| File: | dev/ic/acx.c |
| Warning: | line 972, column 4 Value stored to 'eh' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: acx.c,v 1.128 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 2006 Jonathan Gray <jsg@openbsd.org> |
| 5 | * |
| 6 | * Permission to use, copy, modify, and distribute this software for any |
| 7 | * purpose with or without fee is hereby granted, provided that the above |
| 8 | * copyright notice and this permission notice appear in all copies. |
| 9 | * |
| 10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 17 | */ |
| 18 | |
| 19 | /* |
| 20 | * Copyright (c) 2006 The DragonFly Project. All rights reserved. |
| 21 | * |
| 22 | * This code is derived from software contributed to The DragonFly Project |
| 23 | * by Sepherosa Ziehau <sepherosa@gmail.com> |
| 24 | * |
| 25 | * Redistribution and use in source and binary forms, with or without |
| 26 | * modification, are permitted provided that the following conditions |
| 27 | * are met: |
| 28 | * |
| 29 | * 1. Redistributions of source code must retain the above copyright |
| 30 | * notice, this list of conditions and the following disclaimer. |
| 31 | * 2. Redistributions in binary form must reproduce the above copyright |
| 32 | * notice, this list of conditions and the following disclaimer in |
| 33 | * the documentation and/or other materials provided with the |
| 34 | * distribution. |
| 35 | * 3. Neither the name of The DragonFly Project nor the names of its |
| 36 | * contributors may be used to endorse or promote products derived |
| 37 | * from this software without specific, prior written permission. |
| 38 | * |
| 39 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 40 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 41 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 42 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 43 | * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 44 | * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 45 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| 47 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 48 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| 49 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | */ |
| 52 | |
| 53 | /* |
| 54 | * Copyright (c) 2003-2004 wlan.kewl.org Project |
| 55 | * All rights reserved. |
| 56 | * |
| 57 | * Redistribution and use in source and binary forms, with or without |
| 58 | * modification, are permitted provided that the following conditions |
| 59 | * are met: |
| 60 | * |
| 61 | * 1. Redistributions of source code must retain the above copyright |
| 62 | * notice, this list of conditions and the following disclaimer. |
| 63 | * |
| 64 | * 2. Redistributions in binary form must reproduce the above copyright |
| 65 | * notice, this list of conditions and the following disclaimer in the |
| 66 | * documentation and/or other materials provided with the distribution. |
| 67 | * |
| 68 | * 3. All advertising materials mentioning features or use of this software |
| 69 | * must display the following acknowledgement: |
| 70 | * |
| 71 | * This product includes software developed by the wlan.kewl.org Project. |
| 72 | * |
| 73 | * 4. Neither the name of the wlan.kewl.org Project nor the names of its |
| 74 | * contributors may be used to endorse or promote products derived from |
| 75 | * this software without specific prior written permission. |
| 76 | * |
| 77 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| 78 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| 79 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 80 | * THE wlan.kewl.org Project BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 81 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 82 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 83 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 84 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 85 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 86 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 87 | */ |
| 88 | |
| 89 | #include "bpfilter.h" |
| 90 | |
| 91 | #include <sys/param.h> |
| 92 | #include <sys/systm.h> |
| 93 | #include <sys/kernel.h> |
| 94 | #include <sys/malloc.h> |
| 95 | #include <sys/mbuf.h> |
| 96 | #include <sys/socket.h> |
| 97 | #include <sys/sockio.h> |
| 98 | #include <sys/ioctl.h> |
| 99 | #include <sys/errno.h> |
| 100 | #include <sys/device.h> |
| 101 | #include <sys/endian.h> |
| 102 | |
| 103 | #include <machine/bus.h> |
| 104 | #include <machine/intr.h> |
| 105 | |
| 106 | #include <net/if.h> |
| 107 | #include <net/if_media.h> |
| 108 | |
| 109 | #if NBPFILTER1 > 0 |
| 110 | #include <net/bpf.h> |
| 111 | #endif |
| 112 | |
| 113 | #include <netinet/in.h> |
| 114 | #include <netinet/if_ether.h> |
| 115 | |
| 116 | #include <net80211/ieee80211_var.h> |
| 117 | #include <net80211/ieee80211_amrr.h> |
| 118 | #include <net80211/ieee80211_radiotap.h> |
| 119 | |
| 120 | #include <dev/ic/acxvar.h> |
| 121 | #include <dev/ic/acxreg.h> |
| 122 | |
| 123 | #ifdef ACX_DEBUG |
| 124 | int acxdebug = 0; |
| 125 | #endif |
| 126 | |
| 127 | int acx_attach(struct acx_softc *); |
| 128 | int acx_detach(void *); |
| 129 | |
| 130 | int acx_init(struct ifnet *); |
| 131 | int acx_stop(struct acx_softc *); |
| 132 | void acx_init_info_reg(struct acx_softc *); |
| 133 | int acx_config(struct acx_softc *); |
| 134 | int acx_read_config(struct acx_softc *, struct acx_config *); |
| 135 | int acx_write_config(struct acx_softc *, struct acx_config *); |
| 136 | int acx_rx_config(struct acx_softc *); |
| 137 | int acx_set_crypt_keys(struct acx_softc *); |
| 138 | void acx_next_scan(void *); |
| 139 | |
| 140 | void acx_start(struct ifnet *); |
| 141 | void acx_watchdog(struct ifnet *); |
| 142 | |
| 143 | int acx_ioctl(struct ifnet *, u_long, caddr_t); |
| 144 | |
| 145 | int acx_intr(void *); |
| 146 | void acx_disable_intr(struct acx_softc *); |
| 147 | void acx_enable_intr(struct acx_softc *); |
| 148 | void acx_txeof(struct acx_softc *); |
| 149 | void acx_txerr(struct acx_softc *, uint8_t); |
| 150 | void acx_rxeof(struct acx_softc *); |
| 151 | |
| 152 | int acx_dma_alloc(struct acx_softc *); |
| 153 | void acx_dma_free(struct acx_softc *); |
| 154 | void acx_init_tx_ring(struct acx_softc *); |
| 155 | int acx_init_rx_ring(struct acx_softc *); |
| 156 | int acx_newbuf(struct acx_softc *, struct acx_rxbuf *, int); |
| 157 | int acx_encap(struct acx_softc *, struct acx_txbuf *, |
| 158 | struct mbuf *, struct ieee80211_node *, int); |
| 159 | |
| 160 | int acx_reset(struct acx_softc *); |
| 161 | |
| 162 | int acx_set_null_tmplt(struct acx_softc *); |
| 163 | int acx_set_probe_req_tmplt(struct acx_softc *, const char *, int); |
| 164 | #ifndef IEEE80211_STA_ONLY |
| 165 | int acx_set_probe_resp_tmplt(struct acx_softc *, struct ieee80211_node *); |
| 166 | int acx_beacon_locate(struct mbuf *, u_int8_t); |
| 167 | int acx_set_beacon_tmplt(struct acx_softc *, struct ieee80211_node *); |
| 168 | #endif |
| 169 | |
| 170 | int acx_read_eeprom(struct acx_softc *, uint32_t, uint8_t *); |
| 171 | int acx_read_phyreg(struct acx_softc *, uint32_t, uint8_t *); |
| 172 | const char * acx_get_rf(int); |
| 173 | int acx_get_maxrssi(int); |
| 174 | |
| 175 | int acx_load_firmware(struct acx_softc *, uint32_t, |
| 176 | const uint8_t *, int); |
| 177 | int acx_load_radio_firmware(struct acx_softc *, const char *); |
| 178 | int acx_load_base_firmware(struct acx_softc *, const char *); |
| 179 | |
| 180 | struct ieee80211_node |
| 181 | *acx_node_alloc(struct ieee80211com *); |
| 182 | int acx_newstate(struct ieee80211com *, enum ieee80211_state, int); |
| 183 | |
| 184 | void acx_init_cmd_reg(struct acx_softc *); |
| 185 | int acx_join_bss(struct acx_softc *, uint8_t, struct ieee80211_node *); |
| 186 | int acx_set_channel(struct acx_softc *, uint8_t); |
| 187 | int acx_init_radio(struct acx_softc *, uint32_t, uint32_t); |
| 188 | |
| 189 | void acx_iter_func(void *, struct ieee80211_node *); |
| 190 | void acx_amrr_timeout(void *); |
| 191 | void acx_newassoc(struct ieee80211com *, struct ieee80211_node *, int); |
| 192 | #ifndef IEEE80211_STA_ONLY |
| 193 | void acx_set_tim(struct ieee80211com *, int, int); |
| 194 | #endif |
| 195 | |
| 196 | int acx_beacon_intvl = 100; /* 100 TU */ |
| 197 | |
| 198 | /* |
| 199 | * Possible values for the second parameter of acx_join_bss() |
| 200 | */ |
| 201 | #define ACX_MODE_ADHOC0 0 |
| 202 | #define ACX_MODE_UNUSED1 1 |
| 203 | #define ACX_MODE_STA2 2 |
| 204 | #define ACX_MODE_AP3 3 |
| 205 | |
| 206 | struct cfdriver acx_cd = { |
| 207 | NULL((void *)0), "acx", DV_IFNET |
| 208 | }; |
| 209 | |
| 210 | int |
| 211 | acx_attach(struct acx_softc *sc) |
| 212 | { |
| 213 | struct ieee80211com *ic = &sc->sc_ic; |
| 214 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 215 | int i, error; |
| 216 | |
| 217 | /* Initialize channel scanning timer */ |
| 218 | timeout_set(&sc->sc_chanscan_timer, acx_next_scan, sc); |
| 219 | |
| 220 | /* Allocate busdma stuffs */ |
| 221 | error = acx_dma_alloc(sc); |
| 222 | if (error) { |
| 223 | printf("%s: attach failed, could not allocate DMA!\n", |
| 224 | sc->sc_dev.dv_xname); |
| 225 | return (error); |
| 226 | } |
| 227 | |
| 228 | /* Reset Hardware */ |
| 229 | error = acx_reset(sc); |
| 230 | if (error) { |
| 231 | printf("%s: attach failed, could not reset device!\n", |
| 232 | sc->sc_dev.dv_xname); |
| 233 | return (error); |
| 234 | } |
| 235 | |
| 236 | /* Disable interrupts before firmware is loaded */ |
| 237 | acx_disable_intr(sc); |
| 238 | |
| 239 | /* Get radio type and form factor */ |
| 240 | #define EEINFO_RETRY_MAX 50 |
| 241 | for (i = 0; i < EEINFO_RETRY_MAX; ++i) { |
| 242 | uint16_t ee_info; |
| 243 | |
| 244 | ee_info = CSR_READ_2(sc, ACXREG_EEPROM_INFO)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(18)]))); |
| 245 | if (ACX_EEINFO_HAS_RADIO_TYPE(ee_info)((ee_info) & (0xff << 8))) { |
| 246 | sc->sc_form_factor = ACX_EEINFO_FORM_FACTOR(ee_info)((ee_info) & 0xff); |
| 247 | sc->sc_radio_type = ACX_EEINFO_RADIO_TYPE(ee_info)((ee_info) >> 8); |
| 248 | break; |
| 249 | } |
| 250 | DELAY(10000)(*delay_func)(10000); |
| 251 | } |
| 252 | if (i == EEINFO_RETRY_MAX) { |
| 253 | printf("%s: attach failed, could not get radio type!\n", |
| 254 | sc->sc_dev.dv_xname); |
| 255 | return (ENXIO6); |
| 256 | } |
| 257 | #undef EEINFO_RETRY_MAX |
| 258 | |
| 259 | #ifdef DUMP_EEPROM |
| 260 | for (i = 0; i < 0x40; ++i) { |
| 261 | uint8_t val; |
| 262 | |
| 263 | error = acx_read_eeprom(sc, i, &val); |
| 264 | if (error) |
| 265 | return (error); |
| 266 | if (i % 10 == 0) |
| 267 | printf("\n"); |
| 268 | printf("%02x ", val); |
| 269 | } |
| 270 | printf("\n"); |
| 271 | #endif /* DUMP_EEPROM */ |
| 272 | |
| 273 | /* Get EEPROM version */ |
| 274 | error = acx_read_eeprom(sc, ACX_EE_VERSION_OFS0x05, &sc->sc_eeprom_ver); |
| 275 | if (error) { |
| 276 | printf("%s: attach failed, could not get EEPROM version!\n", |
| 277 | sc->sc_dev.dv_xname); |
| 278 | return (error); |
| 279 | } |
| 280 | |
| 281 | ifp->if_softc = sc; |
| 282 | ifp->if_ioctl = acx_ioctl; |
| 283 | ifp->if_start = acx_start; |
| 284 | ifp->if_watchdog = acx_watchdog; |
| 285 | ifp->if_flags = IFF_SIMPLEX0x800 | IFF_BROADCAST0x2 | IFF_MULTICAST0x8000; |
| 286 | strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ16); |
| 287 | ifq_init_maxlen(&ifp->if_snd, IFQ_MAXLEN256); |
| 288 | |
| 289 | /* Set channels */ |
| 290 | for (i = 1; i <= 14; ++i) { |
| 291 | ic->ic_channels[i].ic_freq = |
| 292 | ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ0x0080); |
| 293 | ic->ic_channels[i].ic_flags = sc->chip_chan_flags; |
| 294 | } |
| 295 | |
| 296 | ic->ic_opmode = IEEE80211_M_STA; |
| 297 | ic->ic_state = IEEE80211_S_INIT; |
| 298 | |
| 299 | /* |
| 300 | * NOTE: Don't overwrite ic_caps set by chip specific code |
| 301 | */ |
| 302 | ic->ic_caps = |
| 303 | IEEE80211_C_WEP0x00000001 | /* WEP */ |
| 304 | IEEE80211_C_MONITOR0x00000200 | /* Monitor mode */ |
| 305 | #ifndef IEEE80211_STA_ONLY |
| 306 | IEEE80211_C_IBSS0x00000002 | /* IBSS mode */ |
| 307 | IEEE80211_C_HOSTAP0x00000008 | /* Access Point */ |
| 308 | IEEE80211_C_APPMGT0x00000020 | /* AP Power Mgmt */ |
| 309 | #endif |
| 310 | IEEE80211_C_SHPREAMBLE0x00000100; /* Short preamble */ |
| 311 | |
| 312 | /* Get station id */ |
| 313 | for (i = 0; i < IEEE80211_ADDR_LEN6; ++i) { |
| 314 | error = acx_read_eeprom(sc, sc->chip_ee_eaddr_ofs - i, |
| 315 | &ic->ic_myaddr[i]); |
| 316 | if (error) { |
| 317 | printf("%s: attach failed, could not get station id\n", |
| 318 | sc->sc_dev.dv_xname); |
| 319 | return error; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | printf("%s: %s, radio %s (0x%02x), EEPROM ver %u, address %s\n", |
| 324 | sc->sc_dev.dv_xname, |
| 325 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "ACX111" : "ACX100", |
| 326 | acx_get_rf(sc->sc_radio_type), sc->sc_radio_type, |
| 327 | sc->sc_eeprom_ver, ether_sprintf(ic->ic_myaddr)); |
| 328 | |
| 329 | if_attach(ifp); |
| 330 | ieee80211_ifattach(ifp); |
| 331 | |
| 332 | /* Override node alloc */ |
| 333 | ic->ic_node_alloc = acx_node_alloc; |
| 334 | ic->ic_newassoc = acx_newassoc; |
| 335 | |
| 336 | #ifndef IEEE80211_STA_ONLY |
| 337 | /* Override set TIM */ |
| 338 | ic->ic_set_tim = acx_set_tim; |
| 339 | #endif |
