File: | kern/kern_sig.c |
Warning: | line 1649, column 37 Although the value stored to 'error' is used in the enclosing expression, the value is never actually read from 'error' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: kern_sig.c,v 1.320 2023/10/06 08:58:13 claudio Exp $ */ |
2 | /* $NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $ */ |
3 | |
4 | /* |
5 | * Copyright (c) 1997 Theo de Raadt. All rights reserved. |
6 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
7 | * The Regents of the University of California. All rights reserved. |
8 | * (c) UNIX System Laboratories, Inc. |
9 | * All or some portions of this file are derived from material licensed |
10 | * to the University of California by American Telephone and Telegraph |
11 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
12 | * the permission of UNIX System Laboratories, Inc. |
13 | * |
14 | * Redistribution and use in source and binary forms, with or without |
15 | * modification, are permitted provided that the following conditions |
16 | * are met: |
17 | * 1. Redistributions of source code must retain the above copyright |
18 | * notice, this list of conditions and the following disclaimer. |
19 | * 2. Redistributions in binary form must reproduce the above copyright |
20 | * notice, this list of conditions and the following disclaimer in the |
21 | * documentation and/or other materials provided with the distribution. |
22 | * 3. Neither the name of the University nor the names of its contributors |
23 | * may be used to endorse or promote products derived from this software |
24 | * without specific prior written permission. |
25 | * |
26 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
27 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
30 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
31 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
32 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
33 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
34 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
35 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
36 | * SUCH DAMAGE. |
37 | * |
38 | * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 |
39 | */ |
40 | |
41 | #include <sys/param.h> |
42 | #include <sys/signalvar.h> |
43 | #include <sys/queue.h> |
44 | #include <sys/namei.h> |
45 | #include <sys/vnode.h> |
46 | #include <sys/event.h> |
47 | #include <sys/proc.h> |
48 | #include <sys/systm.h> |
49 | #include <sys/acct.h> |
50 | #include <sys/fcntl.h> |
51 | #include <sys/filedesc.h> |
52 | #include <sys/wait.h> |
53 | #include <sys/ktrace.h> |
54 | #include <sys/stat.h> |
55 | #include <sys/malloc.h> |
56 | #include <sys/pool.h> |
57 | #include <sys/sched.h> |
58 | #include <sys/user.h> |
59 | #include <sys/syslog.h> |
60 | #include <sys/ttycom.h> |
61 | #include <sys/pledge.h> |
62 | #include <sys/witness.h> |
63 | #include <sys/exec_elf.h> |
64 | |
65 | #include <sys/mount.h> |
66 | #include <sys/syscallargs.h> |
67 | |
68 | #include <uvm/uvm_extern.h> |
69 | #include <machine/tcb.h> |
70 | |
71 | int nosuidcoredump = 1; |
72 | |
73 | int filt_sigattach(struct knote *kn); |
74 | void filt_sigdetach(struct knote *kn); |
75 | int filt_signal(struct knote *kn, long hint); |
76 | |
77 | const struct filterops sig_filtops = { |
78 | .f_flags = 0, |
79 | .f_attach = filt_sigattach, |
80 | .f_detach = filt_sigdetach, |
81 | .f_event = filt_signal, |
82 | }; |
83 | |
84 | /* |
85 | * The array below categorizes the signals and their default actions. |
86 | */ |
87 | const int sigprop[NSIG33] = { |
88 | 0, /* unused */ |
89 | SA_KILL0x01, /* SIGHUP */ |
90 | SA_KILL0x01, /* SIGINT */ |
91 | SA_KILL0x01|SA_CORE0x02, /* SIGQUIT */ |
92 | SA_KILL0x01|SA_CORE0x02, /* SIGILL */ |
93 | SA_KILL0x01|SA_CORE0x02, /* SIGTRAP */ |
94 | SA_KILL0x01|SA_CORE0x02, /* SIGABRT */ |
95 | SA_KILL0x01|SA_CORE0x02, /* SIGEMT */ |
96 | SA_KILL0x01|SA_CORE0x02, /* SIGFPE */ |
97 | SA_KILL0x01, /* SIGKILL */ |
98 | SA_KILL0x01|SA_CORE0x02, /* SIGBUS */ |
99 | SA_KILL0x01|SA_CORE0x02, /* SIGSEGV */ |
100 | SA_KILL0x01|SA_CORE0x02, /* SIGSYS */ |
101 | SA_KILL0x01, /* SIGPIPE */ |
102 | SA_KILL0x01, /* SIGALRM */ |
103 | SA_KILL0x01, /* SIGTERM */ |
104 | SA_IGNORE0x10, /* SIGURG */ |
105 | SA_STOP0x04, /* SIGSTOP */ |
106 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTSTP */ |
107 | SA_IGNORE0x10|SA_CONT0x20, /* SIGCONT */ |
108 | SA_IGNORE0x10, /* SIGCHLD */ |
109 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTIN */ |
110 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTOU */ |
111 | SA_IGNORE0x10, /* SIGIO */ |
112 | SA_KILL0x01, /* SIGXCPU */ |
113 | SA_KILL0x01, /* SIGXFSZ */ |
114 | SA_KILL0x01, /* SIGVTALRM */ |
115 | SA_KILL0x01, /* SIGPROF */ |
116 | SA_IGNORE0x10, /* SIGWINCH */ |
117 | SA_IGNORE0x10, /* SIGINFO */ |
118 | SA_KILL0x01, /* SIGUSR1 */ |
119 | SA_KILL0x01, /* SIGUSR2 */ |
120 | SA_IGNORE0x10, /* SIGTHR */ |
121 | }; |
122 | |
123 | #define CONTSIGMASK((1U << ((19)-1))) (sigmask(SIGCONT)(1U << ((19)-1))) |
124 | #define STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1))) (sigmask(SIGSTOP)(1U << ((17)-1)) | sigmask(SIGTSTP)(1U << ((18)-1)) | \ |
125 | sigmask(SIGTTIN)(1U << ((21)-1)) | sigmask(SIGTTOU)(1U << ((22)-1))) |
126 | |
127 | void setsigvec(struct proc *, int, struct sigaction *); |
128 | |
129 | void proc_stop(struct proc *p, int); |
130 | void proc_stop_sweep(void *); |
131 | void *proc_stop_si; |
132 | |
133 | void setsigctx(struct proc *, int, struct sigctx *); |
134 | void postsig_done(struct proc *, int, sigset_t, int); |
135 | void postsig(struct proc *, int, struct sigctx *); |
136 | int cansignal(struct proc *, struct process *, int); |
137 | |
138 | struct pool sigacts_pool; /* memory pool for sigacts structures */ |
139 | |
140 | void sigio_del(struct sigiolst *); |
141 | void sigio_unlink(struct sigio_ref *, struct sigiolst *); |
142 | struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH){ ((void *)0), ((((0xd)) > 0x0 && ((0xd)) < 0x9 ) ? 0x9 : ((0xd))), 0x0 }; |
143 | |
144 | /* |
145 | * Can thread p, send the signal signum to process qr? |
146 | */ |
147 | int |
148 | cansignal(struct proc *p, struct process *qr, int signum) |
149 | { |
150 | struct process *pr = p->p_p; |
151 | struct ucred *uc = p->p_ucred; |
152 | struct ucred *quc = qr->ps_ucred; |
153 | |
154 | if (uc->cr_uid == 0) |
155 | return (1); /* root can always signal */ |
156 | |
157 | if (pr == qr) |
158 | return (1); /* process can always signal itself */ |
159 | |
160 | /* optimization: if the same creds then the tests below will pass */ |
161 | if (uc == quc) |
162 | return (1); |
163 | |
164 | if (signum == SIGCONT19 && qr->ps_sessionps_pgrp->pg_session == pr->ps_sessionps_pgrp->pg_session) |
165 | return (1); /* SIGCONT in session */ |
166 | |
167 | /* |
168 | * Using kill(), only certain signals can be sent to setugid |
169 | * child processes |
170 | */ |
171 | if (qr->ps_flags & PS_SUGID0x00000010) { |
172 | switch (signum) { |
173 | case 0: |
174 | case SIGKILL9: |
175 | case SIGINT2: |
176 | case SIGTERM15: |
177 | case SIGALRM14: |
178 | case SIGSTOP17: |
179 | case SIGTTIN21: |
180 | case SIGTTOU22: |
181 | case SIGTSTP18: |
182 | case SIGHUP1: |
183 | case SIGUSR130: |
184 | case SIGUSR231: |
185 | if (uc->cr_ruid == quc->cr_ruid || |
186 | uc->cr_uid == quc->cr_ruid) |
187 | return (1); |
188 | } |
189 | return (0); |
190 | } |
191 | |
192 | if (uc->cr_ruid == quc->cr_ruid || |
193 | uc->cr_ruid == quc->cr_svuid || |
194 | uc->cr_uid == quc->cr_ruid || |
195 | uc->cr_uid == quc->cr_svuid) |
196 | return (1); |
197 | return (0); |
198 | } |
199 | |
200 | /* |
201 | * Initialize signal-related data structures. |
202 | */ |
203 | void |
204 | signal_init(void) |
205 | { |
206 | proc_stop_si = softintr_establish(IPL_SOFTCLOCK0x1, proc_stop_sweep, |
207 | NULL((void *)0)); |
208 | if (proc_stop_si == NULL((void *)0)) |
209 | panic("signal_init failed to register softintr"); |
210 | |
211 | pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE0x0, |
212 | PR_WAITOK0x0001, "sigapl", NULL((void *)0)); |
213 | } |
214 | |
215 | /* |
216 | * Initialize a new sigaltstack structure. |
217 | */ |
218 | void |
219 | sigstkinit(struct sigaltstack *ss) |
220 | { |
221 | ss->ss_flags = SS_DISABLE0x0004; |
222 | ss->ss_size = 0; |
223 | ss->ss_sp = NULL((void *)0); |
224 | } |
225 | |
226 | /* |
227 | * Create an initial sigacts structure, using the same signal state |
228 | * as pr. |
229 | */ |
230 | struct sigacts * |
231 | sigactsinit(struct process *pr) |
232 | { |
233 | struct sigacts *ps; |
234 | |
235 | ps = pool_get(&sigacts_pool, PR_WAITOK0x0001); |
236 | memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts))__builtin_memcpy((ps), (pr->ps_sigacts), (sizeof(struct sigacts ))); |
237 | return (ps); |
238 | } |
239 | |
240 | /* |
241 | * Release a sigacts structure. |
242 | */ |
243 | void |
244 | sigactsfree(struct sigacts *ps) |
245 | { |
246 | pool_put(&sigacts_pool, ps); |
247 | } |
248 | |
249 | int |
250 | sys_sigaction(struct proc *p, void *v, register_t *retval) |
251 | { |
252 | struct sys_sigaction_args /* { |
253 | syscallarg(int) signum; |
254 | syscallarg(const struct sigaction *) nsa; |
255 | syscallarg(struct sigaction *) osa; |
256 | } */ *uap = v; |
257 | struct sigaction vec; |
258 | #ifdef KTRACE1 |
259 | struct sigaction ovec; |
260 | #endif |
261 | struct sigaction *sa; |
262 | const struct sigaction *nsa; |
263 | struct sigaction *osa; |
264 | struct sigacts *ps = p->p_p->ps_sigacts; |
265 | int signum; |
266 | int bit, error; |
267 | |
268 | signum = SCARG(uap, signum)((uap)->signum.le.datum); |
269 | nsa = SCARG(uap, nsa)((uap)->nsa.le.datum); |
270 | osa = SCARG(uap, osa)((uap)->osa.le.datum); |
271 | |
272 | if (signum <= 0 || signum >= NSIG33 || |
273 | (nsa && (signum == SIGKILL9 || signum == SIGSTOP17))) |
274 | return (EINVAL22); |
275 | sa = &vec; |
276 | if (osa) { |
277 | mtx_enter(&p->p_p->ps_mtx); |
278 | sa->sa_handler__sigaction_u.__sa_handler = ps->ps_sigact[signum]; |
279 | sa->sa_mask = ps->ps_catchmask[signum]; |
280 | bit = sigmask(signum)(1U << ((signum)-1)); |
281 | sa->sa_flags = 0; |
282 | if ((ps->ps_sigonstack & bit) != 0) |
283 | sa->sa_flags |= SA_ONSTACK0x0001; |
284 | if ((ps->ps_sigintr & bit) == 0) |
285 | sa->sa_flags |= SA_RESTART0x0002; |
286 | if ((ps->ps_sigreset & bit) != 0) |
287 | sa->sa_flags |= SA_RESETHAND0x0004; |
288 | if ((ps->ps_siginfo & bit) != 0) |
289 | sa->sa_flags |= SA_SIGINFO0x0040; |
290 | if (signum == SIGCHLD20) { |
291 | if ((ps->ps_sigflags & SAS_NOCLDSTOP0x01) != 0) |
292 | sa->sa_flags |= SA_NOCLDSTOP0x0008; |
293 | if ((ps->ps_sigflags & SAS_NOCLDWAIT0x02) != 0) |
294 | sa->sa_flags |= SA_NOCLDWAIT0x0020; |
295 | } |
296 | mtx_leave(&p->p_p->ps_mtx); |
297 | if ((sa->sa_mask & bit) == 0) |
298 | sa->sa_flags |= SA_NODEFER0x0010; |
299 | sa->sa_mask &= ~bit; |
300 | error = copyout(sa, osa, sizeof (vec)); |
301 | if (error) |
302 | return (error); |
303 | #ifdef KTRACE1 |
304 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
305 | ovec = vec; |
306 | #endif |
307 | } |
308 | if (nsa) { |
309 | error = copyin(nsa, sa, sizeof (vec)); |
