File: | dev/ic/ar5008.c |
Warning: | line 835, column 2 Value stored to 'ba' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: ar5008.c,v 1.71 2022/12/27 20:13:03 patrick Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> |
5 | * Copyright (c) 2008-2009 Atheros Communications Inc. |
6 | * |
7 | * Permission to use, copy, modify, and/or distribute this software for any |
8 | * purpose with or without fee is hereby granted, provided that the above |
9 | * copyright notice and this permission notice appear in all copies. |
10 | * |
11 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
12 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
13 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
14 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
15 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
16 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
17 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
18 | */ |
19 | |
20 | /* |
21 | * Driver for Atheros 802.11a/g/n chipsets. |
22 | * Routines common to AR5008, AR9001 and AR9002 families. |
23 | */ |
24 | |
25 | #include "bpfilter.h" |
26 | |
27 | #include <sys/param.h> |
28 | #include <sys/sockio.h> |
29 | #include <sys/mbuf.h> |
30 | #include <sys/kernel.h> |
31 | #include <sys/socket.h> |
32 | #include <sys/systm.h> |
33 | #include <sys/malloc.h> |
34 | #include <sys/queue.h> |
35 | #include <sys/timeout.h> |
36 | #include <sys/conf.h> |
37 | #include <sys/device.h> |
38 | #include <sys/stdint.h> /* uintptr_t */ |
39 | #include <sys/endian.h> |
40 | |
41 | #include <machine/bus.h> |
42 | |
43 | #if NBPFILTER1 > 0 |
44 | #include <net/bpf.h> |
45 | #endif |
46 | #include <net/if.h> |
47 | #include <net/if_media.h> |
48 | |
49 | #include <netinet/in.h> |
50 | #include <netinet/if_ether.h> |
51 | |
52 | #include <net80211/ieee80211_var.h> |
53 | #include <net80211/ieee80211_amrr.h> |
54 | #include <net80211/ieee80211_ra.h> |
55 | #include <net80211/ieee80211_radiotap.h> |
56 | |
57 | #include <dev/ic/athnreg.h> |
58 | #include <dev/ic/athnvar.h> |
59 | |
60 | #include <dev/ic/ar5008reg.h> |
61 | |
62 | int ar5008_attach(struct athn_softc *); |
63 | int ar5008_read_eep_word(struct athn_softc *, uint32_t, uint16_t *); |
64 | int ar5008_read_rom(struct athn_softc *); |
65 | void ar5008_swap_rom(struct athn_softc *); |
66 | int ar5008_gpio_read(struct athn_softc *, int); |
67 | void ar5008_gpio_write(struct athn_softc *, int, int); |
68 | void ar5008_gpio_config_input(struct athn_softc *, int); |
69 | void ar5008_gpio_config_output(struct athn_softc *, int, int); |
70 | void ar5008_rfsilent_init(struct athn_softc *); |
71 | int ar5008_dma_alloc(struct athn_softc *); |
72 | void ar5008_dma_free(struct athn_softc *); |
73 | int ar5008_tx_alloc(struct athn_softc *); |
74 | void ar5008_tx_free(struct athn_softc *); |
75 | int ar5008_rx_alloc(struct athn_softc *); |
76 | void ar5008_rx_free(struct athn_softc *); |
77 | void ar5008_rx_enable(struct athn_softc *); |
78 | void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *, |
79 | struct ar_rx_desc *); |
80 | int ar5008_ccmp_decap(struct athn_softc *, struct mbuf *, |
81 | struct ieee80211_node *); |
82 | void ar5008_rx_intr(struct athn_softc *); |
83 | int ar5008_tx_process(struct athn_softc *, int); |
84 | void ar5008_tx_intr(struct athn_softc *); |
85 | int ar5008_swba_intr(struct athn_softc *); |
86 | int ar5008_intr(struct athn_softc *); |
87 | int ar5008_ccmp_encap(struct mbuf *, u_int, struct ieee80211_key *); |
88 | int ar5008_tx(struct athn_softc *, struct mbuf *, struct ieee80211_node *, |
89 | int); |
90 | void ar5008_set_rf_mode(struct athn_softc *, struct ieee80211_channel *); |
91 | int ar5008_rf_bus_request(struct athn_softc *); |
92 | void ar5008_rf_bus_release(struct athn_softc *); |
93 | void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *, |
94 | struct ieee80211_channel *); |
95 | void ar5008_set_delta_slope(struct athn_softc *, struct ieee80211_channel *, |
96 | struct ieee80211_channel *); |
97 | void ar5008_enable_antenna_diversity(struct athn_softc *); |
98 | void ar5008_init_baseband(struct athn_softc *); |
99 | void ar5008_disable_phy(struct athn_softc *); |
100 | void ar5008_init_chains(struct athn_softc *); |
101 | void ar5008_set_rxchains(struct athn_softc *); |
102 | void ar5008_read_noisefloor(struct athn_softc *, int16_t *, int16_t *); |
103 | void ar5008_write_noisefloor(struct athn_softc *, int16_t *, int16_t *); |
104 | int ar5008_get_noisefloor(struct athn_softc *); |
105 | void ar5008_apply_noisefloor(struct athn_softc *); |
106 | void ar5008_bb_load_noisefloor(struct athn_softc *); |
107 | void ar5008_do_noisefloor_calib(struct athn_softc *); |
108 | void ar5008_init_noisefloor_calib(struct athn_softc *); |
109 | void ar5008_do_calib(struct athn_softc *); |
110 | void ar5008_next_calib(struct athn_softc *); |
111 | void ar5008_calib_iq(struct athn_softc *); |
112 | void ar5008_calib_adc_gain(struct athn_softc *); |
113 | void ar5008_calib_adc_dc_off(struct athn_softc *); |
114 | void ar5008_write_txpower(struct athn_softc *, int16_t *); |
115 | void ar5008_set_viterbi_mask(struct athn_softc *, int); |
116 | void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *, |
117 | struct ieee80211_channel *); |
118 | uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int); |
119 | void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *, |
120 | struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *); |
121 | void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, |
122 | uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t *); |
123 | void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, |
124 | uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t *); |
125 | void ar5008_set_noise_immunity_level(struct athn_softc *, int); |
126 | void ar5008_enable_ofdm_weak_signal(struct athn_softc *); |
127 | void ar5008_disable_ofdm_weak_signal(struct athn_softc *); |
128 | void ar5008_set_cck_weak_signal(struct athn_softc *, int); |
129 | void ar5008_set_firstep_level(struct athn_softc *, int); |
130 | void ar5008_set_spur_immunity_level(struct athn_softc *, int); |
131 | |
132 | /* Extern functions. */ |
133 | void athn_stop(struct ifnet *, int); |
134 | int athn_interpolate(int, int, int, int, int); |
135 | int athn_txtime(struct athn_softc *, int, int, u_int); |
136 | void athn_inc_tx_trigger_level(struct athn_softc *); |
137 | int athn_tx_pending(struct athn_softc *, int); |
138 | void athn_stop_tx_dma(struct athn_softc *, int); |
139 | void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *); |
140 | void athn_config_pcie(struct athn_softc *); |
141 | void athn_config_nonpcie(struct athn_softc *); |
142 | uint8_t athn_chan2fbin(struct ieee80211_channel *); |
143 | uint8_t ar5416_get_rf_rev(struct athn_softc *); |
144 | void ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *); |
145 | void ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *); |
146 | void ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *); |
147 | void ar9280_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *); |
148 | void ar9280_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *); |
149 | |
150 | |
151 | int |
152 | ar5008_attach(struct athn_softc *sc) |
153 | { |
154 | struct athn_ops *ops = &sc->ops; |
155 | struct ieee80211com *ic = &sc->sc_ic; |
156 | struct ar_base_eep_header *base; |
157 | uint8_t eep_ver, kc_entries_log; |
158 | int error; |
159 | |
160 | /* Set callbacks for AR5008, AR9001 and AR9002 families. */ |
161 | ops->gpio_read = ar5008_gpio_read; |
162 | ops->gpio_write = ar5008_gpio_write; |
163 | ops->gpio_config_input = ar5008_gpio_config_input; |
164 | ops->gpio_config_output = ar5008_gpio_config_output; |
165 | ops->rfsilent_init = ar5008_rfsilent_init; |
166 | |
167 | ops->dma_alloc = ar5008_dma_alloc; |
168 | ops->dma_free = ar5008_dma_free; |
169 | ops->rx_enable = ar5008_rx_enable; |
170 | ops->intr = ar5008_intr; |
171 | ops->tx = ar5008_tx; |
172 | |
173 | ops->set_rf_mode = ar5008_set_rf_mode; |
174 | ops->rf_bus_request = ar5008_rf_bus_request; |
175 | ops->rf_bus_release = ar5008_rf_bus_release; |
176 | ops->set_phy = ar5008_set_phy; |
177 | ops->set_delta_slope = ar5008_set_delta_slope; |
178 | ops->enable_antenna_diversity = ar5008_enable_antenna_diversity; |
179 | ops->init_baseband = ar5008_init_baseband; |
180 | ops->disable_phy = ar5008_disable_phy; |
181 | ops->set_rxchains = ar5008_set_rxchains; |
182 | ops->noisefloor_calib = ar5008_do_noisefloor_calib; |
183 | ops->init_noisefloor_calib = ar5008_init_noisefloor_calib; |
184 | ops->get_noisefloor = ar5008_get_noisefloor; |
185 | ops->apply_noisefloor = ar5008_apply_noisefloor; |
186 | ops->do_calib = ar5008_do_calib; |
187 | ops->next_calib = ar5008_next_calib; |
188 | ops->hw_init = ar5008_hw_init; |
189 | |
190 | ops->set_noise_immunity_level = ar5008_set_noise_immunity_level; |
191 | ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal; |
192 | ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal; |
193 | ops->set_cck_weak_signal = ar5008_set_cck_weak_signal; |
194 | ops->set_firstep_level = ar5008_set_firstep_level; |
195 | ops->set_spur_immunity_level = ar5008_set_spur_immunity_level; |
196 | |
197 | /* Set MAC registers offsets. */ |
198 | sc->obs_off = AR_OBS0x4080; |
199 | sc->gpio_input_en_off = AR_GPIO_INPUT_EN_VAL0x4054; |
200 | |
201 | if (!(sc->flags & ATHN_FLAG_PCIE(1 << 0))) |
202 | athn_config_nonpcie(sc); |
203 | else |
204 | athn_config_pcie(sc); |
205 | |
206 | /* Read entire ROM content in memory. */ |
207 | if ((error = ar5008_read_rom(sc)) != 0) { |
208 | printf("%s: could not read ROM\n", sc->sc_dev.dv_xname); |
209 | return (error); |
210 | } |
211 | |
212 | /* Get RF revision. */ |
213 | sc->rf_rev = ar5416_get_rf_rev(sc); |
214 | |
215 | base = sc->eep; |
216 | eep_ver = (base->version >> 12) & 0xf; |
217 | sc->eep_rev = (base->version & 0xfff); |
218 | if (eep_ver != AR_EEP_VER0xe || sc->eep_rev == 0) { |
219 | printf("%s: unsupported ROM version %d.%d\n", |
220 | sc->sc_dev.dv_xname, eep_ver, sc->eep_rev); |
221 | return (EINVAL22); |
222 | } |
223 | |
224 | if (base->opCapFlags & AR_OPFLAGS_11A0x01) { |
225 | sc->flags |= ATHN_FLAG_11A(1 << 9); |
226 | if ((base->opCapFlags & AR_OPFLAGS_11N_5G200x10) == 0) |
227 | sc->flags |= ATHN_FLAG_11N(1 << 11); |
228 | #ifdef notyet |
229 | if ((base->opCapFlags & AR_OPFLAGS_11N_5G400x04) == 0) |
230 | sc->flags |= ATHN_FLAG_11N(1 << 11); |
231 | #endif |
232 | } |
233 | if (base->opCapFlags & AR_OPFLAGS_11G0x02) { |
234 | sc->flags |= ATHN_FLAG_11G(1 << 10); |
235 | if ((base->opCapFlags & AR_OPFLAGS_11N_2G200x20) == 0) |
236 | sc->flags |= ATHN_FLAG_11N(1 << 11); |
237 | #ifdef notyet |
238 | if ((base->opCapFlags & AR_OPFLAGS_11N_2G400x08) == 0) |
239 | sc->flags |= ATHN_FLAG_11N(1 << 11); |
240 | #endif |
241 | } |
242 | |
243 | IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr)__builtin_memcpy((ic->ic_myaddr), (base->macAddr), (6)); |
244 | |
245 | /* Check if we have a hardware radio switch. */ |
246 | if (base->rfSilent & AR_EEP_RFSILENT_ENABLED0x0001) { |
247 | sc->flags |= ATHN_FLAG_RFSILENT(1 << 5); |
248 | /* Get GPIO pin used by hardware radio switch. */ |
249 | sc->rfsilent_pin = MS(base->rfSilent,(((uint32_t)(base->rfSilent) & 0x001c) >> 2) |
250 | AR_EEP_RFSILENT_GPIO_SEL)(((uint32_t)(base->rfSilent) & 0x001c) >> 2); |
251 | /* Get polarity of hardware radio switch. */ |
252 | if (base->rfSilent & AR_EEP_RFSILENT_POLARITY0x0002) |
253 | sc->flags |= ATHN_FLAG_RFSILENT_REVERSED(1 << 6); |
254 | } |
255 | |
256 | /* Get the number of HW key cache entries. */ |
257 | kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES)(((uint32_t)(base->deviceCap) & 0xf000) >> 12); |
258 | sc->kc_entries = (kc_entries_log != 0) ? |
259 | 1 << kc_entries_log : AR_KEYTABLE_SIZE128; |
260 | if (sc->kc_entries > AR_KEYTABLE_SIZE128) |
261 | sc->kc_entries = AR_KEYTABLE_SIZE128; |
262 | |
263 | sc->txchainmask = base->txMask; |
264 | if (sc->mac_ver == AR_SREV_VERSION_5416_PCI0x00d && |
265 | !(base->opCapFlags & AR_OPFLAGS_11A0x01)) { |
266 | /* For single-band AR5416 PCI, use GPIO pin 0. */ |
267 | sc->rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7; |
268 | } else |
269 | sc->rxchainmask = base->rxMask; |
270 | |
271 | ops->setup(sc); |
272 | return (0); |
273 | } |
274 | |
275 | /* |
276 | * Read 16-bit word from ROM. |
277 | */ |
278 | int |
279 | ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) |
280 | { |
281 | uint32_t reg; |
282 | int ntries; |
283 | |
284 | reg = AR_READ(sc, AR_EEPROM_OFFSET(addr))(sc)->ops.read((sc), ((0x2000 + (addr) * 4))); |
285 | for (ntries = 0; ntries < 1000; ntries++) { |
286 | reg = AR_READ(sc, AR_EEPROM_STATUS_DATA)(sc)->ops.read((sc), (0x407c)); |
287 | if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY0x00010000 | |
288 | AR_EEPROM_STATUS_DATA_PROT_ACCESS0x00040000))) { |
289 | *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL)(((uint32_t)(reg) & 0x0000ffff) >> 0); |
290 | return (0); |
291 | } |
292 | DELAY(10)(*delay_func)(10); |
293 | } |
294 | *val = 0xffff; |
295 | return (ETIMEDOUT60); |
296 | } |
297 | |
298 | int |
299 | ar5008_read_rom(struct athn_softc *sc) |
300 | { |
301 | uint32_t addr, end; |
302 | uint16_t magic, sum, *eep; |
303 | int need_swap = 0; |
304 | int error; |
305 | |
306 | /* Determine ROM endianness. */ |
307 | error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET0x0000, &magic); |
308 | if (error != 0) |
309 | return (error); |
310 | if (magic != AR_EEPROM_MAGIC0xa55a) { |
311 | if (magic != swap16(AR_EEPROM_MAGIC)(__uint16_t)(__builtin_constant_p(0xa55a) ? (__uint16_t)(((__uint16_t )(0xa55a) & 0xffU) << 8 | ((__uint16_t)(0xa55a) & 0xff00U) >> 8) : __swap16md(0xa55a))) { |
312 | DPRINTF(("invalid ROM magic 0x%x != 0x%x\n", |
313 | magic, AR_EEPROM_MAGIC)); |
314 | return (EIO5); |
315 | } |
316 | DPRINTF(("non-native ROM endianness\n")); |
317 | need_swap = 1; |
318 | } |
319 | |
320 | /* Allocate space to store ROM in host memory. */ |
321 | sc->eep = malloc(sc->eep_size, M_DEVBUF2, M_NOWAIT0x0002); |
322 | if (sc->eep == NULL((void *)0)) |
323 | return (ENOMEM12); |
324 | |
325 | /* Read entire ROM and compute checksum. */ |
326 | sum = 0; |
327 | eep = sc->eep; |
328 | end = sc->eep_base + sc->eep_size / sizeof(uint16_t); |
329 | for (addr = sc->eep_base; addr < end; addr++, eep++) { |
330 | if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) { |
331 | DPRINTF(("could not read ROM at 0x%x\n", addr)); |
332 | return (error); |
333 | } |
334 | if (need_swap) |
335 | *eep = swap16(*eep)(__uint16_t)(__builtin_constant_p(*eep) ? (__uint16_t)(((__uint16_t )(*eep) & 0xffU) << 8 | ((__uint16_t)(*eep) & 0xff00U ) >> 8) : __swap16md(*eep)); |
336 | sum ^= *eep; |
337 | } |
338 | if (sum != 0xffff) { |
339 | printf("%s: bad ROM checksum 0x%04x\n", |
340 | sc->sc_dev.dv_xname, sum); |
341 | return (EIO5); |
342 | } |
343 | if (need_swap) |
344 | ar5008_swap_rom(sc); |
345 | |
346 | return (0); |
347 | } |
348 | |
349 | void |
350 | ar5008_swap_rom(struct athn_softc *sc) |
351 | { |
352 | struct ar_base_eep_header *base = sc->eep; |
353 | |
354 | /* Swap common fields first. */ |
355 | base->length = swap16(base->length)(__uint16_t)(__builtin_constant_p(base->length) ? (__uint16_t )(((__uint16_t)(base->length) & 0xffU) << 8 | (( __uint16_t)(base->length) & 0xff00U) >> 8) : __swap16md (base->length)); |
356 | base->version = swap16(base->version)(__uint16_t)(__builtin_constant_p(base->version) ? (__uint16_t )(((__uint16_t)(base->version) & 0xffU) << 8 | ( (__uint16_t)(base->version) & 0xff00U) >> 8) : __swap16md (base->version)); |
357 | base->regDmn[0] = swap16(base->regDmn[0])(__uint16_t)(__builtin_constant_p(base->regDmn[0]) ? (__uint16_t )(((__uint16_t)(base->regDmn[0]) & 0xffU) << 8 | ((__uint16_t)(base->regDmn[0]) & 0xff00U) >> 8) : __swap16md(base->regDmn[0])); |
358 | base->regDmn[1] = swap16(base->regDmn[1])(__uint16_t)(__builtin_constant_p(base->regDmn[1]) ? (__uint16_t )(((__uint16_t)(base->regDmn[1]) & 0xffU) << 8 | ((__uint16_t)(base->regDmn[1]) & 0xff00U) >> 8) : __swap16md(base->regDmn[1])); |
359 | base->rfSilent = swap16(base->rfSilent)(__uint16_t)(__builtin_constant_p(base->rfSilent) ? (__uint16_t )(((__uint16_t)(base->rfSilent) & 0xffU) << 8 | ( (__uint16_t)(base->rfSilent) & 0xff00U) >> 8) : __swap16md (base->rfSilent)); |
360 | base->blueToothOptions = swap16(base->blueToothOptions)(__uint16_t)(__builtin_constant_p(base->blueToothOptions) ? (__uint16_t)(((__uint16_t)(base->blueToothOptions) & 0xffU ) << 8 | ((__uint16_t)(base->blueToothOptions) & 0xff00U) >> 8) : __swap16md(base->blueToothOptions) ); |
361 | base->deviceCap = swap16(base->deviceCap)(__uint16_t)(__builtin_constant_p(base->deviceCap) ? (__uint16_t )(((__uint16_t)(base->deviceCap) & 0xffU) << 8 | ((__uint16_t)(base->deviceCap) & 0xff00U) >> 8) : __swap16md(base->deviceCap)); |
362 | |
363 | /* Swap device-dependent fields. */ |
364 | sc->ops.swap_rom(sc); |
365 | } |
366 | |
367 | /* |
368 | * Access to General Purpose Input/Output ports. |
369 | */ |
370 | int |
371 | ar5008_gpio_read(struct athn_softc *sc, int pin) |
372 | { |
373 | KASSERT(pin < sc->ngpiopins)((pin < sc->ngpiopins) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/ic/ar5008.c", 373, "pin < sc->ngpiopins" )); |
374 | if ((sc->flags & ATHN_FLAG_USB(1 << 1)) && !AR_SREV_9271(sc)((sc)->mac_ver == 0x140)) |
375 | return (!((AR_READ(sc, AR7010_GPIO_IN)(sc)->ops.read((sc), (0x52004)) >> pin) & 1)); |
376 | return ((AR_READ(sc, AR_GPIO_IN_OUT)(sc)->ops.read((sc), (0x4048)) >> (sc->ngpiopins + pin)) & 1); |
377 | } |
378 | |
379 | void |
380 | ar5008_gpio_write(struct athn_softc *sc, int pin, int set) |
381 | { |
382 | uint32_t reg; |
383 | |
384 | KASSERT(pin < sc->ngpiopins)((pin < sc->ngpiopins) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/ic/ar5008.c", 384, "pin < sc->ngpiopins" )); |
385 | |
386 | if (sc->flags & ATHN_FLAG_USB(1 << 1)) |
387 | set = !set; /* AR9271/AR7010 is reversed. */ |
388 | |
389 | if ((sc->flags & ATHN_FLAG_USB(1 << 1)) && !AR_SREV_9271(sc)((sc)->mac_ver == 0x140)) { |
