| File: | dev/pci/igc_i225.c |
| Warning: | line 1006, column 3 Value stored to 'ret_val' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $ */ |
| 2 | /*- |
| 3 | * Copyright 2021 Intel Corp |
| 4 | * Copyright 2021 Rubicon Communications, LLC (Netgate) |
| 5 | * SPDX-License-Identifier: BSD-3-Clause |
| 6 | */ |
| 7 | |
| 8 | #include <dev/pci/igc_api.h> |
| 9 | |
| 10 | int igc_init_nvm_params_i225(struct igc_hw *); |
| 11 | int igc_init_mac_params_i225(struct igc_hw *); |
| 12 | int igc_init_phy_params_i225(struct igc_hw *); |
| 13 | int igc_reset_hw_i225(struct igc_hw *); |
| 14 | int igc_acquire_nvm_i225(struct igc_hw *); |
| 15 | void igc_release_nvm_i225(struct igc_hw *); |
| 16 | int igc_get_hw_semaphore_i225(struct igc_hw *); |
| 17 | int __igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *); |
| 18 | int igc_pool_flash_update_done_i225(struct igc_hw *); |
| 19 | |
| 20 | /** |
| 21 | * igc_init_nvm_params_i225 - Init NVM func ptrs. |
| 22 | * @hw: pointer to the HW structure |
| 23 | **/ |
| 24 | int |
| 25 | igc_init_nvm_params_i225(struct igc_hw *hw) |
| 26 | { |
| 27 | struct igc_nvm_info *nvm = &hw->nvm; |
| 28 | uint32_t eecd = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
| 29 | uint16_t size; |
| 30 | |
| 31 | DEBUGFUNC("igc_init_nvm_params_i225")do { if (0) printf("igc_init_nvm_params_i225" "\n"); } while ( 0); |
| 32 | |
| 33 | size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK0x00007800) >> |
| 34 | IGC_EECD_SIZE_EX_SHIFT11); |
| 35 | /* |
| 36 | * Added to a constant, "size" becomes the left-shift value |
| 37 | * for setting word_size. |
| 38 | */ |
| 39 | size += NVM_WORD_SIZE_BASE_SHIFT6; |
| 40 | |
| 41 | /* Just in case size is out of range, cap it to the largest |
| 42 | * EEPROM size supported. |
| 43 | */ |
| 44 | if (size > 15) |
| 45 | size = 15; |
| 46 | |
| 47 | nvm->word_size = 1 << size; |
| 48 | nvm->opcode_bits = 8; |
| 49 | nvm->delay_usec = 1; |
| 50 | nvm->type = igc_nvm_eeprom_spi; |
| 51 | |
| 52 | nvm->page_size = eecd & IGC_EECD_ADDR_BITS0x00000400 ? 32 : 8; |
| 53 | nvm->address_bits = eecd & IGC_EECD_ADDR_BITS0x00000400 ? 16 : 8; |
| 54 | |
| 55 | if (nvm->word_size == (1 << 15)) |
| 56 | nvm->page_size = 128; |
| 57 | |
| 58 | nvm->ops.acquire = igc_acquire_nvm_i225; |
| 59 | nvm->ops.release = igc_release_nvm_i225; |
| 60 | if (igc_get_flash_presence_i225(hw)) { |
| 61 | hw->nvm.type = igc_nvm_flash_hw; |
| 62 | nvm->ops.read = igc_read_nvm_srrd_i225; |
| 63 | nvm->ops.write = igc_write_nvm_srwr_i225; |
| 64 | nvm->ops.validate = igc_validate_nvm_checksum_i225; |
| 65 | nvm->ops.update = igc_update_nvm_checksum_i225; |
| 66 | } else { |
| 67 | hw->nvm.type = igc_nvm_invm; |
| 68 | nvm->ops.write = igc_null_write_nvm; |
| 69 | nvm->ops.validate = igc_null_ops_generic; |
| 70 | nvm->ops.update = igc_null_ops_generic; |
| 71 | } |
| 72 | |
| 73 | return IGC_SUCCESS0; |
| 74 | } |
| 75 | |
| 76 | /** |
| 77 | * igc_init_mac_params_i225 - Init MAC func ptrs. |
| 78 | * @hw: pointer to the HW structure |
| 79 | **/ |
| 80 | int |
| 81 | igc_init_mac_params_i225(struct igc_hw *hw) |
| 82 | { |
| 83 | struct igc_mac_info *mac = &hw->mac; |
| 84 | struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; |
| 85 | |
| 86 | DEBUGFUNC("igc_init_mac_params_i225")do { if (0) printf("igc_init_mac_params_i225" "\n"); } while ( 0); |
| 87 | |
| 88 | /* Initialize function pointer */ |
| 89 | igc_init_mac_ops_generic(hw); |
| 90 | |
| 91 | /* Set media type */ |
| 92 | hw->phy.media_type = igc_media_type_copper; |
| 93 | /* Set mta register count */ |
| 94 | mac->mta_reg_count = 128; |
| 95 | /* Set rar entry count */ |
| 96 | mac->rar_entry_count = IGC_RAR_ENTRIES_BASE16; |
| 97 | |
| 98 | /* reset */ |
| 99 | mac->ops.reset_hw = igc_reset_hw_i225; |
| 100 | /* hw initialization */ |
| 101 | mac->ops.init_hw = igc_init_hw_i225; |
| 102 | /* link setup */ |
| 103 | mac->ops.setup_link = igc_setup_link_generic; |
| 104 | /* check for link */ |
| 105 | mac->ops.check_for_link = igc_check_for_link_i225; |
| 106 | /* link info */ |
| 107 | mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; |
| 108 | /* acquire SW_FW sync */ |
| 109 | mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; |
| 110 | /* release SW_FW sync */ |
| 111 | mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; |
| 112 | |
| 113 | /* Allow a single clear of the SW semaphore on I225 */ |
| 114 | dev_spec->clear_semaphore_once = true1; |
| 115 | mac->ops.setup_physical_interface = igc_setup_copper_link_i225; |
| 116 | |
| 117 | /* Set if part includes ASF firmware */ |
| 118 | mac->asf_firmware_present = true1; |
| 119 | |
| 120 | /* multicast address update */ |
| 121 | mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; |
| 122 | |
| 123 | mac->ops.write_vfta = igc_write_vfta_generic; |
| 124 | |
| 125 | return IGC_SUCCESS0; |
| 126 | } |
| 127 | |
| 128 | /** |
| 129 | * igc_init_phy_params_i225 - Init PHY func ptrs. |
| 130 | * @hw: pointer to the HW structure |
| 131 | **/ |
| 132 | int |
| 133 | igc_init_phy_params_i225(struct igc_hw *hw) |
| 134 | { |
| 135 | struct igc_phy_info *phy = &hw->phy; |
| 136 | int ret_val = IGC_SUCCESS0; |
| 137 | |
| 138 | DEBUGFUNC("igc_init_phy_params_i225")do { if (0) printf("igc_init_phy_params_i225" "\n"); } while ( 0); |
| 139 | |
| 140 | if (hw->phy.media_type != igc_media_type_copper) { |
| 141 | phy->type = igc_phy_none; |
| 142 | goto out; |
| 143 | } |
| 144 | |
| 145 | phy->ops.power_up = igc_power_up_phy_copper; |
| 146 | phy->ops.power_down = igc_power_down_phy_copper_base; |
| 147 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500( 0x0001 | 0x0002 | 0x0004 | 0x0008 | 0x0020 | 0x0080); |
| 148 | phy->reset_delay_us = 100; |
| 149 | phy->ops.acquire = igc_acquire_phy_base; |
| 150 | phy->ops.check_reset_block = igc_check_reset_block_generic; |
| 151 | phy->ops.release = igc_release_phy_base; |
| 152 | phy->ops.reset = igc_phy_hw_reset_generic; |