310 | if (error) |
311 | return (error); |
312 | #ifdef KTRACE1 |
313 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
314 | ktrsigaction(p, sa)ktrstruct((p), "sigaction", (sa), sizeof(struct sigaction)); |
315 | #endif |
316 | setsigvec(p, signum, sa); |
317 | } |
318 | #ifdef KTRACE1 |
319 | if (osa && KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
320 | ktrsigaction(p, &ovec)ktrstruct((p), "sigaction", (&ovec), sizeof(struct sigaction )); |
321 | #endif |
322 | return (0); |
323 | } |
324 | |
325 | void |
326 | setsigvec(struct proc *p, int signum, struct sigaction *sa) |
327 | { |
328 | struct sigacts *ps = p->p_p->ps_sigacts; |
329 | int bit; |
330 | |
331 | bit = sigmask(signum)(1U << ((signum)-1)); |
332 | |
333 | mtx_enter(&p->p_p->ps_mtx); |
334 | ps->ps_sigact[signum] = sa->sa_handler__sigaction_u.__sa_handler; |
335 | if ((sa->sa_flags & SA_NODEFER0x0010) == 0) |
336 | sa->sa_mask |= sigmask(signum)(1U << ((signum)-1)); |
337 | ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
338 | if (signum == SIGCHLD20) { |
339 | if (sa->sa_flags & SA_NOCLDSTOP0x0008) |
340 | atomic_setbits_intx86_atomic_setbits_u32(&ps->ps_sigflags, SAS_NOCLDSTOP0x01); |
341 | else |
342 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDSTOP0x01); |
343 | /* |
344 | * If the SA_NOCLDWAIT flag is set or the handler |
345 | * is SIG_IGN we reparent the dying child to PID 1 |
346 | * (init) which will reap the zombie. Because we use |
347 | * init to do our dirty work we never set SAS_NOCLDWAIT |
348 | * for PID 1. |
349 | * XXX exit1 rework means this is unnecessary? |
350 | */ |
351 | if (initprocess->ps_sigacts != ps && |
352 | ((sa->sa_flags & SA_NOCLDWAIT0x0020) || |
353 | sa->sa_handler__sigaction_u.__sa_handler == SIG_IGN(void (*)(int))1)) |
354 | atomic_setbits_intx86_atomic_setbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
355 | else |
356 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
357 | } |
358 | if ((sa->sa_flags & SA_RESETHAND0x0004) != 0) |
359 | ps->ps_sigreset |= bit; |
360 | else |
361 | ps->ps_sigreset &= ~bit; |
362 | if ((sa->sa_flags & SA_SIGINFO0x0040) != 0) |
363 | ps->ps_siginfo |= bit; |
364 | else |
365 | ps->ps_siginfo &= ~bit; |
366 | if ((sa->sa_flags & SA_RESTART0x0002) == 0) |
367 | ps->ps_sigintr |= bit; |
368 | else |
369 | ps->ps_sigintr &= ~bit; |
370 | if ((sa->sa_flags & SA_ONSTACK0x0001) != 0) |
371 | ps->ps_sigonstack |= bit; |
372 | else |
373 | ps->ps_sigonstack &= ~bit; |
374 | /* |
375 | * Set bit in ps_sigignore for signals that are set to SIG_IGN, |
376 | * and for signals set to SIG_DFL where the default is to ignore. |
377 | * However, don't put SIGCONT in ps_sigignore, |
378 | * as we have to restart the process. |
379 | */ |
380 | if (sa->sa_handler__sigaction_u.__sa_handler == SIG_IGN(void (*)(int))1 || |
381 | (sigprop[signum] & SA_IGNORE0x10 && sa->sa_handler__sigaction_u.__sa_handler == SIG_DFL(void (*)(int))0)) { |
382 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, bit); |
383 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_p->ps_siglist, bit); |
384 | if (signum != SIGCONT19) |
385 | ps->ps_sigignore |= bit; /* easier in psignal */ |
386 | ps->ps_sigcatch &= ~bit; |
387 | } else { |
388 | ps->ps_sigignore &= ~bit; |
389 | if (sa->sa_handler__sigaction_u.__sa_handler == SIG_DFL(void (*)(int))0) |
390 | ps->ps_sigcatch &= ~bit; |
391 | else |
392 | ps->ps_sigcatch |= bit; |
393 | } |
394 | mtx_leave(&p->p_p->ps_mtx); |
395 | } |
396 | |
397 | /* |
398 | * Initialize signal state for process 0; |
399 | * set to ignore signals that are ignored by default. |
400 | */ |
401 | void |
402 | siginit(struct sigacts *ps) |
403 | { |
404 | int i; |
405 | |
406 | for (i = 0; i < NSIG33; i++) |
407 | if (sigprop[i] & SA_IGNORE0x10 && i != SIGCONT19) |
408 | ps->ps_sigignore |= sigmask(i)(1U << ((i)-1)); |
409 | ps->ps_sigflags = SAS_NOCLDWAIT0x02 | SAS_NOCLDSTOP0x01; |
410 | } |
411 | |
412 | /* |
413 | * Reset signals for an exec by the specified thread. |
414 | */ |
415 | void |
416 | execsigs(struct proc *p) |
417 | { |
418 | struct sigacts *ps; |
419 | int nc, mask; |
420 | |
421 | ps = p->p_p->ps_sigacts; |
422 | mtx_enter(&p->p_p->ps_mtx); |
423 | |
424 | /* |
425 | * Reset caught signals. Held signals remain held |
426 | * through p_sigmask (unless they were caught, |
427 | * and are now ignored by default). |
428 | */ |
429 | while (ps->ps_sigcatch) { |
430 | nc = ffs((long)ps->ps_sigcatch); |
431 | mask = sigmask(nc)(1U << ((nc)-1)); |
432 | ps->ps_sigcatch &= ~mask; |
433 | if (sigprop[nc] & SA_IGNORE0x10) { |
434 | if (nc != SIGCONT19) |
435 | ps->ps_sigignore |= mask; |
436 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
437 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_p->ps_siglist, mask); |
438 | } |
439 | ps->ps_sigact[nc] = SIG_DFL(void (*)(int))0; |
440 | } |
441 | /* |
442 | * Reset stack state to the user stack. |
443 | * Clear set of signals caught on the signal stack. |
444 | */ |
445 | sigstkinit(&p->p_sigstk); |
446 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
447 | if (ps->ps_sigact[SIGCHLD20] == SIG_IGN(void (*)(int))1) |
448 | ps->ps_sigact[SIGCHLD20] = SIG_DFL(void (*)(int))0; |
449 | mtx_leave(&p->p_p->ps_mtx); |
450 | } |
451 | |
452 | /* |
453 | * Manipulate signal mask. |
454 | * Note that we receive new mask, not pointer, |
455 | * and return old mask as return value; |
456 | * the library stub does the rest. |
457 | */ |
458 | int |
459 | sys_sigprocmask(struct proc *p, void *v, register_t *retval) |
460 | { |
461 | struct sys_sigprocmask_args /* { |
462 | syscallarg(int) how; |
463 | syscallarg(sigset_t) mask; |
464 | } */ *uap = v; |
465 | int error = 0; |
466 | sigset_t mask; |
467 | |
468 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 468, "p == curproc")); |
469 | |
470 | *retval = p->p_sigmask; |
471 | mask = SCARG(uap, mask)((uap)->mask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
472 | |
473 | switch (SCARG(uap, how)((uap)->how.le.datum)) { |
474 | case SIG_BLOCK1: |
475 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_sigmask, mask); |
476 | break; |
477 | case SIG_UNBLOCK2: |
478 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_sigmask, mask); |
479 | break; |
480 | case SIG_SETMASK3: |
481 | p->p_sigmask = mask; |
482 | break; |
483 | default: |
484 | error = EINVAL22; |
485 | break; |
486 | } |
487 | return (error); |
488 | } |
489 | |
490 | int |
491 | sys_sigpending(struct proc *p, void *v, register_t *retval) |
492 | { |
493 | *retval = p->p_siglist | p->p_p->ps_siglist; |
494 | return (0); |
495 | } |
496 | |
497 | /* |
498 | * Temporarily replace calling proc's signal mask for the duration of a |
499 | * system call. Original signal mask will be restored by userret(). |
500 | */ |
501 | void |
502 | dosigsuspend(struct proc *p, sigset_t newmask) |
503 | { |
504 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 504, "p == curproc")); |
505 | |
506 | p->p_oldmask = p->p_sigmask; |
507 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
508 | p->p_sigmask = newmask; |
509 | } |
510 | |
511 | /* |
512 | * Suspend thread until signal, providing mask to be set |
513 | * in the meantime. Note nonstandard calling convention: |
514 | * libc stub passes mask, not pointer, to save a copyin. |
515 | */ |
516 | int |
517 | sys_sigsuspend(struct proc *p, void *v, register_t *retval) |
518 | { |
519 | struct sys_sigsuspend_args /* { |
520 | syscallarg(int) mask; |
521 | } */ *uap = v; |
522 | |
523 | dosigsuspend(p, SCARG(uap, mask)((uap)->mask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1)))); |
524 | while (tsleep_nsec(&nowake, PPAUSE40|PCATCH0x100, "sigsusp", INFSLP0xffffffffffffffffULL) == 0) |
525 | continue; |
526 | /* always return EINTR rather than ERESTART... */ |
527 | return (EINTR4); |
528 | } |
529 | |
530 | int |
531 | sigonstack(size_t stack) |
532 | { |
533 | const struct sigaltstack *ss = &curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_sigstk; |
534 | |
535 | return (ss->ss_flags & SS_DISABLE0x0004 ? 0 : |
536 | (stack - (size_t)ss->ss_sp < ss->ss_size)); |
537 | } |
538 | |
539 | int |
540 | sys_sigaltstack(struct proc *p, void *v, register_t *retval) |
541 | { |
542 | struct sys_sigaltstack_args /* { |
543 | syscallarg(const struct sigaltstack *) nss; |
544 | syscallarg(struct sigaltstack *) oss; |
545 | } */ *uap = v; |
546 | struct sigaltstack ss; |
547 | const struct sigaltstack *nss; |
548 | struct sigaltstack *oss; |
549 | int onstack = sigonstack(PROC_STACK(p)((p)->p_md.md_regs->tf_rsp)); |
550 | int error; |
551 | |
552 | nss = SCARG(uap, nss)((uap)->nss.le.datum); |
553 | oss = SCARG(uap, oss)((uap)->oss.le.datum); |
554 | |
555 | if (oss != NULL((void *)0)) { |
556 | ss = p->p_sigstk; |
557 | if (onstack) |
558 | ss.ss_flags |= SS_ONSTACK0x0001; |
559 | if ((error = copyout(&ss, oss, sizeof(ss)))) |
560 | return (error); |
561 | } |
562 | if (nss == NULL((void *)0)) |
563 | return (0); |
564 | error = copyin(nss, &ss, sizeof(ss)); |
565 | if (error) |
566 | return (error); |
567 | if (onstack) |
568 | return (EPERM1); |
569 | if (ss.ss_flags & ~SS_DISABLE0x0004) |
570 | return (EINVAL22); |
571 | if (ss.ss_flags & SS_DISABLE0x0004) { |
572 | p->p_sigstk.ss_flags = ss.ss_flags; |
573 | return (0); |
574 | } |
575 | if (ss.ss_size < MINSIGSTKSZ(3U << 12)) |
576 | return (ENOMEM12); |
577 | |
578 | error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size); |
579 | if (error) |
580 | return (error); |
581 | |
582 | p->p_sigstk = ss; |
583 | return (0); |
584 | } |
585 | |
586 | int |
587 | sys_kill(struct proc *cp, void *v, register_t *retval) |
588 | { |
589 | struct sys_kill_args /* { |
590 | syscallarg(int) pid; |
591 | syscallarg(int) signum; |
592 | } */ *uap = v; |
593 | struct process *pr; |
594 | int pid = SCARG(uap, pid)((uap)->pid.le.datum); |
595 | int signum = SCARG(uap, signum)((uap)->signum.le.datum); |
596 | int error; |
597 | int zombie = 0; |
598 | |
599 | if ((error = pledge_kill(cp, pid)) != 0) |
600 | return (error); |
601 | if (((u_int)signum) >= NSIG33) |
602 | return (EINVAL22); |
603 | if (pid > 0) { |
604 | if ((pr = prfind(pid)) == NULL((void *)0)) { |
605 | if ((pr = zombiefind(pid)) == NULL((void *)0)) |
606 | return (ESRCH3); |
607 | else |
608 | zombie = 1; |
609 | } |
610 | if (!cansignal(cp, pr, signum)) |
611 | return (EPERM1); |
612 | |
613 | /* kill single process */ |
614 | if (signum && !zombie) |
615 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
616 | return (0); |
617 | } |
618 | switch (pid) { |
619 | case -1: /* broadcast signal */ |
620 | return (killpg1(cp, signum, 0, 1)); |
621 | case 0: /* signal own process group */ |
622 | return (killpg1(cp, signum, 0, 0)); |
623 | default: /* negative explicit process group */ |
624 | return (killpg1(cp, signum, -pid, 0)); |
625 | } |
626 | } |
627 | |
628 | int |
629 | sys_thrkill(struct proc *cp, void *v, register_t *retval) |
630 | { |
631 | struct sys_thrkill_args /* { |
632 | syscallarg(pid_t) tid; |
633 | syscallarg(int) signum; |
634 | syscallarg(void *) tcb; |
635 | } */ *uap = v; |
636 | struct proc *p; |
637 | int tid = SCARG(uap, tid)((uap)->tid.le.datum); |
