Bug Summary

File:dev/pci/drm/display/drm_dp_helper.c
Warning:line 3883, column 10
Potential leak of memory pointed to by 'bl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name drm_dp_helper.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -target-feature +retpoline-external-thunk -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/llvm16/lib/clang/16 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/legacy-dpm -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu13 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/inc -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc/pmfw_if -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D SUSPEND -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /home/ben/Projects/scan/2024-01-11-110808-61670-1 -x c /usr/src/sys/dev/pci/drm/display/drm_dp_helper.c

/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c

1/*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23#include <linux/backlight.h>
24#include <linux/delay.h>
25#include <linux/errno.h>
26#include <linux/i2c.h>
27#include <linux/init.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/sched.h>
31#include <linux/seq_file.h>
32#include <linux/string_helpers.h>
33#include <linux/dynamic_debug.h>
34
35#include <drm/display/drm_dp_helper.h>
36#include <drm/display/drm_dp_mst_helper.h>
37#include <drm/drm_edid.h>
38#include <drm/drm_print.h>
39#include <drm/drm_vblank.h>
40#include <drm/drm_panel.h>
41
42#include "drm_dp_helper_internal.h"
43
44DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 "DRM_UT_CORE",
46 "DRM_UT_DRIVER",
47 "DRM_UT_KMS",
48 "DRM_UT_PRIME",
49 "DRM_UT_ATOMIC",
50 "DRM_UT_VBL",
51 "DRM_UT_STATE",
52 "DRM_UT_LEASE",
53 "DRM_UT_DP",
54 "DRM_UT_DRMRES");
55
56struct dp_aux_backlight {
57 struct backlight_device *base;
58 struct drm_dp_aux *aux;
59 struct drm_edp_backlight_info info;
60 bool_Bool enabled;
61};
62
63/**
64 * DOC: dp helpers
65 *
66 * These functions contain some common logic and helpers at various abstraction
67 * levels to deal with Display Port sink devices and related things like DP aux
68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69 * blocks, ...
70 */
71
72/* Helpers for DP link training */
73static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE6], int r)
74{
75 return link_status[r - DP_LANE0_1_STATUS0x202];
76}
77
78static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE6],
79 int lane)
80{
81 int i = DP_LANE0_1_STATUS0x202 + (lane >> 1);
82 int s = (lane & 1) * 4;
83 u8 l = dp_link_status(link_status, i);
84
85 return (l >> s) & 0xf;
86}
87
88bool_Bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE6],
89 int lane_count)
90{
91 u8 lane_align;
92 u8 lane_status;
93 int lane;
94
95 lane_align = dp_link_status(link_status,
96 DP_LANE_ALIGN_STATUS_UPDATED0x204);
97 if ((lane_align & DP_INTERLANE_ALIGN_DONE(1 << 0)) == 0)
98 return false0;
99 for (lane = 0; lane < lane_count; lane++) {
100 lane_status = dp_get_lane_status(link_status, lane);
101 if ((lane_status & DP_CHANNEL_EQ_BITS((1 << 0) | (1 << 1) | (1 << 2))) != DP_CHANNEL_EQ_BITS((1 << 0) | (1 << 1) | (1 << 2)))
102 return false0;
103 }
104 return true1;
105}
106EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107
108bool_Bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE6],
109 int lane_count)
110{
111 int lane;
112 u8 lane_status;
113
114 for (lane = 0; lane < lane_count; lane++) {
115 lane_status = dp_get_lane_status(link_status, lane);
116 if ((lane_status & DP_LANE_CR_DONE(1 << 0)) == 0)
117 return false0;
118 }
119 return true1;
120}
121EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122
123u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE6],
124 int lane)
125{
126 int i = DP_ADJUST_REQUEST_LANE0_10x206 + (lane >> 1);
127 int s = ((lane & 1) ?
128 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT4 :
129 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT0);
130 u8 l = dp_link_status(link_status, i);
131
132 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT0;
133}
134EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135
136u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE6],
137 int lane)
138{
139 int i = DP_ADJUST_REQUEST_LANE0_10x206 + (lane >> 1);
140 int s = ((lane & 1) ?
141 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT6 :
142 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT2);
143 u8 l = dp_link_status(link_status, i);
144
145 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT3;
146}
147EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148
149/* DP 2.0 128b/132b */
150u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE6],
151 int lane)
152{
153 int i = DP_ADJUST_REQUEST_LANE0_10x206 + (lane >> 1);
154 int s = ((lane & 1) ?
155 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT4 :
156 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT0);
157 u8 l = dp_link_status(link_status, i);
158
159 return (l >> s) & 0xf;
160}
161EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162
163/* DP 2.0 errata for 128b/132b */
164bool_Bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE6],
165 int lane_count)
166{
167 u8 lane_align, lane_status;
168 int lane;
169
170 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED0x204);
171 if (!(lane_align & DP_INTERLANE_ALIGN_DONE(1 << 0)))
172 return false0;
173
174 for (lane = 0; lane < lane_count; lane++) {
175 lane_status = dp_get_lane_status(link_status, lane);
176 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE(1 << 1)))
177 return false0;
178 }
179 return true1;
180}
181EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182
183/* DP 2.0 errata for 128b/132b */
184bool_Bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE6],
185 int lane_count)
186{
187 u8 lane_status;
188 int lane;
189
190 for (lane = 0; lane < lane_count; lane++) {
191 lane_status = dp_get_lane_status(link_status, lane);
192 if (!(lane_status & DP_LANE_SYMBOL_LOCKED(1 << 2)))
193 return false0;
194 }
195 return true1;
196}
197EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198
199/* DP 2.0 errata for 128b/132b */
200bool_Bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE6])
201{
202 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED0x204);
203
204 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE(1 << 2);
205}
206EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207
208/* DP 2.0 errata for 128b/132b */
209bool_Bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE6])
210{
211 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED0x204);
212
213 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE(1 << 3);
214}
215EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216
217/* DP 2.0 errata for 128b/132b */
218bool_Bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE6])
219{
220 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED0x204);
221
222 return status & DP_128B132B_LT_FAILED(1 << 4);
223}
224EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225
226static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227{
228 if (rd_interval > 4)
229 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x (max 4)\n"
, aux->name, rd_interval)
230 aux->name, rd_interval)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x (max 4)\n"
, aux->name, rd_interval)
;
231
232 if (rd_interval == 0)
233 return 100;
234
235 return rd_interval * 4 * USEC_PER_MSEC1000L;
236}
237
238static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239{
240 if (rd_interval > 4)
241 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x (max 4)\n"
, aux->name, rd_interval)
242 aux->name, rd_interval)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x (max 4)\n"
, aux->name, rd_interval)
;
243
244 if (rd_interval == 0)
245 return 400;
246
247 return rd_interval * 4 * USEC_PER_MSEC1000L;
248}
249
250static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251{
252 switch (rd_interval) {
253 default:
254 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x\n"
, aux->name, rd_interval)
255 aux->name, rd_interval)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: invalid AUX interval 0x%02x\n"
, aux->name, rd_interval)
;
256 fallthroughdo {} while (0);
257 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US0x00:
258 return 400;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS0x01:
260 return 4000;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS0x02:
262 return 8000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS0x03:
264 return 12000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS0x04:
266 return 16000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS0x05:
268 return 32000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS0x06:
270 return 64000;
271 }
272}
273
274/*
275 * The link training delays are different for:
276 *
277 * - Clock recovery vs. channel equalization
278 * - DPRX vs. LTTPR
279 * - 128b/132b vs. 8b/10b
280 * - DPCD rev 1.3 vs. later
281 *
282 * Get the correct delay in us, reading DPCD if necessary.
283 */
284static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
285 enum drm_dp_phy dp_phy, bool_Bool uhbr, bool_Bool cr)
286{
287 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 unsigned int offset;
289 u8 rd_interval, mask;
290
291 if (dp_phy == DP_PHY_DPRX) {
292 if (uhbr) {
293 if (cr)
294 return 100;
295
296 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL0x2216;
297 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK0x7f;
298 parse = __128b132b_channel_eq_delay_us;
299 } else {
300 if (cr && dpcd[DP_DPCD_REV0x000] >= DP_DPCD_REV_140x14)
301 return 100;
302
303 offset = DP_TRAINING_AUX_RD_INTERVAL0x00e;
304 mask = DP_TRAINING_AUX_RD_MASK0x7F;
305 if (cr)
306 parse = __8b10b_clock_recovery_delay_us;
307 else
308 parse = __8b10b_channel_eq_delay_us;
309 }
310 } else {
311 if (uhbr) {
312 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy)((0xf0010 + (0xf0060 - 0xf0010) * ((dp_phy) - DP_PHY_LTTPR1))
- (0xf0010 + (0xf0060 - 0xf0010) * ((DP_PHY_LTTPR1) - DP_PHY_LTTPR1
)) + (0xf0022))
;
313 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK0x7f;
314 parse = __128b132b_channel_eq_delay_us;
315 } else {
316 if (cr)
317 return 100;
318
319 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy)((0xf0010 + (0xf0060 - 0xf0010) * ((dp_phy) - DP_PHY_LTTPR1))
- (0xf0010 + (0xf0060 - 0xf0010) * ((DP_PHY_LTTPR1) - DP_PHY_LTTPR1
)) + (0xf0020))
;
320 mask = DP_TRAINING_AUX_RD_MASK0x7F;
321 parse = __8b10b_channel_eq_delay_us;
322 }
323 }
324
325 if (offset < DP_RECEIVER_CAP_SIZE0xf) {
326 rd_interval = dpcd[offset];
327 } else {
328 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: failed rd interval read\n"
, aux->name)
330 aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: failed rd interval read\n"
, aux->name)
;
331 /* arbitrary default delay */
332 return 400;
333 }
334 }
335
336 return parse(aux, rd_interval & mask);
337}
338
339int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
340 enum drm_dp_phy dp_phy, bool_Bool uhbr)
341{
342 return __read_delay(aux, dpcd, dp_phy, uhbr, true1);
343}
344EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345
346int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
347 enum drm_dp_phy dp_phy, bool_Bool uhbr)
348{
349 return __read_delay(aux, dpcd, dp_phy, uhbr, false0);
350}
351EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352
353/* Per DP 2.0 Errata */
354int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355{
356 int unit;
357 u8 val;
358
359 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL0x2216, &val) != 1) {
360 drm_err(aux->drm_dev, "%s: failed rd interval read\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: failed rd interval read\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name)
361 aux->name)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: failed rd interval read\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name)
;
362 /* default to max */
363 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK0x7f;
364 }
365
366 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT(1 << 7)) ? 1 : 2;
367 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK0x7f;
368
369 return (val + 1) * unit * 1000;
370}
371EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372
373void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf])
375{
376 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL0x00e] &
377 DP_TRAINING_AUX_RD_MASK0x7F;
378 int delay_us;
379
380 if (dpcd[DP_DPCD_REV0x000] >= DP_DPCD_REV_140x14)
381 delay_us = 100;
382 else
383 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384
385 usleep_range(delay_us, delay_us * 2);
386}
387EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388
389static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 u8 rd_interval)
391{
392 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393
394 usleep_range(delay_us, delay_us * 2);
395}
396
397void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf])
399{
400 __drm_dp_link_train_channel_eq_delay(aux,
401 dpcd[DP_TRAINING_AUX_RD_INTERVAL0x00e] &
402 DP_TRAINING_AUX_RD_MASK0x7F);
403}
404EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405
406/**
407 * drm_dp_phy_name() - Get the name of the given DP PHY
408 * @dp_phy: The DP PHY identifier
409 *
410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412 * non-NULL and valid.
413 *
414 * Returns: Name of the DP PHY.
415 */
416const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417{
418 static const char * const phy_names[] = {
419 [DP_PHY_DPRX] = "DPRX",
420 [DP_PHY_LTTPR1] = "LTTPR 1",
421 [DP_PHY_LTTPR2] = "LTTPR 2",
422 [DP_PHY_LTTPR3] = "LTTPR 3",
423 [DP_PHY_LTTPR4] = "LTTPR 4",
424 [DP_PHY_LTTPR5] = "LTTPR 5",
425 [DP_PHY_LTTPR6] = "LTTPR 6",
426 [DP_PHY_LTTPR7] = "LTTPR 7",
427 [DP_PHY_LTTPR8] = "LTTPR 8",
428 };
429
430 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names)(sizeof((phy_names)) / sizeof((phy_names)[0])) ||
431 WARN_ON(!phy_names[dp_phy])({ int __ret = !!(!phy_names[dp_phy]); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "!phy_names[dp_phy]", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 431); __builtin_expect(!!(__ret), 0); })
)
432 return "<INVALID DP PHY>";
433
434 return phy_names[dp_phy];
435}
436EXPORT_SYMBOL(drm_dp_phy_name);
437
438void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439{
440 usleep_range(100, 200);
441}
442EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443
444static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE3], int r)
445{
446 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER10xf0020];
447}
448
449void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE3])
451{
452 u8 interval = dp_lttpr_phy_cap(phy_cap,
453 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER10xf0020) &
454 DP_TRAINING_AUX_RD_MASK0x7F;
455
456 __drm_dp_link_train_channel_eq_delay(aux, interval);
457}
458EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459
460u8 drm_dp_link_rate_to_bw_code(int link_rate)
461{
462 switch (link_rate) {
463 case 1000000:
464 return DP_LINK_BW_100x01;
465 case 1350000:
466 return DP_LINK_BW_13_50x04;
467 case 2000000:
468 return DP_LINK_BW_200x02;
469 default:
470 /* Spec says link_bw = link_rate / 0.27Gbps */
471 return link_rate / 27000;
472 }
473}
474EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475
476int drm_dp_bw_code_to_link_rate(u8 link_bw)
477{
478 switch (link_bw) {
479 case DP_LINK_BW_100x01:
480 return 1000000;
481 case DP_LINK_BW_13_50x04:
482 return 1350000;
483 case DP_LINK_BW_200x02:
484 return 2000000;
485 default:
486 /* Spec says link_rate = link_bw * 0.27Gbps */
487 return link_bw * 27000;
488 }
489}
490EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491
492#define AUX_RETRY_INTERVAL500 500 /* us */
493
494static inline void
495drm_dp_dump_access(const struct drm_dp_aux *aux,
496 u8 request, uint offset, void *buffer, int ret)
497{
498 const char *arrow = request == DP_AUX_NATIVE_READ0x9 ? "->" : "<-";
499
500 if (ret > 0)
501 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_DP, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n"
, aux->name, offset, arrow, ret, (((ret)<(20))?(ret):(20
)), buffer)
502 aux->name, offset, arrow, ret, min(ret, 20), buffer)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_DP, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n"
, aux->name, offset, arrow, ret, (((ret)<(20))?(ret):(20
)), buffer)
;
503 else
504 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_DP, "%s: 0x%05x AUX %s (ret=%3d)\n"
, aux->name, offset, arrow, ret)
505 aux->name, offset, arrow, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_DP, "%s: 0x%05x AUX %s (ret=%3d)\n"
, aux->name, offset, arrow, ret)
;
506}
507
508/**
509 * DOC: dp helpers
510 *
511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512 * independent access to AUX functionality. Drivers can take advantage of
513 * this by filling in the fields of the drm_dp_aux structure.
514 *
515 * Transactions are described using a hardware-independent drm_dp_aux_msg
516 * structure, which is passed into a driver's .transfer() implementation.
517 * Both native and I2C-over-AUX transactions are supported.
518 */
519
520static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 unsigned int offset, void *buffer, size_t size)
522{
523 struct drm_dp_aux_msg msg;
524 unsigned int retry, native_reply;
525 int err = 0, ret = 0;
526
527 memset(&msg, 0, sizeof(msg))__builtin_memset((&msg), (0), (sizeof(msg)));
528 msg.address = offset;
529 msg.request = request;
530 msg.buffer = buffer;
531 msg.size = size;
532
533 mutex_lock(&aux->hw_mutex)rw_enter_write(&aux->hw_mutex);
534
535 /*
536 * The specification doesn't give any recommendation on how often to
537 * retry native transactions. We used to retry 7 times like for
538 * aux i2c transactions but real world devices this wasn't
539 * sufficient, bump to 32 which makes Dell 4k monitors happier.
