File: | dev/pci/if_iwn.c |
Warning: | line 1723, column 9 Result of 'malloc' is converted to a pointer of type 'struct ieee80211_node', which is incompatible with sizeof operand type 'struct iwn_node' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: if_iwn.c,v 1.260 2022/06/19 18:27:06 stsp Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> |
5 | * |
6 | * Permission to use, copy, modify, and distribute this software for any |
7 | * purpose with or without fee is hereby granted, provided that the above |
8 | * copyright notice and this permission notice appear in all copies. |
9 | * |
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
17 | */ |
18 | |
19 | /* |
20 | * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network |
21 | * adapters. |
22 | */ |
23 | |
24 | #include "bpfilter.h" |
25 | |
26 | #include <sys/param.h> |
27 | #include <sys/sockio.h> |
28 | #include <sys/mbuf.h> |
29 | #include <sys/kernel.h> |
30 | #include <sys/rwlock.h> |
31 | #include <sys/socket.h> |
32 | #include <sys/systm.h> |
33 | #include <sys/malloc.h> |
34 | #include <sys/conf.h> |
35 | #include <sys/device.h> |
36 | #include <sys/task.h> |
37 | #include <sys/endian.h> |
38 | |
39 | #include <machine/bus.h> |
40 | #include <machine/intr.h> |
41 | |
42 | #include <dev/pci/pcireg.h> |
43 | #include <dev/pci/pcivar.h> |
44 | #include <dev/pci/pcidevs.h> |
45 | |
46 | #if NBPFILTER1 > 0 |
47 | #include <net/bpf.h> |
48 | #endif |
49 | #include <net/if.h> |
50 | #include <net/if_dl.h> |
51 | #include <net/if_media.h> |
52 | |
53 | #include <netinet/in.h> |
54 | #include <netinet/if_ether.h> |
55 | |
56 | #include <net80211/ieee80211_var.h> |
57 | #include <net80211/ieee80211_amrr.h> |
58 | #include <net80211/ieee80211_ra.h> |
59 | #include <net80211/ieee80211_radiotap.h> |
60 | #include <net80211/ieee80211_priv.h> /* for SEQ_LT */ |
61 | #undef DPRINTF /* defined in ieee80211_priv.h */ |
62 | |
63 | #include <dev/pci/if_iwnreg.h> |
64 | #include <dev/pci/if_iwnvar.h> |
65 | |
66 | static const struct pci_matchid iwn_devices[] = { |
67 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_4965_10x4229 }, |
68 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_4965_20x4230 }, |
69 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5100_10x4232 }, |
70 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5100_20x4237 }, |
71 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5150_10x423c }, |
72 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5150_20x423d }, |
73 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5300_10x4235 }, |
74 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5300_20x4236 }, |
75 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5350_10x423a }, |
76 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_5350_20x423b }, |
77 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_1000_10x0083 }, |
78 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_1000_20x0084 }, |
79 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6300_10x422b }, |
80 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6300_20x4238 }, |
81 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6200_10x422c }, |
82 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6200_20x4239 }, |
83 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6050_10x0087 }, |
84 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6050_20x0089 }, |
85 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6005_10x0082 }, |
86 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6005_20x0085 }, |
87 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6030_10x0090 }, |
88 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6030_20x0091 }, |
89 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_1030_10x008a }, |
90 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_1030_20x008b }, |
91 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_100_10x08ae }, |
92 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_100_20x08af }, |
93 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_130_10x0896 }, |
94 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_130_20x0897 }, |
95 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6235_10x088e }, |
96 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_6235_20x088f }, |
97 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_2230_10x0887 }, |
98 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_2230_20x0888 }, |
99 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_2200_10x0890 }, |
100 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_2200_20x0891 }, |
101 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_135_10x0892 }, |
102 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_135_20x0893 }, |
103 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_105_10x0894 }, |
104 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_105_20x0895 }, |
105 | }; |
106 | |
107 | int iwn_match(struct device *, void *, void *); |
108 | void iwn_attach(struct device *, struct device *, void *); |
109 | int iwn4965_attach(struct iwn_softc *, pci_product_id_t); |
110 | int iwn5000_attach(struct iwn_softc *, pci_product_id_t); |
111 | #if NBPFILTER1 > 0 |
112 | void iwn_radiotap_attach(struct iwn_softc *); |
113 | #endif |
114 | int iwn_detach(struct device *, int); |
115 | int iwn_activate(struct device *, int); |
116 | void iwn_wakeup(struct iwn_softc *); |
117 | void iwn_init_task(void *); |
118 | int iwn_nic_lock(struct iwn_softc *); |
119 | int iwn_eeprom_lock(struct iwn_softc *); |
120 | int iwn_init_otprom(struct iwn_softc *); |
121 | int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); |
122 | int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, |
123 | void **, bus_size_t, bus_size_t); |
124 | void iwn_dma_contig_free(struct iwn_dma_info *); |
125 | int iwn_alloc_sched(struct iwn_softc *); |
126 | void iwn_free_sched(struct iwn_softc *); |
127 | int iwn_alloc_kw(struct iwn_softc *); |
128 | void iwn_free_kw(struct iwn_softc *); |
129 | int iwn_alloc_ict(struct iwn_softc *); |
130 | void iwn_free_ict(struct iwn_softc *); |
131 | int iwn_alloc_fwmem(struct iwn_softc *); |
132 | void iwn_free_fwmem(struct iwn_softc *); |
133 | int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); |
134 | void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); |
135 | void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); |
136 | int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, |
137 | int); |
138 | void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); |
139 | void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); |
140 | void iwn5000_ict_reset(struct iwn_softc *); |
141 | int iwn_read_eeprom(struct iwn_softc *); |
142 | void iwn4965_read_eeprom(struct iwn_softc *); |
143 | void iwn4965_print_power_group(struct iwn_softc *, int); |
144 | void iwn5000_read_eeprom(struct iwn_softc *); |
145 | void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); |
146 | void iwn_read_eeprom_enhinfo(struct iwn_softc *); |
147 | struct ieee80211_node *iwn_node_alloc(struct ieee80211com *); |
148 | void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *, |
149 | int); |
150 | int iwn_media_change(struct ifnet *); |
151 | int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); |
152 | void iwn_iter_func(void *, struct ieee80211_node *); |
153 | void iwn_calib_timeout(void *); |
154 | int iwn_ccmp_decap(struct iwn_softc *, struct mbuf *, |
155 | struct ieee80211_node *); |
156 | void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, |
157 | struct iwn_rx_data *); |
158 | void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, |
159 | struct iwn_rx_data *, struct mbuf_list *); |
160 | void iwn_ra_choose(struct iwn_softc *, struct ieee80211_node *); |
161 | void iwn_ampdu_rate_control(struct iwn_softc *, struct ieee80211_node *, |
162 | struct iwn_tx_ring *, uint16_t, uint16_t); |
163 | void iwn_ht_single_rate_control(struct iwn_softc *, |
164 | struct ieee80211_node *, uint8_t, uint8_t, uint8_t, int); |
165 | void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, |
166 | struct iwn_rx_data *); |
167 | void iwn5000_rx_calib_results(struct iwn_softc *, |
168 | struct iwn_rx_desc *, struct iwn_rx_data *); |
169 | void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, |
170 | struct iwn_rx_data *); |
171 | void iwn_ampdu_txq_advance(struct iwn_softc *, struct iwn_tx_ring *, |
172 | int, int); |
173 | void iwn_ampdu_tx_done(struct iwn_softc *, struct iwn_tx_ring *, |
174 | struct iwn_rx_desc *, uint16_t, uint8_t, uint8_t, uint8_t, |
175 | int, uint32_t, struct iwn_txagg_status *); |
176 | void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, |
177 | struct iwn_rx_data *); |
178 | void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, |
179 | struct iwn_rx_data *); |
180 | void iwn_tx_done_free_txdata(struct iwn_softc *, |
181 | struct iwn_tx_data *); |
182 | void iwn_clear_oactive(struct iwn_softc *, struct iwn_tx_ring *); |
183 | void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, |
184 | uint8_t, uint8_t, uint8_t, int, int, uint16_t); |
185 | void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); |
186 | void iwn_notif_intr(struct iwn_softc *); |
187 | void iwn_wakeup_intr(struct iwn_softc *); |
188 | void iwn_fatal_intr(struct iwn_softc *); |
189 | int iwn_intr(void *); |
190 | void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, |
191 | uint16_t); |
192 | void iwn4965_reset_sched(struct iwn_softc *, int, int); |
193 | void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, |
194 | uint16_t); |
195 | void iwn5000_reset_sched(struct iwn_softc *, int, int); |
196 | int iwn_tx(struct iwn_softc *, struct mbuf *, |
197 | struct ieee80211_node *); |
198 | int iwn_rval2ridx(int); |
199 | void iwn_start(struct ifnet *); |
200 | void iwn_watchdog(struct ifnet *); |
201 | int iwn_ioctl(struct ifnet *, u_long, caddr_t); |
202 | int iwn_cmd(struct iwn_softc *, int, const void *, int, int); |
203 | int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, |
204 | int); |
205 | int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, |
206 | int); |
207 | int iwn_set_link_quality(struct iwn_softc *, |
208 | struct ieee80211_node *); |
209 | int iwn_add_broadcast_node(struct iwn_softc *, int, int); |
210 | void iwn_updateedca(struct ieee80211com *); |
211 | void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); |
212 | int iwn_set_critical_temp(struct iwn_softc *); |
213 | int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); |
214 | void iwn4965_power_calibration(struct iwn_softc *, int); |
215 | int iwn4965_set_txpower(struct iwn_softc *, int); |
216 | int iwn5000_set_txpower(struct iwn_softc *, int); |
217 | int iwn4965_get_rssi(const struct iwn_rx_stat *); |
218 | int iwn5000_get_rssi(const struct iwn_rx_stat *); |
219 | int iwn_get_noise(const struct iwn_rx_general_stats *); |
220 | int iwn4965_get_temperature(struct iwn_softc *); |
221 | int iwn5000_get_temperature(struct iwn_softc *); |
222 | int iwn_init_sensitivity(struct iwn_softc *); |
223 | void iwn_collect_noise(struct iwn_softc *, |
224 | const struct iwn_rx_general_stats *); |
225 | int iwn4965_init_gains(struct iwn_softc *); |
226 | int iwn5000_init_gains(struct iwn_softc *); |
227 | int iwn4965_set_gains(struct iwn_softc *); |
228 | int iwn5000_set_gains(struct iwn_softc *); |
229 | void iwn_tune_sensitivity(struct iwn_softc *, |
230 | const struct iwn_rx_stats *); |
231 | int iwn_send_sensitivity(struct iwn_softc *); |
232 | int iwn_set_pslevel(struct iwn_softc *, int, int, int); |
233 | int iwn_send_temperature_offset(struct iwn_softc *); |
234 | int iwn_send_btcoex(struct iwn_softc *); |
235 | int iwn_send_advanced_btcoex(struct iwn_softc *); |
236 | int iwn5000_runtime_calib(struct iwn_softc *); |
237 | int iwn_config(struct iwn_softc *); |
238 | uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t); |
239 | uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); |
240 | uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); |
241 | int iwn_scan(struct iwn_softc *, uint16_t, int); |
242 | void iwn_scan_abort(struct iwn_softc *); |
243 | int iwn_bgscan(struct ieee80211com *); |
244 | void iwn_rxon_configure_ht40(struct ieee80211com *, |
245 | struct ieee80211_node *); |
246 | int iwn_rxon_ht40_enabled(struct iwn_softc *); |
247 | int iwn_auth(struct iwn_softc *, int); |
248 | int iwn_run(struct iwn_softc *); |
249 | int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, |
250 | struct ieee80211_key *); |
251 | void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, |
252 | struct ieee80211_key *); |
253 | void iwn_updatechan(struct ieee80211com *); |
254 | void iwn_updateprot(struct ieee80211com *); |
255 | void iwn_updateslot(struct ieee80211com *); |
256 | void iwn_update_rxon_restore_power(struct iwn_softc *); |
257 | void iwn5000_update_rxon(struct iwn_softc *); |
258 | void iwn4965_update_rxon(struct iwn_softc *); |
259 | int iwn_ampdu_rx_start(struct ieee80211com *, |
260 | struct ieee80211_node *, uint8_t); |
261 | void iwn_ampdu_rx_stop(struct ieee80211com *, |
262 | struct ieee80211_node *, uint8_t); |
263 | int iwn_ampdu_tx_start(struct ieee80211com *, |
264 | struct ieee80211_node *, uint8_t); |
265 | void iwn_ampdu_tx_stop(struct ieee80211com *, |
266 | struct ieee80211_node *, uint8_t); |
267 | void iwn4965_ampdu_tx_start(struct iwn_softc *, |
268 | struct ieee80211_node *, uint8_t, uint16_t); |
269 | void iwn4965_ampdu_tx_stop(struct iwn_softc *, |
270 | uint8_t, uint16_t); |
271 | void iwn5000_ampdu_tx_start(struct iwn_softc *, |
272 | struct ieee80211_node *, uint8_t, uint16_t); |
273 | void iwn5000_ampdu_tx_stop(struct iwn_softc *, |
274 | uint8_t, uint16_t); |
275 | int iwn5000_query_calibration(struct iwn_softc *); |
276 | int iwn5000_send_calibration(struct iwn_softc *); |
277 | int iwn5000_send_wimax_coex(struct iwn_softc *); |
278 | int iwn5000_crystal_calib(struct iwn_softc *); |
279 | int iwn6000_temp_offset_calib(struct iwn_softc *); |
280 | int iwn2000_temp_offset_calib(struct iwn_softc *); |
281 | int iwn4965_post_alive(struct iwn_softc *); |
282 | int iwn5000_post_alive(struct iwn_softc *); |
283 | int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, |
284 | int); |
285 | int iwn4965_load_firmware(struct iwn_softc *); |
286 | int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, |
287 | const uint8_t *, int); |
288 | int iwn5000_load_firmware(struct iwn_softc *); |
289 | int iwn_read_firmware_leg(struct iwn_softc *, |
290 | struct iwn_fw_info *); |
291 | int iwn_read_firmware_tlv(struct iwn_softc *, |
292 | struct iwn_fw_info *, uint16_t); |
293 | int iwn_read_firmware(struct iwn_softc *); |
294 | int iwn_clock_wait(struct iwn_softc *); |
295 | int iwn_apm_init(struct iwn_softc *); |
296 | void iwn_apm_stop_master(struct iwn_softc *); |
297 | void iwn_apm_stop(struct iwn_softc *); |
298 | int iwn4965_nic_config(struct iwn_softc *); |
299 | int iwn5000_nic_config(struct iwn_softc *); |
300 | int iwn_hw_prepare(struct iwn_softc *); |
301 | int iwn_hw_init(struct iwn_softc *); |
302 | void iwn_hw_stop(struct iwn_softc *); |
303 | int iwn_init(struct ifnet *); |
304 | void iwn_stop(struct ifnet *); |
305 | |
306 | #ifdef IWN_DEBUG |
307 | #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) |
308 | #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) |
309 | int iwn_debug = 1; |
310 | #else |
311 | #define DPRINTF(x) |
312 | #define DPRINTFN(n, x) |
313 | #endif |
314 | |
315 | struct cfdriver iwn_cd = { |
316 | NULL((void *)0), "iwn", DV_IFNET |
317 | }; |
318 | |
319 | const struct cfattach iwn_ca = { |
320 | sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach, |
321 | iwn_activate |
322 | }; |
323 | |
324 | int |
325 | iwn_match(struct device *parent, void *match, void *aux) |
326 | { |
327 | return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices, |
328 | nitems(iwn_devices)(sizeof((iwn_devices)) / sizeof((iwn_devices)[0]))); |
329 | } |
330 | |
331 | void |
332 | iwn_attach(struct device *parent, struct device *self, void *aux) |
333 | { |
334 | struct iwn_softc *sc = (struct iwn_softc *)self; |
335 | struct ieee80211com *ic = &sc->sc_ic; |
336 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
337 | struct pci_attach_args *pa = aux; |
338 | const char *intrstr; |
339 | pci_intr_handle_t ih; |
340 | pcireg_t memtype, reg; |
341 | int i, error; |
342 | |
343 | sc->sc_pct = pa->pa_pc; |
344 | sc->sc_pcitag = pa->pa_tag; |
345 | sc->sc_dmat = pa->pa_dmat; |
346 | |
347 | /* |
348 | * Get the offset of the PCI Express Capability Structure in PCI |
349 | * Configuration Space. |
350 | */ |
351 | error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, |
352 | PCI_CAP_PCIEXPRESS0x10, &sc->sc_cap_off, NULL((void *)0)); |
353 | if (error == 0) { |
354 | printf(": PCIe capability structure not found!\n"); |
355 | return; |
356 | } |
357 | |
358 | /* Clear device-specific "PCI retry timeout" register (41h). */ |
359 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); |
360 | if (reg & 0xff00) |
361 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); |
362 | |
363 | /* Hardware bug workaround. */ |
364 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG0x04); |
365 | if (reg & PCI_COMMAND_INTERRUPT_DISABLE0x00000400) { |
366 | DPRINTF(("PCIe INTx Disable set\n")); |
367 | reg &= ~PCI_COMMAND_INTERRUPT_DISABLE0x00000400; |
368 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, |
369 | PCI_COMMAND_STATUS_REG0x04, reg); |
370 | } |
371 | |
372 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR00x10); |
373 | error = pci_mapreg_map(pa, IWN_PCI_BAR00x10, memtype, 0, &sc->sc_st, |
374 | &sc->sc_sh, NULL((void *)0), &sc->sc_sz, 0); |
375 | if (error != 0) { |
376 | printf(": can't map mem space\n"); |
377 | return; |
378 | } |
379 | |
380 | /* Install interrupt handler. */ |
381 | if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { |
382 | printf(": can't map interrupt\n"); |
383 | return; |
384 | } |
385 | intrstr = pci_intr_string(sc->sc_pct, ih); |
386 | sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET0x4, iwn_intr, sc, |
387 | sc->sc_dev.dv_xname); |
388 | if (sc->sc_ih == NULL((void *)0)) { |
389 | printf(": can't establish interrupt"); |
390 | if (intrstr != NULL((void *)0)) |
391 | printf(" at %s", intrstr); |
392 | printf("\n"); |
393 | return; |
394 | } |
395 | printf(": %s", intrstr); |
396 | |
397 | /* Read hardware revision and attach. */ |
398 | sc->hw_type = (IWN_READ(sc, IWN_HW_REV)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x028)))) >> 4) & 0x1f; |
399 | if (sc->hw_type == IWN_HW_REV_TYPE_49650) |
400 | error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff)); |
401 | else |
402 | error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff)); |
403 | if (error != 0) { |
404 | printf(": could not attach device\n"); |
405 | return; |
406 | } |
407 | |
408 | if ((error = iwn_hw_prepare(sc)) != 0) { |
409 | printf(": hardware not ready\n"); |
410 | return; |
411 | } |
412 | |
413 | /* Read MAC address, channels, etc from EEPROM. */ |
414 | if ((error = iwn_read_eeprom(sc)) != 0) { |
415 | printf(": could not read EEPROM\n"); |
416 | return; |
417 | } |
418 | |
419 | /* Allocate DMA memory for firmware transfers. */ |
420 | if ((error = iwn_alloc_fwmem(sc)) != 0) { |
421 | printf(": could not allocate memory for firmware\n"); |
422 | return; |
423 | } |
424 | |
425 | /* Allocate "Keep Warm" page. */ |
426 | if ((error = iwn_alloc_kw(sc)) != 0) { |
427 | printf(": could not allocate keep warm page\n"); |
428 | goto fail1; |
429 | } |
430 | |
431 | /* Allocate ICT table for 5000 Series. */ |
432 | if (sc->hw_type != IWN_HW_REV_TYPE_49650 && |
433 | (error = iwn_alloc_ict(sc)) != 0) { |
434 | printf(": could not allocate ICT table\n"); |
435 | goto fail2; |
436 | } |
437 | |
438 | /* Allocate TX scheduler "rings". */ |
439 | if ((error = iwn_alloc_sched(sc)) != 0) { |
440 | printf(": could not allocate TX scheduler rings\n"); |
441 | goto fail3; |
442 | } |
443 | |
444 | /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ |
445 | for (i = 0; i < sc->ntxqs; i++) { |
446 | if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { |
447 | printf(": could not allocate TX ring %d\n", i); |
448 | goto fail4; |
449 | } |
450 | } |
451 | |
452 | /* Allocate RX ring. */ |
453 | if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { |
454 | printf(": could not allocate RX ring\n"); |
455 | goto fail4; |
456 | } |
457 | |
458 | /* Clear pending interrupts. */ |
459 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
460 | |
461 | /* Count the number of available chains. */ |
462 | sc->ntxchains = |
463 | ((sc->txchainmask >> 2) & 1) + |
464 | ((sc->txchainmask >> 1) & 1) + |
465 | ((sc->txchainmask >> 0) & 1); |
466 | sc->nrxchains = |
467 | ((sc->rxchainmask >> 2) & 1) + |
468 | ((sc->rxchainmask >> 1) & 1) + |
469 | ((sc->rxchainmask >> 0) & 1); |
470 | printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains, |
471 | sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr)); |
472 | |
473 | ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ |
474 | ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ |
475 | ic->ic_state = IEEE80211_S_INIT; |
476 | |
477 | /* Set device capabilities. */ |
478 | ic->ic_caps = |
479 | IEEE80211_C_WEP0x00000001 | /* WEP */ |
480 | IEEE80211_C_RSN0x00001000 | /* WPA/RSN */ |
481 | IEEE80211_C_SCANALL0x00000400 | /* device scans all channels at once */ |
482 | IEEE80211_C_SCANALLBAND0x00008000 | /* driver scans all bands at once */ |
483 | IEEE80211_C_MONITOR0x00000200 | /* monitor mode supported */ |
484 | IEEE80211_C_SHSLOT0x00000080 | /* short slot time supported */ |
485 | IEEE80211_C_SHPREAMBLE0x00000100 | /* short preamble supported */ |
486 | IEEE80211_C_PMGT0x00000004; /* power saving supported */ |
487 | |
488 | /* No optional HT features supported for now, */ |
489 | ic->ic_htcaps = 0; |
490 | ic->ic_htxcaps = 0; |
491 | ic->ic_txbfcaps = 0; |
492 | ic->ic_aselcaps = 0; |
493 | ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4(5 << 2) | 0x3 /* 64k */); |
494 | if (sc->sc_flags & IWN_FLAG_HAS_11N(1 << 6)) { |
495 | ic->ic_caps |= (IEEE80211_C_QOS0x00000800 | IEEE80211_C_TX_AMPDU0x00010000); |
496 | /* Set HT capabilities. */ |
497 | ic->ic_htcaps = IEEE80211_HTCAP_SGI200x00000020; |
498 | /* 6200 devices have issues with SGI40 for some reason. */ |
499 | if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA(1 << 4)) == 0) |
500 | ic->ic_htcaps |= IEEE80211_HTCAP_SGI400x00000040; |
501 | ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_400x00000002; |
502 | #ifdef notyet |
503 | ic->ic_htcaps |= |
504 | #if IWN_RBUF_SIZE(4 * 1024) == 8192 |
505 | IEEE80211_HTCAP_AMSDU79350x00000800 | |
506 | #endif |
507 | if (sc->hw_type != IWN_HW_REV_TYPE_49650) |
508 | ic->ic_htcaps |= IEEE80211_HTCAP_GF0x00000010; |
509 | if (sc->hw_type == IWN_HW_REV_TYPE_60508) |
510 | ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN1; |
511 | else |
512 | ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS3; |
513 | #endif /* notyet */ |
514 | } |
515 | |
516 | /* Set supported legacy rates. */ |
517 | ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; |
518 | ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; |
519 | if (sc->sc_flags & IWN_FLAG_HAS_5GHZ(1 << 0)) { |
520 | ic->ic_sup_rates[IEEE80211_MODE_11A] = |
521 | ieee80211_std_rateset_11a; |
522 | } |
523 | if (sc->sc_flags & IWN_FLAG_HAS_11N(1 << 6)) { |
524 | /* Set supported HT rates. */ |
525 | ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ |
526 | #ifdef notyet |
527 | if (sc->nrxchains > 1) |
528 | ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */ |
529 | if (sc->nrxchains > 2) |
530 | ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ |
531 | #endif |
532 | } |
533 | |
534 | /* IBSS channel undefined for now. */ |
535 | ic->ic_ibss_chan = &ic->ic_channels[0]; |
536 | |
537 | ifp->if_softc = sc; |
538 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
539 | ifp->if_ioctl = iwn_ioctl; |
540 | ifp->if_start = iwn_start; |
541 | ifp->if_watchdog = iwn_watchdog; |
542 | memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ)__builtin_memcpy((ifp->if_xname), (sc->sc_dev.dv_xname) , (16)); |
543 | |
544 | if_attach(ifp); |
545 | ieee80211_ifattach(ifp); |
546 | ic->ic_node_alloc = iwn_node_alloc; |
547 | ic->ic_bgscan_start = iwn_bgscan; |
548 | ic->ic_newassoc = iwn_newassoc; |
549 | ic->ic_updateedca = iwn_updateedca; |
550 | ic->ic_set_key = iwn_set_key; |
551 | ic->ic_delete_key = iwn_delete_key; |
552 | ic->ic_updatechan = iwn_updatechan; |
553 | ic->ic_updateprot = iwn_updateprot; |
554 | ic->ic_updateslot = iwn_updateslot; |
555 | ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; |
556 | ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; |
557 | ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; |
558 | ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; |
559 | |
560 | /* Override 802.11 state transition machine. */ |
561 | sc->sc_newstate = ic->ic_newstate; |
562 | ic->ic_newstate = iwn_newstate; |
563 | ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status); |
564 | |
565 | sc->amrr.amrr_min_success_threshold = 1; |
566 | sc->amrr.amrr_max_success_threshold = 15; |
567 | |
568 | #if NBPFILTER1 > 0 |
569 | iwn_radiotap_attach(sc); |
570 | #endif |
571 | timeout_set(&sc->calib_to, iwn_calib_timeout, sc); |
572 | rw_init(&sc->sc_rwlock, "iwnlock")_rw_init_flags(&sc->sc_rwlock, "iwnlock", 0, ((void *) 0)); |
573 | task_set(&sc->init_task, iwn_init_task, sc); |
574 | return; |
575 | |
576 | /* Free allocated memory if something failed during attachment. */ |
577 | fail4: while (--i >= 0) |
578 | iwn_free_tx_ring(sc, &sc->txq[i]); |
579 | iwn_free_sched(sc); |
580 | fail3: if (sc->ict != NULL((void *)0)) |
581 | iwn_free_ict(sc); |
582 | fail2: iwn_free_kw(sc); |
583 | fail1: iwn_free_fwmem(sc); |
584 | } |
585 | |
586 | int |
587 | iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) |
588 | { |
589 | struct iwn_ops *ops = &sc->ops; |
590 | |
591 | ops->load_firmware = iwn4965_load_firmware; |
592 | ops->read_eeprom = iwn4965_read_eeprom; |
593 | ops->post_alive = iwn4965_post_alive; |
594 | ops->nic_config = iwn4965_nic_config; |
595 | ops->reset_sched = iwn4965_reset_sched; |
596 | ops->update_sched = iwn4965_update_sched; |
597 | ops->update_rxon = iwn4965_update_rxon; |
598 | ops->get_temperature = iwn4965_get_temperature; |
599 | ops->get_rssi = iwn4965_get_rssi; |
600 | ops->set_txpower = iwn4965_set_txpower; |
601 | ops->init_gains = iwn4965_init_gains; |
602 | ops->set_gains = iwn4965_set_gains; |
603 | ops->add_node = iwn4965_add_node; |
604 | ops->tx_done = iwn4965_tx_done; |
605 | ops->ampdu_tx_start = iwn4965_ampdu_tx_start; |
606 | ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; |
607 | sc->ntxqs = IWN4965_NTXQUEUES16; |
608 | sc->first_agg_txq = IWN4965_FIRST_AGG_TXQUEUE7; |
609 | sc->ndmachnls = IWN4965_NDMACHNLS7; |
610 | sc->broadcast_id = IWN4965_ID_BROADCAST31; |
611 | sc->rxonsz = IWN4965_RXONSZ(sizeof (struct iwn_rxon) - 6); |
612 | sc->schedsz = IWN4965_SCHEDSZ(16 * 512 * 2); |
613 | sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ( 96 * 1024); |
614 | sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ( 40 * 1024); |
615 | sc->fwsz = IWN4965_FWSZ(( 96 * 1024) + ( 40 * 1024)); |
616 | sc->sched_txfact_addr = IWN4965_SCHED_TXFACT(0xa02c00 + 0x01c); |
617 | sc->limits = &iwn4965_sensitivity_limits; |
618 | sc->fwname = "iwn-4965"; |
619 | /* Override chains masks, ROM is known to be broken. */ |
620 | sc->txchainmask = IWN_ANT_AB((1 << 0) | (1 << 1)); |
621 | sc->rxchainmask = IWN_ANT_ABC((1 << 0) | (1 << 1) | (1 << 2)); |
622 | |
623 | return 0; |
624 | } |
625 | |
626 | int |
627 | iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) |
628 | { |
629 | struct iwn_ops *ops = &sc->ops; |
630 | |
631 | ops->load_firmware = iwn5000_load_firmware; |
632 | ops->read_eeprom = iwn5000_read_eeprom; |
633 | ops->post_alive = iwn5000_post_alive; |
634 | ops->nic_config = iwn5000_nic_config; |
635 | ops->reset_sched = iwn5000_reset_sched; |
636 | ops->update_sched = iwn5000_update_sched; |
637 | ops->update_rxon = iwn5000_update_rxon; |
638 | ops->get_temperature = iwn5000_get_temperature; |
639 | ops->get_rssi = iwn5000_get_rssi; |
640 | ops->set_txpower = iwn5000_set_txpower; |
641 | ops->init_gains = iwn5000_init_gains; |
642 | ops->set_gains = iwn5000_set_gains; |
643 | ops->add_node = iwn5000_add_node; |
644 | ops->tx_done = iwn5000_tx_done; |
645 | ops->ampdu_tx_start = iwn5000_ampdu_tx_start; |
646 | ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; |
647 | sc->ntxqs = IWN5000_NTXQUEUES20; |
648 | sc->first_agg_txq = IWN5000_FIRST_AGG_TXQUEUE10; |
649 | sc->ndmachnls = IWN5000_NDMACHNLS8; |
650 | sc->broadcast_id = IWN5000_ID_BROADCAST15; |
651 | sc->rxonsz = IWN5000_RXONSZ(sizeof (struct iwn_rxon)); |
652 | sc->schedsz = IWN5000_SCHEDSZ(20 * (256 + 64) * 2); |
653 | sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ(256 * 1024); |
654 | sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ( 80 * 1024); |
655 | sc->fwsz = IWN5000_FWSZ(256 * 1024); |
656 | sc->sched_txfact_addr = IWN5000_SCHED_TXFACT(0xa02c00 + 0x010); |
657 | |
658 | switch (sc->hw_type) { |
659 | case IWN_HW_REV_TYPE_51005: |
660 | sc->limits = &iwn5000_sensitivity_limits; |
661 | sc->fwname = "iwn-5000"; |
662 | /* Override chains masks, ROM is known to be broken. */ |
663 | sc->txchainmask = IWN_ANT_B(1 << 1); |
664 | sc->rxchainmask = IWN_ANT_AB((1 << 0) | (1 << 1)); |
665 | break; |
666 | case IWN_HW_REV_TYPE_51504: |
667 | sc->limits = &iwn5150_sensitivity_limits; |
668 | sc->fwname = "iwn-5150"; |
669 | break; |
670 | case IWN_HW_REV_TYPE_53002: |
671 | case IWN_HW_REV_TYPE_53503: |
672 | sc->limits = &iwn5000_sensitivity_limits; |
673 | sc->fwname = "iwn-5000"; |
674 | break; |
675 | case IWN_HW_REV_TYPE_10006: |
676 | sc->limits = &iwn1000_sensitivity_limits; |
677 | sc->fwname = "iwn-1000"; |
678 | break; |
679 | case IWN_HW_REV_TYPE_60007: |
680 | sc->limits = &iwn6000_sensitivity_limits; |
681 | sc->fwname = "iwn-6000"; |
682 | if (pid == PCI_PRODUCT_INTEL_WL_6200_10x422c || |
683 | pid == PCI_PRODUCT_INTEL_WL_6200_20x4239) { |
684 | sc->sc_flags |= IWN_FLAG_INTERNAL_PA(1 << 4); |
685 | /* Override chains masks, ROM is known to be broken. */ |
686 | sc->txchainmask = IWN_ANT_BC((1 << 1) | (1 << 2)); |
687 | sc->rxchainmask = IWN_ANT_BC((1 << 1) | (1 << 2)); |
688 | } |
689 | break; |
690 | case IWN_HW_REV_TYPE_60508: |
691 | sc->limits = &iwn6000_sensitivity_limits; |
692 | sc->fwname = "iwn-6050"; |
693 | break; |
694 | case IWN_HW_REV_TYPE_600511: |
695 | sc->limits = &iwn6000_sensitivity_limits; |
696 | if (pid != PCI_PRODUCT_INTEL_WL_6005_10x0082 && |
697 | pid != PCI_PRODUCT_INTEL_WL_6005_20x0085) { |
698 | sc->fwname = "iwn-6030"; |
699 | sc->sc_flags |= IWN_FLAG_ADV_BT_COEX(1 << 8); |
700 | } else |
701 | sc->fwname = "iwn-6005"; |
702 | break; |
703 | case IWN_HW_REV_TYPE_203012: |
704 | sc->limits = &iwn2000_sensitivity_limits; |
705 | sc->fwname = "iwn-2030"; |
706 | sc->sc_flags |= IWN_FLAG_ADV_BT_COEX(1 << 8); |
707 | break; |
708 | case IWN_HW_REV_TYPE_200016: |
709 | sc->limits = &iwn2000_sensitivity_limits; |
710 | sc->fwname = "iwn-2000"; |
711 | break; |
712 | case IWN_HW_REV_TYPE_13518: |
713 | sc->limits = &iwn2000_sensitivity_limits; |
714 | sc->fwname = "iwn-135"; |
715 | sc->sc_flags |= IWN_FLAG_ADV_BT_COEX(1 << 8); |
716 | break; |
717 | case IWN_HW_REV_TYPE_10517: |
718 | sc->limits = &iwn2000_sensitivity_limits; |
719 | sc->fwname = "iwn-105"; |
720 | break; |
721 | default: |
722 | printf(": adapter type %d not supported\n", sc->hw_type); |
723 | return ENOTSUP91; |
724 | } |
725 | return 0; |
726 | } |
727 | |
728 | #if NBPFILTER1 > 0 |
729 | /* |
730 | * Attach the interface to 802.11 radiotap. |
731 | */ |
732 | void |
733 | iwn_radiotap_attach(struct iwn_softc *sc) |
734 | { |
735 | bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_ific_ac.ac_if, DLT_IEEE802_11_RADIO127, |
736 | sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN64); |
737 | |
738 | sc->sc_rxtap_len = sizeof sc->sc_rxtapu; |
739 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
740 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE ) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL ) | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE)))); |
741 | |
742 | sc->sc_txtap_len = sizeof sc->sc_txtapu; |
743 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
744 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL )))); |
745 | } |
746 | #endif |
747 | |
748 | int |
749 | iwn_detach(struct device *self, int flags) |
750 | { |
751 | struct iwn_softc *sc = (struct iwn_softc *)self; |
752 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
753 | int qid; |
754 | |
755 | timeout_del(&sc->calib_to); |
756 | task_del(systq, &sc->init_task); |
757 | |
758 | /* Uninstall interrupt handler. */ |
759 | if (sc->sc_ih != NULL((void *)0)) |
760 | pci_intr_disestablish(sc->sc_pct, sc->sc_ih); |
761 | |
762 | /* Free DMA resources. */ |
763 | iwn_free_rx_ring(sc, &sc->rxq); |
764 | for (qid = 0; qid < sc->ntxqs; qid++) |
765 | iwn_free_tx_ring(sc, &sc->txq[qid]); |
766 | iwn_free_sched(sc); |
767 | iwn_free_kw(sc); |
768 | if (sc->ict != NULL((void *)0)) |
769 | iwn_free_ict(sc); |
770 | iwn_free_fwmem(sc); |
771 | |
772 | bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); |
773 | |
774 | ieee80211_ifdetach(ifp); |
775 | if_detach(ifp); |
776 | |
777 | return 0; |
778 | } |
779 | |
780 | int |
781 | iwn_activate(struct device *self, int act) |
782 | { |
783 | struct iwn_softc *sc = (struct iwn_softc *)self; |
784 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
785 | |
786 | switch (act) { |
787 | case DVACT_SUSPEND3: |
788 | if (ifp->if_flags & IFF_RUNNING0x40) |
789 | iwn_stop(ifp); |
790 | break; |
791 | case DVACT_WAKEUP5: |
792 | iwn_wakeup(sc); |
793 | break; |
794 | } |
795 | |
796 | return 0; |
797 | } |
798 | |
799 | void |
800 | iwn_wakeup(struct iwn_softc *sc) |
801 | { |
802 | pcireg_t reg; |
803 | |
804 | /* Clear device-specific "PCI retry timeout" register (41h). */ |
805 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); |
806 | if (reg & 0xff00) |
807 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); |
808 | iwn_init_task(sc); |
809 | } |
810 | |
811 | void |
812 | iwn_init_task(void *arg1) |
813 | { |
814 | struct iwn_softc *sc = arg1; |
815 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
816 | int s; |
817 | |
818 | rw_enter_write(&sc->sc_rwlock); |
819 | s = splnet()splraise(0x4); |
820 | |
821 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == IFF_UP0x1) |
822 | iwn_init(ifp); |
823 | |
824 | splx(s)spllower(s); |
825 | rw_exit_write(&sc->sc_rwlock); |
826 | } |
827 | |
828 | int |
829 | iwn_nic_lock(struct iwn_softc *sc) |
830 | { |
831 | int ntries; |
832 | |
833 | /* Request exclusive access to NIC. */ |
834 | IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x024)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) | ( (1 << 3)))))); |
835 | |
836 | /* Spin until we actually get the lock. */ |
837 | for (ntries = 0; ntries < 1000; ntries++) { |
838 | if ((IWN_READ(sc, IWN_GP_CNTRL)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & |
839 | (IWN_GP_CNTRL_MAC_ACCESS_ENA(1 << 0) | IWN_GP_CNTRL_SLEEP(1 << 4))) == |
840 | IWN_GP_CNTRL_MAC_ACCESS_ENA(1 << 0)) |
841 | return 0; |
842 | DELAY(10)(*delay_func)(10); |
843 | } |
844 | return ETIMEDOUT60; |
845 | } |
846 | |
847 | static __inline void |
848 | iwn_nic_unlock(struct iwn_softc *sc) |
849 | { |
850 | IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x024)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & ~((1 << 3)))))); |
851 | } |
852 | |
853 | static __inline uint32_t |
854 | iwn_prph_read(struct iwn_softc *sc, uint32_t addr) |
855 | { |
856 | IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x448)), (( ((sizeof (uint32_t) - 1) << 24) | addr)))); |
857 | IWN_BARRIER_READ_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x01 | 0x02); |
858 | return IWN_READ(sc, IWN_PRPH_RDATA)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x450)))); |
859 | } |
860 | |
861 | static __inline void |
862 | iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) |
863 | { |
864 | IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x444)), (( ((sizeof (uint32_t) - 1) << 24) | addr)))); |
865 | IWN_BARRIER_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x02); |
866 | IWN_WRITE(sc, IWN_PRPH_WDATA, data)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x44c)), (( data)))); |
867 | } |
868 | |
869 | static __inline void |
870 | iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) |
871 | { |
872 | iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); |
873 | } |
874 | |
875 | static __inline void |
876 | iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) |
877 | { |
878 | iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); |
879 | } |
880 | |
881 | static __inline void |
882 | iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, |
883 | const uint32_t *data, int count) |
884 | { |
885 | for (; count > 0; count--, data++, addr += 4) |
886 | iwn_prph_write(sc, addr, *data); |
887 | } |
888 | |
889 | static __inline uint32_t |
890 | iwn_mem_read(struct iwn_softc *sc, uint32_t addr) |