| 340 | |
| 341 | /* Override newstate */ |
| 342 | sc->sc_newstate = ic->ic_newstate; |
| 343 | ic->ic_newstate = acx_newstate; |
| 344 | |
| 345 | /* Set maximal rssi */ |
| 346 | ic->ic_max_rssi = acx_get_maxrssi(sc->sc_radio_type); |
| 347 | |
| 348 | ieee80211_media_init(ifp, ieee80211_media_change, |
| 349 | ieee80211_media_status); |
| 350 | |
| 351 | /* AMRR rate control */ |
| 352 | sc->amrr.amrr_min_success_threshold = 1; |
| 353 | sc->amrr.amrr_max_success_threshold = 15; |
| 354 | timeout_set(&sc->amrr_ch, acx_amrr_timeout, sc); |
| 355 | |
| 356 | sc->sc_long_retry_limit = 4; |
| 357 | sc->sc_short_retry_limit = 7; |
| 358 | sc->sc_msdu_lifetime = 4096; |
| 359 | |
| 360 | #if NBPFILTER1 > 0 |
| 361 | bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO127, |
| 362 | sizeof(struct ieee80211_frame) + 64); |
| 363 | |
| 364 | sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); |
| 365 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
| 366 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(ACX_RX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_RSSI )))); |
| 367 | |
| 368 | sc->sc_txtap_len = sizeof(sc->sc_txtapu); |
| 369 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
| 370 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(ACX_TX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL )))); |
| 371 | #endif |
| 372 | |
| 373 | return (0); |
| 374 | } |
| 375 | |
| 376 | int |
| 377 | acx_detach(void *xsc) |
| 378 | { |
| 379 | struct acx_softc *sc = xsc; |
| 380 | struct ieee80211com *ic = &sc->sc_ic; |
| 381 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 382 | |
| 383 | acx_stop(sc); |
| 384 | ieee80211_ifdetach(ifp); |
| 385 | if_detach(ifp); |
| 386 | |
| 387 | acx_dma_free(sc); |
| 388 | |
| 389 | return (0); |
| 390 | } |
| 391 | |
| 392 | int |
| 393 | acx_init(struct ifnet *ifp) |
| 394 | { |
| 395 | struct acx_softc *sc = ifp->if_softc; |
| 396 | struct ieee80211com *ic = &sc->sc_ic; |
| 397 | char fname[] = "tiacx111c16"; |
| 398 | int error, combined = 0; |
| 399 | |
| 400 | error = acx_stop(sc); |
| 401 | if (error) |
| 402 | return (EIO5); |
| 403 | |
| 404 | /* enable card if possible */ |
| 405 | if (sc->sc_enable != NULL((void *)0)) { |
| 406 | error = (*sc->sc_enable)(sc); |
| 407 | if (error) |
| 408 | return (EIO5); |
| 409 | } |
| 410 | |
| 411 | acx_init_tx_ring(sc); |
| 412 | |
| 413 | error = acx_init_rx_ring(sc); |
| 414 | if (error) { |
| 415 | printf("%s: can't initialize RX ring\n", |
| 416 | sc->sc_dev.dv_xname); |
| 417 | goto back; |
| 418 | } |
| 419 | |
| 420 | if (sc->sc_flags & ACX_FLAG_ACX1110x02) { |
| 421 | snprintf(fname, sizeof(fname), "tiacx111c%02X", |
| 422 | sc->sc_radio_type); |
| 423 | error = acx_load_base_firmware(sc, fname); |
| 424 | |
| 425 | if (!error) |
| 426 | combined = 1; |
| 427 | } |
| 428 | |
| 429 | if (!combined) { |
| 430 | snprintf(fname, sizeof(fname), "tiacx%s", |
| 431 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "111" : "100"); |
| 432 | error = acx_load_base_firmware(sc, fname); |
| 433 | } |
| 434 | |
| 435 | if (error) |
| 436 | goto back; |
| 437 | |
| 438 | /* |
| 439 | * Initialize command and information registers |
| 440 | * NOTE: This should be done after base firmware is loaded |
| 441 | */ |
| 442 | acx_init_cmd_reg(sc); |
| 443 | acx_init_info_reg(sc); |
| 444 | |
| 445 | sc->sc_flags |= ACX_FLAG_FW_LOADED0x01; |
| 446 | |
| 447 | if (!combined) { |
| 448 | snprintf(fname, sizeof(fname), "tiacx%sr%02X", |
| 449 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "111" : "100", |
| 450 | sc->sc_radio_type); |
| 451 | error = acx_load_radio_firmware(sc, fname); |
| 452 | |
| 453 | if (error) |
| 454 | goto back; |
| 455 | } |
| 456 | |
| 457 | error = sc->chip_init(sc); |
| 458 | if (error) |
| 459 | goto back; |
| 460 | |
| 461 | /* Get and set device various configuration */ |
| 462 | error = acx_config(sc); |
| 463 | if (error) |
| 464 | goto back; |
| 465 | |
| 466 | /* Setup crypto stuffs */ |
| 467 | if (sc->sc_ic.ic_flags & IEEE80211_F_WEPON0x00000100) { |
| 468 | error = acx_set_crypt_keys(sc); |
| 469 | if (error) |
| 470 | goto back; |
| 471 | } |
| 472 | |
| 473 | /* Turn on power led */ |
| 474 | CSR_CLRB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23)) ]))) & (~(sc->chip_gpio_pled))))); |
| 475 | |
| 476 | acx_enable_intr(sc); |
| 477 | |
| 478 | ifp->if_flags |= IFF_RUNNING0x40; |
| 479 | ifq_clr_oactive(&ifp->if_snd); |
| 480 | |
| 481 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
| 482 | /* start background scanning */ |
| 483 | ieee80211_new_state(ic, IEEE80211_S_SCAN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_SCAN), (-1))); |
| 484 | else |
| 485 | /* in monitor mode change directly into run state */ |
| 486 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
| 487 | |
| 488 | return (0); |
| 489 | back: |
| 490 | acx_stop(sc); |
| 491 | return (error); |
| 492 | } |
| 493 | |
| 494 | void |
| 495 | acx_init_info_reg(struct acx_softc *sc) |
| 496 | { |
| 497 | sc->sc_info = CSR_READ_4(sc, ACXREG_INFO_REG_OFFSET)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(25)]))); |
| 498 | sc->sc_info_param = sc->sc_info + ACX_INFO_REG_SIZE4; |
| 499 | } |
| 500 | |
| 501 | int |
| 502 | acx_set_crypt_keys(struct acx_softc *sc) |
| 503 | { |
| 504 | struct ieee80211com *ic = &sc->sc_ic; |
| 505 | struct acx_conf_wep_txkey wep_txkey; |
| 506 | int i, error, got_wk = 0; |
| 507 | |
| 508 | for (i = 0; i < IEEE80211_WEP_NKID4; ++i) { |
| 509 | struct ieee80211_key *k = &ic->ic_nw_keys[i]; |
| 510 | |
| 511 | if (k->k_len == 0) |
| 512 | continue; |
| 513 | |
| 514 | if (sc->chip_hw_crypt) { |
| 515 | error = sc->chip_set_wepkey(sc, k, i); |
| 516 | if (error) |
| 517 | return (error); |
| 518 | got_wk = 1; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | if (!got_wk) |
| 523 | return (0); |
| 524 | |
| 525 | /* Set current WEP key index */ |
| 526 | wep_txkey.wep_txkey = ic->ic_wep_txkeyic_def_txkey; |
| 527 | if (acx_set_conf(sc, ACX_CONF_WEP_TXKEY0x1010, &wep_txkey, |
| 528 | sizeof(wep_txkey)) != 0) { |
| 529 | printf("%s: set WEP txkey failed\n", sc->sc_dev.dv_xname); |
| 530 | return (ENXIO6); |
| 531 | } |
| 532 | |
| 533 | return (0); |
| 534 | } |
| 535 | |
| 536 | void |
| 537 | acx_next_scan(void *arg) |
| 538 | { |
| 539 | struct acx_softc *sc = arg; |
| 540 | struct ieee80211com *ic = &sc->sc_ic; |
| 541 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 542 | |
| 543 | if (ic->ic_state == IEEE80211_S_SCAN) |
| 544 | ieee80211_next_scan(ifp); |
| 545 | } |
| 546 | |
| 547 | int |
| 548 | acx_stop(struct acx_softc *sc) |
| 549 | { |
| 550 | struct ieee80211com *ic = &sc->sc_ic; |
| 551 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 552 | struct acx_buf_data *bd = &sc->sc_buf_data; |
| 553 | struct acx_ring_data *rd = &sc->sc_ring_data; |
| 554 | int i, error; |
| 555 | |
| 556 | sc->sc_firmware_ver = 0; |
| 557 | sc->sc_hardware_id = 0; |
| 558 | |
| 559 | /* Reset hardware */ |
| 560 | error = acx_reset(sc); |
| 561 | if (error) |
| 562 | return (error); |
| 563 | |
| 564 | /* Firmware no longer functions after hardware reset */ |
| 565 | sc->sc_flags &= ~ACX_FLAG_FW_LOADED0x01; |
| 566 | |
| 567 | acx_disable_intr(sc); |
| 568 | |
| 569 | /* Stop background scanning */ |
| 570 | timeout_del(&sc->sc_chanscan_timer); |
| 571 | |
| 572 | /* Turn off power led */ |
| 573 | CSR_SETB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23)) ]))) | (sc->chip_gpio_pled)))); |
| 574 | |
| 575 | /* Free TX mbuf */ |
| 576 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
| 577 | struct acx_txbuf *buf; |
| 578 | struct ieee80211_node *ni; |
| 579 | |
| 580 | buf = &bd->tx_buf[i]; |
| 581 | |
| 582 | if (buf->tb_mbuf != NULL((void *)0)) { |
| 583 | bus_dmamap_unload(sc->sc_dmat, buf->tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (buf ->tb_mbuf_dmamap)); |
| 584 | m_freem(buf->tb_mbuf); |
| 585 | buf->tb_mbuf = NULL((void *)0); |
| 586 | } |
| 587 | |
| 588 | ni = (struct ieee80211_node *)buf->tb_node; |
| 589 | if (ni != NULL((void *)0)) |
| 590 | ieee80211_release_node(ic, ni); |
| 591 | buf->tb_node = NULL((void *)0); |
| 592 | } |
| 593 | |
| 594 | /* Clear TX host descriptors */ |
| 595 | bzero(rd->tx_ring, ACX_TX_RING_SIZE)__builtin_bzero((rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc )))); |
| 596 | |
| 597 | /* Free RX mbuf */ |
| 598 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
| 599 | if (bd->rx_buf[i].rb_mbuf != NULL((void *)0)) { |
| 600 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)) |
| 601 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)); |
| 602 | m_freem(bd->rx_buf[i].rb_mbuf); |
| 603 | bd->rx_buf[i].rb_mbuf = NULL((void *)0); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* Clear RX host descriptors */ |
| 608 | bzero(rd->rx_ring, ACX_RX_RING_SIZE)__builtin_bzero((rd->rx_ring), ((16 * sizeof(struct acx_host_desc )))); |
| 609 | |
| 610 | sc->sc_txtimer = 0; |
| 611 | ifp->if_timer = 0; |
| 612 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 613 | ifq_clr_oactive(&ifp->if_snd); |
| 614 | ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1)(((&sc->sc_ic)->ic_newstate)((&sc->sc_ic), ( IEEE80211_S_INIT), (-1))); |
| 615 | |
| 616 | /* disable card if possible */ |
| 617 | if (sc->sc_disable != NULL((void *)0)) |
| 618 | (*sc->sc_disable)(sc); |
| 619 | |
| 620 | return (0); |
| 621 | } |
| 622 | |
| 623 | int |
| 624 | acx_config(struct acx_softc *sc) |
| 625 | { |
| 626 | struct acx_config conf; |
| 627 | int error; |
| 628 | |
| 629 | error = acx_read_config(sc, &conf); |
| 630 | if (error) |
| 631 | return (error); |
| 632 | |
| 633 | error = acx_write_config(sc, &conf); |
| 634 | if (error) |
| 635 | return (error); |
| 636 | |
| 637 | error = acx_rx_config(sc); |
| 638 | if (error) |
| 639 | return (error); |
| 640 | |
| 641 | if (acx_set_probe_req_tmplt(sc, "", 0) != 0) { |
| 642 | printf("%s: can't set probe req template " |
| 643 | "(empty ssid)\n", sc->sc_dev.dv_xname); |
| 644 | return (ENXIO6); |
| 645 | } |
| 646 | |
| 647 | /* XXX for PM?? */ |
| 648 | if (acx_set_null_tmplt(sc) != 0) { |
| 649 | printf("%s: can't set null data template\n", |
| 650 | sc->sc_dev.dv_xname); |
| 651 | return (ENXIO6); |
| 652 | } |
| 653 | |
| 654 | return (0); |
| 655 | } |
| 656 | |
| 657 | int |
| 658 | acx_read_config(struct acx_softc *sc, struct acx_config *conf) |
| 659 | { |
| 660 | struct acx_conf_regdom reg_dom; |
| 661 | struct acx_conf_antenna ant; |
| 662 | struct acx_conf_fwrev fw_rev; |
| 663 | uint32_t fw_rev_no; |
| 664 | uint8_t sen; |
| 665 | int error; |
| 666 | |
| 667 | /* Get region domain */ |
| 668 | if (acx_get_conf(sc, ACX_CONF_REGDOM0x100a, ®_dom, sizeof(reg_dom)) != 0) { |
| 669 | printf("%s: can't get region domain\n", sc->sc_dev.dv_xname); |
| 670 | return (ENXIO6); |
| 671 | } |
| 672 | conf->regdom = reg_dom.regdom; |
| 673 | DPRINTF(("%s: regdom %02x\n", sc->sc_dev.dv_xname, reg_dom.regdom)); |
| 674 | |
| 675 | /* Get antenna */ |
| 676 | if (acx_get_conf(sc, ACX_CONF_ANTENNA0x100b, &ant, sizeof(ant)) != 0) { |
| 677 | printf("%s: can't get antenna\n", sc->sc_dev.dv_xname); |
| 678 | return (ENXIO6); |
| 679 | } |
| 680 | conf->antenna = ant.antenna; |
| 681 | DPRINTF(("%s: antenna %02x\n", sc->sc_dev.dv_xname, ant.antenna)); |
| 682 | |
| 683 | /* Get sensitivity XXX not used */ |
| 684 | if (sc->sc_radio_type == ACX_RADIO_TYPE_MAXIM0x0d || |
| 685 | sc->sc_radio_type == ACX_RADIO_TYPE_RFMD0x11 || |
| 686 | sc->sc_radio_type == ACX_RADIO_TYPE_RALINK0x15) { |
| 687 | error = acx_read_phyreg(sc, ACXRV_PHYREG_SENSITIVITY0x30, &sen); |
| 688 | if (error) { |
| 689 | printf("%s: can't get sensitivity\n", |
| 690 | sc->sc_dev.dv_xname); |
| 691 | return (error); |
| 692 | } |
| 693 | } else |
| 694 | sen = 0; |
| 695 | DPRINTF(("%s: sensitivity %02x\n", sc->sc_dev.dv_xname, sen)); |
| 696 | |
| 697 | /* Get firmware revision */ |
| 698 | if (acx_get_conf(sc, ACX_CONF_FWREV0x000d, &fw_rev, sizeof(fw_rev)) != 0) { |
| 699 | printf("%s: can't get firmware revision\n", |
| 700 | sc->sc_dev.dv_xname); |
| 701 | return (ENXIO6); |
| 702 | } |
| 703 | |
| 704 | if (strncmp(fw_rev.fw_rev, "Rev ", 4) != 0) { |
| 705 | printf("%s: strange revision string -- %s\n", |
| 706 | sc->sc_dev.dv_xname, fw_rev.fw_rev); |
| 707 | fw_rev_no = 0x01090407; |
| 708 | } else { |
| 709 | /* |
| 710 | * 01234 |
| 711 | * "Rev xx.xx.xx.xx" |
| 712 | * ^ Start from here |
| 713 | */ |
| 714 | fw_rev_no = fw_rev.fw_rev[0] << 24; |
| 715 | fw_rev_no |= fw_rev.fw_rev[1] << 16; |
| 716 | fw_rev_no |= fw_rev.fw_rev[2] << 8; |
| 717 | fw_rev_no |= fw_rev.fw_rev[3]; |
| 718 | } |
| 719 | sc->sc_firmware_ver = fw_rev_no; |
| 720 | sc->sc_hardware_id = letoh32(fw_rev.hw_id)((__uint32_t)(fw_rev.hw_id)); |
| 721 | DPRINTF(("%s: fw rev %08x, hw id %08x\n", |
| 722 | sc->sc_dev.dv_xname, sc->sc_firmware_ver, sc->sc_hardware_id)); |
| 723 | |
| 724 | if (sc->chip_read_config != NULL((void *)0)) { |
| 725 | error = sc->chip_read_config(sc, conf); |
| 726 | if (error) |
| 727 | return (error); |
| 728 | } |
| 729 | |
| 730 | return (0); |
| 731 | } |
| 732 | |
| 733 | int |
| 734 | acx_write_config(struct acx_softc *sc, struct acx_config *conf) |
| 735 | { |
| 736 | struct acx_conf_nretry_short sretry; |
| 737 | struct acx_conf_nretry_long lretry; |