540 */
541 for (retry = 0; retry < 32; retry++) {
542 if (ret != 0 && ret != -ETIMEDOUT60) {
543 usleep_range(AUX_RETRY_INTERVAL500,
544 AUX_RETRY_INTERVAL500 + 100);
545 }
546
547 ret = aux->transfer(aux, &msg);
548 if (ret >= 0) {
549 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK(0x3 << 0);
550 if (native_reply == DP_AUX_NATIVE_REPLY_ACK(0x0 << 0)) {
551 if (ret == size)
552 goto unlock;
553
554 ret = -EPROTO95;
555 } else
556 ret = -EIO5;
557 }
558
559 /*
560 * We want the error we return to be the error we received on
561 * the first transaction, since we may get a different error the
562 * next time we retry
563 */
564 if (!err)
565 err = ret;
566 }
567
568 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Too many retries, giving up. First error: %d\n"
, aux->name, err)
569 aux->name, err)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Too many retries, giving up. First error: %d\n"
, aux->name, err)
;
570 ret = err;
571
572unlock:
573 mutex_unlock(&aux->hw_mutex)rw_exit_write(&aux->hw_mutex);
574 return ret;
575}
576
577/**
578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
579 * @aux: DisplayPort AUX channel (SST)
580 * @offset: address of the register to probe
581 *
582 * Probe the provided DPCD address by reading 1 byte from it. The function can
583 * be used to trigger some side-effect the read access has, like waking up the
584 * sink, without the need for the read-out value.
585 *
586 * Returns 0 if the read access suceeded, or a negative error code on failure.
587 */
588int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
589{
590 u8 buffer;
591 int ret;
592
593 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ0x9, offset, &buffer, 1);
594 WARN_ON(ret == 0)({ int __ret = !!(ret == 0); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "ret == 0", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 594); __builtin_expect(!!(__ret), 0); })
;
595
596 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ0x9, offset, &buffer, ret);
597
598 return ret < 0 ? ret : 0;
599}
600EXPORT_SYMBOL(drm_dp_dpcd_probe);
601
602/**
603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
604 * @aux: DisplayPort AUX channel (SST or MST)
605 * @offset: address of the (first) register to read
606 * @buffer: buffer to store the register values
607 * @size: number of bytes in @buffer
608 *
609 * Returns the number of bytes transferred on success, or a negative error
610 * code on failure. -EIO is returned if the request was NAKed by the sink or
611 * if the retry count was exceeded. If not all bytes were transferred, this
612 * function returns -EPROTO. Errors from the underlying AUX channel transfer
613 * function, with the exception of -EBUSY (which causes the transaction to
614 * be retried), are propagated to the caller.
615 */
616ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
617 void *buffer, size_t size)
618{
619 int ret;
620
621 /*
622 * HP ZR24w corrupts the first DPCD access after entering power save
623 * mode. Eg. on a read, the entire buffer will be filled with the same
624 * byte. Do a throw away read to avoid corrupting anything we care
625 * about. Afterwards things will work correctly until the monitor
626 * gets woken up and subsequently re-enters power save mode.
627 *
628 * The user pressing any button on the monitor is enough to wake it
629 * up, so there is no particularly good place to do the workaround.
630 * We just have to do it before any DPCD access and hope that the
631 * monitor doesn't power down exactly after the throw away read.
632 */
633 if (!aux->is_remote) {
634 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV0x000);
635 if (ret < 0)
636 return ret;
637 }
638
639 if (aux->is_remote)
640 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
641 else
642 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ0x9, offset,
643 buffer, size);
644
645 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ0x9, offset, buffer, ret);
646 return ret;
647}
648EXPORT_SYMBOL(drm_dp_dpcd_read);
649
650/**
651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
652 * @aux: DisplayPort AUX channel (SST or MST)
653 * @offset: address of the (first) register to write
654 * @buffer: buffer containing the values to write
655 * @size: number of bytes in @buffer
656 *
657 * Returns the number of bytes transferred on success, or a negative error
658 * code on failure. -EIO is returned if the request was NAKed by the sink or
659 * if the retry count was exceeded. If not all bytes were transferred, this
660 * function returns -EPROTO. Errors from the underlying AUX channel transfer
661 * function, with the exception of -EBUSY (which causes the transaction to
662 * be retried), are propagated to the caller.
663 */
664ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
665 void *buffer, size_t size)
666{
667 int ret;
668
669 if (aux->is_remote)
670 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
671 else
672 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE0x8, offset,
673 buffer, size);
674
675 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE0x8, offset, buffer, ret);
676 return ret;
677}
678EXPORT_SYMBOL(drm_dp_dpcd_write);
679
680/**
681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
682 * @aux: DisplayPort AUX channel
683 * @status: buffer to store the link status in (must be at least 6 bytes)
684 *
685 * Returns the number of bytes transferred on success or a negative error
686 * code on failure.
687 */
688int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
689 u8 status[DP_LINK_STATUS_SIZE6])
690{
691 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS0x202, status,
692 DP_LINK_STATUS_SIZE6);
693}
694EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
695
696/**
697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
698 * @aux: DisplayPort AUX channel
699 * @dp_phy: the DP PHY to get the link status for
700 * @link_status: buffer to return the status in
701 *
702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
703 * layout of the returned @link_status matches the DPCD register layout of the
704 * DPRX PHY link status.
705 *
706 * Returns 0 if the information was read successfully or a negative error code
707 * on failure.
708 */
709int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
710 enum drm_dp_phy dp_phy,
711 u8 link_status[DP_LINK_STATUS_SIZE6])
712{
713 int ret;
714
715 if (dp_phy == DP_PHY_DPRX) {
716 ret = drm_dp_dpcd_read(aux,
717 DP_LANE0_1_STATUS0x202,
718 link_status,
719 DP_LINK_STATUS_SIZE6);
720
721 if (ret < 0)
722 return ret;
723
724 WARN_ON(ret != DP_LINK_STATUS_SIZE)({ int __ret = !!(ret != 6); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "ret != 6", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 724); __builtin_expect(!!(__ret), 0); })
;
725
726 return 0;
727 }
728
729 ret = drm_dp_dpcd_read(aux,
730 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy)((0xf0010 + (0xf0060 - 0xf0010) * ((dp_phy) - DP_PHY_LTTPR1))
- (0xf0010 + (0xf0060 - 0xf0010) * ((DP_PHY_LTTPR1) - DP_PHY_LTTPR1
)) + (0xf0030))
,
731 link_status,
732 DP_LINK_STATUS_SIZE6 - 1);
733
734 if (ret < 0)
735 return ret;
736
737 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1)({ int __ret = !!(ret != 6 - 1); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "ret != 6 - 1", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 737); __builtin_expect(!!(__ret), 0); })
;
738
739 /* Convert the LTTPR to the sink PHY link status layout */
740 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],__builtin_memmove((&link_status[0x205 - 0x202 + 1]), (&
link_status[0x205 - 0x202]), (6 - (0x205 - 0x202) - 1))
741 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],__builtin_memmove((&link_status[0x205 - 0x202 + 1]), (&
link_status[0x205 - 0x202]), (6 - (0x205 - 0x202) - 1))
742 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1)__builtin_memmove((&link_status[0x205 - 0x202 + 1]), (&
link_status[0x205 - 0x202]), (6 - (0x205 - 0x202) - 1))
;
743 link_status[DP_SINK_STATUS0x205 - DP_LANE0_1_STATUS0x202] = 0;
744
745 return 0;
746}
747EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
748
749static bool_Bool is_edid_digital_input_dp(const struct edid *edid)
750{
751 return edid && edid->revision >= 4 &&
752 edid->input & DRM_EDID_INPUT_DIGITAL(1 << 7) &&
753 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK(7 << 0)) == DRM_EDID_DIGITAL_TYPE_DP(5 << 0);
754}
755
756/**
757 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
758 * @dpcd: DisplayPort configuration data
759 * @port_cap: port capabilities
760 * @type: port type to be checked. Can be:
761 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
762 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
763 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
764 *
765 * Caveat: Only works with DPCD 1.1+ port caps.
766 *
767 * Returns: whether the downstream facing port matches the type.
768 */
769bool_Bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
770 const u8 port_cap[4], u8 type)
771{
772 return drm_dp_is_branch(dpcd) &&
773 dpcd[DP_DPCD_REV0x000] >= 0x11 &&
774 (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) == type;
775}
776EXPORT_SYMBOL(drm_dp_downstream_is_type);
777
778/**
779 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
780 * @dpcd: DisplayPort configuration data
781 * @port_cap: port capabilities
782 * @edid: EDID
783 *
784 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
785 */
786bool_Bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
787 const u8 port_cap[4],
788 const struct edid *edid)
789{
790 if (dpcd[DP_DPCD_REV0x000] < 0x11) {
791 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DWN_STRM_PORT_TYPE_MASK0x06) {
792 case DP_DWN_STRM_PORT_TYPE_TMDS(2 << 1):
793 return true1;
794 default:
795 return false0;
796 }
797 }
798
799 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
800 case DP_DS_PORT_TYPE_DP_DUALMODE5:
801 if (is_edid_digital_input_dp(edid))
802 return false0;
803 fallthroughdo {} while (0);
804 case DP_DS_PORT_TYPE_DVI2:
805 case DP_DS_PORT_TYPE_HDMI3:
806 return true1;
807 default:
808 return false0;
809 }
810}
811EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
812
813/**
814 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
815 * @aux: DisplayPort AUX channel
816 * @real_edid_checksum: real edid checksum for the last block
817 *
818 * Returns:
819 * True on success
820 */
821bool_Bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
822 u8 real_edid_checksum)
823{
824 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
825
826 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR0x201,
827 &auto_test_req, 1) < 1) {
828 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed read at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x201)
829 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed read at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x201)
;
830 return false0;
831 }
832 auto_test_req &= DP_AUTOMATED_TEST_REQUEST(1 << 1);
833
834 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST0x218, &link_edid_read, 1) < 1) {
835 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed read at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x218)
836 aux->name, DP_TEST_REQUEST)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed read at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x218)
;
837 return false0;
838 }
839 link_edid_read &= DP_TEST_LINK_EDID_READ(1 << 2);
840
841 if (!auto_test_req || !link_edid_read) {
842 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Source DUT does not support TEST_EDID_READ\n"
, aux->name)
843 aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Source DUT does not support TEST_EDID_READ\n"
, aux->name)
;
844 return false0;
845 }
846
847 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR0x201,
848 &auto_test_req, 1) < 1) {
849 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x201)
850 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x201)
;
851 return false0;
852 }
853
854 /* send back checksum for the last edid extension block data */
855 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM0x261,
856 &real_edid_checksum, 1) < 1) {
857 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x261)
858 aux->name, DP_TEST_EDID_CHECKSUM)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x261)
;
859 return false0;
860 }
861
862 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE(1 << 2);
863 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE0x260, &test_resp, 1) < 1) {
864 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x260)
865 aux->name, DP_TEST_RESPONSE)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: DPCD failed write at register 0x%x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, 0x260)
;
866 return false0;
867 }
868
869 return true1;
870}
871EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
872
873static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf])
874{
875 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT0x007] & DP_PORT_COUNT_MASK0x0f;
876
877 if (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4) && port_count > 4)
878 port_count = 4;
879
880 return port_count;
881}
882
883static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
884 u8 dpcd[DP_RECEIVER_CAP_SIZE0xf])
885{
886 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE0xf];
887 int ret;
888
889 /*
890 * Prior to DP1.3 the bit represented by
891 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
892 * If it is set DP_DPCD_REV at 0000h could be at a value less than
893 * the true capability of the panel. The only way to check is to
894 * then compare 0000h and 2200h.
895 */
896 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL0x00e] &
897 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT(1 << 7)))
898 return 0;
899
900 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV0x2200, &dpcd_ext,
901 sizeof(dpcd_ext));
902 if (ret < 0)
903 return ret;
904 if (ret != sizeof(dpcd_ext))
905 return -EIO5;
906
907 if (dpcd[DP_DPCD_REV0x000] > dpcd_ext[DP_DPCD_REV0x000]) {
908 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n"
, aux->name, dpcd[0x000], dpcd_ext[0x000])
909 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n"
, aux->name, dpcd[0x000], dpcd_ext[0x000])
910 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV])__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n"
, aux->name, dpcd[0x000], dpcd_ext[0x000])
;
911 return 0;
912 }
913
914 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext))__builtin_memcmp((dpcd), (dpcd_ext), (sizeof(dpcd_ext))))
915 return 0;
916
917 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Base DPCD: %*ph\n",
aux->name, 0xf, dpcd)
;
918
919 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext))__builtin_memcpy((dpcd), (dpcd_ext), (sizeof(dpcd_ext)));
920
921 return 0;
922}
923
924/**
925 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
926 * available
927 * @aux: DisplayPort AUX channel
928 * @dpcd: Buffer to store the resulting DPCD in
929 *
930 * Attempts to read the base DPCD caps for @aux. Additionally, this function
931 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
932 * present.
933 *
934 * Returns: %0 if the DPCD was read successfully, negative error code
935 * otherwise.
936 */
937int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
938 u8 dpcd[DP_RECEIVER_CAP_SIZE0xf])
939{
940 int ret;
941
942 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV0x000, dpcd, DP_RECEIVER_CAP_SIZE0xf);
943 if (ret < 0)
944 return ret;
945 if (ret != DP_RECEIVER_CAP_SIZE0xf || dpcd[DP_DPCD_REV0x000] == 0)
946 return -EIO5;
947
948 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
949 if (ret < 0)
950 return ret;
951
952 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DPCD: %*ph\n", aux->
name, 0xf, dpcd)
;
953
954 return ret;
955}
956EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
957
958/**
959 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
960 * @aux: DisplayPort AUX channel
961 * @dpcd: A cached copy of the port's DPCD
962 * @downstream_ports: buffer to store the downstream port info in
963 *
964 * See also:
965 * drm_dp_downstream_max_clock()
966 * drm_dp_downstream_max_bpc()
967 *
968 * Returns: 0 if either the downstream port info was read successfully or
969 * there was no downstream info to read, or a negative error code otherwise.
970 */
971int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
972 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
973 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS0x10])
974{
975 int ret;
976 u8 len;
977
978 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS)__builtin_memset((downstream_ports), (0), (0x10));
979
980 /* No downstream info to read */
981 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV0x000] == DP_DPCD_REV_100x10)
982 return 0;
983
984 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
985 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
986 * some branches do it we need to handle it regardless.
987 */
988 len = drm_dp_downstream_port_count(dpcd);
989 if (!len)
990 return 0;
991
992 if (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4))
993 len *= 4;
994
995 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_00x80, downstream_ports, len);
996 if (ret < 0)
997 return ret;
998 if (ret != len)
999 return -EIO5;
1000
1001 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DPCD DFP: %*ph\n", aux
->name, len, downstream_ports)
;
1002
1003 return 0;
1004}
1005EXPORT_SYMBOL(drm_dp_read_downstream_info);
1006
1007/**
1008 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1009 * @dpcd: DisplayPort configuration data
1010 * @port_cap: port capabilities
1011 *
1012 * Returns: Downstream facing port max dot clock in kHz on success,
1013 * or 0 if max clock not defined
1014 */
1015int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1016 const u8 port_cap[4])
1017{
1018 if (!drm_dp_is_branch(dpcd))
1019 return 0;
1020
1021 if (dpcd[DP_DPCD_REV0x000] < 0x11)
1022 return 0;
1023
1024 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1025 case DP_DS_PORT_TYPE_VGA1:
1026 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1027 return 0;
1028 return port_cap[1] * 8000;
1029 default:
1030 return 0;
1031 }
1032}
1033EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1034
1035/**
1036 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1037 * @dpcd: DisplayPort configuration data
1038 * @port_cap: port capabilities
1039 * @edid: EDID
1040 *
1041 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1042 * or 0 if max TMDS clock not defined
1043 */
1044int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1045 const u8 port_cap[4],
1046 const struct edid *edid)
1047{
1048 if (!drm_dp_is_branch(dpcd))
1049 return 0;
1050
1051 if (dpcd[DP_DPCD_REV0x000] < 0x11) {
1052 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DWN_STRM_PORT_TYPE_MASK0x06) {
1053 case DP_DWN_STRM_PORT_TYPE_TMDS(2 << 1):
1054 return 165000;
1055 default:
1056 return 0;
1057 }
1058 }
1059
1060 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1061 case DP_DS_PORT_TYPE_DP_DUALMODE5:
1062 if (is_edid_digital_input_dp(edid))
1063 return 0;
1064 /*
1065 * It's left up to the driver to check the
1066 * DP dual mode adapter's max TMDS clock.