891 | { |
892 | IWN_WRITE(sc, IWN_MEM_RADDR, addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x40c)), (( addr)))); |
893 | IWN_BARRIER_READ_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x01 | 0x02); |
894 | return IWN_READ(sc, IWN_MEM_RDATA)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x41c)))); |
895 | } |
896 | |
897 | static __inline void |
898 | iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) |
899 | { |
900 | IWN_WRITE(sc, IWN_MEM_WADDR, addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x410)), (( addr)))); |
901 | IWN_BARRIER_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x02); |
902 | IWN_WRITE(sc, IWN_MEM_WDATA, data)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x418)), (( data)))); |
903 | } |
904 | |
905 | static __inline void |
906 | iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) |
907 | { |
908 | uint32_t tmp; |
909 | |
910 | tmp = iwn_mem_read(sc, addr & ~3); |
911 | if (addr & 3) |
912 | tmp = (tmp & 0x0000ffff) | data << 16; |
913 | else |
914 | tmp = (tmp & 0xffff0000) | data; |
915 | iwn_mem_write(sc, addr & ~3, tmp); |
916 | } |
917 | |
918 | static __inline void |
919 | iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, |
920 | int count) |
921 | { |
922 | for (; count > 0; count--, addr += 4) |
923 | *data++ = iwn_mem_read(sc, addr); |
924 | } |
925 | |
926 | static __inline void |
927 | iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, |
928 | int count) |
929 | { |
930 | for (; count > 0; count--, addr += 4) |
931 | iwn_mem_write(sc, addr, val); |
932 | } |
933 | |
934 | int |
935 | iwn_eeprom_lock(struct iwn_softc *sc) |
936 | { |
937 | int i, ntries; |
938 | |
939 | for (i = 0; i < 100; i++) { |
940 | /* Request exclusive access to EEPROM. */ |
941 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 21)))))) |
942 | IWN_HW_IF_CONFIG_EEPROM_LOCKED)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 21)))))); |
943 | |
944 | /* Spin until we actually get the lock. */ |
945 | for (ntries = 0; ntries < 100; ntries++) { |
946 | if (IWN_READ(sc, IWN_HW_IF_CONFIG)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) & |
947 | IWN_HW_IF_CONFIG_EEPROM_LOCKED(1 << 21)) |
948 | return 0; |
949 | DELAY(10)(*delay_func)(10); |
950 | } |
951 | } |
952 | return ETIMEDOUT60; |
953 | } |
954 | |
955 | static __inline void |
956 | iwn_eeprom_unlock(struct iwn_softc *sc) |
957 | { |
958 | IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) & ~((1 << 21)))))); |
959 | } |
960 | |
961 | /* |
962 | * Initialize access by host to One Time Programmable ROM. |
963 | * NB: This kind of ROM can be found on 1000 or 6000 Series only. |
964 | */ |
965 | int |
966 | iwn_init_otprom(struct iwn_softc *sc) |
967 | { |
968 | uint16_t prev, base, next; |
969 | int count, error; |
970 | |
971 | /* Wait for clock stabilization before accessing prph. */ |
972 | if ((error = iwn_clock_wait(sc)) != 0) |
973 | return error; |
974 | |
975 | if ((error = iwn_nic_lock(sc)) != 0) |
976 | return error; |
977 | iwn_prph_setbits(sc, IWN_APMG_PS0x300c, IWN_APMG_PS_RESET_REQ(1 << 26)); |
978 | DELAY(5)(*delay_func)(5); |
979 | iwn_prph_clrbits(sc, IWN_APMG_PS0x300c, IWN_APMG_PS_RESET_REQ(1 << 26)); |
980 | iwn_nic_unlock(sc); |
981 | |
982 | /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ |
983 | if (sc->hw_type != IWN_HW_REV_TYPE_10006) { |
984 | IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x250)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x250)))) | ( (1U << 31)))))) |
985 | IWN_RESET_LINK_PWR_MGMT_DIS)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x250)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x250)))) | ( (1U << 31)))))); |
986 | } |
987 | IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x030)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x030)))) & ~(0x00000180))))); |
988 | /* Clear ECC status. */ |
989 | IWN_SETBITS(sc, IWN_OTP_GP,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x034)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) | ( (1 << 20) | (1 << 21)))))) |
990 | IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x034)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) | ( (1 << 20) | (1 << 21)))))); |
991 | |
992 | /* |
993 | * Find the block before last block (contains the EEPROM image) |
994 | * for HW without OTP shadow RAM. |
995 | */ |
996 | if (sc->hw_type == IWN_HW_REV_TYPE_10006) { |
997 | /* Switch to absolute addressing mode. */ |
998 | IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x034)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) & ~((1 << 17)))))); |
999 | base = 0; |
1000 | for (count = 0; count < IWN1000_OTP_NBLOCKS3; count++) { |
1001 | error = iwn_read_prom_data(sc, base, &next, 2); |
1002 | if (error != 0) |
1003 | return error; |
1004 | if (next == 0) /* End of linked-list. */ |
1005 | break; |
1006 | prev = base; |
1007 | base = letoh16(next)((__uint16_t)(next)); |
1008 | } |
1009 | if (count == 0 || count == IWN1000_OTP_NBLOCKS3) |
1010 | return EIO5; |
1011 | /* Skip "next" word. */ |
1012 | sc->prom_base = prev + 1; |
1013 | } |
1014 | return 0; |
1015 | } |
1016 | |
1017 | int |
1018 | iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) |
1019 | { |
1020 | uint8_t *out = data; |
1021 | uint32_t val, tmp; |
1022 | int ntries; |
1023 | |
1024 | addr += sc->prom_base; |
1025 | for (; count > 0; count -= 2, addr++) { |
1026 | IWN_WRITE(sc, IWN_EEPROM, addr << 2)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x02c)), (( addr << 2)))); |
1027 | for (ntries = 0; ntries < 10; ntries++) { |
1028 | val = IWN_READ(sc, IWN_EEPROM)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x02c)))); |
1029 | if (val & IWN_EEPROM_READ_VALID(1 << 0)) |
1030 | break; |
1031 | DELAY(5)(*delay_func)(5); |
1032 | } |
1033 | if (ntries == 10) { |
1034 | printf("%s: timeout reading ROM at 0x%x\n", |
1035 | sc->sc_dev.dv_xname, addr); |
1036 | return ETIMEDOUT60; |
1037 | } |
1038 | if (sc->sc_flags & IWN_FLAG_HAS_OTPROM(1 << 1)) { |
1039 | /* OTPROM, check for ECC errors. */ |
1040 | tmp = IWN_READ(sc, IWN_OTP_GP)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))); |
1041 | if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS(1 << 21)) { |
1042 | printf("%s: OTPROM ECC error at 0x%x\n", |
1043 | sc->sc_dev.dv_xname, addr); |
1044 | return EIO5; |
1045 | } |
1046 | if (tmp & IWN_OTP_GP_ECC_CORR_STTS(1 << 20)) { |
1047 | /* Correctable ECC error, clear bit. */ |
1048 | IWN_SETBITS(sc, IWN_OTP_GP,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x034)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) | ( (1 << 20)))))) |
1049 | IWN_OTP_GP_ECC_CORR_STTS)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x034)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) | ( (1 << 20)))))); |
1050 | } |
1051 | } |
1052 | *out++ = val >> 16; |
1053 | if (count > 1) |
1054 | *out++ = val >> 24; |
1055 | } |
1056 | return 0; |
1057 | } |
1058 | |
1059 | int |
1060 | iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, |
1061 | bus_size_t size, bus_size_t alignment) |
1062 | { |
1063 | int nsegs, error; |
1064 | |
1065 | dma->tag = tag; |
1066 | dma->size = size; |
1067 | |
1068 | error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,(*(tag)->_dmamap_create)((tag), (size), (1), (size), (0), ( 0x0001), (&dma->map)) |
1069 | &dma->map)(*(tag)->_dmamap_create)((tag), (size), (1), (size), (0), ( 0x0001), (&dma->map)); |
1070 | if (error != 0) |
1071 | goto fail; |
1072 | |
1073 | error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,(*(tag)->_dmamem_alloc)((tag), (size), (alignment), (0), ( &dma->seg), (1), (&nsegs), (0x0001 | 0x1000)) |
1074 | BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(tag)->_dmamem_alloc)((tag), (size), (alignment), (0), ( &dma->seg), (1), (&nsegs), (0x0001 | 0x1000)); |
1075 | if (error != 0) |
1076 | goto fail; |
1077 | |
1078 | error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,(*(tag)->_dmamem_map)((tag), (&dma->seg), (1), (size ), (&dma->vaddr), (0x0001 | 0x0004)) |
1079 | BUS_DMA_NOWAIT | BUS_DMA_COHERENT)(*(tag)->_dmamem_map)((tag), (&dma->seg), (1), (size ), (&dma->vaddr), (0x0001 | 0x0004)); |
1080 | if (error != 0) |
1081 | goto fail; |
1082 | |
1083 | error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,(*(tag)->_dmamap_load_raw)((tag), (dma->map), (&dma ->seg), (1), (size), (0x0001)) |
1084 | BUS_DMA_NOWAIT)(*(tag)->_dmamap_load_raw)((tag), (dma->map), (&dma ->seg), (1), (size), (0x0001)); |
1085 | if (error != 0) |
1086 | goto fail; |
1087 | |
1088 | bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE)(*(tag)->_dmamap_sync)((tag), (dma->map), (0), (size), ( 0x04)); |
1089 | |
1090 | dma->paddr = dma->map->dm_segs[0].ds_addr; |
1091 | if (kvap != NULL((void *)0)) |
1092 | *kvap = dma->vaddr; |
1093 | |
1094 | return 0; |
1095 | |
1096 | fail: iwn_dma_contig_free(dma); |
1097 | return error; |
1098 | } |
1099 | |
1100 | void |
1101 | iwn_dma_contig_free(struct iwn_dma_info *dma) |
1102 | { |
1103 | if (dma->map != NULL((void *)0)) { |
1104 | if (dma->vaddr != NULL((void *)0)) { |
1105 | bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,(*(dma->tag)->_dmamap_sync)((dma->tag), (dma->map ), (0), (dma->size), (0x02 | 0x08)) |
1106 | BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)(*(dma->tag)->_dmamap_sync)((dma->tag), (dma->map ), (0), (dma->size), (0x02 | 0x08)); |
1107 | bus_dmamap_unload(dma->tag, dma->map)(*(dma->tag)->_dmamap_unload)((dma->tag), (dma->map )); |
1108 | bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size)(*(dma->tag)->_dmamem_unmap)((dma->tag), (dma->vaddr ), (dma->size)); |
1109 | bus_dmamem_free(dma->tag, &dma->seg, 1)(*(dma->tag)->_dmamem_free)((dma->tag), (&dma-> seg), (1)); |
1110 | dma->vaddr = NULL((void *)0); |
1111 | } |
1112 | bus_dmamap_destroy(dma->tag, dma->map)(*(dma->tag)->_dmamap_destroy)((dma->tag), (dma-> map)); |
1113 | dma->map = NULL((void *)0); |
1114 | } |
1115 | } |
1116 | |
1117 | int |
1118 | iwn_alloc_sched(struct iwn_softc *sc) |
1119 | { |
1120 | /* TX scheduler rings must be aligned on a 1KB boundary. */ |
1121 | return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, |
1122 | (void **)&sc->sched, sc->schedsz, 1024); |
1123 | } |
1124 | |
1125 | void |
1126 | iwn_free_sched(struct iwn_softc *sc) |
1127 | { |
1128 | iwn_dma_contig_free(&sc->sched_dma); |
1129 | } |
1130 | |
1131 | int |
1132 | iwn_alloc_kw(struct iwn_softc *sc) |
1133 | { |
1134 | /* "Keep Warm" page must be aligned on a 4KB boundary. */ |
1135 | return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL((void *)0), 4096, |
1136 | 4096); |
1137 | } |
1138 | |
1139 | void |
1140 | iwn_free_kw(struct iwn_softc *sc) |
1141 | { |
1142 | iwn_dma_contig_free(&sc->kw_dma); |
1143 | } |
1144 | |
1145 | int |
1146 | iwn_alloc_ict(struct iwn_softc *sc) |
1147 | { |
1148 | /* ICT table must be aligned on a 4KB boundary. */ |
1149 | return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, |
1150 | (void **)&sc->ict, IWN_ICT_SIZE4096, 4096); |
1151 | } |
1152 | |
1153 | void |
1154 | iwn_free_ict(struct iwn_softc *sc) |
1155 | { |
1156 | iwn_dma_contig_free(&sc->ict_dma); |
1157 | } |
1158 | |
1159 | int |
1160 | iwn_alloc_fwmem(struct iwn_softc *sc) |
1161 | { |
1162 | /* Must be aligned on a 16-byte boundary. */ |
1163 | return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL((void *)0), |
1164 | sc->fwsz, 16); |
1165 | } |
1166 | |
1167 | void |
1168 | iwn_free_fwmem(struct iwn_softc *sc) |
1169 | { |
1170 | iwn_dma_contig_free(&sc->fw_dma); |
1171 | } |
1172 | |
1173 | int |
1174 | iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) |
1175 | { |
1176 | bus_size_t size; |
1177 | int i, error; |
1178 | |
1179 | ring->cur = 0; |
1180 | |
1181 | /* Allocate RX descriptors (256-byte aligned). */ |
1182 | size = IWN_RX_RING_COUNT(1 << 6) * sizeof (uint32_t); |
1183 | error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, |
1184 | (void **)&ring->desc, size, 256); |
1185 | if (error != 0) { |
1186 | printf("%s: could not allocate RX ring DMA memory\n", |
1187 | sc->sc_dev.dv_xname); |
1188 | goto fail; |
1189 | } |
1190 | |
1191 | /* Allocate RX status area (16-byte aligned). */ |
1192 | error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, |
1193 | (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); |
1194 | if (error != 0) { |
1195 | printf("%s: could not allocate RX status DMA memory\n", |
1196 | sc->sc_dev.dv_xname); |
1197 | goto fail; |
1198 | } |
1199 | |
1200 | /* |
1201 | * Allocate and map RX buffers. |
1202 | */ |
1203 | for (i = 0; i < IWN_RX_RING_COUNT(1 << 6); i++) { |
1204 | struct iwn_rx_data *data = &ring->data[i]; |
1205 | |
1206 | error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((4 * 1024)), (1), ((4 * 1024)), (0), (0x0001 | 0x0002), (&data ->map)) |
1207 | IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((4 * 1024)), (1), ((4 * 1024)), (0), (0x0001 | 0x0002), (&data ->map)) |
1208 | &data->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((4 * 1024)), (1), ((4 * 1024)), (0), (0x0001 | 0x0002), (&data ->map)); |
1209 | if (error != 0) { |
1210 | printf("%s: could not create RX buf DMA map\n", |
1211 | sc->sc_dev.dv_xname); |
1212 | goto fail; |
1213 | } |
1214 | |
1215 | data->m = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE)m_clget((((void *)0)), (0x0002), ((4 * 1024))); |
1216 | if (data->m == NULL((void *)0)) { |
1217 | printf("%s: could not allocate RX mbuf\n", |
1218 | sc->sc_dev.dv_xname); |
1219 | error = ENOBUFS55; |
1220 | goto fail; |
1221 | } |
1222 | |
1223 | error = bus_dmamap_load(sc->sc_dmat, data->map,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)) |
1224 | mtod(data->m, void *), IWN_RBUF_SIZE, NULL,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)) |
1225 | BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)); |
1226 | if (error != 0) { |
1227 | printf("%s: can't map mbuf (error %d)\n", |
1228 | sc->sc_dev.dv_xname, error); |
1229 | goto fail; |
1230 | } |
1231 | |
1232 | /* Set physical address of RX buffer (256-byte aligned). */ |
1233 | ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8)((__uint32_t)(data->map->dm_segs[0].ds_addr >> 8) ); |
1234 | } |
1235 | |
1236 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (size), (0x04)) |
1237 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (size), (0x04)); |
1238 | |
1239 | return 0; |
1240 | |
1241 | fail: iwn_free_rx_ring(sc, ring); |
1242 | return error; |
1243 | } |
1244 | |
1245 | void |
1246 | iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) |
1247 | { |
1248 | int ntries; |
1249 | |
1250 | if (iwn_nic_lock(sc) == 0) { |
1251 | IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( (0)))); |
1252 | for (ntries = 0; ntries < 1000; ntries++) { |
1253 | if (IWN_READ(sc, IWN_FH_RX_STATUS)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x1c44)))) & |
1254 | IWN_FH_RX_STATUS_IDLE(1 << 24)) |
1255 | break; |
1256 | DELAY(10)(*delay_func)(10); |
1257 | } |
1258 | iwn_nic_unlock(sc); |
1259 | } |
1260 | ring->cur = 0; |
1261 | sc->last_rx_valid = 0; |
1262 | } |
1263 | |
1264 | void |
1265 | iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) |
1266 | { |
1267 | int i; |
1268 | |
1269 | iwn_dma_contig_free(&ring->desc_dma); |
1270 | iwn_dma_contig_free(&ring->stat_dma); |
1271 | |
1272 | for (i = 0; i < IWN_RX_RING_COUNT(1 << 6); i++) { |
1273 | struct iwn_rx_data *data = &ring->data[i]; |
1274 | |
1275 | if (data->m != NULL((void *)0)) { |
1276 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x02)) |
1277 | data->map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x02)); |
1278 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
1279 | m_freem(data->m); |
1280 | } |
1281 | if (data->map != NULL((void *)0)) |
1282 | bus_dmamap_destroy(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (data ->map)); |
1283 | } |
1284 | } |
1285 | |
1286 | int |
1287 | iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) |
1288 | { |
1289 | bus_addr_t paddr; |
1290 | bus_size_t size; |
1291 | int i, error; |
1292 | |
1293 | ring->qid = qid; |
1294 | ring->queued = 0; |
1295 | ring->cur = 0; |
1296 | |
1297 | /* Allocate TX descriptors (256-byte aligned). */ |
1298 | size = IWN_TX_RING_COUNT256 * sizeof (struct iwn_tx_desc); |
1299 | error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, |
1300 | (void **)&ring->desc, size, 256); |
1301 | if (error != 0) { |
1302 | printf("%s: could not allocate TX ring DMA memory\n", |
1303 | sc->sc_dev.dv_xname); |
1304 | goto fail; |
1305 | } |
1306 | |
1307 | size = IWN_TX_RING_COUNT256 * sizeof (struct iwn_tx_cmd); |
1308 | error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, |
1309 | (void **)&ring->cmd, size, 4); |
1310 | if (error != 0) { |
1311 | printf("%s: could not allocate TX cmd DMA memory\n", |
1312 | sc->sc_dev.dv_xname); |
1313 | goto fail; |
1314 | } |
1315 | |
1316 | paddr = ring->cmd_dma.paddr; |
1317 | for (i = 0; i < IWN_TX_RING_COUNT256; i++) { |
1318 | struct iwn_tx_data *data = &ring->data[i]; |
1319 | |
1320 | data->cmd_paddr = paddr; |
1321 | data->scratch_paddr = paddr + 12; |
1322 | paddr += sizeof (struct iwn_tx_cmd); |
1323 | |
1324 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (20 - 1), ((1 << 11)), (0), (0x0001), (&data ->map)) |
1325 | IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (20 - 1), ((1 << 11)), (0), (0x0001), (&data ->map)) |
1326 | &data->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (20 - 1), ((1 << 11)), (0), (0x0001), (&data ->map)); |
1327 | if (error != 0) { |
1328 | printf("%s: could not create TX buf DMA map\n", |
1329 | sc->sc_dev.dv_xname); |
1330 | goto fail; |
1331 | } |
1332 | } |
1333 | return 0; |
1334 | |
1335 | fail: iwn_free_tx_ring(sc, ring); |
1336 | return error; |
1337 | } |
1338 | |
1339 | void |
1340 | iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) |
1341 | { |
1342 | int i; |
1343 | |
1344 | for (i = 0; i < IWN_TX_RING_COUNT256; i++) { |
1345 | struct iwn_tx_data *data = &ring->data[i]; |
1346 | |
1347 | if (data->m != NULL((void *)0)) { |
1348 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
1349 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
1350 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
1351 | m_freem(data->m); |
1352 | data->m = NULL((void *)0); |
1353 | } |
1354 | } |
1355 | /* Clear TX descriptors. */ |
1356 | memset(ring->desc, 0, ring->desc_dma.size)__builtin_memset((ring->desc), (0), (ring->desc_dma.size )); |
1357 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (ring->desc_dma.size), (0x04)) |
1358 | ring->desc_dma.size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (ring->desc_dma.size), (0x04)); |
1359 | sc->qfullmsk &= ~(1 << ring->qid); |
1360 | ring->queued = 0; |
1361 | ring->cur = 0; |
1362 | } |
1363 | |
1364 | void |
1365 | iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) |
1366 | { |
1367 | int i; |
1368 | |
1369 | iwn_dma_contig_free(&ring->desc_dma); |
1370 | iwn_dma_contig_free(&ring->cmd_dma); |
1371 | |
1372 | for (i = 0; i < IWN_TX_RING_COUNT256; i++) { |
1373 | struct iwn_tx_data *data = &ring->data[i]; |
1374 | |
1375 | if (data->m != NULL((void *)0)) { |
1376 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
1377 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
1378 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
1379 | m_freem(data->m); |
1380 | } |
1381 | if (data->map != NULL((void *)0)) |
1382 | bus_dmamap_destroy(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (data ->map)); |
1383 | } |
1384 | } |
1385 | |
1386 | void |
1387 | iwn5000_ict_reset(struct iwn_softc *sc) |
1388 | { |
1389 | /* Disable interrupts. */ |
1390 | IWN_WRITE(sc, IWN_INT_MASK, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( 0)))); |
1391 | |
1392 | /* Reset ICT table. */ |
1393 | memset(sc->ict, 0, IWN_ICT_SIZE)__builtin_memset((sc->ict), (0), (4096)); |
1394 | sc->ict_cur = 0; |
1395 | |
1396 | /* Set physical address of ICT table (4KB aligned). */ |
1397 | DPRINTF(("enabling ICT\n")); |
1398 | IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x0a0)), (( (1U << 31) | (1U << 27) | sc->ict_dma.paddr >> 12)))) |
1399 | IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x0a0)), (( (1U << 31) | (1U << 27) | sc->ict_dma.paddr >> 12)))); |
1400 | |
1401 | /* Enable periodic RX interrupt. */ |
1402 | sc->int_mask |= IWN_INT_RX_PERIODIC(1U << 28); |
1403 | /* Switch to ICT interrupt mode in driver. */ |
1404 | sc->sc_flags |= IWN_FLAG_USE_ICT(1 << 3); |
1405 | |
1406 | /* Re-enable interrupts. */ |
1407 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
1408 | IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( sc->int_mask)))); |
1409 | } |
1410 | |
1411 | int |
1412 | iwn_read_eeprom(struct iwn_softc *sc) |
1413 | { |
1414 | struct iwn_ops *ops = &sc->ops; |
1415 | struct ieee80211com *ic = &sc->sc_ic; |
1416 | uint16_t val; |
1417 | int error; |
1418 | |
1419 | /* Check whether adapter has an EEPROM or an OTPROM. */ |
1420 | if (sc->hw_type >= IWN_HW_REV_TYPE_10006 && |
1421 | (IWN_READ(sc, IWN_OTP_GP)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x034)))) & IWN_OTP_GP_DEV_SEL_OTP(1 << 16))) |
1422 | sc->sc_flags |= IWN_FLAG_HAS_OTPROM(1 << 1); |
1423 | DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? |
1424 | "OTPROM" : "EEPROM")); |
1425 | |
1426 | /* Adapter has to be powered on for EEPROM access to work. */ |
1427 | if ((error = iwn_apm_init(sc)) != 0) { |
1428 | printf("%s: could not power ON adapter\n", |
1429 | sc->sc_dev.dv_xname); |
1430 | return error; |
1431 | } |
1432 | |
1433 | if ((IWN_READ(sc, IWN_EEPROM_GP)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x030)))) & 0x7) == 0) { |
1434 | printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname); |
1435 | return EIO5; |
1436 | } |
1437 | if ((error = iwn_eeprom_lock(sc)) != 0) { |
1438 | printf("%s: could not lock ROM (error=%d)\n", |
1439 | sc->sc_dev.dv_xname, error); |
1440 | return error; |
1441 | } |
1442 | if (sc->sc_flags & IWN_FLAG_HAS_OTPROM(1 << 1)) { |
1443 | if ((error = iwn_init_otprom(sc)) != 0) { |
1444 | printf("%s: could not initialize OTPROM\n", |
1445 | sc->sc_dev.dv_xname); |
1446 | return error; |
1447 | } |
1448 | } |
1449 | |
1450 | iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP0x045, &val, 2); |
1451 | DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val))); |
1452 | /* Check if HT support is bonded out. */ |
1453 | if (val & htole16(IWN_EEPROM_SKU_CAP_11N)((__uint16_t)((1 << 6)))) |
1454 | sc->sc_flags |= IWN_FLAG_HAS_11N(1 << 6); |
1455 | |
1456 | iwn_read_prom_data(sc, IWN_EEPROM_RFCFG0x048, &val, 2); |
1457 | sc->rfcfg = letoh16(val)((__uint16_t)(val)); |
1458 | DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); |
1459 | /* Read Tx/Rx chains from ROM unless it's known to be broken. */ |
1460 | if (sc->txchainmask == 0) |
1461 | sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg)(((sc->rfcfg) >> 8) & 0xf); |
1462 | if (sc->rxchainmask == 0) |
1463 | sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg)(((sc->rfcfg) >> 12) & 0xf); |
1464 | |
1465 | /* Read MAC address. */ |
1466 | iwn_read_prom_data(sc, IWN_EEPROM_MAC0x015, ic->ic_myaddr, 6); |
1467 | |
1468 | /* Read adapter-specific information from EEPROM. */ |
1469 | ops->read_eeprom(sc); |
1470 | |
1471 | iwn_apm_stop(sc); /* Power OFF adapter. */ |
1472 | |
1473 | iwn_eeprom_unlock(sc); |
1474 | return 0; |
1475 | } |
1476 | |
1477 | void |
1478 | iwn4965_read_eeprom(struct iwn_softc *sc) |
1479 | { |
1480 | uint32_t addr; |
1481 | uint16_t val; |
1482 | int i; |
1483 | |
1484 | /* Read regulatory domain (4 ASCII characters). */ |
1485 | iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN0x060, sc->eeprom_domain, 4); |
1486 | |
1487 | /* Read the list of authorized channels. */ |
1488 | for (i = 0; i < 7; i++) { |
1489 | addr = iwn4965_regulatory_bands[i]; |
1490 | iwn_read_eeprom_channels(sc, i, addr); |
1491 | } |
1492 | |
1493 | /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ |
1494 | iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW0x0e8, &val, 2); |
1495 | sc->maxpwr2GHz = val & 0xff; |
1496 | sc->maxpwr5GHz = val >> 8; |
1497 | /* Check that EEPROM values are within valid range. */ |
1498 | if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) |
1499 | sc->maxpwr5GHz = 38; |
1500 | if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) |
1501 | sc->maxpwr2GHz = 38; |
1502 | DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); |
1503 | |
1504 | /* Read samples for each TX power group. */ |
1505 | iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS0x0ea, sc->bands, |
1506 | sizeof sc->bands); |
1507 | |
1508 | /* Read voltage at which samples were taken. */ |
1509 | iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE0x0e9, &val, 2); |
1510 | sc->eeprom_voltage = (int16_t)letoh16(val)((__uint16_t)(val)); |
1511 | DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); |
1512 | |
1513 | #ifdef IWN_DEBUG |
1514 | /* Print samples. */ |
1515 | if (iwn_debug > 0) { |
1516 | for (i = 0; i < IWN_NBANDS8; i++) |
1517 | iwn4965_print_power_group(sc, i); |
1518 | } |
1519 | #endif |
1520 | } |
1521 | |
1522 | #ifdef IWN_DEBUG |
1523 | void |
1524 | iwn4965_print_power_group(struct iwn_softc *sc, int i) |
1525 | { |
1526 | struct iwn4965_eeprom_band *band = &sc->bands[i]; |
1527 | struct iwn4965_eeprom_chan_samples *chans = band->chans; |
1528 | int j, c; |
1529 | |
1530 | printf("===band %d===\n", i); |
1531 | printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); |
1532 | printf("chan1 num=%d\n", chans[0].num); |
1533 | for (c = 0; c < 2; c++) { |
1534 | for (j = 0; j < IWN_NSAMPLES3; j++) { |
1535 | printf("chain %d, sample %d: temp=%d gain=%d " |
1536 | "power=%d pa_det=%d\n", c, j, |
1537 | chans[0].samples[c][j].temp, |
1538 | chans[0].samples[c][j].gain, |
1539 | chans[0].samples[c][j].power, |
1540 | chans[0].samples[c][j].pa_det); |
1541 | } |
1542 | } |
1543 | printf("chan2 num=%d\n", chans[1].num); |
1544 | for (c = 0; c < 2; c++) { |
1545 | for (j = 0; j < IWN_NSAMPLES3; j++) { |
1546 | printf("chain %d, sample %d: temp=%d gain=%d " |
1547 | "power=%d pa_det=%d\n", c, j, |
1548 | chans[1].samples[c][j].temp, |
1549 | chans[1].samples[c][j].gain, |
1550 | chans[1].samples[c][j].power, |
1551 | chans[1].samples[c][j].pa_det); |
1552 | } |
1553 | } |
1554 | } |
1555 | #endif |
1556 | |
1557 | void |
1558 | iwn5000_read_eeprom(struct iwn_softc *sc) |
1559 | { |
1560 | struct iwn5000_eeprom_calib_hdr hdr; |
1561 | int32_t volt; |
1562 | uint32_t base, addr; |
1563 | uint16_t val; |
1564 | int i; |
1565 | |
1566 | /* Read regulatory domain (4 ASCII characters). */ |
1567 | iwn_read_prom_data(sc, IWN5000_EEPROM_REG0x066, &val, 2); |
1568 | base = letoh16(val)((__uint16_t)(val)); |
1569 | iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN0x001, |
1570 | sc->eeprom_domain, 4); |
1571 | |
1572 | /* Read the list of authorized channels. */ |
1573 | for (i = 0; i < 7; i++) { |
1574 | addr = base + iwn5000_regulatory_bands[i]; |
1575 | iwn_read_eeprom_channels(sc, i, addr); |
1576 | } |
1577 | |
1578 | /* Read enhanced TX power information for 6000 Series. */ |
1579 | if (sc->hw_type >= IWN_HW_REV_TYPE_60007) |
1580 | iwn_read_eeprom_enhinfo(sc); |
1581 | |
1582 | iwn_read_prom_data(sc, IWN5000_EEPROM_CAL0x067, &val, 2); |
1583 | base = letoh16(val)((__uint16_t)(val)); |
1584 | iwn_read_prom_data(sc, base, &hdr, sizeof hdr); |
1585 | DPRINTF(("calib version=%u pa type=%u voltage=%u\n", |
1586 | hdr.version, hdr.pa_type, letoh16(hdr.volt))); |
1587 | sc->calib_ver = hdr.version; |
1588 | |
1589 | if (sc->hw_type == IWN_HW_REV_TYPE_203012 || |
1590 | sc->hw_type == IWN_HW_REV_TYPE_200016 || |
1591 | sc->hw_type == IWN_HW_REV_TYPE_13518 || |
1592 | sc->hw_type == IWN_HW_REV_TYPE_10517) { |
1593 | sc->eeprom_voltage = letoh16(hdr.volt)((__uint16_t)(hdr.volt)); |
1594 | iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP0x12a, &val, 2); |
1595 | sc->eeprom_temp = letoh16(val)((__uint16_t)(val)); |
1596 | iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP0x12b, &val, 2); |
1597 | sc->eeprom_rawtemp = letoh16(val)((__uint16_t)(val)); |
1598 | } |
1599 | |
1600 | if (sc->hw_type == IWN_HW_REV_TYPE_51504) { |
1601 | /* Compute temperature offset. */ |
1602 | iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP0x12a, &val, 2); |
1603 | sc->eeprom_temp = letoh16(val)((__uint16_t)(val)); |
1604 | iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT0x12b, &val, 2); |
1605 | volt = letoh16(val)((__uint16_t)(val)); |
1606 | sc->temp_off = sc->eeprom_temp - (volt / -5); |
1607 | DPRINTF(("temp=%d volt=%d offset=%dK\n", |
1608 | sc->eeprom_temp, volt, sc->temp_off)); |
1609 | } else { |
1610 | /* Read crystal calibration. */ |
1611 | iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL0x128, |
1612 | &sc->eeprom_crystal, sizeof (uint32_t)); |
1613 | DPRINTF(("crystal calibration 0x%08x\n", |
1614 | letoh32(sc->eeprom_crystal))); |
1615 | } |
1616 | } |
1617 | |
1618 | void |
1619 | iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) |
1620 | { |
1621 | struct ieee80211com *ic = &sc->sc_ic; |
1622 | const struct iwn_chan_band *band = &iwn_bands[n]; |
1623 | struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND14]; |
1624 | uint8_t chan; |
1625 | int i; |
1626 | |
1627 | iwn_read_prom_data(sc, addr, channels, |
1628 | band->nchan * sizeof (struct iwn_eeprom_chan)); |
1629 | |
1630 | for (i = 0; i < band->nchan; i++) { |
1631 | if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID(1 << 0))) |
1632 | continue; |
1633 | |
1634 | chan = band->chan[i]; |
1635 | |
1636 | if (n == 0) { /* 2GHz band */ |
1637 | ic->ic_channels[chan].ic_freq = |
1638 | ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ0x0080); |
1639 | ic->ic_channels[chan].ic_flags = |
1640 | IEEE80211_CHAN_CCK0x0020 | IEEE80211_CHAN_OFDM0x0040 | |
1641 | IEEE80211_CHAN_DYN0x0400 | IEEE80211_CHAN_2GHZ0x0080; |
1642 | |
1643 | } else if (n < 5) { /* 5GHz band */ |
1644 | /* |
1645 | * Some adapters support channels 7, 8, 11 and 12 |
1646 | * both in the 2GHz and 4.9GHz bands. |
1647 | * Because of limitations in our net80211 layer, |
1648 | * we don't support them in the 4.9GHz band. |
1649 | */ |
1650 | if (chan <= 14) |
1651 | continue; |
1652 | |
1653 | ic->ic_channels[chan].ic_freq = |
1654 | ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ0x0100); |
1655 | ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A(0x0100 | 0x0040); |
1656 | /* We have at least one valid 5GHz channel. */ |
1657 | sc->sc_flags |= IWN_FLAG_HAS_5GHZ(1 << 0); |
1658 | } else { /* 40 MHz */ |
1659 | sc->maxpwr40[chan] = channels[i].maxpwr; |
1660 | ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_40MHZ0x8000; |
1661 | } |
1662 | |
1663 | if (n < 5) { |
1664 | /* Is active scan allowed on this channel? */ |
1665 | if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE(1 << 3))) { |
1666 | ic->ic_channels[chan].ic_flags |= |
1667 | IEEE80211_CHAN_PASSIVE0x0200; |
1668 | } |
1669 | |
1670 | /* Save maximum allowed TX power for this channel. */ |
1671 | sc->maxpwr[chan] = channels[i].maxpwr; |
1672 | |
1673 | if (sc->sc_flags & IWN_FLAG_HAS_11N(1 << 6)) |
1674 | ic->ic_channels[chan].ic_flags |= |
1675 | IEEE80211_CHAN_HT0x2000; |
1676 | } |
1677 | |
1678 | DPRINTF(("adding chan %d flags=0x%x maxpwr=%d maxpwr40=%d\n", |
1679 | chan, channels[i].flags, sc->maxpwr[chan], |
1680 | sc->maxpwr40[chan])); |
1681 | } |
1682 | } |
1683 | |
1684 | void |
1685 | iwn_read_eeprom_enhinfo(struct iwn_softc *sc) |
1686 | { |
1687 | struct iwn_eeprom_enhinfo enhinfo[35]; |
1688 | uint16_t val, base; |
1689 | int8_t maxpwr; |
1690 | int i; |
1691 | |
1692 | iwn_read_prom_data(sc, IWN5000_EEPROM_REG0x066, &val, 2); |
1693 | base = letoh16(val)((__uint16_t)(val)); |
1694 | iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO0x054, |
1695 | enhinfo, sizeof enhinfo); |
1696 | |
1697 | memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr)__builtin_memset((sc->enh_maxpwr), (0), (sizeof sc->enh_maxpwr )); |
1698 | for (i = 0; i < nitems(enhinfo)(sizeof((enhinfo)) / sizeof((enhinfo)[0])); i++) { |
1699 | if ((enhinfo[i].flags & IWN_TXP_VALID(1 << 0)) == 0) |
1700 | continue; /* Skip invalid entries. */ |
1701 | |
1702 | maxpwr = 0; |
1703 | if (sc->txchainmask & IWN_ANT_A(1 << 0)) |
1704 | maxpwr = MAX(maxpwr, enhinfo[i].chain[0])(((maxpwr)>(enhinfo[i].chain[0]))?(maxpwr):(enhinfo[i].chain [0])); |
1705 | if (sc->txchainmask & IWN_ANT_B(1 << 1)) |
1706 | maxpwr = MAX(maxpwr, enhinfo[i].chain[1])(((maxpwr)>(enhinfo[i].chain[1]))?(maxpwr):(enhinfo[i].chain [1])); |
1707 | if (sc->txchainmask & IWN_ANT_C(1 << 2)) |
1708 | maxpwr = MAX(maxpwr, enhinfo[i].chain[2])(((maxpwr)>(enhinfo[i].chain[2]))?(maxpwr):(enhinfo[i].chain [2])); |
1709 | if (sc->ntxchains == 2) |
1710 | maxpwr = MAX(maxpwr, enhinfo[i].mimo2)(((maxpwr)>(enhinfo[i].mimo2))?(maxpwr):(enhinfo[i].mimo2) ); |
1711 | else if (sc->ntxchains == 3) |
1712 | maxpwr = MAX(maxpwr, enhinfo[i].mimo3)(((maxpwr)>(enhinfo[i].mimo3))?(maxpwr):(enhinfo[i].mimo3) ); |
1713 | maxpwr /= 2; /* Convert half-dBm to dBm. */ |
1714 | |
1715 | DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); |
1716 | sc->enh_maxpwr[i] = maxpwr; |
1717 | } |
1718 | } |
1719 | |
1720 | struct ieee80211_node * |
1721 | iwn_node_alloc(struct ieee80211com *ic) |
1722 | { |
1723 | return malloc(sizeof (struct iwn_node), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
Result of 'malloc' is converted to a pointer of type 'struct ieee80211_node', which is incompatible with sizeof operand type 'struct iwn_node' | |
1724 | } |
1725 | |
1726 | void |
1727 | iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) |
1728 | { |
1729 | struct iwn_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
1730 | struct iwn_node *wn = (void *)ni; |
1731 | uint8_t rate; |
1732 | int ridx, i; |
1733 | |
1734 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) == 0) |
1735 | ieee80211_amrr_node_init(&sc->amrr, &wn->amn); |
1736 | |
1737 | /* Start at lowest available bit-rate, AMRR/MiRA will raise. */ |
1738 | ni->ni_txrate = 0; |
1739 | ni->ni_txmcs = 0; |
1740 | |
1741 | for (i = 0; i < ni->ni_rates.rs_nrates; i++) { |
1742 | rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL0x7f; |
1743 | /* Map 802.11 rate to HW rate index. */ |
1744 | for (ridx = 0; ridx <= IWN_RIDX_MAX32; ridx++) { |
1745 | if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID0xff && |
1746 | iwn_rates[ridx].rate == rate) |
1747 | break; |
1748 | } |
1749 | wn->ridx[i] = ridx; |
1750 | } |
1751 | } |
1752 | |
1753 | int |
1754 | iwn_media_change(struct ifnet *ifp) |
1755 | { |
1756 | struct iwn_softc *sc = ifp->if_softc; |
1757 | struct ieee80211com *ic = &sc->sc_ic; |
1758 | uint8_t rate, ridx; |
1759 | int error; |
1760 | |
1761 | error = ieee80211_media_change(ifp); |
1762 | if (error != ENETRESET52) |
1763 | return error; |
1764 | |
1765 | if (ic->ic_fixed_mcs != -1) |
1766 | sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs]; |
1767 | if (ic->ic_fixed_rate != -1) { |
1768 | rate = ic->ic_sup_rates[ic->ic_curmode]. |
1769 | rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL0x7f; |
1770 | /* Map 802.11 rate to HW rate index. */ |
1771 | for (ridx = 0; ridx <= IWN_RIDX_MAX32; ridx++) |
1772 | if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID0xff && |
1773 | iwn_rates[ridx].rate == rate) |
1774 | break; |
1775 | sc->fixed_ridx = ridx; |
1776 | } |
1777 | |
1778 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
1779 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
1780 | iwn_stop(ifp); |
1781 | error = iwn_init(ifp); |
1782 | } |
1783 | return error; |
1784 | } |
1785 | |
1786 | int |
1787 | iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
1788 | { |
1789 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1790 | struct iwn_softc *sc = ifp->if_softc; |
1791 | struct ieee80211_node *ni = ic->ic_bss; |
1792 | int error; |
1793 | |
1794 | if (ic->ic_state == IEEE80211_S_RUN) { |
1795 | if (nstate == IEEE80211_S_SCAN) { |
1796 | /* |
1797 | * During RUN->SCAN we don't call sc_newstate() so |
1798 | * we must stop A-MPDU Tx ourselves in this case. |
1799 | */ |
1800 | ieee80211_stop_ampdu_tx(ic, ni, -1); |
1801 | ieee80211_ba_del(ni); |
1802 | } |
1803 | timeout_del(&sc->calib_to); |
1804 | sc->calib.state = IWN_CALIB_STATE_INIT0; |
1805 | if (sc->sc_flags & IWN_FLAG_BGSCAN(1 << 9)) |
1806 | iwn_scan_abort(sc); |
1807 | } |
1808 | |
1809 | if (ic->ic_state == IEEE80211_S_SCAN) { |
1810 | if (nstate == IEEE80211_S_SCAN) { |
1811 | if (sc->sc_flags & IWN_FLAG_SCANNING(1 << 10)) |
1812 | return 0; |
1813 | } else |
1814 | sc->sc_flags &= ~IWN_FLAG_SCANNING(1 << 10); |
1815 | /* Turn LED off when leaving scan state. */ |
1816 | iwn_set_led(sc, IWN_LED_LINK2, 1, 0); |
1817 | } |
1818 | |
1819 | if (ic->ic_state >= IEEE80211_S_ASSOC && |
1820 | nstate <= IEEE80211_S_ASSOC) { |
1821 | /* Reset state to handle re- and disassociations. */ |
1822 | sc->rxon.associd = 0; |
1823 | sc->rxon.filter &= ~htole32(IWN_FILTER_BSS)((__uint32_t)((1 << 5))); |
1824 | sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |((__uint32_t)((2 << 25) | (1 << 25) | (1 << 22))) |
1825 | IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS)((__uint32_t)((2 << 25) | (1 << 25) | (1 << 22))); |
1826 | sc->calib.state = IWN_CALIB_STATE_INIT0; |