| 738 | struct acx_conf_msdu_lifetime msdu_lifetime; |
| 739 | struct acx_conf_rate_fallback rate_fb; |
| 740 | struct acx_conf_antenna ant; |
| 741 | struct acx_conf_regdom reg_dom; |
| 742 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 743 | int error; |
| 744 | |
| 745 | /* Set number of long/short retry */ |
| 746 | sretry.nretry = sc->sc_short_retry_limit; |
| 747 | if (acx_set_conf(sc, ACX_CONF_NRETRY_SHORT0x1005, &sretry, |
| 748 | sizeof(sretry)) != 0) { |
| 749 | printf("%s: can't set short retry limit\n", ifp->if_xname); |
| 750 | return (ENXIO6); |
| 751 | } |
| 752 | |
| 753 | lretry.nretry = sc->sc_long_retry_limit; |
| 754 | if (acx_set_conf(sc, ACX_CONF_NRETRY_LONG0x1006, &lretry, |
| 755 | sizeof(lretry)) != 0) { |
| 756 | printf("%s: can't set long retry limit\n", ifp->if_xname); |
| 757 | return (ENXIO6); |
| 758 | } |
| 759 | |
| 760 | /* Set MSDU lifetime */ |
| 761 | msdu_lifetime.lifetime = htole32(sc->sc_msdu_lifetime)((__uint32_t)(sc->sc_msdu_lifetime)); |
| 762 | if (acx_set_conf(sc, ACX_CONF_MSDU_LIFETIME0x1008, &msdu_lifetime, |
| 763 | sizeof(msdu_lifetime)) != 0) { |
| 764 | printf("%s: can't set MSDU lifetime\n", ifp->if_xname); |
| 765 | return (ENXIO6); |
| 766 | } |
| 767 | |
| 768 | /* Enable rate fallback */ |
| 769 | rate_fb.ratefb_enable = 1; |
| 770 | if (acx_set_conf(sc, ACX_CONF_RATE_FALLBACK0x0006, &rate_fb, |
| 771 | sizeof(rate_fb)) != 0) { |
| 772 | printf("%s: can't enable rate fallback\n", ifp->if_xname); |
| 773 | return (ENXIO6); |
| 774 | } |
| 775 | |
| 776 | /* Set antenna */ |
| 777 | ant.antenna = conf->antenna; |
| 778 | if (acx_set_conf(sc, ACX_CONF_ANTENNA0x100b, &ant, sizeof(ant)) != 0) { |
| 779 | printf("%s: can't set antenna\n", ifp->if_xname); |
| 780 | return (ENXIO6); |
| 781 | } |
| 782 | |
| 783 | /* Set region domain */ |
| 784 | reg_dom.regdom = conf->regdom; |
| 785 | if (acx_set_conf(sc, ACX_CONF_REGDOM0x100a, ®_dom, sizeof(reg_dom)) != 0) { |
| 786 | printf("%s: can't set region domain\n", ifp->if_xname); |
| 787 | return (ENXIO6); |
| 788 | } |
| 789 | |
| 790 | if (sc->chip_write_config != NULL((void *)0)) { |
| 791 | error = sc->chip_write_config(sc, conf); |
| 792 | if (error) |
| 793 | return (error); |
| 794 | } |
| 795 | |
| 796 | return (0); |
| 797 | } |
| 798 | |
| 799 | int |
| 800 | acx_rx_config(struct acx_softc *sc) |
| 801 | { |
| 802 | struct ieee80211com *ic = &sc->sc_ic; |
| 803 | struct acx_conf_rxopt rx_opt; |
| 804 | |
| 805 | /* tell the RX receiver what frames we want to have */ |
| 806 | rx_opt.opt1 = htole16(RXOPT1_INCL_RXBUF_HDR)((__uint16_t)(0x2000)); |
| 807 | rx_opt.opt2 = htole16(((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 808 | RXOPT2_RECV_ASSOC_REQ |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 809 | RXOPT2_RECV_AUTH |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 810 | RXOPT2_RECV_BEACON |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 811 | RXOPT2_RECV_CF |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 812 | RXOPT2_RECV_CTRL |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 813 | RXOPT2_RECV_DATA |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 814 | RXOPT2_RECV_MGMT |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 815 | RXOPT2_RECV_PROBE_REQ |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 816 | RXOPT2_RECV_PROBE_RESP |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
| 817 | RXOPT2_RECV_OTHER)((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)); |
| 818 | |
| 819 | /* in monitor mode go promiscuous */ |
| 820 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 821 | rx_opt.opt1 |= RXOPT1_PROMISC0x0008; |
| 822 | rx_opt.opt2 |= RXOPT2_RECV_BROKEN0x0020 | RXOPT2_RECV_ACK0x0002; |
| 823 | } else |
| 824 | rx_opt.opt1 |= RXOPT1_FILT_FDEST0x0010; |
| 825 | |
| 826 | /* finally set the RX options */ |
| 827 | if (acx_set_conf(sc, ACX_CONF_RXOPT0x0010, &rx_opt, sizeof(rx_opt)) != 0) { |
| 828 | printf("%s: can not set RX options!\n", sc->sc_dev.dv_xname); |
| 829 | return (ENXIO6); |
| 830 | } |
| 831 | |
| 832 | return (0); |
| 833 | } |
| 834 | |
| 835 | int |
| 836 | acx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 837 | { |
| 838 | struct acx_softc *sc = ifp->if_softc; |
| 839 | struct ieee80211com *ic = &sc->sc_ic; |
| 840 | int s, error = 0; |
| 841 | uint8_t chan; |
| 842 | |
| 843 | s = splnet()splraise(0x4); |
| 844 | |
| 845 | switch (cmd) { |
| 846 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 847 | ifp->if_flags |= IFF_UP0x1; |
| 848 | /* FALLTHROUGH */ |
| 849 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 850 | if (ifp->if_flags & IFF_UP0x1) { |
| 851 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
| 852 | error = acx_init(ifp); |
| 853 | } else { |
| 854 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 855 | error = acx_stop(sc); |
| 856 | } |
| 857 | break; |
| 858 | case SIOCS80211CHANNEL((unsigned long)0x80000000 | ((sizeof(struct ieee80211chanreq ) & 0x1fff) << 16) | ((('i')) << 8) | ((238)) ): |
| 859 | /* allow fast channel switching in monitor mode */ |
| 860 | error = ieee80211_ioctl(ifp, cmd, data); |
| 861 | if (error == ENETRESET52 && |
| 862 | ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 863 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
| 864 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
| 865 | ic->ic_bss->ni_chan = ic->ic_ibss_chan; |
| 866 | chan = ieee80211_chan2ieee(ic, |
| 867 | ic->ic_bss->ni_chan); |
| 868 | (void)acx_set_channel(sc, chan); |
| 869 | } |
| 870 | error = 0; |
| 871 | } |
| 872 | break; |
| 873 | default: |
| 874 | error = ieee80211_ioctl(ifp, cmd, data); |
| 875 | break; |
| 876 | } |
| 877 | |
| 878 | if (error == ENETRESET52) { |
| 879 | if ((ifp->if_flags & (IFF_RUNNING0x40 | IFF_UP0x1)) == |
| 880 | (IFF_RUNNING0x40 | IFF_UP0x1)) |
| 881 | error = acx_init(ifp); |
| 882 | else |
| 883 | error = 0; |
| 884 | } |
| 885 | |
| 886 | splx(s)spllower(s); |
| 887 | |
| 888 | return (error); |
| 889 | } |
| 890 | |
| 891 | void |
| 892 | acx_start(struct ifnet *ifp) |
| 893 | { |
| 894 | struct acx_softc *sc = ifp->if_softc; |
| 895 | struct ieee80211com *ic = &sc->sc_ic; |
| 896 | struct acx_buf_data *bd = &sc->sc_buf_data; |
| 897 | struct acx_txbuf *buf; |
| 898 | int trans, idx; |
| 899 | |
| 900 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0 || |
| 901 | (ifp->if_flags & IFF_RUNNING0x40) == 0 || |
| 902 | ifq_is_oactive(&ifp->if_snd)) |
| 903 | return; |
| 904 | |
| 905 | /* |
| 906 | * NOTE: |
| 907 | * We can't start from a random position that TX descriptor |
| 908 | * is free, since hardware will be confused by that. |
| 909 | * We have to follow the order of the TX ring. |
| 910 | */ |
| 911 | idx = bd->tx_free_start; |
| 912 | trans = 0; |
| 913 | for (buf = &bd->tx_buf[idx]; buf->tb_mbuf == NULL((void *)0); |
| 914 | buf = &bd->tx_buf[idx]) { |
| 915 | struct ieee80211_frame *wh; |
| 916 | struct ieee80211_node *ni = NULL((void *)0); |
| 917 | struct mbuf *m; |
| 918 | int rate; |
| 919 | |
| 920 | m = mq_dequeue(&ic->ic_mgtq); |
| 921 | /* first dequeue management frames */ |
| 922 | if (m != NULL((void *)0)) { |
| 923 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
| 924 | |
| 925 | /* |
| 926 | * probe response mgmt frames are handled by the |
| 927 | * firmware already. So, don't send them twice. |
| 928 | */ |
| 929 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 930 | if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) == |
| 931 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) { |
| 932 | if (ni != NULL((void *)0)) |
| 933 | ieee80211_release_node(ic, ni); |
| 934 | m_freem(m); |
| 935 | continue; |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * mgmt frames are sent at the lowest available |
| 940 | * bit-rate. |
| 941 | */ |
| 942 | rate = ni->ni_rates.rs_rates[0]; |
| 943 | rate &= IEEE80211_RATE_VAL0x7f; |
| 944 | } else { |
| 945 | struct ether_header *eh; |
| 946 | |
| 947 | /* then dequeue packets on the powersave queue */ |
| 948 | m = mq_dequeue(&ic->ic_pwrsaveq); |
| 949 | if (m != NULL((void *)0)) { |
| 950 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
| 951 | goto encapped; |
| 952 | } else { |
| 953 | m = ifq_dequeue(&ifp->if_snd); |
| 954 | if (m == NULL((void *)0)) |
| 955 | break; |
| 956 | } |
| 957 | if (ic->ic_state != IEEE80211_S_RUN) { |
| 958 | DPRINTF(("%s: data packet dropped due to " |
| 959 | "not RUN. Current state %d\n", |
| 960 | ifp->if_xname, ic->ic_state)); |
| 961 | m_freem(m); |
| 962 | break; |
| 963 | } |
| 964 | |
| 965 | if (m->m_lenm_hdr.mh_len < sizeof(struct ether_header)) { |
| 966 | m = m_pullup(m, sizeof(struct ether_header)); |
| 967 | if (m == NULL((void *)0)) { |
| 968 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 969 | continue; |
| 970 | } |
| 971 | } |
| 972 | eh = mtod(m, struct ether_header *)((struct ether_header *)((m)->m_hdr.mh_data)); |
Value stored to 'eh' is never read | |
| 973 | |
| 974 | /* TODO power save */ |
| 975 | |
| 976 | #if NBPFILTER1 > 0 |
| 977 | if (ifp->if_bpf != NULL((void *)0)) |
| 978 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 979 | #endif |
| 980 | |
| 981 | if ((m = ieee80211_encap(ifp, m, &ni)) == NULL((void *)0)) { |
| 982 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 983 | continue; |
| 984 | } |
| 985 | encapped: |
| 986 | if (ic->ic_fixed_rate != -1) { |
| 987 | rate = ic->ic_sup_rates[ic->ic_curmode]. |
| 988 | rs_rates[ic->ic_fixed_rate]; |
| 989 | } else |
| 990 | rate = ni->ni_rates.rs_rates[ni->ni_txrate]; |
| 991 | rate &= IEEE80211_RATE_VAL0x7f; |
| 992 | } |
| 993 | |
| 994 | #if NBPFILTER1 > 0 |
| 995 | if (ic->ic_rawbpf != NULL((void *)0)) |
| 996 | bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 997 | #endif |
| 998 | |
| 999 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1000 | if ((wh->i_fc[1] & IEEE80211_FC1_WEP0x40) && !sc->chip_hw_crypt) { |
| 1001 | struct ieee80211_key *k; |
| 1002 | |
| 1003 | k = ieee80211_get_txkey(ic, wh, ni); |
| 1004 | if ((m = ieee80211_encrypt(ic, m, k)) == NULL((void *)0)) { |
| 1005 | ieee80211_release_node(ic, ni); |
| 1006 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1007 | continue; |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | #if NBPFILTER1 > 0 |
| 1012 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 1013 | struct mbuf mb; |
| 1014 | struct acx_tx_radiotap_hdr *tap = &sc->sc_txtapsc_txtapu.th; |
| 1015 | |
| 1016 | tap->wt_flags = 0; |
| 1017 | tap->wt_rate = rate; |
| 1018 | tap->wt_chan_freq = |
| 1019 | htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
| 1020 | tap->wt_chan_flags = |
| 1021 | htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
| 1022 | |
| 1023 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
| 1024 | mb.m_lenm_hdr.mh_len = sc->sc_txtap_len; |
| 1025 | mb.m_nextm_hdr.mh_next = m; |
| 1026 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
| 1027 | mb.m_typem_hdr.mh_type = 0; |
| 1028 | mb.m_flagsm_hdr.mh_flags = 0; |
| 1029 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT(1 << 1)); |
| 1030 | } |
| 1031 | #endif |
| 1032 | |
| 1033 | if (acx_encap(sc, buf, m, ni, rate) != 0) { |
| 1034 | /* |
| 1035 | * NOTE: `m' will be freed in acx_encap() |
| 1036 | * if we reach here. |
| 1037 | */ |
| 1038 | if (ni != NULL((void *)0)) |
| 1039 | ieee80211_release_node(ic, ni); |
| 1040 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1041 | continue; |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * NOTE: |
| 1046 | * 1) `m' should not be touched after acx_encap() |
| 1047 | * 2) `node' will be used to do TX rate control during |
| 1048 | * acx_txeof(), so it is not freed here. acx_txeof() |
| 1049 | * will free it for us |
| 1050 | */ |
| 1051 | trans++; |
| 1052 | bd->tx_used_count++; |
| 1053 | idx = (idx + 1) % ACX_TX_DESC_CNT16; |
| 1054 | } |
| 1055 | bd->tx_free_start = idx; |
| 1056 | |
| 1057 | if (bd->tx_used_count == ACX_TX_DESC_CNT16) |
| 1058 | ifq_set_oactive(&ifp->if_snd); |
| 1059 | |
| 1060 | if (trans && sc->sc_txtimer == 0) |
| 1061 | sc->sc_txtimer = 5; |
| 1062 | ifp->if_timer = 1; |
| 1063 | } |
| 1064 | |
| 1065 | void |
| 1066 | acx_watchdog(struct ifnet *ifp) |
| 1067 | { |
| 1068 | struct acx_softc *sc = ifp->if_softc; |
| 1069 | |
| 1070 | ifp->if_timer = 0; |
| 1071 | |
| 1072 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
| 1073 | return; |
| 1074 | |
| 1075 | if (sc->sc_txtimer) { |
| 1076 | if (--sc->sc_txtimer == 0) { |
| 1077 | printf("%s: watchdog timeout\n", ifp->if_xname); |
| 1078 | acx_init(ifp); |
| 1079 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1080 | return; |
| 1081 | } else |
| 1082 | ifp->if_timer = 1; |
| 1083 | } |
| 1084 | |
| 1085 | ieee80211_watchdog(ifp); |
| 1086 | } |
| 1087 | |
| 1088 | int |
| 1089 | acx_intr(void *arg) |
| 1090 | { |
| 1091 | struct acx_softc *sc = arg; |
| 1092 | uint16_t intr_status; |
| 1093 | |
| 1094 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0) |
| 1095 | return (0); |
| 1096 | |
| 1097 | intr_status = CSR_READ_2(sc, ACXREG_INTR_STATUS_CLR)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(9)]))); |
| 1098 | if (intr_status == ACXRV_INTR_ALL0xffff) { |
| 1099 | /* not our interrupt */ |
| 1100 | return (0); |
| 1101 | } |
| 1102 | |
| 1103 | /* Acknowledge all interrupts */ |