638 | int signum = SCARG(uap, signum)((uap)->signum.le.datum); |
639 | void *tcb; |
640 | |
641 | if (((u_int)signum) >= NSIG33) |
642 | return (EINVAL22); |
643 | |
644 | p = tid ? tfind_user(tid, cp->p_p) : cp; |
645 | if (p == NULL((void *)0)) |
646 | return (ESRCH3); |
647 | |
648 | /* optionally require the target thread to have the given tcb addr */ |
649 | tcb = SCARG(uap, tcb)((uap)->tcb.le.datum); |
650 | if (tcb != NULL((void *)0) && tcb != TCB_GET(p)tcb_get(p)) |
651 | return (ESRCH3); |
652 | |
653 | if (signum) |
654 | ptsignal(p, signum, STHREAD); |
655 | return (0); |
656 | } |
657 | |
658 | /* |
659 | * Common code for kill process group/broadcast kill. |
660 | * cp is calling process. |
661 | */ |
662 | int |
663 | killpg1(struct proc *cp, int signum, int pgid, int all) |
664 | { |
665 | struct process *pr; |
666 | struct pgrp *pgrp; |
667 | int nfound = 0; |
668 | |
669 | if (all) { |
670 | /* |
671 | * broadcast |
672 | */ |
673 | LIST_FOREACH(pr, &allprocess, ps_list)for((pr) = ((&allprocess)->lh_first); (pr)!= ((void *) 0); (pr) = ((pr)->ps_list.le_next)) { |
674 | if (pr->ps_pid <= 1 || |
675 | pr->ps_flags & (PS_SYSTEM0x00010000 | PS_NOBROADCASTKILL0x00080000) || |
676 | pr == cp->p_p || !cansignal(cp, pr, signum)) |
677 | continue; |
678 | nfound++; |
679 | if (signum) |
680 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
681 | } |
682 | } else { |
683 | if (pgid == 0) |
684 | /* |
685 | * zero pgid means send to my process group. |
686 | */ |
687 | pgrp = cp->p_p->ps_pgrp; |
688 | else { |
689 | pgrp = pgfind(pgid); |
690 | if (pgrp == NULL((void *)0)) |
691 | return (ESRCH3); |
692 | } |
693 | LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)for((pr) = ((&pgrp->pg_members)->lh_first); (pr)!= ( (void *)0); (pr) = ((pr)->ps_pglist.le_next)) { |
694 | if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM0x00010000 || |
695 | !cansignal(cp, pr, signum)) |
696 | continue; |
697 | nfound++; |
698 | if (signum) |
699 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
700 | } |
701 | } |
702 | return (nfound ? 0 : ESRCH3); |
703 | } |
704 | |
705 | #define CANDELIVER(uid, euid, pr)(euid == 0 || (uid) == (pr)->ps_ucred->cr_ruid || (uid) == (pr)->ps_ucred->cr_svuid || (uid) == (pr)->ps_ucred ->cr_uid || (euid) == (pr)->ps_ucred->cr_ruid || (euid ) == (pr)->ps_ucred->cr_svuid || (euid) == (pr)->ps_ucred ->cr_uid) \ |
706 | (euid == 0 || \ |
707 | (uid) == (pr)->ps_ucred->cr_ruid || \ |
708 | (uid) == (pr)->ps_ucred->cr_svuid || \ |
709 | (uid) == (pr)->ps_ucred->cr_uid || \ |
710 | (euid) == (pr)->ps_ucred->cr_ruid || \ |
711 | (euid) == (pr)->ps_ucred->cr_svuid || \ |
712 | (euid) == (pr)->ps_ucred->cr_uid) |
713 | |
714 | #define CANSIGIO(cr, pr)((cr)->cr_uid == 0 || ((cr)->cr_ruid) == ((pr))->ps_ucred ->cr_ruid || ((cr)->cr_ruid) == ((pr))->ps_ucred-> cr_svuid || ((cr)->cr_ruid) == ((pr))->ps_ucred->cr_uid || ((cr)->cr_uid) == ((pr))->ps_ucred->cr_ruid || ( (cr)->cr_uid) == ((pr))->ps_ucred->cr_svuid || ((cr) ->cr_uid) == ((pr))->ps_ucred->cr_uid) \ |
715 | CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))((cr)->cr_uid == 0 || ((cr)->cr_ruid) == ((pr))->ps_ucred ->cr_ruid || ((cr)->cr_ruid) == ((pr))->ps_ucred-> cr_svuid || ((cr)->cr_ruid) == ((pr))->ps_ucred->cr_uid || ((cr)->cr_uid) == ((pr))->ps_ucred->cr_ruid || ( (cr)->cr_uid) == ((pr))->ps_ucred->cr_svuid || ((cr) ->cr_uid) == ((pr))->ps_ucred->cr_uid) |
716 | |
717 | /* |
718 | * Send a signal to a process group. If checktty is 1, |
719 | * limit to members which have a controlling terminal. |
720 | */ |
721 | void |
722 | pgsignal(struct pgrp *pgrp, int signum, int checkctty) |
723 | { |
724 | struct process *pr; |
725 | |
726 | if (pgrp) |
727 | LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)for((pr) = ((&pgrp->pg_members)->lh_first); (pr)!= ( (void *)0); (pr) = ((pr)->ps_pglist.le_next)) |
728 | if (checkctty == 0 || pr->ps_flags & PS_CONTROLT0x00000001) |
729 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
730 | } |
731 | |
732 | /* |
733 | * Send a SIGIO or SIGURG signal to a process or process group using stored |
734 | * credentials rather than those of the current process. |
735 | */ |
736 | void |
737 | pgsigio(struct sigio_ref *sir, int sig, int checkctty) |
738 | { |
739 | struct process *pr; |
740 | struct sigio *sigio; |
741 | |
742 | if (sir->sir_sigio == NULL((void *)0)) |
743 | return; |
744 | |
745 | KERNEL_LOCK()_kernel_lock(); |
746 | mtx_enter(&sigio_lock); |
747 | sigio = sir->sir_sigio; |
748 | if (sigio == NULL((void *)0)) |
749 | goto out; |
750 | if (sigio->sio_pgid > 0) { |
751 | if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc)((sigio->sio_ucred)->cr_uid == 0 || ((sigio->sio_ucred )->cr_ruid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_ruid || ((sigio->sio_ucred)->cr_ruid) == ((sigio-> sio_u.siu_proc))->ps_ucred->cr_svuid || ((sigio->sio_ucred )->cr_ruid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_uid || ((sigio->sio_ucred)->cr_uid) == ((sigio->sio_u .siu_proc))->ps_ucred->cr_ruid || ((sigio->sio_ucred )->cr_uid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_svuid || ((sigio->sio_ucred)->cr_uid) == ((sigio-> sio_u.siu_proc))->ps_ucred->cr_uid)) |
752 | prsignal(sigio->sio_proc, sig)ptsignal((sigio->sio_u.siu_proc)->ps_mainproc, (sig), SPROCESS ); |
753 | } else if (sigio->sio_pgid < 0) { |
754 | LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist)for((pr) = ((&sigio->sio_u.siu_pgrp->pg_members)-> lh_first); (pr)!= ((void *)0); (pr) = ((pr)->ps_pglist.le_next )) { |
755 | if (CANSIGIO(sigio->sio_ucred, pr)((sigio->sio_ucred)->cr_uid == 0 || ((sigio->sio_ucred )->cr_ruid) == ((pr))->ps_ucred->cr_ruid || ((sigio-> sio_ucred)->cr_ruid) == ((pr))->ps_ucred->cr_svuid || ((sigio->sio_ucred)->cr_ruid) == ((pr))->ps_ucred-> cr_uid || ((sigio->sio_ucred)->cr_uid) == ((pr))->ps_ucred ->cr_ruid || ((sigio->sio_ucred)->cr_uid) == ((pr))-> ps_ucred->cr_svuid || ((sigio->sio_ucred)->cr_uid) == ((pr))->ps_ucred->cr_uid) && |
756 | (checkctty == 0 || (pr->ps_flags & PS_CONTROLT0x00000001))) |
757 | prsignal(pr, sig)ptsignal((pr)->ps_mainproc, (sig), SPROCESS); |
758 | } |
759 | } |
760 | out: |
761 | mtx_leave(&sigio_lock); |
762 | KERNEL_UNLOCK()_kernel_unlock(); |
763 | } |
764 | |
765 | /* |
766 | * Recalculate the signal mask and reset the signal disposition after |
767 | * usermode frame for delivery is formed. |
768 | */ |
769 | void |
770 | postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset) |
771 | { |
772 | p->p_ru.ru_nsignals++; |
773 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_sigmask, catchmask); |
774 | if (reset != 0) { |
775 | sigset_t mask = sigmask(signum)(1U << ((signum)-1)); |
776 | struct sigacts *ps = p->p_p->ps_sigacts; |
777 | |
778 | mtx_enter(&p->p_p->ps_mtx); |
779 | ps->ps_sigcatch &= ~mask; |
780 | if (signum != SIGCONT19 && sigprop[signum] & SA_IGNORE0x10) |
781 | ps->ps_sigignore |= mask; |
782 | ps->ps_sigact[signum] = SIG_DFL(void (*)(int))0; |
783 | mtx_leave(&p->p_p->ps_mtx); |
784 | } |
785 | } |
786 | |
787 | /* |
788 | * Send a signal caused by a trap to the current thread |
789 | * If it will be caught immediately, deliver it with correct code. |
790 | * Otherwise, post it normally. |
791 | */ |
792 | void |
793 | trapsignal(struct proc *p, int signum, u_long trapno, int code, |
794 | union sigval sigval) |
795 | { |
796 | struct process *pr = p->p_p; |
797 | struct sigctx ctx; |
798 | int mask; |
799 | |
800 | switch (signum) { |
801 | case SIGILL4: |
802 | case SIGBUS10: |
803 | case SIGSEGV11: |
804 | pr->ps_acflag |= ATRAP0x00000040; |
805 | break; |
806 | } |
807 | |
808 | mask = sigmask(signum)(1U << ((signum)-1)); |
809 | setsigctx(p, signum, &ctx); |
810 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 && ctx.sig_catch != 0 && |
811 | (p->p_sigmask & mask) == 0) { |
812 | siginfo_t si; |
813 | |
814 | initsiginfo(&si, signum, trapno, code, sigval); |
815 | #ifdef KTRACE1 |
816 | if (KTRPOINT(p, KTR_PSIG)((p)->p_p->ps_traceflag & (1<<(5)) && ((p)->p_flag & 0x00000001) == 0)) { |
817 | ktrpsig(p, signum, ctx.sig_action, |
818 | p->p_sigmask, code, &si); |
819 | } |
820 | #endif |
821 | if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si, |
822 | ctx.sig_info, ctx.sig_onstack)) { |
823 | KERNEL_LOCK()_kernel_lock(); |
824 | sigexit(p, SIGILL4); |
825 | /* NOTREACHED */ |
826 | } |
827 | postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset); |
828 | } else { |
829 | p->p_sisig = signum; |
830 | p->p_sitrapno = trapno; /* XXX for core dump/debugger */ |
831 | p->p_sicode = code; |
832 | p->p_sigval = sigval; |
833 | |
834 | /* |
835 | * If traced, stop if signal is masked, and stay stopped |
836 | * until released by the debugger. If our parent process |
837 | * is waiting for us, don't hang as we could deadlock. |
838 | */ |
839 | if (((pr->ps_flags & (PS_TRACED0x00000200 | PS_PPWAIT0x00000040)) == PS_TRACED0x00000200) && |
840 | signum != SIGKILL9 && (p->p_sigmask & mask) != 0) { |
841 | int s; |
842 | |
843 | single_thread_set(p, SINGLE_SUSPEND0x01 | SINGLE_NOWAIT0x20); |
844 | pr->ps_xsig = signum; |
845 | |
846 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
847 | proc_stop(p, 1); |
848 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
849 | |
850 | signum = pr->ps_xsig; |
851 | single_thread_clear(p, 0); |
852 | |
853 | /* |
854 | * If we are no longer being traced, or the parent |
855 | * didn't give us a signal, skip sending the signal. |
856 | */ |
857 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
858 | signum == 0) |
859 | return; |
860 | |
861 | /* update signal info */ |
862 | p->p_sisig = signum; |
863 | mask = sigmask(signum)(1U << ((signum)-1)); |
864 | } |
865 | |
866 | /* |
867 | * Signals like SIGBUS and SIGSEGV should not, when |
868 | * generated by the kernel, be ignorable or blockable. |
869 | * If it is and we're not being traced, then just kill |
870 | * the process. |
871 | * After vfs_shutdown(9), init(8) cannot receive signals |
872 | * because new code pages of the signal handler cannot be |
873 | * mapped from halted storage. init(8) may not die or the |
874 | * kernel panics. Better loop between signal handler and |
875 | * page fault trap until the machine is halted. |
876 | */ |
877 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 && |
878 | (sigprop[signum] & SA_KILL0x01) && |
879 | ((p->p_sigmask & mask) || ctx.sig_ignore) && |
880 | pr->ps_pid != 1) { |
881 | KERNEL_LOCK()_kernel_lock(); |
882 | sigexit(p, signum); |
883 | /* NOTREACHED */ |
884 | } |
885 | KERNEL_LOCK()_kernel_lock(); |
886 | ptsignal(p, signum, STHREAD); |
887 | KERNEL_UNLOCK()_kernel_unlock(); |
888 | } |
889 | } |
890 | |
891 | /* |
892 | * Send the signal to the process. If the signal has an action, the action |
893 | * is usually performed by the target process rather than the caller; we add |
894 | * the signal to the set of pending signals for the process. |
895 | * |
896 | * Exceptions: |
897 | * o When a stop signal is sent to a sleeping process that takes the |
898 | * default action, the process is stopped without awakening it. |
899 | * o SIGCONT restarts stopped processes (or puts them back to sleep) |