1827 | error = iwn_cmd(sc, IWN_CMD_RXON16, &sc->rxon, sc->rxonsz, 1); |
1828 | if (error != 0) |
1829 | printf("%s: RXON command failed\n", |
1830 | sc->sc_dev.dv_xname); |
1831 | } |
1832 | |
1833 | switch (nstate) { |
1834 | case IEEE80211_S_SCAN: |
1835 | /* Make the link LED blink while we're scanning. */ |
1836 | iwn_set_led(sc, IWN_LED_LINK2, 10, 10); |
1837 | |
1838 | if ((sc->sc_flags & IWN_FLAG_BGSCAN(1 << 9)) == 0) { |
1839 | ieee80211_set_link_state(ic, LINK_STATE_DOWN2); |
1840 | ieee80211_node_cleanup(ic, ic->ic_bss); |
1841 | } |
1842 | if (ifp->if_flags & IFF_DEBUG0x4) |
1843 | printf("%s: %s -> %s\n", ifp->if_xname, |
1844 | ieee80211_state_name[ic->ic_state], |
1845 | ieee80211_state_name[nstate]); |
1846 | ic->ic_state = nstate; |
1847 | if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ0x0080, 0)) != 0) { |
1848 | printf("%s: could not initiate scan\n", |
1849 | sc->sc_dev.dv_xname); |
1850 | } |
1851 | return error; |
1852 | |
1853 | case IEEE80211_S_ASSOC: |
1854 | if (ic->ic_state != IEEE80211_S_RUN) |
1855 | break; |
1856 | /* FALLTHROUGH */ |
1857 | case IEEE80211_S_AUTH: |
1858 | if ((error = iwn_auth(sc, arg)) != 0) { |
1859 | printf("%s: could not move to auth state\n", |
1860 | sc->sc_dev.dv_xname); |
1861 | return error; |
1862 | } |
1863 | break; |
1864 | |
1865 | case IEEE80211_S_RUN: |
1866 | if ((error = iwn_run(sc)) != 0) { |
1867 | printf("%s: could not move to run state\n", |
1868 | sc->sc_dev.dv_xname); |
1869 | return error; |
1870 | } |
1871 | break; |
1872 | |
1873 | case IEEE80211_S_INIT: |
1874 | sc->calib.state = IWN_CALIB_STATE_INIT0; |
1875 | break; |
1876 | } |
1877 | |
1878 | return sc->sc_newstate(ic, nstate, arg); |
1879 | } |
1880 | |
1881 | void |
1882 | iwn_iter_func(void *arg, struct ieee80211_node *ni) |
1883 | { |
1884 | struct iwn_softc *sc = arg; |
1885 | struct iwn_node *wn = (void *)ni; |
1886 | |
1887 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) == 0) { |
1888 | int old_txrate = ni->ni_txrate; |
1889 | ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); |
1890 | if (old_txrate != ni->ni_txrate) |
1891 | iwn_set_link_quality(sc, ni); |
1892 | } |
1893 | } |
1894 | |
1895 | void |
1896 | iwn_calib_timeout(void *arg) |
1897 | { |
1898 | struct iwn_softc *sc = arg; |
1899 | struct ieee80211com *ic = &sc->sc_ic; |
1900 | int s; |
1901 | |
1902 | s = splnet()splraise(0x4); |
1903 | if (ic->ic_fixed_rate == -1) { |
1904 | if (ic->ic_opmode == IEEE80211_M_STA) |
1905 | iwn_iter_func(sc, ic->ic_bss); |
1906 | else |
1907 | ieee80211_iterate_nodes(ic, iwn_iter_func, sc); |
1908 | } |
1909 | /* Force automatic TX power calibration every 60 secs. */ |
1910 | if (++sc->calib_cnt >= 120) { |
1911 | uint32_t flags = 0; |
1912 | |
1913 | DPRINTFN(2, ("sending request for statistics\n")); |
1914 | (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS156, &flags, |
1915 | sizeof flags, 1); |
1916 | sc->calib_cnt = 0; |
1917 | } |
1918 | splx(s)spllower(s); |
1919 | |
1920 | /* Automatic rate control triggered every 500ms. */ |
1921 | timeout_add_msec(&sc->calib_to, 500); |
1922 | } |
1923 | |
1924 | int |
1925 | iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) |
1926 | { |
1927 | struct ieee80211com *ic = &sc->sc_ic; |
1928 | struct ieee80211_key *k = &ni->ni_pairwise_key; |
1929 | struct ieee80211_frame *wh; |
1930 | uint64_t pn, *prsc; |
1931 | uint8_t *ivp; |
1932 | uint8_t tid; |
1933 | int hdrlen, hasqos; |
1934 | |
1935 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1936 | hdrlen = ieee80211_get_hdrlen(wh); |
1937 | ivp = (uint8_t *)wh + hdrlen; |
1938 | |
1939 | /* Check that ExtIV bit is set. */ |
1940 | if (!(ivp[3] & IEEE80211_WEP_EXTIV0x20)) { |
1941 | DPRINTF(("CCMP decap ExtIV not set\n")); |
1942 | return 1; |
1943 | } |
1944 | hasqos = ieee80211_has_qos(wh); |
1945 | tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID0x000f : 0; |
1946 | prsc = &k->k_rsc[tid]; |
1947 | |
1948 | /* Extract the 48-bit PN from the CCMP header. */ |
1949 | pn = (uint64_t)ivp[0] | |
1950 | (uint64_t)ivp[1] << 8 | |
1951 | (uint64_t)ivp[4] << 16 | |
1952 | (uint64_t)ivp[5] << 24 | |
1953 | (uint64_t)ivp[6] << 32 | |
1954 | (uint64_t)ivp[7] << 40; |
1955 | if (pn <= *prsc) { |
1956 | DPRINTF(("CCMP replayed\n")); |
1957 | ic->ic_stats.is_ccmp_replays++; |
1958 | return 1; |
1959 | } |
1960 | /* Last seen packet number is updated in ieee80211_inputm(). */ |
1961 | |
1962 | /* Strip MIC. IV will be stripped by ieee80211_inputm(). */ |
1963 | m_adj(m, -IEEE80211_CCMP_MICLEN8); |
1964 | return 0; |
1965 | } |
1966 | |
1967 | /* |
1968 | * Process an RX_PHY firmware notification. This is usually immediately |
1969 | * followed by an MPDU_RX_DONE notification. |
1970 | */ |
1971 | void |
1972 | iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
1973 | struct iwn_rx_data *data) |
1974 | { |
1975 | struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); |
1976 | |
1977 | DPRINTFN(2, ("received PHY stats\n")); |
1978 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stat)), (0x02)) |
1979 | sizeof (*stat), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stat)), (0x02)); |
1980 | |
1981 | /* Save RX statistics, they will be used on MPDU_RX_DONE. */ |
1982 | memcpy(&sc->last_rx_stat, stat, sizeof (*stat))__builtin_memcpy((&sc->last_rx_stat), (stat), (sizeof ( *stat))); |
1983 | sc->last_rx_valid = IWN_LAST_RX_VALID0x01; |
1984 | /* |
1985 | * The firmware does not send separate RX_PHY |
1986 | * notifications for A-MPDU subframes. |
1987 | */ |
1988 | if (stat->flags & htole16(IWN_STAT_FLAG_AGG)((__uint16_t)((1 << 7)))) |
1989 | sc->last_rx_valid |= IWN_LAST_RX_AMPDU0x02; |
1990 | } |
1991 | |
1992 | /* |
1993 | * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. |
1994 | * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. |
1995 | */ |
1996 | void |
1997 | iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
1998 | struct iwn_rx_data *data, struct mbuf_list *ml) |
1999 | { |
2000 | struct iwn_ops *ops = &sc->ops; |
2001 | struct ieee80211com *ic = &sc->sc_ic; |
2002 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
2003 | struct iwn_rx_ring *ring = &sc->rxq; |
2004 | struct ieee80211_frame *wh; |
2005 | struct ieee80211_rxinfo rxi; |
2006 | struct ieee80211_node *ni; |
2007 | struct mbuf *m, *m1; |
2008 | struct iwn_rx_stat *stat; |
2009 | caddr_t head; |
2010 | uint32_t flags; |
2011 | int error, len, rssi; |
2012 | uint16_t chan; |
2013 | |
2014 | if (desc->type == IWN_MPDU_RX_DONE193) { |
2015 | /* Check for prior RX_PHY notification. */ |
2016 | if (!sc->last_rx_valid) { |
2017 | DPRINTF(("missing RX_PHY\n")); |
2018 | return; |
2019 | } |
2020 | sc->last_rx_valid &= ~IWN_LAST_RX_VALID0x01; |
2021 | stat = &sc->last_rx_stat; |
2022 | if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU0x02) && |
2023 | (stat->flags & htole16(IWN_STAT_FLAG_AGG)((__uint16_t)((1 << 7)))) == 0) { |
2024 | DPRINTF(("missing RX_PHY (expecting A-MPDU)\n")); |
2025 | return; |
2026 | } |
2027 | if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU0x02) == 0 && |
2028 | (stat->flags & htole16(IWN_STAT_FLAG_AGG)((__uint16_t)((1 << 7))))) { |
2029 | DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n")); |
2030 | return; |
2031 | } |
2032 | } else |
2033 | stat = (struct iwn_rx_stat *)(desc + 1); |
2034 | |
2035 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), ((4 * 1024)), (0x02)) |
2036 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), ((4 * 1024)), (0x02)); |
2037 | |
2038 | if (stat->cfg_phy_len > IWN_STAT_MAXLEN20) { |
2039 | printf("%s: invalid RX statistic header\n", |
2040 | sc->sc_dev.dv_xname); |
2041 | return; |
2042 | } |
2043 | if (desc->type == IWN_MPDU_RX_DONE193) { |
2044 | struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); |
2045 | head = (caddr_t)(mpdu + 1); |
2046 | len = letoh16(mpdu->len)((__uint16_t)(mpdu->len)); |
2047 | } else { |
2048 | head = (caddr_t)(stat + 1) + stat->cfg_phy_len; |
2049 | len = letoh16(stat->len)((__uint16_t)(stat->len)); |
2050 | } |
2051 | |
2052 | flags = letoh32(*(uint32_t *)(head + len))((__uint32_t)(*(uint32_t *)(head + len))); |
2053 | |
2054 | /* Discard frames with a bad FCS early. */ |
2055 | if ((flags & IWN_RX_NOERROR((1 << 0) | (1 << 1))) != IWN_RX_NOERROR((1 << 0) | (1 << 1))) { |
2056 | DPRINTFN(2, ("RX flags error %x\n", flags)); |
2057 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2058 | return; |
2059 | } |
2060 | /* Discard frames that are too short. */ |
2061 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
2062 | /* Allow control frames in monitor mode. */ |
2063 | if (len < sizeof (struct ieee80211_frame_cts)) { |
2064 | DPRINTF(("frame too short: %d\n", len)); |
2065 | ic->ic_stats.is_rx_tooshort++; |
2066 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2067 | return; |
2068 | } |
2069 | } else if (len < sizeof (*wh)) { |
2070 | DPRINTF(("frame too short: %d\n", len)); |
2071 | ic->ic_stats.is_rx_tooshort++; |
2072 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2073 | return; |
2074 | } |
2075 | |
2076 | m1 = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE)m_clget((((void *)0)), (0x0002), ((4 * 1024))); |
2077 | if (m1 == NULL((void *)0)) { |
2078 | ic->ic_stats.is_rx_nombuf++; |
2079 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2080 | return; |
2081 | } |
2082 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
2083 | |
2084 | error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((m1)->m_hdr.mh_data))), ((4 * 1024)), ((( void *)0)), (0x0001 | 0x0200)) |
2085 | IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((m1)->m_hdr.mh_data))), ((4 * 1024)), ((( void *)0)), (0x0001 | 0x0200)); |
2086 | if (error != 0) { |
2087 | m_freem(m1); |
2088 | |
2089 | /* Try to reload the old mbuf. */ |
2090 | error = bus_dmamap_load(sc->sc_dmat, data->map,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)) |
2091 | mtod(data->m, void *), IWN_RBUF_SIZE, NULL,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)) |
2092 | BUS_DMA_NOWAIT | BUS_DMA_READ)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (((void *)((data->m)->m_hdr.mh_data))), ((4 * 1024 )), (((void *)0)), (0x0001 | 0x0200)); |
2093 | if (error != 0) { |
2094 | panic("%s: could not load old RX mbuf", |
2095 | sc->sc_dev.dv_xname); |
2096 | } |
2097 | /* Physical address may have changed. */ |
2098 | ring->desc[ring->cur] = |
2099 | htole32(data->map->dm_segs[0].ds_addr >> 8)((__uint32_t)(data->map->dm_segs[0].ds_addr >> 8) ); |
2100 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)) |
2101 | ring->cur * sizeof (uint32_t), sizeof (uint32_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)) |
2102 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)); |
2103 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2104 | return; |
2105 | } |
2106 | |
2107 | m = data->m; |
2108 | data->m = m1; |
2109 | /* Update RX descriptor. */ |
2110 | ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8)((__uint32_t)(data->map->dm_segs[0].ds_addr >> 8) ); |
2111 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)) |
2112 | ring->cur * sizeof (uint32_t), sizeof (uint32_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)) |
2113 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (ring->cur * sizeof (uint32_t)), (sizeof (uint32_t )), (0x04)); |
2114 | |
2115 | /* Finalize mbuf. */ |
2116 | m->m_datam_hdr.mh_data = head; |
2117 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
2118 | |
2119 | /* |
2120 | * Grab a reference to the source node. Note that control frames are |
2121 | * shorter than struct ieee80211_frame but ieee80211_find_rxnode() |
2122 | * is being careful about control frames. |
2123 | */ |
2124 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
2125 | if (len < sizeof (*wh) && |
2126 | (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) != IEEE80211_FC0_TYPE_CTL0x04) { |
2127 | ic->ic_stats.is_rx_tooshort++; |
2128 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2129 | m_freem(m); |
2130 | return; |
2131 | } |
2132 | ni = ieee80211_find_rxnode(ic, wh); |
2133 | |
2134 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
2135 | if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) != IEEE80211_FC0_TYPE_CTL0x04) |
2136 | && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40) && |
2137 | !IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
2138 | (ni->ni_flags & IEEE80211_NODE_RXPROT0x0008) && |
2139 | ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { |
2140 | if ((flags & IWN_RX_CIPHER_MASK(7 << 8)) != IWN_RX_CIPHER_CCMP(2 << 8)) { |
2141 | ic->ic_stats.is_ccmp_dec_errs++; |
2142 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2143 | m_freem(m); |
2144 | ieee80211_release_node(ic, ni); |
2145 | return; |
2146 | } |
2147 | /* Check whether decryption was successful or not. */ |
2148 | if ((desc->type == IWN_MPDU_RX_DONE193 && |
2149 | (flags & (IWN_RX_MPDU_DEC(1 << 11) | IWN_RX_MPDU_MIC_OK(1 << 6))) != |
2150 | (IWN_RX_MPDU_DEC(1 << 11) | IWN_RX_MPDU_MIC_OK(1 << 6))) || |
2151 | (desc->type != IWN_MPDU_RX_DONE193 && |
2152 | (flags & IWN_RX_DECRYPT_MASK(3 << 11)) != IWN_RX_DECRYPT_OK(3 << 11))) { |
2153 | DPRINTF(("CCMP decryption failed 0x%x\n", flags)); |
2154 | ic->ic_stats.is_ccmp_dec_errs++; |
2155 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2156 | m_freem(m); |
2157 | ieee80211_release_node(ic, ni); |
2158 | return; |
2159 | } |
2160 | if (iwn_ccmp_decap(sc, m, ni) != 0) { |
2161 | ifp->if_ierrorsif_data.ifi_ierrors++; |
2162 | m_freem(m); |
2163 | ieee80211_release_node(ic, ni); |
2164 | return; |
2165 | } |
2166 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
2167 | } |
2168 | |
2169 | rssi = ops->get_rssi(stat); |
2170 | |
2171 | chan = stat->chan; |
2172 | if (chan > IEEE80211_CHAN_MAX255) |
2173 | chan = IEEE80211_CHAN_MAX255; |
2174 | |
2175 | #if NBPFILTER1 > 0 |
2176 | if (sc->sc_drvbpf != NULL((void *)0)) { |
2177 | struct iwn_rx_radiotap_header *tap = &sc->sc_rxtapsc_rxtapu.th; |
2178 | uint16_t chan_flags; |
2179 | |
2180 | tap->wr_flags = 0; |
2181 | if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)((__uint16_t)((1 << 2)))) |
2182 | tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE0x02; |
2183 | tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq)((__uint16_t)(ic->ic_channels[chan].ic_freq)); |
2184 | chan_flags = ic->ic_channels[chan].ic_flags; |
2185 | if (ic->ic_curmode != IEEE80211_MODE_11N) |
2186 | chan_flags &= ~IEEE80211_CHAN_HT0x2000; |
2187 | tap->wr_chan_flags = htole16(chan_flags)((__uint16_t)(chan_flags)); |
2188 | tap->wr_dbm_antsignal = (int8_t)rssi; |
2189 | tap->wr_dbm_antnoise = (int8_t)sc->noise; |
2190 | tap->wr_tsft = stat->tstamp; |
2191 | if (stat->rflags & IWN_RFLAG_MCS(1 << 0)) { |
2192 | tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */ |
2193 | } else { |
2194 | switch (stat->rate) { |
2195 | /* CCK rates. */ |
2196 | case 10: tap->wr_rate = 2; break; |
2197 | case 20: tap->wr_rate = 4; break; |
2198 | case 55: tap->wr_rate = 11; break; |
2199 | case 110: tap->wr_rate = 22; break; |
2200 | /* OFDM rates. */ |
2201 | case 0xd: tap->wr_rate = 12; break; |
2202 | case 0xf: tap->wr_rate = 18; break; |
2203 | case 0x5: tap->wr_rate = 24; break; |
2204 | case 0x7: tap->wr_rate = 36; break; |
2205 | case 0x9: tap->wr_rate = 48; break; |
2206 | case 0xb: tap->wr_rate = 72; break; |
2207 | case 0x1: tap->wr_rate = 96; break; |
2208 | case 0x3: tap->wr_rate = 108; break; |
2209 | /* Unknown rate: should not happen. */ |
2210 | default: tap->wr_rate = 0; |
2211 | } |
2212 | } |
2213 | |
2214 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, |
2215 | m, BPF_DIRECTION_IN(1 << 0)); |
2216 | } |
2217 | #endif |
2218 | |
2219 | /* Send the frame to the 802.11 layer. */ |
2220 | rxi.rxi_rssi = rssi; |
2221 | rxi.rxi_chan = chan; |
2222 | ieee80211_inputm(ifp, m, ni, &rxi, ml); |
2223 | |
2224 | /* Node is no longer needed. */ |
2225 | ieee80211_release_node(ic, ni); |
2226 | } |
2227 | |
2228 | void |
2229 | iwn_ra_choose(struct iwn_softc *sc, struct ieee80211_node *ni) |
2230 | { |
2231 | struct ieee80211com *ic = &sc->sc_ic; |
2232 | struct iwn_node *wn = (void *)ni; |
2233 | int old_txmcs = ni->ni_txmcs; |
2234 | |
2235 | ieee80211_ra_choose(&wn->rn, ic, ni); |
2236 | |
2237 | /* Update firmware's LQ retry table if RA has chosen a new MCS. */ |
2238 | if (ni->ni_txmcs != old_txmcs) |
2239 | iwn_set_link_quality(sc, ni); |
2240 | } |
2241 | |
2242 | void |
2243 | iwn_ampdu_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni, |
2244 | struct iwn_tx_ring *txq, uint16_t seq, uint16_t ssn) |
2245 | { |
2246 | struct ieee80211com *ic = &sc->sc_ic; |
2247 | struct iwn_node *wn = (void *)ni; |
2248 | int idx, end_idx; |
2249 | |
2250 | /* |
2251 | * Update Tx rate statistics for A-MPDUs before firmware's BA window. |
2252 | */ |
2253 | idx = IWN_AGG_SSN_TO_TXQ_IDX(seq)((seq) & (256 - 1)); |
2254 | end_idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
2255 | while (idx != end_idx) { |
2256 | struct iwn_tx_data *txdata = &txq->data[idx]; |
2257 | if (txdata->m != NULL((void *)0) && txdata->ampdu_nframes > 1) { |
2258 | /* |
2259 | * We can assume that this subframe has been ACKed |
2260 | * because ACK failures come as single frames and |
2261 | * before failing an A-MPDU subframe the firmware |
2262 | * sends it as a single frame at least once. |
2263 | */ |
2264 | ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, |
2265 | txdata->ampdu_txmcs, 1, 0); |
2266 | |
2267 | /* Report this frame only once. */ |
2268 | txdata->ampdu_nframes = 0; |
2269 | } |
2270 | |
2271 | idx = (idx + 1) % IWN_TX_RING_COUNT256; |
2272 | } |
2273 | |
2274 | iwn_ra_choose(sc, ni); |
2275 | } |
2276 | |
2277 | void |
2278 | iwn_ht_single_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni, |
2279 | uint8_t rate, uint8_t rflags, uint8_t ackfailcnt, int txfail) |
2280 | { |
2281 | struct ieee80211com *ic = &sc->sc_ic; |
2282 | struct iwn_node *wn = (void *)ni; |
2283 | int mcs = rate; |
2284 | const struct ieee80211_ht_rateset *rs = |
2285 | ieee80211_ra_get_ht_rateset(rate, |
2286 | ieee80211_node_supports_ht_chan40(ni), |
2287 | ieee80211_ra_use_ht_sgi(ni)); |
2288 | unsigned int retries = 0, i; |
2289 | |
2290 | /* |
2291 | * Ignore Tx reports which don't match our last LQ command. |
2292 | */ |
2293 | if (rate != ni->ni_txmcs) { |
2294 | if (++wn->lq_rate_mismatch > 15) { |
2295 | /* Try to sync firmware with driver. */ |
2296 | iwn_set_link_quality(sc, ni); |
2297 | wn->lq_rate_mismatch = 0; |
2298 | } |
2299 | return; |
2300 | } |
2301 | |
2302 | wn->lq_rate_mismatch = 0; |
2303 | |
2304 | /* |
2305 | * Firmware has attempted rates in this rate set in sequence. |
2306 | * Retries at a basic rate are counted against the minimum MCS. |
2307 | */ |
2308 | for (i = 0; i < ackfailcnt; i++) { |
2309 | if (mcs > rs->min_mcs) { |
2310 | ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1); |
2311 | mcs--; |
2312 | } else |
2313 | retries++; |
2314 | } |
2315 | |
2316 | if (txfail && ackfailcnt == 0) |
2317 | ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1); |
2318 | else |
2319 | ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, retries + 1, retries); |
2320 | |
2321 | iwn_ra_choose(sc, ni); |
2322 | } |
2323 | |
2324 | /* |
2325 | * Process an incoming Compressed BlockAck. |
2326 | * Note that these block ack notifications are generated by firmware and do |
2327 | * not necessarily correspond to contents of block ack frames seen on the air. |
2328 | */ |
2329 | void |
2330 | iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2331 | struct iwn_rx_data *data) |
2332 | { |
2333 | struct iwn_compressed_ba *cba = (struct iwn_compressed_ba *)(desc + 1); |
2334 | struct ieee80211com *ic = &sc->sc_ic; |
2335 | struct ieee80211_node *ni; |
2336 | struct ieee80211_tx_ba *ba; |
2337 | struct iwn_tx_ring *txq; |
2338 | uint16_t seq, ssn; |
2339 | int qid; |
2340 | |
2341 | if (ic->ic_state != IEEE80211_S_RUN) |
2342 | return; |
2343 | |
2344 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*cba),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*cba)), (0x02)) |
2345 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*cba)), (0x02)); |
2346 | |
2347 | if (!IEEE80211_ADDR_EQ(ic->ic_bss->ni_macaddr, cba->macaddr)(__builtin_memcmp((ic->ic_bss->ni_macaddr), (cba->macaddr ), (6)) == 0)) |
2348 | return; |
2349 | |
2350 | ni = ic->ic_bss; |
2351 | |
2352 | qid = le16toh(cba->qid)((__uint16_t)(cba->qid)); |
2353 | if (qid < sc->first_agg_txq || qid >= sc->ntxqs) |
2354 | return; |
2355 | |
2356 | txq = &sc->txq[qid]; |
2357 | |
2358 | /* Protect against a firmware bug where the queue/TID are off. */ |
2359 | if (qid != sc->first_agg_txq + cba->tid) |
2360 | return; |
2361 | |
2362 | ba = &ni->ni_tx_ba[cba->tid]; |
2363 | if (ba->ba_state != IEEE80211_BA_AGREED2) |
2364 | return; |
2365 | |
2366 | /* |
2367 | * The first bit in cba->bitmap corresponds to the sequence number |
2368 | * stored in the sequence control field cba->seq. |
2369 | * Multiple BA notifications in a row may be using this number, with |
2370 | * additional bits being set in cba->bitmap. It is unclear how the |
2371 | * firmware decides to shift this window forward. |
2372 | * We rely on ba->ba_winstart instead. |
2373 | */ |
2374 | seq = le16toh(cba->seq)((__uint16_t)(cba->seq)) >> IEEE80211_SEQ_SEQ_SHIFT4; |
2375 | |
2376 | /* |
2377 | * The firmware's new BA window starting sequence number |
2378 | * corresponds to the first hole in cba->bitmap, implying |
2379 | * that all frames between 'seq' and 'ssn' (non-inclusive) |
2380 | * have been acked. |
2381 | */ |
2382 | ssn = le16toh(cba->ssn)((__uint16_t)(cba->ssn)); |
2383 | |
2384 | if (SEQ_LT(ssn, ba->ba_winstart)((((u_int16_t)(ssn) - (u_int16_t)(ba->ba_winstart)) & 0xfff ) > 2048)) |
2385 | return; |
2386 | |
2387 | /* Skip rate control if our Tx rate is fixed. */ |
2388 | if (ic->ic_fixed_mcs == -1) |
2389 | iwn_ampdu_rate_control(sc, ni, txq, ba->ba_winstart, ssn); |
2390 | |
2391 | /* |
2392 | * SSN corresponds to the first (perhaps not yet transmitted) frame |
2393 | * in firmware's BA window. Firmware is not going to retransmit any |
2394 | * frames before its BA window so mark them all as done. |
2395 | */ |
2396 | ieee80211_output_ba_move_window(ic, ni, cba->tid, ssn); |
2397 | iwn_ampdu_txq_advance(sc, txq, qid, |
2398 | IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))); |
2399 | iwn_clear_oactive(sc, txq); |
2400 | } |
2401 | |
2402 | /* |
2403 | * Process a CALIBRATION_RESULT notification sent by the initialization |
2404 | * firmware on response to a CMD_CALIB_CONFIG command (5000 only). |
2405 | */ |
2406 | void |
2407 | iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2408 | struct iwn_rx_data *data) |
2409 | { |
2410 | struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); |
2411 | int len, idx = -1; |
2412 | |
2413 | /* Runtime firmware should not send such a notification. */ |
2414 | if (sc->sc_flags & IWN_FLAG_CALIB_DONE(1 << 2)) |
2415 | return; |
2416 | |
2417 | len = (letoh32(desc->len)((__uint32_t)(desc->len)) & IWN_RX_DESC_LEN_MASK0x00003fff) - 4; |
2418 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (len), (0x02)) |
2419 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (len), (0x02)); |
2420 | |
2421 | switch (calib->code) { |
2422 | case IWN5000_PHY_CALIB_DC8: |
2423 | if (sc->hw_type == IWN_HW_REV_TYPE_51504 || |
2424 | sc->hw_type == IWN_HW_REV_TYPE_203012 || |
2425 | sc->hw_type == IWN_HW_REV_TYPE_200016 || |
2426 | sc->hw_type == IWN_HW_REV_TYPE_13518 || |
2427 | sc->hw_type == IWN_HW_REV_TYPE_10517) |
2428 | idx = 0; |
2429 | break; |
2430 | case IWN5000_PHY_CALIB_LO9: |
2431 | idx = 1; |
2432 | break; |
2433 | case IWN5000_PHY_CALIB_TX_IQ11: |
2434 | idx = 2; |
2435 | break; |
2436 | case IWN5000_PHY_CALIB_TX_IQ_PERIODIC17: |
2437 | if (sc->hw_type < IWN_HW_REV_TYPE_60007 && |
2438 | sc->hw_type != IWN_HW_REV_TYPE_51504) |
2439 | idx = 3; |
2440 | break; |
2441 | case IWN5000_PHY_CALIB_BASE_BAND16: |
2442 | idx = 4; |
2443 | break; |
2444 | } |
2445 | if (idx == -1) /* Ignore other results. */ |
2446 | return; |
2447 | |
2448 | /* Save calibration result. */ |
2449 | if (sc->calibcmd[idx].buf != NULL((void *)0)) |
2450 | free(sc->calibcmd[idx].buf, M_DEVBUF2, 0); |
2451 | sc->calibcmd[idx].buf = malloc(len, M_DEVBUF2, M_NOWAIT0x0002); |
2452 | if (sc->calibcmd[idx].buf == NULL((void *)0)) { |
2453 | DPRINTF(("not enough memory for calibration result %d\n", |
2454 | calib->code)); |
2455 | return; |
2456 | } |
2457 | DPRINTF(("saving calibration result code=%d len=%d\n", |
2458 | calib->code, len)); |
2459 | sc->calibcmd[idx].len = len; |
2460 | memcpy(sc->calibcmd[idx].buf, calib, len)__builtin_memcpy((sc->calibcmd[idx].buf), (calib), (len)); |
2461 | } |
2462 | |
2463 | /* |
2464 | * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. |
2465 | * The latter is sent by the firmware after each received beacon. |
2466 | */ |
2467 | void |
2468 | iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2469 | struct iwn_rx_data *data) |
2470 | { |
2471 | struct iwn_ops *ops = &sc->ops; |
2472 | struct ieee80211com *ic = &sc->sc_ic; |
2473 | struct iwn_calib_state *calib = &sc->calib; |
2474 | struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); |
2475 | int temp; |
2476 | |
2477 | /* Ignore statistics received during a scan. */ |
2478 | if (ic->ic_state != IEEE80211_S_RUN) |
2479 | return; |
2480 | |
2481 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stats)), (0x02)) |
2482 | sizeof (*stats), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stats)), (0x02)); |
2483 | |
2484 | DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); |
2485 | sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ |
2486 | |
2487 | sc->rx_stats_flags = htole32(stats->flags)((__uint32_t)(stats->flags)); |
2488 | |
2489 | /* Test if temperature has changed. */ |
2490 | if (stats->general.temp != sc->rawtemp) { |
2491 | /* Convert "raw" temperature to degC. */ |
2492 | sc->rawtemp = stats->general.temp; |
2493 | temp = ops->get_temperature(sc); |
2494 | DPRINTFN(2, ("temperature=%dC\n", temp)); |
2495 | |
2496 | /* Update TX power if need be (4965AGN only). */ |
2497 | if (sc->hw_type == IWN_HW_REV_TYPE_49650) |
2498 | iwn4965_power_calibration(sc, temp); |
2499 | } |
2500 | |
2501 | if (desc->type != IWN_BEACON_STATISTICS157) |
2502 | return; /* Reply to a statistics request. */ |
2503 | |
2504 | sc->noise = iwn_get_noise(&stats->rx.general); |
2505 | |
2506 | /* Test that RSSI and noise are present in stats report. */ |
2507 | if (sc->noise == -127) |
2508 | return; |
2509 | |
2510 | if (letoh32(stats->rx.general.flags)((__uint32_t)(stats->rx.general.flags)) != 1) { |
2511 | DPRINTF(("received statistics without RSSI\n")); |
2512 | return; |
2513 | } |
2514 | |
2515 | /* |
2516 | * XXX Differential gain calibration makes the 6005 firmware |
2517 | * crap out, so skip it for now. This effectively disables |
2518 | * sensitivity tuning as well. |
2519 | */ |
2520 | if (sc->hw_type == IWN_HW_REV_TYPE_600511) |
2521 | return; |
2522 | |
2523 | if (calib->state == IWN_CALIB_STATE_ASSOC1) |
2524 | iwn_collect_noise(sc, &stats->rx.general); |
2525 | else if (calib->state == IWN_CALIB_STATE_RUN2) |
2526 | iwn_tune_sensitivity(sc, &stats->rx); |
2527 | } |
2528 | |
2529 | void |
2530 | iwn_ampdu_txq_advance(struct iwn_softc *sc, struct iwn_tx_ring *txq, int qid, |
2531 | int idx) |
2532 | { |
2533 | struct iwn_ops *ops = &sc->ops; |
2534 | |
2535 | DPRINTFN(3, ("%s: txq->cur=%d txq->read=%d txq->queued=%d qid=%d " |
2536 | "idx=%d\n", __func__, txq->cur, txq->read, txq->queued, qid, idx)); |
2537 | |
2538 | while (txq->read != idx) { |
2539 | struct iwn_tx_data *txdata = &txq->data[txq->read]; |
2540 | if (txdata->m != NULL((void *)0)) { |
2541 | ops->reset_sched(sc, qid, txq->read); |
2542 | iwn_tx_done_free_txdata(sc, txdata); |
2543 | txq->queued--; |
2544 | } |
2545 | txq->read = (txq->read + 1) % IWN_TX_RING_COUNT256; |
2546 | } |
2547 | } |
2548 | |
2549 | /* |
2550 | * Handle A-MPDU Tx queue status report. |
2551 | * Tx failures come as single frames (perhaps out of order), and before failing |
2552 | * an A-MPDU subframe the firmware transmits it as a single frame at least once. |
2553 | * Frames successfully transmitted in an A-MPDU are completed when a compressed |
2554 | * block ack notification is received. |
2555 | */ |
2556 | void |
2557 | iwn_ampdu_tx_done(struct iwn_softc *sc, struct iwn_tx_ring *txq, |
2558 | struct iwn_rx_desc *desc, uint16_t status, uint8_t ackfailcnt, |
2559 | uint8_t rate, uint8_t rflags, int nframes, uint32_t ssn, |
2560 | struct iwn_txagg_status *agg_status) |
2561 | { |
2562 | struct ieee80211com *ic = &sc->sc_ic; |
2563 | int tid = desc->qid - sc->first_agg_txq; |
2564 | struct iwn_tx_data *txdata = &txq->data[desc->idx]; |
2565 | struct ieee80211_node *ni = txdata->ni; |
2566 | int txfail = (status != IWN_TX_STATUS_SUCCESS0x01 && |
2567 | status != IWN_TX_STATUS_DIRECT_DONE0x02); |
2568 | struct ieee80211_tx_ba *ba; |
2569 | uint16_t seq; |
2570 | |
2571 | sc->sc_tx_timer = 0; |
2572 | |
2573 | if (ic->ic_state != IEEE80211_S_RUN) |
2574 | return; |
2575 | |
2576 | if (nframes > 1) { |
2577 | int i; |
2578 | |
2579 | /* |
2580 | * Collect information about this A-MPDU. |
2581 | */ |
2582 | for (i = 0; i < nframes; i++) { |
2583 | uint8_t qid = agg_status[i].qid; |
2584 | uint8_t idx = agg_status[i].idx; |
2585 | uint16_t txstatus = (le16toh(agg_status[i].status)((__uint16_t)(agg_status[i].status)) & |
2586 | IWN_AGG_TX_STATUS_MASK0x0fff); |
2587 | |
2588 | if (txstatus != IWN_AGG_TX_STATE_TRANSMITTED0x0000) |
2589 | continue; |
2590 | |
2591 | if (qid != desc->qid) |
2592 | continue; |
2593 | |
2594 | txdata = &txq->data[idx]; |
2595 | if (txdata->ni == NULL((void *)0)) |
2596 | continue; |
2597 | |
2598 | /* The Tx rate was the same for all subframes. */ |
2599 | txdata->ampdu_txmcs = rate; |
2600 | txdata->ampdu_nframes = nframes; |
2601 | } |
2602 | return; |
2603 | } |
2604 | |
2605 | if (ni == NULL((void *)0)) |
2606 | return; |
2607 | |
2608 | ba = &ni->ni_tx_ba[tid]; |
2609 | if (ba->ba_state != IEEE80211_BA_AGREED2) |
2610 | return; |
2611 | if (SEQ_LT(ssn, ba->ba_winstart)((((u_int16_t)(ssn) - (u_int16_t)(ba->ba_winstart)) & 0xfff ) > 2048)) |
2612 | return; |
2613 | |
2614 | /* This was a final single-frame Tx attempt for frame SSN-1. */ |
2615 | seq = (ssn - 1) & 0xfff; |
2616 | |
2617 | /* |
2618 | * Skip rate control if our Tx rate is fixed. |
2619 | */ |
2620 | if (ic->ic_fixed_mcs == -1) { |
2621 | if (txdata->ampdu_nframes > 1) { |
2622 | struct iwn_node *wn = (void *)ni; |
2623 | /* |
2624 | * This frame was once part of an A-MPDU. |
2625 | * Report one failed A-MPDU Tx attempt. |
2626 | * The firmware might have made several such |
2627 | * attempts but we don't keep track of this. |
2628 | */ |
2629 | ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, |
2630 | txdata->ampdu_txmcs, 1, 1); |
2631 | } |
2632 | |
2633 | /* Report the final single-frame Tx attempt. */ |
2634 | if (rflags & IWN_RFLAG_MCS(1 << 0)) |
2635 | iwn_ht_single_rate_control(sc, ni, rate, rflags, |
2636 | ackfailcnt, txfail); |
2637 | } |
2638 | |
2639 | if (txfail) |
2640 | ieee80211_tx_compressed_bar(ic, ni, tid, ssn); |
2641 | |
2642 | /* |
2643 | * SSN corresponds to the first (perhaps not yet transmitted) frame |
2644 | * in firmware's BA window. Firmware is not going to retransmit any |
2645 | * frames before its BA window so mark them all as done. |
2646 | */ |
2647 | ieee80211_output_ba_move_window(ic, ni, tid, ssn); |
2648 | iwn_ampdu_txq_advance(sc, txq, desc->qid, IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))); |
2649 | iwn_clear_oactive(sc, txq); |
2650 | } |
2651 | |
2652 | /* |
2653 | * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN |
2654 | * and 5000 adapters have different incompatible TX status formats. |
2655 | */ |
2656 | void |
2657 | iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2658 | struct iwn_rx_data *data) |
2659 | { |
2660 | struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); |
2661 | struct iwn_tx_ring *ring; |
2662 | size_t len = (letoh32(desc->len)((__uint32_t)(desc->len)) & IWN_RX_DESC_LEN_MASK0x00003fff); |
2663 | uint16_t status = letoh32(stat->stat.status)((__uint32_t)(stat->stat.status)) & 0xff; |
2664 | uint32_t ssn; |
2665 | |
2666 | if (desc->qid > IWN4965_NTXQUEUES16) |
2667 | return; |
2668 | |
2669 | ring = &sc->txq[desc->qid]; |
2670 | |
2671 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (len), (0x02)) |
2672 | len, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (len), (0x02)); |
2673 | |
2674 | /* Sanity checks. */ |
2675 | if (sizeof(*stat) > len) |
2676 | return; |
2677 | if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX63) |
2678 | return; |
2679 | if (desc->qid < sc->first_agg_txq && stat->nframes > 1) |
2680 | return; |
2681 | if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) + |
2682 | stat->nframes * sizeof(stat->stat) > len) |
2683 | return; |
2684 | |
2685 | if (desc->qid < sc->first_agg_txq) { |
2686 | /* XXX 4965 does not report byte count */ |
2687 | struct iwn_tx_data *txdata = &ring->data[desc->idx]; |
2688 | uint16_t framelen = txdata->totlen + IEEE80211_CRC_LEN4; |
2689 | int txfail = (status != IWN_TX_STATUS_SUCCESS0x01 && |
2690 | status != IWN_TX_STATUS_DIRECT_DONE0x02); |
2691 | |
2692 | iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate, |
2693 | stat->rflags, txfail, desc->qid, framelen); |
2694 | } else { |
2695 | memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn))__builtin_memcpy((&ssn), (&stat->stat.status + stat ->nframes), (sizeof(ssn))); |
2696 | ssn = le32toh(ssn)((__uint32_t)(ssn)) & 0xfff; |
2697 | iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt, |
2698 | stat->rate, stat->rflags, stat->nframes, ssn, |
2699 | stat->stat.agg_status); |
2700 | } |
2701 | } |
2702 | |
2703 | void |
2704 | iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2705 | struct iwn_rx_data *data) |
2706 | { |
2707 | struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); |
2708 | struct iwn_tx_ring *ring; |
2709 | size_t len = (letoh32(desc->len)((__uint32_t)(desc->len)) & IWN_RX_DESC_LEN_MASK0x00003fff); |
2710 | uint16_t status = letoh32(stat->stat.status)((__uint32_t)(stat->stat.status)) & 0xff; |
2711 | uint32_t ssn; |
2712 | |
2713 | if (desc->qid > IWN5000_NTXQUEUES20) |
2714 | return; |
2715 | |
2716 | ring = &sc->txq[desc->qid]; |
2717 | |
2718 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stat)), (0x02)) |
2719 | sizeof (*stat), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*stat)), (0x02)); |
2720 | |
2721 | /* Sanity checks. */ |
2722 | if (sizeof(*stat) > len) |
2723 | return; |
2724 | if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX63) |
2725 | return; |
2726 | if (desc->qid < sc->first_agg_txq && stat->nframes > 1) |
2727 | return; |
2728 | if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) + |
2729 | stat->nframes * sizeof(stat->stat) > len) |
2730 | return; |
2731 | |
2732 | /* If this was not an aggregated frame, complete it now. */ |
2733 | if (desc->qid < sc->first_agg_txq) { |
2734 | int txfail = (status != IWN_TX_STATUS_SUCCESS0x01 && |
2735 | status != IWN_TX_STATUS_DIRECT_DONE0x02); |
2736 | |
2737 | /* Reset TX scheduler slot. */ |
2738 | iwn5000_reset_sched(sc, desc->qid, desc->idx); |
2739 | |
2740 | iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate, |
2741 | stat->rflags, txfail, desc->qid, letoh16(stat->len)((__uint16_t)(stat->len))); |
2742 | } else { |
2743 | memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn))__builtin_memcpy((&ssn), (&stat->stat.status + stat ->nframes), (sizeof(ssn))); |
2744 | ssn = le32toh(ssn)((__uint32_t)(ssn)) & 0xfff; |
2745 | iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt, |
2746 | stat->rate, stat->rflags, stat->nframes, ssn, |
2747 | stat->stat.agg_status); |
2748 | } |
2749 | } |
2750 | |
2751 | void |
2752 | iwn_tx_done_free_txdata(struct iwn_softc *sc, struct iwn_tx_data *data) |
2753 | { |
2754 | struct ieee80211com *ic = &sc->sc_ic; |
2755 | |
2756 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
2757 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
2758 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
2759 | m_freem(data->m); |
2760 | data->m = NULL((void *)0); |
2761 | ieee80211_release_node(ic, data->ni); |
2762 | data->ni = NULL((void *)0); |
2763 | data->totlen = 0; |
2764 | data->ampdu_nframes = 0; |
2765 | data->ampdu_txmcs = 0; |
2766 | } |
2767 | |
2768 | void |
2769 | iwn_clear_oactive(struct iwn_softc *sc, struct iwn_tx_ring *ring) |
2770 | { |
2771 | struct ieee80211com *ic = &sc->sc_ic; |
2772 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
2773 | |
2774 | if (ring->queued < IWN_TX_RING_LOMARK192) { |
2775 | sc->qfullmsk &= ~(1 << ring->qid); |
2776 | if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { |
2777 | ifq_clr_oactive(&ifp->if_snd); |
2778 | (*ifp->if_start)(ifp); |
2779 | } |
2780 | } |
2781 | } |
2782 | |
2783 | /* |
2784 | * Adapter-independent backend for TX_DONE firmware notifications. |
2785 | * This handles Tx status for non-aggregation queues. |
2786 | */ |
2787 | void |
2788 | iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, |
2789 | uint8_t ackfailcnt, uint8_t rate, uint8_t rflags, int txfail, |