1067 *
1068 * Unfortunately it looks like branch devices
1069 * may not fordward that the DP dual mode i2c
1070 * access so we just usually get i2c nak :(
1071 */
1072 fallthroughdo {} while (0);
1073 case DP_DS_PORT_TYPE_HDMI3:
1074 /*
1075 * We should perhaps assume 165 MHz when detailed cap
1076 * info is not available. But looks like many typical
1077 * branch devices fall into that category and so we'd
1078 * probably end up with users complaining that they can't
1079 * get high resolution modes with their favorite dongle.
1080 *
1081 * So let's limit to 300 MHz instead since DPCD 1.4
1082 * HDMI 2.0 DFPs are required to have the detailed cap
1083 * info. So it's more likely we're dealing with a HDMI 1.4
1084 * compatible* device here.
1085 */
1086 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1087 return 300000;
1088 return port_cap[1] * 2500;
1089 case DP_DS_PORT_TYPE_DVI2:
1090 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1091 return 165000;
1092 /* FIXME what to do about DVI dual link? */
1093 return port_cap[1] * 2500;
1094 default:
1095 return 0;
1096 }
1097}
1098EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1099
1100/**
1101 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1102 * @dpcd: DisplayPort configuration data
1103 * @port_cap: port capabilities
1104 * @edid: EDID
1105 *
1106 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1107 * or 0 if max TMDS clock not defined
1108 */
1109int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1110 const u8 port_cap[4],
1111 const struct edid *edid)
1112{
1113 if (!drm_dp_is_branch(dpcd))
1114 return 0;
1115
1116 if (dpcd[DP_DPCD_REV0x000] < 0x11) {
1117 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DWN_STRM_PORT_TYPE_MASK0x06) {
1118 case DP_DWN_STRM_PORT_TYPE_TMDS(2 << 1):
1119 return 25000;
1120 default:
1121 return 0;
1122 }
1123 }
1124
1125 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1126 case DP_DS_PORT_TYPE_DP_DUALMODE5:
1127 if (is_edid_digital_input_dp(edid))
1128 return 0;
1129 fallthroughdo {} while (0);
1130 case DP_DS_PORT_TYPE_DVI2:
1131 case DP_DS_PORT_TYPE_HDMI3:
1132 /*
1133 * Unclear whether the protocol converter could
1134 * utilize pixel replication. Assume it won't.
1135 */
1136 return 25000;
1137 default:
1138 return 0;
1139 }
1140}
1141EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1142
1143/**
1144 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1145 * bits per component
1146 * @dpcd: DisplayPort configuration data
1147 * @port_cap: downstream facing port capabilities
1148 * @edid: EDID
1149 *
1150 * Returns: Max bpc on success or 0 if max bpc not defined
1151 */
1152int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1153 const u8 port_cap[4],
1154 const struct edid *edid)
1155{
1156 if (!drm_dp_is_branch(dpcd))
1157 return 0;
1158
1159 if (dpcd[DP_DPCD_REV0x000] < 0x11) {
1160 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DWN_STRM_PORT_TYPE_MASK0x06) {
1161 case DP_DWN_STRM_PORT_TYPE_DP(0 << 1):
1162 return 0;
1163 default:
1164 return 8;
1165 }
1166 }
1167
1168 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1169 case DP_DS_PORT_TYPE_DP0:
1170 return 0;
1171 case DP_DS_PORT_TYPE_DP_DUALMODE5:
1172 if (is_edid_digital_input_dp(edid))
1173 return 0;
1174 fallthroughdo {} while (0);
1175 case DP_DS_PORT_TYPE_HDMI3:
1176 case DP_DS_PORT_TYPE_DVI2:
1177 case DP_DS_PORT_TYPE_VGA1:
1178 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1179 return 8;
1180
1181 switch (port_cap[2] & DP_DS_MAX_BPC_MASK(3 << 0)) {
1182 case DP_DS_8BPC0:
1183 return 8;
1184 case DP_DS_10BPC1:
1185 return 10;
1186 case DP_DS_12BPC2:
1187 return 12;
1188 case DP_DS_16BPC3:
1189 return 16;
1190 default:
1191 return 8;
1192 }
1193 break;
1194 default:
1195 return 8;
1196 }
1197}
1198EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1199
1200/**
1201 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1202 * YCbCr 4:2:0 pass-through capability
1203 * @dpcd: DisplayPort configuration data
1204 * @port_cap: downstream facing port capabilities
1205 *
1206 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1207 */
1208bool_Bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1209 const u8 port_cap[4])
1210{
1211 if (!drm_dp_is_branch(dpcd))
1212 return false0;
1213
1214 if (dpcd[DP_DPCD_REV0x000] < 0x13)
1215 return false0;
1216
1217 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1218 case DP_DS_PORT_TYPE_DP0:
1219 return true1;
1220 case DP_DS_PORT_TYPE_HDMI3:
1221 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1222 return false0;
1223
1224 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH(1 << 2);
1225 default:
1226 return false0;
1227 }
1228}
1229EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1230
1231/**
1232 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1233 * YCbCr 4:4:4->4:2:0 conversion capability
1234 * @dpcd: DisplayPort configuration data
1235 * @port_cap: downstream facing port capabilities
1236 *
1237 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1238 */
1239bool_Bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1240 const u8 port_cap[4])
1241{
1242 if (!drm_dp_is_branch(dpcd))
1243 return false0;
1244
1245 if (dpcd[DP_DPCD_REV0x000] < 0x13)
1246 return false0;
1247
1248 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1249 case DP_DS_PORT_TYPE_HDMI3:
1250 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1251 return false0;
1252
1253 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV(1 << 4);
1254 default:
1255 return false0;
1256 }
1257}
1258EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1259
1260/**
1261 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1262 * RGB->YCbCr conversion capability
1263 * @dpcd: DisplayPort configuration data
1264 * @port_cap: downstream facing port capabilities
1265 * @color_spc: Colorspace for which conversion cap is sought
1266 *
1267 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1268 * colorspace.
1269 */
1270bool_Bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1271 const u8 port_cap[4],
1272 u8 color_spc)
1273{
1274 if (!drm_dp_is_branch(dpcd))
1275 return false0;
1276
1277 if (dpcd[DP_DPCD_REV0x000] < 0x13)
1278 return false0;
1279
1280 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1281 case DP_DS_PORT_TYPE_HDMI3:
1282 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4)) == 0)
1283 return false0;
1284
1285 return port_cap[3] & color_spc;
1286 default:
1287 return false0;
1288 }
1289}
1290EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1291
1292/**
1293 * drm_dp_downstream_mode() - return a mode for downstream facing port
1294 * @dev: DRM device
1295 * @dpcd: DisplayPort configuration data
1296 * @port_cap: port capabilities
1297 *
1298 * Provides a suitable mode for downstream facing ports without EDID.
1299 *
1300 * Returns: A new drm_display_mode on success or NULL on failure
1301 */
1302struct drm_display_mode *
1303drm_dp_downstream_mode(struct drm_device *dev,
1304 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1305 const u8 port_cap[4])
1306
1307{
1308 u8 vic;
1309
1310 if (!drm_dp_is_branch(dpcd))
1311 return NULL((void *)0);
1312
1313 if (dpcd[DP_DPCD_REV0x000] < 0x11)
1314 return NULL((void *)0);
1315
1316 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0)) {
1317 case DP_DS_PORT_TYPE_NON_EDID4:
1318 switch (port_cap[0] & DP_DS_NON_EDID_MASK(0xf << 4)) {
1319 case DP_DS_NON_EDID_720x480i_60(1 << 4):
1320 vic = 6;
1321 break;
1322 case DP_DS_NON_EDID_720x480i_50(2 << 4):
1323 vic = 21;
1324 break;
1325 case DP_DS_NON_EDID_1920x1080i_60(3 << 4):
1326 vic = 5;
1327 break;
1328 case DP_DS_NON_EDID_1920x1080i_50(4 << 4):
1329 vic = 20;
1330 break;
1331 case DP_DS_NON_EDID_1280x720_60(5 << 4):
1332 vic = 4;
1333 break;
1334 case DP_DS_NON_EDID_1280x720_50(7 << 4):
1335 vic = 19;
1336 break;
1337 default:
1338 return NULL((void *)0);
1339 }
1340 return drm_display_mode_from_cea_vic(dev, vic);
1341 default:
1342 return NULL((void *)0);
1343 }
1344}
1345EXPORT_SYMBOL(drm_dp_downstream_mode);
1346
1347/**
1348 * drm_dp_downstream_id() - identify branch device
1349 * @aux: DisplayPort AUX channel
1350 * @id: DisplayPort branch device id
1351 *
1352 * Returns branch device id on success or NULL on failure
1353 */
1354int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1355{
1356 return drm_dp_dpcd_read(aux, DP_BRANCH_ID0x503, id, 6);
1357}
1358EXPORT_SYMBOL(drm_dp_downstream_id);
1359
1360/**
1361 * drm_dp_downstream_debug() - debug DP branch devices
1362 * @m: pointer for debugfs file
1363 * @dpcd: DisplayPort configuration data
1364 * @port_cap: port capabilities
1365 * @edid: EDID
1366 * @aux: DisplayPort AUX channel
1367 *
1368 */
1369void drm_dp_downstream_debug(struct seq_file *m,
1370 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1371 const u8 port_cap[4],
1372 const struct edid *edid,
1373 struct drm_dp_aux *aux)
1374{
1375 bool_Bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] &
1376 DP_DETAILED_CAP_INFO_AVAILABLE(1 << 4);
1377 int clk;
1378 int bpc;
1379 char id[7];
1380 int len;
1381 uint8_t rev[2];
1382 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0);
1383 bool_Bool branch_device = drm_dp_is_branch(dpcd);
1384
1385 seq_printf(m, "\tDP branch device present: %s\n",
1386 str_yes_no(branch_device));
1387
1388 if (!branch_device)
1389 return;
1390
1391 switch (type) {
1392 case DP_DS_PORT_TYPE_DP0:
1393 seq_puts(m, "\t\tType: DisplayPort\n");
1394 break;
1395 case DP_DS_PORT_TYPE_VGA1:
1396 seq_puts(m, "\t\tType: VGA\n");
1397 break;
1398 case DP_DS_PORT_TYPE_DVI2:
1399 seq_puts(m, "\t\tType: DVI\n");
1400 break;
1401 case DP_DS_PORT_TYPE_HDMI3:
1402 seq_puts(m, "\t\tType: HDMI\n");
1403 break;
1404 case DP_DS_PORT_TYPE_NON_EDID4:
1405 seq_puts(m, "\t\tType: others without EDID support\n");
1406 break;
1407 case DP_DS_PORT_TYPE_DP_DUALMODE5:
1408 seq_puts(m, "\t\tType: DP++\n");
1409 break;
1410 case DP_DS_PORT_TYPE_WIRELESS6:
1411 seq_puts(m, "\t\tType: Wireless\n");
1412 break;
1413 default:
1414 seq_puts(m, "\t\tType: N/A\n");
1415 }
1416
1417 memset(id, 0, sizeof(id))__builtin_memset((id), (0), (sizeof(id)));
1418 drm_dp_downstream_id(aux, id);
1419 seq_printf(m, "\t\tID: %s\n", id);
1420
1421 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV0x509, &rev[0], 1);
1422 if (len > 0)
1423 seq_printf(m, "\t\tHW: %d.%d\n",
1424 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1425
1426 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV0x50A, rev, 2);
1427 if (len > 0)
1428 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1429
1430 if (detailed_cap_info) {
1431 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1432 if (clk > 0)
1433 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1434
1435 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1436 if (clk > 0)
1437 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1438
1439 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1440 if (clk > 0)
1441 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1442
1443 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1444
1445 if (bpc > 0)
1446 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1447 }
1448}
1449EXPORT_SYMBOL(drm_dp_downstream_debug);
1450
1451/**
1452 * drm_dp_subconnector_type() - get DP branch device type
1453 * @dpcd: DisplayPort configuration data
1454 * @port_cap: port capabilities
1455 */
1456enum drm_mode_subconnector
1457drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1458 const u8 port_cap[4])
1459{
1460 int type;
1461 if (!drm_dp_is_branch(dpcd))
1462 return DRM_MODE_SUBCONNECTOR_Native;
1463 /* DP 1.0 approach */
1464 if (dpcd[DP_DPCD_REV0x000] == DP_DPCD_REV_100x10) {
1465 type = dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] &
1466 DP_DWN_STRM_PORT_TYPE_MASK0x06;
1467
1468 switch (type) {
1469 case DP_DWN_STRM_PORT_TYPE_TMDS(2 << 1):
1470 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1471 return DRM_MODE_SUBCONNECTOR_DVID;
1472 case DP_DWN_STRM_PORT_TYPE_ANALOG(1 << 1):
1473 /* Can be VGA or DVI-A, VGA is more popular */
1474 return DRM_MODE_SUBCONNECTOR_VGA;
1475 case DP_DWN_STRM_PORT_TYPE_DP(0 << 1):
1476 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1477 case DP_DWN_STRM_PORT_TYPE_OTHER(3 << 1):
1478 default:
1479 return DRM_MODE_SUBCONNECTOR_Unknown;
1480 }
1481 }
1482 type = port_cap[0] & DP_DS_PORT_TYPE_MASK(7 << 0);
1483
1484 switch (type) {
1485 case DP_DS_PORT_TYPE_DP0:
1486 case DP_DS_PORT_TYPE_DP_DUALMODE5:
1487 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1488 case DP_DS_PORT_TYPE_VGA1:
1489 return DRM_MODE_SUBCONNECTOR_VGA;
1490 case DP_DS_PORT_TYPE_DVI2:
1491 return DRM_MODE_SUBCONNECTOR_DVID;
1492 case DP_DS_PORT_TYPE_HDMI3:
1493 return DRM_MODE_SUBCONNECTOR_HDMIA;
1494 case DP_DS_PORT_TYPE_WIRELESS6:
1495 return DRM_MODE_SUBCONNECTOR_Wireless;
1496 case DP_DS_PORT_TYPE_NON_EDID4:
1497 default:
1498 return DRM_MODE_SUBCONNECTOR_Unknown;
1499 }
1500}
1501EXPORT_SYMBOL(drm_dp_subconnector_type);
1502
1503/**
1504 * drm_dp_set_subconnector_property - set subconnector for DP connector
1505 * @connector: connector to set property on
1506 * @status: connector status
1507 * @dpcd: DisplayPort configuration data
1508 * @port_cap: port capabilities
1509 *
1510 * Called by a driver on every detect event.
1511 */
1512void drm_dp_set_subconnector_property(struct drm_connector *connector,
1513 enum drm_connector_status status,
1514 const u8 *dpcd,
1515 const u8 port_cap[4])
1516{
1517 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1518
1519 if (status == connector_status_connected)
1520 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1521 drm_object_property_set_value(&connector->base,
1522 connector->dev->mode_config.dp_subconnector_property,
1523 subconnector);
1524}
1525EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1526
1527/**
1528 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1529 * count
1530 * @connector: The DRM connector to check
1531 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1532 * @desc: A cached copy of the connector's DP descriptor
1533 *
1534 * See also: drm_dp_read_sink_count()
1535 *
1536 * Returns: %True if the (e)DP connector has a valid sink count that should
1537 * be probed, %false otherwise.