900 | * regardless of the signal action (eg, blocked or ignored). |
901 | * |
902 | * Other ignored signals are discarded immediately. |
903 | */ |
904 | void |
905 | psignal(struct proc *p, int signum) |
906 | { |
907 | ptsignal(p, signum, SPROCESS); |
908 | } |
909 | |
910 | /* |
911 | * type = SPROCESS process signal, can be diverted (sigwait()) |
912 | * type = STHREAD thread signal, but should be propagated if unhandled |
913 | * type = SPROPAGATED propagated to this thread, so don't propagate again |
914 | */ |
915 | void |
916 | ptsignal(struct proc *p, int signum, enum signal_type type) |
917 | { |
918 | int s, prop; |
919 | sig_t action; |
920 | int mask; |
921 | int *siglist; |
922 | struct process *pr = p->p_p; |
923 | struct proc *q; |
924 | int wakeparent = 0; |
925 | |
926 | KERNEL_ASSERT_LOCKED()((_kernel_lock_held()) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 926, "_kernel_lock_held()")); |
927 | |
928 | #ifdef DIAGNOSTIC1 |
929 | if ((u_int)signum >= NSIG33 || signum == 0) |
930 | panic("psignal signal number"); |
931 | #endif |
932 | |
933 | /* Ignore signal if the target process is exiting */ |
934 | if (pr->ps_flags & PS_EXITING0x00000008) |
935 | return; |
936 | |
937 | mask = sigmask(signum)(1U << ((signum)-1)); |
938 | |
939 | if (type == SPROCESS) { |
940 | /* Accept SIGKILL to coredumping processes */ |
941 | if (pr->ps_flags & PS_COREDUMP0x00000800 && signum == SIGKILL9) { |
942 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_siglist, mask); |
943 | return; |
944 | } |
945 | |
946 | /* |
947 | * If the current thread can process the signal |
948 | * immediately (it's unblocked) then have it take it. |
949 | */ |
950 | q = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; |
951 | if (q != NULL((void *)0) && q->p_p == pr && (q->p_flag & P_WEXIT0x00002000) == 0 && |
952 | (q->p_sigmask & mask) == 0) |
953 | p = q; |
954 | else { |
955 | /* |
956 | * A process-wide signal can be diverted to a |
957 | * different thread that's in sigwait() for this |
958 | * signal. If there isn't such a thread, then |
959 | * pick a thread that doesn't have it blocked so |
960 | * that the stop/kill consideration isn't |
961 | * delayed. Otherwise, mark it pending on the |
962 | * main thread. |
963 | */ |
964 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
965 | /* ignore exiting threads */ |
966 | if (q->p_flag & P_WEXIT0x00002000) |
967 | continue; |
968 | |
969 | /* skip threads that have the signal blocked */ |
970 | if ((q->p_sigmask & mask) != 0) |
971 | continue; |
972 | |
973 | /* okay, could send to this thread */ |
974 | p = q; |
975 | |
976 | /* |
977 | * sigsuspend, sigwait, ppoll/pselect, etc? |
978 | * Definitely go to this thread, as it's |
979 | * already blocked in the kernel. |
980 | */ |
981 | if (q->p_flag & P_SIGSUSPEND0x00000008) |
982 | break; |
983 | } |
984 | } |
985 | } |
986 | |
987 | if (type != SPROPAGATED) |
988 | knote_locked(&pr->ps_klist, NOTE_SIGNAL0x08000000 | signum); |
989 | |
990 | prop = sigprop[signum]; |
991 | |
992 | /* |
993 | * If proc is traced, always give parent a chance. |
994 | */ |
995 | if (pr->ps_flags & PS_TRACED0x00000200) { |
996 | action = SIG_DFL(void (*)(int))0; |
997 | } else { |
998 | sigset_t sigcatch, sigignore; |
999 | |
1000 | /* |
1001 | * If the signal is being ignored, |
1002 | * then we forget about it immediately. |
1003 | * (Note: we don't set SIGCONT in ps_sigignore, |
1004 | * and if it is set to SIG_IGN, |
1005 | * action will be SIG_DFL here.) |
1006 | */ |
1007 | mtx_enter(&pr->ps_mtx); |
1008 | sigignore = pr->ps_sigacts->ps_sigignore; |
1009 | sigcatch = pr->ps_sigacts->ps_sigcatch; |
1010 | mtx_leave(&pr->ps_mtx); |
1011 | |
1012 | if (sigignore & mask) |
1013 | return; |
1014 | if (p->p_sigmask & mask) { |
1015 | action = SIG_HOLD(void (*)(int))3; |
1016 | } else if (sigcatch & mask) { |
1017 | action = SIG_CATCH(void (*)(int))2; |
1018 | } else { |
1019 | action = SIG_DFL(void (*)(int))0; |
1020 | |
1021 | if (prop & SA_KILL0x01 && pr->ps_nice > NZERO20) |
1022 | pr->ps_nice = NZERO20; |
1023 | |
1024 | /* |
1025 | * If sending a tty stop signal to a member of an |
1026 | * orphaned process group, discard the signal here if |
1027 | * the action is default; don't stop the process below |
1028 | * if sleeping, and don't clear any pending SIGCONT. |
1029 | */ |
1030 | if (prop & SA_TTYSTOP0x08 && pr->ps_pgrp->pg_jobc == 0) |
1031 | return; |
1032 | } |
1033 | } |
1034 | /* |
1035 | * If delivered to process, mark as pending there. Continue and stop |
1036 | * signals will be propagated to all threads. So they are always |
1037 | * marked at thread level. |
1038 | */ |
1039 | siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist; |
1040 | if (prop & SA_CONT0x20) { |
1041 | siglist = &p->p_siglist; |
1042 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1)))); |
1043 | } |
1044 | if (prop & SA_STOP0x04) { |
1045 | siglist = &p->p_siglist; |
1046 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, CONTSIGMASK((1U << ((19)-1)))); |
1047 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_CONTINUED0x00800000); |
1048 | } |
1049 | |
1050 | /* |
1051 | * XXX delay processing of SA_STOP signals unless action == SIG_DFL? |
1052 | */ |
1053 | if (prop & (SA_CONT0x20 | SA_STOP0x04) && type != SPROPAGATED) |
1054 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) |
1055 | if (q != p) |
1056 | ptsignal(q, signum, SPROPAGATED); |
1057 | |
1058 | /* |
1059 | * Defer further processing for signals which are held, |
1060 | * except that stopped processes must be continued by SIGCONT. |
1061 | */ |
1062 | if (action == SIG_HOLD(void (*)(int))3 && ((prop & SA_CONT0x20) == 0 || |
1063 | p->p_stat != SSTOP4)) { |
1064 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
1065 | return; |
1066 | } |
1067 | |
1068 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
1069 | |
1070 | switch (p->p_stat) { |
1071 | |
1072 | case SSLEEP3: |
1073 | /* |
1074 | * If process is sleeping uninterruptibly |
1075 | * we can't interrupt the sleep... the signal will |
1076 | * be noticed when the process returns through |
1077 | * trap() or syscall(). |
1078 | */ |
1079 | if ((p->p_flag & P_SINTR0x00000080) == 0) |
1080 | goto out; |
1081 | /* |
1082 | * Process is sleeping and traced... make it runnable |
1083 | * so it can discover the signal in cursig() and stop |
1084 | * for the parent. |
1085 | */ |
1086 | if (pr->ps_flags & PS_TRACED0x00000200) |
1087 | goto run; |
1088 | /* |
1089 | * If SIGCONT is default (or ignored) and process is |
1090 | * asleep, we are finished; the process should not |
1091 | * be awakened. |
1092 | */ |
1093 | if ((prop & SA_CONT0x20) && action == SIG_DFL(void (*)(int))0) { |
1094 | mask = 0; |
1095 | goto out; |
1096 | } |
1097 | /* |
1098 | * When a sleeping process receives a stop |
1099 | * signal, process immediately if possible. |
1100 | */ |
1101 | if ((prop & SA_STOP0x04) && action == SIG_DFL(void (*)(int))0) { |
1102 | /* |
1103 | * If a child holding parent blocked, |
1104 | * stopping could cause deadlock. |
1105 | */ |
1106 | if (pr->ps_flags & PS_PPWAIT0x00000040) |
1107 | goto out; |
1108 | mask = 0; |
1109 | pr->ps_xsig = signum; |
1110 | proc_stop(p, 0); |
1111 | goto out; |
1112 | } |
1113 | /* |
1114 | * All other (caught or default) signals |
1115 | * cause the process to run. |
1116 | */ |
1117 | goto runfast; |
1118 | /* NOTREACHED */ |
1119 | |
1120 | case SSTOP4: |
1121 | /* |
1122 | * If traced process is already stopped, |
1123 | * then no further action is necessary. |
1124 | */ |
1125 | if (pr->ps_flags & PS_TRACED0x00000200) |
1126 | goto out; |
1127 | |
1128 | /* |
1129 | * Kill signal always sets processes running. |
1130 | */ |
1131 | if (signum == SIGKILL9) { |
1132 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
1133 | goto runfast; |
1134 | } |
1135 | |
1136 | if (prop & SA_CONT0x20) { |
1137 | /* |
1138 | * If SIGCONT is default (or ignored), we continue the |
1139 | * process but don't leave the signal in p_siglist, as |
1140 | * it has no further action. If SIGCONT is held, we |
1141 | * continue the process and leave the signal in |
1142 | * p_siglist. If the process catches SIGCONT, let it |
1143 | * handle the signal itself. If it isn't waiting on |
1144 | * an event, then it goes back to run state. |
1145 | * Otherwise, process goes back to sleep state. |
1146 | */ |
1147 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_CONTINUED0x00800000); |
1148 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
1149 | wakeparent = 1; |
1150 | if (action == SIG_DFL(void (*)(int))0) |
1151 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, mask); |
1152 | if (action == SIG_CATCH(void (*)(int))2) |
1153 | goto runfast; |
1154 | if (p->p_wchan == NULL((void *)0)) |
1155 | goto run; |
1156 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_WSLEEP0x00000020); |
1157 | p->p_stat = SSLEEP3; |
1158 | goto out; |
1159 | } |
1160 | |
1161 | if (prop & SA_STOP0x04) { |
1162 | /* |
1163 | * Already stopped, don't need to stop again. |
1164 | * (If we did the shell could get confused.) |
1165 | */ |
1166 | mask = 0; |
1167 | goto out; |
1168 | } |
1169 | |
1170 | /* |
1171 | * If process is sleeping interruptibly, then simulate a |
1172 | * wakeup so that when it is continued, it will be made |
1173 | * runnable and can look at the signal. But don't make |
1174 | * the process runnable, leave it stopped. |
1175 | */ |
1176 | if (p->p_flag & P_SINTR0x00000080) |
1177 | unsleep(p); |
1178 | goto out; |
1179 | |
1180 | case SONPROC7: |
1181 | /* set siglist before issuing the ast */ |
1182 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
1183 | mask = 0; |
1184 | signotify(p); |
1185 | /* FALLTHROUGH */ |
1186 | default: |
1187 | /* |
1188 | * SRUN, SIDL, SDEAD do nothing with the signal, |
1189 | * other than kicking ourselves if we are running. |
1190 | * It will either never be noticed, or noticed very soon. |
1191 | */ |
1192 | goto out; |
1193 | } |
1194 | /* NOTREACHED */ |
1195 | |
1196 | runfast: |
1197 | /* |
1198 | * Raise priority to at least PUSER. |
1199 | */ |
1200 | if (p->p_usrpri > PUSER50) |
1201 | p->p_usrpri = PUSER50; |
1202 | run: |
1203 | setrunnable(p); |
1204 | out: |
1205 | /* finally adjust siglist */ |
1206 | if (mask) |
1207 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
1208 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
1209 | if (wakeparent) |
1210 | wakeup(pr->ps_pptr); |
1211 | } |
1212 | |
1213 | /* fill the signal context which should be used by postsig() and issignal() */ |
1214 | void |
1215 | setsigctx(struct proc *p, int signum, struct sigctx *sctx) |
1216 | { |
1217 | struct sigacts *ps = p->p_p->ps_sigacts; |
1218 | sigset_t mask; |
1219 | |
1220 | mtx_enter(&p->p_p->ps_mtx); |
1221 | mask = sigmask(signum)(1U << ((signum)-1)); |
1222 | sctx->sig_action = ps->ps_sigact[signum]; |
1223 | sctx->sig_catchmask = ps->ps_catchmask[signum]; |
1224 | sctx->sig_reset = (ps->ps_sigreset & mask) != 0; |
1225 | sctx->sig_info = (ps->ps_siginfo & mask) != 0; |
1226 | sctx->sig_intr = (ps->ps_sigintr & mask) != 0; |
