File: | dev/pci/drm/amd/pm/powerplay/smumgr/tonga_smumgr.c |
Warning: | line 2580, column 3 Value stored to 'result' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright 2015 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | #include "pp_debug.h" |
24 | #include <linux/types.h> |
25 | #include <linux/kernel.h> |
26 | #include <linux/pci.h> |
27 | #include <linux/slab.h> |
28 | #include <linux/gfp.h> |
29 | |
30 | #include "smumgr.h" |
31 | #include "tonga_smumgr.h" |
32 | #include "smu_ucode_xfer_vi.h" |
33 | #include "tonga_ppsmc.h" |
34 | #include "smu/smu_7_1_2_d.h" |
35 | #include "smu/smu_7_1_2_sh_mask.h" |
36 | #include "cgs_common.h" |
37 | #include "smu7_smumgr.h" |
38 | |
39 | #include "smu7_dyn_defaults.h" |
40 | |
41 | #include "smu7_hwmgr.h" |
42 | #include "hardwaremanager.h" |
43 | #include "ppatomctrl.h" |
44 | |
45 | #include "atombios.h" |
46 | |
47 | #include "pppcielanes.h" |
48 | #include "pp_endian.h" |
49 | |
50 | #include "gmc/gmc_8_1_d.h" |
51 | #include "gmc/gmc_8_1_sh_mask.h" |
52 | |
53 | #include "bif/bif_5_0_d.h" |
54 | #include "bif/bif_5_0_sh_mask.h" |
55 | |
56 | #include "dce/dce_10_0_d.h" |
57 | #include "dce/dce_10_0_sh_mask.h" |
58 | |
59 | #define POWERTUNE_DEFAULT_SET_MAX1 1 |
60 | #define MC_CG_ARB_FREQ_F10x0b 0x0b |
61 | #define VDDC_VDDCI_DELTA200 200 |
62 | |
63 | |
64 | static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX1] = { |
65 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
66 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
67 | */ |
68 | {1, 0xF, 0xFD, 0x19, |
69 | 5, 45, 0, 0xB0000, |
70 | {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, |
71 | 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
72 | {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, |
73 | 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} |
74 | }, |
75 | }; |
76 | |
77 | /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ |
78 | static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { |
79 | {600, 1050, 3, 0}, |
80 | {600, 1050, 6, 1} |
81 | }; |
82 | |
83 | /* [FF, SS] type, [] 4 voltage ranges, |
84 | * and [Floor Freq, Boundary Freq, VID min , VID max] |
85 | */ |
86 | static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { |
87 | { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
88 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } |
89 | }; |
90 | |
91 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ |
92 | static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { |
93 | {0, 1, 3, 2, 4, 5}, |
94 | {0, 2, 4, 5, 6, 5} |
95 | }; |
96 | |
97 | static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr) |
98 | { |
99 | int result; |
100 | |
101 | /* Assert reset */ |
102 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
103 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
104 | |
105 | result = smu7_upload_smu_firmware_image(hwmgr); |
106 | if (result) |
107 | return result; |
108 | |
109 | /* Clear status */ |
110 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)) |
111 | ixSMU_STATUS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)); |
112 | |
113 | /* Enable clock */ |
114 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
115 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
116 | |
117 | /* De-assert reset */ |
118 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
119 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
120 | |
121 | /* Set SMU Auto Start */ |
122 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000 & ((1) << 0x1f))))) |
123 | SMU_INPUT_DATA, AUTO_START, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000 & ((1) << 0x1f))))); |
124 | |
125 | /* Clear firmware interrupt enable flag */ |
126 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f800,0)) |
127 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f800,0)); |
128 | |
129 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000) |
130 | RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000); |
131 | |
132 | /** |
133 | * Call Test SMU message with 0x20000 offset to trigger SMU start |
134 | */ |
135 | smu7_send_msg_to_smc_offset(hwmgr); |
136 | |
137 | /* Wait for done bit to be set */ |
138 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1) |
139 | SMU_STATUS, SMU_DONE, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1); |
140 | |
141 | /* Check pass/failed indicator */ |
142 | if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1) |
143 | CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1)) { |
144 | pr_err("SMU Firmware start failed\n")printk("\0013" "amdgpu: " "SMU Firmware start failed\n"); |
145 | return -EINVAL22; |
146 | } |
147 | |
148 | /* Wait for firmware to initialize */ |
149 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f800, (1) << 0x0, 0x1) |
150 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f800, (1) << 0x0, 0x1); |
151 | |
152 | return 0; |
153 | } |
154 | |
155 | static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
156 | { |
157 | int result = 0; |
158 | |
159 | /* wait for smc boot up */ |
160 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80) |
161 | RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80); |
162 | |
163 | /*Clear firmware interrupt enable flag*/ |
164 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f800,0)) |
165 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f800,0)); |
166 | |
167 | |
168 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
169 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
170 | |
171 | result = smu7_upload_smu_firmware_image(hwmgr); |
172 | |
173 | if (result != 0) |
174 | return result; |
175 | |
176 | /* Set smc instruct start point at 0x0 */ |
177 | smu7_program_jump_on_start(hwmgr); |
178 | |
179 | |
180 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
181 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
182 | |
183 | /*De-assert reset*/ |
184 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
185 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
186 | |
187 | /* Wait for firmware to initialize */ |
188 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f800, (1) << 0x0, 0x1) |
189 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f800, (1) << 0x0, 0x1); |
190 | |
191 | return result; |
192 | } |
193 | |
194 | static int tonga_start_smu(struct pp_hwmgr *hwmgr) |
195 | { |
196 | struct tonga_smumgr *priv = hwmgr->smu_backend; |
197 | int result; |
198 | |
199 | /* Only start SMC if SMC RAM is not running */ |
200 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
201 | /*Check if SMU is running in protected mode*/ |
202 | if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10) |
203 | SMU_FIRMWARE, SMU_MODE)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10)) { |
204 | result = tonga_start_in_non_protection_mode(hwmgr); |
205 | if (result) |
206 | return result; |
207 | } else { |
208 | result = tonga_start_in_protection_mode(hwmgr); |
209 | if (result) |
210 | return result; |
211 | } |
212 | } |
213 | |
214 | /* Setup SoftRegsStart here to visit the register UcodeLoadStatus |
215 | * to check fw loading state |
216 | */ |
217 | smu7_read_smc_sram_dword(hwmgr, |
218 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
219 | offsetof(SMU72_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU72_Firmware_Header, SoftRegisters), |
220 | &(priv->smu7_data.soft_regs_start), 0x40000); |
221 | |
222 | result = smu7_request_smu_load_fw(hwmgr); |
223 | |
224 | return result; |
225 | } |
226 | |
227 | static int tonga_smu_init(struct pp_hwmgr *hwmgr) |
228 | { |
229 | struct tonga_smumgr *tonga_priv = NULL((void *)0); |
230 | |
231 | tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL(0x0001 | 0x0004)); |
232 | if (tonga_priv == NULL((void *)0)) |
233 | return -ENOMEM12; |
234 | |
235 | hwmgr->smu_backend = tonga_priv; |
236 | |
237 | if (smu7_init(hwmgr)) { |
238 | kfree(tonga_priv); |
239 | return -EINVAL22; |
240 | } |
241 | |
242 | return 0; |
243 | } |
244 | |
245 | |
246 | static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
247 | phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, |
248 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
249 | { |
250 | uint32_t i = 0; |
251 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
252 | struct phm_ppt_v1_information *pptable_info = |
253 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
254 | |
255 | /* clock - voltage dependency table is empty table */ |
256 | if (allowed_clock_voltage_table->count == 0) |
257 | return -EINVAL22; |
258 | |
259 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
260 | /* find first sclk bigger than request */ |
261 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
262 | voltage->VddGfx = phm_get_voltage_index( |
263 | pptable_info->vddgfx_lookup_table, |
264 | allowed_clock_voltage_table->entries[i].vddgfx); |
265 | voltage->Vddc = phm_get_voltage_index( |
266 | pptable_info->vddc_lookup_table, |
267 | allowed_clock_voltage_table->entries[i].vddc); |
268 | |
269 | if (allowed_clock_voltage_table->entries[i].vddci) |
270 | voltage->Vddci = |
271 | phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); |
272 | else |
273 | voltage->Vddci = |
274 | phm_get_voltage_id(&data->vddci_voltage_table, |
275 | allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA200); |
276 | |
277 | |
278 | if (allowed_clock_voltage_table->entries[i].mvdd) |
279 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; |
280 | |
281 | voltage->Phases = 1; |
282 | return 0; |
283 | } |
284 | } |
285 | |
286 | /* sclk is bigger than max sclk in the dependence table */ |
287 | voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
288 | allowed_clock_voltage_table->entries[i-1].vddgfx); |
289 | voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, |
290 | allowed_clock_voltage_table->entries[i-1].vddc); |
291 | |
292 | if (allowed_clock_voltage_table->entries[i-1].vddci) |
293 | voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, |
294 | allowed_clock_voltage_table->entries[i-1].vddci); |
295 | |
296 | if (allowed_clock_voltage_table->entries[i-1].mvdd) |
297 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; |
298 | |
299 | return 0; |
300 | } |
301 | |
302 | static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
303 | SMU72_Discrete_DpmTable *table) |
304 | { |
305 | unsigned int count; |
306 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
307 | |
308 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
309 | table->VddcLevelCount = data->vddc_voltage_table.count; |
310 | for (count = 0; count < table->VddcLevelCount; count++) { |
311 | table->VddcTable[count] = |
312 | PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddc_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddc_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddc_voltage_table.entries[count] .value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddc_voltage_table.entries[count].value * 4)); |
313 | } |
314 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount)((table->VddcLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddcLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddcLevelCount) & 0xff) << 24 | ((__uint32_t)( table->VddcLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff000000) >> 24) : __swap32md (table->VddcLevelCount))); |
315 | } |
316 | return 0; |
317 | } |
318 | |
319 | static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, |
320 | SMU72_Discrete_DpmTable *table) |
321 | { |
322 | unsigned int count; |
323 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
324 | |
325 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vdd_gfx_control) { |
326 | table->VddGfxLevelCount = data->vddgfx_voltage_table.count; |
327 | for (count = 0; count < data->vddgfx_voltage_table.count; count++) { |
328 | table->VddGfxTable[count] = |
329 | PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddgfx_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddgfx_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddgfx_voltage_table.entries[count ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddgfx_voltage_table.entries[count].value * 4)); |
330 | } |
331 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount)((table->VddGfxLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddGfxLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddGfxLevelCount) & 0xff) << 24 | ((__uint32_t )(table->VddGfxLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddGfxLevelCount) & 0xff0000) >> 8 | (( __uint32_t)(table->VddGfxLevelCount) & 0xff000000) >> 24) : __swap32md(table->VddGfxLevelCount))); |
332 | } |
333 | return 0; |
334 | } |
335 | |
336 | static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
337 | SMU72_Discrete_DpmTable *table) |
338 | { |
339 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
340 | uint32_t count; |
341 | |
342 | table->VddciLevelCount = data->vddci_voltage_table.count; |
343 | for (count = 0; count < table->VddciLevelCount; count++) { |
344 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { |
345 | table->VddciTable[count] = |
346 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[count ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[count].value * 4)); |
347 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
348 | table->SmioTable1.Pattern[count].Voltage = |
349 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[count ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[count].value * 4)); |
350 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ |
351 | table->SmioTable1.Pattern[count].Smio = |
352 | (uint8_t) count; |
353 | table->Smio[count] |= |
354 | data->vddci_voltage_table.entries[count].smio_low; |
355 | table->VddciTable[count] = |
356 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[count ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[count].value * 4)); |
357 | } |
358 | } |
359 | |
360 | table->SmioMask1 = data->vddci_voltage_table.mask_low; |
361 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount)((table->VddciLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddciLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddciLevelCount) & 0xff) << 24 | ((__uint32_t) (table->VddciLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff000000) >> 24) : __swap32md(table->VddciLevelCount))); |
362 | |
363 | return 0; |
364 | } |
365 | |
366 | static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
367 | SMU72_Discrete_DpmTable *table) |
368 | { |
369 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
370 | uint32_t count; |
371 | |
372 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
373 | table->MvddLevelCount = data->mvdd_voltage_table.count; |
374 | for (count = 0; count < table->MvddLevelCount; count++) { |
375 | table->SmioTable2.Pattern[count].Voltage = |
376 | PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->mvdd_voltage_table .entries[count].value * 4) ? (__uint16_t)(((__uint16_t)(data-> mvdd_voltage_table.entries[count].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->mvdd_voltage_table.entries[count] .value * 4) & 0xff00U) >> 8) : __swap16md(data-> mvdd_voltage_table.entries[count].value * 4)); |
377 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
378 | table->SmioTable2.Pattern[count].Smio = |
379 | (uint8_t) count; |
380 | table->Smio[count] |= |
381 | data->mvdd_voltage_table.entries[count].smio_low; |
382 | } |
383 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
384 | |
385 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount)((table->MvddLevelCount) = (__uint32_t)(__builtin_constant_p (table->MvddLevelCount) ? (__uint32_t)(((__uint32_t)(table ->MvddLevelCount) & 0xff) << 24 | ((__uint32_t)( table->MvddLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff000000) >> 24) : __swap32md (table->MvddLevelCount))); |
386 | } |
387 | |
388 | return 0; |
389 | } |
390 | |
391 | static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, |
392 | SMU72_Discrete_DpmTable *table) |
393 | { |
394 | uint32_t count; |
395 | uint8_t index = 0; |
396 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
397 | struct phm_ppt_v1_information *pptable_info = |
398 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
399 | struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = |
400 | pptable_info->vddgfx_lookup_table; |
401 | struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = |
402 | pptable_info->vddc_lookup_table; |
403 | |
404 | /* table is already swapped, so in order to use the value from it |
405 | * we need to swap it back. |
406 | */ |
407 | uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount)(__uint32_t)(__builtin_constant_p(table->VddcLevelCount) ? (__uint32_t)(((__uint32_t)(table->VddcLevelCount) & 0xff ) << 24 | ((__uint32_t)(table->VddcLevelCount) & 0xff00) << 8 | ((__uint32_t)(table->VddcLevelCount) & 0xff0000) >> 8 | ((__uint32_t)(table->VddcLevelCount ) & 0xff000000) >> 24) : __swap32md(table->VddcLevelCount )); |
408 | uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount)(__uint32_t)(__builtin_constant_p(table->VddGfxLevelCount) ? (__uint32_t)(((__uint32_t)(table->VddGfxLevelCount) & 0xff) << 24 | ((__uint32_t)(table->VddGfxLevelCount ) & 0xff00) << 8 | ((__uint32_t)(table->VddGfxLevelCount ) & 0xff0000) >> 8 | ((__uint32_t)(table->VddGfxLevelCount ) & 0xff000000) >> 24) : __swap32md(table->VddGfxLevelCount )); |
409 | |
410 | for (count = 0; count < vddc_level_count; count++) { |
411 | /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ |
412 | index = phm_get_voltage_index(vddc_lookup_table, |
413 | data->vddc_voltage_table.entries[count].value); |
414 | table->BapmVddcVidLoSidd[count] = |
415 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
416 | table->BapmVddcVidHiSidd[count] = |
417 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
418 | table->BapmVddcVidHiSidd2[count] = |
419 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
420 | } |
421 | |
422 | if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID20x2) { |
423 | /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ |
424 | for (count = 0; count < vddgfx_level_count; count++) { |
425 | index = phm_get_voltage_index(vddgfx_lookup_table, |
426 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); |
427 | table->BapmVddGfxVidHiSidd2[count] = |
428 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); |
429 | } |
430 | } else { |
431 | for (count = 0; count < vddc_level_count; count++) { |
432 | index = phm_get_voltage_index(vddc_lookup_table, |
433 | data->vddc_voltage_table.entries[count].value); |
434 | table->BapmVddGfxVidLoSidd[count] = |
435 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
436 | table->BapmVddGfxVidHiSidd[count] = |
437 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
438 | table->BapmVddGfxVidHiSidd2[count] = |
439 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
440 | } |
441 | } |
442 | |
443 | return 0; |
444 | } |
445 | |
446 | static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
447 | SMU72_Discrete_DpmTable *table) |
448 | { |
449 | int result; |
450 | |
451 | result = tonga_populate_smc_vddc_table(hwmgr, table); |
452 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDC voltage table to SMC" ); return -22; } } while (0) |
453 | "can not populate VDDC voltage table to SMC",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDC voltage table to SMC" ); return -22; } } while (0) |
454 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDC voltage table to SMC" ); return -22; } } while (0); |
455 | |
456 | result = tonga_populate_smc_vdd_ci_table(hwmgr, table); |
457 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDCI voltage table to SMC" ); return -22; } } while (0) |
458 | "can not populate VDDCI voltage table to SMC",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDCI voltage table to SMC" ); return -22; } } while (0) |
459 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDCI voltage table to SMC" ); return -22; } } while (0); |
460 | |
461 | result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); |
462 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDGFX voltage table to SMC" ); return -22; } } while (0) |
