Bug Summary

File:ufs/ffs/ffs_alloc.c
Warning:line 378, column 7
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ffs_alloc.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -target-feature +retpoline-external-thunk -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/llvm16/lib/clang/16 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/legacy-dpm -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu13 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/inc -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc/pmfw_if -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D SUSPEND -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /home/ben/Projects/scan/2024-01-11-110808-61670-1 -x c /usr/src/sys/ufs/ffs/ffs_alloc.c
1/* $OpenBSD: ffs_alloc.c,v 1.114 2021/03/11 13:31:35 jsg Exp $ */
2/* $NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $ */
3
4/*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program.
13 *
14 * Copyright (c) 1982, 1986, 1989, 1993
15 * The Regents of the University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
42 */
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/mount.h>
49#include <sys/syslog.h>
50#include <sys/stdint.h>
51#include <sys/time.h>
52
53#include <ufs/ufs/quota.h>
54#include <ufs/ufs/inode.h>
55#include <ufs/ufs/ufsmount.h>
56#include <ufs/ufs/ufs_extern.h>
57
58#include <ufs/ffs/fs.h>
59#include <ufs/ffs/ffs_extern.h>
60
61#define ffs_fserr(fs, uid, cp)do { log(3, "uid %u on %s: %s\n", (uid), (fs)->fs_fsmnt, (
cp)); } while (0)
do { \
62 log(LOG_ERR3, "uid %u on %s: %s\n", (uid), \
63 (fs)->fs_fsmnt, (cp)); \
64} while (0)
65
66daddr_t ffs_alloccg(struct inode *, u_int, daddr_t, int);
67struct buf * ffs_cgread(struct fs *, struct inode *, u_int);
68daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
69ufsino_t ffs_dirpref(struct inode *);
70daddr_t ffs_fragextend(struct inode *, u_int, daddr_t, int, int);
71daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int,
72 daddr_t (*)(struct inode *, u_int, daddr_t, int));
73daddr_t ffs_nodealloccg(struct inode *, u_int, daddr_t, int);
74daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
75
76static const struct timeval fserr_interval = { 2, 0 };
77
78
79/*
80 * Allocate a block in the file system.
81 *
82 * The size of the requested block is given, which must be some
83 * multiple of fs_fsize and <= fs_bsize.
84 * A preference may be optionally specified. If a preference is given
85 * the following hierarchy is used to allocate a block:
86 * 1) allocate the requested block.
87 * 2) allocate a rotationally optimal block in the same cylinder.
88 * 3) allocate a block in the same cylinder group.
89 * 4) quadratically rehash into other cylinder groups, until an
90 * available block is located.
91 * If no block preference is given the following hierarchy is used
92 * to allocate a block:
93 * 1) allocate a block in the cylinder group that contains the
94 * inode for the file.
95 * 2) quadratically rehash into other cylinder groups, until an
96 * available block is located.
97 */
98int
99ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
100 struct ucred *cred, daddr_t *bnp)
101{
102 static struct timeval fsfull_last;
103 struct fs *fs;
104 daddr_t bno;
105 u_int cg;
106 int error;
107
108 *bnp = 0;
109 fs = ip->i_fsinode_u.fs;
110#ifdef DIAGNOSTIC1
111 if ((u_int)size > fs->fs_bsize || fragoff(fs, size)((size) & (fs)->fs_qfmask) != 0) {
112 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
113 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
114 panic("ffs_alloc: bad size");
115 }
116 if (cred == NOCRED((struct ucred *)-1))
117 panic("ffs_alloc: missing credential");
118#endif /* DIAGNOSTIC */
119 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
120 goto nospace;
121 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree)((((fs)->fs_cstotal.cs_nbfree) << ((fs))->fs_fragshift
) + (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (fs->
fs_minfree) / 100))
<= 0)
122 goto nospace;
123
124 if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)ufs_quota_alloc_blocks2(ip, ((size) >> 9), cred, 0)) != 0)
125 return (error);
126
127 /*
128 * Start allocation in the preferred block's cylinder group or
129 * the file's inode's cylinder group if no preferred block was
130 * specified.
131 */
132 if (bpref >= fs->fs_size)
133 bpref = 0;
134 if (bpref == 0)
135 cg = ino_to_cg(fs, ip->i_number)((ip->i_number) / (fs)->fs_ipg);
136 else
137 cg = dtog(fs, bpref)((bpref) / (fs)->fs_fpg);
138
139 /* Try allocating a block. */
140 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
141 if (bno > 0) {
142 /* allocation successful, update inode data */
143 DIP_ADD(ip, blocks, btodb(size))do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_blocks += (((size) >> 9)); else (ip)->
dinode_u.ffs2_din->di_blocks += (((size) >> 9)); } while
(0)
;
144 ip->i_flag |= IN_CHANGE0x0002 | IN_UPDATE0x0004;
145 *bnp = bno;
146 return (0);
147 }
148
149 /* Restore user's disk quota because allocation failed. */
150 (void) ufs_quota_free_blocks(ip, btodb(size), cred)ufs_quota_free_blocks2(ip, ((size) >> 9), cred, 0);
151
152nospace:
153 if (ratecheck(&fsfull_last, &fserr_interval)) {
154 ffs_fserr(fs, cred->cr_uid, "file system full")do { log(3, "uid %u on %s: %s\n", (cred->cr_uid), (fs)->
fs_fsmnt, ("file system full")); } while (0)
;
155 uprintf("\n%s: write failed, file system is full\n",
156 fs->fs_fsmnt);
157 }
158 return (ENOSPC28);
159}
160
161/*
162 * Reallocate a fragment to a bigger size
163 *
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
168 */
169int
170ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
171 int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
172{
173 static struct timeval fsfull_last;
174 struct fs *fs;
175 struct buf *bp = NULL((void *)0);
176 daddr_t quota_updated = 0;
177 int request, error;
178 u_int cg;
179 daddr_t bprev, bno;
180
181 if (bpp != NULL((void *)0))
182 *bpp = NULL((void *)0);
183 fs = ip->i_fsinode_u.fs;
184#ifdef DIAGNOSTIC1
185 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize)((osize) & (fs)->fs_qfmask) != 0 ||
186 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize)((nsize) & (fs)->fs_qfmask) != 0) {
187 printf(
188 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
189 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
190 panic("ffs_realloccg: bad size");
191 }
192 if (cred == NOCRED((struct ucred *)-1))
193 panic("ffs_realloccg: missing credential");
194#endif /* DIAGNOSTIC */
195 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree)((((fs)->fs_cstotal.cs_nbfree) << ((fs))->fs_fragshift
) + (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (fs->
fs_minfree) / 100))
<= 0)
196 goto nospace;
197
198 bprev = DIP(ip, db[lbprev])(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_db[lbprev] : (ip)->dinode_u.ffs2_din->di_db[lbprev
])
;
199
200 if (bprev == 0) {
201 printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n",
202 ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt);
203 panic("ffs_realloccg: bad bprev");
204 }
205
206 /*
207 * Allocate the extra space in the buffer.
208 */
209 if (bpp != NULL((void *)0)) {
210 if ((error = bread(ITOV(ip)((ip)->i_vnode), lbprev, fs->fs_bsize, &bp)) != 0)
211 goto error;
212 buf_adjcnt(bp, osize);
213 }
214
215 if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred)ufs_quota_alloc_blocks2(ip, ((nsize - osize) >> 9), cred
, 0)
)
216 != 0)
217 goto error;
218
219 quota_updated = btodb(nsize - osize)((nsize - osize) >> 9);
220
221 /*
222 * Check for extension in the existing location.
223 */
224 cg = dtog(fs, bprev)((bprev) / (fs)->fs_fpg);
225 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
226 DIP_ADD(ip, blocks, btodb(nsize - osize))do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_blocks += (((nsize - osize) >> 9)); else
(ip)->dinode_u.ffs2_din->di_blocks += (((nsize - osize
) >> 9)); } while (0)
;
227 ip->i_flag |= IN_CHANGE0x0002 | IN_UPDATE0x0004;
228 if (bpp != NULL((void *)0)) {
229 if (bp->b_blkno != fsbtodb(fs, bno)((bno) << (fs)->fs_fsbtodb))
230 panic("ffs_realloccg: bad blockno");
231#ifdef DIAGNOSTIC1
232 if (nsize > bp->b_bufsize)
233 panic("ffs_realloccg: small buf");
234#endif
235 buf_adjcnt(bp, nsize);
236 bp->b_flags |= B_DONE0x00000100;
237 memset(bp->b_data + osize, 0, nsize - osize)__builtin_memset((bp->b_data + osize), (0), (nsize - osize
))
;
238 *bpp = bp;
239 }
240 if (blknop != NULL((void *)0)) {
241 *blknop = bno;
242 }
243 return (0);
244 }
245 /*
246 * Allocate a new disk location.
