)) + 1) | |||
3191 | ptr = PTR_IP6(ip6_plen)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_plen )); | |||
3192 | else if (ptr == PTR_IP(ip_ttl)(__builtin_offsetof(struct ip, ip_ttl))) | |||
3193 | ptr = PTR_IP6(ip6_hlim)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_hlim )); | |||
3194 | else if (ptr == PTR_IP(ip_p)(__builtin_offsetof(struct ip, ip_p))) | |||
3195 | ptr = PTR_IP6(ip6_nxt)(__builtin_offsetof(struct ip6_hdr, ip6_ctlun.ip6_un1.ip6_un1_nxt )); | |||
3196 | else if (ptr >= PTR_IP(ip_src)(__builtin_offsetof(struct ip, ip_src)) && | |||
3197 | ptr < PTR_IP(ip_dst)(__builtin_offsetof(struct ip, ip_dst))) | |||
3198 | ptr = PTR_IP6(ip6_src)(__builtin_offsetof(struct ip6_hdr, ip6_src)); | |||
3199 | else if (ptr >= PTR_IP(ip_dst)(__builtin_offsetof(struct ip, ip_dst)) && | |||
3200 | ptr < sizeof(struct ip)) | |||
3201 | ptr = PTR_IP6(ip6_dst)(__builtin_offsetof(struct ip6_hdr, ip6_dst)); | |||
3202 | else { | |||
3203 | return (-1); | |||
3204 | } | |||
3205 | break; | |||
3206 | default: | |||
3207 | return (-1); | |||
3208 | } | |||
3209 | ||||
3210 | pf_patch_8(pd, &icmp4->icmp_type, type, PF_HI(1)); | |||
3211 | pf_patch_8(pd, &icmp4->icmp_code, code, PF_LO(!(1))); | |||
3212 | pf_patch_16(pd, &icmp4->icmp_nextmtuicmp_hun.ih_pmtu.ipm_nextmtu, htons(mtu)(__uint16_t)(__builtin_constant_p(mtu) ? (__uint16_t)(((__uint16_t )(mtu) & 0xffU) << 8 | ((__uint16_t)(mtu) & 0xff00U ) >> 8) : __swap16md(mtu))); | |||
3213 | if (ptr >= 0) | |||
3214 | pf_patch_32(pd, &icmp4->icmp_voidicmp_hun.ih_void, htonl(ptr)(__uint32_t)(__builtin_constant_p(ptr) ? (__uint32_t)(((__uint32_t )(ptr) & 0xff) << 24 | ((__uint32_t)(ptr) & 0xff00 ) << 8 | ((__uint32_t)(ptr) & 0xff0000) >> 8 | ((__uint32_t)(ptr) & 0xff000000) >> 24) : __swap32md (ptr))); | |||
3215 | break; | |||
3216 | } | |||
3217 | ||||
3218 | return (0); | |||
3219 | } | |||
3220 | #endif /* INET6 */ | |||
3221 | ||||
3222 | /* | |||
3223 | * Need to modulate the sequence numbers in the TCP SACK option | |||
3224 | * (credits to Krzysztof Pfaff for report and patch) | |||
3225 | */ | |||
3226 | int | |||
3227 | pf_modulate_sack(struct pf_pdesc *pd, struct pf_state_peer *dst) | |||
3228 | { | |||
3229 | struct sackblk sack; | |||
3230 | int copyback = 0, i; | |||
3231 | int olen, optsoff; | |||
3232 | u_int8_t opts[MAX_TCPOPTLEN40], *opt, *eoh; | |||
3233 | ||||
3234 | olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); | |||
3235 | optsoff = pd->off + sizeof(struct tcphdr); | |||
3236 | #define TCPOLEN_MINSACK(8 + 2) (TCPOLEN_SACK8 + 2) | |||
3237 | if (olen < TCPOLEN_MINSACK(8 + 2) || | |||
3238 | !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL((void *)0), pd->af)) | |||
3239 | return (0); | |||
3240 | ||||
3241 | eoh = opts + olen; | |||
3242 | opt = opts; | |||
3243 | while ((opt = pf_find_tcpopt(opt, opts, olen, | |||
3244 | TCPOPT_SACK5, TCPOLEN_MINSACK(8 + 2))) != NULL((void *)0)) | |||
3245 | { | |||
3246 | size_t safelen = MIN(opt[1], (eoh - opt))(((opt[1])<((eoh - opt)))?(opt[1]):((eoh - opt))); | |||
3247 | for (i = 2; i + TCPOLEN_SACK8 <= safelen; i += TCPOLEN_SACK8) { | |||
3248 | size_t startoff = (opt + i) - opts; | |||
3249 | memcpy(&sack, &opt[i], sizeof(sack))__builtin_memcpy((&sack), (&opt[i]), (sizeof(sack))); | |||
3250 | pf_patch_32_unaligned(pd, &sack.start, | |||
3251 | htonl(ntohl(sack.start) - dst->seqdiff)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (sack.start) ? (__uint32_t)(((__uint32_t)(sack.start) & 0xff ) << 24 | ((__uint32_t)(sack.start) & 0xff00) << 8 | ((__uint32_t)(sack.start) & 0xff0000) >> 8 | ( (__uint32_t)(sack.start) & 0xff000000) >> 24) : __swap32md (sack.start)) - dst->seqdiff) ? (__uint32_t)(((__uint32_t) ((__uint32_t)(__builtin_constant_p(sack.start) ? (__uint32_t) (((__uint32_t)(sack.start) & 0xff) << 24 | ((__uint32_t )(sack.start) & 0xff00) << 8 | ((__uint32_t)(sack.start ) & 0xff0000) >> 8 | ((__uint32_t)(sack.start) & 0xff000000) >> 24) : __swap32md(sack.start)) - dst-> seqdiff) & 0xff) << 24 | ((__uint32_t)((__uint32_t) (__builtin_constant_p(sack.start) ? (__uint32_t)(((__uint32_t )(sack.start) & 0xff) << 24 | ((__uint32_t)(sack.start ) & 0xff00) << 8 | ((__uint32_t)(sack.start) & 0xff0000 ) >> 8 | ((__uint32_t)(sack.start) & 0xff000000) >> 24) : __swap32md(sack.start)) - dst->seqdiff) & 0xff00 ) << 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (sack.start) ? (__uint32_t)(((__uint32_t)(sack.start) & 0xff ) << 24 | ((__uint32_t)(sack.start) & 0xff00) << 8 | ((__uint32_t)(sack.start) & 0xff0000) >> 8 | ( (__uint32_t)(sack.start) & 0xff000000) >> 24) : __swap32md (sack.start)) - dst->seqdiff) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(sack.start) ? (__uint32_t)(((__uint32_t)(sack.start) & 0xff) << 24 | ((__uint32_t)(sack.start) & 0xff00) << 8 | ((__uint32_t )(sack.start) & 0xff0000) >> 8 | ((__uint32_t)(sack .start) & 0xff000000) >> 24) : __swap32md(sack.start )) - dst->seqdiff) & 0xff000000) >> 24) : __swap32md ((__uint32_t)(__builtin_constant_p(sack.start) ? (__uint32_t) (((__uint32_t)(sack.start) & 0xff) << 24 | ((__uint32_t )(sack.start) & 0xff00) << 8 | ((__uint32_t)(sack.start ) & 0xff0000) >> 8 | ((__uint32_t)(sack.start) & 0xff000000) >> 24) : __swap32md(sack.start)) - dst-> seqdiff)), | |||
3252 | PF_ALGNMNT(startoff)(((startoff) % 2) == 0 ? (1) : (!(1)))); | |||
3253 | pf_patch_32_unaligned(pd, &sack.end, | |||
3254 | htonl(ntohl(sack.end) - dst->seqdiff)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (sack.end) ? (__uint32_t)(((__uint32_t)(sack.end) & 0xff) << 24 | ((__uint32_t)(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end) & 0xff0000) >> 8 | ((__uint32_t )(sack.end) & 0xff000000) >> 24) : __swap32md(sack. end)) - dst->seqdiff) ? (__uint32_t)(((__uint32_t)((__uint32_t )(__builtin_constant_p(sack.end) ? (__uint32_t)(((__uint32_t) (sack.end) & 0xff) << 24 | ((__uint32_t)(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end) & 0xff0000) >> 8 | ((__uint32_t)(sack.end) & 0xff000000) >> 24) : __swap32md(sack.end)) - dst->seqdiff) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(sack.end ) ? (__uint32_t)(((__uint32_t)(sack.end) & 0xff) << 24 | ((__uint32_t)(sack.end) & 0xff00) << 8 | ((__uint32_t )(sack.end) & 0xff0000) >> 8 | ((__uint32_t)(sack.end ) & 0xff000000) >> 24) : __swap32md(sack.end)) - dst ->seqdiff) & 0xff00) << 8 | ((__uint32_t)((__uint32_t )(__builtin_constant_p(sack.end) ? (__uint32_t)(((__uint32_t) (sack.end) & 0xff) << 24 | ((__uint32_t)(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end) & 0xff0000) >> 8 | ((__uint32_t)(sack.end) & 0xff000000) >> 24) : __swap32md(sack.end)) - dst->seqdiff) & 0xff0000 ) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (sack.end) ? (__uint32_t)(((__uint32_t)(sack.end) & 0xff) << 24 | ((__uint32_t)(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end) & 0xff0000) >> 8 | ((__uint32_t )(sack.end) & 0xff000000) >> 24) : __swap32md(sack. end)) - dst->seqdiff) & 0xff000000) >> 24) : __swap32md ((__uint32_t)(__builtin_constant_p(sack.end) ? (__uint32_t)(( (__uint32_t)(sack.end) & 0xff) << 24 | ((__uint32_t )(sack.end) & 0xff00) << 8 | ((__uint32_t)(sack.end ) & 0xff0000) >> 8 | ((__uint32_t)(sack.end) & 0xff000000 ) >> 24) : __swap32md(sack.end)) - dst->seqdiff)), | |||
3255 | PF_ALGNMNT(startoff + sizeof(sack.start))(((startoff + sizeof(sack.start)) % 2) == 0 ? (1) : (!(1)))); | |||
3256 | memcpy(&opt[i], &sack, sizeof(sack))__builtin_memcpy((&opt[i]), (&sack), (sizeof(sack))); | |||
3257 | } | |||
3258 | copyback = 1; | |||
3259 | opt += opt[1]; | |||
3260 | } | |||
3261 | ||||
3262 | if (copyback) | |||
3263 | m_copyback(pd->m, optsoff, olen, opts, M_NOWAIT0x0002); | |||
3264 | return (copyback); | |||
3265 | } | |||
3266 | ||||
3267 | struct mbuf * | |||
3268 | pf_build_tcp(const struct pf_rule *r, sa_family_t af, | |||
3269 | const struct pf_addr *saddr, const struct pf_addr *daddr, | |||
3270 | u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, | |||
3271 | u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, | |||
3272 | u_int16_t rtag, u_int sack, u_int rdom) | |||
3273 | { | |||
3274 | struct mbuf *m; | |||
3275 | int len, tlen; | |||
3276 | struct ip *h; | |||
3277 | #ifdef INET61 | |||
3278 | struct ip6_hdr *h6; | |||
3279 | #endif /* INET6 */ | |||
3280 | struct tcphdr *th; | |||
3281 | char *opt; | |||
3282 | ||||
3283 | /* maximum segment size tcp option */ | |||
3284 | tlen = sizeof(struct tcphdr); | |||
3285 | if (mss) | |||
3286 | tlen += 4; | |||
3287 | if (sack) | |||
3288 | tlen += 2; | |||
3289 | ||||
3290 | switch (af) { | |||
3291 | case AF_INET2: | |||
3292 | len = sizeof(struct ip) + tlen; | |||
3293 | break; | |||
3294 | #ifdef INET61 | |||
3295 | case AF_INET624: | |||
3296 | len = sizeof(struct ip6_hdr) + tlen; | |||
3297 | break; | |||
3298 | #endif /* INET6 */ | |||
3299 | default: | |||
3300 | unhandled_af(af); | |||
3301 | } | |||
3302 | ||||
3303 | /* create outgoing mbuf */ | |||
3304 | m = m_gethdr(M_DONTWAIT0x0002, MT_HEADER2); | |||
3305 | if (m == NULL((void *)0)) | |||
3306 | return (NULL((void *)0)); | |||
3307 | if (tag) | |||
3308 | m->m_pkthdrM_dat.MH.MH_pkthdr.pf.flags |= PF_TAG_GENERATED0x01; | |||
3309 | m->m_pkthdrM_dat.MH.MH_pkthdr.pf.tag = rtag; | |||
3310 | m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid = rdom; | |||
3311 | if (r && (r->scrub_flags & PFSTATE_SETPRIO0x0200)) | |||
3312 | m->m_pkthdrM_dat.MH.MH_pkthdr.pf.prio = r->set_prio[0]; | |||
3313 | if (r && r->qid) | |||
3314 | m->m_pkthdrM_dat.MH.MH_pkthdr.pf.qid = r->qid; | |||
3315 | m->m_datam_hdr.mh_data += max_linkhdr; | |||
3316 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; | |||
3317 | m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx = 0; | |||
3318 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= M_TCP_CSUM_OUT0x0002; | |||
3319 | memset(m->m_data, 0, len)__builtin_memset((m->m_hdr.mh_data), (0), (len)); | |||
3320 | switch (af) { | |||
3321 | case AF_INET2: | |||
3322 | h = mtod(m, struct ip *)((struct ip *)((m)->m_hdr.mh_data)); | |||
3323 | h->ip_p = IPPROTO_TCP6; | |||
3324 | h->ip_len = htons(tlen)(__uint16_t)(__builtin_constant_p(tlen) ? (__uint16_t)(((__uint16_t )(tlen) & 0xffU) << 8 | ((__uint16_t)(tlen) & 0xff00U ) >> 8) : __swap16md(tlen)); | |||
3325 | h->ip_v = 4; | |||
3326 | h->ip_hl = sizeof(*h) >> 2; | |||
3327 | h->ip_tos = IPTOS_LOWDELAY0x10; | |||
3328 | h->ip_len = htons(len)(__uint16_t)(__builtin_constant_p(len) ? (__uint16_t)(((__uint16_t )(len) & 0xffU) << 8 | ((__uint16_t)(len) & 0xff00U ) >> 8) : __swap16md(len)); | |||
3329 | h->ip_off = htons(ip_mtudisc ? IP_DF : 0)(__uint16_t)(__builtin_constant_p(ip_mtudisc ? 0x4000 : 0) ? ( __uint16_t)(((__uint16_t)(ip_mtudisc ? 0x4000 : 0) & 0xffU ) << 8 | ((__uint16_t)(ip_mtudisc ? 0x4000 : 0) & 0xff00U ) >> 8) : __swap16md(ip_mtudisc ? 0x4000 : 0)); | |||
3330 | h->ip_ttl = ttl ? ttl : ip_defttl; | |||
3331 | h->ip_sum = 0; | |||
3332 | h->ip_src.s_addr = saddr->v4pfa.v4.s_addr; | |||
3333 | h->ip_dst.s_addr = daddr->v4pfa.v4.s_addr; | |||
3334 | ||||
3335 | th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); | |||
3336 | break; | |||
3337 | #ifdef INET61 | |||
3338 | case AF_INET624: | |||
3339 | h6 = mtod(m, struct ip6_hdr *)((struct ip6_hdr *)((m)->m_hdr.mh_data)); | |||
3340 | h6->ip6_nxtip6_ctlun.ip6_un1.ip6_un1_nxt = IPPROTO_TCP6; | |||
3341 | h6->ip6_plenip6_ctlun.ip6_un1.ip6_un1_plen = htons(tlen)(__uint16_t)(__builtin_constant_p(tlen) ? (__uint16_t)(((__uint16_t )(tlen) & 0xffU) << 8 | ((__uint16_t)(tlen) & 0xff00U ) >> 8) : __swap16md(tlen)); | |||
3342 | h6->ip6_vfcip6_ctlun.ip6_un2_vfc |= IPV6_VERSION0x60; | |||
3343 | h6->ip6_hlimip6_ctlun.ip6_un1.ip6_un1_hlim = IPV6_DEFHLIM64; | |||
3344 | memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr))__builtin_memcpy((&h6->ip6_src), (&saddr->pfa.v6 ), (sizeof(struct in6_addr))); | |||
3345 | memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr))__builtin_memcpy((&h6->ip6_dst), (&daddr->pfa.v6 ), (sizeof(struct in6_addr))); | |||
3346 | ||||
3347 | th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); | |||
3348 | break; | |||
3349 | #endif /* INET6 */ | |||
3350 | default: | |||
3351 | unhandled_af(af); | |||
3352 | } | |||
3353 | ||||
3354 | /* TCP header */ | |||
3355 | th->th_sport = sport; | |||
3356 | th->th_dport = dport; | |||
3357 | th->th_seq = htonl(seq)(__uint32_t)(__builtin_constant_p(seq) ? (__uint32_t)(((__uint32_t )(seq) & 0xff) << 24 | ((__uint32_t)(seq) & 0xff00 ) << 8 | ((__uint32_t)(seq) & 0xff0000) >> 8 | ((__uint32_t)(seq) & 0xff000000) >> 24) : __swap32md (seq)); | |||
3358 | th->th_ack = htonl(ack)(__uint32_t)(__builtin_constant_p(ack) ? (__uint32_t)(((__uint32_t )(ack) & 0xff) << 24 | ((__uint32_t)(ack) & 0xff00 ) << 8 | ((__uint32_t)(ack) & 0xff0000) >> 8 | ((__uint32_t)(ack) & 0xff000000) >> 24) : __swap32md (ack)); | |||
3359 | th->th_off = tlen >> 2; | |||
3360 | th->th_flags = flags; | |||
3361 | th->th_win = htons(win)(__uint16_t)(__builtin_constant_p(win) ? (__uint16_t)(((__uint16_t )(win) & 0xffU) << 8 | ((__uint16_t)(win) & 0xff00U ) >> 8) : __swap16md(win)); | |||
3362 | ||||
3363 | opt = (char *)(th + 1); | |||
3364 | if (mss) { | |||
3365 | opt[0] = TCPOPT_MAXSEG2; | |||
3366 | opt[1] = 4; | |||
3367 | mss = htons(mss)(__uint16_t)(__builtin_constant_p(mss) ? (__uint16_t)(((__uint16_t )(mss) & 0xffU) << 8 | ((__uint16_t)(mss) & 0xff00U ) >> 8) : __swap16md(mss)); | |||
3368 | memcpy((opt + 2), &mss, 2)__builtin_memcpy(((opt + 2)), (&mss), (2)); | |||
3369 | opt += 4; | |||
3370 | } | |||
3371 | if (sack) { | |||
3372 | opt[0] = TCPOPT_SACK_PERMITTED4; | |||
3373 | opt[1] = 2; | |||
3374 | opt += 2; | |||
3375 | } | |||
3376 | ||||
3377 | return (m); | |||
3378 | } | |||
3379 | ||||
3380 | void | |||
3381 | pf_send_tcp(const struct pf_rule *r, sa_family_t af, | |||
3382 | const struct pf_addr *saddr, const struct pf_addr *daddr, | |||
3383 | u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, | |||
3384 | u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, | |||
3385 | u_int16_t rtag, u_int rdom) | |||
3386 | { | |||
3387 | struct mbuf *m; | |||
3388 | ||||
3389 | if ((m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, | |||
3390 | flags, win, mss, ttl, tag, rtag, 0, rdom)) == NULL((void *)0)) | |||
3391 | return; | |||
3392 | ||||
3393 | switch (af) { | |||
3394 | case AF_INET2: | |||
3395 | ip_send(m); | |||
3396 | break; | |||
3397 | #ifdef INET61 | |||
3398 | case AF_INET624: | |||
3399 | ip6_send(m); | |||
3400 | break; | |||
3401 | #endif /* INET6 */ | |||
3402 | } | |||
3403 | } | |||
3404 | ||||
3405 | static void | |||
3406 | pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_state *st, | |||
3407 | struct pf_state_peer *src, struct pf_state_peer *dst) | |||
3408 | { | |||
3409 | /* | |||
3410 | * We are sending challenge ACK as a response to SYN packet, which | |||
3411 | * matches existing state (modulo TCP window check). Therefore packet | |||
3412 | * must be sent on behalf of destination. | |||
3413 | * | |||
3414 | * We expect sender to remain either silent, or send RST packet | |||
3415 | * so both, firewall and remote peer, can purge dead state from | |||
3416 | * memory. | |||
3417 | */ | |||
3418 | pf_send_tcp(st->rule.ptr, pd->af, pd->dst, pd->src, | |||
3419 | pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo, | |||
3420 | src->seqlo, TH_ACK0x10, 0, 0, st->rule.ptr->return_ttl, 1, 0, | |||
3421 | pd->rdomain); | |||
3422 | } | |||
3423 | ||||
3424 | void | |||