| 153 | phy->ops.read_reg = igc_read_phy_reg_gpy; |
| 154 | phy->ops.write_reg = igc_write_phy_reg_gpy; |
| 155 | |
| 156 | /* Make sure the PHY is in a good state. Several people have reported |
| 157 | * firmware leaving the PHY's page select register set to something |
| 158 | * other than the default of zero, which causes the PHY ID read to |
| 159 | * access something other than the intended register. |
| 160 | */ |
| 161 | ret_val = hw->phy.ops.reset(hw); |
| 162 | if (ret_val) |
| 163 | goto out; |
| 164 | |
| 165 | ret_val = igc_get_phy_id(hw); |
| 166 | phy->type = igc_phy_i225; |
| 167 | |
| 168 | out: |
| 169 | return ret_val; |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * igc_reset_hw_i225 - Reset hardware |
| 174 | * @hw: pointer to the HW structure |
| 175 | * |
| 176 | * This resets the hardware into a known state. |
| 177 | **/ |
| 178 | int |
| 179 | igc_reset_hw_i225(struct igc_hw *hw) |
| 180 | { |
| 181 | uint32_t ctrl; |
| 182 | int ret_val; |
| 183 | |
| 184 | DEBUGFUNC("igc_reset_hw_i225")do { if (0) printf("igc_reset_hw_i225" "\n"); } while (0); |
| 185 | |
| 186 | /* |
| 187 | * Prevent the PCI-E bus from sticking if there is no TLP connection |
| 188 | * on the last TLP read/write transaction when MAC is reset. |
| 189 | */ |
| 190 | ret_val = igc_disable_pcie_master_generic(hw); |
| 191 | if (ret_val) |
| 192 | DEBUGOUT("PCI-E Master disable polling has failed.\n")do { if (0) printf("PCI-E Master disable polling has failed.\n" ); } while (0); |
| 193 | |
| 194 | DEBUGOUT("Masking off all interrupts\n")do { if (0) printf("Masking off all interrupts\n"); } while ( 0); |
| 195 | IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0150C) , (0xffffffff))); |
| 196 | |
| 197 | IGC_WRITE_REG(hw, IGC_RCTL, 0)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00100) , (0))); |
| 198 | IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00400) , (0x00000008))); |
| 199 | IGC_WRITE_FLUSH(hw)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00008) )); |
| 200 | |
| 201 | msec_delay(10)(*delay_func)(1000 * (10)); |
| 202 | |
| 203 | ctrl = IGC_READ_REG(hw, IGC_CTRL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) )); |
| 204 | |
| 205 | DEBUGOUT("Issuing a global reset to MAC\n")do { if (0) printf("Issuing a global reset to MAC\n"); } while (0); |
| 206 | IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) , (ctrl | 0x20000000))); |
| 207 | |
| 208 | ret_val = igc_get_auto_rd_done_generic(hw); |
| 209 | if (ret_val) { |
| 210 | /* |
| 211 | * When auto config read does not complete, do not |
| 212 | * return with an error. This can happen in situations |
| 213 | * where there is no eeprom and prevents getting link. |
| 214 | */ |
| 215 | DEBUGOUT("Auto Read Done did not complete\n")do { if (0) printf("Auto Read Done did not complete\n"); } while (0); |
| 216 | } |
| 217 | |
| 218 | /* Clear any pending interrupt events. */ |
| 219 | IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0150C) , (0xffffffff))); |
| 220 | IGC_READ_REG(hw, IGC_ICR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01500) )); |
| 221 | |
| 222 | /* Install any alternate MAC address into RAR0 */ |
| 223 | ret_val = igc_check_alt_mac_addr_generic(hw); |
| 224 | |
| 225 | return ret_val; |
| 226 | } |
| 227 | |
| 228 | /* igc_acquire_nvm_i225 - Request for access to EEPROM |
| 229 | * @hw: pointer to the HW structure |
| 230 | * |
| 231 | * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| 232 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 233 | * Return successful if access grant bit set, else clear the request for |
| 234 | * EEPROM access and return -IGC_ERR_NVM (-1). |
| 235 | */ |
| 236 | int |
| 237 | igc_acquire_nvm_i225(struct igc_hw *hw) |
| 238 | { |
| 239 | int ret_val; |
| 240 | |
| 241 | DEBUGFUNC("igc_acquire_nvm_i225")do { if (0) printf("igc_acquire_nvm_i225" "\n"); } while (0); |
| 242 | |
| 243 | ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM0x01); |
| 244 | |
| 245 | return ret_val; |
| 246 | } |
| 247 | |
| 248 | /* igc_release_nvm_i225 - Release exclusive access to EEPROM |
| 249 | * @hw: pointer to the HW structure |
| 250 | * |
| 251 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| 252 | * then release the semaphores acquired. |
| 253 | */ |
| 254 | void |
| 255 | igc_release_nvm_i225(struct igc_hw *hw) |
| 256 | { |
| 257 | DEBUGFUNC("igc_release_nvm_i225")do { if (0) printf("igc_release_nvm_i225" "\n"); } while (0); |
| 258 | |
| 259 | igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM0x01); |
| 260 | } |
| 261 | |
| 262 | /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore |
| 263 | * @hw: pointer to the HW structure |
| 264 | * @mask: specifies which semaphore to acquire |
| 265 | * |
| 266 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| 267 | * will also specify which port we're acquiring the lock for. |
| 268 | */ |
| 269 | int |
| 270 | igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) |
| 271 | { |
| 272 | uint32_t swfw_sync; |
| 273 | uint32_t swmask = mask; |
| 274 | uint32_t fwmask = mask << 16; |
| 275 | int ret_val = IGC_SUCCESS0; |
| 276 | int i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| 277 | |
| 278 | DEBUGFUNC("igc_acquire_swfw_sync_i225")do { if (0) printf("igc_acquire_swfw_sync_i225" "\n"); } while (0); |
| 279 | |
| 280 | while (i < timeout) { |
| 281 | if (igc_get_hw_semaphore_i225(hw)) { |
| 282 | ret_val = -IGC_ERR_SWFW_SYNC13; |
| 283 | goto out; |
| 284 | } |
| 285 | |
| 286 | swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) )); |
| 287 | if (!(swfw_sync & (fwmask | swmask))) |
| 288 | break; |
| 289 | |
| 290 | /* Firmware currently using resource (fwmask) |
| 291 | * or other software thread using resource (swmask) |
| 292 | */ |
| 293 | igc_put_hw_semaphore_generic(hw); |
| 294 | msec_delay(5)(*delay_func)(1000 * (5)); |
| 295 | i++; |
| 296 | } |