390 | /* Special case for AR7010. */ |
391 | reg = AR_READ(sc, AR7010_GPIO_OUT)(sc)->ops.read((sc), (0x52008)); |
392 | if (set) |
393 | reg |= 1 << pin; |
394 | else |
395 | reg &= ~(1 << pin); |
396 | AR_WRITE(sc, AR7010_GPIO_OUT, reg)(sc)->ops.write((sc), (0x52008), (reg)); |
397 | } else { |
398 | reg = AR_READ(sc, AR_GPIO_IN_OUT)(sc)->ops.read((sc), (0x4048)); |
399 | if (set) |
400 | reg |= 1 << pin; |
401 | else |
402 | reg &= ~(1 << pin); |
403 | AR_WRITE(sc, AR_GPIO_IN_OUT, reg)(sc)->ops.write((sc), (0x4048), (reg)); |
404 | } |
405 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
406 | } |
407 | |
408 | void |
409 | ar5008_gpio_config_input(struct athn_softc *sc, int pin) |
410 | { |
411 | uint32_t reg; |
412 | |
413 | if ((sc->flags & ATHN_FLAG_USB(1 << 1)) && !AR_SREV_9271(sc)((sc)->mac_ver == 0x140)) { |
414 | /* Special case for AR7010. */ |
415 | AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin)(sc)->ops.write((sc), (0x52000), ((sc)->ops.read((sc), ( 0x52000)) | (1 << pin))); |
416 | } else { |
417 | reg = AR_READ(sc, AR_GPIO_OE_OUT)(sc)->ops.read((sc), (0x404c)); |
418 | reg &= ~(AR_GPIO_OE_OUT_DRV_M0x00000003 << (pin * 2)); |
419 | reg |= AR_GPIO_OE_OUT_DRV_NO0 << (pin * 2); |
420 | AR_WRITE(sc, AR_GPIO_OE_OUT, reg)(sc)->ops.write((sc), (0x404c), (reg)); |
421 | } |
422 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
423 | } |
424 | |
425 | void |
426 | ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type) |
427 | { |
428 | uint32_t reg; |
429 | int mux, off; |
430 | |
431 | if ((sc->flags & ATHN_FLAG_USB(1 << 1)) && !AR_SREV_9271(sc)((sc)->mac_ver == 0x140)) { |
432 | /* Special case for AR7010. */ |
433 | AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin)(sc)->ops.write((sc), (0x52000), ((sc)->ops.read((sc), ( 0x52000)) & ~(1 << pin))); |
434 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
435 | return; |
436 | } |
437 | mux = pin / 6; |
438 | off = pin % 6; |
439 | |
440 | reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux))(sc)->ops.read((sc), ((0x4060 + (mux) * 4))); |
441 | if (!AR_SREV_9280_20_OR_LATER(sc)((sc)->mac_ver > 0x080 || (((sc)->mac_ver == 0x080) && (sc)->mac_rev >= 1)) && mux == 0) |
442 | reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1; |
443 | reg &= ~(0x1f << (off * 5)); |
444 | reg |= (type & 0x1f) << (off * 5); |
445 | AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg)(sc)->ops.write((sc), ((0x4060 + (mux) * 4)), (reg)); |
446 | |
447 | reg = AR_READ(sc, AR_GPIO_OE_OUT)(sc)->ops.read((sc), (0x404c)); |
448 | reg &= ~(AR_GPIO_OE_OUT_DRV_M0x00000003 << (pin * 2)); |
449 | reg |= AR_GPIO_OE_OUT_DRV_ALL3 << (pin * 2); |
450 | AR_WRITE(sc, AR_GPIO_OE_OUT, reg)(sc)->ops.write((sc), (0x404c), (reg)); |
451 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
452 | } |
453 | |
454 | void |
455 | ar5008_rfsilent_init(struct athn_softc *sc) |
456 | { |
457 | uint32_t reg; |
458 | |
459 | /* Configure hardware radio switch. */ |
460 | AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB)(sc)->ops.write((sc), (0x4054), ((sc)->ops.read((sc), ( 0x4054)) | (0x00008000))); |
461 | reg = AR_READ(sc, AR_GPIO_INPUT_MUX2)(sc)->ops.read((sc), (0x405c)); |
462 | reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0)(((reg) & ~0x000000f0) | (((uint32_t)(0) << 4) & 0x000000f0)); |
463 | AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg)(sc)->ops.write((sc), (0x405c), (reg)); |
464 | ar5008_gpio_config_input(sc, sc->rfsilent_pin); |
465 | AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB)(sc)->ops.write((sc), (0x9800), ((sc)->ops.read((sc), ( 0x9800)) | (0x00002000))); |
466 | if (!(sc->flags & ATHN_FLAG_RFSILENT_REVERSED(1 << 6))) { |
467 | AR_SETBITS(sc, AR_GPIO_INTR_POL,(sc)->ops.write((sc), (0x4050), ((sc)->ops.read((sc), ( 0x4050)) | ((1 << (sc->rfsilent_pin))))) |
468 | AR_GPIO_INTR_POL_PIN(sc->rfsilent_pin))(sc)->ops.write((sc), (0x4050), ((sc)->ops.read((sc), ( 0x4050)) | ((1 << (sc->rfsilent_pin))))); |
469 | } |
470 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
471 | } |
472 | |
473 | int |
474 | ar5008_dma_alloc(struct athn_softc *sc) |
475 | { |
476 | int error; |
477 | |
478 | error = ar5008_tx_alloc(sc); |
479 | if (error != 0) |
480 | return (error); |
481 | |
482 | error = ar5008_rx_alloc(sc); |
483 | if (error != 0) |
484 | return (error); |
485 | |
486 | return (0); |
487 | } |
488 | |
489 | void |
490 | ar5008_dma_free(struct athn_softc *sc) |
491 | { |
492 | ar5008_tx_free(sc); |
493 | ar5008_rx_free(sc); |
494 | } |
495 | |
496 | int |
497 | ar5008_tx_alloc(struct athn_softc *sc) |
498 | { |
499 | struct athn_tx_buf *bf; |
500 | bus_size_t size; |
501 | int error, nsegs, i; |
502 | |
503 | /* |
504 | * Allocate a pool of Tx descriptors shared between all Tx queues. |
505 | */ |
506 | size = ATHN_NTXBUFS64 * AR5008_MAX_SCATTER16 * sizeof(struct ar_tx_desc); |
507 | |
508 | error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (size ), (1), (size), (0), (0x0001), (&sc->map)) |
509 | BUS_DMA_NOWAIT, &sc->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (size ), (1), (size), (0), (0x0001), (&sc->map)); |
510 | if (error != 0) |
511 | goto fail; |
512 | |
513 | error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->seg, 1,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (size ), (4), (0), (&sc->seg), (1), (&nsegs), (0x0001 | 0x1000 )) |
514 | &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (size ), (4), (0), (&sc->seg), (1), (&nsegs), (0x0001 | 0x1000 )); |
515 | if (error != 0) |
516 | goto fail; |
517 | |
518 | error = bus_dmamem_map(sc->sc_dmat, &sc->seg, 1, size,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->seg), (1), (size), ((caddr_t *)&sc->descs), (0x0001 | 0x0004)) |
519 | (caddr_t *)&sc->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->seg), (1), (size), ((caddr_t *)&sc->descs), (0x0001 | 0x0004)); |
520 | if (error != 0) |
521 | goto fail; |
522 | |
523 | error = bus_dmamap_load_raw(sc->sc_dmat, sc->map, &sc->seg, 1, size,(*(sc->sc_dmat)->_dmamap_load_raw)((sc->sc_dmat), (sc ->map), (&sc->seg), (1), (size), (0x0001)) |
524 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_raw)((sc->sc_dmat), (sc ->map), (&sc->seg), (1), (size), (0x0001)); |
525 | if (error != 0) |
526 | goto fail; |
527 | |
528 | SIMPLEQ_INIT(&sc->txbufs)do { (&sc->txbufs)->sqh_first = ((void *)0); (& sc->txbufs)->sqh_last = &(&sc->txbufs)->sqh_first ; } while (0); |
529 | for (i = 0; i < ATHN_NTXBUFS64; i++) { |
530 | bf = &sc->txpool[i]; |
531 | |
532 | error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (16), (4096), (0), (0x0001), (&bf->bf_map)) |
533 | AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (16), (4096), (0), (0x0001), (&bf->bf_map)) |
534 | &bf->bf_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (16), (4096), (0), (0x0001), (&bf->bf_map)); |
535 | if (error != 0) { |
536 | printf("%s: could not create Tx buf DMA map\n", |
537 | sc->sc_dev.dv_xname); |
538 | goto fail; |
539 | } |
540 | |
541 | bf->bf_descs = |
542 | &((struct ar_tx_desc *)sc->descs)[i * AR5008_MAX_SCATTER16]; |
543 | bf->bf_daddr = sc->map->dm_segs[0].ds_addr + |
544 | i * AR5008_MAX_SCATTER16 * sizeof(struct ar_tx_desc); |
545 | |
546 | SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list)do { (bf)->bf_list.sqe_next = ((void *)0); *(&sc->txbufs )->sqh_last = (bf); (&sc->txbufs)->sqh_last = & (bf)->bf_list.sqe_next; } while (0); |
547 | } |
548 | return (0); |
549 | fail: |
550 | ar5008_tx_free(sc); |
551 | return (error); |
552 | } |
553 | |
554 | void |
555 | ar5008_tx_free(struct athn_softc *sc) |
556 | { |
557 | struct athn_tx_buf *bf; |
558 | int i; |
559 | |
560 | for (i = 0; i < ATHN_NTXBUFS64; i++) { |
561 | bf = &sc->txpool[i]; |
562 | |
563 | if (bf->bf_map != NULL((void *)0)) |
564 | bus_dmamap_destroy(sc->sc_dmat, bf->bf_map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bf ->bf_map)); |
565 | } |
566 | /* Free Tx descriptors. */ |
567 | if (sc->map != NULL((void *)0)) { |
568 | if (sc->descs != NULL((void *)0)) { |
569 | bus_dmamap_unload(sc->sc_dmat, sc->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> map)); |
570 | bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->descs,(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )sc->descs), (64 * 16 * sizeof(struct ar_tx_desc))) |
571 | ATHN_NTXBUFS * AR5008_MAX_SCATTER *(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )sc->descs), (64 * 16 * sizeof(struct ar_tx_desc))) |
572 | sizeof(struct ar_tx_desc))(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )sc->descs), (64 * 16 * sizeof(struct ar_tx_desc))); |
573 | bus_dmamem_free(sc->sc_dmat, &sc->seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& sc->seg), (1)); |
574 | } |
575 | bus_dmamap_destroy(sc->sc_dmat, sc->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->map)); |
576 | } |
577 | } |
578 | |
579 | int |
580 | ar5008_rx_alloc(struct athn_softc *sc) |
581 | { |
582 | struct athn_rxq *rxq = &sc->rxq[0]; |
583 | struct athn_rx_buf *bf; |
584 | struct ar_rx_desc *ds; |
585 | bus_size_t size; |
586 | int error, nsegs, i; |
587 | |
588 | rxq->bf = mallocarray(ATHN_NRXBUFS64, sizeof(*bf), M_DEVBUF2, |
589 | M_NOWAIT0x0002 | M_ZERO0x0008); |
590 | if (rxq->bf == NULL((void *)0)) |
591 | return (ENOMEM12); |
592 | |
593 | size = ATHN_NRXBUFS64 * sizeof(struct ar_rx_desc); |
594 | |
595 | error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (size ), (1), (size), (0), (0x0001), (&rxq->map)) |
596 | BUS_DMA_NOWAIT, &rxq->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (size ), (1), (size), (0), (0x0001), (&rxq->map)); |
597 | if (error != 0) |
598 | goto fail; |
599 | |
600 | error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (size ), (0), (0), (&rxq->seg), (1), (&nsegs), (0x0001 | 0x1000)) |
601 | &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (size ), (0), (0), (&rxq->seg), (1), (&nsegs), (0x0001 | 0x1000)); |
602 | if (error != 0) |
603 | goto fail; |
604 | |
605 | error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rxq ->seg), (1), (size), ((caddr_t *)&rxq->descs), (0x0001 | 0x0004)) |
606 | (caddr_t *)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rxq ->seg), (1), (size), ((caddr_t *)&rxq->descs), (0x0001 | 0x0004)); |
607 | if (error != 0) |
608 | goto fail; |
609 | |
610 | error = bus_dmamap_load_raw(sc->sc_dmat, rxq->map, &rxq->seg, 1,(*(sc->sc_dmat)->_dmamap_load_raw)((sc->sc_dmat), (rxq ->map), (&rxq->seg), (1), (size), (0x0001)) |
611 | size, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_raw)((sc->sc_dmat), (rxq ->map), (&rxq->seg), (1), (size), (0x0001)); |
612 | if (error != 0) |
613 | goto fail; |
614 | |
615 | for (i = 0; i < ATHN_NRXBUFS64; i++) { |
616 | bf = &rxq->bf[i]; |
617 | ds = &((struct ar_rx_desc *)rxq->descs)[i]; |
618 | |
619 | error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (3872 ), (1), (3872), (0), (0x0001 | 0x0002), (&bf->bf_map)) |
620 | ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (3872 ), (1), (3872), (0), (0x0001 | 0x0002), (&bf->bf_map)) |
621 | &bf->bf_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (3872 ), (1), (3872), (0), (0x0001 | 0x0002), (&bf->bf_map)); |
622 | if (error != 0) { |
623 | printf("%s: could not create Rx buf DMA map\n", |
624 | sc->sc_dev.dv_xname); |
625 | goto fail; |
626 | } |
627 | /* |
628 | * Assumes MCLGETL returns cache-line-size aligned buffers. |
629 | */ |
630 | bf->bf_m = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ)m_clget((((void *)0)), (0x0002), (3872)); |
631 | if (bf->bf_m == NULL((void *)0)) { |
632 | printf("%s: could not allocate Rx mbuf\n", |
633 | sc->sc_dev.dv_xname); |
634 | error = ENOBUFS55; |
635 | goto fail; |
636 | } |
637 | |
638 | error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)) |
639 | mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)) |
640 | BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)); |
641 | if (error != 0) { |
642 | printf("%s: could not DMA map Rx buffer\n", |
643 | sc->sc_dev.dv_xname); |
644 | goto fail; |
645 | } |
646 | |
647 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x01)) |
648 | BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x01)); |
649 | |
650 | bf->bf_desc = ds; |
651 | bf->bf_daddr = rxq->map->dm_segs[0].ds_addr + |
652 | i * sizeof(struct ar_rx_desc); |
653 | } |
654 | return (0); |
655 | fail: |
656 | ar5008_rx_free(sc); |
657 | return (error); |
658 | } |
659 | |
660 | void |
661 | ar5008_rx_free(struct athn_softc *sc) |
662 | { |
663 | struct athn_rxq *rxq = &sc->rxq[0]; |
664 | struct athn_rx_buf *bf; |
665 | int i; |
666 | |
667 | if (rxq->bf == NULL((void *)0)) |
668 | return; |
669 | for (i = 0; i < ATHN_NRXBUFS64; i++) { |
670 | bf = &rxq->bf[i]; |
671 | |
672 | if (bf->bf_map != NULL((void *)0)) |
673 | bus_dmamap_destroy(sc->sc_dmat, bf->bf_map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bf ->bf_map)); |
674 | m_freem(bf->bf_m); |
675 | } |
676 | free(rxq->bf, M_DEVBUF2, 0); |
677 | |
678 | /* Free Rx descriptors. */ |
679 | if (rxq->map != NULL((void *)0)) { |
680 | if (rxq->descs != NULL((void *)0)) { |
681 | bus_dmamap_unload(sc->sc_dmat, rxq->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rxq ->map)); |
682 | bus_dmamem_unmap(sc->sc_dmat, (caddr_t)rxq->descs,(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )rxq->descs), (64 * sizeof(struct ar_rx_desc))) |
683 | ATHN_NRXBUFS * sizeof(struct ar_rx_desc))(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )rxq->descs), (64 * sizeof(struct ar_rx_desc))); |
684 | bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rxq->seg), (1)); |
685 | } |
686 | bus_dmamap_destroy(sc->sc_dmat, rxq->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (rxq ->map)); |
687 | } |
688 | } |
689 | |
690 | void |
691 | ar5008_rx_enable(struct athn_softc *sc) |
692 | { |
693 | struct athn_rxq *rxq = &sc->rxq[0]; |
694 | struct athn_rx_buf *bf; |
695 | struct ar_rx_desc *ds; |
696 | int i; |
697 | |
698 | /* Setup and link Rx descriptors. */ |
699 | SIMPLEQ_INIT(&rxq->head)do { (&rxq->head)->sqh_first = ((void *)0); (&rxq ->head)->sqh_last = &(&rxq->head)->sqh_first ; } while (0); |
700 | rxq->lastds = NULL((void *)0); |
701 | for (i = 0; i < ATHN_NRXBUFS64; i++) { |
702 | bf = &rxq->bf[i]; |
703 | ds = bf->bf_desc; |
704 | |
705 | memset(ds, 0, sizeof(*ds))__builtin_memset((ds), (0), (sizeof(*ds))); |
706 | ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; |
707 | ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ)(((uint32_t)(3872) << 0) & 0x00000fff); |
708 | |
709 | if (rxq->lastds != NULL((void *)0)) { |
710 | ((struct ar_rx_desc *)rxq->lastds)->ds_link = |
711 | bf->bf_daddr; |
712 | } |
713 | SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list)do { (bf)->bf_list.sqe_next = ((void *)0); *(&rxq-> head)->sqh_last = (bf); (&rxq->head)->sqh_last = &(bf)->bf_list.sqe_next; } while (0); |
714 | rxq->lastds = ds; |
715 | } |
716 | bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rxq-> map), (0), (rxq->map->dm_mapsize), (0x01)) |
717 | BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rxq-> map), (0), (rxq->map->dm_mapsize), (0x01)); |
718 | |
719 | /* Enable Rx. */ |
720 | AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr)(sc)->ops.write((sc), (0x000c), (((&rxq->head)-> sqh_first)->bf_daddr)); |
721 | AR_WRITE(sc, AR_CR, AR_CR_RXE)(sc)->ops.write((sc), (0x0008), ((((sc)->mac_ver > 0x1c0 || (((sc)->mac_ver == 0x1c0) && (sc)->mac_rev >= 2)) ? 0x000c : 0x0004))); |
722 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
723 | } |
724 | |
725 | #if NBPFILTER1 > 0 |
726 | void |
727 | ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m, |
728 | struct ar_rx_desc *ds) |
729 | { |
730 | #define IEEE80211_RADIOTAP_F_SHORTGI0x80 0x80 /* XXX from FBSD */ |
731 | |
732 | struct athn_rx_radiotap_header *tap = &sc->sc_rxtapsc_rxtapu.th; |
733 | struct ieee80211com *ic = &sc->sc_ic; |
734 | uint64_t tsf; |
735 | uint32_t tstamp; |
736 | uint8_t rate; |
737 | |
738 | /* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */ |
739 | tstamp = ds->ds_status2; |
740 | tsf = AR_READ(sc, AR_TSF_U32)(sc)->ops.read((sc), (0x8050)); |
741 | tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32)(sc)->ops.read((sc), (0x804c)); |
742 | if ((tsf & 0x7fff) < tstamp) |
743 | tsf -= 0x8000; |
744 | tsf = (tsf & ~0x7fff) | tstamp; |
745 | |
746 | tap->wr_flags = IEEE80211_RADIOTAP_F_FCS0x10; |
747 | tap->wr_tsft = htole64(tsf)((__uint64_t)(tsf)); |
748 | tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
749 | tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
750 | tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED)(((uint32_t)(ds->ds_status4) & 0xff000000) >> 24 ); |
751 | /* XXX noise. */ |
752 | tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA)(((uint32_t)(ds->ds_status3) & 0xffffff00) >> 8); |
753 | tap->wr_rate = 0; /* In case it can't be found below. */ |
754 | if (AR_SREV_5416_20_OR_LATER(sc)((((sc)->mac_ver == 0x00d || (sc)->mac_ver == 0x00c) && (sc)->mac_rev >= 1) || (sc)->mac_ver >= 0x014)) |
755 | rate = MS(ds->ds_status0, AR_RXS0_RATE)(((uint32_t)(ds->ds_status0) & 0xff000000) >> 24 ); |
756 | else |
757 | rate = MS(ds->ds_status3, AR_RXS3_RATE)(((uint32_t)(ds->ds_status3) & 0x000003fc) >> 2); |
758 | if (rate & 0x80) { /* HT. */ |
759 | /* Bit 7 set means HT MCS instead of rate. */ |
760 | tap->wr_rate = rate; |
761 | if (!(ds->ds_status3 & AR_RXS3_GI0x00000001)) |
762 | tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI0x80; |
763 | |
764 | } else if (rate & 0x10) { /* CCK. */ |
765 | if (rate & 0x04) |
766 | tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE0x02; |
767 | switch (rate & ~0x14) { |
768 | case 0xb: tap->wr_rate = 2; break; |
769 | case 0xa: tap->wr_rate = 4; break; |
770 | case 0x9: tap->wr_rate = 11; break; |
771 | case 0x8: tap->wr_rate = 22; break; |
772 | } |
773 | } else { /* OFDM. */ |
774 | switch (rate) { |
775 | case 0xb: tap->wr_rate = 12; break; |
776 | case 0xf: tap->wr_rate = 18; break; |
777 | case 0xa: tap->wr_rate = 24; break; |
778 | case 0xe: tap->wr_rate = 36; break; |