3425 | pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int param, | |||
3426 | sa_family_t af, struct pf_rule *r, u_int rdomain) | |||
3427 | { | |||
3428 | struct mbuf *m0; | |||
3429 | ||||
3430 | if ((m0 = m_copym(m, 0, M_COPYALL1000000000, M_NOWAIT0x0002)) == NULL((void *)0)) | |||
3431 | return; | |||
3432 | ||||
3433 | m0->m_pkthdrM_dat.MH.MH_pkthdr.pf.flags |= PF_TAG_GENERATED0x01; | |||
3434 | m0->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid = rdomain; | |||
3435 | if (r && (r->scrub_flags & PFSTATE_SETPRIO0x0200)) | |||
3436 | m0->m_pkthdrM_dat.MH.MH_pkthdr.pf.prio = r->set_prio[0]; | |||
3437 | if (r && r->qid) | |||
3438 | m0->m_pkthdrM_dat.MH.MH_pkthdr.pf.qid = r->qid; | |||
3439 | ||||
3440 | switch (af) { | |||
3441 | case AF_INET2: | |||
3442 | icmp_error(m0, type, code, 0, param); | |||
3443 | break; | |||
3444 | #ifdef INET61 | |||
3445 | case AF_INET624: | |||
3446 | icmp6_error(m0, type, code, param); | |||
3447 | break; | |||
3448 | #endif /* INET6 */ | |||
3449 | } | |||
3450 | } | |||
3451 | ||||
3452 | /* | |||
3453 | * Return ((n = 0) == (a = b [with mask m])) | |||
3454 | * Note: n != 0 => returns (a != b [with mask m]) | |||
3455 | */ | |||
3456 | int | |||
3457 | pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, | |||
3458 | struct pf_addr *b, sa_family_t af) | |||
3459 | { | |||
3460 | switch (af) { | |||
3461 | case AF_INET2: | |||
3462 | if ((a->addr32pfa.addr32[0] & m->addr32pfa.addr32[0]) == | |||
3463 | (b->addr32pfa.addr32[0] & m->addr32pfa.addr32[0])) | |||
3464 | return (n == 0); | |||
3465 | break; | |||
3466 | #ifdef INET61 | |||
3467 | case AF_INET624: | |||
3468 | if (((a->addr32pfa.addr32[0] & m->addr32pfa.addr32[0]) == | |||
3469 | (b->addr32pfa.addr32[0] & m->addr32pfa.addr32[0])) && | |||
3470 | ((a->addr32pfa.addr32[1] & m->addr32pfa.addr32[1]) == | |||
3471 | (b->addr32pfa.addr32[1] & m->addr32pfa.addr32[1])) && | |||
3472 | ((a->addr32pfa.addr32[2] & m->addr32pfa.addr32[2]) == | |||
3473 | (b->addr32pfa.addr32[2] & m->addr32pfa.addr32[2])) && | |||
3474 | ((a->addr32pfa.addr32[3] & m->addr32pfa.addr32[3]) == | |||
3475 | (b->addr32pfa.addr32[3] & m->addr32pfa.addr32[3]))) | |||
3476 | return (n == 0); | |||
3477 | break; | |||
3478 | #endif /* INET6 */ | |||
3479 | } | |||
3480 | ||||
3481 | return (n != 0); | |||
3482 | } | |||
3483 | ||||
3484 | /* | |||
3485 | * Return 1 if b <= a <= e, otherwise return 0. | |||
3486 | */ | |||
3487 | int | |||
3488 | pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, | |||
3489 | struct pf_addr *a, sa_family_t af) | |||
3490 | { | |||
3491 | switch (af) { | |||
3492 | case AF_INET2: | |||
3493 | if ((ntohl(a->addr32[0])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[0])) < ntohl(b->addr32[0])(__uint32_t)(__builtin_constant_p(b->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(b->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(b->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(b->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(b->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(b->pfa.addr32[0]))) || | |||
3494 | (ntohl(a->addr32[0])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[0])) > ntohl(e->addr32[0])(__uint32_t)(__builtin_constant_p(e->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(e->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(e->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(e->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(e->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(e->pfa.addr32[0])))) | |||
3495 | return (0); | |||
3496 | break; | |||
3497 | #ifdef INET61 | |||
3498 | case AF_INET624: { | |||
3499 | int i; | |||
3500 | ||||
3501 | /* check a >= b */ | |||
3502 | for (i = 0; i < 4; ++i) | |||
3503 | if (ntohl(a->addr32[i])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[i])) > ntohl(b->addr32[i])(__uint32_t)(__builtin_constant_p(b->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(b->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(b->pfa.addr32[i]))) | |||
3504 | break; | |||
3505 | else if (ntohl(a->addr32[i])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[i])) < ntohl(b->addr32[i])(__uint32_t)(__builtin_constant_p(b->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(b->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(b->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(b->pfa.addr32[i]))) | |||
3506 | return (0); | |||
3507 | /* check a <= e */ | |||
3508 | for (i = 0; i < 4; ++i) | |||
3509 | if (ntohl(a->addr32[i])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[i])) < ntohl(e->addr32[i])(__uint32_t)(__builtin_constant_p(e->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(e->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(e->pfa.addr32[i]))) | |||
3510 | break; | |||
3511 | else if (ntohl(a->addr32[i])(__uint32_t)(__builtin_constant_p(a->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(a->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(a->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(a->pfa.addr32[i])) > ntohl(e->addr32[i])(__uint32_t)(__builtin_constant_p(e->pfa.addr32[i]) ? (__uint32_t )(((__uint32_t)(e->pfa.addr32[i]) & 0xff) << 24 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff00) << 8 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff0000) >> 8 | ((__uint32_t)(e->pfa.addr32[i]) & 0xff000000) >> 24) : __swap32md(e->pfa.addr32[i]))) | |||
3512 | return (0); | |||
3513 | break; | |||
3514 | } | |||
3515 | #endif /* INET6 */ | |||
3516 | } | |||
3517 | return (1); | |||
3518 | } | |||
3519 | ||||
3520 | int | |||
3521 | pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) | |||
3522 | { | |||
3523 | switch (op) { | |||
3524 | case PF_OP_IRG: | |||
3525 | return ((p > a1) && (p < a2)); | |||
3526 | case PF_OP_XRG: | |||
3527 | return ((p < a1) || (p > a2)); | |||
3528 | case PF_OP_RRG: | |||
3529 | return ((p >= a1) && (p <= a2)); | |||
3530 | case PF_OP_EQ: | |||
3531 | return (p == a1); | |||
3532 | case PF_OP_NE: | |||
3533 | return (p != a1); | |||
3534 | case PF_OP_LT: | |||
3535 | return (p < a1); | |||
3536 | case PF_OP_LE: | |||
3537 | return (p <= a1); | |||
3538 | case PF_OP_GT: | |||
3539 | return (p > a1); | |||
3540 | case PF_OP_GE: | |||
3541 | return (p >= a1); | |||
3542 | } | |||
3543 | return (0); /* never reached */ | |||
3544 | } | |||
3545 | ||||
3546 | int | |||
3547 | pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) | |||
3548 | { | |||
3549 | return (pf_match(op, ntohs(a1)(__uint16_t)(__builtin_constant_p(a1) ? (__uint16_t)(((__uint16_t )(a1) & 0xffU) << 8 | ((__uint16_t)(a1) & 0xff00U ) >> 8) : __swap16md(a1)), ntohs(a2)(__uint16_t)(__builtin_constant_p(a2) ? (__uint16_t)(((__uint16_t )(a2) & 0xffU) << 8 | ((__uint16_t)(a2) & 0xff00U ) >> 8) : __swap16md(a2)), ntohs(p)(__uint16_t)(__builtin_constant_p(p) ? (__uint16_t)(((__uint16_t )(p) & 0xffU) << 8 | ((__uint16_t)(p) & 0xff00U ) >> 8) : __swap16md(p)))); | |||
3550 | } | |||
3551 | ||||
3552 | int | |||
3553 | pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) | |||
3554 | { | |||
3555 | if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE) | |||
3556 | return (0); | |||
3557 | return (pf_match(op, a1, a2, u)); | |||
3558 | } | |||
3559 | ||||
3560 | int | |||
3561 | pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) | |||
3562 | { | |||
3563 | if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE) | |||
3564 | return (0); | |||
3565 | return (pf_match(op, a1, a2, g)); | |||
3566 | } | |||
3567 | ||||
3568 | int | |||
3569 | pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag) | |||
3570 | { | |||
3571 | if (*tag == -1) | |||
3572 | *tag = m->m_pkthdrM_dat.MH.MH_pkthdr.pf.tag; | |||
3573 | ||||
3574 | return ((!r->match_tag_not && r->match_tag == *tag) || | |||
3575 | (r->match_tag_not && r->match_tag != *tag)); | |||
3576 | } | |||
3577 | ||||
3578 | int | |||
3579 | pf_match_rcvif(struct mbuf *m, struct pf_rule *r) | |||
3580 | { | |||
3581 | struct ifnet *ifp; | |||
3582 | #if NCARP1 > 0 | |||
3583 | struct ifnet *ifp0; | |||
3584 | #endif | |||
3585 | struct pfi_kif *kif; | |||
3586 | ||||
3587 | ifp = if_get(m->m_pkthdrM_dat.MH.MH_pkthdr.ph_ifidx); | |||
3588 | if (ifp == NULL((void *)0)) | |||
3589 | return (0); | |||
3590 | ||||
3591 | #if NCARP1 > 0 | |||
3592 | if (ifp->if_typeif_data.ifi_type == IFT_CARP0xf7 && | |||
3593 | (ifp0 = if_get(ifp->if_carpdevidxif_carp_ptr.carp_idx)) != NULL((void *)0)) { | |||
3594 | kif = (struct pfi_kif *)ifp0->if_pf_kif; | |||
3595 | if_put(ifp0); | |||
3596 | } else | |||
3597 | #endif /* NCARP */ | |||
3598 | kif = (struct pfi_kif *)ifp->if_pf_kif; | |||
3599 | ||||
3600 | if_put(ifp); | |||
3601 | ||||
3602 | if (kif == NULL((void *)0)) { | |||
3603 | DPFPRINTF(LOG_ERR,do { if (pf_status.debug >= (3)) { log(3, "pf: "); addlog( "%s: kif == NULL, @%d via %s", __func__, r->nr, r->rcv_ifname ); addlog("\n"); } } while (0) | |||
3604 | "%s: kif == NULL, @%d via %s", __func__,do { if (pf_status.debug >= (3)) { log(3, "pf: "); addlog( "%s: kif == NULL, @%d via %s", __func__, r->nr, r->rcv_ifname ); addlog("\n"); } } while (0) | |||
3605 | r->nr, r->rcv_ifname)do { if (pf_status.debug >= (3)) { log(3, "pf: "); addlog( "%s: kif == NULL, @%d via %s", __func__, r->nr, r->rcv_ifname ); addlog("\n"); } } while (0); | |||
3606 | return (0); | |||
3607 | } | |||
3608 | ||||
3609 | return (pfi_kif_match(r->rcv_kif, kif)); | |||
3610 | } | |||
3611 | ||||
3612 | void | |||
3613 | pf_tag_packet(struct mbuf *m, int tag, int rtableid) | |||
3614 | { | |||
3615 | if (tag > 0) | |||
3616 | m->m_pkthdrM_dat.MH.MH_pkthdr.pf.tag = tag; | |||
3617 | if (rtableid >= 0) | |||
3618 | m->m_pkthdrM_dat.MH.MH_pkthdr.ph_rtableid = (u_int)rtableid; | |||
3619 | } | |||
3620 | ||||
3621 | void | |||
3622 | pf_anchor_stack_init(void) | |||
3623 | { | |||
3624 | struct pf_anchor_stackframe *stack; | |||
3625 | ||||
3626 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3627 | stack[PF_ANCHOR_STACK_MAX64].sf_stack_topu.u_stack_top = &stack[0]; | |||
3628 | cpumem_leave(pf_anchor_stack, stack); | |||
3629 | } | |||
3630 | ||||
3631 | int | |||
3632 | pf_anchor_stack_is_full(struct pf_anchor_stackframe *sf) | |||
3633 | { | |||
3634 | struct pf_anchor_stackframe *stack; | |||
3635 | int rv; | |||
3636 | ||||
3637 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3638 | rv = (sf == &stack[PF_ANCHOR_STACK_MAX64]); | |||
3639 | cpumem_leave(pf_anchor_stack, stack); | |||
3640 | ||||
3641 | return (rv); | |||
3642 | } | |||
3643 | ||||
3644 | int | |||
3645 | pf_anchor_stack_is_empty(struct pf_anchor_stackframe *sf) | |||
3646 | { | |||
3647 | struct pf_anchor_stackframe *stack; | |||
3648 | int rv; | |||
3649 | ||||
3650 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3651 | rv = (sf == &stack[0]); | |||
3652 | cpumem_leave(pf_anchor_stack, stack); | |||
3653 | ||||
3654 | return (rv); | |||
3655 | } | |||
3656 | ||||
3657 | struct pf_anchor_stackframe * | |||
3658 | pf_anchor_stack_top(void) | |||
3659 | { | |||
3660 | struct pf_anchor_stackframe *stack; | |||
3661 | struct pf_anchor_stackframe *top_sf; | |||
3662 | ||||
3663 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3664 | top_sf = stack[PF_ANCHOR_STACK_MAX64].sf_stack_topu.u_stack_top; | |||
3665 | cpumem_leave(pf_anchor_stack, stack); | |||
3666 | ||||
3667 | return (top_sf); | |||
3668 | } | |||
3669 | ||||
3670 | int | |||
3671 | pf_anchor_stack_push(struct pf_ruleset *rs, struct pf_rule *r, | |||
3672 | struct pf_anchor *child, int jump_target) | |||
3673 | { | |||
3674 | struct pf_anchor_stackframe *stack; | |||
3675 | struct pf_anchor_stackframe *top_sf = pf_anchor_stack_top(); | |||
3676 | ||||
3677 | top_sf++; | |||
3678 | if (pf_anchor_stack_is_full(top_sf)) | |||
3679 | return (-1); | |||
3680 | ||||
3681 | top_sf->sf_rs = rs; | |||
3682 | top_sf->sf_ru.u_r = r; | |||
3683 | top_sf->sf_child = child; | |||
3684 | top_sf->sf_jump_target = jump_target; | |||
3685 | ||||
3686 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3687 | ||||
3688 | if ((top_sf <= &stack[0]) || (top_sf >= &stack[PF_ANCHOR_STACK_MAX64])) | |||
3689 | panic("%s: top frame outside of anchor stack range", __func__); | |||
3690 | ||||
3691 | stack[PF_ANCHOR_STACK_MAX64].sf_stack_topu.u_stack_top = top_sf; | |||
3692 | cpumem_leave(pf_anchor_stack, stack); | |||
3693 | ||||
3694 | return (0); | |||
3695 | } | |||
3696 | ||||
3697 | int | |||
3698 | pf_anchor_stack_pop(struct pf_ruleset **rs, struct pf_rule **r, | |||
3699 | struct pf_anchor **child, int *jump_target) | |||
3700 | { | |||
3701 | struct pf_anchor_stackframe *top_sf = pf_anchor_stack_top(); | |||
3702 | struct pf_anchor_stackframe *stack; | |||
3703 | int on_top; | |||
3704 | ||||
3705 | stack = (struct pf_anchor_stackframe *)cpumem_enter(pf_anchor_stack); | |||
3706 | if (pf_anchor_stack_is_empty(top_sf)) { | |||
3707 | on_top = -1; | |||
3708 | } else { | |||
3709 | if ((top_sf <= &stack[0]) || | |||
3710 | (top_sf >= &stack[PF_ANCHOR_STACK_MAX64])) | |||
3711 | panic("%s: top frame outside of anchor stack range", | |||
3712 | __func__); | |||
3713 | ||||
3714 | *rs = top_sf->sf_rs; | |||
3715 | *r = top_sf->sf_ru.u_r; | |||
3716 | *child = top_sf->sf_child; | |||
3717 | *jump_target = top_sf->sf_jump_target; | |||
3718 | top_sf--; | |||
3719 | stack[PF_ANCHOR_STACK_MAX64].sf_stack_topu.u_stack_top = top_sf; | |||
3720 | on_top = 0; | |||
3721 | } | |||
3722 | cpumem_leave(pf_anchor_stack, stack); | |||
3723 | ||||
3724 | return (on_top); | |||
3725 | } | |||
3726 | ||||
3727 | void | |||
3728 | pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, | |||
3729 | struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) | |||
3730 | { | |||
3731 | switch (af) { | |||
3732 | case AF_INET2: | |||
3733 | naddr->addr32pfa.addr32[0] = (raddr->addr32pfa.addr32[0] & rmask->addr32pfa.addr32[0]) | | |||
3734 | ((rmask->addr32pfa.addr32[0] ^ 0xffffffff ) & saddr->addr32pfa.addr32[0]); | |||
3735 | break; | |||
3736 | #ifdef INET61 | |||
3737 | case AF_INET624: | |||
3738 | naddr->addr32pfa.addr32[0] = (raddr->addr32pfa.addr32[0] & rmask->addr32pfa.addr32[0]) | | |||
3739 | ((rmask->addr32pfa.addr32[0] ^ 0xffffffff ) & saddr->addr32pfa.addr32[0]); | |||
3740 | naddr->addr32pfa.addr32[1] = (raddr->addr32pfa.addr32[1] & rmask->addr32pfa.addr32[1]) | | |||
3741 | ((rmask->addr32pfa.addr32[1] ^ 0xffffffff ) & saddr->addr32pfa.addr32[1]); | |||
3742 | naddr->addr32pfa.addr32[2] = (raddr->addr32pfa.addr32[2] & rmask->addr32pfa.addr32[2]) | | |||
3743 | ((rmask->addr32pfa.addr32[2] ^ 0xffffffff ) & saddr->addr32pfa.addr32[2]); | |||
3744 | naddr->addr32pfa.addr32[3] = (raddr->addr32pfa.addr32[3] & rmask->addr32pfa.addr32[3]) | | |||
3745 | ((rmask->addr32pfa.addr32[3] ^ 0xffffffff ) & saddr->addr32pfa.addr32[3]); | |||
3746 | break; | |||
3747 | #endif /* INET6 */ | |||
3748 | default: | |||
3749 | unhandled_af(af); | |||
3750 | } | |||
3751 | } | |||
3752 | ||||
3753 | void | |||
3754 | pf_addr_inc(struct pf_addr *addr, sa_family_t af) | |||
3755 | { | |||
3756 | switch (af) { | |||
3757 | case AF_INET2: | |||