| 297 | |
| 298 | if (i == timeout) { |
| 299 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n")do { if (0) printf("Driver can't access resource, SW_FW_SYNC timeout.\n" ); } while (0); |
| 300 | ret_val = -IGC_ERR_SWFW_SYNC13; |
| 301 | goto out; |
| 302 | } |
| 303 | |
| 304 | swfw_sync |= swmask; |
| 305 | IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) , (swfw_sync))); |
| 306 | |
| 307 | igc_put_hw_semaphore_generic(hw); |
| 308 | |
| 309 | out: |
| 310 | return ret_val; |
| 311 | } |
| 312 | |
| 313 | /* igc_release_swfw_sync_i225 - Release SW/FW semaphore |
| 314 | * @hw: pointer to the HW structure |
| 315 | * @mask: specifies which semaphore to acquire |
| 316 | * |
| 317 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| 318 | * will also specify which port we're releasing the lock for. |
| 319 | */ |
| 320 | void |
| 321 | igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) |
| 322 | { |
| 323 | uint32_t swfw_sync; |
| 324 | |
| 325 | DEBUGFUNC("igc_release_swfw_sync_i225")do { if (0) printf("igc_release_swfw_sync_i225" "\n"); } while (0); |
| 326 | |
| 327 | while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS0) |
| 328 | ; /* Empty */ |
| 329 | |
| 330 | swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) )); |
| 331 | swfw_sync &= ~mask; |
| 332 | IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B5C) , (swfw_sync))); |
| 333 | |
| 334 | igc_put_hw_semaphore_generic(hw); |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * igc_setup_copper_link_i225 - Configure copper link settings |
| 339 | * @hw: pointer to the HW structure |
| 340 | * |
| 341 | * Configures the link for auto-neg or forced speed and duplex. Then we check |
| 342 | * for link, once link is established calls to configure collision distance |
| 343 | * and flow control are called. |
| 344 | */ |
| 345 | int |
| 346 | igc_setup_copper_link_i225(struct igc_hw *hw) |
| 347 | { |
| 348 | uint32_t ctrl, phpm_reg; |
| 349 | int ret_val; |
| 350 | |
| 351 | DEBUGFUNC("igc_setup_copper_link_i225")do { if (0) printf("igc_setup_copper_link_i225" "\n"); } while (0); |
| 352 | |
| 353 | ctrl = IGC_READ_REG(hw, IGC_CTRL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) )); |
| 354 | ctrl |= IGC_CTRL_SLU0x00000040; |
| 355 | ctrl &= ~(IGC_CTRL_FRCSPD0x00000800 | IGC_CTRL_FRCDPX0x00001000); |
| 356 | IGC_WRITE_REG(hw, IGC_CTRL, ctrl)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00000) , (ctrl))); |
| 357 | |
| 358 | phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E14)) ); |
| 359 | phpm_reg &= ~IGC_I225_PHPM_GO_LINKD0x0020; |
| 360 | IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E14), (phpm_reg))); |
| 361 | |
| 362 | ret_val = igc_setup_copper_link_generic(hw); |
| 363 | |
| 364 | return ret_val; |
| 365 | } |
| 366 | |
| 367 | /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore |
| 368 | * @hw: pointer to the HW structure |
| 369 | * |
| 370 | * Acquire the HW semaphore to access the PHY or NVM |
| 371 | */ |
| 372 | int |
| 373 | igc_get_hw_semaphore_i225(struct igc_hw *hw) |
| 374 | { |
| 375 | uint32_t swsm; |
| 376 | int timeout = hw->nvm.word_size + 1; |
| 377 | int i = 0; |
| 378 | |
| 379 | DEBUGFUNC("igc_get_hw_semaphore_i225")do { if (0) printf("igc_get_hw_semaphore_i225" "\n"); } while (0); |
| 380 | |
| 381 | /* Get the SW semaphore */ |
| 382 | while (i < timeout) { |
| 383 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
| 384 | if (!(swsm & IGC_SWSM_SMBI0x00000001)) |
| 385 | break; |
| 386 | |
| 387 | DELAY(50)(*delay_func)(50); |
| 388 | i++; |
| 389 | } |
| 390 | |
| 391 | if (i == timeout) { |
| 392 | /* In rare circumstances, the SW semaphore may already be held |
| 393 | * unintentionally. Clear the semaphore once before giving up. |
| 394 | */ |
| 395 | if (hw->dev_spec._i225.clear_semaphore_once) { |
| 396 | hw->dev_spec._i225.clear_semaphore_once = false0; |
| 397 | igc_put_hw_semaphore_generic(hw); |
| 398 | for (i = 0; i < timeout; i++) { |
| 399 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
| 400 | if (!(swsm & IGC_SWSM_SMBI0x00000001)) |
| 401 | break; |
| 402 | |
| 403 | DELAY(50)(*delay_func)(50); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /* If we do not have the semaphore here, we have to give up. */ |
| 408 | if (i == timeout) { |
| 409 | DEBUGOUT("Driver can't access device -\n")do { if (0) printf("Driver can't access device -\n"); } while (0); |
| 410 | DEBUGOUT("SMBI bit is set.\n")do { if (0) printf("SMBI bit is set.\n"); } while (0); |
| 411 | return -IGC_ERR_NVM1; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /* Get the FW semaphore. */ |
| 416 | for (i = 0; i < timeout; i++) { |
| 417 | swsm = IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )); |
| 418 | IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) , (swsm | 0x00000002))); |
| 419 | |
| 420 | /* Semaphore acquired if bit latched */ |
| 421 | if (IGC_READ_REG(hw, IGC_SWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B50) )) & IGC_SWSM_SWESMBI0x00000002) |
| 422 | break; |
| 423 | |
| 424 | DELAY(50)(*delay_func)(50); |
| 425 | } |
| 426 | |
| 427 | if (i == timeout) { |
| 428 | /* Release semaphores */ |
| 429 | igc_put_hw_semaphore_generic(hw); |
| 430 | DEBUGOUT("Driver can't access the NVM\n")do { if (0) printf("Driver can't access the NVM\n"); } while ( 0); |
| 431 | return -IGC_ERR_NVM1; |
| 432 | } |
| 433 | |
| 434 | return IGC_SUCCESS0; |
| 435 | } |
| 436 | |
| 437 | /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register |
| 438 | * @hw: pointer to the HW structure |
| 439 | * @offset: offset of word in the Shadow Ram to read |
| 440 | * @words: number of words to read |
| 441 | * @data: word read from the Shadow Ram |
| 442 | * |
| 443 | * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| 444 | * Uses necessary synchronization semaphores. |
| 445 | */ |
| 446 | int |
| 447 | igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, |