463 | "can not populate VDDGFX voltage table to SMC",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDGFX voltage table to SMC" ); return -22; } } while (0) |
464 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDGFX voltage table to SMC" ); return -22; } } while (0); |
465 | |
466 | result = tonga_populate_smc_mvdd_table(hwmgr, table); |
467 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate MVDD voltage table to SMC" ); return -22; } } while (0) |
468 | "can not populate MVDD voltage table to SMC",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate MVDD voltage table to SMC" ); return -22; } } while (0) |
469 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate MVDD voltage table to SMC" ); return -22; } } while (0); |
470 | |
471 | result = tonga_populate_cac_tables(hwmgr, table); |
472 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0) |
473 | "can not populate CAC voltage tables to SMC",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0) |
474 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0); |
475 | |
476 | return 0; |
477 | } |
478 | |
479 | static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, |
480 | struct SMU72_Discrete_Ulv *state) |
481 | { |
482 | struct phm_ppt_v1_information *table_info = |
483 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
484 | |
485 | state->CcPwrDynRm = 0; |
486 | state->CcPwrDynRm1 = 0; |
487 | |
488 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
489 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
490 | VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625); |
491 | |
492 | state->VddcPhase = 1; |
493 | |
494 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); |
495 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); |
496 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); |
497 | |
498 | return 0; |
499 | } |
500 | |
501 | static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, |
502 | struct SMU72_Discrete_DpmTable *table) |
503 | { |
504 | return tonga_populate_ulv_level(hwmgr, &table->Ulv); |
505 | } |
506 | |
507 | static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) |
508 | { |
509 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
510 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
511 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
512 | uint32_t i; |
513 | |
514 | /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
515 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
516 | table->LinkLevel[i].PcieGenSpeed = |
517 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
518 | table->LinkLevel[i].PcieLaneCount = |
519 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
520 | table->LinkLevel[i].EnabledForActivity = |
521 | 1; |
522 | table->LinkLevel[i].SPC = |
523 | (uint8_t)(data->pcie_spc_cap & 0xff); |
524 | table->LinkLevel[i].DownThreshold = |
525 | PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
526 | table->LinkLevel[i].UpThreshold = |
527 | PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); |
528 | } |
529 | |
530 | smu_data->smc_state_table.LinkLevelCount = |
531 | (uint8_t)dpm_table->pcie_speed_table.count; |
532 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
533 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
534 | |
535 | return 0; |
536 | } |
537 | |
538 | static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
539 | uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) |
540 | { |
541 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
542 | pp_atomctrl_clock_dividers_vi dividers; |
543 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
544 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
545 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
546 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
547 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
548 | uint32_t reference_clock; |
549 | uint32_t reference_divider; |
550 | uint32_t fbdiv; |
551 | int result; |
552 | |
553 | /* get the engine clock dividers for this clock value*/ |
554 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
555 | |
556 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
557 | "Error retrieving Engine Clock dividers from VBIOS.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
558 | |
559 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
560 | reference_clock = atomctrl_get_reference_clock(hwmgr); |
561 | |
562 | reference_divider = 1 + dividers.uc_pll_ref_div; |
563 | |
564 | /* low 14 bits is fraction and high 12 bits is divider*/ |
565 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
566 | |
567 | /* SPLL_FUNC_CNTL setup*/ |
568 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))) |
569 | CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div)(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))); |
570 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))) |
571 | CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div)(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))); |
572 | |
573 | /* SPLL_FUNC_CNTL_3 setup*/ |
574 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))) |
575 | CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv)(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))); |
576 | |
577 | /* set to use fractional accumulation*/ |
578 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))) |
579 | CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1)(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))); |
580 | |
581 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
582 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
583 | pp_atomctrl_internal_ss_info ss_info; |
584 | |
585 | uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
586 | if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
587 | /* |
588 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
589 | * ss_info.speed_spectrum_rate -- in unit of khz |
590 | */ |
591 | /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
592 | uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
593 | |
594 | /* clkv = 2 * D * fbdiv / NS */ |
595 | uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
596 | |
597 | cg_spll_spread_spectrum = |
598 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS)(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clkS) << 0x4))); |
599 | cg_spll_spread_spectrum = |
600 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1)(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))); |
601 | cg_spll_spread_spectrum_2 = |
602 | PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV)(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clkV) << 0x0))); |
603 | } |
604 | } |
605 | |
606 | sclk->SclkFrequency = engine_clock; |
607 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
608 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
609 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
610 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
611 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
612 | |
613 | return 0; |
614 | } |
615 | |
616 | static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
617 | uint32_t engine_clock, |
618 | SMU72_Discrete_GraphicsLevel *graphic_level) |
619 | { |
620 | int result; |
621 | uint32_t mvdd; |
622 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
623 | struct phm_ppt_v1_information *pptable_info = |
624 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
625 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); |
626 | |
627 | result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
628 | |
629 | if (hwmgr->od_enabled) |
630 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; |
631 | else |
632 | vdd_dep_table = pptable_info->vdd_dep_on_sclk; |
633 | |
634 | /* populate graphics levels*/ |
635 | result = tonga_get_dependency_volt_by_clk(hwmgr, |
636 | vdd_dep_table, engine_clock, |
637 | &graphic_level->MinVoltage, &mvdd); |
638 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find VDDC voltage value for VDDC " "engine clock dependency table"); return result; } } while ( 0) |
639 | "can not find VDDC voltage value for VDDC "do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find VDDC voltage value for VDDC " "engine clock dependency table"); return result; } } while ( 0) |
640 | "engine clock dependency table", return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find VDDC voltage value for VDDC " "engine clock dependency table"); return result; } } while ( 0); |
641 | |
642 | /* SCLK frequency in units of 10KHz*/ |
643 | graphic_level->SclkFrequency = engine_clock; |
644 | /* Indicates maximum activity level for this performance level. 50% for now*/ |
645 | graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; |
646 | |
647 | graphic_level->CcPwrDynRm = 0; |
648 | graphic_level->CcPwrDynRm1 = 0; |
649 | /* this level can be used if activity is high enough.*/ |
650 | graphic_level->EnabledForActivity = 0; |
651 | /* this level can be used for throttling.*/ |
652 | graphic_level->EnabledForThrottle = 1; |
653 | graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
654 | graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
655 | graphic_level->VoltageDownHyst = 0; |
656 | graphic_level->PowerThrottle = 0; |
657 | |
658 | data->display_timing.min_clock_in_sr = |
659 | hwmgr->display_config->min_core_set_clock_in_sr; |
660 | |
661 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
662 | PHM_PlatformCaps_SclkDeepSleep)) |
663 | graphic_level->DeepSleepDivId = |
664 | smu7_get_sleep_divider_id_from_clock(engine_clock, |
665 | data->display_timing.min_clock_in_sr); |
666 | |
667 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
668 | graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
669 | |
670 | if (!result) { |
671 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ |
672 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ |
673 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency)((graphic_level->SclkFrequency) = (__uint32_t)(__builtin_constant_p (graphic_level->SclkFrequency) ? (__uint32_t)(((__uint32_t )(graphic_level->SclkFrequency) & 0xff) << 24 | ( (__uint32_t)(graphic_level->SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(graphic_level->SclkFrequency) & 0xff0000 ) >> 8 | ((__uint32_t)(graphic_level->SclkFrequency) & 0xff000000) >> 24) : __swap32md(graphic_level-> SclkFrequency))); |
674 | CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel)((graphic_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (graphic_level->ActivityLevel) ? (__uint16_t)(((__uint16_t )(graphic_level->ActivityLevel) & 0xffU) << 8 | ( (__uint16_t)(graphic_level->ActivityLevel) & 0xff00U) >> 8) : __swap16md(graphic_level->ActivityLevel))); |
675 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3)((graphic_level->CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (graphic_level->CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(graphic_level->CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(graphic_level->CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md( graphic_level->CgSpllFuncCntl3))); |
676 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4)((graphic_level->CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (graphic_level->CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(graphic_level->CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(graphic_level->CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md( graphic_level->CgSpllFuncCntl4))); |
677 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum)((graphic_level->SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (graphic_level->SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(graphic_level->SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (graphic_level->SpllSpreadSpectrum))); |
678 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2)((graphic_level->SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (graphic_level->SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(graphic_level->SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (graphic_level->SpllSpreadSpectrum2))); |
679 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm)((graphic_level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (graphic_level->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff) << 24 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff000000) >> 24) : __swap32md( graphic_level->CcPwrDynRm))); |
680 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1)((graphic_level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (graphic_level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)( graphic_level->CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t )(graphic_level->CcPwrDynRm1) & 0xff00) << 8 | ( (__uint32_t)(graphic_level->CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level->CcPwrDynRm1) & 0xff000000 ) >> 24) : __swap32md(graphic_level->CcPwrDynRm1))); |
681 | } |
682 | |
683 | return result; |
684 | } |
685 | |
686 | static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
687 | { |
688 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
689 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
690 | struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
691 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
692 | struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; |
693 | uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; |
694 | uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + |
695 | offsetof(SMU72_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); |
696 | |
697 | uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * |
698 | SMU72_MAX_LEVELS_GRAPHICS8; |
699 | |
700 | SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
701 | |
702 | uint32_t i, max_entry; |
703 | uint8_t highest_pcie_level_enabled = 0; |
704 | uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
705 | uint8_t count = 0; |
706 | int result = 0; |
707 | |
708 | memset(levels, 0x00, level_array_size)__builtin_memset((levels), (0x00), (level_array_size)); |
709 | |
710 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
711 | result = tonga_populate_single_graphic_level(hwmgr, |
712 | dpm_table->sclk_table.dpm_levels[i].value, |
713 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
714 | if (result != 0) |
715 | return result; |
716 | |
717 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
718 | if (i > 1) |
719 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
720 | } |
721 | |
722 | /* Only enable level 0 for now. */ |
723 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
724 | |
725 | /* set highest level watermark to high */ |
726 | if (dpm_table->sclk_table.count > 1) |
727 | smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
728 | PPSMC_DISPLAY_WATERMARK_HIGH1; |
729 | |
730 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
731 | (uint8_t)dpm_table->sclk_table.count; |
732 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
733 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
734 | |
735 | if (pcie_table != NULL((void *)0)) { |
736 | PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),do { if (!((pcie_entry_count >= 1))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
737 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((pcie_entry_count >= 1))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
738 | return -EINVAL)do { if (!((pcie_entry_count >= 1))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
739 | max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ |
740 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
741 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = |
742 | (uint8_t) ((i < max_entry) ? i : max_entry); |
743 | } |
744 | } else { |
745 | if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) |
746 | pr_err("Pcie Dpm Enablemask is 0 !")printk("\0013" "amdgpu: " "Pcie Dpm Enablemask is 0 !"); |
747 | |
748 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
749 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
750 | (1<<(highest_pcie_level_enabled+1))) != 0)) { |
751 | highest_pcie_level_enabled++; |
752 | } |
753 | |
754 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
755 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
756 | (1<<lowest_pcie_level_enabled)) == 0)) { |
757 | lowest_pcie_level_enabled++; |
758 | } |
759 | |
760 | while ((count < highest_pcie_level_enabled) && |
761 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
762 | (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { |
763 | count++; |
764 | } |
765 | mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
766 | (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
767 | |
768 | |
769 | /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
770 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
771 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
772 | |
773 | /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
774 | smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
775 | |
776 | /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
777 | smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
778 | } |
779 | /* level count will send to smc once at init smc table and never change*/ |
780 | result = smu7_copy_bytes_to_smc(hwmgr, level_array_address, |
781 | (uint8_t *)levels, (uint32_t)level_array_size, |
782 | SMC_RAM_END0x40000); |
783 | |
784 | return result; |
785 | } |
786 | |
787 | static int tonga_calculate_mclk_params( |
788 | struct pp_hwmgr *hwmgr, |
789 | uint32_t memory_clock, |
790 | SMU72_Discrete_MemoryLevel *mclk, |
791 | bool_Bool strobe_mode, |
792 | bool_Bool dllStateOn |
793 | ) |
794 | { |
795 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
796 | |
797 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
798 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
799 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
800 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
801 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
802 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
803 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
804 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
805 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
806 | |
807 | pp_atomctrl_memory_clock_param mpll_param; |
808 | int result; |
809 | |
810 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
811 | memory_clock, &mpll_param, strobe_mode); |
812 | PP_ASSERT_WITH_CODE(do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0) |
813 | !result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0) |
814 | "Error retrieving Memory Clock Parameters from VBIOS.",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0) |
815 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0); |
816 | |
817 | /* MPLL_FUNC_CNTL setup*/ |
818 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,(((mpll_func_cntl) & ~0xff00000) | (0xff00000 & ((mpll_param .bw_ctrl) << 0x14))) |
819 | mpll_param.bw_ctrl)(((mpll_func_cntl) & ~0xff00000) | (0xff00000 & ((mpll_param .bw_ctrl) << 0x14))); |
820 | |
821 | /* MPLL_FUNC_CNTL_1 setup*/ |
822 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))) |
823 | MPLL_FUNC_CNTL_1, CLKF,(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))) |
824 | mpll_param.mpll_fb_divider.cl_kf)(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))); |
825 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))) |
826 | MPLL_FUNC_CNTL_1, CLKFRAC,(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))) |
827 | mpll_param.mpll_fb_divider.clk_frac)(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))); |
828 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))) |
829 | MPLL_FUNC_CNTL_1, VCO_MODE,(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))) |
830 | mpll_param.vco_mode)(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))); |
831 | |
832 | /* MPLL_AD_FUNC_CNTL setup*/ |
833 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
834 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
835 | mpll_param.mpll_post_divider)(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
836 | |
837 | if (data->is_memory_gddr5) { |
838 | /* MPLL_DQ_FUNC_CNTL setup*/ |
839 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))) |
