File: | dev/sdmmc/sdhc.c |
Warning: | line 854, column 9 Although the value stored to 'state' is used in the enclosing expression, the value is never actually read from 'state' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: sdhc.c,v 1.76 2023/10/01 08:56:24 kettenis Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org> |
5 | * |
6 | * Permission to use, copy, modify, and distribute this software for any |
7 | * purpose with or without fee is hereby granted, provided that the above |
8 | * copyright notice and this permission notice appear in all copies. |
9 | * |
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
17 | */ |
18 | |
19 | /* |
20 | * SD Host Controller driver based on the SD Host Controller Standard |
21 | * Simplified Specification Version 1.00 (www.sdcard.org). |
22 | */ |
23 | |
24 | #include <sys/param.h> |
25 | #include <sys/device.h> |
26 | #include <sys/kernel.h> |
27 | #include <sys/malloc.h> |
28 | #include <sys/proc.h> |
29 | #include <sys/systm.h> |
30 | #include <sys/time.h> |
31 | |
32 | #include <dev/sdmmc/sdhcreg.h> |
33 | #include <dev/sdmmc/sdhcvar.h> |
34 | #include <dev/sdmmc/sdmmcchip.h> |
35 | #include <dev/sdmmc/sdmmcreg.h> |
36 | #include <dev/sdmmc/sdmmcvar.h> |
37 | #include <dev/sdmmc/sdmmc_ioreg.h> |
38 | |
39 | /* Timeouts in seconds */ |
40 | #define SDHC_COMMAND_TIMEOUT1 1 |
41 | #define SDHC_BUFFER_TIMEOUT1 1 |
42 | #define SDHC_TRANSFER_TIMEOUT1 1 |
43 | #define SDHC_DMA_TIMEOUT3 3 |
44 | |
45 | struct sdhc_host { |
46 | struct sdhc_softc *sc; /* host controller device */ |
47 | struct device *sdmmc; /* generic SD/MMC device */ |
48 | bus_space_tag_t iot; /* host register set tag */ |
49 | bus_space_handle_t ioh; /* host register set handle */ |
50 | u_int16_t version; /* specification version */ |
51 | u_int clkbase; /* base clock frequency in KHz */ |
52 | int maxblklen; /* maximum block length */ |
53 | int flags; /* flags for this host */ |
54 | u_int32_t ocr; /* OCR value from capabilities */ |
55 | u_int8_t regs[14]; /* host controller state */ |
56 | u_int16_t intr_status; /* soft interrupt status */ |
57 | u_int16_t intr_error_status; /* soft error status */ |
58 | |
59 | bus_dmamap_t adma_map; |
60 | bus_dma_segment_t adma_segs[1]; |
61 | caddr_t adma2; |
62 | |
63 | uint16_t block_size; |
64 | uint16_t block_count; |
65 | uint16_t transfer_mode; |
66 | }; |
67 | |
68 | /* flag values */ |
69 | #define SHF_USE_DMA0x0001 0x0001 |
70 | #define SHF_USE_DMA640x0002 0x0002 |
71 | #define SHF_USE_32BIT_ACCESS0x0004 0x0004 |
72 | |
73 | #define HREAD1(hp, reg)(sdhc_read_1((hp), (reg))) \ |
74 | (sdhc_read_1((hp), (reg))) |
75 | #define HREAD2(hp, reg)(sdhc_read_2((hp), (reg))) \ |
76 | (sdhc_read_2((hp), (reg))) |
77 | #define HREAD4(hp, reg)((((hp)->iot)->read_4(((hp)->ioh), ((reg))))) \ |
78 | (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))(((hp)->iot)->read_4(((hp)->ioh), ((reg))))) |
79 | #define HWRITE1(hp, reg, val)sdhc_write_1((hp), (reg), (val)) \ |
80 | sdhc_write_1((hp), (reg), (val)) |
81 | #define HWRITE2(hp, reg, val)sdhc_write_2((hp), (reg), (val)) \ |
82 | sdhc_write_2((hp), (reg), (val)) |
83 | #define HWRITE4(hp, reg, val)(((hp)->iot)->write_4(((hp)->ioh), ((reg)), ((val))) ) \ |
84 | bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))(((hp)->iot)->write_4(((hp)->ioh), ((reg)), ((val))) ) |
85 | #define HCLR1(hp, reg, bits)sdhc_write_1(((hp)), ((reg)), ((sdhc_read_1(((hp)), ((reg)))) & ~(bits))) \ |
86 | HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))sdhc_write_1(((hp)), ((reg)), ((sdhc_read_1(((hp)), ((reg)))) & ~(bits))) |
87 | #define HCLR2(hp, reg, bits)sdhc_write_2(((hp)), ((reg)), ((sdhc_read_2(((hp)), ((reg)))) & ~(bits))) \ |
88 | HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))sdhc_write_2(((hp)), ((reg)), ((sdhc_read_2(((hp)), ((reg)))) & ~(bits))) |
89 | #define HSET1(hp, reg, bits)sdhc_write_1(((hp)), ((reg)), ((sdhc_read_1(((hp)), ((reg)))) | (bits))) \ |
90 | HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))sdhc_write_1(((hp)), ((reg)), ((sdhc_read_1(((hp)), ((reg)))) | (bits))) |
91 | #define HSET2(hp, reg, bits)sdhc_write_2(((hp)), ((reg)), ((sdhc_read_2(((hp)), ((reg)))) | (bits))) \ |
92 | HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))sdhc_write_2(((hp)), ((reg)), ((sdhc_read_2(((hp)), ((reg)))) | (bits))) |
93 | |
94 | int sdhc_host_reset(sdmmc_chipset_handle_t); |
95 | u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t); |
96 | int sdhc_host_maxblklen(sdmmc_chipset_handle_t); |
97 | int sdhc_card_detect(sdmmc_chipset_handle_t); |
98 | int sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t); |
99 | int sdhc_bus_clock(sdmmc_chipset_handle_t, int, int); |
100 | int sdhc_bus_width(sdmmc_chipset_handle_t, int); |
101 | void sdhc_card_intr_mask(sdmmc_chipset_handle_t, int); |
102 | void sdhc_card_intr_ack(sdmmc_chipset_handle_t); |
103 | int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); |
104 | void sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *); |
105 | int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); |
106 | int sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t); |
107 | int sdhc_soft_reset(struct sdhc_host *, int); |
108 | int sdhc_wait_intr_cold(struct sdhc_host *, int, int); |
109 | int sdhc_wait_intr(struct sdhc_host *, int, int); |
110 | void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); |
111 | void sdhc_read_data(struct sdhc_host *, u_char *, int); |
112 | void sdhc_write_data(struct sdhc_host *, u_char *, int); |
113 | int sdhc_hibernate_init(sdmmc_chipset_handle_t, void *); |
114 | |
115 | #ifdef SDHC_DEBUG |
116 | int sdhcdebug = 0; |
117 | #define DPRINTF(n,s)do {} while(0) do { if ((n) <= sdhcdebug) printf s; } while (0) |
118 | void sdhc_dump_regs(struct sdhc_host *); |
119 | #else |
120 | #define DPRINTF(n,s)do {} while(0) do {} while(0) |
121 | #endif |
122 | |
123 | struct sdmmc_chip_functions sdhc_functions = { |
124 | .host_reset = sdhc_host_reset, |
125 | .host_ocr = sdhc_host_ocr, |
126 | .host_maxblklen = sdhc_host_maxblklen, |
127 | .card_detect = sdhc_card_detect, |
128 | .bus_power = sdhc_bus_power, |
129 | .bus_clock = sdhc_bus_clock, |
130 | .bus_width = sdhc_bus_width, |
131 | .exec_command = sdhc_exec_command, |
132 | .card_intr_mask = sdhc_card_intr_mask, |
133 | .card_intr_ack = sdhc_card_intr_ack, |
134 | .signal_voltage = sdhc_signal_voltage, |
135 | .hibernate_init = sdhc_hibernate_init, |
136 | }; |
137 | |
138 | struct cfdriver sdhc_cd = { |
139 | NULL((void *)0), "sdhc", DV_DULL |
140 | }; |
141 | |
142 | /* |
143 | * Some controllers live on a bus that only allows 32-bit |
144 | * transactions. In that case we use a RMW cycle for 8-bit and 16-bit |
145 | * register writes. However that doesn't work for the Transfer Mode |
146 | * register as this register lives in the same 32-bit word as the |
147 | * Command register and writing the Command register triggers SD |
148 | * command generation. We avoid this issue by using a shadow variable |
149 | * for the Transfer Mode register that we write out when we write the |
150 | * Command register. |
151 | * |
152 | * The Arasan controller integrated on the Broadcom SoCs |
