| File: | dev/pci/if_bge.c |
| Warning: | line 3729, column 3 Value stored to 'cur_tx' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_bge.c,v 1.402 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 2001 Wind River Systems |
| 5 | * Copyright (c) 1997, 1998, 1999, 2001 |
| 6 | * Bill Paul <wpaul@windriver.com>. All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. All advertising materials mentioning features or use of this software |
| 17 | * must display the following acknowledgement: |
| 18 | * This product includes software developed by Bill Paul. |
| 19 | * 4. Neither the name of the author nor the names of any co-contributors |
| 20 | * may be used to endorse or promote products derived from this software |
| 21 | * without specific prior written permission. |
| 22 | * |
| 23 | * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND |
| 24 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 25 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 26 | * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD |
| 27 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 28 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 31 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 33 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 34 | * |
| 35 | * $FreeBSD: if_bge.c,v 1.25 2002/11/14 23:54:49 sam Exp $ |
| 36 | */ |
| 37 | |
| 38 | /* |
| 39 | * Broadcom BCM57xx/BCM590x family ethernet driver for OpenBSD. |
| 40 | * |
| 41 | * Written by Bill Paul <wpaul@windriver.com> |
| 42 | * Senior Engineer, Wind River Systems |
| 43 | */ |
| 44 | |
| 45 | /* |
| 46 | * The Broadcom BCM5700 is based on technology originally developed by |
| 47 | * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet |
| 48 | * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has |
| 49 | * two on-board MIPS R4000 CPUs and can have as much as 16MB of external |
| 50 | * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo |
| 51 | * frames, highly configurable RX filtering, and 16 RX and TX queues |
| 52 | * (which, along with RX filter rules, can be used for QOS applications). |
| 53 | * Other features, such as TCP segmentation, may be available as part |
| 54 | * of value-added firmware updates. Unlike the Tigon I and Tigon II, |
| 55 | * firmware images can be stored in hardware and need not be compiled |
| 56 | * into the driver. |
| 57 | * |
| 58 | * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will |
| 59 | * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. |
| 60 | * |
| 61 | * The BCM5701 is a single-chip solution incorporating both the BCM5700 |
| 62 | * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 |
| 63 | * does not support external SSRAM. |
| 64 | * |
| 65 | * Broadcom also produces a variation of the BCM5700 under the "Altima" |
| 66 | * brand name, which is functionally similar but lacks PCI-X support. |
| 67 | * |
| 68 | * Without external SSRAM, you can only have at most 4 TX rings, |
| 69 | * and the use of the mini RX ring is disabled. This seems to imply |
| 70 | * that these features are simply not available on the BCM5701. As a |
| 71 | * result, this driver does not implement any support for the mini RX |
| 72 | * ring. |
| 73 | */ |
| 74 | |
| 75 | #include "bpfilter.h" |
| 76 | #include "vlan.h" |
| 77 | #include "kstat.h" |
| 78 | |
| 79 | #include <sys/param.h> |
| 80 | #include <sys/systm.h> |
| 81 | #include <sys/sockio.h> |
| 82 | #include <sys/mbuf.h> |
| 83 | #include <sys/malloc.h> |
| 84 | #include <sys/kernel.h> |
| 85 | #include <sys/device.h> |
| 86 | #include <sys/timeout.h> |
| 87 | #include <sys/socket.h> |
| 88 | #include <sys/atomic.h> |
| 89 | #include <sys/kstat.h> |
| 90 | |
| 91 | #include <net/if.h> |
| 92 | #include <net/if_media.h> |
| 93 | |
| 94 | #include <netinet/in.h> |
| 95 | #include <netinet/if_ether.h> |
| 96 | |
| 97 | #if NBPFILTER1 > 0 |
| 98 | #include <net/bpf.h> |
| 99 | #endif |
| 100 | |
| 101 | #if defined(__sparc64__) || defined(__HAVE_FDT) |
| 102 | #include <dev/ofw/openfirm.h> |
| 103 | #endif |
| 104 | |
| 105 | #include <dev/pci/pcireg.h> |
| 106 | #include <dev/pci/pcivar.h> |
| 107 | #include <dev/pci/pcidevs.h> |
| 108 | |
| 109 | #include <dev/mii/mii.h> |
| 110 | #include <dev/mii/miivar.h> |
| 111 | #include <dev/mii/miidevs.h> |
| 112 | #include <dev/mii/brgphyreg.h> |
| 113 | |
| 114 | #include <dev/pci/if_bgereg.h> |
| 115 | |
| 116 | #define ETHER_MIN_NOPAD(64 - 4) (ETHER_MIN_LEN64 - ETHER_CRC_LEN4) /* i.e., 60 */ |
| 117 | |
| 118 | const struct bge_revision * bge_lookup_rev(u_int32_t); |
| 119 | int bge_can_use_msi(struct bge_softc *); |
| 120 | int bge_probe(struct device *, void *, void *); |
| 121 | void bge_attach(struct device *, struct device *, void *); |
| 122 | int bge_detach(struct device *, int); |
| 123 | int bge_activate(struct device *, int); |
| 124 | |
| 125 | const struct cfattach bge_ca = { |
| 126 | sizeof(struct bge_softc), bge_probe, bge_attach, bge_detach, |
| 127 | bge_activate |
| 128 | }; |
| 129 | |
| 130 | struct cfdriver bge_cd = { |
| 131 | NULL((void *)0), "bge", DV_IFNET |
| 132 | }; |
| 133 | |
| 134 | void bge_txeof(struct bge_softc *); |
| 135 | void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); |
| 136 | void bge_rxeof(struct bge_softc *); |
| 137 | |
| 138 | void bge_tick(void *); |
| 139 | void bge_stats_update(struct bge_softc *); |
| 140 | void bge_stats_update_regs(struct bge_softc *); |
| 141 | int bge_cksum_pad(struct mbuf *); |
| 142 | int bge_encap(struct bge_softc *, struct mbuf *, int *); |
| 143 | int bge_compact_dma_runt(struct mbuf *); |
| 144 | |
| 145 | int bge_intr(void *); |
| 146 | void bge_start(struct ifqueue *); |
| 147 | int bge_ioctl(struct ifnet *, u_long, caddr_t); |
| 148 | int bge_rxrinfo(struct bge_softc *, struct if_rxrinfo *); |
| 149 | void bge_init(void *); |
| 150 | void bge_stop_block(struct bge_softc *, bus_size_t, u_int32_t); |
| 151 | void bge_stop(struct bge_softc *, int); |
| 152 | void bge_watchdog(struct ifnet *); |
| 153 | int bge_ifmedia_upd(struct ifnet *); |
| 154 | void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); |
| 155 | |
| 156 | u_int8_t bge_nvram_getbyte(struct bge_softc *, int, u_int8_t *); |
| 157 | int bge_read_nvram(struct bge_softc *, caddr_t, int, int); |
| 158 | u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *); |
| 159 | int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); |
| 160 | |
| 161 | void bge_iff(struct bge_softc *); |
| 162 | |
| 163 | int bge_newbuf_jumbo(struct bge_softc *, int); |
| 164 | int bge_init_rx_ring_jumbo(struct bge_softc *); |
| 165 | void bge_fill_rx_ring_jumbo(struct bge_softc *); |
| 166 | void bge_free_rx_ring_jumbo(struct bge_softc *); |
| 167 | |
| 168 | int bge_newbuf(struct bge_softc *, int); |
| 169 | int bge_init_rx_ring_std(struct bge_softc *); |
| 170 | void bge_rxtick(void *); |
| 171 | void bge_fill_rx_ring_std(struct bge_softc *); |
| 172 | void bge_free_rx_ring_std(struct bge_softc *); |
| 173 | |
| 174 | void bge_free_tx_ring(struct bge_softc *); |
| 175 | int bge_init_tx_ring(struct bge_softc *); |
| 176 | |
| 177 | void bge_chipinit(struct bge_softc *); |
| 178 | int bge_blockinit(struct bge_softc *); |
| 179 | u_int32_t bge_dma_swap_options(struct bge_softc *); |
| 180 | int bge_phy_addr(struct bge_softc *); |
| 181 | |
| 182 | u_int32_t bge_readmem_ind(struct bge_softc *, int); |
| 183 | void bge_writemem_ind(struct bge_softc *, int, int); |
| 184 | void bge_writereg_ind(struct bge_softc *, int, int); |
| 185 | void bge_writembx(struct bge_softc *, int, int); |
| 186 | |
| 187 | int bge_miibus_readreg(struct device *, int, int); |
| 188 | void bge_miibus_writereg(struct device *, int, int, int); |
| 189 | void bge_miibus_statchg(struct device *); |
| 190 | |
| 191 | #define BGE_RESET_SHUTDOWN0 0 |
| 192 | #define BGE_RESET_START1 1 |
| 193 | #define BGE_RESET_SUSPEND2 2 |
| 194 | void bge_sig_post_reset(struct bge_softc *, int); |
| 195 | void bge_sig_legacy(struct bge_softc *, int); |
| 196 | void bge_sig_pre_reset(struct bge_softc *, int); |
| 197 | void bge_stop_fw(struct bge_softc *, int); |
| 198 | void bge_reset(struct bge_softc *); |
| 199 | void bge_link_upd(struct bge_softc *); |
| 200 | |
| 201 | void bge_ape_lock_init(struct bge_softc *); |
| 202 | void bge_ape_read_fw_ver(struct bge_softc *); |
| 203 | int bge_ape_lock(struct bge_softc *, int); |
| 204 | void bge_ape_unlock(struct bge_softc *, int); |
| 205 | void bge_ape_send_event(struct bge_softc *, uint32_t); |
| 206 | void bge_ape_driver_state_change(struct bge_softc *, int); |
| 207 | |
| 208 | #if NKSTAT1 > 0 |
| 209 | void bge_kstat_attach(struct bge_softc *); |
| 210 | |
| 211 | enum { |
| 212 | bge_stat_out_octets = 0, |
| 213 | bge_stat_collisions, |
| 214 | bge_stat_xon_sent, |
| 215 | bge_stat_xoff_sent, |
| 216 | bge_stat_xmit_errors, |
| 217 | bge_stat_coll_frames, |
| 218 | bge_stat_multicoll_frames, |
| 219 | bge_stat_deferred_xmit, |
| 220 | bge_stat_excess_coll, |
| 221 | bge_stat_late_coll, |
| 222 | bge_stat_out_ucast_pkt, |
| 223 | bge_stat_out_mcast_pkt, |
| 224 | bge_stat_out_bcast_pkt, |
| 225 | bge_stat_in_octets, |
| 226 | bge_stat_fragments, |
| 227 | bge_stat_in_ucast_pkt, |
| 228 | bge_stat_in_mcast_pkt, |
| 229 | bge_stat_in_bcast_pkt, |
| 230 | bge_stat_fcs_errors, |
| 231 | bge_stat_align_errors, |
| 232 | bge_stat_xon_rcvd, |
| 233 | bge_stat_xoff_rcvd, |
| 234 | bge_stat_ctrl_frame_rcvd, |
| 235 | bge_stat_xoff_entered, |
| 236 | bge_stat_too_long_frames, |
| 237 | bge_stat_jabbers, |
| 238 | bge_stat_too_short_pkts, |
| 239 | |
| 240 | bge_stat_dma_rq_full, |
| 241 | bge_stat_dma_hprq_full, |
| 242 | bge_stat_sdc_queue_full, |
| 243 | bge_stat_nic_sendprod_set, |
| 244 | bge_stat_status_updated, |
| 245 | bge_stat_irqs, |
| 246 | bge_stat_avoided_irqs, |
| 247 | bge_stat_tx_thresh_hit, |
| 248 | |
| 249 | bge_stat_filtdrop, |
| 250 | bge_stat_dma_wrq_full, |
| 251 | bge_stat_dma_hpwrq_full, |
| 252 | bge_stat_out_of_bds, |
| 253 | bge_stat_if_in_drops, |
| 254 | bge_stat_if_in_errors, |
| 255 | bge_stat_rx_thresh_hit, |
| 256 | }; |
| 257 | |
| 258 | #endif |
| 259 | |
| 260 | #ifdef BGE_DEBUG |
| 261 | #define DPRINTF(x) do { if (bgedebug) printf x; } while (0) |
| 262 | #define DPRINTFN(n,x) do { if (bgedebug >= (n)) printf x; } while (0) |
| 263 | int bgedebug = 0; |
| 264 | #else |
| 265 | #define DPRINTF(x) |
| 266 | #define DPRINTFN(n,x) |
| 267 | #endif |
| 268 | |
| 269 | /* |
| 270 | * Various supported device vendors/types and their names. Note: the |
| 271 | * spec seems to indicate that the hardware still has Alteon's vendor |
| 272 | * ID burned into it, though it will always be overridden by the vendor |
| 273 | * ID in the EEPROM. Just to be safe, we cover all possibilities. |
| 274 | */ |
| 275 | const struct pci_matchid bge_devices[] = { |
| 276 | { PCI_VENDOR_ALTEON0x12ae, PCI_PRODUCT_ALTEON_BCM57000x0003 }, |
| 277 | { PCI_VENDOR_ALTEON0x12ae, PCI_PRODUCT_ALTEON_BCM57010x0004 }, |
| 278 | |
| 279 | { PCI_VENDOR_ALTIMA0x173b, PCI_PRODUCT_ALTIMA_AC10000x03e8 }, |
| 280 | { PCI_VENDOR_ALTIMA0x173b, PCI_PRODUCT_ALTIMA_AC10010x03e9 }, |
| 281 | { PCI_VENDOR_ALTIMA0x173b, PCI_PRODUCT_ALTIMA_AC10030x03eb }, |
| 282 | { PCI_VENDOR_ALTIMA0x173b, PCI_PRODUCT_ALTIMA_AC91000x03ea }, |
| 283 | |
| 284 | { PCI_VENDOR_APPLE0x106b, PCI_PRODUCT_APPLE_BCM57010x1645 }, |
| 285 | |
| 286 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57000x1644 }, |
| 287 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57010x1645 }, |
| 288 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57020x1646 }, |
| 289 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5702_ALT0x16c6 }, |
| 290 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5702X0x16a6 }, |
| 291 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57030x1647 }, |
| 292 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5703_ALT0x16c7 }, |
| 293 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5703X0x16a7 }, |
| 294 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5704C0x1648 }, |
| 295 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5704S0x16a8 }, |
| 296 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5704S_ALT0x1649 }, |
| 297 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57050x1653 }, |
| 298 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5705F0x166e }, |
| 299 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5705K0x1654 }, |
| 300 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5705M0x165d }, |
| 301 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5705M_ALT0x165e }, |
| 302 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57140x1668 }, |
| 303 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5714S0x1669 }, |
| 304 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57150x1678 }, |
| 305 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5715S0x1679 }, |
| 306 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57170x1655 }, |
| 307 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5717C0x1665 }, |
| 308 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57180x1656 }, |
| 309 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57190x1657 }, |
| 310 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57200x165f }, |
| 311 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57210x1659 }, |
| 312 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57220x165a }, |
| 313 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57230x165b }, |
| 314 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57250x1643 }, |
| 315 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57270x16f3 }, |
| 316 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57510x1677 }, |
| 317 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5751F0x167e }, |
| 318 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5751M0x167d }, |
| 319 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57520x1600 }, |
| 320 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5752M0x1601 }, |
| 321 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57530x16f7 }, |
| 322 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5753F0x16fe }, |
| 323 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5753M0x16fd }, |
| 324 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57540x167a }, |
| 325 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5754M0x1672 }, |
| 326 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57550x167b }, |
| 327 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5755M0x1673 }, |
| 328 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57560x1674 }, |
| 329 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57610x1681 }, |
| 330 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5761E0x1680 }, |
| 331 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5761S0x1688 }, |
| 332 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5761SE0x1689 }, |
| 333 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57620x1687 }, |
| 334 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57640x1684 }, |
| 335 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57800x166a }, |
| 336 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5780S0x166b }, |
| 337 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57810x16dd }, |
| 338 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57820x1696 }, |
| 339 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57840x1698 }, |
| 340 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5785F0x16a0 }, |
| 341 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5785G0x1699 }, |
| 342 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57860x169a }, |
| 343 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57870x169b }, |
| 344 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5787F0x167f }, |
| 345 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5787M0x1693 }, |
| 346 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57880x169c }, |
| 347 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57890x169d }, |
| 348 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM59010x170d }, |
| 349 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5901A20x170e }, |
| 350 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5903M0x16ff }, |
| 351 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM59060x1712 }, |
| 352 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5906M0x1713 }, |
| 353 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577600x1690 }, |
| 354 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577610x16b0 }, |
| 355 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577620x1682 }, |
| 356 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577640x1642 }, |
| 357 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577650x16b4 }, |
| 358 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577660x1686 }, |
| 359 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577670x1683 }, |
| 360 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577800x1692 }, |
| 361 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577810x16b1 }, |
| 362 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577820x16b7 }, |
| 363 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577850x16b5 }, |
| 364 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577860x16b3 }, |
| 365 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577870x1641 }, |
| 366 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577880x1691 }, |
| 367 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577900x1694 }, |
| 368 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577910x16b2 }, |
| 369 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM577950x16b6 }, |
| 370 | |
| 371 | { PCI_VENDOR_FUJITSU0x10cf, PCI_PRODUCT_FUJITSU_PW008GE40x11a2 }, |
| 372 | { PCI_VENDOR_FUJITSU0x10cf, PCI_PRODUCT_FUJITSU_PW008GE50x11a1 }, |
| 373 | { PCI_VENDOR_FUJITSU0x10cf, PCI_PRODUCT_FUJITSU_PP250_450_LAN0x11cc }, |
| 374 | |
| 375 | { PCI_VENDOR_SCHNEIDERKOCH0x1148, PCI_PRODUCT_SCHNEIDERKOCH_SK9D210x4400 }, |
| 376 | |
| 377 | { PCI_VENDOR_3COM0x10b7, PCI_PRODUCT_3COM_3C9960x0003 } |
| 378 | }; |
| 379 | |
| 380 | #define BGE_IS_JUMBO_CAPABLE(sc)((sc)->bge_flags & 0x00000100) ((sc)->bge_flags & BGE_JUMBO_CAPABLE0x00000100) |
| 381 | #define BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000) ((sc)->bge_flags & BGE_5700_FAMILY0x00010000) |
| 382 | #define BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000) ((sc)->bge_flags & BGE_5705_PLUS0x00001000) |
| 383 | #define BGE_IS_5714_FAMILY(sc)((sc)->bge_flags & 0x00008000) ((sc)->bge_flags & BGE_5714_FAMILY0x00008000) |
| 384 | #define BGE_IS_575X_PLUS(sc)((sc)->bge_flags & 0x00002000) ((sc)->bge_flags & BGE_575X_PLUS0x00002000) |
| 385 | #define BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000) ((sc)->bge_flags & BGE_5755_PLUS0x00004000) |
| 386 | #define BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000) ((sc)->bge_flags & BGE_5717_PLUS0x00020000) |
| 387 | #define BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000) ((sc)->bge_flags & BGE_57765_PLUS0x00040000) |
| 388 | |
| 389 | static const struct bge_revision { |
| 390 | u_int32_t br_chipid; |
| 391 | const char *br_name; |
| 392 | } bge_revisions[] = { |
| 393 | { BGE_CHIPID_BCM5700_A00x7000, "BCM5700 A0" }, |
| 394 | { BGE_CHIPID_BCM5700_A10x7001, "BCM5700 A1" }, |
| 395 | { BGE_CHIPID_BCM5700_B00x7100, "BCM5700 B0" }, |
| 396 | { BGE_CHIPID_BCM5700_B10x7101, "BCM5700 B1" }, |
| 397 | { BGE_CHIPID_BCM5700_B20x7102, "BCM5700 B2" }, |
| 398 | { BGE_CHIPID_BCM5700_B30x7103, "BCM5700 B3" }, |
| 399 | { BGE_CHIPID_BCM5700_ALTIMA0x7104, "BCM5700 Altima" }, |
| 400 | { BGE_CHIPID_BCM5700_C00x7200, "BCM5700 C0" }, |
| 401 | { BGE_CHIPID_BCM5701_A00x0000, "BCM5701 A0" }, |
| 402 | { BGE_CHIPID_BCM5701_B00x0100, "BCM5701 B0" }, |
| 403 | { BGE_CHIPID_BCM5701_B20x0102, "BCM5701 B2" }, |
| 404 | { BGE_CHIPID_BCM5701_B50x0105, "BCM5701 B5" }, |
| 405 | /* the 5702 and 5703 share the same ASIC ID */ |
| 406 | { BGE_CHIPID_BCM5703_A00x1000, "BCM5702/5703 A0" }, |
| 407 | { BGE_CHIPID_BCM5703_A10x1001, "BCM5702/5703 A1" }, |
| 408 | { BGE_CHIPID_BCM5703_A20x1002, "BCM5702/5703 A2" }, |
| 409 | { BGE_CHIPID_BCM5703_A30x1003, "BCM5702/5703 A3" }, |
| 410 | { BGE_CHIPID_BCM5703_B00x1100, "BCM5702/5703 B0" }, |
| 411 | { BGE_CHIPID_BCM5704_A00x2000, "BCM5704 A0" }, |
| 412 | { BGE_CHIPID_BCM5704_A10x2001, "BCM5704 A1" }, |
| 413 | { BGE_CHIPID_BCM5704_A20x2002, "BCM5704 A2" }, |
| 414 | { BGE_CHIPID_BCM5704_A30x2003, "BCM5704 A3" }, |
| 415 | { BGE_CHIPID_BCM5704_B00x2100, "BCM5704 B0" }, |
| 416 | { BGE_CHIPID_BCM5705_A00x3000, "BCM5705 A0" }, |
| 417 | { BGE_CHIPID_BCM5705_A10x3001, "BCM5705 A1" }, |
| 418 | { BGE_CHIPID_BCM5705_A20x3002, "BCM5705 A2" }, |
| 419 | { BGE_CHIPID_BCM5705_A30x3003, "BCM5705 A3" }, |
| 420 | { BGE_CHIPID_BCM5750_A00x4000, "BCM5750 A0" }, |
| 421 | { BGE_CHIPID_BCM5750_A10x4001, "BCM5750 A1" }, |
| 422 | { BGE_CHIPID_BCM5750_A30x4003, "BCM5750 A3" }, |
| 423 | { BGE_CHIPID_BCM5750_B00x4010, "BCM5750 B0" }, |
| 424 | { BGE_CHIPID_BCM5750_B10x4101, "BCM5750 B1" }, |
| 425 | { BGE_CHIPID_BCM5750_C00x4200, "BCM5750 C0" }, |
| 426 | { BGE_CHIPID_BCM5750_C10x4201, "BCM5750 C1" }, |
| 427 | { BGE_CHIPID_BCM5750_C20x4202, "BCM5750 C2" }, |
| 428 | { BGE_CHIPID_BCM5714_A00x5000, "BCM5714 A0" }, |
| 429 | { BGE_CHIPID_BCM5752_A00x6000, "BCM5752 A0" }, |
| 430 | { BGE_CHIPID_BCM5752_A10x6001, "BCM5752 A1" }, |
| 431 | { BGE_CHIPID_BCM5752_A20x6002, "BCM5752 A2" }, |
| 432 | { BGE_CHIPID_BCM5714_B00x8000, "BCM5714 B0" }, |
| 433 | { BGE_CHIPID_BCM5714_B30x8003, "BCM5714 B3" }, |
| 434 | { BGE_CHIPID_BCM5715_A00x9000, "BCM5715 A0" }, |
| 435 | { BGE_CHIPID_BCM5715_A10x9001, "BCM5715 A1" }, |
| 436 | { BGE_CHIPID_BCM5715_A30x9003, "BCM5715 A3" }, |
| 437 | { BGE_CHIPID_BCM5717_A00x05717000, "BCM5717 A0" }, |
| 438 | { BGE_CHIPID_BCM5717_B00x05717100, "BCM5717 B0" }, |
| 439 | { BGE_CHIPID_BCM5719_A00x05719000, "BCM5719 A0" }, |
| 440 | { BGE_CHIPID_BCM5719_A10x05719001, "BCM5719 A1" }, |
| 441 | { BGE_CHIPID_BCM5720_A00x05720000, "BCM5720 A0" }, |
| 442 | { BGE_CHIPID_BCM5755_A00xa000, "BCM5755 A0" }, |
| 443 | { BGE_CHIPID_BCM5755_A10xa001, "BCM5755 A1" }, |
| 444 | { BGE_CHIPID_BCM5755_A20xa002, "BCM5755 A2" }, |
| 445 | { BGE_CHIPID_BCM5755_C00xa200, "BCM5755 C0" }, |
| 446 | { BGE_CHIPID_BCM5761_A00x5761000, "BCM5761 A0" }, |
| 447 | { BGE_CHIPID_BCM5761_A10x5761100, "BCM5761 A1" }, |
| 448 | { BGE_CHIPID_BCM5762_A00x05762000, "BCM5762 A0" }, |
| 449 | { BGE_CHIPID_BCM5762_B00x05762100, "BCM5762 B0" }, |
| 450 | { BGE_CHIPID_BCM5784_A00x5784000, "BCM5784 A0" }, |
| 451 | { BGE_CHIPID_BCM5784_A10x5784100, "BCM5784 A1" }, |
| 452 | /* the 5754 and 5787 share the same ASIC ID */ |
| 453 | { BGE_CHIPID_BCM5787_A00xb000, "BCM5754/5787 A0" }, |
| 454 | { BGE_CHIPID_BCM5787_A10xb001, "BCM5754/5787 A1" }, |
| 455 | { BGE_CHIPID_BCM5787_A20xb002, "BCM5754/5787 A2" }, |
| 456 | { BGE_CHIPID_BCM5906_A10xc001, "BCM5906 A1" }, |
| 457 | { BGE_CHIPID_BCM5906_A20xc002, "BCM5906 A2" }, |
| 458 | { BGE_CHIPID_BCM57765_A00x57785000, "BCM57765 A0" }, |
| 459 | { BGE_CHIPID_BCM57765_B00x57785100, "BCM57765 B0" }, |
| 460 | { BGE_CHIPID_BCM57766_A00x57766000, "BCM57766 A0" }, |
| 461 | { BGE_CHIPID_BCM57766_A10x57766001, "BCM57766 A1" }, |