1538 */
1539bool_Bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1540 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
1541 const struct drm_dp_desc *desc)
1542{
1543 /* Some eDP panels don't set a valid value for the sink count */
1544 return connector->connector_type != DRM_MODE_CONNECTOR_eDP14 &&
1545 dpcd[DP_DPCD_REV0x000] >= DP_DPCD_REV_110x11 &&
1546 dpcd[DP_DOWNSTREAMPORT_PRESENT0x005] & DP_DWN_STRM_PORT_PRESENT(1 << 0) &&
1547 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1548}
1549EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1550
1551/**
1552 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1553 * @aux: The DP AUX channel to use
1554 *
1555 * See also: drm_dp_read_sink_count_cap()
1556 *
1557 * Returns: The current sink count reported by @aux, or a negative error code
1558 * otherwise.
1559 */
1560int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1561{
1562 u8 count;
1563 int ret;
1564
1565 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT0x200, &count);
1566 if (ret < 0)
1567 return ret;
1568 if (ret != 1)
1569 return -EIO5;
1570
1571 return DP_GET_SINK_COUNT(count)((((count) & 0x80) >> 1) | ((count) & 0x3f));
1572}
1573EXPORT_SYMBOL(drm_dp_read_sink_count);
1574
1575/*
1576 * I2C-over-AUX implementation
1577 */
1578
1579static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1580{
1581 return I2C_FUNC_I2C0 | I2C_FUNC_SMBUS_EMUL0 |
1582 I2C_FUNC_SMBUS_READ_BLOCK_DATA0 |
1583 I2C_FUNC_SMBUS_BLOCK_PROC_CALL0 |
1584 I2C_FUNC_10BIT_ADDR0;
1585}
1586
1587static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1588{
1589 /*
1590 * In case of i2c defer or short i2c ack reply to a write,
1591 * we need to switch to WRITE_STATUS_UPDATE to drain the
1592 * rest of the message
1593 */
1594 if ((msg->request & ~DP_AUX_I2C_MOT0x4) == DP_AUX_I2C_WRITE0x0) {
1595 msg->request &= DP_AUX_I2C_MOT0x4;
1596 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE0x2;
1597 }
1598}
1599
1600#define AUX_PRECHARGE_LEN10 10 /* 10 to 16 */
1601#define AUX_SYNC_LEN(16 + 4) (16 + 4) /* preamble + AUX_SYNC_END */
1602#define AUX_STOP_LEN4 4
1603#define AUX_CMD_LEN4 4
1604#define AUX_ADDRESS_LEN20 20
1605#define AUX_REPLY_PAD_LEN4 4
1606#define AUX_LENGTH_LEN8 8
1607
1608/*
1609 * Calculate the duration of the AUX request/reply in usec. Gives the
1610 * "best" case estimate, ie. successful while as short as possible.
1611 */
1612static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1613{
1614 int len = AUX_PRECHARGE_LEN10 + AUX_SYNC_LEN(16 + 4) + AUX_STOP_LEN4 +
1615 AUX_CMD_LEN4 + AUX_ADDRESS_LEN20 + AUX_LENGTH_LEN8;
1616
1617 if ((msg->request & DP_AUX_I2C_READ0x1) == 0)
1618 len += msg->size * 8;
1619
1620 return len;
1621}
1622
1623static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1624{
1625 int len = AUX_PRECHARGE_LEN10 + AUX_SYNC_LEN(16 + 4) + AUX_STOP_LEN4 +
1626 AUX_CMD_LEN4 + AUX_REPLY_PAD_LEN4;
1627
1628 /*
1629 * For read we expect what was asked. For writes there will
1630 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1631 */
1632 if (msg->request & DP_AUX_I2C_READ0x1)
1633 len += msg->size * 8;
1634
1635 return len;
1636}
1637
1638#define I2C_START_LEN1 1
1639#define I2C_STOP_LEN1 1
1640#define I2C_ADDR_LEN9 9 /* ADDRESS + R/W + ACK/NACK */
1641#define I2C_DATA_LEN9 9 /* DATA + ACK/NACK */
1642
1643/*
1644 * Calculate the length of the i2c transfer in usec, assuming
1645 * the i2c bus speed is as specified. Gives the "worst"
1646 * case estimate, ie. successful while as long as possible.
1647 * Doesn't account the "MOT" bit, and instead assumes each
1648 * message includes a START, ADDRESS and STOP. Neither does it
1649 * account for additional random variables such as clock stretching.
1650 */
1651static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1652 int i2c_speed_khz)
1653{
1654 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1655 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +((((1 + 9 + msg->size * 9 + 1) * 1000) + ((i2c_speed_khz) -
1)) / (i2c_speed_khz))
1656 msg->size * I2C_DATA_LEN +((((1 + 9 + msg->size * 9 + 1) * 1000) + ((i2c_speed_khz) -
1)) / (i2c_speed_khz))
1657 I2C_STOP_LEN) * 1000, i2c_speed_khz)((((1 + 9 + msg->size * 9 + 1) * 1000) + ((i2c_speed_khz) -
1)) / (i2c_speed_khz))
;
1658}
1659
1660/*
1661 * Determine how many retries should be attempted to successfully transfer
1662 * the specified message, based on the estimated durations of the
1663 * i2c and AUX transfers.
1664 */
1665static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1666 int i2c_speed_khz)
1667{
1668 int aux_time_us = drm_dp_aux_req_duration(msg) +
1669 drm_dp_aux_reply_duration(msg);
1670 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1671
1672 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL)(((i2c_time_us) + ((aux_time_us + 500) - 1)) / (aux_time_us +
500))
;
1673}
1674
1675/*
1676 * FIXME currently assumes 10 kHz as some real world devices seem
1677 * to require it. We should query/set the speed via DPCD if supported.
1678 */
1679static int dp_aux_i2c_speed_khz __read_mostly = 10;
1680module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1681MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1682 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1683
1684/*
1685 * Transfer a single I2C-over-AUX message and handle various error conditions,
1686 * retrying the transaction as appropriate. It is assumed that the
1687 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1688 * reply field.
1689 *
1690 * Returns bytes transferred on success, or a negative error code on failure.
1691 */
1692static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1693{
1694 unsigned int retry, defer_i2c;
1695 int ret;
1696 /*
1697 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1698 * is required to retry at least seven times upon receiving AUX_DEFER
1699 * before giving up the AUX transaction.
1700 *
1701 * We also try to account for the i2c bus speed.
1702 */
1703 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz))(((7)>(drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)))
?(7):(drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz)))
;
1704
1705 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1706 ret = aux->transfer(aux, msg);
1707 if (ret < 0) {
1708 if (ret == -EBUSY16)
1709 continue;
1710
1711 /*
1712 * While timeouts can be errors, they're usually normal
1713 * behavior (for instance, when a driver tries to
1714 * communicate with a non-existent DisplayPort device).
1715 * Avoid spamming the kernel log with timeout errors.
1716 */
1717 if (ret == -ETIMEDOUT60)
1718 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",({ static struct ratelimit_state rs_; const struct drm_device
*drm_ = (aux->drm_dev); if (drm_debug_enabled_raw(DRM_UT_KMS
) && __ratelimit(&rs_)) drm_dev_printk(drm_ ? drm_
->dev : ((void *)0), "\0017", "%s: transaction timed out\n"
, aux->name); })
1719 aux->name)({ static struct ratelimit_state rs_; const struct drm_device
*drm_ = (aux->drm_dev); if (drm_debug_enabled_raw(DRM_UT_KMS
) && __ratelimit(&rs_)) drm_dev_printk(drm_ ? drm_
->dev : ((void *)0), "\0017", "%s: transaction timed out\n"
, aux->name); })
;
1720 else
1721 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: transaction failed: %d\n"
, aux->name, ret)
1722 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: transaction failed: %d\n"
, aux->name, ret)
;
1723 return ret;
1724 }
1725
1726
1727 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK(0x3 << 0)) {
1728 case DP_AUX_NATIVE_REPLY_ACK(0x0 << 0):
1729 /*
1730 * For I2C-over-AUX transactions this isn't enough, we
1731 * need to check for the I2C ACK reply.
1732 */
1733 break;
1734
1735 case DP_AUX_NATIVE_REPLY_NACK(0x1 << 0):
1736 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: native nack (result=%d, size=%zu)\n"
, aux->name, ret, msg->size)
1737 aux->name, ret, msg->size)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: native nack (result=%d, size=%zu)\n"
, aux->name, ret, msg->size)
;
1738 return -EREMOTEIO5;
1739
1740 case DP_AUX_NATIVE_REPLY_DEFER(0x2 << 0):
1741 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: native defer\n", aux
->name)
;
1742 /*
1743 * We could check for I2C bit rate capabilities and if
1744 * available adjust this interval. We could also be
1745 * more careful with DP-to-legacy adapters where a
1746 * long legacy cable may force very low I2C bit rates.
1747 *
1748 * For now just defer for long enough to hopefully be
1749 * safe for all use-cases.
1750 */
1751 usleep_range(AUX_RETRY_INTERVAL500, AUX_RETRY_INTERVAL500 + 100);
1752 continue;
1753
1754 default:
1755 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: invalid native reply %#04x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, msg->reply)
1756 aux->name, msg->reply)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: invalid native reply %#04x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, msg->reply)
;
1757 return -EREMOTEIO5;
1758 }
1759
1760 switch (msg->reply & DP_AUX_I2C_REPLY_MASK(0x3 << 2)) {
1761 case DP_AUX_I2C_REPLY_ACK(0x0 << 2):
1762 /*
1763 * Both native ACK and I2C ACK replies received. We
1764 * can assume the transfer was successful.
1765 */
1766 if (ret != msg->size)
1767 drm_dp_i2c_msg_write_status_update(msg);
1768 return ret;
1769
1770 case DP_AUX_I2C_REPLY_NACK(0x1 << 2):
1771 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: I2C nack (result=%d, size=%zu)\n"
, aux->name, ret, msg->size)
1772 aux->name, ret, msg->size)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: I2C nack (result=%d, size=%zu)\n"
, aux->name, ret, msg->size)
;
1773 aux->i2c_nack_count++;
1774 return -EREMOTEIO5;
1775
1776 case DP_AUX_I2C_REPLY_DEFER(0x2 << 2):
1777 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: I2C defer\n", aux->
name)
;
1778 /* DP Compliance Test 4.2.2.5 Requirement:
1779 * Must have at least 7 retries for I2C defers on the
1780 * transaction to pass this test
1781 */
1782 aux->i2c_defer_count++;
1783 if (defer_i2c < 7)
1784 defer_i2c++;
1785 usleep_range(AUX_RETRY_INTERVAL500, AUX_RETRY_INTERVAL500 + 100);
1786 drm_dp_i2c_msg_write_status_update(msg);
1787
1788 continue;
1789
1790 default:
1791 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: invalid I2C reply %#04x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, msg->reply)
1792 aux->name, msg->reply)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: invalid I2C reply %#04x\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, msg->reply)
;
1793 return -EREMOTEIO5;
1794 }
1795 }
1796
1797 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Too many retries, giving up\n"
, aux->name)
;
1798 return -EREMOTEIO5;
1799}
1800
1801static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1802 const struct i2c_msg *i2c_msg)
1803{
1804 msg->request = (i2c_msg->flags & I2C_M_RD0x0001) ?
1805 DP_AUX_I2C_READ0x1 : DP_AUX_I2C_WRITE0x0;
1806 if (!(i2c_msg->flags & I2C_M_STOP0x0004))
1807 msg->request |= DP_AUX_I2C_MOT0x4;
1808}
1809
1810/*
1811 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1812 *
1813 * Returns an error code on failure, or a recommended transfer size on success.
1814 */
1815static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1816{
1817 int err, ret = orig_msg->size;
1818 struct drm_dp_aux_msg msg = *orig_msg;
1819
1820 while (msg.size > 0) {
1821 err = drm_dp_i2c_do_msg(aux, &msg);
1822 if (err <= 0)
1823 return err == 0 ? -EPROTO95 : err;
1824
1825 if (err < msg.size && err < ret) {
1826 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Partial I2C reply: requested %zu bytes got %d bytes\n"
, aux->name, msg.size, err)
1827 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Partial I2C reply: requested %zu bytes got %d bytes\n"
, aux->name, msg.size, err)
1828 aux->name, msg.size, err)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Partial I2C reply: requested %zu bytes got %d bytes\n"
, aux->name, msg.size, err)
;
1829 ret = err;
1830 }
1831
1832 msg.size -= err;
1833 msg.buffer += err;
1834 }
1835
1836 return ret;
1837}
1838
1839/*
1840 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1841 * packets to be as large as possible. If not, the I2C transactions never
1842 * succeed. Hence the default is maximum.
1843 */
1844static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES16;
1845module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1846MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1847 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1848
1849static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1850 int num)
1851{
1852 struct drm_dp_aux *aux = adapter->algo_data;
1853 unsigned int i, j;
1854 unsigned transfer_size;
1855 struct drm_dp_aux_msg msg;
1856 int err = 0;
1857
1858 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES)({ __typeof(dp_aux_i2c_transfer_size) __min_a = (({ __typeof(
dp_aux_i2c_transfer_size) __max_a = (dp_aux_i2c_transfer_size
); __typeof(dp_aux_i2c_transfer_size) __max_b = (1); __max_a >
__max_b ? __max_a : __max_b; })); __typeof(dp_aux_i2c_transfer_size
) __min_b = (16); __min_a < __min_b ? __min_a : __min_b; }
)
;
1859
1860 memset(&msg, 0, sizeof(msg))__builtin_memset((&msg), (0), (sizeof(msg)));
1861
1862 for (i = 0; i < num; i++) {
1863 msg.address = msgs[i].addr;
1864 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1865 /* Send a bare address packet to start the transaction.
1866 * Zero sized messages specify an address only (bare
1867 * address) transaction.
1868 */
1869 msg.buffer = NULL((void *)0);
1870 msg.size = 0;
1871 err = drm_dp_i2c_do_msg(aux, &msg);
1872
1873 /*
1874 * Reset msg.request in case in case it got
1875 * changed into a WRITE_STATUS_UPDATE.
1876 */
1877 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1878
1879 if (err < 0)
1880 break;
1881 /* We want each transaction to be as large as possible, but
1882 * we'll go to smaller sizes if the hardware gives us a
1883 * short reply.
1884 */
1885 transfer_size = dp_aux_i2c_transfer_size;
1886 for (j = 0; j < msgs[i].len; j += msg.size) {
1887 msg.buffer = msgs[i].buf + j;
1888 msg.size = min(transfer_size, msgs[i].len - j)(((transfer_size)<(msgs[i].len - j))?(transfer_size):(msgs
[i].len - j))
;
1889
1890 err = drm_dp_i2c_drain_msg(aux, &msg);
1891
1892 /*
1893 * Reset msg.request in case in case it got
1894 * changed into a WRITE_STATUS_UPDATE.
1895 */
1896 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1897
1898 if (err < 0)
1899 break;
1900 transfer_size = err;
1901 }
1902 if (err < 0)
1903 break;
1904 }
1905 if (err >= 0)
1906 err = num;
1907 /* Send a bare address packet to close out the transaction.
1908 * Zero sized messages specify an address only (bare
1909 * address) transaction.