153 | * used in the Raspberry Pi has an interesting bug where writing the |
154 | * same 32-bit register twice doesn't work. This means that we lose |
155 | * writes to the Block Sine and/or Block Count register. We work |
156 | * around that issue by using shadow variables as well. |
157 | */ |
158 | |
159 | uint8_t |
160 | sdhc_read_1(struct sdhc_host *hp, bus_size_t offset) |
161 | { |
162 | uint32_t reg; |
163 | |
164 | if (hp->flags & SHF_USE_32BIT_ACCESS0x0004) { |
165 | reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3)((hp->iot)->read_4((hp->ioh), (offset & ~3))); |
166 | return (reg >> ((offset & 3) * 8)) & 0xff; |
167 | } |
168 | |
169 | return bus_space_read_1(hp->iot, hp->ioh, offset)((hp->iot)->read_1((hp->ioh), (offset))); |
170 | } |
171 | |
172 | uint16_t |
173 | sdhc_read_2(struct sdhc_host *hp, bus_size_t offset) |
174 | { |
175 | uint32_t reg; |
176 | |
177 | if (hp->flags & SHF_USE_32BIT_ACCESS0x0004) { |
178 | reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2)((hp->iot)->read_4((hp->ioh), (offset & ~2))); |
179 | return (reg >> ((offset & 2) * 8)) & 0xffff; |
180 | } |
181 | |
182 | return bus_space_read_2(hp->iot, hp->ioh, offset)((hp->iot)->read_2((hp->ioh), (offset))); |
183 | } |
184 | |
185 | void |
186 | sdhc_write_1(struct sdhc_host *hp, bus_size_t offset, uint8_t value) |
187 | { |
188 | uint32_t reg; |
189 | |
190 | if (hp->flags & SHF_USE_32BIT_ACCESS0x0004) { |
191 | reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3)((hp->iot)->read_4((hp->ioh), (offset & ~3))); |
192 | reg &= ~(0xff << ((offset & 3) * 8)); |
193 | reg |= (value << ((offset & 3) * 8)); |
194 | bus_space_write_4(hp->iot, hp->ioh, offset & ~3, reg)((hp->iot)->write_4((hp->ioh), (offset & ~3), (reg ))); |
195 | return; |
196 | } |
197 | |
198 | bus_space_write_1(hp->iot, hp->ioh, offset, value)((hp->iot)->write_1((hp->ioh), (offset), (value))); |
199 | } |
200 | |
201 | void |
202 | sdhc_write_2(struct sdhc_host *hp, bus_size_t offset, uint16_t value) |
203 | { |
204 | uint32_t reg; |
205 | |
206 | if (hp->flags & SHF_USE_32BIT_ACCESS0x0004) { |
207 | switch (offset) { |
208 | case SDHC_BLOCK_SIZE0x04: |
209 | hp->block_size = value; |
210 | return; |
211 | case SDHC_BLOCK_COUNT0x06: |
212 | hp->block_count = value; |
213 | return; |
214 | case SDHC_TRANSFER_MODE0x0c: |
215 | hp->transfer_mode = value; |
216 | return; |
217 | case SDHC_COMMAND0x0e: |
218 | bus_space_write_4(hp->iot, hp->ioh, SDHC_BLOCK_SIZE,((hp->iot)->write_4((hp->ioh), (0x04), ((hp->block_count << 16) | hp->block_size))) |
219 | (hp->block_count << 16) | hp->block_size)((hp->iot)->write_4((hp->ioh), (0x04), ((hp->block_count << 16) | hp->block_size))); |
220 | bus_space_write_4(hp->iot, hp->ioh, SDHC_TRANSFER_MODE,((hp->iot)->write_4((hp->ioh), (0x0c), ((value << 16) | hp->transfer_mode))) |
221 | (value << 16) | hp->transfer_mode)((hp->iot)->write_4((hp->ioh), (0x0c), ((value << 16) | hp->transfer_mode))); |
222 | return; |
223 | } |
224 | |
225 | reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2)((hp->iot)->read_4((hp->ioh), (offset & ~2))); |
226 | reg &= ~(0xffff << ((offset & 2) * 8)); |
227 | reg |= (value << ((offset & 2) * 8)); |
228 | bus_space_write_4(hp->iot, hp->ioh, offset & ~2, reg)((hp->iot)->write_4((hp->ioh), (offset & ~2), (reg ))); |
229 | return; |
230 | } |
231 | |
232 | bus_space_write_2(hp->iot, hp->ioh, offset, value)((hp->iot)->write_2((hp->ioh), (offset), (value))); |
233 | } |
234 | |
235 | /* |
236 | * Called by attachment driver. For each SD card slot there is one SD |
237 | * host controller standard register set. (1.3) |
238 | */ |
239 | int |
240 | sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, |
241 | bus_space_handle_t ioh, bus_size_t iosize, int usedma, uint64_t capmask, |
242 | uint64_t capset) |
243 | { |
244 | struct sdmmcbus_attach_args saa; |
245 | struct sdhc_host *hp; |
246 | uint32_t caps; |
247 | int major, minor; |
248 | int error = 1; |
249 | int max_clock; |
250 | |
251 | /* Allocate one more host structure. */ |
252 | sc->sc_nhosts++; |
253 | hp = malloc(sizeof(*hp), M_DEVBUF2, M_WAITOK0x0001 | M_ZERO0x0008); |
254 | sc->sc_host[sc->sc_nhosts - 1] = hp; |
255 | |
256 | if (ISSET(sc->sc_flags, SDHC_F_32BIT_ACCESS)((sc->sc_flags) & ((1 << 2)))) |
257 | SET(hp->flags, SHF_USE_32BIT_ACCESS)((hp->flags) |= (0x0004)); |
258 | |
259 | /* Fill in the new host structure. */ |
260 | hp->sc = sc; |
261 | hp->iot = iot; |
262 | hp->ioh = ioh; |
263 | |
264 | /* Store specification version. */ |
265 | hp->version = HREAD2(hp, SDHC_HOST_CTL_VERSION)(sdhc_read_2((hp), (0xfe))); |
266 | |
267 | /* |
268 | * Reset the host controller and enable interrupts. |
269 | */ |
270 | (void)sdhc_host_reset(hp); |
271 | |
272 | /* Determine host capabilities. */ |
273 | caps = HREAD4(hp, SDHC_CAPABILITIES)((((hp)->iot)->read_4(((hp)->ioh), ((0x40))))); |
274 | caps &= ~capmask; |
275 | caps |= capset; |
276 | |
277 | /* Use DMA if the host system and the controller support it. */ |
278 | if (usedma && ISSET(caps, SDHC_ADMA2_SUPP)((caps) & ((1<<19)))) { |
279 | SET(hp->flags, SHF_USE_DMA)((hp->flags) |= (0x0001)); |
280 | if (ISSET(caps, SDHC_64BIT_DMA_SUPP)((caps) & ((1<<28)))) |
281 | SET(hp->flags, SHF_USE_DMA64)((hp->flags) |= (0x0002)); |
282 | } |
283 | |
284 | /* |
285 | * Determine the base clock frequency. (2.2.24) |
286 | */ |
287 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) { |
288 | /* SDHC 3.0 supports 10-255 MHz. */ |
289 | max_clock = 255000; |
290 | if (SDHC_BASE_FREQ_KHZ_V3(caps)((((caps) >> 8) & 0xff) * 1000) != 0) |
291 | hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps)((((caps) >> 8) & 0xff) * 1000); |
292 | } else { |
293 | /* SDHC 1.0/2.0 supports only 10-63 MHz. */ |
294 | max_clock = 63000; |
295 | if (SDHC_BASE_FREQ_KHZ(caps)((((caps) >> 8) & 0x3f) * 1000) != 0) |
296 | hp->clkbase = SDHC_BASE_FREQ_KHZ(caps)((((caps) >> 8) & 0x3f) * 1000); |
297 | } |
298 | if (hp->clkbase == 0) { |
299 | /* Make sure we can clock down to 400 kHz. */ |
300 | max_clock = 400 * SDHC_SDCLK_DIV_MAX_V32046; |
301 | hp->clkbase = sc->sc_clkbase; |
302 | } |
303 | if (hp->clkbase == 0) { |
304 | /* The attachment driver must tell us. */ |
305 | printf("%s: base clock frequency unknown\n", |
306 | sc->sc_dev.dv_xname); |
307 | goto err; |
308 | } else if (hp->clkbase < 10000 || hp->clkbase > max_clock) { |
309 | printf("%s: base clock frequency out of range: %u MHz\n", |
310 | sc->sc_dev.dv_xname, hp->clkbase / 1000); |
311 | goto err; |
312 | } |
313 | |
314 | switch (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff)) { |
315 | case SDHC_SPEC_VERS_4_100x04: |
316 | major = 4, minor = 10; |
317 | break; |
318 | case SDHC_SPEC_VERS_4_200x05: |
319 | major = 4, minor = 20; |
320 | break; |
321 | default: |
322 | major = SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) + 1, minor = 0; |
323 | break; |
324 | } |
325 | |
326 | printf("%s: SDHC %d.%02d, %d MHz base clock\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
327 | major, minor, hp->clkbase / 1000); |
328 | |
329 | /* |
330 | * XXX Set the data timeout counter value according to |
331 | * capabilities. (2.2.15) |
332 | */ |