| 462 | { BGE_CHIPID_BCM57780_A00x57780000, "BCM57780 A0" }, |
| 463 | { BGE_CHIPID_BCM57780_A10x57780001, "BCM57780 A1" }, |
| 464 | |
| 465 | { 0, NULL((void *)0) } |
| 466 | }; |
| 467 | |
| 468 | /* |
| 469 | * Some defaults for major revisions, so that newer steppings |
| 470 | * that we don't know about have a shot at working. |
| 471 | */ |
| 472 | static const struct bge_revision bge_majorrevs[] = { |
| 473 | { BGE_ASICREV_BCM57000x07, "unknown BCM5700" }, |
| 474 | { BGE_ASICREV_BCM57010x00, "unknown BCM5701" }, |
| 475 | /* 5702 and 5703 share the same ASIC ID */ |
| 476 | { BGE_ASICREV_BCM57030x01, "unknown BCM5703" }, |
| 477 | { BGE_ASICREV_BCM57040x02, "unknown BCM5704" }, |
| 478 | { BGE_ASICREV_BCM57050x03, "unknown BCM5705" }, |
| 479 | { BGE_ASICREV_BCM57500x04, "unknown BCM5750" }, |
| 480 | { BGE_ASICREV_BCM57140x09, "unknown BCM5714" }, |
| 481 | { BGE_ASICREV_BCM5714_A00x05, "unknown BCM5714" }, |
| 482 | { BGE_ASICREV_BCM57520x06, "unknown BCM5752" }, |
| 483 | { BGE_ASICREV_BCM57800x08, "unknown BCM5780" }, |
| 484 | { BGE_ASICREV_BCM57550x0a, "unknown BCM5755" }, |
| 485 | { BGE_ASICREV_BCM57610x5761, "unknown BCM5761" }, |
| 486 | { BGE_ASICREV_BCM57840x5784, "unknown BCM5784" }, |
| 487 | { BGE_ASICREV_BCM57850x5785, "unknown BCM5785" }, |
| 488 | /* 5754 and 5787 share the same ASIC ID */ |
| 489 | { BGE_ASICREV_BCM57870x0b, "unknown BCM5754/5787" }, |
| 490 | { BGE_ASICREV_BCM59060x0c, "unknown BCM5906" }, |
| 491 | { BGE_ASICREV_BCM577650x57785, "unknown BCM57765" }, |
| 492 | { BGE_ASICREV_BCM577660x57766, "unknown BCM57766" }, |
| 493 | { BGE_ASICREV_BCM577800x57780, "unknown BCM57780" }, |
| 494 | { BGE_ASICREV_BCM57170x5717, "unknown BCM5717" }, |
| 495 | { BGE_ASICREV_BCM57190x5719, "unknown BCM5719" }, |
| 496 | { BGE_ASICREV_BCM57200x5720, "unknown BCM5720" }, |
| 497 | { BGE_ASICREV_BCM57620x5762, "unknown BCM5762" }, |
| 498 | |
| 499 | { 0, NULL((void *)0) } |
| 500 | }; |
| 501 | |
| 502 | u_int32_t |
| 503 | bge_readmem_ind(struct bge_softc *sc, int off) |
| 504 | { |
| 505 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 506 | u_int32_t val; |
| 507 | |
| 508 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c && |
| 509 | off >= BGE_STATS_BLOCK0x00000300 && off < BGE_SEND_RING_1_TO_40x00004000) |
| 510 | return (0); |
| 511 | |
| 512 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR0x7C, off); |
| 513 | val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA0x84); |
| 514 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR0x7C, 0); |
| 515 | return (val); |
| 516 | } |
| 517 | |
| 518 | void |
| 519 | bge_writemem_ind(struct bge_softc *sc, int off, int val) |
| 520 | { |
| 521 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 522 | |
| 523 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c && |
| 524 | off >= BGE_STATS_BLOCK0x00000300 && off < BGE_SEND_RING_1_TO_40x00004000) |
| 525 | return; |
| 526 | |
| 527 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR0x7C, off); |
| 528 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA0x84, val); |
| 529 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR0x7C, 0); |
| 530 | } |
| 531 | |
| 532 | void |
| 533 | bge_writereg_ind(struct bge_softc *sc, int off, int val) |
| 534 | { |
| 535 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 536 | |
| 537 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR0x78, off); |
| 538 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA0x80, val); |
| 539 | } |
| 540 | |
| 541 | void |
| 542 | bge_writembx(struct bge_softc *sc, int off, int val) |
| 543 | { |
| 544 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) |
| 545 | off += BGE_LPMBX_IRQ0_HI0x5800 - BGE_MBX_IRQ0_HI0x0200; |
| 546 | |
| 547 | CSR_WRITE_4(sc, off, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (off), ( val))); |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Clear all stale locks and select the lock for this driver instance. |
| 552 | */ |
| 553 | void |
| 554 | bge_ape_lock_init(struct bge_softc *sc) |
| 555 | { |
| 556 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 557 | uint32_t bit, regbase; |
| 558 | int i; |
| 559 | |
| 560 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) |
| 561 | regbase = BGE_APE_LOCK_GRANT0x004C; |
| 562 | else |
| 563 | regbase = BGE_APE_PER_LOCK_GRANT0x8420; |
| 564 | |
| 565 | /* Clear any stale locks. */ |
| 566 | for (i = BGE_APE_LOCK_PHY00; i <= BGE_APE_LOCK_GPIO7; i++) { |
| 567 | switch (i) { |
| 568 | case BGE_APE_LOCK_PHY00: |
| 569 | case BGE_APE_LOCK_PHY12: |
| 570 | case BGE_APE_LOCK_PHY23: |
| 571 | case BGE_APE_LOCK_PHY35: |
| 572 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 573 | break; |
| 574 | default: |
| 575 | if (pa->pa_function == 0) |
| 576 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 577 | else |
| 578 | bit = (1 << pa->pa_function); |
| 579 | } |
| 580 | APE_WRITE_4(sc, regbase + 4 * i, bit)((sc->bge_apetag)->write_4((sc->bge_apehandle), (regbase + 4 * i), (bit))); |
| 581 | } |
| 582 | |
| 583 | /* Select the PHY lock based on the device's function number. */ |
| 584 | switch (pa->pa_function) { |
| 585 | case 0: |
| 586 | sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY00; |
| 587 | break; |
| 588 | case 1: |
| 589 | sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY12; |
| 590 | break; |
| 591 | case 2: |
| 592 | sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY23; |
| 593 | break; |
| 594 | case 3: |
| 595 | sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY35; |
| 596 | break; |
| 597 | default: |
| 598 | printf("%s: PHY lock not supported on function %d\n", |
| 599 | sc->bge_dev.dv_xname, pa->pa_function); |
| 600 | break; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * Check for APE firmware, set flags, and print version info. |
| 606 | */ |
| 607 | void |
| 608 | bge_ape_read_fw_ver(struct bge_softc *sc) |
| 609 | { |
| 610 | const char *fwtype; |
| 611 | uint32_t apedata, features; |
| 612 | |
| 613 | /* Check for a valid APE signature in shared memory. */ |
| 614 | apedata = APE_READ_4(sc, BGE_APE_SEG_SIG)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4000 ))); |
| 615 | if (apedata != BGE_APE_SEG_SIG_MAGIC0x41504521) { |
| 616 | sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE0x00000002; |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | /* Check if APE firmware is running. */ |
| 621 | apedata = APE_READ_4(sc, BGE_APE_FW_STATUS)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x400C ))); |
| 622 | if ((apedata & BGE_APE_FW_STATUS_READY0x00000100) == 0) { |
| 623 | printf("%s: APE signature found but FW status not ready! " |
| 624 | "0x%08x\n", sc->bge_dev.dv_xname, apedata); |
| 625 | return; |
| 626 | } |
| 627 | |
| 628 | sc->bge_mfw_flags |= BGE_MFW_ON_APE0x00000002; |
| 629 | |
| 630 | /* Fetch the APE firmware type and version. */ |
| 631 | apedata = APE_READ_4(sc, BGE_APE_FW_VERSION)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4018 ))); |
| 632 | features = APE_READ_4(sc, BGE_APE_FW_FEATURES)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4010 ))); |
| 633 | if ((features & BGE_APE_FW_FEATURE_NCSI0x00000002) != 0) { |
| 634 | sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI0x00000004; |
| 635 | fwtype = "NCSI"; |
| 636 | } else if ((features & BGE_APE_FW_FEATURE_DASH0x00000001) != 0) { |
| 637 | sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH0x00000008; |
| 638 | fwtype = "DASH"; |
| 639 | } else |
| 640 | fwtype = "UNKN"; |
| 641 | |
| 642 | /* Print the APE firmware version. */ |
| 643 | printf(", APE firmware %s %d.%d.%d.%d", fwtype, |
| 644 | (apedata & BGE_APE_FW_VERSION_MAJMSK0xFF000000) >> BGE_APE_FW_VERSION_MAJSFT24, |
| 645 | (apedata & BGE_APE_FW_VERSION_MINMSK0x00FF0000) >> BGE_APE_FW_VERSION_MINSFT16, |
| 646 | (apedata & BGE_APE_FW_VERSION_REVMSK0x0000FF00) >> BGE_APE_FW_VERSION_REVSFT8, |
| 647 | (apedata & BGE_APE_FW_VERSION_BLDMSK0x000000FF)); |
| 648 | } |
| 649 | |
| 650 | int |
| 651 | bge_ape_lock(struct bge_softc *sc, int locknum) |
| 652 | { |
| 653 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 654 | uint32_t bit, gnt, req, status; |
| 655 | int i, off; |
| 656 | |
| 657 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) == 0) |
| 658 | return (0); |
| 659 | |
| 660 | /* Lock request/grant registers have different bases. */ |
| 661 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) { |
| 662 | req = BGE_APE_LOCK_REQ0x002C; |
| 663 | gnt = BGE_APE_LOCK_GRANT0x004C; |
| 664 | } else { |
| 665 | req = BGE_APE_PER_LOCK_REQ0x8400; |
| 666 | gnt = BGE_APE_PER_LOCK_GRANT0x8420; |
| 667 | } |
| 668 | |
| 669 | off = 4 * locknum; |
| 670 | |
| 671 | switch (locknum) { |
| 672 | case BGE_APE_LOCK_GPIO7: |
| 673 | /* Lock required when using GPIO. */ |
| 674 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) |
| 675 | return (0); |
| 676 | if (pa->pa_function == 0) |
| 677 | bit = BGE_APE_LOCK_REQ_DRIVER00x00001000; |
| 678 | else |
| 679 | bit = (1 << pa->pa_function); |
| 680 | break; |
| 681 | case BGE_APE_LOCK_GRC1: |
| 682 | /* Lock required to reset the device. */ |
| 683 | if (pa->pa_function == 0) |
| 684 | bit = BGE_APE_LOCK_REQ_DRIVER00x00001000; |
| 685 | else |
| 686 | bit = (1 << pa->pa_function); |
| 687 | break; |
| 688 | case BGE_APE_LOCK_MEM4: |
| 689 | /* Lock required when accessing certain APE memory. */ |
| 690 | if (pa->pa_function == 0) |
| 691 | bit = BGE_APE_LOCK_REQ_DRIVER00x00001000; |
| 692 | else |
| 693 | bit = (1 << pa->pa_function); |
| 694 | break; |
| 695 | case BGE_APE_LOCK_PHY00: |
| 696 | case BGE_APE_LOCK_PHY12: |
| 697 | case BGE_APE_LOCK_PHY23: |
| 698 | case BGE_APE_LOCK_PHY35: |
| 699 | /* Lock required when accessing PHYs. */ |
| 700 | bit = BGE_APE_LOCK_REQ_DRIVER00x00001000; |
| 701 | break; |
| 702 | default: |
| 703 | return (EINVAL22); |
| 704 | } |
| 705 | |
| 706 | /* Request a lock. */ |
| 707 | APE_WRITE_4(sc, req + off, bit)((sc->bge_apetag)->write_4((sc->bge_apehandle), (req + off), (bit))); |
| 708 | |
| 709 | /* Wait up to 1 second to acquire lock. */ |
| 710 | for (i = 0; i < 20000; i++) { |
| 711 | status = APE_READ_4(sc, gnt + off)((sc->bge_apetag)->read_4((sc->bge_apehandle), (gnt + off))); |
| 712 | if (status == bit) |
| 713 | break; |
| 714 | DELAY(50)(*delay_func)(50); |
| 715 | } |
| 716 | |
| 717 | /* Handle any errors. */ |
| 718 | if (status != bit) { |
| 719 | printf("%s: APE lock %d request failed! " |
| 720 | "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", |
| 721 | sc->bge_dev.dv_xname, |
| 722 | locknum, req + off, bit & 0xFFFF, gnt + off, |
| 723 | status & 0xFFFF); |
| 724 | /* Revoke the lock request. */ |
| 725 | APE_WRITE_4(sc, gnt + off, bit)((sc->bge_apetag)->write_4((sc->bge_apehandle), (gnt + off), (bit))); |
| 726 | return (EBUSY16); |
| 727 | } |
| 728 | |
| 729 | return (0); |
| 730 | } |
| 731 | |
| 732 | void |
| 733 | bge_ape_unlock(struct bge_softc *sc, int locknum) |
| 734 | { |
| 735 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 736 | uint32_t bit, gnt; |
| 737 | int off; |
| 738 | |
| 739 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) == 0) |
| 740 | return; |
| 741 | |
| 742 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) |
| 743 | gnt = BGE_APE_LOCK_GRANT0x004C; |
| 744 | else |
| 745 | gnt = BGE_APE_PER_LOCK_GRANT0x8420; |
| 746 | |
| 747 | off = 4 * locknum; |
| 748 | |
| 749 | switch (locknum) { |
| 750 | case BGE_APE_LOCK_GPIO7: |
| 751 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) |
| 752 | return; |
| 753 | if (pa->pa_function == 0) |
| 754 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 755 | else |
| 756 | bit = (1 << pa->pa_function); |
| 757 | break; |
| 758 | case BGE_APE_LOCK_GRC1: |
| 759 | if (pa->pa_function == 0) |
| 760 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 761 | else |
| 762 | bit = (1 << pa->pa_function); |
| 763 | break; |
| 764 | case BGE_APE_LOCK_MEM4: |
| 765 | if (pa->pa_function == 0) |
| 766 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 767 | else |
| 768 | bit = (1 << pa->pa_function); |
| 769 | break; |
| 770 | case BGE_APE_LOCK_PHY00: |
| 771 | case BGE_APE_LOCK_PHY12: |
| 772 | case BGE_APE_LOCK_PHY23: |
| 773 | case BGE_APE_LOCK_PHY35: |
| 774 | bit = BGE_APE_LOCK_GRANT_DRIVER00x00001000; |
| 775 | break; |
| 776 | default: |
| 777 | return; |
| 778 | } |
| 779 | |
| 780 | APE_WRITE_4(sc, gnt + off, bit)((sc->bge_apetag)->write_4((sc->bge_apehandle), (gnt + off), (bit))); |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * Send an event to the APE firmware. |
| 785 | */ |
| 786 | void |
| 787 | bge_ape_send_event(struct bge_softc *sc, uint32_t event) |
| 788 | { |
| 789 | uint32_t apedata; |
| 790 | int i; |
| 791 | |
| 792 | /* NCSI does not support APE events. */ |
| 793 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) == 0) |
| 794 | return; |
| 795 | |
| 796 | /* Wait up to 1ms for APE to service previous event. */ |
| 797 | for (i = 10; i > 0; i--) { |
| 798 | if (bge_ape_lock(sc, BGE_APE_LOCK_MEM4) != 0) |
| 799 | break; |
| 800 | apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4300 ))); |
| 801 | if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING0x80000000) == 0) { |
| 802 | APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4300 ), (event | 0x80000000))) |
| 803 | BGE_APE_EVENT_STATUS_EVENT_PENDING)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4300 ), (event | 0x80000000))); |
| 804 | bge_ape_unlock(sc, BGE_APE_LOCK_MEM4); |
| 805 | APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x000C ), (0x00000001))); |
| 806 | break; |
| 807 | } |
| 808 | bge_ape_unlock(sc, BGE_APE_LOCK_MEM4); |
| 809 | DELAY(100)(*delay_func)(100); |
| 810 | } |
| 811 | if (i == 0) { |
| 812 | printf("%s: APE event 0x%08x send timed out\n", |
| 813 | sc->bge_dev.dv_xname, event); |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | void |
| 818 | bge_ape_driver_state_change(struct bge_softc *sc, int kind) |
| 819 | { |
| 820 | uint32_t apedata, event; |
| 821 | |
| 822 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) == 0) |
| 823 | return; |
| 824 | |
| 825 | switch (kind) { |
| 826 | case BGE_RESET_START1: |
| 827 | /* If this is the first load, clear the load counter. */ |
| 828 | apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4200 ))); |
| 829 | if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC0x484F5354) |
| 830 | APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4208 ), (0))); |
| 831 | else { |
| 832 | apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT)((sc->bge_apetag)->read_4((sc->bge_apehandle), (0x4208 ))); |
| 833 | APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4208 ), (++apedata))); |
| 834 | } |
| 835 | APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4200 ), (0x484F5354))) |
| 836 | BGE_APE_HOST_SEG_SIG_MAGIC)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4200 ), (0x484F5354))); |
| 837 | APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4204 ), (0x00000020))) |
| 838 | BGE_APE_HOST_SEG_LEN_MAGIC)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4204 ), (0x00000020))); |
| 839 | |
| 840 | /* Add some version info if bge(4) supports it. */ |
| 841 | APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x420C ), ((0xF6000000 | ((1) & 0xffd) << 16 | ((0) & 0xff ) << 8)))) |
| 842 | BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0))((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x420C ), ((0xF6000000 | ((1) & 0xffd) << 16 | ((0) & 0xff ) << 8)))); |
| 843 | APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4210 ), (0x00000001))) |
| 844 | BGE_APE_HOST_BEHAV_NO_PHYLOCK)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4210 ), (0x00000001))); |
| 845 | APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4214 ), (0))) |
| 846 | BGE_APE_HOST_HEARTBEAT_INT_DISABLE)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x4214 ), (0))); |
| 847 | APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x421C ), (0x00000001))) |
| 848 | BGE_APE_HOST_DRVR_STATE_START)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x421C ), (0x00000001))); |
| 849 | event = BGE_APE_EVENT_STATUS_STATE_START0x00010000; |
| 850 | break; |
| 851 | case BGE_RESET_SHUTDOWN0: |
| 852 | APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x421C ), (0x00000002))) |
| 853 | BGE_APE_HOST_DRVR_STATE_UNLOAD)((sc->bge_apetag)->write_4((sc->bge_apehandle), (0x421C ), (0x00000002))); |
| 854 | event = BGE_APE_EVENT_STATUS_STATE_UNLOAD0x00020000; |
| 855 | break; |
| 856 | case BGE_RESET_SUSPEND2: |
| 857 | event = BGE_APE_EVENT_STATUS_STATE_SUSPEND0x00040000; |
| 858 | break; |
| 859 | default: |
| 860 | return; |
| 861 | } |
| 862 | |
| 863 | bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT0x00000010 | |
| 864 | BGE_APE_EVENT_STATUS_STATE_CHNGE0x00000500); |
| 865 | } |
| 866 | |
| 867 | |
| 868 | u_int8_t |
| 869 | bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) |
| 870 | { |
| 871 | u_int32_t access, byte = 0; |
| 872 | int i; |
| 873 | |
| 874 | /* Lock. */ |
| 875 | CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7020) , (0x00000002))); |
| 876 | for (i = 0; i < 8000; i++) { |
| 877 | if (CSR_READ_4(sc, BGE_NVRAM_SWARB)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7020)) ) & BGE_NVRAMSWARB_GNT10x00000200) |
| 878 | break; |
| 879 | DELAY(20)(*delay_func)(20); |
| 880 | } |
| 881 | if (i == 8000) |
| 882 | return (1); |
| 883 | |
| 884 | /* Enable access. */ |
| 885 | access = CSR_READ_4(sc, BGE_NVRAM_ACCESS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7024)) ); |
| 886 | CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7024) , (access | 0x00000001))); |
| 887 | |
| 888 | CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x700c) , (addr & 0xfffffffc))); |
| 889 | CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7000) , ((0x00000080|0x00000100| 0x00000010|0x00000008)))); |
| 890 | for (i = 0; i < BGE_TIMEOUT100000 * 10; i++) { |
| 891 | DELAY(10)(*delay_func)(10); |
| 892 | if (CSR_READ_4(sc, BGE_NVRAM_CMD)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7000)) ) & BGE_NVRAMCMD_DONE0x00000008) { |
| 893 | DELAY(10)(*delay_func)(10); |
| 894 | break; |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | if (i == BGE_TIMEOUT100000 * 10) { |
| 899 | printf("%s: nvram read timed out\n", sc->bge_dev.dv_xname); |
| 900 | return (1); |
| 901 | } |
| 902 | |
| 903 | /* Get result. */ |
| 904 | byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7010)) ); |
| 905 | |
| 906 | *dest = (swap32(byte)(__uint32_t)(__builtin_constant_p(byte) ? (__uint32_t)(((__uint32_t )(byte) & 0xff) << 24 | ((__uint32_t)(byte) & 0xff00 ) << 8 | ((__uint32_t)(byte) & 0xff0000) >> 8 | ((__uint32_t)(byte) & 0xff000000) >> 24) : __swap32md (byte)) >> ((addr % 4) * 8)) & 0xFF; |
| 907 | |
| 908 | /* Disable access. */ |
| 909 | CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7024) , (access))); |
| 910 | |
| 911 | /* Unlock. */ |
| 912 | CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7020) , (0x00000020))); |
| 913 | CSR_READ_4(sc, BGE_NVRAM_SWARB)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7020)) ); |
| 914 | |
| 915 | return (0); |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Read a sequence of bytes from NVRAM. |
| 920 | */ |
| 921 | |
| 922 | int |
| 923 | bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) |
| 924 | { |
| 925 | int err = 0, i; |
| 926 | u_int8_t byte = 0; |
| 927 | |
| 928 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM59060x0c) |
| 929 | return (1); |
| 930 | |
| 931 | for (i = 0; i < cnt; i++) { |
| 932 | err = bge_nvram_getbyte(sc, off + i, &byte); |
| 933 | if (err) |
| 934 | break; |
| 935 | *(dest + i) = byte; |
| 936 | } |
| 937 | |
| 938 | return (err ? 1 : 0); |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * Read a byte of data stored in the EEPROM at address 'addr.' The |
| 943 | * BCM570x supports both the traditional bitbang interface and an |
| 944 | * auto access interface for reading the EEPROM. We use the auto |
| 945 | * access method. |
| 946 | */ |
| 947 | u_int8_t |
| 948 | bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) |
| 949 | { |
| 950 | int i; |
| 951 | u_int32_t byte = 0; |
| 952 | |
| 953 | /* |
| 954 | * Enable use of auto EEPROM access so we can avoid |
| 955 | * having to use the bitbang method. |
| 956 | */ |
| 957 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x01000000))))); |
| 958 | |
| 959 | /* Reset the EEPROM, load the clock period. */ |
| 960 | CSR_WRITE_4(sc, BGE_EE_ADDR,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6838) , (0x20000000|((0x60 & 0x1FF) << 16)))) |
| 961 | BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6838) , (0x20000000|((0x60 & 0x1FF) << 16)))); |
| 962 | DELAY(20)(*delay_func)(20); |
| 963 | |
| 964 | /* Issue the read EEPROM command. */ |
| 965 | CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6838) , ((((0x60 & 0x1FF) << 16)|((0 & 7) << 26 )| 0x02000000|0x80000000|0x40000000) | addr))); |
| 966 | |
| 967 | /* Wait for completion */ |
| 968 | for(i = 0; i < BGE_TIMEOUT100000 * 10; i++) { |
| 969 | DELAY(10)(*delay_func)(10); |
| 970 | if (CSR_READ_4(sc, BGE_EE_ADDR)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6838)) ) & BGE_EEADDR_DONE0x40000000) |
| 971 | break; |
| 972 | } |
| 973 | |
| 974 | if (i == BGE_TIMEOUT100000 * 10) { |
| 975 | printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname); |
| 976 | return (1); |
| 977 | } |
| 978 | |
| 979 | /* Get result. */ |
| 980 | byte = CSR_READ_4(sc, BGE_EE_DATA)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x683C)) ); |
| 981 | |
| 982 | *dest = (byte >> ((addr % 4) * 8)) & 0xFF; |
| 983 | |
| 984 | return (0); |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * Read a sequence of bytes from the EEPROM. |
| 989 | */ |
| 990 | int |
| 991 | bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) |
| 992 | { |
| 993 | int i, error = 0; |
| 994 | u_int8_t byte = 0; |
| 995 | |
| 996 | for (i = 0; i < cnt; i++) { |
| 997 | error = bge_eeprom_getbyte(sc, off + i, &byte); |
| 998 | if (error) |
| 999 | break; |
| 1000 | *(dest + i) = byte; |
| 1001 | } |
| 1002 | |
| 1003 | return (error ? 1 : 0); |
| 1004 | } |
| 1005 | |
| 1006 | int |
| 1007 | bge_miibus_readreg(struct device *dev, int phy, int reg) |
| 1008 | { |
| 1009 | struct bge_softc *sc = (struct bge_softc *)dev; |
| 1010 | u_int32_t val, autopoll; |
| 1011 | int i; |
| 1012 | |
| 1013 | if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) |
| 1014 | return (0); |
| 1015 | |
| 1016 | /* Reading with autopolling on may trigger PCI errors */ |
| 1017 | autopoll = CSR_READ_4(sc, BGE_MI_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454)) ); |
| 1018 | if (autopoll & BGE_MIMODE_AUTOPOLL0x00000010) { |
| 1019 | BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts &= ~(0x00000004)); |
| 1020 | BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0454) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454 ))) & ~(0x00000010))))); |
| 1021 | DELAY(80)(*delay_func)(80); |
| 1022 | } |
| 1023 | |
| 1024 | CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x044C) , (0x08000000|0x20000000| ((phy & 0x1F) << 21)|((reg & 0x1F) << 16)))) |
| 1025 | BGE_MIPHY(phy)|BGE_MIREG(reg))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x044C) , (0x08000000|0x20000000| ((phy & 0x1F) << 21)|((reg & 0x1F) << 16)))); |