| 1104 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, intr_status)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (intr_status))); |
| 1105 | |
| 1106 | intr_status &= sc->chip_intr_enable; |
| 1107 | if (intr_status == 0) { |
| 1108 | /* not interrupts we care about */ |
| 1109 | return (1); |
| 1110 | } |
| 1111 | |
| 1112 | #ifndef IEEE80211_STA_ONLY |
| 1113 | if (intr_status & ACXRV_INTR_DTIM0x0010) |
| 1114 | ieee80211_notify_dtim(&sc->sc_ic); |
| 1115 | #endif |
| 1116 | |
| 1117 | if (intr_status & ACXRV_INTR_TX_FINI0x0002) |
| 1118 | acx_txeof(sc); |
| 1119 | |
| 1120 | if (intr_status & ACXRV_INTR_RX_FINI0x0008) |
| 1121 | acx_rxeof(sc); |
| 1122 | |
| 1123 | return (1); |
| 1124 | } |
| 1125 | |
| 1126 | void |
| 1127 | acx_disable_intr(struct acx_softc *sc) |
| 1128 | { |
| 1129 | CSR_WRITE_2(sc, ACXREG_INTR_MASK, sc->chip_intr_disable)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(7)]), (sc->chip_intr_disable))); |
| 1130 | CSR_WRITE_2(sc, ACXREG_EVENT_MASK, 0)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(5)]), (0))); |
| 1131 | } |
| 1132 | |
| 1133 | void |
| 1134 | acx_enable_intr(struct acx_softc *sc) |
| 1135 | { |
| 1136 | /* Mask out interrupts that are not in the enable set */ |
| 1137 | CSR_WRITE_2(sc, ACXREG_INTR_MASK, ~sc->chip_intr_enable)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(7)]), (~sc->chip_intr_enable))); |
| 1138 | CSR_WRITE_2(sc, ACXREG_EVENT_MASK, ACXRV_EVENT_DISABLE)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(5)]), (0x8000))); |
| 1139 | } |
| 1140 | |
| 1141 | void |
| 1142 | acx_txeof(struct acx_softc *sc) |
| 1143 | { |
| 1144 | struct acx_buf_data *bd; |
| 1145 | struct acx_txbuf *buf; |
| 1146 | struct ifnet *ifp; |
| 1147 | int idx; |
| 1148 | |
| 1149 | ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1150 | |
| 1151 | bd = &sc->sc_buf_data; |
| 1152 | idx = bd->tx_used_start; |
| 1153 | for (buf = &bd->tx_buf[idx]; buf->tb_mbuf != NULL((void *)0); |
| 1154 | buf = &bd->tx_buf[idx]) { |
| 1155 | uint8_t ctrl, error; |
| 1156 | |
| 1157 | ctrl = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_ctrl)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)))); |
| 1158 | if ((ctrl & (DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40)) != |
| 1159 | (DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40)) |
| 1160 | break; |
| 1161 | |
| 1162 | bus_dmamap_unload(sc->sc_dmat, buf->tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (buf ->tb_mbuf_dmamap)); |
| 1163 | m_freem(buf->tb_mbuf); |
| 1164 | buf->tb_mbuf = NULL((void *)0); |
| 1165 | |
| 1166 | error = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_error)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_error)))); |
| 1167 | if (error) { |
| 1168 | acx_txerr(sc, error); |
| 1169 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1170 | } |
| 1171 | |
| 1172 | /* Update rate control statistics for the node */ |
| 1173 | if (buf->tb_node != NULL((void *)0)) { |
| 1174 | struct ieee80211com *ic; |
| 1175 | struct ieee80211_node *ni; |
| 1176 | struct acx_node *wn; |
| 1177 | int ntries; |
| 1178 | |
| 1179 | ic = &sc->sc_ic; |
| 1180 | ni = (struct ieee80211_node *)buf->tb_node; |
| 1181 | wn = (struct acx_node *)ni; |
| 1182 | ntries = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_rts_fail)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_fail)))) + |
| 1183 | FW_TXDESC_GETFIELD_1(sc, buf, f_tx_ack_fail)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ack_fail)))); |
| 1184 | |
| 1185 | wn->amn.amn_txcnt++; |
| 1186 | if (ntries > 0) { |
| 1187 | DPRINTFN(2, ("%s: tx intr ntries %d\n", |
| 1188 | sc->sc_dev.dv_xname, ntries)); |
| 1189 | wn->amn.amn_retrycnt++; |
| 1190 | } |
| 1191 | |
| 1192 | ieee80211_release_node(ic, ni); |
| 1193 | buf->tb_node = NULL((void *)0); |
| 1194 | } |
| 1195 | |
| 1196 | FW_TXDESC_SETFIELD_1(sc, buf, f_tx_ctrl, DESC_CTRL_HOSTOWN)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)), ((0x80)))); |
| 1197 | |
| 1198 | bd->tx_used_count--; |
| 1199 | |
| 1200 | idx = (idx + 1) % ACX_TX_DESC_CNT16; |
| 1201 | } |
| 1202 | bd->tx_used_start = idx; |
| 1203 | |
| 1204 | sc->sc_txtimer = bd->tx_used_count == 0 ? 0 : 5; |
| 1205 | |
| 1206 | if (bd->tx_used_count != ACX_TX_DESC_CNT16) { |
| 1207 | ifq_clr_oactive(&ifp->if_snd); |
| 1208 | acx_start(ifp); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | void |
| 1213 | acx_txerr(struct acx_softc *sc, uint8_t err) |
| 1214 | { |
| 1215 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1216 | struct acx_stats *stats = &sc->sc_stats; |
| 1217 | |
| 1218 | if (err == DESC_ERR_EXCESSIVE_RETRY0x20) { |
| 1219 | /* |
| 1220 | * This a common error (see comment below), |
| 1221 | * so print it using DPRINTF(). |
| 1222 | */ |
| 1223 | DPRINTF(("%s: TX failed -- excessive retry\n", |
| 1224 | sc->sc_dev.dv_xname)); |
| 1225 | } else |
| 1226 | printf("%s: TX failed -- ", ifp->if_xname); |
| 1227 | |
| 1228 | /* |
| 1229 | * Although `err' looks like bitmask, it never |
| 1230 | * has multiple bits set. |
| 1231 | */ |
| 1232 | switch (err) { |
| 1233 | #if 0 |
| 1234 | case DESC_ERR_OTHER_FRAG0x01: |
| 1235 | /* XXX what's this */ |
| 1236 | printf("error in other fragment\n"); |
| 1237 | stats->err_oth_frag++; |
| 1238 | break; |
| 1239 | #endif |
| 1240 | case DESC_ERR_ABORT0x02: |
| 1241 | printf("aborted\n"); |
| 1242 | stats->err_abort++; |
| 1243 | break; |
| 1244 | case DESC_ERR_PARAM0x04: |
| 1245 | printf("wrong parameters in descriptor\n"); |
| 1246 | stats->err_param++; |
| 1247 | break; |
| 1248 | case DESC_ERR_NO_WEPKEY0x08: |
| 1249 | printf("WEP key missing\n"); |
| 1250 | stats->err_no_wepkey++; |
| 1251 | break; |
| 1252 | case DESC_ERR_MSDU_TIMEOUT0x10: |
| 1253 | printf("MSDU life timeout\n"); |
| 1254 | stats->err_msdu_timeout++; |
| 1255 | break; |
| 1256 | case DESC_ERR_EXCESSIVE_RETRY0x20: |
| 1257 | /* |
| 1258 | * Possible causes: |
| 1259 | * 1) Distance is too long |
| 1260 | * 2) Transmit failed (e.g. no MAC level ACK) |
| 1261 | * 3) Chip overheated (this should be rare) |
| 1262 | */ |
| 1263 | stats->err_ex_retry++; |
| 1264 | break; |
| 1265 | case DESC_ERR_BUF_OVERFLOW0x40: |
| 1266 | printf("buffer overflow\n"); |
| 1267 | stats->err_buf_oflow++; |
| 1268 | break; |
| 1269 | case DESC_ERR_DMA0x80: |
| 1270 | printf("DMA error\n"); |
| 1271 | stats->err_dma++; |
| 1272 | break; |
| 1273 | default: |
| 1274 | printf("unknown error %d\n", err); |
| 1275 | stats->err_unkn++; |
| 1276 | break; |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | void |
| 1281 | acx_rxeof(struct acx_softc *sc) |
| 1282 | { |
| 1283 | struct ieee80211com *ic = &sc->sc_ic; |
| 1284 | struct acx_ring_data *rd = &sc->sc_ring_data; |
| 1285 | struct acx_buf_data *bd = &sc->sc_buf_data; |
| 1286 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1287 | int idx, ready; |
| 1288 | |
| 1289 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x02)) |
| 1290 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x02)); |
| 1291 | |
| 1292 | /* |
| 1293 | * Locate first "ready" rx buffer, |
| 1294 | * start from last stopped position. |
| 1295 | */ |
| 1296 | idx = bd->rx_scan_start; |
| 1297 | ready = 0; |
| 1298 | do { |
| 1299 | struct acx_rxbuf *buf; |
| 1300 | |
| 1301 | buf = &bd->rx_buf[idx]; |
| 1302 | if ((buf->rb_desc->h_ctrl & htole16(DESC_CTRL_HOSTOWN)((__uint16_t)(0x80))) && |
| 1303 | (buf->rb_desc->h_status & htole32(DESC_STATUS_FULL)((__uint32_t)(0x80000000)))) { |
| 1304 | ready = 1; |
| 1305 | break; |
| 1306 | } |
| 1307 | idx = (idx + 1) % ACX_RX_DESC_CNT16; |
| 1308 | } while (idx != bd->rx_scan_start); |
| 1309 | |
| 1310 | if (!ready) |
| 1311 | return; |
| 1312 | |
| 1313 | /* |
| 1314 | * NOTE: don't mess up `idx' here, it will |
| 1315 | * be used in the following code. |
| 1316 | */ |
| 1317 | do { |
| 1318 | struct acx_rxbuf_hdr *head; |
| 1319 | struct acx_rxbuf *buf; |
| 1320 | struct mbuf *m; |
| 1321 | struct ieee80211_rxinfo rxi; |
| 1322 | uint32_t desc_status; |
| 1323 | uint16_t desc_ctrl; |
| 1324 | int len, error; |
| 1325 | |
| 1326 | buf = &bd->rx_buf[idx]; |
| 1327 | |
| 1328 | desc_ctrl = letoh16(buf->rb_desc->h_ctrl)((__uint16_t)(buf->rb_desc->h_ctrl)); |
| 1329 | desc_status = letoh32(buf->rb_desc->h_status)((__uint32_t)(buf->rb_desc->h_status)); |
| 1330 | if (!(desc_ctrl & DESC_CTRL_HOSTOWN0x80) || |
| 1331 | !(desc_status & DESC_STATUS_FULL0x80000000)) |
| 1332 | break; |
| 1333 | |
| 1334 | bus_dmamap_sync(sc->sc_dmat, buf->rb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (buf-> rb_mbuf_dmamap), (0), (buf->rb_mbuf_dmamap->dm_mapsize) , (0x02)) |
| 1335 | buf->rb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (buf-> rb_mbuf_dmamap), (0), (buf->rb_mbuf_dmamap->dm_mapsize) , (0x02)); |
| 1336 | |
| 1337 | m = buf->rb_mbuf; |
| 1338 | |
| 1339 | error = acx_newbuf(sc, buf, 0); |
| 1340 | if (error) { |
| 1341 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1342 | goto next; |
| 1343 | } |
| 1344 | |
| 1345 | head = mtod(m, struct acx_rxbuf_hdr *)((struct acx_rxbuf_hdr *)((m)->m_hdr.mh_data)); |
| 1346 | |
| 1347 | len = letoh16(head->rbh_len)((__uint16_t)(head->rbh_len)) & ACX_RXBUF_LEN_MASK0xfff; |
| 1348 | if (len >= sizeof(struct ieee80211_frame_min) && |
| 1349 | len < MCLBYTES(1 << 11)) { |
| 1350 | struct ieee80211_frame *wh; |
| 1351 | struct ieee80211_node *ni; |
| 1352 | |
| 1353 | m_adj(m, sizeof(struct acx_rxbuf_hdr) + |
| 1354 | sc->chip_rxbuf_exhdr); |
| 1355 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1356 | |
| 1357 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
| 1358 | if ((wh->i_fc[1] & IEEE80211_FC1_WEP0x40) && |
| 1359 | sc->chip_hw_crypt) { |
| 1360 | /* Short circuit software WEP */ |
| 1361 | wh->i_fc[1] &= ~IEEE80211_FC1_WEP0x40; |
| 1362 | |
| 1363 | /* Do chip specific RX buffer processing */ |
| 1364 | if (sc->chip_proc_wep_rxbuf != NULL((void *)0)) { |
| 1365 | sc->chip_proc_wep_rxbuf(sc, m, &len); |
| 1366 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1367 | } |
| 1368 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
| 1369 | } |
| 1370 | |
| 1371 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = len; |
| 1372 | |
| 1373 | #if NBPFILTER1 > 0 |
| 1374 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 1375 | struct mbuf mb; |
| 1376 | struct acx_rx_radiotap_hdr *tap = &sc->sc_rxtapsc_rxtapu.th; |
| 1377 | |
| 1378 | tap->wr_flags = 0; |
| 1379 | tap->wr_chan_freq = |
| 1380 | htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
| 1381 | tap->wr_chan_flags = |
| 1382 | htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
| 1383 | tap->wr_rssi = head->rbh_level; |
| 1384 | tap->wr_max_rssi = ic->ic_max_rssi; |
| 1385 | |
| 1386 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
| 1387 | mb.m_lenm_hdr.mh_len = sc->sc_rxtap_len; |
| 1388 | mb.m_nextm_hdr.mh_next = m; |
| 1389 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
| 1390 | mb.m_typem_hdr.mh_type = 0; |
| 1391 | mb.m_flagsm_hdr.mh_flags = 0; |
| 1392 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN(1 << 0)); |
| 1393 | } |
| 1394 | #endif |
| 1395 | |
| 1396 | ni = ieee80211_find_rxnode(ic, wh); |
| 1397 | |
| 1398 | rxi.rxi_rssi = head->rbh_level; |
| 1399 | rxi.rxi_tstamp = letoh32(head->rbh_time)((__uint32_t)(head->rbh_time)); |
| 1400 | ieee80211_input(ifp, m, ni, &rxi); |
| 1401 | |
| 1402 | ieee80211_release_node(ic, ni); |
| 1403 | } else { |
| 1404 | m_freem(m); |
| 1405 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1406 | } |
| 1407 | |
| 1408 | next: |
| 1409 | buf->rb_desc->h_ctrl = htole16(desc_ctrl & ~DESC_CTRL_HOSTOWN)((__uint16_t)(desc_ctrl & ~0x80)); |
| 1410 | buf->rb_desc->h_status = 0; |
| 1411 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)) |
| 1412 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)); |
| 1413 | |
| 1414 | idx = (idx + 1) % ACX_RX_DESC_CNT16; |
| 1415 | } while (idx != bd->rx_scan_start); |
| 1416 | |
| 1417 | /* |
| 1418 | * Record the position so that next |
| 1419 | * time we can start from it. |
| 1420 | */ |
| 1421 | bd->rx_scan_start = idx; |
| 1422 | } |
| 1423 | |
| 1424 | int |
| 1425 | acx_reset(struct acx_softc *sc) |
| 1426 | { |
| 1427 | uint16_t reg; |
| 1428 | |
| 1429 | /* Halt ECPU */ |
| 1430 | CSR_SETB_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_HALT)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((27))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((27)) ]))) | (0x1)))); |
| 1431 | |
| 1432 | /* Software reset */ |
| 1433 | reg = CSR_READ_2(sc, ACXREG_SOFT_RESET)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]))); |
| 1434 | CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg | ACXRV_SOFT_RESET)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]), (reg | 0x1))); |
| 1435 | DELAY(100)(*delay_func)(100); |
| 1436 | CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]), (reg))); |
| 1437 | |
| 1438 | /* Initialize EEPROM */ |
| 1439 | CSR_SETB_2(sc, ACXREG_EEPROM_INIT, ACXRV_EEPROM_INIT)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((13))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((13)) ]))) | (0x1)))); |
| 1440 | DELAY(50000)(*delay_func)(50000); |
| 1441 | |
| 1442 | /* Test whether ECPU is stopped */ |
| 1443 | reg = CSR_READ_2(sc, ACXREG_ECPU_CTRL)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(27)]))); |