247 */
248 if (bpref >= fs->fs_size)
249 bpref = 0;
250 switch (fs->fs_optim) {
251 case FS_OPTSPACE1:
252 /*
253 * Allocate an exact sized fragment. Although this makes
254 * best use of space, we will waste time relocating it if
255 * the file continues to grow. If the fragmentation is
256 * less than half of the minimum free reserve, we choose
257 * to begin optimizing for time.
258 */
259 request = nsize;
260 if (fs->fs_minfree < 5 ||
261 fs->fs_cstotal.cs_nffree >
262 fs->fs_dsize * fs->fs_minfree / (2 * 100))
263 break;
264 fs->fs_optim = FS_OPTTIME0;
265 break;
266 case FS_OPTTIME0:
267 /*
268 * At this point we have discovered a file that is trying to
269 * grow a small fragment to a larger fragment. To save time,
270 * we allocate a full sized block, then free the unused portion.
271 * If the file continues to grow, the `ffs_fragextend' call
272 * above will be able to grow it in place without further
273 * copying. If aberrant programs cause disk fragmentation to
274 * grow within 2% of the free reserve, we choose to begin
275 * optimizing for space.
276 */
277 request = fs->fs_bsize;
278 if (fs->fs_cstotal.cs_nffree <
279 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
280 break;
281 fs->fs_optim = FS_OPTSPACE1;
282 break;
283 default:
284 printf("dev = 0x%x, optim = %d, fs = %s\n",
285 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
286 panic("ffs_realloccg: bad optim");
287 /* NOTREACHED */
288 }
289 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
290 if (bno <= 0)
291 goto nospace;
292
293 (void) uvm_vnp_uncache(ITOV(ip)((ip)->i_vnode));
294 if (!DOINGSOFTDEP(ITOV(ip))((((ip)->i_vnode))->v_mount->mnt_flag & 0x04000000
)
)
295 ffs_blkfree(ip, bprev, (long)osize);
296 if (nsize < request)
297 ffs_blkfree(ip, bno + numfrags(fs, nsize)((nsize) >> (fs)->fs_fshift),
298 (long)(request - nsize));
299 DIP_ADD(ip, blocks, btodb(nsize - osize))do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_blocks += (((nsize - osize) >> 9)); else
(ip)->dinode_u.ffs2_din->di_blocks += (((nsize - osize
) >> 9)); } while (0)
;
300 ip->i_flag |= IN_CHANGE0x0002 | IN_UPDATE0x0004;
301 if (bpp != NULL((void *)0)) {
302 bp->b_blkno = fsbtodb(fs, bno)((bno) << (fs)->fs_fsbtodb);
303#ifdef DIAGNOSTIC1
304 if (nsize > bp->b_bufsize)
305 panic("ffs_realloccg: small buf 2");
306#endif
307 buf_adjcnt(bp, nsize);
308 bp->b_flags |= B_DONE0x00000100;
309 memset(bp->b_data + osize, 0, nsize - osize)__builtin_memset((bp->b_data + osize), (0), (nsize - osize
))
;
310 *bpp = bp;
311 }
312 if (blknop != NULL((void *)0)) {
313 *blknop = bno;
314 }
315 return (0);
316
317nospace:
318 if (ratecheck(&fsfull_last, &fserr_interval)) {
319 ffs_fserr(fs, cred->cr_uid, "file system full")do { log(3, "uid %u on %s: %s\n", (cred->cr_uid), (fs)->
fs_fsmnt, ("file system full")); } while (0)
;
320 uprintf("\n%s: write failed, file system is full\n",
321 fs->fs_fsmnt);
322 }
323 error = ENOSPC28;
324
325error:
326 if (bp != NULL((void *)0)) {
327 brelse(bp);
328 bp = NULL((void *)0);
329 }
330
331 /*
332 * Restore user's disk quota because allocation failed.
333 */
334 if (quota_updated != 0)
335 (void)ufs_quota_free_blocks(ip, quota_updated, cred)ufs_quota_free_blocks2(ip, quota_updated, cred, 0);
336
337 return error;
338}
339
340/*
341 * Allocate an inode in the file system.
342 *
343 * If allocating a directory, use ffs_dirpref to select the inode.
344 * If allocating in a directory, the following hierarchy is followed:
345 * 1) allocate the preferred inode.
346 * 2) allocate an inode in the same cylinder group.
347 * 3) quadratically rehash into other cylinder groups, until an
348 * available inode is located.
349 * If no inode preference is given the following hierarchy is used
350 * to allocate an inode:
351 * 1) allocate an inode in cylinder group 0.
352 * 2) quadratically rehash into other cylinder groups, until an
353 * available inode is located.
354 */
355int
356ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred,
357 struct vnode **vpp)
358{
359 static struct timeval fsnoinodes_last;
360 struct vnode *pvp = ITOV(pip)((pip)->i_vnode);
361 struct fs *fs;
362 struct inode *ip;
363 ufsino_t ino, ipref;
364 u_int cg;
365 int error;
366
367 *vpp = NULL((void *)0);
368 fs = pip->i_fsinode_u.fs;
369 if (fs->fs_cstotal.cs_nifree == 0)
1
Assuming field 'cs_nifree' is not equal to 0
2
Taking false branch
370 goto noinodes;
371
372 if ((mode & IFMT0170000) == IFDIR0040000)
3
Assuming the condition is true
4
Taking true branch
373 ipref = ffs_dirpref(pip);
5
Calling 'ffs_dirpref'
15
Returning from 'ffs_dirpref'
374 else
375 ipref = pip->i_number;
376 if (ipref >= fs->fs_ncg * fs->fs_ipg)
16
Assuming the condition is true
17
Taking true branch
377 ipref = 0;
378 cg = ino_to_cg(fs, ipref)((ipref) / (fs)->fs_ipg);
18
Division by zero
379
380 /*
381 * Track number of dirs created one after another
382 * in a same cg without intervening by files.
383 */
384 if ((mode & IFMT0170000) == IFDIR0040000) {
385 if (fs->fs_contigdirs[cg] < 255)
386 fs->fs_contigdirs[cg]++;
387 } else {
388 if (fs->fs_contigdirs[cg] > 0)
389 fs->fs_contigdirs[cg]--;
390 }
391 ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
392 if (ino == 0)
393 goto noinodes;
394 error = VFS_VGET(pvp->v_mount, ino, vpp)(*(pvp->v_mount)->mnt_op->vfs_vget)(pvp->v_mount,
ino, vpp)
;
395 if (error) {
396 ffs_inode_free(pip, ino, mode);
397 return (error);
398 }
399
400 ip = VTOI(*vpp)((struct inode *)(*vpp)->v_data);
401
402 if (DIP(ip, mode)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_mode : (ip)->dinode_u.ffs2_din->di_mode)
) {
403 printf("mode = 0%o, inum = %u, fs = %s\n",
404 DIP(ip, mode)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_mode : (ip)->dinode_u.ffs2_din->di_mode)
, ip->i_number, fs->fs_fsmnt);
405 panic("ffs_valloc: dup alloc");
406 }
407
408 if (DIP(ip, blocks)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_blocks : (ip)->dinode_u.ffs2_din->di_blocks)
) {
409 printf("free inode %s/%d had %lld blocks\n",
410 fs->fs_fsmnt, ino, (long long)DIP(ip, blocks)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_blocks : (ip)->dinode_u.ffs2_din->di_blocks)
);
411 DIP_ASSIGN(ip, blocks, 0)do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_blocks = (0); else (ip)->dinode_u.ffs2_din
->di_blocks = (0); } while (0)
;
412 }
413
414 DIP_ASSIGN(ip, flags, 0)do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_flags = (0); else (ip)->dinode_u.ffs2_din
->di_flags = (0); } while (0)
;
415
416 /*
417 * Set up a new generation number for this inode.
418 * On wrap, we make sure to assign a number != 0 and != UINT_MAX
419 * (the original value).
420 */
421 if (DIP(ip, gen)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_gen : (ip)->dinode_u.ffs2_din->di_gen)
!= 0)
422 DIP_ADD(ip, gen, 1)do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_gen += (1); else (ip)->dinode_u.ffs2_din->
di_gen += (1); } while (0)
;
423 while (DIP(ip, gen)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_gen : (ip)->dinode_u.ffs2_din->di_gen)
== 0)
424 DIP_ASSIGN(ip, gen, arc4random_uniform(UINT_MAX))do { if ((ip)->i_ump->um_fstype == 1) (ip)->dinode_u
.ffs1_din->di_gen = (arc4random_uniform(0xffffffffU)); else
(ip)->dinode_u.ffs2_din->di_gen = (arc4random_uniform(
0xffffffffU)); } while (0)
;
425
426 return (0);
427
428noinodes:
429 if (ratecheck(&fsnoinodes_last, &fserr_interval)) {
430 ffs_fserr(fs, cred->cr_uid, "out of inodes")do { log(3, "uid %u on %s: %s\n", (cred->cr_uid), (fs)->
fs_fsmnt, ("out of inodes")); } while (0)
;
431 uprintf("\n%s: create/symlink failed, no inodes free\n",
432 fs->fs_fsmnt);
433 }
434 return (ENOSPC28);
435}
436
437/*
438 * Find a cylinder group to place a directory.