| 1026 | CSR_READ_4(sc, BGE_MI_COMM)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x044C)) ); /* force write */ |
| 1027 | |
| 1028 | for (i = 0; i < 200; i++) { |
| 1029 | delay(1)(*delay_func)(1); |
| 1030 | val = CSR_READ_4(sc, BGE_MI_COMM)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x044C)) ); |
| 1031 | if (!(val & BGE_MICOMM_BUSY0x20000000)) |
| 1032 | break; |
| 1033 | delay(10)(*delay_func)(10); |
| 1034 | } |
| 1035 | |
| 1036 | if (i == 200) { |
| 1037 | printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); |
| 1038 | val = 0; |
| 1039 | goto done; |
| 1040 | } |
| 1041 | |
| 1042 | val = CSR_READ_4(sc, BGE_MI_COMM)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x044C)) ); |
| 1043 | |
| 1044 | done: |
| 1045 | if (autopoll & BGE_MIMODE_AUTOPOLL0x00000010) { |
| 1046 | BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts |= (0x00000004)); |
| 1047 | BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0454) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454 ))) | (0x00000010))))); |
| 1048 | DELAY(80)(*delay_func)(80); |
| 1049 | } |
| 1050 | |
| 1051 | bge_ape_unlock(sc, sc->bge_phy_ape_lock); |
| 1052 | |
| 1053 | if (val & BGE_MICOMM_READFAIL0x10000000) |
| 1054 | return (0); |
| 1055 | |
| 1056 | return (val & 0xFFFF); |
| 1057 | } |
| 1058 | |
| 1059 | void |
| 1060 | bge_miibus_writereg(struct device *dev, int phy, int reg, int val) |
| 1061 | { |
| 1062 | struct bge_softc *sc = (struct bge_softc *)dev; |
| 1063 | u_int32_t autopoll; |
| 1064 | int i; |
| 1065 | |
| 1066 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c && |
| 1067 | (reg == MII_100T2CR0x09 || reg == BRGPHY_MII_AUXCTL0x18)) |
| 1068 | return; |
| 1069 | |
| 1070 | if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) |
| 1071 | return; |
| 1072 | |
| 1073 | /* Reading with autopolling on may trigger PCI errors */ |
| 1074 | autopoll = CSR_READ_4(sc, BGE_MI_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454)) ); |
| 1075 | if (autopoll & BGE_MIMODE_AUTOPOLL0x00000010) { |
| 1076 | DELAY(40)(*delay_func)(40); |
| 1077 | BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts &= ~(0x00000004)); |
| 1078 | BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0454) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454 ))) & ~(0x00000010))))); |
| 1079 | DELAY(40)(*delay_func)(40); /* 40 usec is supposed to be adequate */ |
| 1080 | } |
| 1081 | |
| 1082 | CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x044C) , (0x04000000|0x20000000| ((phy & 0x1F) << 21)|((reg & 0x1F) << 16)|val))) |
| 1083 | BGE_MIPHY(phy)|BGE_MIREG(reg)|val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x044C) , (0x04000000|0x20000000| ((phy & 0x1F) << 21)|((reg & 0x1F) << 16)|val))); |
| 1084 | CSR_READ_4(sc, BGE_MI_COMM)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x044C)) ); /* force write */ |
| 1085 | |
| 1086 | for (i = 0; i < 200; i++) { |
| 1087 | delay(1)(*delay_func)(1); |
| 1088 | if (!(CSR_READ_4(sc, BGE_MI_COMM)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x044C)) ) & BGE_MICOMM_BUSY0x20000000)) |
| 1089 | break; |
| 1090 | delay(10)(*delay_func)(10); |
| 1091 | } |
| 1092 | |
| 1093 | if (autopoll & BGE_MIMODE_AUTOPOLL0x00000010) { |
| 1094 | BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts |= (0x00000004)); |
| 1095 | BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0454) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0454 ))) | (0x00000010))))); |
| 1096 | DELAY(40)(*delay_func)(40); |
| 1097 | } |
| 1098 | |
| 1099 | bge_ape_unlock(sc, sc->bge_phy_ape_lock); |
| 1100 | |
| 1101 | if (i == 200) { |
| 1102 | printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | void |
| 1107 | bge_miibus_statchg(struct device *dev) |
| 1108 | { |
| 1109 | struct bge_softc *sc = (struct bge_softc *)dev; |
| 1110 | struct mii_data *mii = &sc->bge_mii; |
| 1111 | u_int32_t mac_mode, rx_mode, tx_mode; |
| 1112 | |
| 1113 | /* |
| 1114 | * Get flow control negotiation result. |
| 1115 | */ |
| 1116 | if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media)((mii->mii_media.ifm_cur->ifm_media) & 0x00000000000000ffULL ) == IFM_AUTO0ULL && |
| 1117 | (mii->mii_media_active & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) != sc->bge_flowflags) |
| 1118 | sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 1119 | |
| 1120 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 1121 | mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL && |
| 1122 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) != IFM_NONE2ULL) |
| 1123 | BGE_STS_SETBIT(sc, BGE_STS_LINK)((sc)->bge_sts |= (0x00000001)); |
| 1124 | else if (BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 1125 | (!(mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL) || |
| 1126 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_NONE2ULL)) |
| 1127 | BGE_STS_CLRBIT(sc, BGE_STS_LINK)((sc)->bge_sts &= ~(0x00000001)); |
| 1128 | |
| 1129 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001))) |
| 1130 | return; |
| 1131 | |
| 1132 | /* Set the port mode (MII/GMII) to match the link speed. */ |
| 1133 | mac_mode = CSR_READ_4(sc, BGE_MAC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400)) ) & |
| 1134 | ~(BGE_MACMODE_PORTMODE0x0000000C | BGE_MACMODE_HALF_DUPLEX0x00000002); |
| 1135 | tx_mode = CSR_READ_4(sc, BGE_TX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x045C)) ); |
| 1136 | rx_mode = CSR_READ_4(sc, BGE_RX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0468)) ); |
| 1137 | |
| 1138 | if (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_1000_T16 || |
| 1139 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_1000_SX11) |
| 1140 | mac_mode |= BGE_PORTMODE_GMII0x00000008; |
| 1141 | else |
| 1142 | mac_mode |= BGE_PORTMODE_MII0x00000004; |
| 1143 | |
| 1144 | /* Set MAC flow control behavior to match link flow control settings. */ |
| 1145 | tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE0x00000010; |
| 1146 | rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE0x00000004; |
| 1147 | if (mii->mii_media_active & IFM_FDX0x0000010000000000ULL) { |
| 1148 | if (sc->bge_flowflags & IFM_ETH_TXPAUSE0x0000000000040000ULL) |
| 1149 | tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE0x00000010; |
| 1150 | if (sc->bge_flowflags & IFM_ETH_RXPAUSE0x0000000000020000ULL) |
| 1151 | rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE0x00000004; |
| 1152 | } else |
| 1153 | mac_mode |= BGE_MACMODE_HALF_DUPLEX0x00000002; |
| 1154 | |
| 1155 | CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , (mac_mode))); |
| 1156 | DELAY(40)(*delay_func)(40); |
| 1157 | CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x045C) , (tx_mode))); |
| 1158 | CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0468) , (rx_mode))); |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * Initialize a standard receive ring descriptor. |
| 1163 | */ |
| 1164 | int |
| 1165 | bge_newbuf(struct bge_softc *sc, int i) |
| 1166 | { |
| 1167 | bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i]; |
| 1168 | struct bge_rx_bd *r = &sc->bge_rdata->bge_rx_std_ring[i]; |
| 1169 | struct mbuf *m; |
| 1170 | int error; |
| 1171 | |
| 1172 | m = MCLGETL(NULL, M_DONTWAIT, sc->bge_rx_std_len)m_clget((((void *)0)), (0x0002), (sc->bge_rx_std_len)); |
| 1173 | if (!m) |
| 1174 | return (ENOBUFS55); |
| 1175 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = sc->bge_rx_std_len; |
| 1176 | if (!(sc->bge_flags & BGE_RX_ALIGNBUG0x00000008)) |
| 1177 | m_adj(m, ETHER_ALIGN2); |
| 1178 | |
| 1179 | error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m,(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmap), (m), (0x0200|0x0001)) |
| 1180 | BUS_DMA_READ|BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmap), (m), (0x0200|0x0001)); |
| 1181 | if (error) { |
| 1182 | m_freem(m); |
| 1183 | return (ENOBUFS55); |
| 1184 | } |
| 1185 | |
| 1186 | bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x01)) |
| 1187 | BUS_DMASYNC_PREREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x01)); |
| 1188 | sc->bge_cdata.bge_rx_std_chain[i] = m; |
| 1189 | |
| 1190 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x08)) |
| 1191 | offsetof(struct bge_ring_data, bge_rx_std_ring) +(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x08)) |
| 1192 | i * sizeof (struct bge_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x08)) |
| 1193 | sizeof (struct bge_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x08)) |
| 1194 | BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x08)); |
| 1195 | |
| 1196 | BGE_HOSTADDR(r->bge_addr, dmap->dm_segs[0].ds_addr)do { (r->bge_addr).bge_addr_lo = ((u_int64_t) (dmap->dm_segs [0].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t) == 8) ( r->bge_addr).bge_addr_hi = ((u_int64_t) (dmap->dm_segs[ 0].ds_addr) >> 32); else (r->bge_addr).bge_addr_hi = 0; } while(0); |
| 1197 | r->bge_flags = BGE_RXBDFLAG_END0x0004; |
| 1198 | r->bge_len = m->m_lenm_hdr.mh_len; |
| 1199 | r->bge_idx = i; |
| 1200 | |
| 1201 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x04)) |
| 1202 | offsetof(struct bge_ring_data, bge_rx_std_ring) +(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x04)) |
| 1203 | i * sizeof (struct bge_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x04)) |
| 1204 | sizeof (struct bge_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x04)) |
| 1205 | BUS_DMASYNC_PREWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_std_ring) + i * sizeof (struct bge_rx_bd)), (sizeof ( struct bge_rx_bd)), (0x04)); |
| 1206 | |
| 1207 | return (0); |
| 1208 | } |
| 1209 | |
| 1210 | /* |
| 1211 | * Initialize a Jumbo receive ring descriptor. |
| 1212 | */ |
| 1213 | int |
| 1214 | bge_newbuf_jumbo(struct bge_softc *sc, int i) |
| 1215 | { |
| 1216 | bus_dmamap_t dmap = sc->bge_cdata.bge_rx_jumbo_map[i]; |
| 1217 | struct bge_ext_rx_bd *r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; |
| 1218 | struct mbuf *m; |
| 1219 | int error; |
| 1220 | |
| 1221 | m = MCLGETL(NULL, M_DONTWAIT, BGE_JLEN)m_clget((((void *)0)), (0x0002), (((9022 + 2) + (sizeof(u_int64_t ) - ((9022 + 2) % sizeof(u_int64_t)))))); |
| 1222 | if (!m) |
| 1223 | return (ENOBUFS55); |
| 1224 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = BGE_JUMBO_FRAMELEN9022; |
| 1225 | if (!(sc->bge_flags & BGE_RX_ALIGNBUG0x00000008)) |
| 1226 | m_adj(m, ETHER_ALIGN2); |
| 1227 | |
| 1228 | error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m,(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmap), (m), (0x0200|0x0001)) |
| 1229 | BUS_DMA_READ|BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmap), (m), (0x0200|0x0001)); |
| 1230 | if (error) { |
| 1231 | m_freem(m); |
| 1232 | return (ENOBUFS55); |
| 1233 | } |
| 1234 | |
| 1235 | bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x01)) |
| 1236 | BUS_DMASYNC_PREREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x01)); |
| 1237 | sc->bge_cdata.bge_rx_jumbo_chain[i] = m; |
| 1238 | |
| 1239 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x08)) |
| 1240 | offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x08)) |
| 1241 | i * sizeof (struct bge_ext_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x08)) |
| 1242 | sizeof (struct bge_ext_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x08)) |
| 1243 | BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x08)); |
| 1244 | |
| 1245 | /* |
| 1246 | * Fill in the extended RX buffer descriptor. |
| 1247 | */ |
| 1248 | r->bge_bd.bge_flags = BGE_RXBDFLAG_JUMBO_RING0x0020 | BGE_RXBDFLAG_END0x0004; |
| 1249 | r->bge_bd.bge_idx = i; |
| 1250 | r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; |
| 1251 | switch (dmap->dm_nsegs) { |
| 1252 | case 4: |
| 1253 | BGE_HOSTADDR(r->bge_addr3, dmap->dm_segs[3].ds_addr)do { (r->bge_addr3).bge_addr_lo = ((u_int64_t) (dmap->dm_segs [3].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t) == 8) ( r->bge_addr3).bge_addr_hi = ((u_int64_t) (dmap->dm_segs [3].ds_addr) >> 32); else (r->bge_addr3).bge_addr_hi = 0; } while(0); |
| 1254 | r->bge_len3 = dmap->dm_segs[3].ds_len; |
| 1255 | /* FALLTHROUGH */ |
| 1256 | case 3: |
| 1257 | BGE_HOSTADDR(r->bge_addr2, dmap->dm_segs[2].ds_addr)do { (r->bge_addr2).bge_addr_lo = ((u_int64_t) (dmap->dm_segs [2].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t) == 8) ( r->bge_addr2).bge_addr_hi = ((u_int64_t) (dmap->dm_segs [2].ds_addr) >> 32); else (r->bge_addr2).bge_addr_hi = 0; } while(0); |
| 1258 | r->bge_len2 = dmap->dm_segs[2].ds_len; |
| 1259 | /* FALLTHROUGH */ |
| 1260 | case 2: |
| 1261 | BGE_HOSTADDR(r->bge_addr1, dmap->dm_segs[1].ds_addr)do { (r->bge_addr1).bge_addr_lo = ((u_int64_t) (dmap->dm_segs [1].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t) == 8) ( r->bge_addr1).bge_addr_hi = ((u_int64_t) (dmap->dm_segs [1].ds_addr) >> 32); else (r->bge_addr1).bge_addr_hi = 0; } while(0); |
| 1262 | r->bge_len1 = dmap->dm_segs[1].ds_len; |
| 1263 | /* FALLTHROUGH */ |
| 1264 | case 1: |
| 1265 | BGE_HOSTADDR(r->bge_bd.bge_addr, dmap->dm_segs[0].ds_addr)do { (r->bge_bd.bge_addr).bge_addr_lo = ((u_int64_t) (dmap ->dm_segs[0].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t ) == 8) (r->bge_bd.bge_addr).bge_addr_hi = ((u_int64_t) (dmap ->dm_segs[0].ds_addr) >> 32); else (r->bge_bd.bge_addr ).bge_addr_hi = 0; } while(0); |
| 1266 | r->bge_bd.bge_len = dmap->dm_segs[0].ds_len; |
| 1267 | break; |
| 1268 | default: |
| 1269 | panic("%s: %d segments", __func__, dmap->dm_nsegs); |
| 1270 | } |
| 1271 | |
| 1272 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x04)) |
| 1273 | offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x04)) |
| 1274 | i * sizeof (struct bge_ext_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x04)) |
| 1275 | sizeof (struct bge_ext_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x04)) |
| 1276 | BUS_DMASYNC_PREWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd)), (sizeof (struct bge_ext_rx_bd)), (0x04)); |
| 1277 | |
| 1278 | return (0); |
| 1279 | } |
| 1280 | |
| 1281 | int |
| 1282 | bge_init_rx_ring_std(struct bge_softc *sc) |
| 1283 | { |
| 1284 | int i; |
| 1285 | |
| 1286 | if (ISSET(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) & (0x00000002))) |
| 1287 | return (0); |
| 1288 | |
| 1289 | for (i = 0; i < BGE_STD_RX_RING_CNT512; i++) { |
| 1290 | if (bus_dmamap_create(sc->bge_dmatag, sc->bge_rx_std_len, 1,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sc->bge_rx_std_len), (1), (sc->bge_rx_std_len), (0), (0x0001 | 0x0002), (&sc->bge_cdata.bge_rx_std_map[i]) ) |
| 1291 | sc->bge_rx_std_len, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sc->bge_rx_std_len), (1), (sc->bge_rx_std_len), (0), (0x0001 | 0x0002), (&sc->bge_cdata.bge_rx_std_map[i]) ) |
| 1292 | &sc->bge_cdata.bge_rx_std_map[i])(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sc->bge_rx_std_len), (1), (sc->bge_rx_std_len), (0), (0x0001 | 0x0002), (&sc->bge_cdata.bge_rx_std_map[i]) ) != 0) { |
| 1293 | printf("%s: unable to create dmamap for slot %d\n", |
| 1294 | sc->bge_dev.dv_xname, i); |
| 1295 | goto uncreate; |
| 1296 | } |
| 1297 | bzero(&sc->bge_rdata->bge_rx_std_ring[i],__builtin_bzero((&sc->bge_rdata->bge_rx_std_ring[i] ), (sizeof(struct bge_rx_bd))) |
| 1298 | sizeof(struct bge_rx_bd))__builtin_bzero((&sc->bge_rdata->bge_rx_std_ring[i] ), (sizeof(struct bge_rx_bd))); |
| 1299 | } |
| 1300 | |
| 1301 | sc->bge_std = BGE_STD_RX_RING_CNT512 - 1; |
| 1302 | |
| 1303 | /* lwm must be greater than the replenish threshold */ |
| 1304 | if_rxr_init(&sc->bge_std_ring, 17, BGE_STD_RX_RING_CNT512); |
| 1305 | bge_fill_rx_ring_std(sc); |
| 1306 | |
| 1307 | SET(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) |= (0x00000002)); |
| 1308 | |
| 1309 | return (0); |
| 1310 | |
| 1311 | uncreate: |
| 1312 | while (--i) { |
| 1313 | bus_dmamap_destroy(sc->bge_dmatag,(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_cdata.bge_rx_std_map[i])) |
| 1314 | sc->bge_cdata.bge_rx_std_map[i])(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_cdata.bge_rx_std_map[i])); |
| 1315 | } |
| 1316 | return (1); |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * When the refill timeout for a ring is active, that ring is so empty |
| 1321 | * that no more packets can be received on it, so the interrupt handler |
| 1322 | * will not attempt to refill it, meaning we don't need to protect against |
| 1323 | * interrupts here. |
| 1324 | */ |
| 1325 | |
| 1326 | void |
| 1327 | bge_rxtick(void *arg) |
| 1328 | { |
| 1329 | struct bge_softc *sc = arg; |
| 1330 | |
| 1331 | if (ISSET(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) & (0x00000002)) && |
| 1332 | if_rxr_inuse(&sc->bge_std_ring)((&sc->bge_std_ring)->rxr_alive) <= 8) |
| 1333 | bge_fill_rx_ring_std(sc); |
| 1334 | } |
| 1335 | |
| 1336 | void |
| 1337 | bge_rxtick_jumbo(void *arg) |
| 1338 | { |
| 1339 | struct bge_softc *sc = arg; |
| 1340 | |
| 1341 | if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) & (0x00000004)) && |
| 1342 | if_rxr_inuse(&sc->bge_jumbo_ring)((&sc->bge_jumbo_ring)->rxr_alive) <= 8) |
| 1343 | bge_fill_rx_ring_jumbo(sc); |
| 1344 | } |
| 1345 | |
| 1346 | void |
| 1347 | bge_fill_rx_ring_std(struct bge_softc *sc) |
| 1348 | { |
| 1349 | int i; |
| 1350 | int post = 0; |
| 1351 | u_int slots; |
| 1352 | |
| 1353 | i = sc->bge_std; |
| 1354 | for (slots = if_rxr_get(&sc->bge_std_ring, BGE_STD_RX_RING_CNT512); |
| 1355 | slots > 0; slots--) { |
| 1356 | BGE_INC(i, BGE_STD_RX_RING_CNT)(i) = (i + 1) % 512; |
| 1357 | |
| 1358 | if (bge_newbuf(sc, i) != 0) |
| 1359 | break; |
| 1360 | |
| 1361 | sc->bge_std = i; |
| 1362 | post = 1; |
| 1363 | } |
| 1364 | if_rxr_put(&sc->bge_std_ring, slots)do { (&sc->bge_std_ring)->rxr_alive -= (slots); } while (0); |
| 1365 | |
| 1366 | if (post) |
| 1367 | bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO0x026C, sc->bge_std); |
| 1368 | |
| 1369 | /* |
| 1370 | * bge always needs more than 8 packets on the ring. if we cant do |
| 1371 | * that now, then try again later. |
| 1372 | */ |
| 1373 | if (if_rxr_inuse(&sc->bge_std_ring)((&sc->bge_std_ring)->rxr_alive) <= 8) |
| 1374 | timeout_add(&sc->bge_rxtimeout, 1); |
| 1375 | } |
| 1376 | |
| 1377 | void |
| 1378 | bge_free_rx_ring_std(struct bge_softc *sc) |
| 1379 | { |
| 1380 | bus_dmamap_t dmap; |
| 1381 | struct mbuf *m; |
| 1382 | int i; |
| 1383 | |
| 1384 | if (!ISSET(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) & (0x00000002))) |
| 1385 | return; |
| 1386 | |
| 1387 | for (i = 0; i < BGE_STD_RX_RING_CNT512; i++) { |
| 1388 | dmap = sc->bge_cdata.bge_rx_std_map[i]; |
| 1389 | m = sc->bge_cdata.bge_rx_std_chain[i]; |
| 1390 | if (m != NULL((void *)0)) { |
| 1391 | bus_dmamap_sync(sc->bge_dmatag, dmap, 0,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x02)) |
| 1392 | dmap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x02)); |
| 1393 | bus_dmamap_unload(sc->bge_dmatag, dmap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmap)); |
| 1394 | m_freem(m); |
| 1395 | sc->bge_cdata.bge_rx_std_chain[i] = NULL((void *)0); |
| 1396 | } |
| 1397 | bus_dmamap_destroy(sc->bge_dmatag, dmap)(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (dmap)); |
| 1398 | sc->bge_cdata.bge_rx_std_map[i] = NULL((void *)0); |
| 1399 | bzero(&sc->bge_rdata->bge_rx_std_ring[i],__builtin_bzero((&sc->bge_rdata->bge_rx_std_ring[i] ), (sizeof(struct bge_rx_bd))) |
| 1400 | sizeof(struct bge_rx_bd))__builtin_bzero((&sc->bge_rdata->bge_rx_std_ring[i] ), (sizeof(struct bge_rx_bd))); |
| 1401 | } |
| 1402 | |
| 1403 | CLR(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) &= ~(0x00000002)); |
| 1404 | } |
| 1405 | |
| 1406 | int |
| 1407 | bge_init_rx_ring_jumbo(struct bge_softc *sc) |
| 1408 | { |
| 1409 | volatile struct bge_rcb *rcb; |
| 1410 | int i; |
| 1411 | |
| 1412 | if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) & (0x00000004))) |
| 1413 | return (0); |
| 1414 | |
| 1415 | for (i = 0; i < BGE_JUMBO_RX_RING_CNT256; i++) { |
| 1416 | if (bus_dmamap_create(sc->bge_dmatag, BGE_JLEN, 4, BGE_JLEN, 0,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t ))))), (4), (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t))))), (0), (0x0001 | 0x0002), (&sc-> bge_cdata.bge_rx_jumbo_map[i])) |
| 1417 | BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t ))))), (4), (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t))))), (0), (0x0001 | 0x0002), (&sc-> bge_cdata.bge_rx_jumbo_map[i])) |
| 1418 | &sc->bge_cdata.bge_rx_jumbo_map[i])(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t ))))), (4), (((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t))))), (0), (0x0001 | 0x0002), (&sc-> bge_cdata.bge_rx_jumbo_map[i])) != 0) { |
| 1419 | printf("%s: unable to create dmamap for slot %d\n", |
| 1420 | sc->bge_dev.dv_xname, i); |
| 1421 | goto uncreate; |
| 1422 | } |
| 1423 | bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],__builtin_bzero((&sc->bge_rdata->bge_rx_jumbo_ring[ i]), (sizeof(struct bge_ext_rx_bd))) |
| 1424 | sizeof(struct bge_ext_rx_bd))__builtin_bzero((&sc->bge_rdata->bge_rx_jumbo_ring[ i]), (sizeof(struct bge_ext_rx_bd))); |
| 1425 | } |
| 1426 | |
| 1427 | sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT256 - 1; |
| 1428 | |
| 1429 | /* lwm must be greater than the replenish threshold */ |
| 1430 | if_rxr_init(&sc->bge_jumbo_ring, 17, BGE_JUMBO_RX_RING_CNT256); |
| 1431 | bge_fill_rx_ring_jumbo(sc); |
| 1432 | |
| 1433 | SET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) |= (0x00000004)); |
| 1434 | |
| 1435 | rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; |
| 1436 | rcb->bge_maxlen_flags = |
| 1437 | BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD)((0) << 16 | (0x0001)); |
| 1438 | CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2448) , (rcb->bge_maxlen_flags))); |
| 1439 | |
| 1440 | return (0); |
| 1441 | |
| 1442 | uncreate: |
| 1443 | while (--i) { |
| 1444 | bus_dmamap_destroy(sc->bge_dmatag,(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_cdata.bge_rx_jumbo_map[i])) |
| 1445 | sc->bge_cdata.bge_rx_jumbo_map[i])(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_cdata.bge_rx_jumbo_map[i])); |
| 1446 | } |
| 1447 | return (1); |
| 1448 | } |
| 1449 | |
| 1450 | void |
| 1451 | bge_fill_rx_ring_jumbo(struct bge_softc *sc) |
| 1452 | { |
| 1453 | int i; |
| 1454 | int post = 0; |
| 1455 | u_int slots; |
| 1456 | |
| 1457 | i = sc->bge_jumbo; |
| 1458 | for (slots = if_rxr_get(&sc->bge_jumbo_ring, BGE_JUMBO_RX_RING_CNT256); |
| 1459 | slots > 0; slots--) { |
| 1460 | BGE_INC(i, BGE_JUMBO_RX_RING_CNT)(i) = (i + 1) % 256; |
| 1461 | |
| 1462 | if (bge_newbuf_jumbo(sc, i) != 0) |
| 1463 | break; |
| 1464 | |
| 1465 | sc->bge_jumbo = i; |
| 1466 | post = 1; |
| 1467 | } |
| 1468 | if_rxr_put(&sc->bge_jumbo_ring, slots)do { (&sc->bge_jumbo_ring)->rxr_alive -= (slots); } while (0); |
| 1469 | |
| 1470 | if (post) |
| 1471 | bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO0x0274, sc->bge_jumbo); |
| 1472 | |
| 1473 | /* |
| 1474 | * bge always needs more than 8 packets on the ring. if we cant do |
| 1475 | * that now, then try again later. |
| 1476 | */ |
| 1477 | if (if_rxr_inuse(&sc->bge_jumbo_ring)((&sc->bge_jumbo_ring)->rxr_alive) <= 8) |
| 1478 | timeout_add(&sc->bge_rxtimeout_jumbo, 1); |
| 1479 | } |