| 1444 | if (!(reg & ACXRV_ECPU_HALT0x1)) { |
| 1445 | printf("%s: can't halt ECPU\n", sc->sc_dev.dv_xname); |
| 1446 | return (ENXIO6); |
| 1447 | } |
| 1448 | |
| 1449 | return (0); |
| 1450 | } |
| 1451 | |
| 1452 | int |
| 1453 | acx_read_eeprom(struct acx_softc *sc, uint32_t offset, uint8_t *val) |
| 1454 | { |
| 1455 | int i; |
| 1456 | |
| 1457 | CSR_WRITE_4(sc, ACXREG_EEPROM_CONF, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(17)]), (0))); |
| 1458 | CSR_WRITE_4(sc, ACXREG_EEPROM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(15)]), (offset))); |
| 1459 | CSR_WRITE_4(sc, ACXREG_EEPROM_CTRL, ACXRV_EEPROM_READ)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(14)]), (0x2))); |
| 1460 | |
| 1461 | #define EE_READ_RETRY_MAX 100 |
| 1462 | for (i = 0; i < EE_READ_RETRY_MAX; ++i) { |
| 1463 | if (CSR_READ_2(sc, ACXREG_EEPROM_CTRL)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(14)]))) == 0) |
| 1464 | break; |
| 1465 | DELAY(10000)(*delay_func)(10000); |
| 1466 | } |
| 1467 | if (i == EE_READ_RETRY_MAX) { |
| 1468 | printf("%s: can't read EEPROM offset %x (timeout)\n", |
| 1469 | sc->sc_dev.dv_xname, offset); |
| 1470 | return (ETIMEDOUT60); |
| 1471 | } |
| 1472 | #undef EE_READ_RETRY_MAX |
| 1473 | |
| 1474 | *val = CSR_READ_1(sc, ACXREG_EEPROM_DATA)(((sc)->sc_mem1_bt)->read_1(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(16)]))); |
| 1475 | |
| 1476 | return (0); |
| 1477 | } |
| 1478 | |
| 1479 | int |
| 1480 | acx_read_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t *val) |
| 1481 | { |
| 1482 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1483 | int i; |
| 1484 | |
| 1485 | CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(19)]), (reg))); |
| 1486 | CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_READ)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]), (0x2))); |
| 1487 | |
| 1488 | #define PHY_READ_RETRY_MAX 100 |
| 1489 | for (i = 0; i < PHY_READ_RETRY_MAX; ++i) { |
| 1490 | if (CSR_READ_4(sc, ACXREG_PHY_CTRL)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]))) == 0) |
| 1491 | break; |
| 1492 | DELAY(10000)(*delay_func)(10000); |
| 1493 | } |
| 1494 | if (i == PHY_READ_RETRY_MAX) { |
| 1495 | printf("%s: can't read phy reg %x (timeout)\n", |
| 1496 | ifp->if_xname, reg); |
| 1497 | return (ETIMEDOUT60); |
| 1498 | } |
| 1499 | #undef PHY_READ_RETRY_MAX |
| 1500 | |
| 1501 | *val = CSR_READ_1(sc, ACXREG_PHY_DATA)(((sc)->sc_mem1_bt)->read_1(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(20)]))); |
| 1502 | |
| 1503 | return (0); |
| 1504 | } |
| 1505 | |
| 1506 | void |
| 1507 | acx_write_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t val) |
| 1508 | { |
| 1509 | CSR_WRITE_4(sc, ACXREG_PHY_DATA, val)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(20)]), (val))); |
| 1510 | CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(19)]), (reg))); |
| 1511 | CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_WRITE)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]), (0x1))); |
| 1512 | } |
| 1513 | |
| 1514 | int |
| 1515 | acx_load_base_firmware(struct acx_softc *sc, const char *name) |
| 1516 | { |
| 1517 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1518 | int i, error; |
| 1519 | uint8_t *ucode; |
| 1520 | size_t size; |
| 1521 | |
| 1522 | error = loadfirmware(name, &ucode, &size); |
| 1523 | |
| 1524 | if (error != 0) { |
| 1525 | printf("%s: error %d, could not read firmware %s\n", |
| 1526 | ifp->if_xname, error, name); |
| 1527 | return (EIO5); |
| 1528 | } |
| 1529 | |
| 1530 | /* Load base firmware */ |
| 1531 | error = acx_load_firmware(sc, 0, ucode, size); |
| 1532 | |
| 1533 | free(ucode, M_DEVBUF2, size); |
| 1534 | |
| 1535 | if (error) { |
| 1536 | printf("%s: can't load base firmware\n", ifp->if_xname); |
| 1537 | return error; |
| 1538 | } |
| 1539 | DPRINTF(("%s: base firmware loaded\n", sc->sc_dev.dv_xname)); |
| 1540 | |
| 1541 | /* Start ECPU */ |
| 1542 | CSR_WRITE_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_START)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(27)]), (0x0))); |
| 1543 | |
| 1544 | /* Wait for ECPU to be up */ |
| 1545 | for (i = 0; i < 500; ++i) { |
| 1546 | uint16_t reg; |
| 1547 | |
| 1548 | reg = CSR_READ_2(sc, ACXREG_INTR_STATUS)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(8)]))); |
| 1549 | if (reg & ACXRV_INTR_FCS_THRESH0x4000) { |
| 1550 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_FCS_THRESH)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (0x4000))); |
| 1551 | return (0); |
| 1552 | } |
| 1553 | DELAY(10000)(*delay_func)(10000); |
| 1554 | } |
| 1555 | |
| 1556 | printf("%s: can't initialize ECPU (timeout)\n", ifp->if_xname); |
| 1557 | |
| 1558 | return (ENXIO6); |
| 1559 | } |
| 1560 | |
| 1561 | int |
| 1562 | acx_load_radio_firmware(struct acx_softc *sc, const char *name) |
| 1563 | { |
| 1564 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1565 | struct acx_conf_mmap mem_map; |
| 1566 | uint32_t radio_fw_ofs; |
| 1567 | int error; |
| 1568 | uint8_t *ucode; |
| 1569 | size_t size; |
| 1570 | |
| 1571 | error = loadfirmware(name, &ucode, &size); |
| 1572 | |
| 1573 | if (error != 0) { |
| 1574 | printf("%s: error %d, could not read firmware %s\n", |
| 1575 | ifp->if_xname, error, name); |
| 1576 | return (EIO5); |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | * Get the position, where base firmware is loaded, so that |
| 1581 | * radio firmware can be loaded after it. |
| 1582 | */ |
| 1583 | if (acx_get_conf(sc, ACX_CONF_MMAP0x0008, &mem_map, sizeof(mem_map)) != 0) { |
| 1584 | free(ucode, M_DEVBUF2, size); |
| 1585 | return (ENXIO6); |
| 1586 | } |
| 1587 | radio_fw_ofs = letoh32(mem_map.code_end)((__uint32_t)(mem_map.code_end)); |
| 1588 | |
| 1589 | /* Put ECPU into sleeping state, before loading radio firmware */ |
| 1590 | if (acx_exec_command(sc, ACXCMD_SLEEP0x0f, NULL((void *)0), 0, NULL((void *)0), 0) != 0) { |
| 1591 | free(ucode, M_DEVBUF2, size); |
| 1592 | return (ENXIO6); |
| 1593 | } |
| 1594 | |
| 1595 | /* Load radio firmware */ |
| 1596 | error = acx_load_firmware(sc, radio_fw_ofs, ucode, size); |
| 1597 | |
| 1598 | free(ucode, M_DEVBUF2, size); |
| 1599 | |
| 1600 | if (error) { |
| 1601 | printf("%s: can't load radio firmware\n", ifp->if_xname); |
| 1602 | return (ENXIO6); |
| 1603 | } |
| 1604 | DPRINTF(("%s: radio firmware loaded\n", sc->sc_dev.dv_xname)); |
| 1605 | |
| 1606 | /* Wake up sleeping ECPU, after radio firmware is loaded */ |
| 1607 | if (acx_exec_command(sc, ACXCMD_WAKEUP0x10, NULL((void *)0), 0, NULL((void *)0), 0) != 0) |
| 1608 | return (ENXIO6); |
| 1609 | |
| 1610 | /* Initialize radio */ |
| 1611 | if (acx_init_radio(sc, radio_fw_ofs, size) != 0) |
| 1612 | return (ENXIO6); |
| 1613 | |
| 1614 | /* Verify radio firmware's loading position */ |
| 1615 | if (acx_get_conf(sc, ACX_CONF_MMAP0x0008, &mem_map, sizeof(mem_map)) != 0) |
| 1616 | return (ENXIO6); |
| 1617 | |
| 1618 | if (letoh32(mem_map.code_end)((__uint32_t)(mem_map.code_end)) != radio_fw_ofs + size) { |
| 1619 | printf("%s: loaded radio firmware position mismatch\n", |
| 1620 | ifp->if_xname); |
| 1621 | return (ENXIO6); |
| 1622 | } |
| 1623 | |
| 1624 | DPRINTF(("%s: radio firmware initialized\n", sc->sc_dev.dv_xname)); |
| 1625 | |
| 1626 | return (0); |
| 1627 | } |
| 1628 | |
| 1629 | int |
| 1630 | acx_load_firmware(struct acx_softc *sc, uint32_t offset, const uint8_t *data, |
| 1631 | int data_len) |
| 1632 | { |
| 1633 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1634 | const uint32_t *fw; |
| 1635 | u_int32_t csum = 0; |
| 1636 | int i, fw_len; |
| 1637 | |
| 1638 | for (i = 4; i < data_len; i++) |
| 1639 | csum += data[i]; |
| 1640 | |
| 1641 | fw = (const uint32_t *)data; |
| 1642 | |
| 1643 | if (*fw != htole32(csum)((__uint32_t)(csum))) { |
| 1644 | printf("%s: firmware checksum 0x%x does not match 0x%x!\n", |
| 1645 | ifp->if_xname, *fw, htole32(csum)((__uint32_t)(csum))); |
| 1646 | return (ENXIO6); |
| 1647 | } |
| 1648 | |
| 1649 | /* skip csum + length */ |
| 1650 | data += 8; |
| 1651 | data_len -= 8; |
| 1652 | |
| 1653 | fw = (const uint32_t *)data; |
| 1654 | fw_len = data_len / sizeof(uint32_t); |
| 1655 | |
| 1656 | /* |
| 1657 | * LOADFW_AUTO_INC only works with some older firmware: |
| 1658 | * 1) acx100's firmware |
| 1659 | * 2) acx111's firmware whose rev is 0x00010011 |
| 1660 | */ |
| 1661 | |
| 1662 | /* Load firmware */ |
| 1663 | CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(4)]), (0x0))); |
| 1664 | #ifndef LOADFW_AUTO_INC |
| 1665 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0))); |
| 1666 | #else |
| 1667 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0x10000))); |
| 1668 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset))); |
| 1669 | #endif |
| 1670 | |
| 1671 | for (i = 0; i < fw_len; ++i) { |
| 1672 | #ifndef LOADFW_AUTO_INC |
| 1673 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset + (i * 4)))); |
| 1674 | #endif |
| 1675 | CSR_WRITE_4(sc, ACXREG_FWMEM_DATA, betoh32(fw[i]))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(2)]), ((__uint32_t)(__builtin_constant_p(fw [i]) ? (__uint32_t)(((__uint32_t)(fw[i]) & 0xff) << 24 | ((__uint32_t)(fw[i]) & 0xff00) << 8 | ((__uint32_t )(fw[i]) & 0xff0000) >> 8 | ((__uint32_t)(fw[i]) & 0xff000000) >> 24) : __swap32md(fw[i]))))); |
| 1676 | } |
| 1677 | |
| 1678 | /* Verify firmware */ |
| 1679 | CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(4)]), (0x0))); |
| 1680 | #ifndef LOADFW_AUTO_INC |
| 1681 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0))); |
| 1682 | #else |
| 1683 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0x10000))); |
| 1684 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset))); |
| 1685 | #endif |
| 1686 | |
| 1687 | for (i = 0; i < fw_len; ++i) { |
| 1688 | uint32_t val; |
| 1689 | |
| 1690 | #ifndef LOADFW_AUTO_INC |
| 1691 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset + (i * 4)))); |
| 1692 | #endif |
| 1693 | val = CSR_READ_4(sc, ACXREG_FWMEM_DATA)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(2)]))); |
| 1694 | if (betoh32(fw[i])(__uint32_t)(__builtin_constant_p(fw[i]) ? (__uint32_t)(((__uint32_t )(fw[i]) & 0xff) << 24 | ((__uint32_t)(fw[i]) & 0xff00) << 8 | ((__uint32_t)(fw[i]) & 0xff0000) >> 8 | ((__uint32_t)(fw[i]) & 0xff000000) >> 24) : __swap32md (fw[i])) != val) { |
| 1695 | printf("%s: firmware mismatch fw %08x loaded %08x\n", |
| 1696 | ifp->if_xname, fw[i], val); |
| 1697 | return (ENXIO6); |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | return (0); |
| 1702 | } |
| 1703 | |
| 1704 | struct ieee80211_node * |
| 1705 | acx_node_alloc(struct ieee80211com *ic) |
| 1706 | { |
| 1707 | struct acx_node *wn; |
| 1708 | |
| 1709 | wn = malloc(sizeof(*wn), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
| 1710 | if (wn == NULL((void *)0)) |
| 1711 | return (NULL((void *)0)); |
| 1712 | |
| 1713 | return ((struct ieee80211_node *)wn); |
| 1714 | } |
| 1715 | |
| 1716 | int |
| 1717 | acx_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
| 1718 | { |
| 1719 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
| 1720 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1721 | int error = 0; |
| 1722 | |
| 1723 | timeout_del(&sc->amrr_ch); |
| 1724 | |
| 1725 | switch (nstate) { |
| 1726 | case IEEE80211_S_INIT: |
| 1727 | break; |
| 1728 | case IEEE80211_S_SCAN: { |
| 1729 | uint8_t chan; |
| 1730 | |
| 1731 | chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); |
| 1732 | if (acx_set_channel(sc, chan) != 0) { |
| 1733 | error = 1; |
| 1734 | goto back; |
| 1735 | } |
| 1736 | |
| 1737 | /* 200ms => 5 channels per second */ |
| 1738 | timeout_add_msec(&sc->sc_chanscan_timer, 200); |
| 1739 | } |
| 1740 | break; |
| 1741 | case IEEE80211_S_AUTH: |
| 1742 | if (ic->ic_opmode == IEEE80211_M_STA) { |
| 1743 | struct ieee80211_node *ni; |
| 1744 | #ifdef ACX_DEBUG |
| 1745 | int i; |
| 1746 | #endif |
| 1747 | |
| 1748 | ni = ic->ic_bss; |
| 1749 | |
| 1750 | if (acx_join_bss(sc, ACX_MODE_STA2, ni) != 0) { |
| 1751 | printf("%s: join BSS failed\n", ifp->if_xname); |
| 1752 | error = 1; |
| 1753 | goto back; |
| 1754 | } |
| 1755 | |
| 1756 | DPRINTF(("%s: join BSS\n", sc->sc_dev.dv_xname)); |
| 1757 | if (ic->ic_state == IEEE80211_S_ASSOC) { |
| 1758 | DPRINTF(("%s: change from assoc to run\n", |
| 1759 | sc->sc_dev.dv_xname)); |
| 1760 | ic->ic_state = IEEE80211_S_RUN; |
| 1761 | } |
| 1762 | |
| 1763 | #ifdef ACX_DEBUG |
| 1764 | printf("%s: AP rates: ", sc->sc_dev.dv_xname); |
| 1765 | for (i = 0; i < ni->ni_rates.rs_nrates; ++i) |
| 1766 | printf("%d ", ni->ni_rates.rs_rates[i]); |
| 1767 | ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); |
| 1768 | printf(" %s\n", ether_sprintf(ni->ni_bssid)); |
| 1769 | #endif |
| 1770 | } |
| 1771 | break; |
| 1772 | case IEEE80211_S_RUN: |
| 1773 | #ifndef IEEE80211_STA_ONLY |
| 1774 | if (ic->ic_opmode == IEEE80211_M_IBSS || |
| 1775 | ic->ic_opmode == IEEE80211_M_HOSTAP) { |
| 1776 | struct ieee80211_node *ni; |
| 1777 | uint8_t chan; |
| 1778 | |
| 1779 | ni = ic->ic_bss; |
| 1780 | chan = ieee80211_chan2ieee(ic, ni->ni_chan); |
| 1781 | |
| 1782 | error = 1; |
| 1783 | |
| 1784 | if (acx_set_channel(sc, chan) != 0) |
| 1785 | goto back; |
| 1786 | |
| 1787 | if (acx_set_beacon_tmplt(sc, ni) != 0) { |
| 1788 | printf("%s: set beacon template failed\n", |