779 | case 0x9: tap->wr_rate = 48; break; |
780 | case 0xd: tap->wr_rate = 72; break; |
781 | case 0x8: tap->wr_rate = 96; break; |
782 | case 0xc: tap->wr_rate = 108; break; |
783 | } |
784 | } |
785 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_DIRECTION_IN(1 << 0)); |
786 | } |
787 | #endif |
788 | |
789 | int |
790 | ar5008_ccmp_decap(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) |
791 | { |
792 | struct ieee80211com *ic = &sc->sc_ic; |
793 | struct ieee80211_key *k; |
794 | struct ieee80211_frame *wh; |
795 | struct ieee80211_rx_ba *ba; |
796 | uint64_t pn, *prsc; |
797 | u_int8_t *ivp; |
798 | uint8_t tid; |
799 | int hdrlen, hasqos; |
800 | uintptr_t entry; |
801 | |
802 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
803 | hdrlen = ieee80211_get_hdrlen(wh); |
804 | ivp = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)) + hdrlen; |
805 | |
806 | /* find key for decryption */ |
807 | k = ieee80211_get_rxkey(ic, m, ni); |
808 | if (k == NULL((void *)0) || k->k_cipher != IEEE80211_CIPHER_CCMP) |
809 | return 1; |
810 | |
811 | /* Sanity checks to ensure this is really a key we installed. */ |
812 | entry = (uintptr_t)k->k_priv; |
813 | if (k->k_flags & IEEE80211_KEY_GROUP0x00000001) { |
814 | if (k->k_id >= IEEE80211_WEP_NKID4 || |
815 | entry != k->k_id) |
816 | return 1; |
817 | } else { |
818 | #ifndef IEEE80211_STA_ONLY |
819 | if (ic->ic_opmode == IEEE80211_M_HOSTAP) { |
820 | if (entry != IEEE80211_WEP_NKID4 + |
821 | IEEE80211_AID(ni->ni_associd)((ni->ni_associd) &~ 0xc000)) |
822 | return 1; |
823 | } else |
824 | #endif |
825 | if (entry != IEEE80211_WEP_NKID4) |
826 | return 1; |
827 | } |
828 | |
829 | /* Check that ExtIV bit is set. */ |
830 | if (!(ivp[3] & IEEE80211_WEP_EXTIV0x20)) |
831 | return 1; |
832 | |
833 | hasqos = ieee80211_has_qos(wh); |
834 | tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID0x000f : 0; |
835 | ba = hasqos ? &ni->ni_rx_ba[tid] : NULL((void *)0); |
Value stored to 'ba' is never read | |
836 | prsc = &k->k_rsc[tid]; |
837 | |
838 | /* Extract the 48-bit PN from the CCMP header. */ |
839 | pn = (uint64_t)ivp[0] | |
840 | (uint64_t)ivp[1] << 8 | |
841 | (uint64_t)ivp[4] << 16 | |
842 | (uint64_t)ivp[5] << 24 | |
843 | (uint64_t)ivp[6] << 32 | |
844 | (uint64_t)ivp[7] << 40; |
845 | if (pn <= *prsc) { |
846 | ic->ic_stats.is_ccmp_replays++; |
847 | return 1; |
848 | } |
849 | /* Last seen packet number is updated in ieee80211_inputm(). */ |
850 | |
851 | /* Strip MIC. IV will be stripped by ieee80211_inputm(). */ |
852 | m_adj(m, -IEEE80211_CCMP_MICLEN8); |
853 | return 0; |
854 | } |
855 | |
856 | static __inline int |
857 | ar5008_rx_process(struct athn_softc *sc, struct mbuf_list *ml) |
858 | { |
859 | struct ieee80211com *ic = &sc->sc_ic; |
860 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
861 | struct athn_rxq *rxq = &sc->rxq[0]; |
862 | struct athn_rx_buf *bf, *nbf; |
863 | struct ar_rx_desc *ds; |
864 | struct ieee80211_frame *wh; |
865 | struct ieee80211_rxinfo rxi; |
866 | struct ieee80211_node *ni; |
867 | struct mbuf *m, *m1; |
868 | int error, len, michael_mic_failure = 0; |
869 | |
870 | bf = SIMPLEQ_FIRST(&rxq->head)((&rxq->head)->sqh_first); |
871 | if (__predict_false(bf == NULL)__builtin_expect(((bf == ((void *)0)) != 0), 0)) { /* Should not happen. */ |
872 | printf("%s: Rx queue is empty!\n", sc->sc_dev.dv_xname); |
873 | return (ENOENT2); |
874 | } |
875 | ds = bf->bf_desc; |
876 | |
877 | if (!(ds->ds_status8 & AR_RXS8_DONE0x00000001)) { |
878 | /* |
879 | * On some parts, the status words can get corrupted |
880 | * (including the "done" bit), so we check the next |
881 | * descriptor "done" bit. If it is set, it is a good |
882 | * indication that the status words are corrupted, so |
883 | * we skip this descriptor and drop the frame. |
884 | */ |
885 | nbf = SIMPLEQ_NEXT(bf, bf_list)((bf)->bf_list.sqe_next); |
886 | if (nbf != NULL((void *)0) && |
887 | (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 & |
888 | AR_RXS8_DONE0x00000001)) { |
889 | DPRINTF(("corrupted descriptor status=0x%x\n", |
890 | ds->ds_status8)); |
891 | /* HW will not "move" RXDP in this case, so do it. */ |
892 | AR_WRITE(sc, AR_RXDP, nbf->bf_daddr)(sc)->ops.write((sc), (0x000c), (nbf->bf_daddr)); |
893 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
894 | ifp->if_ierrorsif_data.ifi_ierrors++; |
895 | goto skip; |
896 | } |
897 | return (EBUSY16); |
898 | } |
899 | |
900 | if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)__builtin_expect(((ds->ds_status1 & 0x00001000) != 0), 0)) { |
901 | /* Drop frames that span multiple Rx descriptors. */ |
902 | DPRINTF(("dropping split frame\n")); |
903 | ifp->if_ierrorsif_data.ifi_ierrors++; |
904 | goto skip; |
905 | } |
906 | if (!(ds->ds_status8 & AR_RXS8_FRAME_OK0x00000002)) { |
907 | if (ds->ds_status8 & AR_RXS8_CRC_ERR0x00000004) |
908 | DPRINTFN(6, ("CRC error\n")); |
909 | else if (ds->ds_status8 & AR_RXS8_PHY_ERR0x00000010) |
910 | DPRINTFN(6, ("PHY error=0x%x\n", |
911 | MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE))); |
912 | else if (ds->ds_status8 & (AR_RXS8_DECRYPT_CRC_ERR0x00000008 | |
913 | AR_RXS8_KEY_MISS0x80000000 | AR_RXS8_DECRYPT_BUSY_ERR0x40000000)) { |
914 | DPRINTFN(6, ("Decryption CRC error\n")); |
915 | ic->ic_stats.is_ccmp_dec_errs++; |
916 | } else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR0x00000020) { |
917 | DPRINTFN(2, ("Michael MIC failure\n")); |
918 | michael_mic_failure = 1; |
919 | } |
920 | if (!michael_mic_failure) { |
921 | ifp->if_ierrorsif_data.ifi_ierrors++; |
922 | goto skip; |
923 | } |
924 | } else { |
925 | if (ds->ds_status8 & (AR_RXS8_CRC_ERR0x00000004 | AR_RXS8_PHY_ERR0x00000010 | |
926 | AR_RXS8_DECRYPT_CRC_ERR0x00000008 | AR_RXS8_MICHAEL_ERR0x00000020)) { |
927 | ifp->if_ierrorsif_data.ifi_ierrors++; |
928 | goto skip; |
929 | } |
930 | } |
931 | |
932 | len = MS(ds->ds_status1, AR_RXS1_DATA_LEN)(((uint32_t)(ds->ds_status1) & 0x00000fff) >> 0); |
933 | if (__predict_false(len < IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)__builtin_expect(((len < (sizeof(struct ieee80211_frame_min ) + 4) || len > 3872) != 0), 0)) { |
934 | DPRINTF(("corrupted descriptor length=%d\n", len)); |
935 | ifp->if_ierrorsif_data.ifi_ierrors++; |
936 | goto skip; |
937 | } |
938 | |
939 | /* Allocate a new Rx buffer. */ |
940 | m1 = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ)m_clget((((void *)0)), (0x0002), (3872)); |
941 | if (__predict_false(m1 == NULL)__builtin_expect(((m1 == ((void *)0)) != 0), 0)) { |
942 | ic->ic_stats.is_rx_nombuf++; |
943 | ifp->if_ierrorsif_data.ifi_ierrors++; |
944 | goto skip; |
945 | } |
946 | |
947 | /* Sync and unmap the old Rx buffer. */ |
948 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x02)) |
949 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x02)); |
950 | bus_dmamap_unload(sc->sc_dmat, bf->bf_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_map)); |
951 | |
952 | /* Map the new Rx buffer. */ |
953 | error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((m1)->m_hdr.mh_data))), (3872), (((void *)0)), (0x0001 | 0x0200)) |
954 | ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((m1)->m_hdr.mh_data))), (3872), (((void *)0)), (0x0001 | 0x0200)); |
955 | if (__predict_false(error != 0)__builtin_expect(((error != 0) != 0), 0)) { |
956 | m_freem(m1); |
957 | |
958 | /* Remap the old Rx buffer or panic. */ |
959 | error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)) |
960 | mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)) |
961 | BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (bf-> bf_map), (((void *)((bf->bf_m)->m_hdr.mh_data))), (3872 ), (((void *)0)), (0x0001 | 0x0200)); |
962 | KASSERT(error != 0)((error != 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/ic/ar5008.c" , 962, "error != 0")); |
963 | ifp->if_ierrorsif_data.ifi_ierrors++; |
964 | goto skip; |
965 | } |
966 | |
967 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x01)) |
968 | BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (3872), (0x01)); |
969 | |
970 | /* Write physical address of new Rx buffer. */ |
971 | ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; |
972 | |
973 | m = bf->bf_m; |
974 | bf->bf_m = m1; |
975 | |
976 | /* Finalize mbuf. */ |
977 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
978 | |
979 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
980 | |
981 | if (michael_mic_failure) { |
982 | /* |
983 | * Check that it is not a control frame |
984 | * (invalid MIC failures on valid ctl frames). |
985 | * Validate the transmitter's address to avoid passing |
986 | * corrupt frames with bogus addresses to net80211. |
987 | */ |
988 | if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL0x04)) { |
989 | switch (ic->ic_opmode) { |
990 | #ifndef IEEE80211_STA_ONLY |
991 | case IEEE80211_M_HOSTAP: |
992 | if (ieee80211_find_node(ic, wh->i_addr2)) |
993 | michael_mic_failure = 0; |
994 | break; |
995 | #endif |
996 | case IEEE80211_M_STA: |
997 | if (IEEE80211_ADDR_EQ(wh->i_addr2,(__builtin_memcmp((wh->i_addr2), (ic->ic_bss->ni_macaddr ), (6)) == 0) |
998 | ic->ic_bss->ni_macaddr)(__builtin_memcmp((wh->i_addr2), (ic->ic_bss->ni_macaddr ), (6)) == 0)) |
999 | michael_mic_failure = 0; |
1000 | break; |
1001 | case IEEE80211_M_MONITOR: |
1002 | michael_mic_failure = 0; |
1003 | break; |
1004 | default: |
1005 | break; |
1006 | } |
1007 | } |
1008 | |
1009 | if (michael_mic_failure) { |
1010 | /* Report Michael MIC failures to net80211. */ |
1011 | if ((ic->ic_rsnciphers & IEEE80211_CIPHER_TKIP) || |
1012 | ic->ic_rsngroupcipher == IEEE80211_CIPHER_TKIP) { |
1013 | ic->ic_stats.is_rx_locmicfail++; |
1014 | ieee80211_michael_mic_failure(ic, 0); |
1015 | } |
1016 | ifp->if_ierrorsif_data.ifi_ierrors++; |
1017 | m_freem(m); |
1018 | goto skip; |
1019 | } |
1020 | } |
1021 | |
1022 | /* Grab a reference to the source node. */ |
1023 | ni = ieee80211_find_rxnode(ic, wh); |
1024 | |
1025 | /* Remove any HW padding after the 802.11 header. */ |
1026 | if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL0x04)) { |
1027 | u_int hdrlen = ieee80211_get_hdrlen(wh); |
1028 | if (hdrlen & 3) { |
1029 | memmove((caddr_t)wh + 2, wh, hdrlen)__builtin_memmove(((caddr_t)wh + 2), (wh), (hdrlen)); |
1030 | m_adj(m, 2); |
1031 | } |
1032 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1033 | } |
1034 | #if NBPFILTER1 > 0 |
1035 | if (__predict_false(sc->sc_drvbpf != NULL)__builtin_expect(((sc->sc_drvbpf != ((void *)0)) != 0), 0)) |
1036 | ar5008_rx_radiotap(sc, m, ds); |
1037 | #endif |
1038 | /* Trim 802.11 FCS after radiotap. */ |
1039 | m_adj(m, -IEEE80211_CRC_LEN4); |
1040 | |
1041 | /* Send the frame to the 802.11 layer. */ |
1042 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
1043 | rxi.rxi_rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED)(((uint32_t)(ds->ds_status4) & 0xff000000) >> 24 ); |
1044 | rxi.rxi_rssi += AR_DEFAULT_NOISE_FLOOR(-100); |
1045 | rxi.rxi_tstamp = ds->ds_status2; |
1046 | if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL0x04) && |
1047 | (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40) && |
1048 | (ic->ic_flags & IEEE80211_F_RSNON0x00200000) && |
1049 | (ni->ni_flags & IEEE80211_NODE_RXPROT0x0008) && |
1050 | ((!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
1051 | ni->ni_rsncipher == IEEE80211_CIPHER_CCMP) || |
1052 | (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
1053 | ni->ni_rsngroupcipher == IEEE80211_CIPHER_CCMP))) { |
1054 | if (ar5008_ccmp_decap(sc, m, ni) != 0) { |
1055 | ifp->if_ierrorsif_data.ifi_ierrors++; |
1056 | ieee80211_release_node(ic, ni); |
1057 | m_freem(m); |
1058 | goto skip; |
1059 | } |
1060 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
1061 | } |
1062 | ieee80211_inputm(ifp, m, ni, &rxi, ml); |
1063 | |
1064 | /* Node is no longer needed. */ |
1065 | ieee80211_release_node(ic, ni); |
1066 | |
1067 | skip: |
1068 | /* Unlink this descriptor from head. */ |
1069 | SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list)do { if (((&rxq->head)->sqh_first = (&rxq->head )->sqh_first->bf_list.sqe_next) == ((void *)0)) (&rxq ->head)->sqh_last = &(&rxq->head)->sqh_first ; } while (0); |
1070 | memset(&ds->ds_status0, 0, 36)__builtin_memset((&ds->ds_status0), (0), (36)); /* XXX Really needed? */ |
1071 | ds->ds_status8 &= ~AR_RXS8_DONE0x00000001; |
1072 | ds->ds_link = 0; |
1073 | |
1074 | /* Re-use this descriptor and link it to tail. */ |
1075 | if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head))__builtin_expect(((!(((&rxq->head)->sqh_first) == ( (void *)0))) != 0), 1)) |
1076 | ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; |
1077 | else |
1078 | AR_WRITE(sc, AR_RXDP, bf->bf_daddr)(sc)->ops.write((sc), (0x000c), (bf->bf_daddr)); |
1079 | SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list)do { (bf)->bf_list.sqe_next = ((void *)0); *(&rxq-> head)->sqh_last = (bf); (&rxq->head)->sqh_last = &(bf)->bf_list.sqe_next; } while (0); |
1080 | rxq->lastds = ds; |
1081 | |
1082 | /* Re-enable Rx. */ |
1083 | AR_WRITE(sc, AR_CR, AR_CR_RXE)(sc)->ops.write((sc), (0x0008), ((((sc)->mac_ver > 0x1c0 || (((sc)->mac_ver == 0x1c0) && (sc)->mac_rev >= 2)) ? 0x000c : 0x0004))); |
1084 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1085 | return (0); |
1086 | } |
1087 | |
1088 | void |
1089 | ar5008_rx_intr(struct athn_softc *sc) |
1090 | { |
1091 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
1092 | struct ieee80211com *ic = &sc->sc_ic; |
1093 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1094 | |
1095 | while (ar5008_rx_process(sc, &ml) == 0); |
1096 | |
1097 | if_input(ifp, &ml); |
1098 | } |
1099 | |
1100 | int |
1101 | ar5008_tx_process(struct athn_softc *sc, int qid) |
1102 | { |
1103 | struct ieee80211com *ic = &sc->sc_ic; |
1104 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1105 | struct athn_txq *txq = &sc->txq[qid]; |
1106 | struct athn_node *an; |
1107 | struct ieee80211_node *ni; |
1108 | struct athn_tx_buf *bf; |
1109 | struct ar_tx_desc *ds; |
1110 | uint8_t failcnt; |
1111 | int txfail = 0, rtscts; |
1112 | |
1113 | bf = SIMPLEQ_FIRST(&txq->head)((&txq->head)->sqh_first); |
1114 | if (bf == NULL((void *)0)) |
1115 | return (ENOENT2); |
1116 | /* Get descriptor of last DMA segment. */ |
1117 | ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1]; |
1118 | |
1119 | if (!(ds->ds_status9 & AR_TXS9_DONE0x00000001)) |
1120 | return (EBUSY16); |
1121 | |
1122 | SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list)do { if (((&txq->head)->sqh_first = (&txq->head )->sqh_first->bf_list.sqe_next) == ((void *)0)) (&txq ->head)->sqh_last = &(&txq->head)->sqh_first ; } while (0); |
1123 | |
1124 | sc->sc_tx_timer = 0; |
1125 | |
1126 | /* These status bits are valid if “FRM_XMIT_OK” is clear. */ |
1127 | if ((ds->ds_status1 & AR_TXS1_FRM_XMIT_OK0x00000001) == 0) { |
1128 | txfail = (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES0x00000002); |
1129 | if (txfail) |
1130 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1131 | if (ds->ds_status1 & AR_TXS1_UNDERRUN(0x00000004 | 0x00010000 | 0x00020000)) |
1132 | athn_inc_tx_trigger_level(sc); |
1133 | } |
1134 | |
1135 | an = (struct athn_node *)bf->bf_ni; |
1136 | ni = (struct ieee80211_node *)bf->bf_ni; |
1137 | |
1138 | /* |
1139 | * NB: the data fail count contains the number of un-acked tries |
1140 | * for the final series used. We must add the number of tries for |
1141 | * each series that was fully processed to punish transmit rates in |
1142 | * the earlier series which did not perform well. |
1143 | */ |
1144 | failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT)(((uint32_t)(ds->ds_status1) & 0x00000f00) >> 8); |
1145 | /* Assume two tries per series, as per AR_TXC2_XMIT_DATA_TRIESx. */ |
1146 | failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX)(((uint32_t)(ds->ds_status9) & 0x00600000) >> 21 ) * 2; |
1147 | |
1148 | rtscts = (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE0x00400000 | AR_TXC0_CTS_ENABLE0x80000000)); |
1149 | |
1150 | /* Update rate control statistics. */ |
1151 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && ic->ic_fixed_mcs == -1) { |
1152 | const struct ieee80211_ht_rateset *rs = |
1153 | ieee80211_ra_get_ht_rateset(bf->bf_txmcs, 0 /* chan40 */, |
1154 | ieee80211_node_supports_ht_sgi20(ni)); |
1155 | unsigned int retries = 0, i; |
1156 | int mcs = bf->bf_txmcs; |
1157 | |
1158 | /* With RTS/CTS each Tx series used the same MCS. */ |
1159 | if (rtscts) { |
1160 | retries = failcnt; |
1161 | } else { |
1162 | for (i = 0; i < failcnt; i++) { |
1163 | if (mcs > rs->min_mcs) { |
1164 | ieee80211_ra_add_stats_ht(&an->rn, |
1165 | ic, ni, mcs, 1, 1); |
1166 | if (i % 2) /* two tries per series */ |
1167 | mcs--; |
1168 | } else |
1169 | retries++; |
1170 | } |
1171 | } |
1172 | |
1173 | if (txfail && retries == 0) { |
1174 | ieee80211_ra_add_stats_ht(&an->rn, ic, ni, |
1175 | mcs, 1, 1); |
1176 | } else { |
1177 | ieee80211_ra_add_stats_ht(&an->rn, ic, ni, |
1178 | mcs, retries + 1, retries); |
1179 | } |
1180 | if (ic->ic_state == IEEE80211_S_RUN) { |
1181 | #ifndef IEEE80211_STA_ONLY |
1182 | if (ic->ic_opmode != IEEE80211_M_HOSTAP || |
1183 | ni->ni_state == IEEE80211_STA_ASSOC) |
1184 | #endif |
1185 | ieee80211_ra_choose(&an->rn, ic, ni); |
1186 | } |
1187 | } else if (ic->ic_fixed_rate == -1) { |
1188 | an->amn.amn_txcnt++; |
1189 | if (failcnt > 0) |
1190 | an->amn.amn_retrycnt++; |
1191 | } |
1192 | DPRINTFN(5, ("Tx done qid=%d status1=%d fail count=%d\n", |
1193 | qid, ds->ds_status1, failcnt)); |
1194 | |
1195 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x08)) |
1196 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x08)); |
1197 | bus_dmamap_unload(sc->sc_dmat, bf->bf_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_map)); |
1198 | |
1199 | m_freem(bf->bf_m); |
1200 | bf->bf_m = NULL((void *)0); |
1201 | ieee80211_release_node(ic, bf->bf_ni); |
1202 | bf->bf_ni = NULL((void *)0); |
1203 | |
1204 | /* Link Tx buffer back to global free list. */ |