| 1480 | |
| 1481 | void |
| 1482 | bge_free_rx_ring_jumbo(struct bge_softc *sc) |
| 1483 | { |
| 1484 | bus_dmamap_t dmap; |
| 1485 | struct mbuf *m; |
| 1486 | int i; |
| 1487 | |
| 1488 | if (!ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) & (0x00000004))) |
| 1489 | return; |
| 1490 | |
| 1491 | for (i = 0; i < BGE_JUMBO_RX_RING_CNT256; i++) { |
| 1492 | dmap = sc->bge_cdata.bge_rx_jumbo_map[i]; |
| 1493 | m = sc->bge_cdata.bge_rx_jumbo_chain[i]; |
| 1494 | if (m != NULL((void *)0)) { |
| 1495 | bus_dmamap_sync(sc->bge_dmatag, dmap, 0,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x02)) |
| 1496 | dmap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmap), (0), (dmap->dm_mapsize), (0x02)); |
| 1497 | bus_dmamap_unload(sc->bge_dmatag, dmap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmap)); |
| 1498 | m_freem(m); |
| 1499 | sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL((void *)0); |
| 1500 | } |
| 1501 | bus_dmamap_destroy(sc->bge_dmatag, dmap)(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (dmap)); |
| 1502 | sc->bge_cdata.bge_rx_jumbo_map[i] = NULL((void *)0); |
| 1503 | bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],__builtin_bzero((&sc->bge_rdata->bge_rx_jumbo_ring[ i]), (sizeof(struct bge_ext_rx_bd))) |
| 1504 | sizeof(struct bge_ext_rx_bd))__builtin_bzero((&sc->bge_rdata->bge_rx_jumbo_ring[ i]), (sizeof(struct bge_ext_rx_bd))); |
| 1505 | } |
| 1506 | |
| 1507 | CLR(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) &= ~(0x00000004)); |
| 1508 | } |
| 1509 | |
| 1510 | void |
| 1511 | bge_free_tx_ring(struct bge_softc *sc) |
| 1512 | { |
| 1513 | int i; |
| 1514 | |
| 1515 | if (!(sc->bge_flags & BGE_TXRING_VALID0x00000001)) |
| 1516 | return; |
| 1517 | |
| 1518 | for (i = 0; i < BGE_TX_RING_CNT512; i++) { |
| 1519 | if (sc->bge_cdata.bge_tx_chain[i] != NULL((void *)0)) { |
| 1520 | m_freem(sc->bge_cdata.bge_tx_chain[i]); |
| 1521 | sc->bge_cdata.bge_tx_chain[i] = NULL((void *)0); |
| 1522 | sc->bge_cdata.bge_tx_map[i] = NULL((void *)0); |
| 1523 | } |
| 1524 | bzero(&sc->bge_rdata->bge_tx_ring[i],__builtin_bzero((&sc->bge_rdata->bge_tx_ring[i]), ( sizeof(struct bge_tx_bd))) |
| 1525 | sizeof(struct bge_tx_bd))__builtin_bzero((&sc->bge_rdata->bge_tx_ring[i]), ( sizeof(struct bge_tx_bd))); |
| 1526 | |
| 1527 | bus_dmamap_destroy(sc->bge_dmatag, sc->bge_txdma[i])(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_txdma[i])); |
| 1528 | } |
| 1529 | |
| 1530 | sc->bge_flags &= ~BGE_TXRING_VALID0x00000001; |
| 1531 | } |
| 1532 | |
| 1533 | int |
| 1534 | bge_init_tx_ring(struct bge_softc *sc) |
| 1535 | { |
| 1536 | int i; |
| 1537 | bus_size_t txsegsz, txmaxsegsz; |
| 1538 | |
| 1539 | if (sc->bge_flags & BGE_TXRING_VALID0x00000001) |
| 1540 | return (0); |
| 1541 | |
| 1542 | sc->bge_txcnt = 0; |
| 1543 | sc->bge_tx_saved_considx = 0; |
| 1544 | |
| 1545 | /* Initialize transmit producer index for host-memory send ring. */ |
| 1546 | sc->bge_tx_prodidx = 0; |
| 1547 | bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO0x0304, sc->bge_tx_prodidx); |
| 1548 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5700_BX0x71) |
| 1549 | bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO0x0304, sc->bge_tx_prodidx); |
| 1550 | |
| 1551 | /* NIC-memory send ring not used; initialize to zero. */ |
| 1552 | bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO0x0384, 0); |
| 1553 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5700_BX0x71) |
| 1554 | bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO0x0384, 0); |
| 1555 | |
| 1556 | if (BGE_IS_JUMBO_CAPABLE(sc)((sc)->bge_flags & 0x00000100)) { |
| 1557 | txsegsz = 4096; |
| 1558 | txmaxsegsz = BGE_JLEN((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t )))); |
| 1559 | } else { |
| 1560 | txsegsz = MCLBYTES(1 << 11); |
| 1561 | txmaxsegsz = MCLBYTES(1 << 11); |
| 1562 | } |
| 1563 | |
| 1564 | for (i = 0; i < BGE_TX_RING_CNT512; i++) { |
| 1565 | if (bus_dmamap_create(sc->bge_dmatag, txmaxsegsz,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (txmaxsegsz), (30), (txsegsz), (0), (0x0001), (&sc-> bge_txdma[i])) |
| 1566 | BGE_NTXSEG, txsegsz, 0, BUS_DMA_NOWAIT, &sc->bge_txdma[i])(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (txmaxsegsz), (30), (txsegsz), (0), (0x0001), (&sc-> bge_txdma[i]))) |
| 1567 | return (ENOBUFS55); |
| 1568 | } |
| 1569 | |
| 1570 | sc->bge_flags |= BGE_TXRING_VALID0x00000001; |
| 1571 | |
| 1572 | return (0); |
| 1573 | } |
| 1574 | |
| 1575 | void |
| 1576 | bge_iff(struct bge_softc *sc) |
| 1577 | { |
| 1578 | struct arpcom *ac = &sc->arpcom; |
| 1579 | struct ifnet *ifp = &ac->ac_if; |
| 1580 | struct ether_multi *enm; |
| 1581 | struct ether_multistep step; |
| 1582 | u_int8_t hashes[16]; |
| 1583 | u_int32_t h, rxmode; |
| 1584 | |
| 1585 | /* First, zot all the existing filters. */ |
| 1586 | rxmode = CSR_READ_4(sc, BGE_RX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0468)) ) & ~BGE_RXMODE_RX_PROMISC0x00000100; |
| 1587 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 1588 | memset(hashes, 0x00, sizeof(hashes))__builtin_memset((hashes), (0x00), (sizeof(hashes))); |
| 1589 | |
| 1590 | if (ifp->if_flags & IFF_PROMISC0x100) { |
| 1591 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 1592 | rxmode |= BGE_RXMODE_RX_PROMISC0x00000100; |
| 1593 | } else if (ac->ac_multirangecnt > 0) { |
| 1594 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 1595 | memset(hashes, 0xff, sizeof(hashes))__builtin_memset((hashes), (0xff), (sizeof(hashes))); |
| 1596 | } else { |
| 1597 | ETHER_FIRST_MULTI(step, ac, enm)do { (step).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((step)).e_enm) != ((void *)0)) ((step )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 1598 | while (enm != NULL((void *)0)) { |
| 1599 | h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN6); |
| 1600 | |
| 1601 | setbit(hashes, h & 0x7F)((hashes)[(h & 0x7F)>>3] |= 1<<((h & 0x7F )&(8 -1))); |
| 1602 | |
| 1603 | ETHER_NEXT_MULTI(step, enm)do { if (((enm) = (step).e_enm) != ((void *)0)) (step).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | bus_space_write_raw_region_4(sc->bge_btag, sc->bge_bhandle, BGE_MAR0,((sc->bge_btag)->write_region_4((sc->bge_bhandle), ( 0x0470), (const u_int32_t *)(hashes), (sizeof(hashes)) >> 2)) |
| 1608 | hashes, sizeof(hashes))((sc->bge_btag)->write_region_4((sc->bge_bhandle), ( 0x0470), (const u_int32_t *)(hashes), (sizeof(hashes)) >> 2)); |
| 1609 | CSR_WRITE_4(sc, BGE_RX_MODE, rxmode)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0468) , (rxmode))); |
| 1610 | } |
| 1611 | |
| 1612 | void |
| 1613 | bge_sig_pre_reset(struct bge_softc *sc, int type) |
| 1614 | { |
| 1615 | /* no bge_asf_mode. */ |
| 1616 | |
| 1617 | if (type == BGE_RESET_START1 || type == BGE_RESET_SUSPEND2) |
| 1618 | bge_ape_driver_state_change(sc, type); |
| 1619 | } |
| 1620 | |
| 1621 | void |
| 1622 | bge_sig_post_reset(struct bge_softc *sc, int type) |
| 1623 | { |
| 1624 | /* no bge_asf_mode. */ |
| 1625 | |
| 1626 | if (type == BGE_RESET_SHUTDOWN0) |
| 1627 | bge_ape_driver_state_change(sc, type); |
| 1628 | } |
| 1629 | |
| 1630 | void |
| 1631 | bge_sig_legacy(struct bge_softc *sc, int type) |
| 1632 | { |
| 1633 | /* no bge_asf_mode. */ |
| 1634 | } |
| 1635 | |
| 1636 | void |
| 1637 | bge_stop_fw(struct bge_softc *sc, int type) |
| 1638 | { |
| 1639 | /* no bge_asf_mode. */ |
| 1640 | } |
| 1641 | |
| 1642 | u_int32_t |
| 1643 | bge_dma_swap_options(struct bge_softc *sc) |
| 1644 | { |
| 1645 | u_int32_t dma_options = BGE_DMA_SWAP_OPTIONS0x00000004| 0x00000010|0x00000020; |
| 1646 | |
| 1647 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) { |
| 1648 | dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA0x00000040 | |
| 1649 | BGE_MODECTL_WORDSWAP_B2HRX_DATA0x00000080 | BGE_MODECTL_B2HRX_ENABLE0x00008000 | |
| 1650 | BGE_MODECTL_HTX2B_ENABLE0x00040000; |
| 1651 | } |
| 1652 | |
| 1653 | return (dma_options); |
| 1654 | } |
| 1655 | |
| 1656 | int |
| 1657 | bge_phy_addr(struct bge_softc *sc) |
| 1658 | { |
| 1659 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 1660 | int phy_addr = 1; |
| 1661 | |
| 1662 | switch (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12)) { |
| 1663 | case BGE_ASICREV_BCM57170x5717: |
| 1664 | case BGE_ASICREV_BCM57190x5719: |
| 1665 | case BGE_ASICREV_BCM57200x5720: |
| 1666 | phy_addr = pa->pa_function; |
| 1667 | if (sc->bge_chipid != BGE_CHIPID_BCM5717_A00x05717000) { |
| 1668 | phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x05B4)) ) & |
| 1669 | BGE_SGDIGSTS_IS_SERDES0x00000100) ? 8 : 1; |
| 1670 | } else { |
| 1671 | phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3664)) ) & |
| 1672 | BGE_CPMU_PHY_STRAP_IS_SERDES0x00000020) ? 8 : 1; |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | return (phy_addr); |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Do endian, PCI and DMA initialization. |
| 1681 | */ |
| 1682 | void |
| 1683 | bge_chipinit(struct bge_softc *sc) |
| 1684 | { |
| 1685 | struct pci_attach_args *pa = &(sc->bge_pa); |
| 1686 | u_int32_t dma_rw_ctl, misc_ctl, mode_ctl; |
| 1687 | int i; |
| 1688 | |
| 1689 | /* Set endianness before we access any non-PCI registers. */ |
| 1690 | misc_ctl = BGE_INIT(0x00000008|0x00000001| 0x00000002|0x00000080); |
| 1691 | if (sc->bge_flags & BGE_TAGGED_STATUS0x00200000) |
| 1692 | misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS0x00000200; |
| 1693 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL0x68, |
| 1694 | misc_ctl); |
| 1695 | |
| 1696 | /* |
| 1697 | * Clear the MAC statistics block in the NIC's |
| 1698 | * internal memory. |
| 1699 | */ |
| 1700 | for (i = BGE_STATS_BLOCK0x00000300; |
| 1701 | i < BGE_STATS_BLOCK_END0x00000AFF + 1; i += sizeof(u_int32_t)) |
| 1702 | BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0)do { pci_conf_write(pa->pa_pc, pa->pa_tag, 0x7C, (0xFFFF8000 & i)); ((sc->bge_btag)->write_4((sc->bge_bhandle ), (0x00008000 + (i & 0x7FFF)), (0))); } while(0); |
| 1703 | |
| 1704 | for (i = BGE_STATUS_BLOCK0x00000B00; |
| 1705 | i < BGE_STATUS_BLOCK_END0x00000B4F + 1; i += sizeof(u_int32_t)) |
| 1706 | BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0)do { pci_conf_write(pa->pa_pc, pa->pa_tag, 0x7C, (0xFFFF8000 & i)); ((sc->bge_btag)->write_4((sc->bge_bhandle ), (0x00008000 + (i & 0x7FFF)), (0))); } while(0); |
| 1707 | |
| 1708 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM577650x57785 || |
| 1709 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM577660x57766) { |
| 1710 | /* |
| 1711 | * For the 57766 and non Ax versions of 57765, bootcode |
| 1712 | * needs to setup the PCIE Fast Training Sequence (FTS) |
| 1713 | * value to prevent transmit hangs. |
| 1714 | */ |
| 1715 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) != BGE_CHIPREV_57765_AX0x577850) { |
| 1716 | CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3668) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3668 ))) | 0x00040000))) |
| 1717 | CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3668) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3668 ))) | 0x00040000))) |
| 1718 | BGE_CPMU_PADRNG_CTL_RDIV2)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3668) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3668 ))) | 0x00040000))); |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | /* |
| 1723 | * Set up the PCI DMA control register. |
| 1724 | */ |
| 1725 | dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6)((6) << 24) | |
| 1726 | BGE_PCIDMARWCTL_WR_CMD_SHIFT(7)((7) << 28); |
| 1727 | |
| 1728 | if (sc->bge_flags & BGE_PCIE0x00000020) { |
| 1729 | if (sc->bge_mps >= 256) |
| 1730 | dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7)((7) << 19); |
| 1731 | else |
| 1732 | dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3)((3) << 19); |
| 1733 | } else if (sc->bge_flags & BGE_PCIX0x00000010) { |
| 1734 | /* PCI-X bus */ |
| 1735 | if (BGE_IS_5714_FAMILY(sc)((sc)->bge_flags & 0x00008000)) { |
| 1736 | /* 256 bytes for read and write. */ |
| 1737 | dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2)((2) << 16) | |
| 1738 | BGE_PCIDMARWCTL_WR_WAT_SHIFT(2)((2) << 19); |
| 1739 | |
| 1740 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57800x08) |
| 1741 | dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL0x00004000; |
| 1742 | else |
| 1743 | dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL0x00008000; |
| 1744 | } else if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) { |
| 1745 | /* 1536 bytes for read, 384 bytes for write. */ |
| 1746 | dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7)((7) << 16) | |
| 1747 | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3)((3) << 19); |
| 1748 | } else { |
| 1749 | /* 384 bytes for read and write. */ |
| 1750 | dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3)((3) << 16) | |
| 1751 | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3)((3) << 19) | |
| 1752 | (0x0F); |
| 1753 | } |
| 1754 | |
| 1755 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57030x01 || |
| 1756 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) { |
| 1757 | u_int32_t tmp; |
| 1758 | |
| 1759 | /* Set ONEDMA_ATONCE for hardware workaround. */ |
| 1760 | tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x74))) & 0x1f; |
| 1761 | if (tmp == 6 || tmp == 7) |
| 1762 | dma_rw_ctl |= |
| 1763 | BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL0x00004000; |
| 1764 | |
| 1765 | /* Set PCI-X DMA write workaround. */ |
| 1766 | dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE0x00800000; |
| 1767 | } |
| 1768 | } else { |
| 1769 | /* Conventional PCI bus: 256 bytes for read and write. */ |
| 1770 | dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7)((7) << 16) | |
| 1771 | BGE_PCIDMARWCTL_WR_WAT_SHIFT(7)((7) << 19); |
| 1772 | |
| 1773 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57050x03 && |
| 1774 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57500x04) |
| 1775 | dma_rw_ctl |= 0x0F; |
| 1776 | } |
| 1777 | |
| 1778 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 || |
| 1779 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57010x00) |
| 1780 | dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM0x00400000 | |
| 1781 | BGE_PCIDMARWCTL_ASRT_ALL_BE0x00800000; |
| 1782 | |
| 1783 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57030x01 || |
| 1784 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) |
| 1785 | dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA0x000000FF; |
| 1786 | |
| 1787 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 1788 | dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT0x00000001; |
| 1789 | if (sc->bge_chipid == BGE_CHIPID_BCM57765_A00x57785000) |
| 1790 | dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK0x00000380; |
| 1791 | |
| 1792 | /* |
| 1793 | * Enable HW workaround for controllers that misinterpret |
| 1794 | * a status tag update and leave interrupts permanently |
| 1795 | * disabled. |
| 1796 | */ |
| 1797 | if (!BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000) && |
| 1798 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57170x5717 && |
| 1799 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57620x5762) |
| 1800 | dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA0x00000080; |
| 1801 | } |
| 1802 | |
| 1803 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL0x6C, dma_rw_ctl); |
| 1804 | |
| 1805 | /* |
| 1806 | * Set up general mode register. |
| 1807 | */ |
| 1808 | mode_ctl = bge_dma_swap_options(sc); |
| 1809 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720 || |
| 1810 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) { |
| 1811 | /* Retain Host-2-BMC settings written by APE firmware. */ |
| 1812 | mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6800)) ) & |
| 1813 | (BGE_MODECTL_BYTESWAP_B2HRX_DATA0x00000040 | |
| 1814 | BGE_MODECTL_WORDSWAP_B2HRX_DATA0x00000080 | |
| 1815 | BGE_MODECTL_B2HRX_ENABLE0x00008000 | BGE_MODECTL_HTX2B_ENABLE0x00040000); |
| 1816 | } |
| 1817 | mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR0x04000000 | BGE_MODECTL_HOST_SEND_BDS0x00020000 | |
| 1818 | BGE_MODECTL_TX_NO_PHDR_CSUM0x00100000; |
| 1819 | |
| 1820 | /* |
| 1821 | * BCM5701 B5 have a bug causing data corruption when using |
| 1822 | * 64-bit DMA reads, which can be terminated early and then |
| 1823 | * completed later as 32-bit accesses, in combination with |
| 1824 | * certain bridges. |
| 1825 | */ |
| 1826 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57010x00 && |
| 1827 | sc->bge_chipid == BGE_CHIPID_BCM5701_B50x0105) |
| 1828 | mode_ctl |= BGE_MODECTL_FORCE_PCI320x00008000; |
| 1829 | |
| 1830 | CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6800) , (mode_ctl))); |
| 1831 | |
| 1832 | /* |
| 1833 | * Disable memory write invalidate. Apparently it is not supported |
| 1834 | * properly by these devices. |
| 1835 | */ |
| 1836 | PCI_CLRBIT(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,pci_conf_write(pa->pa_pc, pa->pa_tag, 0x04, (pci_conf_read (pa->pa_pc, pa->pa_tag, 0x04) & ~(0x00000010))) |
| 1837 | PCI_COMMAND_INVALIDATE_ENABLE)pci_conf_write(pa->pa_pc, pa->pa_tag, 0x04, (pci_conf_read (pa->pa_pc, pa->pa_tag, 0x04) & ~(0x00000010))); |
| 1838 | |
| 1839 | #ifdef __brokenalpha__ |
| 1840 | /* |
| 1841 | * Must ensure that we do not cross an 8K (bytes) boundary |
| 1842 | * for DMA reads. Our highest limit is 1K bytes. This is a |
| 1843 | * restriction on some ALPHA platforms with early revision |
| 1844 | * 21174 PCI chipsets, such as the AlphaPC 164lx |
| 1845 | */ |
| 1846 | PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,pci_conf_write(pa->pa_pc, pa->pa_tag, 0x6C, (pci_conf_read (pa->pa_pc, pa->pa_tag, 0x6C) | (BGE_PCI_READ_BNDRY_1024 ))) |
| 1847 | BGE_PCI_READ_BNDRY_1024)pci_conf_write(pa->pa_pc, pa->pa_tag, 0x6C, (pci_conf_read (pa->pa_pc, pa->pa_tag, 0x6C) | (BGE_PCI_READ_BNDRY_1024 ))); |
| 1848 | #endif |
| 1849 | |
| 1850 | /* Set the timer prescaler (always 66MHz) */ |
| 1851 | CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6804) , ((0x41 << 1)))); |
| 1852 | |
| 1853 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) { |
| 1854 | DELAY(40)(*delay_func)(40); /* XXX */ |
| 1855 | |
| 1856 | /* Put PHY into ready state */ |
| 1857 | BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6804) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6804 ))) & ~(0x00200000))))); |
| 1858 | CSR_READ_4(sc, BGE_MISC_CFG)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6804)) ); /* Flush */ |
| 1859 | DELAY(40)(*delay_func)(40); |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | int |
| 1864 | bge_blockinit(struct bge_softc *sc) |
| 1865 | { |
| 1866 | volatile struct bge_rcb *rcb; |
| 1867 | vaddr_t rcb_addr; |
| 1868 | bge_hostaddr taddr; |
| 1869 | u_int32_t dmactl, rdmareg, mimode, val; |
| 1870 | int i, limit; |
| 1871 | |
| 1872 | /* |
| 1873 | * Initialize the memory window pointer register so that |
| 1874 | * we can access the first 32K of internal NIC RAM. This will |
| 1875 | * allow us to set up the TX send ring RCBs and the RX return |
| 1876 | * ring RCBs, plus other things which live in NIC memory. |
| 1877 | */ |
| 1878 | CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7C), ( 0))); |
| 1879 | |
| 1880 | /* Configure mbuf memory pool */ |
| 1881 | if (!BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) { |
| 1882 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4408) , (0x00008000))) |
| 1883 | BGE_BUFFPOOL_1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4408) , (0x00008000))); |
| 1884 | |
| 1885 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) |
| 1886 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x440C) , (0x10000))); |
| 1887 | else |
| 1888 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x440C) , (0x18000))); |
| 1889 | |
| 1890 | /* Configure DMA resource pool */ |
| 1891 | CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x442C) , (0x00002000))) |
| 1892 | BGE_DMA_DESCRIPTORS)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x442C) , (0x00002000))); |
| 1893 | CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4430) , (0x2000))); |
| 1894 | } |
| 1895 | |
| 1896 | /* Configure mbuf pool watermarks */ |
| 1897 | /* new Broadcom docs strongly recommend these: */ |
| 1898 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 1899 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4410) , (0x0))); |
| 1900 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4414) , (0x2a))); |
| 1901 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4418) , (0xa0))); |
| 1902 | } else if (BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) { |
| 1903 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4410) , (0x0))); |
| 1904 | |
| 1905 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) { |
| 1906 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4414) , (0x04))); |
| 1907 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4418) , (0x10))); |
| 1908 | } else { |
| 1909 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4414) , (0x10))); |
| 1910 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4418) , (0x60))); |
| 1911 | } |
| 1912 | } else { |
| 1913 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4410) , (0x50))); |
| 1914 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4414) , (0x20))); |
| 1915 | CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4418) , (0x60))); |
| 1916 | } |
| 1917 | |
| 1918 | /* Configure DMA resource watermarks */ |
| 1919 | CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4434) , (5))); |
| 1920 | CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4438) , (10))); |
| 1921 | |
| 1922 | /* Enable buffer manager */ |
| 1923 | val = BGE_BMANMODE_ENABLE0x00000002 | BGE_BMANMODE_LOMBUF_ATTN0x00000010; |
| 1924 | /* |
| 1925 | * Change the arbitration algorithm of TXMBUF read request to |
| 1926 | * round-robin instead of priority based for BCM5719. When |
| 1927 | * TXFIFO is almost empty, RDMA will hold its request until |
| 1928 | * TXFIFO is not almost empty. |
| 1929 | */ |
| 1930 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719) |
| 1931 | val |= BGE_BMANMODE_NO_TX_UNDERRUN0x80000000; |
| 1932 | CSR_WRITE_4(sc, BGE_BMAN_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4400) , (val))); |
| 1933 | |
| 1934 | /* Poll for buffer manager start indication */ |
| 1935 | for (i = 0; i < 2000; i++) { |
| 1936 | if (CSR_READ_4(sc, BGE_BMAN_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4400)) ) & BGE_BMANMODE_ENABLE0x00000002) |
| 1937 | break; |
| 1938 | DELAY(10)(*delay_func)(10); |
| 1939 | } |
| 1940 | |
| 1941 | if (i == 2000) { |
| 1942 | printf("%s: buffer manager failed to start\n", |
| 1943 | sc->bge_dev.dv_xname); |
| 1944 | return (ENXIO6); |
| 1945 | } |
| 1946 | |
| 1947 | /* Enable flow-through queues */ |
| 1948 | CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5C00) , (0xFFFFFFFF))); |
| 1949 | CSR_WRITE_4(sc, BGE_FTQ_RESET, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5C00) , (0))); |
| 1950 | |
| 1951 | /* Wait until queue initialization is complete */ |
| 1952 | for (i = 0; i < 2000; i++) { |
| 1953 | if (CSR_READ_4(sc, BGE_FTQ_RESET)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x5C00)) ) == 0) |