1910 */
1911 msg.request &= ~DP_AUX_I2C_MOT0x4;
1912 msg.buffer = NULL((void *)0);
1913 msg.size = 0;
1914 (void)drm_dp_i2c_do_msg(aux, &msg);
1915
1916 return err;
1917}
1918
1919static const struct i2c_algorithm drm_dp_i2c_algo = {
1920 .functionality = drm_dp_i2c_functionality,
1921 .master_xfer = drm_dp_i2c_xfer,
1922};
1923
1924static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1925{
1926 return container_of(i2c, struct drm_dp_aux, ddc)({ const __typeof( ((struct drm_dp_aux *)0)->ddc ) *__mptr
= (i2c); (struct drm_dp_aux *)( (char *)__mptr - __builtin_offsetof
(struct drm_dp_aux, ddc) );})
;
1927}
1928
1929static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1930{
1931 mutex_lock(&i2c_to_aux(i2c)->hw_mutex)rw_enter_write(&i2c_to_aux(i2c)->hw_mutex);
1932}
1933
1934static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1935{
1936 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex)(rw_enter(&i2c_to_aux(i2c)->hw_mutex, 0x0001UL | 0x0040UL
) == 0)
;
1937}
1938
1939static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1940{
1941 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex)rw_exit_write(&i2c_to_aux(i2c)->hw_mutex);
1942}
1943
1944static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1945 .lock_bus = lock_bus,
1946 .trylock_bus = trylock_bus,
1947 .unlock_bus = unlock_bus,
1948};
1949
1950static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1951{
1952 u8 buf, count;
1953 int ret;
1954
1955 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK0x270, &buf);
1956 if (ret < 0)
1957 return ret;
1958
1959 WARN_ON(!(buf & DP_TEST_SINK_START))({ int __ret = !!(!(buf & (1 << 0))); if (__ret) printf
("WARNING %s failed at %s:%d\n", "!(buf & (1 << 0))"
, "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c", 1959); __builtin_expect
(!!(__ret), 0); })
;
1960
1961 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC0x246, &buf);
1962 if (ret < 0)
1963 return ret;
1964
1965 count = buf & DP_TEST_COUNT_MASK0xf;
1966 if (count == aux->crc_count)
1967 return -EAGAIN35; /* No CRC yet */
1968
1969 aux->crc_count = count;
1970
1971 /*
1972 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1973 * per component (RGB or CrYCb).
1974 */
1975 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR0x240, crc, 6);
1976 if (ret < 0)
1977 return ret;
1978
1979 return 0;
1980}
1981
1982static void drm_dp_aux_crc_work(struct work_struct *work)
1983{
1984 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,({ const __typeof( ((struct drm_dp_aux *)0)->crc_work ) *__mptr
= (work); (struct drm_dp_aux *)( (char *)__mptr - __builtin_offsetof
(struct drm_dp_aux, crc_work) );})
1985 crc_work)({ const __typeof( ((struct drm_dp_aux *)0)->crc_work ) *__mptr
= (work); (struct drm_dp_aux *)( (char *)__mptr - __builtin_offsetof
(struct drm_dp_aux, crc_work) );})
;
1986 struct drm_crtc *crtc;
1987 u8 crc_bytes[6];
1988 uint32_t crcs[3];
1989 int ret;
1990
1991 if (WARN_ON(!aux->crtc)({ int __ret = !!(!aux->crtc); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "!aux->crtc", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 1991); __builtin_expect(!!(__ret), 0); })
)
1992 return;
1993
1994 crtc = aux->crtc;
1995 while (crtc->crc.opened) {
1996 drm_crtc_wait_one_vblank(crtc);
1997 if (!crtc->crc.opened)
1998 break;
1999
2000 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2001 if (ret == -EAGAIN35) {
2002 usleep_range(1000, 2000);
2003 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004 }
2005
2006 if (ret == -EAGAIN35) {
2007 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Get CRC failed after retrying: %d\n"
, aux->name, ret)
2008 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Get CRC failed after retrying: %d\n"
, aux->name, ret)
;
2009 continue;
2010 } else if (ret) {
2011 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to get a CRC: %d\n"
, aux->name, ret)
;
2012 continue;
2013 }
2014
2015 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2016 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2017 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2018 drm_crtc_add_crc_entry(crtc, false0, 0, crcs);
2019 }
2020}
2021
2022/**
2023 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2024 * @aux: DisplayPort AUX channel
2025 *
2026 * Used for remote aux channel in general. Merely initialize the crc work
2027 * struct.
2028 */
2029void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2030{
2031 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2032}
2033EXPORT_SYMBOL(drm_dp_remote_aux_init);
2034
2035/**
2036 * drm_dp_aux_init() - minimally initialise an aux channel
2037 * @aux: DisplayPort AUX channel
2038 *
2039 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2040 * the outside world, call drm_dp_aux_init() first. For drivers which are
2041 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2042 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2043 * has been registered to allow userspace access to the auxiliary DP channel.
2044 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2045 * early as possible so that the &drm_device that corresponds to the AUX adapter
2046 * may be mentioned in debugging output from the DRM DP helpers.
2047 *
2048 * For devices which use a separate platform device for their AUX adapters, this
2049 * may be called as early as required by the driver.
2050 *
2051 */
2052void drm_dp_aux_init(struct drm_dp_aux *aux)
2053{
2054 /*
2055 * witness does not understand mutex_lock_nest_lock()
2056 * order reversal in i915 with this lock
2057 */
2058 rw_init_flags(&aux->hw_mutex, "drmdp", RWL_NOWITNESS)_rw_init_flags(&aux->hw_mutex, "drmdp", 0x02, ((void *
)0))
;
2059 rw_init(&aux->cec.lock, "drmcec")_rw_init_flags(&aux->cec.lock, "drmcec", 0, ((void *)0
))
;
2060 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2061
2062 aux->ddc.algo = &drm_dp_i2c_algo;
2063 aux->ddc.algo_data = aux;
2064 aux->ddc.retries = 3;
2065
2066 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2067}
2068EXPORT_SYMBOL(drm_dp_aux_init);
2069
2070/**
2071 * drm_dp_aux_register() - initialise and register aux channel
2072 * @aux: DisplayPort AUX channel
2073 *
2074 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2075 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2076 * initialized. For devices which are grandparents of their AUX channels,
2077 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2078 * corresponds to @aux. For these devices, it's advised to call
2079 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2080 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2081 * Functions which don't follow this will likely Oops when
2082 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2083 *
2084 * For devices where the AUX channel is a device that exists independently of
2085 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2086 * recommended to call drm_dp_aux_register() after a &drm_device has been
2087 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2088 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2089 * with the AUX channel (e.g. on bridge detach).
2090 *
2091 * Drivers which need to use the aux channel before either of the two points
2092 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2093 * channel before registration.
2094 *
2095 * Returns 0 on success or a negative error code on failure.
2096 */
2097int drm_dp_aux_register(struct drm_dp_aux *aux)
2098{
2099 int ret;
2100
2101 WARN_ON_ONCE(!aux->drm_dev)({ static int __warned; int __ret = !!(!aux->drm_dev); if (
__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!aux->drm_dev", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 2101); __warned = 1; } __builtin_expect(!!(__ret), 0); })
;
2102
2103 if (!aux->ddc.algo)
2104 drm_dp_aux_init(aux);
2105
2106#ifdef __linux__
2107 aux->ddc.class = I2C_CLASS_DDC;
2108 aux->ddc.owner = THIS_MODULE((void *)0);
2109 aux->ddc.dev.parent = aux->dev;
2110#endif
2111
2112 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev)"",
2113 sizeof(aux->ddc.name));
2114
2115 ret = drm_dp_aux_register_devnode(aux);
2116 if (ret)
2117 return ret;
2118
2119 ret = i2c_add_adapter(&aux->ddc);
2120 if (ret) {
2121 drm_dp_aux_unregister_devnode(aux);
2122 return ret;
2123 }
2124
2125 return 0;
2126}
2127EXPORT_SYMBOL(drm_dp_aux_register);
2128
2129/**
2130 * drm_dp_aux_unregister() - unregister an AUX adapter
2131 * @aux: DisplayPort AUX channel
2132 */
2133void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2134{
2135 drm_dp_aux_unregister_devnode(aux);
2136 i2c_del_adapter(&aux->ddc);
2137}
2138EXPORT_SYMBOL(drm_dp_aux_unregister);
2139
2140#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT1] = (x)
2141
2142/**
2143 * drm_dp_psr_setup_time() - PSR setup in time usec
2144 * @psr_cap: PSR capabilities from DPCD
2145 *
2146 * Returns:
2147 * PSR setup time for the panel in microseconds, negative
2148 * error code on failure.
2149 */
2150int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE2])
2151{
2152 static const u16 psr_setup_time_us[] = {
2153 PSR_SETUP_TIME(330),
2154 PSR_SETUP_TIME(275),
2155 PSR_SETUP_TIME(220),
2156 PSR_SETUP_TIME(165),
2157 PSR_SETUP_TIME(110),
2158 PSR_SETUP_TIME(55),
2159 PSR_SETUP_TIME(0),
2160 };
2161 int i;
2162
2163 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK(7 << 1)) >> DP_PSR_SETUP_TIME_SHIFT1;
2164 if (i >= ARRAY_SIZE(psr_setup_time_us)(sizeof((psr_setup_time_us)) / sizeof((psr_setup_time_us)[0])
)
)
2165 return -EINVAL22;
2166
2167 return psr_setup_time_us[i];
2168}
2169EXPORT_SYMBOL(drm_dp_psr_setup_time);
2170
2171#undef PSR_SETUP_TIME
2172
2173/**
2174 * drm_dp_start_crc() - start capture of frame CRCs
2175 * @aux: DisplayPort AUX channel
2176 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2177 *
2178 * Returns 0 on success or a negative error code on failure.
2179 */
2180int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2181{
2182 u8 buf;
2183 int ret;
2184
2185 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK0x270, &buf);
2186 if (ret < 0)
2187 return ret;
2188
2189 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK0x270, buf | DP_TEST_SINK_START(1 << 0));
2190 if (ret < 0)
2191 return ret;
2192
2193 aux->crc_count = 0;
2194 aux->crtc = crtc;
2195 schedule_work(&aux->crc_work);
2196
2197 return 0;
2198}
2199EXPORT_SYMBOL(drm_dp_start_crc);
2200
2201/**
2202 * drm_dp_stop_crc() - stop capture of frame CRCs
2203 * @aux: DisplayPort AUX channel
2204 *
2205 * Returns 0 on success or a negative error code on failure.
2206 */
2207int drm_dp_stop_crc(struct drm_dp_aux *aux)
2208{
2209 u8 buf;
2210 int ret;
2211
2212 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK0x270, &buf);
2213 if (ret < 0)
2214 return ret;
2215
2216 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK0x270, buf & ~DP_TEST_SINK_START(1 << 0));
2217 if (ret < 0)
2218 return ret;
2219
2220 flush_work(&aux->crc_work);
2221 aux->crtc = NULL((void *)0);
2222
2223 return 0;
2224}
2225EXPORT_SYMBOL(drm_dp_stop_crc);
2226
2227struct dpcd_quirk {
2228 u8 oui[3];
2229 u8 device_id[6];
2230 bool_Bool is_branch;
2231 u32 quirks;
2232};
2233
2234#define OUI(first, second, third) { (first), (second), (third) }
2235#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2236 { (first), (second), (third), (fourth), (fifth), (sixth) }
2237
2238#define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2239
2240static const struct dpcd_quirk dpcd_quirk_list[] = {
2241 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2242 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true1, BIT(DP_DPCD_QUIRK_CONSTANT_N)(1UL << (DP_DPCD_QUIRK_CONSTANT_N)) },
2243 /* LG LP140WF6-SPM1 eDP panel */
2244 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false0, BIT(DP_DPCD_QUIRK_CONSTANT_N)(1UL << (DP_DPCD_QUIRK_CONSTANT_N)) },
2245 /* Apple panels need some additional handling to support PSR */
2246 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false0, BIT(DP_DPCD_QUIRK_NO_PSR)(1UL << (DP_DPCD_QUIRK_NO_PSR)) },
2247 /* CH7511 seems to leave SINK_COUNT zeroed */
2248 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false0, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT)(1UL << (DP_DPCD_QUIRK_NO_SINK_COUNT)) },
2249 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2250 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true1, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)(1UL << (DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD)) },
2251 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2252 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false0, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)(1UL << (DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) },
2253};
2254
2255#undef OUI
2256
2257/*
2258 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2259 * ident. The quirk data is shared but it's up to the drivers to act on the
2260 * data.
2261 *
2262 * For now, only the OUI (first three bytes) is used, but this may be extended
2263 * to device identification string and hardware/firmware revisions later.
2264 */
2265static u32
2266drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool_Bool is_branch)
2267{
2268 const struct dpcd_quirk *quirk;
2269 u32 quirks = 0;
2270 int i;
2271 u8 any_device[] = DEVICE_ID_ANY;
2272
2273 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list)(sizeof((dpcd_quirk_list)) / sizeof((dpcd_quirk_list)[0])); i++) {
2274 quirk = &dpcd_quirk_list[i];
2275
2276 if (quirk->is_branch != is_branch)
2277 continue;
2278
2279 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui))__builtin_memcmp((quirk->oui), (ident->oui), (sizeof(ident
->oui)))
!= 0)
2280 continue;
2281
2282 if (memcmp(quirk->device_id, any_device, sizeof(any_device))__builtin_memcmp((quirk->device_id), (any_device), (sizeof
(any_device)))
!= 0 &&
2283 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id))__builtin_memcmp((quirk->device_id), (ident->device_id)
, (sizeof(ident->device_id)))
!= 0)
2284 continue;
2285
2286 quirks |= quirk->quirks;
2287 }
2288
2289 return quirks;
2290}
2291
2292#undef DEVICE_ID_ANY
2293#undef DEVICE_ID
2294
2295/**
2296 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2297 * @aux: DisplayPort AUX channel
2298 * @desc: Device descriptor to fill from DPCD
2299 * @is_branch: true for branch devices, false for sink devices
2300 *
2301 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2302 * identification.
2303 *
2304 * Returns 0 on success or a negative error code on failure.
2305 */
2306int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2307 bool_Bool is_branch)
2308{
2309 struct drm_dp_dpcd_ident *ident = &desc->ident;
2310 unsigned int offset = is_branch ? DP_BRANCH_OUI0x500 : DP_SINK_OUI0x400;
2311 int ret, dev_id_len;
2312
2313 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2314 if (ret < 0)
2315 return ret;
2316
2317 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2318
2319 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2320
2321 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
2322 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
2323 aux->name, is_branch ? "branch" : "sink",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
2324 (int)sizeof(ident->oui), ident->oui, dev_id_len,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
2325 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
2326 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n"
, aux->name, is_branch ? "branch" : "sink", (int)sizeof(ident
->oui), ident->oui, dev_id_len, ident->device_id, ident
->hw_rev >> 4, ident->hw_rev & 0xf, ident->
sw_major_rev, ident->sw_minor_rev, desc->quirks)
;
2327
2328 return 0;
2329}
2330EXPORT_SYMBOL(drm_dp_read_desc);
2331
2332/**
2333 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2334 * supported by the DSC sink.
2335 * @dsc_dpcd: DSC capabilities from DPCD
2336 * @is_edp: true if its eDP, false for DP
2337 *
2338 * Read the slice capabilities DPCD register from DSC sink to get
2339 * the maximum slice count supported. This is used to populate
2340 * the DSC parameters in the &struct drm_dsc_config by the driver.
2341 * Driver creates an infoframe using these parameters to populate
2342 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2343 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2344 *
2345 * Returns:
2346 * Maximum slice count supported by DSC sink or 0 its invalid
2347 */
2348u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE0x10],
2349 bool_Bool is_edp)
2350{
2351 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_10x064 - DP_DSC_SUPPORT0x060];
2352
2353 if (is_edp) {
2354 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2355 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK(1 << 3))
2356 return 4;
2357 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK(1 << 1))
2358 return 2;
2359 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK(1 << 0))
2360 return 1;
2361 } else {
2362 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2363 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_20x06D - DP_DSC_SUPPORT0x060];
2364
2365 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK(1 << 2))
2366 return 24;
2367 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK(1 << 1))
2368 return 20;
2369 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK(1 << 0))
2370 return 16;
2371 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK(1 << 7))
2372 return 12;
2373 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK(1 << 6))
2374 return 10;
2375 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK(1 << 5))
2376 return 8;
2377 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK(1 << 4))
2378 return 6;
2379 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK(1 << 3))
2380 return 4;
2381 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK(1 << 1))
2382 return 2;
2383 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK(1 << 0))
2384 return 1;
2385 }
2386
2387 return 0;
2388}
2389EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2390
2391/**
2392 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2393 * @dsc_dpcd: DSC capabilities from DPCD
2394 *
2395 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2396 * number of bits of precision within the decoder line buffer supported by
2397 * the DSC sink. This is used to populate the DSC parameters in the
2398 * &struct drm_dsc_config by the driver.