333 | |
334 | /* |
335 | * Determine SD bus voltage levels supported by the controller. |
336 | */ |
337 | if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)((caps) & ((1<<26)))) |
338 | SET(hp->ocr, MMC_OCR_1_65V_1_95V)((hp->ocr) |= ((1<<7))); |
339 | if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)((caps) & ((1<<25)))) |
340 | SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V)((hp->ocr) |= ((1<<17) | (1<<18))); |
341 | if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)((caps) & ((1<<24)))) |
342 | SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V)((hp->ocr) |= ((1<<20) | (1<<21))); |
343 | |
344 | /* |
345 | * Determine the maximum block length supported by the host |
346 | * controller. (2.2.24) |
347 | */ |
348 | switch((caps >> SDHC_MAX_BLK_LEN_SHIFT16) & SDHC_MAX_BLK_LEN_MASK0x3) { |
349 | case SDHC_MAX_BLK_LEN_5120: |
350 | hp->maxblklen = 512; |
351 | break; |
352 | case SDHC_MAX_BLK_LEN_10241: |
353 | hp->maxblklen = 1024; |
354 | break; |
355 | case SDHC_MAX_BLK_LEN_20482: |
356 | hp->maxblklen = 2048; |
357 | break; |
358 | default: |
359 | hp->maxblklen = 1; |
360 | break; |
361 | } |
362 | |
363 | if (ISSET(hp->flags, SHF_USE_DMA)((hp->flags) & (0x0001))) { |
364 | int rseg; |
365 | |
366 | /* Allocate ADMA2 descriptor memory */ |
367 | error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((1 << 12)), ((1 << 12)), ((1 << 12)), (hp->adma_segs ), (1), (&rseg), (0x0000 | 0x1000)) |
368 | PAGE_SIZE, hp->adma_segs, 1, &rseg,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((1 << 12)), ((1 << 12)), ((1 << 12)), (hp->adma_segs ), (1), (&rseg), (0x0000 | 0x1000)) |
369 | BUS_DMA_WAITOK | BUS_DMA_ZERO)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((1 << 12)), ((1 << 12)), ((1 << 12)), (hp->adma_segs ), (1), (&rseg), (0x0000 | 0x1000)); |
370 | if (error) |
371 | goto adma_done; |
372 | error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (hp-> adma_segs), (rseg), ((1 << 12)), (&hp->adma2), ( 0x0000 | 0x0004)) |
373 | PAGE_SIZE, &hp->adma2, BUS_DMA_WAITOK | BUS_DMA_COHERENT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (hp-> adma_segs), (rseg), ((1 << 12)), (&hp->adma2), ( 0x0000 | 0x0004)); |
374 | if (error) { |
375 | bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (hp-> adma_segs), (rseg)); |
376 | goto adma_done; |
377 | } |
378 | error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 12)), (1), ((1 << 12)), (0), (0x0000), (&hp->adma_map )) |
379 | 0, BUS_DMA_WAITOK, &hp->adma_map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 12)), (1), ((1 << 12)), (0), (0x0000), (&hp->adma_map )); |
380 | if (error) { |
381 | bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE)(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), (hp-> adma2), ((1 << 12))); |
382 | bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (hp-> adma_segs), (rseg)); |
383 | goto adma_done; |
384 | } |
385 | error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (hp-> adma_map), (hp->adma2), ((1 << 12)), (((void *)0)), ( 0x0000 | 0x0400)) |
386 | hp->adma2, PAGE_SIZE, NULL,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (hp-> adma_map), (hp->adma2), ((1 << 12)), (((void *)0)), ( 0x0000 | 0x0400)) |
387 | BUS_DMA_WAITOK | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (hp-> adma_map), (hp->adma2), ((1 << 12)), (((void *)0)), ( 0x0000 | 0x0400)); |
388 | if (error) { |
389 | bus_dmamap_destroy(sc->sc_dmat, hp->adma_map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (hp ->adma_map)); |
390 | bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE)(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), (hp-> adma2), ((1 << 12))); |
391 | bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (hp-> adma_segs), (rseg)); |
392 | goto adma_done; |
393 | } |
394 | |
395 | adma_done: |
396 | if (error) { |
397 | printf("%s: can't allocate DMA descriptor table\n", |
398 | DEVNAME(hp->sc)((hp->sc)->sc_dev.dv_xname)); |
399 | CLR(hp->flags, SHF_USE_DMA)((hp->flags) &= ~(0x0001)); |
400 | } |
401 | } |
402 | |
403 | /* |
404 | * Attach the generic SD/MMC bus driver. (The bus driver must |
405 | * not invoke any chipset functions before it is attached.) |
406 | */ |
407 | bzero(&saa, sizeof(saa))__builtin_bzero((&saa), (sizeof(saa))); |
408 | saa.saa_busname = "sdmmc"; |
409 | saa.sct = &sdhc_functions; |
410 | saa.sch = hp; |
411 | saa.caps = SMC_CAPS_4BIT_MODE0x0002; |
412 | saa.dmat = sc->sc_dmat; |
413 | saa.dma_boundary = sc->sc_dma_boundary; |
414 | if (ISSET(hp->flags, SHF_USE_DMA)((hp->flags) & (0x0001))) |
415 | saa.caps |= SMC_CAPS_DMA0x0004; |
416 | |
417 | if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)((caps) & ((1<<21)))) |
418 | saa.caps |= SMC_CAPS_SD_HIGHSPEED0x0100; |
419 | if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)((caps) & ((1<<21)))) |
420 | saa.caps |= SMC_CAPS_MMC_HIGHSPEED0x0200; |
421 | |
422 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) { |
423 | uint32_t caps2 = HREAD4(hp, SDHC_CAPABILITIES2)((((hp)->iot)->read_4(((hp)->ioh), ((0x44))))); |
424 | caps2 &= ~(capmask >> 32); |
425 | caps2 |= capset >> 32; |
426 | |
427 | if (ISSET(caps, SDHC_8BIT_MODE_SUPP)((caps) & ((1<<18)))) |
428 | saa.caps |= SMC_CAPS_8BIT_MODE0x0040; |
429 | |
430 | if (ISSET(caps2, SDHC_DDR50_SUPP)((caps2) & ((1<<2)))) |
431 | saa.caps |= SMC_CAPS_MMC_DDR520x2000; |
432 | } |
433 | |
434 | if (ISSET(sc->sc_flags, SDHC_F_NONREMOVABLE)((sc->sc_flags) & ((1 << 1)))) |
435 | saa.caps |= SMC_CAPS_NONREMOVABLE0x10000; |
436 | |
437 | hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL)config_found_sm((&sc->sc_dev), (&saa), (((void *)0 )), ((void *)0)); |
438 | if (hp->sdmmc == NULL((void *)0)) { |
439 | error = 0; |
440 | goto err; |
441 | } |
442 | |
443 | return 0; |
444 | |
445 | err: |
446 | free(hp, M_DEVBUF2, sizeof *hp); |
447 | sc->sc_host[sc->sc_nhosts - 1] = NULL((void *)0); |
448 | sc->sc_nhosts--; |
449 | return (error); |
450 | } |
451 | |
452 | int |
453 | sdhc_activate(struct device *self, int act) |
454 | { |
455 | struct sdhc_softc *sc = (struct sdhc_softc *)self; |
456 | struct sdhc_host *hp; |
457 | int n, i, rv = 0; |
458 | |
459 | switch (act) { |
460 | case DVACT_SUSPEND3: |
461 | rv = config_activate_children(self, act); |
462 | |
463 | /* Save the host controller state. */ |
464 | for (n = 0; n < sc->sc_nhosts; n++) { |
465 | hp = sc->sc_host[n]; |
466 | for (i = 0; i < sizeof hp->regs; i++) |
467 | hp->regs[i] = HREAD1(hp, i)(sdhc_read_1((hp), (i))); |
468 | } |
469 | break; |
470 | case DVACT_RESUME4: |
471 | /* Restore the host controller state. */ |
472 | for (n = 0; n < sc->sc_nhosts; n++) { |
473 | hp = sc->sc_host[n]; |
474 | (void)sdhc_host_reset(hp); |
475 | for (i = 0; i < sizeof hp->regs; i++) |
476 | HWRITE1(hp, i, hp->regs[i])sdhc_write_1((hp), (i), (hp->regs[i])); |
477 | } |
478 | rv = config_activate_children(self, act); |
479 | break; |
480 | case DVACT_POWERDOWN6: |
481 | rv = config_activate_children(self, act); |
482 | sdhc_shutdown(self); |
483 | break; |
484 | default: |
485 | rv = config_activate_children(self, act); |
486 | break; |
487 | } |
488 | return (rv); |
489 | } |
490 | |
491 | /* |