| 1954 | break; |
| 1955 | DELAY(10)(*delay_func)(10); |
| 1956 | } |
| 1957 | |
| 1958 | if (i == 2000) { |
| 1959 | printf("%s: flow-through queue init failed\n", |
| 1960 | sc->bge_dev.dv_xname); |
| 1961 | return (ENXIO6); |
| 1962 | } |
| 1963 | |
| 1964 | /* |
| 1965 | * Summary of rings supported by the controller: |
| 1966 | * |
| 1967 | * Standard Receive Producer Ring |
| 1968 | * - This ring is used to feed receive buffers for "standard" |
| 1969 | * sized frames (typically 1536 bytes) to the controller. |
| 1970 | * |
| 1971 | * Jumbo Receive Producer Ring |
| 1972 | * - This ring is used to feed receive buffers for jumbo sized |
| 1973 | * frames (i.e. anything bigger than the "standard" frames) |
| 1974 | * to the controller. |
| 1975 | * |
| 1976 | * Mini Receive Producer Ring |
| 1977 | * - This ring is used to feed receive buffers for "mini" |
| 1978 | * sized frames to the controller. |
| 1979 | * - This feature required external memory for the controller |
| 1980 | * but was never used in a production system. Should always |
| 1981 | * be disabled. |
| 1982 | * |
| 1983 | * Receive Return Ring |
| 1984 | * - After the controller has placed an incoming frame into a |
| 1985 | * receive buffer that buffer is moved into a receive return |
| 1986 | * ring. The driver is then responsible to passing the |
| 1987 | * buffer up to the stack. Many versions of the controller |
| 1988 | * support multiple RR rings. |
| 1989 | * |
| 1990 | * Send Ring |
| 1991 | * - This ring is used for outgoing frames. Many versions of |
| 1992 | * the controller support multiple send rings. |
| 1993 | */ |
| 1994 | |
| 1995 | /* Initialize the standard RX ring control block */ |
| 1996 | rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; |
| 1997 | BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring))do { (rcb->bge_hostaddr).bge_addr_lo = ((u_int64_t) (((sc) ->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof (struct bge_ring_data, bge_rx_std_ring))) & 0xffffffff); if (sizeof(bus_addr_t) == 8) (rcb->bge_hostaddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data, bge_rx_std_ring)) ) >> 32); else (rcb->bge_hostaddr).bge_addr_hi = 0; } while(0); |
| 1998 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 1999 | /* |
| 2000 | * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) |
| 2001 | * Bits 15-2 : Maximum RX frame size |
| 2002 | * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled |
| 2003 | * Bit 0 : Reserved |
| 2004 | */ |
| 2005 | rcb->bge_maxlen_flags = |
| 2006 | BGE_RCB_MAXLEN_FLAGS(512, ETHER_MAX_DIX_LEN << 2)((512) << 16 | (1536 << 2)); |
| 2007 | } else if (BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) { |
| 2008 | /* |
| 2009 | * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) |
| 2010 | * Bits 15-2 : Reserved (should be 0) |
| 2011 | * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled |
| 2012 | * Bit 0 : Reserved |
| 2013 | */ |
| 2014 | rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0)((512) << 16 | (0)); |
| 2015 | } else { |
| 2016 | /* |
| 2017 | * Ring size is always XXX entries |
| 2018 | * Bits 31-16: Maximum RX frame size |
| 2019 | * Bits 15-2 : Reserved (should be 0) |
| 2020 | * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled |
| 2021 | * Bit 0 : Reserved |
| 2022 | */ |
| 2023 | rcb->bge_maxlen_flags = |
| 2024 | BGE_RCB_MAXLEN_FLAGS(ETHER_MAX_DIX_LEN, 0)((1536) << 16 | (0)); |
| 2025 | } |
| 2026 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57170x5717 || |
| 2027 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2028 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) |
| 2029 | rcb->bge_nicaddr = BGE_STD_RX_RINGS_57170x00040000; |
| 2030 | else |
| 2031 | rcb->bge_nicaddr = BGE_STD_RX_RINGS0x00006000; |
| 2032 | /* Write the standard receive producer ring control block. */ |
| 2033 | CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2450) , (rcb->bge_hostaddr.bge_addr_hi))); |
| 2034 | CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2454) , (rcb->bge_hostaddr.bge_addr_lo))); |
| 2035 | CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2458) , (rcb->bge_maxlen_flags))); |
| 2036 | CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x245C) , (rcb->bge_nicaddr))); |
| 2037 | |
| 2038 | /* Reset the standard receive producer ring producer index. */ |
| 2039 | bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO0x026C, 0); |
| 2040 | |
| 2041 | /* |
| 2042 | * Initialize the Jumbo RX ring control block |
| 2043 | * We set the 'ring disabled' bit in the flags |
| 2044 | * field until we're actually ready to start |
| 2045 | * using this ring (i.e. once we set the MTU |
| 2046 | * high enough to require it). |
| 2047 | */ |
| 2048 | if (sc->bge_flags & BGE_JUMBO_RING0x01000000) { |
| 2049 | rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; |
| 2050 | BGE_HOSTADDR(rcb->bge_hostaddr,do { (rcb->bge_hostaddr).bge_addr_lo = ((u_int64_t) (((sc) ->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof (struct bge_ring_data, bge_rx_jumbo_ring))) & 0xffffffff) ; if (sizeof(bus_addr_t) == 8) (rcb->bge_hostaddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data, bge_rx_jumbo_ring ))) >> 32); else (rcb->bge_hostaddr).bge_addr_hi = 0 ; } while(0) |
| 2051 | BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring))do { (rcb->bge_hostaddr).bge_addr_lo = ((u_int64_t) (((sc) ->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof (struct bge_ring_data, bge_rx_jumbo_ring))) & 0xffffffff) ; if (sizeof(bus_addr_t) == 8) (rcb->bge_hostaddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data, bge_rx_jumbo_ring ))) >> 32); else (rcb->bge_hostaddr).bge_addr_hi = 0 ; } while(0); |
| 2052 | rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,((0) << 16 | (0x0001 | 0x0002)) |
| 2053 | BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED)((0) << 16 | (0x0001 | 0x0002)); |
| 2054 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57170x5717 || |
| 2055 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2056 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) |
| 2057 | rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_57170x00044400; |
| 2058 | else |
| 2059 | rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS0x00007000; |
| 2060 | CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2440) , (rcb->bge_hostaddr.bge_addr_hi))) |
| 2061 | rcb->bge_hostaddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2440) , (rcb->bge_hostaddr.bge_addr_hi))); |
| 2062 | CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2444) , (rcb->bge_hostaddr.bge_addr_lo))) |
| 2063 | rcb->bge_hostaddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2444) , (rcb->bge_hostaddr.bge_addr_lo))); |
| 2064 | /* Program the jumbo receive producer ring RCB parameters. */ |
| 2065 | CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2448) , (rcb->bge_maxlen_flags))) |
| 2066 | rcb->bge_maxlen_flags)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2448) , (rcb->bge_maxlen_flags))); |
| 2067 | CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x244C) , (rcb->bge_nicaddr))); |
| 2068 | /* Reset the jumbo receive producer ring producer index. */ |
| 2069 | bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO0x0274, 0); |
| 2070 | } |
| 2071 | |
| 2072 | /* Disable the mini receive producer ring RCB. */ |
| 2073 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) { |
| 2074 | /* Set up dummy disabled mini ring RCB */ |
| 2075 | rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; |
| 2076 | rcb->bge_maxlen_flags = |
| 2077 | BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)((0) << 16 | (0x0002)); |
| 2078 | CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2468) , (rcb->bge_maxlen_flags))) |
| 2079 | rcb->bge_maxlen_flags)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2468) , (rcb->bge_maxlen_flags))); |
| 2080 | /* Reset the mini receive producer ring producer index. */ |
| 2081 | bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO0x027C, 0); |
| 2082 | |
| 2083 | /* XXX why? */ |
| 2084 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_info)), (sizeof (struct bge_gib)), (0x01|0x04)) |
| 2085 | offsetof(struct bge_ring_data, bge_info),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_info)), (sizeof (struct bge_gib)), (0x01|0x04)) |
| 2086 | sizeof (struct bge_gib),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_info)), (sizeof (struct bge_gib)), (0x01|0x04)) |
| 2087 | BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_info)), (sizeof (struct bge_gib)), (0x01|0x04)); |
| 2088 | } |
| 2089 | |
| 2090 | /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ |
| 2091 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) { |
| 2092 | if (sc->bge_chipid == BGE_CHIPID_BCM5906_A00xc000 || |
| 2093 | sc->bge_chipid == BGE_CHIPID_BCM5906_A10xc001 || |
| 2094 | sc->bge_chipid == BGE_CHIPID_BCM5906_A20xc002) |
| 2095 | CSR_WRITE_4(sc, BGE_ISO_PKT_TX,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C20) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0C20 ))) & ~3) | 2))) |
| 2096 | (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C20) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0C20 ))) & ~3) | 2))); |
| 2097 | } |
| 2098 | /* |
| 2099 | * The BD ring replenish thresholds control how often the |
| 2100 | * hardware fetches new BD's from the producer rings in host |
| 2101 | * memory. Setting the value too low on a busy system can |
| 2102 | * starve the hardware and recue the throughput. |
| 2103 | * |
| 2104 | * Set the BD ring replenish thresholds. The recommended |
| 2105 | * values are 1/8th the number of descriptors allocated to |
| 2106 | * each ring, but since we try to avoid filling the entire |
| 2107 | * ring we set these to the minimal value of 8. This needs to |
| 2108 | * be done on several of the supported chip revisions anyway, |
| 2109 | * to work around HW bugs. |
| 2110 | */ |
| 2111 | CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2C18) , (8))); |
| 2112 | if (sc->bge_flags & BGE_JUMBO_RING0x01000000) |
| 2113 | CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2C1C) , (8))); |
| 2114 | |
| 2115 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 2116 | CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2D00) , (4))); |
| 2117 | CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2D04) , (4))); |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * Disable all send rings by setting the 'ring disabled' bit |
| 2122 | * in the flags field of all the TX send ring control blocks, |
| 2123 | * located in NIC memory. |
| 2124 | */ |
| 2125 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) { |
| 2126 | /* 5700 to 5704 had 16 send rings. */ |
| 2127 | limit = BGE_TX_RINGS_EXTSSRAM_MAX16; |
| 2128 | } else if (BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000) || |
| 2129 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) |
| 2130 | limit = 2; |
| 2131 | else if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) |
| 2132 | limit = 4; |
| 2133 | else |
| 2134 | limit = 1; |
| 2135 | rcb_addr = BGE_MEMWIN_START0x00008000 + BGE_SEND_RING_RCB0x00000100; |
| 2136 | for (i = 0; i < limit; i++) { |
| 2137 | RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( 0) << 16 | (0x0002))))) |
| 2138 | BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED))((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( 0) << 16 | (0x0002))))); |
| 2139 | RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0))); |
| 2140 | rcb_addr += sizeof(struct bge_rcb); |
| 2141 | } |
| 2142 | |
| 2143 | /* Configure send ring RCB 0 (we use only the first ring) */ |
| 2144 | rcb_addr = BGE_MEMWIN_START0x00008000 + BGE_SEND_RING_RCB0x00000100; |
| 2145 | BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring))do { (taddr).bge_addr_lo = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_tx_ring))) & 0xffffffff); if (sizeof(bus_addr_t) == 8) (taddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_tx_ring))) >> 32); else (taddr).bge_addr_hi = 0; } while(0); |
| 2146 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_hi )), (taddr.bge_addr_hi))); |
| 2147 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_lo )), (taddr.bge_addr_lo))); |
| 2148 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57170x5717 || |
| 2149 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2150 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) |
| 2151 | RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0x00004000 ))); |
| 2152 | else |
| 2153 | RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0x00004000 + ((0 * sizeof(struct bge_tx_bd) * 512) / 4)))) |
| 2154 | BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT))((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0x00004000 + ((0 * sizeof(struct bge_tx_bd) * 512) / 4)))); |
| 2155 | RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( 512) << 16 | (0))))) |
| 2156 | BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0))((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( 512) << 16 | (0))))); |
| 2157 | |
| 2158 | /* |
| 2159 | * Disable all receive return rings by setting the |
| 2160 | * 'ring disabled' bit in the flags field of all the receive |
| 2161 | * return ring control blocks, located in NIC memory. |
| 2162 | */ |
| 2163 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57170x5717 || |
| 2164 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2165 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) { |
| 2166 | /* Should be 17, use 16 until we get an SRAM map. */ |
| 2167 | limit = 16; |
| 2168 | } else if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) |
| 2169 | limit = BGE_RX_RINGS_MAX16; |
| 2170 | else if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57550x0a || |
| 2171 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762 || |
| 2172 | BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000)) |
| 2173 | limit = 4; |
| 2174 | else |
| 2175 | limit = 1; |
| 2176 | /* Disable all receive return rings */ |
| 2177 | rcb_addr = BGE_MEMWIN_START0x00008000 + BGE_RX_RETURN_RING_RCB0x00000200; |
| 2178 | for (i = 0; i < limit; i++) { |
| 2179 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_hi )), (0))); |
| 2180 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_lo )), (0))); |
| 2181 | RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( sc->bge_return_ring_cnt) << 16 | (0x0002))))) |
| 2182 | BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( sc->bge_return_ring_cnt) << 16 | (0x0002))))) |
| 2183 | BGE_RCB_FLAG_RING_DISABLED))((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( sc->bge_return_ring_cnt) << 16 | (0x0002))))); |
| 2184 | RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0))); |
| 2185 | bge_writembx(sc, BGE_MBX_RX_CONS0_LO0x0284 + |
| 2186 | (i * (sizeof(u_int64_t))), 0); |
| 2187 | rcb_addr += sizeof(struct bge_rcb); |
| 2188 | } |
| 2189 | |
| 2190 | /* |
| 2191 | * Set up receive return ring 0. Note that the NIC address |
| 2192 | * for RX return rings is 0x0. The return rings live entirely |
| 2193 | * within the host, so the nicaddr field in the RCB isn't used. |
| 2194 | */ |
| 2195 | rcb_addr = BGE_MEMWIN_START0x00008000 + BGE_RX_RETURN_RING_RCB0x00000200; |
| 2196 | BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring))do { (taddr).bge_addr_lo = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_rx_return_ring))) & 0xffffffff); if (sizeof(bus_addr_t ) == 8) (taddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_rx_return_ring))) >> 32); else (taddr).bge_addr_hi = 0; } while(0); |
| 2197 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_hi )), (taddr.bge_addr_hi))); |
| 2198 | RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_hostaddr.bge_addr_lo )), (taddr.bge_addr_lo))); |
| 2199 | RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000)((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_nicaddr)), (0x00000000 ))); |
| 2200 | RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( sc->bge_return_ring_cnt) << 16 | (0))))) |
| 2201 | BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0))((sc->bge_btag)->write_4((sc->bge_bhandle), (rcb_addr + __builtin_offsetof(struct bge_rcb, bge_maxlen_flags)), ((( sc->bge_return_ring_cnt) << 16 | (0))))); |
| 2202 | |
| 2203 | /* Set random backoff seed for TX */ |
| 2204 | CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0438) , ((sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc ->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & 0x3FF ))) |
| 2205 | (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0438) , ((sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc ->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & 0x3FF ))) |
| 2206 | sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0438) , ((sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc ->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & 0x3FF ))) |
| 2207 | sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0438) , ((sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc ->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & 0x3FF ))) |
| 2208 | BGE_TX_BACKOFF_SEED_MASK)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0438) , ((sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc ->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & 0x3FF ))); |
| 2209 | |
| 2210 | /* Set inter-packet gap */ |
| 2211 | val = 0x2620; |
| 2212 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720 || |
| 2213 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) |
| 2214 | val |= CSR_READ_4(sc, BGE_TX_LENGTHS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0464)) ) & |
| 2215 | (BGE_TXLEN_JMB_FRM_LEN_MSK0x00FF0000 | BGE_TXLEN_CNT_DN_VAL_MSK0xFF000000); |
| 2216 | CSR_WRITE_4(sc, BGE_TX_LENGTHS, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0464) , (val))); |
| 2217 | |
| 2218 | /* |
| 2219 | * Specify which ring to use for packets that don't match |
| 2220 | * any RX rules. |
| 2221 | */ |
| 2222 | CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0500) , (0x08))); |
| 2223 | |
| 2224 | /* |
| 2225 | * Configure number of RX lists. One interrupt distribution |
| 2226 | * list, sixteen active lists, one bad frames class. |
| 2227 | */ |
| 2228 | CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2010) , (0x181))); |
| 2229 | |
| 2230 | /* Initialize RX list placement stats mask. */ |
| 2231 | CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007BFFFF)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2018) , (0x007BFFFF))); |
| 2232 | CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2014) , (0x1))); |
| 2233 | |
| 2234 | /* Disable host coalescing until we get it set up */ |
| 2235 | CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C00) , (0x00000000))); |
| 2236 | |
| 2237 | /* Poll to make sure it's shut down. */ |
| 2238 | for (i = 0; i < 2000; i++) { |
| 2239 | if (!(CSR_READ_4(sc, BGE_HCC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3C00)) ) & BGE_HCCMODE_ENABLE0x00000002)) |
| 2240 | break; |
| 2241 | DELAY(10)(*delay_func)(10); |
| 2242 | } |
| 2243 | |
| 2244 | if (i == 2000) { |
| 2245 | printf("%s: host coalescing engine failed to idle\n", |
| 2246 | sc->bge_dev.dv_xname); |
| 2247 | return (ENXIO6); |
| 2248 | } |
| 2249 | |
| 2250 | /* Set up host coalescing defaults */ |
| 2251 | CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C08) , (sc->bge_rx_coal_ticks))); |
| 2252 | CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C0C) , (sc->bge_tx_coal_ticks))); |
| 2253 | CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C10) , (sc->bge_rx_max_coal_bds))); |
| 2254 | CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C14) , (sc->bge_tx_max_coal_bds))); |
| 2255 | if (!(BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000))) { |
| 2256 | CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C18) , (0))); |
| 2257 | CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C1C) , (0))); |
| 2258 | } |
| 2259 | CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C20) , (0))); |
| 2260 | CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C24) , (0))); |
| 2261 | |
| 2262 | /* Set up address of statistics block */ |
| 2263 | if (!(BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000))) { |
| 2264 | BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats))do { (taddr).bge_addr_lo = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_info.bge_stats))) & 0xffffffff); if (sizeof(bus_addr_t ) == 8) (taddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_info.bge_stats))) >> 32); else (taddr).bge_addr_hi = 0; } while(0); |
| 2265 | CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C30) , (taddr.bge_addr_hi))); |
| 2266 | CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C34) , (taddr.bge_addr_lo))); |
| 2267 | |
| 2268 | CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C40) , (0x00000300))); |
| 2269 | CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C44) , (0x00000B00))); |
| 2270 | CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C28) , (sc->bge_stat_ticks))); |
| 2271 | } |
| 2272 | |
| 2273 | /* Set up address of status block */ |
| 2274 | BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block))do { (taddr).bge_addr_lo = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_status_block))) & 0xffffffff); if (sizeof(bus_addr_t ) == 8) (taddr).bge_addr_hi = ((u_int64_t) (((sc)->bge_ring_map ->dm_segs[0].ds_addr + __builtin_offsetof(struct bge_ring_data , bge_status_block))) >> 32); else (taddr).bge_addr_hi = 0; } while(0); |
| 2275 | CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C38) , (taddr.bge_addr_hi))); |
| 2276 | CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C3C) , (taddr.bge_addr_lo))); |
| 2277 | |
| 2278 | sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; |
| 2279 | sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; |
| 2280 | |
| 2281 | /* Set up status block size. */ |
| 2282 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 && |
| 2283 | sc->bge_chipid != BGE_CHIPID_BCM5700_C00x7200) { |
| 2284 | val = BGE_STATBLKSZ_FULL0x00000000; |
| 2285 | bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ)__builtin_bzero((&sc->bge_rdata->bge_status_block), (sizeof (struct bge_status_block))); |
| 2286 | } else { |
| 2287 | val = BGE_STATBLKSZ_32BYTE0x00000100; |
| 2288 | bzero(&sc->bge_rdata->bge_status_block, 32)__builtin_bzero((&sc->bge_rdata->bge_status_block), (32)); |
| 2289 | } |
| 2290 | |
| 2291 | /* Turn on host coalescing state machine */ |
| 2292 | CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C00) , (val | 0x00000002))); |
| 2293 | |
| 2294 | /* Turn on RX BD completion state machine and enable attentions */ |
| 2295 | CSR_WRITE_4(sc, BGE_RBDC_MODE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3000) , (0x00000002|0x00000004))) |
| 2296 | BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3000) , (0x00000002|0x00000004))); |
| 2297 | |
| 2298 | /* Turn on RX list placement state machine */ |
| 2299 | CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2000) , (0x00000002))); |
| 2300 | |
| 2301 | /* Turn on RX list selector state machine. */ |
| 2302 | if (!(BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000))) |
