File: | dev/pci/igc_i225.c |
Warning: | line 1006, column 3 Value stored to 'ret_val' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $ */ |
2 | /*- |
3 | * Copyright 2021 Intel Corp |
4 | * Copyright 2021 Rubicon Communications, LLC (Netgate) |
5 | * SPDX-License-Identifier: BSD-3-Clause |
6 | */ |
7 | |
8 | #include <dev/pci/igc_api.h> |
9 | |
10 | int igc_init_nvm_params_i225(struct igc_hw *); |
11 | int igc_init_mac_params_i225(struct igc_hw *); |
12 | int igc_init_phy_params_i225(struct igc_hw *); |
13 | int igc_reset_hw_i225(struct igc_hw *); |
14 | int igc_acquire_nvm_i225(struct igc_hw *); |
15 | void igc_release_nvm_i225(struct igc_hw *); |
16 | int igc_get_hw_semaphore_i225(struct igc_hw *); |
17 | int __igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *); |
18 | int igc_pool_flash_update_done_i225(struct igc_hw *); |
19 | |
20 | /** |
21 | * igc_init_nvm_params_i225 - Init NVM func ptrs. |
22 | * @hw: pointer to the HW structure |
23 | **/ |
24 | int |
25 | igc_init_nvm_params_i225(struct igc_hw *hw) |
26 | { |
27 | struct igc_nvm_info *nvm = &hw->nvm; |
28 | uint32_t eecd = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
29 | uint16_t size; |
30 | |
31 | DEBUGFUNC("igc_init_nvm_params_i225")do { if (0) printf("igc_init_nvm_params_i225" "\n"); } while ( 0); |
32 | |
33 | size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK0x00007800) >> |
34 | IGC_EECD_SIZE_EX_SHIFT11); |
35 | /* |
36 | * Added to a constant, "size" becomes the left-shift value |
37 | * for setting word_size. |
38 | */ |
39 | size += NVM_WORD_SIZE_BASE_SHIFT6; |
40 | |
41 | /* Just in case size is out of range, cap it to the largest |
42 | * EEPROM size supported. |
43 | */ |
44 | if (size > 15) |
45 | size = 15; |
46 | |
47 | nvm->word_size = 1 << size; |
48 | nvm->opcode_bits = 8; |
49 | nvm->delay_usec = 1; |
50 | nvm->type = igc_nvm_eeprom_spi; |
51 | |
52 | nvm->page_size = eecd & IGC_EECD_ADDR_BITS0x00000400 ? 32 : 8; |
53 | nvm->address_bits = eecd & IGC_EECD_ADDR_BITS0x00000400 ? 16 : 8; |
54 | |
55 | if (nvm->word_size == (1 << 15)) |
56 | nvm->page_size = 128; |
57 | |
58 | nvm->ops.acquire = igc_acquire_nvm_i225; |
59 | nvm->ops.release = igc_release_nvm_i225; |
60 | if (igc_get_flash_presence_i225(hw)) { |
61 | hw->nvm.type = igc_nvm_flash_hw; |
62 | nvm->ops.read = igc_read_nvm_srrd_i225; |
63 | nvm->ops.write = igc_write_nvm_srwr_i225; |
64 | nvm->ops.validate = igc_validate_nvm_checksum_i225; |
65 | nvm->ops.update = igc_update_nvm_checksum_i225; |
66 | } else { |
67 | hw->nvm.type = igc_nvm_invm; |
68 | nvm->ops.write = igc_null_write_nvm; |
69 | nvm->ops.validate = igc_null_ops_generic; |
70 | nvm->ops.update = igc_null_ops_generic; |
71 | } |
72 | |
73 | return IGC_SUCCESS0; |
74 | } |
75 | |
76 | /** |
77 | * igc_init_mac_params_i225 - Init MAC func ptrs. |
78 | * @hw: pointer to the HW structure |
79 | **/ |
80 | int |
81 | igc_init_mac_params_i225(struct igc_hw *hw) |
82 | { |
83 | struct igc_mac_info *mac = &hw->mac; |
84 | struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; |
85 | |
86 | DEBUGFUNC("igc_init_mac_params_i225")do { if (0) printf("igc_init_mac_params_i225" "\n"); } while ( 0); |
87 | |
88 | /* Initialize function pointer */ |
89 | igc_init_mac_ops_generic(hw); |
90 | |
91 | /* Set media type */ |
92 | hw->phy.media_type = igc_media_type_copper; |
93 | /* Set mta register count */ |
94 | mac->mta_reg_count = 128; |
95 | /* Set rar entry count */ |
96 | mac->rar_entry_count = IGC_RAR_ENTRIES_BASE16; |
97 | |
98 | /* reset */ |
99 | mac->ops.reset_hw = igc_reset_hw_i225; |
100 | /* hw initialization */ |
101 | mac->ops.init_hw = igc_init_hw_i225; |
102 | /* link setup */ |
103 | mac->ops.setup_link = igc_setup_link_generic; |
104 | /* check for link */ |
105 | mac->ops.check_for_link = igc_check_for_link_i225; |
106 | /* link info */ |
107 | mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; |
108 | /* acquire SW_FW sync */ |
109 | mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; |
110 | /* release SW_FW sync */ |
111 | mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; |
112 | |
113 | /* Allow a single clear of the SW semaphore on I225 */ |
114 | dev_spec->clear_semaphore_once = true1; |
115 | mac->ops.setup_physical_interface = igc_setup_copper_link_i225; |
116 | |
117 | /* Set if part includes ASF firmware */ |
118 | mac->asf_firmware_present = true1; |
119 | |
120 | /* multicast address update */ |
121 | mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; |
122 | |
123 | mac->ops.write_vfta = igc_write_vfta_generic; |
124 | |
125 | return IGC_SUCCESS0; |
126 | } |
127 | |
128 | /** |
129 | * igc_init_phy_params_i225 - Init PHY func ptrs. |
130 | * @hw: pointer to the HW structure |
131 | **/ |
132 | int |
133 | igc_init_phy_params_i225(struct igc_hw *hw) |
134 | { |
135 | struct igc_phy_info *phy = &hw->phy; |
136 | int ret_val = IGC_SUCCESS0; |
137 | |
138 | DEBUGFUNC("igc_init_phy_params_i225")do { if (0) printf("igc_init_phy_params_i225" "\n"); } while ( 0); |
139 | |
140 | if (hw->phy.media_type != igc_media_type_copper) { |
141 | phy->type = igc_phy_none; |
142 | goto out; |
143 | } |
144 | |
145 | phy->ops.power_up = igc_power_up_phy_copper; |
146 | phy->ops.power_down = igc_power_down_phy_copper_base; |
147 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500( 0x0001 | 0x0002 | 0x0004 | 0x0008 | 0x0020 | 0x0080); |
148 | phy->reset_delay_us = 100; |
149 | phy->ops.acquire = igc_acquire_phy_base; |
150 | phy->ops.check_reset_block = igc_check_reset_block_generic; |
151 | phy->ops.release = igc_release_phy_base; |