439 *
440 * The policy implemented by this algorithm is to allocate a
441 * directory inode in the same cylinder group as its parent
442 * directory, but also to reserve space for its files inodes
443 * and data. Restrict the number of directories which may be
444 * allocated one after another in the same cylinder group
445 * without intervening allocation of files.
446 *
447 * If we allocate a first level directory then force allocation
448 * in another cylinder group.
449 */
450ufsino_t
451ffs_dirpref(struct inode *pip)
452{
453 struct fs *fs;
454 u_int cg, prefcg;
455 u_int dirsize, cgsize;
456 u_int avgifree, avgbfree, avgndir, curdirsize;
457 u_int minifree, minbfree, maxndir;
458 u_int mincg, minndir;
459 u_int maxcontigdirs;
460
461 fs = pip->i_fsinode_u.fs;
462
463 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
464 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
465 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
466
467 /*
468 * Force allocation in another cg if creating a first level dir.
469 */
470 if (ITOV(pip)((pip)->i_vnode)->v_flag & VROOT0x0001) {
6
Assuming the condition is true
7
Taking true branch
471 prefcg = arc4random_uniform(fs->fs_ncg);
472 mincg = prefcg;
473 minndir = fs->fs_ipg;
474 for (cg = prefcg; cg < fs->fs_ncg; cg++)
8
Assuming 'cg' is < field 'fs_ncg'
10
Assuming 'cg' is >= field 'fs_ncg'
11
Loop condition is false. Execution continues on line 481
475 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir < minndir &&
9
Assuming 'minndir' is <= field 'cs_ndir'
476 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= avgifree &&
477 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree) {
478 mincg = cg;
479 minndir = fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir;
480 }
481 for (cg = 0; cg < prefcg; cg++)
12
Assuming 'cg' is >= 'prefcg'
13
Loop condition is false. Execution continues on line 488
482 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir < minndir &&
483 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= avgifree &&
484 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree) {
485 mincg = cg;
486 minndir = fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir;
487 }
488 cg = mincg;
489 goto end;
14
Control jumps to line 566
490 } else
491 prefcg = ino_to_cg(fs, pip->i_number)((pip->i_number) / (fs)->fs_ipg);
492
493 /*
494 * Count various limits which used for
495 * optimal allocation of a directory inode.
496 */
497 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
498 minifree = avgifree - (avgifree / 4);
499 if (minifree < 1)
500 minifree = 1;
501 minbfree = avgbfree - (avgbfree / 4);
502 if (minbfree < 1)
503 minbfree = 1;
504
505 cgsize = fs->fs_fsize * fs->fs_fpg;
506 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
507 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
508 if (dirsize < curdirsize)
509 dirsize = curdirsize;
510 if (dirsize <= 0)
511 maxcontigdirs = 0; /* dirsize overflowed */
512 else
513 maxcontigdirs = min(avgbfree * fs->fs_bsize / dirsize, 255);
514 if (fs->fs_avgfpdir > 0)
515 maxcontigdirs = min(maxcontigdirs,
516 fs->fs_ipg / fs->fs_avgfpdir);
517 if (maxcontigdirs == 0)
518 maxcontigdirs = 1;
519
520 /*
521 * Limit number of dirs in one cg and reserve space for
522 * regular files, but only if we have no deficit in
523 * inodes or space.
524 *
525 * We are trying to find a suitable cylinder group nearby
526 * our preferred cylinder group to place a new directory.
527 * We scan from our preferred cylinder group forward looking
528 * for a cylinder group that meets our criterion. If we get
529 * to the final cylinder group and do not find anything,
530 * we start scanning forwards from the beginning of the
531 * filesystem. While it might seem sensible to start scanning
532 * backwards or even to alternate looking forward and backward,
533 * this approach fails badly when the filesystem is nearly full.
534 * Specifically, we first search all the areas that have no space
535 * and finally try the one preceding that. We repeat this on
536 * every request and in the case of the final block end up
537 * searching the entire filesystem. By jumping to the front
538 * of the filesystem, our future forward searches always look
539 * in new cylinder groups so finds every possible block after
540 * one pass over the filesystem.
541 */
542 for (cg = prefcg; cg < fs->fs_ncg; cg++)
543 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir < maxndir &&
544 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= minifree &&
545 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= minbfree) {
546 if (fs->fs_contigdirs[cg] < maxcontigdirs)
547 goto end;
548 }
549 for (cg = 0; cg < prefcg; cg++)
550 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir < maxndir &&
551 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= minifree &&
552 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= minbfree) {
553 if (fs->fs_contigdirs[cg] < maxcontigdirs)
554 goto end;
555 }
556 /*
557 * This is a backstop when we have deficit in space.
558 */
559 for (cg = prefcg; cg < fs->fs_ncg; cg++)
560 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= avgifree)
561 goto end;
562 for (cg = 0; cg < prefcg; cg++)
563 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree >= avgifree)
564 goto end;
565end:
566 return ((ufsino_t)(fs->fs_ipg * cg));
567}
568
569/*
570 * Select the desired position for the next block in a file. The file is
571 * logically divided into sections. The first section is composed of the
572 * direct blocks. Each additional section contains fs_maxbpg blocks.
573 *
574 * If no blocks have been allocated in the first section, the policy is to
575 * request a block in the same cylinder group as the inode that describes
576 * the file. The first indirect is allocated immediately following the last
577 * direct block and the data blocks for the first indirect immediately
578 * follow it.
579 *
580 * If no blocks have been allocated in any other section, the indirect
581 * block(s) are allocated in the same cylinder group as its inode in an
582 * area reserved immediately following the inode blocks. The policy for
583 * the data blocks is to place them in a cylinder group with a greater than
584 * average number of free blocks. An appropriate cylinder group is found
585 * by using a rotor that sweeps the cylinder groups. When a new group of
586 * blocks is needed, the sweep begins in the cylinder group following the
587 * cylinder group from which the previous allocation was made. The sweep
588 * continues until a cylinder group with greater than the average number
589 * of free blocks is found. If the allocation is for the first block in an
590 * indirect block, the information on the previous allocation is unavailable;
591 * here a best guess is made based upon the logical block number being
592 * allocated.
593 */
594int32_t
595ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
596{
597 struct fs *fs;
598 u_int cg, inocg;
599 u_int avgbfree, startcg;
600 uint32_t pref;
601
602 KASSERT(indx <= 0 || bap != NULL)((indx <= 0 || bap != ((void *)0)) ? (void)0 : __assert("diagnostic "
, "/usr/src/sys/ufs/ffs/ffs_alloc.c", 602, "indx <= 0 || bap != NULL"
))
;
603 fs = ip->i_fsinode_u.fs;
604 /*
605 * Allocation of indirect blocks is indicated by passing negative
606 * values in indx: -1 for single indirect, -2 for double indirect,
607 * -3 for triple indirect. As noted below, we attempt to allocate
608 * the first indirect inline with the file data. For all later
609 * indirect blocks, the data is often allocated in other cylinder
610 * groups. However to speed random file access and to speed up
611 * fsck, the filesystem reserves the first fs_metaspace blocks
612 * (typically half of fs_minfree) of the data area of each cylinder
613 * group to hold these later indirect blocks.
614 */
615 inocg = ino_to_cg(fs, ip->i_number)((ip->i_number) / (fs)->fs_ipg);
616 if (indx < 0) {
617 /*
618 * Our preference for indirect blocks is the zone at the
619 * beginning of the inode's cylinder group data area that
620 * we try to reserve for indirect blocks.
621 */
622 pref = cgmeta(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
))
;
623 /*
624 * If we are allocating the first indirect block, try to
625 * place it immediately following the last direct block.
626 */
627 if (indx == -1 && lbn < NDADDR12 + NINDIR(fs)((fs)->fs_nindir) &&
628 ip->i_din1dinode_u.ffs1_din->di_db[NDADDR12 - 1] != 0)
629 pref = ip->i_din1dinode_u.ffs1_din->di_db[NDADDR12 - 1] + fs->fs_frag;
630 return (pref);
631 }
632 /*
633 * If we are allocating the first data block in the first indirect
634 * block and the indirect has been allocated in the data block area,
635 * try to place it immediately following the indirect block.