492 | * Shutdown hook established by or called from attachment driver. |
493 | */ |
494 | void |
495 | sdhc_shutdown(void *arg) |
496 | { |
497 | struct sdhc_softc *sc = arg; |
498 | struct sdhc_host *hp; |
499 | int i; |
500 | |
501 | /* XXX chip locks up if we don't disable it before reboot. */ |
502 | for (i = 0; i < sc->sc_nhosts; i++) { |
503 | hp = sc->sc_host[i]; |
504 | (void)sdhc_host_reset(hp); |
505 | } |
506 | } |
507 | |
508 | /* |
509 | * Reset the host controller. Called during initialization, when |
510 | * cards are removed, upon resume, and during error recovery. |
511 | */ |
512 | int |
513 | sdhc_host_reset(sdmmc_chipset_handle_t sch) |
514 | { |
515 | struct sdhc_host *hp = sch; |
516 | u_int16_t imask; |
517 | int error; |
518 | int s; |
519 | |
520 | s = splsdmmc()splraise(0x3); |
521 | |
522 | /* Disable all interrupts. */ |
523 | HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0)sdhc_write_2((hp), (0x38), (0)); |
524 | |
525 | /* |
526 | * Reset the entire host controller and wait up to 100ms for |
527 | * the controller to clear the reset bit. |
528 | */ |
529 | if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL(1<<0))) != 0) { |
530 | splx(s)spllower(s); |
531 | return (error); |
532 | } |
533 | |
534 | /* Set data timeout counter value to max for now. */ |
535 | HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX)sdhc_write_1((hp), (0x2e), (0x0e)); |
536 | |
537 | /* Enable interrupts. */ |
538 | imask = SDHC_CARD_REMOVAL(1<<7) | SDHC_CARD_INSERTION(1<<6) | |
539 | SDHC_BUFFER_READ_READY(1<<5) | SDHC_BUFFER_WRITE_READY(1<<4) | |
540 | SDHC_DMA_INTERRUPT(1<<3) | SDHC_BLOCK_GAP_EVENT(1<<2) | |
541 | SDHC_TRANSFER_COMPLETE(1<<1) | SDHC_COMMAND_COMPLETE(1<<0); |
542 | |
543 | HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask)sdhc_write_2((hp), (0x34), (imask)); |
544 | HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK)sdhc_write_2((hp), (0x36), (0x03ff)); |
545 | HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask)sdhc_write_2((hp), (0x38), (imask)); |
546 | HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK)sdhc_write_2((hp), (0x3a), (0x03ff)); |
547 | |
548 | splx(s)spllower(s); |
549 | return 0; |
550 | } |
551 | |
552 | u_int32_t |
553 | sdhc_host_ocr(sdmmc_chipset_handle_t sch) |
554 | { |
555 | struct sdhc_host *hp = sch; |
556 | return hp->ocr; |
557 | } |
558 | |
559 | int |
560 | sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) |
561 | { |
562 | struct sdhc_host *hp = sch; |
563 | return hp->maxblklen; |
564 | } |
565 | |
566 | /* |
567 | * Return non-zero if the card is currently inserted. |
568 | */ |
569 | int |
570 | sdhc_card_detect(sdmmc_chipset_handle_t sch) |
571 | { |
572 | struct sdhc_host *hp = sch; |
573 | |
574 | if (hp->sc->sc_card_detect) |
575 | return hp->sc->sc_card_detect(hp->sc); |
576 | |
577 | return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED)((((((hp)->iot)->read_4(((hp)->ioh), ((0x24)))))) & ((1<<16))) ? |
578 | 1 : 0; |
579 | } |
580 | |
581 | /* |
582 | * Set or change SD bus voltage and enable or disable SD bus power. |
583 | * Return zero on success. |
584 | */ |
585 | int |
586 | sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr) |
587 | { |
588 | struct sdhc_host *hp = sch; |
589 | u_int8_t vdd; |
590 | int s; |
591 | |
592 | s = splsdmmc()splraise(0x3); |
593 | |
594 | /* |
595 | * Disable bus power before voltage change. |
596 | */ |
597 | if (!(hp->sc->sc_flags & SDHC_F_NOPWR0(1 << 0))) |
598 | HWRITE1(hp, SDHC_POWER_CTL, 0)sdhc_write_1((hp), (0x29), (0)); |
599 | |
600 | /* If power is disabled, reset the host and return now. */ |
601 | if (ocr == 0) { |
602 | splx(s)spllower(s); |
603 | (void)sdhc_host_reset(hp); |
604 | return 0; |
605 | } |
606 | |
607 | /* |
608 | * Select the maximum voltage according to capabilities. |
609 | */ |
610 | ocr &= hp->ocr; |
611 | if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)((ocr) & ((1<<20)|(1<<21)))) |
612 | vdd = SDHC_VOLTAGE_3_3V0x07; |
613 | else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)((ocr) & ((1<<17)|(1<<18)))) |
614 | vdd = SDHC_VOLTAGE_3_0V0x06; |
615 | else if (ISSET(ocr, MMC_OCR_1_65V_1_95V)((ocr) & ((1<<7)))) |
616 | vdd = SDHC_VOLTAGE_1_8V0x05; |
617 | else { |
618 | /* Unsupported voltage level requested. */ |
619 | splx(s)spllower(s); |
620 | return EINVAL22; |
621 | } |
622 | |
623 | /* |
624 | * Enable bus power. Wait at least 1 ms (or 74 clocks) plus |
625 | * voltage ramp until power rises. |
626 | */ |
627 | HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |sdhc_write_1((hp), (0x29), ((vdd << 1) | (1<<0))) |
628 | SDHC_BUS_POWER)sdhc_write_1((hp), (0x29), ((vdd << 1) | (1<<0))); |
629 | sdmmc_delay(10000); |
630 | |
631 | /* |
632 | * The host system may not power the bus due to battery low, |
633 | * etc. In that case, the host controller should clear the |
634 | * bus power bit. |
635 | */ |
636 | if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)(((sdhc_read_1((hp), (0x29)))) & ((1<<0)))) { |
637 | splx(s)spllower(s); |
638 | return ENXIO6; |
639 | } |
640 | |
641 | splx(s)spllower(s); |
642 | return 0; |
643 | } |
644 | |
645 | /* |
646 | * Return the smallest possible base clock frequency divisor value |
647 | * for the CLOCK_CTL register to produce `freq' (KHz). |
648 | */ |
649 | static int |
650 | sdhc_clock_divisor(struct sdhc_host *hp, u_int freq) |
651 | { |
652 | int div; |
653 | |
654 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) { |
655 | if (hp->clkbase <= freq) |
656 | return 0; |
657 | |
658 | for (div = 2; div <= SDHC_SDCLK_DIV_MAX_V32046; div += 2) |
659 | if ((hp->clkbase / div) <= freq) |
660 | return (div / 2); |
661 | } else { |
662 | for (div = 1; div <= SDHC_SDCLK_DIV_MAX256; div *= 2) |
663 | if ((hp->clkbase / div) <= freq) |
664 | return (div / 2); |
665 | } |
666 | |
667 | /* No divisor found. */ |
668 | return -1; |
669 | } |
670 | |
671 | /* |
672 | * Set or change SDCLK frequency or disable the SD clock. |
673 | * Return zero on success. |
674 | */ |
675 | int |
676 | sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing) |
677 | { |
678 | struct sdhc_host *hp = sch; |
679 | struct sdhc_softc *sc = hp->sc; |
680 | int s; |
681 | int div; |
682 | int sdclk; |
683 | int timo; |
684 | int error = 0; |
685 | |
686 | s = splsdmmc()splraise(0x3); |
687 | |
688 | if (hp->sc->sc_bus_clock_pre) |
689 | hp->sc->sc_bus_clock_pre(hp->sc, freq, timing); |
690 | |
691 | #ifdef DIAGNOSTIC1 |
692 | /* Must not stop the clock if commands are in progress. */ |
693 | if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK)((((((hp)->iot)->read_4(((hp)->ioh), ((0x24)))))) & (0x0003)) && |
694 | sdhc_card_detect(hp)) |
695 | printf("sdhc_sdclk_frequency_select: command in progress\n"); |
696 | #endif |
697 | |
698 | /* |
699 | * Stop SD clock before changing the frequency. |
700 | */ |
701 | HWRITE2(hp, SDHC_CLOCK_CTL, 0)sdhc_write_2((hp), (0x2c), (0)); |
702 | if (freq == SDMMC_SDCLK_OFF0) |
703 | goto ret; |
704 | |
705 | if (!ISSET(sc->sc_flags, SDHC_F_NO_HS_BIT)((sc->sc_flags) & ((1 << 3)))) { |
706 | if (timing == SDMMC_TIMING_LEGACY0) |
707 | HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) & ~((1<<2)))); |