2790 | int qid, uint16_t len) |
2791 | { |
2792 | struct ieee80211com *ic = &sc->sc_ic; |
2793 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
2794 | struct iwn_tx_ring *ring = &sc->txq[qid]; |
2795 | struct iwn_tx_data *data = &ring->data[desc->idx]; |
2796 | struct iwn_node *wn = (void *)data->ni; |
2797 | |
2798 | if (data->ni == NULL((void *)0)) |
2799 | return; |
2800 | |
2801 | if (data->ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
2802 | if (ic->ic_state == IEEE80211_S_RUN && |
2803 | ic->ic_fixed_mcs == -1 && (rflags & IWN_RFLAG_MCS(1 << 0))) { |
2804 | iwn_ht_single_rate_control(sc, data->ni, rate, rflags, |
2805 | ackfailcnt, txfail); |
2806 | } |
2807 | } else { |
2808 | if (rate != data->ni->ni_txrate) { |
2809 | if (++wn->lq_rate_mismatch > 15) { |
2810 | /* Try to sync firmware with driver. */ |
2811 | iwn_set_link_quality(sc, data->ni); |
2812 | wn->lq_rate_mismatch = 0; |
2813 | } |
2814 | } else { |
2815 | wn->lq_rate_mismatch = 0; |
2816 | |
2817 | wn->amn.amn_txcnt++; |
2818 | if (ackfailcnt > 0) |
2819 | wn->amn.amn_retrycnt++; |
2820 | if (txfail) |
2821 | wn->amn.amn_retrycnt++; |
2822 | } |
2823 | } |
2824 | if (txfail) |
2825 | ifp->if_oerrorsif_data.ifi_oerrors++; |
2826 | |
2827 | iwn_tx_done_free_txdata(sc, data); |
2828 | |
2829 | sc->sc_tx_timer = 0; |
2830 | ring->queued--; |
2831 | iwn_clear_oactive(sc, ring); |
2832 | } |
2833 | |
2834 | /* |
2835 | * Process a "command done" firmware notification. This is where we wakeup |
2836 | * processes waiting for a synchronous command completion. |
2837 | */ |
2838 | void |
2839 | iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) |
2840 | { |
2841 | struct iwn_tx_ring *ring = &sc->txq[4]; |
2842 | struct iwn_tx_data *data; |
2843 | |
2844 | if ((desc->qid & 0xf) != 4) |
2845 | return; /* Not a command ack. */ |
2846 | |
2847 | data = &ring->data[desc->idx]; |
2848 | |
2849 | /* If the command was mapped in an mbuf, free it. */ |
2850 | if (data->m != NULL((void *)0)) { |
2851 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
2852 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
2853 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
2854 | m_freem(data->m); |
2855 | data->m = NULL((void *)0); |
2856 | } |
2857 | wakeup(&ring->desc[desc->idx]); |
2858 | } |
2859 | |
2860 | /* |
2861 | * Process an INT_FH_RX or INT_SW_RX interrupt. |
2862 | */ |
2863 | void |
2864 | iwn_notif_intr(struct iwn_softc *sc) |
2865 | { |
2866 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
2867 | struct iwn_ops *ops = &sc->ops; |
2868 | struct ieee80211com *ic = &sc->sc_ic; |
2869 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
2870 | uint16_t hw; |
2871 | |
2872 | bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> rxq.stat_dma.map), (0), (sc->rxq.stat_dma.size), (0x02)) |
2873 | 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> rxq.stat_dma.map), (0), (sc->rxq.stat_dma.size), (0x02)); |
2874 | |
2875 | hw = letoh16(sc->rxq.stat->closed_count)((__uint16_t)(sc->rxq.stat->closed_count)) & 0xfff; |
2876 | while (sc->rxq.cur != hw) { |
2877 | struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; |
2878 | struct iwn_rx_desc *desc; |
2879 | |
2880 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (sizeof (*desc)), (0x02)) |
2881 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (sizeof (*desc)), (0x02)); |
2882 | desc = mtod(data->m, struct iwn_rx_desc *)((struct iwn_rx_desc *)((data->m)->m_hdr.mh_data)); |
2883 | |
2884 | DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", |
2885 | desc->qid & 0xf, desc->idx, desc->flags, desc->type)); |
2886 | |
2887 | if (!(desc->qid & 0x80)) /* Reply to a command. */ |
2888 | iwn_cmd_done(sc, desc); |
2889 | |
2890 | switch (desc->type) { |
2891 | case IWN_RX_PHY192: |
2892 | iwn_rx_phy(sc, desc, data); |
2893 | break; |
2894 | |
2895 | case IWN_RX_DONE195: /* 4965AGN only. */ |
2896 | case IWN_MPDU_RX_DONE193: |
2897 | /* An 802.11 frame has been received. */ |
2898 | iwn_rx_done(sc, desc, data, &ml); |
2899 | break; |
2900 | case IWN_RX_COMPRESSED_BA197: |
2901 | /* A Compressed BlockAck has been received. */ |
2902 | iwn_rx_compressed_ba(sc, desc, data); |
2903 | break; |
2904 | case IWN_TX_DONE28: |
2905 | /* An 802.11 frame has been transmitted. */ |
2906 | ops->tx_done(sc, desc, data); |
2907 | break; |
2908 | |
2909 | case IWN_RX_STATISTICS156: |
2910 | case IWN_BEACON_STATISTICS157: |
2911 | iwn_rx_statistics(sc, desc, data); |
2912 | break; |
2913 | |
2914 | case IWN_BEACON_MISSED162: |
2915 | { |
2916 | struct iwn_beacon_missed *miss = |
2917 | (struct iwn_beacon_missed *)(desc + 1); |
2918 | uint32_t missed; |
2919 | |
2920 | if ((ic->ic_opmode != IEEE80211_M_STA) || |
2921 | (ic->ic_state != IEEE80211_S_RUN)) |
2922 | break; |
2923 | |
2924 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*miss)), (0x02)) |
2925 | sizeof (*miss), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*miss)), (0x02)); |
2926 | missed = letoh32(miss->consecutive)((__uint32_t)(miss->consecutive)); |
2927 | |
2928 | /* |
2929 | * If more than 5 consecutive beacons are missed, |
2930 | * reinitialize the sensitivity state machine. |
2931 | */ |
2932 | if (missed > 5) |
2933 | (void)iwn_init_sensitivity(sc); |
2934 | |
2935 | /* |
2936 | * Rather than go directly to scan state, try to send a |
2937 | * directed probe request first. If that fails then the |
2938 | * state machine will drop us into scanning after timing |
2939 | * out waiting for a probe response. |
2940 | */ |
2941 | if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) { |
2942 | if (ic->ic_ific_ac.ac_if.if_flags & IFF_DEBUG0x4) |
2943 | printf("%s: receiving no beacons from " |
2944 | "%s; checking if this AP is still " |
2945 | "responding to probe requests\n", |
2946 | sc->sc_dev.dv_xname, ether_sprintf( |
2947 | ic->ic_bss->ni_macaddr)); |
2948 | IEEE80211_SEND_MGMT(ic, ic->ic_bss,((*(ic)->ic_send_mgmt)(ic, ic->ic_bss, 0x40, 0, 0)) |
2949 | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0)((*(ic)->ic_send_mgmt)(ic, ic->ic_bss, 0x40, 0, 0)); |
2950 | } |
2951 | break; |
2952 | } |
2953 | case IWN_UC_READY1: |
2954 | { |
2955 | struct iwn_ucode_info *uc = |
2956 | (struct iwn_ucode_info *)(desc + 1); |
2957 | |
2958 | /* The microcontroller is ready. */ |
2959 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*uc)), (0x02)) |
2960 | sizeof (*uc), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*uc)), (0x02)); |
2961 | DPRINTF(("microcode alive notification version=%d.%d " |
2962 | "subtype=%x alive=%x\n", uc->major, uc->minor, |
2963 | uc->subtype, letoh32(uc->valid))); |
2964 | |
2965 | if (letoh32(uc->valid)((__uint32_t)(uc->valid)) != 1) { |
2966 | printf("%s: microcontroller initialization " |
2967 | "failed\n", sc->sc_dev.dv_xname); |
2968 | break; |
2969 | } |
2970 | if (uc->subtype == IWN_UCODE_INIT9) { |
2971 | /* Save microcontroller report. */ |
2972 | memcpy(&sc->ucode_info, uc, sizeof (*uc))__builtin_memcpy((&sc->ucode_info), (uc), (sizeof (*uc ))); |
2973 | } |
2974 | /* Save the address of the error log in SRAM. */ |
2975 | sc->errptr = letoh32(uc->errptr)((__uint32_t)(uc->errptr)); |
2976 | break; |
2977 | } |
2978 | case IWN_STATE_CHANGED161: |
2979 | { |
2980 | uint32_t *status = (uint32_t *)(desc + 1); |
2981 | |
2982 | /* Enabled/disabled notification. */ |
2983 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*status)), (0x02)) |
2984 | sizeof (*status), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*status)), (0x02)); |
2985 | DPRINTF(("state changed to %x\n", letoh32(*status))); |
2986 | |
2987 | if (letoh32(*status)((__uint32_t)(*status)) & 1) { |
2988 | /* Radio transmitter is off, power down. */ |
2989 | iwn_stop(ifp); |
2990 | return; /* No further processing. */ |
2991 | } |
2992 | break; |
2993 | } |
2994 | case IWN_START_SCAN130: |
2995 | { |
2996 | struct iwn_start_scan *scan = |
2997 | (struct iwn_start_scan *)(desc + 1); |
2998 | |
2999 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*scan)), (0x02)) |
3000 | sizeof (*scan), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*scan)), (0x02)); |
3001 | DPRINTFN(2, ("scan start: chan %d status %x\n", |
3002 | scan->chan, letoh32(scan->status))); |
3003 | |
3004 | if (sc->sc_flags & IWN_FLAG_BGSCAN(1 << 9)) |
3005 | break; |
3006 | |
3007 | /* Fix current channel. */ |
3008 | ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; |
3009 | break; |
3010 | } |
3011 | case IWN_STOP_SCAN132: |
3012 | { |
3013 | struct iwn_stop_scan *scan = |
3014 | (struct iwn_stop_scan *)(desc + 1); |
3015 | |
3016 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*scan)), (0x02)) |
3017 | sizeof (*scan), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof (*desc)), (sizeof (*scan)), (0x02)); |
3018 | DPRINTFN(2, ("scan stop: nchan=%d status=%d chan=%d\n", |
3019 | scan->nchan, scan->status, scan->chan)); |
3020 | |
3021 | if (scan->status == 1 && scan->chan <= 14 && |
3022 | (sc->sc_flags & IWN_FLAG_HAS_5GHZ(1 << 0))) { |
3023 | int error; |
3024 | /* |
3025 | * We just finished scanning 2GHz channels, |
3026 | * start scanning 5GHz ones. |
3027 | */ |
3028 | error = iwn_scan(sc, IEEE80211_CHAN_5GHZ0x0100, |
3029 | (sc->sc_flags & IWN_FLAG_BGSCAN(1 << 9)) ? 1 : 0); |
3030 | if (error == 0) |
3031 | break; |
3032 | } |
3033 | sc->sc_flags &= ~IWN_FLAG_SCANNING(1 << 10); |
3034 | sc->sc_flags &= ~IWN_FLAG_BGSCAN(1 << 9); |
3035 | ieee80211_end_scan(ifp); |
3036 | break; |
3037 | } |
3038 | case IWN5000_CALIBRATION_RESULT102: |
3039 | iwn5000_rx_calib_results(sc, desc, data); |
3040 | break; |
3041 | |
3042 | case IWN5000_CALIBRATION_DONE103: |
3043 | sc->sc_flags |= IWN_FLAG_CALIB_DONE(1 << 2); |
3044 | wakeup(sc); |
3045 | break; |
3046 | } |
3047 | |
3048 | sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT(1 << 6); |
3049 | } |
3050 | if_input(&sc->sc_ic.ic_ific_ac.ac_if, &ml); |
3051 | |
3052 | /* Tell the firmware what we have processed. */ |
3053 | hw = (hw == 0) ? IWN_RX_RING_COUNT(1 << 6) - 1 : hw - 1; |
3054 | IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc8)), ( (hw & ~7)))); |
3055 | } |
3056 | |
3057 | /* |
3058 | * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up |
3059 | * from power-down sleep mode. |
3060 | */ |
3061 | void |
3062 | iwn_wakeup_intr(struct iwn_softc *sc) |
3063 | { |
3064 | int qid; |
3065 | |
3066 | DPRINTF(("ucode wakeup from power-down sleep\n")); |
3067 | |
3068 | /* Wakeup RX and TX rings. */ |
3069 | IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc8)), ( (sc->rxq.cur & ~7)))); |
3070 | for (qid = 0; qid < sc->ntxqs; qid++) { |
3071 | struct iwn_tx_ring *ring = &sc->txq[qid]; |
3072 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | ring->cur)))); |
3073 | } |
3074 | } |
3075 | |
3076 | /* |
3077 | * Dump the error log of the firmware when a firmware panic occurs. Although |
3078 | * we can't debug the firmware because it is neither open source nor free, it |
3079 | * can help us to identify certain classes of problems. |
3080 | */ |
3081 | void |
3082 | iwn_fatal_intr(struct iwn_softc *sc) |
3083 | { |
3084 | struct iwn_fw_dump dump; |
3085 | int i; |
3086 | |
3087 | /* Check that the error log address is valid. */ |
3088 | if (sc->errptr < IWN_FW_DATA_BASE0x00800000 || |
3089 | sc->errptr + sizeof (dump) > |
3090 | IWN_FW_DATA_BASE0x00800000 + sc->fw_data_maxsz) { |
3091 | printf("%s: bad firmware error log address 0x%08x\n", |
3092 | sc->sc_dev.dv_xname, sc->errptr); |
3093 | return; |
3094 | } |
3095 | if (iwn_nic_lock(sc) != 0) { |
3096 | printf("%s: could not read firmware error log\n", |
3097 | sc->sc_dev.dv_xname); |
3098 | return; |
3099 | } |
3100 | /* Read firmware error log from SRAM. */ |
3101 | iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, |
3102 | sizeof (dump) / sizeof (uint32_t)); |
3103 | iwn_nic_unlock(sc); |
3104 | |
3105 | if (dump.valid == 0) { |
3106 | printf("%s: firmware error log is empty\n", |
3107 | sc->sc_dev.dv_xname); |
3108 | return; |
3109 | } |
3110 | printf("firmware error log:\n"); |
3111 | printf(" error type = \"%s\" (0x%08X)\n", |
3112 | (dump.id < nitems(iwn_fw_errmsg)(sizeof((iwn_fw_errmsg)) / sizeof((iwn_fw_errmsg)[0]))) ? |
3113 | iwn_fw_errmsg[dump.id] : "UNKNOWN", |
3114 | dump.id); |
3115 | printf(" program counter = 0x%08X\n", dump.pc); |
3116 | printf(" source line = 0x%08X\n", dump.src_line); |
3117 | printf(" error data = 0x%08X%08X\n", |
3118 | dump.error_data[0], dump.error_data[1]); |
3119 | printf(" branch link = 0x%08X%08X\n", |
3120 | dump.branch_link[0], dump.branch_link[1]); |
3121 | printf(" interrupt link = 0x%08X%08X\n", |
3122 | dump.interrupt_link[0], dump.interrupt_link[1]); |
3123 | printf(" time = %u\n", dump.time[0]); |
3124 | |
3125 | /* Dump driver status (TX and RX rings) while we're here. */ |
3126 | printf("driver status:\n"); |
3127 | for (i = 0; i < sc->ntxqs; i++) { |
3128 | struct iwn_tx_ring *ring = &sc->txq[i]; |
3129 | printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", |
3130 | i, ring->qid, ring->cur, ring->queued); |
3131 | } |
3132 | printf(" rx ring: cur=%d\n", sc->rxq.cur); |
3133 | printf(" 802.11 state %d\n", sc->sc_ic.ic_state); |
3134 | } |
3135 | |
3136 | int |
3137 | iwn_intr(void *arg) |
3138 | { |
3139 | struct iwn_softc *sc = arg; |
3140 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
3141 | uint32_t r1, r2, tmp; |
3142 | |
3143 | /* Disable interrupts. */ |
3144 | IWN_WRITE(sc, IWN_INT_MASK, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( 0)))); |
3145 | |
3146 | /* Read interrupts from ICT (fast) or from registers (slow). */ |
3147 | if (sc->sc_flags & IWN_FLAG_USE_ICT(1 << 3)) { |
3148 | tmp = 0; |
3149 | while (sc->ict[sc->ict_cur] != 0) { |
3150 | tmp |= sc->ict[sc->ict_cur]; |
3151 | sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ |
3152 | sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT(4096 / sizeof (uint32_t)); |
3153 | } |
3154 | tmp = letoh32(tmp)((__uint32_t)(tmp)); |
3155 | if (tmp == 0xffffffff) /* Shouldn't happen. */ |
3156 | tmp = 0; |
3157 | else if (tmp & 0xc0000) /* Workaround a HW bug. */ |
3158 | tmp |= 0x8000; |
3159 | r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); |
3160 | r2 = 0; /* Unused. */ |
3161 | } else { |
3162 | r1 = IWN_READ(sc, IWN_INT)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x008)))); |
3163 | if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) |
3164 | return 0; /* Hardware gone! */ |
3165 | r2 = IWN_READ(sc, IWN_FH_INT)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x010)))); |
3166 | } |
3167 | if (r1 == 0 && r2 == 0) { |
3168 | if (ifp->if_flags & IFF_UP0x1) |
3169 | IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( sc->int_mask)))); |
3170 | return 0; /* Interrupt not for us. */ |
3171 | } |
3172 | |
3173 | /* Acknowledge interrupts. */ |
3174 | IWN_WRITE(sc, IWN_INT, r1)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( r1)))); |
3175 | if (!(sc->sc_flags & IWN_FLAG_USE_ICT(1 << 3))) |
3176 | IWN_WRITE(sc, IWN_FH_INT, r2)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x010)), (( r2)))); |
3177 | |
3178 | if (r1 & IWN_INT_RF_TOGGLED(1U << 7)) { |
3179 | tmp = IWN_READ(sc, IWN_GP_CNTRL)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & IWN_GP_CNTRL_RFKILL(1 << 27); |
3180 | printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname, |
3181 | tmp ? "enabled" : "disabled"); |
3182 | if (tmp) |
3183 | task_add(systq, &sc->init_task); |
3184 | } |
3185 | if (r1 & IWN_INT_CT_REACHED(1U << 6)) { |
3186 | printf("%s: critical temperature reached!\n", |
3187 | sc->sc_dev.dv_xname); |
3188 | } |
3189 | if (r1 & (IWN_INT_SW_ERR(1U << 25) | IWN_INT_HW_ERR(1U << 29))) { |
3190 | printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); |
3191 | |
3192 | /* Force a complete recalibration on next init. */ |
3193 | sc->sc_flags &= ~IWN_FLAG_CALIB_DONE(1 << 2); |
3194 | |
3195 | /* Dump firmware error log and stop. */ |
3196 | if (ifp->if_flags & IFF_DEBUG0x4) |
3197 | iwn_fatal_intr(sc); |
3198 | iwn_stop(ifp); |
3199 | task_add(systq, &sc->init_task); |
3200 | return 1; |
3201 | } |
3202 | if ((r1 & (IWN_INT_FH_RX(1U << 31) | IWN_INT_SW_RX(1U << 3) | IWN_INT_RX_PERIODIC(1U << 28))) || |
3203 | (r2 & IWN_FH_INT_RX((1 << ((0) + 16)) | (1 << ((1) + 16)) | (1 << 30)))) { |
3204 | if (sc->sc_flags & IWN_FLAG_USE_ICT(1 << 3)) { |
3205 | if (r1 & (IWN_INT_FH_RX(1U << 31) | IWN_INT_SW_RX(1U << 3))) |
3206 | IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x010)), (( ((1 << ((0) + 16)) | (1 << ((1) + 16)) | (1 << 30)))))); |
3207 | IWN_WRITE_1(sc, IWN_INT_PERIODIC,(((sc)->sc_st)->write_1(((sc)->sc_sh), ((0x005)), (( 0x00)))) |
3208 | IWN_INT_PERIODIC_DIS)(((sc)->sc_st)->write_1(((sc)->sc_sh), ((0x005)), (( 0x00)))); |
3209 | iwn_notif_intr(sc); |
3210 | if (r1 & (IWN_INT_FH_RX(1U << 31) | IWN_INT_SW_RX(1U << 3))) { |
3211 | IWN_WRITE_1(sc, IWN_INT_PERIODIC,(((sc)->sc_st)->write_1(((sc)->sc_sh), ((0x005)), (( 0xff)))) |
3212 | IWN_INT_PERIODIC_ENA)(((sc)->sc_st)->write_1(((sc)->sc_sh), ((0x005)), (( 0xff)))); |
3213 | } |
3214 | } else |
3215 | iwn_notif_intr(sc); |
3216 | } |
3217 | |
3218 | if ((r1 & IWN_INT_FH_TX(1U << 27)) || (r2 & IWN_FH_INT_TX((1 << (0)) | (1 << (1))))) { |
3219 | if (sc->sc_flags & IWN_FLAG_USE_ICT(1 << 3)) |
3220 | IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x010)), (( ((1 << (0)) | (1 << (1))))))); |
3221 | wakeup(sc); /* FH DMA transfer completed. */ |
3222 | } |
3223 | |
3224 | if (r1 & IWN_INT_ALIVE(1U << 0)) |
3225 | wakeup(sc); /* Firmware is alive. */ |
3226 | |
3227 | if (r1 & IWN_INT_WAKEUP(1U << 1)) |
3228 | iwn_wakeup_intr(sc); |
3229 | |
3230 | /* Re-enable interrupts. */ |
3231 | if (ifp->if_flags & IFF_UP0x1) |
3232 | IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( sc->int_mask)))); |
3233 | |
3234 | return 1; |
3235 | } |
3236 | |
3237 | /* |
3238 | * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and |
3239 | * 5000 adapters use a slightly different format). |
3240 | */ |
3241 | void |
3242 | iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, |
3243 | uint16_t len) |
3244 | { |
3245 | uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT512 + idx]; |
3246 | |
3247 | *w = htole16(len + 8)((__uint16_t)(len + 8)); |
3248 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3249 | (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3250 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)); |
3251 | if (idx < IWN_SCHED_WINSZ64) { |
3252 | *(w + IWN_TX_RING_COUNT256) = *w; |
3253 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3254 | (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3255 | sizeof (uint16_t), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)); |
3256 | } |
3257 | } |
3258 | |
3259 | void |
3260 | iwn4965_reset_sched(struct iwn_softc *sc, int qid, int idx) |
3261 | { |
3262 | /* TBD */ |
3263 | } |
3264 | |
3265 | void |
3266 | iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, |
3267 | uint16_t len) |
3268 | { |
3269 | uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT(256 + 64) + idx]; |
3270 | |
3271 | *w = htole16(id << 12 | (len + 8))((__uint16_t)(id << 12 | (len + 8))); |
3272 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3273 | (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3274 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)); |
3275 | if (idx < IWN_SCHED_WINSZ64) { |
3276 | *(w + IWN_TX_RING_COUNT256) = *w; |
3277 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3278 | (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3279 | sizeof (uint16_t), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)); |
3280 | } |
3281 | } |
3282 | |
3283 | void |
3284 | iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) |
3285 | { |
3286 | uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT(256 + 64) + idx]; |
3287 | |
3288 | *w = (*w & htole16(0xf000)((__uint16_t)(0xf000))) | htole16(1)((__uint16_t)(1)); |
3289 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3290 | (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)) |
3291 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)w - sc->sched_dma.vaddr), (sizeof (uint16_t)), (0x04)); |
3292 | if (idx < IWN_SCHED_WINSZ64) { |
3293 | *(w + IWN_TX_RING_COUNT256) = *w; |
3294 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3295 | (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)) |
3296 | sizeof (uint16_t), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), ((caddr_t)(w + 256) - sc->sched_dma.vaddr) , (sizeof (uint16_t)), (0x04)); |
3297 | } |
3298 | } |
3299 | |
3300 | int |
3301 | iwn_rval2ridx(int rval) |
3302 | { |
3303 | int ridx; |
3304 | |
3305 | for (ridx = 0; ridx < nitems(iwn_rates)(sizeof((iwn_rates)) / sizeof((iwn_rates)[0])); ridx++) { |
3306 | if (rval == iwn_rates[ridx].rate) |
3307 | break; |
3308 | } |
3309 | |
3310 | return ridx; |
3311 | } |
3312 | |
3313 | int |
3314 | iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) |
3315 | { |
3316 | struct iwn_ops *ops = &sc->ops; |
3317 | struct ieee80211com *ic = &sc->sc_ic; |
3318 | struct iwn_node *wn = (void *)ni; |
3319 | struct iwn_tx_ring *ring; |
3320 | struct iwn_tx_desc *desc; |
3321 | struct iwn_tx_data *data; |
3322 | struct iwn_tx_cmd *cmd; |
3323 | struct iwn_cmd_data *tx; |
3324 | const struct iwn_rate *rinfo; |
3325 | struct ieee80211_frame *wh; |
3326 | struct ieee80211_key *k = NULL((void *)0); |
3327 | enum ieee80211_edca_ac ac; |
3328 | int qid; |
3329 | uint32_t flags; |
3330 | uint16_t qos; |
3331 | u_int hdrlen; |
3332 | bus_dma_segment_t *seg; |
3333 | uint8_t *ivp, tid, ridx, txant, type, subtype; |
3334 | int i, totlen, hasqos, error, pad; |
3335 | |
3336 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
3337 | type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
3338 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
3339 | if (type == IEEE80211_FC0_TYPE_CTL0x04) |
3340 | hdrlen = sizeof(struct ieee80211_frame_min); |
3341 | else |
3342 | hdrlen = ieee80211_get_hdrlen(wh); |
3343 | |
3344 | if ((hasqos = ieee80211_has_qos(wh))) { |
3345 | /* Select EDCA Access Category and TX ring for this frame. */ |
3346 | struct ieee80211_tx_ba *ba; |
3347 | qos = ieee80211_get_qos(wh); |
3348 | tid = qos & IEEE80211_QOS_TID0x000f; |
3349 | ac = ieee80211_up_to_ac(ic, tid); |
3350 | qid = ac; |
3351 | |
3352 | /* If possible, put this frame on an aggregation queue. */ |
3353 | if (sc->sc_tx_ba[tid].wn == wn) { |
3354 | ba = &ni->ni_tx_ba[tid]; |
3355 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
3356 | ba->ba_state == IEEE80211_BA_AGREED2) { |
3357 | qid = sc->first_agg_txq + tid; |
3358 | if (sc->qfullmsk & (1 << qid)) { |
3359 | m_freem(m); |
3360 | return ENOBUFS55; |
3361 | } |
3362 | } |
3363 | } |
3364 | } else { |
3365 | qos = 0; |
3366 | tid = IWN_NONQOS_TID8; |
3367 | ac = EDCA_AC_BE; |
3368 | qid = ac; |
3369 | } |
3370 | |
3371 | ring = &sc->txq[qid]; |
3372 | desc = &ring->desc[ring->cur]; |
3373 | data = &ring->data[ring->cur]; |
3374 | |
3375 | /* Choose a TX rate index. */ |
3376 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
3377 | type != IEEE80211_FC0_TYPE_DATA0x08) |
3378 | ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic)); |
3379 | else if (ic->ic_fixed_mcs != -1) |
3380 | ridx = sc->fixed_ridx; |
3381 | else if (ic->ic_fixed_rate != -1) |
3382 | ridx = sc->fixed_ridx; |
3383 | else { |
3384 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) |
3385 | ridx = iwn_mcs2ridx[ni->ni_txmcs]; |
3386 | else |
3387 | ridx = wn->ridx[ni->ni_txrate]; |
3388 | } |
3389 | rinfo = &iwn_rates[ridx]; |
3390 | #if NBPFILTER1 > 0 |
3391 | if (sc->sc_drvbpf != NULL((void *)0)) { |
3392 | struct iwn_tx_radiotap_header *tap = &sc->sc_txtapsc_txtapu.th; |
3393 | uint16_t chan_flags; |
3394 | |
3395 | tap->wt_flags = 0; |
3396 | tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq)((__uint16_t)(ni->ni_chan->ic_freq)); |
3397 | chan_flags = ni->ni_chan->ic_flags; |
3398 | if (ic->ic_curmode != IEEE80211_MODE_11N) |
3399 | chan_flags &= ~IEEE80211_CHAN_HT0x2000; |
3400 | tap->wt_chan_flags = htole16(chan_flags)((__uint16_t)(chan_flags)); |
3401 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
3402 | !IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
3403 | type == IEEE80211_FC0_TYPE_DATA0x08) { |
3404 | tap->wt_rate = (0x80 | ni->ni_txmcs); |
3405 | } else |
3406 | tap->wt_rate = rinfo->rate; |
3407 | if ((ic->ic_flags & IEEE80211_F_WEPON0x00000100) && |
3408 | (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40)) |
3409 | tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP0x04; |
3410 | |
3411 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, |
3412 | m, BPF_DIRECTION_OUT(1 << 1)); |
3413 | } |
3414 | #endif |
3415 | |
3416 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len; |
3417 | |
3418 | /* Encrypt the frame if need be. */ |
3419 | if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40) { |
3420 | /* Retrieve key for TX. */ |
3421 | k = ieee80211_get_txkey(ic, wh, ni); |
3422 | if (k->k_cipher != IEEE80211_CIPHER_CCMP) { |
3423 | /* Do software encryption. */ |
3424 | if ((m = ieee80211_encrypt(ic, m, k)) == NULL((void *)0)) |
3425 | return ENOBUFS55; |
3426 | /* 802.11 header may have moved. */ |
3427 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
3428 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len; |
3429 | |
3430 | } else /* HW appends CCMP MIC. */ |
3431 | totlen += IEEE80211_CCMP_HDRLEN8; |
3432 | } |
3433 | |
3434 | data->totlen = totlen; |
3435 | |
3436 | /* Prepare TX firmware command. */ |
3437 | cmd = &ring->cmd[ring->cur]; |
3438 | cmd->code = IWN_CMD_TX_DATA28; |
3439 | cmd->flags = 0; |
3440 | cmd->qid = ring->qid; |
3441 | cmd->idx = ring->cur; |
3442 | |
3443 | tx = (struct iwn_cmd_data *)cmd->data; |
3444 | /* NB: No need to clear tx, all fields are reinitialized here. */ |
3445 | tx->scratch = 0; /* clear "scratch" area */ |
3446 | |
3447 | flags = 0; |
3448 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) { |
3449 | /* Unicast frame, check if an ACK is expected. */ |
3450 | if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK0x0060) != |
3451 | IEEE80211_QOS_ACK_POLICY_NOACK0x0020) |
3452 | flags |= IWN_TX_NEED_ACK(1 << 3); |
3453 | } |
3454 | if (type == IEEE80211_FC0_TYPE_CTL0x04 && |
3455 | subtype == IEEE80211_FC0_SUBTYPE_BAR0x80) { |
3456 | struct ieee80211_frame_min *mwh; |
3457 | uint8_t *barfrm; |
3458 | uint16_t ctl; |
3459 | mwh = mtod(m, struct ieee80211_frame_min *)((struct ieee80211_frame_min *)((m)->m_hdr.mh_data)); |
3460 | barfrm = (uint8_t *)&mwh[1]; |
3461 | ctl = LE_READ_2(barfrm)((u_int16_t) ((((const u_int8_t *)(barfrm))[0]) | (((const u_int8_t *)(barfrm))[1] << 8))); |
3462 | tid = (ctl & IEEE80211_BA_TID_INFO_MASK0xf000) >> |
3463 | IEEE80211_BA_TID_INFO_SHIFT12; |
3464 | flags |= (IWN_TX_NEED_ACK(1 << 3) | IWN_TX_IMM_BA(1 << 6)); |
3465 | } |
3466 | |
3467 | if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG0x04) |
3468 | flags |= IWN_TX_MORE_FRAG(1 << 14); /* Cannot happen yet. */ |
3469 | |
3470 | /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ |
3471 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) { |
3472 | /* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */ |
3473 | if (totlen + IEEE80211_CRC_LEN4 > ic->ic_rtsthreshold) { |
3474 | flags |= IWN_TX_NEED_RTS(1 << 1); |
3475 | } else if ((ic->ic_flags & IEEE80211_F_USEPROT0x00100000) && |
3476 | ridx >= IWN_RIDX_OFDM64) { |
3477 | if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) |
3478 | flags |= IWN_TX_NEED_CTS(1 << 2); |
3479 | else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) |
3480 | flags |= IWN_TX_NEED_RTS(1 << 1); |
3481 | } |
3482 | |
3483 | if (flags & (IWN_TX_NEED_RTS(1 << 1) | IWN_TX_NEED_CTS(1 << 2))) { |
3484 | if (sc->hw_type != IWN_HW_REV_TYPE_49650) { |
3485 | /* 5000 autoselects RTS/CTS or CTS-to-self. */ |
3486 | flags &= ~(IWN_TX_NEED_RTS(1 << 1) | IWN_TX_NEED_CTS(1 << 2)); |
3487 | flags |= IWN_TX_NEED_PROTECTION(1 << 0); |
3488 | } else |
3489 | flags |= IWN_TX_FULL_TXOP(1 << 7); |
3490 | } |
3491 | } |
3492 | |
3493 | if (type == IEEE80211_FC0_TYPE_CTL0x04 && |
3494 | subtype == IEEE80211_FC0_SUBTYPE_BAR0x80) |
3495 | tx->id = wn->id; |
3496 | else if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
3497 | type != IEEE80211_FC0_TYPE_DATA0x08) |
3498 | tx->id = sc->broadcast_id; |
3499 | else |
3500 | tx->id = wn->id; |
3501 | |
3502 | if (type == IEEE80211_FC0_TYPE_MGT0x00) { |
3503 | #ifndef IEEE80211_STA_ONLY |
3504 | /* Tell HW to set timestamp in probe responses. */ |
3505 | if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) |
3506 | flags |= IWN_TX_INSERT_TSTAMP(1 << 16); |
3507 | #endif |
3508 | if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ0x00 || |
3509 | subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ0x20) |
3510 | tx->timeout = htole16(3)((__uint16_t)(3)); |
3511 | else |
3512 | tx->timeout = htole16(2)((__uint16_t)(2)); |
3513 | } else |
3514 | tx->timeout = htole16(0)((__uint16_t)(0)); |
3515 | |
3516 | if (hdrlen & 3) { |
3517 | /* First segment length must be a multiple of 4. */ |
3518 | flags |= IWN_TX_NEED_PADDING(1 << 20); |
3519 | pad = 4 - (hdrlen & 3); |
3520 | } else |
3521 | pad = 0; |
3522 | |
3523 | tx->len = htole16(totlen)((__uint16_t)(totlen)); |
3524 | tx->tid = tid; |
3525 | tx->rts_ntries = 60; |
3526 | tx->data_ntries = 15; |
3527 | tx->lifetime = htole32(IWN_LIFETIME_INFINITE)((__uint32_t)(0xffffffff)); |
3528 | |
3529 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
3530 | tx->id != sc->broadcast_id) |
3531 | tx->plcp = rinfo->ht_plcp; |
3532 | else |
3533 | tx->plcp = rinfo->plcp; |
3534 | |
3535 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
3536 | tx->id != sc->broadcast_id) { |
3537 | tx->rflags = rinfo->ht_flags; |
3538 | if (iwn_rxon_ht40_enabled(sc)) |
3539 | tx->rflags |= IWN_RFLAG_HT40(1 << 3); |
3540 | if (ieee80211_ra_use_ht_sgi(ni)) |
3541 | tx->rflags |= IWN_RFLAG_SGI(1 << 5); |
3542 | } |
3543 | else |
3544 | tx->rflags = rinfo->flags; |
3545 | if (tx->id == sc->broadcast_id || ic->ic_fixed_mcs != -1 || |
3546 | ic->ic_fixed_rate != -1) { |
3547 | /* Group or management frame, or fixed Tx rate. */ |
3548 | tx->linkq = 0; |
3549 | /* XXX Alternate between antenna A and B? */ |
3550 | txant = IWN_LSB(sc->txchainmask)((((sc->txchainmask) - 1) & (sc->txchainmask)) ^ (sc ->txchainmask)); |
3551 | tx->rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
3552 | } else { |
3553 | tx->linkq = 0; /* initial index into firmware LQ retry table */ |
3554 | flags |= IWN_TX_LINKQ(1 << 4); /* enable multi-rate retry */ |
3555 | } |
3556 | /* Set physical address of "scratch area". */ |
3557 | tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr))((__uint32_t)(((uint32_t)(data->scratch_paddr)))); |
3558 | tx->hiaddr = IWN_HIADDR(data->scratch_paddr)(((data->scratch_paddr) >> 32) & 0xf); |
3559 | |
3560 | /* Copy 802.11 header in TX command. */ |
3561 | memcpy((uint8_t *)(tx + 1), wh, hdrlen)__builtin_memcpy(((uint8_t *)(tx + 1)), (wh), (hdrlen)); |
3562 | |
3563 | if (k != NULL((void *)0) && k->k_cipher == IEEE80211_CIPHER_CCMP) { |
3564 | /* Trim 802.11 header and prepend CCMP IV. */ |
3565 | m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN8); |
3566 | ivp = mtod(m, uint8_t *)((uint8_t *)((m)->m_hdr.mh_data)); |
3567 | k->k_tsc++; |
3568 | ivp[0] = k->k_tsc; |
3569 | ivp[1] = k->k_tsc >> 8; |
3570 | ivp[2] = 0; |
3571 | ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV0x20; |
3572 | ivp[4] = k->k_tsc >> 16; |
3573 | ivp[5] = k->k_tsc >> 24; |
3574 | ivp[6] = k->k_tsc >> 32; |
3575 | ivp[7] = k->k_tsc >> 40; |
3576 | |
3577 | tx->security = IWN_CIPHER_CCMP2; |
3578 | if (qid >= sc->first_agg_txq) |
3579 | flags |= IWN_TX_AMPDU_CCMP(1 << 22); |
3580 | memcpy(tx->key, k->k_key, k->k_len)__builtin_memcpy((tx->key), (k->k_key), (k->k_len)); |
3581 | |
3582 | /* TX scheduler includes CCMP MIC len w/5000 Series. */ |
3583 | if (sc->hw_type != IWN_HW_REV_TYPE_49650) |
3584 | totlen += IEEE80211_CCMP_MICLEN8; |
3585 | } else { |
3586 | /* Trim 802.11 header. */ |
3587 | m_adj(m, hdrlen); |
3588 | tx->security = 0; |
3589 | } |
3590 | tx->flags = htole32(flags)((__uint32_t)(flags)); |
3591 | |
3592 | error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)) |
3593 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)); |
3594 | if (error != 0 && error != EFBIG27) { |
3595 | printf("%s: can't map mbuf (error %d)\n", |
3596 | sc->sc_dev.dv_xname, error); |
3597 | m_freem(m); |
3598 | return error; |
3599 | } |
3600 | if (error != 0) { |
3601 | /* Too many DMA segments, linearize mbuf. */ |
3602 | if (m_defrag(m, M_DONTWAIT0x0002)) { |
3603 | m_freem(m); |
3604 | return ENOBUFS55; |
3605 | } |
3606 | error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)) |
3607 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)); |
3608 | if (error != 0) { |
3609 | printf("%s: can't map mbuf (error %d)\n", |
3610 | sc->sc_dev.dv_xname, error); |
3611 | m_freem(m); |
3612 | return error; |
3613 | } |
3614 | } |
3615 | |
3616 | data->m = m; |
3617 | data->ni = ni; |
3618 | data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */ |
3619 | |
3620 | DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", |
3621 | ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); |
3622 | |
3623 | /* Fill TX descriptor. */ |
3624 | desc->nsegs = 1 + data->map->dm_nsegs; |
3625 | /* First DMA segment is used by the TX command. */ |
3626 | desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr))((__uint32_t)(((uint32_t)(data->cmd_paddr)))); |
3627 | desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |((__uint16_t)((((data->cmd_paddr) >> 32) & 0xf) | (4 + sizeof (*tx) + hdrlen + pad) << 4)) |
3628 | (4 + sizeof (*tx) + hdrlen + pad) << 4)((__uint16_t)((((data->cmd_paddr) >> 32) & 0xf) | (4 + sizeof (*tx) + hdrlen + pad) << 4)); |
3629 | /* Other DMA segments are for data payload. */ |
3630 | seg = data->map->dm_segs; |
3631 | for (i = 1; i <= data->map->dm_nsegs; i++) { |
3632 | desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr))((__uint32_t)(((uint32_t)(seg->ds_addr)))); |
3633 | desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |((__uint16_t)((((seg->ds_addr) >> 32) & 0xf) | seg ->ds_len << 4)) |
3634 | seg->ds_len << 4)((__uint16_t)((((seg->ds_addr) >> 32) & 0xf) | seg ->ds_len << 4)); |
3635 | seg++; |
3636 | } |
3637 | |
3638 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x04)) |
3639 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x04)); |
3640 | bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (sizeof (*cmd)), (0x04)) |
3641 | (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (sizeof (*cmd)), (0x04)) |
3642 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (sizeof (*cmd)), (0x04)); |
3643 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
3644 | (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
3645 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)); |
3646 | |
3647 | /* Update TX scheduler. */ |
3648 | ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); |
3649 | |
3650 | /* Kick TX ring. */ |
3651 | ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT256; |
3652 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( ring->qid << 8 | ring->cur)))); |
3653 | |
3654 | /* Mark TX ring as full if we reach a certain threshold. */ |
3655 | if (++ring->queued > IWN_TX_RING_HIMARK224) |
3656 | sc->qfullmsk |= 1 << ring->qid; |
3657 | |
3658 | return 0; |
3659 | } |
3660 | |
3661 | void |
3662 | iwn_start(struct ifnet *ifp) |
3663 | { |
3664 | struct iwn_softc *sc = ifp->if_softc; |
3665 | struct ieee80211com *ic = &sc->sc_ic; |
3666 | struct ieee80211_node *ni; |
3667 | struct mbuf *m; |
3668 | |
3669 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) |
3670 | return; |
3671 | |
3672 | for (;;) { |
3673 | if (sc->qfullmsk != 0) { |
3674 | ifq_set_oactive(&ifp->if_snd); |
3675 | break; |
3676 | } |
3677 | |
3678 | /* Send pending management frames first. */ |
3679 | m = mq_dequeue(&ic->ic_mgtq); |
3680 | if (m != NULL((void *)0)) { |
3681 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
3682 | goto sendit; |
3683 | } |
3684 | if (ic->ic_state != IEEE80211_S_RUN || |
3685 | (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY0x00000001)) |
3686 | break; |
3687 | |
3688 | /* Encapsulate and send data frames. */ |
3689 | m = ifq_dequeue(&ifp->if_snd); |
3690 | if (m == NULL((void *)0)) |
3691 | break; |
3692 | #if NBPFILTER1 > 0 |
3693 | if (ifp->if_bpf != NULL((void *)0)) |
3694 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
3695 | #endif |
3696 | if ((m = ieee80211_encap(ifp, m, &ni)) == NULL((void *)0)) |
3697 | continue; |
3698 | sendit: |
3699 | #if NBPFILTER1 > 0 |
3700 | if (ic->ic_rawbpf != NULL((void *)0)) |
3701 | bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT(1 << 1)); |
3702 | #endif |
3703 | if (iwn_tx(sc, m, ni) != 0) { |
3704 | ieee80211_release_node(ic, ni); |
3705 | ifp->if_oerrorsif_data.ifi_oerrors++; |
3706 | continue; |
3707 | } |
3708 | |
3709 | sc->sc_tx_timer = 5; |
3710 | ifp->if_timer = 1; |
3711 | } |
3712 | } |
3713 | |
3714 | void |
3715 | iwn_watchdog(struct ifnet *ifp) |
3716 | { |
3717 | struct iwn_softc *sc = ifp->if_softc; |
3718 | |
3719 | ifp->if_timer = 0; |
3720 | |
3721 | if (sc->sc_tx_timer > 0) { |
3722 | if (--sc->sc_tx_timer == 0) { |