1205 | SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list)do { (bf)->bf_list.sqe_next = ((void *)0); *(&sc->txbufs )->sqh_last = (bf); (&sc->txbufs)->sqh_last = & (bf)->bf_list.sqe_next; } while (0); |
1206 | return (0); |
1207 | } |
1208 | |
1209 | void |
1210 | ar5008_tx_intr(struct athn_softc *sc) |
1211 | { |
1212 | struct ieee80211com *ic = &sc->sc_ic; |
1213 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1214 | uint16_t mask = 0; |
1215 | uint32_t reg; |
1216 | int qid; |
1217 | |
1218 | reg = AR_READ(sc, AR_ISR_S0_S)(sc)->ops.read((sc), (0x00c4)); |
1219 | mask |= MS(reg, AR_ISR_S0_QCU_TXOK)(((uint32_t)(reg) & 0x000003ff) >> 0); |
1220 | mask |= MS(reg, AR_ISR_S0_QCU_TXDESC)(((uint32_t)(reg) & 0x03ff0000) >> 16); |
1221 | |
1222 | reg = AR_READ(sc, AR_ISR_S1_S)(sc)->ops.read((sc), (0x00c8)); |
1223 | mask |= MS(reg, AR_ISR_S1_QCU_TXERR)(((uint32_t)(reg) & 0x000003ff) >> 0); |
1224 | mask |= MS(reg, AR_ISR_S1_QCU_TXEOL)(((uint32_t)(reg) & 0x03ff0000) >> 16); |
1225 | |
1226 | DPRINTFN(4, ("Tx interrupt mask=0x%x\n", mask)); |
1227 | for (qid = 0; mask != 0; mask >>= 1, qid++) { |
1228 | if (mask & 1) |
1229 | while (ar5008_tx_process(sc, qid) == 0); |
1230 | } |
1231 | if (!SIMPLEQ_EMPTY(&sc->txbufs)(((&sc->txbufs)->sqh_first) == ((void *)0))) { |
1232 | ifq_clr_oactive(&ifp->if_snd); |
1233 | ifp->if_start(ifp); |
1234 | } |
1235 | } |
1236 | |
1237 | #ifndef IEEE80211_STA_ONLY |
1238 | /* |
1239 | * Process Software Beacon Alert interrupts. |
1240 | */ |
1241 | int |
1242 | ar5008_swba_intr(struct athn_softc *sc) |
1243 | { |
1244 | struct ieee80211com *ic = &sc->sc_ic; |
1245 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1246 | struct ieee80211_node *ni = ic->ic_bss; |
1247 | struct athn_tx_buf *bf = sc->bcnbuf; |
1248 | struct ieee80211_frame *wh; |
1249 | struct ar_tx_desc *ds; |
1250 | struct mbuf *m; |
1251 | uint8_t ridx, hwrate; |
1252 | int error, totlen; |
1253 | |
1254 | if (ic->ic_tim_mcast_pending && |
1255 | mq_empty(&ni->ni_savedq)(({ typeof((&ni->ni_savedq)->mq_list.ml_len) __tmp = *(volatile typeof((&ni->ni_savedq)->mq_list.ml_len ) *)&((&ni->ni_savedq)->mq_list.ml_len); membar_datadep_consumer (); __tmp; }) == 0) && |
1256 | SIMPLEQ_EMPTY(&sc->txq[ATHN_QID_CAB].head)(((&sc->txq[6].head)->sqh_first) == ((void *)0))) |
1257 | ic->ic_tim_mcast_pending = 0; |
1258 | |
1259 | if (ic->ic_dtim_count == 0) |
1260 | ic->ic_dtim_count = ic->ic_dtim_period - 1; |
1261 | else |
1262 | ic->ic_dtim_count--; |
1263 | |
1264 | /* Make sure previous beacon has been sent. */ |
1265 | if (athn_tx_pending(sc, ATHN_QID_BEACON7)) { |
1266 | DPRINTF(("beacon stuck\n")); |
1267 | return (EBUSY16); |
1268 | } |
1269 | /* Get new beacon. */ |
1270 | m = ieee80211_beacon_alloc(ic, ic->ic_bss); |
1271 | if (__predict_false(m == NULL)__builtin_expect(((m == ((void *)0)) != 0), 0)) |
1272 | return (ENOBUFS55); |
1273 | /* Assign sequence number. */ |
1274 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1275 | *(uint16_t *)&wh->i_seq[0] = |
1276 | htole16(ic->ic_bss->ni_txseq << IEEE80211_SEQ_SEQ_SHIFT)((__uint16_t)(ic->ic_bss->ni_txseq << 4)); |
1277 | ic->ic_bss->ni_txseq++; |
1278 | |
1279 | /* Unmap and free old beacon if any. */ |
1280 | if (__predict_true(bf->bf_m != NULL)__builtin_expect(((bf->bf_m != ((void *)0)) != 0), 1)) { |
1281 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x08)) |
1282 | bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x08)); |
1283 | bus_dmamap_unload(sc->sc_dmat, bf->bf_map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_map)); |
1284 | m_freem(bf->bf_m); |
1285 | bf->bf_m = NULL((void *)0); |
1286 | } |
1287 | /* DMA map new beacon. */ |
1288 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)) |
1289 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)); |
1290 | if (__predict_false(error != 0)__builtin_expect(((error != 0) != 0), 0)) { |
1291 | m_freem(m); |
1292 | return (error); |
1293 | } |
1294 | bf->bf_m = m; |
1295 | |
1296 | /* Setup Tx descriptor (simplified ar5008_tx()). */ |
1297 | ds = bf->bf_descs; |
1298 | memset(ds, 0, sizeof(*ds))__builtin_memset((ds), (0), (sizeof(*ds))); |
1299 | |
1300 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len + IEEE80211_CRC_LEN4; |
1301 | ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen)(((uint32_t)(totlen) << 0) & 0x00000fff); |
1302 | ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER)(((uint32_t)(63) << 16) & 0x003f0000); |
1303 | ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON)(((uint32_t)(3) << 20) & 0x00f00000); |
1304 | ds->ds_ctl1 |= AR_TXC1_NO_ACK0x01000000; |
1305 | ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR)(((uint32_t)(0) << 26) & 0x0c000000); |
1306 | |
1307 | /* Write number of tries. */ |
1308 | ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1)(((uint32_t)(1) << 16) & 0x000f0000); |
1309 | |
1310 | /* Write Tx rate. */ |
1311 | ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0) ? |
1312 | ATHN_RIDX_OFDM64 : ATHN_RIDX_CCK10; |
1313 | hwrate = athn_rates[ridx].hwrate; |
1314 | ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate)(((uint32_t)(hwrate) << 0) & 0x000000ff); |
1315 | |
1316 | /* Write Tx chains. */ |
1317 | ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask)(((uint32_t)(sc->txchainmask) << 2) & 0x0000001c ); |
1318 | |
1319 | ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; |
1320 | /* Segment length must be a multiple of 4. */ |
1321 | ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,(((uint32_t)((bf->bf_map->dm_segs[0].ds_len + 3) & ~ 3) << 0) & 0x00000fff) |
1322 | (bf->bf_map->dm_segs[0].ds_len + 3) & ~3)(((uint32_t)((bf->bf_map->dm_segs[0].ds_len + 3) & ~ 3) << 0) & 0x00000fff); |
1323 | |
1324 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x04)) |
1325 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x04)); |
1326 | |
1327 | /* Stop Tx DMA before putting the new beacon on the queue. */ |
1328 | athn_stop_tx_dma(sc, ATHN_QID_BEACON7); |
1329 | |
1330 | AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr)(sc)->ops.write((sc), ((0x0800 + (7) * 4)), (bf->bf_daddr )); |
1331 | |
1332 | for(;;) { |
1333 | if (SIMPLEQ_EMPTY(&sc->txbufs)(((&sc->txbufs)->sqh_first) == ((void *)0))) |
1334 | break; |
1335 | |
1336 | m = mq_dequeue(&ni->ni_savedq); |
1337 | if (m == NULL((void *)0)) |
1338 | break; |
1339 | if (!mq_empty(&ni->ni_savedq)(({ typeof((&ni->ni_savedq)->mq_list.ml_len) __tmp = *(volatile typeof((&ni->ni_savedq)->mq_list.ml_len ) *)&((&ni->ni_savedq)->mq_list.ml_len); membar_datadep_consumer (); __tmp; }) == 0)) { |
1340 | /* more queued frames, set the more data bit */ |
1341 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1342 | wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA0x20; |
1343 | } |
1344 | |
1345 | if (sc->ops.tx(sc, m, ni, ATHN_TXFLAG_CAB(1 << 1)) != 0) { |
1346 | ieee80211_release_node(ic, ni); |
1347 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1348 | break; |
1349 | } |
1350 | } |
1351 | |
1352 | /* Kick Tx. */ |
1353 | AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON)(sc)->ops.write((sc), (0x0840), (1 << 7)); |
1354 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1355 | return (0); |
1356 | } |
1357 | #endif |
1358 | |
1359 | int |
1360 | ar5008_intr(struct athn_softc *sc) |
1361 | { |
1362 | uint32_t intr, intr2, intr5, sync; |
1363 | |
1364 | /* Get pending interrupts. */ |
1365 | intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE)(sc)->ops.read((sc), (0x4038)); |
1366 | if (!(intr & AR_INTR_MAC_IRQ0x00000002) || intr == AR_INTR_SPURIOUS0xffffffff) { |
1367 | intr = AR_READ(sc, AR_INTR_SYNC_CAUSE)(sc)->ops.read((sc), (0x4028)); |
1368 | if (intr == AR_INTR_SPURIOUS0xffffffff || (intr & sc->isync) == 0) |
1369 | return (0); /* Not for us. */ |
1370 | } |
1371 | |
1372 | if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE)(sc)->ops.read((sc), (0x4038)) & AR_INTR_MAC_IRQ0x00000002) && |
1373 | (AR_READ(sc, AR_RTC_STATUS)(sc)->ops.read((sc), (0x7044)) & AR_RTC_STATUS_M0x0000000f) == AR_RTC_STATUS_ON0x00000002) |
1374 | intr = AR_READ(sc, AR_ISR)(sc)->ops.read((sc), (0x0080)); |
1375 | else |
1376 | intr = 0; |
1377 | sync = AR_READ(sc, AR_INTR_SYNC_CAUSE)(sc)->ops.read((sc), (0x4028)) & sc->isync; |
1378 | if (intr == 0 && sync == 0) |
1379 | return (0); /* Not for us. */ |
1380 | |
1381 | if (intr != 0) { |
1382 | if (intr & AR_ISR_BCNMISC0x00800000) { |
1383 | intr2 = AR_READ(sc, AR_ISR_S2)(sc)->ops.read((sc), (0x008c)); |
1384 | if (intr2 & AR_ISR_S2_TIM0x01000000) |
1385 | /* TBD */; |
1386 | if (intr2 & AR_ISR_S2_TSFOOR0x40000000) |
1387 | /* TBD */; |
1388 | } |
1389 | intr = AR_READ(sc, AR_ISR_RAC)(sc)->ops.read((sc), (0x00c0)); |
1390 | if (intr == AR_INTR_SPURIOUS0xffffffff) |
1391 | return (1); |
1392 | |
1393 | #ifndef IEEE80211_STA_ONLY |
1394 | if (intr & AR_ISR_SWBA0x00010000) |
1395 | ar5008_swba_intr(sc); |
1396 | #endif |
1397 | if (intr & (AR_ISR_RXMINTR0x01000000 | AR_ISR_RXINTM0x80000000)) |
1398 | ar5008_rx_intr(sc); |
1399 | if (intr & (AR_ISR_RXOK0x00000001 | AR_ISR_RXERR0x00000004 | AR_ISR_RXORN0x00000020)) |
1400 | ar5008_rx_intr(sc); |
1401 | |
1402 | if (intr & (AR_ISR_TXOK0x00000040 | AR_ISR_TXDESC0x00000080 | |
1403 | AR_ISR_TXERR0x00000100 | AR_ISR_TXEOL0x00000400)) |
1404 | ar5008_tx_intr(sc); |
1405 | |
1406 | intr5 = AR_READ(sc, AR_ISR_S5_S)(sc)->ops.read((sc), (0x00d8)); |
1407 | if (intr & AR_ISR_GENTMR0x10000000) { |
1408 | if (intr5 & AR_ISR_GENTMR0x10000000) { |
1409 | DPRINTF(("GENTMR trigger=%d thresh=%d\n", |
1410 | MS(intr5, AR_ISR_S5_GENTIMER_TRIG), |
1411 | MS(intr5, AR_ISR_S5_GENTIMER_THRESH))); |
1412 | } |
1413 | } |
1414 | |
1415 | if (intr5 & AR_ISR_S5_TIM_TIMER0x00000010) |
1416 | /* TBD */; |
1417 | } |
1418 | if (sync != 0) { |
1419 | if (sync & (AR_INTR_SYNC_HOST1_FATAL0x00000020 | |
1420 | AR_INTR_SYNC_HOST1_PERR0x00000040)) |
1421 | /* TBD */; |
1422 | |
1423 | if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT0x00001000) { |
1424 | AR_WRITE(sc, AR_RC, AR_RC_HOSTIF)(sc)->ops.write((sc), (0x4000), (0x00000100)); |
1425 | AR_WRITE(sc, AR_RC, 0)(sc)->ops.write((sc), (0x4000), (0)); |
1426 | } |
1427 | |
1428 | if ((sc->flags & ATHN_FLAG_RFSILENT(1 << 5)) && |
1429 | (sync & AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin)(1 << (18 + (sc->rfsilent_pin))))) { |
1430 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1431 | |
1432 | printf("%s: radio switch turned off\n", |
1433 | sc->sc_dev.dv_xname); |
1434 | /* Turn the interface down. */ |
1435 | athn_stop(ifp, 1); |
1436 | return (1); |
1437 | } |
1438 | |
1439 | AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync)(sc)->ops.write((sc), (0x4028), (sync)); |
1440 | (void)AR_READ(sc, AR_INTR_SYNC_CAUSE)(sc)->ops.read((sc), (0x4028)); |
1441 | } |
1442 | return (1); |
1443 | } |
1444 | |
1445 | int |
1446 | ar5008_ccmp_encap(struct mbuf *m, u_int hdrlen, struct ieee80211_key *k) |
1447 | { |
1448 | struct mbuf *n; |
1449 | uint8_t *ivp; |
1450 | int off; |
1451 | |
1452 | /* Insert IV for CCMP hardware encryption. */ |
1453 | n = m_makespace(m, hdrlen, IEEE80211_CCMP_HDRLEN8, &off); |
1454 | if (n == NULL((void *)0)) { |
1455 | m_freem(m); |
1456 | return (ENOBUFS55); |
1457 | } |
1458 | ivp = mtod(n, uint8_t *)((uint8_t *)((n)->m_hdr.mh_data)) + off; |
1459 | k->k_tsc++; |
1460 | ivp[0] = k->k_tsc; |
1461 | ivp[1] = k->k_tsc >> 8; |
1462 | ivp[2] = 0; |
1463 | ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV0x20; |
1464 | ivp[4] = k->k_tsc >> 16; |
1465 | ivp[5] = k->k_tsc >> 24; |
1466 | ivp[6] = k->k_tsc >> 32; |
1467 | ivp[7] = k->k_tsc >> 40; |
1468 | |
1469 | return 0; |
1470 | } |
1471 | |
1472 | int |
1473 | ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, |
1474 | int txflags) |
1475 | { |
1476 | struct ieee80211com *ic = &sc->sc_ic; |
1477 | struct ieee80211_key *k = NULL((void *)0); |
1478 | struct ieee80211_frame *wh; |
1479 | struct athn_series series[4]; |
1480 | struct ar_tx_desc *ds, *lastds; |
1481 | struct athn_txq *txq; |
1482 | struct athn_tx_buf *bf; |
1483 | struct athn_node *an = (void *)ni; |
1484 | uintptr_t entry; |
1485 | uint16_t qos; |
1486 | uint8_t txpower, type, encrtype, tid, ridx[4]; |
1487 | int i, error, totlen, hasqos, qid; |
1488 | |
1489 | /* Grab a Tx buffer from our global free list. */ |
1490 | bf = SIMPLEQ_FIRST(&sc->txbufs)((&sc->txbufs)->sqh_first); |
1491 | KASSERT(bf != NULL)((bf != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/ic/ar5008.c" , 1491, "bf != NULL")); |
1492 | |
1493 | /* Map 802.11 frame type to hardware frame type. */ |
1494 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1495 | if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) == |
1496 | IEEE80211_FC0_TYPE_MGT0x00) { |
1497 | /* NB: Beacons do not use ar5008_tx(). */ |
1498 | if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) == |
1499 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) |
1500 | type = AR_FRAME_TYPE_PROBE_RESP4; |
1501 | else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) == |
1502 | IEEE80211_FC0_SUBTYPE_ATIM0x90) |
1503 | type = AR_FRAME_TYPE_ATIM1; |
1504 | else |
1505 | type = AR_FRAME_TYPE_NORMAL0; |
1506 | } else if ((wh->i_fc[0] & |
1507 | (IEEE80211_FC0_TYPE_MASK0x0c | IEEE80211_FC0_SUBTYPE_MASK0xf0)) == |
1508 | (IEEE80211_FC0_TYPE_CTL0x04 | IEEE80211_FC0_SUBTYPE_PS_POLL0xa0)) { |
1509 | type = AR_FRAME_TYPE_PSPOLL2; |
1510 | } else |
1511 | type = AR_FRAME_TYPE_NORMAL0; |
1512 | |
1513 | if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40) { |
1514 | k = ieee80211_get_txkey(ic, wh, ni); |
1515 | if (k->k_cipher == IEEE80211_CIPHER_CCMP) { |
1516 | u_int hdrlen = ieee80211_get_hdrlen(wh); |
1517 | if (ar5008_ccmp_encap(m, hdrlen, k) != 0) |
1518 | return (ENOBUFS55); |
1519 | } else { |
1520 | if ((m = ieee80211_encrypt(ic, m, k)) == NULL((void *)0)) |
1521 | return (ENOBUFS55); |
1522 | k = NULL((void *)0); /* skip hardware crypto further below */ |
1523 | } |
1524 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1525 | } |
1526 | |
1527 | /* XXX 2-byte padding for QoS and 4-addr headers. */ |
1528 | |
1529 | /* Select the HW Tx queue to use for this frame. */ |
1530 | if ((hasqos = ieee80211_has_qos(wh))) { |
1531 | qos = ieee80211_get_qos(wh); |
1532 | tid = qos & IEEE80211_QOS_TID0x000f; |
1533 | qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; |
1534 | } else if (type == AR_FRAME_TYPE_PSPOLL2) { |
1535 | qid = ATHN_QID_PSPOLL1; |
1536 | } else if (txflags & ATHN_TXFLAG_CAB(1 << 1)) { |
1537 | qid = ATHN_QID_CAB6; |
1538 | } else |
1539 | qid = ATHN_QID_AC_BE0; |
1540 | txq = &sc->txq[qid]; |
1541 | |
1542 | /* Select the transmit rates to use for this frame. */ |
1543 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
1544 | (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) != |
1545 | IEEE80211_FC0_TYPE_DATA0x08) { |
1546 | /* Use lowest rate for all tries. */ |
1547 | ridx[0] = ridx[1] = ridx[2] = ridx[3] = |
1548 | (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0) ? |
1549 | ATHN_RIDX_OFDM64 : ATHN_RIDX_CCK10); |
1550 | } else if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
1551 | ic->ic_fixed_mcs != -1) { |
1552 | /* Use same fixed rate for all tries. */ |
1553 | ridx[0] = ridx[1] = ridx[2] = ridx[3] = |
1554 | ATHN_RIDX_MCS012 + ic->ic_fixed_mcs; |
1555 | } else if (ic->ic_fixed_rate != -1) { |
1556 | /* Use same fixed rate for all tries. */ |
1557 | ridx[0] = ridx[1] = ridx[2] = ridx[3] = |
1558 | sc->fixed_ridx; |
1559 | } else { |
1560 | /* Use fallback table of the node. */ |
1561 | int txrate; |
1562 | |
1563 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) |
1564 | txrate = ATHN_NUM_LEGACY_RATES15 + ni->ni_txmcs; |
1565 | else |
1566 | txrate = ni->ni_txrate; |
1567 | for (i = 0; i < 4; i++) { |
1568 | ridx[i] = an->ridx[txrate]; |
1569 | txrate = an->fallback[txrate]; |
1570 | } |
1571 | } |
1572 | |
1573 | #if NBPFILTER1 > 0 |
1574 | if (__predict_false(sc->sc_drvbpf != NULL)__builtin_expect(((sc->sc_drvbpf != ((void *)0)) != 0), 0)) { |
1575 | struct athn_tx_radiotap_header *tap = &sc->sc_txtapsc_txtapu.th; |
1576 | |
1577 | tap->wt_flags = 0; |
1578 | /* Use initial transmit rate. */ |
1579 | if (athn_rates[ridx[0]].hwrate & 0x80) /* MCS */ |
1580 | tap->wt_rate = athn_rates[ridx[0]].hwrate; |
1581 | else |
1582 | tap->wt_rate = athn_rates[ridx[0]].rate; |
1583 | tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
1584 | tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
1585 | if (athn_rates[ridx[0]].phy == IEEE80211_T_DS && |
1586 | ridx[0] != ATHN_RIDX_CCK10 && |
1587 | (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000)) |
1588 | tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE0x02; |
1589 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, |
1590 | BPF_DIRECTION_OUT(1 << 1)); |
1591 | } |
1592 | #endif |
1593 | |
1594 | /* DMA map mbuf. */ |
1595 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)) |
1596 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)); |
1597 | if (__predict_false(error != 0)__builtin_expect(((error != 0) != 0), 0)) { |
1598 | if (error != EFBIG27) { |
1599 | printf("%s: can't map mbuf (error %d)\n", |
1600 | sc->sc_dev.dv_xname, error); |
1601 | m_freem(m); |
1602 | return (error); |
1603 | } |
1604 | /* |
1605 | * DMA mapping requires too many DMA segments; linearize |
1606 | * mbuf in kernel virtual address space and retry. |
1607 | */ |
1608 | if (m_defrag(m, M_DONTWAIT0x0002) != 0) { |
1609 | m_freem(m); |
1610 | return (ENOBUFS55); |
1611 | } |
1612 | |
1613 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)) |
1614 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_map), (m), (0x0001 | 0x0400)); |
1615 | if (error != 0) { |
1616 | printf("%s: can't map mbuf (error %d)\n", |
1617 | sc->sc_dev.dv_xname, error); |
1618 | m_freem(m); |
1619 | return (error); |
1620 | } |
1621 | } |
1622 | bf->bf_m = m; |
1623 | bf->bf_ni = ni; |
1624 | bf->bf_txmcs = ni->ni_txmcs; |
1625 | bf->bf_txflags = txflags; |
1626 | |
1627 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1628 | |
1629 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len + IEEE80211_CRC_LEN4; |
1630 | |