| 1789 | ifp->if_xname); |
| 1790 | goto back; |
| 1791 | } |
| 1792 | |
| 1793 | if (acx_set_probe_resp_tmplt(sc, ni) != 0) { |
| 1794 | printf("%s: set probe response template " |
| 1795 | "failed\n", ifp->if_xname); |
| 1796 | goto back; |
| 1797 | } |
| 1798 | |
| 1799 | if (ic->ic_opmode == IEEE80211_M_IBSS) { |
| 1800 | if (acx_join_bss(sc, ACX_MODE_ADHOC0, ni) != 0) { |
| 1801 | printf("%s: join IBSS failed\n", |
| 1802 | ifp->if_xname); |
| 1803 | goto back; |
| 1804 | } |
| 1805 | } else { |
| 1806 | if (acx_join_bss(sc, ACX_MODE_AP3, ni) != 0) { |
| 1807 | printf("%s: join HOSTAP failed\n", |
| 1808 | ifp->if_xname); |
| 1809 | goto back; |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | DPRINTF(("%s: join IBSS\n", sc->sc_dev.dv_xname)); |
| 1814 | error = 0; |
| 1815 | } |
| 1816 | #endif |
| 1817 | /* fake a join to init the tx rate */ |
| 1818 | if (ic->ic_opmode == IEEE80211_M_STA) |
| 1819 | acx_newassoc(ic, ic->ic_bss, 1); |
| 1820 | |
| 1821 | /* start automatic rate control timer */ |
| 1822 | if (ic->ic_fixed_rate == -1) |
| 1823 | timeout_add_msec(&sc->amrr_ch, 500); |
| 1824 | break; |
| 1825 | default: |
| 1826 | break; |
| 1827 | } |
| 1828 | |
| 1829 | back: |
| 1830 | if (error) { |
| 1831 | /* XXX */ |
| 1832 | nstate = IEEE80211_S_INIT; |
| 1833 | arg = -1; |
| 1834 | } |
| 1835 | |
| 1836 | return (sc->sc_newstate(ic, nstate, arg)); |
| 1837 | } |
| 1838 | |
| 1839 | int |
| 1840 | acx_init_tmplt_ordered(struct acx_softc *sc) |
| 1841 | { |
| 1842 | union { |
| 1843 | struct acx_tmplt_beacon beacon; |
| 1844 | struct acx_tmplt_null_data null; |
| 1845 | struct acx_tmplt_probe_req preq; |
| 1846 | struct acx_tmplt_probe_resp presp; |
| 1847 | struct acx_tmplt_tim tim; |
| 1848 | } data; |
| 1849 | |
| 1850 | bzero(&data, sizeof(data))__builtin_bzero((&data), (sizeof(data))); |
| 1851 | /* |
| 1852 | * NOTE: |
| 1853 | * Order of templates initialization: |
| 1854 | * 1) Probe request |
| 1855 | * 2) NULL data |
| 1856 | * 3) Beacon |
| 1857 | * 4) TIM |
| 1858 | * 5) Probe response |
| 1859 | * Above order is critical to get a correct memory map. |
| 1860 | */ |
| 1861 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_REQ0x16, &data.preq, |
| 1862 | sizeof(data.preq)) != 0) |
| 1863 | return (1); |
| 1864 | |
| 1865 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_NULL_DATA0x15, &data.null, |
| 1866 | sizeof(data.null)) != 0) |
| 1867 | return (1); |
| 1868 | |
| 1869 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_BEACON0x13, &data.beacon, |
| 1870 | sizeof(data.beacon)) != 0) |
| 1871 | return (1); |
| 1872 | |
| 1873 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &data.tim, |
| 1874 | sizeof(data.tim)) != 0) |
| 1875 | return (1); |
| 1876 | |
| 1877 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_RESP0x14, &data.presp, |
| 1878 | sizeof(data.presp)) != 0) |
| 1879 | return (1); |
| 1880 | |
| 1881 | return (0); |
| 1882 | } |
| 1883 | |
| 1884 | int |
| 1885 | acx_dma_alloc(struct acx_softc *sc) |
| 1886 | { |
| 1887 | struct acx_ring_data *rd = &sc->sc_ring_data; |
| 1888 | struct acx_buf_data *bd = &sc->sc_buf_data; |
| 1889 | int i, error, nsegs; |
| 1890 | |
| 1891 | /* Allocate DMA stuffs for RX descriptors */ |
| 1892 | error = bus_dmamap_create(sc->sc_dmat, ACX_RX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), (1), ((16 * sizeof(struct acx_host_desc ))), (0), (0x0001), (&rd->rx_ring_dmamap)) |
| 1893 | ACX_RX_RING_SIZE, 0, BUS_DMA_NOWAIT, &rd->rx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), (1), ((16 * sizeof(struct acx_host_desc ))), (0), (0x0001), (&rd->rx_ring_dmamap)); |
| 1894 | |
| 1895 | if (error) { |
| 1896 | printf("%s: can't create rx ring dma tag\n", |
| 1897 | sc->sc_dev.dv_xname); |
| 1898 | return (error); |
| 1899 | } |
| 1900 | |
| 1901 | error = bus_dmamem_alloc(sc->sc_dmat, ACX_RX_RING_SIZE, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (& rd->rx_ring_seg), (1), (&nsegs), (0x0001)) |
| 1902 | 0, &rd->rx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (& rd->rx_ring_seg), (1), (&nsegs), (0x0001)); |
| 1903 | |
| 1904 | if (error != 0) { |
| 1905 | printf("%s: can't allocate rx ring dma memory\n", |
| 1906 | sc->sc_dev.dv_xname); |
| 1907 | return (error); |
| 1908 | } |
| 1909 | |
| 1910 | error = bus_dmamem_map(sc->sc_dmat, &rd->rx_ring_seg, nsegs,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)) |
| 1911 | ACX_RX_RING_SIZE, (caddr_t *)&rd->rx_ring,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)) |
| 1912 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)); |
| 1913 | |
| 1914 | if (error != 0) { |
| 1915 | printf("%s: can't map rx desc DMA memory\n", |
| 1916 | sc->sc_dev.dv_xname); |
| 1917 | return (error); |
| 1918 | } |
| 1919 | |
| 1920 | error = bus_dmamap_load(sc->sc_dmat, rd->rx_ring_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> rx_ring_dmamap), (rd->rx_ring), ((16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)) |
| 1921 | rd->rx_ring, ACX_RX_RING_SIZE, NULL, BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> rx_ring_dmamap), (rd->rx_ring), ((16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)); |
| 1922 | |
| 1923 | if (error) { |
| 1924 | printf("%s: can't get rx ring dma address\n", |
| 1925 | sc->sc_dev.dv_xname); |
| 1926 | bus_dmamem_free(sc->sc_dmat, &rd->rx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->rx_ring_seg), (1)); |
| 1927 | return (error); |
| 1928 | } |
| 1929 | |
| 1930 | rd->rx_ring_paddr = rd->rx_ring_dmamap->dm_segs[0].ds_addr; |
| 1931 | |
| 1932 | /* Allocate DMA stuffs for TX descriptors */ |
| 1933 | error = bus_dmamap_create(sc->sc_dmat, ACX_TX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), (1), ((2 * 16 * sizeof( struct acx_host_desc))), (0), (0x0001), (&rd->tx_ring_dmamap )) |
| 1934 | ACX_TX_RING_SIZE, 0, BUS_DMA_NOWAIT, &rd->tx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), (1), ((2 * 16 * sizeof( struct acx_host_desc))), (0), (0x0001), (&rd->tx_ring_dmamap )); |
| 1935 | |
| 1936 | if (error) { |
| 1937 | printf("%s: can't create tx ring dma tag\n", |
| 1938 | sc->sc_dev.dv_xname); |
| 1939 | return (error); |
| 1940 | } |
| 1941 | |
| 1942 | error = bus_dmamem_alloc(sc->sc_dmat, ACX_TX_RING_SIZE, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (&rd->tx_ring_seg), (1), (&nsegs), (0x0001)) |
| 1943 | 0, &rd->tx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (&rd->tx_ring_seg), (1), (&nsegs), (0x0001)); |
| 1944 | |
| 1945 | if (error) { |
| 1946 | printf("%s: can't allocate tx ring dma memory\n", |
| 1947 | sc->sc_dev.dv_xname); |
| 1948 | return (error); |
| 1949 | } |
| 1950 | |
| 1951 | error = bus_dmamem_map(sc->sc_dmat, &rd->tx_ring_seg, nsegs,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->tx_ring_seg), (nsegs), ((2 * 16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->tx_ring), (0x0001)) |
| 1952 | ACX_TX_RING_SIZE, (caddr_t *)&rd->tx_ring, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->tx_ring_seg), (nsegs), ((2 * 16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->tx_ring), (0x0001)); |
| 1953 | |
| 1954 | if (error != 0) { |
| 1955 | printf("%s: can't map tx desc DMA memory\n", |
| 1956 | sc->sc_dev.dv_xname); |
| 1957 | return (error); |
| 1958 | } |
| 1959 | |
| 1960 | error = bus_dmamap_load(sc->sc_dmat, rd->tx_ring_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> tx_ring_dmamap), (rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)) |
| 1961 | rd->tx_ring, ACX_TX_RING_SIZE, NULL, BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> tx_ring_dmamap), (rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)); |
| 1962 | |
| 1963 | if (error) { |
| 1964 | printf("%s: can't get tx ring dma address\n", |
| 1965 | sc->sc_dev.dv_xname); |
| 1966 | bus_dmamem_free(sc->sc_dmat, &rd->tx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->tx_ring_seg), (1)); |
| 1967 | return (error); |
| 1968 | } |
| 1969 | |
| 1970 | rd->tx_ring_paddr = rd->tx_ring_dmamap->dm_segs[0].ds_addr; |
| 1971 | |
| 1972 | /* Create a spare RX DMA map */ |
| 1973 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->mbuf_tmp_dmamap )) |
| 1974 | 0, 0, &bd->mbuf_tmp_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->mbuf_tmp_dmamap )); |
| 1975 | |
| 1976 | if (error) { |
| 1977 | printf("%s: can't create tmp mbuf dma map\n", |
| 1978 | sc->sc_dev.dv_xname); |
| 1979 | return (error); |
| 1980 | } |
| 1981 | |
| 1982 | /* Create DMA map for RX mbufs */ |
| 1983 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
| 1984 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->rx_buf[ i].rb_mbuf_dmamap)) |
| 1985 | MCLBYTES, 0, 0, &bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->rx_buf[ i].rb_mbuf_dmamap)); |
| 1986 | if (error) { |
| 1987 | printf("%s: can't create rx mbuf dma map (%d)\n", |
| 1988 | sc->sc_dev.dv_xname, i); |
| 1989 | return (error); |
| 1990 | } |
| 1991 | bd->rx_buf[i].rb_desc = &rd->rx_ring[i]; |
| 1992 | } |
| 1993 | |
| 1994 | /* Create DMA map for TX mbufs */ |
| 1995 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
| 1996 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->tx_buf[ i].tb_mbuf_dmamap)) |
| 1997 | MCLBYTES, 0, 0, &bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->tx_buf[ i].tb_mbuf_dmamap)); |
| 1998 | if (error) { |
| 1999 | printf("%s: can't create tx mbuf dma map (%d)\n", |
| 2000 | sc->sc_dev.dv_xname, i); |
| 2001 | return (error); |
| 2002 | } |
| 2003 | bd->tx_buf[i].tb_desc1 = &rd->tx_ring[i * 2]; |
| 2004 | bd->tx_buf[i].tb_desc2 = &rd->tx_ring[(i * 2) + 1]; |
| 2005 | } |
| 2006 | |
| 2007 | return (0); |
| 2008 | } |
| 2009 | |
| 2010 | void |
| 2011 | acx_dma_free(struct acx_softc *sc) |
| 2012 | { |
| 2013 | struct acx_ring_data *rd = &sc->sc_ring_data; |
| 2014 | struct acx_buf_data *bd = &sc->sc_buf_data; |
| 2015 | int i; |
| 2016 | |
| 2017 | if (rd->rx_ring != NULL((void *)0)) { |
| 2018 | bus_dmamap_unload(sc->sc_dmat, rd->rx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rd-> rx_ring_dmamap)); |
| 2019 | bus_dmamem_free(sc->sc_dmat, &rd->rx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->rx_ring_seg), (1)); |
| 2020 | } |
| 2021 | |
| 2022 | if (rd->tx_ring != NULL((void *)0)) { |
| 2023 | bus_dmamap_unload(sc->sc_dmat, rd->tx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rd-> tx_ring_dmamap)); |
| 2024 | bus_dmamem_free(sc->sc_dmat, &rd->tx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->tx_ring_seg), (1)); |
| 2025 | } |
| 2026 | |
| 2027 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
| 2028 | if (bd->rx_buf[i].rb_desc != NULL((void *)0)) { |
| 2029 | if (bd->rx_buf[i].rb_mbuf != NULL((void *)0)) { |
| 2030 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)) |
| 2031 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)); |
| 2032 | m_freem(bd->rx_buf[i].rb_mbuf); |
| 2033 | } |
| 2034 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->rx_buf[i].rb_mbuf_dmamap)) |
| 2035 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->rx_buf[i].rb_mbuf_dmamap)); |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
| 2040 | if (bd->tx_buf[i].tb_desc1 != NULL((void *)0)) { |
| 2041 | if (bd->tx_buf[i].tb_mbuf != NULL((void *)0)) { |
| 2042 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> tx_buf[i].tb_mbuf_dmamap)) |
| 2043 | bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> tx_buf[i].tb_mbuf_dmamap)); |
| 2044 | m_freem(bd->tx_buf[i].tb_mbuf); |
| 2045 | } |
| 2046 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->tx_buf[i].tb_mbuf_dmamap)) |
| 2047 | bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->tx_buf[i].tb_mbuf_dmamap)); |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | if (bd->mbuf_tmp_dmamap != NULL((void *)0)) |
| 2052 | bus_dmamap_destroy(sc->sc_dmat, bd->mbuf_tmp_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->mbuf_tmp_dmamap)); |
| 2053 | } |
| 2054 | |
| 2055 | void |
| 2056 | acx_init_tx_ring(struct acx_softc *sc) |
| 2057 | { |
| 2058 | struct acx_ring_data *rd; |
| 2059 | struct acx_buf_data *bd; |
| 2060 | uint32_t paddr; |
| 2061 | int i; |
| 2062 | |
| 2063 | rd = &sc->sc_ring_data; |
| 2064 | paddr = rd->tx_ring_paddr; |
| 2065 | for (i = 0; i < (ACX_TX_DESC_CNT16 * 2) - 1; ++i) { |
| 2066 | paddr += sizeof(struct acx_host_desc); |
| 2067 | |
| 2068 | bzero(&rd->tx_ring[i], sizeof(struct acx_host_desc))__builtin_bzero((&rd->tx_ring[i]), (sizeof(struct acx_host_desc ))); |
| 2069 | rd->tx_ring[i].h_ctrl = htole16(DESC_CTRL_HOSTOWN)((__uint16_t)(0x80)); |
| 2070 | |
| 2071 | if (i == (ACX_TX_DESC_CNT16 * 2) - 1) |
| 2072 | rd->tx_ring[i].h_next_desc = htole32(rd->tx_ring_paddr)((__uint32_t)(rd->tx_ring_paddr)); |
| 2073 | else |
| 2074 | rd->tx_ring[i].h_next_desc = htole32(paddr)((__uint32_t)(paddr)); |
| 2075 | } |
| 2076 | |
| 2077 | bus_dmamap_sync(sc->sc_dmat, rd->tx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)) |
| 2078 | rd->tx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)); |
| 2079 | |
| 2080 | bd = &sc->sc_buf_data; |
| 2081 | bd->tx_free_start = 0; |
| 2082 | bd->tx_used_start = 0; |
| 2083 | bd->tx_used_count = 0; |
| 2084 | } |
| 2085 | |
| 2086 | int |
| 2087 | acx_init_rx_ring(struct acx_softc *sc) |
| 2088 | { |
| 2089 | struct acx_ring_data *rd; |
| 2090 | struct acx_buf_data *bd; |
| 2091 | uint32_t paddr; |