2399 * Driver creates an infoframe using these parameters to populate
2400 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2401 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2402 *
2403 * Returns:
2404 * Line buffer depth supported by DSC panel or 0 its invalid
2405 */
2406u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE0x10])
2407{
2408 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH0x065 - DP_DSC_SUPPORT0x060];
2409
2410 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK(0xf << 0)) {
2411 case DP_DSC_LINE_BUF_BIT_DEPTH_90x0:
2412 return 9;
2413 case DP_DSC_LINE_BUF_BIT_DEPTH_100x1:
2414 return 10;
2415 case DP_DSC_LINE_BUF_BIT_DEPTH_110x2:
2416 return 11;
2417 case DP_DSC_LINE_BUF_BIT_DEPTH_120x3:
2418 return 12;
2419 case DP_DSC_LINE_BUF_BIT_DEPTH_130x4:
2420 return 13;
2421 case DP_DSC_LINE_BUF_BIT_DEPTH_140x5:
2422 return 14;
2423 case DP_DSC_LINE_BUF_BIT_DEPTH_150x6:
2424 return 15;
2425 case DP_DSC_LINE_BUF_BIT_DEPTH_160x7:
2426 return 16;
2427 case DP_DSC_LINE_BUF_BIT_DEPTH_80x8:
2428 return 8;
2429 }
2430
2431 return 0;
2432}
2433EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2434
2435/**
2436 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2437 * values supported by the DSC sink.
2438 * @dsc_dpcd: DSC capabilities from DPCD
2439 * @dsc_bpc: An array to be filled by this helper with supported
2440 * input bpcs.
2441 *
2442 * Read the DSC DPCD from the sink device to parse the supported bits per
2443 * component values. This is used to populate the DSC parameters
2444 * in the &struct drm_dsc_config by the driver.
2445 * Driver creates an infoframe using these parameters to populate
2446 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2447 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2448 *
2449 * Returns:
2450 * Number of input BPC values parsed from the DPCD
2451 */
2452int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE0x10],
2453 u8 dsc_bpc[3])
2454{
2455 int num_bpc = 0;
2456 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP0x06A - DP_DSC_SUPPORT0x060];
2457
2458 if (color_depth & DP_DSC_12_BPC(1 << 3))
2459 dsc_bpc[num_bpc++] = 12;
2460 if (color_depth & DP_DSC_10_BPC(1 << 2))
2461 dsc_bpc[num_bpc++] = 10;
2462 if (color_depth & DP_DSC_8_BPC(1 << 1))
2463 dsc_bpc[num_bpc++] = 8;
2464
2465 return num_bpc;
2466}
2467EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2468
2469static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2470 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf], int address,
2471 u8 *buf, int buf_size)
2472{
2473 /*
2474 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2475 * corrupted values when reading from the 0xF0000- range with a block
2476 * size bigger than 1.
2477 */
2478 int block_size = dpcd[DP_DPCD_REV0x000] < 0x14 ? 1 : buf_size;
2479 int offset;
2480 int ret;
2481
2482 for (offset = 0; offset < buf_size; offset += block_size) {
2483 ret = drm_dp_dpcd_read(aux,
2484 address + offset,
2485 &buf[offset], block_size);
2486 if (ret < 0)
2487 return ret;
2488
2489 WARN_ON(ret != block_size)({ int __ret = !!(ret != block_size); if (__ret) printf("WARNING %s failed at %s:%d\n"
, "ret != block_size", "/usr/src/sys/dev/pci/drm/display/drm_dp_helper.c"
, 2489); __builtin_expect(!!(__ret), 0); })
;
2490 }
2491
2492 return 0;
2493}
2494
2495/**
2496 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2497 * @aux: DisplayPort AUX channel
2498 * @dpcd: DisplayPort configuration data
2499 * @caps: buffer to return the capability info in
2500 *
2501 * Read capabilities common to all LTTPRs.
2502 *
2503 * Returns 0 on success or a negative error code on failure.
2504 */
2505int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2506 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
2507 u8 caps[DP_LTTPR_COMMON_CAP_SIZE8])
2508{
2509 return drm_dp_read_lttpr_regs(aux, dpcd,
2510 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV0xf0000,
2511 caps, DP_LTTPR_COMMON_CAP_SIZE8);
2512}
2513EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2514
2515/**
2516 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2517 * @aux: DisplayPort AUX channel
2518 * @dpcd: DisplayPort configuration data
2519 * @dp_phy: LTTPR PHY to read the capabilities for
2520 * @caps: buffer to return the capability info in
2521 *
2522 * Read the capabilities for the given LTTPR PHY.
2523 *
2524 * Returns 0 on success or a negative error code on failure.
2525 */
2526int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2527 const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
2528 enum drm_dp_phy dp_phy,
2529 u8 caps[DP_LTTPR_PHY_CAP_SIZE3])
2530{
2531 return drm_dp_read_lttpr_regs(aux, dpcd,
2532 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy)((0xf0010 + (0xf0060 - 0xf0010) * ((dp_phy) - DP_PHY_LTTPR1))
- (0xf0010 + (0xf0060 - 0xf0010) * ((DP_PHY_LTTPR1) - DP_PHY_LTTPR1
)) + (0xf0020))
,
2533 caps, DP_LTTPR_PHY_CAP_SIZE3);
2534}
2535EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2536
2537static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE8], int r)
2538{
2539 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV0xf0000];
2540}
2541
2542/**
2543 * drm_dp_lttpr_count - get the number of detected LTTPRs
2544 * @caps: LTTPR common capabilities
2545 *
2546 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2547 *
2548 * Returns:
2549 * -ERANGE if more than supported number (8) of LTTPRs are detected
2550 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2551 * otherwise the number of detected LTTPRs
2552 */
2553int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE8])
2554{
2555 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT0xf0002);
2556
2557 switch (hweight8(count)) {
2558 case 0:
2559 return 0;
2560 case 1:
2561 return 8 - ilog2(count)((sizeof(count) <= 4) ? (fls(count) - 1) : (flsl(count) - 1
))
;
2562 case 8:
2563 return -ERANGE34;
2564 default:
2565 return -EINVAL22;
2566 }
2567}
2568EXPORT_SYMBOL(drm_dp_lttpr_count);
2569
2570/**
2571 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2572 * @caps: LTTPR common capabilities
2573 *
2574 * Returns the maximum link rate supported by all detected LTTPRs.
2575 */
2576int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE8])
2577{
2578 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER0xf0001);
2579
2580 return drm_dp_bw_code_to_link_rate(rate);
2581}
2582EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2583
2584/**
2585 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2586 * @caps: LTTPR common capabilities
2587 *
2588 * Returns the maximum lane count supported by all detected LTTPRs.
2589 */
2590int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE8])
2591{
2592 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER0xf0004);
2593
2594 return max_lanes & DP_MAX_LANE_COUNT_MASK0x1f;
2595}
2596EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2597
2598/**
2599 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2600 * @caps: LTTPR PHY capabilities
2601 *
2602 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2603 * voltage swing level 3.
2604 */
2605bool_Bool
2606drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE3])
2607{
2608 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER10xf0021);
2609
2610 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED(1UL << (0));
2611}
2612EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2613
2614/**
2615 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2616 * @caps: LTTPR PHY capabilities
2617 *
2618 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2619 * pre-emphasis level 3.
2620 */
2621bool_Bool
2622drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE3])
2623{
2624 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER10xf0021);
2625
2626 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED(1UL << (1));
2627}
2628EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2629
2630/**
2631 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2632 * @aux: DisplayPort AUX channel
2633 * @data: DP phy compliance test parameters.
2634 *
2635 * Returns 0 on success or a negative error code on failure.
2636 */
2637int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2638 struct drm_dp_phy_test_params *data)
2639{
2640 int err;
2641 u8 rate, lanes;
2642
2643 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE0x219, &rate);
2644 if (err < 0)
2645 return err;
2646 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2647
2648 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT0x220, &lanes);
2649 if (err < 0)
2650 return err;
2651 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK0x1f;
2652
2653 if (lanes & DP_ENHANCED_FRAME_CAP(1 << 7))
2654 data->enhanced_frame_cap = true1;
2655
2656 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN0x248, &data->phy_pattern);
2657 if (err < 0)
2658 return err;
2659
2660 switch (data->phy_pattern) {
2661 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM0x4:
2662 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_00x250,
2663 &data->custom80, sizeof(data->custom80));
2664 if (err < 0)
2665 return err;
2666
2667 break;
2668 case DP_PHY_TEST_PATTERN_CP25200x5:
2669 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET0x24A,
2670 &data->hbr2_reset,
2671 sizeof(data->hbr2_reset));
2672 if (err < 0)
2673 return err;
2674 }
2675
2676 return 0;
2677}
2678EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2679
2680/**
2681 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2682 * @aux: DisplayPort AUX channel
2683 * @data: DP phy compliance test parameters.
2684 * @dp_rev: DP revision to use for compliance testing
2685 *
2686 * Returns 0 on success or a negative error code on failure.
2687 */
2688int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2689 struct drm_dp_phy_test_params *data, u8 dp_rev)
2690{
2691 int err, i;
2692 u8 test_pattern;
2693
2694 test_pattern = data->phy_pattern;
2695 if (dp_rev < 0x12) {
2696 test_pattern = (test_pattern << 2) &
2697 DP_LINK_QUAL_PATTERN_11_MASK(3 << 2);
2698 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET0x102,
2699 test_pattern);
2700 if (err < 0)
2701 return err;
2702 } else {
2703 for (i = 0; i < data->num_lanes; i++) {
2704 err = drm_dp_dpcd_writeb(aux,
2705 DP_LINK_QUAL_LANE0_SET0x10b + i,
2706 test_pattern);
2707 if (err < 0)
2708 return err;
2709 }
2710 }
2711
2712 return 0;
2713}
2714EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2715
2716static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2717{
2718 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2719 return "Invalid";
2720
2721 switch (pixelformat) {
2722 case DP_PIXELFORMAT_RGB:
2723 return "RGB";
2724 case DP_PIXELFORMAT_YUV444:
2725 return "YUV444";
2726 case DP_PIXELFORMAT_YUV422:
2727 return "YUV422";
2728 case DP_PIXELFORMAT_YUV420:
2729 return "YUV420";
2730 case DP_PIXELFORMAT_Y_ONLY:
2731 return "Y_ONLY";
2732 case DP_PIXELFORMAT_RAW:
2733 return "RAW";
2734 default:
2735 return "Reserved";
2736 }
2737}
2738
2739static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2740 enum dp_colorimetry colorimetry)
2741{
2742 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2743 return "Invalid";
2744
2745 switch (colorimetry) {
2746 case DP_COLORIMETRY_DEFAULT:
2747 switch (pixelformat) {
2748 case DP_PIXELFORMAT_RGB:
2749 return "sRGB";
2750 case DP_PIXELFORMAT_YUV444:
2751 case DP_PIXELFORMAT_YUV422:
2752 case DP_PIXELFORMAT_YUV420:
2753 return "BT.601";
2754 case DP_PIXELFORMAT_Y_ONLY:
2755 return "DICOM PS3.14";
2756 case DP_PIXELFORMAT_RAW:
2757 return "Custom Color Profile";
2758 default:
2759 return "Reserved";
2760 }
2761 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2762 switch (pixelformat) {
2763 case DP_PIXELFORMAT_RGB:
2764 return "Wide Fixed";
2765 case DP_PIXELFORMAT_YUV444:
2766 case DP_PIXELFORMAT_YUV422:
2767 case DP_PIXELFORMAT_YUV420:
2768 return "BT.709";
2769 default:
2770 return "Reserved";
2771 }
2772 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2773 switch (pixelformat) {
2774 case DP_PIXELFORMAT_RGB:
2775 return "Wide Float";
2776 case DP_PIXELFORMAT_YUV444:
2777 case DP_PIXELFORMAT_YUV422:
2778 case DP_PIXELFORMAT_YUV420:
2779 return "xvYCC 601";
2780 default:
2781 return "Reserved";
2782 }
2783 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2784 switch (pixelformat) {
2785 case DP_PIXELFORMAT_RGB:
2786 return "OpRGB";
2787 case DP_PIXELFORMAT_YUV444:
2788 case DP_PIXELFORMAT_YUV422:
2789 case DP_PIXELFORMAT_YUV420:
2790 return "xvYCC 709";
2791 default:
2792 return "Reserved";
2793 }
2794 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2795 switch (pixelformat) {
2796 case DP_PIXELFORMAT_RGB:
2797 return "DCI-P3";
2798 case DP_PIXELFORMAT_YUV444:
2799 case DP_PIXELFORMAT_YUV422:
2800 case DP_PIXELFORMAT_YUV420:
2801 return "sYCC 601";
2802 default:
2803 return "Reserved";
2804 }
2805 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2806 switch (pixelformat) {
2807 case DP_PIXELFORMAT_RGB:
2808 return "Custom Profile";
2809 case DP_PIXELFORMAT_YUV444:
2810 case DP_PIXELFORMAT_YUV422:
2811 case DP_PIXELFORMAT_YUV420:
2812 return "OpYCC 601";
2813 default:
2814 return "Reserved";
2815 }
2816 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2817 switch (pixelformat) {
2818 case DP_PIXELFORMAT_RGB:
2819 return "BT.2020 RGB";
2820 case DP_PIXELFORMAT_YUV444:
2821 case DP_PIXELFORMAT_YUV422:
2822 case DP_PIXELFORMAT_YUV420:
2823 return "BT.2020 CYCC";
2824 default:
2825 return "Reserved";
2826 }
2827 case DP_COLORIMETRY_BT2020_YCC:
2828 switch (pixelformat) {
2829 case DP_PIXELFORMAT_YUV444:
2830 case DP_PIXELFORMAT_YUV422:
2831 case DP_PIXELFORMAT_YUV420:
2832 return "BT.2020 YCC";
2833 default:
2834 return "Reserved";
2835 }
2836 default:
2837 return "Invalid";
2838 }
2839}
2840
2841static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2842{
2843 switch (dynamic_range) {
2844 case DP_DYNAMIC_RANGE_VESA:
2845 return "VESA range";
2846 case DP_DYNAMIC_RANGE_CTA:
2847 return "CTA range";
2848 default:
2849 return "Invalid";
2850 }
2851}
2852
2853static const char *dp_content_type_get_name(enum dp_content_type content_type)
2854{
2855 switch (content_type) {
2856 case DP_CONTENT_TYPE_NOT_DEFINED:
2857 return "Not defined";
2858 case DP_CONTENT_TYPE_GRAPHICS:
2859 return "Graphics";
2860 case DP_CONTENT_TYPE_PHOTO:
2861 return "Photo";
2862 case DP_CONTENT_TYPE_VIDEO:
2863 return "Video";
2864 case DP_CONTENT_TYPE_GAME:
2865 return "Game";
2866 default:
2867 return "Reserved";
2868 }
2869}
2870
2871void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2872 const struct drm_dp_vsc_sdp *vsc)
2873{
2874#define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)printf("drm:pid%d:%s *PRINTK* " fmt, ({struct cpu_info *__ci;
asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof
(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p->
ps_pid, __func__ , ##__VA_ARGS__)
2875 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2876 vsc->revision, vsc->length);
2877 DP_SDP_LOG(" pixelformat: %s\n",
2878 dp_pixelformat_get_name(vsc->pixelformat));
2879 DP_SDP_LOG(" colorimetry: %s\n",
2880 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2881 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2882 DP_SDP_LOG(" dynamic range: %s\n",
2883 dp_dynamic_range_get_name(vsc->dynamic_range));
2884 DP_SDP_LOG(" content type: %s\n",
2885 dp_content_type_get_name(vsc->content_type));
2886#undef DP_SDP_LOG
2887}
2888EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2889
2890/**
2891 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2892 * @dpcd: DisplayPort configuration data
2893 * @port_cap: port capabilities
2894 *
2895 * Returns maximum frl bandwidth supported by PCON in GBPS,
2896 * returns 0 if not supported.