708 | else |
709 | HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) | ((1<<2)))); |
710 | } |
711 | |
712 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) { |
713 | switch (timing) { |
714 | case SDMMC_TIMING_MMC_DDR524: |
715 | HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK)sdhc_write_2(((hp)), ((0x3e)), ((sdhc_read_2(((hp)), ((0x3e)) )) & ~(0x7))); |
716 | HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_DDR50)sdhc_write_2(((hp)), ((0x3e)), ((sdhc_read_2(((hp)), ((0x3e)) )) | (4))); |
717 | break; |
718 | } |
719 | } |
720 | |
721 | /* |
722 | * Set the minimum base clock frequency divisor. |
723 | */ |
724 | if ((div = sdhc_clock_divisor(hp, freq)) < 0) { |
725 | /* Invalid base clock frequency or `freq' value. */ |
726 | error = EINVAL22; |
727 | goto ret; |
728 | } |
729 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) |
730 | sdclk = SDHC_SDCLK_DIV_V3(div)((((div) & 0xff) << 8) | (((div) & 0x300) >> 2)); |
731 | else |
732 | sdclk = SDHC_SDCLK_DIV(div)(((div) & 0xff) << 8); |
733 | HWRITE2(hp, SDHC_CLOCK_CTL, sdclk)sdhc_write_2((hp), (0x2c), (sdclk)); |
734 | |
735 | /* |
736 | * Start internal clock. Wait 10ms for stabilization. |
737 | */ |
738 | HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE)sdhc_write_2(((hp)), ((0x2c)), ((sdhc_read_2(((hp)), ((0x2c)) )) | ((1<<0)))); |
739 | for (timo = 1000; timo > 0; timo--) { |
740 | if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE)(((sdhc_read_2((hp), (0x2c)))) & ((1<<1)))) |
741 | break; |
742 | sdmmc_delay(10); |
743 | } |
744 | if (timo == 0) { |
745 | error = ETIMEDOUT60; |
746 | goto ret; |
747 | } |
748 | |
749 | /* |
750 | * Enable SD clock. |
751 | */ |
752 | HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE)sdhc_write_2(((hp)), ((0x2c)), ((sdhc_read_2(((hp)), ((0x2c)) )) | ((1<<2)))); |
753 | |
754 | if (hp->sc->sc_bus_clock_post) |
755 | hp->sc->sc_bus_clock_post(hp->sc, freq, timing); |
756 | |
757 | ret: |
758 | splx(s)spllower(s); |
759 | return error; |
760 | } |
761 | |
762 | int |
763 | sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) |
764 | { |
765 | struct sdhc_host *hp = (struct sdhc_host *)sch; |
766 | int reg; |
767 | int s; |
768 | |
769 | if (width != 1 && width != 4 && width != 8) |
770 | return EINVAL22; |
771 | |
772 | s = splsdmmc()splraise(0x3); |
773 | |
774 | reg = HREAD1(hp, SDHC_HOST_CTL)(sdhc_read_1((hp), (0x28))); |
775 | reg &= ~SDHC_4BIT_MODE(1<<1); |
776 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) >= SDHC_SPEC_V32) { |
777 | reg &= ~SDHC_8BIT_MODE(1<<5); |
778 | } |
779 | if (width == 4) { |
780 | reg |= SDHC_4BIT_MODE(1<<1); |
781 | } else if (width == 8) { |
782 | KASSERT(SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)(((((hp->version) >> 0) & 0xff) >= 2) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/dev/sdmmc/sdhc.c", 782, "SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3") ); |
783 | reg |= SDHC_8BIT_MODE(1<<5); |
784 | } |
785 | HWRITE1(hp, SDHC_HOST_CTL, reg)sdhc_write_1((hp), (0x28), (reg)); |
786 | |
787 | splx(s)spllower(s); |
788 | |
789 | return 0; |
790 | } |
791 | |
792 | void |
793 | sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable) |
794 | { |
795 | struct sdhc_host *hp = sch; |
796 | |
797 | if (enable) { |
798 | HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) | ((1<<8)))); |
799 | HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x38)), ((sdhc_read_2(((hp)), ((0x38)) )) | ((1<<8)))); |
800 | } else { |
801 | HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x38)), ((sdhc_read_2(((hp)), ((0x38)) )) & ~((1<<8)))); |
802 | HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) & ~((1<<8)))); |
803 | } |
804 | } |
805 | |
806 | void |
807 | sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) |
808 | { |
809 | struct sdhc_host *hp = sch; |
810 | |
811 | HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) | ((1<<8)))); |
812 | } |
813 | |
814 | int |
815 | sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) |
816 | { |
817 | struct sdhc_host *hp = sch; |
818 | |
819 | if (hp->sc->sc_signal_voltage) |
820 | return hp->sc->sc_signal_voltage(hp->sc, signal_voltage); |
821 | |
822 | if (SDHC_SPEC_VERSION(hp->version)(((hp->version) >> 0) & 0xff) < SDHC_SPEC_V32) |
823 | return EINVAL22; |
824 | |
825 | switch (signal_voltage) { |
826 | case SDMMC_SIGNAL_VOLTAGE_1801: |
827 | HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN)sdhc_write_2(((hp)), ((0x3e)), ((sdhc_read_2(((hp)), ((0x3e)) )) | ((1<<3)))); |
828 | break; |
829 | case SDMMC_SIGNAL_VOLTAGE_3300: |
830 | HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN)sdhc_write_2(((hp)), ((0x3e)), ((sdhc_read_2(((hp)), ((0x3e)) )) & ~((1<<3)))); |
831 | break; |
832 | default: |
833 | return EINVAL22; |
834 | } |
835 | |
836 | /* Regulator output shall be stable within 5 ms. */ |
837 | sdmmc_delay(5000); |
838 | |
839 | /* Host controller clears this bit if 1.8V signalling fails. */ |
840 | if (signal_voltage == SDMMC_SIGNAL_VOLTAGE_1801 && |
841 | !ISSET(HREAD2(hp, SDHC_HOST_CTL2), SDHC_1_8V_SIGNAL_EN)(((sdhc_read_2((hp), (0x3e)))) & ((1<<3)))) |
842 | return EIO5; |
843 | |
844 | return 0; |
845 | } |
846 | |
847 | int |
848 | sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value) |
849 | { |
850 | u_int32_t state; |
851 | int timeout; |
852 | |
853 | for (timeout = 10; timeout > 0; timeout--) { |
854 | if (((state = HREAD4(hp, SDHC_PRESENT_STATE)((((hp)->iot)->read_4(((hp)->ioh), ((0x24)))))) & mask) |
Although the value stored to 'state' is used in the enclosing expression, the value is never actually read from 'state' | |
855 | == value) |
856 | return 0; |
857 | sdmmc_delay(10000); |
858 | } |
859 | DPRINTF(0,("%s: timeout waiting for %x (state=%b)\n", DEVNAME(hp->sc),do {} while(0) |
860 | value, state, SDHC_PRESENT_STATE_BITS))do {} while(0); |
861 | return ETIMEDOUT60; |
862 | } |
863 | |
864 | void |
865 | sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) |
866 | { |
867 | struct sdhc_host *hp = sch; |
868 | int error; |
869 | |
870 | /* |
871 | * Start the MMC command, or mark `cmd' as failed and return. |
872 | */ |
873 | error = sdhc_start_command(hp, cmd); |
874 | if (error != 0) { |
875 | cmd->c_error = error; |
876 | SET(cmd->c_flags, SCF_ITSDONE)((cmd->c_flags) |= (0x0001)); |
877 | return; |
878 | } |
879 | |
880 | /* |
881 | * Wait until the command phase is done, or until the command |
882 | * is marked done for any other reason. |
883 | */ |
884 | if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE(1<<0), |
885 | SDHC_COMMAND_TIMEOUT1)) { |
886 | cmd->c_error = ETIMEDOUT60; |
887 | SET(cmd->c_flags, SCF_ITSDONE)((cmd->c_flags) |= (0x0001)); |
888 | return; |
889 | } |
890 | |
891 | /* |
892 | * The host controller removes bits [0:7] from the response |
893 | * data (CRC) and we pass the data up unchanged to the bus |
894 | * driver (without padding). |
895 | */ |
896 | if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)((cmd->c_flags) & (0x1000))) { |
897 | if (ISSET(cmd->c_flags, SCF_RSP_136)((cmd->c_flags) & (0x0200))) { |
898 | u_char *p = (u_char *)cmd->c_resp; |
899 | int i; |
900 | |
901 | for (i = 0; i < 15; i++) |