| 448 | uint16_t *data) |
| 449 | { |
| 450 | uint16_t i, count; |
| 451 | int status = IGC_SUCCESS0; |
| 452 | |
| 453 | DEBUGFUNC("igc_read_nvm_srrd_i225")do { if (0) printf("igc_read_nvm_srrd_i225" "\n"); } while (0 ); |
| 454 | |
| 455 | /* We cannot hold synchronization semaphores for too long, |
| 456 | * because of forceful takeover procedure. However it is more efficient |
| 457 | * to read in bursts than synchronizing access for each word. |
| 458 | */ |
| 459 | for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT512) { |
| 460 | count = (words - i) / IGC_EERD_EEWR_MAX_COUNT512 > 0 ? |
| 461 | IGC_EERD_EEWR_MAX_COUNT512 : (words - i); |
| 462 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
| 463 | status = igc_read_nvm_eerd(hw, offset, count, data + i); |
| 464 | hw->nvm.ops.release(hw); |
| 465 | } else { |
| 466 | status = IGC_ERR_SWFW_SYNC13; |
| 467 | } |
| 468 | |
| 469 | if (status != IGC_SUCCESS0) |
| 470 | break; |
| 471 | } |
| 472 | |
| 473 | return status; |
| 474 | } |
| 475 | |
| 476 | /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR |
| 477 | * @hw: pointer to the HW structure |
| 478 | * @offset: offset within the Shadow RAM to be written to |
| 479 | * @words: number of words to write |
| 480 | * @data: 16 bit word(s) to be written to the Shadow RAM |
| 481 | * |
| 482 | * Writes data to Shadow RAM at offset using EEWR register. |
| 483 | * |
| 484 | * If igc_update_nvm_checksum is not called after this function , the |
| 485 | * data will not be committed to FLASH and also Shadow RAM will most likely |
| 486 | * contain an invalid checksum. |
| 487 | * |
| 488 | * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| 489 | * partially written. |
| 490 | */ |
| 491 | int |
| 492 | igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, |
| 493 | uint16_t *data) |
| 494 | { |
| 495 | uint16_t i, count; |
| 496 | int status = IGC_SUCCESS0; |
| 497 | |
| 498 | DEBUGFUNC("igc_write_nvm_srwr_i225")do { if (0) printf("igc_write_nvm_srwr_i225" "\n"); } while ( 0); |
| 499 | |
| 500 | /* We cannot hold synchronization semaphores for too long, |
| 501 | * because of forceful takeover procedure. However it is more efficient |
| 502 | * to write in bursts than synchronizing access for each word. |
| 503 | */ |
| 504 | for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT512) { |
| 505 | count = (words - i) / IGC_EERD_EEWR_MAX_COUNT512 > 0 ? |
| 506 | IGC_EERD_EEWR_MAX_COUNT512 : (words - i); |
| 507 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
| 508 | status = __igc_write_nvm_srwr(hw, offset, count, |
| 509 | data + i); |
| 510 | hw->nvm.ops.release(hw); |
| 511 | } else |
| 512 | status = IGC_ERR_SWFW_SYNC13; |
| 513 | |
| 514 | if (status != IGC_SUCCESS0) |
| 515 | break; |
| 516 | } |
| 517 | |
| 518 | return status; |
| 519 | } |
| 520 | |
| 521 | /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR |
| 522 | * @hw: pointer to the HW structure |
| 523 | * @offset: offset within the Shadow Ram to be written to |
| 524 | * @words: number of words to write |
| 525 | * @data: 16 bit word(s) to be written to the Shadow Ram |
| 526 | * |
| 527 | * Writes data to Shadow Ram at offset using EEWR register. |
| 528 | * |
| 529 | * If igc_update_nvm_checksum is not called after this function , the |
| 530 | * Shadow Ram will most likely contain an invalid checksum. |
| 531 | */ |
| 532 | int |
| 533 | __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words, |
| 534 | uint16_t *data) |
| 535 | { |
| 536 | struct igc_nvm_info *nvm = &hw->nvm; |
| 537 | uint32_t i, k, eewr = 0; |
| 538 | uint32_t attempts = 100000; |
| 539 | int ret_val = IGC_SUCCESS0; |
| 540 | |
| 541 | DEBUGFUNC("__igc_write_nvm_srwr")do { if (0) printf("__igc_write_nvm_srwr" "\n"); } while (0); |
| 542 | |
| 543 | /* A check for invalid values: offset too large, too many words, |
| 544 | * too many words for the offset, and not enough words. |
| 545 | */ |
| 546 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| 547 | (words == 0)) { |
| 548 | DEBUGOUT("nvm parameter(s) out of bounds\n")do { if (0) printf("nvm parameter(s) out of bounds\n"); } while (0); |
| 549 | ret_val = -IGC_ERR_NVM1; |
| 550 | goto out; |
| 551 | } |
| 552 | |
| 553 | for (i = 0; i < words; i++) { |
| 554 | eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT2) | |
| 555 | (data[i] << IGC_NVM_RW_REG_DATA16) | IGC_NVM_RW_REG_START1; |
| 556 | |
| 557 | IGC_WRITE_REG(hw, IGC_SRWR, eewr)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12018) , (eewr))); |
| 558 | |
| 559 | for (k = 0; k < attempts; k++) { |
| 560 | if (IGC_NVM_RW_REG_DONE2 & IGC_READ_REG(hw, IGC_SRWR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12018) ))) { |
| 561 | ret_val = IGC_SUCCESS0; |
| 562 | break; |
| 563 | } |
| 564 | DELAY(5)(*delay_func)(5); |
| 565 | } |
| 566 | |
| 567 | if (ret_val != IGC_SUCCESS0) { |
| 568 | DEBUGOUT("Shadow RAM write EEWR timed out\n")do { if (0) printf("Shadow RAM write EEWR timed out\n"); } while (0); |
| 569 | break; |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | out: |
| 574 | return ret_val; |
| 575 | } |
| 576 | |
| 577 | /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum |
| 578 | * @hw: pointer to the HW structure |
| 579 | * |
| 580 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| 581 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| 582 | */ |
| 583 | int |
| 584 | igc_validate_nvm_checksum_i225(struct igc_hw *hw) |
| 585 | { |
| 586 | int status = IGC_SUCCESS0; |
| 587 | int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *); |
| 588 | |
| 589 | DEBUGFUNC("igc_validate_nvm_checksum_i225")do { if (0) printf("igc_validate_nvm_checksum_i225" "\n"); } while (0); |
| 590 | |
| 591 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
| 592 | /* Replace the read function with semaphore grabbing with |
| 593 | * the one that skips this for a while. |
