Bug Summary

File:kern/subr_hibernate.c
Warning:line 1581, column 21
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name subr_hibernate.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -target-feature +retpoline-external-thunk -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/llvm16/lib/clang/16 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/legacy-dpm -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu13 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/inc -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc/pmfw_if -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D SUSPEND -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /home/ben/Projects/scan/2024-01-11-110808-61670-1 -x c /usr/src/sys/kern/subr_hibernate.c
1/* $OpenBSD: subr_hibernate.c,v 1.138 2022/09/03 18:17:15 mlarkin Exp $ */
2
3/*
4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/hibernate.h>
21#include <sys/malloc.h>
22#include <sys/param.h>
23#include <sys/tree.h>
24#include <sys/systm.h>
25#include <sys/disklabel.h>
26#include <sys/disk.h>
27#include <sys/conf.h>
28#include <sys/buf.h>
29#include <sys/fcntl.h>
30#include <sys/stat.h>
31#include <sys/atomic.h>
32
33#include <uvm/uvm.h>
34#include <uvm/uvm_swap.h>
35
36#include <machine/hibernate.h>
37
38/* Make sure the signature can fit in one block */
39CTASSERT(sizeof(union hibernate_info) <= DEV_BSIZE)extern char _ctassert[(sizeof(union hibernate_info) <= (1 <<
9)) ? 1 : -1 ] __attribute__((__unused__))
;
40
41/*
42 * Hibernate piglet layout information
43 *
44 * The piglet is a scratch area of memory allocated by the suspending kernel.
45 * Its phys and virt addrs are recorded in the signature block. The piglet is
46 * used to guarantee an unused area of memory that can be used by the resuming
47 * kernel for various things. The piglet is excluded during unpack operations.
48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
49 *
50 * Offset from piglet_base Purpose
51 * ----------------------------------------------------------------------------
52 * 0 Private page for suspend I/O write functions
53 * 1*PAGE_SIZE I/O page used during hibernate suspend
54 * 2*PAGE_SIZE I/O page used during hibernate suspend
55 * 3*PAGE_SIZE copy page used during hibernate suspend
56 * 4*PAGE_SIZE final chunk ordering list (24 pages)
57 * 28*PAGE_SIZE RLE utility page
58 * 29*PAGE_SIZE start of hiballoc area
59 * 30*PAGE_SIZE preserved entropy
60 * 110*PAGE_SIZE end of hiballoc area (80 pages)
61 * 366*PAGE_SIZE end of retguard preservation region (256 pages)
62 * ... unused
63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table
64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked
65 * 4*HIBERNATE_CHUNK_SIZE end of piglet
66 */
67
68/* Temporary vaddr ranges used during hibernate */
69vaddr_t hibernate_temp_page;
70vaddr_t hibernate_copy_page;
71vaddr_t hibernate_rle_page;
72
73/* Hibernate info as read from disk during resume */
74union hibernate_info disk_hib;
75
76/*
77 * Global copy of the pig start address. This needs to be a global as we
78 * switch stacks after computing it - it can't be stored on the stack.
79 */
80paddr_t global_pig_start;
81
82/*
83 * Global copies of the piglet start addresses (PA/VA). We store these
84 * as globals to avoid having to carry them around as parameters, as the
85 * piglet is allocated early and freed late - its lifecycle extends beyond
86 * that of the hibernate info union which is calculated on suspend/resume.
87 */
88vaddr_t global_piglet_va;
89paddr_t global_piglet_pa;
90
91/* #define HIB_DEBUG */
92#ifdef HIB_DEBUG
93int hib_debug = 99;
94#define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0)
95#define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0)
96#else
97#define DPRINTF(x...)
98#define DNPRINTF(n,x...)
99#endif
100
101#ifndef NO_PROPOLICE
102extern long __guard_local;
103#endif /* ! NO_PROPOLICE */
104
105/* Retguard phys address (need to skip this region during unpack) */
106paddr_t retguard_start_phys, retguard_end_phys;
107extern char __retguard_start, __retguard_end;
108
109void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
110int hibernate_calc_rle(paddr_t, paddr_t);
111int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
112 size_t *);
113
114#define MAX_RLE(0x400000 / (1 << 12)) (HIBERNATE_CHUNK_SIZE0x400000 / PAGE_SIZE(1 << 12))
115
116/*
117 * Hib alloc enforced alignment.
118 */
119#define HIB_ALIGN8 8 /* bytes alignment */
120
121/*
122 * sizeof builtin operation, but with alignment constraint.
123 */
124#define HIB_SIZEOF(_type)((((sizeof(_type))+((8)-1))/(8))*(8)) roundup(sizeof(_type), HIB_ALIGN)((((sizeof(_type))+((8)-1))/(8))*(8))
125
126struct hiballoc_entry {
127 size_t hibe_use;
128 size_t hibe_space;
129 RBT_ENTRY(hiballoc_entry)struct rb_entry hibe_entry;
130};
131
132/*
133 * Sort hibernate memory ranges by ascending PA
134 */
135void
136hibernate_sort_ranges(union hibernate_info *hib_info)
137{
138 int i, j;
139 struct hibernate_memory_range *ranges;
140 paddr_t base, end;
141
142 ranges = hib_info->ranges;
143
144 for (i = 1; i < hib_info->nranges; i++) {
145 j = i;
146 while (j > 0 && ranges[j - 1].base > ranges[j].base) {
147 base = ranges[j].base;
148 end = ranges[j].end;
149 ranges[j].base = ranges[j - 1].base;
150 ranges[j].end = ranges[j - 1].end;
151 ranges[j - 1].base = base;
152 ranges[j - 1].end = end;
153 j--;
154 }
155 }
156}
157
158/*
159 * Compare hiballoc entries based on the address they manage.
160 *
161 * Since the address is fixed, relative to struct hiballoc_entry,
162 * we just compare the hiballoc_entry pointers.
163 */
164static __inline int
165hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r)
166{
167 vaddr_t vl = (vaddr_t)l;
168 vaddr_t vr = (vaddr_t)r;
169
170 return vl < vr ? -1 : (vl > vr);
171}
172
173RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)extern const struct rb_type *const hiballoc_addr_RBT_TYPE; __attribute__
((__unused__)) static inline void hiballoc_addr_RBT_INIT(struct
hiballoc_addr *head) { _rb_init(&head->rbh_root); } __attribute__
((__unused__)) static inline struct hiballoc_entry * hiballoc_addr_RBT_INSERT
(struct hiballoc_addr *head, struct hiballoc_entry *elm) { return
_rb_insert(hiballoc_addr_RBT_TYPE, &head->rbh_root, elm
); } __attribute__((__unused__)) static inline struct hiballoc_entry
* hiballoc_addr_RBT_REMOVE(struct hiballoc_addr *head, struct
hiballoc_entry *elm) { return _rb_remove(hiballoc_addr_RBT_TYPE
, &head->rbh_root, elm); } __attribute__((__unused__))
static inline struct hiballoc_entry * hiballoc_addr_RBT_FIND
(struct hiballoc_addr *head, const struct hiballoc_entry *key
) { return _rb_find(hiballoc_addr_RBT_TYPE, &head->rbh_root
, key); } __attribute__((__unused__)) static inline struct hiballoc_entry
* hiballoc_addr_RBT_NFIND(struct hiballoc_addr *head, const struct
hiballoc_entry *key) { return _rb_nfind(hiballoc_addr_RBT_TYPE
, &head->rbh_root, key); } __attribute__((__unused__))
static inline struct hiballoc_entry * hiballoc_addr_RBT_ROOT
(struct hiballoc_addr *head) { return _rb_root(hiballoc_addr_RBT_TYPE
, &head->rbh_root); } __attribute__((__unused__)) static
inline int hiballoc_addr_RBT_EMPTY(struct hiballoc_addr *head
) { return _rb_empty(&head->rbh_root); } __attribute__
((__unused__)) static inline struct hiballoc_entry * hiballoc_addr_RBT_MIN
(struct hiballoc_addr *head) { return _rb_min(hiballoc_addr_RBT_TYPE
, &head->rbh_root); } __attribute__((__unused__)) static
inline struct hiballoc_entry * hiballoc_addr_RBT_MAX(struct hiballoc_addr
*head) { return _rb_max(hiballoc_addr_RBT_TYPE, &head->
rbh_root); } __attribute__((__unused__)) static inline struct
hiballoc_entry * hiballoc_addr_RBT_NEXT(struct hiballoc_entry
*elm) { return _rb_next(hiballoc_addr_RBT_TYPE, elm); } __attribute__
((__unused__)) static inline struct hiballoc_entry * hiballoc_addr_RBT_PREV
(struct hiballoc_entry *elm) { return _rb_prev(hiballoc_addr_RBT_TYPE
, elm); } __attribute__((__unused__)) static inline struct hiballoc_entry
* hiballoc_addr_RBT_LEFT(struct hiballoc_entry *elm) { return
_rb_left(hiballoc_addr_RBT_TYPE, elm); } __attribute__((__unused__
)) static inline struct hiballoc_entry * hiballoc_addr_RBT_RIGHT
(struct hiballoc_entry *elm) { return _rb_right(hiballoc_addr_RBT_TYPE
, elm); } __attribute__((__unused__)) static inline struct hiballoc_entry
* hiballoc_addr_RBT_PARENT(struct hiballoc_entry *elm) { return
_rb_parent(hiballoc_addr_RBT_TYPE, elm); } __attribute__((__unused__
)) static inline void hiballoc_addr_RBT_SET_LEFT(struct hiballoc_entry
*elm, struct hiballoc_entry *left) { _rb_set_left(hiballoc_addr_RBT_TYPE
, elm, left); } __attribute__((__unused__)) static inline void
hiballoc_addr_RBT_SET_RIGHT(struct hiballoc_entry *elm, struct
hiballoc_entry *right) { _rb_set_right(hiballoc_addr_RBT_TYPE
, elm, right); } __attribute__((__unused__)) static inline void
hiballoc_addr_RBT_SET_PARENT(struct hiballoc_entry *elm, struct
hiballoc_entry *parent) { _rb_set_parent(hiballoc_addr_RBT_TYPE
, elm, parent); } __attribute__((__unused__)) static inline void
hiballoc_addr_RBT_POISON(struct hiballoc_entry *elm, unsigned
long poison) { _rb_poison(hiballoc_addr_RBT_TYPE, elm, poison
); } __attribute__((__unused__)) static inline int hiballoc_addr_RBT_CHECK
(struct hiballoc_entry *elm, unsigned long poison) { return _rb_check
(hiballoc_addr_RBT_TYPE, elm, poison); }
174
175/*
176 * Given a hiballoc entry, return the address it manages.