3723 | printf("%s: device timeout\n", sc->sc_dev.dv_xname); |
3724 | iwn_stop(ifp); |
3725 | ifp->if_oerrorsif_data.ifi_oerrors++; |
3726 | return; |
3727 | } |
3728 | ifp->if_timer = 1; |
3729 | } |
3730 | |
3731 | ieee80211_watchdog(ifp); |
3732 | } |
3733 | |
3734 | int |
3735 | iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
3736 | { |
3737 | struct iwn_softc *sc = ifp->if_softc; |
3738 | struct ieee80211com *ic = &sc->sc_ic; |
3739 | int s, error = 0; |
3740 | |
3741 | error = rw_enter(&sc->sc_rwlock, RW_WRITE0x0001UL | RW_INTR0x0010UL); |
3742 | if (error) |
3743 | return error; |
3744 | s = splnet()splraise(0x4); |
3745 | |
3746 | switch (cmd) { |
3747 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
3748 | ifp->if_flags |= IFF_UP0x1; |
3749 | /* FALLTHROUGH */ |
3750 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
3751 | if (ifp->if_flags & IFF_UP0x1) { |
3752 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
3753 | error = iwn_init(ifp); |
3754 | } else { |
3755 | if (ifp->if_flags & IFF_RUNNING0x40) |
3756 | iwn_stop(ifp); |
3757 | } |
3758 | break; |
3759 | |
3760 | case SIOCS80211POWER((unsigned long)0x80000000 | ((sizeof(struct ieee80211_power) & 0x1fff) << 16) | ((('i')) << 8) | ((234))): |
3761 | error = ieee80211_ioctl(ifp, cmd, data); |
3762 | if (error != ENETRESET52) |
3763 | break; |
3764 | if (ic->ic_state == IEEE80211_S_RUN && |
3765 | sc->calib.state == IWN_CALIB_STATE_RUN2) { |
3766 | if (ic->ic_flags & IEEE80211_F_PMGTON0x00000400) |
3767 | error = iwn_set_pslevel(sc, 0, 3, 0); |
3768 | else /* back to CAM */ |
3769 | error = iwn_set_pslevel(sc, 0, 0, 0); |
3770 | } else { |
3771 | /* Defer until transition to IWN_CALIB_STATE_RUN. */ |
3772 | error = 0; |
3773 | } |
3774 | break; |
3775 | |
3776 | default: |
3777 | error = ieee80211_ioctl(ifp, cmd, data); |
3778 | } |
3779 | |
3780 | if (error == ENETRESET52) { |
3781 | error = 0; |
3782 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
3783 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
3784 | iwn_stop(ifp); |
3785 | error = iwn_init(ifp); |
3786 | } |
3787 | } |
3788 | |
3789 | splx(s)spllower(s); |
3790 | rw_exit_write(&sc->sc_rwlock); |
3791 | return error; |
3792 | } |
3793 | |
3794 | /* |
3795 | * Send a command to the firmware. |
3796 | */ |
3797 | int |
3798 | iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) |
3799 | { |
3800 | struct iwn_ops *ops = &sc->ops; |
3801 | struct iwn_tx_ring *ring = &sc->txq[4]; |
3802 | struct iwn_tx_desc *desc; |
3803 | struct iwn_tx_data *data; |
3804 | struct iwn_tx_cmd *cmd; |
3805 | struct mbuf *m; |
3806 | bus_addr_t paddr; |
3807 | int totlen, error; |
3808 | |
3809 | desc = &ring->desc[ring->cur]; |
3810 | data = &ring->data[ring->cur]; |
3811 | totlen = 4 + size; |
3812 | |
3813 | if (size > sizeof cmd->data) { |
3814 | /* Command is too large to fit in a descriptor. */ |
3815 | if (totlen > MCLBYTES(1 << 11)) |
3816 | return EINVAL22; |
3817 | MGETHDR(m, M_DONTWAIT, MT_DATA)m = m_gethdr((0x0002), (1)); |
3818 | if (m == NULL((void *)0)) |
3819 | return ENOMEM12; |
3820 | if (totlen > MHLEN((256 - sizeof(struct m_hdr)) - sizeof(struct pkthdr))) { |
3821 | MCLGET(m, M_DONTWAIT)(void) m_clget((m), (0x0002), (1 << 11)); |
3822 | if (!(m->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
3823 | m_freem(m); |
3824 | return ENOMEM12; |
3825 | } |
3826 | } |
3827 | cmd = mtod(m, struct iwn_tx_cmd *)((struct iwn_tx_cmd *)((m)->m_hdr.mh_data)); |
3828 | error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (cmd), (totlen), (((void *)0)), (0x0001 | 0x0400)) |
3829 | NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (data-> map), (cmd), (totlen), (((void *)0)), (0x0001 | 0x0400)); |
3830 | if (error != 0) { |
3831 | m_freem(m); |
3832 | return error; |
3833 | } |
3834 | data->m = m; |
3835 | paddr = data->map->dm_segs[0].ds_addr; |
3836 | } else { |
3837 | cmd = &ring->cmd[ring->cur]; |
3838 | paddr = data->cmd_paddr; |
3839 | } |
3840 | |
3841 | cmd->code = code; |
3842 | cmd->flags = 0; |
3843 | cmd->qid = ring->qid; |
3844 | cmd->idx = ring->cur; |
3845 | memcpy(cmd->data, buf, size)__builtin_memcpy((cmd->data), (buf), (size)); |
3846 | |
3847 | desc->nsegs = 1; |
3848 | desc->segs[0].addr = htole32(IWN_LOADDR(paddr))((__uint32_t)(((uint32_t)(paddr)))); |
3849 | desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4)((__uint16_t)((((paddr) >> 32) & 0xf) | totlen << 4)); |
3850 | |
3851 | if (size > sizeof cmd->data) { |
3852 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (totlen), (0x04)) |
3853 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (totlen), (0x04)); |
3854 | } else { |
3855 | bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (totlen ), (0x04)) |
3856 | (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (totlen ), (0x04)) |
3857 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((caddr_t)cmd - ring->cmd_dma.vaddr), (totlen ), (0x04)); |
3858 | } |
3859 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
3860 | (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
3861 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((caddr_t)desc - ring->desc_dma.vaddr), (sizeof (*desc)), (0x04)); |
3862 | |
3863 | /* Update TX scheduler. */ |
3864 | ops->update_sched(sc, ring->qid, ring->cur, 0, 0); |
3865 | |
3866 | /* Kick command ring. */ |
3867 | ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT256; |
3868 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( ring->qid << 8 | ring->cur)))); |
3869 | |
3870 | return async ? 0 : tsleep_nsec(desc, PCATCH0x100, "iwncmd", SEC_TO_NSEC(1)); |
3871 | } |
3872 | |
3873 | int |
3874 | iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) |
3875 | { |
3876 | struct iwn4965_node_info hnode; |
3877 | caddr_t src, dst; |
3878 | |
3879 | /* |
3880 | * We use the node structure for 5000 Series internally (it is |
3881 | * a superset of the one for 4965AGN). We thus copy the common |
3882 | * fields before sending the command. |
3883 | */ |
3884 | src = (caddr_t)node; |
3885 | dst = (caddr_t)&hnode; |
3886 | memcpy(dst, src, 48)__builtin_memcpy((dst), (src), (48)); |
3887 | /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ |
3888 | memcpy(dst + 48, src + 72, 20)__builtin_memcpy((dst + 48), (src + 72), (20)); |
3889 | return iwn_cmd(sc, IWN_CMD_ADD_NODE24, &hnode, sizeof hnode, async); |
3890 | } |
3891 | |
3892 | int |
3893 | iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) |
3894 | { |
3895 | /* Direct mapping. */ |
3896 | return iwn_cmd(sc, IWN_CMD_ADD_NODE24, node, sizeof (*node), async); |
3897 | } |
3898 | |
3899 | int |
3900 | iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) |
3901 | { |
3902 | struct ieee80211com *ic = &sc->sc_ic; |
3903 | struct iwn_node *wn = (void *)ni; |
3904 | struct iwn_cmd_link_quality linkq; |
3905 | const struct iwn_rate *rinfo; |
3906 | uint8_t txant; |
3907 | int i; |
3908 | |
3909 | /* Use the first valid TX antenna. */ |
3910 | txant = IWN_LSB(sc->txchainmask)((((sc->txchainmask) - 1) & (sc->txchainmask)) ^ (sc ->txchainmask)); |
3911 | |
3912 | memset(&linkq, 0, sizeof linkq)__builtin_memset((&linkq), (0), (sizeof linkq)); |
3913 | linkq.id = wn->id; |
3914 | linkq.antmsk_1stream = txant; |
3915 | linkq.antmsk_2stream = IWN_ANT_AB((1 << 0) | (1 << 1)); |
3916 | linkq.ampdu_max = IWN_AMPDU_MAX63; |
3917 | linkq.ampdu_threshold = 3; |
3918 | linkq.ampdu_limit = htole16(4000)((__uint16_t)(4000)); /* 4ms */ |
3919 | |
3920 | i = 0; |
3921 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
3922 | int txmcs; |
3923 | for (txmcs = ni->ni_txmcs; txmcs >= 0; txmcs--) { |
3924 | rinfo = &iwn_rates[iwn_mcs2ridx[txmcs]]; |
3925 | linkq.retry[i].plcp = rinfo->ht_plcp; |
3926 | linkq.retry[i].rflags = rinfo->ht_flags; |
3927 | |
3928 | /* XXX set correct ant mask for MIMO rates here */ |
3929 | linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
3930 | |
3931 | /* First two Tx attempts may use 40MHz/SGI. */ |
3932 | if (i < 2) { |
3933 | if (iwn_rxon_ht40_enabled(sc)) |
3934 | linkq.retry[i].rflags |= IWN_RFLAG_HT40(1 << 3); |
3935 | if (ieee80211_ra_use_ht_sgi(ni)) |
3936 | linkq.retry[i].rflags |= IWN_RFLAG_SGI(1 << 5); |
3937 | } |
3938 | |
3939 | if (++i >= IWN_MAX_TX_RETRIES16) |
3940 | break; |
3941 | } |
3942 | } else { |
3943 | int txrate; |
3944 | for (txrate = ni->ni_txrate; txrate >= 0; txrate--) { |
3945 | rinfo = &iwn_rates[wn->ridx[txrate]]; |
3946 | linkq.retry[i].plcp = rinfo->plcp; |
3947 | linkq.retry[i].rflags = rinfo->flags; |
3948 | linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
3949 | if (++i >= IWN_MAX_TX_RETRIES16) |
3950 | break; |
3951 | } |
3952 | } |
3953 | |
3954 | /* Fill the rest with the lowest basic rate. */ |
3955 | rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))]; |
3956 | while (i < IWN_MAX_TX_RETRIES16) { |
3957 | linkq.retry[i].plcp = rinfo->plcp; |
3958 | linkq.retry[i].rflags = rinfo->flags; |
3959 | linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
3960 | i++; |
3961 | } |
3962 | |
3963 | return iwn_cmd(sc, IWN_CMD_LINK_QUALITY78, &linkq, sizeof linkq, 1); |
3964 | } |
3965 | |
3966 | /* |
3967 | * Broadcast node is used to send group-addressed and management frames. |
3968 | */ |
3969 | int |
3970 | iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx) |
3971 | { |
3972 | struct iwn_ops *ops = &sc->ops; |
3973 | struct iwn_node_info node; |
3974 | struct iwn_cmd_link_quality linkq; |
3975 | const struct iwn_rate *rinfo; |
3976 | uint8_t txant; |
3977 | int i, error; |
3978 | |
3979 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
3980 | IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr)__builtin_memcpy((node.macaddr), (etherbroadcastaddr), (6)); |
3981 | node.id = sc->broadcast_id; |
3982 | DPRINTF(("adding broadcast node\n")); |
3983 | if ((error = ops->add_node(sc, &node, async)) != 0) |
3984 | return error; |
3985 | |
3986 | /* Use the first valid TX antenna. */ |
3987 | txant = IWN_LSB(sc->txchainmask)((((sc->txchainmask) - 1) & (sc->txchainmask)) ^ (sc ->txchainmask)); |
3988 | |
3989 | memset(&linkq, 0, sizeof linkq)__builtin_memset((&linkq), (0), (sizeof linkq)); |
3990 | linkq.id = sc->broadcast_id; |
3991 | linkq.antmsk_1stream = txant; |
3992 | linkq.antmsk_2stream = IWN_ANT_AB((1 << 0) | (1 << 1)); |
3993 | linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG1; |
3994 | linkq.ampdu_threshold = 3; |
3995 | linkq.ampdu_limit = htole16(4000)((__uint16_t)(4000)); /* 4ms */ |
3996 | |
3997 | /* Use lowest mandatory bit-rate. */ |
3998 | rinfo = &iwn_rates[ridx]; |
3999 | linkq.retry[0].plcp = rinfo->plcp; |
4000 | linkq.retry[0].rflags = rinfo->flags; |
4001 | linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
4002 | /* Use same bit-rate for all TX retries. */ |
4003 | for (i = 1; i < IWN_MAX_TX_RETRIES16; i++) { |
4004 | linkq.retry[i].plcp = linkq.retry[0].plcp; |
4005 | linkq.retry[i].rflags = linkq.retry[0].rflags; |
4006 | } |
4007 | return iwn_cmd(sc, IWN_CMD_LINK_QUALITY78, &linkq, sizeof linkq, async); |
4008 | } |
4009 | |
4010 | void |
4011 | iwn_updateedca(struct ieee80211com *ic) |
4012 | { |
4013 | #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ |
4014 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
4015 | struct iwn_edca_params cmd; |
4016 | int aci; |
4017 | |
4018 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4019 | cmd.flags = htole32(IWN_EDCA_UPDATE)((__uint32_t)((1 << 0))); |
4020 | for (aci = 0; aci < EDCA_NUM_AC4; aci++) { |
4021 | const struct ieee80211_edca_ac_params *ac = |
4022 | &ic->ic_edca_ac[aci]; |
4023 | cmd.ac[aci].aifsn = ac->ac_aifsn; |
4024 | cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin))((__uint16_t)(IWN_EXP2(ac->ac_ecwmin))); |
4025 | cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax))((__uint16_t)(IWN_EXP2(ac->ac_ecwmax))); |
4026 | cmd.ac[aci].txoplimit = |
4027 | htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit))((__uint16_t)(((ac->ac_txoplimit) * 32))); |
4028 | } |
4029 | (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS19, &cmd, sizeof cmd, 1); |
4030 | #undef IWN_EXP2 |
4031 | } |
4032 | |
4033 | void |
4034 | iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) |
4035 | { |
4036 | struct iwn_cmd_led led; |
4037 | |
4038 | /* Clear microcode LED ownership. */ |
4039 | IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x094)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x094)))) & ~((1 << 5)))))); |
4040 | |
4041 | led.which = which; |
4042 | led.unit = htole32(10000)((__uint32_t)(10000)); /* on/off in unit of 100ms */ |
4043 | led.off = off; |
4044 | led.on = on; |
4045 | (void)iwn_cmd(sc, IWN_CMD_SET_LED72, &led, sizeof led, 1); |
4046 | } |
4047 | |
4048 | /* |
4049 | * Set the critical temperature at which the firmware will stop the radio |
4050 | * and notify us. |
4051 | */ |
4052 | int |
4053 | iwn_set_critical_temp(struct iwn_softc *sc) |
4054 | { |
4055 | struct iwn_critical_temp crit; |
4056 | int32_t temp; |
4057 | |
4058 | IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x05c)), (( (1 << 3))))); |
4059 | |
4060 | if (sc->hw_type == IWN_HW_REV_TYPE_51504) |
4061 | temp = (IWN_CTOK(110)((110) + 273) - sc->temp_off) * -5; |
4062 | else if (sc->hw_type == IWN_HW_REV_TYPE_49650) |
4063 | temp = IWN_CTOK(110)((110) + 273); |
4064 | else |
4065 | temp = 110; |
4066 | memset(&crit, 0, sizeof crit)__builtin_memset((&crit), (0), (sizeof crit)); |
4067 | crit.tempR = htole32(temp)((__uint32_t)(temp)); |
4068 | DPRINTF(("setting critical temperature to %d\n", temp)); |
4069 | return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP164, &crit, sizeof crit, 0); |
4070 | } |
4071 | |
4072 | int |
4073 | iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) |
4074 | { |
4075 | struct iwn_cmd_timing cmd; |
4076 | uint64_t val, mod; |
4077 | |
4078 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4079 | memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t))__builtin_memcpy((&cmd.tstamp), (ni->ni_tstamp), (sizeof (uint64_t))); |
4080 | cmd.bintval = htole16(ni->ni_intval)((__uint16_t)(ni->ni_intval)); |
4081 | cmd.lintval = htole16(10)((__uint16_t)(10)); |
4082 | |
4083 | /* Compute remaining time until next beacon. */ |
4084 | val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU1024; |
4085 | mod = letoh64(cmd.tstamp)((__uint64_t)(cmd.tstamp)) % val; |
4086 | cmd.binitval = htole32((uint32_t)(val - mod))((__uint32_t)((uint32_t)(val - mod))); |
4087 | |
4088 | DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n", |
4089 | ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod))); |
4090 | |
4091 | return iwn_cmd(sc, IWN_CMD_TIMING20, &cmd, sizeof cmd, 1); |
4092 | } |
4093 | |
4094 | void |
4095 | iwn4965_power_calibration(struct iwn_softc *sc, int temp) |
4096 | { |
4097 | /* Adjust TX power if need be (delta >= 3 degC). */ |
4098 | DPRINTF(("temperature %d->%d\n", sc->temp, temp)); |
4099 | if (abs(temp - sc->temp) >= 3) { |
4100 | /* Record temperature of last calibration. */ |
4101 | sc->temp = temp; |
4102 | (void)iwn4965_set_txpower(sc, 1); |
4103 | } |
4104 | } |
4105 | |
4106 | /* |
4107 | * Set TX power for current channel (each rate has its own power settings). |
4108 | * This function takes into account the regulatory information from EEPROM, |
4109 | * the current temperature and the current voltage. |
4110 | */ |
4111 | int |
4112 | iwn4965_set_txpower(struct iwn_softc *sc, int async) |
4113 | { |
4114 | /* Fixed-point arithmetic division using a n-bit fractional part. */ |
4115 | #define fdivround(a, b, n) \ |
4116 | ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) |
4117 | /* Linear interpolation. */ |
4118 | #define interpolate(x, x1, y1, x2, y2, n) \ |
4119 | ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) |
4120 | |
4121 | static const int tdiv[IWN_NATTEN_GROUPS5] = { 9, 8, 8, 8, 6 }; |
4122 | struct ieee80211com *ic = &sc->sc_ic; |
4123 | struct iwn_ucode_info *uc = &sc->ucode_info; |
4124 | struct ieee80211_channel *ch; |
4125 | struct iwn4965_cmd_txpower cmd; |
4126 | struct iwn4965_eeprom_chan_samples *chans; |
4127 | const uint8_t *rf_gain, *dsp_gain; |
4128 | int32_t vdiff, tdiff; |
4129 | int i, c, grp, maxpwr, is_ht40 = 0; |
4130 | uint8_t chan, ext_chan; |
4131 | |
4132 | /* Retrieve current channel from last RXON. */ |
4133 | chan = sc->rxon.chan; |
4134 | DPRINTF(("setting TX power for channel %d\n", chan)); |
4135 | ch = &ic->ic_channels[chan]; |
4136 | |
4137 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4138 | cmd.band = IEEE80211_IS_CHAN_5GHZ(ch)(((ch)->ic_flags & 0x0100) != 0) ? 0 : 1; |
4139 | cmd.chan = chan; |
4140 | |
4141 | if (IEEE80211_IS_CHAN_5GHZ(ch)(((ch)->ic_flags & 0x0100) != 0)) { |
4142 | maxpwr = sc->maxpwr5GHz; |
4143 | rf_gain = iwn4965_rf_gain_5ghz; |
4144 | dsp_gain = iwn4965_dsp_gain_5ghz; |
4145 | } else { |
4146 | maxpwr = sc->maxpwr2GHz; |
4147 | rf_gain = iwn4965_rf_gain_2ghz; |
4148 | dsp_gain = iwn4965_dsp_gain_2ghz; |
4149 | } |
4150 | |
4151 | /* Compute voltage compensation. */ |
4152 | vdiff = ((int32_t)letoh32(uc->volt)((__uint32_t)(uc->volt)) - sc->eeprom_voltage) / 7; |
4153 | if (vdiff > 0) |
4154 | vdiff *= 2; |
4155 | if (abs(vdiff) > 2) |
4156 | vdiff = 0; |
4157 | DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", |
4158 | vdiff, letoh32(uc->volt), sc->eeprom_voltage)); |
4159 | |
4160 | /* Get channel attenuation group. */ |
4161 | if (chan <= 20) /* 1-20 */ |
4162 | grp = 4; |
4163 | else if (chan <= 43) /* 34-43 */ |
4164 | grp = 0; |
4165 | else if (chan <= 70) /* 44-70 */ |
4166 | grp = 1; |
4167 | else if (chan <= 124) /* 71-124 */ |
4168 | grp = 2; |
4169 | else /* 125-200 */ |
4170 | grp = 3; |
4171 | DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); |
4172 | |
4173 | /* Get channel sub-band. */ |
4174 | for (i = 0; i < IWN_NBANDS8; i++) |
4175 | if (sc->bands[i].lo != 0 && |
4176 | sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) |
4177 | break; |
4178 | if (i == IWN_NBANDS8) /* Can't happen in real-life. */ |
4179 | return EINVAL22; |
4180 | chans = sc->bands[i].chans; |
4181 | DPRINTF(("chan %d sub-band=%d\n", chan, i)); |
4182 | |
4183 | if (iwn_rxon_ht40_enabled(sc)) { |
4184 | is_ht40 = 1; |
4185 | if (le32toh(sc->rxon.flags)((__uint32_t)(sc->rxon.flags)) & IWN_RXON_HT_HT40MINUS(1 << 22)) |
4186 | ext_chan = chan - 2; |
4187 | else |
4188 | ext_chan = chan + 2; |
4189 | } else |
4190 | ext_chan = chan; |
4191 | |
4192 | for (c = 0; c < 2; c++) { |
4193 | uint8_t power, gain, temp; |
4194 | int maxchpwr, pwr, ridx, idx; |
4195 | |
4196 | power = interpolate(ext_chan, |
4197 | chans[0].num, chans[0].samples[c][1].power, |
4198 | chans[1].num, chans[1].samples[c][1].power, 1); |
4199 | gain = interpolate(ext_chan, |
4200 | chans[0].num, chans[0].samples[c][1].gain, |
4201 | chans[1].num, chans[1].samples[c][1].gain, 1); |
4202 | temp = interpolate(ext_chan, |
4203 | chans[0].num, chans[0].samples[c][1].temp, |
4204 | chans[1].num, chans[1].samples[c][1].temp, 1); |
4205 | DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", |
4206 | c, power, gain, temp)); |
4207 | |
4208 | /* Compute temperature compensation. */ |
4209 | tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; |
4210 | DPRINTF(("temperature compensation=%d (current=%d, " |
4211 | "EEPROM=%d)\n", tdiff, sc->temp, temp)); |
4212 | |
4213 | for (ridx = 0; ridx <= IWN_RIDX_MAX32; ridx++) { |
4214 | /* Convert dBm to half-dBm. */ |
4215 | if (is_ht40) |
4216 | maxchpwr = sc->maxpwr40[chan] * 2; |
4217 | else |
4218 | maxchpwr = sc->maxpwr[chan] * 2; |
4219 | #ifdef notyet |
4220 | if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16]) |
4221 | maxchpwr -= 6; /* MIMO 2T: -3dB */ |
4222 | #endif |
4223 | |
4224 | pwr = maxpwr; |
4225 | |
4226 | /* Adjust TX power based on rate. */ |
4227 | if ((ridx % 8) == 5) |
4228 | pwr -= 15; /* OFDM48: -7.5dB */ |
4229 | else if ((ridx % 8) == 6) |
4230 | pwr -= 17; /* OFDM54: -8.5dB */ |
4231 | else if ((ridx % 8) == 7) |
4232 | pwr -= 20; /* OFDM60: -10dB */ |
4233 | else |
4234 | pwr -= 10; /* Others: -5dB */ |
4235 | |
4236 | /* Do not exceed channel max TX power. */ |
4237 | if (pwr > maxchpwr) |
4238 | pwr = maxchpwr; |
4239 | |
4240 | idx = gain - (pwr - power) - tdiff - vdiff; |
4241 | if (ridx > iwn_mcs2ridx[7]) /* MIMO */ |
4242 | idx += (int32_t)letoh32(uc->atten[grp][c])((__uint32_t)(uc->atten[grp][c])); |
4243 | |
4244 | if (cmd.band == 0) |
4245 | idx += 9; /* 5GHz */ |
4246 | if (ridx == IWN_RIDX_MAX32) |
4247 | idx += 5; /* CCK */ |
4248 | |
4249 | /* Make sure idx stays in a valid range. */ |
4250 | if (idx < 0) |
4251 | idx = 0; |
4252 | else if (idx > IWN4965_MAX_PWR_INDEX107) |
4253 | idx = IWN4965_MAX_PWR_INDEX107; |
4254 | |
4255 | DPRINTF(("TX chain %d, rate idx %d: power=%d\n", |
4256 | c, ridx, idx)); |
4257 | cmd.power[ridx].rf_gain[c] = rf_gain[idx]; |
4258 | cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; |
4259 | } |
4260 | } |
4261 | |
4262 | DPRINTF(("setting TX power for chan %d\n", chan)); |
4263 | return iwn_cmd(sc, IWN_CMD_TXPOWER151, &cmd, sizeof cmd, async); |
4264 | |
4265 | #undef interpolate |
4266 | #undef fdivround |
4267 | } |
4268 | |
4269 | int |
4270 | iwn5000_set_txpower(struct iwn_softc *sc, int async) |
4271 | { |
4272 | struct iwn5000_cmd_txpower cmd; |
4273 | |
4274 | /* |
4275 | * TX power calibration is handled automatically by the firmware |
4276 | * for 5000 Series. |
4277 | */ |
4278 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4279 | cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM16; /* 16 dBm */ |
4280 | cmd.flags = IWN5000_TXPOWER_NO_CLOSED(1 << 6); |
4281 | cmd.srv_limit = IWN5000_TXPOWER_AUTO0x7f; |
4282 | DPRINTF(("setting TX power\n")); |
4283 | return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM149, &cmd, sizeof cmd, async); |
4284 | } |
4285 | |
4286 | /* |
4287 | * Retrieve the maximum RSSI (in dBm) among receivers. |
4288 | */ |
4289 | int |
4290 | iwn4965_get_rssi(const struct iwn_rx_stat *stat) |
4291 | { |
4292 | struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; |
4293 | uint8_t mask, agc; |
4294 | int rssi; |
4295 | |
4296 | mask = (letoh16(phy->antenna)((__uint16_t)(phy->antenna)) >> 4) & IWN_ANT_ABC((1 << 0) | (1 << 1) | (1 << 2)); |
4297 | agc = (letoh16(phy->agc)((__uint16_t)(phy->agc)) >> 7) & 0x7f; |
4298 | |
4299 | rssi = 0; |
4300 | if (mask & IWN_ANT_A(1 << 0)) |
4301 | rssi = MAX(rssi, phy->rssi[0])(((rssi)>(phy->rssi[0]))?(rssi):(phy->rssi[0])); |
4302 | if (mask & IWN_ANT_B(1 << 1)) |
4303 | rssi = MAX(rssi, phy->rssi[2])(((rssi)>(phy->rssi[2]))?(rssi):(phy->rssi[2])); |
4304 | if (mask & IWN_ANT_C(1 << 2)) |
4305 | rssi = MAX(rssi, phy->rssi[4])(((rssi)>(phy->rssi[4]))?(rssi):(phy->rssi[4])); |
4306 | |
4307 | return rssi - agc - IWN_RSSI_TO_DBM44; |
4308 | } |
4309 | |
4310 | int |
4311 | iwn5000_get_rssi(const struct iwn_rx_stat *stat) |
4312 | { |
4313 | struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; |
4314 | uint8_t agc; |
4315 | int rssi; |
4316 | |
4317 | agc = (letoh32(phy->agc)((__uint32_t)(phy->agc)) >> 9) & 0x7f; |
4318 | |
4319 | rssi = MAX(letoh16(phy->rssi[0]) & 0xff,(((((__uint16_t)(phy->rssi[0])) & 0xff)>(((__uint16_t )(phy->rssi[1])) & 0xff))?(((__uint16_t)(phy->rssi[ 0])) & 0xff):(((__uint16_t)(phy->rssi[1])) & 0xff) ) |
4320 | letoh16(phy->rssi[1]) & 0xff)(((((__uint16_t)(phy->rssi[0])) & 0xff)>(((__uint16_t )(phy->rssi[1])) & 0xff))?(((__uint16_t)(phy->rssi[ 0])) & 0xff):(((__uint16_t)(phy->rssi[1])) & 0xff) ); |
4321 | rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi)(((((__uint16_t)(phy->rssi[2])) & 0xff)>(rssi))?((( __uint16_t)(phy->rssi[2])) & 0xff):(rssi)); |
4322 | |
4323 | return rssi - agc - IWN_RSSI_TO_DBM44; |
4324 | } |
4325 | |
4326 | /* |
4327 | * Retrieve the average noise (in dBm) among receivers. |
4328 | */ |
4329 | int |
4330 | iwn_get_noise(const struct iwn_rx_general_stats *stats) |
4331 | { |
4332 | int i, total, nbant, noise; |
4333 | |
4334 | total = nbant = 0; |
4335 | for (i = 0; i < 3; i++) { |
4336 | if ((noise = letoh32(stats->noise[i])((__uint32_t)(stats->noise[i])) & 0xff) == 0) |
4337 | continue; |
4338 | total += noise; |
4339 | nbant++; |
4340 | } |
4341 | /* There should be at least one antenna but check anyway. */ |
4342 | return (nbant == 0) ? -127 : (total / nbant) - 107; |
4343 | } |
4344 | |
4345 | /* |
4346 | * Compute temperature (in degC) from last received statistics. |
4347 | */ |
4348 | int |
4349 | iwn4965_get_temperature(struct iwn_softc *sc) |
4350 | { |
4351 | struct iwn_ucode_info *uc = &sc->ucode_info; |
4352 | int32_t r1, r2, r3, r4, temp; |
4353 | |
4354 | if (sc->rx_stats_flags & IWN_STATS_FLAGS_BAND_HT400x08) { |
4355 | r1 = letoh32(uc->temp[0].chan40MHz)((__uint32_t)(uc->temp[0].chan40MHz)); |
4356 | r2 = letoh32(uc->temp[1].chan40MHz)((__uint32_t)(uc->temp[1].chan40MHz)); |
4357 | r3 = letoh32(uc->temp[2].chan40MHz)((__uint32_t)(uc->temp[2].chan40MHz)); |
4358 | } else { |
4359 | r1 = letoh32(uc->temp[0].chan20MHz)((__uint32_t)(uc->temp[0].chan20MHz)); |
4360 | r2 = letoh32(uc->temp[1].chan20MHz)((__uint32_t)(uc->temp[1].chan20MHz)); |
4361 | r3 = letoh32(uc->temp[2].chan20MHz)((__uint32_t)(uc->temp[2].chan20MHz)); |
4362 | } |
4363 | r4 = letoh32(sc->rawtemp)((__uint32_t)(sc->rawtemp)); |
4364 | |
4365 | if (r1 == r3) /* Prevents division by 0 (should not happen). */ |
4366 | return 0; |
4367 | |
4368 | /* Sign-extend 23-bit R4 value to 32-bit. */ |
4369 | r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; |
4370 | /* Compute temperature in Kelvin. */ |
4371 | temp = (259 * (r4 - r2)) / (r3 - r1); |
4372 | temp = (temp * 97) / 100 + 8; |
4373 | |
4374 | DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); |
4375 | return IWN_KTOC(temp)((temp) - 273); |
4376 | } |
4377 | |
4378 | int |
4379 | iwn5000_get_temperature(struct iwn_softc *sc) |
4380 | { |
4381 | int32_t temp; |
4382 | |
4383 | /* |
4384 | * Temperature is not used by the driver for 5000 Series because |
4385 | * TX power calibration is handled by firmware. |
4386 | */ |
4387 | temp = letoh32(sc->rawtemp)((__uint32_t)(sc->rawtemp)); |
4388 | if (sc->hw_type == IWN_HW_REV_TYPE_51504) { |
4389 | temp = (temp / -5) + sc->temp_off; |
4390 | temp = IWN_KTOC(temp)((temp) - 273); |
4391 | } |
4392 | return temp; |
4393 | } |
4394 | |
4395 | /* |
4396 | * Initialize sensitivity calibration state machine. |
4397 | */ |
4398 | int |
4399 | iwn_init_sensitivity(struct iwn_softc *sc) |
4400 | { |
4401 | struct iwn_ops *ops = &sc->ops; |
4402 | struct iwn_calib_state *calib = &sc->calib; |
4403 | uint32_t flags; |
4404 | int error; |
4405 | |
4406 | /* Reset calibration state machine. */ |
4407 | memset(calib, 0, sizeof (*calib))__builtin_memset((calib), (0), (sizeof (*calib))); |
4408 | calib->state = IWN_CALIB_STATE_INIT0; |
4409 | calib->cck_state = IWN_CCK_STATE_HIFA2; |
4410 | /* Set initial correlation values. */ |
4411 | calib->ofdm_x1 = sc->limits->min_ofdm_x1; |
4412 | calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; |
4413 | calib->ofdm_x4 = sc->limits->min_ofdm_x4; |
4414 | calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; |
4415 | calib->cck_x4 = 125; |
4416 | calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; |
4417 | calib->energy_cck = sc->limits->energy_cck; |
4418 | |
4419 | /* Write initial sensitivity. */ |
4420 | if ((error = iwn_send_sensitivity(sc)) != 0) |
4421 | return error; |
4422 | |
4423 | /* Write initial gains. */ |
4424 | if ((error = ops->init_gains(sc)) != 0) |
4425 | return error; |
4426 | |
4427 | /* Request statistics at each beacon interval. */ |
4428 | flags = 0; |
4429 | DPRINTFN(2, ("sending request for statistics\n")); |
4430 | return iwn_cmd(sc, IWN_CMD_GET_STATISTICS156, &flags, sizeof flags, 1); |
4431 | } |
4432 | |
4433 | /* |
4434 | * Collect noise and RSSI statistics for the first 20 beacons received |
4435 | * after association and use them to determine connected antennas and |
4436 | * to set differential gains. |
4437 | */ |
4438 | void |
4439 | iwn_collect_noise(struct iwn_softc *sc, |
4440 | const struct iwn_rx_general_stats *stats) |
4441 | { |
4442 | struct iwn_ops *ops = &sc->ops; |
4443 | struct iwn_calib_state *calib = &sc->calib; |
4444 | uint32_t val; |
4445 | int i; |
4446 | |
4447 | /* Accumulate RSSI and noise for all 3 antennas. */ |
4448 | for (i = 0; i < 3; i++) { |
4449 | calib->rssi[i] += letoh32(stats->rssi[i])((__uint32_t)(stats->rssi[i])) & 0xff; |
4450 | calib->noise[i] += letoh32(stats->noise[i])((__uint32_t)(stats->noise[i])) & 0xff; |
4451 | } |
4452 | /* NB: We update differential gains only once after 20 beacons. */ |
4453 | if (++calib->nbeacons < 20) |
4454 | return; |
4455 | |
4456 | /* Determine highest average RSSI. */ |
4457 | val = MAX(calib->rssi[0], calib->rssi[1])(((calib->rssi[0])>(calib->rssi[1]))?(calib->rssi [0]):(calib->rssi[1])); |
4458 | val = MAX(calib->rssi[2], val)(((calib->rssi[2])>(val))?(calib->rssi[2]):(val)); |
4459 | |
4460 | /* Determine which antennas are connected. */ |
4461 | sc->chainmask = sc->rxchainmask; |
4462 | for (i = 0; i < 3; i++) |
4463 | if (val - calib->rssi[i] > 15 * 20) |
4464 | sc->chainmask &= ~(1 << i); |
4465 | DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", |
4466 | sc->rxchainmask, sc->chainmask)); |
4467 | |
4468 | /* If none of the TX antennas are connected, keep at least one. */ |
4469 | if ((sc->chainmask & sc->txchainmask) == 0) |
4470 | sc->chainmask |= IWN_LSB(sc->txchainmask)((((sc->txchainmask) - 1) & (sc->txchainmask)) ^ (sc ->txchainmask)); |
4471 | |
4472 | (void)ops->set_gains(sc); |
4473 | calib->state = IWN_CALIB_STATE_RUN2; |
4474 | |
4475 | #ifdef notyet |
4476 | /* XXX Disable RX chains with no antennas connected. */ |
4477 | sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask))((__uint16_t)(IWN_RXCHAIN_SEL(sc->chainmask))); |
4478 | (void)iwn_cmd(sc, IWN_CMD_RXON16, &sc->rxon, sc->rxonsz, 1); |
4479 | #endif |
4480 | |
4481 | /* Enable power-saving mode if requested by user. */ |
4482 | if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON0x00000400) |
4483 | (void)iwn_set_pslevel(sc, 0, 3, 1); |
4484 | } |
4485 | |
4486 | int |
4487 | iwn4965_init_gains(struct iwn_softc *sc) |
4488 | { |
4489 | struct iwn_phy_calib_gain cmd; |
4490 | |
4491 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4492 | cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN7; |
4493 | /* Differential gains initially set to 0 for all 3 antennas. */ |
4494 | DPRINTF(("setting initial differential gains\n")); |
4495 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 1); |
4496 | } |
4497 | |
4498 | int |
4499 | iwn5000_init_gains(struct iwn_softc *sc) |
4500 | { |
4501 | struct iwn_phy_calib cmd; |
4502 | |
4503 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4504 | cmd.code = sc->reset_noise_gain; |
4505 | cmd.ngroups = 1; |
4506 | cmd.isvalid = 1; |
4507 | DPRINTF(("setting initial differential gains\n")); |
4508 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 1); |
4509 | } |
4510 | |
4511 | int |
4512 | iwn4965_set_gains(struct iwn_softc *sc) |
4513 | { |
4514 | struct iwn_calib_state *calib = &sc->calib; |
4515 | struct iwn_phy_calib_gain cmd; |
4516 | int i, delta, noise; |
4517 | |
4518 | /* Get minimal noise among connected antennas. */ |
4519 | noise = INT_MAX0x7fffffff; /* NB: There's at least one antenna. */ |
4520 | for (i = 0; i < 3; i++) |
4521 | if (sc->chainmask & (1 << i)) |
4522 | noise = MIN(calib->noise[i], noise)(((calib->noise[i])<(noise))?(calib->noise[i]):(noise )); |
4523 | |
4524 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4525 | cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN7; |
4526 | /* Set differential gains for connected antennas. */ |
4527 | for (i = 0; i < 3; i++) { |
4528 | if (sc->chainmask & (1 << i)) { |
4529 | /* Compute attenuation (in unit of 1.5dB). */ |
4530 | delta = (noise - (int32_t)calib->noise[i]) / 30; |
4531 | /* NB: delta <= 0 */ |
4532 | /* Limit to [-4.5dB,0]. */ |
4533 | cmd.gain[i] = MIN(abs(delta), 3)(((abs(delta))<(3))?(abs(delta)):(3)); |
4534 | if (delta < 0) |
4535 | cmd.gain[i] |= 1 << 2; /* sign bit */ |
4536 | } |
4537 | } |
4538 | DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", |
4539 | cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); |
4540 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 1); |
4541 | } |
4542 | |
4543 | int |
4544 | iwn5000_set_gains(struct iwn_softc *sc) |
4545 | { |
4546 | struct iwn_calib_state *calib = &sc->calib; |
4547 | struct iwn_phy_calib_gain cmd; |
4548 | int i, ant, div, delta; |
4549 | |
4550 | /* We collected 20 beacons and !=6050 need a 1.5 factor. */ |
4551 | div = (sc->hw_type == IWN_HW_REV_TYPE_60508) ? 20 : 30; |
4552 | |
4553 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4554 | cmd.code = sc->noise_gain; |
4555 | cmd.ngroups = 1; |
4556 | cmd.isvalid = 1; |
4557 | /* |
4558 | * Get first available RX antenna as referential. |
4559 | * IWN_LSB() return values start with 1, but antenna gain array |
4560 | * cmd.gain[] and noise array calib->noise[] start with 0. |
4561 | */ |
4562 | ant = IWN_LSB(sc->rxchainmask)((((sc->rxchainmask) - 1) & (sc->rxchainmask)) ^ (sc ->rxchainmask)) - 1; |
4563 | |
4564 | /* Set differential gains for other antennas. */ |
4565 | for (i = ant + 1; i < 3; i++) { |
4566 | if (sc->chainmask & (1 << i)) { |
4567 | /* The delta is relative to antenna "ant". */ |
4568 | delta = ((int32_t)calib->noise[ant] - |
4569 | (int32_t)calib->noise[i]) / div; |
4570 | DPRINTF(("Ant[%d] vs. Ant[%d]: delta %d\n", ant, i, delta)); |
4571 | /* Limit to [-4.5dB,+4.5dB]. */ |
4572 | cmd.gain[i] = MIN(abs(delta), 3)(((abs(delta))<(3))?(abs(delta)):(3)); |
4573 | if (delta < 0) |
4574 | cmd.gain[i] |= 1 << 2; /* sign bit */ |
4575 | DPRINTF(("Setting differential gains for antenna %d: %x\n", |
4576 | i, cmd.gain[i])); |
4577 | } |
4578 | } |
4579 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 1); |
4580 | } |
4581 | |
4582 | /* |
4583 | * Tune RF RX sensitivity based on the number of false alarms detected |
4584 | * during the last beacon period. |
4585 | */ |
4586 | void |
4587 | iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) |
4588 | { |
4589 | #define inc(val, inc, max) \ |
4590 | if ((val) < (max)) { \ |
4591 | if ((val) < (max) - (inc)) \ |
4592 | (val) += (inc); \ |
4593 | else \ |
4594 | (val) = (max); \ |
4595 | needs_update = 1; \ |
4596 | } |
4597 | #define dec(val, dec, min) \ |
4598 | if ((val) > (min)) { \ |
4599 | if ((val) > (min) + (dec)) \ |
4600 | (val) -= (dec); \ |
4601 | else \ |
4602 | (val) = (min); \ |
4603 | needs_update = 1; \ |
4604 | } |
4605 | |
4606 | const struct iwn_sensitivity_limits *limits = sc->limits; |
4607 | struct iwn_calib_state *calib = &sc->calib; |
4608 | uint32_t val, rxena, fa; |
4609 | uint32_t energy[3], energy_min; |
4610 | uint8_t noise[3], noise_ref; |
4611 | int i, needs_update = 0; |
4612 | |
4613 | /* Check that we've been enabled long enough. */ |
4614 | if ((rxena = letoh32(stats->general.load)((__uint32_t)(stats->general.load))) == 0) |
4615 | return; |
4616 | |
4617 | /* Compute number of false alarms since last call for OFDM. */ |
4618 | fa = letoh32(stats->ofdm.bad_plcp)((__uint32_t)(stats->ofdm.bad_plcp)) - calib->bad_plcp_ofdm; |
4619 | fa += letoh32(stats->ofdm.fa)((__uint32_t)(stats->ofdm.fa)) - calib->fa_ofdm; |
4620 | fa *= 200 * IEEE80211_DUR_TU1024; /* 200TU */ |
4621 | |
4622 | /* Save counters values for next call. */ |
4623 | calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp)((__uint32_t)(stats->ofdm.bad_plcp)); |
4624 | calib->fa_ofdm = letoh32(stats->ofdm.fa)((__uint32_t)(stats->ofdm.fa)); |
4625 | |
4626 | if (fa > 50 * rxena) { |
4627 | /* High false alarm count, decrease sensitivity. */ |
4628 | DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); |
4629 | inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); |
4630 | inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); |
4631 | inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); |
4632 | inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); |
4633 | |
4634 | } else if (fa < 5 * rxena) { |
4635 | /* Low false alarm count, increase sensitivity. */ |
4636 | DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); |
4637 | dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); |
4638 | dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); |
4639 | dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); |
4640 | dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); |
4641 | } |
4642 | |
4643 | /* Compute maximum noise among 3 receivers. */ |
4644 | for (i = 0; i < 3; i++) |
4645 | noise[i] = (letoh32(stats->general.noise[i])((__uint32_t)(stats->general.noise[i])) >> 8) & 0xff; |
4646 | val = MAX(noise[0], noise[1])(((noise[0])>(noise[1]))?(noise[0]):(noise[1])); |
4647 | val = MAX(noise[2], val)(((noise[2])>(val))?(noise[2]):(val)); |
4648 | /* Insert it into our samples table. */ |
4649 | calib->noise_samples[calib->cur_noise_sample] = val; |
4650 | calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; |
4651 | |
4652 | /* Compute maximum noise among last 20 samples. */ |
4653 | noise_ref = calib->noise_samples[0]; |
4654 | for (i = 1; i < 20; i++) |
4655 | noise_ref = MAX(noise_ref, calib->noise_samples[i])(((noise_ref)>(calib->noise_samples[i]))?(noise_ref):(calib ->noise_samples[i])); |
4656 | |
4657 | /* Compute maximum energy among 3 receivers. */ |
4658 | for (i = 0; i < 3; i++) |