636 */
637 if (lbn == NDADDR12) {
638 pref = ip->i_din1dinode_u.ffs1_din->di_ib[0];
639 if (pref != 0 && pref >= cgdata(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
) + (fs)->fs_minfree)
&&
640 pref < cgbase(fs, inocg + 1)((daddr_t)(fs)->fs_fpg * (inocg + 1)))
641 return (pref + fs->fs_frag);
642 }
643 /*
644 * If we are the beginning of a file, or we have already allocated
645 * the maximum number of blocks per cylinder group, or we do not
646 * have a block allocated immediately preceding us, then we need
647 * to decide where to start allocating new blocks.
648 */
649 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
650 /*
651 * If we are allocating a directory data block, we want
652 * to place it in the metadata area.
653 */
654 if ((DIP(ip, mode)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_mode : (ip)->dinode_u.ffs2_din->di_mode)
& IFMT0170000) == IFDIR0040000)
655 return (cgmeta(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
))
);
656 /*
657 * Until we fill all the direct and all the first indirect's
658 * blocks, we try to allocate in the data area of the inode's
659 * cylinder group.
660 */
661 if (lbn < NDADDR12 + NINDIR(fs)((fs)->fs_nindir))
662 return (cgdata(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
) + (fs)->fs_minfree)
);
663 /*
664 * Find a cylinder with greater than average number of
665 * unused data blocks.
666 */
667 if (indx == 0 || bap[indx - 1] == 0)
668 startcg = inocg + lbn / fs->fs_maxbpg;
669 else
670 startcg = dtog(fs, bap[indx - 1])((bap[indx - 1]) / (fs)->fs_fpg) + 1;
671 startcg %= fs->fs_ncg;
672 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
673 for (cg = startcg; cg < fs->fs_ncg; cg++)
674 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree) {
675 fs->fs_cgrotor = cg;
676 return (cgdata(fs, cg)(((((daddr_t)(fs)->fs_fpg * (cg)) + (fs)->fs_cgoffset *
((cg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno) + (
fs)->fs_minfree)
);
677 }
678 for (cg = 0; cg <= startcg; cg++)
679 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree) {
680 fs->fs_cgrotor = cg;
681 return (cgdata(fs, cg)(((((daddr_t)(fs)->fs_fpg * (cg)) + (fs)->fs_cgoffset *
((cg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno) + (
fs)->fs_minfree)
);
682 }
683 return (0);
684 }
685 /*
686 * Otherwise, we just always try to lay things out contiguously.
687 */
688 return (bap[indx - 1] + fs->fs_frag);
689}
690
691/*
692 * Same as above, for UFS2.
693 */
694#ifdef FFS21
695int64_t
696ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
697{
698 struct fs *fs;
699 u_int cg, inocg;
700 u_int avgbfree, startcg;
701 uint64_t pref;
702
703 KASSERT(indx <= 0 || bap != NULL)((indx <= 0 || bap != ((void *)0)) ? (void)0 : __assert("diagnostic "
, "/usr/src/sys/ufs/ffs/ffs_alloc.c", 703, "indx <= 0 || bap != NULL"
))
;
704 fs = ip->i_fsinode_u.fs;
705 /*
706 * Allocation of indirect blocks is indicated by passing negative
707 * values in indx: -1 for single indirect, -2 for double indirect,
708 * -3 for triple indirect. As noted below, we attempt to allocate
709 * the first indirect inline with the file data. For all later
710 * indirect blocks, the data is often allocated in other cylinder
711 * groups. However to speed random file access and to speed up
712 * fsck, the filesystem reserves the first fs_metaspace blocks
713 * (typically half of fs_minfree) of the data area of each cylinder
714 * group to hold these later indirect blocks.
715 */
716 inocg = ino_to_cg(fs, ip->i_number)((ip->i_number) / (fs)->fs_ipg);
717 if (indx < 0) {
718 /*
719 * Our preference for indirect blocks is the zone at the
720 * beginning of the inode's cylinder group data area that
721 * we try to reserve for indirect blocks.
722 */
723 pref = cgmeta(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
))
;
724 /*
725 * If we are allocating the first indirect block, try to
726 * place it immediately following the last direct block.
727 */
728 if (indx == -1 && lbn < NDADDR12 + NINDIR(fs)((fs)->fs_nindir) &&
729 ip->i_din2dinode_u.ffs2_din->di_db[NDADDR12 - 1] != 0)
730 pref = ip->i_din2dinode_u.ffs2_din->di_db[NDADDR12 - 1] + fs->fs_frag;
731 return (pref);
732 }
733 /*
734 * If we are allocating the first data block in the first indirect
735 * block and the indirect has been allocated in the data block area,
736 * try to place it immediately following the indirect block.
737 */
738 if (lbn == NDADDR12) {
739 pref = ip->i_din2dinode_u.ffs2_din->di_ib[0];
740 if (pref != 0 && pref >= cgdata(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
) + (fs)->fs_minfree)
&&
741 pref < cgbase(fs, inocg + 1)((daddr_t)(fs)->fs_fpg * (inocg + 1)))
742 return (pref + fs->fs_frag);
743 }
744 /*
745 * If we are the beginning of a file, or we have already allocated
746 * the maximum number of blocks per cylinder group, or we do not
747 * have a block allocated immediately preceding us, then we need
748 * to decide where to start allocating new blocks.
749 */
750
751 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
752 /*
753 * If we are allocating a directory data block, we want
754 * to place it in the metadata area.
755 */
756 if ((DIP(ip, mode)(((ip)->i_ump->um_fstype == 1) ? (ip)->dinode_u.ffs1_din
->di_mode : (ip)->dinode_u.ffs2_din->di_mode)
& IFMT0170000) == IFDIR0040000)
757 return (cgmeta(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
))
);
758 /*
759 * Until we fill all the direct and all the first indirect's
760 * blocks, we try to allocate in the data area of the inode's
761 * cylinder group.
762 */
763 if (lbn < NDADDR12 + NINDIR(fs)((fs)->fs_nindir))
764 return (cgdata(fs, inocg)(((((daddr_t)(fs)->fs_fpg * (inocg)) + (fs)->fs_cgoffset
* ((inocg) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
) + (fs)->fs_minfree)
);
765 /*
766 * Find a cylinder with greater than average number of
767 * unused data blocks.
768 */
769 if (indx == 0 || bap[indx - 1] == 0)
770 startcg = inocg + lbn / fs->fs_maxbpg;
771 else
772 startcg = dtog(fs, bap[indx - 1] + 1)((bap[indx - 1] + 1) / (fs)->fs_fpg);
773
774 startcg %= fs->fs_ncg;
775 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
776
777 for (cg = startcg; cg < fs->fs_ncg; cg++)
778 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree)
779 return (cgbase(fs, cg)((daddr_t)(fs)->fs_fpg * (cg)) + fs->fs_frag);
780
781 for (cg = 0; cg < startcg; cg++)
782 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree >= avgbfree)
783 return (cgbase(fs, cg)((daddr_t)(fs)->fs_fpg * (cg)) + fs->fs_frag);
784
785 return (0);
786 }
787
788 /*
789 * Otherwise, we just always try to lay things out contiguously.
790 */
791 return (bap[indx - 1] + fs->fs_frag);
792}
793#endif /* FFS2 */
794
795/*
796 * Implement the cylinder overflow algorithm.
797 *
798 * The policy implemented by this algorithm is:
799 * 1) allocate the block in its requested cylinder group.
800 * 2) quadratically rehash on the cylinder group number.
801 * 3) brute force search for a free block.
802 */
803daddr_t
804ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref, int size,
805 daddr_t (*allocator)(struct inode *, u_int, daddr_t, int))
806{
807 struct fs *fs;
808 daddr_t result;
809 u_int i, icg = cg;
810
811 fs = ip->i_fsinode_u.fs;
812 /*
813 * 1: preferred cylinder group
814 */
815 result = (*allocator)(ip, cg, pref, size);
816 if (result)
817 return (result);
818 /*
819 * 2: quadratic rehash
820 */
821 for (i = 1; i < fs->fs_ncg; i *= 2) {
822 cg += i;
823 if (cg >= fs->fs_ncg)
824 cg -= fs->fs_ncg;
825 result = (*allocator)(ip, cg, 0, size);
826 if (result)
827 return (result);
828 }
829 /*
830 * 3: brute force search
831 * Note that we start at i == 2, since 0 was checked initially,
832 * and 1 is always checked in the quadratic rehash.