1631 | /* Clear all Tx descriptors that we will use. */ |
1632 | memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds))__builtin_memset((bf->bf_descs), (0), (bf->bf_map->dm_nsegs * sizeof(*ds))); |
1633 | |
1634 | /* Setup first Tx descriptor. */ |
1635 | ds = bf->bf_descs; |
1636 | |
1637 | ds->ds_ctl0 = AR_TXC0_INTR_REQ0x20000000 | AR_TXC0_CLR_DEST_MASK0x01000000; |
1638 | txpower = AR_MAX_RATE_POWER63; /* Get from per-rate registers. */ |
1639 | ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower)(((uint32_t)(txpower) << 16) & 0x003f0000); |
1640 | |
1641 | ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type)(((uint32_t)(type) << 20) & 0x00f00000); |
1642 | |
1643 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
1644 | (hasqos && (qos & IEEE80211_QOS_ACK_POLICY_MASK0x0060) == |
1645 | IEEE80211_QOS_ACK_POLICY_NOACK0x0020)) |
1646 | ds->ds_ctl1 |= AR_TXC1_NO_ACK0x01000000; |
1647 | |
1648 | if (k != NULL((void *)0)) { |
1649 | /* Map 802.11 cipher to hardware encryption type. */ |
1650 | if (k->k_cipher == IEEE80211_CIPHER_CCMP) { |
1651 | encrtype = AR_ENCR_TYPE_AES2; |
1652 | totlen += IEEE80211_CCMP_MICLEN8; |
1653 | } else |
1654 | panic("unsupported cipher"); |
1655 | /* |
1656 | * NB: The key cache entry index is stored in the key |
1657 | * private field when the key is installed. |
1658 | */ |
1659 | entry = (uintptr_t)k->k_priv; |
1660 | ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry)(((uint32_t)(entry) << 13) & 0x000fe000); |
1661 | ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID0x40000000; |
1662 | } else |
1663 | encrtype = AR_ENCR_TYPE_CLEAR0; |
1664 | ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype)(((uint32_t)(encrtype) << 26) & 0x0c000000); |
1665 | |
1666 | /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ |
1667 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
1668 | (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) == |
1669 | IEEE80211_FC0_TYPE_DATA0x08) { |
1670 | enum ieee80211_htprot htprot; |
1671 | |
1672 | htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK0x0003); |
1673 | |
1674 | /* NB: Group frames are sent using CCK in 802.11b/g. */ |
1675 | if (totlen > ic->ic_rtsthreshold) { |
1676 | ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE0x00400000; |
1677 | } else if (((ic->ic_flags & IEEE80211_F_USEPROT0x00100000) && |
1678 | athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) || |
1679 | ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
1680 | htprot != IEEE80211_HTPROT_NONE)) { |
1681 | if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) |
1682 | ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE0x00400000; |
1683 | else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) |
1684 | ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE0x80000000; |
1685 | } |
1686 | } |
1687 | /* |
1688 | * Disable multi-rate retries when protection is used. |
1689 | * The RTS/CTS frame's duration field is fixed and won't be |
1690 | * updated by hardware when the data rate changes. |
1691 | */ |
1692 | if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE0x00400000 | AR_TXC0_CTS_ENABLE0x80000000)) { |
1693 | ridx[1] = ridx[2] = ridx[3] = ridx[0]; |
1694 | } |
1695 | /* Setup multi-rate retries. */ |
1696 | for (i = 0; i < 4; i++) { |
1697 | series[i].hwrate = athn_rates[ridx[i]].hwrate; |
1698 | if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && |
1699 | ridx[i] != ATHN_RIDX_CCK10 && |
1700 | (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000)) |
1701 | series[i].hwrate |= 0x04; |
1702 | /* Compute duration for each series. */ |
1703 | series[i].dur = athn_txtime(sc, totlen, ridx[i], ic->ic_flags); |
1704 | if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK0x01000000)) { |
1705 | /* Account for ACK duration. */ |
1706 | series[i].dur += athn_txtime(sc, IEEE80211_ACK_LEN(sizeof(struct ieee80211_frame_ack) + 4), |
1707 | athn_rates[ridx[i]].rspridx, ic->ic_flags); |
1708 | } |
1709 | } |
1710 | |
1711 | /* Write number of tries for each series. */ |
1712 | ds->ds_ctl2 = |
1713 | SM(AR_TXC2_XMIT_DATA_TRIES0, 2)(((uint32_t)(2) << 16) & 0x000f0000) | |
1714 | SM(AR_TXC2_XMIT_DATA_TRIES1, 2)(((uint32_t)(2) << 20) & 0x00f00000) | |
1715 | SM(AR_TXC2_XMIT_DATA_TRIES2, 2)(((uint32_t)(2) << 24) & 0x0f000000) | |
1716 | SM(AR_TXC2_XMIT_DATA_TRIES3, 4)(((uint32_t)(4) << 28) & 0xf0000000); |
1717 | |
1718 | /* Tell HW to update duration field in 802.11 header. */ |
1719 | if (type != AR_FRAME_TYPE_PSPOLL2) |
1720 | ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA0x00008000; |
1721 | |
1722 | /* Write Tx rate for each series. */ |
1723 | ds->ds_ctl3 = |
1724 | SM(AR_TXC3_XMIT_RATE0, series[0].hwrate)(((uint32_t)(series[0].hwrate) << 0) & 0x000000ff) | |
1725 | SM(AR_TXC3_XMIT_RATE1, series[1].hwrate)(((uint32_t)(series[1].hwrate) << 8) & 0x0000ff00) | |
1726 | SM(AR_TXC3_XMIT_RATE2, series[2].hwrate)(((uint32_t)(series[2].hwrate) << 16) & 0x00ff0000) | |
1727 | SM(AR_TXC3_XMIT_RATE3, series[3].hwrate)(((uint32_t)(series[3].hwrate) << 24) & 0xff000000); |
1728 | |
1729 | /* Write duration for each series. */ |
1730 | ds->ds_ctl4 = |
1731 | SM(AR_TXC4_PACKET_DUR0, series[0].dur)(((uint32_t)(series[0].dur) << 0) & 0x00007fff) | |
1732 | SM(AR_TXC4_PACKET_DUR1, series[1].dur)(((uint32_t)(series[1].dur) << 16) & 0x7fff0000); |
1733 | ds->ds_ctl5 = |
1734 | SM(AR_TXC5_PACKET_DUR2, series[2].dur)(((uint32_t)(series[2].dur) << 0) & 0x00007fff) | |
1735 | SM(AR_TXC5_PACKET_DUR3, series[3].dur)(((uint32_t)(series[3].dur) << 16) & 0x7fff0000); |
1736 | |
1737 | /* Use the same Tx chains for all tries. */ |
1738 | ds->ds_ctl7 = |
1739 | SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask)(((uint32_t)(sc->txchainmask) << 2) & 0x0000001c ) | |
1740 | SM(AR_TXC7_CHAIN_SEL1, sc->txchainmask)(((uint32_t)(sc->txchainmask) << 7) & 0x00000380 ) | |
1741 | SM(AR_TXC7_CHAIN_SEL2, sc->txchainmask)(((uint32_t)(sc->txchainmask) << 12) & 0x00007000 ) | |
1742 | SM(AR_TXC7_CHAIN_SEL3, sc->txchainmask)(((uint32_t)(sc->txchainmask) << 17) & 0x000e0000 ); |
1743 | #ifdef notyet |
1744 | /* Use the same short GI setting for all tries. */ |
1745 | if (ni->ni_htcaps & IEEE80211_HTCAP_SGI200x00000020) |
1746 | ds->ds_ctl7 |= AR_TXC7_GI0123(0x00000002 | 0x00000040 | 0x00000800 | 0x00010000); |
1747 | /* Use the same channel width for all tries. */ |
1748 | if (ic->ic_flags & IEEE80211_F_CBW40) |
1749 | ds->ds_ctl7 |= AR_TXC7_2040_0123(0x00000001 | 0x00000020 | 0x00000400 | 0x00008000); |
1750 | #endif |
1751 | |
1752 | /* Set Tx power for series 1 - 3 */ |
1753 | ds->ds_ctl9 = SM(AR_TXC9_XMIT_POWER1, txpower)(((uint32_t)(txpower) << 24) & 0x3f000000); |
1754 | ds->ds_ctl10 = SM(AR_TXC10_XMIT_POWER2, txpower)(((uint32_t)(txpower) << 24) & 0x3f000000); |
1755 | ds->ds_ctl11 = SM(AR_TXC11_XMIT_POWER3, txpower)(((uint32_t)(txpower) << 24) & 0x3f000000); |
1756 | |
1757 | if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE0x00400000 | AR_TXC0_CTS_ENABLE0x80000000)) { |
1758 | uint8_t protridx, hwrate; |
1759 | uint16_t dur = 0; |
1760 | |
1761 | /* Use the same protection mode for all tries. */ |
1762 | if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE0x00400000) { |
1763 | ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01(0x00008000 | 0x80000000); |
1764 | ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23(0x00008000 | 0x80000000); |
1765 | } |
1766 | /* Select protection rate (suboptimal but ok). */ |
1767 | protridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0) ? |
1768 | ATHN_RIDX_OFDM64 : ATHN_RIDX_CCK21; |
1769 | if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE0x00400000) { |
1770 | /* Account for CTS duration. */ |
1771 | dur += athn_txtime(sc, IEEE80211_ACK_LEN(sizeof(struct ieee80211_frame_ack) + 4), |
1772 | athn_rates[protridx].rspridx, ic->ic_flags); |
1773 | } |
1774 | dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); |
1775 | if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK0x01000000)) { |
1776 | /* Account for ACK duration. */ |
1777 | dur += athn_txtime(sc, IEEE80211_ACK_LEN(sizeof(struct ieee80211_frame_ack) + 4), |
1778 | athn_rates[ridx[0]].rspridx, ic->ic_flags); |
1779 | } |
1780 | /* Write protection frame duration and rate. */ |
1781 | ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur)(((uint32_t)(dur) << 0) & 0x00007fff); |
1782 | hwrate = athn_rates[protridx].hwrate; |
1783 | if (protridx == ATHN_RIDX_CCK21 && |
1784 | (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000)) |
1785 | hwrate |= 0x04; |
1786 | ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate)(((uint32_t)(hwrate) << 20) & 0x0ff00000); |
1787 | } |
1788 | |
1789 | /* Finalize first Tx descriptor and fill others (if any). */ |
1790 | ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen)(((uint32_t)(totlen) << 0) & 0x00000fff); |
1791 | |
1792 | for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) { |
1793 | ds->ds_data = bf->bf_map->dm_segs[i].ds_addr; |
1794 | ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,(((uint32_t)(bf->bf_map->dm_segs[i].ds_len) << 0) & 0x00000fff) |
1795 | bf->bf_map->dm_segs[i].ds_len)(((uint32_t)(bf->bf_map->dm_segs[i].ds_len) << 0) & 0x00000fff); |
1796 | |
1797 | if (i != bf->bf_map->dm_nsegs - 1) |
1798 | ds->ds_ctl1 |= AR_TXC1_MORE0x00001000; |
1799 | ds->ds_link = 0; |
1800 | |
1801 | /* Chain Tx descriptor. */ |
1802 | if (i != 0) |
1803 | lastds->ds_link = bf->bf_daddr + i * sizeof(*ds); |
1804 | lastds = ds; |
1805 | } |
1806 | bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x04)) |
1807 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_map), (0), (bf->bf_map->dm_mapsize), (0x04)); |
1808 | |
1809 | if (!SIMPLEQ_EMPTY(&txq->head)(((&txq->head)->sqh_first) == ((void *)0))) |
1810 | ((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr; |
1811 | else |
1812 | AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr)(sc)->ops.write((sc), ((0x0800 + (qid) * 4)), (bf->bf_daddr )); |
1813 | txq->lastds = lastds; |
1814 | SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list)do { if (((&sc->txbufs)->sqh_first = (&sc->txbufs )->sqh_first->bf_list.sqe_next) == ((void *)0)) (&sc ->txbufs)->sqh_last = &(&sc->txbufs)->sqh_first ; } while (0); |
1815 | SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list)do { (bf)->bf_list.sqe_next = ((void *)0); *(&txq-> head)->sqh_last = (bf); (&txq->head)->sqh_last = &(bf)->bf_list.sqe_next; } while (0); |
1816 | |
1817 | ds = bf->bf_descs; |
1818 | DPRINTFN(6, ("Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n", |
1819 | qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3)); |
1820 | |
1821 | /* Kick Tx. */ |
1822 | AR_WRITE(sc, AR_Q_TXE, 1 << qid)(sc)->ops.write((sc), (0x0840), (1 << qid)); |
1823 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1824 | return (0); |
1825 | } |
1826 | |
1827 | void |
1828 | ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) |
1829 | { |
1830 | uint32_t reg; |
1831 | |
1832 | reg = IEEE80211_IS_CHAN_2GHZ(c)(((c)->ic_flags & 0x0080) != 0) ? |
1833 | AR_PHY_MODE_DYNAMIC0x00000004 : AR_PHY_MODE_OFDM0x00000000; |
1834 | if (!AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) { |
1835 | reg |= IEEE80211_IS_CHAN_2GHZ(c)(((c)->ic_flags & 0x0080) != 0) ? |
1836 | AR_PHY_MODE_RF2GHZ0x00000002 : AR_PHY_MODE_RF5GHZ0x00000000; |
1837 | } else if (IEEE80211_IS_CHAN_5GHZ(c)(((c)->ic_flags & 0x0100) != 0) && |
1838 | (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK(1 << 4))) { |
1839 | reg |= AR_PHY_MODE_DYNAMIC0x00000004 | AR_PHY_MODE_DYN_CCK_DISABLE0x00000100; |
1840 | } |
1841 | AR_WRITE(sc, AR_PHY_MODE, reg)(sc)->ops.write((sc), (0xa200), (reg)); |
1842 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1843 | } |
1844 | |
1845 | static __inline uint32_t |
1846 | ar5008_synth_delay(struct athn_softc *sc) |
1847 | { |
1848 | uint32_t delay; |
1849 | |
1850 | delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY)(((uint32_t)((sc)->ops.read((sc), (0x9914))) & 0x00003fff ) >> 0); |
1851 | if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) |
1852 | delay = (delay * 4) / 22; |
1853 | else |
1854 | delay = delay / 10; /* in 100ns steps */ |
1855 | return (delay); |
1856 | } |
1857 | |
1858 | int |
1859 | ar5008_rf_bus_request(struct athn_softc *sc) |
1860 | { |
1861 | int ntries; |
1862 | |
1863 | /* Request RF Bus grant. */ |
1864 | AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN)(sc)->ops.write((sc), (0x997c), (0x00000001)); |
1865 | for (ntries = 0; ntries < 10000; ntries++) { |
1866 | if (AR_READ(sc, AR_PHY_RFBUS_GRANT)(sc)->ops.read((sc), (0x9c20)) & AR_PHY_RFBUS_GRANT_EN0x00000001) |
1867 | return (0); |
1868 | DELAY(10)(*delay_func)(10); |
1869 | } |
1870 | DPRINTF(("could not kill baseband Rx")); |
1871 | return (ETIMEDOUT60); |
1872 | } |
1873 | |
1874 | void |
1875 | ar5008_rf_bus_release(struct athn_softc *sc) |
1876 | { |
1877 | /* Wait for the synthesizer to settle. */ |
1878 | DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc))(*delay_func)(100 + ar5008_synth_delay(sc)); |
1879 | |
1880 | /* Release the RF Bus grant. */ |
1881 | AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0)(sc)->ops.write((sc), (0x997c), (0)); |
1882 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1883 | } |
1884 | |
1885 | void |
1886 | ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, |
1887 | struct ieee80211_channel *extc) |
1888 | { |
1889 | uint32_t phy; |
1890 | |
1891 | if (AR_SREV_9285_10_OR_LATER(sc)((sc)->mac_ver >= 0x0c0)) |
1892 | phy = AR_READ(sc, AR_PHY_TURBO)(sc)->ops.read((sc), (0x9804)) & AR_PHY_FC_ENABLE_DAC_FIFO0x00000800; |
1893 | else |
1894 | phy = 0; |
1895 | phy |= AR_PHY_FC_HT_EN0x00000040 | AR_PHY_FC_SHORT_GI_400x00000080 | |
1896 | AR_PHY_FC_SINGLE_HT_LTF10x00000200 | AR_PHY_FC_WALSH0x00000100; |
1897 | if (extc != NULL((void *)0)) { |
1898 | phy |= AR_PHY_FC_DYN2040_EN0x00000004; |
1899 | if (extc > c) /* XXX */ |
1900 | phy |= AR_PHY_FC_DYN2040_PRI_CH0x00000010; |
1901 | } |
1902 | AR_WRITE(sc, AR_PHY_TURBO, phy)(sc)->ops.write((sc), (0x9804), (phy)); |
1903 | |
1904 | AR_WRITE(sc, AR_2040_MODE,(sc)->ops.write((sc), (0x8318), ((extc != ((void *)0)) ? 0x00000001 : 0)) |
1905 | (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0)(sc)->ops.write((sc), (0x8318), ((extc != ((void *)0)) ? 0x00000001 : 0)); |
1906 | |
1907 | /* Set global transmit timeout. */ |
1908 | AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25))(sc)->ops.write((sc), (0x0064), ((((uint32_t)(25) << 16) & 0xffff0000))); |
1909 | /* Set carrier sense timeout. */ |
1910 | AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15))(sc)->ops.write((sc), (0x006c), ((((uint32_t)(15) << 16) & 0xffff0000))); |
1911 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1912 | } |
1913 | |
1914 | void |
1915 | ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, |
1916 | struct ieee80211_channel *extc) |
1917 | { |
1918 | uint32_t coeff, exp, man, reg; |
1919 | |
1920 | /* Set Delta Slope (exponent and mantissa). */ |
1921 | coeff = (100 << 24) / c->ic_freq; |
1922 | athn_get_delta_slope(coeff, &exp, &man); |
1923 | DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); |
1924 | |
1925 | reg = AR_READ(sc, AR_PHY_TIMING3)(sc)->ops.read((sc), (0x9814)); |
1926 | reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp)(((reg) & ~0x0001e000) | (((uint32_t)(exp) << 13) & 0x0001e000)); |
1927 | reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man)(((reg) & ~0xfffe0000) | (((uint32_t)(man) << 17) & 0xfffe0000)); |
1928 | AR_WRITE(sc, AR_PHY_TIMING3, reg)(sc)->ops.write((sc), (0x9814), (reg)); |
1929 | |
1930 | /* For Short GI, coeff is 9/10 that of normal coeff. */ |
1931 | coeff = (9 * coeff) / 10; |
1932 | athn_get_delta_slope(coeff, &exp, &man); |
1933 | DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); |
1934 | |
1935 | reg = AR_READ(sc, AR_PHY_HALFGI)(sc)->ops.read((sc), (0x99d0)); |
1936 | reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp)(((reg) & ~0x0000000f) | (((uint32_t)(exp) << 0) & 0x0000000f)); |
1937 | reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man)(((reg) & ~0x0007fff0) | (((uint32_t)(man) << 4) & 0x0007fff0)); |
1938 | AR_WRITE(sc, AR_PHY_HALFGI, reg)(sc)->ops.write((sc), (0x99d0), (reg)); |
1939 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1940 | } |
1941 | |
1942 | void |
1943 | ar5008_enable_antenna_diversity(struct athn_softc *sc) |
1944 | { |
1945 | AR_SETBITS(sc, AR_PHY_CCK_DETECT,(sc)->ops.write((sc), (0xa208), ((sc)->ops.read((sc), ( 0xa208)) | (0x00002000))) |
1946 | AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV)(sc)->ops.write((sc), (0xa208), ((sc)->ops.read((sc), ( 0xa208)) | (0x00002000))); |
1947 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1948 | } |
1949 | |
1950 | void |
1951 | ar5008_init_baseband(struct athn_softc *sc) |
1952 | { |
1953 | uint32_t synth_delay; |
1954 | |
1955 | synth_delay = ar5008_synth_delay(sc); |
1956 | /* Activate the PHY (includes baseband activate and synthesizer on). */ |
1957 | AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN)(sc)->ops.write((sc), (0x981c), (0x00000001)); |
1958 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1959 | DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay)(*delay_func)(100 + synth_delay); |
1960 | } |
1961 | |
1962 | void |
1963 | ar5008_disable_phy(struct athn_softc *sc) |
1964 | { |
1965 | AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS)(sc)->ops.write((sc), (0x981c), (0x00000000)); |
1966 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1967 | } |
1968 | |
1969 | void |
1970 | ar5008_init_chains(struct athn_softc *sc) |
1971 | { |
1972 | if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5) |
1973 | AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN)(sc)->ops.write((sc), (0xa268), ((sc)->ops.read((sc), ( 0xa268)) | (0x00000040))); |
1974 | |
1975 | /* Setup chain masks. */ |
1976 | if (sc->mac_ver <= AR_SREV_VERSION_91600x040 && |
1977 | (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5)) { |
1978 | AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7)(sc)->ops.write((sc), (0x99a4), (0x7)); |