| 2303 | CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3400) , (0x00000002))); |
| 2304 | |
| 2305 | val = BGE_MACMODE_TXDMA_ENB0x00200000 | BGE_MACMODE_RXDMA_ENB0x00400000 | |
| 2306 | BGE_MACMODE_RX_STATS_CLEAR0x00001000 | BGE_MACMODE_TX_STATS_CLEAR0x00008000 | |
| 2307 | BGE_MACMODE_RX_STATS_ENB0x00000800 | BGE_MACMODE_TX_STATS_ENB0x00004000 | |
| 2308 | BGE_MACMODE_FRMHDR_DMA_ENB0x00800000; |
| 2309 | |
| 2310 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) |
| 2311 | val |= BGE_PORTMODE_TBI0x0000000C; |
| 2312 | else if (sc->bge_flags & BGE_FIBER_MII0x00000400) |
| 2313 | val |= BGE_PORTMODE_GMII0x00000008; |
| 2314 | else |
| 2315 | val |= BGE_PORTMODE_MII0x00000004; |
| 2316 | |
| 2317 | /* Allow APE to send/receive frames. */ |
| 2318 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) != 0) |
| 2319 | val |= BGE_MACMODE_APE_RX_EN0x08000000 | BGE_MACMODE_APE_TX_EN0x10000000; |
| 2320 | |
| 2321 | /* Turn on DMA, clear stats */ |
| 2322 | CSR_WRITE_4(sc, BGE_MAC_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , (val))); |
| 2323 | DELAY(40)(*delay_func)(40); |
| 2324 | |
| 2325 | /* Set misc. local control, enable interrupts on attentions */ |
| 2326 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00000008))))); |
| 2327 | |
| 2328 | #ifdef notdef |
| 2329 | /* Assert GPIO pins for PHY reset */ |
| 2330 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00004000| 0x00008000|0x00010000))))) |
| 2331 | BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00004000| 0x00008000|0x00010000))))); |
| 2332 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00000800| 0x00001000|0x00002000))))) |
| 2333 | BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00000800| 0x00001000|0x00002000))))); |
| 2334 | #endif |
| 2335 | |
| 2336 | /* Turn on DMA completion state machine */ |
| 2337 | if (!(BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000))) |
| 2338 | CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6400) , (0x00000002))); |
| 2339 | |
| 2340 | val = BGE_WDMAMODE_ENABLE0x00000002|BGE_WDMAMODE_ALL_ATTNS0x000003FC; |
| 2341 | |
| 2342 | /* Enable host coalescing bug fix. */ |
| 2343 | if (BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000)) |
| 2344 | val |= BGE_WDMAMODE_STATUS_TAG_FIX0x20000000; |
| 2345 | |
| 2346 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57850x5785) |
| 2347 | val |= BGE_WDMAMODE_BURST_ALL_DATA0xC0000000; |
| 2348 | |
| 2349 | /* Turn on write DMA state machine */ |
| 2350 | CSR_WRITE_4(sc, BGE_WDMA_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4C00) , (val))); |
| 2351 | DELAY(40)(*delay_func)(40); |
| 2352 | |
| 2353 | val = BGE_RDMAMODE_ENABLE0x00000002|BGE_RDMAMODE_ALL_ATTNS0x000003FC; |
| 2354 | |
| 2355 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57170x5717) |
| 2356 | val |= BGE_RDMAMODE_MULT_DMA_RD_DIS0x01000000; |
| 2357 | |
| 2358 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57840x5784 || |
| 2359 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57850x5785 || |
| 2360 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM577800x57780) |
| 2361 | val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN0x00000800 | |
| 2362 | BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN0x00001000 | |
| 2363 | BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN0x00002000; |
| 2364 | |
| 2365 | if (sc->bge_flags & BGE_PCIE0x00000020) |
| 2366 | val |= BGE_RDMAMODE_FIFO_LONG_BURST0x00030000; |
| 2367 | |
| 2368 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720 || |
| 2369 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) { |
| 2370 | val |= CSR_READ_4(sc, BGE_RDMA_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4800)) ) & |
| 2371 | BGE_RDMAMODE_H2BNC_VLAN_DET0x20000000; |
| 2372 | /* |
| 2373 | * Allow multiple outstanding read requests from |
| 2374 | * non-LSO read DMA engine. |
| 2375 | */ |
| 2376 | val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS0x01000000; |
| 2377 | } |
| 2378 | |
| 2379 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761 || |
| 2380 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57840x5784 || |
| 2381 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57850x5785 || |
| 2382 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM577800x57780 || |
| 2383 | BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000) || BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000)) { |
| 2384 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) |
| 2385 | rdmareg = BGE_RDMA_RSRVCTRL_REG20x4890; |
| 2386 | else |
| 2387 | rdmareg = BGE_RDMA_RSRVCTRL0x4900; |
| 2388 | dmactl = CSR_READ_4(sc, rdmareg)((sc->bge_btag)->read_4((sc->bge_bhandle), (rdmareg) )); |
| 2389 | /* |
| 2390 | * Adjust tx margin to prevent TX data corruption and |
| 2391 | * fix internal FIFO overflow. |
| 2392 | */ |
| 2393 | if (sc->bge_chipid == BGE_CHIPID_BCM5719_A00x05719000 || |
| 2394 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) { |
| 2395 | dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK0x00000FF0 | |
| 2396 | BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK0x000FF000 | |
| 2397 | BGE_RDMA_RSRVCTRL_TXMRGN_MASK0xFFE00000); |
| 2398 | dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K0x00000C00 | |
| 2399 | BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K0x000C0000 | |
| 2400 | BGE_RDMA_RSRVCTRL_TXMRGN_320B0x28000000; |
| 2401 | } |
| 2402 | /* |
| 2403 | * Enable fix for read DMA FIFO overruns. |
| 2404 | * The fix is to limit the number of RX BDs |
| 2405 | * the hardware would fetch at a time. |
| 2406 | */ |
| 2407 | CSR_WRITE_4(sc, rdmareg, dmactl |((sc->bge_btag)->write_4((sc->bge_bhandle), (rdmareg ), (dmactl | 0x00000004))) |
| 2408 | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX)((sc->bge_btag)->write_4((sc->bge_bhandle), (rdmareg ), (dmactl | 0x00000004))); |
| 2409 | } |
| 2410 | |
| 2411 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719) { |
| 2412 | CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00030000 | 0x000C0000))) |
| 2413 | CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00030000 | 0x000C0000))) |
| 2414 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00030000 | 0x000C0000))) |
| 2415 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00030000 | 0x000C0000))); |
| 2416 | } else if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) { |
| 2417 | /* |
| 2418 | * Allow 4KB burst length reads for non-LSO frames. |
| 2419 | * Enable 512B burst length reads for buffer descriptors. |
| 2420 | */ |
| 2421 | CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00020000 | 0x000C0000))) |
| 2422 | CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00020000 | 0x000C0000))) |
| 2423 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00020000 | 0x000C0000))) |
| 2424 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910 ))) | 0x00020000 | 0x000C0000))); |
| 2425 | } else if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) { |
| 2426 | CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x48A0) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x48A0 ))) | 0x00030000 | 0x000C0000))) |
| 2427 | CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x48A0) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x48A0 ))) | 0x00030000 | 0x000C0000))) |
| 2428 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x48A0) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x48A0 ))) | 0x00030000 | 0x000C0000))) |
| 2429 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x48A0) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x48A0 ))) | 0x00030000 | 0x000C0000))); |
| 2430 | } |
| 2431 | |
| 2432 | CSR_WRITE_4(sc, BGE_RDMA_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4800) , (val))); |
| 2433 | DELAY(40)(*delay_func)(40); |
| 2434 | |
| 2435 | if (sc->bge_flags & BGE_RDMA_BUG0x00800000) { |
| 2436 | for (i = 0; i < BGE_NUM_RDMA_CHANNELS4 / 2; i++) { |
| 2437 | val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4BE0 + i * 4))); |
| 2438 | if ((val & 0xFFFF) > ETHER_MAX_LEN1518) |
| 2439 | break; |
| 2440 | if (((val >> 16) & 0xFFFF) > ETHER_MAX_LEN1518) |
| 2441 | break; |
| 2442 | } |
| 2443 | if (i != BGE_NUM_RDMA_CHANNELS4 / 2) { |
| 2444 | val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910)) ); |
| 2445 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719) |
| 2446 | val |= BGE_RDMA_TX_LENGTH_WA_57190x02000000; |
| 2447 | else |
| 2448 | val |= BGE_RDMA_TX_LENGTH_WA_57200x00200000; |
| 2449 | CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (val))); |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | /* Turn on RX data completion state machine */ |
| 2454 | CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2800) , (0x00000002))); |
| 2455 | |
| 2456 | /* Turn on RX BD initiator state machine */ |
| 2457 | CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2C00) , (0x00000002))); |
| 2458 | |
| 2459 | /* Turn on RX data and RX BD initiator state machine */ |
| 2460 | CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x2400) , (0x00000002))); |
| 2461 | |
| 2462 | /* Turn on Mbuf cluster free state machine */ |
| 2463 | if (!BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) |
| 2464 | CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3800) , (0x00000002))); |
| 2465 | |
| 2466 | /* Turn on send BD completion state machine */ |
| 2467 | CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x1C00) , (0x00000002))); |
| 2468 | |
| 2469 | /* Turn on send data completion state machine */ |
| 2470 | val = BGE_SDCMODE_ENABLE0x00000002; |
| 2471 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761) |
| 2472 | val |= BGE_SDCMODE_CDELAY0x00000010; |
| 2473 | CSR_WRITE_4(sc, BGE_SDC_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x1000) , (val))); |
| 2474 | |
| 2475 | /* Turn on send data initiator state machine */ |
| 2476 | CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C00) , (0x00000002))); |
| 2477 | |
| 2478 | /* Turn on send BD initiator state machine */ |
| 2479 | CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x1800) , (0x00000002))); |
| 2480 | |
| 2481 | /* Turn on send BD selector state machine */ |
| 2482 | CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x1400) , (0x00000002))); |
| 2483 | |
| 2484 | CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007BFFFF)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C0C) , (0x007BFFFF))); |
| 2485 | CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C08) , (0x00000001|0x00000002))) |
| 2486 | BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0C08) , (0x00000001|0x00000002))); |
| 2487 | |
| 2488 | /* ack/clear link change events */ |
| 2489 | CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010 | 0x00000008 | 0x00400000 | 0x00001000))) |
| 2490 | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010 | 0x00000008 | 0x00400000 | 0x00001000))) |
| 2491 | BGE_MACSTAT_LINK_CHANGED)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010 | 0x00000008 | 0x00400000 | 0x00001000))); |
| 2492 | |
| 2493 | /* Enable PHY auto polling (for MII/GMII only) */ |
| 2494 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 2495 | CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0450) , (0x00000001))); |
| 2496 | } else { |
| 2497 | if ((sc->bge_flags & BGE_CPMU_PRESENT0x00100000) != 0) |
| 2498 | mimode = BGE_MIMODE_500KHZ_CONST0x00008000; |
| 2499 | else |
| 2500 | mimode = BGE_MIMODE_BASE0x000C0000; |
| 2501 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000) || |
| 2502 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57050x03) { |
| 2503 | mimode |= BGE_MIMODE_AUTOPOLL0x00000010; |
| 2504 | BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts |= (0x00000004)); |
| 2505 | } |
| 2506 | mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr)((sc->bge_phy_addr & 0x1F) << 5); |
| 2507 | CSR_WRITE_4(sc, BGE_MI_MODE, mimode)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0454) , (mimode))); |
| 2508 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07) |
| 2509 | CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0408) , (0x00800000))) |
| 2510 | BGE_EVTENB_MI_INTERRUPT)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0408) , (0x00800000))); |
| 2511 | } |
| 2512 | |
| 2513 | /* |
| 2514 | * Clear any pending link state attention. |
| 2515 | * Otherwise some link state change events may be lost until attention |
| 2516 | * is cleared by bge_intr() -> bge_link_upd() sequence. |
| 2517 | * It's not necessary on newer BCM chips - perhaps enabling link |
| 2518 | * state change attentions implies clearing pending attention. |
| 2519 | */ |
| 2520 | CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))) |
| 2521 | BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))) |
| 2522 | BGE_MACSTAT_LINK_CHANGED)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))); |
| 2523 | |
| 2524 | /* Enable link state change attentions. */ |
| 2525 | BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0408) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0408 ))) | (0x00001000))))); |
| 2526 | |
| 2527 | return (0); |
| 2528 | } |
| 2529 | |
| 2530 | const struct bge_revision * |
| 2531 | bge_lookup_rev(u_int32_t chipid) |
| 2532 | { |
| 2533 | const struct bge_revision *br; |
| 2534 | |
| 2535 | for (br = bge_revisions; br->br_name != NULL((void *)0); br++) { |
| 2536 | if (br->br_chipid == chipid) |
| 2537 | return (br); |
| 2538 | } |
| 2539 | |
| 2540 | for (br = bge_majorrevs; br->br_name != NULL((void *)0); br++) { |
| 2541 | if (br->br_chipid == BGE_ASICREV(chipid)((chipid) >> 12)) |
| 2542 | return (br); |
| 2543 | } |
| 2544 | |
| 2545 | return (NULL((void *)0)); |
| 2546 | } |
| 2547 | |
| 2548 | int |
| 2549 | bge_can_use_msi(struct bge_softc *sc) |
| 2550 | { |
| 2551 | int can_use_msi = 0; |
| 2552 | |
| 2553 | switch (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12)) { |
| 2554 | case BGE_ASICREV_BCM5714_A00x05: |
| 2555 | case BGE_ASICREV_BCM57140x09: |
| 2556 | /* |
| 2557 | * Apparently, MSI doesn't work when these chips are |
| 2558 | * configured in single-port mode. |
| 2559 | */ |
| 2560 | break; |
| 2561 | case BGE_ASICREV_BCM57500x04: |
| 2562 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) != BGE_CHIPREV_5750_AX0x40 && |
| 2563 | BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) != BGE_CHIPREV_5750_BX0x41) |
| 2564 | can_use_msi = 1; |
| 2565 | break; |
| 2566 | default: |
| 2567 | if (BGE_IS_575X_PLUS(sc)((sc)->bge_flags & 0x00002000)) |
| 2568 | can_use_msi = 1; |
| 2569 | } |
| 2570 | |
| 2571 | return (can_use_msi); |
| 2572 | } |
| 2573 | |
| 2574 | /* |
| 2575 | * Probe for a Broadcom chip. Check the PCI vendor and device IDs |
| 2576 | * against our list and return its name if we find a match. Note |
| 2577 | * that since the Broadcom controller contains VPD support, we |
| 2578 | * can get the device name string from the controller itself instead |
| 2579 | * of the compiled-in string. This is a little slow, but it guarantees |
| 2580 | * we'll always announce the right product name. |
| 2581 | */ |
| 2582 | int |
| 2583 | bge_probe(struct device *parent, void *match, void *aux) |
| 2584 | { |
| 2585 | return (pci_matchbyid(aux, bge_devices, nitems(bge_devices)(sizeof((bge_devices)) / sizeof((bge_devices)[0])))); |
| 2586 | } |
| 2587 | |
| 2588 | void |
| 2589 | bge_attach(struct device *parent, struct device *self, void *aux) |
| 2590 | { |
| 2591 | struct bge_softc *sc = (struct bge_softc *)self; |
| 2592 | struct pci_attach_args *pa = aux; |
| 2593 | pci_chipset_tag_t pc = pa->pa_pc; |
| 2594 | const struct bge_revision *br; |
| 2595 | pcireg_t pm_ctl, memtype, subid, reg; |
| 2596 | pci_intr_handle_t ih; |
| 2597 | const char *intrstr = NULL((void *)0); |
| 2598 | int gotenaddr = 0; |
| 2599 | u_int32_t hwcfg = 0; |
| 2600 | u_int32_t mac_addr = 0; |
| 2601 | u_int32_t misccfg; |
| 2602 | struct ifnet *ifp; |
| 2603 | caddr_t kva; |
| 2604 | #ifdef __sparc64__ |
| 2605 | char name[32]; |
| 2606 | #endif |
| 2607 | |
| 2608 | sc->bge_pa = *pa; |
| 2609 | |
| 2610 | subid = pci_conf_read(pc, pa->pa_tag, PCI_SUBSYS_ID_REG0x2c); |
| 2611 | |
| 2612 | /* |
| 2613 | * Map control/status registers. |
| 2614 | */ |
| 2615 | DPRINTFN(5, ("Map control/status regs\n")); |
| 2616 | |
| 2617 | DPRINTFN(5, ("pci_mapreg_map\n")); |
| 2618 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR00x10); |
| 2619 | if (pci_mapreg_map(pa, BGE_PCI_BAR00x10, memtype, 0, &sc->bge_btag, |
| 2620 | &sc->bge_bhandle, NULL((void *)0), &sc->bge_bsize, 0)) { |
| 2621 | printf(": can't find mem space\n"); |
| 2622 | return; |
| 2623 | } |
| 2624 | |
| 2625 | /* |
| 2626 | * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) |
| 2627 | * can clobber the chip's PCI config-space power control registers, |
| 2628 | * leaving the card in D3 powersave state. |
| 2629 | * We do not have memory-mapped registers in this state, |
| 2630 | * so force device into D0 state before starting initialization. |
| 2631 | */ |
| 2632 | pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD0x4C); |
| 2633 | pm_ctl &= ~(PCI_PWR_D00|PCI_PWR_D11|PCI_PWR_D22|PCI_PWR_D33); |
| 2634 | pm_ctl |= (1 << 8) | PCI_PWR_D00 ; /* D0 state */ |
| 2635 | pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD0x4C, pm_ctl); |
| 2636 | DELAY(1000)(*delay_func)(1000); /* 27 usec is allegedly sufficient */ |
| 2637 | |
| 2638 | /* |
| 2639 | * Save ASIC rev. |
| 2640 | */ |
| 2641 | sc->bge_chipid = |
| 2642 | (pci_conf_read(pc, pa->pa_tag, BGE_PCI_MISC_CTL0x68) |
| 2643 | >> BGE_PCIMISCCTL_ASICREV_SHIFT16); |
| 2644 | |
| 2645 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_USE_PRODID_REG0x0f) { |
| 2646 | switch (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff)) { |
| 2647 | case PCI_PRODUCT_BROADCOM_BCM57170x1655: |
| 2648 | case PCI_PRODUCT_BROADCOM_BCM57180x1656: |
| 2649 | case PCI_PRODUCT_BROADCOM_BCM57190x1657: |
| 2650 | case PCI_PRODUCT_BROADCOM_BCM57200x165f: |
| 2651 | case PCI_PRODUCT_BROADCOM_BCM57250x1643: |
| 2652 | case PCI_PRODUCT_BROADCOM_BCM57270x16f3: |
| 2653 | case PCI_PRODUCT_BROADCOM_BCM57620x1687: |
| 2654 | case PCI_PRODUCT_BROADCOM_BCM577640x1642: |
| 2655 | case PCI_PRODUCT_BROADCOM_BCM577670x1683: |
| 2656 | case PCI_PRODUCT_BROADCOM_BCM577870x1641: |
| 2657 | sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, |
| 2658 | BGE_PCI_GEN2_PRODID_ASICREV0xF4); |
| 2659 | break; |
| 2660 | case PCI_PRODUCT_BROADCOM_BCM577610x16b0: |
| 2661 | case PCI_PRODUCT_BROADCOM_BCM577620x1682: |
| 2662 | case PCI_PRODUCT_BROADCOM_BCM577650x16b4: |
| 2663 | case PCI_PRODUCT_BROADCOM_BCM577660x1686: |
| 2664 | case PCI_PRODUCT_BROADCOM_BCM577810x16b1: |
| 2665 | case PCI_PRODUCT_BROADCOM_BCM577820x16b7: |
| 2666 | case PCI_PRODUCT_BROADCOM_BCM577850x16b5: |
| 2667 | case PCI_PRODUCT_BROADCOM_BCM577860x16b3: |
| 2668 | case PCI_PRODUCT_BROADCOM_BCM577910x16b2: |
| 2669 | case PCI_PRODUCT_BROADCOM_BCM577950x16b6: |
| 2670 | sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, |
| 2671 | BGE_PCI_GEN15_PRODID_ASICREV0xFC); |
| 2672 | break; |
| 2673 | default: |
| 2674 | sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, |
| 2675 | BGE_PCI_PRODID_ASICREV0xBC); |
| 2676 | break; |
| 2677 | } |
| 2678 | } |
| 2679 | |
| 2680 | sc->bge_phy_addr = bge_phy_addr(sc); |
| 2681 | |
| 2682 | printf(", "); |
| 2683 | br = bge_lookup_rev(sc->bge_chipid); |
| 2684 | if (br == NULL((void *)0)) |
| 2685 | printf("unknown ASIC (0x%x)", sc->bge_chipid); |
| 2686 | else |
| 2687 | printf("%s (0x%x)", br->br_name, sc->bge_chipid); |
| 2688 | |
| 2689 | /* |
| 2690 | * PCI Express or PCI-X controller check. |
| 2691 | */ |
| 2692 | if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS0x10, |
| 2693 | &sc->bge_expcap, NULL((void *)0)) != 0) { |
| 2694 | /* Extract supported maximum payload size. */ |
| 2695 | reg = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap + |
| 2696 | PCI_PCIE_DCAP0x04); |
| 2697 | sc->bge_mps = 128 << (reg & 0x7); |
| 2698 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2699 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) |
| 2700 | sc->bge_expmrq = (fls(2048) - 8) << 12; |
| 2701 | else |
| 2702 | sc->bge_expmrq = (fls(4096) - 8) << 12; |
| 2703 | /* Disable PCIe Active State Power Management (ASPM). */ |
| 2704 | reg = pci_conf_read(pa->pa_pc, pa->pa_tag, |
| 2705 | sc->bge_expcap + PCI_PCIE_LCSR0x10); |
| 2706 | reg &= ~(PCI_PCIE_LCSR_ASPM_L0S0x00000001 | PCI_PCIE_LCSR_ASPM_L10x00000002); |
| 2707 | pci_conf_write(pa->pa_pc, pa->pa_tag, |
| 2708 | sc->bge_expcap + PCI_PCIE_LCSR0x10, reg); |
| 2709 | sc->bge_flags |= BGE_PCIE0x00000020; |
| 2710 | } else { |
| 2711 | if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE0x70) & |
| 2712 | BGE_PCISTATE_PCI_BUSMODE0x00000004) == 0) |
| 2713 | sc->bge_flags |= BGE_PCIX0x00000010; |
| 2714 | } |
| 2715 | |
| 2716 | /* |
| 2717 | * SEEPROM check. |
| 2718 | */ |
| 2719 | #ifdef __sparc64__ |
| 2720 | /* |
| 2721 | * Onboard interfaces on UltraSPARC systems generally don't |
| 2722 | * have a SEEPROM fitted. These interfaces, and cards that |
| 2723 | * have FCode, are named "network" by the PROM, whereas cards |
| 2724 | * without FCode show up as "ethernet". Since we don't really |
| 2725 | * need the information from the SEEPROM on cards that have |
| 2726 | * FCode it's fine to pretend they don't have one. |
| 2727 | */ |
| 2728 | if (OF_getprop(PCITAG_NODE(pa->pa_tag), "name", name, |
| 2729 | sizeof(name)) > 0 && strcmp(name, "network") == 0) |
| 2730 | sc->bge_flags |= BGE_NO_EEPROM0x00000080; |
| 2731 | #endif |
| 2732 | |
| 2733 | /* Save chipset family. */ |
| 2734 | switch (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12)) { |
| 2735 | case BGE_ASICREV_BCM57620x5762: |
| 2736 | case BGE_ASICREV_BCM577650x57785: |
| 2737 | case BGE_ASICREV_BCM577660x57766: |
| 2738 | sc->bge_flags |= BGE_57765_PLUS0x00040000; |
| 2739 | /* FALLTHROUGH */ |
| 2740 | case BGE_ASICREV_BCM57170x5717: |
| 2741 | case BGE_ASICREV_BCM57190x5719: |
| 2742 | case BGE_ASICREV_BCM57200x5720: |
| 2743 | sc->bge_flags |= BGE_5717_PLUS0x00020000 | BGE_5755_PLUS0x00004000 | BGE_575X_PLUS0x00002000 | |
| 2744 | BGE_5705_PLUS0x00001000 | BGE_JUMBO_CAPABLE0x00000100 | BGE_JUMBO_RING0x01000000 | |
| 2745 | BGE_JUMBO_FRAME0x04000000; |
| 2746 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 || |
| 2747 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) { |
| 2748 | /* |
| 2749 | * Enable work around for DMA engine miscalculation |
| 2750 | * of TXMBUF available space. |
| 2751 | */ |
| 2752 | sc->bge_flags |= BGE_RDMA_BUG0x00800000; |
| 2753 | |
| 2754 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719 && |
| 2755 | sc->bge_chipid == BGE_CHIPID_BCM5719_A00x05719000) { |
| 2756 | /* Jumbo frame on BCM5719 A0 does not work. */ |
| 2757 | sc->bge_flags &= ~(BGE_JUMBO_CAPABLE0x00000100 | |
| 2758 | BGE_JUMBO_RING0x01000000 | BGE_JUMBO_FRAME0x04000000); |
| 2759 | } |
| 2760 | } |
| 2761 | break; |
| 2762 | case BGE_ASICREV_BCM57550x0a: |
| 2763 | case BGE_ASICREV_BCM57610x5761: |
| 2764 | case BGE_ASICREV_BCM57840x5784: |
| 2765 | case BGE_ASICREV_BCM57850x5785: |
| 2766 | case BGE_ASICREV_BCM57870x0b: |
| 2767 | case BGE_ASICREV_BCM577800x57780: |
| 2768 | sc->bge_flags |= BGE_5755_PLUS0x00004000 | BGE_575X_PLUS0x00002000 | BGE_5705_PLUS0x00001000; |