177 */
178static __inline void *
179hib_entry_to_addr(struct hiballoc_entry *entry)
180{
181 caddr_t addr;
182
183 addr = (caddr_t)entry;
184 addr += HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8));
185 return addr;
186}
187
188/*
189 * Given an address, find the hiballoc that corresponds.
190 */
191static __inline struct hiballoc_entry*
192hib_addr_to_entry(void *addr_param)
193{
194 caddr_t addr;
195
196 addr = (caddr_t)addr_param;
197 addr -= HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8));
198 return (struct hiballoc_entry*)addr;
199}
200
201RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)static int hiballoc_addr_RBT_COMPARE(const void *lptr, const void
*rptr) { const struct hiballoc_entry *l = lptr, *r = rptr; return
hibe_cmp(l, r); } static const struct rb_type hiballoc_addr_RBT_INFO
= { hiballoc_addr_RBT_COMPARE, ((void *)0), __builtin_offsetof
(struct hiballoc_entry, hibe_entry), }; const struct rb_type *
const hiballoc_addr_RBT_TYPE = &hiballoc_addr_RBT_INFO
;
202
203/*
204 * Allocate memory from the arena.
205 *
206 * Returns NULL if no memory is available.
207 */
208void *
209hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
210{
211 struct hiballoc_entry *entry, *new_entry;
212 size_t find_sz;
213
214 /*
215 * Enforce alignment of HIB_ALIGN bytes.
216 *
217 * Note that, because the entry is put in front of the allocation,
218 * 0-byte allocations are guaranteed a unique address.
219 */
220 alloc_sz = roundup(alloc_sz, HIB_ALIGN)((((alloc_sz)+((8)-1))/(8))*(8));
221
222 /*
223 * Find an entry with hibe_space >= find_sz.
224 *
225 * If the root node is not large enough, we switch to tree traversal.
226 * Because all entries are made at the bottom of the free space,
227 * traversal from the end has a slightly better chance of yielding
228 * a sufficiently large space.
229 */
230 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8));
231 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs)hiballoc_addr_RBT_ROOT(&arena->hib_addrs);
232 if (entry != NULL((void *)0) && entry->hibe_space < find_sz) {
233 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs)for ((entry) = hiballoc_addr_RBT_MAX((&arena->hib_addrs
)); (entry) != ((void *)0); (entry) = hiballoc_addr_RBT_PREV(
(entry)))
{
234 if (entry->hibe_space >= find_sz)
235 break;
236 }
237 }
238
239 /*
240 * Insufficient or too fragmented memory.
241 */
242 if (entry == NULL((void *)0))
243 return NULL((void *)0);
244
245 /*
246 * Create new entry in allocated space.
247 */
248 new_entry = (struct hiballoc_entry*)(
249 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
250 new_entry->hibe_space = entry->hibe_space - find_sz;
251 new_entry->hibe_use = alloc_sz;
252
253 /*
254 * Insert entry.
255 */
256 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry)hiballoc_addr_RBT_INSERT(&arena->hib_addrs, new_entry) != NULL((void *)0))
257 panic("hib_alloc: insert failure");
258 entry->hibe_space = 0;
259
260 /* Return address managed by entry. */
261 return hib_entry_to_addr(new_entry);
262}
263
264void
265hib_getentropy(char **bufp, size_t *bufplen)
266{
267 if (!bufp || !bufplen)
268 return;
269
270 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE(1 << 12)));
271 *bufplen = PAGE_SIZE(1 << 12);
272}
273
274/*
275 * Free a pointer previously allocated from this arena.
276 *
277 * If addr is NULL, this will be silently accepted.
278 */
279void
280hib_free(struct hiballoc_arena *arena, void *addr)
281{
282 struct hiballoc_entry *entry, *prev;
283
284 if (addr == NULL((void *)0))
285 return;
286
287 /*
288 * Derive entry from addr and check it is really in this arena.
289 */
290 entry = hib_addr_to_entry(addr);
291 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry)hiballoc_addr_RBT_FIND(&arena->hib_addrs, entry) != entry)
292 panic("hib_free: freed item %p not in hib arena", addr);
293
294 /*
295 * Give the space in entry to its predecessor.
296 *
297 * If entry has no predecessor, change its used space into free space
298 * instead.
299 */
300 prev = RBT_PREV(hiballoc_addr, entry)hiballoc_addr_RBT_PREV(entry);
301 if (prev != NULL((void *)0) &&
302 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8)) +
303 prev->hibe_use + prev->hibe_space) == entry) {
304 /* Merge entry. */
305 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry)hiballoc_addr_RBT_REMOVE(&arena->hib_addrs, entry);
306 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8)) +
307 entry->hibe_use + entry->hibe_space;
308 } else {
309 /* Flip used memory to free space. */
310 entry->hibe_space += entry->hibe_use;
311 entry->hibe_use = 0;
312 }
313}
314
315/*
316 * Initialize hiballoc.
317 *
318 * The allocator will manage memory at ptr, which is len bytes.
319 */
320int
321hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
322{
323 struct hiballoc_entry *entry;
324 caddr_t ptr;
325 size_t len;
326
327 RBT_INIT(hiballoc_addr, &arena->hib_addrs)hiballoc_addr_RBT_INIT(&arena->hib_addrs);
328
329 /*
330 * Hib allocator enforces HIB_ALIGN alignment.
331 * Fixup ptr and len.
332 */
333 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN)(((((vaddr_t)p_ptr)+((8)-1))/(8))*(8));
334 len = p_len - ((size_t)ptr - (size_t)p_ptr);
335 len &= ~((size_t)HIB_ALIGN8 - 1);
336
337 /*
338 * Insufficient memory to be able to allocate and also do bookkeeping.
339 */
340 if (len <= HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8)))
341 return ENOMEM12;
342
343 /*
344 * Create entry describing space.
345 */
346 entry = (struct hiballoc_entry*)ptr;
347 entry->hibe_use = 0;
348 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry)((((sizeof(struct hiballoc_entry))+((8)-1))/(8))*(8));
349 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry)hiballoc_addr_RBT_INSERT(&arena->hib_addrs, entry);
350
351 return 0;
352}
353
354/*
355 * Zero all free memory.
356 */
357void
358uvm_pmr_zero_everything(void)
359{
360 struct uvm_pmemrange *pmr;
361 struct vm_page *pg;
362 int i;
363
364 uvm_lock_fpageq()mtx_enter(&uvm.fpageqlock);
365 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use)for((pmr) = ((&uvm.pmr_control.use)->tqh_first); (pmr)
!= ((void *)0); (pmr) = ((pmr)->pmr_use.tqe_next))
{
366 /* Zero single pages. */
367 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])((&pmr->single[0])->tqh_first))
368 != NULL((void *)0)) {
369 uvm_pmr_remove(pmr, pg);
370 uvm_pagezero(pg);
371 atomic_setbits_intx86_atomic_setbits_u32(&pg->pg_flags, PG_ZERO0x00000100);
372 uvmexp.zeropages++;
373 uvm_pmr_insert(pmr, pg, 0);
374 }
375
376 /* Zero multi page ranges. */
377 while ((pg = RBT_ROOT(uvm_pmr_size,uvm_pmr_size_RBT_ROOT(&pmr->size[0])
378 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])uvm_pmr_size_RBT_ROOT(&pmr->size[0])) != NULL((void *)0)) {
379 pg--; /* Size tree always has second page. */
380 uvm_pmr_remove(pmr, pg);
381 for (i = 0; i < pg->fpgsz; i++) {
382 uvm_pagezero(&pg[i]);
383 atomic_setbits_intx86_atomic_setbits_u32(&pg[i].pg_flags, PG_ZERO0x00000100);
384 uvmexp.zeropages++;
385 }
386 uvm_pmr_insert(pmr, pg, 0);
387 }
388 }
389 uvm_unlock_fpageq()mtx_leave(&uvm.fpageqlock);
390}
391
392/*
393 * Mark all memory as dirty.
394 *
395 * Used to inform the system that the clean memory isn't clean for some
396 * reason, for example because we just came back from hibernate.
397 */
398void
399uvm_pmr_dirty_everything(void)
400{
401 struct uvm_pmemrange *pmr;
402 struct vm_page *pg;
403 int i;
404
405 uvm_lock_fpageq()mtx_enter(&uvm.fpageqlock);
406 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use)for((pmr) = ((&uvm.pmr_control.use)->tqh_first); (pmr)
!= ((void *)0); (pmr) = ((pmr)->pmr_use.tqe_next))
{
407 /* Dirty single pages. */
408 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])((&pmr->single[1])->tqh_first))
409 != NULL((void *)0)) {
410 uvm_pmr_remove(pmr, pg);
411 atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_ZERO0x00000100);
412 uvm_pmr_insert(pmr, pg, 0);
413 }
414
415 /* Dirty multi page ranges. */
416 while ((pg = RBT_ROOT(uvm_pmr_size,uvm_pmr_size_RBT_ROOT(&pmr->size[1])
417 &pmr->size[UVM_PMR_MEMTYPE_ZERO])uvm_pmr_size_RBT_ROOT(&pmr->size[1])) != NULL((void *)0)) {
418 pg--; /* Size tree always has second page. */
419 uvm_pmr_remove(pmr, pg);
420 for (i = 0; i < pg->fpgsz; i++)
421 atomic_clearbits_intx86_atomic_clearbits_u32(&pg[i].pg_flags, PG_ZERO0x00000100);
422 uvm_pmr_insert(pmr, pg, 0);
423 }
424 }
425
426 uvmexp.zeropages = 0;
427 uvm_unlock_fpageq()mtx_leave(&uvm.fpageqlock);
428}
429
430/*
431 * Allocate an area that can hold sz bytes and doesn't overlap with
432 * the piglet at piglet_pa.