1979 | AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7)(sc)->ops.write((sc), (0xa39c), (0x7)); |
1980 | } else { |
1981 | AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask)(sc)->ops.write((sc), (0x99a4), (sc->rxchainmask)); |
1982 | AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask)(sc)->ops.write((sc), (0xa39c), (sc->rxchainmask)); |
1983 | } |
1984 | AR_WRITE(sc, AR_SELFGEN_MASK, sc->txchainmask)(sc)->ops.write((sc), (0x832c), (sc->txchainmask)); |
1985 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1986 | } |
1987 | |
1988 | void |
1989 | ar5008_set_rxchains(struct athn_softc *sc) |
1990 | { |
1991 | if (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5) { |
1992 | AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask)(sc)->ops.write((sc), (0x99a4), (sc->rxchainmask)); |
1993 | AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask)(sc)->ops.write((sc), (0xa39c), (sc->rxchainmask)); |
1994 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
1995 | } |
1996 | } |
1997 | |
1998 | void |
1999 | ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) |
2000 | { |
2001 | /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ |
2002 | #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) |
2003 | uint32_t reg; |
2004 | int i; |
2005 | |
2006 | for (i = 0; i < sc->nrxchains; i++) { |
2007 | reg = AR_READ(sc, AR_PHY_CCA(i))(sc)->ops.read((sc), ((0x9864 + (i) * 0x1000))); |
2008 | if (AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) |
2009 | nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR)(((uint32_t)(reg) & 0x1ff00000) >> 20); |
2010 | else |
2011 | nf[i] = MS(reg, AR_PHY_MINCCA_PWR)(((uint32_t)(reg) & 0x0ff80000) >> 19); |
2012 | nf[i] = SIGN_EXT(nf[i]); |
2013 | |
2014 | reg = AR_READ(sc, AR_PHY_EXT_CCA(i))(sc)->ops.read((sc), ((0x99bc + (i) * 0x1000))); |
2015 | if (AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) |
2016 | nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR)(((uint32_t)(reg) & 0x01ff0000) >> 16); |
2017 | else |
2018 | nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR)(((uint32_t)(reg) & 0xff800000) >> 23); |
2019 | nf_ext[i] = SIGN_EXT(nf_ext[i]); |
2020 | } |
2021 | #undef SIGN_EXT |
2022 | } |
2023 | |
2024 | void |
2025 | ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) |
2026 | { |
2027 | uint32_t reg; |
2028 | int i; |
2029 | |
2030 | for (i = 0; i < sc->nrxchains; i++) { |
2031 | reg = AR_READ(sc, AR_PHY_CCA(i))(sc)->ops.read((sc), ((0x9864 + (i) * 0x1000))); |
2032 | reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i])(((reg) & ~0x000001ff) | (((uint32_t)(nf[i]) << 0) & 0x000001ff)); |
2033 | AR_WRITE(sc, AR_PHY_CCA(i), reg)(sc)->ops.write((sc), ((0x9864 + (i) * 0x1000)), (reg)); |
2034 | |
2035 | reg = AR_READ(sc, AR_PHY_EXT_CCA(i))(sc)->ops.read((sc), ((0x99bc + (i) * 0x1000))); |
2036 | reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i])(((reg) & ~0x000001ff) | (((uint32_t)(nf_ext[i]) << 0) & 0x000001ff)); |
2037 | AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg)(sc)->ops.write((sc), ((0x99bc + (i) * 0x1000)), (reg)); |
2038 | } |
2039 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2040 | } |
2041 | |
2042 | int |
2043 | ar5008_get_noisefloor(struct athn_softc *sc) |
2044 | { |
2045 | int16_t nf[AR_MAX_CHAINS3], nf_ext[AR_MAX_CHAINS3]; |
2046 | int i; |
2047 | |
2048 | if (AR_READ(sc, AR_PHY_AGC_CONTROL)(sc)->ops.read((sc), (0x9860)) & AR_PHY_AGC_CONTROL_NF0x00000002) { |
2049 | /* Noisefloor calibration not finished. */ |
2050 | return 0; |
2051 | } |
2052 | /* Noisefloor calibration is finished. */ |
2053 | ar5008_read_noisefloor(sc, nf, nf_ext); |
2054 | |
2055 | /* Update noisefloor history. */ |
2056 | for (i = 0; i < sc->nrxchains; i++) { |
2057 | sc->nf_hist[sc->nf_hist_cur].nf[i] = nf[i]; |
2058 | sc->nf_hist[sc->nf_hist_cur].nf_ext[i] = nf_ext[i]; |
2059 | } |
2060 | if (++sc->nf_hist_cur >= ATHN_NF_CAL_HIST_MAX5) |
2061 | sc->nf_hist_cur = 0; |
2062 | return 1; |
2063 | } |
2064 | |
2065 | void |
2066 | ar5008_bb_load_noisefloor(struct athn_softc *sc) |
2067 | { |
2068 | int16_t nf[AR_MAX_CHAINS3], nf_ext[AR_MAX_CHAINS3]; |
2069 | int i, ntries; |
2070 | |
2071 | /* Write filtered noisefloor values. */ |
2072 | for (i = 0; i < sc->nrxchains; i++) { |
2073 | nf[i] = sc->nf_priv[i] * 2; |
2074 | nf_ext[i] = sc->nf_ext_priv[i] * 2; |
2075 | } |
2076 | ar5008_write_noisefloor(sc, nf, nf_ext); |
2077 | |
2078 | /* Load filtered noisefloor values into baseband. */ |
2079 | AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) & ~(0x00008000))); |
2080 | AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) & ~(0x00020000))); |
2081 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (0x00000002))); |
2082 | /* Wait for load to complete. */ |
2083 | for (ntries = 0; ntries < 1000; ntries++) { |
2084 | if (!(AR_READ(sc, AR_PHY_AGC_CONTROL)(sc)->ops.read((sc), (0x9860)) & AR_PHY_AGC_CONTROL_NF0x00000002)) |
2085 | break; |
2086 | DELAY(50)(*delay_func)(50); |
2087 | } |
2088 | if (ntries == 1000) { |
2089 | DPRINTF(("failed to load noisefloor values\n")); |
2090 | return; |
2091 | } |
2092 | |
2093 | /* |
2094 | * Restore noisefloor values to initial (max) values. These will |
2095 | * be used as initial values during the next NF calibration. |
2096 | */ |
2097 | for (i = 0; i < AR_MAX_CHAINS3; i++) |
2098 | nf[i] = nf_ext[i] = AR_DEFAULT_NOISE_FLOOR(-100); |
2099 | ar5008_write_noisefloor(sc, nf, nf_ext); |
2100 | } |
2101 | |
2102 | void |
2103 | ar5008_apply_noisefloor(struct athn_softc *sc) |
2104 | { |
2105 | uint32_t agc_nfcal; |
2106 | |
2107 | agc_nfcal = AR_READ(sc, AR_PHY_AGC_CONTROL)(sc)->ops.read((sc), (0x9860)) & |
2108 | (AR_PHY_AGC_CONTROL_NF0x00000002 | AR_PHY_AGC_CONTROL_ENABLE_NF0x00008000 | |
2109 | AR_PHY_AGC_CONTROL_NO_UPDATE_NF0x00020000); |
2110 | |
2111 | if (agc_nfcal & AR_PHY_AGC_CONTROL_NF0x00000002) { |
2112 | /* Pause running NF calibration while values are updated. */ |
2113 | AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) & ~(0x00000002))); |
2114 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2115 | } |
2116 | |
2117 | ar5008_bb_load_noisefloor(sc); |
2118 | |
2119 | if (agc_nfcal & AR_PHY_AGC_CONTROL_NF0x00000002) { |
2120 | /* Restart interrupted NF calibration. */ |
2121 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, agc_nfcal)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (agc_nfcal))); |
2122 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2123 | } |
2124 | } |
2125 | |
2126 | void |
2127 | ar5008_do_noisefloor_calib(struct athn_softc *sc) |
2128 | { |
2129 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (0x00008000))); |
2130 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (0x00020000))); |
2131 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (0x00000002))); |
2132 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2133 | } |
2134 | |
2135 | void |
2136 | ar5008_init_noisefloor_calib(struct athn_softc *sc) |
2137 | { |
2138 | AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF)(sc)->ops.write((sc), (0x9860), ((sc)->ops.read((sc), ( 0x9860)) | (0x00000002))); |
2139 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2140 | } |
2141 | |
2142 | void |
2143 | ar5008_do_calib(struct athn_softc *sc) |
2144 | { |
2145 | uint32_t mode, reg; |
2146 | int log; |
2147 | |
2148 | reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0)(sc)->ops.read((sc), (0x9920)); |
2149 | log = AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080) ? 10 : 2; |
2150 | reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log)(((reg) & ~0x0000f000) | (((uint32_t)(log) << 12) & 0x0000f000)); |
2151 | AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg)(sc)->ops.write((sc), (0x9920), (reg)); |
2152 | |
2153 | if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN(1 << 1)) |
2154 | mode = AR_PHY_CALMODE_ADC_GAIN0x00000001; |
2155 | else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC(1 << 2)) |
2156 | mode = AR_PHY_CALMODE_ADC_DC_PER0x00000002; |
2157 | else /* ATHN_CAL_IQ */ |
2158 | mode = AR_PHY_CALMODE_IQ0x00000000; |
2159 | AR_WRITE(sc, AR_PHY_CALMODE, mode)(sc)->ops.write((sc), (0x99f0), (mode)); |
2160 | |
2161 | DPRINTF(("starting calibration mode=0x%x\n", mode)); |
2162 | AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL)(sc)->ops.write((sc), (0x9920), ((sc)->ops.read((sc), ( 0x9920)) | (0x00010000))); |
2163 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2164 | } |
2165 | |
2166 | void |
2167 | ar5008_next_calib(struct athn_softc *sc) |
2168 | { |
2169 | /* Check if we have any calibration in progress. */ |
2170 | if (sc->cur_calib_mask != 0) { |
2171 | if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0)(sc)->ops.read((sc), (0x9920)) & |
2172 | AR_PHY_TIMING_CTRL4_DO_CAL0x00010000)) { |
2173 | /* Calibration completed for current sample. */ |
2174 | if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN(1 << 1)) |
2175 | ar5008_calib_adc_gain(sc); |
2176 | else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC(1 << 2)) |
2177 | ar5008_calib_adc_dc_off(sc); |
2178 | else /* ATHN_CAL_IQ */ |
2179 | ar5008_calib_iq(sc); |
2180 | } |
2181 | } |
2182 | } |
2183 | |
2184 | void |
2185 | ar5008_calib_iq(struct athn_softc *sc) |
2186 | { |
2187 | struct athn_iq_cal *cal; |
2188 | uint32_t reg, i_coff_denom, q_coff_denom; |
2189 | int32_t i_coff, q_coff; |
2190 | int i, iq_corr_neg; |
2191 | |
2192 | for (i = 0; i < AR_MAX_CHAINS3; i++) { |
2193 | cal = &sc->calib.iq[i]; |
2194 | |
2195 | /* Accumulate IQ calibration measures (clear on read). */ |
2196 | cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i))(sc)->ops.read((sc), ((0x9c10 + (i) * 0x1000))); |
2197 | cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i))(sc)->ops.read((sc), ((0x9c14 + (i) * 0x1000))); |
2198 | cal->iq_corr_meas += |
2199 | (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i))(sc)->ops.read((sc), ((0x9c18 + (i) * 0x1000))); |
2200 | } |
2201 | if (!AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080) && |
2202 | ++sc->calib.nsamples < AR_CAL_SAMPLES64) { |
2203 | /* Not enough samples accumulated, continue. */ |
2204 | ar5008_do_calib(sc); |
2205 | return; |
2206 | } |
2207 | |
2208 | for (i = 0; i < sc->nrxchains; i++) { |
2209 | cal = &sc->calib.iq[i]; |
2210 | |
2211 | if (cal->pwr_meas_q == 0) |
2212 | continue; |
2213 | |
2214 | if ((iq_corr_neg = cal->iq_corr_meas < 0)) |
2215 | cal->iq_corr_meas = -cal->iq_corr_meas; |
2216 | |
2217 | i_coff_denom = |
2218 | (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128; |
2219 | q_coff_denom = cal->pwr_meas_q / 64; |
2220 | |
2221 | if (i_coff_denom == 0 || q_coff_denom == 0) |
2222 | continue; /* Prevents division by zero. */ |
2223 | |
2224 | i_coff = cal->iq_corr_meas / i_coff_denom; |
2225 | q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; |
2226 | |
2227 | /* Negate i_coff if iq_corr_meas is positive. */ |
2228 | if (!iq_corr_neg) |
2229 | i_coff = 0x40 - (i_coff & 0x3f); |
2230 | if (q_coff > 15) |
2231 | q_coff = 15; |
2232 | else if (q_coff <= -16) |
2233 | q_coff = -16; /* XXX Linux has a bug here? */ |
2234 | |
2235 | DPRINTFN(2, ("IQ calibration for chain %d\n", i)); |
2236 | reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i))(sc)->ops.read((sc), ((0x9920 + (i) * 0x1000))); |
2237 | reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff)(((reg) & ~0x000007e0) | (((uint32_t)(i_coff) << 5) & 0x000007e0)); |
2238 | reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff)(((reg) & ~0x0000001f) | (((uint32_t)(q_coff) << 0) & 0x0000001f)); |
2239 | AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg)(sc)->ops.write((sc), ((0x9920 + (i) * 0x1000)), (reg)); |
2240 | } |
2241 | |
2242 | /* Apply new settings. */ |
2243 | AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,(sc)->ops.write((sc), (0x9920), ((sc)->ops.read((sc), ( 0x9920)) | (0x00000800))) |
2244 | AR_PHY_TIMING_CTRL4_IQCORR_ENABLE)(sc)->ops.write((sc), (0x9920), ((sc)->ops.read((sc), ( 0x9920)) | (0x00000800))); |
2245 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2246 | |
2247 | /* IQ calibration done. */ |
2248 | sc->cur_calib_mask &= ~ATHN_CAL_IQ(1 << 0); |
2249 | memset(&sc->calib, 0, sizeof(sc->calib))__builtin_memset((&sc->calib), (0), (sizeof(sc->calib ))); |
2250 | } |
2251 | |
2252 | void |
2253 | ar5008_calib_adc_gain(struct athn_softc *sc) |
2254 | { |
2255 | struct athn_adc_cal *cal; |
2256 | uint32_t reg, gain_mismatch_i, gain_mismatch_q; |
2257 | int i; |
2258 | |
2259 | for (i = 0; i < AR_MAX_CHAINS3; i++) { |
2260 | cal = &sc->calib.adc_gain[i]; |
2261 | |
2262 | /* Accumulate ADC gain measures (clear on read). */ |
2263 | cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i))(sc)->ops.read((sc), ((0x9c10 + (i) * 0x1000))); |
2264 | cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i))(sc)->ops.read((sc), ((0x9c14 + (i) * 0x1000))); |
2265 | cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i))(sc)->ops.read((sc), ((0x9c18 + (i) * 0x1000))); |
2266 | cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i))(sc)->ops.read((sc), ((0x9c1c + (i) * 0x1000))); |
2267 | } |
2268 | if (!AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080) && |
2269 | ++sc->calib.nsamples < AR_CAL_SAMPLES64) { |
2270 | /* Not enough samples accumulated, continue. */ |
2271 | ar5008_do_calib(sc); |
2272 | return; |
2273 | } |
2274 | |
2275 | for (i = 0; i < sc->nrxchains; i++) { |
2276 | cal = &sc->calib.adc_gain[i]; |
2277 | |
2278 | if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0) |
2279 | continue; /* Prevents division by zero. */ |
2280 | |
2281 | gain_mismatch_i = |
2282 | (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i; |
2283 | gain_mismatch_q = |
2284 | (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q; |
2285 | |
2286 | DPRINTFN(2, ("ADC gain calibration for chain %d\n", i)); |
2287 | reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i))(sc)->ops.read((sc), ((0x99b4 + (i) * 0x1000))); |
2288 | reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i)(((reg) & ~0x00000fc0) | (((uint32_t)(gain_mismatch_i) << 6) & 0x00000fc0)); |
2289 | reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q)(((reg) & ~0x0000003f) | (((uint32_t)(gain_mismatch_q) << 0) & 0x0000003f)); |
2290 | AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg)(sc)->ops.write((sc), ((0x99b4 + (i) * 0x1000)), (reg)); |
2291 | } |
2292 | |
2293 | /* Apply new settings. */ |
2294 | AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),(sc)->ops.write((sc), ((0x99b4 + (0) * 0x1000)), ((sc)-> ops.read((sc), ((0x99b4 + (0) * 0x1000))) | (0x40000000))) |
2295 | AR_PHY_NEW_ADC_GAIN_CORR_ENABLE)(sc)->ops.write((sc), ((0x99b4 + (0) * 0x1000)), ((sc)-> ops.read((sc), ((0x99b4 + (0) * 0x1000))) | (0x40000000))); |
2296 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2297 | |
2298 | /* ADC gain calibration done. */ |
2299 | sc->cur_calib_mask &= ~ATHN_CAL_ADC_GAIN(1 << 1); |
2300 | memset(&sc->calib, 0, sizeof(sc->calib))__builtin_memset((&sc->calib), (0), (sizeof(sc->calib ))); |
2301 | } |
2302 | |
2303 | void |
2304 | ar5008_calib_adc_dc_off(struct athn_softc *sc) |
2305 | { |
2306 | struct athn_adc_cal *cal; |
2307 | int32_t dc_offset_mismatch_i, dc_offset_mismatch_q; |
2308 | uint32_t reg; |
2309 | int count, i; |
2310 | |
2311 | for (i = 0; i < AR_MAX_CHAINS3; i++) { |
2312 | cal = &sc->calib.adc_dc_offset[i]; |
2313 | |
2314 | /* Accumulate ADC DC offset measures (clear on read). */ |
2315 | cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i))(sc)->ops.read((sc), ((0x9c10 + (i) * 0x1000))); |
2316 | cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i))(sc)->ops.read((sc), ((0x9c14 + (i) * 0x1000))); |
2317 | cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i))(sc)->ops.read((sc), ((0x9c18 + (i) * 0x1000))); |
2318 | cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i))(sc)->ops.read((sc), ((0x9c1c + (i) * 0x1000))); |
2319 | } |
2320 | if (!AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080) && |
2321 | ++sc->calib.nsamples < AR_CAL_SAMPLES64) { |
2322 | /* Not enough samples accumulated, continue. */ |
2323 | ar5008_do_calib(sc); |
2324 | return; |
2325 | } |
2326 | |
2327 | if (AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) |
2328 | count = (1 << (10 + 5)); |
2329 | else |
2330 | count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES64; |
2331 | for (i = 0; i < sc->nrxchains; i++) { |
2332 | cal = &sc->calib.adc_dc_offset[i]; |
2333 | |
2334 | dc_offset_mismatch_i = |
2335 | (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count; |
2336 | dc_offset_mismatch_q = |
2337 | (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count; |
2338 | |
2339 | DPRINTFN(2, ("ADC DC offset calibration for chain %d\n", i)); |
2340 | reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i))(sc)->ops.read((sc), ((0x99b4 + (i) * 0x1000))); |
2341 | reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,(((reg) & ~0x001ff000) | (((uint32_t)(dc_offset_mismatch_q ) << 12) & 0x001ff000)) |
2342 | dc_offset_mismatch_q)(((reg) & ~0x001ff000) | (((uint32_t)(dc_offset_mismatch_q ) << 12) & 0x001ff000)); |
2343 | reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,(((reg) & ~0x3fe00000) | (((uint32_t)(dc_offset_mismatch_i ) << 21) & 0x3fe00000)) |
2344 | dc_offset_mismatch_i)(((reg) & ~0x3fe00000) | (((uint32_t)(dc_offset_mismatch_i ) << 21) & 0x3fe00000)); |
2345 | AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg)(sc)->ops.write((sc), ((0x99b4 + (i) * 0x1000)), (reg)); |
2346 | } |
2347 | |
2348 | /* Apply new settings. */ |
2349 | AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),(sc)->ops.write((sc), ((0x99b4 + (0) * 0x1000)), ((sc)-> ops.read((sc), ((0x99b4 + (0) * 0x1000))) | (0x80000000))) |
2350 | AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE)(sc)->ops.write((sc), ((0x99b4 + (0) * 0x1000)), ((sc)-> ops.read((sc), ((0x99b4 + (0) * 0x1000))) | (0x80000000))); |
2351 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2352 | |