833 */
834 cg = (icg + 2) % fs->fs_ncg;
835 for (i = 2; i < fs->fs_ncg; i++) {
836 result = (*allocator)(ip, cg, 0, size);
837 if (result)
838 return (result);
839 cg++;
840 if (cg == fs->fs_ncg)
841 cg = 0;
842 }
843 return (0);
844}
845
846struct buf *
847ffs_cgread(struct fs *fs, struct inode *ip, u_int cg)
848{
849 struct buf *bp;
850
851 if (bread(ip->i_devvpi_ump->um_devvp, fsbtodb(fs, cgtod(fs, cg))((((((daddr_t)(fs)->fs_fpg * (cg)) + (fs)->fs_cgoffset *
((cg) & ~((fs)->fs_cgmask))) + (fs)->fs_cblkno)) <<
(fs)->fs_fsbtodb)
,
852 (int)fs->fs_cgsize, &bp)) {
853 brelse(bp);
854 return (NULL((void *)0));
855 }
856
857 if (!cg_chkmagic((struct cg *)bp->b_data)(((struct cg *)bp->b_data)->cg_magic == 0x090255 || ((struct
ocg *)((struct cg *)bp->b_data))->cg_magic == 0x090255
)
) {
858 brelse(bp);
859 return (NULL((void *)0));
860 }
861
862 return bp;
863}
864
865/*
866 * Determine whether a fragment can be extended.
867 *
868 * Check to see if the necessary fragments are available, and
869 * if they are, allocate them.
870 */
871daddr_t
872ffs_fragextend(struct inode *ip, u_int cg, daddr_t bprev, int osize, int nsize)
873{
874 struct fs *fs;
875 struct cg *cgp;
876 struct buf *bp;
877 struct timespec now;
878 daddr_t bno;
879 int i, frags, bbase;
880
881 fs = ip->i_fsinode_u.fs;
882 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree < numfrags(fs, nsize - osize)((nsize - osize) >> (fs)->fs_fshift))
883 return (0);
884 frags = numfrags(fs, nsize)((nsize) >> (fs)->fs_fshift);
885 bbase = fragnum(fs, bprev)((bprev) & ((fs)->fs_frag - 1));
886 if (bbase > fragnum(fs, (bprev + frags - 1))(((bprev + frags - 1)) & ((fs)->fs_frag - 1))) {
887 /* cannot extend across a block boundary */
888 return (0);
889 }
890
891 if (!(bp = ffs_cgread(fs, ip, cg)))
892 return (0);
893
894 cgp = (struct cg *)bp->b_data;
895 nanotime(&now);
896 cgp->cg_ffs2_time = now.tv_sec;
897 cgp->cg_time = now.tv_sec;
898
899 bno = dtogd(fs, bprev)((bprev) % (fs)->fs_fpg);
900 for (i = numfrags(fs, osize)((osize) >> (fs)->fs_fshift); i < frags; i++)
901 if (isclr(cg_blksfree(cgp), bno + i)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] & (1<<((bno + i)&(8 -1
)))) == 0)
) {
902 brelse(bp);
903 return (0);
904 }
905 /*
906 * the current fragment can be extended
907 * deduct the count on fragment being extended into
908 * increase the count on the remaining fragment (if any)
909 * allocate the extended piece
910 */
911 for (i = frags; i < fs->fs_frag - bbase; i++)
912 if (isclr(cg_blksfree(cgp), bno + i)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] & (1<<((bno + i)&(8 -1
)))) == 0)
)
913 break;
914 cgp->cg_frsum[i - numfrags(fs, osize)((osize) >> (fs)->fs_fshift)]--;
915 if (i != frags)
916 cgp->cg_frsum[i - frags]++;
917 for (i = numfrags(fs, osize)((osize) >> (fs)->fs_fshift); i < frags; i++) {
918 clrbit(cg_blksfree(cgp), bno + i)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] &= ~(1<<((bno + i)&(8 -
1))))
;
919 cgp->cg_cs.cs_nffree--;
920 fs->fs_cstotal.cs_nffree--;
921 fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree--;
922 }
923 fs->fs_fmod = 1;
924 if (DOINGSOFTDEP(ITOV(ip))((((ip)->i_vnode))->v_mount->mnt_flag & 0x04000000
)
)
925 softdep_setup_blkmapdep(bp, fs, bprev);
926
927 bdwrite(bp);
928 return (bprev);
929}
930
931/*
932 * Determine whether a block can be allocated.
933 *
934 * Check to see if a block of the appropriate size is available,
935 * and if it is, allocate it.
936 */
937daddr_t
938ffs_alloccg(struct inode *ip, u_int cg, daddr_t bpref, int size)
939{
940 struct fs *fs;
941 struct cg *cgp;
942 struct buf *bp;
943 struct timespec now;
944 daddr_t bno, blkno;
945 int i, frags, allocsiz;
946
947 fs = ip->i_fsinode_u.fs;
948 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree == 0 && size == fs->fs_bsize)
949 return (0);
950
951 if (!(bp = ffs_cgread(fs, ip, cg)))
952 return (0);
953
954 cgp = (struct cg *)bp->b_data;
955 if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) {
956 brelse(bp);
957 return (0);
958 }
959
960 nanotime(&now);
961 cgp->cg_ffs2_time = now.tv_sec;
962 cgp->cg_time = now.tv_sec;
963
964 if (size == fs->fs_bsize) {
965 /* allocate and return a complete data block */
966 bno = ffs_alloccgblk(ip, bp, bpref);
967 bdwrite(bp);
968 return (bno);
969 }
970 /*
971 * check to see if any fragments are already available
972 * allocsiz is the size which will be allocated, hacking
973 * it down to a smaller size if necessary
974 */
975 frags = numfrags(fs, size)((size) >> (fs)->fs_fshift);
976 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
977 if (cgp->cg_frsum[allocsiz] != 0)
978 break;
979 if (allocsiz == fs->fs_frag) {
980 /*
981 * no fragments were available, so a block will be
982 * allocated, and hacked up
983 */
984 if (cgp->cg_cs.cs_nbfree == 0) {
985 brelse(bp);
986 return (0);
987 }
988 bno = ffs_alloccgblk(ip, bp, bpref);
989 bpref = dtogd(fs, bno)((bno) % (fs)->fs_fpg);
990 for (i = frags; i < fs->fs_frag; i++)
991 setbit(cg_blksfree(cgp), bpref + i)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bpref + i)>>3] |= 1<<((bpref + i)&(8 -1
)))
;
992 i = fs->fs_frag - frags;
993 cgp->cg_cs.cs_nffree += i;
994 fs->fs_cstotal.cs_nffree += i;
995 fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree += i;
996 fs->fs_fmod = 1;
997 cgp->cg_frsum[i]++;
998 bdwrite(bp);
999 return (bno);
1000 }
1001 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1002 if (bno < 0) {
1003 brelse(bp);
1004 return (0);
1005 }
1006
1007 for (i = 0; i < frags; i++)
1008 clrbit(cg_blksfree(cgp), bno + i)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] &= ~(1<<((bno + i)&(8 -
1))))
;
1009 cgp->cg_cs.cs_nffree -= frags;
1010 fs->fs_cstotal.cs_nffree -= frags;
1011 fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree -= frags;
1012 fs->fs_fmod = 1;
1013 cgp->cg_frsum[allocsiz]--;
1014 if (frags != allocsiz)
1015 cgp->cg_frsum[allocsiz - frags]++;
1016
1017 blkno = cgbase(fs, cg)((daddr_t)(fs)->fs_fpg * (cg)) + bno;
1018 if (DOINGSOFTDEP(ITOV(ip))((((ip)->i_vnode))->v_mount->mnt_flag & 0x04000000
)
)
1019 softdep_setup_blkmapdep(bp, fs, blkno);
1020 bdwrite(bp);
1021 return (blkno);
1022}
1023
1024/*
1025 * Allocate a block in a cylinder group.
1026 * Note that this routine only allocates fs_bsize blocks; these
1027 * blocks may be fragmented by the routine that allocates them.
1028 */
1029daddr_t
1030ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1031{
1032 struct fs *fs;
1033 struct cg *cgp;
1034 daddr_t bno, blkno;
1035 u_int8_t *blksfree;
1036 int cylno, cgbpref;
1037
1038 fs = ip->i_fsinode_u.fs;
1039 cgp = (struct cg *) bp->b_data;
1040 blksfree = cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
;
1041
1042 if (bpref == 0) {
1043 bpref = cgp->cg_rotor;
1044 } else if ((cgbpref = dtog(fs, bpref)((bpref) / (fs)->fs_fpg)) != cgp->cg_cgx) {
1045 /* map bpref to correct zone in this cg */
1046 if (bpref < cgdata(fs, cgbpref)(((((daddr_t)(fs)->fs_fpg * (cgbpref)) + (fs)->fs_cgoffset
* ((cgbpref) & ~((fs)->fs_cgmask))) + (fs)->fs_dblkno
) + (fs)->fs_minfree)
)
1047 bpref = cgmeta(fs, cgp->cg_cgx)(((((daddr_t)(fs)->fs_fpg * (cgp->cg_cgx)) + (fs)->fs_cgoffset
* ((cgp->cg_cgx) & ~((fs)->fs_cgmask))) + (fs)->
fs_dblkno))
;
1048 else
1049 bpref = cgdata(fs, cgp->cg_cgx)(((((daddr_t)(fs)->fs_fpg * (cgp->cg_cgx)) + (fs)->fs_cgoffset
* ((cgp->cg_cgx) & ~((fs)->fs_cgmask))) + (fs)->
fs_dblkno) + (fs)->fs_minfree)
;
1050 }
1051 /*
1052 * If the requested block is available, use it.