2897 */
2898int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE0xf],
2899 const u8 port_cap[4])
2900{
2901 int bw;
2902 u8 buf;
2903
2904 buf = port_cap[2];
2905 bw = buf & DP_PCON_MAX_FRL_BW(7 << 2);
2906
2907 switch (bw) {
2908 case DP_PCON_MAX_9GBPS(1 << 2):
2909 return 9;
2910 case DP_PCON_MAX_18GBPS(2 << 2):
2911 return 18;
2912 case DP_PCON_MAX_24GBPS(3 << 2):
2913 return 24;
2914 case DP_PCON_MAX_32GBPS(4 << 2):
2915 return 32;
2916 case DP_PCON_MAX_40GBPS(5 << 2):
2917 return 40;
2918 case DP_PCON_MAX_48GBPS(6 << 2):
2919 return 48;
2920 case DP_PCON_MAX_0GBPS(0 << 2):
2921 default:
2922 return 0;
2923 }
2924
2925 return 0;
2926}
2927EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2928
2929/**
2930 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2931 * @aux: DisplayPort AUX channel
2932 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2933 *
2934 * Returns 0 if success, else returns negative error code.
2935 */
2936int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool_Bool enable_frl_ready_hpd)
2937{
2938 int ret;
2939 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE(1 << 3) |
2940 DP_PCON_ENABLE_LINK_FRL_MODE(1 << 5);
2941
2942 if (enable_frl_ready_hpd)
2943 buf |= DP_PCON_ENABLE_HPD_READY(1 << 6);
2944
2945 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, buf);
2946
2947 return ret;
2948}
2949EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2950
2951/**
2952 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2953 * @aux: DisplayPort AUX channel
2954 *
2955 * Returns true if success, else returns false.
2956 */
2957bool_Bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2958{
2959 int ret;
2960 u8 buf;
2961
2962 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS0x303B, &buf);
2963 if (ret < 0)
2964 return false0;
2965
2966 if (buf & DP_PCON_FRL_READY(1 << 1))
2967 return true1;
2968
2969 return false0;
2970}
2971EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2972
2973/**
2974 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2975 * @aux: DisplayPort AUX channel
2976 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2977 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2978 * In Concurrent Mode, the FRL link bring up can be done along with
2979 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2980 * the DP Link training.
2981 *
2982 * Returns 0 if success, else returns negative error code.
2983 */
2984
2985int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2986 u8 frl_mode)
2987{
2988 int ret;
2989 u8 buf;
2990
2991 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, &buf);
2992 if (ret < 0)
2993 return ret;
2994
2995 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK(1 << 4))
2996 buf |= DP_PCON_ENABLE_CONCURRENT_LINK(1 << 4);
2997 else
2998 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK(1 << 4);
2999
3000 switch (max_frl_gbps) {
3001 case 9:
3002 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS1;
3003 break;
3004 case 18:
3005 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS2;
3006 break;
3007 case 24:
3008 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS3;
3009 break;
3010 case 32:
3011 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS4;
3012 break;
3013 case 40:
3014 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS5;
3015 break;
3016 case 48:
3017 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS6;
3018 break;
3019 case 0:
3020 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS0;
3021 break;
3022 default:
3023 return -EINVAL22;
3024 }
3025
3026 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, buf);
3027 if (ret < 0)
3028 return ret;
3029
3030 return 0;
3031}
3032EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3033
3034/**
3035 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3036 * @aux: DisplayPort AUX channel
3037 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3038 * @frl_type : FRL training type, can be Extended, or Normal.
3039 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3040 * starting from min, and stops when link training is successful. In Extended
3041 * FRL training, all frl bw selected in the mask are trained by the PCON.
3042 *
3043 * Returns 0 if success, else returns negative error code.
3044 */
3045int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3046 u8 frl_type)
3047{
3048 int ret;
3049 u8 buf = max_frl_mask;
3050
3051 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED(1 << 6))
3052 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED(1 << 6);
3053 else
3054 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED(1 << 6);
3055
3056 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_20x305B, buf);
3057 if (ret < 0)
3058 return ret;
3059
3060 return 0;
3061}
3062EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3063
3064/**
3065 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3066 * @aux: DisplayPort AUX channel
3067 *
3068 * Returns 0 if success, else returns negative error code.
3069 */
3070int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3071{
3072 int ret;
3073
3074 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, 0x0);
3075 if (ret < 0)
3076 return ret;
3077
3078 return 0;
3079}
3080EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3081
3082/**
3083 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3084 * @aux: DisplayPort AUX channel
3085 *
3086 * Returns 0 if success, else returns negative error code.
3087 */
3088int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3089{
3090 int ret;
3091 u8 buf = 0;
3092
3093 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, &buf);
3094 if (ret < 0)
3095 return ret;
3096 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE(1 << 3))) {
3097 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: PCON in Autonomous mode, can't enable FRL\n"
, aux->name)
3098 aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: PCON in Autonomous mode, can't enable FRL\n"
, aux->name)
;
3099 return -EINVAL22;
3100 }
3101 buf |= DP_PCON_ENABLE_HDMI_LINK(1 << 7);
3102 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_10x305A, buf);
3103 if (ret < 0)
3104 return ret;
3105
3106 return 0;
3107}
3108EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3109
3110/**
3111 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3112 * @aux: DisplayPort AUX channel
3113 *
3114 * Returns true if link is active else returns false.
3115 */
3116bool_Bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3117{
3118 u8 buf;
3119 int ret;
3120
3121 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS0x303B, &buf);
3122 if (ret < 0)
3123 return false0;
3124
3125 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE(1 << 0);
3126}
3127EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3128
3129/**
3130 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3131 * @aux: DisplayPort AUX channel
3132 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3133 * Valid only if the MODE returned is FRL. For Normal Link training mode
3134 * only 1 of the bits will be set, but in case of Extended mode, more than
3135 * one bits can be set.
3136 *
3137 * Returns the link mode : TMDS or FRL on success, else returns negative error
3138 * code.
3139 */
3140int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3141{
3142 u8 buf;
3143 int mode;
3144 int ret;
3145
3146 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS0x3036, &buf);
3147 if (ret < 0)
3148 return ret;
3149
3150 mode = buf & DP_PCON_HDMI_LINK_MODE(1 << 0);
3151
3152 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL1 == mode)
3153 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW(0x3F << 1)) >> 1;
3154
3155 return mode;
3156}
3157EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3158
3159/**
3160 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3161 * during link failure between PCON and HDMI sink
3162 * @aux: DisplayPort AUX channel
3163 * @connector: DRM connector
3164 * code.
3165 **/
3166
3167void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3168 struct drm_connector *connector)
3169{
3170 u8 buf, error_count;
3171 int i, num_error;
3172 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3173
3174 for (i = 0; i < hdmi->max_lanes; i++) {
3175 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN00x3037 + i, &buf) < 0)
3176 return;
3177
3178 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK(0x7 << 0);
3179 switch (error_count) {
3180 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS(1 << 2):
3181 num_error = 100;
3182 break;
3183 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS(1 << 1):
3184 num_error = 10;
3185 break;
3186 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS(1 << 0):
3187 num_error = 3;
3188 break;
3189 default:
3190 num_error = 0;
3191 }
3192
3193 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: More than %d errors since the last read for lane %d"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, num_error, i)
3194 aux->name, num_error, i)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: More than %d errors since the last read for lane %d"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, num_error, i)
;
3195 }
3196}
3197EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3198
3199/*
3200 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3201 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3202 *
3203 * Returns true is PCON encoder is DSC 1.2 else returns false.
3204 */
3205bool_Bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE0xD])
3206{
3207 u8 buf;
3208 u8 major_v, minor_v;
3209
3210 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION0x093 - DP_PCON_DSC_ENCODER0x092];
3211 major_v = (buf & DP_PCON_DSC_MAJOR_MASK(0xF << 0)) >> DP_PCON_DSC_MAJOR_SHIFT0;
3212 minor_v = (buf & DP_PCON_DSC_MINOR_MASK(0xF << 4)) >> DP_PCON_DSC_MINOR_SHIFT4;
3213
3214 if (major_v == 1 && minor_v == 2)
3215 return true1;
3216
3217 return false0;
3218}
3219EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3220
3221/*
3222 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3223 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3224 *
3225 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3226 */
3227int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE0xD])
3228{
3229 u8 slice_cap1, slice_cap2;
3230
3231 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_10x096 - DP_PCON_DSC_ENCODER0x092];
3232 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_20x09C - DP_PCON_DSC_ENCODER0x092];
3233
3234 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC(0x1 << 2))
3235 return 24;
3236 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC(0x1 << 1))
3237 return 20;
3238 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC(0x1 << 0))
3239 return 16;
3240 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC(0x1 << 7))
3241 return 12;
3242 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC(0x1 << 6))
3243 return 10;
3244 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC(0x1 << 5))
3245 return 8;
3246 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC(0x1 << 4))
3247 return 6;
3248 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC(0x1 << 3))
3249 return 4;
3250 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC(0x1 << 1))
3251 return 2;
3252 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC(0x1 << 0))
3253 return 1;
3254
3255 return 0;
3256}
3257EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3258
3259/*
3260 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3261 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3262 *
3263 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3264 */
3265int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE0xD])
3266{
3267 u8 buf;
3268
3269 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH0x09B - DP_PCON_DSC_ENCODER0x092];
3270
3271 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER320;
3272}
3273EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3274
3275/*
3276 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3277 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3278 *
3279 * Returns the bpp precision supported by the PCON encoder.
3280 */
3281int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE0xD])
3282{
3283 u8 buf;
3284
3285 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR0x09E - DP_PCON_DSC_ENCODER0x092];
3286
3287 switch (buf & DP_PCON_DSC_BPP_INCR_MASK(0x7 << 0)) {
3288 case DP_PCON_DSC_ONE_16TH_BPP0:
3289 return 16;
3290 case DP_PCON_DSC_ONE_8TH_BPP1:
3291 return 8;
3292 case DP_PCON_DSC_ONE_4TH_BPP2:
3293 return 4;
3294 case DP_PCON_DSC_ONE_HALF_BPP3:
3295 return 2;
3296 case DP_PCON_DSC_ONE_BPP4:
3297 return 1;
3298 }
3299
3300 return 0;
3301}
3302EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3303
3304static
3305int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3306{
3307 u8 buf;
3308 int ret;
3309
3310 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_20x3052, &buf);
3311 if (ret < 0)
3312 return ret;
3313
3314 buf |= DP_PCON_ENABLE_DSC_ENCODER(1 << 1);
3315
3316 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER2) {
3317 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK(0x3 << 2);
3318 buf |= pps_buf_config << 2;
3319 }
3320
3321 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_20x3052, buf);
3322 if (ret < 0)
3323 return ret;
3324
3325 return 0;
3326}
3327
3328/**
3329 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3330 * for DSC1.2 between PCON & HDMI2.1 sink
3331 * @aux: DisplayPort AUX channel
3332 *
3333 * Returns 0 on success, else returns negative error code.
3334 */
3335int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3336{
3337 int ret;
3338
3339 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED0);
3340 if (ret < 0)
3341 return ret;
3342
3343 return 0;
3344}
3345EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3346
3347/**
3348 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3349 * HDMI sink
3350 * @aux: DisplayPort AUX channel
3351 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3352 *
3353 * Returns 0 on success, else returns negative error code.
3354 */
3355int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3356{
3357 int ret;
3358
3359 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE0x3100, &pps_buf, 128);
3360 if (ret < 0)
3361 return ret;
3362
3363 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER2);
3364 if (ret < 0)
3365 return ret;
3366
3367 return 0;
3368}
3369EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3370
3371/*
3372 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3373 * override registers
3374 * @aux: DisplayPort AUX channel
3375 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3376 * bits_per_pixel.
3377 *
3378 * Returns 0 on success, else returns negative error code.
3379 */
3380int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3381{
3382 int ret;
3383
3384 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT0x3180, &pps_param[0], 2);
3385 if (ret < 0)
3386 return ret;
3387 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH0x3182, &pps_param[2], 2);
3388 if (ret < 0)
3389 return ret;
3390 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP0x3184, &pps_param[4], 2);
3391 if (ret < 0)
3392 return ret;
3393
3394 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER2);
3395 if (ret < 0)
3396 return ret;
3397
3398 return 0;
3399}
3400EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3401
3402/*
3403 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3404 * @aux: displayPort AUX channel
3405 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3406 *
3407 * Returns 0 on success, else returns negative error code.
3408 */
3409int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3410{
3411 int ret;
3412 u8 buf;
3413
3414 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_20x3052, &buf);
3415 if (ret < 0)
3416 return ret;
3417
3418 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK(7 << 4))
3419 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK(7 << 4));
3420 else
3421 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK(7 << 4);
3422
3423 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_20x3052, buf);
3424 if (ret < 0)
3425 return ret;
3426
3427 return 0;
3428}
3429EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3430
3431/**
3432 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3433 * @aux: The DP AUX channel to use
3434 * @bl: Backlight capability info from drm_edp_backlight_init()
3435 * @level: The brightness level to set
3436 *
3437 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3438 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3439 *
3440 * Returns: %0 on success, negative error code on failure
3441 */
3442int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3443 u16 level)
3444{
3445 int ret;
3446 u8 buf[2] = { 0 };
3447
3448 /* The panel uses the PWM for controlling brightness levels */
3449 if (!bl->aux_set)
3450 return 0;
3451
3452 if (bl->lsb_reg_used) {
3453 buf[0] = (level & 0xff00) >> 8;
3454 buf[1] = (level & 0x00ff);
3455 } else {
3456 buf[0] = level;
3457 }
3458
3459 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB0x722, buf, sizeof(buf));
3460 if (ret != sizeof(buf)) {
3461 drm_err(aux->drm_dev,printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to write aux backlight level: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
3462 "%s: Failed to write aux backlight level: %d\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to write aux backlight level: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
3463 aux->name, ret)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to write aux backlight level: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
;
3464 return ret < 0 ? ret : -EIO5;
3465 }
3466
3467 return 0;
3468}
3469EXPORT_SYMBOL(drm_edp_backlight_set_level);
3470
3471static int
3472drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3473 bool_Bool enable)
3474{
3475 int ret;
3476 u8 buf;
3477
3478 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3479 if (!bl->aux_enable)
3480 return 0;
3481
3482 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER0x720, &buf);
3483 if (ret != 1) {
3484 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to read eDP display control register: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
3485 aux->name, ret)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to read eDP display control register: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
;
3486 return ret < 0 ? ret : -EIO5;
3487 }
3488 if (enable)
3489 buf |= DP_EDP_BACKLIGHT_ENABLE(1 << 0);
3490 else
3491 buf &= ~DP_EDP_BACKLIGHT_ENABLE(1 << 0);
3492
3493 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER0x720, buf);
3494 if (ret != 1) {
3495 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to write eDP display control register: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
3496 aux->name, ret)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "%s: Failed to write eDP display control register: %d\n"
, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r"
(__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self)));
__ci;})->ci_curproc->p_p->ps_pid, __func__ , aux->
name, ret)
;
3497 return ret < 0 ? ret : -EIO5;
3498 }
3499
3500 return 0;
3501}
3502
3503/**
3504 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3505 * @aux: The DP AUX channel to use
3506 * @bl: Backlight capability info from drm_edp_backlight_init()
3507 * @level: The initial backlight level to set via AUX, if there is one
3508 *
3509 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3510 * restoring any important backlight state such as the given backlight level, the brightness byte
3511 * count, backlight frequency, etc.