840 | MPLL_DQ_FUNC_CNTL, YCLK_SEL,(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))) |
841 | mpll_param.yclk_sel)(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))); |
842 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
843 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
844 | mpll_param.mpll_post_divider)(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
845 | } |
846 | |
847 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
848 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
849 | /* |
850 | ************************************ |
851 | Fref = Reference Frequency |
852 | NF = Feedback divider ratio |
853 | NR = Reference divider ratio |
854 | Fnom = Nominal VCO output frequency = Fref * NF / NR |
855 | Fs = Spreading Rate |
856 | D = Percentage down-spread / 2 |
857 | Fint = Reference input frequency to PFD = Fref / NR |
858 | NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
859 | CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
860 | NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
861 | CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
862 | ************************************* |
863 | */ |
864 | pp_atomctrl_internal_ss_info ss_info; |
865 | uint32_t freq_nom; |
866 | uint32_t tmp; |
867 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
868 | |
869 | /* for GDDR5 for all modes and DDR3 */ |
870 | if (1 == mpll_param.qdr) |
871 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
872 | else |
873 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
874 | |
875 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
876 | tmp = (freq_nom / reference_clock); |
877 | tmp = tmp * tmp; |
878 | |
879 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
880 | /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
881 | /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
882 | /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
883 | /* = reference_clock * 5 / speed_spectrum_rate */ |
884 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
885 | |
886 | /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
887 | /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
888 | uint32_t clkv = |
889 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
890 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
891 | |
892 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv)(((mpll_ss1) & ~0x3ffffff) | (0x3ffffff & ((clkv) << 0x0))); |
893 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks)(((mpll_ss2) & ~0xfff) | (0xfff & ((clks) << 0x0 ))); |
894 | } |
895 | } |
896 | |
897 | /* MCLK_PWRMGT_CNTL setup */ |
898 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))) |
899 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed)(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))); |
900 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))) |
901 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))); |
902 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))) |
903 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))); |
904 | |
905 | /* Save the result data to outpupt memory level structure */ |
906 | mclk->MclkFrequency = memory_clock; |
907 | mclk->MpllFuncCntl = mpll_func_cntl; |
908 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
909 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
910 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
911 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
912 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
913 | mclk->DllCntl = dll_cntl; |
914 | mclk->MpllSs1 = mpll_ss1; |
915 | mclk->MpllSs2 = mpll_ss2; |
916 | |
917 | return 0; |
918 | } |
919 | |
920 | static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, |
921 | bool_Bool strobe_mode) |
922 | { |
923 | uint8_t mc_para_index; |
924 | |
925 | if (strobe_mode) { |
926 | if (memory_clock < 12500) |
927 | mc_para_index = 0x00; |
928 | else if (memory_clock > 47500) |
929 | mc_para_index = 0x0f; |
930 | else |
931 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
932 | } else { |
933 | if (memory_clock < 65000) |
934 | mc_para_index = 0x00; |
935 | else if (memory_clock > 135000) |
936 | mc_para_index = 0x0f; |
937 | else |
938 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
939 | } |
940 | |
941 | return mc_para_index; |
942 | } |
943 | |
944 | static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
945 | { |
946 | uint8_t mc_para_index; |
947 | |
948 | if (memory_clock < 10000) |
949 | mc_para_index = 0; |
950 | else if (memory_clock >= 80000) |
951 | mc_para_index = 0x0f; |
952 | else |
953 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
954 | |
955 | return mc_para_index; |
956 | } |
957 | |
958 | |
959 | static int tonga_populate_single_memory_level( |
960 | struct pp_hwmgr *hwmgr, |
961 | uint32_t memory_clock, |
962 | SMU72_Discrete_MemoryLevel *memory_level |
963 | ) |
964 | { |
965 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
966 | struct phm_ppt_v1_information *pptable_info = |
967 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
968 | uint32_t mclk_edc_wr_enable_threshold = 40000; |
969 | uint32_t mclk_stutter_mode_threshold = 30000; |
970 | uint32_t mclk_edc_enable_threshold = 40000; |
971 | uint32_t mclk_strobe_mode_threshold = 40000; |
972 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); |
973 | int result = 0; |
974 | bool_Bool dll_state_on; |
975 | uint32_t mvdd = 0; |
976 | |
977 | if (hwmgr->od_enabled) |
978 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; |
979 | else |
980 | vdd_dep_table = pptable_info->vdd_dep_on_mclk; |
981 | |
982 | if (NULL((void *)0) != vdd_dep_table) { |
983 | result = tonga_get_dependency_volt_by_clk(hwmgr, |
984 | vdd_dep_table, |
985 | memory_clock, |
986 | &memory_level->MinVoltage, &mvdd); |
987 | PP_ASSERT_WITH_CODE(do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory VDDC " "voltage dependency table"); return result; } } while (0) |
988 | !result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory VDDC " "voltage dependency table"); return result; } } while (0) |
989 | "can not find MinVddc voltage value from memory VDDC "do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory VDDC " "voltage dependency table"); return result; } } while (0) |
990 | "voltage dependency table",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory VDDC " "voltage dependency table"); return result; } } while (0) |
991 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory VDDC " "voltage dependency table"); return result; } } while (0); |
992 | } |
993 | |
994 | if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE0x0) |
995 | memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; |
996 | else |
997 | memory_level->MinMvdd = mvdd; |
998 | |
999 | memory_level->EnabledForThrottle = 1; |
1000 | memory_level->EnabledForActivity = 0; |
1001 | memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
1002 | memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
1003 | memory_level->VoltageDownHyst = 0; |
1004 | |
1005 | /* Indicates maximum activity level for this performance level.*/ |
1006 | memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
1007 | memory_level->StutterEnable = 0; |
1008 | memory_level->StrobeEnable = 0; |
1009 | memory_level->EdcReadEnable = 0; |
1010 | memory_level->EdcWriteEnable = 0; |
1011 | memory_level->RttEnable = 0; |
1012 | |
1013 | /* default set to low watermark. Highest level will be set to high later.*/ |
1014 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
1015 | |
1016 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1017 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1018 | |
1019 | if ((mclk_stutter_mode_threshold != 0) && |
1020 | (memory_clock <= mclk_stutter_mode_threshold) && |
1021 | (!data->is_uvd_enabled) |
1022 | && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) & 0x1) |
1023 | && (data->display_timing.num_existing_displays <= 2) |
1024 | && (data->display_timing.num_existing_displays != 0)) |
1025 | memory_level->StutterEnable = 1; |
1026 | |
1027 | /* decide strobe mode*/ |
1028 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
1029 | (memory_clock <= mclk_strobe_mode_threshold); |
1030 | |
1031 | /* decide EDC mode and memory clock ratio*/ |
1032 | if (data->is_memory_gddr5) { |
1033 | memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, |
1034 | memory_level->StrobeEnable); |
1035 | |
1036 | if ((mclk_edc_enable_threshold != 0) && |
1037 | (memory_clock > mclk_edc_enable_threshold)) { |
1038 | memory_level->EdcReadEnable = 1; |
1039 | } |
1040 | |
1041 | if ((mclk_edc_wr_enable_threshold != 0) && |
1042 | (memory_clock > mclk_edc_wr_enable_threshold)) { |
1043 | memory_level->EdcWriteEnable = 1; |
1044 | } |
1045 | |
1046 | if (memory_level->StrobeEnable) { |
1047 | if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= |
1048 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa99)) >> 16) & 0xf)) { |
1049 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
1050 | } else { |
1051 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa96)) >> 1) & 0x1) ? 1 : 0; |
1052 | } |
1053 | |
1054 | } else { |
1055 | dll_state_on = data->dll_default_on; |
1056 | } |
1057 | } else { |
1058 | memory_level->StrobeRatio = |
1059 | tonga_get_ddr3_mclk_frequency_ratio(memory_clock); |
1060 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
1061 | } |
1062 | |
1063 | result = tonga_calculate_mclk_params(hwmgr, |
1064 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
1065 | |
1066 | if (!result) { |
1067 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd)((memory_level->MinMvdd) = (__uint32_t)(__builtin_constant_p (memory_level->MinMvdd) ? (__uint32_t)(((__uint32_t)(memory_level ->MinMvdd) & 0xff) << 24 | ((__uint32_t)(memory_level ->MinMvdd) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MinMvdd) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinMvdd) & 0xff000000) >> 24) : __swap32md(memory_level ->MinMvdd))); |
1068 | /* MCLK frequency in units of 10KHz*/ |
1069 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency)((memory_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (memory_level->MclkFrequency) ? (__uint32_t)(((__uint32_t) (memory_level->MclkFrequency) & 0xff) << 24 | (( __uint32_t)(memory_level->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(memory_level->MclkFrequency ))); |
1070 | /* Indicates maximum activity level for this performance level.*/ |
1071 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel)((memory_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (memory_level->ActivityLevel) ? (__uint16_t)(((__uint16_t) (memory_level->ActivityLevel) & 0xffU) << 8 | (( __uint16_t)(memory_level->ActivityLevel) & 0xff00U) >> 8) : __swap16md(memory_level->ActivityLevel))); |
1072 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl)((memory_level->MpllFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl) ? (__uint32_t)(((__uint32_t)( memory_level->MpllFuncCntl) & 0xff) << 24 | ((__uint32_t )(memory_level->MpllFuncCntl) & 0xff00) << 8 | ( (__uint32_t)(memory_level->MpllFuncCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl) & 0xff000000 ) >> 24) : __swap32md(memory_level->MpllFuncCntl))); |
1073 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1)((memory_level->MpllFuncCntl_1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_1) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_1) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_1))); |
1074 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2)((memory_level->MpllFuncCntl_2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_2) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_2) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_2))); |
1075 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl)((memory_level->MpllAdFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllAdFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllAdFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllAdFuncCntl))); |
1076 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl)((memory_level->MpllDqFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllDqFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllDqFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllDqFuncCntl))); |
1077 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl)((memory_level->MclkPwrmgtCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MclkPwrmgtCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MclkPwrmgtCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MclkPwrmgtCntl))); |
1078 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl)((memory_level->DllCntl) = (__uint32_t)(__builtin_constant_p (memory_level->DllCntl) ? (__uint32_t)(((__uint32_t)(memory_level ->DllCntl) & 0xff) << 24 | ((__uint32_t)(memory_level ->DllCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff000000) >> 24) : __swap32md(memory_level ->DllCntl))); |
1079 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1)((memory_level->MpllSs1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs1) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs1) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs1))); |
1080 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2)((memory_level->MpllSs2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs2) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs2) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs2))); |
1081 | } |
1082 | |
1083 | return result; |
1084 | } |
1085 | |
1086 | static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1087 | { |
1088 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1089 | struct tonga_smumgr *smu_data = |
1090 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1091 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
1092 | int result; |
1093 | |
1094 | /* populate MCLK dpm table to SMU7 */ |
1095 | uint32_t level_array_address = |
1096 | smu_data->smu7_data.dpm_table_start + |
1097 | offsetof(SMU72_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, MemoryLevel); |
1098 | uint32_t level_array_size = |
1099 | sizeof(SMU72_Discrete_MemoryLevel) * |
1100 | SMU72_MAX_LEVELS_MEMORY4; |
1101 | SMU72_Discrete_MemoryLevel *levels = |
1102 | smu_data->smc_state_table.MemoryLevel; |
1103 | uint32_t i; |
1104 | |
1105 | memset(levels, 0x00, level_array_size)__builtin_memset((levels), (0x00), (level_array_size)); |
1106 | |
1107 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1108 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
1109 | "can not populate memory level as memory clock is zero",do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
1110 | return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); |
1111 | result = tonga_populate_single_memory_level( |
1112 | hwmgr, |
1113 | dpm_table->mclk_table.dpm_levels[i].value, |
1114 | &(smu_data->smc_state_table.MemoryLevel[i])); |
1115 | if (result) |
1116 | return result; |
1117 | } |
1118 | |
1119 | /* Only enable level 0 for now.*/ |
1120 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
1121 | |
1122 | /* |
1123 | * in order to prevent MC activity from stutter mode to push DPM up. |
1124 | * the UVD change complements this by putting the MCLK in a higher state |
1125 | * by default such that we are not effected by up threshold or and MCLK DPM latency. |
1126 | */ |
1127 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
1128 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel)((smu_data->smc_state_table.MemoryLevel[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p(smu_data->smc_state_table .MemoryLevel[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel) & 0xffU ) << 8 | ((__uint16_t)(smu_data->smc_state_table.MemoryLevel [0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel))); |
1129 | |
1130 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
1131 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1132 | /* set highest level watermark to high*/ |
1133 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH1; |
1134 | |
1135 | /* level count will send to smc once at init smc table and never change*/ |
1136 | result = smu7_copy_bytes_to_smc(hwmgr, |
1137 | level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, |
1138 | SMC_RAM_END0x40000); |
1139 | |
1140 | return result; |
1141 | } |
1142 | |
1143 | static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
1144 | uint32_t mclk, SMIO_Pattern *smio_pattern) |
1145 | { |
1146 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1147 | struct phm_ppt_v1_information *table_info = |
1148 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1149 | uint32_t i = 0; |
1150 | |
1151 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { |
1152 | /* find mvdd value which clock is more than request */ |
1153 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
1154 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
1155 | /* Always round to higher voltage. */ |
1156 | smio_pattern->Voltage = |
1157 | data->mvdd_voltage_table.entries[i].value; |
1158 | break; |
1159 | } |
1160 | } |
1161 | |
1162 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
1163 | "MVDD Voltage is outside the supported range.",do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
1164 | return -EINVAL)do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); |
1165 | } else { |
1166 | return -EINVAL22; |
1167 | } |
1168 | |
1169 | return 0; |
1170 | } |
1171 | |
1172 | |
1173 | static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1174 | SMU72_Discrete_DpmTable *table) |
1175 | { |
1176 | int result = 0; |
1177 | struct tonga_smumgr *smu_data = |
1178 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1179 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1180 | struct pp_atomctrl_clock_dividers_vi dividers; |
1181 | |
1182 | SMIO_Pattern voltage_level; |
1183 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
1184 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
1185 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
1186 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
1187 | |
1188 | /* The ACPI state should not do DPM on DC (or ever).*/ |
1189 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; |
1190 | |
1191 | table->ACPILevel.MinVoltage = |
1192 | smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; |
1193 | |
1194 | /* assign zero for now*/ |
1195 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
1196 | |
1197 | /* get the engine clock dividers for this clock value*/ |
1198 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
1199 | table->ACPILevel.SclkFrequency, ÷rs); |
1200 | |
1201 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
1202 | "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
1203 | return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
1204 | |
1205 | /* divider ID for required SCLK*/ |
1206 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
1207 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
1208 | table->ACPILevel.DeepSleepDivId = 0; |
1209 | |
1210 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))) |
1211 | SPLL_PWRON, 0)(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))); |
1212 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))) |
1213 | SPLL_RESET, 1)(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))); |
1214 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))) |
1215 | SCLK_MUX_SEL, 4)(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))); |
1216 | |
1217 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
1218 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
1219 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
1220 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
1221 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
1222 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
1223 | table->ACPILevel.CcPwrDynRm = 0; |
1224 | table->ACPILevel.CcPwrDynRm1 = 0; |
1225 | |
1226 | |
1227 | /* For various features to be enabled/disabled while this level is active.*/ |
1228 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); |
1229 | /* SCLK frequency in units of 10KHz*/ |