152 | phy->ops.reset = igc_phy_hw_reset_generic; |
153 | phy->ops.read_reg = igc_read_phy_reg_gpy; |
154 | phy->ops.write_reg = igc_write_phy_reg_gpy; |
155 | |
156 | /* Make sure the PHY is in a good state. Several people have reported |
157 | * firmware leaving the PHY's page select register set to something |
158 | * other than the default of zero, which causes the PHY ID read to |
159 | * access something other than the intended register. |
160 | */ |
161 | ret_val = hw->phy.ops.reset(hw); |
162 | if (ret_val) |
163 | goto out; |
164 | |
165 | ret_val = igc_get_phy_id(hw); |
166 | phy->type = igc_phy_i225; |
167 | |
168 | out: |
169 | return ret_val; |
170 | } |
171 | |
172 | /** |
173 | * igc_reset_hw_i225 - Reset hardware |
174 | * @hw: pointer to the HW structure |
175 | * |
176 | * This resets the hardware into a known state. |
177 | **/ |
178 | int |
179 | igc_reset_hw_i225(struct igc_hw *hw) |
180 | { |
181 | uint32_t ctrl; |
182 | int ret_val; |
183 | |
184 | DEBUGFUNC("igc_reset_hw_i225")do { if (0) printf("igc_reset_hw_i225" "\n"); } while (0); |
185 | |
186 | /* |
187 | * Prevent the PCI-E bus from sticking if there is no TLP connection |
188 | * on the last TLP read/write transaction when MAC is reset. |
189 | */ |
190 | ret_val = igc_disable_pcie_master_generic(hw); |
191 | if (ret_val) |
192 | DEBUGOUT("PCI-E Master disable polling has failed.\n")do { if (0) printf("PCI-E Master disable polling has failed.\n" ); } while (0); |
193 | |
194 | DEBUGOUT("Masking off all interrupts\n")do { if (0) printf("Masking off all interrupts\n"); } while ( 0); |
195 | IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0150C) , (0xffffffff))); |
196 | |
197 | IGC_WRITE_REG(hw, IGC_RCTL, 0)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00100) , (0))); |
198 | IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00400) , (0x00000008))); |
199 | IGC_WRITE_FLUSH(hw)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00008) )); |
200 | |
201 | msec_delay(10)(*delay_func)(1000 * (10)); |
202 | |
203 | ctrl = IGC_READ_REG(hw, IGC_CTRL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) )); |
204 | |
205 | DEBUGOUT("Issuing a global reset to MAC\n")do { if (0) printf("Issuing a global reset to MAC\n"); } while (0); |
206 | IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) , (ctrl | 0x20000000))); |
207 | |
208 | ret_val = igc_get_auto_rd_done_generic(hw); |
209 | if (ret_val) { |
210 | /* |
211 | * When auto config read does not complete, do not |
212 | * return with an error. This can happen in situations |
213 | * where there is no eeprom and prevents getting link. |
214 | */ |
215 | DEBUGOUT("Auto Read Done did not complete\n")do { if (0) printf("Auto Read Done did not complete\n"); } while (0); |
216 | } |
217 | |
218 | /* Clear any pending interrupt events. */ |
219 | IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0150C) , (0xffffffff))); |
220 | IGC_READ_REG(hw, IGC_ICR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01500) )); |
221 | |
222 | /* Install any alternate MAC address into RAR0 */ |
223 | ret_val = igc_check_alt_mac_addr_generic(hw); |
224 | |
225 | return ret_val; |
226 | } |
227 | |
228 | /* igc_acquire_nvm_i225 - Request for access to EEPROM |
229 | * @hw: pointer to the HW structure |
230 | * |
231 | * Acquire the necessary semaphores for exclusive access to the EEPROM. |
232 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
233 | * Return successful if access grant bit set, else clear the request for |
234 | * EEPROM access and return -IGC_ERR_NVM (-1). |
235 | */ |
236 | int |
237 | igc_acquire_nvm_i225(struct igc_hw *hw) |
238 | { |
239 | int ret_val; |
240 | |
241 | DEBUGFUNC("igc_acquire_nvm_i225")do { if (0) printf("igc_acquire_nvm_i225" "\n"); } while (0); |
242 | |
243 | ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM0x01); |
244 | |
245 | return ret_val; |
246 | } |
247 | |
248 | /* igc_release_nvm_i225 - Release exclusive access to EEPROM |
249 | * @hw: pointer to the HW structure |
250 | * |
251 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
252 | * then release the semaphores acquired. |
253 | */ |
254 | void |
255 | igc_release_nvm_i225(struct igc_hw *hw) |
256 | { |
257 | DEBUGFUNC("igc_release_nvm_i225")do { if (0) printf("igc_release_nvm_i225" "\n"); } while (0); |
258 | |
259 | igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM0x01); |
260 | } |
261 | |
262 | /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore |
263 | * @hw: pointer to the HW structure |
264 | * @mask: specifies which semaphore to acquire |
265 | * |
266 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
267 | * will also specify which port we're acquiring the lock for. |
268 | */ |
269 | int |
270 | igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) |
271 | { |
272 | uint32_t swfw_sync; |
273 | uint32_t swmask = mask; |
274 | uint32_t fwmask = mask << 16; |
275 | int ret_val = IGC_SUCCESS0; |
276 | int i = 0, timeout = 200; /* FIXME: find real value to use here */ |
277 | |
278 | DEBUGFUNC("igc_acquire_swfw_sync_i225")do { if (0) printf("igc_acquire_swfw_sync_i225" "\n"); } while (0); |
279 | |
280 | while (i < timeout) { |
281 | if (igc_get_hw_semaphore_i225(hw)) { |
282 | ret_val = -IGC_ERR_SWFW_SYNC13; |
283 | goto out; |
284 | } |
285 | |
286 | swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) )); |
287 | if (!(swfw_sync & (fwmask | swmask))) |
288 | break; |
289 | |
290 | /* Firmware currently using resource (fwmask) |
291 | * or other software thread using resource (swmask) |
292 | */ |
293 | igc_put_hw_semaphore_generic(hw); |