2353 | /* ADC DC offset calibration done. */ |
2354 | sc->cur_calib_mask &= ~ATHN_CAL_ADC_DC(1 << 2); |
2355 | memset(&sc->calib, 0, sizeof(sc->calib))__builtin_memset((&sc->calib), (0), (sizeof(sc->calib ))); |
2356 | } |
2357 | |
2358 | void |
2359 | ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT68]) |
2360 | { |
2361 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,(sc)->ops.write((sc), (0x9934), ((power[3 ] & 0x3f) << 24 | (power[2 ] & 0x3f) << 16 | (power[1 ] & 0x3f ) << 8 | (power[0 ] & 0x3f))) |
2362 | (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |(sc)->ops.write((sc), (0x9934), ((power[3 ] & 0x3f) << 24 | (power[2 ] & 0x3f) << 16 | (power[1 ] & 0x3f ) << 8 | (power[0 ] & 0x3f))) |
2363 | (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |(sc)->ops.write((sc), (0x9934), ((power[3 ] & 0x3f) << 24 | (power[2 ] & 0x3f) << 16 | (power[1 ] & 0x3f ) << 8 | (power[0 ] & 0x3f))) |
2364 | (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |(sc)->ops.write((sc), (0x9934), ((power[3 ] & 0x3f) << 24 | (power[2 ] & 0x3f) << 16 | (power[1 ] & 0x3f ) << 8 | (power[0 ] & 0x3f))) |
2365 | (power[ATHN_POWER_OFDM6 ] & 0x3f))(sc)->ops.write((sc), (0x9934), ((power[3 ] & 0x3f) << 24 | (power[2 ] & 0x3f) << 16 | (power[1 ] & 0x3f ) << 8 | (power[0 ] & 0x3f))); |
2366 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,(sc)->ops.write((sc), (0x9938), ((power[7 ] & 0x3f) << 24 | (power[6 ] & 0x3f) << 16 | (power[5 ] & 0x3f ) << 8 | (power[4 ] & 0x3f))) |
2367 | (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |(sc)->ops.write((sc), (0x9938), ((power[7 ] & 0x3f) << 24 | (power[6 ] & 0x3f) << 16 | (power[5 ] & 0x3f ) << 8 | (power[4 ] & 0x3f))) |
2368 | (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |(sc)->ops.write((sc), (0x9938), ((power[7 ] & 0x3f) << 24 | (power[6 ] & 0x3f) << 16 | (power[5 ] & 0x3f ) << 8 | (power[4 ] & 0x3f))) |
2369 | (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |(sc)->ops.write((sc), (0x9938), ((power[7 ] & 0x3f) << 24 | (power[6 ] & 0x3f) << 16 | (power[5 ] & 0x3f ) << 8 | (power[4 ] & 0x3f))) |
2370 | (power[ATHN_POWER_OFDM24 ] & 0x3f))(sc)->ops.write((sc), (0x9938), ((power[7 ] & 0x3f) << 24 | (power[6 ] & 0x3f) << 16 | (power[5 ] & 0x3f ) << 8 | (power[4 ] & 0x3f))); |
2371 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,(sc)->ops.write((sc), (0xa234), ((power[10 ] & 0x3f) << 24 | (power[9 ] & 0x3f) << 16 | (power[15 ] & 0x3f ) << 8 | (power[8 ] & 0x3f))) |
2372 | (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa234), ((power[10 ] & 0x3f) << 24 | (power[9 ] & 0x3f) << 16 | (power[15 ] & 0x3f ) << 8 | (power[8 ] & 0x3f))) |
2373 | (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa234), ((power[10 ] & 0x3f) << 24 | (power[9 ] & 0x3f) << 16 | (power[15 ] & 0x3f ) << 8 | (power[8 ] & 0x3f))) |
2374 | (power[ATHN_POWER_XR ] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa234), ((power[10 ] & 0x3f) << 24 | (power[9 ] & 0x3f) << 16 | (power[15 ] & 0x3f ) << 8 | (power[8 ] & 0x3f))) |
2375 | (power[ATHN_POWER_CCK1_LP ] & 0x3f))(sc)->ops.write((sc), (0xa234), ((power[10 ] & 0x3f) << 24 | (power[9 ] & 0x3f) << 16 | (power[15 ] & 0x3f ) << 8 | (power[8 ] & 0x3f))); |
2376 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,(sc)->ops.write((sc), (0xa238), ((power[14] & 0x3f) << 24 | (power[13] & 0x3f) << 16 | (power[12] & 0x3f ) << 8 | (power[11] & 0x3f))) |
2377 | (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa238), ((power[14] & 0x3f) << 24 | (power[13] & 0x3f) << 16 | (power[12] & 0x3f ) << 8 | (power[11] & 0x3f))) |
2378 | (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa238), ((power[14] & 0x3f) << 24 | (power[13] & 0x3f) << 16 | (power[12] & 0x3f ) << 8 | (power[11] & 0x3f))) |
2379 | (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa238), ((power[14] & 0x3f) << 24 | (power[13] & 0x3f) << 16 | (power[12] & 0x3f ) << 8 | (power[11] & 0x3f))) |
2380 | (power[ATHN_POWER_CCK55_LP] & 0x3f))(sc)->ops.write((sc), (0xa238), ((power[14] & 0x3f) << 24 | (power[13] & 0x3f) << 16 | (power[12] & 0x3f ) << 8 | (power[11] & 0x3f))); |
2381 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,(sc)->ops.write((sc), (0xa38c), ((power[(16 + (3)) ] & 0x3f) << 24 | (power[(16 + (2)) ] & 0x3f) << 16 | (power[(16 + (1)) ] & 0x3f) << 8 | (power[(16 + (0)) ] & 0x3f))) |
2382 | (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa38c), ((power[(16 + (3)) ] & 0x3f) << 24 | (power[(16 + (2)) ] & 0x3f) << 16 | (power[(16 + (1)) ] & 0x3f) << 8 | (power[(16 + (0)) ] & 0x3f))) |
2383 | (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa38c), ((power[(16 + (3)) ] & 0x3f) << 24 | (power[(16 + (2)) ] & 0x3f) << 16 | (power[(16 + (1)) ] & 0x3f) << 8 | (power[(16 + (0)) ] & 0x3f))) |
2384 | (power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa38c), ((power[(16 + (3)) ] & 0x3f) << 24 | (power[(16 + (2)) ] & 0x3f) << 16 | (power[(16 + (1)) ] & 0x3f) << 8 | (power[(16 + (0)) ] & 0x3f))) |
2385 | (power[ATHN_POWER_HT20(0) ] & 0x3f))(sc)->ops.write((sc), (0xa38c), ((power[(16 + (3)) ] & 0x3f) << 24 | (power[(16 + (2)) ] & 0x3f) << 16 | (power[(16 + (1)) ] & 0x3f) << 8 | (power[(16 + (0)) ] & 0x3f))); |
2386 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,(sc)->ops.write((sc), (0xa390), ((power[(16 + (7)) ] & 0x3f) << 24 | (power[(16 + (6)) ] & 0x3f) << 16 | (power[(16 + (5)) ] & 0x3f) << 8 | (power[(16 + (4)) ] & 0x3f))) |
2387 | (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa390), ((power[(16 + (7)) ] & 0x3f) << 24 | (power[(16 + (6)) ] & 0x3f) << 16 | (power[(16 + (5)) ] & 0x3f) << 8 | (power[(16 + (4)) ] & 0x3f))) |
2388 | (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa390), ((power[(16 + (7)) ] & 0x3f) << 24 | (power[(16 + (6)) ] & 0x3f) << 16 | (power[(16 + (5)) ] & 0x3f) << 8 | (power[(16 + (4)) ] & 0x3f))) |
2389 | (power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa390), ((power[(16 + (7)) ] & 0x3f) << 24 | (power[(16 + (6)) ] & 0x3f) << 16 | (power[(16 + (5)) ] & 0x3f) << 8 | (power[(16 + (4)) ] & 0x3f))) |
2390 | (power[ATHN_POWER_HT20(4) ] & 0x3f))(sc)->ops.write((sc), (0xa390), ((power[(16 + (7)) ] & 0x3f) << 24 | (power[(16 + (6)) ] & 0x3f) << 16 | (power[(16 + (5)) ] & 0x3f) << 8 | (power[(16 + (4)) ] & 0x3f))); |
2391 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,(sc)->ops.write((sc), (0xa3cc), ((power[(40 + (3)) ] & 0x3f) << 24 | (power[(40 + (2)) ] & 0x3f) << 16 | (power[(40 + (1)) ] & 0x3f) << 8 | (power[(40 + (0)) ] & 0x3f))) |
2392 | (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa3cc), ((power[(40 + (3)) ] & 0x3f) << 24 | (power[(40 + (2)) ] & 0x3f) << 16 | (power[(40 + (1)) ] & 0x3f) << 8 | (power[(40 + (0)) ] & 0x3f))) |
2393 | (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa3cc), ((power[(40 + (3)) ] & 0x3f) << 24 | (power[(40 + (2)) ] & 0x3f) << 16 | (power[(40 + (1)) ] & 0x3f) << 8 | (power[(40 + (0)) ] & 0x3f))) |
2394 | (power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa3cc), ((power[(40 + (3)) ] & 0x3f) << 24 | (power[(40 + (2)) ] & 0x3f) << 16 | (power[(40 + (1)) ] & 0x3f) << 8 | (power[(40 + (0)) ] & 0x3f))) |
2395 | (power[ATHN_POWER_HT40(0) ] & 0x3f))(sc)->ops.write((sc), (0xa3cc), ((power[(40 + (3)) ] & 0x3f) << 24 | (power[(40 + (2)) ] & 0x3f) << 16 | (power[(40 + (1)) ] & 0x3f) << 8 | (power[(40 + (0)) ] & 0x3f))); |
2396 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,(sc)->ops.write((sc), (0xa3d0), ((power[(40 + (7)) ] & 0x3f) << 24 | (power[(40 + (6)) ] & 0x3f) << 16 | (power[(40 + (5)) ] & 0x3f) << 8 | (power[(40 + (4)) ] & 0x3f))) |
2397 | (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa3d0), ((power[(40 + (7)) ] & 0x3f) << 24 | (power[(40 + (6)) ] & 0x3f) << 16 | (power[(40 + (5)) ] & 0x3f) << 8 | (power[(40 + (4)) ] & 0x3f))) |
2398 | (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa3d0), ((power[(40 + (7)) ] & 0x3f) << 24 | (power[(40 + (6)) ] & 0x3f) << 16 | (power[(40 + (5)) ] & 0x3f) << 8 | (power[(40 + (4)) ] & 0x3f))) |
2399 | (power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa3d0), ((power[(40 + (7)) ] & 0x3f) << 24 | (power[(40 + (6)) ] & 0x3f) << 16 | (power[(40 + (5)) ] & 0x3f) << 8 | (power[(40 + (4)) ] & 0x3f))) |
2400 | (power[ATHN_POWER_HT40(4) ] & 0x3f))(sc)->ops.write((sc), (0xa3d0), ((power[(40 + (7)) ] & 0x3f) << 24 | (power[(40 + (6)) ] & 0x3f) << 16 | (power[(40 + (5)) ] & 0x3f) << 8 | (power[(40 + (4)) ] & 0x3f))); |
2401 | AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,(sc)->ops.write((sc), (0xa3d4), ((power[67] & 0x3f) << 24 | (power[66 ] & 0x3f) << 16 | (power[65] & 0x3f ) << 8 | (power[64 ] & 0x3f))) |
2402 | (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |(sc)->ops.write((sc), (0xa3d4), ((power[67] & 0x3f) << 24 | (power[66 ] & 0x3f) << 16 | (power[65] & 0x3f ) << 8 | (power[64 ] & 0x3f))) |
2403 | (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |(sc)->ops.write((sc), (0xa3d4), ((power[67] & 0x3f) << 24 | (power[66 ] & 0x3f) << 16 | (power[65] & 0x3f ) << 8 | (power[64 ] & 0x3f))) |
2404 | (power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 |(sc)->ops.write((sc), (0xa3d4), ((power[67] & 0x3f) << 24 | (power[66 ] & 0x3f) << 16 | (power[65] & 0x3f ) << 8 | (power[64 ] & 0x3f))) |
2405 | (power[ATHN_POWER_CCK_DUP ] & 0x3f))(sc)->ops.write((sc), (0xa3d4), ((power[67] & 0x3f) << 24 | (power[66 ] & 0x3f) << 16 | (power[65] & 0x3f ) << 8 | (power[64 ] & 0x3f))); |
2406 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2407 | } |
2408 | |
2409 | void |
2410 | ar5008_set_viterbi_mask(struct athn_softc *sc, int bin) |
2411 | { |
2412 | uint32_t mask[4], reg; |
2413 | uint8_t m[62], p[62]; /* XXX use bit arrays? */ |
2414 | int i, bit, cur; |
2415 | |
2416 | /* Compute pilot mask. */ |
2417 | cur = -6000; |
2418 | for (i = 0; i < 4; i++) { |
2419 | mask[i] = 0; |
2420 | for (bit = 0; bit < 30; bit++) { |
2421 | if (abs(cur - bin) < 100) |
2422 | mask[i] |= 1 << bit; |
2423 | cur += 100; |
2424 | } |
2425 | if (cur == 0) /* Skip entry "0". */ |
2426 | cur = 100; |
2427 | } |
2428 | /* Write entries from -6000 to -3100. */ |
2429 | AR_WRITE(sc, AR_PHY_TIMING7, mask[0])(sc)->ops.write((sc), (0x9980), (mask[0])); |
2430 | AR_WRITE(sc, AR_PHY_TIMING9, mask[0])(sc)->ops.write((sc), (0x9998), (mask[0])); |
2431 | /* Write entries from -3000 to -100. */ |
2432 | AR_WRITE(sc, AR_PHY_TIMING8, mask[1])(sc)->ops.write((sc), (0x9984), (mask[1])); |
2433 | AR_WRITE(sc, AR_PHY_TIMING10, mask[1])(sc)->ops.write((sc), (0x999c), (mask[1])); |
2434 | /* Write entries from 100 to 3000. */ |
2435 | AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2])(sc)->ops.write((sc), (0xa3b0), (mask[2])); |
2436 | AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2])(sc)->ops.write((sc), (0x99d4), (mask[2])); |
2437 | /* Write entries from 3100 to 6000. */ |
2438 | AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3])(sc)->ops.write((sc), (0xa3b4), (mask[3])); |
2439 | AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3])(sc)->ops.write((sc), (0x99d8), (mask[3])); |
2440 | |
2441 | /* Compute viterbi mask. */ |
2442 | for (cur = 6100; cur >= 0; cur -= 100) |
2443 | p[+cur / 100] = abs(cur - bin) < 75; |
2444 | for (cur = -100; cur >= -6100; cur -= 100) |
2445 | m[-cur / 100] = abs(cur - bin) < 75; |
2446 | |
2447 | /* Write viterbi mask (XXX needs to be reworked). */ |
2448 | reg = |
2449 | m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 | |
2450 | m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 | |
2451 | m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 | |
2452 | m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0; |
2453 | AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg)(sc)->ops.write((sc), (0x9900), (reg)); |
2454 | AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg)(sc)->ops.write((sc), (0xa3a0), (reg)); |
2455 | |
2456 | /* XXX m[48] should be m[38] ? */ |
2457 | reg = m[31] << 28 | m[32] << 26 | m[33] << 24 | |
2458 | m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 | |
2459 | m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 | |
2460 | m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0; |
2461 | AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg)(sc)->ops.write((sc), (0x9904), (reg)); |
2462 | AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg)(sc)->ops.write((sc), (0xa3a4), (reg)); |
2463 | |
2464 | /* XXX This one is weird too. */ |
2465 | reg = |
2466 | m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 | |
2467 | m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 | |
2468 | m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 | |
2469 | m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0; |
2470 | AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg)(sc)->ops.write((sc), (0x9908), (reg)); |
2471 | AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg)(sc)->ops.write((sc), (0xa3a8), (reg)); |
2472 | |
2473 | reg = |
2474 | m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 | |
2475 | m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 | |
2476 | m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 | |
2477 | m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0; |
2478 | AR_WRITE(sc, AR_PHY_MASK_CTL, reg)(sc)->ops.write((sc), (0x990c), (reg)); |
2479 | AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg)(sc)->ops.write((sc), (0xa3ac), (reg)); |
2480 | |
2481 | reg = p[15] << 28 | p[14] << 26 | p[13] << 24 | |
2482 | p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 | |
2483 | p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 | |
2484 | p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0; |
2485 | AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg)(sc)->ops.write((sc), (0x9988), (reg)); |
2486 | AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg)(sc)->ops.write((sc), (0xa3b8), (reg)); |
2487 | |
2488 | reg = p[30] << 28 | p[29] << 26 | p[28] << 24 | |
2489 | p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 | |
2490 | p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 | |
2491 | p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0; |
2492 | AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg)(sc)->ops.write((sc), (0x998c), (reg)); |
2493 | AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg)(sc)->ops.write((sc), (0xa3bc), (reg)); |
2494 | |
2495 | reg = p[45] << 28 | p[44] << 26 | p[43] << 24 | |
2496 | p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 | |
2497 | p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 | |
2498 | p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0; |
2499 | AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg)(sc)->ops.write((sc), (0x9990), (reg)); |
2500 | AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg)(sc)->ops.write((sc), (0xa3c0), (reg)); |
2501 | |
2502 | reg = |
2503 | p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 | |
2504 | p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 | |
2505 | p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 | |
2506 | p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0; |
2507 | AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg)(sc)->ops.write((sc), (0x9994), (reg)); |
2508 | AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg)(sc)->ops.write((sc), (0xa3c4), (reg)); |
2509 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2510 | } |
2511 | |
2512 | void |
2513 | ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, |
2514 | struct ieee80211_channel *extc) |
2515 | { |
2516 | struct athn_ops *ops = &sc->ops; |
2517 | const struct athn_ini *ini = sc->ini; |
2518 | const uint32_t *pvals; |
2519 | uint32_t reg; |
2520 | int i; |
2521 | |
2522 | AR_WRITE(sc, AR_PHY(0), 0x00000007)(sc)->ops.write((sc), ((0x9800 + (0) * 4)), (0x00000007)); |
2523 | AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO)(sc)->ops.write((sc), (0x9830), (0x00000001)); |
2524 | |
2525 | if (!AR_SINGLE_CHIP(sc)((sc)->mac_ver >= 0x080)) |
2526 | ar5416_reset_addac(sc, c); |
2527 | |
2528 | AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC)(sc)->ops.write((sc), (0x9830), (0x00000000)); |
2529 | |
2530 | /* First initialization step (depends on channel band/bandwidth). */ |
2531 | if (extc != NULL((void *)0)) { |
2532 | if (IEEE80211_IS_CHAN_2GHZ(c)(((c)->ic_flags & 0x0080) != 0)) |
2533 | pvals = ini->vals_2g40; |
2534 | else |
2535 | pvals = ini->vals_5g40; |
2536 | } else { |
2537 | if (IEEE80211_IS_CHAN_2GHZ(c)(((c)->ic_flags & 0x0080) != 0)) |
2538 | pvals = ini->vals_2g20; |
2539 | else |
2540 | pvals = ini->vals_5g20; |
2541 | } |
2542 | DPRINTFN(4, ("writing modal init vals\n")); |
2543 | for (i = 0; i < ini->nregs; i++) { |
2544 | uint32_t val = pvals[i]; |
2545 | |
2546 | /* Fix AR_AN_TOP2 initialization value if required. */ |
2547 | if (ini->regs[i] == AR_AN_TOP20x7894 && |
2548 | (sc->flags & ATHN_FLAG_AN_TOP2_FIXUP(1 << 12))) |
2549 | val &= ~AR_AN_TOP2_PWDCLKIND0x00400000; |
2550 | AR_WRITE(sc, ini->regs[i], val)(sc)->ops.write((sc), (ini->regs[i]), (val)); |
2551 | if (AR_IS_ANALOG_REG(ini->regs[i])((ini->regs[i]) >= 0x7800 && (ini->regs[i]) <= 0x78b4)) { |
2552 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2553 | DELAY(100)(*delay_func)(100); |
2554 | } |
2555 | if ((i & 0x1f) == 0) |
2556 | DELAY(1)(*delay_func)(1); |
2557 | } |
2558 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2559 | |
2560 | if (sc->rx_gain != NULL((void *)0)) |
2561 | ar9280_reset_rx_gain(sc, c); |
2562 | if (sc->tx_gain != NULL((void *)0)) |
2563 | ar9280_reset_tx_gain(sc, c); |
2564 | |
2565 | if (AR_SREV_9271_10(sc)(((sc)->mac_ver == 0x140) && (sc)->mac_rev == 0 )) { |
2566 | AR_WRITE(sc, AR_PHY(68), 0x30002311)(sc)->ops.write((sc), ((0x9800 + (68) * 4)), (0x30002311)); |
2567 | AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001)(sc)->ops.write((sc), (0x9828), (0x0a020001)); |
2568 | } |
2569 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2570 | |
2571 | /* Second initialization step (common to all channels). */ |
2572 | DPRINTFN(4, ("writing common init vals\n")); |
2573 | for (i = 0; i < ini->ncmregs; i++) { |