902 | *p++ = HREAD1(hp, SDHC_RESPONSE + i)(sdhc_read_1((hp), (0x10 + i))); |
903 | } else |
904 | cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE)((((hp)->iot)->read_4(((hp)->ioh), ((0x10))))); |
905 | } |
906 | |
907 | /* |
908 | * If the command has data to transfer in any direction, |
909 | * execute the transfer now. |
910 | */ |
911 | if (cmd->c_error == 0 && cmd->c_data != NULL((void *)0)) |
912 | sdhc_transfer_data(hp, cmd); |
913 | |
914 | /* Turn off the LED. */ |
915 | HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) & ~((1<<0)))); |
916 | |
917 | DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",do {} while(0) |
918 | DEVNAME(hp->sc), cmd->c_opcode, cmd->c_flags, cmd->c_error))do {} while(0); |
919 | SET(cmd->c_flags, SCF_ITSDONE)((cmd->c_flags) |= (0x0001)); |
920 | } |
921 | |
922 | int |
923 | sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) |
924 | { |
925 | struct sdhc_adma2_descriptor32 *desc32 = (void *)hp->adma2; |
926 | struct sdhc_adma2_descriptor64 *desc64 = (void *)hp->adma2; |
927 | struct sdhc_softc *sc = hp->sc; |
928 | u_int16_t blksize = 0; |
929 | u_int16_t blkcount = 0; |
930 | u_int16_t mode; |
931 | u_int16_t command; |
932 | int error; |
933 | int seg; |
934 | int s; |
935 | |
936 | DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x\n",do {} while(0) |
937 | DEVNAME(hp->sc), cmd->c_opcode, cmd->c_arg, cmd->c_data,do {} while(0) |
938 | cmd->c_datalen, cmd->c_flags))do {} while(0); |
939 | |
940 | /* |
941 | * The maximum block length for commands should be the minimum |
942 | * of the host buffer size and the card buffer size. (1.7.2) |
943 | */ |
944 | |
945 | /* Fragment the data into proper blocks. */ |
946 | if (cmd->c_datalen > 0) { |
947 | blksize = MIN(cmd->c_datalen, cmd->c_blklen)(((cmd->c_datalen)<(cmd->c_blklen))?(cmd->c_datalen ):(cmd->c_blklen)); |
948 | blkcount = cmd->c_datalen / blksize; |
949 | if (cmd->c_datalen % blksize > 0) { |
950 | /* XXX: Split this command. (1.7.4) */ |
951 | printf("%s: data not a multiple of %d bytes\n", |
952 | DEVNAME(hp->sc)((hp->sc)->sc_dev.dv_xname), blksize); |
953 | return EINVAL22; |
954 | } |
955 | } |
956 | |
957 | /* Check limit imposed by 9-bit block count. (1.7.2) */ |
958 | if (blkcount > SDHC_BLOCK_COUNT_MAX512) { |
959 | printf("%s: too much data\n", DEVNAME(hp->sc)((hp->sc)->sc_dev.dv_xname)); |
960 | return EINVAL22; |
961 | } |
962 | |
963 | /* Prepare transfer mode register value. (2.2.5) */ |
964 | mode = 0; |
965 | if (ISSET(cmd->c_flags, SCF_CMD_READ)((cmd->c_flags) & (0x0040))) |
966 | mode |= SDHC_READ_MODE(1<<4); |
967 | if (blkcount > 0) { |
968 | mode |= SDHC_BLOCK_COUNT_ENABLE(1<<1); |
969 | if (blkcount > 1) { |
970 | mode |= SDHC_MULTI_BLOCK_MODE(1<<5); |
971 | if (cmd->c_opcode != SD_IO_RW_EXTENDED53) |
972 | mode |= SDHC_AUTO_CMD12_ENABLE(1<<2); |
973 | } |
974 | } |
975 | if (cmd->c_dmamap && cmd->c_datalen > 0 && |
976 | ISSET(hp->flags, SHF_USE_DMA)((hp->flags) & (0x0001))) |
977 | mode |= SDHC_DMA_ENABLE(1<<0); |
978 | |
979 | /* |
980 | * Prepare command register value. (2.2.6) |
981 | */ |
982 | command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK0x3f) << |
983 | SDHC_COMMAND_INDEX_SHIFT8; |
984 | |
985 | if (ISSET(cmd->c_flags, SCF_RSP_CRC)((cmd->c_flags) & (0x0400))) |
986 | command |= SDHC_CRC_CHECK_ENABLE(1<<3); |
987 | if (ISSET(cmd->c_flags, SCF_RSP_IDX)((cmd->c_flags) & (0x0800))) |
988 | command |= SDHC_INDEX_CHECK_ENABLE(1<<4); |
989 | if (cmd->c_data != NULL((void *)0)) |
990 | command |= SDHC_DATA_PRESENT_SELECT(1<<5); |
991 | |
992 | if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)((cmd->c_flags) & (0x1000))) |
993 | command |= SDHC_NO_RESPONSE(0<<0); |
994 | else if (ISSET(cmd->c_flags, SCF_RSP_136)((cmd->c_flags) & (0x0200))) |
995 | command |= SDHC_RESP_LEN_136(1<<0); |
996 | else if (ISSET(cmd->c_flags, SCF_RSP_BSY)((cmd->c_flags) & (0x0100))) |
997 | command |= SDHC_RESP_LEN_48_CHK_BUSY(3<<0); |
998 | else |
999 | command |= SDHC_RESP_LEN_48(2<<0); |
1000 | |
1001 | /* Wait until command and data inhibit bits are clear. (1.5) */ |
1002 | if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK0x0003, 0)) != 0) |
1003 | return error; |
1004 | |
1005 | s = splsdmmc()splraise(0x3); |
1006 | |
1007 | /* Alert the user not to remove the card. */ |
1008 | HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) | ((1<<0)))); |
1009 | |
1010 | /* Set DMA start address if SHF_USE_DMA is set. */ |
1011 | if (cmd->c_dmamap && ISSET(hp->flags, SHF_USE_DMA)((hp->flags) & (0x0001))) { |
1012 | for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { |
1013 | bus_addr_t paddr = |
1014 | cmd->c_dmamap->dm_segs[seg].ds_addr; |
1015 | uint16_t len = |
1016 | cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? |
1017 | 0 : cmd->c_dmamap->dm_segs[seg].ds_len; |
1018 | uint16_t attr; |
1019 | |
1020 | attr = SDHC_ADMA2_VALID(1<<0) | SDHC_ADMA2_ACT_TRANS(2<<4); |
1021 | if (seg == cmd->c_dmamap->dm_nsegs - 1) |
1022 | attr |= SDHC_ADMA2_END(1<<1); |
1023 | |
1024 | if (ISSET(hp->flags, SHF_USE_DMA64)((hp->flags) & (0x0002))) { |
1025 | desc64[seg].attribute = htole16(attr)((__uint16_t)(attr)); |
1026 | desc64[seg].length = htole16(len)((__uint16_t)(len)); |
1027 | desc64[seg].address_lo = |
1028 | htole32((uint64_t)paddr & 0xffffffff)((__uint32_t)((uint64_t)paddr & 0xffffffff)); |
1029 | desc64[seg].address_hi = |
1030 | htole32((uint64_t)paddr >> 32)((__uint32_t)((uint64_t)paddr >> 32)); |
1031 | } else { |
1032 | desc32[seg].attribute = htole16(attr)((__uint16_t)(attr)); |
1033 | desc32[seg].length = htole16(len)((__uint16_t)(len)); |
1034 | desc32[seg].address = htole32(paddr)((__uint32_t)(paddr)); |
1035 | } |
1036 | } |
1037 | |
1038 | if (ISSET(hp->flags, SHF_USE_DMA64)((hp->flags) & (0x0002))) |
1039 | desc64[cmd->c_dmamap->dm_nsegs].attribute = htole16(0)((__uint16_t)(0)); |
1040 | else |
1041 | desc32[cmd->c_dmamap->dm_nsegs].attribute = htole16(0)((__uint16_t)(0)); |
1042 | |
1043 | bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (hp-> adma_map), (0), ((1 << 12)), (0x04)) |
1044 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (hp-> adma_map), (0), ((1 << 12)), (0x04)); |
1045 | |
1046 | HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) & ~((3<<3)))); |
1047 | if (ISSET(hp->flags, SHF_USE_DMA64)((hp->flags) & (0x0002))) |
1048 | HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA64)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) | ((3<<3)))); |
1049 | else |
1050 | HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA32)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) | ((2<<3)))); |
1051 | |
1052 | HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR,(((hp)->iot)->write_4(((hp)->ioh), ((0x58)), ((hp-> adma_map->dm_segs[0].ds_addr)))) |
1053 | hp->adma_map->dm_segs[0].ds_addr)(((hp)->iot)->write_4(((hp)->ioh), ((0x58)), ((hp-> adma_map->dm_segs[0].ds_addr)))); |
1054 | } else |
1055 | HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT)sdhc_write_1(((hp)), ((0x28)), ((sdhc_read_1(((hp)), ((0x28)) )) & ~((3<<3)))); |
1056 | |
1057 | DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",do {} while(0) |