| 2769 | break; |
| 2770 | case BGE_ASICREV_BCM57000x07: |
| 2771 | case BGE_ASICREV_BCM57010x00: |
| 2772 | case BGE_ASICREV_BCM57030x01: |
| 2773 | case BGE_ASICREV_BCM57040x02: |
| 2774 | sc->bge_flags |= BGE_5700_FAMILY0x00010000 | BGE_JUMBO_CAPABLE0x00000100 | BGE_JUMBO_RING0x01000000; |
| 2775 | break; |
| 2776 | case BGE_ASICREV_BCM5714_A00x05: |
| 2777 | case BGE_ASICREV_BCM57800x08: |
| 2778 | case BGE_ASICREV_BCM57140x09: |
| 2779 | sc->bge_flags |= BGE_5714_FAMILY0x00008000 | BGE_JUMBO_CAPABLE0x00000100 | BGE_JUMBO_STD0x02000000; |
| 2780 | /* FALLTHROUGH */ |
| 2781 | case BGE_ASICREV_BCM57500x04: |
| 2782 | case BGE_ASICREV_BCM57520x06: |
| 2783 | case BGE_ASICREV_BCM59060x0c: |
| 2784 | sc->bge_flags |= BGE_575X_PLUS0x00002000; |
| 2785 | /* FALLTHROUGH */ |
| 2786 | case BGE_ASICREV_BCM57050x03: |
| 2787 | sc->bge_flags |= BGE_5705_PLUS0x00001000; |
| 2788 | break; |
| 2789 | } |
| 2790 | |
| 2791 | if (sc->bge_flags & BGE_JUMBO_STD0x02000000) |
| 2792 | sc->bge_rx_std_len = BGE_JLEN((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t )))); |
| 2793 | else |
| 2794 | sc->bge_rx_std_len = MCLBYTES(1 << 11); |
| 2795 | |
| 2796 | /* |
| 2797 | * When using the BCM5701 in PCI-X mode, data corruption has |
| 2798 | * been observed in the first few bytes of some received packets. |
| 2799 | * Aligning the packet buffer in memory eliminates the corruption. |
| 2800 | * Unfortunately, this misaligns the packet payloads. On platforms |
| 2801 | * which do not support unaligned accesses, we will realign the |
| 2802 | * payloads by copying the received packets. |
| 2803 | */ |
| 2804 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57010x00 && |
| 2805 | sc->bge_flags & BGE_PCIX0x00000010) |
| 2806 | sc->bge_flags |= BGE_RX_ALIGNBUG0x00000008; |
| 2807 | |
| 2808 | if ((BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 || |
| 2809 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57010x00) && |
| 2810 | PCI_VENDOR(subid)(((subid) >> 0) & 0xffff) == DELL_VENDORID0x1028) |
| 2811 | sc->bge_phy_flags |= BGE_PHY_NO_3LED0x00000001; |
| 2812 | |
| 2813 | misccfg = CSR_READ_4(sc, BGE_MISC_CFG)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6804)) ); |
| 2814 | misccfg &= BGE_MISCCFG_BOARD_ID_MASK0x0001E000; |
| 2815 | |
| 2816 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57050x03 && |
| 2817 | (misccfg == BGE_MISCCFG_BOARD_ID_57880x00010000 || |
| 2818 | misccfg == BGE_MISCCFG_BOARD_ID_5788M0x00018000)) |
| 2819 | sc->bge_flags |= BGE_IS_57880x00000800; |
| 2820 | |
| 2821 | if ((BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57030x01 && |
| 2822 | (misccfg == 0x4000 || misccfg == 0x8000)) || |
| 2823 | (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57050x03 && |
| 2824 | PCI_VENDOR(pa->pa_id)(((pa->pa_id) >> 0) & 0xffff) == PCI_VENDOR_BROADCOM0x14e4 && |
| 2825 | (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM59010x170d || |
| 2826 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5901A20x170e || |
| 2827 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5705F0x166e)) || |
| 2828 | (PCI_VENDOR(pa->pa_id)(((pa->pa_id) >> 0) & 0xffff) == PCI_VENDOR_BROADCOM0x14e4 && |
| 2829 | (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5751F0x167e || |
| 2830 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5753F0x16fe || |
| 2831 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5787F0x167f)) || |
| 2832 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM577900x1694 || |
| 2833 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM577910x16b2 || |
| 2834 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM577950x16b6 || |
| 2835 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) |
| 2836 | sc->bge_phy_flags |= BGE_PHY_10_100_ONLY0x00000002; |
| 2837 | |
| 2838 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 || |
| 2839 | (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57050x03 && |
| 2840 | (sc->bge_chipid != BGE_CHIPID_BCM5705_A00x3000 && |
| 2841 | sc->bge_chipid != BGE_CHIPID_BCM5705_A10x3001)) || |
| 2842 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) |
| 2843 | sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED0x00000100; |
| 2844 | |
| 2845 | if (sc->bge_chipid == BGE_CHIPID_BCM5701_A00x0000 || |
| 2846 | sc->bge_chipid == BGE_CHIPID_BCM5701_B00x0100) |
| 2847 | sc->bge_phy_flags |= BGE_PHY_CRC_BUG0x00000004; |
| 2848 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5703_AX0x10 || |
| 2849 | BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5704_AX0x20) |
| 2850 | sc->bge_phy_flags |= BGE_PHY_ADC_BUG0x00000008; |
| 2851 | if (sc->bge_chipid == BGE_CHIPID_BCM5704_A00x2000) |
| 2852 | sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG0x00008010; |
| 2853 | |
| 2854 | if ((BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) && |
| 2855 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM59060x0c && |
| 2856 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57850x5785 && |
| 2857 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM577800x57780 && |
| 2858 | !BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 2859 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57550x0a || |
| 2860 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761 || |
| 2861 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57840x5784 || |
| 2862 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57870x0b) { |
| 2863 | if (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) != PCI_PRODUCT_BROADCOM_BCM57220x165a && |
| 2864 | PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) != PCI_PRODUCT_BROADCOM_BCM57560x1674) |
| 2865 | sc->bge_phy_flags |= BGE_PHY_JITTER_BUG0x00000020; |
| 2866 | if (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_BROADCOM_BCM5755M0x1673) |
| 2867 | sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM0x00000080; |
| 2868 | } else |
| 2869 | sc->bge_phy_flags |= BGE_PHY_BER_BUG0x00000040; |
| 2870 | } |
| 2871 | |
| 2872 | /* Identify chips with APE processor. */ |
| 2873 | switch (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12)) { |
| 2874 | case BGE_ASICREV_BCM57170x5717: |
| 2875 | case BGE_ASICREV_BCM57190x5719: |
| 2876 | case BGE_ASICREV_BCM57200x5720: |
| 2877 | case BGE_ASICREV_BCM57610x5761: |
| 2878 | case BGE_ASICREV_BCM57620x5762: |
| 2879 | sc->bge_flags |= BGE_APE0x00080000; |
| 2880 | break; |
| 2881 | } |
| 2882 | |
| 2883 | /* Chips with APE need BAR2 access for APE registers/memory. */ |
| 2884 | if ((sc->bge_flags & BGE_APE0x00080000) != 0) { |
| 2885 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR20x18); |
| 2886 | if (pci_mapreg_map(pa, BGE_PCI_BAR20x18, memtype, 0, |
| 2887 | &sc->bge_apetag, &sc->bge_apehandle, NULL((void *)0), |
| 2888 | &sc->bge_apesize, 0)) { |
| 2889 | printf(": couldn't map BAR2 memory\n"); |
| 2890 | goto fail_1; |
| 2891 | } |
| 2892 | |
| 2893 | /* Enable APE register/memory access by host driver. */ |
| 2894 | reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE0x70); |
| 2895 | reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR0x00010000 | |
| 2896 | BGE_PCISTATE_ALLOW_APE_SHMEM_WR0x00020000 | |
| 2897 | BGE_PCISTATE_ALLOW_APE_PSPACE_WR0x00040000; |
| 2898 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE0x70, reg); |
| 2899 | |
| 2900 | bge_ape_lock_init(sc); |
| 2901 | bge_ape_read_fw_ver(sc); |
| 2902 | } |
| 2903 | |
| 2904 | /* Identify the chips that use an CPMU. */ |
| 2905 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000) || |
| 2906 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57840x5784 || |
| 2907 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57610x5761 || |
| 2908 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57850x5785 || |
| 2909 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM577800x57780) |
| 2910 | sc->bge_flags |= BGE_CPMU_PRESENT0x00100000; |
| 2911 | |
| 2912 | if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI0x05, |
| 2913 | &sc->bge_msicap, NULL((void *)0))) { |
| 2914 | if (bge_can_use_msi(sc) == 0) |
| 2915 | pa->pa_flags &= ~PCI_FLAGS_MSI_ENABLED0x20; |
| 2916 | } |
| 2917 | |
| 2918 | DPRINTFN(5, ("pci_intr_map\n")); |
| 2919 | if (pci_intr_map_msi(pa, &ih) == 0) |
| 2920 | sc->bge_flags |= BGE_MSI0x00400000; |
| 2921 | else if (pci_intr_map(pa, &ih)) { |
| 2922 | printf(": couldn't map interrupt\n"); |
| 2923 | goto fail_1; |
| 2924 | } |
| 2925 | |
| 2926 | /* |
| 2927 | * All controllers except BCM5700 supports tagged status but |
| 2928 | * we use tagged status only for MSI case on BCM5717. Otherwise |
| 2929 | * MSI on BCM5717 does not work. |
| 2930 | */ |
| 2931 | if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000) && sc->bge_flags & BGE_MSI0x00400000) |
| 2932 | sc->bge_flags |= BGE_TAGGED_STATUS0x00200000; |
| 2933 | |
| 2934 | DPRINTFN(5, ("pci_intr_string\n")); |
| 2935 | intrstr = pci_intr_string(pc, ih); |
| 2936 | |
| 2937 | /* Try to reset the chip. */ |
| 2938 | DPRINTFN(5, ("bge_reset\n")); |
| 2939 | bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN0); |
| 2940 | bge_reset(sc); |
| 2941 | |
| 2942 | bge_sig_legacy(sc, BGE_RESET_SHUTDOWN0); |
| 2943 | bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN0); |
| 2944 | |
| 2945 | bge_chipinit(sc); |
| 2946 | |
| 2947 | #if defined(__sparc64__) || defined(__HAVE_FDT) |
| 2948 | if (!gotenaddr && PCITAG_NODE(pa->pa_tag)) { |
| 2949 | if (OF_getprop(PCITAG_NODE(pa->pa_tag), "local-mac-address", |
| 2950 | sc->arpcom.ac_enaddr, ETHER_ADDR_LEN6) == ETHER_ADDR_LEN6) |
| 2951 | gotenaddr = 1; |
| 2952 | } |
| 2953 | #endif |
| 2954 | |
| 2955 | /* |
| 2956 | * Get station address from the EEPROM. |
| 2957 | */ |
| 2958 | if (!gotenaddr) { |
| 2959 | mac_addr = bge_readmem_ind(sc, 0x0c14); |
| 2960 | if ((mac_addr >> 16) == 0x484b) { |
| 2961 | sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); |
| 2962 | sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; |
| 2963 | mac_addr = bge_readmem_ind(sc, 0x0c18); |
| 2964 | sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); |
| 2965 | sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); |
| 2966 | sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); |
| 2967 | sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; |
| 2968 | gotenaddr = 1; |
| 2969 | } |
| 2970 | } |
| 2971 | if (!gotenaddr) { |
| 2972 | int mac_offset = BGE_EE_MAC_OFFSET0x7C; |
| 2973 | |
| 2974 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) |
| 2975 | mac_offset = BGE_EE_MAC_OFFSET_59060x10; |
| 2976 | |
| 2977 | if (bge_read_nvram(sc, (caddr_t)&sc->arpcom.ac_enaddr, |
| 2978 | mac_offset + 2, ETHER_ADDR_LEN6) == 0) |
| 2979 | gotenaddr = 1; |
| 2980 | } |
| 2981 | if (!gotenaddr && (!(sc->bge_flags & BGE_NO_EEPROM0x00000080))) { |
| 2982 | if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, |
| 2983 | BGE_EE_MAC_OFFSET0x7C + 2, ETHER_ADDR_LEN6) == 0) |
| 2984 | gotenaddr = 1; |
| 2985 | } |
| 2986 | |
| 2987 | #ifdef __sparc64__ |
| 2988 | if (!gotenaddr) { |
| 2989 | extern void myetheraddr(u_char *); |
| 2990 | |
| 2991 | myetheraddr(sc->arpcom.ac_enaddr); |
| 2992 | gotenaddr = 1; |
| 2993 | } |
| 2994 | #endif |
| 2995 | |
| 2996 | if (!gotenaddr) { |
| 2997 | printf(": failed to read station address\n"); |
| 2998 | goto fail_2; |
| 2999 | } |
| 3000 | |
| 3001 | /* Allocate the general information block and ring buffers. */ |
| 3002 | sc->bge_dmatag = pa->pa_dmat; |
| 3003 | DPRINTFN(5, ("bus_dmamem_alloc\n")); |
| 3004 | if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),(*(sc->bge_dmatag)->_dmamem_alloc)((sc->bge_dmatag), (sizeof(struct bge_ring_data)), ((1 << 12)), (0), (& sc->bge_ring_seg), (1), (&sc->bge_ring_nseg), (0x0001 )) |
| 3005 | PAGE_SIZE, 0, &sc->bge_ring_seg, 1, &sc->bge_ring_nseg,(*(sc->bge_dmatag)->_dmamem_alloc)((sc->bge_dmatag), (sizeof(struct bge_ring_data)), ((1 << 12)), (0), (& sc->bge_ring_seg), (1), (&sc->bge_ring_nseg), (0x0001 )) |
| 3006 | BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamem_alloc)((sc->bge_dmatag), (sizeof(struct bge_ring_data)), ((1 << 12)), (0), (& sc->bge_ring_seg), (1), (&sc->bge_ring_nseg), (0x0001 ))) { |
| 3007 | printf(": can't alloc rx buffers\n"); |
| 3008 | goto fail_2; |
| 3009 | } |
| 3010 | DPRINTFN(5, ("bus_dmamem_map\n")); |
| 3011 | if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,(*(sc->bge_dmatag)->_dmamem_map)((sc->bge_dmatag), ( &sc->bge_ring_seg), (sc->bge_ring_nseg), (sizeof(struct bge_ring_data)), (&kva), (0x0001)) |
| 3012 | sc->bge_ring_nseg, sizeof(struct bge_ring_data), &kva,(*(sc->bge_dmatag)->_dmamem_map)((sc->bge_dmatag), ( &sc->bge_ring_seg), (sc->bge_ring_nseg), (sizeof(struct bge_ring_data)), (&kva), (0x0001)) |
| 3013 | BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamem_map)((sc->bge_dmatag), ( &sc->bge_ring_seg), (sc->bge_ring_nseg), (sizeof(struct bge_ring_data)), (&kva), (0x0001))) { |
| 3014 | printf(": can't map dma buffers (%lu bytes)\n", |
| 3015 | sizeof(struct bge_ring_data)); |
| 3016 | goto fail_3; |
| 3017 | } |
| 3018 | DPRINTFN(5, ("bus_dmamap_create\n")); |
| 3019 | if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sizeof(struct bge_ring_data)), (1), (sizeof(struct bge_ring_data )), (0), (0x0001), (&sc->bge_ring_map)) |
| 3020 | sizeof(struct bge_ring_data), 0,(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sizeof(struct bge_ring_data)), (1), (sizeof(struct bge_ring_data )), (0), (0x0001), (&sc->bge_ring_map)) |
| 3021 | BUS_DMA_NOWAIT, &sc->bge_ring_map)(*(sc->bge_dmatag)->_dmamap_create)((sc->bge_dmatag) , (sizeof(struct bge_ring_data)), (1), (sizeof(struct bge_ring_data )), (0), (0x0001), (&sc->bge_ring_map))) { |
| 3022 | printf(": can't create dma map\n"); |
| 3023 | goto fail_4; |
| 3024 | } |
| 3025 | DPRINTFN(5, ("bus_dmamap_load\n")); |
| 3026 | if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,(*(sc->bge_dmatag)->_dmamap_load)((sc->bge_dmatag), ( sc->bge_ring_map), (kva), (sizeof(struct bge_ring_data)), ( ((void *)0)), (0x0001)) |
| 3027 | sizeof(struct bge_ring_data), NULL,(*(sc->bge_dmatag)->_dmamap_load)((sc->bge_dmatag), ( sc->bge_ring_map), (kva), (sizeof(struct bge_ring_data)), ( ((void *)0)), (0x0001)) |
| 3028 | BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamap_load)((sc->bge_dmatag), ( sc->bge_ring_map), (kva), (sizeof(struct bge_ring_data)), ( ((void *)0)), (0x0001))) { |
| 3029 | goto fail_5; |
| 3030 | } |
| 3031 | |
| 3032 | DPRINTFN(5, ("bzero\n")); |
| 3033 | sc->bge_rdata = (struct bge_ring_data *)kva; |
| 3034 | |
| 3035 | bzero(sc->bge_rdata, sizeof(struct bge_ring_data))__builtin_bzero((sc->bge_rdata), (sizeof(struct bge_ring_data ))); |
| 3036 | |
| 3037 | /* Set default tuneable values. */ |
| 3038 | sc->bge_stat_ticks = BGE_TICKS_PER_SEC1000000; |
| 3039 | sc->bge_rx_coal_ticks = 150; |
| 3040 | sc->bge_rx_max_coal_bds = 64; |
| 3041 | sc->bge_tx_coal_ticks = 300; |
| 3042 | sc->bge_tx_max_coal_bds = 400; |
| 3043 | |
| 3044 | /* 5705 limits RX return ring to 512 entries. */ |
| 3045 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000) || BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) |
| 3046 | sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT1024; |
| 3047 | else |
| 3048 | sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705512; |
| 3049 | |
| 3050 | mtx_init(&sc->bge_kstat_mtx, IPL_SOFTCLOCK)do { (void)(((void *)0)); (void)(0); __mtx_init((&sc-> bge_kstat_mtx), ((((0x1)) > 0x0 && ((0x1)) < 0x9 ) ? 0x9 : ((0x1)))); } while (0); |
| 3051 | #if NKSTAT1 > 0 |
| 3052 | if (BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) |
| 3053 | bge_kstat_attach(sc); |
| 3054 | #endif |
| 3055 | |
| 3056 | /* Set up ifnet structure */ |
| 3057 | ifp = &sc->arpcom.ac_if; |
| 3058 | ifp->if_softc = sc; |
| 3059 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 3060 | ifp->if_xflags = IFXF_MPSAFE0x1; |
| 3061 | ifp->if_ioctl = bge_ioctl; |
| 3062 | ifp->if_qstart = bge_start; |
| 3063 | ifp->if_watchdog = bge_watchdog; |
| 3064 | ifq_init_maxlen(&ifp->if_snd, BGE_TX_RING_CNT512 - 1); |
| 3065 | |
| 3066 | DPRINTFN(5, ("bcopy\n")); |
| 3067 | bcopy(sc->bge_dev.dv_xname, ifp->if_xname, IFNAMSIZ16); |
| 3068 | |
| 3069 | ifp->if_capabilitiesif_data.ifi_capabilities = IFCAP_VLAN_MTU0x00000010; |
| 3070 | |
| 3071 | #if NVLAN1 > 0 |
| 3072 | ifp->if_capabilitiesif_data.ifi_capabilities |= IFCAP_VLAN_HWTAGGING0x00000020; |
| 3073 | #endif |
| 3074 | |
| 3075 | /* |
| 3076 | * 5700 B0 chips do not support checksumming correctly due |
| 3077 | * to hardware bugs. |
| 3078 | * |
| 3079 | * It seems all controllers have a bug that can generate UDP |
| 3080 | * datagrams with a checksum value 0 when TX UDP checksum |
| 3081 | * offloading is enabled. Generating UDP checksum value 0 is |
| 3082 | * a violation of RFC 768. |
| 3083 | */ |
| 3084 | if (sc->bge_chipid != BGE_CHIPID_BCM5700_B00x7100) |
| 3085 | ifp->if_capabilitiesif_data.ifi_capabilities |= IFCAP_CSUM_IPv40x00000001 | IFCAP_CSUM_TCPv40x00000002; |
| 3086 | |
| 3087 | if (BGE_IS_JUMBO_CAPABLE(sc)((sc)->bge_flags & 0x00000100)) |
| 3088 | ifp->if_hardmtu = BGE_JUMBO_MTU(9022 - ((6 * 2) + 2) - 4 - 4); |
| 3089 | |
| 3090 | /* |
| 3091 | * Do MII setup. |
| 3092 | */ |
| 3093 | DPRINTFN(5, ("mii setup\n")); |
| 3094 | sc->bge_mii.mii_ifp = ifp; |
| 3095 | sc->bge_mii.mii_readreg = bge_miibus_readreg; |
| 3096 | sc->bge_mii.mii_writereg = bge_miibus_writereg; |
| 3097 | sc->bge_mii.mii_statchg = bge_miibus_statchg; |
| 3098 | |
| 3099 | /* |
| 3100 | * Figure out what sort of media we have by checking the hardware |
| 3101 | * config word in the first 32K of internal NIC memory, or fall back to |
| 3102 | * examining the EEPROM if necessary. Note: on some BCM5700 cards, |
| 3103 | * this value seems to be unset. If that's the case, we have to rely on |
| 3104 | * identifying the NIC by its PCI subsystem ID, as we do below for the |
| 3105 | * SysKonnect SK-9D41. |
| 3106 | */ |
| 3107 | if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG0x00000B54) == BGE_MAGIC_NUMBER0x4B657654) |
| 3108 | hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG0x00000B58); |
| 3109 | else if (!(sc->bge_flags & BGE_NO_EEPROM0x00000080)) { |
| 3110 | if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET0xC8, |
| 3111 | sizeof(hwcfg))) { |
| 3112 | printf(": failed to read media type\n"); |
| 3113 | goto fail_6; |
| 3114 | } |
| 3115 | hwcfg = ntohl(hwcfg)(__uint32_t)(__builtin_constant_p(hwcfg) ? (__uint32_t)(((__uint32_t )(hwcfg) & 0xff) << 24 | ((__uint32_t)(hwcfg) & 0xff00) << 8 | ((__uint32_t)(hwcfg) & 0xff0000) >> 8 | ((__uint32_t)(hwcfg) & 0xff000000) >> 24) : __swap32md (hwcfg)); |
| 3116 | } |
| 3117 | |
| 3118 | /* The SysKonnect SK-9D41 is a 1000baseSX card. */ |
| 3119 | if (PCI_PRODUCT(subid)(((subid) >> 16) & 0xffff) == SK_SUBSYSID_9D410x4441 || |
| 3120 | (hwcfg & BGE_HWCFG_MEDIA0x00000030) == BGE_MEDIA_FIBER0x00000020) { |
| 3121 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) |
| 3122 | sc->bge_flags |= BGE_FIBER_TBI0x00000200; |
| 3123 | else |
| 3124 | sc->bge_flags |= BGE_FIBER_MII0x00000400; |
| 3125 | } |
| 3126 | |
| 3127 | /* Take advantage of single-shot MSI. */ |
| 3128 | if (BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000) && sc->bge_flags & BGE_MSI0x00400000) |
| 3129 | CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6000) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6000 ))) & ~0x00000020))) |
| 3130 | ~BGE_MSIMODE_ONE_SHOT_DISABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6000) , (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6000 ))) & ~0x00000020))); |
| 3131 | |
| 3132 | /* Hookup IRQ last. */ |
| 3133 | DPRINTFN(5, ("pci_intr_establish\n")); |
| 3134 | sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET0x4 | IPL_MPSAFE0x100, |
| 3135 | bge_intr, sc, sc->bge_dev.dv_xname); |
| 3136 | if (sc->bge_intrhand == NULL((void *)0)) { |
| 3137 | printf(": couldn't establish interrupt"); |
| 3138 | if (intrstr != NULL((void *)0)) |
| 3139 | printf(" at %s", intrstr); |
| 3140 | printf("\n"); |
| 3141 | goto fail_6; |
| 3142 | } |
| 3143 | |
| 3144 | /* |
| 3145 | * A Broadcom chip was detected. Inform the world. |
| 3146 | */ |
| 3147 | printf(": %s, address %s\n", intrstr, |
| 3148 | ether_sprintf(sc->arpcom.ac_enaddr)); |
| 3149 | |
| 3150 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 3151 | ifmedia_init(&sc->bge_ifmedia, IFM_IMASK0xff00000000000000ULL, bge_ifmedia_upd, |
| 3152 | bge_ifmedia_sts); |
| 3153 | ifmedia_add(&sc->bge_ifmedia, IFM_ETHER0x0000000000000100ULL|IFM_1000_SX11, 0, NULL((void *)0)); |
| 3154 | ifmedia_add(&sc->bge_ifmedia, IFM_ETHER0x0000000000000100ULL|IFM_1000_SX11|IFM_FDX0x0000010000000000ULL, |
| 3155 | 0, NULL((void *)0)); |
| 3156 | ifmedia_add(&sc->bge_ifmedia, IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL, 0, NULL((void *)0)); |
| 3157 | ifmedia_set(&sc->bge_ifmedia, IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL); |
| 3158 | sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; |
| 3159 | } else { |
| 3160 | int mii_flags; |
| 3161 | |
| 3162 | /* |
| 3163 | * Do transceiver setup. |
| 3164 | */ |
| 3165 | ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd, |
| 3166 | bge_ifmedia_sts); |
| 3167 | mii_flags = MIIF_DOPAUSE0x0100; |
| 3168 | if (sc->bge_flags & BGE_FIBER_MII0x00000400) |
| 3169 | mii_flags |= MIIF_HAVEFIBER0x0020; |
| 3170 | mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff, |
| 3171 | sc->bge_phy_addr, MII_OFFSET_ANY-1, mii_flags); |
| 3172 | |
| 3173 | if (LIST_FIRST(&sc->bge_mii.mii_phys)((&sc->bge_mii.mii_phys)->lh_first) == NULL((void *)0)) { |
| 3174 | printf("%s: no PHY found!\n", sc->bge_dev.dv_xname); |
| 3175 | ifmedia_add(&sc->bge_mii.mii_media, |
| 3176 | IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL, 0, NULL((void *)0)); |
| 3177 | ifmedia_set(&sc->bge_mii.mii_media, |
| 3178 | IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL); |
| 3179 | } else |
| 3180 | ifmedia_set(&sc->bge_mii.mii_media, |
| 3181 | IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL); |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * Call MI attach routine. |
| 3186 | */ |
| 3187 | if_attach(ifp); |
| 3188 | ether_ifattach(ifp); |
| 3189 | |
| 3190 | timeout_set(&sc->bge_timeout, bge_tick, sc); |
| 3191 | timeout_set(&sc->bge_rxtimeout, bge_rxtick, sc); |
| 3192 | timeout_set(&sc->bge_rxtimeout_jumbo, bge_rxtick_jumbo, sc); |
| 3193 | return; |
| 3194 | |
| 3195 | fail_6: |
| 3196 | bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (sc->bge_ring_map)); |
| 3197 | |
| 3198 | fail_5: |
| 3199 | bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map)(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_ring_map)); |
| 3200 | |
| 3201 | fail_4: |
| 3202 | bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata,(*(sc->bge_dmatag)->_dmamem_unmap)((sc->bge_dmatag), ((caddr_t)sc->bge_rdata), (sizeof(struct bge_ring_data))) |
| 3203 | sizeof(struct bge_ring_data))(*(sc->bge_dmatag)->_dmamem_unmap)((sc->bge_dmatag), ((caddr_t)sc->bge_rdata), (sizeof(struct bge_ring_data))); |
| 3204 | |
| 3205 | fail_3: |
| 3206 | bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg)(*(sc->bge_dmatag)->_dmamem_free)((sc->bge_dmatag), ( &sc->bge_ring_seg), (sc->bge_ring_nseg)); |
| 3207 | |
| 3208 | fail_2: |
| 3209 | if ((sc->bge_flags & BGE_APE0x00080000) != 0) |