1230 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency)((table->ACPILevel.SclkFrequency) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SclkFrequency) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkFrequency) & 0xff000000) >> 24) : __swap32md(table ->ACPILevel.SclkFrequency))); |
1231 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl)((table->ACPILevel.CgSpllFuncCntl) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl) & 0xff000000) >> 24) : __swap32md( table->ACPILevel.CgSpllFuncCntl))); |
1232 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2)((table->ACPILevel.CgSpllFuncCntl2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl2))); |
1233 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3)((table->ACPILevel.CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl3))); |
1234 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4)((table->ACPILevel.CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl4))); |
1235 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum)((table->ACPILevel.SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum))); |
1236 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2)((table->ACPILevel.SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum2))); |
1237 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); |
1238 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); |
1239 | |
1240 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
1241 | table->MemoryACPILevel.MinVoltage = |
1242 | smu_data->smc_state_table.MemoryLevel[0].MinVoltage; |
1243 | |
1244 | /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ |
1245 | |
1246 | if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
1247 | table->MemoryACPILevel.MinMvdd = |
1248 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(voltage_level.Voltage * 4) ? (__uint32_t)(((__uint32_t)(voltage_level.Voltage * 4) & 0xff ) << 24 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff00) << 8 | ((__uint32_t)(voltage_level.Voltage * 4 ) & 0xff0000) >> 8 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff000000) >> 24) : __swap32md(voltage_level .Voltage * 4)); |
1249 | else |
1250 | table->MemoryACPILevel.MinMvdd = 0; |
1251 | |
1252 | /* Force reset on DLL*/ |
1253 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))) |
1254 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))); |
1255 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))) |
1256 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))); |
1257 | |
1258 | /* Disable DLL in ACPIState*/ |
1259 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))) |
1260 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))); |
1261 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))) |
1262 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))); |
1263 | |
1264 | /* Enable DLL bypass signal*/ |
1265 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))) |
1266 | DLL_CNTL, MRDCK0_BYPASS, 0)(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))); |
1267 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))) |
1268 | DLL_CNTL, MRDCK1_BYPASS, 0)(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))); |
1269 | |
1270 | table->MemoryACPILevel.DllCntl = |
1271 | PP_HOST_TO_SMC_UL(dll_cntl)(__uint32_t)(__builtin_constant_p(dll_cntl) ? (__uint32_t)((( __uint32_t)(dll_cntl) & 0xff) << 24 | ((__uint32_t) (dll_cntl) & 0xff00) << 8 | ((__uint32_t)(dll_cntl) & 0xff0000) >> 8 | ((__uint32_t)(dll_cntl) & 0xff000000 ) >> 24) : __swap32md(dll_cntl)); |
1272 | table->MemoryACPILevel.MclkPwrmgtCntl = |
1273 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl)(__uint32_t)(__builtin_constant_p(mclk_pwrmgt_cntl) ? (__uint32_t )(((__uint32_t)(mclk_pwrmgt_cntl) & 0xff) << 24 | ( (__uint32_t)(mclk_pwrmgt_cntl) & 0xff00) << 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff0000) >> 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff000000) >> 24) : __swap32md (mclk_pwrmgt_cntl)); |
1274 | table->MemoryACPILevel.MpllAdFuncCntl = |
1275 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_AD_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_AD_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_AD_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_AD_FUNC_CNTL)); |
1276 | table->MemoryACPILevel.MpllDqFuncCntl = |
1277 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_DQ_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_DQ_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_DQ_FUNC_CNTL)); |
1278 | table->MemoryACPILevel.MpllFuncCntl = |
1279 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t)(data ->clock_registers.vMPLL_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL)); |
1280 | table->MemoryACPILevel.MpllFuncCntl_1 = |
1281 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_1) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_1) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_1)); |
1282 | table->MemoryACPILevel.MpllFuncCntl_2 = |
1283 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_2) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_2) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_2)); |
1284 | table->MemoryACPILevel.MpllSs1 = |
1285 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS1) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS1) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS1) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS1)); |
1286 | table->MemoryACPILevel.MpllSs2 = |
1287 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS2) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS2) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS2) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS2)); |
1288 | |
1289 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1290 | table->MemoryACPILevel.EnabledForActivity = 0; |
1291 | table->MemoryACPILevel.UpHyst = 0; |
1292 | table->MemoryACPILevel.DownHyst = 100; |
1293 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1294 | /* Indicates maximum activity level for this performance level.*/ |
1295 | table->MemoryACPILevel.ActivityLevel = |
1296 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); |
1297 | |
1298 | table->MemoryACPILevel.StutterEnable = 0; |
1299 | table->MemoryACPILevel.StrobeEnable = 0; |
1300 | table->MemoryACPILevel.EdcReadEnable = 0; |
1301 | table->MemoryACPILevel.EdcWriteEnable = 0; |
1302 | table->MemoryACPILevel.RttEnable = 0; |
1303 | |
1304 | return result; |
1305 | } |
1306 | |
1307 | static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1308 | SMU72_Discrete_DpmTable *table) |
1309 | { |
1310 | int result = 0; |
1311 | |
1312 | uint8_t count; |
1313 | pp_atomctrl_clock_dividers_vi dividers; |
1314 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1315 | struct phm_ppt_v1_information *pptable_info = |
1316 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1317 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1318 | pptable_info->mm_dep_table; |
1319 | |
1320 | table->UvdLevelCount = (uint8_t) (mm_table->count); |
1321 | table->UvdBootLevel = 0; |
1322 | |
1323 | for (count = 0; count < table->UvdLevelCount; count++) { |
1324 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
1325 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
1326 | table->UvdLevel[count].MinVoltage.Vddc = |
1327 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1328 | mm_table->entries[count].vddc); |
1329 | table->UvdLevel[count].MinVoltage.VddGfx = |
1330 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID20x2) ? |
1331 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1332 | mm_table->entries[count].vddgfx) : 0; |
1333 | table->UvdLevel[count].MinVoltage.Vddci = |
1334 | phm_get_voltage_id(&data->vddci_voltage_table, |
1335 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
1336 | table->UvdLevel[count].MinVoltage.Phases = 1; |
1337 | |
1338 | /* retrieve divider value for VBIOS */ |
1339 | result = atomctrl_get_dfs_pll_dividers_vi( |
1340 | hwmgr, |
1341 | table->UvdLevel[count].VclkFrequency, |
1342 | ÷rs); |
1343 | |
1344 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Vclk clock" ); return result; } } while (0) |
1345 | "can not find divide id for Vclk clock",do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Vclk clock" ); return result; } } while (0) |
1346 | return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Vclk clock" ); return result; } } while (0); |
1347 | |
1348 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
1349 | |
1350 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1351 | table->UvdLevel[count].DclkFrequency, ÷rs); |
1352 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Dclk clock" ); return result; } } while (0) |
1353 | "can not find divide id for Dclk clock",do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Dclk clock" ); return result; } } while (0) |
1354 | return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for Dclk clock" ); return result; } } while (0); |
1355 | |
1356 | table->UvdLevel[count].DclkDivider = |
1357 | (uint8_t)dividers.pll_post_divider; |
1358 | |
1359 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].VclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].VclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].VclkFrequency))); |
1360 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].DclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].DclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].DclkFrequency))); |
1361 | } |
1362 | |
1363 | return result; |
1364 | |
1365 | } |
1366 | |
1367 | static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1368 | SMU72_Discrete_DpmTable *table) |
1369 | { |
1370 | int result = 0; |
1371 | |
1372 | uint8_t count; |
1373 | pp_atomctrl_clock_dividers_vi dividers; |
1374 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1375 | struct phm_ppt_v1_information *pptable_info = |
1376 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1377 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1378 | pptable_info->mm_dep_table; |
1379 | |
1380 | table->VceLevelCount = (uint8_t) (mm_table->count); |
1381 | table->VceBootLevel = 0; |
1382 | |
1383 | for (count = 0; count < table->VceLevelCount; count++) { |
1384 | table->VceLevel[count].Frequency = |
1385 | mm_table->entries[count].eclk; |
1386 | table->VceLevel[count].MinVoltage.Vddc = |
1387 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1388 | mm_table->entries[count].vddc); |
1389 | table->VceLevel[count].MinVoltage.VddGfx = |
1390 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID20x2) ? |
1391 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1392 | mm_table->entries[count].vddgfx) : 0; |
1393 | table->VceLevel[count].MinVoltage.Vddci = |
1394 | phm_get_voltage_id(&data->vddci_voltage_table, |
1395 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
1396 | table->VceLevel[count].MinVoltage.Phases = 1; |
1397 | |
1398 | /* retrieve divider value for VBIOS */ |
1399 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1400 | table->VceLevel[count].Frequency, ÷rs); |
1401 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for VCE engine clock" ); return result; } } while (0) |
1402 | "can not find divide id for VCE engine clock",do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for VCE engine clock" ); return result; } } while (0) |
1403 | return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for VCE engine clock" ); return result; } } while (0); |
1404 | |
1405 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1406 | |
1407 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].Frequency))); |
1408 | } |
1409 | |
1410 | return result; |
1411 | } |
1412 | |
1413 | static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
1414 | SMU72_Discrete_DpmTable *table) |
1415 | { |
1416 | int result = 0; |
1417 | uint8_t count; |
1418 | pp_atomctrl_clock_dividers_vi dividers; |
1419 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1420 | struct phm_ppt_v1_information *pptable_info = |
1421 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1422 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1423 | pptable_info->mm_dep_table; |
1424 | |
1425 | table->AcpLevelCount = (uint8_t) (mm_table->count); |
1426 | table->AcpBootLevel = 0; |
1427 | |
1428 | for (count = 0; count < table->AcpLevelCount; count++) { |
1429 | table->AcpLevel[count].Frequency = |
1430 | pptable_info->mm_dep_table->entries[count].aclk; |
1431 | table->AcpLevel[count].MinVoltage.Vddc = |
1432 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1433 | mm_table->entries[count].vddc); |
1434 | table->AcpLevel[count].MinVoltage.VddGfx = |
1435 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID20x2) ? |
1436 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1437 | mm_table->entries[count].vddgfx) : 0; |
1438 | table->AcpLevel[count].MinVoltage.Vddci = |
1439 | phm_get_voltage_id(&data->vddci_voltage_table, |
1440 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
1441 | table->AcpLevel[count].MinVoltage.Phases = 1; |
1442 | |
1443 | /* retrieve divider value for VBIOS */ |
1444 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1445 | table->AcpLevel[count].Frequency, ÷rs); |
1446 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for engine clock" ); return result; } } while (0) |
1447 | "can not find divide id for engine clock", return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "can not find divide id for engine clock" ); return result; } } while (0); |
1448 | |
1449 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1450 | |
1451 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency)((table->AcpLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->AcpLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->AcpLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->AcpLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->AcpLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->AcpLevel[count].Frequency))); |
1452 | } |
1453 | |
1454 | return result; |
1455 | } |
1456 | |
1457 | static int tonga_populate_memory_timing_parameters( |
1458 | struct pp_hwmgr *hwmgr, |
1459 | uint32_t engine_clock, |
1460 | uint32_t memory_clock, |
1461 | struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs |
1462 | ) |
1463 | { |
1464 | uint32_t dramTiming; |
1465 | uint32_t dramTiming2; |
1466 | uint32_t burstTime; |
1467 | int result; |
1468 | |
1469 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1470 | engine_clock, memory_clock); |
1471 | |
1472 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) |
1473 | "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0); |
1474 | |
1475 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); |
1476 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); |
1477 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02))) & 0x1f) >> 0x0); |
1478 | |
1479 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming)(__uint32_t)(__builtin_constant_p(dramTiming) ? (__uint32_t)( ((__uint32_t)(dramTiming) & 0xff) << 24 | ((__uint32_t )(dramTiming) & 0xff00) << 8 | ((__uint32_t)(dramTiming ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming) & 0xff000000) >> 24) : __swap32md(dramTiming)); |
1480 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2)(__uint32_t)(__builtin_constant_p(dramTiming2) ? (__uint32_t) (((__uint32_t)(dramTiming2) & 0xff) << 24 | ((__uint32_t )(dramTiming2) & 0xff00) << 8 | ((__uint32_t)(dramTiming2 ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming2) & 0xff000000) >> 24) : __swap32md(dramTiming2)); |
1481 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
1482 | |
1483 | return 0; |
1484 | } |
1485 | |
1486 | static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1487 | { |
1488 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1489 | struct tonga_smumgr *smu_data = |
1490 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1491 | int result = 0; |
1492 | SMU72_Discrete_MCArbDramTimingTable arb_regs; |
1493 | uint32_t i, j; |
1494 | |
1495 | memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable))__builtin_memset((&arb_regs), (0x00), (sizeof(SMU72_Discrete_MCArbDramTimingTable ))); |
1496 | |
1497 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
1498 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
1499 | result = tonga_populate_memory_timing_parameters |
1500 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
1501 | data->dpm_table.mclk_table.dpm_levels[j].value, |
1502 | &arb_regs.entries[i][j]); |
1503 | |
1504 | if (result) |
1505 | break; |
1506 | } |
1507 | } |
1508 | |
1509 | if (!result) { |
1510 | result = smu7_copy_bytes_to_smc( |
1511 | hwmgr, |
1512 | smu_data->smu7_data.arb_table_start, |
1513 | (uint8_t *)&arb_regs, |
1514 | sizeof(SMU72_Discrete_MCArbDramTimingTable), |
1515 | SMC_RAM_END0x40000 |
1516 | ); |
1517 | } |
1518 | |
1519 | return result; |
1520 | } |
1521 | |
1522 | static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1523 | SMU72_Discrete_DpmTable *table) |
1524 | { |
1525 | int result = 0; |
1526 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1527 | struct tonga_smumgr *smu_data = |
1528 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1529 | table->GraphicsBootLevel = 0; |
1530 | table->MemoryBootLevel = 0; |
1531 | |
1532 | /* find boot level from dpm table*/ |
1533 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1534 | data->vbios_boot_state.sclk_bootup_value, |
1535 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
1536 | |
1537 | if (result != 0) { |
1538 | smu_data->smc_state_table.GraphicsBootLevel = 0; |
1539 | pr_err("[powerplay] VBIOS did not find boot engine "printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot engine " "clock value in dependency table. " "Using Graphics DPM level 0 !" ) |
1540 | "clock value in dependency table. "printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot engine " "clock value in dependency table. " "Using Graphics DPM level 0 !" ) |
1541 | "Using Graphics DPM level 0 !")printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot engine " "clock value in dependency table. " "Using Graphics DPM level 0 !" ); |
1542 | result = 0; |
1543 | } |
1544 | |
1545 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1546 | data->vbios_boot_state.mclk_bootup_value, |
1547 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
1548 | |
1549 | if (result != 0) { |
1550 | smu_data->smc_state_table.MemoryBootLevel = 0; |
1551 | pr_err("[powerplay] VBIOS did not find boot "printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot " "engine clock value in dependency table." "Using Memory DPM level 0 !" ) |
1552 | "engine clock value in dependency table."printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot " "engine clock value in dependency table." "Using Memory DPM level 0 !" ) |
1553 | "Using Memory DPM level 0 !")printk("\0013" "amdgpu: " "[powerplay] VBIOS did not find boot " "engine clock value in dependency table." "Using Memory DPM level 0 !" ); |
1554 | result = 0; |
1555 | } |
1556 | |
1557 | table->BootVoltage.Vddc = |
1558 | phm_get_voltage_id(&(data->vddc_voltage_table), |
1559 | data->vbios_boot_state.vddc_bootup_value); |
1560 | table->BootVoltage.VddGfx = |
1561 | phm_get_voltage_id(&(data->vddgfx_voltage_table), |
1562 | data->vbios_boot_state.vddgfx_bootup_value); |
1563 | table->BootVoltage.Vddci = |
1564 | phm_get_voltage_id(&(data->vddci_voltage_table), |
1565 | data->vbios_boot_state.vddci_bootup_value); |
1566 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
1567 | |
1568 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd)((table->BootMVdd) = (__uint16_t)(__builtin_constant_p(table ->BootMVdd) ? (__uint16_t)(((__uint16_t)(table->BootMVdd ) & 0xffU) << 8 | ((__uint16_t)(table->BootMVdd) & 0xff00U) >> 8) : __swap16md(table->BootMVdd)) ); |
1569 | |
1570 | return result; |
1571 | } |
1572 | |
1573 | static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
1574 | { |
1575 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
1576 | volt_with_cks, value; |
1577 | uint16_t clock_freq_u16; |
1578 | struct tonga_smumgr *smu_data = |
1579 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1580 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
1581 | volt_offset = 0; |
1582 | struct phm_ppt_v1_information *table_info = |