1058 | DEVNAME(hp->sc), command, mode, blksize, blkcount))do {} while(0); |
1059 | |
1060 | /* |
1061 | * Start a CPU data transfer. Writing to the high order byte |
1062 | * of the SDHC_COMMAND register triggers the SD command. (1.5) |
1063 | */ |
1064 | HWRITE2(hp, SDHC_TRANSFER_MODE, mode)sdhc_write_2((hp), (0x0c), (mode)); |
1065 | HWRITE2(hp, SDHC_BLOCK_SIZE, blksize)sdhc_write_2((hp), (0x04), (blksize)); |
1066 | HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount)sdhc_write_2((hp), (0x06), (blkcount)); |
1067 | HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg)(((hp)->iot)->write_4(((hp)->ioh), ((0x08)), ((cmd-> c_arg)))); |
1068 | HWRITE2(hp, SDHC_COMMAND, command)sdhc_write_2((hp), (0x0e), (command)); |
1069 | |
1070 | splx(s)spllower(s); |
1071 | return 0; |
1072 | } |
1073 | |
1074 | void |
1075 | sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) |
1076 | { |
1077 | struct sdhc_softc *sc = hp->sc; |
1078 | u_char *datap = cmd->c_data; |
1079 | int i, datalen; |
1080 | int mask; |
1081 | int error; |
1082 | |
1083 | if (cmd->c_dmamap) { |
1084 | int status; |
1085 | |
1086 | error = 0; |
1087 | for (;;) { |
1088 | status = sdhc_wait_intr(hp, |
1089 | SDHC_DMA_INTERRUPT(1<<3)|SDHC_TRANSFER_COMPLETE(1<<1), |
1090 | SDHC_DMA_TIMEOUT3); |
1091 | if (status & SDHC_TRANSFER_COMPLETE(1<<1)) |
1092 | break; |
1093 | if (!status) { |
1094 | error = ETIMEDOUT60; |
1095 | break; |
1096 | } |
1097 | } |
1098 | |
1099 | bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (hp-> adma_map), (0), ((1 << 12)), (0x08)) |
1100 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (hp-> adma_map), (0), ((1 << 12)), (0x08)); |
1101 | goto done; |
1102 | } |
1103 | |
1104 | mask = ISSET(cmd->c_flags, SCF_CMD_READ)((cmd->c_flags) & (0x0040)) ? |
1105 | SDHC_BUFFER_READ_ENABLE(1<<11) : SDHC_BUFFER_WRITE_ENABLE(1<<10); |
1106 | error = 0; |
1107 | datalen = cmd->c_datalen; |
1108 | |
1109 | DPRINTF(1,("%s: resp=%#x datalen=%d\n", DEVNAME(hp->sc),do {} while(0) |
1110 | MMC_R1(cmd->c_resp), datalen))do {} while(0); |
1111 | |
1112 | #ifdef SDHC_DEBUG |
1113 | /* XXX I forgot why I wanted to know when this happens :-( */ |
1114 | if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && |
1115 | ISSET(MMC_R1(cmd->c_resp), 0xcb00)((((cmd->c_resp)[0])) & (0xcb00))) |
1116 | printf("%s: CMD52/53 error response flags %#x\n", |
1117 | DEVNAME(hp->sc)((hp->sc)->sc_dev.dv_xname), MMC_R1(cmd->c_resp)((cmd->c_resp)[0]) & 0xff00); |
1118 | #endif |
1119 | |
1120 | while (datalen > 0) { |
1121 | if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY(1<<5)| |
1122 | SDHC_BUFFER_WRITE_READY(1<<4), SDHC_BUFFER_TIMEOUT1)) { |
1123 | error = ETIMEDOUT60; |
1124 | break; |
1125 | } |
1126 | |
1127 | if ((error = sdhc_wait_state(hp, mask, mask)) != 0) |
1128 | break; |
1129 | |
1130 | i = MIN(datalen, cmd->c_blklen)(((datalen)<(cmd->c_blklen))?(datalen):(cmd->c_blklen )); |
1131 | if (ISSET(cmd->c_flags, SCF_CMD_READ)((cmd->c_flags) & (0x0040))) |
1132 | sdhc_read_data(hp, datap, i); |
1133 | else |
1134 | sdhc_write_data(hp, datap, i); |
1135 | |
1136 | datap += i; |
1137 | datalen -= i; |
1138 | } |
1139 | |
1140 | if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE(1<<1), |
1141 | SDHC_TRANSFER_TIMEOUT1)) |
1142 | error = ETIMEDOUT60; |
1143 | |
1144 | done: |
1145 | if (error != 0) |
1146 | cmd->c_error = error; |
1147 | SET(cmd->c_flags, SCF_ITSDONE)((cmd->c_flags) |= (0x0001)); |
1148 | |
1149 | DPRINTF(1,("%s: data transfer done (error=%d)\n",do {} while(0) |
1150 | DEVNAME(hp->sc), cmd->c_error))do {} while(0); |
1151 | } |
1152 | |
1153 | void |
1154 | sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen) |
1155 | { |
1156 | while (datalen > 3) { |
1157 | *(u_int32_t *)datap = HREAD4(hp, SDHC_DATA)((((hp)->iot)->read_4(((hp)->ioh), ((0x20))))); |
1158 | datap += 4; |
1159 | datalen -= 4; |
1160 | } |
1161 | if (datalen > 0) { |
1162 | u_int32_t rv = HREAD4(hp, SDHC_DATA)((((hp)->iot)->read_4(((hp)->ioh), ((0x20))))); |
1163 | do { |
1164 | *datap++ = rv & 0xff; |
1165 | rv = rv >> 8; |
1166 | } while (--datalen > 0); |
1167 | } |
1168 | } |
1169 | |
1170 | void |
1171 | sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen) |
1172 | { |
1173 | while (datalen > 3) { |
1174 | DPRINTF(3,("%08x\n", *(u_int32_t *)datap))do {} while(0); |
1175 | HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap))(((hp)->iot)->write_4(((hp)->ioh), ((0x20)), ((*((u_int32_t *)datap))))); |
1176 | datap += 4; |
1177 | datalen -= 4; |
1178 | } |
1179 | if (datalen > 0) { |
1180 | u_int32_t rv = *datap++; |
1181 | if (datalen > 1) |
1182 | rv |= *datap++ << 8; |
1183 | if (datalen > 2) |
1184 | rv |= *datap++ << 16; |
1185 | DPRINTF(3,("rv %08x\n", rv))do {} while(0); |
1186 | HWRITE4(hp, SDHC_DATA, rv)(((hp)->iot)->write_4(((hp)->ioh), ((0x20)), ((rv))) ); |
1187 | } |
1188 | } |
1189 | |
1190 | /* Prepare for another command. */ |
1191 | int |
1192 | sdhc_soft_reset(struct sdhc_host *hp, int mask) |
1193 | { |
1194 | int timo; |
1195 | |
1196 | DPRINTF(1,("%s: software reset reg=%#x\n", DEVNAME(hp->sc), mask))do {} while(0); |
1197 | |
1198 | HWRITE1(hp, SDHC_SOFTWARE_RESET, mask)sdhc_write_1((hp), (0x2f), (mask)); |
1199 | for (timo = 10; timo > 0; timo--) { |
1200 | if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)(((sdhc_read_1((hp), (0x2f)))) & (mask))) |
1201 | break; |
1202 | sdmmc_delay(10000); |
1203 | HWRITE1(hp, SDHC_SOFTWARE_RESET, 0)sdhc_write_1((hp), (0x2f), (0)); |
1204 | } |
1205 | if (timo == 0) { |
1206 | DPRINTF(1,("%s: timeout reg=%#x\n", DEVNAME(hp->sc),do {} while(0) |
1207 | HREAD1(hp, SDHC_SOFTWARE_RESET)))do {} while(0); |
1208 | HWRITE1(hp, SDHC_SOFTWARE_RESET, 0)sdhc_write_1((hp), (0x2f), (0)); |
1209 | return (ETIMEDOUT60); |
1210 | } |
1211 | |
1212 | return (0); |
1213 | } |
1214 | |
1215 | int |
1216 | sdhc_wait_intr_cold(struct sdhc_host *hp, int mask, int secs) |
1217 | { |
1218 | int status, usecs; |
1219 | |
1220 | mask |= SDHC_ERROR_INTERRUPT(1<<15); |
1221 | usecs = secs * 1000000; |
1222 | status = hp->intr_status; |
1223 | while ((status & mask) == 0) { |
1224 | |
1225 | status = HREAD2(hp, SDHC_NINTR_STATUS)(sdhc_read_2((hp), (0x30))); |
1226 | if (ISSET(status, SDHC_NINTR_STATUS_MASK)((status) & (0x91ff))) { |
1227 | HWRITE2(hp, SDHC_NINTR_STATUS, status)sdhc_write_2((hp), (0x30), (status)); |
1228 | if (ISSET(status, SDHC_ERROR_INTERRUPT)((status) & ((1<<15)))) { |
1229 | uint16_t error; |
1230 | error = HREAD2(hp, SDHC_EINTR_STATUS)(sdhc_read_2((hp), (0x32))); |
1231 | HWRITE2(hp, SDHC_EINTR_STATUS, error)sdhc_write_2((hp), (0x32), (error)); |
1232 | hp->intr_status |= status; |
1233 | |
1234 | if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|((error) & ((1<<0)| (1<<4))) |
1235 | SDHC_DATA_TIMEOUT_ERROR)((error) & ((1<<0)| (1<<4)))) |
1236 | break; |
1237 | } |
1238 | |
1239 | if (ISSET(status, SDHC_BUFFER_READ_READY |((status) & ((1<<5) | (1<<4) | (1<<0) | (1<<1))) |
1240 | SDHC_BUFFER_WRITE_READY | SDHC_COMMAND_COMPLETE |((status) & ((1<<5) | (1<<4) | (1<<0) | (1<<1))) |
1241 | SDHC_TRANSFER_COMPLETE)((status) & ((1<<5) | (1<<4) | (1<<0) | (1<<1)))) { |
1242 | hp->intr_status |= status; |
1243 | break; |