433 */
434int
435uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
436{
437 struct uvm_constraint_range pig_constraint;
438 struct kmem_pa_mode kp_pig = {
439 .kp_constraint = &pig_constraint,
440 .kp_maxseg = 1
441 };
442 vaddr_t va;
443
444 sz = round_page(sz)(((sz) + ((1 << 12) - 1)) & ~((1 << 12) - 1));
445
446 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE0x400000;
447 pig_constraint.ucr_high = -1;
448
449 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
450 if (va == 0) {
451 pig_constraint.ucr_low = 0;
452 pig_constraint.ucr_high = piglet_pa - 1;
453
454 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
455 if (va == 0)
456 return ENOMEM12;
457 }
458
459 pmap_extract(pmap_kernel()(&kernel_pmap_store), va, pa);
460 return 0;
461}
462
463/*
464 * Allocate a piglet area.
465 *
466 * This needs to be in DMA-safe memory.
467 * Piglets are aligned.
468 *
469 * sz and align in bytes.
470 *
471 * The call will sleep for the pagedaemon to attempt to free memory.
472 * The pagedaemon may decide its not possible to free enough memory, causing
473 * the allocation to fail.
474 */
475int
476uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
477{
478 struct kmem_pa_mode kp_piglet = {
479 .kp_constraint = &dma_constraint,
480 .kp_align = align,
481 .kp_maxseg = 1
482 };
483
484 /* Ensure align is a power of 2 */
485 KASSERT((align & (align - 1)) == 0)(((align & (align - 1)) == 0) ? (void)0 : __assert("diagnostic "
, "/usr/src/sys/kern/subr_hibernate.c", 485, "(align & (align - 1)) == 0"
))
;
486
487 /*
488 * Fixup arguments: align must be at least PAGE_SIZE,
489 * sz will be converted to pagecount, since that is what
490 * pmemrange uses internally.
491 */
492 if (align < PAGE_SIZE(1 << 12))
493 kp_piglet.kp_align = PAGE_SIZE(1 << 12);
494
495 sz = round_page(sz)(((sz) + ((1 << 12) - 1)) & ~((1 << 12) - 1));
496
497 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
498 if (*va == 0)
499 return ENOMEM12;
500
501 pmap_extract(pmap_kernel()(&kernel_pmap_store), *va, pa);
502 return 0;
503}
504
505/*
506 * Free a piglet area.
507 */
508void
509uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
510{
511 /*
512 * Fix parameters.
513 */
514 sz = round_page(sz)(((sz) + ((1 << 12) - 1)) & ~((1 << 12) - 1));
515
516 /*
517 * Free the physical and virtual memory.
518 */
519 km_free((void *)va, sz, &kv_any, &kp_dma_contig);
520}
521
522/*
523 * Physmem RLE compression support.
524 *
525 * Given a physical page address, return the number of pages starting at the
526 * address that are free. Clamps to the number of pages in
527 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
528 */
529int
530uvm_page_rle(paddr_t addr)
531{
532 struct vm_page *pg, *pg_end;
533 struct vm_physseg *vmp;
534 int pseg_idx, off_idx;
535
536 pseg_idx = vm_physseg_find(atop(addr)((addr) >> 12), &off_idx);
537 if (pseg_idx == -1)
538 return 0;
539
540 vmp = &vm_physmem[pseg_idx];
541 pg = &vmp->pgs[off_idx];
542 if (!(pg->pg_flags & PQ_FREE0x00010000))
543 return 0;
544
545 /*
546 * Search for the first non-free page after pg.
547 * Note that the page may not be the first page in a free pmemrange,
548 * therefore pg->fpgsz cannot be used.
549 */
550 for (pg_end = pg; pg_end <= vmp->lastpg &&
551 (pg_end->pg_flags & PQ_FREE0x00010000) == PQ_FREE0x00010000 &&
552 (pg_end - pg) < HIBERNATE_CHUNK_SIZE0x400000/PAGE_SIZE(1 << 12); pg_end++)
553 ;
554 return pg_end - pg;
555}
556
557/*
558 * Fills out the hibernate_info union pointed to by hib
559 * with information about this machine (swap signature block
560 * offsets, number of memory ranges, kernel in use, etc)
561 */
562int
563get_hibernate_info(union hibernate_info *hib, int suspend)
564{
565 struct disklabel dl;
566 char err_string[128], *dl_ret;
567 int part;
568 SHA2_CTX ctx;
569 void *fn;
570
571#ifndef NO_PROPOLICE
572 /* Save propolice guard */
573 hib->guard = __guard_local;
574#endif /* ! NO_PROPOLICE */
575
576 /* Determine I/O function to use */
577 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
578 if (hib->io_func == NULL((void *)0))
579 return (1);
580
581 /* Calculate hibernate device */
582 hib->dev = swdevt[0].sw_dev;
583
584 /* Read disklabel (used to calculate signature and image offsets) */
585 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
586
587 if (dl_ret) {
588 printf("Hibernate error reading disklabel: %s\n", dl_ret);
589 return (1);
590 }
591
592 /* Make sure we have a swap partition. */
593 part = DISKPART(hib->dev)(((unsigned)((hib->dev) & 0xff) | (((hib->dev) &
0xffff0000) >> 8)) % 16)
;
594 if (dl.d_npartitions <= part ||
595 dl.d_partitions[part].p_fstype != FS_SWAP1 ||
596 DL_GETPSIZE(&dl.d_partitions[part])(((u_int64_t)(&dl.d_partitions[part])->p_sizeh <<
32) + (&dl.d_partitions[part])->p_size)
== 0)
597 return (1);
598
599 /* Magic number */
600 hib->magic = HIBERNATE_MAGIC0x0B5D0B5D;
601
602 /* Calculate signature block location */
603 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part])(((u_int64_t)(&dl.d_partitions[part])->p_sizeh <<
32) + (&dl.d_partitions[part])->p_size)
-
604 sizeof(union hibernate_info)/DEV_BSIZE(1 << 9);
605
606 SHA256Init(&ctx);
607 SHA256Update(&ctx, version, strlen(version));
608 fn = printf;
609 SHA256Update(&ctx, &fn, sizeof(fn));
610 fn = malloc;
611 SHA256Update(&ctx, &fn, sizeof(fn));
612 fn = km_alloc;
613 SHA256Update(&ctx, &fn, sizeof(fn));
614 fn = strlen;
615 SHA256Update(&ctx, &fn, sizeof(fn));
616 SHA256Final((u_int8_t *)&hib->kern_hash, &ctx);
617
618 if (suspend) {
619 /* Grab the previously-allocated piglet addresses */
620 hib->piglet_va = global_piglet_va;
621 hib->piglet_pa = global_piglet_pa;
622 hib->io_page = (void *)hib->piglet_va;
623
624 /*
625 * Initialization of the hibernate IO function for drivers
626 * that need to do prep work (such as allocating memory or
627 * setting up data structures that cannot safely be done
628 * during suspend without causing side effects). There is
629 * a matching HIB_DONE call performed after the write is
630 * completed.
631 */
632 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[part])(((u_int64_t)(&dl.d_partitions[part])->p_offseth <<
32) + (&dl.d_partitions[part])->p_offset)
,
633 (vaddr_t)NULL((void *)0), DL_GETPSIZE(&dl.d_partitions[part])(((u_int64_t)(&dl.d_partitions[part])->p_sizeh <<
32) + (&dl.d_partitions[part])->p_size)
,
634 HIB_INIT-1, hib->io_page))
635 goto fail;
636
637 } else {
638 /*
639 * Resuming kernels use a regular private page for the driver
640 * No need to free this I/O page as it will vanish as part of
641 * the resume.
642 */
643 hib->io_page = malloc(PAGE_SIZE(1 << 12), M_DEVBUF2, M_NOWAIT0x0002);
644 if (!hib->io_page)
645 goto fail;
646 }
647
648 if (get_hibernate_info_md(hib))
649 goto fail;
650
651 return (0);
652
653fail:
654 return (1);
655}
656
657/*
658 * Allocate nitems*size bytes from the hiballoc area presently in use
659 */
660void *
661hibernate_zlib_alloc(void *unused, int nitems, int size)
662{
663 struct hibernate_zlib_state *hibernate_state;
664
665 hibernate_state =
666 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
667
668 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
669}
670
671/*
672 * Free the memory pointed to by addr in the hiballoc area presently in
673 * use
674 */
675void
676hibernate_zlib_free(void *unused, void *addr)
677{
678 struct hibernate_zlib_state *hibernate_state;
679
680 hibernate_state =
681 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
682
683 hib_free(&hibernate_state->hiballoc_arena, addr);
684}
685
686/*
687 * Inflate next page of data from the image stream.
688 * The rle parameter is modified on exit to contain the number of pages to
689 * skip in the output stream (or 0 if this page was inflated into).
690 *
691 * Returns 0 if the stream contains additional data, or 1 if the stream is
692 * finished.
693 */
694int
695hibernate_inflate_page(int *rle)
696{
697 struct hibernate_zlib_state *hibernate_state;
698 int i;
699
700 hibernate_state =
701 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
702
703 /* Set up the stream for RLE code inflate */
704 hibernate_state->hib_stream.next_out = (unsigned char *)rle;
705 hibernate_state->hib_stream.avail_out = sizeof(*rle);
706
707 /* Inflate RLE code */
708 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH2);
709 if (i != Z_OK0 && i != Z_STREAM_END1) {
710 /*
711 * XXX - this will likely reboot/hang most machines
712 * since the console output buffer will be unmapped,
713 * but there's not much else we can do here.
714 */
715 panic("rle inflate stream error");
716 }
717
718 if (hibernate_state->hib_stream.avail_out != 0) {
719 /*
720 * XXX - this will likely reboot/hang most machines
721 * since the console output buffer will be unmapped,
722 * but there's not much else we can do here.