1583 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1584 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1585 | table_info->vdd_dep_on_sclk; |
1586 | uint32_t hw_revision, dev_id; |
1587 | struct amdgpu_device *adev = hwmgr->adev; |
1588 | |
1589 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
1590 | |
1591 | hw_revision = adev->pdev->revision; |
1592 | dev_id = adev->pdev->device; |
1593 | |
1594 | /* Read SMU_Eefuse to read and calculate RO and determine |
1595 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
1596 | */ |
1597 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4))) |
1598 | ixSMU_EFUSE_0 + (146 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4))); |
1599 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4))) |
1600 | ixSMU_EFUSE_0 + (148 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4))); |
1601 | efuse &= 0xFF000000; |
1602 | efuse = efuse >> 24; |
1603 | efuse2 &= 0xF; |
1604 | |
1605 | if (efuse2 == 1) |
1606 | ro = (2300 - 1350) * efuse / 255 + 1350; |
1607 | else |
1608 | ro = (2500 - 1000) * efuse / 255 + 1000; |
1609 | |
1610 | if (ro >= 1660) |
1611 | type = 0; |
1612 | else |
1613 | type = 1; |
1614 | |
1615 | /* Populate Stretch amount */ |
1616 | smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; |
1617 | |
1618 | |
1619 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
1620 | for (i = 0; i < sclk_table->count; i++) { |
1621 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
1622 | sclk_table->entries[i].cks_enable << i; |
1623 | if (ASICID_IS_TONGA_P(dev_id, hw_revision)(((dev_id == 0x6930) && ((hw_revision == 0xF0) || (hw_revision == 0xF1) || (hw_revision == 0xFF))) || ((dev_id == 0x6920) && ((hw_revision == 0) || (hw_revision == 1))))) { |
1624 | volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * |
1625 | (sclk_table->entries[i].clk/100) / 10000) * 1000 / |
1626 | (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); |
1627 | volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * |
1628 | (sclk_table->entries[i].clk/100) / 100000) * 1000 / |
1629 | (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); |
1630 | } else { |
1631 | volt_without_cks = (uint32_t)((14041 * |
1632 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
1633 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
1634 | volt_with_cks = (uint32_t)((13946 * |
1635 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
1636 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
1637 | } |
1638 | if (volt_without_cks >= volt_with_cks) |
1639 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
1640 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
1641 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
1642 | } |
1643 | |
1644 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 & ((0x0) << 0x0))))) |
1645 | STRETCH_ENABLE, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 & ((0x0) << 0x0))))); |
1646 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x1) << 0x1))))) |
1647 | masterReset, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x1) << 0x1))))); |
1648 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 & ((0x1) << 0x2))))) |
1649 | staticEnable, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 & ((0x1) << 0x2))))); |
1650 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x0) << 0x1))))) |
1651 | masterReset, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x0) << 0x1))))); |
1652 | |
1653 | /* Populate CKS Lookup Table */ |
1654 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
1655 | stretch_amount2 = 0; |
1656 | else if (stretch_amount == 3 || stretch_amount == 4) |
1657 | stretch_amount2 = 1; |
1658 | else { |
1659 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1660 | PHM_PlatformCaps_ClockStretcher); |
1661 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) |
1662 | "Stretch Amount in PPTable not supported",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) |
1663 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0); |
1664 | } |
1665 | |
1666 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)) |
1667 | ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); |
1668 | value &= 0xFFC2FF87; |
1669 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
1670 | tonga_clock_stretcher_lookup_table[stretch_amount2][0]; |
1671 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
1672 | tonga_clock_stretcher_lookup_table[stretch_amount2][1]; |
1673 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) |
1674 | GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) |
1675 | SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) / 100); |
1676 | if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < |
1677 | clock_freq_u16 && |
1678 | tonga_clock_stretcher_lookup_table[stretch_amount2][1] > |
1679 | clock_freq_u16) { |
1680 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
1681 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
1682 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
1683 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
1684 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
1685 | value |= (tonga_clock_stretch_amount_conversion |
1686 | [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] |
1687 | [stretch_amount]) << 3; |
1688 | } |
1689 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .minFreq))) |
1690 | CKS_LOOKUPTableEntry[0].minFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .minFreq))); |
1691 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .maxFreq))) |
1692 | CKS_LOOKUPTableEntry[0].maxFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .maxFreq))); |
1693 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
1694 | tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
1695 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
1696 | (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
1697 | |
1698 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)) |
1699 | ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); |
1700 | |
1701 | /* Populate DDT Lookup Table */ |
1702 | for (i = 0; i < 4; i++) { |
1703 | /* Assign the minimum and maximum VID stored |
1704 | * in the last row of Clock Stretcher Voltage Table. |
1705 | */ |
1706 | smu_data->smc_state_table.ClockStretcherDataTable. |
1707 | ClockStretcherDataTableEntry[i].minVID = |
1708 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; |
1709 | smu_data->smc_state_table.ClockStretcherDataTable. |
1710 | ClockStretcherDataTableEntry[i].maxVID = |
1711 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; |
1712 | /* Loop through each SCLK and check the frequency |
1713 | * to see if it lies within the frequency for clock stretcher. |
1714 | */ |
1715 | for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { |
1716 | cks_setting = 0; |
1717 | clock_freq = PP_SMC_TO_HOST_UL((__uint32_t)(__builtin_constant_p(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t) (smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency) & 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | ( (__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24 ) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j]. SclkFrequency)) |
1718 | smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t) (smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency) & 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | ( (__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24 ) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j]. SclkFrequency)); |
1719 | /* Check the allowed frequency against the sclk level[j]. |
1720 | * Sclk's endianness has already been converted, |
1721 | * and it's in 10Khz unit, |
1722 | * as opposed to Data table, which is in Mhz unit. |
1723 | */ |
1724 | if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { |
1725 | cks_setting |= 0x2; |
1726 | if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) |
1727 | cks_setting |= 0x1; |
1728 | } |
1729 | smu_data->smc_state_table.ClockStretcherDataTable. |
1730 | ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
1731 | } |
1732 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))) |
1733 | ClockStretcherDataTable.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))) |
1734 | ClockStretcherDataTableEntry[i].setting)((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))); |
1735 | } |
1736 | |
1737 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)) |
1738 | ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); |
1739 | value &= 0xFFFFFFFE; |
1740 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)) |
1741 | ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); |
1742 | |
1743 | return 0; |
1744 | } |
1745 | |
1746 | static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, |
1747 | SMU72_Discrete_DpmTable *table) |
1748 | { |
1749 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1750 | uint16_t config; |
1751 | |
1752 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vdd_gfx_control) { |
1753 | /* Splitted mode */ |
1754 | config = VR_SVI2_PLANE_11; |
1755 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT8); |
1756 | |
1757 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
1758 | config = VR_SVI2_PLANE_22; |
1759 | table->VRConfig |= config; |
1760 | } else { |
1761 | pr_err("VDDC and VDDGFX should "printk("\0013" "amdgpu: " "VDDC and VDDGFX should " "be both on SVI2 control in splitted mode !\n" ) |
1762 | "be both on SVI2 control in splitted mode !\n")printk("\0013" "amdgpu: " "VDDC and VDDGFX should " "be both on SVI2 control in splitted mode !\n" ); |
1763 | } |
1764 | } else { |
1765 | /* Merged mode */ |
1766 | config = VR_MERGED_WITH_VDDC0; |
1767 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT8); |
1768 | |
1769 | /* Set Vddc Voltage Controller */ |
1770 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
1771 | config = VR_SVI2_PLANE_11; |
1772 | table->VRConfig |= config; |
1773 | } else { |
1774 | pr_err("VDDC should be on "printk("\0013" "amdgpu: " "VDDC should be on " "SVI2 control in merged mode !\n" ) |
1775 | "SVI2 control in merged mode !\n")printk("\0013" "amdgpu: " "VDDC should be on " "SVI2 control in merged mode !\n" ); |
1776 | } |
1777 | } |
1778 | |
1779 | /* Set Vddci Voltage Controller */ |
1780 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { |
1781 | config = VR_SVI2_PLANE_22; /* only in merged mode */ |
1782 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT16); |
1783 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
1784 | config = VR_SMIO_PATTERN_13; |
1785 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT16); |
1786 | } |
1787 | |
1788 | /* Set Mvdd Voltage Controller */ |
1789 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
1790 | config = VR_SMIO_PATTERN_24; |
1791 | table->VRConfig |= (config<<VRCONF_MVDD_SHIFT24); |
1792 | } |
1793 | |
1794 | return 0; |
1795 | } |
1796 | |
1797 | static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) |
1798 | { |
1799 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
1800 | uint32_t tmp; |
1801 | int result; |
1802 | |
1803 | /* |
1804 | * This is a read-modify-write on the first byte of the ARB table. |
1805 | * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure |
1806 | * is the field 'current'. |
1807 | * This solution is ugly, but we never write the whole table only |
1808 | * individual fields in it. |
1809 | * In reality this field should not be in that structure |
1810 | * but in a soft register. |
1811 | */ |
1812 | result = smu7_read_smc_sram_dword(hwmgr, |
1813 | smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END0x40000); |
1814 | |
1815 | if (result != 0) |
1816 | return result; |
1817 | |
1818 | tmp &= 0x00FFFFFF; |
1819 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F10x0b) << 24; |
1820 | |
1821 | return smu7_write_smc_sram_dword(hwmgr, |
1822 | smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END0x40000); |
1823 | } |
1824 | |
1825 | |
1826 | static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
1827 | { |
1828 | struct tonga_smumgr *smu_data = |
1829 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1830 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1831 | SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
1832 | struct phm_ppt_v1_information *table_info = |
1833 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1834 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
1835 | int i, j, k; |
1836 | const uint16_t *pdef1, *pdef2; |
1837 | |
1838 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 256))) |
1839 | (uint16_t)(cac_dtp_table->usTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 256))); |
1840 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usConfigurableTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t )(cac_dtp_table->usConfigurableTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table ->usConfigurableTDP * 256))) |
1841 | (uint16_t)(cac_dtp_table->usConfigurableTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usConfigurableTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t )(cac_dtp_table->usConfigurableTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table ->usConfigurableTDP * 256))); |
1842 | |
1843 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range !" ); ; } } while (0) |
1844 | "Target Operating Temp is out of Range !",do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range !" ); ; } } while (0) |
1845 | )do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range !" ); ; } } while (0); |
1846 | |
1847 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); |
1848 | dpm_table->GpuTjHyst = 8; |
1849 | |
1850 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
1851 | |
1852 | dpm_table->BAPM_TEMP_GRADIENT = |
1853 | PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient)(__uint32_t)(__builtin_constant_p(defaults->bapm_temp_gradient ) ? (__uint32_t)(((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff) << 24 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff00) << 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff0000) >> 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff000000) >> 24) : __swap32md(defaults->bapm_temp_gradient )); |
1854 | pdef1 = defaults->bapmti_r; |
1855 | pdef2 = defaults->bapmti_rc; |
1856 | |
1857 | for (i = 0; i < SMU72_DTE_ITERATIONS5; i++) { |
1858 | for (j = 0; j < SMU72_DTE_SOURCES3; j++) { |
1859 | for (k = 0; k < SMU72_DTE_SINKS1; k++) { |
1860 | dpm_table->BAPMTI_R[i][j][k] = |
1861 | PP_HOST_TO_SMC_US(*pdef1)(__uint16_t)(__builtin_constant_p(*pdef1) ? (__uint16_t)(((__uint16_t )(*pdef1) & 0xffU) << 8 | ((__uint16_t)(*pdef1) & 0xff00U) >> 8) : __swap16md(*pdef1)); |
1862 | dpm_table->BAPMTI_RC[i][j][k] = |
1863 | PP_HOST_TO_SMC_US(*pdef2)(__uint16_t)(__builtin_constant_p(*pdef2) ? (__uint16_t)(((__uint16_t )(*pdef2) & 0xffU) << 8 | ((__uint16_t)(*pdef2) & 0xff00U) >> 8) : __swap16md(*pdef2)); |
1864 | pdef1++; |
1865 | pdef2++; |
1866 | } |
1867 | } |
1868 | } |
1869 | |
1870 | return 0; |
1871 | } |
1872 | |
1873 | static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
1874 | { |
1875 | struct tonga_smumgr *smu_data = |
1876 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1877 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1878 | |
1879 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
1880 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; |
1881 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
1882 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
1883 | |
1884 | return 0; |
1885 | } |
1886 | |
1887 | static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
1888 | { |
1889 | uint16_t tdc_limit; |
1890 | struct tonga_smumgr *smu_data = |
1891 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1892 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1893 | struct phm_ppt_v1_information *table_info = |
1894 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1895 | |
1896 | /* TDC number of fraction bits are changed from 8 to 7 |
1897 | * for Fiji as requested by SMC team |
1898 | */ |
1899 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); |
1900 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
1901 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); |
1902 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
1903 | defaults->tdc_vddc_throttle_release_limit_perc; |
1904 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
1905 | |
1906 | return 0; |
1907 | } |
1908 | |
1909 | static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
1910 | { |
1911 | struct tonga_smumgr *smu_data = |
1912 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1913 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1914 | uint32_t temp; |
1915 | |
1916 | if (smu7_read_smc_sram_dword(hwmgr, |
1917 | fuse_table_offset + |
1918 | offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), |
1919 | (uint32_t *)&temp, SMC_RAM_END0x40000)) |
1920 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 " "(SviLoadLineEn) from SMC Failed !"); return -22; } } while ( 0) |
1921 | "Attempt to read PmFuses.DW6 "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 " "(SviLoadLineEn) from SMC Failed !"); return -22; } } while ( 0) |
1922 | "(SviLoadLineEn) from SMC Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 " "(SviLoadLineEn) from SMC Failed !"); return -22; } } while ( 0) |
1923 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 " "(SviLoadLineEn) from SMC Failed !"); return -22; } } while ( 0); |
1924 | else |
1925 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
1926 | |
1927 | return 0; |
1928 | } |
1929 | |
1930 | static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
1931 | { |
1932 | int i; |
1933 | struct tonga_smumgr *smu_data = |
1934 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1935 | |
1936 | /* Currently not used. Set all to zero. */ |
1937 | for (i = 0; i < 16; i++) |
1938 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
1939 | |
1940 | return 0; |
1941 | } |
1942 | |
1943 | static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
1944 | { |
1945 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
1946 | |
1947 | if ((hwmgr->thermal_controller.advanceFanControlParameters. |
1948 | usFanOutputSensitivity & (1 << 15)) || |
1949 | (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) |
1950 | hwmgr->thermal_controller.advanceFanControlParameters. |
1951 | usFanOutputSensitivity = hwmgr->thermal_controller. |
1952 | advanceFanControlParameters.usDefaultFanOutputSensitivity; |
1953 | |
1954 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = |
1955 | PP_HOST_TO_SMC_US(hwmgr->thermal_controller.(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity)) |
1956 | advanceFanControlParameters.usFanOutputSensitivity)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity)); |
1957 | return 0; |
1958 | } |
1959 | |
1960 | static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
1961 | { |
1962 | int i; |
1963 | struct tonga_smumgr *smu_data = |
1964 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1965 | |
1966 | /* Currently not used. Set all to zero. */ |
1967 | for (i = 0; i < 16; i++) |
1968 | smu_data->power_tune_table.GnbLPML[i] = 0; |
1969 | |
1970 | return 0; |
1971 | } |
1972 | |
1973 | static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
1974 | { |
1975 | struct tonga_smumgr *smu_data = |
1976 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1977 | struct phm_ppt_v1_information *table_info = |
1978 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1979 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
1980 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
1981 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
1982 | |
1983 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
1984 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
1985 | |
1986 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
1987 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd)((hi_sidd) = (__uint16_t)(__builtin_constant_p(hi_sidd) ? (__uint16_t )(((__uint16_t)(hi_sidd) & 0xffU) << 8 | ((__uint16_t )(hi_sidd) & 0xff00U) >> 8) : __swap16md(hi_sidd))); |
1988 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