| 594 | * We have semaphore taken already here. |
| 595 | */ |
| 596 | read_op_ptr = hw->nvm.ops.read; |
| 597 | hw->nvm.ops.read = igc_read_nvm_eerd; |
| 598 | |
| 599 | status = igc_validate_nvm_checksum_generic(hw); |
| 600 | |
| 601 | /* Revert original read operation. */ |
| 602 | hw->nvm.ops.read = read_op_ptr; |
| 603 | |
| 604 | hw->nvm.ops.release(hw); |
| 605 | } else { |
| 606 | status = IGC_ERR_SWFW_SYNC13; |
| 607 | } |
| 608 | |
| 609 | return status; |
| 610 | } |
| 611 | |
| 612 | /* igc_update_nvm_checksum_i225 - Update EEPROM checksum |
| 613 | * @hw: pointer to the HW structure |
| 614 | * |
| 615 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| 616 | * up to the checksum. Then calculates the EEPROM checksum and writes the |
| 617 | * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| 618 | */ |
| 619 | int |
| 620 | igc_update_nvm_checksum_i225(struct igc_hw *hw) |
| 621 | { |
| 622 | uint16_t checksum = 0; |
| 623 | uint16_t i, nvm_data; |
| 624 | int ret_val; |
| 625 | |
| 626 | DEBUGFUNC("igc_update_nvm_checksum_i225")do { if (0) printf("igc_update_nvm_checksum_i225" "\n"); } while (0); |
| 627 | |
| 628 | /* Read the first word from the EEPROM. If this times out or fails, do |
| 629 | * not continue or we could be in for a very long wait while every |
| 630 | * EEPROM read fails |
| 631 | */ |
| 632 | ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| 633 | if (ret_val != IGC_SUCCESS0) { |
| 634 | DEBUGOUT("EEPROM read failed\n")do { if (0) printf("EEPROM read failed\n"); } while (0); |
| 635 | goto out; |
| 636 | } |
| 637 | |
| 638 | if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS0) { |
| 639 | /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
| 640 | * because we do not want to take the synchronization |
| 641 | * semaphores twice here. |
| 642 | */ |
| 643 | |
| 644 | for (i = 0; i < NVM_CHECKSUM_REG0x003F; i++) { |
| 645 | ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); |
| 646 | if (ret_val) { |
| 647 | hw->nvm.ops.release(hw); |
| 648 | DEBUGOUT("NVM Read Error while updating\n")do { if (0) printf("NVM Read Error while updating\n"); } while (0); |
| 649 | DEBUGOUT("checksum.\n")do { if (0) printf("checksum.\n"); } while (0); |
| 650 | goto out; |
| 651 | } |
| 652 | checksum += nvm_data; |
| 653 | } |
| 654 | checksum = (uint16_t)NVM_SUM0xBABA - checksum; |
| 655 | ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG0x003F, 1, |
| 656 | &checksum); |
| 657 | if (ret_val != IGC_SUCCESS0) { |
| 658 | hw->nvm.ops.release(hw); |
| 659 | DEBUGOUT("NVM Write Error while updating checksum.\n")do { if (0) printf("NVM Write Error while updating checksum.\n" ); } while (0); |
| 660 | goto out; |
| 661 | } |
| 662 | |
| 663 | hw->nvm.ops.release(hw); |
| 664 | |
| 665 | ret_val = igc_update_flash_i225(hw); |
| 666 | } else { |
| 667 | ret_val = IGC_ERR_SWFW_SYNC13; |
| 668 | } |
| 669 | out: |
| 670 | return ret_val; |
| 671 | } |
| 672 | |
| 673 | /* igc_get_flash_presence_i225 - Check if flash device is detected. |
| 674 | * @hw: pointer to the HW structure |
| 675 | */ |
| 676 | bool_Bool |
| 677 | igc_get_flash_presence_i225(struct igc_hw *hw) |
| 678 | { |
| 679 | uint32_t eec = 0; |
| 680 | bool_Bool ret_val = false0; |
| 681 | |
| 682 | DEBUGFUNC("igc_get_flash_presence_i225")do { if (0) printf("igc_get_flash_presence_i225" "\n"); } while (0); |
| 683 | |
| 684 | eec = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
| 685 | |
| 686 | if (eec & IGC_EECD_FLASH_DETECTED_I2250x00080000) |
| 687 | ret_val = true1; |
| 688 | |
| 689 | return ret_val; |
| 690 | } |
| 691 | |
| 692 | /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst |
| 693 | * Counter in FLSWCNT register. |
| 694 | * |
| 695 | * @hw: pointer to the HW structure |
| 696 | * @burst_counter: size in bytes of the Flash burst to read or write |
| 697 | */ |
| 698 | int |
| 699 | igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter) |
| 700 | { |
| 701 | int ret_val = IGC_SUCCESS0; |
| 702 | |
| 703 | DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225")do { if (0) printf("igc_set_flsw_flash_burst_counter_i225" "\n" ); } while (0); |
| 704 | |
| 705 | /* Validate input data */ |
| 706 | if (burst_counter < IGC_I225_SHADOW_RAM_SIZE4096) { |
| 707 | /* Write FLSWCNT - burst counter */ |
| 708 | IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12050) , (burst_counter))); |
| 709 | } else { |
| 710 | ret_val = IGC_ERR_INVALID_ARGUMENT16; |
| 711 | } |
| 712 | |
| 713 | return ret_val; |
| 714 | } |
| 715 | |
| 716 | |
| 717 | /* igc_write_erase_flash_command_i225 - write/erase to a sector |
| 718 | * region on a given address. |
| 719 | * |
| 720 | * @hw: pointer to the HW structure |
| 721 | * @opcode: opcode to be used for the write command |
| 722 | * @address: the offset to write into the FLASH image |
| 723 | */ |
| 724 | int |
| 725 | igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode, |
| 726 | uint32_t address) |
| 727 | { |
| 728 | uint32_t flswctl = 0; |
| 729 | int timeout = IGC_NVM_GRANT_ATTEMPTS1000; |
| 730 | int ret_val = IGC_SUCCESS0; |
| 731 | |
| 732 | DEBUGFUNC("igc_write_erase_flash_command_i225")do { if (0) printf("igc_write_erase_flash_command_i225" "\n") ; } while (0); |
| 733 | |
| 734 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
| 735 | /* Polling done bit on FLSWCTL register */ |
| 736 | while (timeout) { |
| 737 | if (flswctl & IGC_FLSWCTL_DONE0x40000000) |
| 738 | break; |
| 739 | DELAY(5)(*delay_func)(5); |
| 740 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
| 741 | timeout--; |
| 742 | } |
| 743 | |
| 744 | if (!timeout) { |
| 745 | DEBUGOUT("Flash transaction was not done\n")do { if (0) printf("Flash transaction was not done\n"); } while (0); |
| 746 | return -IGC_ERR_NVM1; |
| 747 | } |
| 748 | |
| 749 | /* Build and issue command on FLSWCTL register */ |
| 750 | flswctl = address | opcode; |