723 */
724 panic("rle short inflate error");
725 }
726
727 if (*rle < 0 || *rle > 1024) {
728 /*
729 * XXX - this will likely reboot/hang most machines
730 * since the console output buffer will be unmapped,
731 * but there's not much else we can do here.
732 */
733 panic("invalid rle count");
734 }
735
736 if (i == Z_STREAM_END1)
737 return (1);
738
739 if (*rle != 0)
740 return (0);
741
742 /* Set up the stream for page inflate */
743 hibernate_state->hib_stream.next_out =
744 (unsigned char *)HIBERNATE_INFLATE_PAGE((1 << 12) * 33);
745 hibernate_state->hib_stream.avail_out = PAGE_SIZE(1 << 12);
746
747 /* Process next block of data */
748 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH2);
749 if (i != Z_OK0 && i != Z_STREAM_END1) {
750 /*
751 * XXX - this will likely reboot/hang most machines
752 * since the console output buffer will be unmapped,
753 * but there's not much else we can do here.
754 */
755 panic("inflate error");
756 }
757
758 /* We should always have extracted a full page ... */
759 if (hibernate_state->hib_stream.avail_out != 0) {
760 /*
761 * XXX - this will likely reboot/hang most machines
762 * since the console output buffer will be unmapped,
763 * but there's not much else we can do here.
764 */
765 panic("incomplete page");
766 }
767
768 return (i == Z_STREAM_END1);
769}
770
771/*
772 * Inflate size bytes from src into dest, skipping any pages in
773 * [src..dest] that are special (see hibernate_inflate_skip)
774 *
775 * This function executes while using the resume-time stack
776 * and pmap, and therefore cannot use ddb/printf/etc. Doing so
777 * will likely hang or reset the machine since the console output buffer
778 * will be unmapped.
779 */
780void
781hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
782 paddr_t src, size_t size)
783{
784 int end_stream = 0, rle, skip;
785 struct hibernate_zlib_state *hibernate_state;
786
787 hibernate_state =
788 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
789
790 hibernate_state->hib_stream.next_in = (unsigned char *)src;
791 hibernate_state->hib_stream.avail_in = size;
792
793 do {
794 /*
795 * Is this a special page? If yes, redirect the
796 * inflate output to a scratch page (eg, discard it)
797 */
798 skip = hibernate_inflate_skip(hib, dest);
799 if (skip == HIB_SKIP1) {
800 hibernate_enter_resume_mapping(
801 HIBERNATE_INFLATE_PAGE((1 << 12) * 33),
802 HIBERNATE_INFLATE_PAGE((1 << 12) * 33), 0);
803 } else if (skip == HIB_MOVE2) {
804 /*
805 * Special case : retguard region. This gets moved
806 * temporarily into the piglet region and copied into
807 * place immediately before resume
808 */
809 hibernate_enter_resume_mapping(
810 HIBERNATE_INFLATE_PAGE((1 << 12) * 33),
811 hib->piglet_pa + (110 * PAGE_SIZE(1 << 12)) +
812 hib->retguard_ofs, 0);
813 hib->retguard_ofs += PAGE_SIZE(1 << 12);
814 if (hib->retguard_ofs > 255 * PAGE_SIZE(1 << 12)) {
815 /*
816 * XXX - this will likely reboot/hang most
817 * machines since the console output
818 * buffer will be unmapped, but there's
819 * not much else we can do here.
820 */
821 panic("retguard move error, out of space");
822 }
823 } else {
824 hibernate_enter_resume_mapping(
825 HIBERNATE_INFLATE_PAGE((1 << 12) * 33), dest, 0);
826 }
827
828 hibernate_flush();
829 end_stream = hibernate_inflate_page(&rle);
830
831 if (rle == 0)
832 dest += PAGE_SIZE(1 << 12);
833 else
834 dest += (rle * PAGE_SIZE(1 << 12));
835 } while (!end_stream);
836}
837
838/*
839 * deflate from src into the I/O page, up to 'remaining' bytes
840 *
841 * Returns number of input bytes consumed, and may reset
842 * the 'remaining' parameter if not all the output space was consumed
843 * (this information is needed to know how much to write to disk)
844 */
845size_t
846hibernate_deflate(union hibernate_info *hib, paddr_t src,
847 size_t *remaining)
848{
849 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE(1 << 12);
850 struct hibernate_zlib_state *hibernate_state;
851
852 hibernate_state =
853 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
854
855 /* Set up the stream for deflate */
856 hibernate_state->hib_stream.next_in = (unsigned char *)src;
857 hibernate_state->hib_stream.avail_in = PAGE_SIZE(1 << 12) - (src & PAGE_MASK((1 << 12) - 1));
858 hibernate_state->hib_stream.next_out =
859 (unsigned char *)hibernate_io_page + (PAGE_SIZE(1 << 12) - *remaining);
860 hibernate_state->hib_stream.avail_out = *remaining;
861
862 /* Process next block of data */
863 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH2) != Z_OK0)
864 panic("hibernate zlib deflate error");
865
866 /* Update pointers and return number of bytes consumed */
867 *remaining = hibernate_state->hib_stream.avail_out;
868 return (PAGE_SIZE(1 << 12) - (src & PAGE_MASK((1 << 12) - 1))) -
869 hibernate_state->hib_stream.avail_in;
870}
871
872/*
873 * Write the hibernation information specified in hiber_info
874 * to the location in swap previously calculated (last block of
875 * swap), called the "signature block".
876 */
877int
878hibernate_write_signature(union hibernate_info *hib)
879{
880 /* Write hibernate info to disk */
881 return (hib->io_func(hib->dev, hib->sig_offset,
882 (vaddr_t)hib, DEV_BSIZE(1 << 9), HIB_W1,
883 hib->io_page));
884}
885
886/*
887 * Write the memory chunk table to the area in swap immediately
888 * preceding the signature block. The chunk table is stored
889 * in the piglet when this function is called. Returns errno.
890 */
891int
892hibernate_write_chunktable(union hibernate_info *hib)
893{
894 vaddr_t hibernate_chunk_table_start;
895 size_t hibernate_chunk_table_size;
896 int i, err;
897
898 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE0x100000;
899
900 hibernate_chunk_table_start = hib->piglet_va +
901 HIBERNATE_CHUNK_SIZE0x400000;
902
903 /* Write chunk table */
904 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS(64 * 1024)) {
905 if ((err = hib->io_func(hib->dev,
906 hib->chunktable_offset + (i/DEV_BSIZE(1 << 9)),
907 (vaddr_t)(hibernate_chunk_table_start + i),
908 MAXPHYS(64 * 1024), HIB_W1, hib->io_page))) {
909 DPRINTF("chunktable write error: %d\n", err);
910 return (err);
911 }
912 }
913
914 return (0);
915}
916
917/*
918 * Write an empty hiber_info to the swap signature block, which is
919 * guaranteed to not match any valid hib.
920 */
921int
922hibernate_clear_signature(union hibernate_info *hib)
923{
924 union hibernate_info blank_hiber_info;
925
926 /* Zero out a blank hiber_info */
927 memset(&blank_hiber_info, 0, sizeof(union hibernate_info))__builtin_memset((&blank_hiber_info), (0), (sizeof(union hibernate_info
)))
;
928
929 /* Write (zeroed) hibernate info to disk */
930 DPRINTF("clearing hibernate signature block location: %lld\n",
931 hib->sig_offset);
932 if (hibernate_block_io(hib,
933 hib->sig_offset,
934 DEV_BSIZE(1 << 9), (vaddr_t)&blank_hiber_info, 1))
935 printf("Warning: could not clear hibernate signature\n");
936
937 return (0);
938}
939
940/*
941 * Compare two hibernate_infos to determine if they are the same (eg,
942 * we should be performing a hibernate resume on this machine.
943 * Not all fields are checked - just enough to verify that the machine
944 * has the same memory configuration and kernel as the one that
945 * wrote the signature previously.
946 */
947int
948hibernate_compare_signature(union hibernate_info *mine,
949 union hibernate_info *disk)
950{
951 u_int i;
952
953 if (mine->nranges != disk->nranges) {
954 printf("unhibernate failed: memory layout changed\n");
955 return (1);
956 }
957
958 if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH32) != 0) {
959 printf("unhibernate failed: original kernel changed\n");
960 return (1);
961 }
962
963 for (i = 0; i < mine->nranges; i++) {
964 if ((mine->ranges[i].base != disk->ranges[i].base) ||
965 (mine->ranges[i].end != disk->ranges[i].end) ) {
966 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
967 i,
968 (void *)mine->ranges[i].base,
969 (void *)mine->ranges[i].end,
970 (void *)disk->ranges[i].base,
971 (void *)disk->ranges[i].end);
972 printf("unhibernate failed: memory size changed\n");
973 return (1);
974 }
975 }
976
977 return (0);
978}
979
980/*
981 * Transfers xfer_size bytes between the hibernate device specified in
982 * hib_info at offset blkctr and the vaddr specified at dest.
983 *
984 * Separate offsets and pages are used to handle misaligned reads (reads
985 * that span a page boundary).