294 | msec_delay(5)(*delay_func)(1000 * (5)); |
295 | i++; |
296 | } |
297 | |
298 | if (i == timeout) { |
299 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n")do { if (0) printf("Driver can't access resource, SW_FW_SYNC timeout.\n" ); } while (0); |
300 | ret_val = -IGC_ERR_SWFW_SYNC13; |
301 | goto out; |
302 | } |
303 | |
304 | swfw_sync |= swmask; |
305 | IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) , (swfw_sync))); |
306 | |
307 | igc_put_hw_semaphore_generic(hw); |
308 | |
309 | out: |
310 | return ret_val; |
311 | } |
312 | |
313 | /* igc_release_swfw_sync_i225 - Release SW/FW semaphore |
314 | * @hw: pointer to the HW structure |
315 | * @mask: specifies which semaphore to acquire |
316 | * |
317 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
318 | * will also specify which port we're releasing the lock for. |
319 | */ |
320 | void |
321 | igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) |
322 | { |
323 | uint32_t swfw_sync; |
324 | |
325 | DEBUGFUNC("igc_release_swfw_sync_i225")do { if (0) printf("igc_release_swfw_sync_i225" "\n"); } while (0); |
326 | |
327 | while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS0) |
328 | ; /* Empty */ |
329 | |
330 | swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) )); |
331 | swfw_sync &= ~mask; |
332 | IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) , (swfw_sync))); |
333 | |
334 | igc_put_hw_semaphore_generic(hw); |
335 | } |
336 | |
337 | /* |
338 | * igc_setup_copper_link_i225 - Configure copper link settings |
339 | * @hw: pointer to the HW structure |
340 | * |
341 | * Configures the link for auto-neg or forced speed and duplex. Then we check |
342 | * for link, once link is established calls to configure collision distance |
343 | * and flow control are called. |
344 | */ |
345 | int |
346 | igc_setup_copper_link_i225(struct igc_hw *hw) |
347 | { |
348 | uint32_t ctrl, phpm_reg; |
349 | int ret_val; |
350 | |
351 | DEBUGFUNC("igc_setup_copper_link_i225")do { if (0) printf("igc_setup_copper_link_i225" "\n"); } while (0); |
352 | |
353 | ctrl = IGC_READ_REG(hw, IGC_CTRL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) )); |
354 | ctrl |= IGC_CTRL_SLU0x00000040; |
355 | ctrl &= ~(IGC_CTRL_FRCSPD0x00000800 | IGC_CTRL_FRCDPX0x00001000); |
356 | IGC_WRITE_REG(hw, IGC_CTRL, ctrl)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) , (ctrl))); |
357 | |
358 | phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E14)) ); |
359 | phpm_reg &= ~IGC_I225_PHPM_GO_LINKD0x0020; |
360 | IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E14), (phpm_reg))); |
361 | |
362 | ret_val = igc_setup_copper_link_generic(hw); |
363 | |
364 | return ret_val; |
365 | } |
366 | |
367 | /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore |
368 | * @hw: pointer to the HW structure |
369 | * |
370 | * Acquire the HW semaphore to access the PHY or NVM |
371 | */ |
372 | int |
373 | igc_get_hw_semaphore_i225(struct igc_hw *hw) |
374 | { |
375 | uint32_t swsm; |
376 | int timeout = hw->nvm.word_size + 1; |
377 | int i = 0; |
378 | |
379 | DEBUGFUNC("igc_get_hw_semaphore_i225")do { if (0) printf("igc_get_hw_semaphore_i225" "\n"); } while (0); |
380 | |
381 | /* Get the SW semaphore */ |
382 | while (i < timeout) { |
383 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
384 | if (!(swsm & IGC_SWSM_SMBI0x00000001)) |
385 | break; |
386 | |
387 | DELAY(50)(*delay_func)(50); |
388 | i++; |
389 | } |
390 | |
391 | if (i == timeout) { |
392 | /* In rare circumstances, the SW semaphore may already be held |
393 | * unintentionally. Clear the semaphore once before giving up. |
394 | */ |
395 | if (hw->dev_spec._i225.clear_semaphore_once) { |
396 | hw->dev_spec._i225.clear_semaphore_once = false0; |
397 | igc_put_hw_semaphore_generic(hw); |
398 | for (i = 0; i < timeout; i++) { |
399 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
400 | if (!(swsm & IGC_SWSM_SMBI0x00000001)) |
401 | break; |
402 | |
403 | DELAY(50)(*delay_func)(50); |
404 | } |
405 | } |
406 | |
407 | /* If we do not have the semaphore here, we have to give up. */ |
408 | if (i == timeout) { |
409 | DEBUGOUT("Driver can't access device -\n")do { if (0) printf("Driver can't access device -\n"); } while (0); |
410 | DEBUGOUT("SMBI bit is set.\n")do { if (0) printf("SMBI bit is set.\n"); } while (0); |
411 | return -IGC_ERR_NVM1; |
412 | } |
413 | } |
414 | |
415 | /* Get the FW semaphore. */ |
416 | for (i = 0; i < timeout; i++) { |
417 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
418 | IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) , (swsm | 0x00000002))); |
419 | |
420 | /* Semaphore acquired if bit latched */ |
421 | if (IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )) & IGC_SWSM_SWESMBI0x00000002) |
422 | break; |
423 | |
424 | DELAY(50)(*delay_func)(50); |
425 | } |
426 | |
427 | if (i == timeout) { |
428 | /* Release semaphores */ |
429 | igc_put_hw_semaphore_generic(hw); |
430 | DEBUGOUT("Driver can't access the NVM\n")do { if (0) printf("Driver can't access the NVM\n"); } while ( 0); |
431 | return -IGC_ERR_NVM1; |
432 | } |
433 | |
434 | return IGC_SUCCESS0; |
435 | } |
436 | |
437 | /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register |
438 | * @hw: pointer to the HW structure |
439 | * @offset: offset of word in the Shadow Ram to read |
440 | * @words: number of words to read |
441 | * @data: word read from the Shadow Ram |
442 | * |
443 | * Reads a 16 bit word from the Shadow Ram using the EERD register. |
444 | * Uses necessary synchronization semaphores. |
445 | */ |
446 | int |