| 751 | IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) , (flswctl))); |
| 752 | |
| 753 | /* Check if issued command is valid on FLSWCTL register */ |
| 754 | flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12048) )); |
| 755 | if (!(flswctl & IGC_FLSWCTL_CMDV0x10000000)) { |
| 756 | DEBUGOUT("Write flash command failed\n")do { if (0) printf("Write flash command failed\n"); } while ( 0); |
| 757 | ret_val = IGC_ERR_INVALID_ARGUMENT16; |
| 758 | } |
| 759 | |
| 760 | return ret_val; |
| 761 | } |
| 762 | |
| 763 | /* igc_update_flash_i225 - Commit EEPROM to the flash |
| 764 | * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC |
| 765 | * register makes the FW load the internal shadow RAM into the flash. |
| 766 | * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 |
| 767 | * then FW is not active so the SW is responsible shadow RAM dump. |
| 768 | * |
| 769 | * @hw: pointer to the HW structure |
| 770 | */ |
| 771 | int |
| 772 | igc_update_flash_i225(struct igc_hw *hw) |
| 773 | { |
| 774 | uint32_t block_sw_protect = 1; |
| 775 | uint32_t i, flup, fw_valid_bit; |
| 776 | uint16_t current_offset; |
| 777 | uint16_t base_address = 0x0; |
| 778 | uint16_t current_offset_data = 0; |
| 779 | int ret_val = 0; |
| 780 | |
| 781 | DEBUGFUNC("igc_update_flash_i225")do { if (0) printf("igc_update_flash_i225" "\n"); } while (0); |
| 782 | |
| 783 | block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x12114) )) & |
| 784 | IGC_FLSECU_BLK_SW_ACCESS_I2250x00000004; |
| 785 | |
| 786 | fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x05B54) )) & IGC_FWSM_FW_VALID_I2250x8000; |
| 787 | if (fw_valid_bit) { |
| 788 | ret_val = igc_pool_flash_update_done_i225(hw); |
| 789 | if (ret_val == -IGC_ERR_NVM1) { |
| 790 | DEBUGOUT("Flash update time out\n")do { if (0) printf("Flash update time out\n"); } while (0); |
| 791 | goto out; |
| 792 | } |
| 793 | |
| 794 | flup = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )) | IGC_EECD_FLUPD_I2250x00800000; |
| 795 | IGC_WRITE_REG(hw, IGC_EECD, flup)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) , (flup))); |
| 796 | |
| 797 | ret_val = igc_pool_flash_update_done_i225(hw); |
| 798 | if (ret_val == IGC_SUCCESS0) |
| 799 | DEBUGOUT("Flash update complete\n")do { if (0) printf("Flash update complete\n"); } while (0); |
| 800 | else |
| 801 | DEBUGOUT("Flash update time out\n")do { if (0) printf("Flash update time out\n"); } while (0); |
| 802 | } else if (!block_sw_protect) { |
| 803 | /* FW is not active and security protection is disabled. |
| 804 | * therefore, SW is in charge of shadow RAM dump. |
| 805 | * Check which sector is valid. if sector 0 is valid, |
| 806 | * base address remains 0x0. otherwise, sector 1 is |
| 807 | * valid and its base address is 0x1000 |
| 808 | */ |
| 809 | if (IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )) & IGC_EECD_SEC1VAL_I2250x02000000) |
| 810 | base_address = 0x1000; |
| 811 | |
| 812 | /* Valid sector erase */ |
| 813 | ret_val = igc_write_erase_flash_command_i225(hw, |
| 814 | IGC_I225_ERASE_CMD_OPCODE0x02000000, base_address); |
| 815 | if (!ret_val) { |
| 816 | DEBUGOUT("Sector erase failed\n")do { if (0) printf("Sector erase failed\n"); } while (0); |
| 817 | goto out; |
| 818 | } |
| 819 | |
| 820 | current_offset = base_address; |
| 821 | |
| 822 | /* Write */ |
| 823 | for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE4096 / 2; i++) { |
| 824 | /* Set burst write length */ |
| 825 | ret_val = igc_set_flsw_flash_burst_counter_i225(hw, |
| 826 | 0x2); |
| 827 | if (ret_val != IGC_SUCCESS0) |
| 828 | break; |
| 829 | |
| 830 | /* Set address and opcode */ |
| 831 | ret_val = igc_write_erase_flash_command_i225(hw, |
| 832 | IGC_I225_WRITE_CMD_OPCODE0x01000000, 2 * current_offset); |
| 833 | if (ret_val != IGC_SUCCESS0) |
| 834 | break; |
| 835 | |
| 836 | ret_val = igc_read_nvm_eerd(hw, current_offset, 1, |
| 837 | ¤t_offset_data); |
| 838 | if (ret_val) { |
| 839 | DEBUGOUT("Failed to read from EEPROM\n")do { if (0) printf("Failed to read from EEPROM\n"); } while ( 0); |
| 840 | goto out; |
| 841 | } |
| 842 | |
| 843 | /* Write CurrentOffseData to FLSWDATA register */ |
| 844 | IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x1204C) , (current_offset_data))) |
| 845 | current_offset_data)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x1204C) , (current_offset_data))); |
| 846 | current_offset++; |
| 847 | |
| 848 | /* Wait till operation has finished */ |
| 849 | ret_val = igc_poll_eerd_eewr_done(hw, |
| 850 | IGC_NVM_POLL_READ0); |
| 851 | if (ret_val) |
| 852 | break; |
| 853 | |
| 854 | DELAY(1000)(*delay_func)(1000); |
| 855 | } |
| 856 | } |
| 857 | out: |
| 858 | return ret_val; |
| 859 | } |
| 860 | |
| 861 | /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. |
| 862 | * @hw: pointer to the HW structure |
| 863 | */ |
| 864 | int |
| 865 | igc_pool_flash_update_done_i225(struct igc_hw *hw) |
| 866 | { |
| 867 | uint32_t i, reg; |
| 868 | int ret_val = -IGC_ERR_NVM1; |
| 869 | |
| 870 | DEBUGFUNC("igc_pool_flash_update_done_i225")do { if (0) printf("igc_pool_flash_update_done_i225" "\n"); } while (0); |
| 871 | |
| 872 | for (i = 0; i < IGC_FLUDONE_ATTEMPTS20000; i++) { |
| 873 | reg = IGC_READ_REG(hw, IGC_EECD)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x00010) )); |
| 874 | if (reg & IGC_EECD_FLUDONE_I2250x04000000) { |
| 875 | ret_val = IGC_SUCCESS0; |
| 876 | break; |
| 877 | } |
| 878 | DELAY(5)(*delay_func)(5); |
| 879 | } |
| 880 | |
| 881 | return ret_val; |
| 882 | } |
| 883 | |
| 884 | /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. |
| 885 | * @hw: pointer to the HW structure |
| 886 | * @link: bool indicating link status |
| 887 | * |
| 888 | * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC |
| 889 | * settings, otherwise specify that there is no LTR requirement. |
| 890 | */ |
| 891 | int |
| 892 | igc_set_ltr_i225(struct igc_hw *hw, bool_Bool link) |