3758 | addr->addr32pfa.addr32[0] = htonl(ntohl(addr->addr32[0]) + 1)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[0])) + 1) ? (__uint32_t)(((__uint32_t)(( __uint32_t)(__builtin_constant_p(addr->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(addr->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(addr->pfa.addr32[0])) + 1) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(addr-> pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32 [0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[0]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[0])) + 1) & 0xff00) << 8 | ((__uint32_t) ((__uint32_t)(__builtin_constant_p(addr->pfa.addr32[0]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[0])) + 1) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[0])) + 1) & 0xff000000) >> 24) : __swap32md((__uint32_t)(__builtin_constant_p(addr->pfa. addr32[0]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32[0 ]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[0]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[0])) + 1)); | |||
3759 | break; | |||
3760 | #ifdef INET61 | |||
3761 | case AF_INET624: | |||
3762 | if (addr->addr32pfa.addr32[3] == 0xffffffff) { | |||
3763 | addr->addr32pfa.addr32[3] = 0; | |||
3764 | if (addr->addr32pfa.addr32[2] == 0xffffffff) { | |||
3765 | addr->addr32pfa.addr32[2] = 0; | |||
3766 | if (addr->addr32pfa.addr32[1] == 0xffffffff) { | |||
3767 | addr->addr32pfa.addr32[1] = 0; | |||
3768 | addr->addr32pfa.addr32[0] = | |||
3769 | htonl(ntohl(addr->addr32[0]) + 1)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[0])) + 1) ? (__uint32_t)(((__uint32_t)(( __uint32_t)(__builtin_constant_p(addr->pfa.addr32[0]) ? (__uint32_t )(((__uint32_t)(addr->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md(addr->pfa.addr32[0])) + 1) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(addr-> pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32 [0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[0]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[0])) + 1) & 0xff00) << 8 | ((__uint32_t) ((__uint32_t)(__builtin_constant_p(addr->pfa.addr32[0]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[0]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[0])) + 1) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[0]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[0]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[0]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[0]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[0])) + 1) & 0xff000000) >> 24) : __swap32md((__uint32_t)(__builtin_constant_p(addr->pfa. addr32[0]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32[0 ]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [0]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[0]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[0])) + 1)); | |||
3770 | } else | |||
3771 | addr->addr32pfa.addr32[1] = | |||
3772 | htonl(ntohl(addr->addr32[1]) + 1)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[1]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[1]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[1]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[1]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[1]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[1])) + 1) ? (__uint32_t)(((__uint32_t)(( __uint32_t)(__builtin_constant_p(addr->pfa.addr32[1]) ? (__uint32_t )(((__uint32_t)(addr->pfa.addr32[1]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff000000) >> 24) : __swap32md(addr->pfa.addr32[1])) + 1) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(addr-> pfa.addr32[1]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32 [1]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [1]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [1]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[1]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[1])) + 1) & 0xff00) << 8 | ((__uint32_t) ((__uint32_t)(__builtin_constant_p(addr->pfa.addr32[1]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[1]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[1]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[1])) + 1) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[1]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[1]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[1]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[1]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[1]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[1])) + 1) & 0xff000000) >> 24) : __swap32md((__uint32_t)(__builtin_constant_p(addr->pfa. addr32[1]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32[1 ]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [1]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [1]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[1]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[1])) + 1)); | |||
3773 | } else | |||
3774 | addr->addr32pfa.addr32[2] = | |||
3775 | htonl(ntohl(addr->addr32[2]) + 1)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[2]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[2]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[2]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[2]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[2]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[2])) + 1) ? (__uint32_t)(((__uint32_t)(( __uint32_t)(__builtin_constant_p(addr->pfa.addr32[2]) ? (__uint32_t )(((__uint32_t)(addr->pfa.addr32[2]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff000000) >> 24) : __swap32md(addr->pfa.addr32[2])) + 1) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(addr-> pfa.addr32[2]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32 [2]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [2]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [2]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[2]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[2])) + 1) & 0xff00) << 8 | ((__uint32_t) ((__uint32_t)(__builtin_constant_p(addr->pfa.addr32[2]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[2]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[2]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[2])) + 1) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[2]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[2]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[2]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[2]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[2]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[2])) + 1) & 0xff000000) >> 24) : __swap32md((__uint32_t)(__builtin_constant_p(addr->pfa. addr32[2]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32[2 ]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [2]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [2]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[2]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[2])) + 1)); | |||
3776 | } else | |||
3777 | addr->addr32pfa.addr32[3] = | |||
3778 | htonl(ntohl(addr->addr32[3]) + 1)(__uint32_t)(__builtin_constant_p((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[3]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[3]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[3]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[3]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[3]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[3])) + 1) ? (__uint32_t)(((__uint32_t)(( __uint32_t)(__builtin_constant_p(addr->pfa.addr32[3]) ? (__uint32_t )(((__uint32_t)(addr->pfa.addr32[3]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff000000) >> 24) : __swap32md(addr->pfa.addr32[3])) + 1) & 0xff) << 24 | ((__uint32_t)((__uint32_t)(__builtin_constant_p(addr-> pfa.addr32[3]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32 [3]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [3]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [3]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[3]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[3])) + 1) & 0xff00) << 8 | ((__uint32_t) ((__uint32_t)(__builtin_constant_p(addr->pfa.addr32[3]) ? ( __uint32_t)(((__uint32_t)(addr->pfa.addr32[3]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff00 ) << 8 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff0000 ) >> 8 | ((__uint32_t)(addr->pfa.addr32[3]) & 0xff000000 ) >> 24) : __swap32md(addr->pfa.addr32[3])) + 1) & 0xff0000) >> 8 | ((__uint32_t)((__uint32_t)(__builtin_constant_p (addr->pfa.addr32[3]) ? (__uint32_t)(((__uint32_t)(addr-> pfa.addr32[3]) & 0xff) << 24 | ((__uint32_t)(addr-> pfa.addr32[3]) & 0xff00) << 8 | ((__uint32_t)(addr-> pfa.addr32[3]) & 0xff0000) >> 8 | ((__uint32_t)(addr ->pfa.addr32[3]) & 0xff000000) >> 24) : __swap32md (addr->pfa.addr32[3])) + 1) & 0xff000000) >> 24) : __swap32md((__uint32_t)(__builtin_constant_p(addr->pfa. addr32[3]) ? (__uint32_t)(((__uint32_t)(addr->pfa.addr32[3 ]) & 0xff) << 24 | ((__uint32_t)(addr->pfa.addr32 [3]) & 0xff00) << 8 | ((__uint32_t)(addr->pfa.addr32 [3]) & 0xff0000) >> 8 | ((__uint32_t)(addr->pfa. addr32[3]) & 0xff000000) >> 24) : __swap32md(addr-> pfa.addr32[3])) + 1)); | |||
3779 | break; | |||
3780 | #endif /* INET6 */ | |||
3781 | default: | |||
3782 | unhandled_af(af); | |||
3783 | } | |||
3784 | } | |||
3785 | ||||
3786 | int | |||
3787 | pf_socket_lookup(struct pf_pdesc *pd) | |||
3788 | { | |||
3789 | struct pf_addr *saddr, *daddr; | |||
3790 | u_int16_t sport, dport; | |||
3791 | struct inpcbtable *tb; | |||
3792 | struct inpcb *inp; | |||
3793 | ||||
3794 | pd->lookup.uid = -1; | |||
3795 | pd->lookup.gid = -1; | |||
3796 | pd->lookup.pid = NO_PID(99999 +1); | |||
3797 | switch (pd->virtual_proto) { | |||
3798 | case IPPROTO_TCP6: | |||
3799 | sport = pd->hdr.tcp.th_sport; | |||
3800 | dport = pd->hdr.tcp.th_dport; | |||
3801 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
3802 | NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl > 0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail (0x0002UL, _s, __func__); } while (0); | |||
3803 | tb = &tcbtable; | |||
3804 | break; | |||
3805 | case IPPROTO_UDP17: | |||
3806 | sport = pd->hdr.udp.uh_sport; | |||
3807 | dport = pd->hdr.udp.uh_dport; | |||
3808 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
3809 | NET_ASSERT_LOCKED()do { int _s = rw_status(&netlock); if ((splassert_ctl > 0) && (_s != 0x0001UL && _s != 0x0002UL)) splassert_fail (0x0002UL, _s, __func__); } while (0); | |||
3810 | tb = &udbtable; | |||
3811 | break; | |||
3812 | default: | |||
3813 | return (-1); | |||
3814 | } | |||
3815 | if (pd->dir == PF_IN) { | |||
3816 | saddr = pd->src; | |||
3817 | daddr = pd->dst; | |||
3818 | } else { | |||
3819 | u_int16_t p; | |||
3820 | ||||
3821 | p = sport; | |||
3822 | sport = dport; | |||
3823 | dport = p; | |||
3824 | saddr = pd->dst; | |||
3825 | daddr = pd->src; | |||
3826 | } | |||
3827 | switch (pd->af) { | |||
3828 | case AF_INET2: | |||
3829 | /* | |||
3830 | * Fails when rtable is changed while evaluating the ruleset | |||
3831 | * The socket looked up will not match the one hit in the end. | |||
3832 | */ | |||
3833 | inp = in_pcblookup(tb, saddr->v4pfa.v4, sport, daddr->v4pfa.v4, dport, | |||
3834 | pd->rdomain); | |||
3835 | if (inp == NULL((void *)0)) { | |||
3836 | inp = in_pcblookup_listen(tb, daddr->v4pfa.v4, dport, | |||
3837 | NULL((void *)0), pd->rdomain); | |||
3838 | if (inp == NULL((void *)0)) | |||
3839 | return (-1); | |||
3840 | } | |||
3841 | break; | |||
3842 | #ifdef INET61 | |||
3843 | case AF_INET624: | |||
3844 | if (pd->virtual_proto == IPPROTO_UDP17) | |||
3845 | tb = &udb6table; | |||
3846 | inp = in6_pcblookup(tb, &saddr->v6pfa.v6, sport, &daddr->v6pfa.v6, | |||
3847 | dport, pd->rdomain); | |||
3848 | if (inp == NULL((void *)0)) { | |||
3849 | inp = in6_pcblookup_listen(tb, &daddr->v6pfa.v6, dport, | |||
3850 | NULL((void *)0), pd->rdomain); | |||
3851 | if (inp == NULL((void *)0)) | |||
3852 | return (-1); | |||
3853 | } | |||
3854 | break; | |||
3855 | #endif /* INET6 */ | |||
3856 | default: | |||
3857 | unhandled_af(pd->af); | |||
3858 | } | |||
3859 | pd->lookup.uid = inp->inp_socket->so_euid; | |||
3860 | pd->lookup.gid = inp->inp_socket->so_egid; | |||
3861 | pd->lookup.pid = inp->inp_socket->so_cpid; | |||
3862 | in_pcbunref(inp); | |||
3863 | return (1); | |||
3864 | } | |||
3865 | ||||
3866 | /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity" | |||
3867 | * /\ (eoh - r) >= min_typelen >= 2 "safety" ) | |||
3868 | * | |||
3869 | * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen | |||
3870 | */ | |||
3871 | u_int8_t* | |||
3872 | pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type, | |||
3873 | u_int8_t min_typelen) | |||
3874 | { | |||
3875 | u_int8_t *eoh = opts + hlen; | |||
3876 | ||||
3877 | if (min_typelen < 2) | |||
3878 | return (NULL((void *)0)); | |||
3879 | ||||
3880 | while ((eoh - opt) >= min_typelen) { | |||
3881 | switch (*opt) { | |||
3882 | case TCPOPT_EOL0: | |||
3883 | /* FALLTHROUGH - Workaround the failure of some | |||
3884 | systems to NOP-pad their bzero'd option buffers, | |||
3885 | producing spurious EOLs */ | |||
3886 | case TCPOPT_NOP1: | |||
3887 | opt++; | |||
3888 | continue; | |||
3889 | default: | |||
3890 | if (opt[0] == type && | |||
3891 | opt[1] >= min_typelen) | |||
3892 | return (opt); | |||
3893 | } | |||
3894 | ||||
3895 | opt += MAX(opt[1], 2)(((opt[1])>(2))?(opt[1]):(2)); /* evade infinite loops */ | |||
3896 | } | |||
3897 | ||||
3898 | return (NULL((void *)0)); | |||
3899 | } | |||
3900 | ||||
3901 | u_int8_t | |||
3902 | pf_get_wscale(struct pf_pdesc *pd) | |||
3903 | { | |||
3904 | int olen; | |||
3905 | u_int8_t opts[MAX_TCPOPTLEN40], *opt; | |||
3906 | u_int8_t wscale = 0; | |||
3907 | ||||
3908 | olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); | |||
3909 | if (olen < TCPOLEN_WINDOW3 || !pf_pull_hdr(pd->m, | |||
3910 | pd->off + sizeof(struct tcphdr), opts, olen, NULL((void *)0), pd->af)) | |||
3911 | return (0); | |||
3912 | ||||
3913 | opt = opts; | |||
3914 | while ((opt = pf_find_tcpopt(opt, opts, olen, | |||
3915 | TCPOPT_WINDOW3, TCPOLEN_WINDOW3)) != NULL((void *)0)) { | |||
3916 | wscale = opt[2]; | |||
3917 | wscale = MIN(wscale, TCP_MAX_WINSHIFT)(((wscale)<(14))?(wscale):(14)); | |||
3918 | wscale |= PF_WSCALE_FLAG0x80; | |||
3919 | ||||
3920 | opt += opt[1]; | |||
3921 | } | |||
3922 | ||||
3923 | return (wscale); | |||
3924 | } | |||
3925 | ||||
3926 | u_int16_t | |||
3927 | pf_get_mss(struct pf_pdesc *pd) | |||
3928 | { | |||
3929 | int olen; | |||
3930 | u_int8_t opts[MAX_TCPOPTLEN40], *opt; | |||
3931 | u_int16_t mss = tcp_mssdflt; | |||
3932 | ||||
3933 | olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); | |||
3934 | if (olen < TCPOLEN_MAXSEG4 || !pf_pull_hdr(pd->m, | |||
3935 | pd->off + sizeof(struct tcphdr), opts, olen, NULL((void *)0), pd->af)) | |||
3936 | return (0); | |||
3937 | ||||
3938 | opt = opts; | |||
3939 | while ((opt = pf_find_tcpopt(opt, opts, olen, | |||
3940 | TCPOPT_MAXSEG2, TCPOLEN_MAXSEG4)) != NULL((void *)0)) { | |||
3941 | memcpy(&mss, (opt + 2), 2)__builtin_memcpy((&mss), ((opt + 2)), (2)); | |||
3942 | mss = ntohs(mss)(__uint16_t)(__builtin_constant_p(mss) ? (__uint16_t)(((__uint16_t )(mss) & 0xffU) << 8 | ((__uint16_t)(mss) & 0xff00U ) >> 8) : __swap16md(mss)); | |||
3943 | ||||
3944 | opt += opt[1]; | |||
3945 | } | |||
3946 | return (mss); | |||
3947 | } | |||
3948 | ||||
3949 | u_int16_t | |||
3950 | pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) | |||
3951 | { | |||
3952 | struct ifnet *ifp; | |||
3953 | struct sockaddr_in *dst; | |||
3954 | #ifdef INET61 | |||
3955 | struct sockaddr_in6 *dst6; | |||
3956 | #endif /* INET6 */ | |||
3957 | struct rtentry *rt = NULL((void *)0); | |||
3958 | struct sockaddr_storage ss; | |||
3959 | int hlen; | |||
3960 | u_int16_t mss = tcp_mssdflt; | |||
3961 | ||||