447 | igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, |
448 | uint16_t *data) |
449 | { |
450 | uint16_t i, count; |
451 | int status = IGC_SUCCESS0; |
452 | |
453 | DEBUGFUNC("igc_read_nvm_srrd_i225")do { if (0) printf("igc_read_nvm_srrd_i225" "\n"); } while (0 ); |
454 | |
455 | /* We cannot hold synchronization semaphores for too long, |
456 | * because of forceful takeover procedure. However it is more efficient |
457 | * to read in bursts than synchronizing access for each word. |
458 | */ |
459 | for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT512) { |
460 | count = (words - i) / IGC_EERD_EEWR_MAX_COUNT512 > 0 ? |
461 | IGC_EERD_EEWR_MAX_COUNT512 : (words - i); |
462 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
463 | status = igc_read_nvm_eerd(hw, offset, count, data + i); |
464 | hw->nvm.ops.release(hw); |
465 | } else { |
466 | status = IGC_ERR_SWFW_SYNC13; |
467 | } |
468 | |
469 | if (status != IGC_SUCCESS0) |
470 | break; |
471 | } |
472 | |
473 | return status; |
474 | } |
475 | |
476 | /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR |
477 | * @hw: pointer to the HW structure |
478 | * @offset: offset within the Shadow RAM to be written to |
479 | * @words: number of words to write |
480 | * @data: 16 bit word(s) to be written to the Shadow RAM |
481 | * |
482 | * Writes data to Shadow RAM at offset using EEWR register. |
483 | * |
484 | * If igc_update_nvm_checksum is not called after this function , the |
485 | * data will not be committed to FLASH and also Shadow RAM will most likely |
486 | * contain an invalid checksum. |
487 | * |
488 | * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
489 | * partially written. |
490 | */ |
491 | int |
492 | igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, |
493 | uint16_t *data) |
494 | { |
495 | uint16_t i, count; |
496 | int status = IGC_SUCCESS0; |
497 | |
498 | DEBUGFUNC("igc_write_nvm_srwr_i225")do { if (0) printf("igc_write_nvm_srwr_i225" "\n"); } while ( 0); |
499 | |
500 | /* We cannot hold synchronization semaphores for too long, |
501 | * because of forceful takeover procedure. However it is more efficient |
502 | * to write in bursts than synchronizing access for each word. |
503 | */ |
504 | for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT512) { |
505 | count = (words - i) / IGC_EERD_EEWR_MAX_COUNT512 > 0 ? |
506 | IGC_EERD_EEWR_MAX_COUNT512 : (words - i); |
507 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
508 | status = __igc_write_nvm_srwr(hw, offset, count, |
509 | data + i); |
510 | hw->nvm.ops.release(hw); |
511 | } else |
512 | status = IGC_ERR_SWFW_SYNC13; |
513 | |
514 | if (status != IGC_SUCCESS0) |
515 | break; |
516 | } |
517 | |
518 | return status; |
519 | } |
520 | |
521 | /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR |
522 | * @hw: pointer to the HW structure |
523 | * @offset: offset within the Shadow Ram to be written to |
524 | * @words: number of words to write |
525 | * @data: 16 bit word(s) to be written to the Shadow Ram |
526 | * |
527 | * Writes data to Shadow Ram at offset using EEWR register. |
528 | * |
529 | * If igc_update_nvm_checksum is not called after this function , the |
530 | * Shadow Ram will most likely contain an invalid checksum. |
531 | */ |
532 | int |
533 | __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words, |
534 | uint16_t *data) |
535 | { |
536 | struct igc_nvm_info *nvm = &hw->nvm; |
537 | uint32_t i, k, eewr = 0; |
538 | uint32_t attempts = 100000; |
539 | int ret_val = IGC_SUCCESS0; |
540 | |
541 | DEBUGFUNC("__igc_write_nvm_srwr")do { if (0) printf("__igc_write_nvm_srwr" "\n"); } while (0); |
542 | |
543 | /* A check for invalid values: offset too large, too many words, |
544 | * too many words for the offset, and not enough words. |
545 | */ |
546 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
547 | (words == 0)) { |
548 | DEBUGOUT("nvm parameter(s) out of bounds\n")do { if (0) printf("nvm parameter(s) out of bounds\n"); } while (0); |
549 | ret_val = -IGC_ERR_NVM1; |
550 | goto out; |
551 | } |
552 | |
553 | for (i = 0; i < words; i++) { |
554 | eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT2) | |
555 | (data[i] << IGC_NVM_RW_REG_DATA16) | IGC_NVM_RW_REG_START1; |
556 | |
557 | IGC_WRITE_REG(hw, IGC_SRWR, eewr)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12018) , (eewr))); |
558 | |
559 | for (k = 0; k < attempts; k++) { |
560 | if (IGC_NVM_RW_REG_DONE2 & IGC_READ_REG(hw, IGC_SRWR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12018) ))) { |
561 | ret_val = IGC_SUCCESS0; |
562 | break; |
563 | } |
564 | DELAY(5)(*delay_func)(5); |
565 | } |
566 | |
567 | if (ret_val != IGC_SUCCESS0) { |
568 | DEBUGOUT("Shadow RAM write EEWR timed out\n")do { if (0) printf("Shadow RAM write EEWR timed out\n"); } while (0); |
569 | break; |
570 | } |
571 | } |
572 | |
573 | out: |
574 | return ret_val; |
575 | } |
576 | |
577 | /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum |
578 | * @hw: pointer to the HW structure |
579 | * |
580 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
581 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
582 | */ |
583 | int |
584 | igc_validate_nvm_checksum_i225(struct igc_hw *hw) |
585 | { |
586 | int status = IGC_SUCCESS0; |
587 | int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *); |
588 | |
589 | DEBUGFUNC("igc_validate_nvm_checksum_i225")do { if (0) printf("igc_validate_nvm_checksum_i225" "\n"); } while (0); |
590 | |
591 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
592 | /* Replace the read function with semaphore grabbing with |