986 *
987 * blkctr specifies a relative offset (relative to the start of swap),
988 * not an absolute disk offset
989 *
990 */
991int
992hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
993 size_t xfer_size, vaddr_t dest, int iswrite)
994{
995 struct buf *bp;
996 struct bdevsw *bdsw;
997 int error;
998
999 bp = geteblk(xfer_size);
1000 bdsw = &bdevsw[major(hib->dev)(((unsigned)(hib->dev) >> 8) & 0xff)];
1001
1002 error = (*bdsw->d_open)(hib->dev, FREAD0x0001, S_IFCHR0020000, curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1003 if (error) {
1004 printf("hibernate_block_io open failed\n");
1005 return (1);
1006 }
1007
1008 if (iswrite)
1009 bcopy((caddr_t)dest, bp->b_data, xfer_size);
1010
1011 bp->b_bcount = xfer_size;
1012 bp->b_blkno = blkctr;
1013 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE)((bp->b_flags) &= ~(0x00008000 | 0x00000000 | 0x00000100
))
;
1014 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW)((bp->b_flags) |= (0x00000010 | (iswrite ? 0x00000000 : 0x00008000
) | 0x00004000))
;
1015 bp->b_dev = hib->dev;
1016 (*bdsw->d_strategy)(bp);
1017
1018 error = biowait(bp);
1019 if (error) {
1020 printf("hib block_io biowait error %d blk %lld size %zu\n",
1021 error, (long long)blkctr, xfer_size);
1022 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR0020000,
1023 curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1024 if (error)
1025 printf("hibernate_block_io error close failed\n");
1026 return (1);
1027 }
1028
1029 error = (*bdsw->d_close)(hib->dev, FREAD0x0001, S_IFCHR0020000, curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1030 if (error) {
1031 printf("hibernate_block_io close failed\n");
1032 return (1);
1033 }
1034
1035 if (!iswrite)
1036 bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1037
1038 bp->b_flags |= B_INVAL0x00000800;
1039 brelse(bp);
1040
1041 return (0);
1042}
1043
1044/*
1045 * Preserve one page worth of random data, generated from the resuming
1046 * kernel's arc4random. After resume, this preserved entropy can be used
1047 * to further improve the un-hibernated machine's entropy pool. This
1048 * random data is stored in the piglet, which is preserved across the
1049 * unpack operation, and is restored later in the resume process (see
1050 * hib_getentropy)
1051 */
1052void
1053hibernate_preserve_entropy(union hibernate_info *hib)
1054{
1055 void *entropy;
1056
1057 entropy = km_alloc(PAGE_SIZE(1 << 12), &kv_any, &kp_none, &kd_nowait);
1058
1059 if (!entropy)
1060 return;
1061
1062 pmap_activate(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1063 pmap_kenter_pa((vaddr_t)entropy,
1064 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE(1 << 12))),
1065 PROT_READ0x01 | PROT_WRITE0x02);
1066
1067 arc4random_buf((void *)entropy, PAGE_SIZE(1 << 12));
1068 pmap_kremove((vaddr_t)entropy, PAGE_SIZE(1 << 12));
1069 km_free(entropy, PAGE_SIZE(1 << 12), &kv_any, &kp_none);
1070}
1071
1072#ifndef NO_PROPOLICE
1073vaddr_t
1074hibernate_unprotect_ssp(void)
1075{
1076 struct kmem_dyn_mode kd_avoidalias;
1077 vaddr_t va = trunc_page((vaddr_t)&__guard_local)(((vaddr_t)&__guard_local) & ~((1 << 12) - 1));
1078 paddr_t pa;
1079
1080 pmap_extract(pmap_kernel()(&kernel_pmap_store), va, &pa);
1081
1082 memset(&kd_avoidalias, 0, sizeof kd_avoidalias)__builtin_memset((&kd_avoidalias), (0), (sizeof kd_avoidalias
))
;
1083 kd_avoidalias.kd_prefer = pa;
1084 kd_avoidalias.kd_waitok = 1;
1085 va = (vaddr_t)km_alloc(PAGE_SIZE(1 << 12), &kv_any, &kp_none, &kd_avoidalias);
1086 if (!va)
1087 panic("hibernate_unprotect_ssp");
1088
1089 pmap_kenter_pa(va, pa, PROT_READ0x01 | PROT_WRITE0x02);
1090 pmap_update(pmap_kernel());
1091
1092 return va;
1093}
1094
1095void
1096hibernate_reprotect_ssp(vaddr_t va)
1097{
1098 pmap_kremove(va, PAGE_SIZE(1 << 12));
1099 km_free((void *)va, PAGE_SIZE(1 << 12), &kv_any, &kp_none);
1100}
1101#endif /* NO_PROPOLICE */
1102
1103/*
1104 * Reads the signature block from swap, checks against the current machine's
1105 * information. If the information matches, perform a resume by reading the
1106 * saved image into the pig area, and unpacking.
1107 *
1108 * Must be called with interrupts enabled.
1109 */
1110void
1111hibernate_resume(void)
1112{
1113 union hibernate_info hib;
1114 int s;
1115#ifndef NO_PROPOLICE
1116 vsize_t off = (vaddr_t)&__guard_local -
1117 trunc_page((vaddr_t)&__guard_local)(((vaddr_t)&__guard_local) & ~((1 << 12) - 1));
1118 vaddr_t guard_va;
1119#endif
1120
1121 /* Get current running machine's hibernate info */
1122 memset(&hib, 0, sizeof(hib))__builtin_memset((&hib), (0), (sizeof(hib)));
1123 if (get_hibernate_info(&hib, 0)) {
1124 DPRINTF("couldn't retrieve machine's hibernate info\n");
1125 return;
1126 }
1127
1128 /* Read hibernate info from disk */
1129 s = splbio()splraise(0x3);
1130
1131 DPRINTF("reading hibernate signature block location: %lld\n",
1132 hib.sig_offset);
1133
1134 if (hibernate_block_io(&hib,
1135 hib.sig_offset,
1136 DEV_BSIZE(1 << 9), (vaddr_t)&disk_hib, 0)) {
1137 DPRINTF("error in hibernate read");
1138 splx(s)spllower(s);
1139 return;
1140 }
1141
1142 /* Check magic number */
1143 if (disk_hib.magic != HIBERNATE_MAGIC0x0B5D0B5D) {
1144 DPRINTF("wrong magic number in hibernate signature: %x\n",
1145 disk_hib.magic);
1146 splx(s)spllower(s);
1147 return;
1148 }
1149
1150 /*
1151 * We (possibly) found a hibernate signature. Clear signature first,
1152 * to prevent accidental resume or endless resume cycles later.
1153 */
1154 if (hibernate_clear_signature(&hib)) {
1155 DPRINTF("error clearing hibernate signature block\n");
1156 splx(s)spllower(s);
1157 return;
1158 }
1159
1160 /*
1161 * If on-disk and in-memory hibernate signatures match,
1162 * this means we should do a resume from hibernate.
1163 */
1164 if (hibernate_compare_signature(&hib, &disk_hib)) {
1165 DPRINTF("mismatched hibernate signature block\n");
1166 splx(s)spllower(s);
1167 return;
1168 }
1169 disk_hib.dev = hib.dev;
1170
1171#ifdef MULTIPROCESSOR1
1172 /* XXX - if we fail later, we may need to rehatch APs on some archs */
1173 DPRINTF("hibernate: quiescing APs\n");
1174 hibernate_quiesce_cpus();
1175#endif /* MULTIPROCESSOR */
1176
1177 /* Read the image from disk into the image (pig) area */
1178 if (hibernate_read_image(&disk_hib))
1179 goto fail;
1180
1181 DPRINTF("hibernate: quiescing devices\n");
1182 if (config_suspend_all(DVACT_QUIESCE2) != 0)
1183 goto fail;
1184
1185#ifndef NO_PROPOLICE
1186 guard_va = hibernate_unprotect_ssp();
1187#endif /* NO_PROPOLICE */
1188
1189 (void) splhigh()splraise(0xd);
1190 hibernate_disable_intr_machdep();
1191 cold = 2;
1192
1193 DPRINTF("hibernate: suspending devices\n");
1194 if (config_suspend_all(DVACT_SUSPEND3) != 0) {
1195 cold = 0;
1196 hibernate_enable_intr_machdep();
1197#ifndef NO_PROPOLICE
1198 hibernate_reprotect_ssp(guard_va);
1199#endif /* ! NO_PROPOLICE */
1200 goto fail;
1201 }
1202
1203 pmap_extract(pmap_kernel()(&kernel_pmap_store), (vaddr_t)&__retguard_start,
1204 &retguard_start_phys);
1205 pmap_extract(pmap_kernel()(&kernel_pmap_store), (vaddr_t)&__retguard_end,
1206 &retguard_end_phys);
1207
1208 hibernate_preserve_entropy(&disk_hib);
1209
1210 printf("Unpacking image...\n");
1211
1212 /* Switch stacks */
1213 DPRINTF("hibernate: switching stacks\n");
1214 hibernate_switch_stack_machdep();
1215
1216#ifndef NO_PROPOLICE
1217 /* Start using suspended kernel's propolice guard */
1218 *(long *)(guard_va + off) = disk_hib.guard;
1219 hibernate_reprotect_ssp(guard_va);
1220#endif /* ! NO_PROPOLICE */
1221
1222 /* Unpack and resume */
1223 hibernate_unpack_image(&disk_hib);
1224
1225fail:
1226 splx(s)spllower(s);
1227 printf("\nUnable to resume hibernated image\n");
1228}
1229
1230/*
1231 * Unpack image from pig area to original location by looping through the
1232 * list of output chunks in the order they should be restored (fchunks).
1233 *
1234 * Note that due to the stack smash protector and the fact that we have
1235 * switched stacks, it is not permitted to return from this function.
1236 */
1237void
1238hibernate_unpack_image(union hibernate_info *hib)
1239{
1240 struct hibernate_disk_chunk *chunks;
1241 union hibernate_info local_hib;
1242 paddr_t image_cur = global_pig_start;
1243 short i, *fchunks;
1244 char *pva;
1245
1246 /* Piglet will be identity mapped (VA == PA) */
1247 pva = (char *)hib->piglet_pa;
1248
1249 fchunks = (short *)(pva + (4 * PAGE_SIZE(1 << 12)));
1250
1251 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE0x400000);
1252
1253 /* Can't use hiber_info that's passed in after this point */
1254 bcopy(hib, &local_hib, sizeof(union hibernate_info));
1255 local_hib.retguard_ofs = 0;
1256
1257 /* VA == PA */
1258 local_hib.piglet_va = local_hib.piglet_pa;
1259
1260 /*
1261 * Point of no return. Once we pass this point, only kernel code can
1262 * be accessed. No global variables or other kernel data structures
1263 * are guaranteed to be coherent after unpack starts.