| 2092 | int i; |
| 2093 | |
| 2094 | bd = &sc->sc_buf_data; |
| 2095 | rd = &sc->sc_ring_data; |
| 2096 | paddr = rd->rx_ring_paddr; |
| 2097 | |
| 2098 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
| 2099 | int error; |
| 2100 | |
| 2101 | paddr += sizeof(struct acx_host_desc); |
| 2102 | bzero(&rd->rx_ring[i], sizeof(struct acx_host_desc))__builtin_bzero((&rd->rx_ring[i]), (sizeof(struct acx_host_desc ))); |
| 2103 | |
| 2104 | error = acx_newbuf(sc, &bd->rx_buf[i], 1); |
| 2105 | if (error) |
| 2106 | return (error); |
| 2107 | |
| 2108 | if (i == ACX_RX_DESC_CNT16 - 1) |
| 2109 | rd->rx_ring[i].h_next_desc = htole32(rd->rx_ring_paddr)((__uint32_t)(rd->rx_ring_paddr)); |
| 2110 | else |
| 2111 | rd->rx_ring[i].h_next_desc = htole32(paddr)((__uint32_t)(paddr)); |
| 2112 | } |
| 2113 | |
| 2114 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)) |
| 2115 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)); |
| 2116 | |
| 2117 | bd->rx_scan_start = 0; |
| 2118 | |
| 2119 | return (0); |
| 2120 | } |
| 2121 | |
| 2122 | int |
| 2123 | acx_newbuf(struct acx_softc *sc, struct acx_rxbuf *rb, int wait) |
| 2124 | { |
| 2125 | struct acx_buf_data *bd; |
| 2126 | struct mbuf *m; |
| 2127 | bus_dmamap_t map; |
| 2128 | uint32_t paddr; |
| 2129 | int error; |
| 2130 | |
| 2131 | bd = &sc->sc_buf_data; |
| 2132 | |
| 2133 | MGETHDR(m, wait ? M_WAITOK : M_DONTWAIT, MT_DATA)m = m_gethdr((wait ? 0x0001 : 0x0002), (1)); |
| 2134 | if (m == NULL((void *)0)) |
| 2135 | return (ENOBUFS55); |
| 2136 | |
| 2137 | MCLGET(m, wait ? M_WAITOK : M_DONTWAIT)(void) m_clget((m), (wait ? 0x0001 : 0x0002), (1 << 11) ); |
| 2138 | if (!(m->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
| 2139 | m_freem(m); |
| 2140 | return (ENOBUFS55); |
| 2141 | } |
| 2142 | |
| 2143 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = MCLBYTES(1 << 11); |
| 2144 | |
| 2145 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bd->mbuf_tmp_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bd->mbuf_tmp_dmamap), (m), (wait ? 0x0000 : 0x0001)) |
| 2146 | wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bd->mbuf_tmp_dmamap), (m), (wait ? 0x0000 : 0x0001)); |
| 2147 | if (error) { |
| 2148 | m_freem(m); |
| 2149 | printf("%s: can't map rx mbuf %d\n", |
| 2150 | sc->sc_dev.dv_xname, error); |
| 2151 | return (error); |
| 2152 | } |
| 2153 | |
| 2154 | /* Unload originally mapped mbuf */ |
| 2155 | if (rb->rb_mbuf != NULL((void *)0)) |
| 2156 | bus_dmamap_unload(sc->sc_dmat, rb->rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rb-> rb_mbuf_dmamap)); |
| 2157 | |
| 2158 | /* Swap this dmamap with tmp dmamap */ |
| 2159 | map = rb->rb_mbuf_dmamap; |
| 2160 | rb->rb_mbuf_dmamap = bd->mbuf_tmp_dmamap; |
| 2161 | bd->mbuf_tmp_dmamap = map; |
| 2162 | paddr = rb->rb_mbuf_dmamap->dm_segs[0].ds_addr; |
| 2163 | |
| 2164 | rb->rb_mbuf = m; |
| 2165 | rb->rb_desc->h_data_paddr = htole32(paddr)((__uint32_t)(paddr)); |
| 2166 | rb->rb_desc->h_data_len = htole16(m->m_len)((__uint16_t)(m->m_hdr.mh_len)); |
| 2167 | |
| 2168 | bus_dmamap_sync(sc->sc_dmat, rb->rb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rb-> rb_mbuf_dmamap), (0), (rb->rb_mbuf_dmamap->dm_mapsize), (0x01)) |
| 2169 | rb->rb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rb-> rb_mbuf_dmamap), (0), (rb->rb_mbuf_dmamap->dm_mapsize), (0x01)); |
| 2170 | |
| 2171 | return (0); |
| 2172 | } |
| 2173 | |
| 2174 | int |
| 2175 | acx_encap(struct acx_softc *sc, struct acx_txbuf *txbuf, struct mbuf *m, |
| 2176 | struct ieee80211_node *ni, int rate) |
| 2177 | { |
| 2178 | struct acx_ring_data *rd = &sc->sc_ring_data; |
| 2179 | struct acx_node *node = (struct acx_node *)ni; |
| 2180 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 2181 | uint32_t paddr; |
| 2182 | uint8_t ctrl; |
| 2183 | int error; |
| 2184 | |
| 2185 | if (txbuf->tb_mbuf != NULL((void *)0)) |
| 2186 | panic("free TX buf has mbuf installed"); |
| 2187 | |
| 2188 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.len > MCLBYTES(1 << 11)) { |
| 2189 | printf("%s: mbuf too big\n", ifp->if_xname); |
| 2190 | error = E2BIG7; |
| 2191 | goto back; |
| 2192 | } else if (m->m_pkthdrM_dat.MH.MH_pkthdr.len < ACX_FRAME_HDRLENsizeof(struct ieee80211_frame)) { |
| 2193 | printf("%s: mbuf too small\n", ifp->if_xname); |
| 2194 | error = EINVAL22; |
| 2195 | goto back; |
| 2196 | } |
| 2197 | |
| 2198 | error = bus_dmamap_load_mbuf(sc->sc_dmat, txbuf->tb_mbuf_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)) |
| 2199 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)); |
| 2200 | |
| 2201 | if (error && error != EFBIG27) { |
| 2202 | printf("%s: can't map tx mbuf1 %d\n", |
| 2203 | sc->sc_dev.dv_xname, error); |
| 2204 | goto back; |
| 2205 | } |
| 2206 | |
| 2207 | if (error) { /* error == EFBIG */ |
| 2208 | /* too many fragments, linearize */ |
| 2209 | if (m_defrag(m, M_DONTWAIT0x0002)) { |
| 2210 | printf("%s: can't defrag tx mbuf\n", ifp->if_xname); |
| 2211 | goto back; |
| 2212 | } |
| 2213 | error = bus_dmamap_load_mbuf(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)) |
| 2214 | txbuf->tb_mbuf_dmamap, m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)); |
| 2215 | if (error) { |
| 2216 | printf("%s: can't map tx mbuf2 %d\n", |
| 2217 | sc->sc_dev.dv_xname, error); |
| 2218 | goto back; |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | error = 0; |
| 2223 | |
| 2224 | bus_dmamap_sync(sc->sc_dmat, txbuf->tb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txbuf ->tb_mbuf_dmamap), (0), (txbuf->tb_mbuf_dmamap->dm_mapsize ), (0x04)) |
| 2225 | txbuf->tb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txbuf ->tb_mbuf_dmamap), (0), (txbuf->tb_mbuf_dmamap->dm_mapsize ), (0x04)); |
| 2226 | |
| 2227 | txbuf->tb_mbuf = m; |
| 2228 | txbuf->tb_node = node; |
| 2229 | txbuf->tb_rate = rate; |
| 2230 | |
| 2231 | /* |
| 2232 | * TX buffers are accessed in following way: |
| 2233 | * acx_fw_txdesc -> acx_host_desc -> buffer |
| 2234 | * |
| 2235 | * It is quite strange that acx also queries acx_host_desc next to |
| 2236 | * the one we have assigned to acx_fw_txdesc even if first one's |
| 2237 | * acx_host_desc.h_data_len == acx_fw_txdesc.f_tx_len |
| 2238 | * |
| 2239 | * So we allocate two acx_host_desc for one acx_fw_txdesc and |
| 2240 | * assign the first acx_host_desc to acx_fw_txdesc |
| 2241 | * |
| 2242 | * For acx111 |
| 2243 | * host_desc1.h_data_len = buffer_len |
| 2244 | * host_desc2.h_data_len = buffer_len - mac_header_len |
| 2245 | * |
| 2246 | * For acx100 |
| 2247 | * host_desc1.h_data_len = mac_header_len |
| 2248 | * host_desc2.h_data_len = buffer_len - mac_header_len |
| 2249 | */ |
| 2250 | paddr = txbuf->tb_mbuf_dmamap->dm_segs[0].ds_addr; |
| 2251 | txbuf->tb_desc1->h_data_paddr = htole32(paddr)((__uint32_t)(paddr)); |
| 2252 | txbuf->tb_desc2->h_data_paddr = htole32(paddr + ACX_FRAME_HDRLEN)((__uint32_t)(paddr + sizeof(struct ieee80211_frame))); |
| 2253 | |
| 2254 | txbuf->tb_desc1->h_data_len = |
| 2255 | htole16(sc->chip_txdesc1_len ? sc->chip_txdesc1_len((__uint16_t)(sc->chip_txdesc1_len ? sc->chip_txdesc1_len : m->M_dat.MH.MH_pkthdr.len)) |
| 2256 | : m->m_pkthdr.len)((__uint16_t)(sc->chip_txdesc1_len ? sc->chip_txdesc1_len : m->M_dat.MH.MH_pkthdr.len)); |
| 2257 | txbuf->tb_desc2->h_data_len = |
| 2258 | htole16(m->m_pkthdr.len - ACX_FRAME_HDRLEN)((__uint16_t)(m->M_dat.MH.MH_pkthdr.len - sizeof(struct ieee80211_frame ))); |
| 2259 | |
| 2260 | /* |
| 2261 | * NOTE: |
| 2262 | * We can't simply assign f_tx_ctrl, we will first read it back |
| 2263 | * and change it bit by bit |
| 2264 | */ |
| 2265 | ctrl = FW_TXDESC_GETFIELD_1(sc, txbuf, f_tx_ctrl)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)))); |
| 2266 | ctrl |= sc->chip_fw_txdesc_ctrl; /* extra chip specific flags */ |
| 2267 | ctrl &= ~(DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40); |
| 2268 | |
| 2269 | FW_TXDESC_SETFIELD_2(sc, txbuf, f_tx_len, m->m_pkthdr.len)(((sc)->sc_mem2_bt)->write_2(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_len)), ((m->M_dat.MH.MH_pkthdr.len)))); |
| 2270 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_error, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_error)), ((0)))); |
| 2271 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ack_fail, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ack_fail)), ((0)))); |
| 2272 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_fail, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_fail)), ((0)))); |
| 2273 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_ok, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_ok)), ((0)))); |
| 2274 | sc->chip_set_fw_txdesc_rate(sc, txbuf, rate); |
| 2275 | |
| 2276 | txbuf->tb_desc1->h_ctrl = 0; |
| 2277 | txbuf->tb_desc2->h_ctrl = 0; |
| 2278 | bus_dmamap_sync(sc->sc_dmat, rd->tx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)) |
| 2279 | rd->tx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)); |
| 2280 | |
| 2281 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl2, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl2)), ((0)))); |
| 2282 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl, ctrl)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)), ((ctrl)))); |
| 2283 | |
| 2284 | /* Tell chip to inform us about TX completion */ |
| 2285 | CSR_WRITE_2(sc, ACXREG_INTR_TRIG, ACXRV_TRIG_TX_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(6)]), (0x0004))); |
| 2286 | back: |
| 2287 | if (error) |
| 2288 | m_freem(m); |
| 2289 | |
| 2290 | return (error); |
| 2291 | } |
| 2292 | |
| 2293 | int |
| 2294 | acx_set_null_tmplt(struct acx_softc *sc) |
| 2295 | { |
| 2296 | struct ieee80211com *ic = &sc->sc_ic; |
| 2297 | struct acx_tmplt_null_data n; |
| 2298 | struct ieee80211_frame *wh; |
| 2299 | |
| 2300 | bzero(&n, sizeof(n))__builtin_bzero((&n), (sizeof(n))); |
| 2301 | |
| 2302 | wh = &n.data; |
| 2303 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_DATA0x08 | |
| 2304 | IEEE80211_FC0_SUBTYPE_NODATA0x40; |
| 2305 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
| 2306 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
| 2307 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
| 2308 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
| 2309 | |
| 2310 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_NULL_DATA0x15, &n, sizeof(n))); |
| 2311 | } |
| 2312 | |
| 2313 | int |
| 2314 | acx_set_probe_req_tmplt(struct acx_softc *sc, const char *ssid, int ssid_len) |
| 2315 | { |
| 2316 | struct ieee80211com *ic = &sc->sc_ic; |
| 2317 | struct acx_tmplt_probe_req req; |
| 2318 | struct ieee80211_frame *wh; |
| 2319 | struct ieee80211_rateset *rs; |
| 2320 | uint8_t *frm; |
| 2321 | int len; |
| 2322 | |
| 2323 | bzero(&req, sizeof(req))__builtin_bzero((&req), (sizeof(req))); |
| 2324 | |
| 2325 | wh = &req.data.u_data.f; |
| 2326 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
| 2327 | IEEE80211_FC0_SUBTYPE_PROBE_REQ0x40; |
| 2328 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
| 2329 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
| 2330 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
| 2331 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
| 2332 | |
| 2333 | frm = req.data.u_data.var; |
| 2334 | frm = ieee80211_add_ssid(frm, ssid, ssid_len); |
| 2335 | rs = &ic->ic_sup_rates[sc->chip_phymode]; |
| 2336 | frm = ieee80211_add_rates(frm, rs); |
| 2337 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) |
| 2338 | frm = ieee80211_add_xrates(frm, rs); |
| 2339 | len = frm - req.data.u_data.var; |
| 2340 | |
| 2341 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_REQ0x16, &req, |
| 2342 | ACX_TMPLT_PROBE_REQ_SIZ(len)(sizeof(uint16_t) + sizeof(struct ieee80211_frame) + (len)))); |
| 2343 | } |
| 2344 | |
| 2345 | #ifndef IEEE80211_STA_ONLY |
| 2346 | struct mbuf *ieee80211_get_probe_resp(struct ieee80211com *, |
| 2347 | struct ieee80211_node *); |
| 2348 | |
| 2349 | int |
| 2350 | acx_set_probe_resp_tmplt(struct acx_softc *sc, struct ieee80211_node *ni) |
| 2351 | { |
| 2352 | struct ieee80211com *ic = &sc->sc_ic; |
| 2353 | struct acx_tmplt_probe_resp resp; |
| 2354 | struct ieee80211_frame *wh; |
| 2355 | struct mbuf *m; |
| 2356 | int len; |
| 2357 | |
| 2358 | bzero(&resp, sizeof(resp))__builtin_bzero((&resp), (sizeof(resp))); |
| 2359 | |
| 2360 | m = ieee80211_get_probe_resp(ic, ni); |
| 2361 | if (m == NULL((void *)0)) |
| 2362 | return (1); |
| 2363 | M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT)(m) = m_prepend((m), (sizeof(struct ieee80211_frame)), (0x0002 )); |
| 2364 | if (m == NULL((void *)0)) |
| 2365 | return (1); |
| 2366 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 2367 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
| 2368 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50; |
| 2369 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
| 2370 | *(u_int16_t *)&wh->i_dur[0] = 0; |
| 2371 | IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr)__builtin_memcpy((wh->i_addr1), (ni->ni_macaddr), (6)); |
| 2372 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
| 2373 | IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid)__builtin_memcpy((wh->i_addr3), (ni->ni_bssid), (6)); |
| 2374 | *(u_int16_t *)wh->i_seq = 0; |
| 2375 | |
| 2376 | m_copydata(m, 0, m->m_pkthdrM_dat.MH.MH_pkthdr.len, &resp.data); |