593 | * the one that skips this for a while. |
594 | * We have semaphore taken already here. |
595 | */ |
596 | read_op_ptr = hw->nvm.ops.read; |
597 | hw->nvm.ops.read = igc_read_nvm_eerd; |
598 | |
599 | status = igc_validate_nvm_checksum_generic(hw); |
600 | |
601 | /* Revert original read operation. */ |
602 | hw->nvm.ops.read = read_op_ptr; |
603 | |
604 | hw->nvm.ops.release(hw); |
605 | } else { |
606 | status = IGC_ERR_SWFW_SYNC13; |
607 | } |
608 | |
609 | return status; |
610 | } |
611 | |
612 | /* igc_update_nvm_checksum_i225 - Update EEPROM checksum |
613 | * @hw: pointer to the HW structure |
614 | * |
615 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
616 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
617 | * value to the EEPROM. Next commit EEPROM data onto the Flash. |
618 | */ |
619 | int |
620 | igc_update_nvm_checksum_i225(struct igc_hw *hw) |
621 | { |
622 | uint16_t checksum = 0; |
623 | uint16_t i, nvm_data; |
624 | int ret_val; |
625 | |
626 | DEBUGFUNC("igc_update_nvm_checksum_i225")do { if (0) printf("igc_update_nvm_checksum_i225" "\n"); } while (0); |
627 | |
628 | /* Read the first word from the EEPROM. If this times out or fails, do |
629 | * not continue or we could be in for a very long wait while every |
630 | * EEPROM read fails |
631 | */ |
632 | ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); |
633 | if (ret_val != IGC_SUCCESS0) { |
634 | DEBUGOUT("EEPROM read failed\n")do { if (0) printf("EEPROM read failed\n"); } while (0); |
635 | goto out; |
636 | } |
637 | |
638 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
639 | /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
640 | * because we do not want to take the synchronization |
641 | * semaphores twice here. |
642 | */ |
643 | |
644 | for (i = 0; i < NVM_CHECKSUM_REG0x003F; i++) { |
645 | ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); |
646 | if (ret_val) { |
647 | hw->nvm.ops.release(hw); |
648 | DEBUGOUT("NVM Read Error while updating\n")do { if (0) printf("NVM Read Error while updating\n"); } while (0); |
649 | DEBUGOUT("checksum.\n")do { if (0) printf("checksum.\n"); } while (0); |
650 | goto out; |
651 | } |
652 | checksum += nvm_data; |
653 | } |
654 | checksum = (uint16_t)NVM_SUM0xBABA - checksum; |
655 | ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG0x003F, 1, |
656 | &checksum); |
657 | if (ret_val != IGC_SUCCESS0) { |
658 | hw->nvm.ops.release(hw); |
659 | DEBUGOUT("NVM Write Error while updating checksum.\n")do { if (0) printf("NVM Write Error while updating checksum.\n" ); } while (0); |
660 | goto out; |
661 | } |
662 | |
663 | hw->nvm.ops.release(hw); |
664 | |
665 | ret_val = igc_update_flash_i225(hw); |
666 | } else { |
667 | ret_val = IGC_ERR_SWFW_SYNC13; |
668 | } |
669 | out: |
670 | return ret_val; |
671 | } |
672 | |
673 | /* igc_get_flash_presence_i225 - Check if flash device is detected. |
674 | * @hw: pointer to the HW structure |
675 | */ |
676 | bool_Bool |
677 | igc_get_flash_presence_i225(struct igc_hw *hw) |
678 | { |
679 | uint32_t eec = 0; |
680 | bool_Bool ret_val = false0; |
681 | |
682 | DEBUGFUNC("igc_get_flash_presence_i225")do { if (0) printf("igc_get_flash_presence_i225" "\n"); } while (0); |
683 | |
684 | eec = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
685 | |
686 | if (eec & IGC_EECD_FLASH_DETECTED_I2250x00080000) |
687 | ret_val = true1; |
688 | |
689 | return ret_val; |
690 | } |
691 | |
692 | /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst |
693 | * Counter in FLSWCNT register. |
694 | * |
695 | * @hw: pointer to the HW structure |
696 | * @burst_counter: size in bytes of the Flash burst to read or write |
697 | */ |
698 | int |
699 | igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter) |
700 | { |
701 | int ret_val = IGC_SUCCESS0; |
702 | |
703 | DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225")do { if (0) printf("igc_set_flsw_flash_burst_counter_i225" "\n" ); } while (0); |
704 | |
705 | /* Validate input data */ |
706 | if (burst_counter < IGC_I225_SHADOW_RAM_SIZE4096) { |
707 | /* Write FLSWCNT - burst counter */ |
708 | IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12050) , (burst_counter))); |
709 | } else { |
710 | ret_val = IGC_ERR_INVALID_ARGUMENT16; |
711 | } |
712 | |
713 | return ret_val; |
714 | } |
715 | |
716 | |
717 | /* igc_write_erase_flash_command_i225 - write/erase to a sector |
718 | * region on a given address. |
719 | * |
720 | * @hw: pointer to the HW structure |
721 | * @opcode: opcode to be used for the write command |
722 | * @address: the offset to write into the FLASH image |
723 | */ |
724 | int |
725 | igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode, |
726 | uint32_t address) |
727 | { |
728 | uint32_t flswctl = 0; |
729 | int timeout = IGC_NVM_GRANT_ATTEMPTS1000; |
730 | int ret_val = IGC_SUCCESS0; |
731 | |
732 | DEBUGFUNC("igc_write_erase_flash_command_i225")do { if (0) printf("igc_write_erase_flash_command_i225" "\n") ; } while (0); |
733 | |
734 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
735 | /* Polling done bit on FLSWCTL register */ |
736 | while (timeout) { |
737 | if (flswctl & IGC_FLSWCTL_DONE0x40000000) |
738 | break; |
739 | DELAY(5)(*delay_func)(5); |
740 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
741 | timeout--; |
742 | } |
743 | |
744 | if (!timeout) { |
745 | DEBUGOUT("Flash transaction was not done\n")do { if (0) printf("Flash transaction was not done\n"); } while (0); |
746 | return -IGC_ERR_NVM1; |
747 | } |
748 | |
749 | /* Build and issue command on FLSWCTL register */ |
750 | flswctl = address | opcode; |