1264 *
1265 * The image is now in high memory (pig area), we unpack from the pig
1266 * to the correct location in memory. We'll eventually end up copying
1267 * on top of ourself, but we are assured the kernel code here is the
1268 * same between the hibernated and resuming kernel, and we are running
1269 * on our own stack, so the overwrite is ok.
1270 */
1271 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
1272 hibernate_activate_resume_pt_machdep();
1273
1274 for (i = 0; i < local_hib.chunk_ctr; i++) {
1275 /* Reset zlib for inflate */
1276 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK0)
1277 panic("hibernate failed to reset zlib for inflate");
1278
1279 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1280 image_cur);
1281
1282 image_cur += chunks[fchunks[i]].compressed_size;
1283 }
1284
1285 /*
1286 * Resume the loaded kernel by jumping to the MD resume vector.
1287 * We won't be returning from this call. We pass the location of
1288 * the retguard save area so the MD code can replace it before
1289 * resuming. See the piglet layout at the top of this file for
1290 * more information on the layout of the piglet area.
1291 *
1292 * We use 'global_piglet_va' here since by the time we are at
1293 * this point, we have already unpacked the image, and we want
1294 * the suspended kernel's view of what the piglet was, before
1295 * suspend occurred (since we will need to use that in the retguard
1296 * copy code in hibernate_resume_machdep.)
1297 */
1298 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE(1 << 12)));
1299}
1300
1301/*
1302 * Bounce a compressed image chunk to the piglet, entering mappings for the
1303 * copied pages as needed
1304 */
1305void
1306hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1307{
1308 size_t ct, ofs;
1309 paddr_t src = img_cur;
1310 vaddr_t dest = piglet;
1311
1312 /* Copy first partial page */
1313 ct = (PAGE_SIZE(1 << 12)) - (src & PAGE_MASK((1 << 12) - 1));
1314 ofs = (src & PAGE_MASK((1 << 12) - 1));
1315
1316 if (ct < PAGE_SIZE(1 << 12)) {
1317 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE((1 << 12) * 33),
1318 (src - ofs), 0);
1319 hibernate_flush();
1320 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE((1 << 12) * 33) + ofs), (caddr_t)dest, ct);
1321 src += ct;
1322 dest += ct;
1323 }
1324
1325 /* Copy remaining pages */
1326 while (src < size + img_cur) {
1327 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE((1 << 12) * 33), src, 0);
1328 hibernate_flush();
1329 ct = PAGE_SIZE(1 << 12);
1330 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE((1 << 12) * 33)), (caddr_t)dest, ct);
1331 hibernate_flush();
1332 src += ct;
1333 dest += ct;
1334 }
1335}
1336
1337/*
1338 * Process a chunk by bouncing it to the piglet, followed by unpacking
1339 */
1340void
1341hibernate_process_chunk(union hibernate_info *hib,
1342 struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1343{
1344 char *pva = (char *)hib->piglet_va;
1345
1346 hibernate_copy_chunk_to_piglet(img_cur,
1347 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE0x400000 * 2)), chunk->compressed_size);
1348 hibernate_inflate_region(hib, chunk->base,
1349 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE0x400000 * 2)),
1350 chunk->compressed_size);
1351}
1352
1353/*
1354 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
1355 * inaddr and range_end.
1356 */
1357int
1358hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
1359{
1360 int rle;
1361
1362 rle = uvm_page_rle(inaddr);
1363 KASSERT(rle >= 0 && rle <= MAX_RLE)((rle >= 0 && rle <= (0x400000 / (1 << 12
))) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/subr_hibernate.c"
, 1363, "rle >= 0 && rle <= MAX_RLE"))
;
1364
1365 /* Clamp RLE to range end */
1366 if (rle > 0 && inaddr + (rle * PAGE_SIZE(1 << 12)) > range_end)
1367 rle = (range_end - inaddr) / PAGE_SIZE(1 << 12);
1368
1369 return (rle);
1370}
1371
1372/*
1373 * Write the RLE byte for page at 'inaddr' to the output stream.
1374 * Returns the number of pages to be skipped at 'inaddr'.
1375 */
1376int
1377hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
1378 paddr_t range_end, daddr_t *blkctr,
1379 size_t *out_remaining)
1380{
1381 int rle, err, *rleloc;
1382 struct hibernate_zlib_state *hibernate_state;
1383 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE(1 << 12);
1384
1385 hibernate_state =
1386 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
1387
1388 rle = hibernate_calc_rle(inaddr, range_end);
1389
1390 rleloc = (int *)hibernate_rle_page + MAX_RLE(0x400000 / (1 << 12)) - 1;
1391 *rleloc = rle;
1392
1393 /* Deflate the RLE byte into the stream */
1394 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
1395
1396 /* Did we fill the output page? If so, flush to disk */
1397 if (*out_remaining == 0) {
1398 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
1399 (vaddr_t)hibernate_io_page, PAGE_SIZE(1 << 12), HIB_W1,
1400 hib->io_page))) {
1401 DPRINTF("hib write error %d\n", err);
1402 return (err);
1403 }
1404
1405 *blkctr += PAGE_SIZE(1 << 12) / DEV_BSIZE(1 << 9);
1406 *out_remaining = PAGE_SIZE(1 << 12);
1407
1408 /* If we didn't deflate the entire RLE byte, finish it now */
1409 if (hibernate_state->hib_stream.avail_in != 0)
1410 hibernate_deflate(hib,
1411 (vaddr_t)hibernate_state->hib_stream.next_in,
1412 out_remaining);
1413 }
1414
1415 return (rle);
1416}
1417
1418/*
1419 * Write a compressed version of this machine's memory to disk, at the
1420 * precalculated swap offset:
1421 *
1422 * end of swap - signature block size - chunk table size - memory size
1423 *
1424 * The function begins by looping through each phys mem range, cutting each
1425 * one into MD sized chunks. These chunks are then compressed individually
1426 * and written out to disk, in phys mem order. Some chunks might compress
1427 * more than others, and for this reason, each chunk's size is recorded
1428 * in the chunk table, which is written to disk after the image has
1429 * properly been compressed and written (in hibernate_write_chunktable).
1430 *
1431 * When this function is called, the machine is nearly suspended - most
1432 * devices are quiesced/suspended, interrupts are off, and cold has
1433 * been set. This means that there can be no side effects once the
1434 * write has started, and the write function itself can also have no
1435 * side effects. This also means no printfs are permitted (since printf
1436 * has side effects.)
1437 *
1438 * Return values :
1439 *
1440 * 0 - success
1441 * EIO - I/O error occurred writing the chunks
1442 * EINVAL - Failed to write a complete range
1443 * ENOMEM - Memory allocation failure during preparation of the zlib arena
1444 */
1445int
1446hibernate_write_chunks(union hibernate_info *hib)
1447{
1448 paddr_t range_base, range_end, inaddr, temp_inaddr;
1449 size_t nblocks, out_remaining, used;
7
'out_remaining' declared without an initial value
1450 struct hibernate_disk_chunk *chunks;
1451 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE(1 << 12);
1452 daddr_t blkctr = 0;
1453 int i, rle, err;
1454 struct hibernate_zlib_state *hibernate_state;
1455
1456 hibernate_state =
1457 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
1458
1459 hib->chunk_ctr = 0;
1460
1461 /*
1462 * Map the utility VAs to the piglet. See the piglet map at the
1463 * top of this file for piglet layout information.
1464 */
1465 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE(1 << 12);
1466 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE(1 << 12);
1467
1468 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1469 HIBERNATE_CHUNK_SIZE0x400000);
1470
1471 /* Calculate the chunk regions */
1472 for (i = 0; i < hib->nranges; i++) {
8
Loop condition is true. Entering loop body
15
Loop condition is false. Execution continues on line 1491
1473 range_base = hib->ranges[i].base;
1474 range_end = hib->ranges[i].end;
1475
1476 inaddr = range_base;
1477
1478 while (inaddr < range_end) {
9
Assuming 'inaddr' is < 'range_end'
10
Loop condition is true. Entering loop body
13
Assuming 'inaddr' is >= 'range_end'
14
Loop condition is false. Execution continues on line 1472
1479 chunks[hib->chunk_ctr].base = inaddr;
1480 if (inaddr + HIBERNATE_CHUNK_SIZE0x400000 < range_end)
11
Assuming the condition is true
12
Taking true branch
1481 chunks[hib->chunk_ctr].end = inaddr +
1482 HIBERNATE_CHUNK_SIZE0x400000;
1483 else
1484 chunks[hib->chunk_ctr].end = range_end;
1485
1486 inaddr += HIBERNATE_CHUNK_SIZE0x400000;
1487 hib->chunk_ctr ++;
1488 }
1489 }
1490
1491 uvm_pmr_dirty_everything();
1492 uvm_pmr_zero_everything();
1493
1494 /* Compress and write the chunks in the chunktable */
1495 for (i = 0; i < hib->chunk_ctr; i++) {
16
Loop condition is true. Entering loop body
1496 range_base = chunks[i].base;
1497 range_end = chunks[i].end;
1498
1499 chunks[i].offset = blkctr + hib->image_offset;
1500
1501 /* Reset zlib for deflate */
1502 if (hibernate_zlib_reset(hib, 1) != Z_OK0) {
17
Assuming the condition is false
18
Taking false branch
1503 DPRINTF("hibernate_zlib_reset failed for deflate\n");
1504 return (ENOMEM12);
1505 }
1506
1507 inaddr = range_base;
1508
1509 /*
1510 * For each range, loop through its phys mem region
1511 * and write out the chunks (the last chunk might be
1512 * smaller than the chunk size).
1513 */
1514 while (inaddr < range_end) {
19
Assuming 'inaddr' is >= 'range_end'
20
Loop condition is false. Execution continues on line 1572
1515 out_remaining = PAGE_SIZE(1 << 12);
1516 while (out_remaining > 0 && inaddr < range_end) {
1517 /*
1518 * Adjust for regions that are not evenly
1519 * divisible by PAGE_SIZE or overflowed
1520 * pages from the previous iteration.