1053 */
1054 bno = dtogd(fs, blknum(fs, bpref))((((bpref) &~ ((fs)->fs_frag - 1))) % (fs)->fs_fpg);
1055 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)((bno) >> (fs)->fs_fragshift)))
1056 goto gotit;
1057 /*
1058 * Take the next available block in this cylinder group.
1059 */
1060 bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag);
1061 if (bno < 0)
1062 return (0);
1063
1064 /* Update cg_rotor only if allocated from the data zone */
1065 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))(((((((daddr_t)(fs)->fs_fpg * (cgp->cg_cgx)) + (fs)->
fs_cgoffset * ((cgp->cg_cgx) & ~((fs)->fs_cgmask)))
+ (fs)->fs_dblkno) + (fs)->fs_minfree)) % (fs)->fs_fpg
)
)
1066 cgp->cg_rotor = bno;
1067
1068gotit:
1069 blkno = fragstoblks(fs, bno)((bno) >> (fs)->fs_fragshift);
1070 ffs_clrblock(fs, blksfree, blkno);
1071 ffs_clusteracct(fs, cgp, blkno, -1);
1072 cgp->cg_cs.cs_nbfree--;
1073 fs->fs_cstotal.cs_nbfree--;
1074 fs->fs_cs(fs, cgp->cg_cgx)fs_csp[cgp->cg_cgx].cs_nbfree--;
1075
1076 if (fs->fs_magic != FS_UFS2_MAGIC0x19540119) {
1077 cylno = cbtocylno(fs, bno)(((bno) << (fs)->fs_fsbtodb) / (fs)->fs_spc);
1078 cg_blks(fs, cgp, cylno)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_b[cylno]) : ((int16_t *)((u_int8_t *)(cgp) + (cgp)->cg_boff
) + (cylno) * (fs)->fs_nrpos))
[cbtorpos(fs, bno)((fs)->fs_nrpos <= 1 ? 0 : (((bno) << (fs)->fs_fsbtodb
) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew
+ ((bno) << (fs)->fs_fsbtodb) % (fs)->fs_spc % (
fs)->fs_nsect * (fs)->fs_interleave) % (fs)->fs_nsect
* (fs)->fs_nrpos / (fs)->fs_npsect)
]--;
1079 cg_blktot(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_btot) : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff
)))
[cylno]--;
1080 }
1081
1082 fs->fs_fmod = 1;
1083 blkno = cgbase(fs, cgp->cg_cgx)((daddr_t)(fs)->fs_fpg * (cgp->cg_cgx)) + bno;
1084
1085 if (DOINGSOFTDEP(ITOV(ip))((((ip)->i_vnode))->v_mount->mnt_flag & 0x04000000
)
)
1086 softdep_setup_blkmapdep(bp, fs, blkno);
1087
1088 return (blkno);
1089}
1090
1091/* inode allocation routine */
1092daddr_t
1093ffs_nodealloccg(struct inode *ip, u_int cg, daddr_t ipref, int mode)
1094{
1095 struct fs *fs;
1096 struct cg *cgp;
1097 struct buf *bp;
1098 struct timespec now;
1099 int start, len, loc, map, i;
1100#ifdef FFS21
1101 struct buf *ibp = NULL((void *)0);
1102 struct ufs2_dinode *dp2;
1103#endif
1104
1105 /*
1106 * For efficiency, before looking at the bitmaps for free inodes,
1107 * check the counters kept in the superblock cylinder group summaries,
1108 * and in the cylinder group itself.
1109 */
1110 fs = ip->i_fsinode_u.fs;
1111 if (fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree == 0)
1112 return (0);
1113
1114 if (!(bp = ffs_cgread(fs, ip, cg)))
1115 return (0);
1116
1117 cgp = (struct cg *)bp->b_data;
1118 if (cgp->cg_cs.cs_nifree == 0) {
1119 brelse(bp);
1120 return (0);
1121 }
1122
1123 /*
1124 * We are committed to the allocation from now on, so update the time
1125 * on the cylinder group.
1126 */
1127 nanotime(&now);
1128 cgp->cg_ffs2_time = now.tv_sec;
1129 cgp->cg_time = now.tv_sec;
1130
1131 /*
1132 * If there was a preferred location for the new inode, try to find it.
1133 */
1134 if (ipref) {
1135 ipref %= fs->fs_ipg;
1136 if (isclr(cg_inosused(cgp), ipref)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->
cg_iusedoff))))[(ipref)>>3] & (1<<((ipref)&
(8 -1)))) == 0)
)
1137 goto gotit; /* inode is free, grab it. */
1138 }
1139
1140 /*
1141 * Otherwise, look for the next available inode, starting at cg_irotor
1142 * (the position in the bitmap of the last used inode).
1143 */
1144 start = cgp->cg_irotor / NBBY8;
1145 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY)(((fs->fs_ipg - cgp->cg_irotor) + ((8) - 1)) / (8));
1146 loc = skpc(0xff, len, &cg_inosused(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff
)))
[start]);
1147 if (loc == 0) {
1148 /*
1149 * If we didn't find a free inode in the upper part of the
1150 * bitmap (from cg_irotor to the end), then look at the bottom
1151 * part (from 0 to cg_irotor).
1152 */
1153 len = start + 1;
1154 start = 0;
1155 loc = skpc(0xff, len, &cg_inosused(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff
)))
[0]);
1156 if (loc == 0) {
1157 /*
1158 * If we failed again, then either the bitmap or the
1159 * counters kept for the cylinder group are wrong.
1160 */
1161 printf("cg = %d, irotor = %d, fs = %s\n",
1162 cg, cgp->cg_irotor, fs->fs_fsmnt);
1163 panic("ffs_nodealloccg: map corrupted");
1164 /* NOTREACHED */
1165 }
1166 }
1167
1168 /* skpc() returns the position relative to the end */
1169 i = start + len - loc;
1170
1171 /*
1172 * Okay, so now in 'i' we have the location in the bitmap of a byte
1173 * holding a free inode. Find the corresponding bit and set it,
1174 * updating cg_irotor as well, accordingly.
1175 */
1176 map = cg_inosused(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff
)))
[i];
1177 ipref = i * NBBY8;
1178 for (i = 1; i < (1 << NBBY8); i <<= 1, ipref++) {
1179 if ((map & i) == 0) {
1180 cgp->cg_irotor = ipref;
1181 goto gotit;
1182 }
1183 }
1184
1185 printf("fs = %s\n", fs->fs_fsmnt);
1186 panic("ffs_nodealloccg: block not in map");
1187 /* NOTREACHED */
1188
1189gotit:
1190
1191#ifdef FFS21
1192 /*
1193 * For FFS2, check if all inodes in this cylinder group have been used
1194 * at least once. If they haven't, and we are allocating an inode past
1195 * the last allocated block of inodes, read in a block and initialize
1196 * all inodes in it.