3962 | memset(&ss, 0, sizeof(ss))__builtin_memset((&ss), (0), (sizeof(ss))); | |||
3963 | ||||
3964 | switch (af) { | |||
3965 | case AF_INET2: | |||
3966 | hlen = sizeof(struct ip); | |||
3967 | dst = (struct sockaddr_in *)&ss; | |||
3968 | dst->sin_family = AF_INET2; | |||
3969 | dst->sin_len = sizeof(*dst); | |||
3970 | dst->sin_addr = addr->v4pfa.v4; | |||
3971 | rt = rtalloc(sintosa(dst), 0, rtableid); | |||
3972 | break; | |||
3973 | #ifdef INET61 | |||
3974 | case AF_INET624: | |||
3975 | hlen = sizeof(struct ip6_hdr); | |||
3976 | dst6 = (struct sockaddr_in6 *)&ss; | |||
3977 | dst6->sin6_family = AF_INET624; | |||
3978 | dst6->sin6_len = sizeof(*dst6); | |||
3979 | dst6->sin6_addr = addr->v6pfa.v6; | |||
3980 | rt = rtalloc(sin6tosa(dst6), 0, rtableid); | |||
3981 | break; | |||
3982 | #endif /* INET6 */ | |||
3983 | } | |||
3984 | ||||
3985 | if (rt != NULL((void *)0) && (ifp = if_get(rt->rt_ifidx)) != NULL((void *)0)) { | |||
3986 | mss = ifp->if_mtuif_data.ifi_mtu - hlen - sizeof(struct tcphdr); | |||
3987 | mss = max(tcp_mssdflt, mss); | |||
3988 | if_put(ifp); | |||
3989 | } | |||
3990 | rtfree(rt); | |||
3991 | mss = min(mss, offer); | |||
3992 | mss = max(mss, 64); /* sanity - at least max opt space */ | |||
3993 | return (mss); | |||
3994 | } | |||
3995 | ||||
3996 | static __inline int | |||
3997 | pf_set_rt_ifp(struct pf_state *st, struct pf_addr *saddr, sa_family_t af, | |||
3998 | struct pf_src_node **sns) | |||
3999 | { | |||
4000 | struct pf_rule *r = st->rule.ptr; | |||
4001 | int rv; | |||
4002 | ||||
4003 | if (!r->rt) | |||
4004 | return (0); | |||
4005 | ||||
4006 | rv = pf_map_addr(af, r, saddr, &st->rt_addr, NULL((void *)0), sns, | |||
4007 | &r->route, PF_SN_ROUTE); | |||
4008 | if (rv == 0) | |||
4009 | st->rt = r->rt; | |||
4010 | ||||
4011 | return (rv); | |||
4012 | } | |||
4013 | ||||
4014 | u_int32_t | |||
4015 | pf_tcp_iss(struct pf_pdesc *pd) | |||
4016 | { | |||
4017 | SHA2_CTX ctx; | |||
4018 | union { | |||
4019 | uint8_t bytes[SHA512_DIGEST_LENGTH64]; | |||
4020 | uint32_t words[1]; | |||
4021 | } digest; | |||
4022 | ||||
4023 | if (pf_tcp_secret_init == 0) { | |||
4024 | arc4random_buf(pf_tcp_secret, sizeof(pf_tcp_secret)); | |||
4025 | SHA512Init(&pf_tcp_secret_ctx); | |||
4026 | SHA512Update(&pf_tcp_secret_ctx, pf_tcp_secret, | |||
4027 | sizeof(pf_tcp_secret)); | |||
4028 | pf_tcp_secret_init = 1; | |||
4029 | } | |||
4030 | ctx = pf_tcp_secret_ctx; | |||
4031 | ||||
4032 | SHA512Update(&ctx, &pd->rdomain, sizeof(pd->rdomain)); | |||
4033 | SHA512Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); | |||
4034 | SHA512Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); | |||
4035 | switch (pd->af) { | |||
4036 | case AF_INET2: | |||
4037 | SHA512Update(&ctx, &pd->src->v4pfa.v4, sizeof(struct in_addr)); | |||
4038 | SHA512Update(&ctx, &pd->dst->v4pfa.v4, sizeof(struct in_addr)); | |||
4039 | break; | |||
4040 | #ifdef INET61 | |||
4041 | case AF_INET624: | |||
4042 | SHA512Update(&ctx, &pd->src->v6pfa.v6, sizeof(struct in6_addr)); | |||
4043 | SHA512Update(&ctx, &pd->dst->v6pfa.v6, sizeof(struct in6_addr)); | |||
4044 | break; | |||
4045 | #endif /* INET6 */ | |||
4046 | } | |||
4047 | SHA512Final(digest.bytes, &ctx); | |||
4048 | pf_tcp_iss_off += 4096; | |||
4049 | return (digest.words[0] + READ_ONCE(tcp_iss)({ typeof(tcp_iss) __tmp = *(volatile typeof(tcp_iss) *)& (tcp_iss); membar_datadep_consumer(); __tmp; }) + pf_tcp_iss_off); | |||
4050 | } | |||
4051 | ||||
4052 | void | |||
4053 | pf_rule_to_actions(struct pf_rule *r, struct pf_rule_actions *a) | |||
4054 | { | |||
4055 | if (r->qid) | |||
4056 | a->qid = r->qid; | |||
4057 | if (r->pqid) | |||
4058 | a->pqid = r->pqid; | |||
4059 | if (r->rtableid >= 0) | |||
4060 | a->rtableid = r->rtableid; | |||
4061 | #if NPFLOG1 > 0 | |||
4062 | a->log |= r->log; | |||
4063 | #endif /* NPFLOG > 0 */ | |||
4064 | if (r->scrub_flags & PFSTATE_SETTOS0x0040) | |||
4065 | a->set_tos = r->set_tos; | |||
4066 | if (r->min_ttl) | |||
4067 | a->min_ttl = r->min_ttl; | |||
4068 | if (r->max_mss) | |||
4069 | a->max_mss = r->max_mss; | |||
4070 | a->flags |= (r->scrub_flags & (PFSTATE_NODF0x0020|PFSTATE_RANDOMID0x0080| | |||
4071 | PFSTATE_SETTOS0x0040|PFSTATE_SCRUB_TCP0x0100|PFSTATE_SETPRIO0x0200)); | |||
4072 | if (r->scrub_flags & PFSTATE_SETPRIO0x0200) { | |||
4073 | a->set_prio[0] = r->set_prio[0]; | |||
4074 | a->set_prio[1] = r->set_prio[1]; | |||
4075 | } | |||
4076 | if (r->rule_flag & PFRULE_SETDELAY0x0080) | |||
4077 | a->delay = r->delay; | |||
4078 | } | |||
4079 | ||||
4080 | #define PF_TEST_ATTRIB(t, a)if (t) { r = a; continue; } else do { } while (0) \ | |||
4081 | if (t) { \ | |||
4082 | r = a; \ | |||
4083 | continue; \ | |||
4084 | } else do { \ | |||
4085 | } while (0) | |||
4086 | ||||
4087 | enum pf_test_status | |||
4088 | pf_match_rule(struct pf_test_ctx *ctx, struct pf_ruleset *ruleset) | |||
4089 | { | |||
4090 | struct pf_rule *r; | |||
4091 | struct pf_anchor *child = NULL((void *)0); | |||
4092 | int target; | |||
4093 | ||||
4094 | pf_anchor_stack_init(); | |||
4095 | enter_ruleset: | |||
4096 | r = TAILQ_FIRST(ruleset->rules.active.ptr)((ruleset->rules.active.ptr)->tqh_first); | |||
4097 | while (r != NULL((void *)0)) { | |||
4098 | PF_TEST_ATTRIB(r->rule_flag & PFRULE_EXPIRED,if (r->rule_flag & 0x00400000) { r = ((r)->entries. tqe_next); continue; } else do { } while (0) | |||
4099 | TAILQ_NEXT(r, entries))if (r->rule_flag & 0x00400000) { r = ((r)->entries. tqe_next); continue; } else do { } while (0); | |||
4100 | r->evaluations++; | |||
4101 | PF_TEST_ATTRIB(if ((pfi_kif_match(r->kif, ctx->pd->kif) == r->ifnot )) { r = r->skip[0].ptr; continue; } else do { } while (0) | |||
4102 | (pfi_kif_match(r->kif, ctx->pd->kif) == r->ifnot),if ((pfi_kif_match(r->kif, ctx->pd->kif) == r->ifnot )) { r = r->skip[0].ptr; continue; } else do { } while (0) | |||
4103 | r->skip[PF_SKIP_IFP].ptr)if ((pfi_kif_match(r->kif, ctx->pd->kif) == r->ifnot )) { r = r->skip[0].ptr; continue; } else do { } while (0); | |||
4104 | PF_TEST_ATTRIB((r->direction && r->direction != ctx->pd->dir),if ((r->direction && r->direction != ctx->pd ->dir)) { r = r->skip[1].ptr; continue; } else do { } while (0) | |||
4105 | r->skip[PF_SKIP_DIR].ptr)if ((r->direction && r->direction != ctx->pd ->dir)) { r = r->skip[1].ptr; continue; } else do { } while (0); | |||
4106 | PF_TEST_ATTRIB((r->onrdomain >= 0 &&if ((r->onrdomain >= 0 && (r->onrdomain == ctx ->pd->rdomain) == r->ifnot)) { r = r->skip[2].ptr ; continue; } else do { } while (0) | |||
4107 | (r->onrdomain == ctx->pd->rdomain) == r->ifnot),if ((r->onrdomain >= 0 && (r->onrdomain == ctx ->pd->rdomain) == r->ifnot)) { r = r->skip[2].ptr ; continue; } else do { } while (0) | |||
4108 | r->skip[PF_SKIP_RDOM].ptr)if ((r->onrdomain >= 0 && (r->onrdomain == ctx ->pd->rdomain) == r->ifnot)) { r = r->skip[2].ptr ; continue; } else do { } while (0); | |||
4109 | PF_TEST_ATTRIB((r->af && r->af != ctx->pd->af),if ((r->af && r->af != ctx->pd->af)) { r = r->skip[3].ptr; continue; } else do { } while (0) | |||
4110 | r->skip[PF_SKIP_AF].ptr)if ((r->af && r->af != ctx->pd->af)) { r = r->skip[3].ptr; continue; } else do { } while (0); | |||
4111 | PF_TEST_ATTRIB((r->proto && r->proto != ctx->pd->proto),if ((r->proto && r->proto != ctx->pd->proto )) { r = r->skip[4].ptr; continue; } else do { } while (0) | |||
4112 | r->skip[PF_SKIP_PROTO].ptr)if ((r->proto && r->proto != ctx->pd->proto )) { r = r->skip[4].ptr; continue; } else do { } while (0); | |||
4113 | PF_TEST_ATTRIB((PF_MISMATCHAW(&r->src.addr, &ctx->pd->nsaddr,if ((( (((&r->src.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->nsaddr), (ctx->pd->naf ), ((void *)0), (ctx->act.rtableid))) || (((&r->src .addr)->type == PF_ADDR_URPFFAILED && (ctx->pd-> kif) != ((void *)0) && pf_routable((&ctx->pd-> nsaddr), (ctx->pd->naf), (ctx->pd->kif), (ctx-> act.rtableid))) || ((&r->src.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->nsaddr), ( ctx->pd->naf), (&r->src.addr), (ctx->act.rtableid ))) || ((&r->src.addr)->type == PF_ADDR_TABLE && !pfr_match_addr((&r->src.addr)->p.tbl, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_DYNIFTL && !pfi_match_addr((& r->src.addr)->p.dyn, (&ctx->pd->nsaddr), (ctx ->pd->naf))) || ((&r->src.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->src.addr)-> v.a.addr, &(&r->src.addr)->v.a.mask, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_ADDRMASK && !(((ctx->pd-> naf) == 2 && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[0]) || ((ctx->pd->naf) == 24 && !(&(&r->src.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->src.addr)->v.a.mask)->pfa .addr32[1] && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[2] && !(&(&r->src.addr)-> v.a.mask)->pfa.addr32[3] )) && !pf_match_addr(0, & (&r->src.addr)->v.a.addr, &(&r->src.addr )->v.a.mask, (&ctx->pd->nsaddr), (ctx->pd-> naf))))) != (r->src.neg) ))) { r = r->skip[5].ptr; continue ; } else do { } while (0) | |||
4114 | ctx->pd->naf, r->src.neg, ctx->pd->kif,if ((( (((&r->src.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->nsaddr), (ctx->pd->naf ), ((void *)0), (ctx->act.rtableid))) || (((&r->src .addr)->type == PF_ADDR_URPFFAILED && (ctx->pd-> kif) != ((void *)0) && pf_routable((&ctx->pd-> nsaddr), (ctx->pd->naf), (ctx->pd->kif), (ctx-> act.rtableid))) || ((&r->src.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->nsaddr), ( ctx->pd->naf), (&r->src.addr), (ctx->act.rtableid ))) || ((&r->src.addr)->type == PF_ADDR_TABLE && !pfr_match_addr((&r->src.addr)->p.tbl, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_DYNIFTL && !pfi_match_addr((& r->src.addr)->p.dyn, (&ctx->pd->nsaddr), (ctx ->pd->naf))) || ((&r->src.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->src.addr)-> v.a.addr, &(&r->src.addr)->v.a.mask, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_ADDRMASK && !(((ctx->pd-> naf) == 2 && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[0]) || ((ctx->pd->naf) == 24 && !(&(&r->src.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->src.addr)->v.a.mask)->pfa .addr32[1] && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[2] && !(&(&r->src.addr)-> v.a.mask)->pfa.addr32[3] )) && !pf_match_addr(0, & (&r->src.addr)->v.a.addr, &(&r->src.addr )->v.a.mask, (&ctx->pd->nsaddr), (ctx->pd-> naf))))) != (r->src.neg) ))) { r = r->skip[5].ptr; continue ; } else do { } while (0) | |||
4115 | ctx->act.rtableid)),if ((( (((&r->src.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->nsaddr), (ctx->pd->naf ), ((void *)0), (ctx->act.rtableid))) || (((&r->src .addr)->type == PF_ADDR_URPFFAILED && (ctx->pd-> kif) != ((void *)0) && pf_routable((&ctx->pd-> nsaddr), (ctx->pd->naf), (ctx->pd->kif), (ctx-> act.rtableid))) || ((&r->src.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->nsaddr), ( ctx->pd->naf), (&r->src.addr), (ctx->act.rtableid ))) || ((&r->src.addr)->type == PF_ADDR_TABLE && !pfr_match_addr((&r->src.addr)->p.tbl, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_DYNIFTL && !pfi_match_addr((& r->src.addr)->p.dyn, (&ctx->pd->nsaddr), (ctx ->pd->naf))) || ((&r->src.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->src.addr)-> v.a.addr, &(&r->src.addr)->v.a.mask, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_ADDRMASK && !(((ctx->pd-> naf) == 2 && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[0]) || ((ctx->pd->naf) == 24 && !(&(&r->src.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->src.addr)->v.a.mask)->pfa .addr32[1] && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[2] && !(&(&r->src.addr)-> v.a.mask)->pfa.addr32[3] )) && !pf_match_addr(0, & (&r->src.addr)->v.a.addr, &(&r->src.addr )->v.a.mask, (&ctx->pd->nsaddr), (ctx->pd-> naf))))) != (r->src.neg) ))) { r = r->skip[5].ptr; continue ; } else do { } while (0) | |||
4116 | r->skip[PF_SKIP_SRC_ADDR].ptr)if ((( (((&r->src.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->nsaddr), (ctx->pd->naf ), ((void *)0), (ctx->act.rtableid))) || (((&r->src .addr)->type == PF_ADDR_URPFFAILED && (ctx->pd-> kif) != ((void *)0) && pf_routable((&ctx->pd-> nsaddr), (ctx->pd->naf), (ctx->pd->kif), (ctx-> act.rtableid))) || ((&r->src.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->nsaddr), ( ctx->pd->naf), (&r->src.addr), (ctx->act.rtableid ))) || ((&r->src.addr)->type == PF_ADDR_TABLE && !pfr_match_addr((&r->src.addr)->p.tbl, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_DYNIFTL && !pfi_match_addr((& r->src.addr)->p.dyn, (&ctx->pd->nsaddr), (ctx ->pd->naf))) || ((&r->src.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->src.addr)-> v.a.addr, &(&r->src.addr)->v.a.mask, (&ctx-> pd->nsaddr), (ctx->pd->naf))) || ((&r->src.addr )->type == PF_ADDR_ADDRMASK && !(((ctx->pd-> naf) == 2 && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[0]) || ((ctx->pd->naf) == 24 && !(&(&r->src.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->src.addr)->v.a.mask)->pfa .addr32[1] && !(&(&r->src.addr)->v.a.mask )->pfa.addr32[2] && !(&(&r->src.addr)-> v.a.mask)->pfa.addr32[3] )) && !pf_match_addr(0, & (&r->src.addr)->v.a.addr, &(&r->src.addr )->v.a.mask, (&ctx->pd->nsaddr), (ctx->pd-> naf))))) != (r->src.neg) ))) { r = r->skip[5].ptr; continue ; } else do { } while (0); | |||
4117 | PF_TEST_ATTRIB((PF_MISMATCHAW(&r->dst.addr, &ctx->pd->ndaddr,if ((( (((&r->dst.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->ndaddr), (ctx->pd->af ), ((void *)0), (ctx->act.rtableid))) || (((&r->dst .addr)->type == PF_ADDR_URPFFAILED && (((void *)0) ) != ((void *)0) && pf_routable((&ctx->pd-> ndaddr), (ctx->pd->af), (((void *)0)), (ctx->act.rtableid ))) || ((&r->dst.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->ndaddr), (ctx->pd-> af), (&r->dst.addr), (ctx->act.rtableid))) || ((& r->dst.addr)->type == PF_ADDR_TABLE && !pfr_match_addr ((&r->dst.addr)->p.tbl, (&ctx->pd->ndaddr ), (ctx->pd->af))) || ((&r->dst.addr)->type == PF_ADDR_DYNIFTL && !pfi_match_addr((&r->dst.addr )->p.dyn, (&ctx->pd->ndaddr), (ctx->pd->af ))) || ((&r->dst.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->dst.addr)->v.a.addr , &(&r->dst.addr)->v.a.mask, (&ctx->pd-> ndaddr), (ctx->pd->af))) || ((&r->dst.addr)-> type == PF_ADDR_ADDRMASK && !(((ctx->pd->af) == 2 && !(&(&r->dst.addr)->v.a.mask)-> pfa.addr32[0]) || ((ctx->pd->af) == 24 && !(& (&r->dst.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->dst.addr)->v.a.mask)->pfa.addr32[1] && !(&(&r->dst.addr)->v.a.mask)->pfa .addr32[2] && !(&(&r->dst.addr)->v.a.mask )->pfa.addr32[3] )) && !pf_match_addr(0, &(& r->dst.addr)->v.a.addr, &(&r->dst.addr)-> v.a.mask, (&ctx->pd->ndaddr), (ctx->pd->af))) )) != (r->dst.neg) ))) { r = r->skip[6].ptr; continue; } else do { } while (0) | |||
4118 | ctx->pd->af, r->dst.neg, NULL, ctx->act.rtableid)),if ((( (((&r->dst.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->ndaddr), (ctx->pd->af ), ((void *)0), (ctx->act.rtableid))) || (((&r->dst .addr)->type == PF_ADDR_URPFFAILED && (((void *)0) ) != ((void *)0) && pf_routable((&ctx->pd-> ndaddr), (ctx->pd->af), (((void *)0)), (ctx->act.rtableid ))) || ((&r->dst.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->ndaddr), (ctx->pd-> af), (&r->dst.addr), (ctx->act.rtableid))) || ((& r->dst.addr)->type == PF_ADDR_TABLE && !pfr_match_addr ((&r->dst.addr)->p.tbl, (&ctx->pd->ndaddr ), (ctx->pd->af))) || ((&r->dst.addr)->type == PF_ADDR_DYNIFTL && !pfi_match_addr((&r->dst.addr )->p.dyn, (&ctx->pd->ndaddr), (ctx->pd->af ))) || ((&r->dst.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->dst.addr)->v.a.addr , &(&r->dst.addr)->v.a.mask, (&ctx->pd-> ndaddr), (ctx->pd->af))) || ((&r->dst.addr)-> type == PF_ADDR_ADDRMASK && !(((ctx->pd->af) == 2 && !(&(&r->dst.addr)->v.a.mask)-> pfa.addr32[0]) || ((ctx->pd->af) == 24 && !(& (&r->dst.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->dst.addr)->v.a.mask)->pfa.addr32[1] && !(&(&r->dst.addr)->v.a.mask)->pfa .addr32[2] && !(&(&r->dst.addr)->v.a.mask )->pfa.addr32[3] )) && !pf_match_addr(0, &(& r->dst.addr)->v.a.addr, &(&r->dst.addr)-> v.a.mask, (&ctx->pd->ndaddr), (ctx->pd->af))) )) != (r->dst.neg) ))) { r = r->skip[6].ptr; continue; } else do { } while (0) | |||