1521 */
1522 temp_inaddr = (inaddr & PAGE_MASK((1 << 12) - 1)) +
1523 hibernate_copy_page;
1524
1525 /* Deflate from temp_inaddr to IO page */
1526 if (inaddr != range_end) {
1527 if (inaddr % PAGE_SIZE(1 << 12) == 0) {
1528 rle = hibernate_write_rle(hib,
1529 inaddr,
1530 range_end,
1531 &blkctr,
1532 &out_remaining);
1533 }
1534
1535 if (rle == 0) {
1536 pmap_kenter_pa(hibernate_temp_page,
1537 inaddr & PMAP_PA_MASK~((paddr_t)((1 << 12) - 1)),
1538 PROT_READ0x01);
1539
1540 bcopy((caddr_t)hibernate_temp_page,
1541 (caddr_t)hibernate_copy_page,
1542 PAGE_SIZE(1 << 12));
1543 inaddr += hibernate_deflate(hib,
1544 temp_inaddr,
1545 &out_remaining);
1546 } else {
1547 inaddr += rle * PAGE_SIZE(1 << 12);
1548 if (inaddr > range_end)
1549 inaddr = range_end;
1550 }
1551
1552 }
1553
1554 if (out_remaining == 0) {
1555 /* Filled up the page */
1556 nblocks = PAGE_SIZE(1 << 12) / DEV_BSIZE(1 << 9);
1557
1558 if ((err = hib->io_func(hib->dev,
1559 blkctr + hib->image_offset,
1560 (vaddr_t)hibernate_io_page,
1561 PAGE_SIZE(1 << 12), HIB_W1, hib->io_page))) {
1562 DPRINTF("hib write error %d\n",
1563 err);
1564 return (err);
1565 }
1566
1567 blkctr += nblocks;
1568 }
1569 }
1570 }
1571
1572 if (inaddr != range_end) {
21
Assuming 'inaddr' is equal to 'range_end'
22
Taking false branch
1573 DPRINTF("deflate range ended prematurely\n");
1574 return (EINVAL22);
1575 }
1576
1577 /*
1578 * End of range. Round up to next secsize bytes
1579 * after finishing compress
1580 */
1581 if (out_remaining == 0)
23
The left operand of '==' is a garbage value
1582 out_remaining = PAGE_SIZE(1 << 12);
1583
1584 /* Finish compress */
1585 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr;
1586 hibernate_state->hib_stream.avail_in = 0;
1587 hibernate_state->hib_stream.next_out =
1588 (unsigned char *)hibernate_io_page +
1589 (PAGE_SIZE(1 << 12) - out_remaining);
1590
1591 /* We have an extra output page available for finalize */
1592 hibernate_state->hib_stream.avail_out =
1593 out_remaining + PAGE_SIZE(1 << 12);
1594
1595 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH4)) !=
1596 Z_STREAM_END1) {
1597 DPRINTF("deflate error in output stream: %d\n", err);
1598 return (err);
1599 }
1600
1601 out_remaining = hibernate_state->hib_stream.avail_out;
1602
1603 used = 2 * PAGE_SIZE(1 << 12) - out_remaining;
1604 nblocks = used / DEV_BSIZE(1 << 9);
1605
1606 /* Round up to next block if needed */
1607 if (used % DEV_BSIZE(1 << 9) != 0)
1608 nblocks ++;
1609
1610 /* Write final block(s) for this chunk */
1611 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1612 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE(1 << 9),
1613 HIB_W1, hib->io_page))) {
1614 DPRINTF("hib final write error %d\n", err);
1615 return (err);
1616 }
1617
1618 blkctr += nblocks;
1619
1620 chunks[i].compressed_size = (blkctr + hib->image_offset -
1621 chunks[i].offset) * DEV_BSIZE(1 << 9);
1622 }
1623
1624 hib->chunktable_offset = hib->image_offset + blkctr;
1625 return (0);
1626}
1627
1628/*
1629 * Reset the zlib stream state and allocate a new hiballoc area for either
1630 * inflate or deflate. This function is called once for each hibernate chunk.
1631 * Calling hiballoc_init multiple times is acceptable since the memory it is
1632 * provided is unmanaged memory (stolen). We use the memory provided to us
1633 * by the piglet allocated via the supplied hib.
1634 */
1635int
1636hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1637{
1638 vaddr_t hibernate_zlib_start;
1639 size_t hibernate_zlib_size;
1640 char *pva = (char *)hib->piglet_va;
1641 struct hibernate_zlib_state *hibernate_state;
1642
1643 hibernate_state =
1644 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34);
1645
1646 if (!deflate)
1647 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK(((0x0000ff8000000000UL|0x0000007fc0000000UL)|0x000000003fe00000UL
))
));
1648
1649 /*
1650 * See piglet layout information at the start of this file for
1651 * information on the zlib page assignments.
1652 */
1653 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE(1 << 12)));
1654 hibernate_zlib_size = 80 * PAGE_SIZE(1 << 12);
1655
1656 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size)__builtin_memset(((void *)hibernate_zlib_start), (0), (hibernate_zlib_size
))
;
1657 memset(hibernate_state, 0, PAGE_SIZE)__builtin_memset((hibernate_state), (0), ((1 << 12)));
1658
1659 /* Set up stream structure */
1660 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1661 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1662
1663 /* Initialize the hiballoc arena for zlib allocs/frees */
1664 hiballoc_init(&hibernate_state->hiballoc_arena,
1665 (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1666
1667 if (deflate) {
1668 return deflateInit(&hibernate_state->hib_stream,deflateInit_((&hibernate_state->hib_stream), (1), "1.3.0.1-motley"
, (int)sizeof(z_stream))
1669 Z_BEST_SPEED)deflateInit_((&hibernate_state->hib_stream), (1), "1.3.0.1-motley"
, (int)sizeof(z_stream))
;
1670 } else
1671 return inflateInit(&hibernate_state->hib_stream)inflateInit_((&hibernate_state->hib_stream), "1.3.0.1-motley"
, (int)sizeof(z_stream))
;
1672}
1673
1674/*
1675 * Reads the hibernated memory image from disk, whose location and
1676 * size are recorded in hib. Begin by reading the persisted
1677 * chunk table, which records the original chunk placement location
1678 * and compressed size for each. Next, allocate a pig region of
1679 * sufficient size to hold the compressed image. Next, read the
1680 * chunks into the pig area (calling hibernate_read_chunks to do this),
1681 * and finally, if all of the above succeeds, clear the hibernate signature.
1682 * The function will then return to hibernate_resume, which will proceed
1683 * to unpack the pig image to the correct place in memory.
1684 */
1685int
1686hibernate_read_image(union hibernate_info *hib)
1687{
1688 size_t compressed_size, disk_size, chunktable_size, pig_sz;
1689 paddr_t image_start, image_end, pig_start, pig_end;
1690 struct hibernate_disk_chunk *chunks;
1691 daddr_t blkctr;
1692 vaddr_t chunktable = (vaddr_t)NULL((void *)0);
1693 paddr_t piglet_chunktable = hib->piglet_pa +
1694 HIBERNATE_CHUNK_SIZE0x400000;
1695 int i, status;
1696
1697 status = 0;
1698 pmap_activate(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1699
1700 /* Calculate total chunk table size in disk blocks */
1701 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE0x100000 / DEV_BSIZE(1 << 9);
1702
1703 blkctr = hib->chunktable_offset;
1704
1705 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE0x100000, &kv_any,
1706 &kp_none, &kd_nowait);
1707
1708 if (!chunktable)
1709 return (1);
1710
1711 /* Map chunktable pages */
1712 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE0x100000; i += PAGE_SIZE(1 << 12))
1713 pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1714 PROT_READ0x01 | PROT_WRITE0x02);
1715 pmap_update(pmap_kernel());
1716
1717 /* Read the chunktable from disk into the piglet chunktable */
1718 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE0x100000;
1719 i += MAXPHYS(64 * 1024), blkctr += MAXPHYS(64 * 1024)/DEV_BSIZE(1 << 9))
1720 hibernate_block_io(hib, blkctr, MAXPHYS(64 * 1024),
1721 chunktable + i, 0);
1722
1723 blkctr = hib->image_offset;
1724 compressed_size = 0;
1725
1726 chunks = (struct hibernate_disk_chunk *)chunktable;
1727
1728 for (i = 0; i < hib->chunk_ctr; i++)
1729 compressed_size += chunks[i].compressed_size;
1730
1731 disk_size = compressed_size;
1732
1733 printf("unhibernating @ block %lld length %luMB\n",
1734 hib->sig_offset - chunktable_size,
1735 compressed_size / (1024 * 1024));
1736
1737 /* Allocate the pig area */
1738 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE0x400000;
1739 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM12) {
1740 status = 1;
1741 goto unmap;
1742 }
1743
1744 pig_end = pig_start + pig_sz;
1745
1746 /* Calculate image extents. Pig image must end on a chunk boundary. */
1747 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE0x400000 - 1);
1748 image_start = image_end - disk_size;
1749
1750 hibernate_read_chunks(hib, image_start, image_end, disk_size,
1751 chunks);
1752
1753 /* Prepare the resume time pmap/page table */
1754 hibernate_populate_resume_pt(hib, image_start, image_end);
1755
1756unmap:
1757 /* Unmap chunktable pages */
1758 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE0x100000);
1759 pmap_update(pmap_kernel());
1760
1761 return (status);
1762}
1763
1764/*
1765 * Read the hibernated memory chunks from disk (chunk information at this
1766 * point is stored in the piglet) into the pig area specified by
1767 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1768 * only chunk with overlap possibilities.
1769 */
1770int
1771hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1772 paddr_t pig_end, size_t image_compr_size,
1773 struct hibernate_disk_chunk *chunks)
1774{
1775 paddr_t img_cur, piglet_base;
1776 daddr_t blkctr;
1777 size_t processed, compressed_size, read_size;
1778 int nchunks, nfchunks, num_io_pages;
1779 vaddr_t tempva, hibernate_fchunk_area;
1780 short *fchunks, i, j;
1781
1782 tempva = (vaddr_t)NULL((void *)0);
1783 hibernate_fchunk_area = (vaddr_t)NULL((void *)0);
1784 nfchunks = 0;
1785 piglet_base = hib->piglet_pa;
1786 global_pig_start = pig_start;
1787
1788 /*
1789 * These mappings go into the resuming kernel's page table, and are
1790 * used only during image read. They disappear from existence
1791 * when the suspended kernel is unpacked on top of us.