1197 */
1198 if (fs->fs_magic == FS_UFS2_MAGIC0x19540119 &&
1199 /* Inode is beyond last initialized block of inodes? */
1200 ipref + INOPB(fs)((fs)->fs_inopb) > cgp->cg_initediblk &&
1201 /* Has any inode not been used at least once? */
1202 cgp->cg_initediblk < cgp->cg_ffs2_niblk) {
1203
1204 ibp = getblk(ip->i_devvpi_ump->um_devvp, fsbtodb(fs,((((daddr_t)(((((daddr_t)(fs)->fs_fpg * (((cg * fs->fs_ipg
+ cgp->cg_initediblk) / (fs)->fs_ipg))) + (fs)->fs_cgoffset
* ((((cg * fs->fs_ipg + cgp->cg_initediblk) / (fs)->
fs_ipg)) & ~((fs)->fs_cgmask))) + (fs)->fs_iblkno) +
((((((cg * fs->fs_ipg + cgp->cg_initediblk) % (fs)->
fs_ipg) / ((fs)->fs_inopb))) << ((fs))->fs_fragshift
))))) << (fs)->fs_fsbtodb)
1205 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk))((((daddr_t)(((((daddr_t)(fs)->fs_fpg * (((cg * fs->fs_ipg
+ cgp->cg_initediblk) / (fs)->fs_ipg))) + (fs)->fs_cgoffset
* ((((cg * fs->fs_ipg + cgp->cg_initediblk) / (fs)->
fs_ipg)) & ~((fs)->fs_cgmask))) + (fs)->fs_iblkno) +
((((((cg * fs->fs_ipg + cgp->cg_initediblk) % (fs)->
fs_ipg) / ((fs)->fs_inopb))) << ((fs))->fs_fragshift
))))) << (fs)->fs_fsbtodb)
,
1206 (int)fs->fs_bsize, 0, INFSLP0xffffffffffffffffULL);
1207
1208 memset(ibp->b_data, 0, fs->fs_bsize)__builtin_memset((ibp->b_data), (0), (fs->fs_bsize));
1209 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1210
1211 /* Give each inode a generation number */
1212 for (i = 0; i < INOPB(fs)((fs)->fs_inopb); i++) {
1213 while (dp2->di_gen == 0)
1214 dp2->di_gen = arc4random();
1215 dp2++;
1216 }
1217
1218 /* Update the counter of initialized inodes */
1219 cgp->cg_initediblk += INOPB(fs)((fs)->fs_inopb);
1220 }
1221#endif /* FFS2 */
1222
1223 if (DOINGSOFTDEP(ITOV(ip))((((ip)->i_vnode))->v_mount->mnt_flag & 0x04000000
)
)
1224 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1225
1226 setbit(cg_inosused(cgp), ipref)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff
))))[(ipref)>>3] |= 1<<((ipref)&(8 -1)))
;
1227
1228 /* Update the counters we keep on free inodes */
1229 cgp->cg_cs.cs_nifree--;
1230 fs->fs_cstotal.cs_nifree--;
1231 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree--;
1232 fs->fs_fmod = 1; /* file system was modified */
1233
1234 /* Update the counters we keep on allocated directories */
1235 if ((mode & IFMT0170000) == IFDIR0040000) {
1236 cgp->cg_cs.cs_ndir++;
1237 fs->fs_cstotal.cs_ndir++;
1238 fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir++;
1239 }
1240
1241 bdwrite(bp);
1242
1243#ifdef FFS21
1244 if (ibp != NULL((void *)0))
1245 bawrite(ibp);
1246#endif
1247
1248 /* Return the allocated inode number */
1249 return (cg * fs->fs_ipg + ipref);
1250}
1251
1252/*
1253 * Free a block or fragment.
1254 *
1255 * The specified block or fragment is placed back in the
1256 * free map. If a fragment is deallocated, a possible
1257 * block reassembly is checked.
1258 */
1259void
1260ffs_blkfree(struct inode *ip, daddr_t bno, long size)
1261{
1262 struct fs *fs;
1263 struct cg *cgp;
1264 struct buf *bp;
1265 struct timespec now;
1266 daddr_t blkno;
1267 int i, cg, blk, frags, bbase;
1268
1269 fs = ip->i_fsinode_u.fs;
1270 if ((u_int)size > fs->fs_bsize || fragoff(fs, size)((size) & (fs)->fs_qfmask) != 0 ||
1271 fragnum(fs, bno)((bno) & ((fs)->fs_frag - 1)) + numfrags(fs, size)((size) >> (fs)->fs_fshift) > fs->fs_frag) {
1272 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1273 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1274 panic("ffs_blkfree: bad size");
1275 }
1276 cg = dtog(fs, bno)((bno) / (fs)->fs_fpg);
1277 if ((u_int)bno >= fs->fs_size) {
1278 printf("bad block %lld, ino %u\n", (long long)bno,
1279 ip->i_number);
1280 ffs_fserr(fs, DIP(ip, uid), "bad block")do { log(3, "uid %u on %s: %s\n", ((((ip)->i_ump->um_fstype
== 1) ? (ip)->dinode_u.ffs1_din->di_uid : (ip)->dinode_u
.ffs2_din->di_uid)), (fs)->fs_fsmnt, ("bad block")); } while
(0)
;
1281 return;
1282 }
1283 if (!(bp = ffs_cgread(fs, ip, cg)))
1284 return;
1285
1286 cgp = (struct cg *)bp->b_data;
1287 nanotime(&now);
1288 cgp->cg_ffs2_time = now.tv_sec;
1289 cgp->cg_time = now.tv_sec;
1290
1291 bno = dtogd(fs, bno)((bno) % (fs)->fs_fpg);
1292 if (size == fs->fs_bsize) {
1293 blkno = fragstoblks(fs, bno)((bno) >> (fs)->fs_fragshift);
1294 if (!ffs_isfreeblock(fs, cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
, blkno)) {
1295 printf("dev = 0x%x, block = %lld, fs = %s\n",
1296 ip->i_dev, (long long)bno, fs->fs_fsmnt);
1297 panic("ffs_blkfree: freeing free block");
1298 }
1299 ffs_setblock(fs, cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
, blkno);
1300 ffs_clusteracct(fs, cgp, blkno, 1);
1301 cgp->cg_cs.cs_nbfree++;
1302 fs->fs_cstotal.cs_nbfree++;
1303 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree++;
1304
1305 if (fs->fs_magic != FS_UFS2_MAGIC0x19540119) {
1306 i = cbtocylno(fs, bno)(((bno) << (fs)->fs_fsbtodb) / (fs)->fs_spc);
1307 cg_blks(fs, cgp, i)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_b[i]) : ((int16_t *)((u_int8_t *)(cgp) + (cgp)->cg_boff
) + (i) * (fs)->fs_nrpos))
[cbtorpos(fs, bno)((fs)->fs_nrpos <= 1 ? 0 : (((bno) << (fs)->fs_fsbtodb
) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew
+ ((bno) << (fs)->fs_fsbtodb) % (fs)->fs_spc % (
fs)->fs_nsect * (fs)->fs_interleave) % (fs)->fs_nsect
* (fs)->fs_nrpos / (fs)->fs_npsect)
]++;
1308 cg_blktot(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_btot) : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff
)))
[i]++;
1309 }
1310
1311 } else {
1312 bbase = bno - fragnum(fs, bno)((bno) & ((fs)->fs_frag - 1));
1313 /*
1314 * decrement the counts associated with the old frags
1315 */
1316 blk = blkmap(fs, cg_blksfree(cgp), bbase)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bbase) / 8] >> ((bbase) % 8)) & (0xff >>
(8 - (fs)->fs_frag)))
;
1317 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1318 /*
1319 * deallocate the fragment
1320 */
1321 frags = numfrags(fs, size)((size) >> (fs)->fs_fshift);
1322 for (i = 0; i < frags; i++) {
1323 if (isset(cg_blksfree(cgp), bno + i)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] & (1<<((bno + i)&(8 -1
))))
) {
1324 printf("dev = 0x%x, block = %lld, fs = %s\n",
1325 ip->i_dev, (long long)(bno + i),
1326 fs->fs_fsmnt);
1327 panic("ffs_blkfree: freeing free frag");
1328 }
1329 setbit(cg_blksfree(cgp), bno + i)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno + i)>>3] |= 1<<((bno + i)&(8 -1)))
;
1330 }
1331 cgp->cg_cs.cs_nffree += i;
1332 fs->fs_cstotal.cs_nffree += i;
1333 fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree += i;
1334 /*
1335 * add back in counts associated with the new frags
1336 */
1337 blk = blkmap(fs, cg_blksfree(cgp), bbase)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bbase) / 8] >> ((bbase) % 8)) & (0xff >>
(8 - (fs)->fs_frag)))
;
1338 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1339 /*
1340 * if a complete block has been reassembled, account for it
1341 */
1342 blkno = fragstoblks(fs, bbase)((bbase) >> (fs)->fs_fragshift);
1343 if (ffs_isblock(fs, cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
, blkno)) {
1344 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1345 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1346 fs->fs_cs(fs, cg)fs_csp[cg].cs_nffree -= fs->fs_frag;
1347 ffs_clusteracct(fs, cgp, blkno, 1);
1348 cgp->cg_cs.cs_nbfree++;
1349 fs->fs_cstotal.cs_nbfree++;
1350 fs->fs_cs(fs, cg)fs_csp[cg].cs_nbfree++;
1351
1352 if (fs->fs_magic != FS_UFS2_MAGIC0x19540119) {
1353 i = cbtocylno(fs, bbase)(((bbase) << (fs)->fs_fsbtodb) / (fs)->fs_spc);
1354 cg_blks(fs, cgp, i)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_b[i]) : ((int16_t *)((u_int8_t *)(cgp) + (cgp)->cg_boff
) + (i) * (fs)->fs_nrpos))
[cbtorpos(fs, bbase)((fs)->fs_nrpos <= 1 ? 0 : (((bbase) << (fs)->
fs_fsbtodb) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->
fs_trackskew + ((bbase) << (fs)->fs_fsbtodb) % (fs)->
fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % (fs)->
fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect)
]++;
1355 cg_blktot(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_btot) : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff
)))
[i]++;
1356 }
1357 }
1358 }
1359 fs->fs_fmod = 1;
1360 bdwrite(bp);
1361}
1362
1363int
1364ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode)
1365{
1366 struct vnode *pvp = ITOV(pip)((pip)->i_vnode);
1367
1368 if (DOINGSOFTDEP(pvp)((pvp)->v_mount->mnt_flag & 0x04000000)) {
1369 softdep_freefile(pvp, ino, mode);
1370 return (0);
1371 }
1372
1373 return (ffs_freefile(pip, ino, mode));
1374}
1375
1376/*
1377 * Do the actual free operation.