751 | IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) , (flswctl))); |
752 | |
753 | /* Check if issued command is valid on FLSWCTL register */ |
754 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
755 | if (!(flswctl & IGC_FLSWCTL_CMDV0x10000000)) { |
756 | DEBUGOUT("Write flash command failed\n")do { if (0) printf("Write flash command failed\n"); } while ( 0); |
757 | ret_val = IGC_ERR_INVALID_ARGUMENT16; |
758 | } |
759 | |
760 | return ret_val; |
761 | } |
762 | |
763 | /* igc_update_flash_i225 - Commit EEPROM to the flash |
764 | * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC |
765 | * register makes the FW load the internal shadow RAM into the flash. |
766 | * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 |
767 | * then FW is not active so the SW is responsible shadow RAM dump. |
768 | * |
769 | * @hw: pointer to the HW structure |
770 | */ |
771 | int |
772 | igc_update_flash_i225(struct igc_hw *hw) |
773 | { |
774 | uint32_t block_sw_protect = 1; |
775 | uint32_t i, flup, fw_valid_bit; |
776 | uint16_t current_offset; |
777 | uint16_t base_address = 0x0; |
778 | uint16_t current_offset_data = 0; |
779 | int ret_val = 0; |
780 | |
781 | DEBUGFUNC("igc_update_flash_i225")do { if (0) printf("igc_update_flash_i225" "\n"); } while (0); |
782 | |
783 | block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12114) )) & |
784 | IGC_FLSECU_BLK_SW_ACCESS_I2250x00000004; |
785 | |
786 | fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B54) )) & IGC_FWSM_FW_VALID_I2250x8000; |
787 | if (fw_valid_bit) { |
788 | ret_val = igc_pool_flash_update_done_i225(hw); |
789 | if (ret_val == -IGC_ERR_NVM1) { |
790 | DEBUGOUT("Flash update time out\n")do { if (0) printf("Flash update time out\n"); } while (0); |
791 | goto out; |
792 | } |
793 | |
794 | flup = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )) | IGC_EECD_FLUPD_I2250x00800000; |
795 | IGC_WRITE_REG(hw, IGC_EECD, flup)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) , (flup))); |
796 | |
797 | ret_val = igc_pool_flash_update_done_i225(hw); |
798 | if (ret_val == IGC_SUCCESS0) |
799 | DEBUGOUT("Flash update complete\n")do { if (0) printf("Flash update complete\n"); } while (0); |
800 | else |
801 | DEBUGOUT("Flash update time out\n")do { if (0) printf("Flash update time out\n"); } while (0); |
802 | } else if (!block_sw_protect) { |
803 | /* FW is not active and security protection is disabled. |
804 | * therefore, SW is in charge of shadow RAM dump. |
805 | * Check which sector is valid. if sector 0 is valid, |
806 | * base address remains 0x0. otherwise, sector 1 is |
807 | * valid and its base address is 0x1000 |
808 | */ |
809 | if (IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )) & IGC_EECD_SEC1VAL_I2250x02000000) |
810 | base_address = 0x1000; |
811 | |
812 | /* Valid sector erase */ |
813 | ret_val = igc_write_erase_flash_command_i225(hw, |
814 | IGC_I225_ERASE_CMD_OPCODE0x02000000, base_address); |
815 | if (!ret_val) { |
816 | DEBUGOUT("Sector erase failed\n")do { if (0) printf("Sector erase failed\n"); } while (0); |
817 | goto out; |
818 | } |
819 | |
820 | current_offset = base_address; |
821 | |
822 | /* Write */ |
823 | for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE4096 / 2; i++) { |
824 | /* Set burst write length */ |
825 | ret_val = igc_set_flsw_flash_burst_counter_i225(hw, |
826 | 0x2); |
827 | if (ret_val != IGC_SUCCESS0) |
828 | break; |
829 | |
830 | /* Set address and opcode */ |
831 | ret_val = igc_write_erase_flash_command_i225(hw, |
832 | IGC_I225_WRITE_CMD_OPCODE0x01000000, 2 * current_offset); |
833 | if (ret_val != IGC_SUCCESS0) |
834 | break; |
835 | |
836 | ret_val = igc_read_nvm_eerd(hw, current_offset, 1, |
837 | ¤t_offset_data); |
838 | if (ret_val) { |
839 | DEBUGOUT("Failed to read from EEPROM\n")do { if (0) printf("Failed to read from EEPROM\n"); } while ( 0); |
840 | goto out; |
841 | } |
842 | |
843 | /* Write CurrentOffseData to FLSWDATA register */ |
844 | IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x1204C) , (current_offset_data))) |
845 | current_offset_data)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x1204C) , (current_offset_data))); |
846 | current_offset++; |
847 | |
848 | /* Wait till operation has finished */ |
849 | ret_val = igc_poll_eerd_eewr_done(hw, |
850 | IGC_NVM_POLL_READ0); |
851 | if (ret_val) |
852 | break; |
853 | |
854 | DELAY(1000)(*delay_func)(1000); |
855 | } |
856 | } |
857 | out: |
858 | return ret_val; |
859 | } |
860 | |
861 | /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. |
862 | * @hw: pointer to the HW structure |
863 | */ |
864 | int |
865 | igc_pool_flash_update_done_i225(struct igc_hw *hw) |
866 | { |
867 | uint32_t i, reg; |
868 | int ret_val = -IGC_ERR_NVM1; |
869 | |
870 | DEBUGFUNC("igc_pool_flash_update_done_i225")do { if (0) printf("igc_pool_flash_update_done_i225" "\n"); } while (0); |
871 | |
872 | for (i = 0; i < IGC_FLUDONE_ATTEMPTS20000; i++) { |
873 | reg = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
874 | if (reg & IGC_EECD_FLUDONE_I2250x04000000) { |
875 | ret_val = IGC_SUCCESS0; |
876 | break; |
877 | } |
878 | DELAY(5)(*delay_func)(5); |
879 | } |
880 | |
881 | return ret_val; |
882 | } |
883 | |
884 | /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. |
885 | * @hw: pointer to the HW structure |
886 | * @link: bool indicating link status |
887 | * |
888 | * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC |
889 | * settings, otherwise specify that there is no LTR requirement. |
890 | */ |
891 | int |
892 | igc_set_ltr_i225(struct igc_hw *hw, bool_Bool link) |