1792 */
1793 tempva = (vaddr_t)km_alloc(MAXPHYS(64 * 1024) + PAGE_SIZE(1 << 12), &kv_any, &kp_none,
1794 &kd_nowait);
1795 if (!tempva)
1796 return (1);
1797 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE(1 << 12), &kv_any,
1798 &kp_none, &kd_nowait);
1799 if (!hibernate_fchunk_area)
1800 return (1);
1801
1802 /* Final output chunk ordering VA */
1803 fchunks = (short *)hibernate_fchunk_area;
1804
1805 /* Map the chunk ordering region */
1806 for(i = 0; i < 24 ; i++)
1807 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE(1 << 12)),
1808 piglet_base + ((4 + i) * PAGE_SIZE(1 << 12)),
1809 PROT_READ0x01 | PROT_WRITE0x02);
1810 pmap_update(pmap_kernel());
1811
1812 nchunks = hib->chunk_ctr;
1813
1814 /* Initially start all chunks as unplaced */
1815 for (i = 0; i < nchunks; i++)
1816 chunks[i].flags = 0;
1817
1818 /*
1819 * Search the list for chunks that are outside the pig area. These
1820 * can be placed first in the final output list.
1821 */
1822 for (i = 0; i < nchunks; i++) {
1823 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1824 fchunks[nfchunks] = i;
1825 nfchunks++;
1826 chunks[i].flags |= HIBERNATE_CHUNK_PLACED4;
1827 }
1828 }
1829
1830 /*
1831 * Walk the ordering, place the chunks in ascending memory order.
1832 */
1833 for (i = 0; i < nchunks; i++) {
1834 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED4) {
1835 fchunks[nfchunks] = i;
1836 nfchunks++;
1837 chunks[i].flags = HIBERNATE_CHUNK_PLACED4;
1838 }
1839 }
1840
1841 img_cur = pig_start;
1842
1843 for (i = 0; i < nfchunks; i++) {
1844 blkctr = chunks[fchunks[i]].offset;
1845 processed = 0;
1846 compressed_size = chunks[fchunks[i]].compressed_size;
1847
1848 while (processed < compressed_size) {
1849 if (compressed_size - processed >= MAXPHYS(64 * 1024))
1850 read_size = MAXPHYS(64 * 1024);
1851 else
1852 read_size = compressed_size - processed;
1853
1854 /*
1855 * We're reading read_size bytes, offset from the
1856 * start of a page by img_cur % PAGE_SIZE, so the
1857 * end will be read_size + (img_cur % PAGE_SIZE)
1858 * from the start of the first page. Round that
1859 * up to the next page size.
1860 */
1861 num_io_pages = (read_size + (img_cur % PAGE_SIZE(1 << 12))
1862 + PAGE_SIZE(1 << 12) - 1) / PAGE_SIZE(1 << 12);
1863
1864 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1)((num_io_pages <= (64 * 1024)/(1 << 12) + 1) ? (void
)0 : __assert("diagnostic ", "/usr/src/sys/kern/subr_hibernate.c"
, 1864, "num_io_pages <= MAXPHYS/PAGE_SIZE + 1"))
;
1865
1866 /* Map pages for this read */
1867 for (j = 0; j < num_io_pages; j ++)
1868 pmap_kenter_pa(tempva + j * PAGE_SIZE(1 << 12),
1869 img_cur + j * PAGE_SIZE(1 << 12),
1870 PROT_READ0x01 | PROT_WRITE0x02);
1871
1872 pmap_update(pmap_kernel());
1873
1874 hibernate_block_io(hib, blkctr, read_size,
1875 tempva + (img_cur & PAGE_MASK((1 << 12) - 1)), 0);
1876
1877 blkctr += (read_size / DEV_BSIZE(1 << 9));
1878
1879 pmap_kremove(tempva, num_io_pages * PAGE_SIZE(1 << 12));
1880 pmap_update(pmap_kernel());
1881
1882 processed += read_size;
1883 img_cur += read_size;
1884 }
1885 }
1886
1887 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE(1 << 12));
1888 pmap_update(pmap_kernel());
1889
1890 return (0);
1891}
1892
1893/*
1894 * Hibernating a machine comprises the following operations:
1895 * 1. Calculating this machine's hibernate_info information
1896 * 2. Allocating a piglet and saving the piglet's physaddr
1897 * 3. Calculating the memory chunks
1898 * 4. Writing the compressed chunks to disk
1899 * 5. Writing the chunk table
1900 * 6. Writing the signature block (hibernate_info)
1901 *
1902 * On most architectures, the function calling hibernate_suspend would
1903 * then power off the machine using some MD-specific implementation.
1904 */
1905int
1906hibernate_suspend(void)
1907{
1908 union hibernate_info hib;
1909 u_long start, end;
1910
1911 /*
1912 * Calculate memory ranges, swap offsets, etc.
1913 * This also allocates a piglet whose physaddr is stored in
1914 * hib->piglet_pa and vaddr stored in hib->piglet_va
1915 */
1916 if (get_hibernate_info(&hib, 1)) {
1
Taking false branch
1917 DPRINTF("failed to obtain hibernate info\n");
1918 return (1);
1919 }
1920
1921 /* Find a page-addressed region in swap [start,end] */
1922 if (uvm_hibswap(hib.dev, &start, &end)) {
2
Assuming the condition is false
3
Taking false branch
1923 printf("hibernate: cannot find any swap\n");
1924 return (1);
1925 }
1926
1927 if (end - start < 1000) {
4
Assuming the condition is false
5
Taking false branch
1928 printf("hibernate: insufficient swap (%lu is too small)\n",
1929 end - start + 1);
1930 return (1);
1931 }
1932
1933 pmap_extract(pmap_kernel()(&kernel_pmap_store), (vaddr_t)&__retguard_start,
1934 &retguard_start_phys);
1935 pmap_extract(pmap_kernel()(&kernel_pmap_store), (vaddr_t)&__retguard_end,
1936 &retguard_end_phys);
1937
1938 /* Calculate block offsets in swap */
1939 hib.image_offset = ctod(start)((start) << (12 - 9));
1940
1941 DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1942 hib.image_offset, ctod(end) - ctod(start) + 1);
1943
1944 pmap_activate(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1945 DPRINTF("hibernate: writing chunks\n");
1946 if (hibernate_write_chunks(&hib)) {
6
Calling 'hibernate_write_chunks'
1947 DPRINTF("hibernate_write_chunks failed\n");
1948 return (1);
1949 }
1950
1951 DPRINTF("hibernate: writing chunktable\n");
1952 if (hibernate_write_chunktable(&hib)) {
1953 DPRINTF("hibernate_write_chunktable failed\n");
1954 return (1);
1955 }
1956
1957 DPRINTF("hibernate: writing signature\n");
1958 if (hibernate_write_signature(&hib)) {
1959 DPRINTF("hibernate_write_signature failed\n");
1960 return (1);
1961 }
1962
1963 /* Allow the disk to settle */
1964 delay(500000)(*delay_func)(500000);
1965
1966 /*
1967 * Give the device-specific I/O function a notification that we're
1968 * done, and that it can clean up or shutdown as needed.
1969 */
1970 hib.io_func(hib.dev, 0, (vaddr_t)NULL((void *)0), 0, HIB_DONE-2, hib.io_page);
1971 return (0);
1972}
1973
1974int
1975hibernate_alloc(void)
1976{
1977 KASSERT(global_piglet_va == 0)((global_piglet_va == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/subr_hibernate.c"
, 1977, "global_piglet_va == 0"))
;
1978 KASSERT(hibernate_temp_page == 0)((hibernate_temp_page == 0) ? (void)0 : __assert("diagnostic "
, "/usr/src/sys/kern/subr_hibernate.c", 1978, "hibernate_temp_page == 0"
))
;
1979
1980 pmap_activate(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
1981 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34), HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34),
1982 PROT_READ0x01 | PROT_WRITE0x02);
1983
1984 /* Allocate a piglet, store its addresses in the supplied globals */
1985 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
1986 HIBERNATE_CHUNK_SIZE0x400000 * 4, HIBERNATE_CHUNK_SIZE0x400000))
1987 goto unmap;
1988
1989 /*
1990 * Allocate VA for the temp page.
1991 *
1992 * This will become part of the suspended kernel and will
1993 * be freed in hibernate_free, upon resume (or hibernate
1994 * failure)
1995 */
1996 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE(1 << 12), &kv_any,
1997 &kp_none, &kd_nowait);
1998 if (!hibernate_temp_page) {
1999 uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE0x400000);
2000 global_piglet_va = 0;
2001 goto unmap;
2002 }
2003 return (0);
2004unmap:
2005 pmap_kremove(HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34), PAGE_SIZE(1 << 12));
2006 pmap_update(pmap_kernel());
2007 return (ENOMEM12);
2008}
2009
2010/*
2011 * Free items allocated by hibernate_alloc()
2012 */
2013void
2014hibernate_free(void)
2015{
2016 pmap_activate(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc
);
2017
2018 if (global_piglet_va)
2019 uvm_pmr_free_piglet(global_piglet_va,
2020 4 * HIBERNATE_CHUNK_SIZE0x400000);
2021
2022 if (hibernate_temp_page) {
2023 pmap_kremove(hibernate_temp_page, PAGE_SIZE(1 << 12));
2024 km_free((void *)hibernate_temp_page, PAGE_SIZE(1 << 12),
2025 &kv_any, &kp_none);
2026 }
2027
2028 global_piglet_va = 0;
2029 hibernate_temp_page = 0;
2030 pmap_kremove(HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34), PAGE_SIZE(1 << 12));
2031 pmap_update(pmap_kernel());
2032}