| 893 | { |
| 894 | uint16_t speed, duplex; |
| 895 | uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; |
| 896 | int size; |
| 897 | |
| 898 | DEBUGFUNC("igc_set_ltr_i225")do { if (0) printf("igc_set_ltr_i225" "\n"); } while (0); |
| 899 | |
| 900 | /* If we do not have link, LTR thresholds are zero. */ |
| 901 | if (link) { |
| 902 | hw->mac.ops.get_link_up_info(hw, &speed, &duplex); |
| 903 | |
| 904 | /* Check if using copper interface with EEE enabled or if the |
| 905 | * link speed is 10 Mbps. |
| 906 | */ |
| 907 | if ((hw->phy.media_type == igc_media_type_copper) && |
| 908 | !(hw->dev_spec._i225.eee_disable) && |
| 909 | (speed != SPEED_1010)) { |
| 910 | /* EEE enabled, so send LTRMAX threshold. */ |
| 911 | ltrc = IGC_READ_REG(hw, IGC_LTRC)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01A0)) ) | IGC_LTRC_EEEMS_EN0x00000020; |
| 912 | IGC_WRITE_REG(hw, IGC_LTRC, ltrc)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x01A0), (ltrc))); |
| 913 | |
| 914 | /* Calculate tw_system (nsec). */ |
| 915 | if (speed == SPEED_100100) { |
| 916 | tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ) & |
| 917 | IGC_TW_SYSTEM_100_MASK0x0000FF00) >> |
| 918 | IGC_TW_SYSTEM_100_SHIFT8) * 500; |
| 919 | } else { |
| 920 | tw_system = (IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ) & |
| 921 | IGC_TW_SYSTEM_1000_MASK0x000000FF) * 500; |
| 922 | } |
| 923 | } else { |
| 924 | tw_system = 0; |
| 925 | } |
| 926 | |
| 927 | /* Get the Rx packet buffer size. */ |
| 928 | size = IGC_READ_REG(hw, IGC_RXPBS)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02404) )) & IGC_RXPBS_SIZE_I225_MASK0x0000003F; |
| 929 | |
| 930 | /* Calculations vary based on DMAC settings. */ |
| 931 | if (IGC_READ_REG(hw, IGC_DMACR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02508) )) & IGC_DMACR_DMAC_EN0x80000000) { |
| 932 | size -= (IGC_READ_REG(hw, IGC_DMACR)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x02508) )) & |
| 933 | IGC_DMACR_DMACTHR_MASK0x00FF0000) >> IGC_DMACR_DMACTHR_SHIFT16; |
| 934 | /* Convert size to bits. */ |
| 935 | size *= 1024 * 8; |
| 936 | } else { |
| 937 | /* Convert size to bytes, subtract the MTU, and then |
| 938 | * convert the size to bits. |
| 939 | */ |
| 940 | size *= 1024; |
| 941 | size -= hw->dev_spec._i225.mtu; |
| 942 | size *= 8; |
| 943 | } |
| 944 | |
| 945 | if (size < 0) { |
| 946 | DEBUGOUT1("Invalid effective Rx buffer size %d\n",do { if (0) printf("Invalid effective Rx buffer size %d\n", size ); } while (0) |
| 947 | size)do { if (0) printf("Invalid effective Rx buffer size %d\n", size ); } while (0); |
| 948 | return -IGC_ERR_CONFIG3; |
| 949 | } |
| 950 | |
| 951 | /* Calculate the thresholds. Since speed is in Mbps, simplify |
| 952 | * the calculation by multiplying size/speed by 1000 for result |
| 953 | * to be in nsec before dividing by the scale in nsec. Set the |
| 954 | * scale such that the LTR threshold fits in the register. |
| 955 | */ |
| 956 | ltr_min = (1000 * size) / speed; |
| 957 | ltr_max = ltr_min + tw_system; |
| 958 | scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_10242 : |
| 959 | IGC_LTRMINV_SCALE_327683; |
| 960 | scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_10242 : |
| 961 | IGC_LTRMAXV_SCALE_327683; |
| 962 | ltr_min /= scale_min == IGC_LTRMINV_SCALE_10242 ? 1024 : 32768; |
| 963 | ltr_max /= scale_max == IGC_LTRMAXV_SCALE_10242 ? 1024 : 32768; |
| 964 | |
| 965 | /* Only write the LTR thresholds if they differ from before. */ |
| 966 | ltrv = IGC_READ_REG(hw, IGC_LTRMINV)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB0)) ); |
| 967 | if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK0x000003FF)) { |
| 968 | ltrv = IGC_LTRMINV_LSNP_REQ0x00008000 | ltr_min | |
| 969 | (scale_min << IGC_LTRMINV_SCALE_SHIFT10); |
| 970 | IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB0), (ltrv))); |
| 971 | } |
| 972 | |
| 973 | ltrv = IGC_READ_REG(hw, IGC_LTRMAXV)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB4)) ); |
| 974 | if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK0x000003FF)) { |
| 975 | ltrv = IGC_LTRMAXV_LSNP_REQ0x00008000 | ltr_max | |
| 976 | (scale_min << IGC_LTRMAXV_SCALE_SHIFT10); |
| 977 | IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x5BB4), (ltrv))); |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | return IGC_SUCCESS0; |
| 982 | } |
| 983 | |
| 984 | /* igc_check_for_link_i225 - Check for link |
| 985 | * @hw: pointer to the HW structure |
| 986 | * |
| 987 | * Checks to see of the link status of the hardware has changed. If a |
| 988 | * change in link status has been detected, then we read the PHY registers |
| 989 | * to get the current speed/duplex if link exists. |
| 990 | */ |
| 991 | int |
| 992 | igc_check_for_link_i225(struct igc_hw *hw) |
| 993 | { |
| 994 | struct igc_mac_info *mac = &hw->mac; |
| 995 | int ret_val; |
| 996 | bool_Bool link = false0; |
| 997 | |
| 998 | DEBUGFUNC("igc_check_for_link_i225")do { if (0) printf("igc_check_for_link_i225" "\n"); } while ( 0); |
| 999 | |
| 1000 | /* We only want to go out to the PHY registers to see if |
| 1001 | * Auto-Neg has completed and/or if our link status has |
| 1002 | * changed. The get_link_status flag is set upon receiving |
| 1003 | * a Link Status Change or Rx Sequence Error interrupt. |
| 1004 | */ |
| 1005 | if (!mac->get_link_status) { |
| 1006 | ret_val = IGC_SUCCESS0; |
Value stored to 'ret_val' is never read | |
| 1007 | goto out; |
| 1008 | } |
| 1009 | |
| 1010 | /* First we want to see if the MII Status Register reports |
| 1011 | * link. If so, then we want to get the current speed/duplex |
| 1012 | * of the PHY. |
| 1013 | */ |
| 1014 | ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
| 1015 | if (ret_val) |
| 1016 | goto out; |
| 1017 | |
| 1018 | if (!link) |
| 1019 | goto out; /* No link detected */ |
| 1020 | |
| 1021 | /* First we want to see if the MII Status Register reports |