4659 | energy[i] = letoh32(stats->general.energy[i])((__uint32_t)(stats->general.energy[i])); |
4660 | val = MIN(energy[0], energy[1])(((energy[0])<(energy[1]))?(energy[0]):(energy[1])); |
4661 | val = MIN(energy[2], val)(((energy[2])<(val))?(energy[2]):(val)); |
4662 | /* Insert it into our samples table. */ |
4663 | calib->energy_samples[calib->cur_energy_sample] = val; |
4664 | calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; |
4665 | |
4666 | /* Compute minimum energy among last 10 samples. */ |
4667 | energy_min = calib->energy_samples[0]; |
4668 | for (i = 1; i < 10; i++) |
4669 | energy_min = MAX(energy_min, calib->energy_samples[i])(((energy_min)>(calib->energy_samples[i]))?(energy_min) :(calib->energy_samples[i])); |
4670 | energy_min += 6; |
4671 | |
4672 | /* Compute number of false alarms since last call for CCK. */ |
4673 | fa = letoh32(stats->cck.bad_plcp)((__uint32_t)(stats->cck.bad_plcp)) - calib->bad_plcp_cck; |
4674 | fa += letoh32(stats->cck.fa)((__uint32_t)(stats->cck.fa)) - calib->fa_cck; |
4675 | fa *= 200 * IEEE80211_DUR_TU1024; /* 200TU */ |
4676 | |
4677 | /* Save counters values for next call. */ |
4678 | calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp)((__uint32_t)(stats->cck.bad_plcp)); |
4679 | calib->fa_cck = letoh32(stats->cck.fa)((__uint32_t)(stats->cck.fa)); |
4680 | |
4681 | if (fa > 50 * rxena) { |
4682 | /* High false alarm count, decrease sensitivity. */ |
4683 | DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); |
4684 | calib->cck_state = IWN_CCK_STATE_HIFA2; |
4685 | calib->low_fa = 0; |
4686 | |
4687 | if (calib->cck_x4 > 160) { |
4688 | calib->noise_ref = noise_ref; |
4689 | if (calib->energy_cck > 2) |
4690 | dec(calib->energy_cck, 2, energy_min); |
4691 | } |
4692 | if (calib->cck_x4 < 160) { |
4693 | calib->cck_x4 = 161; |
4694 | needs_update = 1; |
4695 | } else |
4696 | inc(calib->cck_x4, 3, limits->max_cck_x4); |
4697 | |
4698 | inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); |
4699 | |
4700 | } else if (fa < 5 * rxena) { |
4701 | /* Low false alarm count, increase sensitivity. */ |
4702 | DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); |
4703 | calib->cck_state = IWN_CCK_STATE_LOFA1; |
4704 | calib->low_fa++; |
4705 | |
4706 | if (calib->cck_state != IWN_CCK_STATE_INIT0 && |
4707 | (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || |
4708 | calib->low_fa > 100)) { |
4709 | inc(calib->energy_cck, 2, limits->min_energy_cck); |
4710 | dec(calib->cck_x4, 3, limits->min_cck_x4); |
4711 | dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); |
4712 | } |
4713 | } else { |
4714 | /* Not worth to increase or decrease sensitivity. */ |
4715 | DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); |
4716 | calib->low_fa = 0; |
4717 | calib->noise_ref = noise_ref; |
4718 | |
4719 | if (calib->cck_state == IWN_CCK_STATE_HIFA2) { |
4720 | /* Previous interval had many false alarms. */ |
4721 | dec(calib->energy_cck, 8, energy_min); |
4722 | } |
4723 | calib->cck_state = IWN_CCK_STATE_INIT0; |
4724 | } |
4725 | |
4726 | if (needs_update) |
4727 | (void)iwn_send_sensitivity(sc); |
4728 | #undef dec |
4729 | #undef inc |
4730 | } |
4731 | |
4732 | int |
4733 | iwn_send_sensitivity(struct iwn_softc *sc) |
4734 | { |
4735 | struct iwn_calib_state *calib = &sc->calib; |
4736 | struct iwn_enhanced_sensitivity_cmd cmd; |
4737 | int len; |
4738 | |
4739 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4740 | len = sizeof (struct iwn_sensitivity_cmd); |
4741 | cmd.which = IWN_SENSITIVITY_WORKTBL1; |
4742 | /* OFDM modulation. */ |
4743 | cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1)((__uint16_t)(calib->ofdm_x1)); |
4744 | cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1)((__uint16_t)(calib->ofdm_mrc_x1)); |
4745 | cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4)((__uint16_t)(calib->ofdm_x4)); |
4746 | cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4)((__uint16_t)(calib->ofdm_mrc_x4)); |
4747 | cmd.energy_ofdm = htole16(sc->limits->energy_ofdm)((__uint16_t)(sc->limits->energy_ofdm)); |
4748 | cmd.energy_ofdm_th = htole16(62)((__uint16_t)(62)); |
4749 | /* CCK modulation. */ |
4750 | cmd.corr_cck_x4 = htole16(calib->cck_x4)((__uint16_t)(calib->cck_x4)); |
4751 | cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4)((__uint16_t)(calib->cck_mrc_x4)); |
4752 | cmd.energy_cck = htole16(calib->energy_cck)((__uint16_t)(calib->energy_cck)); |
4753 | /* Barker modulation: use default values. */ |
4754 | cmd.corr_barker = htole16(190)((__uint16_t)(190)); |
4755 | cmd.corr_barker_mrc = htole16(390)((__uint16_t)(390)); |
4756 | if (!(sc->sc_flags & IWN_FLAG_ENH_SENS(1 << 7))) |
4757 | goto send; |
4758 | /* Enhanced sensitivity settings. */ |
4759 | len = sizeof (struct iwn_enhanced_sensitivity_cmd); |
4760 | cmd.ofdm_det_slope_mrc = htole16(668)((__uint16_t)(668)); |
4761 | cmd.ofdm_det_icept_mrc = htole16(4)((__uint16_t)(4)); |
4762 | cmd.ofdm_det_slope = htole16(486)((__uint16_t)(486)); |
4763 | cmd.ofdm_det_icept = htole16(37)((__uint16_t)(37)); |
4764 | cmd.cck_det_slope_mrc = htole16(853)((__uint16_t)(853)); |
4765 | cmd.cck_det_icept_mrc = htole16(4)((__uint16_t)(4)); |
4766 | cmd.cck_det_slope = htole16(476)((__uint16_t)(476)); |
4767 | cmd.cck_det_icept = htole16(99)((__uint16_t)(99)); |
4768 | send: |
4769 | return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY168, &cmd, len, 1); |
4770 | } |
4771 | |
4772 | /* |
4773 | * Set STA mode power saving level (between 0 and 5). |
4774 | * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. |
4775 | */ |
4776 | int |
4777 | iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) |
4778 | { |
4779 | struct iwn_pmgt_cmd cmd; |
4780 | const struct iwn_pmgt *pmgt; |
4781 | uint32_t max, skip_dtim; |
4782 | pcireg_t reg; |
4783 | int i; |
4784 | |
4785 | /* Select which PS parameters to use. */ |
4786 | if (dtim <= 2) |
4787 | pmgt = &iwn_pmgt[0][level]; |
4788 | else if (dtim <= 10) |
4789 | pmgt = &iwn_pmgt[1][level]; |
4790 | else |
4791 | pmgt = &iwn_pmgt[2][level]; |
4792 | |
4793 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4794 | if (level != 0) /* not CAM */ |
4795 | cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP)((__uint16_t)((1 << 0))); |
4796 | if (level == 5) |
4797 | cmd.flags |= htole16(IWN_PS_FAST_PD)((__uint16_t)((1 << 4))); |
4798 | /* Retrieve PCIe Active State Power Management (ASPM). */ |
4799 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
4800 | sc->sc_cap_off + PCI_PCIE_LCSR0x10); |
4801 | if (!(reg & PCI_PCIE_LCSR_ASPM_L0S0x00000001)) /* L0s Entry disabled. */ |
4802 | cmd.flags |= htole16(IWN_PS_PCI_PMGT)((__uint16_t)((1 << 3))); |
4803 | cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024)((__uint32_t)(pmgt->rxtimeout * 1024)); |
4804 | cmd.txtimeout = htole32(pmgt->txtimeout * 1024)((__uint32_t)(pmgt->txtimeout * 1024)); |
4805 | |
4806 | if (dtim == 0) { |
4807 | dtim = 1; |
4808 | skip_dtim = 0; |
4809 | } else |
4810 | skip_dtim = pmgt->skip_dtim; |
4811 | if (skip_dtim != 0) { |
4812 | cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM)((__uint16_t)((1 << 2))); |
4813 | max = pmgt->intval[4]; |
4814 | if (max == (uint32_t)-1) |
4815 | max = dtim * (skip_dtim + 1); |
4816 | else if (max > dtim) |
4817 | max = (max / dtim) * dtim; |
4818 | } else |
4819 | max = dtim; |
4820 | for (i = 0; i < 5; i++) |
4821 | cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]))((__uint32_t)((((max)<(pmgt->intval[i]))?(max):(pmgt-> intval[i])))); |
4822 | |
4823 | DPRINTF(("setting power saving level to %d\n", level)); |
4824 | return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE119, &cmd, sizeof cmd, async); |
4825 | } |
4826 | |
4827 | int |
4828 | iwn_send_btcoex(struct iwn_softc *sc) |
4829 | { |
4830 | struct iwn_bluetooth cmd; |
4831 | |
4832 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4833 | cmd.flags = IWN_BT_COEX_CHAN_ANN(1 << 0) | IWN_BT_COEX_BT_PRIO(1 << 1); |
4834 | cmd.lead_time = IWN_BT_LEAD_TIME_DEF30; |
4835 | cmd.max_kill = IWN_BT_MAX_KILL_DEF5; |
4836 | DPRINTF(("configuring bluetooth coexistence\n")); |
4837 | return iwn_cmd(sc, IWN_CMD_BT_COEX155, &cmd, sizeof(cmd), 0); |
4838 | } |
4839 | |
4840 | int |
4841 | iwn_send_advanced_btcoex(struct iwn_softc *sc) |
4842 | { |
4843 | static const uint32_t btcoex_3wire[12] = { |
4844 | 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, |
4845 | 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, |
4846 | 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, |
4847 | }; |
4848 | struct iwn_btcoex_priotable btprio; |
4849 | struct iwn_btcoex_prot btprot; |
4850 | int error, i; |
4851 | |
4852 | if (sc->hw_type == IWN_HW_REV_TYPE_203012 || |
4853 | sc->hw_type == IWN_HW_REV_TYPE_13518) { |
4854 | struct iwn2000_btcoex_config btconfig; |
4855 | |
4856 | memset(&btconfig, 0, sizeof btconfig)__builtin_memset((&btconfig), (0), (sizeof btconfig)); |
4857 | btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION1 | |
4858 | (IWN_BT_COEX6000_MODE_3W2 << IWN_BT_COEX6000_MODE_SHIFT3) | |
4859 | IWN_BT_SYNC_2_BT_DISABLE(1<<7); |
4860 | btconfig.max_kill = 5; |
4861 | btconfig.bt3_t7_timer = 1; |
4862 | btconfig.kill_ack = htole32(0xffff0000)((__uint32_t)(0xffff0000)); |
4863 | btconfig.kill_cts = htole32(0xffff0000)((__uint32_t)(0xffff0000)); |
4864 | btconfig.sample_time = 2; |
4865 | btconfig.bt3_t2_timer = 0xc; |
4866 | for (i = 0; i < 12; i++) |
4867 | btconfig.lookup_table[i] = htole32(btcoex_3wire[i])((__uint32_t)(btcoex_3wire[i])); |
4868 | btconfig.valid = htole16(0xff)((__uint16_t)(0xff)); |
4869 | btconfig.prio_boost = htole32(0xf0)((__uint32_t)(0xf0)); |
4870 | DPRINTF(("configuring advanced bluetooth coexistence\n")); |
4871 | error = iwn_cmd(sc, IWN_CMD_BT_COEX155, &btconfig, |
4872 | sizeof(btconfig), 1); |
4873 | if (error != 0) |
4874 | return (error); |
4875 | } else { |
4876 | struct iwn6000_btcoex_config btconfig; |
4877 | |
4878 | memset(&btconfig, 0, sizeof btconfig)__builtin_memset((&btconfig), (0), (sizeof btconfig)); |
4879 | btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION1 | |
4880 | (IWN_BT_COEX6000_MODE_3W2 << IWN_BT_COEX6000_MODE_SHIFT3) | |
4881 | IWN_BT_SYNC_2_BT_DISABLE(1<<7); |
4882 | btconfig.max_kill = 5; |
4883 | btconfig.bt3_t7_timer = 1; |
4884 | btconfig.kill_ack = htole32(0xffff0000)((__uint32_t)(0xffff0000)); |
4885 | btconfig.kill_cts = htole32(0xffff0000)((__uint32_t)(0xffff0000)); |
4886 | btconfig.sample_time = 2; |
4887 | btconfig.bt3_t2_timer = 0xc; |
4888 | for (i = 0; i < 12; i++) |
4889 | btconfig.lookup_table[i] = htole32(btcoex_3wire[i])((__uint32_t)(btcoex_3wire[i])); |
4890 | btconfig.valid = htole16(0xff)((__uint16_t)(0xff)); |
4891 | btconfig.prio_boost = 0xf0; |
4892 | DPRINTF(("configuring advanced bluetooth coexistence\n")); |
4893 | error = iwn_cmd(sc, IWN_CMD_BT_COEX155, &btconfig, |
4894 | sizeof(btconfig), 1); |
4895 | if (error != 0) |
4896 | return (error); |
4897 | } |
4898 | |
4899 | memset(&btprio, 0, sizeof btprio)__builtin_memset((&btprio), (0), (sizeof btprio)); |
4900 | btprio.calib_init1 = 0x6; |
4901 | btprio.calib_init2 = 0x7; |
4902 | btprio.calib_periodic_low1 = 0x2; |
4903 | btprio.calib_periodic_low2 = 0x3; |
4904 | btprio.calib_periodic_high1 = 0x4; |
4905 | btprio.calib_periodic_high2 = 0x5; |
4906 | btprio.dtim = 0x6; |
4907 | btprio.scan52 = 0x8; |
4908 | btprio.scan24 = 0xa; |
4909 | error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE204, &btprio, sizeof(btprio), |
4910 | 1); |
4911 | if (error != 0) |
4912 | return (error); |
4913 | |
4914 | /* Force BT state machine change */ |
4915 | memset(&btprot, 0, sizeof btprot)__builtin_memset((&btprot), (0), (sizeof btprot)); |
4916 | btprot.open = 1; |
4917 | btprot.type = 1; |
4918 | error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT205, &btprot, sizeof(btprot), 1); |
4919 | if (error != 0) |
4920 | return (error); |
4921 | |
4922 | btprot.open = 0; |
4923 | return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT205, &btprot, sizeof(btprot), 1)); |
4924 | } |
4925 | |
4926 | int |
4927 | iwn5000_runtime_calib(struct iwn_softc *sc) |
4928 | { |
4929 | struct iwn5000_calib_config cmd; |
4930 | |
4931 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
4932 | cmd.ucode.once.enable = 0xffffffff; |
4933 | cmd.ucode.once.start = IWN5000_CALIB_DC(1 << 1); |
4934 | DPRINTF(("configuring runtime calibration\n")); |
4935 | return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG101, &cmd, sizeof(cmd), 0); |
4936 | } |
4937 | |
4938 | int |
4939 | iwn_config(struct iwn_softc *sc) |
4940 | { |
4941 | struct iwn_ops *ops = &sc->ops; |
4942 | struct ieee80211com *ic = &sc->sc_ic; |
4943 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
4944 | uint32_t txmask; |
4945 | uint16_t rxchain; |
4946 | int error, ridx; |
4947 | |
4948 | /* Set radio temperature sensor offset. */ |
4949 | if (sc->hw_type == IWN_HW_REV_TYPE_600511) { |
4950 | error = iwn6000_temp_offset_calib(sc); |
4951 | if (error != 0) { |
4952 | printf("%s: could not set temperature offset\n", |
4953 | sc->sc_dev.dv_xname); |
4954 | return error; |
4955 | } |
4956 | } |
4957 | |
4958 | if (sc->hw_type == IWN_HW_REV_TYPE_203012 || |
4959 | sc->hw_type == IWN_HW_REV_TYPE_200016 || |
4960 | sc->hw_type == IWN_HW_REV_TYPE_13518 || |
4961 | sc->hw_type == IWN_HW_REV_TYPE_10517) { |
4962 | error = iwn2000_temp_offset_calib(sc); |
4963 | if (error != 0) { |
4964 | printf("%s: could not set temperature offset\n", |
4965 | sc->sc_dev.dv_xname); |
4966 | return error; |
4967 | } |
4968 | } |
4969 | |
4970 | if (sc->hw_type == IWN_HW_REV_TYPE_60508 || |
4971 | sc->hw_type == IWN_HW_REV_TYPE_600511) { |
4972 | /* Configure runtime DC calibration. */ |
4973 | error = iwn5000_runtime_calib(sc); |
4974 | if (error != 0) { |
4975 | printf("%s: could not configure runtime calibration\n", |
4976 | sc->sc_dev.dv_xname); |
4977 | return error; |
4978 | } |
4979 | } |
4980 | |
4981 | /* Configure valid TX chains for >=5000 Series. */ |
4982 | if (sc->hw_type != IWN_HW_REV_TYPE_49650) { |
4983 | txmask = htole32(sc->txchainmask)((__uint32_t)(sc->txchainmask)); |
4984 | DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); |
4985 | error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG152, &txmask, |
4986 | sizeof txmask, 0); |
4987 | if (error != 0) { |
4988 | printf("%s: could not configure valid TX chains\n", |
4989 | sc->sc_dev.dv_xname); |
4990 | return error; |
4991 | } |
4992 | } |
4993 | |
4994 | /* Configure bluetooth coexistence. */ |
4995 | if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX(1 << 8)) |
4996 | error = iwn_send_advanced_btcoex(sc); |
4997 | else |
4998 | error = iwn_send_btcoex(sc); |
4999 | if (error != 0) { |
5000 | printf("%s: could not configure bluetooth coexistence\n", |
5001 | sc->sc_dev.dv_xname); |
5002 | return error; |
5003 | } |
5004 | |
5005 | /* Set mode, channel, RX filter and enable RX. */ |
5006 | memset(&sc->rxon, 0, sizeof (struct iwn_rxon))__builtin_memset((&sc->rxon), (0), (sizeof (struct iwn_rxon ))); |
5007 | IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl))__builtin_memcpy((ic->ic_myaddr), (((caddr_t)((ifp->if_sadl )->sdl_data + (ifp->if_sadl)->sdl_nlen))), (6)); |
5008 | IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr)__builtin_memcpy((sc->rxon.myaddr), (ic->ic_myaddr), (6 )); |
5009 | IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr)__builtin_memcpy((sc->rxon.wlap), (ic->ic_myaddr), (6)); |
5010 | sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); |
5011 | sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF)((__uint32_t)((1 << 15) | (1 << 30))); |
5012 | if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)(((ic->ic_ibss_chan)->ic_flags & 0x0080) != 0)) { |
5013 | sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ)((__uint32_t)((1 << 2) | (1 << 0))); |
5014 | if (ic->ic_flags & IEEE80211_F_USEPROT0x00100000) |
5015 | sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT)((__uint32_t)((1 << 3))); |
5016 | DPRINTF(("%s: 2ghz prot 0x%x\n", __func__, |
5017 | le32toh(sc->rxon.flags))); |
5018 | } |
5019 | switch (ic->ic_opmode) { |
5020 | case IEEE80211_M_STA: |
5021 | sc->rxon.mode = IWN_MODE_STA3; |
5022 | sc->rxon.filter = htole32(IWN_FILTER_MULTICAST)((__uint32_t)((1 << 2))); |
5023 | break; |
5024 | case IEEE80211_M_MONITOR: |
5025 | sc->rxon.mode = IWN_MODE_MONITOR6; |
5026 | sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |((__uint32_t)((1 << 2) | (1 << 1) | (1 << 0 ))) |
5027 | IWN_FILTER_CTL | IWN_FILTER_PROMISC)((__uint32_t)((1 << 2) | (1 << 1) | (1 << 0 ))); |
5028 | break; |
5029 | default: |
5030 | /* Should not get there. */ |
5031 | break; |
5032 | } |
5033 | sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ |
5034 | sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ |
5035 | sc->rxon.ht_single_mask = 0xff; |
5036 | sc->rxon.ht_dual_mask = 0xff; |
5037 | sc->rxon.ht_triple_mask = 0xff; |
5038 | rxchain = |
5039 | IWN_RXCHAIN_VALID(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 1) | |
5040 | IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains)((sc->nrxchains) << 12) | |
5041 | IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains)((sc->nrxchains) << 10); |
5042 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
5043 | rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 4); |
5044 | rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 7); |
5045 | rxchain |= (IWN_RXCHAIN_DRIVER_FORCE(1 << 0) | IWN_RXCHAIN_MIMO_FORCE(1 << 14)); |
5046 | } |
5047 | sc->rxon.rxchain = htole16(rxchain)((__uint16_t)(rxchain)); |
5048 | DPRINTF(("setting configuration\n")); |
5049 | DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n", |
5050 | __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, |
5051 | sc->rxon.ofdm_mask, sc->rxon.rxchain)); |
5052 | error = iwn_cmd(sc, IWN_CMD_RXON16, &sc->rxon, sc->rxonsz, 0); |
5053 | if (error != 0) { |
5054 | printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); |
5055 | return error; |
5056 | } |
5057 | |
5058 | ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ? |
5059 | IWN_RIDX_OFDM64 : IWN_RIDX_CCK10; |
5060 | if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) { |
5061 | printf("%s: could not add broadcast node\n", |
5062 | sc->sc_dev.dv_xname); |
5063 | return error; |
5064 | } |
5065 | |
5066 | /* Configuration has changed, set TX power accordingly. */ |
5067 | if ((error = ops->set_txpower(sc, 0)) != 0) { |
5068 | printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); |
5069 | return error; |
5070 | } |
5071 | |
5072 | if ((error = iwn_set_critical_temp(sc)) != 0) { |
5073 | printf("%s: could not set critical temperature\n", |
5074 | sc->sc_dev.dv_xname); |
5075 | return error; |
5076 | } |
5077 | |
5078 | /* Set power saving level to CAM during initialization. */ |
5079 | if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { |
5080 | printf("%s: could not set power saving level\n", |
5081 | sc->sc_dev.dv_xname); |
5082 | return error; |
5083 | } |
5084 | return 0; |
5085 | } |
5086 | |
5087 | uint16_t |
5088 | iwn_get_active_dwell_time(struct iwn_softc *sc, |
5089 | uint16_t flags, uint8_t n_probes) |
5090 | { |
5091 | /* No channel? Default to 2GHz settings */ |
5092 | if (flags & IEEE80211_CHAN_2GHZ0x0080) { |
5093 | return (IWN_ACTIVE_DWELL_TIME_2GHZ(30) + |
5094 | IWN_ACTIVE_DWELL_FACTOR_2GHZ(3) * (n_probes + 1)); |
5095 | } |
5096 | |
5097 | /* 5GHz dwell time */ |
5098 | return (IWN_ACTIVE_DWELL_TIME_5GHZ(20) + |
5099 | IWN_ACTIVE_DWELL_FACTOR_5GHZ(2) * (n_probes + 1)); |
5100 | } |
5101 | |
5102 | /* |
5103 | * Limit the total dwell time to 85% of the beacon interval. |
5104 | * |
5105 | * Returns the dwell time in milliseconds. |
5106 | */ |
5107 | uint16_t |
5108 | iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) |
5109 | { |
5110 | struct ieee80211com *ic = &sc->sc_ic; |
5111 | struct ieee80211_node *ni = ic->ic_bss; |
5112 | int bintval = 0; |
5113 | |
5114 | /* bintval is in TU (1.024mS) */ |
5115 | if (ni != NULL((void *)0)) |
5116 | bintval = ni->ni_intval; |
5117 | |
5118 | /* |
5119 | * If it's non-zero, we should calculate the minimum of |
5120 | * it and the DWELL_BASE. |
5121 | * |
5122 | * XXX Yes, the math should take into account that bintval |
5123 | * is 1.024mS, not 1mS.. |
5124 | */ |
5125 | if (ic->ic_state == IEEE80211_S_RUN && bintval > 0) |
5126 | return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))((((100))<(((bintval * 85) / 100)))?((100)):(((bintval * 85 ) / 100)))); |
5127 | |
5128 | /* No association context? Default */ |
5129 | return dwell_time; |
5130 | } |
5131 | |
5132 | uint16_t |
5133 | iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) |
5134 | { |
5135 | uint16_t passive; |
5136 | if (flags & IEEE80211_CHAN_2GHZ0x0080) { |
5137 | passive = IWN_PASSIVE_DWELL_BASE(100) + IWN_PASSIVE_DWELL_TIME_2GHZ(20); |
5138 | } else { |
5139 | passive = IWN_PASSIVE_DWELL_BASE(100) + IWN_PASSIVE_DWELL_TIME_5GHZ(10); |
5140 | } |
5141 | |
5142 | /* Clamp to the beacon interval if we're associated */ |
5143 | return (iwn_limit_dwell(sc, passive)); |
5144 | } |
5145 | |
5146 | int |
5147 | iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan) |
5148 | { |
5149 | struct ieee80211com *ic = &sc->sc_ic; |
5150 | struct iwn_scan_hdr *hdr; |
5151 | struct iwn_cmd_data *tx; |
5152 | struct iwn_scan_essid *essid; |
5153 | struct iwn_scan_chan *chan; |
5154 | struct ieee80211_frame *wh; |
5155 | struct ieee80211_rateset *rs; |
5156 | struct ieee80211_channel *c; |
5157 | uint8_t *buf, *frm; |
5158 | uint16_t rxchain, dwell_active, dwell_passive; |
5159 | uint8_t txant; |
5160 | int buflen, error, is_active; |
5161 | |
5162 | buf = malloc(IWN_SCAN_MAXSZ((1 << 11) - 4), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
5163 | if (buf == NULL((void *)0)) { |
5164 | printf("%s: could not allocate buffer for scan command\n", |
5165 | sc->sc_dev.dv_xname); |
5166 | return ENOMEM12; |
5167 | } |
5168 | hdr = (struct iwn_scan_hdr *)buf; |
5169 | /* |
5170 | * Move to the next channel if no frames are received within 10ms |
5171 | * after sending the probe request. |
5172 | */ |
5173 | hdr->quiet_time = htole16(10)((__uint16_t)(10)); /* timeout in milliseconds */ |
5174 | hdr->quiet_threshold = htole16(1)((__uint16_t)(1)); /* min # of packets */ |
5175 | |
5176 | if (bgscan) { |
5177 | int bintval; |
5178 | |
5179 | /* Set maximum off-channel time. */ |
5180 | hdr->max_out = htole32(200 * 1024)((__uint32_t)(200 * 1024)); |
5181 | |
5182 | /* Configure scan pauses which service on-channel traffic. */ |
5183 | bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100; |
5184 | hdr->pause_scan = htole32(((100 / bintval) << 22) |((__uint32_t)(((100 / bintval) << 22) | ((100 % bintval ) * 1024))) |
5185 | ((100 % bintval) * 1024))((__uint32_t)(((100 / bintval) << 22) | ((100 % bintval ) * 1024))); |
5186 | } |
5187 | |
5188 | /* Select antennas for scanning. */ |
5189 | rxchain = |
5190 | IWN_RXCHAIN_VALID(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 1) | |
5191 | IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 7) | |
5192 | IWN_RXCHAIN_DRIVER_FORCE(1 << 0); |
5193 | if ((flags & IEEE80211_CHAN_5GHZ0x0100) && |
5194 | sc->hw_type == IWN_HW_REV_TYPE_49650) { |
5195 | /* |
5196 | * On 4965 ant A and C must be avoided in 5GHz because of a |
5197 | * HW bug which causes very weak RSSI values being reported. |
5198 | */ |
5199 | rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B)((((1 << 1)) & ((1 << 0) | (1 << 1) | ( 1 << 2))) << 4); |
5200 | } else /* Use all available RX antennas. */ |
5201 | rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask)(((sc->rxchainmask) & ((1 << 0) | (1 << 1) | (1 << 2))) << 4); |
5202 | hdr->rxchain = htole16(rxchain)((__uint16_t)(rxchain)); |
5203 | hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON)((__uint32_t)((1 << 2) | (1 << 6))); |
5204 | |
5205 | tx = (struct iwn_cmd_data *)(hdr + 1); |
5206 | tx->flags = htole32(IWN_TX_AUTO_SEQ)((__uint32_t)((1 << 13))); |
5207 | tx->id = sc->broadcast_id; |
5208 | tx->lifetime = htole32(IWN_LIFETIME_INFINITE)((__uint32_t)(0xffffffff)); |
5209 | |
5210 | if (flags & IEEE80211_CHAN_5GHZ0x0100) { |
5211 | /* Send probe requests at 6Mbps. */ |
5212 | tx->plcp = iwn_rates[IWN_RIDX_OFDM64].plcp; |
5213 | rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; |
5214 | } else { |
5215 | hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO)((__uint32_t)((1 << 0) | (1 << 2))); |
5216 | if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_49650 && |
5217 | sc->rxon.chan > 14) { |
5218 | /* |
5219 | * 4965 firmware can crash when sending probe requests |
5220 | * with CCK rates while associated to a 5GHz AP. |
5221 | * Send probe requests at 6Mbps OFDM as a workaround. |
5222 | */ |
5223 | tx->plcp = iwn_rates[IWN_RIDX_OFDM64].plcp; |
5224 | } else { |
5225 | /* Send probe requests at 1Mbps. */ |
5226 | tx->plcp = iwn_rates[IWN_RIDX_CCK10].plcp; |
5227 | tx->rflags = IWN_RFLAG_CCK(1 << 1); |
5228 | } |
5229 | rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; |
5230 | } |
5231 | /* Use the first valid TX antenna. */ |
5232 | txant = IWN_LSB(sc->txchainmask)((((sc->txchainmask) - 1) & (sc->txchainmask)) ^ (sc ->txchainmask)); |
5233 | tx->rflags |= IWN_RFLAG_ANT(txant)((txant) << 6); |
5234 | |
5235 | /* |
5236 | * Only do active scanning if we're announcing a probe request |
5237 | * for a given SSID (or more, if we ever add it to the driver.) |
5238 | */ |
5239 | is_active = 0; |
5240 | |
5241 | /* |
5242 | * If we're scanning for a specific SSID, add it to the command. |
5243 | */ |
5244 | essid = (struct iwn_scan_essid *)(tx + 1); |
5245 | if (ic->ic_des_esslen != 0) { |
5246 | essid[0].id = IEEE80211_ELEMID_SSID; |
5247 | essid[0].len = ic->ic_des_esslen; |
5248 | memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen)__builtin_memcpy((essid[0].data), (ic->ic_des_essid), (ic-> ic_des_esslen)); |
5249 | |
5250 | is_active = 1; |
5251 | } |
5252 | /* |
5253 | * Build a probe request frame. Most of the following code is a |
5254 | * copy & paste of what is done in net80211. |
5255 | */ |
5256 | wh = (struct ieee80211_frame *)(essid + 20); |
5257 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
5258 | IEEE80211_FC0_SUBTYPE_PROBE_REQ0x40; |
5259 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
5260 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
5261 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
5262 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
5263 | *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ |
5264 | *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ |
5265 | |
5266 | frm = (uint8_t *)(wh + 1); |
5267 | frm = ieee80211_add_ssid(frm, NULL((void *)0), 0); |
5268 | frm = ieee80211_add_rates(frm, rs); |
5269 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) |
5270 | frm = ieee80211_add_xrates(frm, rs); |
5271 | if (ic->ic_flags & IEEE80211_F_HTON0x02000000) |
5272 | frm = ieee80211_add_htcaps(frm, ic); |
5273 | |
5274 | /* Set length of probe request. */ |
5275 | tx->len = htole16(frm - (uint8_t *)wh)((__uint16_t)(frm - (uint8_t *)wh)); |
5276 | |
5277 | /* |
5278 | * If active scanning is requested but a certain channel is |
5279 | * marked passive, we can do active scanning if we detect |
5280 | * transmissions. |
5281 | * |
5282 | * There is an issue with some firmware versions that triggers |
5283 | * a sysassert on a "good CRC threshold" of zero (== disabled), |
5284 | * on a radar channel even though this means that we should NOT |
5285 | * send probes. |
5286 | * |
5287 | * The "good CRC threshold" is the number of frames that we |
5288 | * need to receive during our dwell time on a channel before |
5289 | * sending out probes -- setting this to a huge value will |
5290 | * mean we never reach it, but at the same time work around |
5291 | * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER |
5292 | * here instead of IWN_GOOD_CRC_TH_DISABLED. |
5293 | * |
5294 | * This was fixed in later versions along with some other |
5295 | * scan changes, and the threshold behaves as a flag in those |
5296 | * versions. |
5297 | */ |
5298 | |
5299 | /* |
5300 | * If we're doing active scanning, set the crc_threshold |
5301 | * to a suitable value. This is different to active veruss |
5302 | * passive scanning depending upon the channel flags; the |
5303 | * firmware will obey that particular check for us. |
5304 | */ |
5305 | if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) |
5306 | hdr->crc_threshold = is_active ? |
5307 | IWN_GOOD_CRC_TH_DEFAULT((__uint16_t)(1)) : IWN_GOOD_CRC_TH_DISABLED0; |
5308 | else |
5309 | hdr->crc_threshold = is_active ? |
5310 | IWN_GOOD_CRC_TH_DEFAULT((__uint16_t)(1)) : IWN_GOOD_CRC_TH_NEVER((__uint16_t)(0xffff)); |
5311 | |
5312 | chan = (struct iwn_scan_chan *)frm; |
5313 | for (c = &ic->ic_channels[1]; |
5314 | c <= &ic->ic_channels[IEEE80211_CHAN_MAX255]; c++) { |
5315 | if ((c->ic_flags & flags) != flags) |
5316 | continue; |
5317 | |
5318 | chan->chan = htole16(ieee80211_chan2ieee(ic, c))((__uint16_t)(ieee80211_chan2ieee(ic, c))); |
5319 | DPRINTFN(2, ("adding channel %d\n", chan->chan)); |
5320 | chan->flags = 0; |
5321 | if (ic->ic_des_esslen != 0) |
5322 | chan->flags |= htole32(IWN_CHAN_NPBREQS(1))((__uint32_t)((((1 << (1)) - 1) << 1))); |
5323 | |
5324 | if (c->ic_flags & IEEE80211_CHAN_PASSIVE0x0200) |
5325 | chan->flags |= htole32(IWN_CHAN_PASSIVE)((__uint32_t)((0 << 0))); |
5326 | else |
5327 | chan->flags |= htole32(IWN_CHAN_ACTIVE)((__uint32_t)((1 << 0))); |
5328 | |
5329 | /* |
5330 | * Calculate the active/passive dwell times. |
5331 | */ |
5332 | |
5333 | dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); |
5334 | dwell_passive = iwn_get_passive_dwell_time(sc, flags); |
5335 | |
5336 | /* Make sure they're valid */ |
5337 | if (dwell_passive <= dwell_active) |
5338 | dwell_passive = dwell_active + 1; |
5339 | |
5340 | chan->active = htole16(dwell_active)((__uint16_t)(dwell_active)); |
5341 | chan->passive = htole16(dwell_passive)((__uint16_t)(dwell_passive)); |
5342 | |
5343 | chan->dsp_gain = 0x6e; |
5344 | if (IEEE80211_IS_CHAN_5GHZ(c)(((c)->ic_flags & 0x0100) != 0)) { |
5345 | chan->rf_gain = 0x3b; |
5346 | } else { |
5347 | chan->rf_gain = 0x28; |
5348 | } |
5349 | hdr->nchan++; |
5350 | chan++; |
5351 | } |
5352 | |
5353 | buflen = (uint8_t *)chan - buf; |
5354 | hdr->len = htole16(buflen)((__uint16_t)(buflen)); |
5355 | |
5356 | error = iwn_cmd(sc, IWN_CMD_SCAN128, buf, buflen, 1); |
5357 | if (error == 0) { |
5358 | /* |
5359 | * The current mode might have been fixed during association. |
5360 | * Ensure all channels get scanned. |
5361 | */ |
5362 | if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media)((ic->ic_media.ifm_cur->ifm_media) & 0x000000ff00000000ULL ) == IFM_AUTO0ULL) |
5363 | ieee80211_setmode(ic, IEEE80211_MODE_AUTO); |
5364 | |
5365 | sc->sc_flags |= IWN_FLAG_SCANNING(1 << 10); |
5366 | if (bgscan) |
5367 | sc->sc_flags |= IWN_FLAG_BGSCAN(1 << 9); |
5368 | } |
5369 | free(buf, M_DEVBUF2, IWN_SCAN_MAXSZ((1 << 11) - 4)); |
5370 | return error; |
5371 | } |
5372 | |
5373 | void |
5374 | iwn_scan_abort(struct iwn_softc *sc) |
5375 | { |
5376 | iwn_cmd(sc, IWN_CMD_SCAN_ABORT129, NULL((void *)0), 0, 1); |
5377 | |
5378 | /* XXX Cannot wait for status response in interrupt context. */ |
5379 | DELAY(100)(*delay_func)(100); |
5380 | |
5381 | sc->sc_flags &= ~IWN_FLAG_SCANNING(1 << 10); |
5382 | sc->sc_flags &= ~IWN_FLAG_BGSCAN(1 << 9); |
5383 | } |
5384 | |
5385 | int |
5386 | iwn_bgscan(struct ieee80211com *ic) |
5387 | { |
5388 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5389 | int error; |
5390 | |
5391 | if (sc->sc_flags & IWN_FLAG_SCANNING(1 << 10)) |
5392 | return 0; |
5393 | |
5394 | error = iwn_scan(sc, IEEE80211_CHAN_2GHZ0x0080, 1); |
5395 | if (error) |
5396 | printf("%s: could not initiate background scan\n", |
5397 | sc->sc_dev.dv_xname); |
5398 | return error; |
5399 | } |
5400 | |
5401 | void |
5402 | iwn_rxon_configure_ht40(struct ieee80211com *ic, struct ieee80211_node *ni) |
5403 | { |
5404 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5405 | uint8_t sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK0x03); |
5406 | enum ieee80211_htprot htprot = (ni->ni_htop1 & |
5407 | IEEE80211_HTOP1_PROT_MASK0x0003); |
5408 | |
5409 | sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |((__uint32_t)((2 << 25) | (1 << 25) | (1 << 22))) |
5410 | IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS)((__uint32_t)((2 << 25) | (1 << 25) | (1 << 22))); |
5411 | |
5412 | if (ieee80211_node_supports_ht_chan40(ni) && |
5413 | (sco == IEEE80211_HTOP0_SCO_SCA1 || |
5414 | sco == IEEE80211_HTOP0_SCO_SCB3)) { |
5415 | if (sco == IEEE80211_HTOP0_SCO_SCB3) |
5416 | sc->rxon.flags |= htole32(IWN_RXON_HT_HT40MINUS)((__uint32_t)((1 << 22))); |
5417 | if (htprot == IEEE80211_HTPROT_20MHZ) |
5418 | sc->rxon.flags |= htole32(IWN_RXON_HT_CHANMODE_PURE40)((__uint32_t)((1 << 25))); |
5419 | else |
5420 | sc->rxon.flags |= htole32(((__uint32_t)((2 << 25))) |
5421 | IWN_RXON_HT_CHANMODE_MIXED2040)((__uint32_t)((2 << 25))); |
5422 | } |
5423 | } |
5424 | |
5425 | int |
5426 | iwn_rxon_ht40_enabled(struct iwn_softc *sc) |
5427 | { |
5428 | return ((le32toh(sc->rxon.flags)((__uint32_t)(sc->rxon.flags)) & IWN_RXON_HT_CHANMODE_MIXED2040(2 << 25)) || |
5429 | (le32toh(sc->rxon.flags)((__uint32_t)(sc->rxon.flags)) & IWN_RXON_HT_CHANMODE_PURE40(1 << 25))) ? 1 : 0; |
5430 | } |
5431 | |
5432 | int |
5433 | iwn_auth(struct iwn_softc *sc, int arg) |
5434 | { |
5435 | struct iwn_ops *ops = &sc->ops; |
5436 | struct ieee80211com *ic = &sc->sc_ic; |
5437 | struct ieee80211_node *ni = ic->ic_bss; |
5438 | int error, ridx; |
5439 | int bss_switch = |
5440 | (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr)(__builtin_memcmp((sc->bss_node_addr), (etheranyaddr), (6) ) == 0) && |
5441 | !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr)(__builtin_memcmp((sc->bss_node_addr), (ni->ni_macaddr) , (6)) == 0)); |
5442 | |
5443 | /* Update adapter configuration. */ |
5444 | IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid)__builtin_memcpy((sc->rxon.bssid), (ni->ni_bssid), (6)); |
5445 | sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); |
5446 | sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF)((__uint32_t)((1 << 15) | (1 << 30))); |
5447 | if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0080) != 0)) { |
5448 | sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ)((__uint32_t)((1 << 2) | (1 << 0))); |
5449 | if (ic->ic_flags & IEEE80211_F_USEPROT0x00100000) |
5450 | sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT)((__uint32_t)((1 << 3))); |
5451 | DPRINTF(("%s: 2ghz prot 0x%x\n", __func__, |
5452 | le32toh(sc->rxon.flags))); |
5453 | } |
5454 | if (ic->ic_flags & IEEE80211_F_SHSLOT0x00020000) |
5455 | sc->rxon.flags |= htole32(IWN_RXON_SHSLOT)((__uint32_t)((1 << 4))); |
5456 | else |
5457 | sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT)((__uint32_t)((1 << 4))); |
5458 | if (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000) |
5459 | sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE)((__uint32_t)((1 << 5))); |
5460 | else |
5461 | sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE)((__uint32_t)((1 << 5))); |
5462 | switch (ic->ic_curmode) { |
5463 | case IEEE80211_MODE_11A: |
5464 | sc->rxon.cck_mask = 0; |
5465 | sc->rxon.ofdm_mask = 0x15; |
5466 | break; |
5467 | case IEEE80211_MODE_11B: |
5468 | sc->rxon.cck_mask = 0x03; |
5469 | sc->rxon.ofdm_mask = 0; |
5470 | break; |
5471 | default: /* Assume 802.11b/g/n. */ |
5472 | sc->rxon.cck_mask = 0x0f; |
5473 | sc->rxon.ofdm_mask = 0x15; |
5474 | } |
5475 | /* Configure 40MHz early to avoid problems on 6205 devices. */ |
5476 | iwn_rxon_configure_ht40(ic, ni); |
5477 | DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__, |
5478 | sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, |
5479 | sc->rxon.ofdm_mask)); |
5480 | error = iwn_cmd(sc, IWN_CMD_RXON16, &sc->rxon, sc->rxonsz, 1); |
5481 | if (error != 0) { |
5482 | printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); |
5483 | return error; |
5484 | } |
5485 | |
5486 | /* Configuration has changed, set TX power accordingly. */ |
5487 | if ((error = ops->set_txpower(sc, 1)) != 0) { |
5488 | printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); |
5489 | return error; |
5490 | } |
5491 | /* |
5492 | * Reconfiguring RXON clears the firmware nodes table so we must |
5493 | * add the broadcast node again. |
5494 | */ |
5495 | ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0) ? |
5496 | IWN_RIDX_OFDM64 : IWN_RIDX_CCK10; |
5497 | if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) { |
5498 | printf("%s: could not add broadcast node\n", |
5499 | sc->sc_dev.dv_xname); |
5500 | return error; |
5501 | } |
5502 | |
5503 | /* |
5504 | * Make sure the firmware gets to see a beacon before we send |
5505 | * the auth request. Otherwise the Tx attempt can fail due to |
5506 | * the firmware's built-in regulatory domain enforcement. |
5507 | * Delaying here for every incoming deauth frame can result in a DoS. |
5508 | * Don't delay if we're here because of an incoming frame (arg != -1) |
5509 | * or if we're already waiting for a response (ic_mgt_timer != 0). |
5510 | * If we are switching APs after a background scan then net80211 has |