2574 | AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i])(sc)->ops.write((sc), (ini->cmregs[i]), (ini->cmvals [i])); |
2575 | if (AR_IS_ANALOG_REG(ini->cmregs[i])((ini->cmregs[i]) >= 0x7800 && (ini->cmregs[ i]) <= 0x78b4)) { |
2576 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2577 | DELAY(100)(*delay_func)(100); |
2578 | } |
2579 | if ((i & 0x1f) == 0) |
2580 | DELAY(1)(*delay_func)(1); |
2581 | } |
2582 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2583 | |
2584 | if (!AR_SINGLE_CHIP(sc)((sc)->mac_ver >= 0x080)) |
2585 | ar5416_reset_bb_gain(sc, c); |
2586 | |
2587 | if (IEEE80211_IS_CHAN_5GHZ(c)(((c)->ic_flags & 0x0100) != 0) && |
2588 | (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK(1 << 4))) { |
2589 | /* Update modal values for fast PLL clock. */ |
2590 | if (extc != NULL((void *)0)) |
2591 | pvals = ini->fastvals_5g40; |
2592 | else |
2593 | pvals = ini->fastvals_5g20; |
2594 | DPRINTFN(4, ("writing fast pll clock init vals\n")); |
2595 | for (i = 0; i < ini->nfastregs; i++) { |
2596 | AR_WRITE(sc, ini->fastregs[i], pvals[i])(sc)->ops.write((sc), (ini->fastregs[i]), (pvals[i])); |
2597 | if (AR_IS_ANALOG_REG(ini->fastregs[i])((ini->fastregs[i]) >= 0x7800 && (ini->fastregs [i]) <= 0x78b4)) { |
2598 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2599 | DELAY(100)(*delay_func)(100); |
2600 | } |
2601 | if ((i & 0x1f) == 0) |
2602 | DELAY(1)(*delay_func)(1); |
2603 | } |
2604 | } |
2605 | |
2606 | /* |
2607 | * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted |
2608 | * descriptor status. |
2609 | */ |
2610 | AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)(sc)->ops.write((sc), (0x8048), ((sc)->ops.read((sc), ( 0x8048)) | (0x00000020 | 0x02000000))); |
2611 | |
2612 | /* Hardware workarounds for occasional Rx data corruption. */ |
2613 | if (AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) { |
2614 | reg = AR_READ(sc, AR_PCU_MISC_MODE2)(sc)->ops.read((sc), (0x8344)); |
2615 | if (!AR_SREV_9271(sc)((sc)->mac_ver == 0x140)) |
2616 | reg &= ~AR_PCU_MISC_MODE2_HWWAR10x00100000; |
2617 | if (AR_SREV_9287_10_OR_LATER(sc)((sc)->mac_ver >= 0x180)) |
2618 | reg &= ~AR_PCU_MISC_MODE2_HWWAR20x02000000; |
2619 | AR_WRITE(sc, AR_PCU_MISC_MODE2, reg)(sc)->ops.write((sc), (0x8344), (reg)); |
2620 | |
2621 | } else if (AR_SREV_5416_20_OR_LATER(sc)((((sc)->mac_ver == 0x00d || (sc)->mac_ver == 0x00c) && (sc)->mac_rev >= 1) || (sc)->mac_ver >= 0x014)) { |
2622 | /* Disable baseband clock gating. */ |
2623 | AR_WRITE(sc, AR_PHY(651), 0x11)(sc)->ops.write((sc), ((0x9800 + (651) * 4)), (0x11)); |
2624 | |
2625 | if (AR_SREV_9160(sc)((sc)->mac_ver == 0x040)) { |
2626 | /* Disable RIFS search to fix baseband hang. */ |
2627 | AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,(sc)->ops.write((sc), (0x99ec), ((sc)->ops.read((sc), ( 0x99ec)) & ~(0x03ff0000))) |
2628 | AR_PHY_RIFS_INIT_DELAY_M)(sc)->ops.write((sc), (0x99ec), ((sc)->ops.read((sc), ( 0x99ec)) & ~(0x03ff0000))); |
2629 | } |
2630 | } |
2631 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2632 | |
2633 | ar5008_set_phy(sc, c, extc); |
2634 | ar5008_init_chains(sc); |
2635 | |
2636 | if (sc->flags & ATHN_FLAG_OLPC(1 << 2)) { |
2637 | extern int ticks; |
2638 | sc->olpc_ticks = ticks; |
2639 | ops->olpc_init(sc); |
2640 | } |
2641 | |
2642 | ops->set_txpower(sc, c, extc); |
2643 | |
2644 | if (!AR_SINGLE_CHIP(sc)((sc)->mac_ver >= 0x080)) |
2645 | ar5416_rf_reset(sc, c); |
2646 | } |
2647 | |
2648 | uint8_t |
2649 | ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg, |
2650 | int nicepts) |
2651 | { |
2652 | uint8_t vpd; |
2653 | int i, lo, hi; |
2654 | |
2655 | for (i = 0; i < nicepts; i++) |
2656 | if (pwrPdg[i] > pwr) |
2657 | break; |
2658 | hi = i; |
2659 | lo = hi - 1; |
2660 | if (lo == -1) |
2661 | lo = hi; |
2662 | else if (hi == nicepts) |
2663 | hi = lo; |
2664 | |
2665 | vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo], |
2666 | pwrPdg[hi], vpdPdg[hi]); |
2667 | return (vpd); |
2668 | } |
2669 | |
2670 | void |
2671 | ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin, |
2672 | struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains, |
2673 | int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) |
2674 | { |
2675 | #define DB(x) ((x) / 2) /* Convert half dB to dB. */ |
2676 | uint8_t minpwr[AR_PD_GAINS_IN_MASK4], maxpwr[AR_PD_GAINS_IN_MASK4]; |
2677 | uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB64], pwr; |
2678 | uint8_t lovpd, hivpd, boundary; |
2679 | int16_t ss, delta, vpdstep, val; |
2680 | int i, j, npdadcs, nvpds, maxidx, tgtidx; |
2681 | |
2682 | /* Compute min and max power in half dB for each pdGain. */ |
2683 | for (i = 0; i < nxpdgains; i++) { |
2684 | minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0])(((lopier->pwr[i][0])>(hipier->pwr[i][0]))?(lopier-> pwr[i][0]):(hipier->pwr[i][0])); |
2685 | maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],(((lopier->pwr[i][nicepts - 1])<(hipier->pwr[i][nicepts - 1]))?(lopier->pwr[i][nicepts - 1]):(hipier->pwr[i][nicepts - 1])) |
2686 | hipier->pwr[i][nicepts - 1])(((lopier->pwr[i][nicepts - 1])<(hipier->pwr[i][nicepts - 1]))?(lopier->pwr[i][nicepts - 1]):(hipier->pwr[i][nicepts - 1])); |
2687 | } |
2688 | |
2689 | /* Fill phase domain analog-to-digital converter (PDADC) table. */ |
2690 | npdadcs = 0; |
2691 | for (i = 0; i < nxpdgains; i++) { |
2692 | if (i != nxpdgains - 1) |
2693 | boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2; |
2694 | else |
2695 | boundaries[i] = DB(maxpwr[i]); |
2696 | if (boundaries[i] > AR_MAX_RATE_POWER63) |
2697 | boundaries[i] = AR_MAX_RATE_POWER63; |
2698 | |
2699 | if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)((((sc)->mac_ver == 0x00d || (sc)->mac_ver == 0x00c) && (sc)->mac_rev >= 1) || (sc)->mac_ver >= 0x014)) { |
2700 | /* Fix the gain delta (AR5416 1.0 only). */ |
2701 | delta = boundaries[0] - 23; |
2702 | boundaries[0] = 23; |
2703 | } else |
2704 | delta = 0; |
2705 | |
2706 | /* Find starting index for this pdGain. */ |
2707 | if (i != 0) { |
2708 | ss = boundaries[i - 1] - DB(minpwr[i]) - |
2709 | overlap + 1 + delta; |
2710 | } else if (AR_SREV_9280_10_OR_LATER(sc)((sc)->mac_ver >= 0x080)) { |
2711 | ss = -DB(minpwr[i]); |
2712 | } else |
2713 | ss = 0; |
2714 | |
2715 | /* Compute Vpd table for this pdGain. */ |
2716 | nvpds = DB(maxpwr[i] - minpwr[i]) + 1; |
2717 | memset(vpd, 0, sizeof(vpd))__builtin_memset((vpd), (0), (sizeof(vpd))); |
2718 | pwr = minpwr[i]; |
2719 | for (j = 0; j < nvpds; j++) { |
2720 | /* Get lower and higher Vpd. */ |
2721 | lovpd = ar5008_get_vpd(pwr, lopier->pwr[i], |
2722 | lopier->vpd[i], nicepts); |
2723 | hivpd = ar5008_get_vpd(pwr, hipier->pwr[i], |
2724 | hipier->vpd[i], nicepts); |
2725 | |
2726 | /* Interpolate the final Vpd. */ |
2727 | vpd[j] = athn_interpolate(fbin, |
2728 | lopier->fbin, lovpd, hipier->fbin, hivpd); |
2729 | |
2730 | pwr += 2; /* In half dB. */ |
2731 | } |
2732 | |
2733 | /* Extrapolate data for ss < 0. */ |
2734 | if (vpd[1] > vpd[0]) |
2735 | vpdstep = vpd[1] - vpd[0]; |
2736 | else |
2737 | vpdstep = 1; |
2738 | while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES128 - 1) { |
2739 | val = vpd[0] + ss * vpdstep; |
2740 | pdadcs[npdadcs++] = MAX(val, 0)(((val)>(0))?(val):(0)); |
2741 | ss++; |
2742 | } |
2743 | |
2744 | tgtidx = boundaries[i] + overlap - DB(minpwr[i]); |
2745 | maxidx = MIN(tgtidx, nvpds)(((tgtidx)<(nvpds))?(tgtidx):(nvpds)); |
2746 | while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES128 - 1) |
2747 | pdadcs[npdadcs++] = vpd[ss++]; |
2748 | |
2749 | if (tgtidx < maxidx) |
2750 | continue; |
2751 | |
2752 | /* Extrapolate data for maxidx <= ss <= tgtidx. */ |
2753 | if (vpd[nvpds - 1] > vpd[nvpds - 2]) |
2754 | vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2]; |
2755 | else |
2756 | vpdstep = 1; |
2757 | while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES128 - 1) { |
2758 | val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep; |
2759 | pdadcs[npdadcs++] = MIN(val, 255)(((val)<(255))?(val):(255)); |
2760 | ss++; |
2761 | } |
2762 | } |
2763 | |
2764 | /* Fill remaining PDADC and boundaries entries. */ |
2765 | if (AR_SREV_9285(sc)((sc)->mac_ver == 0x0c0)) |
2766 | boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT58; |
2767 | else /* Fill with latest. */ |
2768 | boundary = boundaries[nxpdgains - 1]; |
2769 | |
2770 | for (; nxpdgains < AR_PD_GAINS_IN_MASK4; nxpdgains++) |
2771 | boundaries[nxpdgains] = boundary; |
2772 | |
2773 | for (; npdadcs < AR_NUM_PDADC_VALUES128; npdadcs++) |
2774 | pdadcs[npdadcs] = pdadcs[npdadcs - 1]; |
2775 | #undef DB |
2776 | } |
2777 | |
2778 | void |
2779 | ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, |
2780 | uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans, |
2781 | uint8_t tpow[4]) |
2782 | { |
2783 | uint8_t fbin; |
2784 | int i, lo, hi; |
2785 | |
2786 | /* Find interval (lower and upper indices). */ |
2787 | fbin = athn_chan2fbin(c); |
2788 | for (i = 0; i < nchans; i++) { |
2789 | if (tgt[i].bChannel == AR_BCHAN_UNUSED0xff || |
2790 | tgt[i].bChannel > fbin) |
2791 | break; |
2792 | } |
2793 | hi = i; |
2794 | lo = hi - 1; |
2795 | if (lo == -1) |
2796 | lo = hi; |
2797 | else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED0xff) |
2798 | hi = lo; |
2799 | |
2800 | /* Interpolate values. */ |
2801 | for (i = 0; i < 4; i++) { |
2802 | tpow[i] = athn_interpolate(fbin, |
2803 | tgt[lo].bChannel, tgt[lo].tPow2x[i], |
2804 | tgt[hi].bChannel, tgt[hi].tPow2x[i]); |
2805 | } |
2806 | /* XXX Apply conformance testing limit. */ |
2807 | } |
2808 | |
2809 | void |
2810 | ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, |
2811 | uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans, |
2812 | uint8_t tpow[8]) |
2813 | { |
2814 | uint8_t fbin; |
2815 | int i, lo, hi; |
2816 | |
2817 | /* Find interval (lower and upper indices). */ |
2818 | fbin = athn_chan2fbin(c); |
2819 | for (i = 0; i < nchans; i++) { |
2820 | if (tgt[i].bChannel == AR_BCHAN_UNUSED0xff || |
2821 | tgt[i].bChannel > fbin) |
2822 | break; |
2823 | } |
2824 | hi = i; |
2825 | lo = hi - 1; |
2826 | if (lo == -1) |
2827 | lo = hi; |
2828 | else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED0xff) |
2829 | hi = lo; |
2830 | |
2831 | /* Interpolate values. */ |
2832 | for (i = 0; i < 8; i++) { |
2833 | tpow[i] = athn_interpolate(fbin, |
2834 | tgt[lo].bChannel, tgt[lo].tPow2x[i], |
2835 | tgt[hi].bChannel, tgt[hi].tPow2x[i]); |
2836 | } |
2837 | /* XXX Apply conformance testing limit. */ |
2838 | } |
2839 | |
2840 | /* |
2841 | * Adaptive noise immunity. |
2842 | */ |
2843 | void |
2844 | ar5008_set_noise_immunity_level(struct athn_softc *sc, int level) |
2845 | { |
2846 | int high = level == 4; |
2847 | uint32_t reg; |
2848 | |
2849 | reg = AR_READ(sc, AR_PHY_DESIRED_SZ)(sc)->ops.read((sc), (0x9850)); |
2850 | reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55)(((reg) & ~0x0ff00000) | (((uint32_t)(high ? -62 : -55) << 20) & 0x0ff00000)); |
2851 | AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg)(sc)->ops.write((sc), (0x9850), (reg)); |
2852 | |
2853 | reg = AR_READ(sc, AR_PHY_AGC_CTL1)(sc)->ops.read((sc), (0x985c)); |
2854 | reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64)(((reg) & ~0x00007f80) | (((uint32_t)(high ? -70 : -64) << 7) & 0x00007f80)); |
2855 | reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14)(((reg) & ~0x003f8000) | (((uint32_t)(high ? -12 : -14) << 15) & 0x003f8000)); |
2856 | AR_WRITE(sc, AR_PHY_AGC_CTL1, reg)(sc)->ops.write((sc), (0x985c), (reg)); |
2857 | |
2858 | reg = AR_READ(sc, AR_PHY_FIND_SIG)(sc)->ops.read((sc), (0x9858)); |
2859 | reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78)(((reg) & ~0x03fc0000) | (((uint32_t)(high ? -80 : -78) << 18) & 0x03fc0000)); |
2860 | AR_WRITE(sc, AR_PHY_FIND_SIG, reg)(sc)->ops.write((sc), (0x9858), (reg)); |
2861 | |
2862 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2863 | } |
2864 | |
2865 | void |
2866 | ar5008_enable_ofdm_weak_signal(struct athn_softc *sc) |
2867 | { |
2868 | uint32_t reg; |
2869 | |
2870 | reg = AR_READ(sc, AR_PHY_SFCORR_LOW)(sc)->ops.read((sc), (0x986c)); |
2871 | reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50)(((reg) & ~0x001fc000) | (((uint32_t)(50) << 14) & 0x001fc000)); |
2872 | reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40)(((reg) & ~0x0fe00000) | (((uint32_t)(40) << 21) & 0x0fe00000)); |
2873 | reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48)(((reg) & ~0x00003f00) | (((uint32_t)(48) << 8) & 0x00003f00)); |
2874 | AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg)(sc)->ops.write((sc), (0x986c), (reg)); |
2875 | |
2876 | reg = AR_READ(sc, AR_PHY_SFCORR)(sc)->ops.read((sc), (0x9868)); |
2877 | reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77)(((reg) & ~0x00fe0000) | (((uint32_t)(77) << 17) & 0x00fe0000)); |
2878 | reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64)(((reg) & ~0x7f000000) | (((uint32_t)(64) << 24) & 0x7f000000)); |
2879 | reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16)(((reg) & ~0x0000001f) | (((uint32_t)(16) << 0) & 0x0000001f)); |
2880 | AR_WRITE(sc, AR_PHY_SFCORR, reg)(sc)->ops.write((sc), (0x9868), (reg)); |
2881 | |
2882 | reg = AR_READ(sc, AR_PHY_SFCORR_EXT)(sc)->ops.read((sc), (0x99c0)); |
2883 | reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50)(((reg) & ~0x001fc000) | (((uint32_t)(50) << 14) & 0x001fc000)); |
2884 | reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40)(((reg) & ~0x0fe00000) | (((uint32_t)(40) << 21) & 0x0fe00000)); |
2885 | reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77)(((reg) & ~0x0000007f) | (((uint32_t)(77) << 0) & 0x0000007f)); |
2886 | reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64)(((reg) & ~0x00003f80) | (((uint32_t)(64) << 7) & 0x00003f80)); |
2887 | AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg)(sc)->ops.write((sc), (0x99c0), (reg)); |
2888 | |
2889 | AR_SETBITS(sc, AR_PHY_SFCORR_LOW,(sc)->ops.write((sc), (0x986c), ((sc)->ops.read((sc), ( 0x986c)) | (0x00000001))) |
2890 | AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW)(sc)->ops.write((sc), (0x986c), ((sc)->ops.read((sc), ( 0x986c)) | (0x00000001))); |
2891 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2892 | } |
2893 | |
2894 | void |
2895 | ar5008_disable_ofdm_weak_signal(struct athn_softc *sc) |
2896 | { |
2897 | uint32_t reg; |
2898 | |
2899 | reg = AR_READ(sc, AR_PHY_SFCORR_LOW)(sc)->ops.read((sc), (0x986c)); |
2900 | reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127)(((reg) & ~0x001fc000) | (((uint32_t)(127) << 14) & 0x001fc000)); |
2901 | reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127)(((reg) & ~0x0fe00000) | (((uint32_t)(127) << 21) & 0x0fe00000)); |
2902 | reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63)(((reg) & ~0x00003f00) | (((uint32_t)(63) << 8) & 0x00003f00)); |
2903 | AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg)(sc)->ops.write((sc), (0x986c), (reg)); |
2904 | |
2905 | reg = AR_READ(sc, AR_PHY_SFCORR)(sc)->ops.read((sc), (0x9868)); |
2906 | reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127)(((reg) & ~0x00fe0000) | (((uint32_t)(127) << 17) & 0x00fe0000)); |
2907 | reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127)(((reg) & ~0x7f000000) | (((uint32_t)(127) << 24) & 0x7f000000)); |
2908 | reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31)(((reg) & ~0x0000001f) | (((uint32_t)(31) << 0) & 0x0000001f)); |
2909 | AR_WRITE(sc, AR_PHY_SFCORR, reg)(sc)->ops.write((sc), (0x9868), (reg)); |
2910 | |
2911 | reg = AR_READ(sc, AR_PHY_SFCORR_EXT)(sc)->ops.read((sc), (0x99c0)); |
2912 | reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127)(((reg) & ~0x001fc000) | (((uint32_t)(127) << 14) & 0x001fc000)); |
2913 | reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127)(((reg) & ~0x0fe00000) | (((uint32_t)(127) << 21) & 0x0fe00000)); |
2914 | reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127)(((reg) & ~0x0000007f) | (((uint32_t)(127) << 0) & 0x0000007f)); |
2915 | reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127)(((reg) & ~0x00003f80) | (((uint32_t)(127) << 7) & 0x00003f80)); |
2916 | AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg)(sc)->ops.write((sc), (0x99c0), (reg)); |
2917 | |
2918 | AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,(sc)->ops.write((sc), (0x986c), ((sc)->ops.read((sc), ( 0x986c)) & ~(0x00000001))) |
2919 | AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW)(sc)->ops.write((sc), (0x986c), ((sc)->ops.read((sc), ( 0x986c)) & ~(0x00000001))); |
2920 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2921 | } |
2922 | |
2923 | void |
2924 | ar5008_set_cck_weak_signal(struct athn_softc *sc, int high) |
2925 | { |
2926 | uint32_t reg; |
2927 | |
2928 | reg = AR_READ(sc, AR_PHY_CCK_DETECT)(sc)->ops.read((sc), (0xa208)); |
2929 | reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8)(((reg) & ~0x0000003f) | (((uint32_t)(high ? 6 : 8) << 0) & 0x0000003f)); |
2930 | AR_WRITE(sc, AR_PHY_CCK_DETECT, reg)(sc)->ops.write((sc), (0xa208), (reg)); |
2931 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2932 | } |
2933 | |
2934 | void |
2935 | ar5008_set_firstep_level(struct athn_softc *sc, int level) |
2936 | { |
2937 | uint32_t reg; |
2938 | |
2939 | reg = AR_READ(sc, AR_PHY_FIND_SIG)(sc)->ops.read((sc), (0x9858)); |
2940 | reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4)(((reg) & ~0x0003f000) | (((uint32_t)(level * 4) << 12) & 0x0003f000)); |
2941 | AR_WRITE(sc, AR_PHY_FIND_SIG, reg)(sc)->ops.write((sc), (0x9858), (reg)); |
2942 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2943 | } |
2944 | |
2945 | void |
2946 | ar5008_set_spur_immunity_level(struct athn_softc *sc, int level) |
2947 | { |
2948 | uint32_t reg; |
2949 | |
2950 | reg = AR_READ(sc, AR_PHY_TIMING5)(sc)->ops.read((sc), (0x9924)); |
2951 | reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2)(((reg) & ~0x000000fe) | (((uint32_t)((level + 1) * 2) << 1) & 0x000000fe)); |
2952 | AR_WRITE(sc, AR_PHY_TIMING5, reg)(sc)->ops.write((sc), (0x9924), (reg)); |
2953 | AR_WRITE_BARRIER(sc)(sc)->ops.write_barrier((sc)); |
2954 | } |