3512 *
3513 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3514 * that the driver handle enabling/disabling the panel through implementation-specific means using
3515 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3516 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3517 * the EDP_BL_PWR GPIO.
3518 *
3519 * Returns: %0 on success, negative error code on failure.
3520 */
3521int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3522 const u16 level)
3523{
3524 int ret;
3525 u8 dpcd_buf;
3526
3527 if (bl->aux_set)
3528 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD(2 << 0);
3529 else
3530 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM(0 << 0);
3531
3532 if (bl->pwmgen_bit_count) {
3533 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT0x724, bl->pwmgen_bit_count);
3534 if (ret != 1)
3535 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux pwmgen bit count: %d\n"
, aux->name, ret)
3536 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux pwmgen bit count: %d\n"
, aux->name, ret)
;
3537 }
3538
3539 if (bl->pwm_freq_pre_divider) {
3540 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET0x728, bl->pwm_freq_pre_divider);
3541 if (ret != 1)
3542 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux backlight frequency: %d\n"
, aux->name, ret)
3543 "%s: Failed to write aux backlight frequency: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux backlight frequency: %d\n"
, aux->name, ret)
3544 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux backlight frequency: %d\n"
, aux->name, ret)
;
3545 else
3546 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE(1 << 3);
3547 }
3548
3549 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER0x721, dpcd_buf);
3550 if (ret != 1) {
3551 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux backlight mode: %d\n"
, aux->name, ret)
3552 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux backlight mode: %d\n"
, aux->name, ret)
;
3553 return ret < 0 ? ret : -EIO5;
3554 }
3555
3556 ret = drm_edp_backlight_set_level(aux, bl, level);
3557 if (ret < 0)
3558 return ret;
3559 ret = drm_edp_backlight_set_enable(aux, bl, true1);
3560 if (ret < 0)
3561 return ret;
3562
3563 return 0;
3564}
3565EXPORT_SYMBOL(drm_edp_backlight_enable);
3566
3567/**
3568 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3569 * @aux: The DP AUX channel to use
3570 * @bl: Backlight capability info from drm_edp_backlight_init()
3571 *
3572 * This function handles disabling DPCD backlight controls on a panel over AUX.
3573 *
3574 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3575 * that the driver handle enabling/disabling the panel through implementation-specific means using
3576 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3577 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3578 * the EDP_BL_PWR GPIO.
3579 *
3580 * Returns: %0 on success or no-op, negative error code on failure.
3581 */
3582int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3583{
3584 int ret;
3585
3586 ret = drm_edp_backlight_set_enable(aux, bl, false0);
3587 if (ret < 0)
3588 return ret;
3589
3590 return 0;
3591}
3592EXPORT_SYMBOL(drm_edp_backlight_disable);
3593
3594static inline int
3595drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3596 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE3])
3597{
3598 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3599 int ret;
3600 u8 pn, pn_min, pn_max;
3601
3602 if (!bl->aux_set)
3603 return 0;
3604
3605 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT0x724, &pn);
3606 if (ret != 1) {
3607 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap: %d\n"
, aux->name, ret)
3608 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap: %d\n"
, aux->name, ret)
;
3609 return -ENODEV19;
3610 }
3611
3612 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK(0x1f << 0);
3613 bl->max = (1 << pn) - 1;
3614 if (!driver_pwm_freq_hz)
3615 return 0;
3616
3617 /*
3618 * Set PWM Frequency divider to match desired frequency provided by the driver.
3619 * The PWM Frequency is calculated as 27Mhz / (F x P).
3620 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3621 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3622 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3623 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3624 */
3625
3626 /* Find desired value of (F x P)
3627 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3628 * applied automatically. So no need to check that.
3629 */
3630 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz)(((1000 * 27000) + ((driver_pwm_freq_hz) / 2)) / (driver_pwm_freq_hz
))
;
3631
3632 /* Use highest possible value of Pn for more granularity of brightness adjustment while
3633 * satisfying the conditions below.
3634 * - Pn is in the range of Pn_min and Pn_max
3635 * - F is in the range of 1 and 255
3636 * - FxP is within 25% of desired value.
3637 * Note: 25% is arbitrary value and may need some tweak.
3638 */
3639 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN0x725, &pn_min);
3640 if (ret != 1) {
3641 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap min: %d\n"
, aux->name, ret)
3642 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap min: %d\n"
, aux->name, ret)
;
3643 return 0;
3644 }
3645 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX0x726, &pn_max);
3646 if (ret != 1) {
3647 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap max: %d\n"
, aux->name, ret)
3648 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read pwmgen bit count cap max: %d\n"
, aux->name, ret)
;
3649 return 0;
3650 }
3651 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK(0x1f << 0);
3652 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK(0x1f << 0);
3653
3654 /* Ensure frequency is within 25% of desired value */
3655 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4)(((fxp * 3) + ((4) / 2)) / (4));
3656 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4)(((fxp * 5) + ((4) / 2)) / (4));
3657 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3658 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Driver defined backlight frequency (%d) out of range\n"
, aux->name, driver_pwm_freq_hz)
3659 "%s: Driver defined backlight frequency (%d) out of range\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Driver defined backlight frequency (%d) out of range\n"
, aux->name, driver_pwm_freq_hz)
3660 aux->name, driver_pwm_freq_hz)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Driver defined backlight frequency (%d) out of range\n"
, aux->name, driver_pwm_freq_hz)
;
3661 return 0;
3662 }
3663
3664 for (pn = pn_max; pn >= pn_min; pn--) {
3665 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255)({ __typeof((((fxp) + ((1 << pn) / 2)) / (1 << pn
))) __min_a = (({ __typeof((((fxp) + ((1 << pn) / 2)) /
(1 << pn))) __max_a = ((((fxp) + ((1 << pn) / 2)
) / (1 << pn))); __typeof((((fxp) + ((1 << pn) / 2
)) / (1 << pn))) __max_b = (1); __max_a > __max_b ? __max_a
: __max_b; })); __typeof((((fxp) + ((1 << pn) / 2)) / (
1 << pn))) __min_b = (255); __min_a < __min_b ? __min_a
: __min_b; })
;
3666 fxp_actual = f << pn;
3667 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3668 break;
3669 }
3670
3671 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT0x724, pn);
3672 if (ret != 1) {
3673 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux pwmgen bit count: %d\n"
, aux->name, ret)
3674 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to write aux pwmgen bit count: %d\n"
, aux->name, ret)
;
3675 return 0;
3676 }
3677 bl->pwmgen_bit_count = pn;
3678 bl->max = (1 << pn) - 1;
3679
3680 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP(1 << 5)) {
3681 bl->pwm_freq_pre_divider = f;
3682 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Using backlight frequency from driver (%dHz)\n"
, aux->name, driver_pwm_freq_hz)
3683 aux->name, driver_pwm_freq_hz)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Using backlight frequency from driver (%dHz)\n"
, aux->name, driver_pwm_freq_hz)
;
3684 }
3685
3686 return 0;
3687}
3688
3689static inline int
3690drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3691 u8 *current_mode)
3692{
3693 int ret;
3694 u8 buf[2];
3695 u8 mode_reg;
3696
3697 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER0x721, &mode_reg);
3698 if (ret != 1) {
3699 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read backlight mode: %d\n"
, aux->name, ret)
3700 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read backlight mode: %d\n"
, aux->name, ret)
;
3701 return ret < 0 ? ret : -EIO5;
3702 }
3703
3704 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK(3 << 0));
3705 if (!bl->aux_set)
3706 return 0;
3707
3708 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD(2 << 0)) {
3709 int size = 1 + bl->lsb_reg_used;
3710
3711 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB0x722, buf, size);
3712 if (ret != size) {
3713 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read backlight level: %d\n"
, aux->name, ret)
3714 aux->name, ret)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Failed to read backlight level: %d\n"
, aux->name, ret)
;
3715 return ret < 0 ? ret : -EIO5;
3716 }
3717
3718 if (bl->lsb_reg_used)
3719 return (buf[0] << 8) | buf[1];
3720 else
3721 return buf[0];
3722 }
3723
3724 /*
3725 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3726 * the driver should assume max brightness
3727 */
3728 return bl->max;
3729}
3730
3731/**
3732 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3733 * interface.
3734 * @aux: The DP aux device to use for probing
3735 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3736 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3737 * @edp_dpcd: A cached copy of the eDP DPCD
3738 * @current_level: Where to store the probed brightness level, if any
3739 * @current_mode: Where to store the currently set backlight control mode
3740 *
3741 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3742 * along with also probing the current and maximum supported brightness levels.
3743 *
3744 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3745 * default frequency from the panel is used.
3746 *
3747 * Returns: %0 on success, negative error code on failure.
3748 */
3749int
3750drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3751 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE3],
3752 u16 *current_level, u8 *current_mode)
3753{
3754 int ret;
3755
3756 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP(1 << 2))
3757 bl->aux_enable = true1;
3758 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP(1 << 1))
3759 bl->aux_set = true1;
3760 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT(1 << 2))
3761 bl->lsb_reg_used = true1;
3762
3763 /* Sanity check caps */
3764 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP(1 << 0))) {
3765 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Panel supports neither AUX or PWM brightness control? Aborting\n"
, aux->name)
3766 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Panel supports neither AUX or PWM brightness control? Aborting\n"
, aux->name)
3767 aux->name)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Panel supports neither AUX or PWM brightness control? Aborting\n"
, aux->name)
;
3768 return -EINVAL22;
3769 }
3770
3771 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3772 if (ret < 0)
3773 return ret;
3774
3775 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3776 if (ret < 0)
3777 return ret;
3778 *current_level = ret;
3779
3780 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n"
, aux->name, bl->aux_set, bl->aux_enable, *current_mode
)
3781 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n"
, aux->name, bl->aux_set, bl->aux_enable, *current_mode
)
3782 aux->name, bl->aux_set, bl->aux_enable, *current_mode)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n"
, aux->name, bl->aux_set, bl->aux_enable, *current_mode
)
;
3783 if (bl->aux_set) {
3784 drm_dbg_kms(aux->drm_dev,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n"
, aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider
, bl->lsb_reg_used)
3785 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n"
, aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider
, bl->lsb_reg_used)
3786 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n"
, aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider
, bl->lsb_reg_used)
3787 bl->lsb_reg_used)__drm_dev_dbg(((void *)0), (aux->drm_dev) ? (aux->drm_dev
)->dev : ((void *)0), DRM_UT_KMS, "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n"
, aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider
, bl->lsb_reg_used)
;
3788 }
3789
3790 return 0;
3791}
3792EXPORT_SYMBOL(drm_edp_backlight_init);
3793
3794#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE)1 || \
3795 (IS_MODULE(CONFIG_DRM_KMS_HELPER)0 && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE)0)
3796
3797static int dp_aux_backlight_update_status(struct backlight_device *bd)
3798{
3799 STUB()do { printf("%s: stub\n", __func__); } while(0);
3800 return -ENOSYS78;
3801#ifdef notyet
3802 struct dp_aux_backlight *bl = bl_get_data(bd);
3803 u16 brightness = backlight_get_brightness(bd);
3804 int ret = 0;
3805
3806 if (!backlight_is_blank(bd)) {
3807 if (!bl->enabled) {
3808 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3809 bl->enabled = true1;
3810 return 0;
3811 }
3812 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3813 } else {
3814 if (bl->enabled) {
3815 drm_edp_backlight_disable(bl->aux, &bl->info);
3816 bl->enabled = false0;
3817 }
3818 }
3819
3820 return ret;
3821#endif
3822}
3823
3824static const struct backlight_ops dp_aux_bl_ops = {
3825 .update_status = dp_aux_backlight_update_status,
3826};
3827
3828/**
3829 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3830 * @panel: DRM panel
3831 * @aux: The DP AUX channel to use
3832 *
3833 * Use this function to create and handle backlight if your panel
3834 * supports backlight control over DP AUX channel using DPCD
3835 * registers as per VESA's standard backlight control interface.
3836 *
3837 * When the panel is enabled backlight will be enabled after a
3838 * successful call to &drm_panel_funcs.enable()
3839 *
3840 * When the panel is disabled backlight will be disabled before the
3841 * call to &drm_panel_funcs.disable().
3842 *
3843 * A typical implementation for a panel driver supporting backlight
3844 * control over DP AUX will call this function at probe time.
3845 * Backlight will then be handled transparently without requiring
3846 * any intervention from the driver.
3847 *
3848 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3849 *
3850 * Return: 0 on success or a negative error code on failure.
3851 */
3852int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3853{
3854 struct dp_aux_backlight *bl;
3855 struct backlight_properties props = { 0 };
3856 u16 current_level;
3857 u8 current_mode;
3858 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE3];
3859 int ret;
3860
3861 if (!panel || !panel->dev || !aux)
1
Assuming 'panel' is non-null
2
Assuming field 'dev' is non-null
3
Assuming 'aux' is non-null
4
Taking false branch
3862 return -EINVAL22;
3863
3864 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV0x700, edp_dpcd,
3865 EDP_DISPLAY_CTL_CAP_SIZE3);
3866 if (ret < 0)
5
Assuming 'ret' is >= 0
6
Taking false branch
3867 return ret;
3868
3869 if (!drm_edp_backlight_supported(edp_dpcd)) {
7
Taking false branch
3870 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n")drm_dev_printk(panel->dev, "\0016", "DP AUX backlight is not supported\n"
)
;
3871 return 0;
3872 }
3873
3874 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL)kzalloc(sizeof(*bl), (0x0001 | 0x0004));
8
Calling 'kzalloc'
10
Returned allocated memory
3875 if (!bl)
11
Assuming 'bl' is non-null
12
Taking false branch
3876 return -ENOMEM12;
3877
3878 bl->aux = aux;
3879
3880 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3881 &current_level, &current_mode);
3882 if (ret
12.1
'ret' is < 0
12.1
'ret' is < 0
< 0)
13
Taking true branch
3883 return ret;
14
Potential leak of memory pointed to by 'bl'
3884
3885 props.type = BACKLIGHT_RAW0;
3886 props.brightness = current_level;
3887 props.max_brightness = bl->info.max;
3888
3889 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3890 panel->dev, bl,
3891 &dp_aux_bl_ops, &props);
3892 if (IS_ERR(bl->base))
3893 return PTR_ERR(bl->base);
3894
3895 backlight_disable(bl->base);
3896
3897 panel->backlight = bl->base;
3898
3899 return 0;
3900}
3901EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3902
3903#endif

/usr/src/sys/dev/pci/drm/include/linux/slab.h

1/* Public domain. */
2
3#ifndef _LINUX_SLAB_H
4#define _LINUX_SLAB_H
5
6#include <sys/types.h>
7#include <sys/malloc.h>
8
9#include <linux/types.h>
10#include <linux/workqueue.h>
11#include <linux/gfp.h>
12
13#include <linux/processor.h> /* for CACHELINESIZE */
14
15#define ARCH_KMALLOC_MINALIGN64 CACHELINESIZE64
16
17#define ZERO_SIZE_PTR((void *)0) NULL((void *)0)
18
19static inline void *
20kmalloc(size_t size, int flags)
21{
22 return malloc(size, M_DRM145, flags);
23}
24
25static inline void *
26kmalloc_array(size_t n, size_t size, int flags)
27{
28 if (n != 0 && SIZE_MAX0xffffffffffffffffUL / n < size)
29 return NULL((void *)0);
30 return malloc(n * size, M_DRM145, flags);
31}
32
33static inline void *
34kcalloc(size_t n, size_t size, int flags)
35{
36 if (n != 0 && SIZE_MAX0xffffffffffffffffUL / n < size)
37 return NULL((void *)0);
38 return malloc(n * size, M_DRM145, flags | M_ZERO0x0008);
39}
40
41static inline void *
42kzalloc(size_t size, int flags)
43{
44 return malloc(size, M_DRM145, flags | M_ZERO0x0008);
9
Memory is allocated
45}
46
47static inline void
48kfree(const void *objp)
49{
50 free((void *)objp, M_DRM145, 0);
51}
52
53#endif