1227 | sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0; |
1228 | sctx->sig_ignore = (ps->ps_sigignore & mask) != 0; |
1229 | sctx->sig_catch = (ps->ps_sigcatch & mask) != 0; |
1230 | mtx_leave(&p->p_p->ps_mtx); |
1231 | } |
1232 | |
1233 | /* |
1234 | * Determine signal that should be delivered to process p, the current |
1235 | * process, 0 if none. |
1236 | * |
1237 | * If the current process has received a signal (should be caught or cause |
1238 | * termination, should interrupt current syscall), return the signal number. |
1239 | * Stop signals with default action are processed immediately, then cleared; |
1240 | * they aren't returned. This is checked after each entry to the system for |
1241 | * a syscall or trap. The normal call sequence is |
1242 | * |
1243 | * while (signum = cursig(curproc, &ctx)) |
1244 | * postsig(signum, &ctx); |
1245 | * |
1246 | * Assumes that if the P_SINTR flag is set, we're holding both the |
1247 | * kernel and scheduler locks. |
1248 | */ |
1249 | int |
1250 | cursig(struct proc *p, struct sigctx *sctx) |
1251 | { |
1252 | struct process *pr = p->p_p; |
1253 | int signum, mask, prop; |
1254 | sigset_t ps_siglist; |
1255 | int s; |
1256 | |
1257 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 1257, "p == curproc")); |
1258 | |
1259 | for (;;) { |
1260 | ps_siglist = READ_ONCE(pr->ps_siglist)({ typeof(pr->ps_siglist) __tmp = *(volatile typeof(pr-> ps_siglist) *)&(pr->ps_siglist); membar_datadep_consumer (); __tmp; }); |
1261 | membar_consumer()do { __asm volatile("" ::: "memory"); } while (0); |
1262 | mask = SIGPENDING(p)(((p)->p_siglist | (p)->p_p->ps_siglist) & ~(p)-> p_sigmask); |
1263 | if (pr->ps_flags & PS_PPWAIT0x00000040) |
1264 | mask &= ~STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1))); |
1265 | if (mask == 0) /* no signal to send */ |
1266 | return (0); |
1267 | signum = ffs((long)mask); |
1268 | mask = sigmask(signum)(1U << ((signum)-1)); |
1269 | |
1270 | /* take the signal! */ |
1271 | if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,_atomic_cas_uint((&pr->ps_siglist), (ps_siglist), (ps_siglist & ~mask)) |
1272 | ps_siglist & ~mask)_atomic_cas_uint((&pr->ps_siglist), (ps_siglist), (ps_siglist & ~mask)) != ps_siglist) { |
1273 | /* lost race taking the process signal, restart */ |
1274 | continue; |
1275 | } |
1276 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
1277 | setsigctx(p, signum, sctx); |
1278 | |
1279 | /* |
1280 | * We should see pending but ignored signals |
1281 | * only if PS_TRACED was on when they were posted. |
1282 | */ |
1283 | if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED0x00000200) == 0) |
1284 | continue; |
1285 | |
1286 | /* |
1287 | * If traced, always stop, and stay stopped until released |
1288 | * by the debugger. If our parent process is waiting for |
1289 | * us, don't hang as we could deadlock. |
1290 | */ |
1291 | if (((pr->ps_flags & (PS_TRACED0x00000200 | PS_PPWAIT0x00000040)) == PS_TRACED0x00000200) && |
1292 | signum != SIGKILL9) { |
1293 | single_thread_set(p, SINGLE_SUSPEND0x01 | SINGLE_NOWAIT0x20); |
1294 | pr->ps_xsig = signum; |
1295 | |
1296 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
1297 | proc_stop(p, 1); |
1298 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
1299 | |
1300 | /* |
1301 | * re-take the signal before releasing |
1302 | * the other threads. Must check the continue |
1303 | * conditions below and only take the signal if |
1304 | * those are not true. |
1305 | */ |
1306 | signum = pr->ps_xsig; |
1307 | mask = sigmask(signum)(1U << ((signum)-1)); |
1308 | setsigctx(p, signum, sctx); |
1309 | if (!((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
1310 | signum == 0 || |
1311 | (p->p_sigmask & mask) != 0)) { |
1312 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
1313 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_siglist, mask); |
1314 | } |
1315 | |
1316 | single_thread_clear(p, 0); |
1317 | |
1318 | /* |
1319 | * If we are no longer being traced, or the parent |
1320 | * didn't give us a signal, look for more signals. |
1321 | */ |
1322 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
1323 | signum == 0) |
1324 | continue; |
1325 | |
1326 | /* |
1327 | * If the new signal is being masked, look for other |
1328 | * signals. |
1329 | */ |
1330 | if ((p->p_sigmask & mask) != 0) |
1331 | continue; |
1332 | |
1333 | } |
1334 | |
1335 | prop = sigprop[signum]; |
1336 | |
1337 | /* |
1338 | * Decide whether the signal should be returned. |
1339 | * Return the signal's number, or fall through |
1340 | * to clear it from the pending mask. |
1341 | */ |
1342 | switch ((long)sctx->sig_action) { |
1343 | case (long)SIG_DFL(void (*)(int))0: |
1344 | /* |
1345 | * Don't take default actions on system processes. |
1346 | */ |
1347 | if (pr->ps_pid <= 1) { |
1348 | #ifdef DIAGNOSTIC1 |
1349 | /* |
1350 | * Are you sure you want to ignore SIGSEGV |
1351 | * in init? XXX |
1352 | */ |
1353 | printf("Process (pid %d) got signal" |
1354 | " %d\n", pr->ps_pid, signum); |
1355 | #endif |
1356 | break; /* == ignore */ |
1357 | } |
1358 | /* |
1359 | * If there is a pending stop signal to process |
1360 | * with default action, stop here, |
1361 | * then clear the signal. However, |
1362 | * if process is member of an orphaned |
1363 | * process group, ignore tty stop signals. |
1364 | */ |
1365 | if (prop & SA_STOP0x04) { |
1366 | if (pr->ps_flags & PS_TRACED0x00000200 || |
1367 | (pr->ps_pgrp->pg_jobc == 0 && |
1368 | prop & SA_TTYSTOP0x08)) |
1369 | break; /* == ignore */ |
1370 | pr->ps_xsig = signum; |
1371 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
1372 | proc_stop(p, 1); |
1373 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
1374 | break; |
1375 | } else if (prop & SA_IGNORE0x10) { |
1376 | /* |
1377 | * Except for SIGCONT, shouldn't get here. |
1378 | * Default action is to ignore; drop it. |
1379 | */ |
1380 | break; /* == ignore */ |
1381 | } else |
1382 | goto keep; |
1383 | /* NOTREACHED */ |
1384 | case (long)SIG_IGN(void (*)(int))1: |
1385 | /* |
1386 | * Masking above should prevent us ever trying |
1387 | * to take action on an ignored signal other |
1388 | * than SIGCONT, unless process is traced. |
1389 | */ |
1390 | if ((prop & SA_CONT0x20) == 0 && |
1391 | (pr->ps_flags & PS_TRACED0x00000200) == 0) |
1392 | printf("%s\n", __func__); |
1393 | break; /* == ignore */ |
1394 | default: |
1395 | /* |
1396 | * This signal has an action, let |
1397 | * postsig() process it. |
1398 | */ |
1399 | goto keep; |
1400 | } |
1401 | } |
1402 | /* NOTREACHED */ |
1403 | |
1404 | keep: |
1405 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_siglist, mask); /*leave the signal for later */ |
1406 | return (signum); |
1407 | } |
1408 | |
1409 | /* |
1410 | * Put the argument process into the stopped state and notify the parent |
1411 | * via wakeup. Signals are handled elsewhere. The process must not be |
1412 | * on the run queue. |
1413 | */ |
1414 | void |
1415 | proc_stop(struct proc *p, int sw) |
1416 | { |
1417 | struct process *pr = p->p_p; |
1418 | |
1419 | #ifdef MULTIPROCESSOR1 |
1420 | SCHED_ASSERT_LOCKED()do { do { if (splassert_ctl > 0) { splassert_check(0xc, __func__ ); } } while (0); ((__mp_lock_held(&sched_lock, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;}))) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/kern/kern_sig.c", 1420, "__mp_lock_held(&sched_lock, curcpu())" )); } while (0); |
1421 | #endif |
1422 | |
1423 | p->p_stat = SSTOP4; |
1424 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_WAITED0x00000400); |
1425 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_STOPPED0x00008000); |
1426 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
1427 | /* |
1428 | * We need this soft interrupt to be handled fast. |
1429 | * Extra calls to softclock don't hurt. |
1430 | */ |
1431 | softintr_schedule(proc_stop_si)do { struct x86_soft_intrhand *__sih = (proc_stop_si); struct x86_soft_intr *__si = __sih->sih_intrhead; mtx_enter(& __si->softintr_lock); if (__sih->sih_pending == 0) { do { (__sih)->sih_q.tqe_next = ((void *)0); (__sih)->sih_q .tqe_prev = (&__si->softintr_q)->tqh_last; *(&__si ->softintr_q)->tqh_last = (__sih); (&__si->softintr_q )->tqh_last = &(__sih)->sih_q.tqe_next; } while (0) ; __sih->sih_pending = 1; softintr(__si->softintr_ssir) ; } mtx_leave(&__si->softintr_lock); } while ( 0); |
1432 | if (sw) |
1433 | mi_switch(); |
1434 | } |
1435 | |
1436 | /* |
1437 | * Called from a soft interrupt to send signals to the parents of stopped |
1438 | * processes. |
1439 | * We can't do this in proc_stop because it's called with nasty locks held |
1440 | * and we would need recursive scheduler lock to deal with that. |
1441 | */ |
1442 | void |
1443 | proc_stop_sweep(void *v) |
1444 | { |
1445 | struct process *pr; |
1446 | |
1447 | LIST_FOREACH(pr, &allprocess, ps_list)for((pr) = ((&allprocess)->lh_first); (pr)!= ((void *) 0); (pr) = ((pr)->ps_list.le_next)) { |
1448 | if ((pr->ps_flags & PS_STOPPED0x00008000) == 0) |
1449 | continue; |
1450 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_STOPPED0x00008000); |
1451 | |
1452 | if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP0x01) == 0) |
1453 | prsignal(pr->ps_pptr, SIGCHLD)ptsignal((pr->ps_pptr)->ps_mainproc, (20), SPROCESS); |
1454 | wakeup(pr->ps_pptr); |
1455 | } |
1456 | } |
1457 | |
1458 | /* |
1459 | * Take the action for the specified signal |
1460 | * from the current set of pending signals. |
1461 | */ |
1462 | void |
1463 | postsig(struct proc *p, int signum, struct sigctx *sctx) |
1464 | { |
1465 | u_long trapno; |
1466 | int mask, returnmask; |
1467 | siginfo_t si; |
1468 | union sigval sigval; |
1469 | int code; |
1470 | |
1471 | KASSERT(signum != 0)((signum != 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 1471, "signum != 0")); |
1472 | |
1473 | mask = sigmask(signum)(1U << ((signum)-1)); |
1474 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
1475 | sigval.sival_ptr = NULL((void *)0); |
1476 | |
1477 | if (p->p_sisig != signum) { |
1478 | trapno = 0; |
1479 | code = SI_USER0; |
1480 | sigval.sival_ptr = NULL((void *)0); |
1481 | } else { |
1482 | trapno = p->p_sitrapno; |
1483 | code = p->p_sicode; |
1484 | sigval = p->p_sigval; |
1485 | } |
1486 | initsiginfo(&si, signum, trapno, code, sigval); |
1487 | |
1488 | #ifdef KTRACE1 |
1489 | if (KTRPOINT(p, KTR_PSIG)((p)->p_p->ps_traceflag & (1<<(5)) && ((p)->p_flag & 0x00000001) == 0)) { |
1490 | ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND0x00000008 ? |
1491 | p->p_oldmask : p->p_sigmask, code, &si); |
1492 | } |
1493 | #endif |
1494 | if (sctx->sig_action == SIG_DFL(void (*)(int))0) { |
1495 | /* |
1496 | * Default action, where the default is to kill |
1497 | * the process. (Other cases were ignored above.) |
1498 | */ |
1499 | KERNEL_LOCK()_kernel_lock(); |
1500 | sigexit(p, signum); |
1501 | /* NOTREACHED */ |
1502 | } else { |
1503 | /* |
1504 | * If we get here, the signal must be caught. |
1505 | */ |
1506 | #ifdef DIAGNOSTIC1 |
1507 | if (sctx->sig_action == SIG_IGN(void (*)(int))1 || (p->p_sigmask & mask)) |
1508 | panic("postsig action"); |
1509 | #endif |
1510 | /* |