4119 | r->skip[PF_SKIP_DST_ADDR].ptr)if ((( (((&r->dst.addr)->type == PF_ADDR_NOROUTE && pf_routable((&ctx->pd->ndaddr), (ctx->pd->af ), ((void *)0), (ctx->act.rtableid))) || (((&r->dst .addr)->type == PF_ADDR_URPFFAILED && (((void *)0) ) != ((void *)0) && pf_routable((&ctx->pd-> ndaddr), (ctx->pd->af), (((void *)0)), (ctx->act.rtableid ))) || ((&r->dst.addr)->type == PF_ADDR_RTLABEL && !pf_rtlabel_match((&ctx->pd->ndaddr), (ctx->pd-> af), (&r->dst.addr), (ctx->act.rtableid))) || ((& r->dst.addr)->type == PF_ADDR_TABLE && !pfr_match_addr ((&r->dst.addr)->p.tbl, (&ctx->pd->ndaddr ), (ctx->pd->af))) || ((&r->dst.addr)->type == PF_ADDR_DYNIFTL && !pfi_match_addr((&r->dst.addr )->p.dyn, (&ctx->pd->ndaddr), (ctx->pd->af ))) || ((&r->dst.addr)->type == PF_ADDR_RANGE && !pf_match_addr_range(&(&r->dst.addr)->v.a.addr , &(&r->dst.addr)->v.a.mask, (&ctx->pd-> ndaddr), (ctx->pd->af))) || ((&r->dst.addr)-> type == PF_ADDR_ADDRMASK && !(((ctx->pd->af) == 2 && !(&(&r->dst.addr)->v.a.mask)-> pfa.addr32[0]) || ((ctx->pd->af) == 24 && !(& (&r->dst.addr)->v.a.mask)->pfa.addr32[0] && !(&(&r->dst.addr)->v.a.mask)->pfa.addr32[1] && !(&(&r->dst.addr)->v.a.mask)->pfa .addr32[2] && !(&(&r->dst.addr)->v.a.mask )->pfa.addr32[3] )) && !pf_match_addr(0, &(& r->dst.addr)->v.a.addr, &(&r->dst.addr)-> v.a.mask, (&ctx->pd->ndaddr), (ctx->pd->af))) )) != (r->dst.neg) ))) { r = r->skip[6].ptr; continue; } else do { } while (0); | |||
4120 | ||||
4121 | switch (ctx->pd->virtual_proto) { | |||
4122 | case PF_VPROTO_FRAGMENT256: | |||
4123 | /* tcp/udp only. port_op always 0 in other cases */ | |||
4124 | PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),if ((r->src.port_op || r->dst.port_op)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4125 | TAILQ_NEXT(r, entries))if ((r->src.port_op || r->dst.port_op)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0); | |||
4126 | PF_TEST_ATTRIB((ctx->pd->proto == IPPROTO_TCP &&if ((ctx->pd->proto == 6 && r->flagset)) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0) | |||
4127 | r->flagset),if ((ctx->pd->proto == 6 && r->flagset)) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0) | |||
4128 | TAILQ_NEXT(r, entries))if ((ctx->pd->proto == 6 && r->flagset)) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0); | |||
4129 | /* icmp only. type/code always 0 in other cases */ | |||
4130 | PF_TEST_ATTRIB((r->type || r->code),if ((r->type || r->code)) { r = ((r)->entries.tqe_next ); continue; } else do { } while (0) | |||
4131 | TAILQ_NEXT(r, entries))if ((r->type || r->code)) { r = ((r)->entries.tqe_next ); continue; } else do { } while (0); | |||
4132 | /* tcp/udp only. {uid|gid}.op always 0 in other cases */ | |||
4133 | PF_TEST_ATTRIB((r->gid.op || r->uid.op),if ((r->gid.op || r->uid.op)) { r = ((r)->entries.tqe_next ); continue; } else do { } while (0) | |||
4134 | TAILQ_NEXT(r, entries))if ((r->gid.op || r->uid.op)) { r = ((r)->entries.tqe_next ); continue; } else do { } while (0); | |||
4135 | break; | |||
4136 | ||||
4137 | case IPPROTO_TCP6: | |||
4138 | PF_TEST_ATTRIB(((r->flagset & ctx->th->th_flags) !=if (((r->flagset & ctx->th->th_flags) != r->flags )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4139 | r->flags),if (((r->flagset & ctx->th->th_flags) != r->flags )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4140 | TAILQ_NEXT(r, entries))if (((r->flagset & ctx->th->th_flags) != r->flags )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4141 | PF_TEST_ATTRIB((r->os_fingerprint != PF_OSFP_ANY &&if ((r->os_fingerprint != ((pf_osfp_t)0) && !pf_osfp_match (pf_osfp_fingerprint(ctx->pd), r->os_fingerprint))) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0) | |||
4142 | !pf_osfp_match(pf_osfp_fingerprint(ctx->pd),if ((r->os_fingerprint != ((pf_osfp_t)0) && !pf_osfp_match (pf_osfp_fingerprint(ctx->pd), r->os_fingerprint))) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0) | |||
4143 | r->os_fingerprint)),if ((r->os_fingerprint != ((pf_osfp_t)0) && !pf_osfp_match (pf_osfp_fingerprint(ctx->pd), r->os_fingerprint))) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0) | |||
4144 | TAILQ_NEXT(r, entries))if ((r->os_fingerprint != ((pf_osfp_t)0) && !pf_osfp_match (pf_osfp_fingerprint(ctx->pd), r->os_fingerprint))) { r = ((r)->entries.tqe_next); continue; } else do { } while ( 0); | |||
4145 | /* FALLTHROUGH */ | |||
4146 | ||||
4147 | case IPPROTO_UDP17: | |||
4148 | /* tcp/udp only. port_op always 0 in other cases */ | |||
4149 | PF_TEST_ATTRIB((r->src.port_op &&if ((r->src.port_op && !pf_match_port(r->src.port_op , r->src.port[0], r->src.port[1], ctx->pd->nsport ))) { r = r->skip[7].ptr; continue; } else do { } while (0 ) | |||
4150 | !pf_match_port(r->src.port_op, r->src.port[0],if ((r->src.port_op && !pf_match_port(r->src.port_op , r->src.port[0], r->src.port[1], ctx->pd->nsport ))) { r = r->skip[7].ptr; continue; } else do { } while (0 ) | |||
4151 | r->src.port[1], ctx->pd->nsport)),if ((r->src.port_op && !pf_match_port(r->src.port_op , r->src.port[0], r->src.port[1], ctx->pd->nsport ))) { r = r->skip[7].ptr; continue; } else do { } while (0 ) | |||
4152 | r->skip[PF_SKIP_SRC_PORT].ptr)if ((r->src.port_op && !pf_match_port(r->src.port_op , r->src.port[0], r->src.port[1], ctx->pd->nsport ))) { r = r->skip[7].ptr; continue; } else do { } while (0 ); | |||
4153 | PF_TEST_ATTRIB((r->dst.port_op &&if ((r->dst.port_op && !pf_match_port(r->dst.port_op , r->dst.port[0], r->dst.port[1], ctx->pd->ndport ))) { r = r->skip[8].ptr; continue; } else do { } while (0 ) | |||
4154 | !pf_match_port(r->dst.port_op, r->dst.port[0],if ((r->dst.port_op && !pf_match_port(r->dst.port_op , r->dst.port[0], r->dst.port[1], ctx->pd->ndport ))) { r = r->skip[8].ptr; continue; } else do { } while (0 ) | |||
4155 | r->dst.port[1], ctx->pd->ndport)),if ((r->dst.port_op && !pf_match_port(r->dst.port_op , r->dst.port[0], r->dst.port[1], ctx->pd->ndport ))) { r = r->skip[8].ptr; continue; } else do { } while (0 ) | |||
4156 | r->skip[PF_SKIP_DST_PORT].ptr)if ((r->dst.port_op && !pf_match_port(r->dst.port_op , r->dst.port[0], r->dst.port[1], ctx->pd->ndport ))) { r = r->skip[8].ptr; continue; } else do { } while (0 ); | |||
4157 | /* tcp/udp only. uid.op always 0 in other cases */ | |||
4158 | PF_TEST_ATTRIB((r->uid.op && (ctx->pd->lookup.done ||if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4159 | (ctx->pd->lookup.done =if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4160 | pf_socket_lookup(ctx->pd), 1)) &&if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4161 | !pf_match_uid(r->uid.op, r->uid.uid[0],if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4162 | r->uid.uid[1], ctx->pd->lookup.uid)),if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4163 | TAILQ_NEXT(r, entries))if ((r->uid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_uid(r->uid.op, r->uid.uid[0], r-> uid.uid[1], ctx->pd->lookup.uid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0); | |||
4164 | /* tcp/udp only. gid.op always 0 in other cases */ | |||
4165 | PF_TEST_ATTRIB((r->gid.op && (ctx->pd->lookup.done ||if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4166 | (ctx->pd->lookup.done =if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4167 | pf_socket_lookup(ctx->pd), 1)) &&if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4168 | !pf_match_gid(r->gid.op, r->gid.gid[0],if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4169 | r->gid.gid[1], ctx->pd->lookup.gid)),if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0) | |||
4170 | TAILQ_NEXT(r, entries))if ((r->gid.op && (ctx->pd->lookup.done || ( ctx->pd->lookup.done = pf_socket_lookup(ctx->pd), 1) ) && !pf_match_gid(r->gid.op, r->gid.gid[0], r-> gid.gid[1], ctx->pd->lookup.gid))) { r = ((r)->entries .tqe_next); continue; } else do { } while (0); | |||
4171 | break; | |||
4172 | ||||
4173 | case IPPROTO_ICMP1: | |||
4174 | /* icmp only. type always 0 in other cases */ | |||
4175 | PF_TEST_ATTRIB((r->type &&if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4176 | r->type != ctx->icmptype + 1),if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4177 | TAILQ_NEXT(r, entries))if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4178 | /* icmp only. type always 0 in other cases */ | |||
4179 | PF_TEST_ATTRIB((r->code &&if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4180 | r->code != ctx->icmpcode + 1),if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4181 | TAILQ_NEXT(r, entries))if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4182 | /* icmp only. don't create states on replies */ | |||
4183 | PF_TEST_ATTRIB((r->keep_state && !ctx->state_icmp &&if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4184 | (r->rule_flag & PFRULE_STATESLOPPY) == 0 &&if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4185 | ctx->icmp_dir != PF_IN),if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4186 | TAILQ_NEXT(r, entries))if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4187 | break; | |||
4188 | ||||
4189 | case IPPROTO_ICMPV658: | |||
4190 | /* icmp only. type always 0 in other cases */ | |||
4191 | PF_TEST_ATTRIB((r->type &&if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4192 | r->type != ctx->icmptype + 1),if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4193 | TAILQ_NEXT(r, entries))if ((r->type && r->type != ctx->icmptype + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4194 | /* icmp only. type always 0 in other cases */ | |||
4195 | PF_TEST_ATTRIB((r->code &&if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4196 | r->code != ctx->icmpcode + 1),if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4197 | TAILQ_NEXT(r, entries))if ((r->code && r->code != ctx->icmpcode + 1 )) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4198 | /* icmp only. don't create states on replies */ | |||
4199 | PF_TEST_ATTRIB((r->keep_state && !ctx->state_icmp &&if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN && ctx->icmptype != 136)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4200 | (r->rule_flag & PFRULE_STATESLOPPY) == 0 &&if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN && ctx->icmptype != 136)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4201 | ctx->icmp_dir != PF_IN &&if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN && ctx->icmptype != 136)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4202 | ctx->icmptype != ND_NEIGHBOR_ADVERT),if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN && ctx->icmptype != 136)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4203 | TAILQ_NEXT(r, entries))if ((r->keep_state && !ctx->state_icmp && (r->rule_flag & 0x00020000) == 0 && ctx->icmp_dir != PF_IN && ctx->icmptype != 136)) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0); | |||
4204 | break; | |||
4205 | ||||
4206 | default: | |||
4207 | break; | |||
4208 | } | |||
4209 | ||||
4210 | PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&if ((r->rule_flag & 0x0002 && ctx->pd->virtual_proto != 256)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4211 | ctx->pd->virtual_proto != PF_VPROTO_FRAGMENT),if ((r->rule_flag & 0x0002 && ctx->pd->virtual_proto != 256)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4212 | TAILQ_NEXT(r, entries))if ((r->rule_flag & 0x0002 && ctx->pd->virtual_proto != 256)) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4213 | PF_TEST_ATTRIB((r->tos && !(r->tos == ctx->pd->tos)),if ((r->tos && !(r->tos == ctx->pd->tos)) ) { r = ((r)->entries.tqe_next); continue; } else do { } while (0) | |||
4214 | TAILQ_NEXT(r, entries))if ((r->tos && !(r->tos == ctx->pd->tos)) ) { r = ((r)->entries.tqe_next); continue; } else do { } while (0); | |||
4215 | PF_TEST_ATTRIB((r->prob &&if ((r->prob && r->prob <= arc4random_uniform (0xffffffffU - 1) + 1)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4216 | r->prob <= arc4random_uniform(UINT_MAX - 1) + 1),if ((r->prob && r->prob <= arc4random_uniform (0xffffffffU - 1) + 1)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4217 | TAILQ_NEXT(r, entries))if ((r->prob && r->prob <= arc4random_uniform (0xffffffffU - 1) + 1)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0); | |||
4218 | PF_TEST_ATTRIB((r->match_tag &&if ((r->match_tag && !pf_match_tag(ctx->pd-> m, r, &ctx->tag))) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4219 | !pf_match_tag(ctx->pd->m, r, &ctx->tag)),if ((r->match_tag && !pf_match_tag(ctx->pd-> m, r, &ctx->tag))) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4220 | TAILQ_NEXT(r, entries))if ((r->match_tag && !pf_match_tag(ctx->pd-> m, r, &ctx->tag))) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0); | |||
4221 | PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(ctx->pd->m, r) ==if ((r->rcv_kif && pf_match_rcvif(ctx->pd->m , r) == r->rcvifnot)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4222 | r->rcvifnot),if ((r->rcv_kif && pf_match_rcvif(ctx->pd->m , r) == r->rcvifnot)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0) | |||
4223 | TAILQ_NEXT(r, entries))if ((r->rcv_kif && pf_match_rcvif(ctx->pd->m , r) == r->rcvifnot)) { r = ((r)->entries.tqe_next); continue ; } else do { } while (0); | |||
4224 | PF_TEST_ATTRIB((r->prio &&if ((r->prio && (r->prio == 0xff ? 0 : r->prio ) != ctx->pd->m->M_dat.MH.MH_pkthdr.pf.prio)) { r = ( (r)->entries.tqe_next); continue; } else do { } while (0) | |||
4225 | (r->prio == PF_PRIO_ZERO ? 0 : r->prio) !=if ((r->prio && (r->prio == 0xff ? 0 : r->prio ) != ctx->pd->m->M_dat.MH.MH_pkthdr.pf.prio)) { r = ( (r)->entries.tqe_next); continue; } else do { } while (0) | |||
4226 | ctx->pd->m->m_pkthdr.pf.prio),if ((r->prio && (r->prio == 0xff ? 0 : r->prio ) != ctx->pd->m->M_dat.MH.MH_pkthdr.pf.prio)) { r = ( (r)->entries.tqe_next); continue; } else do { } while (0) | |||
4227 | TAILQ_NEXT(r, entries))if ((r->prio && (r->prio == 0xff ? 0 : r->prio ) != ctx->pd->m->M_dat.MH.MH_pkthdr.pf.prio)) { r = ( (r)->entries.tqe_next); continue; } else do { } while (0); | |||
4228 | ||||
4229 | /* must be last! */ | |||
4230 | if (r->pktrate.limit) { | |||
4231 | pf_add_threshold(&r->pktrate); | |||
4232 | PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),if ((pf_check_threshold(&r->pktrate))) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0) | |||
4233 | TAILQ_NEXT(r, entries))if ((pf_check_threshold(&r->pktrate))) { r = ((r)-> entries.tqe_next); continue; } else do { } while (0); | |||
4234 | } | |||
4235 | ||||
4236 | /* FALLTHROUGH */ | |||
4237 | if (r->tag) | |||
4238 | ctx->tag = r->tag; | |||
4239 | if (r->anchor == NULL((void *)0)) { | |||
4240 | ||||
4241 | if (r->rule_flag & PFRULE_ONCE0x00100000) { | |||
4242 | u_int32_t rule_flag; | |||
4243 | ||||
4244 | rule_flag = r->rule_flag; | |||
4245 | if (((rule_flag & PFRULE_EXPIRED0x00400000) == 0) && | |||
4246 | atomic_cas_uint(&r->rule_flag, rule_flag,_atomic_cas_uint((&r->rule_flag), (rule_flag), (rule_flag | 0x00400000)) | |||