1989 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd)((lo_sidd) = (__uint16_t)(__builtin_constant_p(lo_sidd) ? (__uint16_t )(((__uint16_t)(lo_sidd) & 0xffU) << 8 | ((__uint16_t )(lo_sidd) & 0xff00U) >> 8) : __swap16md(lo_sidd))); |
1990 | |
1991 | return 0; |
1992 | } |
1993 | |
1994 | static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
1995 | { |
1996 | struct tonga_smumgr *smu_data = |
1997 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1998 | uint32_t pm_fuse_table_offset; |
1999 | |
2000 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2001 | PHM_PlatformCaps_PowerContainment)) { |
2002 | if (smu7_read_smc_sram_dword(hwmgr, |
2003 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2004 | offsetof(SMU72_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU72_Firmware_Header, PmFuseTable), |
2005 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) |
2006 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed !" ); return -22; } } while (0) |
2007 | "Attempt to get pm_fuse_table_offset Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed !" ); return -22; } } while (0) |
2008 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed !" ); return -22; } } while (0); |
2009 | |
2010 | /* DW6 */ |
2011 | if (tonga_populate_svi_load_line(hwmgr)) |
2012 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed !" ); return -22; } } while (0) |
2013 | "Attempt to populate SviLoadLine Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed !" ); return -22; } } while (0) |
2014 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed !" ); return -22; } } while (0); |
2015 | /* DW7 */ |
2016 | if (tonga_populate_tdc_limit(hwmgr)) |
2017 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed !" ); return -22; } } while (0) |
2018 | "Attempt to populate TDCLimit Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed !" ); return -22; } } while (0) |
2019 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed !" ); return -22; } } while (0); |
2020 | /* DW8 */ |
2021 | if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) |
2022 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl Failed !" ); return -22; } } while (0) |
2023 | "Attempt to populate TdcWaterfallCtl Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl Failed !" ); return -22; } } while (0) |
2024 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl Failed !" ); return -22; } } while (0); |
2025 | |
2026 | /* DW9-DW12 */ |
2027 | if (tonga_populate_temperature_scaler(hwmgr) != 0) |
2028 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed !" ); return -22; } } while (0) |
2029 | "Attempt to populate LPMLTemperatureScaler Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed !" ); return -22; } } while (0) |
2030 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed !" ); return -22; } } while (0); |
2031 | |
2032 | /* DW13-DW14 */ |
2033 | if (tonga_populate_fuzzy_fan(hwmgr)) |
2034 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan " "Control parameters Failed !"); return -22; } } while (0) |
2035 | "Attempt to populate Fuzzy Fan "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan " "Control parameters Failed !"); return -22; } } while (0) |
2036 | "Control parameters Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan " "Control parameters Failed !"); return -22; } } while (0) |
2037 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan " "Control parameters Failed !"); return -22; } } while (0); |
2038 | |
2039 | /* DW15-DW18 */ |
2040 | if (tonga_populate_gnb_lpml(hwmgr)) |
2041 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed !" ); return -22; } } while (0) |
2042 | "Attempt to populate GnbLPML Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed !" ); return -22; } } while (0) |
2043 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed !" ); return -22; } } while (0); |
2044 | |
2045 | /* DW20 */ |
2046 | if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
2047 | PP_ASSERT_WITH_CODE(do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !"); return -22; } } while (0) |
2048 | false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !"); return -22; } } while (0) |
2049 | "Attempt to populate BapmVddCBaseLeakage "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !"); return -22; } } while (0) |
2050 | "Hi and Lo Sidd Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !"); return -22; } } while (0) |
2051 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage " "Hi and Lo Sidd Failed !"); return -22; } } while (0); |
2052 | |
2053 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
2054 | (uint8_t *)&smu_data->power_tune_table, |
2055 | sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END0x40000)) |
2056 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed !" ); return -22; } } while (0) |
2057 | "Attempt to download PmFuseTable Failed !",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed !" ); return -22; } } while (0) |
2058 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed !" ); return -22; } } while (0); |
2059 | } |
2060 | return 0; |
2061 | } |
2062 | |
2063 | static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
2064 | SMU72_Discrete_MCRegisters *mc_reg_table) |
2065 | { |
2066 | const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend; |
2067 | |
2068 | uint32_t i, j; |
2069 | |
2070 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
2071 | if (smu_data->mc_reg_table.validflag & 1<<j) { |
2072 | PP_ASSERT_WITH_CODE(do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array " "out of boundary"); return -22; } } while (0) |
2073 | i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array " "out of boundary"); return -22; } } while (0) |
2074 | "Index of mc_reg_table->address[] array "do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array " "out of boundary"); return -22; } } while (0) |
2075 | "out of boundary",do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array " "out of boundary"); return -22; } } while (0) |
2076 | return -EINVAL)do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array " "out of boundary"); return -22; } } while (0); |
2077 | mc_reg_table->address[i].s0 = |
2078 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s0) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s0) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s0) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s0)); |
2079 | mc_reg_table->address[i].s1 = |
2080 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s1) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s1) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s1) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s1)); |
2081 | i++; |
2082 | } |
2083 | } |
2084 | |
2085 | mc_reg_table->last = (uint8_t)i; |
2086 | |
2087 | return 0; |
2088 | } |
2089 | |
2090 | /*convert register values from driver to SMC format */ |
2091 | static void tonga_convert_mc_registers( |
2092 | const struct tonga_mc_reg_entry *entry, |
2093 | SMU72_Discrete_MCRegisterSet *data, |
2094 | uint32_t num_entries, uint32_t valid_flag) |
2095 | { |
2096 | uint32_t i, j; |
2097 | |
2098 | for (i = 0, j = 0; j < num_entries; j++) { |
2099 | if (valid_flag & 1<<j) { |
2100 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j])(__uint32_t)(__builtin_constant_p(entry->mc_data[j]) ? (__uint32_t )(((__uint32_t)(entry->mc_data[j]) & 0xff) << 24 | ((__uint32_t)(entry->mc_data[j]) & 0xff00) << 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff0000) >> 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff000000) >> 24) : __swap32md(entry->mc_data[j])); |
2101 | i++; |
2102 | } |
2103 | } |
2104 | } |
2105 | |
2106 | static int tonga_convert_mc_reg_table_entry_to_smc( |
2107 | struct pp_hwmgr *hwmgr, |
2108 | const uint32_t memory_clock, |
2109 | SMU72_Discrete_MCRegisterSet *mc_reg_table_data |
2110 | ) |
2111 | { |
2112 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2113 | uint32_t i = 0; |
2114 | |
2115 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
2116 | if (memory_clock <= |
2117 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
2118 | break; |
2119 | } |
2120 | } |
2121 | |
2122 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
2123 | --i; |
2124 | |
2125 | tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
2126 | mc_reg_table_data, smu_data->mc_reg_table.last, |
2127 | smu_data->mc_reg_table.validflag); |
2128 | |
2129 | return 0; |
2130 | } |
2131 | |
2132 | static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
2133 | SMU72_Discrete_MCRegisters *mc_regs) |
2134 | { |
2135 | int result = 0; |
2136 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2137 | int res; |
2138 | uint32_t i; |
2139 | |
2140 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
2141 | res = tonga_convert_mc_reg_table_entry_to_smc( |
2142 | hwmgr, |
2143 | data->dpm_table.mclk_table.dpm_levels[i].value, |
2144 | &mc_regs->data[i] |
2145 | ); |
2146 | |
2147 | if (0 != res) |
2148 | result = res; |
2149 | } |
2150 | |
2151 | return result; |
2152 | } |
2153 | |
2154 | static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
2155 | { |
2156 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2157 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2158 | uint32_t address; |
2159 | int32_t result; |
2160 | |
2161 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
2162 | return 0; |
2163 | |
2164 | |
2165 | memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0), (sizeof(SMU72_Discrete_MCRegisters ))); |
2166 | |
2167 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
2168 | |
2169 | if (result != 0) |
2170 | return result; |
2171 | |
2172 | |
2173 | address = smu_data->smu7_data.mc_reg_table_start + |
2174 | (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0])__builtin_offsetof(SMU72_Discrete_MCRegisters, data[0]); |
2175 | |
2176 | return smu7_copy_bytes_to_smc( |
2177 | hwmgr, address, |
2178 | (uint8_t *)&smu_data->mc_regs.data[0], |
2179 | sizeof(SMU72_Discrete_MCRegisterSet) * |
2180 | data->dpm_table.mclk_table.count, |
2181 | SMC_RAM_END0x40000); |
2182 | } |
2183 | |
2184 | static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
2185 | { |
2186 | int result; |
2187 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2188 | |
2189 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0x00), (sizeof (SMU72_Discrete_MCRegisters))); |
2190 | result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
2191 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for the MC register addresses !" ); return result;; } } while (0) |
2192 | "Failed to initialize MCRegTable for the MC register addresses !",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for the MC register addresses !" ); return result;; } } while (0) |
2193 | return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for the MC register addresses !" ); return result;; } } while (0); |
2194 | |
2195 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
2196 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for driver state !" ); return result;; } } while (0) |
2197 | "Failed to initialize MCRegTable for driver state !",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for driver state !" ); return result;; } } while (0) |
2198 | return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for driver state !" ); return result;; } } while (0); |
2199 | |
2200 | return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, |
2201 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END0x40000); |
2202 | } |
2203 | |
2204 | static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
2205 | { |
2206 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2207 | struct phm_ppt_v1_information *table_info = |
2208 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2209 | |
2210 | if (table_info && |
2211 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX1 && |
2212 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
2213 | smu_data->power_tune_defaults = |
2214 | &tonga_power_tune_data_set_array |
2215 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
2216 | else |
2217 | smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; |
2218 | } |
2219 | |
2220 | static int tonga_init_smc_table(struct pp_hwmgr *hwmgr) |
2221 | { |
2222 | int result; |
2223 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2224 | struct tonga_smumgr *smu_data = |
2225 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2226 | SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
2227 | struct phm_ppt_v1_information *table_info = |
2228 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2229 | |
2230 | uint8_t i; |
2231 | pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
2232 | |
2233 | |
2234 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table))__builtin_memset((&(smu_data->smc_state_table)), (0x00 ), (sizeof(smu_data->smc_state_table))); |
2235 | |
2236 | tonga_initialize_power_tune_defaults(hwmgr); |
2237 | |
2238 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->voltage_control) |
2239 | tonga_populate_smc_voltage_tables(hwmgr, table); |
2240 | |
2241 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2242 | PHM_PlatformCaps_AutomaticDCTransition)) |
2243 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; |
2244 | |
2245 | |
2246 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2247 | PHM_PlatformCaps_StepVddc)) |
2248 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; |
2249 | |
2250 | if (data->is_memory_gddr5) |
2251 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; |
2252 | |
2253 | i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x96e))) & 0x1e) >> 0x1); |
2254 | |
2255 | if (i == 1 || i == 0) |
2256 | table->SystemFlags |= 0x40; |
2257 | |
2258 | if (data->ulv_supported && table_info->us_ulv_voltage_offset) { |
2259 | result = tonga_populate_ulv_state(hwmgr, table); |
2260 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state !" ); return result;; } } while (0) |
2261 | "Failed to initialize ULV state !",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state !" ); return result;; } } while (0) |
2262 | return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state !" ); return result;; } } while (0); |
2263 | |
2264 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)) |
2265 | ixCG_ULV_PARAMETER, 0x40035)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)); |
2266 | } |
2267 | |
2268 | result = tonga_populate_smc_link_level(hwmgr, table); |
2269 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level !" ); return result; } } while (0) |
2270 | "Failed to initialize Link Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level !" ); return result; } } while (0); |
2271 | |
2272 | result = tonga_populate_all_graphic_levels(hwmgr); |
2273 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level !" ); return result; } } while (0) |
2274 | "Failed to initialize Graphics Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level !" ); return result; } } while (0); |
2275 | |
2276 | result = tonga_populate_all_memory_levels(hwmgr); |
2277 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level !" ); return result; } } while (0) |
2278 | "Failed to initialize Memory Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level !" ); return result; } } while (0); |
2279 | |
2280 | result = tonga_populate_smc_acpi_level(hwmgr, table); |
2281 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level !" ); return result; } } while (0) |
2282 | "Failed to initialize ACPI Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level !" ); return result; } } while (0); |
2283 | |
2284 | result = tonga_populate_smc_vce_level(hwmgr, table); |
2285 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level !" ); return result; } } while (0) |
2286 | "Failed to initialize VCE Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level !" ); return result; } } while (0); |
2287 | |
2288 | result = tonga_populate_smc_acp_level(hwmgr, table); |
2289 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level !" ); return result; } } while (0) |
2290 | "Failed to initialize ACP Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level !" ); return result; } } while (0); |
2291 | |
2292 | /* Since only the initial state is completely set up at this |
2293 | * point (the other states are just copies of the boot state) we only |
2294 | * need to populate the ARB settings for the initial state. |
2295 | */ |
2296 | result = tonga_program_memory_timing_parameters(hwmgr); |
2297 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result;; } } while (0) |
2298 | "Failed to Write ARB settings for the initial state.",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result;; } } while (0) |
2299 | return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result;; } } while (0); |
2300 | |
2301 | result = tonga_populate_smc_uvd_level(hwmgr, table); |
2302 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level !" ); return result; } } while (0) |
2303 | "Failed to initialize UVD Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level !" ); return result; } } while (0); |
2304 | |
2305 | result = tonga_populate_smc_boot_level(hwmgr, table); |
2306 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level !" ); return result; } } while (0) |
2307 | "Failed to initialize Boot Level !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level !" ); return result; } } while (0); |
2308 | |
2309 | tonga_populate_bapm_parameters_in_dpm_table(hwmgr); |
2310 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters !" ); return result; } } while (0) |
2311 | "Failed to populate BAPM Parameters !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters !" ); return result; } } while (0); |
2312 | |
2313 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2314 | PHM_PlatformCaps_ClockStretcher)) { |
2315 | result = tonga_populate_clock_stretcher_data_table(hwmgr); |
2316 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table !" ); return result;; } } while (0) |
2317 | "Failed to populate Clock Stretcher Data Table !",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table !" ); return result;; } } while (0) |
2318 | return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table !" ); return result;; } } while (0); |
2319 | } |
2320 | table->GraphicsVoltageChangeEnable = 1; |
2321 | table->GraphicsThermThrottleEnable = 1; |
2322 | table->GraphicsInterval = 1; |
2323 | table->VoltageInterval = 1; |
2324 | table->ThermalInterval = 1; |
2325 | table->TemperatureLimitHigh = |
2326 | table_info->cac_dtp_table->usTargetOperatingTemp * |
2327 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
2328 | table->TemperatureLimitLow = |
2329 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
2330 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
2331 | table->MemoryVoltageChangeEnable = 1; |
2332 | table->MemoryInterval = 1; |
2333 | table->VoltageResponseTime = 0; |
2334 | table->PhaseResponseTime = 0; |
2335 | table->MemoryThermThrottleEnable = 1; |
2336 | |
2337 | /* |
2338 | * Cail reads current link status and reports it as cap (we cannot |
2339 | * change this due to some previous issues we had) |
2340 | * SMC drops the link status to lowest level after enabling |
2341 | * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again |
2342 | * but this time Cail reads current link status which was set to low by |
2343 | * SMC and reports it as cap to powerplay |
2344 | * To avoid it, we set PCIeBootLinkLevel to highest dpm level |
2345 | */ |
2346 | PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
2347 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
2348 | return -EINVAL)do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
2349 | |
2350 | table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); |
2351 | |
2352 | table->PCIeGenInterval = 1; |
2353 | |
2354 | result = tonga_populate_vr_config(hwmgr, table); |
2355 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting !" ); return result; } } while (0) |
2356 | "Failed to populate VRConfig setting !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting !" ); return result; } } while (0); |
2357 | data->vr_config = table->VRConfig; |
2358 | table->ThermGpio = 17; |
2359 | table->SclkStepSize = 0x4000; |
2360 | |