893 | { |
894 | uint16_t speed, duplex; |
895 | uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; |
896 | int size; |
897 | |
898 | DEBUGFUNC("igc_set_ltr_i225")do { if (0) printf("igc_set_ltr_i225" "\n"); } while (0); |
899 | |
900 | /* If we do not have link, LTR thresholds are zero. */ |
901 | if (link) { |
902 | hw->mac.ops.get_link_up_info(hw, &speed, &duplex); |
903 | |
904 | /* Check if using copper interface with EEE enabled or if the |
905 | * link speed is 10 Mbps. |
906 | */ |
907 | if ((hw->phy.media_type == igc_media_type_copper) && |
908 | !(hw->dev_spec._i225.eee_disable) && |
909 | (speed != SPEED_1010)) { |
910 | /* EEE enabled, so send LTRMAX threshold. */ |
911 | ltrc = IGC_READ_REG(hw, IGC_LTRC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01A0)) ) | IGC_LTRC_EEEMS_EN0x00000020; |
912 | IGC_WRITE_REG(hw, IGC_LTRC, ltrc)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01A0), (ltrc))); |
913 | |
914 | /* Calculate tw_system (nsec). */ |
915 | if (speed == SPEED_100100) { |
916 | tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ) & |
917 | IGC_TW_SYSTEM_100_MASK0x0000FF00) >> |
918 | IGC_TW_SYSTEM_100_SHIFT8) * 500; |
919 | } else { |
920 | tw_system = (IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ) & |
921 | IGC_TW_SYSTEM_1000_MASK0x000000FF) * 500; |
922 | } |
923 | } else { |
924 | tw_system = 0; |
925 | } |
926 | |
927 | /* Get the Rx packet buffer size. */ |
928 | size = IGC_READ_REG(hw, IGC_RXPBS)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02404) )) & IGC_RXPBS_SIZE_I225_MASK0x0000003F; |
929 | |
930 | /* Calculations vary based on DMAC settings. */ |
931 | if (IGC_READ_REG(hw, IGC_DMACR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02508) )) & IGC_DMACR_DMAC_EN0x80000000) { |
932 | size -= (IGC_READ_REG(hw, IGC_DMACR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02508) )) & |
933 | IGC_DMACR_DMACTHR_MASK0x00FF0000) >> IGC_DMACR_DMACTHR_SHIFT16; |
934 | /* Convert size to bits. */ |
935 | size *= 1024 * 8; |
936 | } else { |
937 | /* Convert size to bytes, subtract the MTU, and then |
938 | * convert the size to bits. |
939 | */ |
940 | size *= 1024; |
941 | size -= hw->dev_spec._i225.mtu; |
942 | size *= 8; |
943 | } |
944 | |
945 | if (size < 0) { |
946 | DEBUGOUT1("Invalid effective Rx buffer size %d\n",do { if (0) printf("Invalid effective Rx buffer size %d\n", size ); } while (0) |
947 | size)do { if (0) printf("Invalid effective Rx buffer size %d\n", size ); } while (0); |
948 | return -IGC_ERR_CONFIG3; |
949 | } |
950 | |
951 | /* Calculate the thresholds. Since speed is in Mbps, simplify |
952 | * the calculation by multiplying size/speed by 1000 for result |
953 | * to be in nsec before dividing by the scale in nsec. Set the |
954 | * scale such that the LTR threshold fits in the register. |
955 | */ |
956 | ltr_min = (1000 * size) / speed; |
957 | ltr_max = ltr_min + tw_system; |
958 | scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_10242 : |
959 | IGC_LTRMINV_SCALE_327683; |
960 | scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_10242 : |
961 | IGC_LTRMAXV_SCALE_327683; |
962 | ltr_min /= scale_min == IGC_LTRMINV_SCALE_10242 ? 1024 : 32768; |
963 | ltr_max /= scale_max == IGC_LTRMAXV_SCALE_10242 ? 1024 : 32768; |
964 | |
965 | /* Only write the LTR thresholds if they differ from before. */ |
966 | ltrv = IGC_READ_REG(hw, IGC_LTRMINV)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB0)) ); |
967 | if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK0x000003FF)) { |
968 | ltrv = IGC_LTRMINV_LSNP_REQ0x00008000 | ltr_min | |
969 | (scale_min << IGC_LTRMINV_SCALE_SHIFT10); |
970 | IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB0), (ltrv))); |
971 | } |
972 | |
973 | ltrv = IGC_READ_REG(hw, IGC_LTRMAXV)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB4)) ); |
974 | if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK0x000003FF)) { |
975 | ltrv = IGC_LTRMAXV_LSNP_REQ0x00008000 | ltr_max | |
976 | (scale_min << IGC_LTRMAXV_SCALE_SHIFT10); |
977 | IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB4), (ltrv))); |
978 | } |
979 | } |
980 | |
981 | return IGC_SUCCESS0; |
982 | } |
983 | |
984 | /* igc_check_for_link_i225 - Check for link |
985 | * @hw: pointer to the HW structure |
986 | * |
987 | * Checks to see of the link status of the hardware has changed. If a |
988 | * change in link status has been detected, then we read the PHY registers |
989 | * to get the current speed/duplex if link exists. |
990 | */ |
991 | int |
992 | igc_check_for_link_i225(struct igc_hw *hw) |
993 | { |
994 | struct igc_mac_info *mac = &hw->mac; |
995 | int ret_val; |
996 | bool_Bool link = false0; |
997 | |
998 | DEBUGFUNC("igc_check_for_link_i225")do { if (0) printf("igc_check_for_link_i225" "\n"); } while ( 0); |
999 | |
1000 | /* We only want to go out to the PHY registers to see if |
1001 | * Auto-Neg has completed and/or if our link status has |
1002 | * changed. The get_link_status flag is set upon receiving |
1003 | * a Link Status Change or Rx Sequence Error interrupt. |
1004 | */ |
1005 | if (!mac->get_link_status) { |
1006 | ret_val = IGC_SUCCESS0; |
Value stored to 'ret_val' is never read | |
1007 | goto out; |
1008 | } |
1009 | |
1010 | /* First we want to see if the MII Status Register reports |
1011 | * link. If so, then we want to get the current speed/duplex |
1012 | * of the PHY. |
1013 | */ |
1014 | ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
1015 | if (ret_val) |
1016 | goto out; |
1017 | |
1018 | if (!link) |
1019 | goto out; /* No link detected */ |