5511 | * just faked the reception of a deauth frame from our old AP, so it |
5512 | * is safe to delay in that case. |
5513 | */ |
5514 | if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0) |
5515 | DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU)(*delay_func)(ni->ni_intval * 3 * 1024); |
5516 | |
5517 | /* We can now clear the cached address of our previous AP. */ |
5518 | memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr))__builtin_memset((sc->bss_node_addr), (0), (sizeof(sc-> bss_node_addr))); |
5519 | |
5520 | return 0; |
5521 | } |
5522 | |
5523 | int |
5524 | iwn_run(struct iwn_softc *sc) |
5525 | { |
5526 | struct iwn_ops *ops = &sc->ops; |
5527 | struct ieee80211com *ic = &sc->sc_ic; |
5528 | struct ieee80211_node *ni = ic->ic_bss; |
5529 | struct iwn_node *wn = (void *)ni; |
5530 | struct iwn_node_info node; |
5531 | int error; |
5532 | |
5533 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
5534 | /* Link LED blinks while monitoring. */ |
5535 | iwn_set_led(sc, IWN_LED_LINK2, 50, 50); |
5536 | return 0; |
5537 | } |
5538 | if ((error = iwn_set_timing(sc, ni)) != 0) { |
5539 | printf("%s: could not set timing\n", sc->sc_dev.dv_xname); |
5540 | return error; |
5541 | } |
5542 | |
5543 | /* Update adapter configuration. */ |
5544 | sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd))((__uint16_t)(((ni->ni_associd) &~ 0xc000))); |
5545 | /* Short preamble and slot time are negotiated when associating. */ |
5546 | sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT)((__uint32_t)((1 << 5) | (1 << 4))); |
5547 | if (ic->ic_flags & IEEE80211_F_SHSLOT0x00020000) |
5548 | sc->rxon.flags |= htole32(IWN_RXON_SHSLOT)((__uint32_t)((1 << 4))); |
5549 | if (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000) |
5550 | sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE)((__uint32_t)((1 << 5))); |
5551 | sc->rxon.filter |= htole32(IWN_FILTER_BSS)((__uint32_t)((1 << 5))); |
5552 | |
5553 | /* HT is negotiated when associating. */ |
5554 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
5555 | enum ieee80211_htprot htprot = |
5556 | (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK0x0003); |
5557 | DPRINTF(("%s: htprot = %d\n", __func__, htprot)); |
5558 | sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot))((__uint32_t)(((htprot) << 23))); |
5559 | } else |
5560 | sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3))((__uint32_t)(((3) << 23))); |
5561 | |
5562 | iwn_rxon_configure_ht40(ic, ni); |
5563 | |
5564 | if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0)) { |
5565 | /* 11a or 11n 5GHz */ |
5566 | sc->rxon.cck_mask = 0; |
5567 | sc->rxon.ofdm_mask = 0x15; |
5568 | } else if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
5569 | /* 11n 2GHz */ |
5570 | sc->rxon.cck_mask = 0x0f; |
5571 | sc->rxon.ofdm_mask = 0x15; |
5572 | } else { |
5573 | if (ni->ni_rates.rs_nrates == 4) { |
5574 | /* 11b */ |
5575 | sc->rxon.cck_mask = 0x03; |
5576 | sc->rxon.ofdm_mask = 0; |
5577 | } else { |
5578 | /* assume 11g */ |
5579 | sc->rxon.cck_mask = 0x0f; |
5580 | sc->rxon.ofdm_mask = 0x15; |
5581 | } |
5582 | } |
5583 | DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__, |
5584 | sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask, |
5585 | sc->rxon.ofdm_mask)); |
5586 | error = iwn_cmd(sc, IWN_CMD_RXON16, &sc->rxon, sc->rxonsz, 1); |
5587 | if (error != 0) { |
5588 | printf("%s: could not update configuration\n", |
5589 | sc->sc_dev.dv_xname); |
5590 | return error; |
5591 | } |
5592 | |
5593 | /* Configuration has changed, set TX power accordingly. */ |
5594 | if ((error = ops->set_txpower(sc, 1)) != 0) { |
5595 | printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); |
5596 | return error; |
5597 | } |
5598 | |
5599 | /* Fake a join to initialize the TX rate. */ |
5600 | ((struct iwn_node *)ni)->id = IWN_ID_BSS0; |
5601 | iwn_newassoc(ic, ni, 1); |
5602 | |
5603 | /* Add BSS node. */ |
5604 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5605 | IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr)__builtin_memcpy((node.macaddr), (ni->ni_macaddr), (6)); |
5606 | node.id = IWN_ID_BSS0; |
5607 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
5608 | node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK((0x3) << 19) | |
5609 | IWN_AMDPU_DENSITY_MASK((0x7) << 23)); |
5610 | node.htflags = htole32(((__uint32_t)((((ic->ic_ampdu_params & 0x03)) << 19) | (((ic->ic_ampdu_params & 0x1c) >> 2) << 23))) |
5611 | IWN_AMDPU_SIZE_FACTOR(((__uint32_t)((((ic->ic_ampdu_params & 0x03)) << 19) | (((ic->ic_ampdu_params & 0x1c) >> 2) << 23))) |
5612 | (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |((__uint32_t)((((ic->ic_ampdu_params & 0x03)) << 19) | (((ic->ic_ampdu_params & 0x1c) >> 2) << 23))) |
5613 | IWN_AMDPU_DENSITY(((__uint32_t)((((ic->ic_ampdu_params & 0x03)) << 19) | (((ic->ic_ampdu_params & 0x1c) >> 2) << 23))) |
5614 | (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2))((__uint32_t)((((ic->ic_ampdu_params & 0x03)) << 19) | (((ic->ic_ampdu_params & 0x1c) >> 2) << 23))); |
5615 | if (iwn_rxon_ht40_enabled(sc)) |
5616 | node.htflags |= htole32(IWN_40MHZ_ENABLE)((__uint32_t)((1 << 21))); |
5617 | } |
5618 | DPRINTF(("adding BSS node\n")); |
5619 | error = ops->add_node(sc, &node, 1); |
5620 | if (error != 0) { |
5621 | printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); |
5622 | return error; |
5623 | } |
5624 | |
5625 | /* Cache address of AP in case it changes after a background scan. */ |
5626 | IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr)__builtin_memcpy((sc->bss_node_addr), (ni->ni_macaddr), (6)); |
5627 | |
5628 | DPRINTF(("setting link quality for node %d\n", node.id)); |
5629 | if ((error = iwn_set_link_quality(sc, ni)) != 0) { |
5630 | printf("%s: could not setup link quality for node %d\n", |
5631 | sc->sc_dev.dv_xname, node.id); |
5632 | return error; |
5633 | } |
5634 | |
5635 | if ((error = iwn_init_sensitivity(sc)) != 0) { |
5636 | printf("%s: could not set sensitivity\n", |
5637 | sc->sc_dev.dv_xname); |
5638 | return error; |
5639 | } |
5640 | /* Start periodic calibration timer. */ |
5641 | sc->calib.state = IWN_CALIB_STATE_ASSOC1; |
5642 | sc->calib_cnt = 0; |
5643 | timeout_add_msec(&sc->calib_to, 500); |
5644 | |
5645 | ieee80211_ra_node_init(&wn->rn); |
5646 | |
5647 | /* Link LED always on while associated. */ |
5648 | iwn_set_led(sc, IWN_LED_LINK2, 0, 1); |
5649 | return 0; |
5650 | } |
5651 | |
5652 | /* |
5653 | * We support CCMP hardware encryption/decryption of unicast frames only. |
5654 | * HW support for TKIP really sucks. We should let TKIP die anyway. |
5655 | */ |
5656 | int |
5657 | iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, |
5658 | struct ieee80211_key *k) |
5659 | { |
5660 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5661 | struct iwn_ops *ops = &sc->ops; |
5662 | struct iwn_node *wn = (void *)ni; |
5663 | struct iwn_node_info node; |
5664 | uint16_t kflags; |
5665 | |
5666 | if ((k->k_flags & IEEE80211_KEY_GROUP0x00000001) || |
5667 | k->k_cipher != IEEE80211_CIPHER_CCMP) |
5668 | return ieee80211_set_key(ic, ni, k); |
5669 | |
5670 | kflags = IWN_KFLAG_CCMP(1 << 1) | IWN_KFLAG_MAP(1 << 3) | IWN_KFLAG_KID(k->k_id)((k->k_id) << 8); |
5671 | if (k->k_flags & IEEE80211_KEY_GROUP0x00000001) |
5672 | kflags |= IWN_KFLAG_GROUP(1 << 14); |
5673 | |
5674 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5675 | node.id = (k->k_flags & IEEE80211_KEY_GROUP0x00000001) ? |
5676 | sc->broadcast_id : wn->id; |
5677 | node.control = IWN_NODE_UPDATE(1 << 0); |
5678 | node.flags = IWN_FLAG_SET_KEY(1 << 0); |
5679 | node.kflags = htole16(kflags)((__uint16_t)(kflags)); |
5680 | node.kid = k->k_id; |
5681 | memcpy(node.key, k->k_key, k->k_len)__builtin_memcpy((node.key), (k->k_key), (k->k_len)); |
5682 | DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); |
5683 | return ops->add_node(sc, &node, 1); |
5684 | } |
5685 | |
5686 | void |
5687 | iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, |
5688 | struct ieee80211_key *k) |
5689 | { |
5690 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5691 | struct iwn_ops *ops = &sc->ops; |
5692 | struct iwn_node *wn = (void *)ni; |
5693 | struct iwn_node_info node; |
5694 | |
5695 | if ((k->k_flags & IEEE80211_KEY_GROUP0x00000001) || |
5696 | k->k_cipher != IEEE80211_CIPHER_CCMP) { |
5697 | /* See comment about other ciphers above. */ |
5698 | ieee80211_delete_key(ic, ni, k); |
5699 | return; |
5700 | } |
5701 | if (ic->ic_state != IEEE80211_S_RUN) |
5702 | return; /* Nothing to do. */ |
5703 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5704 | node.id = (k->k_flags & IEEE80211_KEY_GROUP0x00000001) ? |
5705 | sc->broadcast_id : wn->id; |
5706 | node.control = IWN_NODE_UPDATE(1 << 0); |
5707 | node.flags = IWN_FLAG_SET_KEY(1 << 0); |
5708 | node.kflags = htole16(IWN_KFLAG_INVALID)((__uint16_t)((1 << 11))); |
5709 | node.kid = 0xff; |
5710 | DPRINTF(("delete keys for node %d\n", node.id)); |
5711 | (void)ops->add_node(sc, &node, 1); |
5712 | } |
5713 | |
5714 | void |
5715 | iwn_updatechan(struct ieee80211com *ic) |
5716 | { |
5717 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5718 | |
5719 | if (ic->ic_state != IEEE80211_S_RUN) |
5720 | return; |
5721 | |
5722 | iwn_rxon_configure_ht40(ic, ic->ic_bss); |
5723 | sc->ops.update_rxon(sc); |
5724 | iwn_set_link_quality(sc, ic->ic_bss); |
5725 | } |
5726 | |
5727 | void |
5728 | iwn_updateprot(struct ieee80211com *ic) |
5729 | { |
5730 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5731 | enum ieee80211_htprot htprot; |
5732 | |
5733 | if (ic->ic_state != IEEE80211_S_RUN) |
5734 | return; |
5735 | |
5736 | /* Update ERP protection setting. */ |
5737 | if (ic->ic_flags & IEEE80211_F_USEPROT0x00100000) |
5738 | sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT)((__uint32_t)((1 << 3))); |
5739 | else |
5740 | sc->rxon.flags &= ~htole32(IWN_RXON_TGG_PROT)((__uint32_t)((1 << 3))); |
5741 | |
5742 | /* Update HT protection mode setting. */ |
5743 | htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK0x0003) >> |
5744 | IEEE80211_HTOP1_PROT_SHIFT0; |
5745 | sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3))((__uint32_t)(((3) << 23))); |
5746 | sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot))((__uint32_t)(((htprot) << 23))); |
5747 | |
5748 | sc->ops.update_rxon(sc); |
5749 | } |
5750 | |
5751 | void |
5752 | iwn_updateslot(struct ieee80211com *ic) |
5753 | { |
5754 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5755 | |
5756 | if (ic->ic_state != IEEE80211_S_RUN) |
5757 | return; |
5758 | |
5759 | if (ic->ic_flags & IEEE80211_F_SHSLOT0x00020000) |
5760 | sc->rxon.flags |= htole32(IWN_RXON_SHSLOT)((__uint32_t)((1 << 4))); |
5761 | else |
5762 | sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT)((__uint32_t)((1 << 4))); |
5763 | |
5764 | if (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000) |
5765 | sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE)((__uint32_t)((1 << 5))); |
5766 | else |
5767 | sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE)((__uint32_t)((1 << 5))); |
5768 | |
5769 | sc->ops.update_rxon(sc); |
5770 | } |
5771 | |
5772 | void |
5773 | iwn_update_rxon_restore_power(struct iwn_softc *sc) |
5774 | { |
5775 | struct ieee80211com *ic = &sc->sc_ic; |
5776 | struct iwn_ops *ops = &sc->ops; |
5777 | int error; |
5778 | |
5779 | DELAY(100)(*delay_func)(100); |
5780 | |
5781 | /* All RXONs wipe the firmware's txpower table. Restore it. */ |
5782 | error = ops->set_txpower(sc, 1); |
5783 | if (error != 0) |
5784 | printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); |
5785 | |
5786 | DELAY(100)(*delay_func)(100); |
5787 | |
5788 | /* Restore power saving level */ |
5789 | if (ic->ic_flags & IEEE80211_F_PMGTON0x00000400) |
5790 | error = iwn_set_pslevel(sc, 0, 3, 1); |
5791 | else |
5792 | error = iwn_set_pslevel(sc, 0, 0, 1); |
5793 | if (error != 0) |
5794 | printf("%s: could not set PS level\n", sc->sc_dev.dv_xname); |
5795 | } |
5796 | |
5797 | void |
5798 | iwn5000_update_rxon(struct iwn_softc *sc) |
5799 | { |
5800 | struct iwn_rxon_assoc rxon_assoc; |
5801 | int s, error; |
5802 | |
5803 | /* Update RXON config. */ |
5804 | memset(&rxon_assoc, 0, sizeof(rxon_assoc))__builtin_memset((&rxon_assoc), (0), (sizeof(rxon_assoc)) ); |
5805 | rxon_assoc.flags = sc->rxon.flags; |
5806 | rxon_assoc.filter = sc->rxon.filter; |
5807 | rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; |
5808 | rxon_assoc.cck_mask = sc->rxon.cck_mask; |
5809 | rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask; |
5810 | rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask; |
5811 | rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask; |
5812 | rxon_assoc.rxchain = sc->rxon.rxchain; |
5813 | rxon_assoc.acquisition = sc->rxon.acquisition; |
5814 | |
5815 | s = splnet()splraise(0x4); |
5816 | |
5817 | error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC17, &rxon_assoc, |
5818 | sizeof(rxon_assoc), 1); |
5819 | if (error != 0) |
5820 | printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname); |
5821 | |
5822 | iwn_update_rxon_restore_power(sc); |
5823 | |
5824 | splx(s)spllower(s); |
5825 | } |
5826 | |
5827 | void |
5828 | iwn4965_update_rxon(struct iwn_softc *sc) |
5829 | { |
5830 | struct iwn4965_rxon_assoc rxon_assoc; |
5831 | int s, error; |
5832 | |
5833 | /* Update RXON config. */ |
5834 | memset(&rxon_assoc, 0, sizeof(rxon_assoc))__builtin_memset((&rxon_assoc), (0), (sizeof(rxon_assoc)) ); |
5835 | rxon_assoc.flags = sc->rxon.flags; |
5836 | rxon_assoc.filter = sc->rxon.filter; |
5837 | rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; |
5838 | rxon_assoc.cck_mask = sc->rxon.cck_mask; |
5839 | rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask; |
5840 | rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask; |
5841 | rxon_assoc.rxchain = sc->rxon.rxchain; |
5842 | |
5843 | s = splnet()splraise(0x4); |
5844 | |
5845 | error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC17, &rxon_assoc, |
5846 | sizeof(rxon_assoc), 1); |
5847 | if (error != 0) |
5848 | printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname); |
5849 | |
5850 | iwn_update_rxon_restore_power(sc); |
5851 | |
5852 | splx(s)spllower(s); |
5853 | } |
5854 | |
5855 | /* |
5856 | * This function is called by upper layer when an ADDBA request is received |
5857 | * from another STA and before the ADDBA response is sent. |
5858 | */ |
5859 | int |
5860 | iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, |
5861 | uint8_t tid) |
5862 | { |
5863 | struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; |
5864 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5865 | struct iwn_ops *ops = &sc->ops; |
5866 | struct iwn_node *wn = (void *)ni; |
5867 | struct iwn_node_info node; |
5868 | |
5869 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5870 | node.id = wn->id; |
5871 | node.control = IWN_NODE_UPDATE(1 << 0); |
5872 | node.flags = IWN_FLAG_SET_ADDBA(1 << 3); |
5873 | node.addba_tid = tid; |
5874 | node.addba_ssn = htole16(ba->ba_winstart)((__uint16_t)(ba->ba_winstart)); |
5875 | DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, |
5876 | ba->ba_winstart)); |
5877 | /* XXX async command, so firmware may still fail to add BA agreement */ |
5878 | return ops->add_node(sc, &node, 1); |
5879 | } |
5880 | |
5881 | /* |
5882 | * This function is called by upper layer on teardown of an HT-immediate |
5883 | * Block Ack agreement (e.g., upon receipt of a DELBA frame). |
5884 | */ |
5885 | void |
5886 | iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, |
5887 | uint8_t tid) |
5888 | { |
5889 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5890 | struct iwn_ops *ops = &sc->ops; |
5891 | struct iwn_node *wn = (void *)ni; |
5892 | struct iwn_node_info node; |
5893 | |
5894 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5895 | node.id = wn->id; |
5896 | node.control = IWN_NODE_UPDATE(1 << 0); |
5897 | node.flags = IWN_FLAG_SET_DELBA(1 << 4); |
5898 | node.delba_tid = tid; |
5899 | DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid)); |
5900 | (void)ops->add_node(sc, &node, 1); |
5901 | } |
5902 | |
5903 | /* |
5904 | * This function is called by upper layer when an ADDBA response is received |
5905 | * from another STA. |
5906 | */ |
5907 | int |
5908 | iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, |
5909 | uint8_t tid) |
5910 | { |
5911 | struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; |
5912 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5913 | struct iwn_ops *ops = &sc->ops; |
5914 | struct iwn_node *wn = (void *)ni; |
5915 | struct iwn_node_info node; |
5916 | int qid = sc->first_agg_txq + tid; |
5917 | int error; |
5918 | |
5919 | /* Ensure we can map this TID to an aggregation queue. */ |
5920 | if (tid >= IWN_NUM_AMPDU_TID8 || ba->ba_winsize > IWN_SCHED_WINSZ64 || |
5921 | qid > sc->ntxqs || (sc->agg_queue_mask & (1 << qid))) |
5922 | return ENOSPC28; |
5923 | |
5924 | /* Enable TX for the specified RA/TID. */ |
5925 | wn->disable_tid &= ~(1 << tid); |
5926 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5927 | node.id = wn->id; |
5928 | node.control = IWN_NODE_UPDATE(1 << 0); |
5929 | node.flags = IWN_FLAG_SET_DISABLE_TID(1 << 1); |
5930 | node.disable_tid = htole16(wn->disable_tid)((__uint16_t)(wn->disable_tid)); |
5931 | error = ops->add_node(sc, &node, 1); |
5932 | if (error != 0) |
5933 | return error; |
5934 | |
5935 | if ((error = iwn_nic_lock(sc)) != 0) |
5936 | return error; |
5937 | ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); |
5938 | iwn_nic_unlock(sc); |
5939 | |
5940 | sc->agg_queue_mask |= (1 << qid); |
5941 | sc->sc_tx_ba[tid].wn = wn; |
5942 | ba->ba_bitmap = 0; |
5943 | |
5944 | return 0; |
5945 | } |
5946 | |
5947 | void |
5948 | iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, |
5949 | uint8_t tid) |
5950 | { |
5951 | struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; |
5952 | struct iwn_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
5953 | struct iwn_ops *ops = &sc->ops; |
5954 | int qid = sc->first_agg_txq + tid; |
5955 | struct iwn_node *wn = (void *)ni; |
5956 | struct iwn_node_info node; |
5957 | |
5958 | /* Discard all frames in the current window. */ |
5959 | iwn_ampdu_txq_advance(sc, &sc->txq[qid], qid, |
5960 | IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winend)((ba->ba_winend) & (256 - 1))); |
5961 | |
5962 | if (iwn_nic_lock(sc) != 0) |
5963 | return; |
5964 | ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); |
5965 | iwn_nic_unlock(sc); |
5966 | |
5967 | sc->agg_queue_mask &= ~(1 << qid); |
5968 | sc->sc_tx_ba[tid].wn = NULL((void *)0); |
5969 | ba->ba_bitmap = 0; |
5970 | |
5971 | /* Disable TX for the specified RA/TID. */ |
5972 | wn->disable_tid |= (1 << tid); |
5973 | memset(&node, 0, sizeof node)__builtin_memset((&node), (0), (sizeof node)); |
5974 | node.id = wn->id; |
5975 | node.control = IWN_NODE_UPDATE(1 << 0); |
5976 | node.flags = IWN_FLAG_SET_DISABLE_TID(1 << 1); |
5977 | node.disable_tid = htole16(wn->disable_tid)((__uint16_t)(wn->disable_tid)); |
5978 | ops->add_node(sc, &node, 1); |
5979 | } |
5980 | |
5981 | void |
5982 | iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, |
5983 | uint8_t tid, uint16_t ssn) |
5984 | { |
5985 | struct iwn_node *wn = (void *)ni; |
5986 | int qid = IWN4965_FIRST_AGG_TXQUEUE7 + tid; |
5987 | uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
5988 | |
5989 | /* Stop TX scheduler while we're changing its configuration. */ |
5990 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x104 + (qid) * 4), |
5991 | IWN4965_TXQ_STATUS_CHGACT(1 << 10)); |
5992 | |
5993 | /* Assign RA/TID translation to the queue. */ |
5994 | iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid)(0x500 + (qid) * 2), |
5995 | wn->id << 4 | tid); |
5996 | |
5997 | /* Enable chain-building mode for the queue. */ |
5998 | iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL(0xa02c00 + 0x0d0), 1 << qid); |
5999 | |
6000 | /* Set starting sequence number from the ADDBA request. */ |
6001 | sc->txq[qid].cur = sc->txq[qid].read = idx; |
6002 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | idx)))); |
6003 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x064 + (qid) * 4), ssn); |
6004 | |
6005 | /* Set scheduler window size. */ |
6006 | iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid)(0x380 + (qid) * 8), |
6007 | IWN_SCHED_WINSZ64); |
6008 | /* Set scheduler frame limit. */ |
6009 | iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid)(0x380 + (qid) * 8) + 4, |
6010 | IWN_SCHED_LIMIT64 << 16); |
6011 | |
6012 | /* Enable interrupts for the queue. */ |
6013 | iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK(0xa02c00 + 0x0e4), 1 << qid); |
6014 | |
6015 | /* Mark the queue as active. */ |
6016 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x104 + (qid) * 4), |
6017 | IWN4965_TXQ_STATUS_ACTIVE0x0007fc01 | IWN4965_TXQ_STATUS_AGGR_ENA(1 << 5 | 1 << 8) | |
6018 | iwn_tid2fifo[tid] << 1); |
6019 | } |
6020 | |
6021 | void |
6022 | iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) |
6023 | { |
6024 | int qid = IWN4965_FIRST_AGG_TXQUEUE7 + tid; |
6025 | uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
6026 | |
6027 | /* Stop TX scheduler while we're changing its configuration. */ |
6028 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x104 + (qid) * 4), |
6029 | IWN4965_TXQ_STATUS_CHGACT(1 << 10)); |
6030 | |
6031 | /* Set starting sequence number from the ADDBA request. */ |
6032 | sc->txq[qid].cur = sc->txq[qid].read = idx; |
6033 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | idx)))); |
6034 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x064 + (qid) * 4), ssn); |
6035 | |
6036 | /* Disable interrupts for the queue. */ |
6037 | iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK(0xa02c00 + 0x0e4), 1 << qid); |
6038 | |
6039 | /* Mark the queue as inactive. */ |
6040 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x104 + (qid) * 4), |
6041 | IWN4965_TXQ_STATUS_INACTIVE0x0007fc00 | iwn_tid2fifo[tid] << 1); |
6042 | } |
6043 | |
6044 | void |
6045 | iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, |
6046 | uint8_t tid, uint16_t ssn) |
6047 | { |
6048 | int qid = IWN5000_FIRST_AGG_TXQUEUE10 + tid; |
6049 | int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
6050 | struct iwn_node *wn = (void *)ni; |
6051 | |
6052 | /* Stop TX scheduler while we're changing its configuration. */ |
6053 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x10c + (qid) * 4), |
6054 | IWN5000_TXQ_STATUS_CHGACT(1 << 19)); |
6055 | |
6056 | /* Assign RA/TID translation to the queue. */ |
6057 | iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid)(0x7e0 + (qid) * 2), |
6058 | wn->id << 4 | tid); |
6059 | |
6060 | /* Enable chain-building mode for the queue. */ |
6061 | iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL(0xa02c00 + 0x0e8), 1 << qid); |
6062 | |
6063 | /* Enable aggregation for the queue. */ |
6064 | iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL(0xa02c00 + 0x248), 1 << qid); |
6065 | |
6066 | /* Set starting sequence number from the ADDBA request. */ |
6067 | sc->txq[qid].cur = sc->txq[qid].read = idx; |
6068 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | idx)))); |
6069 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x068 + (qid) * 4), ssn); |
6070 | |
6071 | /* Set scheduler window size and frame limit. */ |
6072 | iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid)(0x600 + (qid) * 8) + 4, |
6073 | IWN_SCHED_LIMIT64 << 16 | IWN_SCHED_WINSZ64); |
6074 | |
6075 | /* Enable interrupts for the queue. */ |
6076 | iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK(0xa02c00 + 0x108), 1 << qid); |
6077 | |
6078 | /* Mark the queue as active. */ |
6079 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x10c + (qid) * 4), |
6080 | IWN5000_TXQ_STATUS_ACTIVE0x00ff0018 | iwn_tid2fifo[tid]); |
6081 | } |
6082 | |
6083 | void |
6084 | iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) |
6085 | { |
6086 | int qid = IWN5000_FIRST_AGG_TXQUEUE10 + tid; |
6087 | int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
6088 | |
6089 | /* Stop TX scheduler while we're changing its configuration. */ |
6090 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x10c + (qid) * 4), |
6091 | IWN5000_TXQ_STATUS_CHGACT(1 << 19)); |
6092 | |
6093 | /* Disable aggregation for the queue. */ |
6094 | iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL(0xa02c00 + 0x248), 1 << qid); |
6095 | |
6096 | /* Set starting sequence number from the ADDBA request. */ |
6097 | sc->txq[qid].cur = sc->txq[qid].read = idx; |
6098 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | idx)))); |
6099 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x068 + (qid) * 4), ssn); |
6100 | |
6101 | /* Disable interrupts for the queue. */ |
6102 | iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK(0xa02c00 + 0x108), 1 << qid); |
6103 | |
6104 | /* Mark the queue as inactive. */ |
6105 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x10c + (qid) * 4), |
6106 | IWN5000_TXQ_STATUS_INACTIVE0x00ff0010 | iwn_tid2fifo[tid]); |
6107 | } |
6108 | |
6109 | /* |
6110 | * Query calibration tables from the initialization firmware. We do this |
6111 | * only once at first boot. Called from a process context. |
6112 | */ |
6113 | int |
6114 | iwn5000_query_calibration(struct iwn_softc *sc) |
6115 | { |
6116 | struct iwn5000_calib_config cmd; |
6117 | int error; |
6118 | |
6119 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
6120 | cmd.ucode.once.enable = 0xffffffff; |
6121 | cmd.ucode.once.start = 0xffffffff; |
6122 | cmd.ucode.once.send = 0xffffffff; |
6123 | cmd.ucode.flags = 0xffffffff; |
6124 | DPRINTF(("sending calibration query\n")); |
6125 | error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG101, &cmd, sizeof cmd, 0); |
6126 | if (error != 0) |
6127 | return error; |
6128 | |
6129 | /* Wait at most two seconds for calibration to complete. */ |
6130 | if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE(1 << 2))) |
6131 | error = tsleep_nsec(sc, PCATCH0x100, "iwncal", SEC_TO_NSEC(2)); |
6132 | return error; |
6133 | } |
6134 | |
6135 | /* |
6136 | * Send calibration results to the runtime firmware. These results were |
6137 | * obtained on first boot from the initialization firmware. |
6138 | */ |
6139 | int |
6140 | iwn5000_send_calibration(struct iwn_softc *sc) |
6141 | { |
6142 | int idx, error; |
6143 | |
6144 | for (idx = 0; idx < 5; idx++) { |
6145 | if (sc->calibcmd[idx].buf == NULL((void *)0)) |
6146 | continue; /* No results available. */ |
6147 | DPRINTF(("send calibration result idx=%d len=%d\n", |
6148 | idx, sc->calibcmd[idx].len)); |
6149 | error = iwn_cmd(sc, IWN_CMD_PHY_CALIB176, sc->calibcmd[idx].buf, |
6150 | sc->calibcmd[idx].len, 0); |
6151 | if (error != 0) { |
6152 | printf("%s: could not send calibration result\n", |
6153 | sc->sc_dev.dv_xname); |
6154 | return error; |
6155 | } |
6156 | } |
6157 | return 0; |
6158 | } |
6159 | |
6160 | int |
6161 | iwn5000_send_wimax_coex(struct iwn_softc *sc) |
6162 | { |
6163 | struct iwn5000_wimax_coex wimax; |
6164 | |
6165 | #ifdef notyet |
6166 | if (sc->hw_type == IWN_HW_REV_TYPE_60508) { |
6167 | /* Enable WiMAX coexistence for combo adapters. */ |
6168 | wimax.flags = |
6169 | IWN_WIMAX_COEX_ASSOC_WA_UNMASK(1 << 3) | |
6170 | IWN_WIMAX_COEX_UNASSOC_WA_UNMASK(1 << 2) | |
6171 | IWN_WIMAX_COEX_STA_TABLE_VALID(1 << 0) | |
6172 | IWN_WIMAX_COEX_ENABLE(1 << 7); |
6173 | memcpy(wimax.events, iwn6050_wimax_events,__builtin_memcpy((wimax.events), (iwn6050_wimax_events), (sizeof iwn6050_wimax_events)) |
6174 | sizeof iwn6050_wimax_events)__builtin_memcpy((wimax.events), (iwn6050_wimax_events), (sizeof iwn6050_wimax_events)); |
6175 | } else |
6176 | #endif |
6177 | { |
6178 | /* Disable WiMAX coexistence. */ |
6179 | wimax.flags = 0; |
6180 | memset(wimax.events, 0, sizeof wimax.events)__builtin_memset((wimax.events), (0), (sizeof wimax.events)); |
6181 | } |
6182 | DPRINTF(("Configuring WiMAX coexistence\n")); |
6183 | return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX90, &wimax, sizeof wimax, 0); |
6184 | } |
6185 | |
6186 | int |
6187 | iwn5000_crystal_calib(struct iwn_softc *sc) |
6188 | { |
6189 | struct iwn5000_phy_calib_crystal cmd; |
6190 | |
6191 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
6192 | cmd.code = IWN5000_PHY_CALIB_CRYSTAL15; |
6193 | cmd.ngroups = 1; |
6194 | cmd.isvalid = 1; |
6195 | cmd.cap_pin[0] = letoh32(sc->eeprom_crystal)((__uint32_t)(sc->eeprom_crystal)) & 0xff; |
6196 | cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal)((__uint32_t)(sc->eeprom_crystal)) >> 16) & 0xff; |
6197 | DPRINTF(("sending crystal calibration %d, %d\n", |
6198 | cmd.cap_pin[0], cmd.cap_pin[1])); |
6199 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 0); |
6200 | } |
6201 | |
6202 | int |
6203 | iwn6000_temp_offset_calib(struct iwn_softc *sc) |
6204 | { |
6205 | struct iwn6000_phy_calib_temp_offset cmd; |
6206 | |
6207 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
6208 | cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET18; |
6209 | cmd.ngroups = 1; |
6210 | cmd.isvalid = 1; |
6211 | if (sc->eeprom_temp != 0) |
6212 | cmd.offset = htole16(sc->eeprom_temp)((__uint16_t)(sc->eeprom_temp)); |
6213 | else |
6214 | cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET)((__uint16_t)(2700)); |
6215 | DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset))); |
6216 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 0); |
6217 | } |
6218 | |
6219 | int |
6220 | iwn2000_temp_offset_calib(struct iwn_softc *sc) |
6221 | { |
6222 | struct iwn2000_phy_calib_temp_offset cmd; |
6223 | |
6224 | memset(&cmd, 0, sizeof cmd)__builtin_memset((&cmd), (0), (sizeof cmd)); |
6225 | cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET18; |
6226 | cmd.ngroups = 1; |
6227 | cmd.isvalid = 1; |
6228 | if (sc->eeprom_rawtemp != 0) { |
6229 | cmd.offset_low = htole16(sc->eeprom_rawtemp)((__uint16_t)(sc->eeprom_rawtemp)); |
6230 | cmd.offset_high = htole16(sc->eeprom_temp)((__uint16_t)(sc->eeprom_temp)); |
6231 | } else { |
6232 | cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET)((__uint16_t)(2700)); |
6233 | cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET)((__uint16_t)(2700)); |
6234 | } |
6235 | cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage)((__uint16_t)(sc->eeprom_voltage)); |
6236 | DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", |
6237 | letoh16(cmd.offset_low), letoh16(cmd.offset_high), |
6238 | letoh16(cmd.burnt_voltage_ref))); |
6239 | return iwn_cmd(sc, IWN_CMD_PHY_CALIB176, &cmd, sizeof cmd, 0); |
6240 | } |
6241 | |
6242 | /* |
6243 | * This function is called after the runtime firmware notifies us of its |
6244 | * readiness (called in a process context). |
6245 | */ |
6246 | int |
6247 | iwn4965_post_alive(struct iwn_softc *sc) |
6248 | { |
6249 | int error, qid; |
6250 | |
6251 | if ((error = iwn_nic_lock(sc)) != 0) |
6252 | return error; |
6253 | |
6254 | /* Clear TX scheduler state in SRAM. */ |
6255 | sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR(0xa02c00 + 0x000)); |
6256 | iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF0x380, 0, |
6257 | IWN4965_SCHED_CTX_LEN416 / sizeof (uint32_t)); |
6258 | |
6259 | /* Set physical address of TX scheduler rings (1KB aligned). */ |
6260 | iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR(0xa02c00 + 0x010), sc->sched_dma.paddr >> 10); |
6261 | |
6262 | IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1e98)), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x1e98)))) | ((1 << 1)))))); |
6263 | |
6264 | /* Disable chain mode for all our 16 queues. */ |
6265 | iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL(0xa02c00 + 0x0d0), 0); |
6266 | |
6267 | for (qid = 0; qid < IWN4965_NTXQUEUES16; qid++) { |
6268 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x064 + (qid) * 4), 0); |
6269 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | 0)))); |
6270 | |
6271 | /* Set scheduler window size. */ |
6272 | iwn_mem_write(sc, sc->sched_base + |
6273 | IWN4965_SCHED_QUEUE_OFFSET(qid)(0x380 + (qid) * 8), IWN_SCHED_WINSZ64); |
6274 | /* Set scheduler frame limit. */ |
6275 | iwn_mem_write(sc, sc->sched_base + |
6276 | IWN4965_SCHED_QUEUE_OFFSET(qid)(0x380 + (qid) * 8) + 4, |
6277 | IWN_SCHED_LIMIT64 << 16); |
6278 | } |
6279 | |
6280 | /* Enable interrupts for all our 16 queues. */ |
6281 | iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK(0xa02c00 + 0x0e4), 0xffff); |
6282 | /* Identify TX FIFO rings (0-7). */ |
6283 | iwn_prph_write(sc, IWN4965_SCHED_TXFACT(0xa02c00 + 0x01c), 0xff); |
6284 | |
6285 | /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ |
6286 | for (qid = 0; qid < 7; qid++) { |
6287 | static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; |
6288 | iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x104 + (qid) * 4), |
6289 | IWN4965_TXQ_STATUS_ACTIVE0x0007fc01 | qid2fifo[qid] << 1); |
6290 | } |
6291 | iwn_nic_unlock(sc); |
6292 | return 0; |
6293 | } |
6294 | |
6295 | /* |
6296 | * This function is called after the initialization or runtime firmware |
6297 | * notifies us of its readiness (called in a process context). |
6298 | */ |
6299 | int |
6300 | iwn5000_post_alive(struct iwn_softc *sc) |
6301 | { |
6302 | int error, qid; |
6303 | |
6304 | /* Switch to using ICT interrupt mode. */ |
6305 | iwn5000_ict_reset(sc); |
6306 | |
6307 | if ((error = iwn_nic_lock(sc)) != 0) |
6308 | return error; |
6309 | |
6310 | /* Clear TX scheduler state in SRAM. */ |
6311 | sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR(0xa02c00 + 0x000)); |
6312 | iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF0x600, 0, |
6313 | IWN5000_SCHED_CTX_LEN520 / sizeof (uint32_t)); |
6314 | |
6315 | /* Set physical address of TX scheduler rings (1KB aligned). */ |
6316 | iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR(0xa02c00 + 0x008), sc->sched_dma.paddr >> 10); |
6317 | |
6318 | /* Disable scheduler chain extension (enabled by default in HW). */ |
6319 | iwn_prph_write(sc, IWN5000_SCHED_CHAINEXT_EN(0xa02c00 + 0x244), 0); |
6320 | |
6321 | IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1e98)), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x1e98)))) | ((1 << 1)))))); |
6322 | |
6323 | /* Enable chain mode for all queues, except command queue. */ |
6324 | iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL(0xa02c00 + 0x0e8), 0xfffef); |
6325 | iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL(0xa02c00 + 0x248), 0); |
6326 | |
6327 | for (qid = 0; qid < IWN5000_NTXQUEUES20; qid++) { |
6328 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid)(0xa02c00 + 0x068 + (qid) * 4), 0); |
6329 | IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x460)), (( qid << 8 | 0)))); |
6330 | |
6331 | iwn_mem_write(sc, sc->sched_base + |
6332 | IWN5000_SCHED_QUEUE_OFFSET(qid)(0x600 + (qid) * 8), 0); |
6333 | /* Set scheduler window size and frame limit. */ |
6334 | iwn_mem_write(sc, sc->sched_base + |
6335 | IWN5000_SCHED_QUEUE_OFFSET(qid)(0x600 + (qid) * 8) + 4, |
6336 | IWN_SCHED_LIMIT64 << 16 | IWN_SCHED_WINSZ64); |
6337 | } |
6338 | |
6339 | /* Enable interrupts for all our 20 queues. */ |
6340 | iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK(0xa02c00 + 0x108), 0xfffff); |
6341 | /* Identify TX FIFO rings (0-7). */ |
6342 | iwn_prph_write(sc, IWN5000_SCHED_TXFACT(0xa02c00 + 0x010), 0xff); |
6343 | |
6344 | /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ |
6345 | for (qid = 0; qid < 7; qid++) { |
6346 | static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; |
6347 | iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid)(0xa02c00 + 0x10c + (qid) * 4), |
6348 | IWN5000_TXQ_STATUS_ACTIVE0x00ff0018 | qid2fifo[qid]); |
6349 | } |
6350 | iwn_nic_unlock(sc); |
6351 | |
6352 | /* Configure WiMAX coexistence for combo adapters. */ |
6353 | error = iwn5000_send_wimax_coex(sc); |
6354 | if (error != 0) { |
6355 | printf("%s: could not configure WiMAX coexistence\n", |
6356 | sc->sc_dev.dv_xname); |
6357 | return error; |
6358 | } |
6359 | if (sc->hw_type != IWN_HW_REV_TYPE_51504) { |
6360 | /* Perform crystal calibration. */ |
6361 | error = iwn5000_crystal_calib(sc); |
6362 | if (error != 0) { |
6363 | printf("%s: crystal calibration failed\n", |
6364 | sc->sc_dev.dv_xname); |
6365 | return error; |
6366 | } |
6367 | } |
6368 | if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE(1 << 2))) { |
6369 | /* Query calibration from the initialization firmware. */ |
6370 | if ((error = iwn5000_query_calibration(sc)) != 0) { |
6371 | printf("%s: could not query calibration\n", |
6372 | sc->sc_dev.dv_xname); |
6373 | return error; |
6374 | } |
6375 | /* |
6376 | * We have the calibration results now, reboot with the |
6377 | * runtime firmware (call ourselves recursively!) |
6378 | */ |
6379 | iwn_hw_stop(sc); |
6380 | error = iwn_hw_init(sc); |
6381 | } else { |
6382 | /* Send calibration results to runtime firmware. */ |
6383 | error = iwn5000_send_calibration(sc); |
6384 | } |
6385 | return error; |
6386 | } |
6387 | |
6388 | /* |
6389 | * The firmware boot code is small and is intended to be copied directly into |
6390 | * the NIC internal memory (no DMA transfer). |
6391 | */ |
6392 | int |