2361 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID61, |
2362 | &gpio_pin_assignment)) { |
2363 | table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2364 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2365 | PHM_PlatformCaps_RegulatorHot); |
2366 | } else { |
2367 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
2368 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2369 | PHM_PlatformCaps_RegulatorHot); |
2370 | } |
2371 | |
2372 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID60, |
2373 | &gpio_pin_assignment)) { |
2374 | table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2375 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2376 | PHM_PlatformCaps_AutomaticDCTransition); |
2377 | } else { |
2378 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
2379 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2380 | PHM_PlatformCaps_AutomaticDCTransition); |
2381 | } |
2382 | |
2383 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2384 | PHM_PlatformCaps_Falcon_QuickTransition); |
2385 | |
2386 | if (0) { |
2387 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2388 | PHM_PlatformCaps_AutomaticDCTransition); |
2389 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2390 | PHM_PlatformCaps_Falcon_QuickTransition); |
2391 | } |
2392 | |
2393 | if (atomctrl_get_pp_assign_pin(hwmgr, |
2394 | THERMAL_INT_OUTPUT_GPIO_PINID65, &gpio_pin_assignment)) { |
2395 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2396 | PHM_PlatformCaps_ThermalOutGPIO); |
2397 | |
2398 | table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2399 | |
2400 | table->ThermOutPolarity = |
2401 | (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x183)) & |
2402 | (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; |
2403 | |
2404 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY0x1; |
2405 | |
2406 | /* if required, combine VRHot/PCC with thermal out GPIO*/ |
2407 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2408 | PHM_PlatformCaps_RegulatorHot) && |
2409 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2410 | PHM_PlatformCaps_CombinePCCWithThermalSignal)){ |
2411 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT0x2; |
2412 | } |
2413 | } else { |
2414 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2415 | PHM_PlatformCaps_ThermalOutGPIO); |
2416 | |
2417 | table->ThermOutGpio = 17; |
2418 | table->ThermOutPolarity = 1; |
2419 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE0x0; |
2420 | } |
2421 | |
2422 | for (i = 0; i < SMU72_MAX_ENTRIES_SMIO32; i++) |
2423 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i])(__uint32_t)(__builtin_constant_p(table->Smio[i]) ? (__uint32_t )(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | ( (__uint32_t)(table->Smio[i]) & 0xff00) << 8 | (( __uint32_t)(table->Smio[i]) & 0xff0000) >> 8 | ( (__uint32_t)(table->Smio[i]) & 0xff000000) >> 24 ) : __swap32md(table->Smio[i])); |
2424 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); |
2425 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table ->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig ) & 0xff) << 24 | ((__uint32_t)(table->VRConfig) & 0xff00) << 8 | ((__uint32_t)(table->VRConfig) & 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig ) & 0xff000000) >> 24) : __swap32md(table->VRConfig ))); |
2426 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1)((table->SmioMask1) = (__uint32_t)(__builtin_constant_p(table ->SmioMask1) ? (__uint32_t)(((__uint32_t)(table->SmioMask1 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask1 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask1 ))); |
2427 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2)((table->SmioMask2) = (__uint32_t)(__builtin_constant_p(table ->SmioMask2) ? (__uint32_t)(((__uint32_t)(table->SmioMask2 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask2 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask2 ))); |
2428 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); |
2429 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); |
2430 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); |
2431 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); |
2432 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); |
2433 | |
2434 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2435 | result = smu7_copy_bytes_to_smc( |
2436 | hwmgr, |
2437 | smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU72_Discrete_DpmTable, SystemFlags), |
2438 | (uint8_t *)&(table->SystemFlags), |
2439 | sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), |
2440 | SMC_RAM_END0x40000); |
2441 | |
2442 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory !" ); return result;; } } while (0) |
2443 | "Failed to upload dpm data to SMC memory !", return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory !" ); return result;; } } while (0); |
2444 | |
2445 | result = tonga_init_arb_table_index(hwmgr); |
2446 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory !" ); return result; } } while (0) |
2447 | "Failed to upload arb data to SMC memory !", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory !" ); return result; } } while (0); |
2448 | |
2449 | tonga_populate_pm_fuses(hwmgr); |
2450 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate initialize pm fuses !" ); return result; } } while (0) |
2451 | "Failed to populate initialize pm fuses !", return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate initialize pm fuses !" ); return result; } } while (0); |
2452 | |
2453 | result = tonga_populate_initial_mc_reg_table(hwmgr); |
2454 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate initialize MC Reg table !" ); return result; } } while (0) |
2455 | "Failed to populate initialize MC Reg table !", return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate initialize MC Reg table !" ); return result; } } while (0); |
2456 | |
2457 | return 0; |
2458 | } |
2459 | |
2460 | static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2461 | { |
2462 | struct tonga_smumgr *smu_data = |
2463 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2464 | SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 }; |
2465 | uint32_t duty100; |
2466 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
2467 | uint16_t fdo_min, slope1, slope2; |
2468 | uint32_t reference_clock; |
2469 | int res; |
2470 | uint64_t tmp64; |
2471 | |
2472 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2473 | PHM_PlatformCaps_MicrocodeFanControl)) |
2474 | return 0; |
2475 | |
2476 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
2477 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2478 | PHM_PlatformCaps_MicrocodeFanControl); |
2479 | return 0; |
2480 | } |
2481 | |
2482 | if (0 == smu_data->smu7_data.fan_table_start) { |
2483 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2484 | PHM_PlatformCaps_MicrocodeFanControl); |
2485 | return 0; |
2486 | } |
2487 | |
2488 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0) |
2489 | CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0) |
2490 | CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0); |
2491 | |
2492 | if (0 == duty100) { |
2493 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2494 | PHM_PlatformCaps_MicrocodeFanControl); |
2495 | return 0; |
2496 | } |
2497 | |
2498 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
2499 | do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64 )) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; } ); |
2500 | fdo_min = (uint16_t)tmp64; |
2501 | |
2502 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
2503 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
2504 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
2505 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
2506 | |
2507 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
2508 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
2509 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
2510 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
2511 | |
2512 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
2513 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
2514 | |
2515 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100) ); |
2516 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100) ); |
2517 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100) ); |
2518 | |
2519 | fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t )(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) & 0xff00U) >> 8) : __swap16md(slope1)); |
2520 | fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t )(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) & 0xff00U) >> 8) : __swap16md(slope2)); |
2521 | |
2522 | fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t )(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) & 0xff00U) >> 8) : __swap16md(fdo_min)); |
2523 | |
2524 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller.advanceFanControlParameters .ucTHyst)); |
2525 | |
2526 | fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
2527 | |
2528 | fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
2529 | |
2530 | fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t )(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U ) >> 8) : __swap16md(5)); |
2531 | |
2532 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
2533 | |
2534 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)); |
2535 | |
2536 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t )(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | ( (__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md ((uint16_t)duty100)); |
2537 | |
2538 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14); |
2539 | |
2540 | fan_table.FanControl_GL_Flag = 1; |
2541 | |
2542 | res = smu7_copy_bytes_to_smc(hwmgr, |
2543 | smu_data->smu7_data.fan_table_start, |
2544 | (uint8_t *)&fan_table, |
2545 | (uint32_t)sizeof(fan_table), |
2546 | SMC_RAM_END0x40000); |
2547 | |
2548 | return res; |
2549 | } |
2550 | |
2551 | |
2552 | static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2553 | { |
2554 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2555 | |
2556 | if (data->need_update_smu7_dpm_table & |
2557 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
2558 | return tonga_program_memory_timing_parameters(hwmgr); |
2559 | |
2560 | return 0; |
2561 | } |
2562 | |
2563 | static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2564 | { |
2565 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2566 | struct tonga_smumgr *smu_data = |
2567 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2568 | |
2569 | int result = 0; |
2570 | uint32_t low_sclk_interrupt_threshold = 0; |
2571 | |
2572 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2573 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2574 | && (data->low_sclk_interrupt_threshold != 0)) { |
2575 | low_sclk_interrupt_threshold = |
2576 | data->low_sclk_interrupt_threshold; |
2577 | |
2578 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); |
2579 | |
2580 | result = smu7_copy_bytes_to_smc( |
Value stored to 'result' is never read | |
2581 | hwmgr, |
2582 | smu_data->smu7_data.dpm_table_start + |
2583 | offsetof(SMU72_Discrete_DpmTable,__builtin_offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold ) |
2584 | LowSclkInterruptThreshold)__builtin_offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold ), |
2585 | (uint8_t *)&low_sclk_interrupt_threshold, |
2586 | sizeof(uint32_t), |
2587 | SMC_RAM_END0x40000); |
2588 | } |
2589 | |
2590 | result = tonga_update_and_upload_mc_reg_table(hwmgr); |
2591 | |
2592 | PP_ASSERT_WITH_CODE((!result),do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload MC reg table !" ); return result; } } while (0) |
2593 | "Failed to upload MC reg table !",do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload MC reg table !" ); return result; } } while (0) |
2594 | return result)do { if (!((!result))) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload MC reg table !" ); return result; } } while (0); |
2595 | |
2596 | result = tonga_program_mem_timing_parameters(hwmgr); |
2597 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters !"); ; } } while (0) |
2598 | "Failed to program memory timing parameters !",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters !"); ; } } while (0) |
2599 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters !"); ; } } while (0); |
2600 | |
2601 | return result; |
2602 | } |
2603 | |
2604 | static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) |
2605 | { |
2606 | switch (type) { |
2607 | case SMU_SoftRegisters: |
2608 | switch (member) { |
2609 | case HandshakeDisables: |
2610 | return offsetof(SMU72_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU72_SoftRegisters, HandshakeDisables); |
2611 | case VoltageChangeTimeout: |
2612 | return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); |
2613 | case AverageGraphicsActivity: |
2614 | return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU72_SoftRegisters, AverageGraphicsActivity ); |
2615 | case AverageMemoryActivity: |
2616 | return offsetof(SMU72_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU72_SoftRegisters, AverageMemoryActivity ); |
2617 | case PreVBlankGap: |
2618 | return offsetof(SMU72_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU72_SoftRegisters, PreVBlankGap); |
2619 | case VBlankTimeout: |
2620 | return offsetof(SMU72_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU72_SoftRegisters, VBlankTimeout); |
2621 | case UcodeLoadStatus: |
2622 | return offsetof(SMU72_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU72_SoftRegisters, UcodeLoadStatus); |
2623 | case DRAM_LOG_ADDR_H: |
2624 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H); |
2625 | case DRAM_LOG_ADDR_L: |
2626 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L); |
2627 | case DRAM_LOG_PHY_ADDR_H: |
2628 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2629 | case DRAM_LOG_PHY_ADDR_L: |
2630 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2631 | case DRAM_LOG_BUFF_SIZE: |
2632 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2633 | } |
2634 | break; |
2635 | case SMU_Discrete_DpmTable: |
2636 | switch (member) { |
2637 | case UvdBootLevel: |
2638 | return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
2639 | case VceBootLevel: |
2640 | return offsetof(SMU72_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
2641 | case LowSclkInterruptThreshold: |
2642 | return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold ); |
2643 | } |
2644 | break; |
2645 | } |
2646 | pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n" , type, member); |
2647 | return 0; |
2648 | } |
2649 | |
2650 | static uint32_t tonga_get_mac_definition(uint32_t value) |
2651 | { |
2652 | switch (value) { |
2653 | case SMU_MAX_LEVELS_GRAPHICS: |
2654 | return SMU72_MAX_LEVELS_GRAPHICS8; |
2655 | case SMU_MAX_LEVELS_MEMORY: |
2656 | return SMU72_MAX_LEVELS_MEMORY4; |
2657 | case SMU_MAX_LEVELS_LINK: |
2658 | return SMU72_MAX_LEVELS_LINK8; |
2659 | case SMU_MAX_ENTRIES_SMIO: |
2660 | return SMU72_MAX_ENTRIES_SMIO32; |
2661 | case SMU_MAX_LEVELS_VDDC: |
2662 | return SMU72_MAX_LEVELS_VDDC16; |
2663 | case SMU_MAX_LEVELS_VDDGFX: |
2664 | return SMU72_MAX_LEVELS_VDDGFX16; |
2665 | case SMU_MAX_LEVELS_VDDCI: |
2666 | return SMU72_MAX_LEVELS_VDDCI8; |
2667 | case SMU_MAX_LEVELS_MVDD: |
2668 | return SMU72_MAX_LEVELS_MVDD4; |
2669 | } |
2670 | pr_warn("can't get the mac value %x\n", value)printk("\0014" "amdgpu: " "can't get the mac value %x\n", value ); |
2671 | |
2672 | return 0; |
2673 | } |
2674 | |
2675 | static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
2676 | { |
2677 | struct tonga_smumgr *smu_data = |
2678 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2679 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2680 | struct phm_ppt_v1_information *table_info = |
2681 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2682 | |
2683 | smu_data->smc_state_table.UvdBootLevel = 0; |
2684 | if (table_info->mm_dep_table->count > 0) |
2685 | smu_data->smc_state_table.UvdBootLevel = |
2686 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2687 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
2688 | offsetof(SMU72_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
2689 | mm_boot_level_offset /= 4; |
2690 | mm_boot_level_offset *= 4; |
2691 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
2692 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
2693 | mm_boot_level_value &= 0x00FFFFFF; |
2694 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
2695 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
2696 | CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
2697 | mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
2698 | |
2699 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2700 | PHM_PlatformCaps_UVDDPM) || |
2701 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2702 | PHM_PlatformCaps_StablePState)) |
2703 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2704 | PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D), |
2705 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), |
2706 | NULL((void *)0)); |
2707 | return 0; |
2708 | } |
2709 | |
2710 | static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
2711 | { |
2712 | struct tonga_smumgr *smu_data = |
2713 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2714 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2715 | struct phm_ppt_v1_information *table_info = |
2716 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2717 | |
2718 | |
2719 | smu_data->smc_state_table.VceBootLevel = |
2720 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2721 | |
2722 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
2723 | offsetof(SMU72_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
2724 | mm_boot_level_offset /= 4; |
2725 | mm_boot_level_offset *= 4; |
2726 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
2727 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
2728 | mm_boot_level_value &= 0xFF00FFFF; |
2729 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
2730 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
2731 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
2732 | |
2733 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2734 | PHM_PlatformCaps_StablePState)) |
2735 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2736 | PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E), |
2737 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, |
2738 | NULL((void *)0)); |
2739 | return 0; |
2740 | } |
2741 | |
2742 | static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
2743 | { |
2744 | switch (type) { |
2745 | case SMU_UVD_TABLE: |
2746 | tonga_update_uvd_smc_table(hwmgr); |
2747 | break; |
2748 | case SMU_VCE_TABLE: |
2749 | tonga_update_vce_smc_table(hwmgr); |
2750 | break; |
2751 | default: |
2752 | break; |
2753 | } |
2754 | return 0; |
2755 | } |
2756 | |
2757 | static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) |
2758 | { |
2759 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2760 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2761 | |
2762 | uint32_t tmp; |
2763 | int result; |
2764 | bool_Bool error = false0; |
2765 | |
2766 | result = smu7_read_smc_sram_dword(hwmgr, |
2767 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2768 | offsetof(SMU72_Firmware_Header, DpmTable)__builtin_offsetof(SMU72_Firmware_Header, DpmTable), |
2769 | &tmp, SMC_RAM_END0x40000); |
2770 | |
2771 | if (!result) |
2772 | smu_data->smu7_data.dpm_table_start = tmp; |
2773 | |
2774 | error |= (result != 0); |
2775 | |
2776 | result = smu7_read_smc_sram_dword(hwmgr, |
2777 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2778 | offsetof(SMU72_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU72_Firmware_Header, SoftRegisters), |
2779 | &tmp, SMC_RAM_END0x40000); |
2780 | |
2781 | if (!result) { |
2782 | data->soft_regs_start = tmp; |
2783 | smu_data->smu7_data.soft_regs_start = tmp; |
2784 | } |
2785 | |
2786 | error |= (result != 0); |
2787 | |
2788 | |
2789 | result = smu7_read_smc_sram_dword(hwmgr, |