| 1022 | * link. If so, then we want to get the current speed/duplex |
| 1023 | * of the PHY. |
| 1024 | */ |
| 1025 | ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
| 1026 | if (ret_val) |
| 1027 | goto out; |
| 1028 | |
| 1029 | if (!link) |
| 1030 | goto out; /* No link detected */ |
| 1031 | |
| 1032 | mac->get_link_status = false0; |
| 1033 | |
| 1034 | /* Check if there was DownShift, must be checked |
| 1035 | * immediately after link-up |
| 1036 | */ |
| 1037 | igc_check_downshift_generic(hw); |
| 1038 | |
| 1039 | /* If we are forcing speed/duplex, then we simply return since |
| 1040 | * we have already determined whether we have link or not. |
| 1041 | */ |
| 1042 | if (!mac->autoneg) |
| 1043 | goto out; |
| 1044 | |
| 1045 | /* Auto-Neg is enabled. Auto Speed Detection takes care |
| 1046 | * of MAC speed/duplex configuration. So we only need to |
| 1047 | * configure Collision Distance in the MAC. |
| 1048 | */ |
| 1049 | mac->ops.config_collision_dist(hw); |
| 1050 | |
| 1051 | /* Configure Flow Control now that Auto-Neg has completed. |
| 1052 | * First, we need to restore the desired flow control |
| 1053 | * settings because we may have had to re-autoneg with a |
| 1054 | * different link partner. |
| 1055 | */ |
| 1056 | ret_val = igc_config_fc_after_link_up_generic(hw); |
| 1057 | if (ret_val) |
| 1058 | DEBUGOUT("Error configuring flow control\n")do { if (0) printf("Error configuring flow control\n"); } while (0); |
| 1059 | out: |
| 1060 | /* Now that we are aware of our link settings, we can set the LTR |
| 1061 | * thresholds. |
| 1062 | */ |
| 1063 | ret_val = igc_set_ltr_i225(hw, link); |
| 1064 | |
| 1065 | return ret_val; |
| 1066 | } |
| 1067 | |
| 1068 | /* igc_init_function_pointers_i225 - Init func ptrs. |
| 1069 | * @hw: pointer to the HW structure |
| 1070 | * |
| 1071 | * Called to initialize all function pointers and parameters. |
| 1072 | */ |
| 1073 | void |
| 1074 | igc_init_function_pointers_i225(struct igc_hw *hw) |
| 1075 | { |
| 1076 | igc_init_mac_ops_generic(hw); |
| 1077 | igc_init_phy_ops_generic(hw); |
| 1078 | igc_init_nvm_ops_generic(hw); |
| 1079 | hw->mac.ops.init_params = igc_init_mac_params_i225; |
| 1080 | hw->nvm.ops.init_params = igc_init_nvm_params_i225; |
| 1081 | hw->phy.ops.init_params = igc_init_phy_params_i225; |
| 1082 | } |
| 1083 | |
| 1084 | /* igc_init_hw_i225 - Init hw for I225 |
| 1085 | * @hw: pointer to the HW structure |
| 1086 | * |
| 1087 | * Called to initialize hw for i225 hw family. |
| 1088 | */ |
| 1089 | int |
| 1090 | igc_init_hw_i225(struct igc_hw *hw) |
| 1091 | { |
| 1092 | int ret_val; |
| 1093 | |
| 1094 | DEBUGFUNC("igc_init_hw_i225")do { if (0) printf("igc_init_hw_i225" "\n"); } while (0); |
| 1095 | |
| 1096 | ret_val = igc_init_hw_base(hw); |
| 1097 | return ret_val; |
| 1098 | } |
| 1099 | |
| 1100 | /** |
| 1101 | * igc_set_eee_i225 - Enable/disable EEE support |
| 1102 | * @hw: pointer to the HW structure |
| 1103 | * @adv2p5G: boolean flag enabling 2.5G EEE advertisement |
| 1104 | * @adv1G: boolean flag enabling 1G EEE advertisement |
| 1105 | * @adv100M: boolean flag enabling 100M EEE advertisement |
| 1106 | * |
| 1107 | * Enable/disable EEE based on setting in dev_spec structure. |
| 1108 | * |
| 1109 | **/ |
| 1110 | int |
| 1111 | igc_set_eee_i225(struct igc_hw *hw, bool_Bool adv2p5G, bool_Bool adv1G, |
| 1112 | bool_Bool adv100M) |
| 1113 | { |
| 1114 | uint32_t ipcnfg, eeer; |
| 1115 | |
| 1116 | DEBUGFUNC("igc_set_eee_i225")do { if (0) printf("igc_set_eee_i225" "\n"); } while (0); |
| 1117 | |
| 1118 | if (hw->mac.type != igc_i225 || |
| 1119 | hw->phy.media_type != igc_media_type_copper) |
| 1120 | goto out; |
| 1121 | ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38)) ); |
| 1122 | eeer = IGC_READ_REG(hw, IGC_EEER)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30)) ); |
| 1123 | |
| 1124 | /* enable or disable per user setting */ |
| 1125 | if (!(hw->dev_spec._i225.eee_disable)) { |
| 1126 | uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E34)) ); |
| 1127 | |
| 1128 | if (adv100M) |
| 1129 | ipcnfg |= IGC_IPCNFG_EEE_100M_AN0x00000004; |
| 1130 | else |
| 1131 | ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN0x00000004; |
| 1132 | |
| 1133 | if (adv1G) |
| 1134 | ipcnfg |= IGC_IPCNFG_EEE_1G_AN0x00000008; |
| 1135 | else |
| 1136 | ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN0x00000008; |
| 1137 | |
| 1138 | if (adv2p5G) |
| 1139 | ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN0x00000010; |
| 1140 | else |
| 1141 | ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN0x00000010; |
| 1142 | |
| 1143 | eeer |= (IGC_EEER_TX_LPI_EN0x00010000 | IGC_EEER_RX_LPI_EN0x00020000 | |
| 1144 | IGC_EEER_LPI_FC0x00040000); |
| 1145 | |
| 1146 | /* This bit should not be set in normal operation. */ |
| 1147 | if (eee_su & IGC_EEE_SU_LPI_CLK_STP0x00800000) |
| 1148 | DEBUGOUT("LPI Clock Stop Bit should not be set!\n")do { if (0) printf("LPI Clock Stop Bit should not be set!\n") ; } while (0); |
| 1149 | } else { |
| 1150 | ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN0x00000010 | IGC_IPCNFG_EEE_1G_AN0x00000008 | |
| 1151 | IGC_IPCNFG_EEE_100M_AN0x00000004); |
| 1152 | eeer &= ~(IGC_EEER_TX_LPI_EN0x00010000 | IGC_EEER_RX_LPI_EN0x00020000 | |
| 1153 | IGC_EEER_LPI_FC0x00040000); |
| 1154 | } |
| 1155 | IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38), (ipcnfg))); |
| 1156 | IGC_WRITE_REG(hw, IGC_EEER, eeer)((((struct igc_osdep *)(hw)->back)->os_memt)->write_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30), (eeer))); |
| 1157 | IGC_READ_REG(hw, IGC_IPCNFG)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E38)) ); |
| 1158 | IGC_READ_REG(hw, IGC_EEER)((((struct igc_osdep *)(hw)->back)->os_memt)->read_4 ((((struct igc_osdep *)(hw)->back)->os_memh), (0x0E30)) ); |
| 1159 | out: |
| 1160 | |
| 1161 | return IGC_SUCCESS0; |
| 1162 | } |