1020 | |
1021 | /* First we want to see if the MII Status Register reports |
1022 | * link. If so, then we want to get the current speed/duplex |
1023 | * of the PHY. |
1024 | */ |
1025 | ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
1026 | if (ret_val) |
1027 | goto out; |
1028 | |
1029 | if (!link) |
1030 | goto out; /* No link detected */ |
1031 | |
1032 | mac->get_link_status = false0; |
1033 | |
1034 | /* Check if there was DownShift, must be checked |
1035 | * immediately after link-up |
1036 | */ |
1037 | igc_check_downshift_generic(hw); |
1038 | |
1039 | /* If we are forcing speed/duplex, then we simply return since |
1040 | * we have already determined whether we have link or not. |
1041 | */ |
1042 | if (!mac->autoneg) |
1043 | goto out; |
1044 | |
1045 | /* Auto-Neg is enabled. Auto Speed Detection takes care |
1046 | * of MAC speed/duplex configuration. So we only need to |
1047 | * configure Collision Distance in the MAC. |
1048 | */ |
1049 | mac->ops.config_collision_dist(hw); |
1050 | |
1051 | /* Configure Flow Control now that Auto-Neg has completed. |
1052 | * First, we need to restore the desired flow control |
1053 | * settings because we may have had to re-autoneg with a |
1054 | * different link partner. |
1055 | */ |
1056 | ret_val = igc_config_fc_after_link_up_generic(hw); |
1057 | if (ret_val) |
1058 | DEBUGOUT("Error configuring flow control\n")do { if (0) printf("Error configuring flow control\n"); } while (0); |
1059 | out: |
1060 | /* Now that we are aware of our link settings, we can set the LTR |
1061 | * thresholds. |
1062 | */ |
1063 | ret_val = igc_set_ltr_i225(hw, link); |
1064 | |
1065 | return ret_val; |
1066 | } |
1067 | |
1068 | /* igc_init_function_pointers_i225 - Init func ptrs. |
1069 | * @hw: pointer to the HW structure |
1070 | * |
1071 | * Called to initialize all function pointers and parameters. |
1072 | */ |
1073 | void |
1074 | igc_init_function_pointers_i225(struct igc_hw *hw) |
1075 | { |
1076 | igc_init_mac_ops_generic(hw); |
1077 | igc_init_phy_ops_generic(hw); |
1078 | igc_init_nvm_ops_generic(hw); |
1079 | hw->mac.ops.init_params = igc_init_mac_params_i225; |
1080 | hw->nvm.ops.init_params = igc_init_nvm_params_i225; |
1081 | hw->phy.ops.init_params = igc_init_phy_params_i225; |
1082 | } |
1083 | |
1084 | /* igc_init_hw_i225 - Init hw for I225 |
1085 | * @hw: pointer to the HW structure |
1086 | * |
1087 | * Called to initialize hw for i225 hw family. |
1088 | */ |
1089 | int |
1090 | igc_init_hw_i225(struct igc_hw *hw) |
1091 | { |
1092 | int ret_val; |
1093 | |
1094 | DEBUGFUNC("igc_init_hw_i225")do { if (0) printf("igc_init_hw_i225" "\n"); } while (0); |
1095 | |
1096 | ret_val = igc_init_hw_base(hw); |
1097 | return ret_val; |
1098 | } |
1099 | |
1100 | /** |
1101 | * igc_set_eee_i225 - Enable/disable EEE support |
1102 | * @hw: pointer to the HW structure |
1103 | * @adv2p5G: boolean flag enabling 2.5G EEE advertisement |
1104 | * @adv1G: boolean flag enabling 1G EEE advertisement |
1105 | * @adv100M: boolean flag enabling 100M EEE advertisement |
1106 | * |
1107 | * Enable/disable EEE based on setting in dev_spec structure. |
1108 | * |
1109 | **/ |
1110 | int |
1111 | igc_set_eee_i225(struct igc_hw *hw, bool_Bool adv2p5G, bool_Bool adv1G, |
1112 | bool_Bool adv100M) |
1113 | { |
1114 | uint32_t ipcnfg, eeer; |
1115 | |
1116 | DEBUGFUNC("igc_set_eee_i225")do { if (0) printf("igc_set_eee_i225" "\n"); } while (0); |
1117 | |
1118 | if (hw->mac.type != igc_i225 || |
1119 | hw->phy.media_type != igc_media_type_copper) |
1120 | goto out; |
1121 | ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38)) ); |
1122 | eeer = IGC_READ_REG(hw, IGC_EEER)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30)) ); |
1123 | |
1124 | /* enable or disable per user setting */ |
1125 | if (!(hw->dev_spec._i225.eee_disable)) { |
1126 | uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ); |
1127 | |
1128 | if (adv100M) |
1129 | ipcnfg |= IGC_IPCNFG_EEE_100M_AN0x00000004; |
1130 | else |
1131 | ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN0x00000004; |
1132 | |
1133 | if (adv1G) |
1134 | ipcnfg |= IGC_IPCNFG_EEE_1G_AN0x00000008; |
1135 | else |
1136 | ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN0x00000008; |
1137 | |
1138 | if (adv2p5G) |
1139 | ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN0x00000010; |
1140 | else |
1141 | ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN0x00000010; |
1142 | |
1143 | eeer |= (IGC_EEER_TX_LPI_EN0x00010000 | IGC_EEER_RX_LPI_EN0x00020000 | |
1144 | IGC_EEER_LPI_FC0x00040000); |
1145 | |
1146 | /* This bit should not be set in normal operation. */ |
1147 | if (eee_su & IGC_EEE_SU_LPI_CLK_STP0x00800000) |
1148 | DEBUGOUT("LPI Clock Stop Bit should not be set!\n")do { if (0) printf("LPI Clock Stop Bit should not be set!\n") ; } while (0); |
1149 | } else { |
1150 | ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN0x00000010 | IGC_IPCNFG_EEE_1G_AN0x00000008 | |
1151 | IGC_IPCNFG_EEE_100M_AN0x00000004); |
1152 | eeer &= ~(IGC_EEER_TX_LPI_EN0x00010000 | IGC_EEER_RX_LPI_EN0x00020000 | |
1153 | IGC_EEER_LPI_FC0x00040000); |
1154 | } |
1155 | IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38), (ipcnfg))); |
1156 | IGC_WRITE_REG(hw, IGC_EEER, eeer)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30), (eeer))); |
1157 | IGC_READ_REG(hw, IGC_IPCNFG)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38)) ); |
1158 | IGC_READ_REG(hw, IGC_EEER)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30)) ); |
1159 | out: |
1160 | |
1161 | return IGC_SUCCESS0; |
1162 | } |