4247 | rule_flag | PFRULE_EXPIRED)_atomic_cas_uint((&r->rule_flag), (rule_flag), (rule_flag | 0x00400000)) == rule_flag) { | |||
4248 | r->exptime = gettime(); | |||
4249 | } else { | |||
4250 | r = TAILQ_NEXT(r, entries)((r)->entries.tqe_next); | |||
4251 | continue; | |||
4252 | } | |||
4253 | } | |||
4254 | ||||
4255 | if (r->action == PF_MATCH) { | |||
4256 | if ((ctx->ri = pool_get(&pf_rule_item_pl, | |||
4257 | PR_NOWAIT0x0002)) == NULL((void *)0)) { | |||
4258 | REASON_SET(&ctx->reason, PFRES_MEMORY)do { if ((void *)(&ctx->reason) != ((void *)0)) { *(& ctx->reason) = (5); if (5 < 17) pf_status.counters[5]++ ; } } while (0); | |||
4259 | return (PF_TEST_FAIL); | |||
4260 | } | |||
4261 | ctx->ri->r = r; | |||
4262 | /* order is irrelevant */ | |||
4263 | SLIST_INSERT_HEAD(&ctx->rules, ctx->ri, entry)do { (ctx->ri)->entry.sle_next = (&ctx->rules)-> slh_first; (&ctx->rules)->slh_first = (ctx->ri); } while (0); | |||
4264 | ctx->ri = NULL((void *)0); | |||
4265 | pf_rule_to_actions(r, &ctx->act); | |||
4266 | if (r->rule_flag & PFRULE_AFTO0x00200000) | |||
4267 | ctx->pd->naf = r->naf; | |||
4268 | if (pf_get_transaddr(r, ctx->pd, ctx->sns, | |||
4269 | &ctx->nr) == -1) { | |||
4270 | REASON_SET(&ctx->reason,do { if ((void *)(&ctx->reason) != ((void *)0)) { *(& ctx->reason) = (15); if (15 < 17) pf_status.counters[15 ]++; } } while (0) | |||
4271 | PFRES_TRANSLATE)do { if ((void *)(&ctx->reason) != ((void *)0)) { *(& ctx->reason) = (15); if (15 < 17) pf_status.counters[15 ]++; } } while (0); | |||
4272 | return (PF_TEST_FAIL); | |||
4273 | } | |||
4274 | #if NPFLOG1 > 0 | |||
4275 | if (r->log) { | |||
4276 | REASON_SET(&ctx->reason, PFRES_MATCH)do { if ((void *)(&ctx->reason) != ((void *)0)) { *(& ctx->reason) = (0); if (0 < 17) pf_status.counters[0]++ ; } } while (0); | |||
4277 | pflog_packet(ctx->pd, ctx->reason, r, | |||
4278 | ctx->a, ruleset, NULL((void *)0)); | |||
4279 | } | |||
4280 | #endif /* NPFLOG > 0 */ | |||
4281 | } else { | |||
4282 | /* | |||
4283 | * found matching r | |||
4284 | */ | |||
4285 | *ctx->rm = r; | |||
4286 | /* | |||
4287 | * anchor, with ruleset, where r belongs to | |||
4288 | */ | |||
4289 | *ctx->am = ctx->a; | |||
4290 | /* | |||
4291 | * ruleset where r belongs to | |||
4292 | */ | |||
4293 | *ctx->rsm = ruleset; | |||
4294 | /* | |||
4295 | * ruleset, where anchor belongs to. | |||
4296 | */ | |||
4297 | ctx->arsm = ctx->aruleset; | |||
4298 | } | |||
4299 | ||||
4300 | #if NPFLOG1 > 0 | |||
4301 | if (ctx->act.log & PF_LOG_MATCHES0x10) | |||
4302 | pf_log_matches(ctx->pd, r, ctx->a, ruleset, | |||
4303 | &ctx->rules); | |||
4304 | #endif /* NPFLOG > 0 */ | |||
4305 | ||||
4306 | if (r->quick) | |||
4307 | return (PF_TEST_QUICK); | |||
4308 | } else { | |||
4309 | ctx->a = r; | |||
4310 | ctx->aruleset = &r->anchor->ruleset; | |||
4311 | if (r->anchor_wildcard) { | |||
4312 | RB_FOREACH(child, pf_anchor_node,for ((child) = pf_anchor_node_RB_MINMAX(&r->anchor-> children, -1); (child) != ((void *)0); (child) = pf_anchor_node_RB_NEXT (child)) | |||
4313 | &r->anchor->children)for ((child) = pf_anchor_node_RB_MINMAX(&r->anchor-> children, -1); (child) != ((void *)0); (child) = pf_anchor_node_RB_NEXT (child)) { | |||
4314 | if (pf_anchor_stack_push(ruleset, r, | |||
4315 | child, PF_NEXT_CHILD) != 0) | |||
4316 | return (PF_TEST_FAIL); | |||
4317 | ||||
4318 | ruleset = &child->ruleset; | |||
4319 | goto enter_ruleset; | |||
4320 | next_child: | |||
4321 | continue; /* with RB_FOREACH() */ | |||
4322 | } | |||
4323 | } else { | |||
4324 | if (pf_anchor_stack_push(ruleset, r, child, | |||
4325 | PF_NEXT_RULE) != 0) | |||
4326 | return (PF_TEST_FAIL); | |||
4327 | ||||
4328 | ruleset = &r->anchor->ruleset; | |||
4329 | child = NULL((void *)0); | |||
4330 | goto enter_ruleset; | |||
4331 | next_rule: | |||
4332 | ; | |||
4333 | } | |||
4334 | } | |||
4335 | r = TAILQ_NEXT(r, entries)((r)->entries.tqe_next); | |||
4336 | } | |||
4337 | ||||
4338 | if (pf_anchor_stack_pop(&ruleset, &r, &child, &target) == 0) { | |||
4339 | /* stop if any rule matched within quick anchors. */ | |||
4340 | if (r->quick == PF_TEST_QUICK && *ctx->am == r) | |||
4341 | return (PF_TEST_QUICK); | |||
4342 | ||||
4343 | switch (target) { | |||
4344 | case PF_NEXT_CHILD: | |||
4345 | goto next_child; | |||
4346 | case PF_NEXT_RULE: | |||
4347 | goto next_rule; | |||
4348 | default: | |||
4349 | panic("%s: unknown jump target", __func__); | |||
4350 | } | |||
4351 | } | |||
4352 | ||||
4353 | return (PF_TEST_OK); | |||
4354 | } | |||
4355 | ||||
4356 | int | |||
4357 | pf_test_rule(struct pf_pdesc *pd, struct pf_rule **rm, struct pf_state **sm, | |||
4358 | struct pf_rule **am, struct pf_ruleset **rsm, u_short *reason) | |||
4359 | { | |||
4360 | struct pf_rule *r = NULL((void *)0); | |||
4361 | struct pf_rule *a = NULL((void *)0); | |||
4362 | struct pf_ruleset *ruleset = NULL((void *)0); | |||
4363 | struct pf_state_key *skw = NULL((void *)0), *sks = NULL((void *)0); | |||
4364 | int rewrite = 0; | |||
4365 | u_int16_t virtual_type, virtual_id; | |||
4366 | int action = PF_DROP; | |||
4367 | struct pf_test_ctx ctx; | |||
4368 | int rv; | |||
4369 | ||||
4370 | PF_ASSERT_LOCKED()do { if (rw_status(&pf_lock) != 0x0001UL) splassert_fail( 0x0001UL, rw_status(&pf_lock),__func__); } while (0); | |||
4371 | ||||
4372 | memset(&ctx, 0, sizeof(ctx))__builtin_memset((&ctx), (0), (sizeof(ctx))); | |||
4373 | ctx.pd = pd; | |||
4374 | ctx.rm = rm; | |||
4375 | ctx.am = am; | |||
4376 | ctx.rsm = rsm; | |||
4377 | ctx.th = &pd->hdr.tcp; | |||
4378 | ctx.act.rtableid = pd->rdomain; | |||
4379 | ctx.tag = -1; | |||
4380 | SLIST_INIT(&ctx.rules){ ((&ctx.rules)->slh_first) = ((void *)0); }; | |||
4381 | ||||
4382 | if (pd->dir == PF_IN && if_congested()) { | |||
4383 | REASON_SET(&ctx.reason, PFRES_CONGEST)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (7); if (7 < 17) pf_status.counters[7]++; } } while (0); | |||
4384 | return (PF_DROP); | |||
4385 | } | |||
4386 | ||||
4387 | switch (pd->virtual_proto) { | |||
4388 | case IPPROTO_ICMP1: | |||
4389 | ctx.icmptype = pd->hdr.icmp.icmp_type; | |||
4390 | ctx.icmpcode = pd->hdr.icmp.icmp_code; | |||
4391 | ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, | |||
4392 | &ctx.icmp_dir, &virtual_id, &virtual_type); | |||
4393 | if (ctx.icmp_dir == PF_IN) { | |||
4394 | pd->osport = pd->nsport = virtual_id; | |||
4395 | pd->odport = pd->ndport = virtual_type; | |||
4396 | } else { | |||
4397 | pd->osport = pd->nsport = virtual_type; | |||
4398 | pd->odport = pd->ndport = virtual_id; | |||
4399 | } | |||
4400 | break; | |||
4401 | #ifdef INET61 | |||
4402 | case IPPROTO_ICMPV658: | |||
4403 | ctx.icmptype = pd->hdr.icmp6.icmp6_type; | |||
4404 | ctx.icmpcode = pd->hdr.icmp6.icmp6_code; | |||
4405 | ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, | |||
4406 | &ctx.icmp_dir, &virtual_id, &virtual_type); | |||
4407 | if (ctx.icmp_dir == PF_IN) { | |||
4408 | pd->osport = pd->nsport = virtual_id; | |||
4409 | pd->odport = pd->ndport = virtual_type; | |||
4410 | } else { | |||
4411 | pd->osport = pd->nsport = virtual_type; | |||
4412 | pd->odport = pd->ndport = virtual_id; | |||
4413 | } | |||
4414 | break; | |||
4415 | #endif /* INET6 */ | |||
4416 | } | |||
4417 | ||||
4418 | ruleset = &pf_main_rulesetpf_main_anchor.ruleset; | |||
4419 | rv = pf_match_rule(&ctx, ruleset); | |||
4420 | if (rv == PF_TEST_FAIL) { | |||
4421 | /* | |||
4422 | * Reason has been set in pf_match_rule() already. | |||
4423 | */ | |||
4424 | goto cleanup; | |||
4425 | } | |||
4426 | ||||
4427 | r = *ctx.rm; /* matching rule */ | |||
4428 | a = *ctx.am; /* rule that defines an anchor containing 'r' */ | |||
4429 | ruleset = *ctx.rsm;/* ruleset of the anchor defined by the rule 'a' */ | |||
4430 | ctx.aruleset = ctx.arsm;/* ruleset of the 'a' rule itself */ | |||
4431 | ||||
4432 | /* apply actions for last matching pass/block rule */ | |||
4433 | pf_rule_to_actions(r, &ctx.act); | |||
4434 | if (r->rule_flag & PFRULE_AFTO0x00200000) | |||
4435 | pd->naf = r->naf; | |||
4436 | if (pf_get_transaddr(r, pd, ctx.sns, &ctx.nr) == -1) { | |||
4437 | REASON_SET(&ctx.reason, PFRES_TRANSLATE)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (15); if (15 < 17) pf_status.counters[15]++; } } while (0); | |||
4438 | goto cleanup; | |||
4439 | } | |||
4440 | REASON_SET(&ctx.reason, PFRES_MATCH)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (0); if (0 < 17) pf_status.counters[0]++; } } while (0); | |||
4441 | ||||
4442 | #if NPFLOG1 > 0 | |||
4443 | if (r->log) | |||
4444 | pflog_packet(pd, ctx.reason, r, a, ruleset, NULL((void *)0)); | |||
4445 | if (ctx.act.log & PF_LOG_MATCHES0x10) | |||
4446 | pf_log_matches(pd, r, a, ruleset, &ctx.rules); | |||
4447 | #endif /* NPFLOG > 0 */ | |||
4448 | ||||
4449 | if (pd->virtual_proto != PF_VPROTO_FRAGMENT256 && | |||
4450 | (r->action == PF_DROP) && | |||
4451 | ((r->rule_flag & PFRULE_RETURNRST0x0001) || | |||
4452 | (r->rule_flag & PFRULE_RETURNICMP0x0004) || | |||
4453 | (r->rule_flag & PFRULE_RETURN0x0008))) { | |||
4454 | if (pd->proto == IPPROTO_TCP6 && | |||
4455 | ((r->rule_flag & PFRULE_RETURNRST0x0001) || | |||
4456 | (r->rule_flag & PFRULE_RETURN0x0008)) && | |||
4457 | !(ctx.th->th_flags & TH_RST0x04)) { | |||
4458 | u_int32_t ack = | |||
4459 | ntohl(ctx.th->th_seq)(__uint32_t)(__builtin_constant_p(ctx.th->th_seq) ? (__uint32_t )(((__uint32_t)(ctx.th->th_seq) & 0xff) << 24 | ( (__uint32_t)(ctx.th->th_seq) & 0xff00) << 8 | (( __uint32_t)(ctx.th->th_seq) & 0xff0000) >> 8 | ( (__uint32_t)(ctx.th->th_seq) & 0xff000000) >> 24 ) : __swap32md(ctx.th->th_seq)) + pd->p_len; | |||
4460 | ||||
4461 | if (pf_check_tcp_cksum(pd->m, pd->off, | |||
4462 | pd->tot_len - pd->off, pd->af)) | |||
4463 | REASON_SET(&ctx.reason, PFRES_PROTCKSUM)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (9); if (9 < 17) pf_status.counters[9]++; } } while (0); | |||
4464 | else { | |||
4465 | if (ctx.th->th_flags & TH_SYN0x02) | |||
4466 | ack++; | |||
4467 | if (ctx.th->th_flags & TH_FIN0x01) | |||
4468 | ack++; | |||
4469 | pf_send_tcp(r, pd->af, pd->dst, | |||
4470 | pd->src, ctx.th->th_dport, | |||
4471 | ctx.th->th_sport, ntohl(ctx.th->th_ack)(__uint32_t)(__builtin_constant_p(ctx.th->th_ack) ? (__uint32_t )(((__uint32_t)(ctx.th->th_ack) & 0xff) << 24 | ( (__uint32_t)(ctx.th->th_ack) & 0xff00) << 8 | (( __uint32_t)(ctx.th->th_ack) & 0xff0000) >> 8 | ( (__uint32_t)(ctx.th->th_ack) & 0xff000000) >> 24 ) : __swap32md(ctx.th->th_ack)), | |||
4472 | ack, TH_RST0x04|TH_ACK0x10, 0, 0, r->return_ttl, | |||
4473 | 1, 0, pd->rdomain); | |||
4474 | } | |||
4475 | } else if ((pd->proto != IPPROTO_ICMP1 || | |||
4476 | ICMP_INFOTYPE(ctx.icmptype)((ctx.icmptype) == 0 || (ctx.icmptype) == 8 || (ctx.icmptype) == 9 || (ctx.icmptype) == 10 || (ctx.icmptype) == 13 || (ctx .icmptype) == 14 || (ctx.icmptype) == 15 || (ctx.icmptype) == 16 || (ctx.icmptype) == 17 || (ctx.icmptype) == 18)) && pd->af == AF_INET2 && | |||
4477 | r->return_icmp) | |||
4478 | pf_send_icmp(pd->m, r->return_icmp >> 8, | |||
4479 | r->return_icmp & 255, 0, pd->af, r, pd->rdomain); | |||
4480 | else if ((pd->proto != IPPROTO_ICMPV658 || | |||
4481 | (ctx.icmptype >= ICMP6_ECHO_REQUEST128 && | |||
4482 | ctx.icmptype != ND_REDIRECT137)) && pd->af == AF_INET624 && | |||
4483 | r->return_icmp6) | |||
4484 | pf_send_icmp(pd->m, r->return_icmp6 >> 8, | |||
4485 | r->return_icmp6 & 255, 0, pd->af, r, pd->rdomain); | |||
4486 | } | |||
4487 | ||||
4488 | if (r->action == PF_DROP) | |||
4489 | goto cleanup; | |||
4490 | ||||
4491 | pf_tag_packet(pd->m, ctx.tag, ctx.act.rtableid); | |||
4492 | if (ctx.act.rtableid >= 0 && | |||
4493 | rtable_l2(ctx.act.rtableid) != pd->rdomain) | |||
4494 | pd->destchg = 1; | |||
4495 | ||||
4496 | if (r->action == PF_PASS && pd->badopts != 0 && ! r->allow_opts) { | |||
4497 | REASON_SET(&ctx.reason, PFRES_IPOPTIONS)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (8); if (8 < 17) pf_status.counters[8]++; } } while (0); | |||
4498 | #if NPFLOG1 > 0 | |||
4499 | pd->pflog |= PF_LOG_FORCE0x08; | |||
4500 | #endif /* NPFLOG > 0 */ | |||
4501 | DPFPRINTF(LOG_NOTICE, "dropping packet with "do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "dropping packet with " "ip/ipv6 options in pf_test_rule()"); addlog("\n"); } } while (0) | |||
4502 | "ip/ipv6 options in pf_test_rule()")do { if (pf_status.debug >= (5)) { log(5, "pf: "); addlog( "dropping packet with " "ip/ipv6 options in pf_test_rule()"); addlog("\n"); } } while (0); | |||
4503 | goto cleanup; | |||
4504 | } | |||
4505 | ||||
4506 | if (pd->virtual_proto != PF_VPROTO_FRAGMENT256 | |||
4507 | && !ctx.state_icmp && r->keep_state) { | |||
4508 | ||||
4509 | if (r->rule_flag & PFRULE_SRCTRACK0x0020 && | |||
4510 | pf_insert_src_node(&ctx.sns[PF_SN_NONE], r, PF_SN_NONE, | |||
4511 | pd->af, pd->src, NULL((void *)0), NULL((void *)0)) != 0) { | |||
4512 | REASON_SET(&ctx.reason, PFRES_SRCLIMIT)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (13); if (13 < 17) pf_status.counters[13]++; } } while (0); | |||
4513 | goto cleanup; | |||
4514 | } | |||
4515 | ||||
4516 | if (r->max_states && (r->states_cur >= r->max_states)) { | |||
4517 | pf_status.lcounters[LCNT_STATES0]++; | |||
4518 | REASON_SET(&ctx.reason, PFRES_MAXSTATES)do { if ((void *)(&ctx.reason) != ((void *)0)) { *(&ctx .reason) = (12); if (12 < 17) pf_status.counters[12]++; } } while (0); | |||
4519 | goto cleanup; | |||
4520 | } | |||
4521 | ||||
4522 | action = pf_create_state(pd, r, a, ctx.nr, &skw, &sks, | |||
4523 | &rewrite, sm, ctx.tag, &ctx.rules, &ctx.act, ctx.sns); | |||
4524 | ||||
4525 | if (action != PF_PASS) | |||
4526 | goto cleanup; | |||
4527 | if (sks != skw) { | |||
4528 | struct pf_state_key *sk; | |||
4529 | ||||
4530 | if (pd->dir == PF_IN) | |||
4531 | sk = sks; | |||
4532 | else | |||
4533 | sk = skw; | |||
4534 | rewrite += pf_translate(pd, | |||
4535 | &sk->addr[pd->af == pd->naf ? pd->sidx : pd->didx], | |||
4536 | sk->port[pd->af == pd->naf ? pd->sidx : pd->didx], | |||
4537 | &sk->addr[pd->af == pd->naf ? pd->didx : pd->sidx], | |||
4538 | sk->port[pd->af == pd->naf ? pd->didx : pd->sidx], | |||
4539 | virtual_type, ctx.icmp_dir); | |||
4540 | } | |||
4541 | ||||
4542 | #ifdef INET61 | |||
4543 | if (rewrite && skw->af != sks->af) | |||
4544 | action = PF_AFRT; | |||
4545 | #endif /* INET6 */ | |||
4546 | ||||
4547 | } else { | |||
4548 | action = PF_PASS; | |||
4549 | ||||
4550 | while ((ctx.ri = SLIST_FIRST(&ctx.rules)((&ctx.rules)->slh_first))) { | |||
4551 | SLIST_REMOVE_HEAD(&ctx.rules, entry)do { (&ctx.rules)->slh_first = (&ctx.rules)->slh_first ->entry.sle_next; } while (0); | |||
4552 | pool_put(&pf_rule_item_pl, ctx.ri); | |||
4553 | } | |||
4554 | } | |||
4555 | ||||
4556 | /* copy back packet headers if needed */ | |||
4557 | if (rewrite && pd->hdrlen) { | |||
4558 | m_copyback(pd->m, pd->off, pd->hdrlen, &pd->hdr, M_NOWAIT0x0002); | |||
4559 | } | |||
4560 | ||||
4561 | #if NPFSYNC1 > 0 | |||
4562 | if (*sm != NULL((void *)0) && !ISSET((*sm)->state_flags, PFSTATE_NOSYNC)(((*sm)->state_flags) & (0x0008)) && | |||
4563 | pd->dir == PF_OUT && pfsync_is_up()) { | |||
4564 | /* | |||
4565 | * We want the state created, but we dont | |||
4566 | * want to send this in case a partner | |||
4567 | * firewall has to know about it to allow | |||
4568 | * replies through it. | |||
4569 | */ | |||
4570 | if (pfsync_defer(*sm, pd->m)) | |||
4571 | return (PF_DEFER); | |||
4572 | } | |||