1511 | * Set the new mask value and also defer further |
1512 | * occurrences of this signal. |
1513 | * |
1514 | * Special case: user has done a sigpause. Here the |
1515 | * current mask is not of interest, but rather the |
1516 | * mask from before the sigpause is what we want |
1517 | * restored after the signal processing is completed. |
1518 | */ |
1519 | if (p->p_flag & P_SIGSUSPEND0x00000008) { |
1520 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
1521 | returnmask = p->p_oldmask; |
1522 | } else { |
1523 | returnmask = p->p_sigmask; |
1524 | } |
1525 | if (p->p_sisig == signum) { |
1526 | p->p_sisig = 0; |
1527 | p->p_sitrapno = 0; |
1528 | p->p_sicode = SI_USER0; |
1529 | p->p_sigval.sival_ptr = NULL((void *)0); |
1530 | } |
1531 | |
1532 | if (sendsig(sctx->sig_action, signum, returnmask, &si, |
1533 | sctx->sig_info, sctx->sig_onstack)) { |
1534 | KERNEL_LOCK()_kernel_lock(); |
1535 | sigexit(p, SIGILL4); |
1536 | /* NOTREACHED */ |
1537 | } |
1538 | postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset); |
1539 | } |
1540 | } |
1541 | |
1542 | /* |
1543 | * Force the current process to exit with the specified signal, dumping core |
1544 | * if appropriate. We bypass the normal tests for masked and caught signals, |
1545 | * allowing unrecoverable failures to terminate the process without changing |
1546 | * signal state. Mark the accounting record with the signal termination. |
1547 | * If dumping core, save the signal number for the debugger. Calls exit and |
1548 | * does not return. |
1549 | */ |
1550 | void |
1551 | sigexit(struct proc *p, int signum) |
1552 | { |
1553 | /* Mark process as going away */ |
1554 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_WEXIT0x00002000); |
1555 | |
1556 | p->p_p->ps_acflag |= AXSIG0x00000010; |
1557 | if (sigprop[signum] & SA_CORE0x02) { |
1558 | p->p_sisig = signum; |
1559 | |
1560 | /* if there are other threads, pause them */ |
1561 | if (P_HASSIBLING(p)((p)->p_p->ps_threadcnt > 1)) |
1562 | single_thread_set(p, SINGLE_UNWIND0x02); |
1563 | |
1564 | if (coredump(p) == 0) |
1565 | signum |= WCOREFLAG0200; |
1566 | } |
1567 | exit1(p, 0, signum, EXIT_NORMAL0x00000001); |
1568 | /* NOTREACHED */ |
1569 | } |
1570 | |
1571 | /* |
1572 | * Send uncatchable SIGABRT for coredump. |
1573 | */ |
1574 | void |
1575 | sigabort(struct proc *p) |
1576 | { |
1577 | struct sigaction sa; |
1578 | |
1579 | memset(&sa, 0, sizeof sa)__builtin_memset((&sa), (0), (sizeof sa)); |
1580 | sa.sa_handler__sigaction_u.__sa_handler = SIG_DFL(void (*)(int))0; |
1581 | setsigvec(p, SIGABRT6, &sa); |
1582 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_sigmask, sigmask(SIGABRT)(1U << ((6)-1))); |
1583 | psignal(p, SIGABRT6); |
1584 | } |
1585 | |
1586 | /* |
1587 | * Return 1 if `sig', a given signal, is ignored or masked for `p', a given |
1588 | * thread, and 0 otherwise. |
1589 | */ |
1590 | int |
1591 | sigismasked(struct proc *p, int sig) |
1592 | { |
1593 | struct process *pr = p->p_p; |
1594 | int rv; |
1595 | |
1596 | mtx_enter(&pr->ps_mtx); |
1597 | rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)(1U << ((sig)-1))) || |
1598 | (p->p_sigmask & sigmask(sig)(1U << ((sig)-1))); |
1599 | mtx_leave(&pr->ps_mtx); |
1600 | |
1601 | return !!rv; |
1602 | } |
1603 | |
1604 | struct coredump_iostate { |
1605 | struct proc *io_proc; |
1606 | struct vnode *io_vp; |
1607 | struct ucred *io_cred; |
1608 | off_t io_offset; |
1609 | }; |
1610 | |
1611 | /* |
1612 | * Dump core, into a file named "progname.core", unless the process was |
1613 | * setuid/setgid. |
1614 | */ |
1615 | int |
1616 | coredump(struct proc *p) |
1617 | { |
1618 | #ifdef SMALL_KERNEL |
1619 | return EPERM1; |
1620 | #else |
1621 | struct process *pr = p->p_p; |
1622 | struct vnode *vp; |
1623 | struct ucred *cred = p->p_ucred; |
1624 | struct vmspace *vm = p->p_vmspace; |
1625 | struct nameidata nd; |
1626 | struct vattr vattr; |
1627 | struct coredump_iostate io; |
1628 | int error, len, incrash = 0; |
1629 | char *name; |
1630 | const char *dir = "/var/crash"; |
1631 | |
1632 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_COREDUMP0x00000800); |
1633 | |
1634 | #ifdef PMAP_CHECK_COPYIN(pg_xo == 0) |
1635 | /* disable copyin checks, so we can write out text sections if needed */ |
1636 | p->p_vmspace->vm_map.check_copyin_count = 0; |
1637 | #endif |
1638 | |
1639 | /* Don't dump if will exceed file size limit. */ |
1640 | if (USPACE(6 * (1 << 12)) + ptoa(vm->vm_dsize + vm->vm_ssize)((paddr_t)(vm->vm_dsize + vm->vm_ssize) << 12) >= lim_cur(RLIMIT_CORE4)) |
1641 | return (EFBIG27); |
1642 | |
1643 | name = pool_get(&namei_pool, PR_WAITOK0x0001); |
1644 | |
1645 | /* |
1646 | * If the process has inconsistent uids, nosuidcoredump |
1647 | * determines coredump placement policy. |
1648 | */ |
1649 | if (((pr->ps_flags & PS_SUGID0x00000010) && (error = suser(p))) || |
Although the value stored to 'error' is used in the enclosing expression, the value is never actually read from 'error' | |
1650 | ((pr->ps_flags & PS_SUGID0x00000010) && nosuidcoredump)) { |
1651 | if (nosuidcoredump == 3) { |
1652 | /* |
1653 | * If the program directory does not exist, dumps of |
1654 | * that core will silently fail. |
1655 | */ |
1656 | len = snprintf(name, MAXPATHLEN1024, "%s/%s/%u.core", |
1657 | dir, pr->ps_comm, pr->ps_pid); |
1658 | incrash = KERNELPATH0x800000; |
1659 | } else if (nosuidcoredump == 2) { |
1660 | len = snprintf(name, MAXPATHLEN1024, "%s/%s.core", |
1661 | dir, pr->ps_comm); |
1662 | incrash = KERNELPATH0x800000; |
1663 | } else { |
1664 | pool_put(&namei_pool, name); |
1665 | return (EPERM1); |
1666 | } |
1667 | } else |
1668 | len = snprintf(name, MAXPATHLEN1024, "%s.core", pr->ps_comm); |
1669 | |
1670 | if (len >= MAXPATHLEN1024) { |
1671 | pool_put(&namei_pool, name); |
1672 | return (EACCES13); |
1673 | } |
1674 | |
1675 | /* |
1676 | * Control the UID used to write out. The normal case uses |
1677 | * the real UID. If the sugid case is going to write into the |
1678 | * controlled directory, we do so as root. |
1679 | */ |
1680 | if (incrash == 0) { |
1681 | cred = crdup(cred); |
1682 | cred->cr_uid = cred->cr_ruid; |
1683 | cred->cr_gid = cred->cr_rgid; |
1684 | } else { |
1685 | if (p->p_fd->fd_rdir) { |
1686 | vrele(p->p_fd->fd_rdir); |
1687 | p->p_fd->fd_rdir = NULL((void *)0); |
1688 | } |
1689 | p->p_ucred = crdup(p->p_ucred); |
1690 | crfree(cred); |
1691 | cred = p->p_ucred; |
1692 | crhold(cred); |
1693 | cred->cr_uid = 0; |
1694 | cred->cr_gid = 0; |
1695 | } |
1696 | |
1697 | /* incrash should be 0 or KERNELPATH only */ |
1698 | NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p)ndinitat(&nd, 0, 0x400000 | incrash, UIO_SYSSPACE, -100, name , p); |
1699 | |
1700 | error = vn_open(&nd, O_CREAT0x0200 | FWRITE0x0002 | O_NOFOLLOW0x0100 | O_NONBLOCK0x0004, |
1701 | S_IRUSR0000400 | S_IWUSR0000200); |
1702 | |
1703 | if (error) |
1704 | goto out; |
1705 | |
1706 | /* |
1707 | * Don't dump to non-regular files, files with links, or files |
1708 | * owned by someone else. |
1709 | */ |
1710 | vp = nd.ni_vp; |
1711 | if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) { |
1712 | VOP_UNLOCK(vp); |
1713 | vn_close(vp, FWRITE0x0002, cred, p); |
1714 | goto out; |
1715 | } |
1716 | if (vp->v_type != VREG || vattr.va_nlink != 1 || |
1717 | vattr.va_mode & ((VREAD00400 | VWRITE00200) >> 3 | (VREAD00400 | VWRITE00200) >> 6) || |
1718 | vattr.va_uid != cred->cr_uid) { |
1719 | error = EACCES13; |
1720 | VOP_UNLOCK(vp); |
1721 | vn_close(vp, FWRITE0x0002, cred, p); |
1722 | goto out; |
1723 | } |
1724 | VATTR_NULL(&vattr)vattr_null(&vattr); |
1725 | vattr.va_size = 0; |
1726 | VOP_SETATTR(vp, &vattr, cred, p); |
1727 | pr->ps_acflag |= ACORE0x00000008; |
1728 | |
1729 | io.io_proc = p; |
1730 | io.io_vp = vp; |
1731 | io.io_cred = cred; |
1732 | io.io_offset = 0; |
1733 | VOP_UNLOCK(vp); |
1734 | vref(vp); |
1735 | error = vn_close(vp, FWRITE0x0002, cred, p); |
1736 | if (error == 0) |
1737 | error = coredump_elf(p, &io); |
1738 | vrele(vp); |
1739 | out: |
1740 | crfree(cred); |
1741 | pool_put(&namei_pool, name); |
1742 | return (error); |
1743 | #endif |
1744 | } |
1745 | |
1746 | #ifndef SMALL_KERNEL |
1747 | int |
1748 | coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len) |
1749 | { |
1750 | struct coredump_iostate *io = cookie; |
1751 | off_t coffset = 0; |
1752 | size_t csize; |
1753 | int chunk, error; |
1754 | |
1755 | csize = len; |
1756 | do { |
1757 | if (sigmask(SIGKILL)(1U << ((9)-1)) & |
1758 | (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist)) |
1759 | return (EINTR4); |
1760 | |
1761 | /* Rest of the loop sleeps with lock held, so... */ |
1762 | yield(); |
1763 | |
1764 | chunk = MIN(csize, MAXPHYS)(((csize)<((64 * 1024)))?(csize):((64 * 1024))); |
1765 | error = vn_rdwr(UIO_WRITE, io->io_vp, |
1766 | (caddr_t)data + coffset, chunk, |
1767 | io->io_offset + coffset, segflg, |
1768 | IO_UNIT0x01, io->io_cred, NULL((void *)0), io->io_proc); |
1769 | if (error) { |
1770 | struct process *pr = io->io_proc->p_p; |
1771 | |
1772 | if (error == ENOSPC28) |
1773 | log(LOG_ERR3, |
1774 | "coredump of %s(%d) failed, filesystem full\n", |
1775 | pr->ps_comm, pr->ps_pid); |
1776 | else |
1777 | log(LOG_ERR3, |
1778 | "coredump of %s(%d), write failed: errno %d\n", |
1779 | pr->ps_comm, pr->ps_pid, error); |
1780 | return (error); |
1781 | } |
1782 | |
1783 | coffset += chunk; |
1784 | csize -= chunk; |
1785 | } while (csize > 0); |
1786 | |
1787 | io->io_offset += len; |
1788 | return (0); |
1789 | } |
1790 | |
1791 | void |
1792 | coredump_unmap(void *cookie, vaddr_t start, vaddr_t end) |
1793 | { |
1794 | struct coredump_iostate *io = cookie; |
1795 | |
1796 | uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end); |
1797 | } |
1798 | |
1799 | #endif /* !SMALL_KERNEL */ |
1800 | |
1801 | /* |
1802 | * Nonexistent system call-- signal process (may want to handle it). |
1803 | * Flag error in case process won't see signal immediately (blocked or ignored). |
1804 | */ |
1805 | int |
1806 | sys_nosys(struct proc *p, void *v, register_t *retval) |
1807 | { |
1808 | ptsignal(p, SIGSYS12, STHREAD); |
1809 | return (ENOSYS78); |
1810 | } |
1811 | |
1812 | int |
1813 | sys___thrsigdivert(struct proc *p, void *v, register_t *retval) |
1814 | { |
1815 | struct sys___thrsigdivert_args /* { |
1816 | syscallarg(sigset_t) sigmask; |
1817 | syscallarg(siginfo_t *) info; |
1818 | syscallarg(const struct timespec *) timeout; |
1819 | } */ *uap = v; |
1820 | struct sigctx ctx; |
1821 | sigset_t mask = SCARG(uap, sigmask)((uap)->sigmask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
1822 | siginfo_t si; |
1823 | uint64_t nsecs = INFSLP0xffffffffffffffffULL; |
1824 | int timeinvalid = 0; |
1825 | int error = 0; |
1826 | |
1827 | memset(&si, 0, sizeof(si))__builtin_memset((&si), (0), (sizeof(si))); |
1828 | |
1829 | if (SCARG(uap, timeout)((uap)->timeout.le.datum) != NULL((void *)0)) { |
1830 | struct timespec ts; |
1831 | if ((error = copyin(SCARG(uap, timeout)((uap)->timeout.le.datum), &ts, sizeof(ts))) != 0) |
1832 | return (error); |
1833 | #ifdef KTRACE1 |
1834 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