| 2377 | len = m->m_pkthdrM_dat.MH.MH_pkthdr.len + sizeof(resp.size); |
| 2378 | m_freem(m); |
| 2379 | |
| 2380 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_RESP0x14, &resp, len)); |
| 2381 | } |
| 2382 | |
| 2383 | int |
| 2384 | acx_beacon_locate(struct mbuf *m, u_int8_t type) |
| 2385 | { |
| 2386 | int off; |
| 2387 | u_int8_t *frm; |
| 2388 | /* |
| 2389 | * beacon frame format |
| 2390 | * [8] time stamp |
| 2391 | * [2] beacon interval |
| 2392 | * [2] capability information |
| 2393 | * from here on [tlv] values |
| 2394 | */ |
| 2395 | |
| 2396 | if (m->m_lenm_hdr.mh_len != m->m_pkthdrM_dat.MH.MH_pkthdr.len) |
| 2397 | panic("beacon not in contiguous mbuf"); |
| 2398 | |
| 2399 | off = sizeof(struct ieee80211_frame) + 8 + 2 + 2; |
| 2400 | frm = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
| 2401 | for (; off + 1 < m->m_lenm_hdr.mh_len; off += frm[off + 1] + 2) { |
| 2402 | if (frm[off] == type) |
| 2403 | return (off); |
| 2404 | } |
| 2405 | return (-1); |
| 2406 | } |
| 2407 | |
| 2408 | int |
| 2409 | acx_set_beacon_tmplt(struct acx_softc *sc, struct ieee80211_node *ni) |
| 2410 | { |
| 2411 | struct ieee80211com *ic = &sc->sc_ic; |
| 2412 | struct acx_tmplt_beacon beacon; |
| 2413 | struct acx_tmplt_tim tim; |
| 2414 | struct mbuf *m; |
| 2415 | int len, off; |
| 2416 | |
| 2417 | bzero(&beacon, sizeof(beacon))__builtin_bzero((&beacon), (sizeof(beacon))); |
| 2418 | bzero(&tim, sizeof(tim))__builtin_bzero((&tim), (sizeof(tim))); |
| 2419 | |
| 2420 | m = ieee80211_beacon_alloc(ic, ni); |
| 2421 | if (m == NULL((void *)0)) |
| 2422 | return (1); |
| 2423 | |
| 2424 | off = acx_beacon_locate(m, IEEE80211_ELEMID_TIM); |
| 2425 | if (off < 0) { |
| 2426 | m_free(m); |
| 2427 | return (1); |
| 2428 | } |
| 2429 | |
| 2430 | m_copydata(m, 0, off, &beacon.data); |
| 2431 | len = off + sizeof(beacon.size); |
| 2432 | |
| 2433 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_BEACON0x13, &beacon, len) != 0) { |
| 2434 | m_freem(m); |
| 2435 | return (1); |
| 2436 | } |
| 2437 | |
| 2438 | len = m->m_pkthdrM_dat.MH.MH_pkthdr.len - off; |
| 2439 | if (len == 0) { |
| 2440 | /* no TIM field */ |
| 2441 | m_freem(m); |
| 2442 | return (0); |
| 2443 | } |
| 2444 | |
| 2445 | m_copydata(m, off, len, &tim.data); |
| 2446 | len += sizeof(beacon.size); |
| 2447 | m_freem(m); |
| 2448 | |
| 2449 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &tim, len)); |
| 2450 | } |
| 2451 | #endif /* IEEE80211_STA_ONLY */ |
| 2452 | |
| 2453 | void |
| 2454 | acx_init_cmd_reg(struct acx_softc *sc) |
| 2455 | { |
| 2456 | sc->sc_cmd = CSR_READ_4(sc, ACXREG_CMD_REG_OFFSET)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(24)]))); |
| 2457 | sc->sc_cmd_param = sc->sc_cmd + ACX_CMD_REG_SIZE4; |
| 2458 | |
| 2459 | /* Clear command & status */ |
| 2460 | CMD_WRITE_4(sc, 0)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((0)))); |
| 2461 | } |
| 2462 | |
| 2463 | int |
| 2464 | acx_join_bss(struct acx_softc *sc, uint8_t mode, struct ieee80211_node *node) |
| 2465 | { |
| 2466 | uint8_t bj_buf[BSS_JOIN_BUFLEN(sizeof(struct bss_join_hdr) + 32 - 1)]; |
| 2467 | struct bss_join_hdr *bj; |
| 2468 | int i, dtim_intvl; |
| 2469 | |
| 2470 | bzero(bj_buf, sizeof(bj_buf))__builtin_bzero((bj_buf), (sizeof(bj_buf))); |
| 2471 | bj = (struct bss_join_hdr *)bj_buf; |
| 2472 | |
| 2473 | for (i = 0; i < IEEE80211_ADDR_LEN6; ++i) |
| 2474 | bj->bssid[i] = node->ni_bssid[IEEE80211_ADDR_LEN6 - i - 1]; |
| 2475 | |
| 2476 | bj->beacon_intvl = htole16(acx_beacon_intvl)((__uint16_t)(acx_beacon_intvl)); |
| 2477 | |
| 2478 | /* TODO tunable */ |
| 2479 | #ifndef IEEE80211_STA_ONLY |
| 2480 | if (sc->sc_ic.ic_opmode == IEEE80211_M_IBSS) |
| 2481 | dtim_intvl = 1; |
| 2482 | else |
| 2483 | #endif |
| 2484 | dtim_intvl = 10; |
| 2485 | sc->chip_set_bss_join_param(sc, bj->chip_spec, dtim_intvl); |
| 2486 | |
| 2487 | bj->ndata_txrate = ACX_NDATA_TXRATE_110; |
| 2488 | bj->ndata_txopt = 0; |
| 2489 | bj->mode = mode; |
| 2490 | bj->channel = ieee80211_chan2ieee(&sc->sc_ic, node->ni_chan); |
| 2491 | bj->esslen = node->ni_esslen; |
| 2492 | bcopy(node->ni_essid, bj->essid, node->ni_esslen); |
| 2493 | |
| 2494 | DPRINTF(("%s: join BSS/IBSS on channel %d\n", sc->sc_dev.dv_xname, |
| 2495 | bj->channel)); |
| 2496 | return (acx_exec_command(sc, ACXCMD_JOIN_BSS0x0b, |
| 2497 | bj, BSS_JOIN_PARAM_SIZE(bj)(sizeof(struct bss_join_hdr) + (bj)->esslen - 1), NULL((void *)0), 0)); |
| 2498 | } |
| 2499 | |
| 2500 | int |
| 2501 | acx_set_channel(struct acx_softc *sc, uint8_t chan) |
| 2502 | { |
| 2503 | if (acx_exec_command(sc, ACXCMD_ENABLE_TXCHAN0x04, &chan, sizeof(chan), |
| 2504 | NULL((void *)0), 0) != 0) { |
| 2505 | DPRINTF(("%s: setting TX channel %d failed\n", |
| 2506 | sc->sc_dev.dv_xname, chan)); |
| 2507 | return (ENXIO6); |
| 2508 | } |
| 2509 | |
| 2510 | if (acx_exec_command(sc, ACXCMD_ENABLE_RXCHAN0x03, &chan, sizeof(chan), |
| 2511 | NULL((void *)0), 0) != 0) { |
| 2512 | DPRINTF(("%s: setting RX channel %d failed\n", |
| 2513 | sc->sc_dev.dv_xname, chan)); |
| 2514 | return (ENXIO6); |
| 2515 | } |
| 2516 | |
| 2517 | return (0); |
| 2518 | } |
| 2519 | |
| 2520 | int |
| 2521 | acx_get_conf(struct acx_softc *sc, uint16_t conf_id, void *conf, |
| 2522 | uint16_t conf_len) |
| 2523 | { |
| 2524 | struct acx_conf *confcom; |
| 2525 | |
| 2526 | if (conf_len < sizeof(*confcom)) { |
| 2527 | printf("%s: %s configure data is too short\n", |
| 2528 | sc->sc_dev.dv_xname, __func__); |
| 2529 | return (1); |
| 2530 | } |
| 2531 | |
| 2532 | confcom = conf; |
| 2533 | confcom->conf_id = htole16(conf_id)((__uint16_t)(conf_id)); |
| 2534 | confcom->conf_data_len = htole16(conf_len - sizeof(*confcom))((__uint16_t)(conf_len - sizeof(*confcom))); |
| 2535 | |
| 2536 | return (acx_exec_command(sc, ACXCMD_GET_CONF0x01, confcom, sizeof(*confcom), |
| 2537 | conf, conf_len)); |
| 2538 | } |
| 2539 | |
| 2540 | int |
| 2541 | acx_set_conf(struct acx_softc *sc, uint16_t conf_id, void *conf, |
| 2542 | uint16_t conf_len) |
| 2543 | { |
| 2544 | struct acx_conf *confcom; |
| 2545 | |
| 2546 | if (conf_len < sizeof(*confcom)) { |
| 2547 | printf("%s: %s configure data is too short\n", |
| 2548 | sc->sc_dev.dv_xname, __func__); |
| 2549 | return (1); |
| 2550 | } |
| 2551 | |
| 2552 | confcom = conf; |
| 2553 | confcom->conf_id = htole16(conf_id)((__uint16_t)(conf_id)); |
| 2554 | confcom->conf_data_len = htole16(conf_len - sizeof(*confcom))((__uint16_t)(conf_len - sizeof(*confcom))); |
| 2555 | |
| 2556 | return (acx_exec_command(sc, ACXCMD_SET_CONF0x02, conf, conf_len, NULL((void *)0), 0)); |
| 2557 | } |
| 2558 | |
| 2559 | int |
| 2560 | acx_set_tmplt(struct acx_softc *sc, uint16_t cmd, void *tmplt, |
| 2561 | uint16_t tmplt_len) |
| 2562 | { |
| 2563 | uint16_t *size; |
| 2564 | |
| 2565 | if (tmplt_len < sizeof(*size)) { |
| 2566 | printf("%s: %s template is too short\n", |
| 2567 | sc->sc_dev.dv_xname, __func__); |
| 2568 | return (1); |
| 2569 | } |
| 2570 | |
| 2571 | size = tmplt; |
| 2572 | *size = htole16(tmplt_len - sizeof(*size))((__uint16_t)(tmplt_len - sizeof(*size))); |
| 2573 | |
| 2574 | return (acx_exec_command(sc, cmd, tmplt, tmplt_len, NULL((void *)0), 0)); |
| 2575 | } |
| 2576 | |
| 2577 | int |
| 2578 | acx_init_radio(struct acx_softc *sc, uint32_t radio_ofs, uint32_t radio_len) |
| 2579 | { |
| 2580 | struct radio_init r; |
| 2581 | |
| 2582 | r.radio_ofs = htole32(radio_ofs)((__uint32_t)(radio_ofs)); |
| 2583 | r.radio_len = htole32(radio_len)((__uint32_t)(radio_len)); |
| 2584 | |
| 2585 | return (acx_exec_command(sc, ACXCMD_INIT_RADIO0x18, &r, sizeof(r), NULL((void *)0), |
| 2586 | 0)); |
| 2587 | } |
| 2588 | |
| 2589 | int |
| 2590 | acx_exec_command(struct acx_softc *sc, uint16_t cmd, void *param, |
| 2591 | uint16_t param_len, void *result, uint16_t result_len) |
| 2592 | { |
| 2593 | uint16_t status; |
| 2594 | int i, ret; |
| 2595 | |
| 2596 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0) { |
| 2597 | printf("%s: cmd 0x%04x failed (base firmware not loaded)\n", |
| 2598 | sc->sc_dev.dv_xname, cmd); |
| 2599 | return (1); |
| 2600 | } |
| 2601 | |
| 2602 | ret = 0; |
| 2603 | |
| 2604 | if (param != NULL((void *)0) && param_len != 0) { |
| 2605 | /* Set command param */ |
| 2606 | CMDPRM_WRITE_REGION_1(sc, param, param_len)(((sc)->sc_mem2_bt)->write_region_1(((sc)->sc_mem2_bh ), ((sc)->sc_cmd_param), ((const uint8_t *)(param)), ((param_len )))); |
| 2607 | } |
| 2608 | |
| 2609 | /* Set command */ |
| 2610 | CMD_WRITE_4(sc, cmd)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((cmd)))); |
| 2611 | |
| 2612 | /* Exec command */ |
| 2613 | CSR_WRITE_2(sc, ACXREG_INTR_TRIG, ACXRV_TRIG_CMD_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(6)]), (0x0001))); |
| 2614 | DELAY(50)(*delay_func)(50); |
| 2615 | |
| 2616 | /* Wait for command to complete */ |
| 2617 | if (cmd == ACXCMD_INIT_RADIO0x18) { |
| 2618 | /* radio initialization is extremely long */ |
| 2619 | tsleep_nsec(&cmd, 0, "rdinit", MSEC_TO_NSEC(300)); |
| 2620 | } |
| 2621 | |
| 2622 | #define CMDWAIT_RETRY_MAX 1000 |
| 2623 | for (i = 0; i < CMDWAIT_RETRY_MAX; ++i) { |
| 2624 | uint16_t reg; |
| 2625 | |
| 2626 | reg = CSR_READ_2(sc, ACXREG_INTR_STATUS)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(8)]))); |
| 2627 | if (reg & ACXRV_INTR_CMD_FINI0x0200) { |
| 2628 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_CMD_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (0x0200))); |
| 2629 | break; |
| 2630 | } |
| 2631 | DELAY(50)(*delay_func)(50); |
| 2632 | } |
| 2633 | if (i == CMDWAIT_RETRY_MAX) { |
| 2634 | printf("%s: cmd %04x failed (timeout)\n", |
| 2635 | sc->sc_dev.dv_xname, cmd); |
| 2636 | ret = 1; |
| 2637 | goto back; |
| 2638 | } |
| 2639 | #undef CMDWAIT_RETRY_MAX |
| 2640 | |
| 2641 | /* Get command exec status */ |
| 2642 | status = (CMD_READ_4(sc)(((sc)->sc_mem2_bt)->read_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd))) >> ACX_CMD_STATUS_SHIFT16); |
| 2643 | if (status != ACX_CMD_STATUS_OK1) { |
| 2644 | DPRINTF(("%s: cmd %04x failed\n", sc->sc_dev.dv_xname, cmd)); |
| 2645 | ret = 1; |
| 2646 | goto back; |
| 2647 | } |
| 2648 | |
| 2649 | if (result != NULL((void *)0) && result_len != 0) { |
| 2650 | /* Get command result */ |
| 2651 | CMDPRM_READ_REGION_1(sc, result, result_len)(((sc)->sc_mem2_bt)->read_region_1(((sc)->sc_mem2_bh ), ((sc)->sc_cmd_param), ((uint8_t *)(result)), ((result_len )))); |
| 2652 | } |
| 2653 | |
| 2654 | back: |
| 2655 | CMD_WRITE_4(sc, 0)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((0)))); |
| 2656 | |
| 2657 | return (ret); |
| 2658 | } |
| 2659 | |
| 2660 | const char * |
| 2661 | acx_get_rf(int rev) |
| 2662 | { |
| 2663 | switch (rev) { |
| 2664 | case ACX_RADIO_TYPE_MAXIM0x0d: return "MAX2820"; |
| 2665 | case ACX_RADIO_TYPE_RFMD0x11: return "RFMD"; |
| 2666 | case ACX_RADIO_TYPE_RALINK0x15: return "Ralink"; |
| 2667 | case ACX_RADIO_TYPE_RADIA0x16: return "Radia"; |
| 2668 | default: return "unknown"; |
| 2669 | } |
| 2670 | } |
| 2671 | |
| 2672 | int |
| 2673 | acx_get_maxrssi(int radio) |
| 2674 | { |
| 2675 | switch (radio) { |
| 2676 | case ACX_RADIO_TYPE_MAXIM0x0d: return ACX_RADIO_RSSI_MAXIM120; |
| 2677 | case ACX_RADIO_TYPE_RFMD0x11: return ACX_RADIO_RSSI_RFMD215; |
| 2678 | case ACX_RADIO_TYPE_RALINK0x15: return ACX_RADIO_RSSI_RALINK0; |
| 2679 | case ACX_RADIO_TYPE_RADIA0x16: return ACX_RADIO_RSSI_RADIA78; |
| 2680 | default: return ACX_RADIO_RSSI_UNKN0; |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | void |
| 2685 | acx_iter_func(void *arg, struct ieee80211_node *ni) |
| 2686 | { |
| 2687 | struct acx_softc *sc = arg; |
| 2688 | struct acx_node *wn = (struct acx_node *)ni; |
| 2689 | |
| 2690 | ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); |
| 2691 | } |
| 2692 | |
| 2693 | void |
| 2694 | acx_amrr_timeout(void *arg) |
| 2695 | { |
| 2696 | struct acx_softc *sc = arg; |
| 2697 | struct ieee80211com *ic = &sc->sc_ic; |
| 2698 | |
| 2699 | if (ic->ic_opmode == IEEE80211_M_STA) |
| 2700 | acx_iter_func(sc, ic->ic_bss); |
| 2701 | else |
| 2702 | ieee80211_iterate_nodes(ic, acx_iter_func, sc); |
| 2703 | |
| 2704 | timeout_add_msec(&sc->amrr_ch, 500); |
| 2705 | } |
| 2706 | |
| 2707 | void |
| 2708 | acx_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) |
| 2709 | { |
| 2710 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
| 2711 | int i; |
| 2712 | |
| 2713 | ieee80211_amrr_node_init(&sc->amrr, &((struct acx_node *)ni)->amn); |
| 2714 | |
| 2715 | /* set rate to some reasonable initial value */ |
| 2716 | for (i = ni->ni_rates.rs_nrates - 1; |
| 2717 | i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL0x7f) > 72; |
| 2718 | i--); |
| 2719 | ni->ni_txrate = i; |
| 2720 | } |
| 2721 | |
| 2722 | #ifndef IEEE80211_STA_ONLY |
| 2723 | void |
| 2724 | acx_set_tim(struct ieee80211com *ic, int aid, int set) |
| 2725 | { |
| 2726 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
| 2727 | struct acx_tmplt_tim tim; |
| 2728 | u_int8_t *ep; |
| 2729 | |
| 2730 | ieee80211_set_tim(ic, aid, set); |
| 2731 | |
| 2732 | bzero(&tim, sizeof(tim))__builtin_bzero((&tim), (sizeof(tim))); |
| 2733 | ep = ieee80211_add_tim(tim.data.u_mem, ic); |
| 2734 | |
| 2735 | acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &tim, ep - (u_int8_t *)&tim); |
| 2736 | } |
| 2737 | #endif |