4573 | #endif /* NPFSYNC > 0 */ | |||
4574 | ||||
4575 | return (action); | |||
4576 | ||||
4577 | cleanup: | |||
4578 | while ((ctx.ri = SLIST_FIRST(&ctx.rules)((&ctx.rules)->slh_first))) { | |||
4579 | SLIST_REMOVE_HEAD(&ctx.rules, entry)do { (&ctx.rules)->slh_first = (&ctx.rules)->slh_first ->entry.sle_next; } while (0); | |||
4580 | pool_put(&pf_rule_item_pl, ctx.ri); | |||
4581 | } | |||
4582 | ||||
4583 | return (action); | |||
4584 | } | |||
4585 | ||||
4586 | static __inline int | |||
4587 | pf_create_state(struct pf_pdesc *pd, struct pf_rule *r, struct pf_rule *a, | |||
4588 | struct pf_rule *nr, struct pf_state_key **skw, struct pf_state_key **sks, | |||
4589 | int *rewrite, struct pf_state **sm, int tag, struct pf_rule_slist *rules, | |||
4590 | struct pf_rule_actions *act, struct pf_src_node *sns[PF_SN_MAX]) | |||
4591 | { | |||
4592 | struct pf_state *st = NULL((void *)0); | |||
4593 | struct tcphdr *th = &pd->hdr.tcp; | |||
4594 | u_int16_t mss = tcp_mssdflt; | |||
4595 | u_short reason; | |||
4596 | u_int i; | |||
4597 | ||||
4598 | st = pool_get(&pf_state_pl, PR_NOWAIT0x0002 | PR_ZERO0x0008); | |||
4599 | if (st == NULL((void *)0)) { | |||
4600 | REASON_SET(&reason, PFRES_MEMORY)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (5); if (5 < 17) pf_status.counters[5]++; } } while (0 ); | |||
4601 | goto csfailed; | |||
4602 | } | |||
4603 | st->rule.ptr = r; | |||
4604 | st->anchor.ptr = a; | |||
4605 | st->natrule.ptr = nr; | |||
4606 | if (r->allow_opts) | |||
4607 | st->state_flags |= PFSTATE_ALLOWOPTS0x0001; | |||
4608 | if (r->rule_flag & PFRULE_STATESLOPPY0x00020000) | |||
4609 | st->state_flags |= PFSTATE_SLOPPY0x0002; | |||
4610 | if (r->rule_flag & PFRULE_PFLOW0x00040000) | |||
4611 | st->state_flags |= PFSTATE_PFLOW0x0004; | |||
4612 | if (r->rule_flag & PFRULE_NOSYNC0x0010) | |||
4613 | st->state_flags |= PFSTATE_NOSYNC0x0008; | |||
4614 | #if NPFLOG1 > 0 | |||
4615 | st->log = act->log & PF_LOG_ALL0x02; | |||
4616 | #endif /* NPFLOG > 0 */ | |||
4617 | st->qid = act->qid; | |||
4618 | st->pqid = act->pqid; | |||
4619 | st->rtableid[pd->didx] = act->rtableid; | |||
4620 | st->rtableid[pd->sidx] = -1; /* return traffic is routed normally */ | |||
4621 | st->min_ttl = act->min_ttl; | |||
4622 | st->set_tos = act->set_tos; | |||
4623 | st->max_mss = act->max_mss; | |||
4624 | st->state_flags |= act->flags; | |||
4625 | #if NPFSYNC1 > 0 | |||
4626 | st->sync_state = PFSYNC_S_NONE0xd0; | |||
4627 | #endif /* NPFSYNC > 0 */ | |||
4628 | st->set_prio[0] = act->set_prio[0]; | |||
4629 | st->set_prio[1] = act->set_prio[1]; | |||
4630 | st->delay = act->delay; | |||
4631 | SLIST_INIT(&st->src_nodes){ ((&st->src_nodes)->slh_first) = ((void *)0); }; | |||
4632 | ||||
4633 | /* | |||
4634 | * must initialize refcnt, before pf_state_insert() gets called. | |||
4635 | * pf_state_inserts() grabs reference for pfsync! | |||
4636 | */ | |||
4637 | PF_REF_INIT(st->refcnt)refcnt_init(&(st->refcnt)); | |||
4638 | mtx_init(&st->mtx, IPL_NET)do { (void)(((void *)0)); (void)(0); __mtx_init((&st-> mtx), ((((0x4)) > 0x0 && ((0x4)) < 0x9) ? 0x9 : ((0x4)))); } while (0); | |||
4639 | ||||
4640 | switch (pd->proto) { | |||
4641 | case IPPROTO_TCP6: | |||
4642 | st->src.seqlo = ntohl(th->th_seq)(__uint32_t)(__builtin_constant_p(th->th_seq) ? (__uint32_t )(((__uint32_t)(th->th_seq) & 0xff) << 24 | ((__uint32_t )(th->th_seq) & 0xff00) << 8 | ((__uint32_t)(th-> th_seq) & 0xff0000) >> 8 | ((__uint32_t)(th->th_seq ) & 0xff000000) >> 24) : __swap32md(th->th_seq)); | |||
4643 | st->src.seqhi = st->src.seqlo + pd->p_len + 1; | |||
4644 | if ((th->th_flags & (TH_SYN0x02|TH_ACK0x10)) == TH_SYN0x02 && | |||
4645 | r->keep_state == PF_STATE_MODULATE0x2) { | |||
4646 | /* Generate sequence number modulator */ | |||
4647 | st->src.seqdiff = pf_tcp_iss(pd) - st->src.seqlo; | |||
4648 | if (st->src.seqdiff == 0) | |||
4649 | st->src.seqdiff = 1; | |||
4650 | pf_patch_32(pd, &th->th_seq, | |||
4651 | htonl(st->src.seqlo + st->src.seqdiff)(__uint32_t)(__builtin_constant_p(st->src.seqlo + st->src .seqdiff) ? (__uint32_t)(((__uint32_t)(st->src.seqlo + st-> src.seqdiff) & 0xff) << 24 | ((__uint32_t)(st->src .seqlo + st->src.seqdiff) & 0xff00) << 8 | ((__uint32_t )(st->src.seqlo + st->src.seqdiff) & 0xff0000) >> 8 | ((__uint32_t)(st->src.seqlo + st->src.seqdiff) & 0xff000000) >> 24) : __swap32md(st->src.seqlo + st-> src.seqdiff))); | |||
4652 | *rewrite = 1; | |||
4653 | } else | |||
4654 | st->src.seqdiff = 0; | |||
4655 | if (th->th_flags & TH_SYN0x02) { | |||
4656 | st->src.seqhi++; | |||
4657 | st->src.wscale = pf_get_wscale(pd); | |||
4658 | } | |||
4659 | st->src.max_win = MAX(ntohs(th->th_win), 1)((((__uint16_t)(__builtin_constant_p(th->th_win) ? (__uint16_t )(((__uint16_t)(th->th_win) & 0xffU) << 8 | ((__uint16_t )(th->th_win) & 0xff00U) >> 8) : __swap16md(th-> th_win)))>(1))?((__uint16_t)(__builtin_constant_p(th->th_win ) ? (__uint16_t)(((__uint16_t)(th->th_win) & 0xffU) << 8 | ((__uint16_t)(th->th_win) & 0xff00U) >> 8) : __swap16md(th->th_win))):(1)); | |||
4660 | if (st->src.wscale & PF_WSCALE_MASK0x0f) { | |||
4661 | /* Remove scale factor from initial window */ | |||
4662 | int win = st->src.max_win; | |||
4663 | win += 1 << (st->src.wscale & PF_WSCALE_MASK0x0f); | |||
4664 | st->src.max_win = (win - 1) >> | |||
4665 | (st->src.wscale & PF_WSCALE_MASK0x0f); | |||
4666 | } | |||
4667 | if (th->th_flags & TH_FIN0x01) | |||
4668 | st->src.seqhi++; | |||
4669 | st->dst.seqhi = 1; | |||
4670 | st->dst.max_win = 1; | |||
4671 | pf_set_protostate(st, PF_PEER_SRC, TCPS_SYN_SENT2); | |||
4672 | pf_set_protostate(st, PF_PEER_DST, TCPS_CLOSED0); | |||
4673 | st->timeout = PFTM_TCP_FIRST_PACKET; | |||
4674 | pf_status.states_halfopen++; | |||
4675 | break; | |||
4676 | case IPPROTO_UDP17: | |||
4677 | pf_set_protostate(st, PF_PEER_SRC, PFUDPS_SINGLE1); | |||
4678 | pf_set_protostate(st, PF_PEER_DST, PFUDPS_NO_TRAFFIC0); | |||
4679 | st->timeout = PFTM_UDP_FIRST_PACKET; | |||
4680 | break; | |||
4681 | case IPPROTO_ICMP1: | |||
4682 | #ifdef INET61 | |||
4683 | case IPPROTO_ICMPV658: | |||
4684 | #endif /* INET6 */ | |||
4685 | st->timeout = PFTM_ICMP_FIRST_PACKET; | |||
4686 | break; | |||
4687 | default: | |||
4688 | pf_set_protostate(st, PF_PEER_SRC, PFOTHERS_SINGLE1); | |||
4689 | pf_set_protostate(st, PF_PEER_DST, PFOTHERS_NO_TRAFFIC0); | |||
4690 | st->timeout = PFTM_OTHER_FIRST_PACKET; | |||
4691 | } | |||
4692 | ||||
4693 | st->creation = getuptime(); | |||
4694 | st->expire = getuptime(); | |||
4695 | ||||
4696 | if (pd->proto == IPPROTO_TCP6) { | |||
4697 | if (st->state_flags & PFSTATE_SCRUB_TCP0x0100 && | |||
4698 | pf_normalize_tcp_init(pd, &st->src)) { | |||
4699 | REASON_SET(&reason, PFRES_MEMORY)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (5); if (5 < 17) pf_status.counters[5]++; } } while (0 ); | |||
4700 | goto csfailed; | |||
4701 | } | |||
4702 | if (st->state_flags & PFSTATE_SCRUB_TCP0x0100 && st->src.scrub && | |||
4703 | pf_normalize_tcp_stateful(pd, &reason, st, | |||
4704 | &st->src, &st->dst, rewrite)) { | |||
4705 | /* This really shouldn't happen!!! */ | |||
4706 | DPFPRINTF(LOG_ERR,do { if (pf_status.debug >= (3)) { log(3, "pf: "); addlog( "%s: tcp normalize failed on first pkt", __func__); addlog("\n" ); } } while (0) | |||
4707 | "%s: tcp normalize failed on first pkt", __func__)do { if (pf_status.debug >= (3)) { log(3, "pf: "); addlog( "%s: tcp normalize failed on first pkt", __func__); addlog("\n" ); } } while (0); | |||
4708 | goto csfailed; | |||
4709 | } | |||
4710 | } | |||
4711 | st->direction = pd->dir; | |||
4712 | ||||
4713 | if (pf_state_key_setup(pd, skw, sks, act->rtableid)) { | |||
4714 | REASON_SET(&reason, PFRES_MEMORY)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (5); if (5 < 17) pf_status.counters[5]++; } } while (0 ); | |||
4715 | goto csfailed; | |||
4716 | } | |||
4717 | ||||
4718 | if (pf_set_rt_ifp(st, pd->src, (*skw)->af, sns) != 0) { | |||
4719 | REASON_SET(&reason, PFRES_NOROUTE)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (16); if (16 < 17) pf_status.counters[16]++; } } while (0); | |||
4720 | goto csfailed; | |||
4721 | } | |||
4722 | ||||
4723 | for (i = 0; i < PF_SN_MAX; i++) | |||
4724 | if (sns[i] != NULL((void *)0)) { | |||
4725 | struct pf_sn_item *sni; | |||
4726 | ||||
4727 | sni = pool_get(&pf_sn_item_pl, PR_NOWAIT0x0002); | |||
4728 | if (sni == NULL((void *)0)) { | |||
4729 | REASON_SET(&reason, PFRES_MEMORY)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (5); if (5 < 17) pf_status.counters[5]++; } } while (0 ); | |||
4730 | goto csfailed; | |||
4731 | } | |||
4732 | sni->sn = sns[i]; | |||
4733 | SLIST_INSERT_HEAD(&st->src_nodes, sni, next)do { (sni)->next.sle_next = (&st->src_nodes)->slh_first ; (&st->src_nodes)->slh_first = (sni); } while (0); | |||
4734 | sni->sn->states++; | |||
4735 | } | |||
4736 | ||||
4737 | #if NPFSYNC1 > 0 | |||
4738 | pfsync_init_state(st, *skw, *sks, 0); | |||
4739 | #endif | |||
4740 | ||||
4741 | if (pf_state_insert(BOUND_IFACE(r, pd->kif)((r)->rule_flag & 0x00010000) ? (pd->kif) : pfi_all, skw, sks, st)) { | |||
4742 | *sks = *skw = NULL((void *)0); | |||
4743 | REASON_SET(&reason, PFRES_STATEINS)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (11); if (11 < 17) pf_status.counters[11]++; } } while (0); | |||
4744 | goto csfailed; | |||
4745 | } else | |||
4746 | *sm = st; | |||
4747 | ||||
4748 | /* | |||
4749 | * Make state responsible for rules it binds here. | |||
4750 | */ | |||
4751 | memcpy(&st->match_rules, rules, sizeof(st->match_rules))__builtin_memcpy((&st->match_rules), (rules), (sizeof( st->match_rules))); | |||
4752 | memset(rules, 0, sizeof(*rules))__builtin_memset((rules), (0), (sizeof(*rules))); | |||
4753 | STATE_INC_COUNTERS(st)do { struct pf_rule_item *mrm; st->rule.ptr->states_cur ++; st->rule.ptr->states_tot++; if (st->anchor.ptr != ((void *)0)) { st->anchor.ptr->states_cur++; st->anchor .ptr->states_tot++; } for((mrm) = ((&st->match_rules )->slh_first); (mrm) != ((void *)0); (mrm) = ((mrm)->entry .sle_next)) mrm->r->states_cur++; } while (0); | |||
4754 | ||||
4755 | if (tag > 0) { | |||
4756 | pf_tag_ref(tag); | |||
4757 | st->tag = tag; | |||
4758 | } | |||
4759 | if (pd->proto == IPPROTO_TCP6 && (th->th_flags & (TH_SYN0x02|TH_ACK0x10)) == | |||
4760 | TH_SYN0x02 && r->keep_state == PF_STATE_SYNPROXY0x3 && pd->dir == PF_IN) { | |||
4761 | int rtid = pd->rdomain; | |||
4762 | if (act->rtableid >= 0) | |||
4763 | rtid = act->rtableid; | |||
4764 | pf_set_protostate(st, PF_PEER_SRC, PF_TCPS_PROXY_SRC((11)+0)); | |||
4765 | st->src.seqhi = arc4random(); | |||
4766 | /* Find mss option */ | |||
4767 | mss = pf_get_mss(pd); | |||
4768 | mss = pf_calc_mss(pd->src, pd->af, rtid, mss); | |||
4769 | mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); | |||
4770 | st->src.mss = mss; | |||
4771 | pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, | |||
4772 | th->th_sport, st->src.seqhi, ntohl(th->th_seq)(__uint32_t)(__builtin_constant_p(th->th_seq) ? (__uint32_t )(((__uint32_t)(th->th_seq) & 0xff) << 24 | ((__uint32_t )(th->th_seq) & 0xff00) << 8 | ((__uint32_t)(th-> th_seq) & 0xff0000) >> 8 | ((__uint32_t)(th->th_seq ) & 0xff000000) >> 24) : __swap32md(th->th_seq)) + 1, | |||
4773 | TH_SYN0x02|TH_ACK0x10, 0, st->src.mss, 0, 1, 0, pd->rdomain); | |||
4774 | REASON_SET(&reason, PFRES_SYNPROXY)do { if ((void *)(&reason) != ((void *)0)) { *(&reason ) = (14); if (14 < 17) pf_status.counters[14]++; } } while (0); | |||
4775 | return (PF_SYNPROXY_DROP); | |||
4776 | } | |||
4777 | ||||
4778 | return (PF_PASS); | |||
4779 | ||||
4780 | csfailed: | |||
4781 | if (st) { | |||
4782 | pf_normalize_tcp_cleanup(st); /* safe even w/o init */ | |||
4783 | pf_src_tree_remove_state(st); | |||
4784 | pool_put(&pf_state_pl, st); | |||
4785 | } | |||
4786 | ||||
4787 | for (i = 0; i < PF_SN_MAX; i++) | |||
4788 | if (sns[i] != NULL((void *)0)) | |||
4789 | pf_remove_src_node(sns[i]); | |||
4790 | ||||
4791 | return (PF_DROP); | |||
4792 | } | |||
4793 | ||||
4794 | int | |||
4795 | pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, | |||
4796 | struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, | |||
4797 | int icmp_dir) | |||
4798 | { | |||
4799 | int rewrite = 0; | |||
4800 | int afto = pd->af != pd->naf; | |||
4801 | ||||
4802 | if (afto || PF_ANEQ(daddr, pd->dst, pd->af)((pd->af == 2 && (daddr)->pfa.addr32[0] != (pd-> dst)->pfa.addr32[0]) || (pd->af == 24 && ((daddr )->pfa.addr32[3] != (pd->dst)->pfa.addr32[3] || (daddr )->pfa.addr32[2] != (pd->dst)->pfa.addr32[2] || (daddr )->pfa.addr32[1] != (pd->dst)->pfa.addr32[1] || (daddr )->pfa.addr32[0] != (pd->dst)->pfa.addr32[0])))) | |||
4803 | pd->destchg = 1; | |||
4804 | ||||
4805 | switch (pd->proto) { | |||
4806 | case IPPROTO_TCP6: /* FALLTHROUGH */ | |||
4807 | case IPPROTO_UDP17: | |||
4808 | rewrite += pf_patch_16(pd, pd->sport, sport); | |||
4809 | rewrite += pf_patch_16(pd, pd->dport, dport); | |||
4810 | break; | |||
4811 | ||||
4812 | case IPPROTO_ICMP1: | |||
4813 | if (pd->af != AF_INET2) | |||
4814 | return (0); | |||
4815 | ||||
4816 | #ifdef INET61 | |||
4817 | if (afto) { | |||
4818 | if (pf_translate_icmp_af(pd, AF_INET624, &pd->hdr.icmp)) | |||
4819 | return (0); | |||
4820 | pd->proto = IPPROTO_ICMPV658; | |||
4821 | rewrite = 1; | |||
4822 | } | |||
4823 | #endif /* INET6 */ | |||
4824 | if (virtual_type == htons(ICMP_ECHO)(__uint16_t)(__builtin_constant_p(8) ? (__uint16_t)(((__uint16_t )(8) & 0xffU) << 8 | ((__uint16_t)(8) & 0xff00U ) >> 8) : __swap16md(8))) { | |||
4825 | u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; | |||
4826 | rewrite += pf_patch_16(pd, | |||
4827 | &pd->hdr.icmp.icmp_idicmp_hun.ih_idseq.icd_id, icmpid); | |||
4828 | } | |||
4829 | break; | |||
4830 | ||||
4831 | #ifdef INET61 | |||
4832 | case IPPROTO_ICMPV658: | |||
4833 | if (pd->af != AF_INET624) | |||
4834 | return (0); | |||
4835 | ||||
4836 | if (afto) { | |||
4837 | if (pf_translate_icmp_af(pd, AF_INET2, &pd->hdr.icmp6)) | |||
4838 | return (0); | |||
4839 | pd->proto = IPPROTO_ICMP1; | |||
4840 | rewrite = 1; | |||
4841 | } | |||
4842 | if (virtual_type == htons(ICMP6_ECHO_REQUEST)(__uint16_t)(__builtin_constant_p(128) ? (__uint16_t)(((__uint16_t )(128) & 0xffU) << 8 | ((__uint16_t)(128) & 0xff00U ) >> 8) : __swap16md(128))) { | |||
4843 | u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; | |||
4844 | rewrite += pf_patch_16(pd, | |||
4845 | &pd->hdr.icmp6.icmp6_idicmp6_dataun.icmp6_un_data16[0], icmpid); | |||
4846 | } | |||
4847 | break; | |||
4848 | #endif /* INET6 */ | |||
4849 | } | |||
4850 | ||||
4851 | if (!afto) { | |||
4852 | rewrite += pf_translate_a(pd, pd->src, saddr); | |||
4853 | rewrite += pf_translate_a(pd, pd->dst, daddr); | |||
4854 | } | |||
4855 | ||||
4856 | return (rewrite); | |||
4857 | } | |||
4858 | ||||
4859 | int | |||
4860 | pf_tcp_track_full(struct pf_pdesc *pd, struct pf_state **stp, u_short *reason, | |||
4861 | int *copyback, int reverse) | |||
4862 | { | |||
4863 | struct tcphdr *th = &pd->hdr.tcp; | |||
4864 | struct pf_state_peer *src, *dst; | |||
4865 | u_int16_t win = ntohs(th->th_win)(__uint16_t)(__builtin_constant_p(th->th_win) ? (__uint16_t )(((__uint16_t)(th->th_win) & 0xffU) << 8 | ((__uint16_t )(th->th_win) & 0xff00U) >> 8) : __swap16md(th-> th_win)); | |||
4866 | u_int32_t ack, end, data_end, seq, orig_seq; | |||
4867 | u_int8_t sws, dws, psrc, pdst; | |||
4868 | int ackskew; | |||
4869 | ||||
4870 | if ((pd->dir == (*stp)->direction && !reverse) || | |||