6393 | iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) |
6394 | { |
6395 | int error, ntries; |
6396 | |
6397 | size /= sizeof (uint32_t); |
6398 | |
6399 | if ((error = iwn_nic_lock(sc)) != 0) |
6400 | return error; |
6401 | |
6402 | /* Copy microcode image into NIC memory. */ |
6403 | iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE0x3800, |
6404 | (const uint32_t *)ucode, size); |
6405 | |
6406 | iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC0x3404, 0); |
6407 | iwn_prph_write(sc, IWN_BSM_WR_MEM_DST0x3408, IWN_FW_TEXT_BASE0x00000000); |
6408 | iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT0x340c, size); |
6409 | |
6410 | /* Start boot load now. */ |
6411 | iwn_prph_write(sc, IWN_BSM_WR_CTRL0x3400, IWN_BSM_WR_CTRL_START(1U << 31)); |
6412 | |
6413 | /* Wait for transfer to complete. */ |
6414 | for (ntries = 0; ntries < 1000; ntries++) { |
6415 | if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL0x3400) & |
6416 | IWN_BSM_WR_CTRL_START(1U << 31))) |
6417 | break; |
6418 | DELAY(10)(*delay_func)(10); |
6419 | } |
6420 | if (ntries == 1000) { |
6421 | printf("%s: could not load boot firmware\n", |
6422 | sc->sc_dev.dv_xname); |
6423 | iwn_nic_unlock(sc); |
6424 | return ETIMEDOUT60; |
6425 | } |
6426 | |
6427 | /* Enable boot after power up. */ |
6428 | iwn_prph_write(sc, IWN_BSM_WR_CTRL0x3400, IWN_BSM_WR_CTRL_START_EN(1U << 30)); |
6429 | |
6430 | iwn_nic_unlock(sc); |
6431 | return 0; |
6432 | } |
6433 | |
6434 | int |
6435 | iwn4965_load_firmware(struct iwn_softc *sc) |
6436 | { |
6437 | struct iwn_fw_info *fw = &sc->fw; |
6438 | struct iwn_dma_info *dma = &sc->fw_dma; |
6439 | int error; |
6440 | |
6441 | /* Copy initialization sections into pre-allocated DMA-safe memory. */ |
6442 | memcpy(dma->vaddr, fw->init.data, fw->init.datasz)__builtin_memcpy((dma->vaddr), (fw->init.data), (fw-> init.datasz)); |
6443 | bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (fw->init.datasz), (0x04)) |
6444 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (fw->init.datasz), (0x04)); |
6445 | memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,__builtin_memcpy((dma->vaddr + ( 40 * 1024)), (fw->init .text), (fw->init.textsz)) |
6446 | fw->init.text, fw->init.textsz)__builtin_memcpy((dma->vaddr + ( 40 * 1024)), (fw->init .text), (fw->init.textsz)); |
6447 | bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (( 40 * 1024)), (fw->init.textsz), (0x04)) |
6448 | fw->init.textsz, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (( 40 * 1024)), (fw->init.textsz), (0x04)); |
6449 | |
6450 | /* Tell adapter where to find initialization sections. */ |
6451 | if ((error = iwn_nic_lock(sc)) != 0) |
6452 | return error; |
6453 | iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR0x3498, dma->paddr >> 4); |
6454 | iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE0x349c, fw->init.datasz); |
6455 | iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR0x3490, |
6456 | (dma->paddr + IWN4965_FW_DATA_MAXSZ( 40 * 1024)) >> 4); |
6457 | iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE0x3494, fw->init.textsz); |
6458 | iwn_nic_unlock(sc); |
6459 | |
6460 | /* Load firmware boot code. */ |
6461 | error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); |
6462 | if (error != 0) { |
6463 | printf("%s: could not load boot firmware\n", |
6464 | sc->sc_dev.dv_xname); |
6465 | return error; |
6466 | } |
6467 | /* Now press "execute". */ |
6468 | IWN_WRITE(sc, IWN_RESET, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x020)), (( 0)))); |
6469 | |
6470 | /* Wait at most one second for first alive notification. */ |
6471 | if ((error = tsleep_nsec(sc, PCATCH0x100, "iwninit", SEC_TO_NSEC(1))) != 0) { |
6472 | printf("%s: timeout waiting for adapter to initialize\n", |
6473 | sc->sc_dev.dv_xname); |
6474 | return error; |
6475 | } |
6476 | |
6477 | /* Retrieve current temperature for initial TX power calibration. */ |
6478 | sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; |
6479 | sc->temp = iwn4965_get_temperature(sc); |
6480 | |
6481 | /* Copy runtime sections into pre-allocated DMA-safe memory. */ |
6482 | memcpy(dma->vaddr, fw->main.data, fw->main.datasz)__builtin_memcpy((dma->vaddr), (fw->main.data), (fw-> main.datasz)); |
6483 | bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (fw->main.datasz), (0x04)) |
6484 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (fw->main.datasz), (0x04)); |
6485 | memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,__builtin_memcpy((dma->vaddr + ( 40 * 1024)), (fw->main .text), (fw->main.textsz)) |
6486 | fw->main.text, fw->main.textsz)__builtin_memcpy((dma->vaddr + ( 40 * 1024)), (fw->main .text), (fw->main.textsz)); |
6487 | bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (( 40 * 1024)), (fw->main.textsz), (0x04)) |
6488 | fw->main.textsz, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (( 40 * 1024)), (fw->main.textsz), (0x04)); |
6489 | |
6490 | /* Tell adapter where to find runtime sections. */ |
6491 | if ((error = iwn_nic_lock(sc)) != 0) |
6492 | return error; |
6493 | iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR0x3498, dma->paddr >> 4); |
6494 | iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE0x349c, fw->main.datasz); |
6495 | iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR0x3490, |
6496 | (dma->paddr + IWN4965_FW_DATA_MAXSZ( 40 * 1024)) >> 4); |
6497 | iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE0x3494, |
6498 | IWN_FW_UPDATED(1U << 31) | fw->main.textsz); |
6499 | iwn_nic_unlock(sc); |
6500 | |
6501 | return 0; |
6502 | } |
6503 | |
6504 | int |
6505 | iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, |
6506 | const uint8_t *section, int size) |
6507 | { |
6508 | struct iwn_dma_info *dma = &sc->fw_dma; |
6509 | int error; |
6510 | |
6511 | /* Copy firmware section into pre-allocated DMA-safe memory. */ |
6512 | memcpy(dma->vaddr, section, size)__builtin_memcpy((dma->vaddr), (section), (size)); |
6513 | bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (size), (0x04)); |
6514 | |
6515 | if ((error = iwn_nic_lock(sc)) != 0) |
6516 | return error; |
6517 | |
6518 | IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( 9) * 32))), ((0)))) |
6519 | IWN_FH_TX_CONFIG_DMA_PAUSE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( 9) * 32))), ((0)))); |
6520 | |
6521 | IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x19a4 + ( 9) * 4))), ((dst)))); |
6522 | IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1900 + ( 9) * 8))), ((((uint32_t)(dma->paddr)))))) |
6523 | IWN_LOADDR(dma->paddr))(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1900 + ( 9) * 8))), ((((uint32_t)(dma->paddr)))))); |
6524 | IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1904 + ( 9) * 8))), (((((dma->paddr) >> 32) & 0xf) << 28 | size)))) |
6525 | IWN_HIADDR(dma->paddr) << 28 | size)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1904 + ( 9) * 8))), (((((dma->paddr) >> 32) & 0xf) << 28 | size)))); |
6526 | IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d08 + ( 9) * 32))), ((((1) << 20) | ((1) << 12) | 3)))) |
6527 | IWN_FH_TXBUF_STATUS_TBNUM(1) |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d08 + ( 9) * 32))), ((((1) << 20) | ((1) << 12) | 3)))) |
6528 | IWN_FH_TXBUF_STATUS_TBIDX(1) |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d08 + ( 9) * 32))), ((((1) << 20) | ((1) << 12) | 3)))) |
6529 | IWN_FH_TXBUF_STATUS_TFBD_VALID)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d08 + ( 9) * 32))), ((((1) << 20) | ((1) << 12) | 3)))); |
6530 | |
6531 | /* Kick Flow Handler to start DMA transfer. */ |
6532 | IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( 9) * 32))), (((1U << 31) | (1U << 20))))) |
6533 | IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( 9) * 32))), (((1U << 31) | (1U << 20))))); |
6534 | |
6535 | iwn_nic_unlock(sc); |
6536 | |
6537 | /* Wait at most five seconds for FH DMA transfer to complete. */ |
6538 | return tsleep_nsec(sc, PCATCH0x100, "iwninit", SEC_TO_NSEC(5)); |
6539 | } |
6540 | |
6541 | int |
6542 | iwn5000_load_firmware(struct iwn_softc *sc) |
6543 | { |
6544 | struct iwn_fw_part *fw; |
6545 | int error; |
6546 | |
6547 | /* Load the initialization firmware on first boot only. */ |
6548 | fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE(1 << 2)) ? |
6549 | &sc->fw.main : &sc->fw.init; |
6550 | |
6551 | error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE0x00000000, |
6552 | fw->text, fw->textsz); |
6553 | if (error != 0) { |
6554 | printf("%s: could not load firmware %s section\n", |
6555 | sc->sc_dev.dv_xname, ".text"); |
6556 | return error; |
6557 | } |
6558 | error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE0x00800000, |
6559 | fw->data, fw->datasz); |
6560 | if (error != 0) { |
6561 | printf("%s: could not load firmware %s section\n", |
6562 | sc->sc_dev.dv_xname, ".data"); |
6563 | return error; |
6564 | } |
6565 | |
6566 | /* Now press "execute". */ |
6567 | IWN_WRITE(sc, IWN_RESET, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x020)), (( 0)))); |
6568 | return 0; |
6569 | } |
6570 | |
6571 | /* |
6572 | * Extract text and data sections from a legacy firmware image. |
6573 | */ |
6574 | int |
6575 | iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) |
6576 | { |
6577 | const uint32_t *ptr; |
6578 | size_t hdrlen = 24; |
6579 | uint32_t rev; |
6580 | |
6581 | ptr = (const uint32_t *)fw->data; |
6582 | rev = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6583 | |
6584 | /* Check firmware API version. */ |
6585 | if (IWN_FW_API(rev)(((rev) >> 8) & 0xff) <= 1) { |
6586 | printf("%s: bad firmware, need API version >=2\n", |
6587 | sc->sc_dev.dv_xname); |
6588 | return EINVAL22; |
6589 | } |
6590 | if (IWN_FW_API(rev)(((rev) >> 8) & 0xff) >= 3) { |
6591 | /* Skip build number (version 2 header). */ |
6592 | hdrlen += 4; |
6593 | ptr++; |
6594 | } |
6595 | if (fw->size < hdrlen) { |
6596 | printf("%s: firmware too short: %zu bytes\n", |
6597 | sc->sc_dev.dv_xname, fw->size); |
6598 | return EINVAL22; |
6599 | } |
6600 | fw->main.textsz = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6601 | fw->main.datasz = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6602 | fw->init.textsz = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6603 | fw->init.datasz = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6604 | fw->boot.textsz = letoh32(*ptr++)((__uint32_t)(*ptr++)); |
6605 | |
6606 | /* Check that all firmware sections fit. */ |
6607 | if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + |
6608 | fw->init.textsz + fw->init.datasz + fw->boot.textsz) { |
6609 | printf("%s: firmware too short: %zu bytes\n", |
6610 | sc->sc_dev.dv_xname, fw->size); |
6611 | return EINVAL22; |
6612 | } |
6613 | |
6614 | /* Get pointers to firmware sections. */ |
6615 | fw->main.text = (const uint8_t *)ptr; |
6616 | fw->main.data = fw->main.text + fw->main.textsz; |
6617 | fw->init.text = fw->main.data + fw->main.datasz; |
6618 | fw->init.data = fw->init.text + fw->init.textsz; |
6619 | fw->boot.text = fw->init.data + fw->init.datasz; |
6620 | return 0; |
6621 | } |
6622 | |
6623 | /* |
6624 | * Extract text and data sections from a TLV firmware image. |
6625 | */ |
6626 | int |
6627 | iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, |
6628 | uint16_t alt) |
6629 | { |
6630 | const struct iwn_fw_tlv_hdr *hdr; |
6631 | const struct iwn_fw_tlv *tlv; |
6632 | const uint8_t *ptr, *end; |
6633 | uint64_t altmask; |
6634 | uint32_t len; |
6635 | |
6636 | if (fw->size < sizeof (*hdr)) { |
6637 | printf("%s: firmware too short: %zu bytes\n", |
6638 | sc->sc_dev.dv_xname, fw->size); |
6639 | return EINVAL22; |
6640 | } |
6641 | hdr = (const struct iwn_fw_tlv_hdr *)fw->data; |
6642 | if (hdr->signature != htole32(IWN_FW_SIGNATURE)((__uint32_t)(0x0a4c5749))) { |
6643 | printf("%s: bad firmware signature 0x%08x\n", |
6644 | sc->sc_dev.dv_xname, letoh32(hdr->signature)((__uint32_t)(hdr->signature))); |
6645 | return EINVAL22; |
6646 | } |
6647 | DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, |
6648 | letoh32(hdr->build))); |
6649 | |
6650 | /* |
6651 | * Select the closest supported alternative that is less than |
6652 | * or equal to the specified one. |
6653 | */ |
6654 | altmask = letoh64(hdr->altmask)((__uint64_t)(hdr->altmask)); |
6655 | while (alt > 0 && !(altmask & (1ULL << alt))) |
6656 | alt--; /* Downgrade. */ |
6657 | DPRINTF(("using alternative %d\n", alt)); |
6658 | |
6659 | ptr = (const uint8_t *)(hdr + 1); |
6660 | end = (const uint8_t *)(fw->data + fw->size); |
6661 | |
6662 | /* Parse type-length-value fields. */ |
6663 | while (ptr + sizeof (*tlv) <= end) { |
6664 | tlv = (const struct iwn_fw_tlv *)ptr; |
6665 | len = letoh32(tlv->len)((__uint32_t)(tlv->len)); |
6666 | |
6667 | ptr += sizeof (*tlv); |
6668 | if (ptr + len > end) { |
6669 | printf("%s: firmware too short: %zu bytes\n", |
6670 | sc->sc_dev.dv_xname, fw->size); |
6671 | return EINVAL22; |
6672 | } |
6673 | /* Skip other alternatives. */ |
6674 | if (tlv->alt != 0 && tlv->alt != htole16(alt)((__uint16_t)(alt))) |
6675 | goto next; |
6676 | |
6677 | switch (letoh16(tlv->type)((__uint16_t)(tlv->type))) { |
6678 | case IWN_FW_TLV_MAIN_TEXT1: |
6679 | fw->main.text = ptr; |
6680 | fw->main.textsz = len; |
6681 | break; |
6682 | case IWN_FW_TLV_MAIN_DATA2: |
6683 | fw->main.data = ptr; |
6684 | fw->main.datasz = len; |
6685 | break; |
6686 | case IWN_FW_TLV_INIT_TEXT3: |
6687 | fw->init.text = ptr; |
6688 | fw->init.textsz = len; |
6689 | break; |
6690 | case IWN_FW_TLV_INIT_DATA4: |
6691 | fw->init.data = ptr; |
6692 | fw->init.datasz = len; |
6693 | break; |
6694 | case IWN_FW_TLV_BOOT_TEXT5: |
6695 | fw->boot.text = ptr; |
6696 | fw->boot.textsz = len; |
6697 | break; |
6698 | case IWN_FW_TLV_ENH_SENS14: |
6699 | if (len != 0) { |
6700 | printf("%s: TLV type %d has invalid size %u\n", |
6701 | sc->sc_dev.dv_xname, letoh16(tlv->type)((__uint16_t)(tlv->type)), |
6702 | len); |
6703 | goto next; |
6704 | } |
6705 | sc->sc_flags |= IWN_FLAG_ENH_SENS(1 << 7); |
6706 | break; |
6707 | case IWN_FW_TLV_PHY_CALIB15: |
6708 | if (len != sizeof(uint32_t)) { |
6709 | printf("%s: TLV type %d has invalid size %u\n", |
6710 | sc->sc_dev.dv_xname, letoh16(tlv->type)((__uint16_t)(tlv->type)), |
6711 | len); |
6712 | goto next; |
6713 | } |
6714 | if (letoh32(*ptr)((__uint32_t)(*ptr)) <= IWN5000_PHY_CALIB_MAX253) { |
6715 | sc->reset_noise_gain = letoh32(*ptr)((__uint32_t)(*ptr)); |
6716 | sc->noise_gain = letoh32(*ptr)((__uint32_t)(*ptr)) + 1; |
6717 | } |
6718 | break; |
6719 | case IWN_FW_TLV_FLAGS18: |
6720 | if (len < sizeof(uint32_t)) |
6721 | break; |
6722 | if (len % sizeof(uint32_t)) |
6723 | break; |
6724 | sc->tlv_feature_flags = letoh32(*ptr)((__uint32_t)(*ptr)); |
6725 | DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); |
6726 | break; |
6727 | default: |
6728 | DPRINTF(("TLV type %d not handled\n", |
6729 | letoh16(tlv->type))); |
6730 | break; |
6731 | } |
6732 | next: /* TLV fields are 32-bit aligned. */ |
6733 | ptr += (len + 3) & ~3; |
6734 | } |
6735 | return 0; |
6736 | } |
6737 | |
6738 | int |
6739 | iwn_read_firmware(struct iwn_softc *sc) |
6740 | { |
6741 | struct iwn_fw_info *fw = &sc->fw; |
6742 | int error; |
6743 | |
6744 | /* |
6745 | * Some PHY calibration commands are firmware-dependent; these |
6746 | * are the default values that will be overridden if |
6747 | * necessary. |
6748 | */ |
6749 | sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN18; |
6750 | sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN19; |
6751 | |
6752 | memset(fw, 0, sizeof (*fw))__builtin_memset((fw), (0), (sizeof (*fw))); |
6753 | |
6754 | /* Read firmware image from filesystem. */ |
6755 | if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) { |
6756 | printf("%s: could not read firmware %s (error %d)\n", |
6757 | sc->sc_dev.dv_xname, sc->fwname, error); |
6758 | return error; |
6759 | } |
6760 | if (fw->size < sizeof (uint32_t)) { |
6761 | printf("%s: firmware too short: %zu bytes\n", |
6762 | sc->sc_dev.dv_xname, fw->size); |
6763 | free(fw->data, M_DEVBUF2, fw->size); |
6764 | return EINVAL22; |
6765 | } |
6766 | |
6767 | /* Retrieve text and data sections. */ |
6768 | if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ |
6769 | error = iwn_read_firmware_leg(sc, fw); |
6770 | else |
6771 | error = iwn_read_firmware_tlv(sc, fw, 1); |
6772 | if (error != 0) { |
6773 | printf("%s: could not read firmware sections\n", |
6774 | sc->sc_dev.dv_xname); |
6775 | free(fw->data, M_DEVBUF2, fw->size); |
6776 | return error; |
6777 | } |
6778 | |
6779 | /* Make sure text and data sections fit in hardware memory. */ |
6780 | if (fw->main.textsz > sc->fw_text_maxsz || |
6781 | fw->main.datasz > sc->fw_data_maxsz || |
6782 | fw->init.textsz > sc->fw_text_maxsz || |
6783 | fw->init.datasz > sc->fw_data_maxsz || |
6784 | fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ1024 || |
6785 | (fw->boot.textsz & 3) != 0) { |
6786 | printf("%s: firmware sections too large\n", |
6787 | sc->sc_dev.dv_xname); |
6788 | free(fw->data, M_DEVBUF2, fw->size); |
6789 | return EINVAL22; |
6790 | } |
6791 | |
6792 | /* We can proceed with loading the firmware. */ |
6793 | return 0; |
6794 | } |
6795 | |
6796 | int |
6797 | iwn_clock_wait(struct iwn_softc *sc) |
6798 | { |
6799 | int ntries; |
6800 | |
6801 | /* Set "initialization complete" bit. */ |
6802 | IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x024)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) | ( (1 << 2)))))); |
6803 | |
6804 | /* Wait for clock stabilization. */ |
6805 | for (ntries = 0; ntries < 2500; ntries++) { |
6806 | if (IWN_READ(sc, IWN_GP_CNTRL)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & IWN_GP_CNTRL_MAC_CLOCK_READY(1 << 0)) |
6807 | return 0; |
6808 | DELAY(10)(*delay_func)(10); |
6809 | } |
6810 | printf("%s: timeout waiting for clock stabilization\n", |
6811 | sc->sc_dev.dv_xname); |
6812 | return ETIMEDOUT60; |
6813 | } |
6814 | |
6815 | int |
6816 | iwn_apm_init(struct iwn_softc *sc) |
6817 | { |
6818 | pcireg_t reg; |
6819 | int error; |
6820 | |
6821 | /* Disable L0s exit timer (NMI bug workaround). */ |
6822 | IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x100)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x100)))) | ( (1 << 29)))))); |
6823 | /* Don't wait for ICH L0s (ICH bug workaround). */ |
6824 | IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x100)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x100)))) | ( (1 << 23)))))); |
6825 | |
6826 | /* Set FH wait threshold to max (HW bug under stress workaround). */ |
6827 | IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x240)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x240)))) | ( 0xffff0000))))); |
6828 | |
6829 | /* Enable HAP INTA to move adapter from L1a to L0s. */ |
6830 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 23)))))); |
6831 | |
6832 | /* Retrieve PCIe Active State Power Management (ASPM). */ |
6833 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
6834 | sc->sc_cap_off + PCI_PCIE_LCSR0x10); |
6835 | /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ |
6836 | if (reg & PCI_PCIE_LCSR_ASPM_L10x00000002) /* L1 Entry enabled. */ |
6837 | IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x03c)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x03c)))) | ( (1 << 1)))))); |
6838 | else |
6839 | IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x03c)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x03c)))) & ~((1 << 1)))))); |
6840 | |
6841 | if (sc->hw_type != IWN_HW_REV_TYPE_49650 && |
6842 | sc->hw_type <= IWN_HW_REV_TYPE_10006) |
6843 | IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x20c)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x20c)))) | ( 0x00880300))))); |
6844 | |
6845 | /* Wait for clock stabilization before accessing prph. */ |
6846 | if ((error = iwn_clock_wait(sc)) != 0) |
6847 | return error; |
6848 | |
6849 | if ((error = iwn_nic_lock(sc)) != 0) |
6850 | return error; |
6851 | if (sc->hw_type == IWN_HW_REV_TYPE_49650) { |
6852 | /* Enable DMA and BSM (Bootstrap State Machine). */ |
6853 | iwn_prph_write(sc, IWN_APMG_CLK_EN0x3004, |
6854 | IWN_APMG_CLK_CTRL_DMA_CLK_RQT(1 << 9) | |
6855 | IWN_APMG_CLK_CTRL_BSM_CLK_RQT(1 << 11)); |
6856 | } else { |
6857 | /* Enable DMA. */ |
6858 | iwn_prph_write(sc, IWN_APMG_CLK_EN0x3004, |
6859 | IWN_APMG_CLK_CTRL_DMA_CLK_RQT(1 << 9)); |
6860 | } |
6861 | DELAY(20)(*delay_func)(20); |
6862 | /* Disable L1-Active. */ |
6863 | iwn_prph_setbits(sc, IWN_APMG_PCI_STT0x3010, IWN_APMG_PCI_STT_L1A_DIS(1 << 11)); |
6864 | iwn_nic_unlock(sc); |
6865 | |
6866 | return 0; |
6867 | } |
6868 | |
6869 | void |
6870 | iwn_apm_stop_master(struct iwn_softc *sc) |
6871 | { |
6872 | int ntries; |
6873 | |
6874 | /* Stop busmaster DMA activity. */ |
6875 | IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x020)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x020)))) | ( (1U << 9)))))); |
6876 | for (ntries = 0; ntries < 100; ntries++) { |
6877 | if (IWN_READ(sc, IWN_RESET)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x020)))) & IWN_RESET_MASTER_DISABLED(1U << 8)) |
6878 | return; |
6879 | DELAY(10)(*delay_func)(10); |
6880 | } |
6881 | printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); |
6882 | } |
6883 | |
6884 | void |
6885 | iwn_apm_stop(struct iwn_softc *sc) |
6886 | { |
6887 | iwn_apm_stop_master(sc); |
6888 | |
6889 | /* Reset the entire device. */ |
6890 | IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x020)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x020)))) | ( (1U << 7)))))); |
6891 | DELAY(10)(*delay_func)(10); |
6892 | /* Clear "initialization complete" bit. */ |
6893 | IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x024)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & ~((1 << 2)))))); |
6894 | } |
6895 | |
6896 | int |
6897 | iwn4965_nic_config(struct iwn_softc *sc) |
6898 | { |
6899 | if (IWN_RFCFG_TYPE(sc->rfcfg)(((sc->rfcfg) >> 0) & 0x3) == 1) { |
6900 | /* |
6901 | * I don't believe this to be correct but this is what the |
6902 | * vendor driver is doing. Probably the bits should not be |
6903 | * shifted in IWN_RFCFG_*. |
6904 | */ |
6905 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6906 | IWN_RFCFG_TYPE(sc->rfcfg) |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6907 | IWN_RFCFG_STEP(sc->rfcfg) |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6908 | IWN_RFCFG_DASH(sc->rfcfg))(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))); |
6909 | } |
6910 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 9) | (1 << 8)))))) |
6911 | IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 9) | (1 << 8)))))); |
6912 | return 0; |
6913 | } |
6914 | |
6915 | int |
6916 | iwn5000_nic_config(struct iwn_softc *sc) |
6917 | { |
6918 | uint32_t tmp; |
6919 | int error; |
6920 | |
6921 | if (IWN_RFCFG_TYPE(sc->rfcfg)(((sc->rfcfg) >> 0) & 0x3) < 3) { |
6922 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6923 | IWN_RFCFG_TYPE(sc->rfcfg) |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6924 | IWN_RFCFG_STEP(sc->rfcfg) |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))) |
6925 | IWN_RFCFG_DASH(sc->rfcfg))(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (((sc->rfcfg) >> 0) & 0x3) | (((sc->rfcfg) >> 2) & 0x3) | (((sc->rfcfg) >> 4) & 0x3)))))); |
6926 | } |
6927 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 9) | (1 << 8)))))) |
6928 | IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 9) | (1 << 8)))))); |
6929 | |
6930 | if ((error = iwn_nic_lock(sc)) != 0) |
6931 | return error; |
6932 | iwn_prph_setbits(sc, IWN_APMG_PS0x300c, IWN_APMG_PS_EARLY_PWROFF_DIS(1 << 22)); |
6933 | |
6934 | if (sc->hw_type == IWN_HW_REV_TYPE_10006) { |
6935 | /* |
6936 | * Select first Switching Voltage Regulator (1.32V) to |
6937 | * solve a stability issue related to noisy DC2DC line |
6938 | * in the silicon of 1000 Series. |
6939 | */ |
6940 | tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR0x3058); |
6941 | tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK(((0xf) & 0xf) << 5); |
6942 | tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32(((3) & 0xf) << 5); |
6943 | iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR0x3058, tmp); |
6944 | } |
6945 | iwn_nic_unlock(sc); |
6946 | |
6947 | if (sc->sc_flags & IWN_FLAG_INTERNAL_PA(1 << 4)) { |
6948 | /* Use internal power amplifier only. */ |
6949 | IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x050)), (( (2 << 0))))); |
6950 | } |
6951 | if ((sc->hw_type == IWN_HW_REV_TYPE_60508 || |
6952 | sc->hw_type == IWN_HW_REV_TYPE_600511) && sc->calib_ver >= 6) { |
6953 | /* Indicate that ROM calibration version is >=6. */ |
6954 | IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x050)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x050)))) | ( (1 << 2)))))); |
6955 | } |
6956 | if (sc->hw_type == IWN_HW_REV_TYPE_600511) |
6957 | IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x050)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x050)))) | ( (1 << 3)))))); |
6958 | if (sc->hw_type == IWN_HW_REV_TYPE_203012 || |
6959 | sc->hw_type == IWN_HW_REV_TYPE_200016 || |
6960 | sc->hw_type == IWN_HW_REV_TYPE_13518 || |
6961 | sc->hw_type == IWN_HW_REV_TYPE_10517) |
6962 | IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x050)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x050)))) | ( (1 << 7)))))); |
6963 | return 0; |
6964 | } |
6965 | |
6966 | /* |
6967 | * Take NIC ownership over Intel Active Management Technology (AMT). |
6968 | */ |
6969 | int |
6970 | iwn_hw_prepare(struct iwn_softc *sc) |
6971 | { |
6972 | int ntries; |
6973 | |
6974 | /* Check if hardware is ready. */ |
6975 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 22)))))); |
6976 | for (ntries = 0; ntries < 5; ntries++) { |
6977 | if (IWN_READ(sc, IWN_HW_IF_CONFIG)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) & |
6978 | IWN_HW_IF_CONFIG_NIC_READY(1 << 22)) |
6979 | return 0; |
6980 | DELAY(10)(*delay_func)(10); |
6981 | } |
6982 | |
6983 | /* Hardware not ready, force into ready state. */ |
6984 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 27)))))); |
6985 | for (ntries = 0; ntries < 15000; ntries++) { |
6986 | if (!(IWN_READ(sc, IWN_HW_IF_CONFIG)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) & |
6987 | IWN_HW_IF_CONFIG_PREPARE_DONE(1 << 25))) |
6988 | break; |
6989 | DELAY(10)(*delay_func)(10); |
6990 | } |
6991 | if (ntries == 15000) |
6992 | return ETIMEDOUT60; |
6993 | |
6994 | /* Hardware should be ready now. */ |
6995 | IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x000)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) | ( (1 << 22)))))); |
6996 | for (ntries = 0; ntries < 5; ntries++) { |
6997 | if (IWN_READ(sc, IWN_HW_IF_CONFIG)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x000)))) & |
6998 | IWN_HW_IF_CONFIG_NIC_READY(1 << 22)) |
6999 | return 0; |
7000 | DELAY(10)(*delay_func)(10); |
7001 | } |
7002 | return ETIMEDOUT60; |
7003 | } |
7004 | |
7005 | int |
7006 | iwn_hw_init(struct iwn_softc *sc) |
7007 | { |
7008 | struct iwn_ops *ops = &sc->ops; |
7009 | int error, chnl, qid; |
7010 | |
7011 | /* Clear pending interrupts. */ |
7012 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
7013 | |
7014 | if ((error = iwn_apm_init(sc)) != 0) { |
7015 | printf("%s: could not power on adapter\n", |
7016 | sc->sc_dev.dv_xname); |
7017 | return error; |
7018 | } |
7019 | |
7020 | /* Select VMAIN power source. */ |
7021 | if ((error = iwn_nic_lock(sc)) != 0) |
7022 | return error; |
7023 | iwn_prph_clrbits(sc, IWN_APMG_PS0x300c, IWN_APMG_PS_PWR_SRC_MASK((3) << 24)); |
7024 | iwn_nic_unlock(sc); |
7025 | |
7026 | /* Perform adapter-specific initialization. */ |
7027 | if ((error = ops->nic_config(sc)) != 0) |
7028 | return error; |
7029 | |
7030 | /* Initialize RX ring. */ |
7031 | if ((error = iwn_nic_lock(sc)) != 0) |
7032 | return error; |
7033 | IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( (0)))); |
7034 | IWN_WRITE(sc, IWN_FH_RX_WPTR, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc8)), ( (0)))); |
7035 | /* Set physical address of RX ring (256-byte aligned). */ |
7036 | IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc4)), ( (sc->rxq.desc_dma.paddr >> 8)))); |
7037 | /* Set physical address of RX status (16-byte aligned). */ |
7038 | IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc0)), ( (sc->rxq.stat_dma.paddr >> 4)))); |
7039 | /* Enable RX. */ |
7040 | IWN_WRITE(sc, IWN_FH_RX_CONFIG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7041 | IWN_FH_RX_CONFIG_ENA |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7042 | IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7043 | IWN_FH_RX_CONFIG_IRQ_DST_HOST |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7044 | IWN_FH_RX_CONFIG_SINGLE_FRAME |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7045 | IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))) |
7046 | IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG))(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1c00)), ( ((1U << 31) | (1U << 2) | (1U << 12) | (1U << 15) | ((0x11) << 4) | ((6) << 20))))); |
7047 | iwn_nic_unlock(sc); |
7048 | IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1bc8)), ( (((1 << 6) - 1) & ~7)))); |
7049 | |
7050 | if ((error = iwn_nic_lock(sc)) != 0) |
7051 | return error; |
7052 | |
7053 | /* Initialize TX scheduler. */ |
7054 | iwn_prph_write(sc, sc->sched_txfact_addr, 0); |
7055 | |
7056 | /* Set physical address of "keep warm" page (16-byte aligned). */ |
7057 | IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x197c)), ( (sc->kw_dma.paddr >> 4)))); |
7058 | |
7059 | /* Initialize TX rings. */ |
7060 | for (qid = 0; qid < sc->ntxqs; qid++) { |
7061 | struct iwn_tx_ring *txq = &sc->txq[qid]; |
7062 | |
7063 | /* Set physical address of TX ring (256-byte aligned). */ |
7064 | IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x19d0 + ( qid) * 4))), ((txq->desc_dma.paddr >> 8)))) |
7065 | txq->desc_dma.paddr >> 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x19d0 + ( qid) * 4))), ((txq->desc_dma.paddr >> 8)))); |
7066 | } |
7067 | iwn_nic_unlock(sc); |
7068 | |
7069 | /* Enable DMA channels. */ |
7070 | for (chnl = 0; chnl < sc->ndmachnls; chnl++) { |
7071 | IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( chnl) * 32))), (((1U << 31) | (1U << 3))))) |
7072 | IWN_FH_TX_CONFIG_DMA_ENA |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( chnl) * 32))), (((1U << 31) | (1U << 3))))) |
7073 | IWN_FH_TX_CONFIG_DMA_CREDIT_ENA)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( chnl) * 32))), (((1U << 31) | (1U << 3))))); |
7074 | } |
7075 | |
7076 | /* Clear "radio off" and "commands blocked" bits. */ |
7077 | IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x05c)), (( (1 << 1))))); |
7078 | IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x05c)), (( (1 << 2))))); |
7079 | |
7080 | /* Clear pending interrupts. */ |
7081 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
7082 | /* Enable interrupt coalescing. */ |
7083 | IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x004)), (( 512 / 8)))); |
7084 | /* Enable interrupts. */ |
7085 | IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( sc->int_mask)))); |
7086 | |
7087 | /* _Really_ make sure "radio off" bit is cleared! */ |
7088 | IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x05c)), (( (1 << 1))))); |
7089 | IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x05c)), (( (1 << 1))))); |
7090 | |
7091 | /* Enable shadow registers. */ |
7092 | if (sc->hw_type >= IWN_HW_REV_TYPE_60007) |
7093 | IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x0a8)), (( (((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x0a8)))) | ( 0x800fffff))))); |
7094 | |
7095 | if ((error = ops->load_firmware(sc)) != 0) { |
7096 | printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); |
7097 | return error; |
7098 | } |
7099 | /* Wait at most one second for firmware alive notification. */ |
7100 | if ((error = tsleep_nsec(sc, PCATCH0x100, "iwninit", SEC_TO_NSEC(1))) != 0) { |
7101 | printf("%s: timeout waiting for adapter to initialize\n", |
7102 | sc->sc_dev.dv_xname); |
7103 | return error; |
7104 | } |
7105 | /* Do post-firmware initialization. */ |
7106 | return ops->post_alive(sc); |
7107 | } |
7108 | |
7109 | void |
7110 | iwn_hw_stop(struct iwn_softc *sc) |
7111 | { |
7112 | int chnl, qid, ntries; |
7113 | |
7114 | IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x020)), (( (1U << 0))))); |
7115 | |
7116 | /* Disable interrupts. */ |
7117 | IWN_WRITE(sc, IWN_INT_MASK, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( 0)))); |
7118 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
7119 | IWN_WRITE(sc, IWN_FH_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x010)), (( 0xffffffff)))); |
7120 | sc->sc_flags &= ~IWN_FLAG_USE_ICT(1 << 3); |
7121 | |
7122 | /* Make sure we no longer hold the NIC lock. */ |
7123 | iwn_nic_unlock(sc); |
7124 | |
7125 | /* Stop TX scheduler. */ |
7126 | iwn_prph_write(sc, sc->sched_txfact_addr, 0); |
7127 | |
7128 | /* Stop all DMA channels. */ |
7129 | if (iwn_nic_lock(sc) == 0) { |
7130 | for (chnl = 0; chnl < sc->ndmachnls; chnl++) { |
7131 | IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x1d00 + ( chnl) * 32))), ((0)))); |
7132 | for (ntries = 0; ntries < 200; ntries++) { |
7133 | if (IWN_READ(sc, IWN_FH_TX_STATUS)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x1eb0)))) & |
7134 | IWN_FH_TX_STATUS_IDLE(chnl)(1 << ((chnl) + 16))) |
7135 | break; |
7136 | DELAY(10)(*delay_func)(10); |
7137 | } |
7138 | } |
7139 | iwn_nic_unlock(sc); |
7140 | } |
7141 | |
7142 | /* Stop RX ring. */ |
7143 | iwn_reset_rx_ring(sc, &sc->rxq); |
7144 | |
7145 | /* Reset all TX rings. */ |
7146 | for (qid = 0; qid < sc->ntxqs; qid++) |
7147 | iwn_reset_tx_ring(sc, &sc->txq[qid]); |
7148 | |
7149 | if (iwn_nic_lock(sc) == 0) { |
7150 | iwn_prph_write(sc, IWN_APMG_CLK_DIS0x3008, |
7151 | IWN_APMG_CLK_CTRL_DMA_CLK_RQT(1 << 9)); |
7152 | iwn_nic_unlock(sc); |
7153 | } |
7154 | DELAY(5)(*delay_func)(5); |
7155 | /* Power OFF adapter. */ |
7156 | iwn_apm_stop(sc); |
7157 | } |
7158 | |
7159 | int |
7160 | iwn_init(struct ifnet *ifp) |
7161 | { |
7162 | struct iwn_softc *sc = ifp->if_softc; |
7163 | struct ieee80211com *ic = &sc->sc_ic; |
7164 | int error; |
7165 | |
7166 | memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr))__builtin_memset((sc->bss_node_addr), (0), (sizeof(sc-> bss_node_addr))); |
7167 | sc->agg_queue_mask = 0; |
7168 | memset(sc->sc_tx_ba, 0, sizeof(sc->sc_tx_ba))__builtin_memset((sc->sc_tx_ba), (0), (sizeof(sc->sc_tx_ba ))); |
7169 | |
7170 | if ((error = iwn_hw_prepare(sc)) != 0) { |
7171 | printf("%s: hardware not ready\n", sc->sc_dev.dv_xname); |
7172 | goto fail; |
7173 | } |
7174 | |
7175 | /* Initialize interrupt mask to default value. */ |
7176 | sc->int_mask = IWN_INT_MASK_DEF((1U << 25) | (1U << 29) | (1U << 27) | (1U << 31) | (1U << 0) | (1U << 1) | (1U << 3) | (1U << 6) | (1U << 7)); |
7177 | sc->sc_flags &= ~IWN_FLAG_USE_ICT(1 << 3); |
7178 | |
7179 | /* Check that the radio is not disabled by hardware switch. */ |
7180 | if (!(IWN_READ(sc, IWN_GP_CNTRL)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x024)))) & IWN_GP_CNTRL_RFKILL(1 << 27))) { |
7181 | printf("%s: radio is disabled by hardware switch\n", |
7182 | sc->sc_dev.dv_xname); |
7183 | error = EPERM1; /* :-) */ |
7184 | /* Re-enable interrupts. */ |
7185 | IWN_WRITE(sc, IWN_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x008)), (( 0xffffffff)))); |
7186 | IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x00c)), (( sc->int_mask)))); |
7187 | return error; |
7188 | } |
7189 | |
7190 | /* Read firmware images from the filesystem. */ |
7191 | if ((error = iwn_read_firmware(sc)) != 0) { |
7192 | printf("%s: could not read firmware\n", sc->sc_dev.dv_xname); |
7193 | goto fail; |
7194 | } |
7195 | |
7196 | /* Initialize hardware and upload firmware. */ |
7197 | error = iwn_hw_init(sc); |
7198 | free(sc->fw.data, M_DEVBUF2, sc->fw.size); |
7199 | if (error != 0) { |
7200 | printf("%s: could not initialize hardware\n", |
7201 | sc->sc_dev.dv_xname); |
7202 | goto fail; |
7203 | } |
7204 | |
7205 | /* Configure adapter now that it is ready. */ |
7206 | if ((error = iwn_config(sc)) != 0) { |
7207 | printf("%s: could not configure device\n", |
7208 | sc->sc_dev.dv_xname); |
7209 | goto fail; |
7210 | } |
7211 | |
7212 | ifq_clr_oactive(&ifp->if_snd); |
7213 | ifp->if_flags |= IFF_RUNNING0x40; |
7214 | |
7215 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
7216 | ieee80211_begin_scan(ifp); |
7217 | else |
7218 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
7219 | |
7220 | return 0; |
7221 | |
7222 | fail: iwn_stop(ifp); |
7223 | return error; |
7224 | } |
7225 | |
7226 | void |
7227 | iwn_stop(struct ifnet *ifp) |
7228 | { |
7229 | struct iwn_softc *sc = ifp->if_softc; |
7230 | struct ieee80211com *ic = &sc->sc_ic; |
7231 | |
7232 | timeout_del(&sc->calib_to); |
7233 | ifp->if_timer = sc->sc_tx_timer = 0; |
7234 | ifp->if_flags &= ~IFF_RUNNING0x40; |
7235 | ifq_clr_oactive(&ifp->if_snd); |
7236 | |
7237 | ieee80211_new_state(ic, IEEE80211_S_INIT, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_INIT), (-1))); |
7238 | |
7239 | /* Power OFF hardware. */ |
7240 | iwn_hw_stop(sc); |
7241 | } |