2790 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2791 | offsetof(SMU72_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU72_Firmware_Header, mcRegisterTable), |
2792 | &tmp, SMC_RAM_END0x40000); |
2793 | |
2794 | if (!result) |
2795 | smu_data->smu7_data.mc_reg_table_start = tmp; |
2796 | |
2797 | result = smu7_read_smc_sram_dword(hwmgr, |
2798 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2799 | offsetof(SMU72_Firmware_Header, FanTable)__builtin_offsetof(SMU72_Firmware_Header, FanTable), |
2800 | &tmp, SMC_RAM_END0x40000); |
2801 | |
2802 | if (!result) |
2803 | smu_data->smu7_data.fan_table_start = tmp; |
2804 | |
2805 | error |= (result != 0); |
2806 | |
2807 | result = smu7_read_smc_sram_dword(hwmgr, |
2808 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2809 | offsetof(SMU72_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU72_Firmware_Header, mcArbDramTimingTable ), |
2810 | &tmp, SMC_RAM_END0x40000); |
2811 | |
2812 | if (!result) |
2813 | smu_data->smu7_data.arb_table_start = tmp; |
2814 | |
2815 | error |= (result != 0); |
2816 | |
2817 | result = smu7_read_smc_sram_dword(hwmgr, |
2818 | SMU72_FIRMWARE_HEADER_LOCATION0x20000 + |
2819 | offsetof(SMU72_Firmware_Header, Version)__builtin_offsetof(SMU72_Firmware_Header, Version), |
2820 | &tmp, SMC_RAM_END0x40000); |
2821 | |
2822 | if (!result) |
2823 | hwmgr->microcode_version_info.SMC = tmp; |
2824 | |
2825 | error |= (result != 0); |
2826 | |
2827 | return error ? 1 : 0; |
2828 | } |
2829 | |
2830 | /*---------------------------MC----------------------------*/ |
2831 | |
2832 | static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
2833 | { |
2834 | return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x5cd)) >> 16)); |
2835 | } |
2836 | |
2837 | static bool_Bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
2838 | { |
2839 | bool_Bool result = true1; |
2840 | |
2841 | switch (in_reg) { |
2842 | case mmMC_SEQ_RAS_TIMING0xa28: |
2843 | *out_reg = mmMC_SEQ_RAS_TIMING_LP0xa9b; |
2844 | break; |
2845 | |
2846 | case mmMC_SEQ_DLL_STBY0xd8e: |
2847 | *out_reg = mmMC_SEQ_DLL_STBY_LP0xd8f; |
2848 | break; |
2849 | |
2850 | case mmMC_SEQ_G5PDX_CMD00xd83: |
2851 | *out_reg = mmMC_SEQ_G5PDX_CMD0_LP0xd84; |
2852 | break; |
2853 | |
2854 | case mmMC_SEQ_G5PDX_CMD10xd85: |
2855 | *out_reg = mmMC_SEQ_G5PDX_CMD1_LP0xd86; |
2856 | break; |
2857 | |
2858 | case mmMC_SEQ_G5PDX_CTRL0xd81: |
2859 | *out_reg = mmMC_SEQ_G5PDX_CTRL_LP0xd82; |
2860 | break; |
2861 | |
2862 | case mmMC_SEQ_CAS_TIMING0xa29: |
2863 | *out_reg = mmMC_SEQ_CAS_TIMING_LP0xa9c; |
2864 | break; |
2865 | |
2866 | case mmMC_SEQ_MISC_TIMING0xa2a: |
2867 | *out_reg = mmMC_SEQ_MISC_TIMING_LP0xa9d; |
2868 | break; |
2869 | |
2870 | case mmMC_SEQ_MISC_TIMING20xa2b: |
2871 | *out_reg = mmMC_SEQ_MISC_TIMING2_LP0xa9e; |
2872 | break; |
2873 | |
2874 | case mmMC_SEQ_PMG_DVS_CMD0xd8c: |
2875 | *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP0xd8d; |
2876 | break; |
2877 | |
2878 | case mmMC_SEQ_PMG_DVS_CTL0xd8a: |
2879 | *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP0xd8b; |
2880 | break; |
2881 | |
2882 | case mmMC_SEQ_RD_CTL_D00xa2d: |
2883 | *out_reg = mmMC_SEQ_RD_CTL_D0_LP0xac7; |
2884 | break; |
2885 | |
2886 | case mmMC_SEQ_RD_CTL_D10xa2e: |
2887 | *out_reg = mmMC_SEQ_RD_CTL_D1_LP0xac8; |
2888 | break; |
2889 | |
2890 | case mmMC_SEQ_WR_CTL_D00xa2f: |
2891 | *out_reg = mmMC_SEQ_WR_CTL_D0_LP0xa9f; |
2892 | break; |
2893 | |
2894 | case mmMC_SEQ_WR_CTL_D10xa30: |
2895 | *out_reg = mmMC_SEQ_WR_CTL_D1_LP0xaa0; |
2896 | break; |
2897 | |
2898 | case mmMC_PMG_CMD_EMRS0xa83: |
2899 | *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
2900 | break; |
2901 | |
2902 | case mmMC_PMG_CMD_MRS0xaab: |
2903 | *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
2904 | break; |
2905 | |
2906 | case mmMC_PMG_CMD_MRS10xad1: |
2907 | *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
2908 | break; |
2909 | |
2910 | case mmMC_SEQ_PMG_TIMING0xa2c: |
2911 | *out_reg = mmMC_SEQ_PMG_TIMING_LP0xad3; |
2912 | break; |
2913 | |
2914 | case mmMC_PMG_CMD_MRS20xad7: |
2915 | *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP0xad8; |
2916 | break; |
2917 | |
2918 | case mmMC_SEQ_WR_CTL_20xad5: |
2919 | *out_reg = mmMC_SEQ_WR_CTL_2_LP0xad6; |
2920 | break; |
2921 | |
2922 | default: |
2923 | result = false0; |
2924 | break; |
2925 | } |
2926 | |
2927 | return result; |
2928 | } |
2929 | |
2930 | static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) |
2931 | { |
2932 | uint32_t i; |
2933 | uint16_t address; |
2934 | |
2935 | for (i = 0; i < table->last; i++) { |
2936 | table->mc_reg_address[i].s0 = |
2937 | tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, |
2938 | &address) ? |
2939 | address : |
2940 | table->mc_reg_address[i].s1; |
2941 | } |
2942 | return 0; |
2943 | } |
2944 | |
2945 | static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
2946 | struct tonga_mc_reg_table *ni_table) |
2947 | { |
2948 | uint8_t i, j; |
2949 | |
2950 | PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
2951 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
2952 | PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0) |
2953 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0); |
2954 | |
2955 | for (i = 0; i < table->last; i++) |
2956 | ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
2957 | |
2958 | ni_table->last = table->last; |
2959 | |
2960 | for (i = 0; i < table->num_entries; i++) { |
2961 | ni_table->mc_reg_table_entry[i].mclk_max = |
2962 | table->mc_reg_table_entry[i].mclk_max; |
2963 | for (j = 0; j < table->last; j++) { |
2964 | ni_table->mc_reg_table_entry[i].mc_data[j] = |
2965 | table->mc_reg_table_entry[i].mc_data[j]; |
2966 | } |
2967 | } |
2968 | |
2969 | ni_table->num_entries = table->num_entries; |
2970 | |
2971 | return 0; |
2972 | } |
2973 | |
2974 | static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
2975 | struct tonga_mc_reg_table *table) |
2976 | { |
2977 | uint8_t i, j, k; |
2978 | uint32_t temp_reg; |
2979 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2980 | |
2981 | for (i = 0, j = table->last; i < table->last; i++) { |
2982 | PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
2983 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
2984 | |
2985 | switch (table->mc_reg_address[i].s1) { |
2986 | |
2987 | case mmMC_SEQ_MISC10xa81: |
2988 | temp_reg = cgs_read_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa83)) |
2989 | mmMC_PMG_CMD_EMRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa83)); |
2990 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS0xa83; |
2991 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
2992 | for (k = 0; k < table->num_entries; k++) { |
2993 | table->mc_reg_table_entry[k].mc_data[j] = |
2994 | ((temp_reg & 0xffff0000)) | |
2995 | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
2996 | } |
2997 | j++; |
2998 | |
2999 | PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
3000 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
3001 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xaab)); |
3002 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS0xaab; |
3003 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
3004 | for (k = 0; k < table->num_entries; k++) { |
3005 | table->mc_reg_table_entry[k].mc_data[j] = |
3006 | (temp_reg & 0xffff0000) | |
3007 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
3008 | |
3009 | if (!data->is_memory_gddr5) |
3010 | table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
3011 | } |
3012 | j++; |
3013 | |
3014 | if (!data->is_memory_gddr5) { |
3015 | PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
3016 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
3017 | table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD0xa34; |
3018 | table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD0xa34; |
3019 | for (k = 0; k < table->num_entries; k++) |
3020 | table->mc_reg_table_entry[k].mc_data[j] = |
3021 | (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
3022 | j++; |
3023 | } |
3024 | |
3025 | break; |
3026 | |
3027 | case mmMC_SEQ_RESERVE_M0xa82: |
3028 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xad1)); |
3029 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS10xad1; |
3030 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
3031 | for (k = 0; k < table->num_entries; k++) { |
3032 | table->mc_reg_table_entry[k].mc_data[j] = |
3033 | (temp_reg & 0xffff0000) | |
3034 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
3035 | } |
3036 | j++; |
3037 | break; |
3038 | |
3039 | default: |
3040 | break; |
3041 | } |
3042 | |
3043 | } |
3044 | |
3045 | table->last = j; |
3046 | |
3047 | return 0; |
3048 | } |
3049 | |
3050 | static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) |
3051 | { |
3052 | uint8_t i, j; |
3053 | |
3054 | for (i = 0; i < table->last; i++) { |
3055 | for (j = 1; j < table->num_entries; j++) { |
3056 | if (table->mc_reg_table_entry[j-1].mc_data[i] != |
3057 | table->mc_reg_table_entry[j].mc_data[i]) { |
3058 | table->validflag |= (1<<i); |
3059 | break; |
3060 | } |
3061 | } |
3062 | } |
3063 | |
3064 | return 0; |
3065 | } |
3066 | |
3067 | static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
3068 | { |
3069 | int result; |
3070 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
3071 | pp_atomctrl_mc_reg_table *table; |
3072 | struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
3073 | uint8_t module_index = tonga_get_memory_modile_index(hwmgr); |
3074 | |
3075 | table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL(0x0001 | 0x0004)); |
3076 | |
3077 | if (table == NULL((void *)0)) |
3078 | return -ENOMEM12; |
3079 | |
3080 | /* Program additional LP registers that are no longer programmed by VBIOS */ |
3081 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))) |
3082 | cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))); |
3083 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))) |
3084 | cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))); |
3085 | cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8e)))) |
3086 | cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8e)))); |
3087 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd84,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd83)))) |
3088 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd84,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd83)))); |
3089 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd86,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd85)))) |
3090 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd86,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd85)))); |
3091 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd82,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd81)))) |
3092 | cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd82,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd81)))); |
3093 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8c)))) |
3094 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8c)))); |
3095 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8a)))) |
3096 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8a)))); |
3097 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2a)))) |
3098 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2a)))); |
3099 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))) |
3100 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))); |
3101 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa1,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa83)))) |
3102 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa1,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa83)))); |
3103 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xaab)))) |
3104 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xaab)))); |
3105 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad1)))) |
3106 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad1)))); |
3107 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2f)))) |
3108 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2f)))); |
3109 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))) |
3110 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))); |
3111 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))) |
3112 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))); |
3113 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))) |
3114 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))); |
3115 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))) |
3116 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))); |
3117 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad7)))) |
3118 | cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad7)))); |
3119 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad6,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad5)))) |
3120 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad6,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad5)))); |
3121 | |
3122 | result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
3123 | |
3124 | if (!result) |
3125 | result = tonga_copy_vbios_smc_reg_table(table, ni_table); |
3126 | |
3127 | if (!result) { |
3128 | tonga_set_s0_mc_reg_index(ni_table); |
3129 | result = tonga_set_mc_special_registers(hwmgr, ni_table); |
3130 | } |
3131 | |
3132 | if (!result) |
3133 | tonga_set_valid_flag(ni_table); |
3134 | |
3135 | kfree(table); |
3136 | |
3137 | return result; |
3138 | } |
3139 | |
3140 | static bool_Bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) |
3141 | { |
3142 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f810))) & 0x2000) >> 0xd) |
3143 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f810))) & 0x2000) >> 0xd)) |
3144 | ? true1 : false0; |
3145 | } |
3146 | |
3147 | static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr, |
3148 | void *profile_setting) |
3149 | { |
3150 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
3151 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *) |
3152 | (hwmgr->smu_backend); |
3153 | struct profile_mode_setting *setting; |
3154 | struct SMU72_Discrete_GraphicsLevel *levels = |
3155 | smu_data->smc_state_table.GraphicsLevel; |
3156 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
3157 | offsetof(SMU72_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); |
3158 | |
3159 | uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + |
3160 | offsetof(SMU72_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU72_Discrete_DpmTable, MemoryLevel); |
3161 | struct SMU72_Discrete_MemoryLevel *mclk_levels = |
3162 | smu_data->smc_state_table.MemoryLevel; |
3163 | uint32_t i; |
3164 | uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; |
3165 | |
3166 | if (profile_setting == NULL((void *)0)) |
3167 | return -EINVAL22; |
3168 | |
3169 | setting = (struct profile_mode_setting *)profile_setting; |
3170 | |
3171 | if (setting->bupdate_sclk) { |
3172 | if (!data->sclk_dpm_key_disabled) |
3173 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel((uint16_t) 0x189), NULL((void *)0)); |
3174 | for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { |
3175 | if (levels[i].ActivityLevel != |
3176 | cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) )) { |
3177 | levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) ); |
3178 | |
3179 | clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) |
3180 | + offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel)__builtin_offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel ); |
3181 | offset = clk_activity_offset & ~0x3; |
3182 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
3183 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); |
3184 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
3185 | |
3186 | } |
3187 | if (levels[i].UpHyst != setting->sclk_up_hyst || |
3188 | levels[i].DownHyst != setting->sclk_down_hyst) { |
3189 | levels[i].UpHyst = setting->sclk_up_hyst; |
3190 | levels[i].DownHyst = setting->sclk_down_hyst; |
3191 | up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) |
3192 | + offsetof(SMU72_Discrete_GraphicsLevel, UpHyst)__builtin_offsetof(SMU72_Discrete_GraphicsLevel, UpHyst); |
3193 | down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) |
3194 | + offsetof(SMU72_Discrete_GraphicsLevel, DownHyst)__builtin_offsetof(SMU72_Discrete_GraphicsLevel, DownHyst); |
3195 | offset = up_hyst_offset & ~0x3; |
3196 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
3197 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); |
3198 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); |
3199 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
3200 | } |
3201 | } |
3202 | if (!data->sclk_dpm_key_disabled) |
3203 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel((uint16_t) 0x18A), NULL((void *)0)); |
3204 | } |
3205 | |
3206 | if (setting->bupdate_mclk) { |
3207 | if (!data->mclk_dpm_key_disabled) |
3208 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel((uint16_t) 0x18B), NULL((void *)0)); |
3209 | for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { |
3210 | if (mclk_levels[i].ActivityLevel != |
3211 | cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) )) { |
3212 | mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) ); |
3213 | |
3214 | clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) |
3215 | + offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel)__builtin_offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel); |
3216 | offset = clk_activity_offset & ~0x3; |
3217 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
3218 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); |
3219 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
3220 | |
3221 | } |
3222 | if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || |
3223 | mclk_levels[i].DownHyst != setting->mclk_down_hyst) { |
3224 | mclk_levels[i].UpHyst = setting->mclk_up_hyst; |
3225 | mclk_levels[i].DownHyst = setting->mclk_down_hyst; |
3226 | up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) |
3227 | + offsetof(SMU72_Discrete_MemoryLevel, UpHyst)__builtin_offsetof(SMU72_Discrete_MemoryLevel, UpHyst); |
3228 | down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) |
3229 | + offsetof(SMU72_Discrete_MemoryLevel, DownHyst)__builtin_offsetof(SMU72_Discrete_MemoryLevel, DownHyst); |
3230 | offset = up_hyst_offset & ~0x3; |
3231 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
3232 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); |
3233 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); |
3234 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
3235 | } |
3236 | } |
3237 | if (!data->mclk_dpm_key_disabled) |
3238 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel((uint16_t) 0x18C), NULL((void *)0)); |
3239 | } |
3240 | return 0; |
3241 | } |
3242 | |
3243 | const struct pp_smumgr_func tonga_smu_funcs = { |
3244 | .name = "tonga_smu", |
3245 | .smu_init = &tonga_smu_init, |
3246 | .smu_fini = &smu7_smu_fini, |
3247 | .start_smu = &tonga_start_smu, |
3248 | .check_fw_load_finish = &smu7_check_fw_load_finish, |
3249 | .request_smu_load_fw = &smu7_request_smu_load_fw, |
3250 | .request_smu_load_specific_fw = NULL((void *)0), |
3251 | .send_msg_to_smc = &smu7_send_msg_to_smc, |
3252 | .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, |
3253 | .get_argument = smu7_get_argument, |
3254 | .download_pptable_settings = NULL((void *)0), |
3255 | .upload_pptable_settings = NULL((void *)0), |
3256 | .update_smc_table = tonga_update_smc_table, |
3257 | .get_offsetof = tonga_get_offsetof, |
3258 | .process_firmware_header = tonga_process_firmware_header, |
3259 | .init_smc_table = tonga_init_smc_table, |
3260 | .update_sclk_threshold = tonga_update_sclk_threshold, |
3261 | .thermal_setup_fan_table = tonga_thermal_setup_fan_table, |
3262 | .populate_all_graphic_levels = tonga_populate_all_graphic_levels, |
3263 | .populate_all_memory_levels = tonga_populate_all_memory_levels, |
3264 | .get_mac_definition = tonga_get_mac_definition, |
3265 | .initialize_mc_reg_table = tonga_initialize_mc_reg_table, |
3266 | .is_dpm_running = tonga_is_dpm_running, |
3267 | .update_dpm_settings = tonga_update_dpm_settings, |
3268 | }; |