4871 | (pd->dir != (*stp)->direction && reverse)) { | |||
4872 | src = &(*stp)->src; | |||
4873 | dst = &(*stp)->dst; | |||
4874 | psrc = PF_PEER_SRC; | |||
4875 | pdst = PF_PEER_DST; | |||
4876 | } else { | |||
4877 | src = &(*stp)->dst; | |||
4878 | dst = &(*stp)->src; | |||
4879 | psrc = PF_PEER_DST; | |||
4880 | pdst = PF_PEER_SRC; | |||
4881 | } | |||
4882 | ||||
4883 | if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN0x02)) { | |||
4884 | sws = src->wscale & PF_WSCALE_MASK0x0f; | |||
4885 | dws = dst->wscale & PF_WSCALE_MASK0x0f; | |||
4886 | } else | |||
4887 | sws = dws = 0; | |||
4888 | ||||
4889 | /* | |||
4890 | * Sequence tracking algorithm from Guido van Rooij's paper: | |||
4891 | * http://www.madison-gurkha.com/publications/tcp_filtering/ | |||
4892 | * tcp_filtering.ps | |||
4893 | */ | |||
4894 | ||||
4895 | orig_seq = seq = ntohl(th->th_seq)(__uint32_t)(__builtin_constant_p(th->th_seq) ? (__uint32_t )(((__uint32_t)(th->th_seq) & 0xff) << 24 | ((__uint32_t )(th->th_seq) & 0xff00) << 8 | ((__uint32_t)(th-> th_seq) & 0xff0000) >> 8 | ((__uint32_t)(th->th_seq ) & 0xff000000) >> 24) : __swap32md(th->th_seq)); | |||
4896 | if (src->seqlo == 0) { | |||
4897 | /* First packet from this end. Set its state */ | |||
4898 | ||||
4899 | if (((*stp)->state_flags & PFSTATE_SCRUB_TCP0x0100 || dst->scrub) && | |||
4900 | src->scrub == NULL((void *)0)) { | |||
4901 | if (pf_normalize_tcp_init(pd, src)) { | |||
4902 | REASON_SET(reason, PFRES_MEMORY)do { if ((void *)(reason) != ((void *)0)) { *(reason) = (5); if (5 < 17) pf_status.counters[5]++; } } while (0); | |||
4903 | return (PF_DROP); | |||
4904 | } | |||
4905 | } | |||
4906 | ||||
4907 | /* Deferred generation of sequence number modulator */ | |||
4908 | if (dst->seqdiff && !src->seqdiff) { | |||
4909 | /* use random iss for the TCP server */ | |||
4910 | while ((src->seqdiff = arc4random() - seq) == 0) | |||
4911 | continue; | |||
4912 | ack = ntohl(th->th_ack)(__uint32_t)(__builtin_constant_p(th->th_ack) ? (__uint32_t )(((__uint32_t)(th->th_ack) & 0xff) << 24 | ((__uint32_t )(th->th_ack) & 0xff00) << 8 | ((__uint32_t)(th-> th_ack) & 0xff0000) >> 8 | ((__uint32_t)(th->th_ack ) & 0xff000000) >> 24) : __swap32md(th->th_ack)) - dst->seqdiff; | |||
4913 | pf_patch_32(pd, &th->th_seq, htonl(seq + src->seqdiff)(__uint32_t)(__builtin_constant_p(seq + src->seqdiff) ? (__uint32_t )(((__uint32_t)(seq + src->seqdiff) & 0xff) << 24 | ((__uint32_t)(seq + src->seqdiff) & 0xff00) << 8 | ((__uint32_t)(seq + src->seqdiff) & 0xff0000) >> 8 | ((__uint32_t)(seq + src->seqdiff) & 0xff000000) >> 24) : __swap32md(seq + src->seqdiff))); | |||
4914 | pf_patch_32(pd, &th->th_ack, htonl(ack)(__uint32_t)(__builtin_constant_p(ack) ? (__uint32_t)(((__uint32_t )(ack) & 0xff) << 24 | ((__uint32_t)(ack) & 0xff00 ) << 8 | ((__uint32_t)(ack) & 0xff0000) >> 8 | ((__uint32_t)(ack) & 0xff000000) >> 24) : __swap32md (ack))); | |||
4915 | *copyback = 1; | |||
4916 | } else { | |||
4917 | ack = ntohl(th->th_ack)(__uint32_t)(__builtin_constant_p(th->th_ack) ? (__uint32_t )(((__uint32_t)(th->th_ack) & 0xff) << 24 | ((__uint32_t )(th->th_ack) & 0xff00) << 8 | ((__uint32_t)(th-> th_ack) & 0xff0000) >> 8 | ((__uint32_t)(th->th_ack ) & 0xff000000) >> 24) : __swap32md(th->th_ack)); | |||
4918 | } | |||
4919 | ||||
4920 | end = seq + pd->p_len; | |||
4921 | if (th->th_flags & TH_SYN0x02) { | |||
4922 | end++; | |||
4923 | if (dst->wscale & PF_WSCALE_FLAG0x80) { | |||
4924 | src->wscale = pf_get_wscale(pd); | |||
4925 | if (src->wscale & PF_WSCALE_FLAG0x80) { | |||
4926 | /* Remove scale factor from initial | |||
4927 | * window */ | |||
4928 | sws = src->wscale & PF_WSCALE_MASK0x0f; | |||
4929 | win = ((u_int32_t)win + (1 << sws) - 1) | |||
4930 | >> sws; | |||
4931 | dws = dst->wscale & PF_WSCALE_MASK0x0f; | |||
4932 | } else { | |||
4933 | /* fixup other window */ | |||
4934 | dst->max_win = MIN(TCP_MAXWIN,(((65535)<((u_int32_t)dst->max_win << (dst->wscale & 0x0f)))?(65535):((u_int32_t)dst->max_win << ( dst->wscale & 0x0f))) | |||
4935 | (u_int32_t)dst->max_win <<(((65535)<((u_int32_t)dst->max_win << (dst->wscale & 0x0f)))?(65535):((u_int32_t)dst->max_win << ( dst->wscale & 0x0f))) | |||
4936 | (dst->wscale & PF_WSCALE_MASK))(((65535)<((u_int32_t)dst->max_win << (dst->wscale & 0x0f)))?(65535):((u_int32_t)dst->max_win << ( dst->wscale & 0x0f))); | |||
4937 | /* in case of a retrans SYN|ACK */ | |||
4938 | dst->wscale = 0; | |||
4939 | } | |||
4940 | } | |||
4941 | } | |||
4942 | data_end = end; | |||
4943 | if (th->th_flags & TH_FIN0x01) | |||
4944 | end++; | |||
4945 | ||||
4946 | src->seqlo = seq; | |||
4947 | if (src->state < TCPS_SYN_SENT2) | |||
4948 | pf_set_protostate(*stp, psrc, TCPS_SYN_SENT2); | |||
4949 | ||||
4950 | /* | |||
4951 | * May need to slide the window (seqhi may have been set by | |||
4952 | * the crappy stack check or if we picked up the connection | |||
4953 | * after establishment) | |||
4954 | */ | |||
4955 | if (src->seqhi == 1 || | |||
4956 | SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)((int)((end + (((1)>(dst->max_win << dws))?(1):(dst ->max_win << dws)))-(src->seqhi)) >= 0)) | |||
4957 | src->seqhi = end + MAX(1, dst->max_win << dws)(((1)>(dst->max_win << dws))?(1):(dst->max_win << dws)); | |||
4958 | if (win > src->max_win) | |||
4959 | src->max_win = win; | |||
4960 | ||||
4961 | } else { | |||
4962 | ack = ntohl(th->th_ack)(__uint32_t)(__builtin_constant_p(th->th_ack) ? (__uint32_t )(((__uint32_t)(th->th_ack) & 0xff) << 24 | ((__uint32_t )(th->th_ack) & 0xff00) << 8 | ((__uint32_t)(th-> th_ack) & 0xff0000) >> 8 | ((__uint32_t)(th->th_ack ) & 0xff000000) >> 24) : __swap32md(th->th_ack)) - dst->seqdiff; | |||
4963 | if (src->seqdiff) { | |||
4964 | /* Modulate sequence numbers */ | |||
4965 | pf_patch_32(pd, &th->th_seq, htonl(seq + src->seqdiff)(__uint32_t)(__builtin_constant_p(seq + src->seqdiff) ? (__uint32_t )(((__uint32_t)(seq + src->seqdiff) & 0xff) << 24 | ((__uint32_t)(seq + src->seqdiff) & 0xff00) << 8 | ((__uint32_t)(seq + src->seqdiff) & 0xff0000) >> 8 | ((__uint32_t)(seq + src->seqdiff) & 0xff000000) >> 24) : __swap32md(seq + src->seqdiff))); | |||
4966 | pf_patch_32(pd, &th->th_ack, htonl(ack)(__uint32_t)(__builtin_constant_p(ack) ? (__uint32_t)(((__uint32_t )(ack) & 0xff) << 24 | ((__uint32_t)(ack) & 0xff00 ) << 8 | ((__uint32_t)(ack) & 0xff0000) >> 8 | ((__uint32_t)(ack) & 0xff000000) >> 24) : __swap32md (ack))); | |||
4967 | *copyback = 1; | |||
4968 | } | |||
4969 | end = seq + pd->p_len; | |||
4970 | if (th->th_flags & TH_SYN0x02) | |||
4971 | end++; | |||
4972 | data_end = end; | |||
4973 | if (th->th_flags & TH_FIN0x01) | |||
4974 | end++; | |||
4975 | } | |||
4976 | ||||
4977 | if ((th->th_flags & TH_ACK0x10) == 0) { | |||
4978 | /* Let it pass through the ack skew check */ | |||
4979 | ack = dst->seqlo; | |||
4980 | } else if ((ack == 0 && | |||
4981 | (th->th_flags & (TH_ACK0x10|TH_RST0x04)) == (TH_ACK0x10|TH_RST0x04)) || | |||
4982 | /* broken tcp stacks do not set ack */ | |||
4983 | (dst->state < TCPS_SYN_SENT2)) { | |||
4984 | /* | |||
4985 | * Many stacks (ours included) will set the ACK number in an | |||
4986 | * FIN|ACK if the SYN times out -- no sequence to ACK. | |||
4987 | */ | |||
4988 | ack = dst->seqlo; | |||
4989 | } | |||
4990 | ||||
4991 | if (seq == end) { | |||
4992 | /* Ease sequencing restrictions on no data packets */ | |||
4993 | seq = src->seqlo; | |||
4994 | data_end = end = seq; | |||
4995 | } | |||
4996 | ||||
4997 | ackskew = dst->seqlo - ack; | |||
4998 | ||||
4999 | ||||
5000 | /* | |||
5001 | * Need to demodulate the sequence numbers in any TCP SACK options | |||
5002 | * (Selective ACK). We could optionally validate the SACK values | |||
5003 | * against the current ACK window, either forwards or backwards, but | |||
5004 | * I'm not confident that SACK has been implemented properly | |||
5005 | * everywhere. It wouldn't surprise me if several stacks accidently | |||
5006 | * SACK too far backwards of previously ACKed data. There really aren't | |||
5007 | * any security implications of bad SACKing unless the target stack | |||
5008 | * doesn't validate the option length correctly. Someone trying to | |||
5009 | * spoof into a TCP connection won't bother blindly sending SACK | |||
5010 | * options anyway. | |||
5011 | */ | |||
5012 | if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { | |||
5013 | if (pf_modulate_sack(pd, dst)) | |||
5014 | *copyback = 1; | |||
5015 | } | |||
5016 | ||||
5017 | ||||
5018 | #define MAXACKWINDOW(0xffff + 1500) (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ | |||
5019 | if (SEQ_GEQ(src->seqhi, data_end)((int)((src->seqhi)-(data_end)) >= 0) && | |||
5020 | /* Last octet inside other's window space */ | |||
5021 | SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws))((int)((seq)-(src->seqlo - (dst->max_win << dws)) ) >= 0) && | |||
5022 | /* Retrans: not more than one window back */ | |||
5023 | (ackskew >= -MAXACKWINDOW(0xffff + 1500)) && | |||
5024 | /* Acking not more than one reassembled fragment backwards */ | |||
5025 | (ackskew <= (MAXACKWINDOW(0xffff + 1500) << sws)) && | |||
5026 | /* Acking not more than one window forward */ | |||
5027 | ((th->th_flags & TH_RST0x04) == 0 || orig_seq == src->seqlo || | |||
5028 | (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { | |||
5029 | /* Require an exact/+1 sequence match on resets when possible */ | |||
5030 | ||||
5031 | if (dst->scrub || src->scrub) { | |||
5032 | if (pf_normalize_tcp_stateful(pd, reason, *stp, src, | |||
5033 | dst, copyback)) | |||
5034 | return (PF_DROP); | |||
5035 | } | |||
5036 | ||||
5037 | /* update max window */ | |||
5038 | if (src->max_win < win) | |||
5039 | src->max_win = win; | |||
5040 | /* synchronize sequencing */ | |||
5041 | if (SEQ_GT(end, src->seqlo)((int)((end)-(src->seqlo)) > 0)) | |||
5042 | src->seqlo = end; | |||
5043 | /* slide the window of what the other end can send */ | |||
5044 | if (SEQ_GEQ(ack + (win << sws), dst->seqhi)((int)((ack + (win << sws))-(dst->seqhi)) >= 0)) | |||
5045 | dst->seqhi = ack + MAX((win << sws), 1)((((win << sws))>(1))?((win << sws)):(1)); | |||
5046 | ||||
5047 | /* update states */ | |||
5048 | if (th->th_flags & TH_SYN0x02) | |||
5049 | if (src->state < TCPS_SYN_SENT2) | |||
5050 | pf_set_protostate(*stp, psrc, TCPS_SYN_SENT2); | |||
5051 | if (th->th_flags & TH_FIN0x01) | |||
5052 | if (src->state < TCPS_CLOSING7) | |||
5053 | pf_set_protostate(*stp, psrc, TCPS_CLOSING7); | |||
5054 | if (th->th_flags & TH_ACK0x10) { | |||
5055 | if (dst->state == TCPS_SYN_SENT2) { | |||
5056 | pf_set_protostate(*stp, pdst, | |||
5057 | TCPS_ESTABLISHED4); | |||
5058 | if (src->state == TCPS_ESTABLISHED4 && | |||
5059 | !SLIST_EMPTY(&(*stp)->src_nodes)(((&(*stp)->src_nodes)->slh_first) == ((void *)0)) && | |||
5060 | pf_src_connlimit(stp)) { | |||
5061 | REASON_SET(reason, PFRES_SRCLIMIT)do { if ((void *)(reason) != ((void *)0)) { *(reason) = (13); if (13 < 17) pf_status.counters[13]++; } } while (0); | |||
5062 | return (PF_DROP); | |||
5063 | } | |||
5064 | } else if (dst->state == TCPS_CLOSING7) | |||
5065 | pf_set_protostate(*stp, pdst, | |||
5066 | TCPS_FIN_WAIT_29); | |||
5067 | } | |||
5068 | if (th->th_flags & TH_RST0x04) | |||
5069 | pf_set_protostate(*stp, PF_PEER_BOTH, TCPS_TIME_WAIT10); | |||
5070 | ||||
5071 | /* update expire time */ | |||
5072 | (*stp)->expire = getuptime(); | |||
5073 | if (src->state >= TCPS_FIN_WAIT_29 && | |||
5074 | dst->state >= TCPS_FIN_WAIT_29) | |||
5075 | pf_update_state_timeout(*stp, PFTM_TCP_CLOSED); | |||
5076 | else if (src->state >= TCPS_CLOSING7 && | |||
5077 | dst->state >= TCPS_CLOSING7) | |||
5078 | pf_update_state_timeout(*stp, PFTM_TCP_FIN_WAIT); | |||
5079 | else if (src->state < TCPS_ESTABLISHED4 || | |||
5080 | dst->state < TCPS_ESTABLISHED4) | |||
5081 | pf_update_state_timeout(*stp, PFTM_TCP_OPENING); | |||
5082 | else if (src->state >= TCPS_CLOSING7 || | |||
5083 | dst->state >= TCPS_CLOSING7) | |||
5084 | pf_update_state_timeout(*stp, PFTM_TCP_CLOSING); | |||
5085 | else | |||
5086 | pf_update_state_timeout(*stp, PFTM_TCP_ESTABLISHED); | |||
5087 | ||||
5088 | /* Fall through to PASS packet */ | |||
5089 | } else if ((dst->state < TCPS_SYN_SENT2 || | |||
5090 | dst->state >= TCPS_FIN_WAIT_29 || | |||
5091 | src->state >= TCPS_FIN_WAIT_29) && | |||
5092 | SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end)((int)((src->seqhi + (0xffff + 1500))-(data_end)) >= 0) && | |||
5093 | /* Within a window forward of the originating packet */ | |||
5094 | SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)((int)((seq)-(src->seqlo - (0xffff + 1500))) >= 0)) { | |||
5095 | /* Within a window backward of the originating packet */ | |||
5096 | ||||
5097 | /* | |||
5098 | * This currently handles three situations: | |||
5099 | * 1) Stupid stacks will shotgun SYNs before their peer | |||
5100 | * replies. | |||
5101 | * 2) When PF catches an already established stream (the | |||
5102 | * firewall rebooted, the state table was flushed, routes | |||
5103 | * changed...) | |||
5104 | * 3) Packets get funky immediately after the connection | |||
5105 | * closes (this should catch Solaris spurious ACK|FINs | |||
5106 | * that web servers like to spew after a close) | |||
5107 | * | |||
5108 | * This must be a little more careful than the above code | |||
5109 | * since packet floods will also be caught here. We don't | |||
5110 | * update the TTL here to mitigate the damage of a packet | |||
5111 | * flood and so the same code can handle awkward establishment | |||
5112 | * and a loosened connection close. | |||
5113 | * In the establishment case, a correct peer response will | |||
5114 | * validate the connection, go through the normal state code | |||
5115 | * and keep updating the state TTL. | |||
5116 | */ | |||
5117 | ||||
5118 | if (pf_status.debug >= LOG_NOTICE5) { | |||
5119 | log(LOG_NOTICE5, "pf: loose state match: "); | |||
5120 | pf_print_state(*stp); | |||
5121 | pf_print_flags(th->th_flags); | |||
5122 | addlog(" seq=%u (%u) ack=%u len=%u ackskew=%d " | |||
5123 | "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, | |||
5124 | pd->p_len, ackskew, (*stp)->packets[0], | |||
5125 | (*stp)->packets[1], | |||
5126 | pd->dir == PF_IN ? "in" : "out", | |||
5127 | pd->dir == (*stp)->direction ? "fwd" : "rev"); | |||
5128 | } | |||
5129 | ||||
5130 | if (dst->scrub || src->scrub) { | |||
5131 | if (pf_normalize_tcp_stateful(pd, reason, *stp, src, | |||
5132 | dst, copyback)) | |||
5133 | return (PF_DROP); | |||
5134 | } | |||
5135 | ||||
5136 | /* update max window */ | |||
5137 | if (src->max_win < win) | |||
5138 | src->max_win = win; | |||
5139 | /* synchronize sequencing */ | |||
5140 | if (SEQ_GT(end, src->seqlo)((int)((end)-(src->seqlo)) > 0)) | |||
5141 | src->seqlo = end; | |||
5142 | /* slide the window of what the other end can send */ | |||
5143 | if (SEQ_GEQ(ack + (win << sws), dst->seqhi)((int)((ack + (win << sws))-(dst->seqhi)) >= 0)) | |||
5144 | dst->seqhi = ack + MAX((win << sws), 1)((((win << sws))>(1))?((win << sws)):(1)); | |||
5145 | ||||
5146 | /* | |||
5147 | * Cannot set dst->seqhi here since this could be a shotgunned | |||
5148 | * SYN and not an already established connection. | |||
5149 | */ | |||
5150 | if (th->th_flags & TH_FIN0x01) | |||
5151 | if (src->state < TCPS_CLOSING7) | |||
5152 | pf_set_protostate(*stp, psrc, TCPS_CLOSING7); | |||
5153 | if (th->th_flags & TH_RST0x04) | |||
5154 | pf_set_protostate(*stp, PF_PEER_BOTH, |