1835 | ktrreltimespec(p, &ts)ktrstruct((p), "reltimespec", (&ts), sizeof(struct timespec )); |
1836 | #endif |
1837 | if (!timespecisvalid(&ts)((&ts)->tv_nsec >= 0 && (&ts)->tv_nsec < 1000000000L)) |
1838 | timeinvalid = 1; |
1839 | else |
1840 | nsecs = TIMESPEC_TO_NSEC(&ts); |
1841 | } |
1842 | |
1843 | dosigsuspend(p, p->p_sigmask &~ mask); |
1844 | for (;;) { |
1845 | si.si_signo = cursig(p, &ctx); |
1846 | if (si.si_signo != 0) { |
1847 | sigset_t smask = sigmask(si.si_signo)(1U << ((si.si_signo)-1)); |
1848 | if (smask & mask) { |
1849 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, smask); |
1850 | error = 0; |
1851 | break; |
1852 | } |
1853 | } |
1854 | |
1855 | /* per-POSIX, delay this error until after the above */ |
1856 | if (timeinvalid) |
1857 | error = EINVAL22; |
1858 | /* per-POSIX, return immediately if timeout is zero-valued */ |
1859 | if (nsecs == 0) |
1860 | error = EAGAIN35; |
1861 | |
1862 | if (error != 0) |
1863 | break; |
1864 | |
1865 | error = tsleep_nsec(&nowake, PPAUSE40|PCATCH0x100, "sigwait", nsecs); |
1866 | } |
1867 | |
1868 | if (error == 0) { |
1869 | *retval = si.si_signo; |
1870 | if (SCARG(uap, info)((uap)->info.le.datum) != NULL((void *)0)) { |
1871 | error = copyout(&si, SCARG(uap, info)((uap)->info.le.datum), sizeof(si)); |
1872 | #ifdef KTRACE1 |
1873 | if (error == 0 && KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
1874 | ktrsiginfo(p, &si)ktrstruct(p, "siginfo", (&si), sizeof(siginfo_t)); |
1875 | #endif |
1876 | } |
1877 | } else if (error == ERESTART-1 && SCARG(uap, timeout)((uap)->timeout.le.datum) != NULL((void *)0)) { |
1878 | /* |
1879 | * Restarting is wrong if there's a timeout, as it'll be |
1880 | * for the same interval again |
1881 | */ |
1882 | error = EINTR4; |
1883 | } |
1884 | |
1885 | return (error); |
1886 | } |
1887 | |
1888 | void |
1889 | initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val) |
1890 | { |
1891 | memset(si, 0, sizeof(*si))__builtin_memset((si), (0), (sizeof(*si))); |
1892 | |
1893 | si->si_signo = sig; |
1894 | si->si_code = code; |
1895 | if (code == SI_USER0) { |
1896 | si->si_value_data._proc._pdata._kill._value = val; |
1897 | } else { |
1898 | switch (sig) { |
1899 | case SIGSEGV11: |
1900 | case SIGILL4: |
1901 | case SIGBUS10: |
1902 | case SIGFPE8: |
1903 | si->si_addr_data._fault._addr = val.sival_ptr; |
1904 | si->si_trapno_data._fault._trapno = trapno; |
1905 | break; |
1906 | case SIGXFSZ25: |
1907 | break; |
1908 | } |
1909 | } |
1910 | } |
1911 | |
1912 | int |
1913 | filt_sigattach(struct knote *kn) |
1914 | { |
1915 | struct process *pr = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p; |
1916 | int s; |
1917 | |
1918 | if (kn->kn_idkn_kevent.ident >= NSIG33) |
1919 | return EINVAL22; |
1920 | |
1921 | kn->kn_ptr.p_process = pr; |
1922 | kn->kn_flagskn_kevent.flags |= EV_CLEAR0x0020; /* automatically set */ |
1923 | |
1924 | s = splhigh()splraise(0xd); |
1925 | klist_insert_locked(&pr->ps_klist, kn); |
1926 | splx(s)spllower(s); |
1927 | |
1928 | return (0); |
1929 | } |
1930 | |
1931 | void |
1932 | filt_sigdetach(struct knote *kn) |
1933 | { |
1934 | struct process *pr = kn->kn_ptr.p_process; |
1935 | int s; |
1936 | |
1937 | s = splhigh()splraise(0xd); |
1938 | klist_remove_locked(&pr->ps_klist, kn); |
1939 | splx(s)spllower(s); |
1940 | } |
1941 | |
1942 | /* |
1943 | * signal knotes are shared with proc knotes, so we apply a mask to |
1944 | * the hint in order to differentiate them from process hints. This |
1945 | * could be avoided by using a signal-specific knote list, but probably |
1946 | * isn't worth the trouble. |
1947 | */ |
1948 | int |
1949 | filt_signal(struct knote *kn, long hint) |
1950 | { |
1951 | |
1952 | if (hint & NOTE_SIGNAL0x08000000) { |
1953 | hint &= ~NOTE_SIGNAL0x08000000; |
1954 | |
1955 | if (kn->kn_idkn_kevent.ident == hint) |
1956 | kn->kn_datakn_kevent.data++; |
1957 | } |
1958 | return (kn->kn_datakn_kevent.data != 0); |
1959 | } |
1960 | |
1961 | void |
1962 | userret(struct proc *p) |
1963 | { |
1964 | struct sigctx ctx; |
1965 | int signum; |
1966 | |
1967 | if (p->p_flag & P_SUSPSINGLE0x00080000) |
1968 | single_thread_check(p, 0); |
1969 | |
1970 | /* send SIGPROF or SIGVTALRM if their timers interrupted this thread */ |
1971 | if (p->p_flag & P_PROFPEND0x00000002) { |
1972 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_PROFPEND0x00000002); |
1973 | KERNEL_LOCK()_kernel_lock(); |
1974 | psignal(p, SIGPROF27); |
1975 | KERNEL_UNLOCK()_kernel_unlock(); |
1976 | } |
1977 | if (p->p_flag & P_ALRMPEND0x00000004) { |
1978 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_ALRMPEND0x00000004); |
1979 | KERNEL_LOCK()_kernel_lock(); |
1980 | psignal(p, SIGVTALRM26); |
1981 | KERNEL_UNLOCK()_kernel_unlock(); |
1982 | } |
1983 | |
1984 | if (SIGPENDING(p)(((p)->p_siglist | (p)->p_p->ps_siglist) & ~(p)-> p_sigmask) != 0) { |
1985 | while ((signum = cursig(p, &ctx)) != 0) |
1986 | postsig(p, signum, &ctx); |
1987 | } |
1988 | |
1989 | /* |
1990 | * If P_SIGSUSPEND is still set here, then we still need to restore |
1991 | * the original sigmask before returning to userspace. Also, this |
1992 | * might unmask some pending signals, so we need to check a second |
1993 | * time for signals to post. |
1994 | */ |
1995 | if (p->p_flag & P_SIGSUSPEND0x00000008) { |
1996 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
1997 | p->p_sigmask = p->p_oldmask; |
1998 | |
1999 | while ((signum = cursig(p, &ctx)) != 0) |
2000 | postsig(p, signum, &ctx); |
2001 | } |
2002 | |
2003 | WITNESS_WARN(WARN_PANIC, NULL, "userret: returning")(void)0; |
2004 | |
2005 | p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; |
2006 | } |
2007 | |
2008 | int |
2009 | single_thread_check_locked(struct proc *p, int deep, int s) |
2010 | { |
2011 | struct process *pr = p->p_p; |
2012 | |
2013 | SCHED_ASSERT_LOCKED()do { do { if (splassert_ctl > 0) { splassert_check(0xc, __func__ ); } } while (0); ((__mp_lock_held(&sched_lock, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;}))) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/kern/kern_sig.c", 2013, "__mp_lock_held(&sched_lock, curcpu())" )); } while (0); |
2014 | |
2015 | if (pr->ps_single == NULL((void *)0) || pr->ps_single == p) |
2016 | return (0); |
2017 | |
2018 | do { |
2019 | /* if we're in deep, we need to unwind to the edge */ |
2020 | if (deep) { |
2021 | if (pr->ps_flags & PS_SINGLEUNWIND0x00002000) |
2022 | return (ERESTART-1); |
2023 | if (pr->ps_flags & PS_SINGLEEXIT0x00001000) |
2024 | return (EINTR4); |
2025 | } |
2026 | |
2027 | if (atomic_dec_int_nv(&pr->ps_singlecount)_atomic_sub_int_nv((&pr->ps_singlecount), 1) == 0) |
2028 | wakeup(&pr->ps_singlecount); |
2029 | |
2030 | if (pr->ps_flags & PS_SINGLEEXIT0x00001000) { |
2031 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
2032 | KERNEL_LOCK()_kernel_lock(); |
2033 | exit1(p, 0, 0, EXIT_THREAD_NOCHECK0x00000003); |
2034 | /* NOTREACHED */ |
2035 | } |
2036 | |
2037 | /* not exiting and don't need to unwind, so suspend */ |
2038 | p->p_stat = SSTOP4; |
2039 | mi_switch(); |
2040 | } while (pr->ps_single != NULL((void *)0)); |
2041 | |
2042 | return (0); |
2043 | } |
2044 | |
2045 | int |
2046 | single_thread_check(struct proc *p, int deep) |
2047 | { |
2048 | int s, error; |
2049 | |
2050 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
2051 | error = single_thread_check_locked(p, deep, s); |
2052 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
2053 | |
2054 | return error; |
2055 | } |
2056 | |
2057 | /* |
2058 | * Stop other threads in the process. The mode controls how and |
2059 | * where the other threads should stop: |
2060 | * - SINGLE_SUSPEND: stop wherever they are, will later be released (via |
2061 | * single_thread_clear()) |
2062 | * - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit |
2063 | * (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND |
2064 | * - SINGLE_EXIT: unwind to kernel boundary and exit |
2065 | */ |
2066 | int |
2067 | single_thread_set(struct proc *p, int flags) |
2068 | { |
2069 | struct process *pr = p->p_p; |
2070 | struct proc *q; |
2071 | int error, s, mode = flags & SINGLE_MASK0x0f; |
2072 | |
2073 | KASSERT(curproc == p)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == p) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2073, "curproc == p")); |
2074 | |
2075 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
2076 | error = single_thread_check_locked(p, flags & SINGLE_DEEP0x10, s); |
2077 | if (error) { |
2078 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
2079 | return error; |
2080 | } |
2081 | |
2082 | switch (mode) { |
2083 | case SINGLE_SUSPEND0x01: |
2084 | break; |
2085 | case SINGLE_UNWIND0x02: |
2086 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000); |
2087 | break; |
2088 | case SINGLE_EXIT0x03: |
2089 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_SINGLEEXIT0x00001000); |
2090 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000); |
2091 | break; |
2092 | #ifdef DIAGNOSTIC1 |
2093 | default: |
2094 | panic("single_thread_mode = %d", mode); |
2095 | #endif |
2096 | } |
2097 | pr->ps_singlecount = 0; |
2098 | membar_producer()do { __asm volatile("" ::: "memory"); } while (0); |
2099 | pr->ps_single = p; |
2100 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
2101 | if (q == p) |
2102 | continue; |
2103 | if (q->p_flag & P_WEXIT0x00002000) { |
2104 | if (mode == SINGLE_EXIT0x03) { |
2105 | if (q->p_stat == SSTOP4) { |
2106 | setrunnable(q); |
2107 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
2108 | } |
2109 | } |
2110 | continue; |
2111 | } |
2112 | atomic_setbits_intx86_atomic_setbits_u32(&q->p_flag, P_SUSPSINGLE0x00080000); |
2113 | switch (q->p_stat) { |
2114 | case SIDL1: |
2115 | case SRUN2: |
2116 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
2117 | break; |
2118 | case SSLEEP3: |
2119 | /* if it's not interruptible, then just have to wait */ |
2120 | if (q->p_flag & P_SINTR0x00000080) { |
2121 | /* merely need to suspend? just stop it */ |
2122 | if (mode == SINGLE_SUSPEND0x01) { |
2123 | q->p_stat = SSTOP4; |
2124 | break; |
2125 | } |
2126 | /* need to unwind or exit, so wake it */ |
2127 | setrunnable(q); |
2128 | } |
2129 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
2130 | break; |
2131 | case SSTOP4: |
2132 | if (mode == SINGLE_EXIT0x03) { |
2133 | setrunnable(q); |
2134 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
2135 | } |
2136 | break; |
2137 | case SDEAD6: |
2138 | break; |
2139 | case SONPROC7: |
2140 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
2141 | signotify(q); |
2142 | break; |
2143 | } |
2144 | } |
2145 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
2146 | |
2147 | if ((flags & SINGLE_NOWAIT0x20) == 0) |
2148 | single_thread_wait(pr, 1); |
2149 | |
2150 | return 0; |
2151 | } |
2152 | |
2153 | /* |
2154 | * Wait for other threads to stop. If recheck is false then the function |
2155 | * returns non-zero if the caller needs to restart the check else 0 is |
2156 | * returned. If recheck is true the return value is always 0. |
2157 | */ |
2158 | int |
2159 | single_thread_wait(struct process *pr, int recheck) |