1378 * The specified inode is placed back in the free map.
1379 */
1380int
1381ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode)
1382{
1383 struct fs *fs;
1384 struct cg *cgp;
1385 struct buf *bp;
1386 struct timespec now;
1387 u_int cg;
1388
1389 fs = pip->i_fsinode_u.fs;
1390 if (ino >= fs->fs_ipg * fs->fs_ncg)
1391 panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s",
1392 pip->i_dev, ino, fs->fs_fsmnt);
1393
1394 cg = ino_to_cg(fs, ino)((ino) / (fs)->fs_ipg);
1395 if (!(bp = ffs_cgread(fs, pip, cg)))
1396 return (0);
1397
1398 cgp = (struct cg *)bp->b_data;
1399 nanotime(&now);
1400 cgp->cg_ffs2_time = now.tv_sec;
1401 cgp->cg_time = now.tv_sec;
1402
1403 ino %= fs->fs_ipg;
1404 if (isclr(cg_inosused(cgp), ino)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->
cg_iusedoff))))[(ino)>>3] & (1<<((ino)&(8
-1)))) == 0)
) {
1405 printf("dev = 0x%x, ino = %u, fs = %s\n",
1406 pip->i_dev, ino, fs->fs_fsmnt);
1407 if (fs->fs_ronly == 0)
1408 panic("ffs_freefile: freeing free inode");
1409 }
1410 clrbit(cg_inosused(cgp), ino)(((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_iused) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff
))))[(ino)>>3] &= ~(1<<((ino)&(8 -1))))
;
1411 if (ino < cgp->cg_irotor)
1412 cgp->cg_irotor = ino;
1413 cgp->cg_cs.cs_nifree++;
1414 fs->fs_cstotal.cs_nifree++;
1415 fs->fs_cs(fs, cg)fs_csp[cg].cs_nifree++;
1416 if ((mode & IFMT0170000) == IFDIR0040000) {
1417 cgp->cg_cs.cs_ndir--;
1418 fs->fs_cstotal.cs_ndir--;
1419 fs->fs_cs(fs, cg)fs_csp[cg].cs_ndir--;
1420 }
1421 fs->fs_fmod = 1;
1422 bdwrite(bp);
1423 return (0);
1424}
1425
1426
1427/*
1428 * Find a block of the specified size in the specified cylinder group.
1429 *
1430 * It is a panic if a request is made to find a block if none are
1431 * available.
1432 */
1433daddr_t
1434ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1435{
1436 daddr_t bno;
1437 int start, len, loc, i;
1438 int blk, field, subfield, pos;
1439
1440 /*
1441 * find the fragment by searching through the free block
1442 * map for an appropriate bit pattern
1443 */
1444 if (bpref)
1445 start = dtogd(fs, bpref)((bpref) % (fs)->fs_fpg) / NBBY8;
1446 else
1447 start = cgp->cg_frotor / NBBY8;
1448 len = howmany(fs->fs_fpg, NBBY)(((fs->fs_fpg) + ((8) - 1)) / (8)) - start;
1449 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
[start],
1450 (u_char *)fragtbl[fs->fs_frag],
1451 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY8))));
1452 if (loc == 0) {
1453 len = start + 1;
1454 start = 0;
1455 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)(((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))->
cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
)))
[0],
1456 (u_char *)fragtbl[fs->fs_frag],
1457 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY8))));
1458 if (loc == 0) {
1459 printf("start = %d, len = %d, fs = %s\n",
1460 start, len, fs->fs_fsmnt);
1461 panic("ffs_alloccg: map corrupted");
1462 /* NOTREACHED */
1463 }
1464 }
1465 bno = (start + len - loc) * NBBY8;
1466 cgp->cg_frotor = bno;
1467 /*
1468 * found the byte in the map
1469 * sift through the bits to find the selected frag
1470 */
1471 for (i = bno + NBBY8; bno < i; bno += fs->fs_frag) {
1472 blk = blkmap(fs, cg_blksfree(cgp), bno)((((((cgp)->cg_magic != 0x090255) ? (((struct ocg *)(cgp))
->cg_free) : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff
))))[(bno) / 8] >> ((bno) % 8)) & (0xff >> (8
- (fs)->fs_frag)))
;
1473 blk <<= 1;
1474 field = around[allocsiz];
1475 subfield = inside[allocsiz];
1476 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1477 if ((blk & field) == subfield)
1478 return (bno + pos);
1479 field <<= 1;
1480 subfield <<= 1;
1481 }
1482 }
1483 printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt);
1484 panic("ffs_alloccg: block not in map");
1485 return (-1);
1486}
1487
1488/*
1489 * Update the cluster map because of an allocation or free.
1490 *
1491 * Cnt == 1 means free; cnt == -1 means allocating.
1492 */
1493void
1494ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
1495{
1496 int32_t *sump;
1497 int32_t *lp;
1498 u_char *freemapp, *mapp;
1499 int i, start, end, forw, back, map, bit;
1500
1501 if (fs->fs_contigsumsize <= 0)
1502 return;
1503 freemapp = cg_clustersfree(cgp)((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff));
1504 sump = cg_clustersum(cgp)((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff));
1505 /*
1506 * Allocate or clear the actual block.
1507 */
1508 if (cnt > 0)
1509 setbit(freemapp, blkno)((freemapp)[(blkno)>>3] |= 1<<((blkno)&(8 -1)
))
;
1510 else
1511 clrbit(freemapp, blkno)((freemapp)[(blkno)>>3] &= ~(1<<((blkno)&
(8 -1))))
;
1512 /*
1513 * Find the size of the cluster going forward.
1514 */
1515 start = blkno + 1;
1516 end = start + fs->fs_contigsumsize;
1517 if (end >= cgp->cg_nclusterblks)
1518 end = cgp->cg_nclusterblks;
1519 mapp = &freemapp[start / NBBY8];
1520 map = *mapp++;
1521 bit = 1 << (start % NBBY8);
1522 for (i = start; i < end; i++) {
1523 if ((map & bit) == 0)
1524 break;
1525 if ((i & (NBBY8 - 1)) != (NBBY8 - 1)) {
1526 bit <<= 1;
1527 } else {
1528 map = *mapp++;
1529 bit = 1;
1530 }
1531 }
1532 forw = i - start;
1533 /*
1534 * Find the size of the cluster going backward.
1535 */
1536 start = blkno - 1;
1537 end = start - fs->fs_contigsumsize;
1538 if (end < 0)
1539 end = -1;
1540 mapp = &freemapp[start / NBBY8];
1541 map = *mapp--;
1542 bit = 1 << (start % NBBY8);
1543 for (i = start; i > end; i--) {
1544 if ((map & bit) == 0)
1545 break;
1546 if ((i & (NBBY8 - 1)) != 0) {
1547 bit >>= 1;
1548 } else {
1549 map = *mapp--;
1550 bit = 1 << (NBBY8 - 1);
1551 }
1552 }
1553 back = start - i;
1554 /*
1555 * Account for old cluster and the possibly new forward and
1556 * back clusters.
1557 */
1558 i = back + forw + 1;
1559 if (i > fs->fs_contigsumsize)
1560 i = fs->fs_contigsumsize;
1561 sump[i] += cnt;
1562 if (back > 0)
1563 sump[back] -= cnt;
1564 if (forw > 0)
1565 sump[forw] -= cnt;
1566 /*
1567 * Update cluster summary information.
1568 */
1569 lp = &sump[fs->fs_contigsumsize];
1570 for (i = fs->fs_contigsumsize; i > 0; i--)
1571 if (*lp-- > 0)
1572 break;
1573 fs->fs_maxcluster[cgp->cg_cgx] = i;
1574}