1244 | } |
1245 | |
1246 | if (ISSET(status, SDHC_CARD_INTERRUPT)((status) & ((1<<8)))) { |
1247 | HSET2(hp, SDHC_NINTR_STATUS_EN,sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) | ((1<<8)))) |
1248 | SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) | ((1<<8)))); |
1249 | } |
1250 | |
1251 | continue; |
1252 | } |
1253 | |
1254 | delay(1)(*delay_func)(1); |
1255 | if (usecs-- == 0) { |
1256 | status |= SDHC_ERROR_INTERRUPT(1<<15); |
1257 | break; |
1258 | } |
1259 | } |
1260 | |
1261 | hp->intr_status &= ~(status & mask); |
1262 | return (status & mask); |
1263 | } |
1264 | |
1265 | int |
1266 | sdhc_wait_intr(struct sdhc_host *hp, int mask, int secs) |
1267 | { |
1268 | int status; |
1269 | int s; |
1270 | |
1271 | if (cold) |
1272 | return (sdhc_wait_intr_cold(hp, mask, secs)); |
1273 | |
1274 | mask |= SDHC_ERROR_INTERRUPT(1<<15); |
1275 | |
1276 | s = splsdmmc()splraise(0x3); |
1277 | status = hp->intr_status & mask; |
1278 | while (status == 0) { |
1279 | if (tsleep_nsec(&hp->intr_status, PWAIT32, "hcintr", |
1280 | SEC_TO_NSEC(secs)) == EWOULDBLOCK35) { |
1281 | status |= SDHC_ERROR_INTERRUPT(1<<15); |
1282 | break; |
1283 | } |
1284 | status = hp->intr_status & mask; |
1285 | } |
1286 | hp->intr_status &= ~status; |
1287 | |
1288 | DPRINTF(2,("%s: intr status %#x error %#x\n", DEVNAME(hp->sc), status,do {} while(0) |
1289 | hp->intr_error_status))do {} while(0); |
1290 | |
1291 | /* Command timeout has higher priority than command complete. */ |
1292 | if (ISSET(status, SDHC_ERROR_INTERRUPT)((status) & ((1<<15)))) { |
1293 | hp->intr_error_status = 0; |
1294 | (void)sdhc_soft_reset(hp, SDHC_RESET_DAT(1<<2)|SDHC_RESET_CMD(1<<1)); |
1295 | status = 0; |
1296 | } |
1297 | |
1298 | splx(s)spllower(s); |
1299 | return status; |
1300 | } |
1301 | |
1302 | /* |
1303 | * Established by attachment driver at interrupt priority IPL_SDMMC. |
1304 | */ |
1305 | int |
1306 | sdhc_intr(void *arg) |
1307 | { |
1308 | struct sdhc_softc *sc = arg; |
1309 | int host; |
1310 | int done = 0; |
1311 | |
1312 | /* We got an interrupt, but we don't know from which slot. */ |
1313 | for (host = 0; host < sc->sc_nhosts; host++) { |
1314 | struct sdhc_host *hp = sc->sc_host[host]; |
1315 | u_int16_t status; |
1316 | |
1317 | if (hp == NULL((void *)0)) |
1318 | continue; |
1319 | |
1320 | /* Find out which interrupts are pending. */ |
1321 | status = HREAD2(hp, SDHC_NINTR_STATUS)(sdhc_read_2((hp), (0x30))); |
1322 | if (!ISSET(status, SDHC_NINTR_STATUS_MASK)((status) & (0x91ff))) |
1323 | continue; /* no interrupt for us */ |
1324 | |
1325 | /* Acknowledge the interrupts we are about to handle. */ |
1326 | HWRITE2(hp, SDHC_NINTR_STATUS, status)sdhc_write_2((hp), (0x30), (status)); |
1327 | DPRINTF(2,("%s: interrupt status=%b\n", DEVNAME(hp->sc),do {} while(0) |
1328 | status, SDHC_NINTR_STATUS_BITS))do {} while(0); |
1329 | |
1330 | /* Claim this interrupt. */ |
1331 | done = 1; |
1332 | |
1333 | /* |
1334 | * Service error interrupts. |
1335 | */ |
1336 | if (ISSET(status, SDHC_ERROR_INTERRUPT)((status) & ((1<<15)))) { |
1337 | u_int16_t error; |
1338 | |
1339 | /* Acknowledge error interrupts. */ |
1340 | error = HREAD2(hp, SDHC_EINTR_STATUS)(sdhc_read_2((hp), (0x32))); |
1341 | HWRITE2(hp, SDHC_EINTR_STATUS, error)sdhc_write_2((hp), (0x32), (error)); |
1342 | DPRINTF(2,("%s: error interrupt, status=%b\n",do {} while(0) |
1343 | DEVNAME(hp->sc), error, SDHC_EINTR_STATUS_BITS))do {} while(0); |
1344 | |
1345 | if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|((error) & ((1<<0)| (1<<4))) |
1346 | SDHC_DATA_TIMEOUT_ERROR)((error) & ((1<<0)| (1<<4)))) { |
1347 | hp->intr_error_status |= error; |
1348 | hp->intr_status |= status; |
1349 | wakeup(&hp->intr_status); |
1350 | } |
1351 | } |
1352 | |
1353 | /* |
1354 | * Wake up the sdmmc event thread to scan for cards. |
1355 | */ |
1356 | if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)((status) & ((1<<7)|(1<<6)))) |
1357 | sdmmc_needs_discover(hp->sdmmc); |
1358 | |
1359 | /* |
1360 | * Wake up the blocking process to service command |
1361 | * related interrupt(s). |
1362 | */ |
1363 | if (ISSET(status, SDHC_BUFFER_READ_READY|((status) & ((1<<5)| (1<<4)|(1<<0)| (1<< 1))) |
1364 | SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|((status) & ((1<<5)| (1<<4)|(1<<0)| (1<< 1))) |
1365 | SDHC_TRANSFER_COMPLETE)((status) & ((1<<5)| (1<<4)|(1<<0)| (1<< 1)))) { |
1366 | hp->intr_status |= status; |
1367 | wakeup(&hp->intr_status); |
1368 | } |
1369 | |
1370 | /* |
1371 | * Service SD card interrupts. |
1372 | */ |
1373 | if (ISSET(status, SDHC_CARD_INTERRUPT)((status) & ((1<<8)))) { |
1374 | DPRINTF(0,("%s: card interrupt\n", DEVNAME(hp->sc)))do {} while(0); |
1375 | HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT)sdhc_write_2(((hp)), ((0x34)), ((sdhc_read_2(((hp)), ((0x34)) )) & ~((1<<8)))); |
1376 | sdmmc_card_intr(hp->sdmmc); |
1377 | } |
1378 | } |
1379 | return done; |
1380 | } |
1381 | |
1382 | void |
1383 | sdhc_needs_discover(struct sdhc_softc *sc) |
1384 | { |
1385 | int host; |
1386 | |
1387 | for (host = 0; host < sc->sc_nhosts; host++) |
1388 | sdmmc_needs_discover(sc->sc_host[host]->sdmmc); |
1389 | } |
1390 | |
1391 | #ifdef SDHC_DEBUG |
1392 | void |
1393 | sdhc_dump_regs(struct sdhc_host *hp) |
1394 | { |
1395 | printf("0x%02x PRESENT_STATE: %b\n", SDHC_PRESENT_STATE0x24, |
1396 | HREAD4(hp, SDHC_PRESENT_STATE)((((hp)->iot)->read_4(((hp)->ioh), ((0x24))))), SDHC_PRESENT_STATE_BITS"\20\31CL\30D3L\27D2L\26D1L\25D0L\24WPS\23CD\22CSS\21CI" "\14BRE\13BWE\12RTA\11WTA\3DLA\2CID\1CIC"); |
1397 | printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL0x29, |
1398 | HREAD1(hp, SDHC_POWER_CTL)(sdhc_read_1((hp), (0x29)))); |
1399 | printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS0x30, |
1400 | HREAD2(hp, SDHC_NINTR_STATUS)(sdhc_read_2((hp), (0x30)))); |
1401 | printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS0x32, |
1402 | HREAD2(hp, SDHC_EINTR_STATUS)(sdhc_read_2((hp), (0x32)))); |
1403 | printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN0x34, |
1404 | HREAD2(hp, SDHC_NINTR_STATUS_EN)(sdhc_read_2((hp), (0x34)))); |
1405 | printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN0x36, |
1406 | HREAD2(hp, SDHC_EINTR_STATUS_EN)(sdhc_read_2((hp), (0x36)))); |
1407 | printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN0x38, |
1408 | HREAD2(hp, SDHC_NINTR_SIGNAL_EN)(sdhc_read_2((hp), (0x38)))); |
1409 | printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN0x3a, |
1410 | HREAD2(hp, SDHC_EINTR_SIGNAL_EN)(sdhc_read_2((hp), (0x3a)))); |
1411 | printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES0x40, |
1412 | HREAD4(hp, SDHC_CAPABILITIES)((((hp)->iot)->read_4(((hp)->ioh), ((0x40)))))); |
1413 | printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES0x48, |
1414 | HREAD4(hp, SDHC_MAX_CAPABILITIES)((((hp)->iot)->read_4(((hp)->ioh), ((0x48)))))); |
1415 | } |
1416 | #endif |
1417 | |
1418 | int |
1419 | sdhc_hibernate_init(sdmmc_chipset_handle_t sch, void *fake_softc) |
1420 | { |
1421 | struct sdhc_host *hp, *fhp; |
1422 | fhp = fake_softc; |
1423 | hp = sch; |
1424 | *fhp = *hp; |
1425 | |
1426 | return (0); |
1427 | } |