2160 | { |
2161 | int wait; |
2162 | |
2163 | /* wait until they're all suspended */ |
2164 | wait = pr->ps_singlecount > 0; |
2165 | while (wait) { |
2166 | sleep_setup(&pr->ps_singlecount, PWAIT32, "suspend"); |
2167 | wait = pr->ps_singlecount > 0; |
2168 | sleep_finish(0, wait); |
2169 | if (!recheck) |
2170 | break; |
2171 | } |
2172 | |
2173 | return wait; |
2174 | } |
2175 | |
2176 | void |
2177 | single_thread_clear(struct proc *p, int flag) |
2178 | { |
2179 | struct process *pr = p->p_p; |
2180 | struct proc *q; |
2181 | int s; |
2182 | |
2183 | KASSERT(pr->ps_single == p)((pr->ps_single == p) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 2183, "pr->ps_single == p")); |
2184 | KASSERT(curproc == p)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == p) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2184, "curproc == p")); |
2185 | |
2186 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
2187 | pr->ps_single = NULL((void *)0); |
2188 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000 | PS_SINGLEEXIT0x00001000); |
2189 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
2190 | if (q == p || (q->p_flag & P_SUSPSINGLE0x00080000) == 0) |
2191 | continue; |
2192 | atomic_clearbits_intx86_atomic_clearbits_u32(&q->p_flag, P_SUSPSINGLE0x00080000); |
2193 | |
2194 | /* |
2195 | * if the thread was only stopped for single threading |
2196 | * then clearing that either makes it runnable or puts |
2197 | * it back into some sleep queue |
2198 | */ |
2199 | if (q->p_stat == SSTOP4 && (q->p_flag & flag) == 0) { |
2200 | if (q->p_wchan == NULL((void *)0)) |
2201 | setrunnable(q); |
2202 | else { |
2203 | atomic_clearbits_intx86_atomic_clearbits_u32(&q->p_flag, P_WSLEEP0x00000020); |
2204 | q->p_stat = SSLEEP3; |
2205 | } |
2206 | } |
2207 | } |
2208 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
2209 | } |
2210 | |
2211 | void |
2212 | sigio_del(struct sigiolst *rmlist) |
2213 | { |
2214 | struct sigio *sigio; |
2215 | |
2216 | while ((sigio = LIST_FIRST(rmlist)((rmlist)->lh_first)) != NULL((void *)0)) { |
2217 | LIST_REMOVE(sigio, sio_pgsigio)do { if ((sigio)->sio_pgsigio.le_next != ((void *)0)) (sigio )->sio_pgsigio.le_next->sio_pgsigio.le_prev = (sigio)-> sio_pgsigio.le_prev; *(sigio)->sio_pgsigio.le_prev = (sigio )->sio_pgsigio.le_next; ((sigio)->sio_pgsigio.le_prev) = ((void *)-1); ((sigio)->sio_pgsigio.le_next) = ((void *)- 1); } while (0); |
2218 | crfree(sigio->sio_ucred); |
2219 | free(sigio, M_SIGIO40, sizeof(*sigio)); |
2220 | } |
2221 | } |
2222 | |
2223 | void |
2224 | sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist) |
2225 | { |
2226 | struct sigio *sigio; |
2227 | |
2228 | MUTEX_ASSERT_LOCKED(&sigio_lock)do { if (((&sigio_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;})) && !(panicstr || db_active)) panic("mutex %p not held in %s", (&sigio_lock ), __func__); } while (0); |
2229 | |
2230 | sigio = sir->sir_sigio; |
2231 | if (sigio != NULL((void *)0)) { |
2232 | KASSERT(sigio->sio_myref == sir)((sigio->sio_myref == sir) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2232, "sigio->sio_myref == sir" )); |
2233 | sir->sir_sigio = NULL((void *)0); |
2234 | |
2235 | if (sigio->sio_pgid > 0) |
2236 | sigio->sio_procsio_u.siu_proc = NULL((void *)0); |
2237 | else |
2238 | sigio->sio_pgrpsio_u.siu_pgrp = NULL((void *)0); |
2239 | LIST_REMOVE(sigio, sio_pgsigio)do { if ((sigio)->sio_pgsigio.le_next != ((void *)0)) (sigio )->sio_pgsigio.le_next->sio_pgsigio.le_prev = (sigio)-> sio_pgsigio.le_prev; *(sigio)->sio_pgsigio.le_prev = (sigio )->sio_pgsigio.le_next; ((sigio)->sio_pgsigio.le_prev) = ((void *)-1); ((sigio)->sio_pgsigio.le_next) = ((void *)- 1); } while (0); |
2240 | |
2241 | LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (rmlist)->lh_first ) != ((void *)0)) (rmlist)->lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio.le_next; (rmlist)->lh_first = (sigio); (sigio)->sio_pgsigio.le_prev = &(rmlist)-> lh_first; } while (0); |
2242 | } |
2243 | } |
2244 | |
2245 | void |
2246 | sigio_free(struct sigio_ref *sir) |
2247 | { |
2248 | struct sigiolst rmlist; |
2249 | |
2250 | if (sir->sir_sigio == NULL((void *)0)) |
2251 | return; |
2252 | |
2253 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
2254 | |
2255 | mtx_enter(&sigio_lock); |
2256 | sigio_unlink(sir, &rmlist); |
2257 | mtx_leave(&sigio_lock); |
2258 | |
2259 | sigio_del(&rmlist); |
2260 | } |
2261 | |
2262 | void |
2263 | sigio_freelist(struct sigiolst *sigiolst) |
2264 | { |
2265 | struct sigiolst rmlist; |
2266 | struct sigio *sigio; |
2267 | |
2268 | if (LIST_EMPTY(sigiolst)(((sigiolst)->lh_first) == ((void *)0))) |
2269 | return; |
2270 | |
2271 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
2272 | |
2273 | mtx_enter(&sigio_lock); |
2274 | while ((sigio = LIST_FIRST(sigiolst)((sigiolst)->lh_first)) != NULL((void *)0)) |
2275 | sigio_unlink(sigio->sio_myref, &rmlist); |
2276 | mtx_leave(&sigio_lock); |
2277 | |
2278 | sigio_del(&rmlist); |
2279 | } |
2280 | |
2281 | int |
2282 | sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data) |
2283 | { |
2284 | struct sigiolst rmlist; |
2285 | struct proc *p = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; |
2286 | struct pgrp *pgrp = NULL((void *)0); |
2287 | struct process *pr = NULL((void *)0); |
2288 | struct sigio *sigio; |
2289 | int error; |
2290 | pid_t pgid = *(int *)data; |
2291 | |
2292 | if (pgid == 0) { |
2293 | sigio_free(sir); |
2294 | return (0); |
2295 | } |
2296 | |
2297 | if (cmd == TIOCSPGRP((unsigned long)0x80000000 | ((sizeof(int) & 0x1fff) << 16) | ((('t')) << 8) | ((118)))) { |
2298 | if (pgid < 0) |
2299 | return (EINVAL22); |
2300 | pgid = -pgid; |
2301 | } |
2302 | |
2303 | sigio = malloc(sizeof(*sigio), M_SIGIO40, M_WAITOK0x0001); |
2304 | sigio->sio_pgid = pgid; |
2305 | sigio->sio_ucred = crhold(p->p_ucred); |
2306 | sigio->sio_myref = sir; |
2307 | |
2308 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
2309 | |
2310 | /* |
2311 | * The kernel lock, and not sleeping between prfind()/pgfind() and |
2312 | * linking of the sigio ensure that the process or process group does |
2313 | * not disappear unexpectedly. |
2314 | */ |
2315 | KERNEL_LOCK()_kernel_lock(); |
2316 | mtx_enter(&sigio_lock); |
2317 | |
2318 | if (pgid > 0) { |
2319 | pr = prfind(pgid); |
2320 | if (pr == NULL((void *)0)) { |
2321 | error = ESRCH3; |
2322 | goto fail; |
2323 | } |
2324 | |
2325 | /* |
2326 | * Policy - Don't allow a process to FSETOWN a process |
2327 | * in another session. |
2328 | * |
2329 | * Remove this test to allow maximum flexibility or |
2330 | * restrict FSETOWN to the current process or process |
2331 | * group for maximum safety. |
2332 | */ |
2333 | if (pr->ps_sessionps_pgrp->pg_session != p->p_p->ps_sessionps_pgrp->pg_session) { |
2334 | error = EPERM1; |
2335 | goto fail; |
2336 | } |
2337 | |
2338 | if ((pr->ps_flags & PS_EXITING0x00000008) != 0) { |
2339 | error = ESRCH3; |
2340 | goto fail; |
2341 | } |
2342 | } else /* if (pgid < 0) */ { |
2343 | pgrp = pgfind(-pgid); |
2344 | if (pgrp == NULL((void *)0)) { |
2345 | error = ESRCH3; |
2346 | goto fail; |
2347 | } |
2348 | |
2349 | /* |
2350 | * Policy - Don't allow a process to FSETOWN a process |
2351 | * in another session. |
2352 | * |
2353 | * Remove this test to allow maximum flexibility or |
2354 | * restrict FSETOWN to the current process or process |
2355 | * group for maximum safety. |
2356 | */ |
2357 | if (pgrp->pg_session != p->p_p->ps_sessionps_pgrp->pg_session) { |
2358 | error = EPERM1; |
2359 | goto fail; |
2360 | } |
2361 | } |
2362 | |
2363 | if (pgid > 0) { |
2364 | sigio->sio_procsio_u.siu_proc = pr; |
2365 | LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (&pr->ps_sigiolst )->lh_first) != ((void *)0)) (&pr->ps_sigiolst)-> lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio .le_next; (&pr->ps_sigiolst)->lh_first = (sigio); ( sigio)->sio_pgsigio.le_prev = &(&pr->ps_sigiolst )->lh_first; } while (0); |
2366 | } else { |
2367 | sigio->sio_pgrpsio_u.siu_pgrp = pgrp; |
2368 | LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (&pgrp->pg_sigiolst )->lh_first) != ((void *)0)) (&pgrp->pg_sigiolst)-> lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio .le_next; (&pgrp->pg_sigiolst)->lh_first = (sigio); (sigio)->sio_pgsigio.le_prev = &(&pgrp->pg_sigiolst )->lh_first; } while (0); |
2369 | } |
2370 | |
2371 | sigio_unlink(sir, &rmlist); |
2372 | sir->sir_sigio = sigio; |
2373 | |
2374 | mtx_leave(&sigio_lock); |
2375 | KERNEL_UNLOCK()_kernel_unlock(); |
2376 | |
2377 | sigio_del(&rmlist); |
2378 | |
2379 | return (0); |
2380 | |
2381 | fail: |
2382 | mtx_leave(&sigio_lock); |
2383 | KERNEL_UNLOCK()_kernel_unlock(); |
2384 | |
2385 | crfree(sigio->sio_ucred); |
2386 | free(sigio, M_SIGIO40, sizeof(*sigio)); |
2387 | |
2388 | return (error); |
2389 | } |
2390 | |
2391 | void |
2392 | sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data) |
2393 | { |
2394 | struct sigio *sigio; |
2395 | pid_t pgid = 0; |
2396 | |
2397 | mtx_enter(&sigio_lock); |
2398 | sigio = sir->sir_sigio; |
2399 | if (sigio != NULL((void *)0)) |
2400 | pgid = sigio->sio_pgid; |
2401 | mtx_leave(&sigio_lock); |
2402 | |
2403 | if (cmd == TIOCGPGRP((unsigned long)0x40000000 | ((sizeof(int) & 0x1fff) << 16) | ((('t')) << 8) | ((119)))) |
2404 | pgid = -pgid; |
2405 | |
2406 | *(int *)data = pgid; |
2407 | } |
2408 | |
2409 | void |
2410 | sigio_copy(struct sigio_ref *dst, struct sigio_ref *src) |
2411 | { |
2412 | struct sigiolst rmlist; |
2413 | struct sigio *newsigio, *sigio; |
2414 | |
2415 | sigio_free(dst); |
2416 | |
2417 | if (src->sir_sigio == NULL((void *)0)) |
2418 | return; |
2419 | |
2420 | newsigio = malloc(sizeof(*newsigio), M_SIGIO40, M_WAITOK0x0001); |
2421 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
2422 | |
2423 | mtx_enter(&sigio_lock); |
2424 | |
2425 | sigio = src->sir_sigio; |
2426 | if (sigio == NULL((void *)0)) { |
2427 | mtx_leave(&sigio_lock); |
2428 | free(newsigio, M_SIGIO40, sizeof(*newsigio)); |
2429 | return; |
2430 | } |
2431 | |
2432 | newsigio->sio_pgid = sigio->sio_pgid; |
2433 | newsigio->sio_ucred = crhold(sigio->sio_ucred); |
2434 | newsigio->sio_myref = dst; |
2435 | if (newsigio->sio_pgid > 0) { |
2436 | newsigio->sio_procsio_u.siu_proc = sigio->sio_procsio_u.siu_proc; |
2437 | LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_proc->ps_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first; } while (0) |
2438 | sio_pgsigio)do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_proc->ps_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first; } while (0); |
2439 | } else { |
2440 | newsigio->sio_pgrpsio_u.siu_pgrp = sigio->sio_pgrpsio_u.siu_pgrp; |
2441 | LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_pgrp->pg_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first; } while (0) |
2442 | sio_pgsigio)do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_pgrp->pg_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first; } while (0); |
2443 | } |
2444 | |
2445 | sigio_unlink(dst, &rmlist); |
2446 | dst->sir_sigio = newsigio; |
2447 | |
2448 | mtx_leave(&sigio_lock); |
2449 | |
2450 | sigio_del(&rmlist); |
2451 | } |