| 3210 | bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, |
| 3211 | sc->bge_apesize); |
| 3212 | |
| 3213 | fail_1: |
| 3214 | bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); |
| 3215 | } |
| 3216 | |
| 3217 | int |
| 3218 | bge_detach(struct device *self, int flags) |
| 3219 | { |
| 3220 | struct bge_softc *sc = (struct bge_softc *)self; |
| 3221 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 3222 | |
| 3223 | bge_stop(sc, 1); |
| 3224 | |
| 3225 | if (sc->bge_intrhand) |
| 3226 | pci_intr_disestablish(sc->bge_pa.pa_pc, sc->bge_intrhand); |
| 3227 | |
| 3228 | /* Detach any PHYs we might have. */ |
| 3229 | if (LIST_FIRST(&sc->bge_mii.mii_phys)((&sc->bge_mii.mii_phys)->lh_first) != NULL((void *)0)) |
| 3230 | mii_detach(&sc->bge_mii, MII_PHY_ANY-1, MII_OFFSET_ANY-1); |
| 3231 | |
| 3232 | /* Delete any remaining media. */ |
| 3233 | ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY((uint64_t) -1)); |
| 3234 | |
| 3235 | ether_ifdetach(ifp); |
| 3236 | if_detach(ifp); |
| 3237 | |
| 3238 | bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (sc->bge_ring_map)); |
| 3239 | bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map)(*(sc->bge_dmatag)->_dmamap_destroy)((sc->bge_dmatag ), (sc->bge_ring_map)); |
| 3240 | bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata,(*(sc->bge_dmatag)->_dmamem_unmap)((sc->bge_dmatag), ((caddr_t)sc->bge_rdata), (sizeof(struct bge_ring_data))) |
| 3241 | sizeof(struct bge_ring_data))(*(sc->bge_dmatag)->_dmamem_unmap)((sc->bge_dmatag), ((caddr_t)sc->bge_rdata), (sizeof(struct bge_ring_data))); |
| 3242 | bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg)(*(sc->bge_dmatag)->_dmamem_free)((sc->bge_dmatag), ( &sc->bge_ring_seg), (sc->bge_ring_nseg)); |
| 3243 | |
| 3244 | if ((sc->bge_flags & BGE_APE0x00080000) != 0) |
| 3245 | bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, |
| 3246 | sc->bge_apesize); |
| 3247 | |
| 3248 | bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); |
| 3249 | return (0); |
| 3250 | } |
| 3251 | |
| 3252 | int |
| 3253 | bge_activate(struct device *self, int act) |
| 3254 | { |
| 3255 | struct bge_softc *sc = (struct bge_softc *)self; |
| 3256 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 3257 | int rv = 0; |
| 3258 | |
| 3259 | switch (act) { |
| 3260 | case DVACT_SUSPEND3: |
| 3261 | rv = config_activate_children(self, act); |
| 3262 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 3263 | bge_stop(sc, 0); |
| 3264 | break; |
| 3265 | case DVACT_RESUME4: |
| 3266 | if (ifp->if_flags & IFF_UP0x1) |
| 3267 | bge_init(sc); |
| 3268 | break; |
| 3269 | default: |
| 3270 | rv = config_activate_children(self, act); |
| 3271 | break; |
| 3272 | } |
| 3273 | return (rv); |
| 3274 | } |
| 3275 | |
| 3276 | void |
| 3277 | bge_reset(struct bge_softc *sc) |
| 3278 | { |
| 3279 | struct pci_attach_args *pa = &sc->bge_pa; |
| 3280 | pcireg_t cachesize, command, devctl; |
| 3281 | u_int32_t reset, mac_mode, mac_mode_mask, val; |
| 3282 | void (*write_op)(struct bge_softc *, int, int); |
| 3283 | int i; |
| 3284 | |
| 3285 | mac_mode_mask = BGE_MACMODE_HALF_DUPLEX0x00000002 | BGE_MACMODE_PORTMODE0x0000000C; |
| 3286 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) != 0) |
| 3287 | mac_mode_mask |= BGE_MACMODE_APE_RX_EN0x08000000 | BGE_MACMODE_APE_TX_EN0x10000000; |
| 3288 | mac_mode = CSR_READ_4(sc, BGE_MAC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400)) ) & mac_mode_mask; |
| 3289 | |
| 3290 | if (BGE_IS_575X_PLUS(sc)((sc)->bge_flags & 0x00002000) && !BGE_IS_5714_FAMILY(sc)((sc)->bge_flags & 0x00008000) && |
| 3291 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM59060x0c) { |
| 3292 | if (sc->bge_flags & BGE_PCIE0x00000020) |
| 3293 | write_op = bge_writembx; |
| 3294 | else |
| 3295 | write_op = bge_writemem_ind; |
| 3296 | } else |
| 3297 | write_op = bge_writereg_ind; |
| 3298 | |
| 3299 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57000x07 && |
| 3300 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57010x00 && |
| 3301 | !(sc->bge_flags & BGE_NO_EEPROM0x00000080)) { |
| 3302 | CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7020) , (0x00000002))); |
| 3303 | for (i = 0; i < 8000; i++) { |
| 3304 | if (CSR_READ_4(sc, BGE_NVRAM_SWARB)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7020)) ) & |
| 3305 | BGE_NVRAMSWARB_GNT10x00000200) |
| 3306 | break; |
| 3307 | DELAY(20)(*delay_func)(20); |
| 3308 | } |
| 3309 | if (i == 8000) |
| 3310 | printf("%s: nvram lock timed out\n", |
| 3311 | sc->bge_dev.dv_xname); |
| 3312 | } |
| 3313 | /* Take APE lock when performing reset. */ |
| 3314 | bge_ape_lock(sc, BGE_APE_LOCK_GRC1); |
| 3315 | |
| 3316 | /* Save some important PCI state. */ |
| 3317 | cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ0x0C); |
| 3318 | command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD0x04); |
| 3319 | |
| 3320 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL0x68, |
| 3321 | BGE_PCIMISCCTL_INDIRECT_ACCESS0x00000080 | BGE_PCIMISCCTL_MASK_PCI_INTR0x00000002 | |
| 3322 | BGE_PCIMISCCTL_ENDIAN_WORDSWAP0x00000008 | BGE_PCIMISCCTL_PCISTATE_RW0x00000010); |
| 3323 | |
| 3324 | /* Disable fastboot on controllers that support it. */ |
| 3325 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57520x06 || |
| 3326 | BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000)) |
| 3327 | CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6894) , (0))); |
| 3328 | |
| 3329 | /* |
| 3330 | * Write the magic number to SRAM at offset 0xB50. |
| 3331 | * When firmware finishes its initialization it will |
| 3332 | * write ~BGE_SRAM_FW_MB_MAGIC to the same location. |
| 3333 | */ |
| 3334 | bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM0x00000B50, BGE_MAGIC_NUMBER0x4B657654); |
| 3335 | |
| 3336 | reset = BGE_MISCCFG_RESET_CORE_CLOCKS0x00000001 | BGE_32BITTIME_66MHZ(0x41 << 1); |
| 3337 | |
| 3338 | if (sc->bge_flags & BGE_PCIE0x00000020) { |
| 3339 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57850x5785 && |
| 3340 | !BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 3341 | if (CSR_READ_4(sc, 0x7e2c)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7e2c)) ) == 0x60) { |
| 3342 | /* PCI Express 1.0 system */ |
| 3343 | CSR_WRITE_4(sc, 0x7e2c, 0x20)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7e2c) , (0x20))); |
| 3344 | } |
| 3345 | } |
| 3346 | if (sc->bge_chipid != BGE_CHIPID_BCM5750_A00x4000) { |
| 3347 | /* |
| 3348 | * Prevent PCI Express link training |
| 3349 | * during global reset. |
| 3350 | */ |
| 3351 | CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6804) , ((1<<29)))); |
| 3352 | reset |= (1<<29); |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) { |
| 3357 | val = CSR_READ_4(sc, BGE_VCPU_STATUS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x5100)) ); |
| 3358 | CSR_WRITE_4(sc, BGE_VCPU_STATUS,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5100) , (val | 0x08000000))) |
| 3359 | val | BGE_VCPU_STATUS_DRV_RESET)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5100) , (val | 0x08000000))); |
| 3360 | val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6890)) ); |
| 3361 | CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6890) , (val & ~0x00400000))) |
| 3362 | val & ~BGE_VCPU_EXT_CTRL_HALT_CPU)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6890) , (val & ~0x00400000))); |
| 3363 | |
| 3364 | sc->bge_flags |= BGE_NO_EEPROM0x00000080; |
| 3365 | } |
| 3366 | |
| 3367 | /* |
| 3368 | * Set GPHY Power Down Override to leave GPHY |
| 3369 | * powered up in D0 uninitialized. |
| 3370 | */ |
| 3371 | if (BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000) && |
| 3372 | (sc->bge_flags & BGE_CPMU_PRESENT0x00100000) == 0) |
| 3373 | reset |= BGE_MISCCFG_KEEP_GPHY_POWER0x04000000; |
| 3374 | |
| 3375 | /* Issue global reset */ |
| 3376 | write_op(sc, BGE_MISC_CFG0x6804, reset); |
| 3377 | |
| 3378 | if (sc->bge_flags & BGE_PCIE0x00000020) |
| 3379 | DELAY(100 * 1000)(*delay_func)(100 * 1000); |
| 3380 | else |
| 3381 | DELAY(1000)(*delay_func)(1000); |
| 3382 | |
| 3383 | if (sc->bge_flags & BGE_PCIE0x00000020) { |
| 3384 | if (sc->bge_chipid == BGE_CHIPID_BCM5750_A00x4000) { |
| 3385 | pcireg_t v; |
| 3386 | |
| 3387 | DELAY(500000)(*delay_func)(500000); /* wait for link training to complete */ |
| 3388 | v = pci_conf_read(pa->pa_pc, pa->pa_tag, 0xc4); |
| 3389 | pci_conf_write(pa->pa_pc, pa->pa_tag, 0xc4, v | (1<<15)); |
| 3390 | } |
| 3391 | |
| 3392 | devctl = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap + |
| 3393 | PCI_PCIE_DCSR0x08); |
| 3394 | /* Clear enable no snoop and disable relaxed ordering. */ |
| 3395 | devctl &= ~(PCI_PCIE_DCSR_ERO0x00000010 | PCI_PCIE_DCSR_ENS0x00000800); |
| 3396 | /* Set PCI Express max payload size. */ |
| 3397 | devctl = (devctl & ~PCI_PCIE_DCSR_MPS0x00007000) | sc->bge_expmrq; |
| 3398 | /* Clear error status. */ |
| 3399 | devctl |= PCI_PCIE_DCSR_CEE0x00010000 | PCI_PCIE_DCSR_NFE0x00020000 | |
| 3400 | PCI_PCIE_DCSR_FEE0x00040000 | PCI_PCIE_DCSR_URE0x00080000; |
| 3401 | pci_conf_write(pa->pa_pc, pa->pa_tag, sc->bge_expcap + |
| 3402 | PCI_PCIE_DCSR0x08, devctl); |
| 3403 | } |
| 3404 | |
| 3405 | /* Reset some of the PCI state that got zapped by reset */ |
| 3406 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL0x68, |
| 3407 | BGE_PCIMISCCTL_INDIRECT_ACCESS0x00000080 | BGE_PCIMISCCTL_MASK_PCI_INTR0x00000002 | |
| 3408 | BGE_PCIMISCCTL_ENDIAN_WORDSWAP0x00000008 | BGE_PCIMISCCTL_PCISTATE_RW0x00000010); |
| 3409 | val = BGE_PCISTATE_ROM_ENABLE0x00000020 | BGE_PCISTATE_ROM_RETRY_ENABLE0x00000040; |
| 3410 | if (sc->bge_chipid == BGE_CHIPID_BCM5704_A00x2000 && |
| 3411 | (sc->bge_flags & BGE_PCIX0x00000010) != 0) |
| 3412 | val |= BGE_PCISTATE_RETRY_SAME_DMA0x00002000; |
| 3413 | if ((sc->bge_mfw_flags & BGE_MFW_ON_APE0x00000002) != 0) |
| 3414 | val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR0x00010000 | |
| 3415 | BGE_PCISTATE_ALLOW_APE_SHMEM_WR0x00020000 | |
| 3416 | BGE_PCISTATE_ALLOW_APE_PSPACE_WR0x00040000; |
| 3417 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE0x70, val); |
| 3418 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ0x0C, cachesize); |
| 3419 | pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD0x04, command); |
| 3420 | |
| 3421 | /* Re-enable MSI, if necessary, and enable memory arbiter. */ |
| 3422 | if (BGE_IS_5714_FAMILY(sc)((sc)->bge_flags & 0x00008000)) { |
| 3423 | /* This chip disables MSI on reset. */ |
| 3424 | if (sc->bge_flags & BGE_MSI0x00400000) { |
| 3425 | val = pci_conf_read(pa->pa_pc, pa->pa_tag, |
| 3426 | sc->bge_msicap + PCI_MSI_MC0x00); |
| 3427 | pci_conf_write(pa->pa_pc, pa->pa_tag, |
| 3428 | sc->bge_msicap + PCI_MSI_MC0x00, |
| 3429 | val | PCI_MSI_MC_MSIE0x00010000); |
| 3430 | val = CSR_READ_4(sc, BGE_MSI_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6000)) ); |
| 3431 | CSR_WRITE_4(sc, BGE_MSI_MODE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6000) , (val | 0x00000002))) |
| 3432 | val | BGE_MSIMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6000) , (val | 0x00000002))); |
| 3433 | } |
| 3434 | val = CSR_READ_4(sc, BGE_MARB_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4000)) ); |
| 3435 | CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4000) , (0x00000002 | val))); |
| 3436 | } else |
| 3437 | CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4000) , (0x00000002))); |
| 3438 | |
| 3439 | /* Fix up byte swapping */ |
| 3440 | CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6800) , (bge_dma_swap_options(sc)))); |
| 3441 | |
| 3442 | val = CSR_READ_4(sc, BGE_MAC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400)) ); |
| 3443 | val = (val & ~mac_mode_mask) | mac_mode; |
| 3444 | CSR_WRITE_4(sc, BGE_MAC_MODE, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , (val))); |
| 3445 | DELAY(40)(*delay_func)(40); |
| 3446 | |
| 3447 | bge_ape_unlock(sc, BGE_APE_LOCK_GRC1); |
| 3448 | |
| 3449 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) { |
| 3450 | for (i = 0; i < BGE_TIMEOUT100000; i++) { |
| 3451 | val = CSR_READ_4(sc, BGE_VCPU_STATUS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x5100)) ); |
| 3452 | if (val & BGE_VCPU_STATUS_INIT_DONE0x04000000) |
| 3453 | break; |
| 3454 | DELAY(100)(*delay_func)(100); |
| 3455 | } |
| 3456 | |
| 3457 | if (i >= BGE_TIMEOUT100000) |
| 3458 | printf("%s: reset timed out\n", sc->bge_dev.dv_xname); |
| 3459 | } else { |
| 3460 | /* |
| 3461 | * Poll until we see 1's complement of the magic number. |
| 3462 | * This indicates that the firmware initialization |
| 3463 | * is complete. We expect this to fail if no SEEPROM |
| 3464 | * is fitted. |
| 3465 | */ |
| 3466 | for (i = 0; i < BGE_TIMEOUT100000 * 10; i++) { |
| 3467 | val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM0x00000B50); |
| 3468 | if (val == ~BGE_MAGIC_NUMBER0x4B657654) |
| 3469 | break; |
| 3470 | DELAY(10)(*delay_func)(10); |
| 3471 | } |
| 3472 | |
| 3473 | if ((i >= BGE_TIMEOUT100000 * 10) && |
| 3474 | (!(sc->bge_flags & BGE_NO_EEPROM0x00000080))) |
| 3475 | printf("%s: firmware handshake timed out\n", |
| 3476 | sc->bge_dev.dv_xname); |
| 3477 | /* BCM57765 A0 needs additional time before accessing. */ |
| 3478 | if (sc->bge_chipid == BGE_CHIPID_BCM57765_A00x57785000) |
| 3479 | DELAY(10 * 1000)(*delay_func)(10 * 1000); /* XXX */ |
| 3480 | } |
| 3481 | |
| 3482 | /* |
| 3483 | * The 5704 in TBI mode apparently needs some special |
| 3484 | * adjustment to ensure the SERDES drive level is set |
| 3485 | * to 1.2V. |
| 3486 | */ |
| 3487 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200 && |
| 3488 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) { |
| 3489 | val = CSR_READ_4(sc, BGE_SERDES_CFG)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0590)) ); |
| 3490 | val = (val & ~0xFFF) | 0x880; |
| 3491 | CSR_WRITE_4(sc, BGE_SERDES_CFG, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0590) , (val))); |
| 3492 | } |
| 3493 | |
| 3494 | if (sc->bge_flags & BGE_PCIE0x00000020 && |
| 3495 | !BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000) && |
| 3496 | sc->bge_chipid != BGE_CHIPID_BCM5750_A00x4000 && |
| 3497 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57850x5785) { |
| 3498 | /* Enable Data FIFO protection. */ |
| 3499 | val = CSR_READ_4(sc, 0x7c00)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x7c00)) ); |
| 3500 | CSR_WRITE_4(sc, 0x7c00, val | (1<<25))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x7c00) , (val | (1<<25)))); |
| 3501 | } |
| 3502 | |
| 3503 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720) |
| 3504 | BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3624) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3624 ))) & ~(0x80000000))))) |
| 3505 | CPMU_CLCK_ORIDE_MAC_ORIDE_EN)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3624) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3624 ))) & ~(0x80000000))))); |
| 3506 | } |
| 3507 | |
| 3508 | /* |
| 3509 | * Frame reception handling. This is called if there's a frame |
| 3510 | * on the receive return list. |
| 3511 | * |
| 3512 | * Note: we have to be able to handle two possibilities here: |
| 3513 | * 1) the frame is from the jumbo receive ring |
| 3514 | * 2) the frame is from the standard receive ring |
| 3515 | */ |
| 3516 | |
| 3517 | void |
| 3518 | bge_rxeof(struct bge_softc *sc) |
| 3519 | { |
| 3520 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 3521 | struct ifnet *ifp; |
| 3522 | uint16_t rx_prod, rx_cons; |
| 3523 | int stdcnt = 0, jumbocnt = 0; |
| 3524 | bus_dmamap_t dmamap; |
| 3525 | bus_addr_t offset, toff; |
| 3526 | bus_size_t tlen; |
| 3527 | int tosync; |
| 3528 | int livelocked; |
| 3529 | |
| 3530 | rx_cons = sc->bge_rx_saved_considx; |
| 3531 | rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; |
| 3532 | |
| 3533 | /* Nothing to do */ |
| 3534 | if (rx_cons == rx_prod) |
| 3535 | return; |
| 3536 | |
| 3537 | ifp = &sc->arpcom.ac_if; |
| 3538 | |
| 3539 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3540 | offsetof(struct bge_ring_data, bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3541 | sizeof (struct bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3542 | BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )); |
| 3543 | |
| 3544 | offset = offsetof(struct bge_ring_data, bge_rx_return_ring)__builtin_offsetof(struct bge_ring_data, bge_rx_return_ring); |
| 3545 | tosync = rx_prod - rx_cons; |
| 3546 | |
| 3547 | toff = offset + (rx_cons * sizeof (struct bge_rx_bd)); |
| 3548 | |
| 3549 | if (tosync < 0) { |
| 3550 | tlen = (sc->bge_return_ring_cnt - rx_cons) * |
| 3551 | sizeof (struct bge_rx_bd); |
| 3552 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (toff), (tlen), (0x02)) |
| 3553 | toff, tlen, BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (toff), (tlen), (0x02)); |
| 3554 | tosync = -tosync; |
| 3555 | } |
| 3556 | |
| 3557 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_rx_bd )), (0x02)) |
| 3558 | offset, tosync * sizeof (struct bge_rx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_rx_bd )), (0x02)) |
| 3559 | BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_rx_bd )), (0x02)); |
| 3560 | |
| 3561 | while (rx_cons != rx_prod) { |
| 3562 | struct bge_rx_bd *cur_rx; |
| 3563 | u_int32_t rxidx; |
| 3564 | struct mbuf *m = NULL((void *)0); |
| 3565 | |
| 3566 | cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; |
| 3567 | |
| 3568 | rxidx = cur_rx->bge_idx; |
| 3569 | BGE_INC(rx_cons, sc->bge_return_ring_cnt)(rx_cons) = (rx_cons + 1) % sc->bge_return_ring_cnt; |
| 3570 | |
| 3571 | if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING0x0020) { |
| 3572 | m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; |
| 3573 | sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL((void *)0); |
| 3574 | |
| 3575 | jumbocnt++; |
| 3576 | |
| 3577 | dmamap = sc->bge_cdata.bge_rx_jumbo_map[rxidx]; |
| 3578 | bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x02)) |
| 3579 | dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x02)); |
| 3580 | bus_dmamap_unload(sc->bge_dmatag, dmamap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmamap)); |
| 3581 | |
| 3582 | if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR0x0400) { |
| 3583 | m_freem(m); |
| 3584 | continue; |
| 3585 | } |
| 3586 | } else { |
| 3587 | m = sc->bge_cdata.bge_rx_std_chain[rxidx]; |
| 3588 | sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL((void *)0); |
| 3589 | |
| 3590 | stdcnt++; |
| 3591 | |
| 3592 | dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; |
| 3593 | bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x02)) |
| 3594 | dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x02)); |
| 3595 | bus_dmamap_unload(sc->bge_dmatag, dmamap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmamap)); |
| 3596 | |
| 3597 | if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR0x0400) { |
| 3598 | m_freem(m); |
| 3599 | continue; |
| 3600 | } |
| 3601 | } |
| 3602 | |
| 3603 | #ifdef __STRICT_ALIGNMENT |
| 3604 | /* |
| 3605 | * The i386 allows unaligned accesses, but for other |
| 3606 | * platforms we must make sure the payload is aligned. |
| 3607 | */ |
| 3608 | if (sc->bge_flags & BGE_RX_ALIGNBUG0x00000008) { |
| 3609 | bcopy(m->m_datam_hdr.mh_data, m->m_datam_hdr.mh_data + ETHER_ALIGN2, |
| 3610 | cur_rx->bge_len); |
| 3611 | m->m_datam_hdr.mh_data += ETHER_ALIGN2; |
| 3612 | } |
| 3613 | #endif |
| 3614 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = cur_rx->bge_len - ETHER_CRC_LEN4; |
| 3615 | |
| 3616 | bge_rxcsum(sc, cur_rx, m); |
| 3617 | |
| 3618 | #if NVLAN1 > 0 |
| 3619 | if (ifp->if_capabilitiesif_data.ifi_capabilities & IFCAP_VLAN_HWTAGGING0x00000020 && |
| 3620 | cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG0x0040) { |
| 3621 | m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag = cur_rx->bge_vlan_tag; |
| 3622 | m->m_flagsm_hdr.mh_flags |= M_VLANTAG0x0020; |
| 3623 | } |
| 3624 | #endif |
| 3625 | |
| 3626 | ml_enqueue(&ml, m); |
| 3627 | } |
| 3628 | |
| 3629 | sc->bge_rx_saved_considx = rx_cons; |
| 3630 | bge_writembx(sc, BGE_MBX_RX_CONS0_LO0x0284, sc->bge_rx_saved_considx); |
| 3631 | |
| 3632 | livelocked = ifiq_input(&ifp->if_rcv, &ml); |
| 3633 | if (stdcnt) { |
| 3634 | if_rxr_put(&sc->bge_std_ring, stdcnt)do { (&sc->bge_std_ring)->rxr_alive -= (stdcnt); } while (0); |
| 3635 | if (livelocked) |
| 3636 | if_rxr_livelocked(&sc->bge_std_ring); |
| 3637 | bge_fill_rx_ring_std(sc); |
| 3638 | } |
| 3639 | if (jumbocnt) { |
| 3640 | if_rxr_put(&sc->bge_jumbo_ring, jumbocnt)do { (&sc->bge_jumbo_ring)->rxr_alive -= (jumbocnt) ; } while (0); |
| 3641 | if (livelocked) |
| 3642 | if_rxr_livelocked(&sc->bge_jumbo_ring); |
| 3643 | bge_fill_rx_ring_jumbo(sc); |
| 3644 | } |
| 3645 | } |
| 3646 | |
| 3647 | void |
| 3648 | bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) |
| 3649 | { |
| 3650 | if (sc->bge_chipid == BGE_CHIPID_BCM5700_B00x7100) { |
| 3651 | /* |
| 3652 | * 5700 B0 chips do not support checksumming correctly due |
| 3653 | * to hardware bugs. |
| 3654 | */ |
| 3655 | return; |
| 3656 | } else if (BGE_IS_5717_PLUS(sc)((sc)->bge_flags & 0x00020000)) { |
| 3657 | if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV60x8000) == 0) { |
| 3658 | if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM0x1000 && |
| 3659 | (cur_rx->bge_error_flag & |
| 3660 | BGE_RXERRFLAG_IP_CSUM_NOK0x1000) == 0) |
| 3661 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK0x0008; |
| 3662 | |
| 3663 | if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM0x2000) { |
| 3664 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 3665 | M_TCP_CSUM_IN_OK0x0020|M_UDP_CSUM_IN_OK0x0080; |
| 3666 | } |
| 3667 | } |
| 3668 | } else { |
| 3669 | if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM0x1000 && |
| 3670 | cur_rx->bge_ip_csum == 0xFFFF) |
| 3671 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK0x0008; |
| 3672 | |
| 3673 | if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM0x2000 && |
| 3674 | m->m_pkthdrM_dat.MH.MH_pkthdr.len >= ETHER_MIN_NOPAD(64 - 4) && |
| 3675 | cur_rx->bge_tcp_udp_csum == 0xFFFF) { |
| 3676 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 3677 | M_TCP_CSUM_IN_OK0x0020|M_UDP_CSUM_IN_OK0x0080; |
| 3678 | } |
| 3679 | } |
| 3680 | } |
| 3681 | |
| 3682 | void |
| 3683 | bge_txeof(struct bge_softc *sc) |
| 3684 | { |
| 3685 | struct bge_tx_bd *cur_tx = NULL((void *)0); |
| 3686 | struct ifnet *ifp; |
| 3687 | bus_dmamap_t dmamap; |
| 3688 | bus_addr_t offset, toff; |
| 3689 | bus_size_t tlen; |
| 3690 | int tosync, freed, txcnt; |
| 3691 | u_int32_t cons, newcons; |
| 3692 | struct mbuf *m; |
| 3693 | |
| 3694 | /* Nothing to do */ |
| 3695 | cons = sc->bge_tx_saved_considx; |
| 3696 | newcons = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx; |
| 3697 | if (cons == newcons) |
| 3698 | return; |
| 3699 | |
| 3700 | ifp = &sc->arpcom.ac_if; |
| 3701 | |
| 3702 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3703 | offsetof(struct bge_ring_data, bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3704 | sizeof (struct bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )) |
| 3705 | BUS_DMASYNC_POSTREAD)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 )); |
| 3706 | |
| 3707 | offset = offsetof(struct bge_ring_data, bge_tx_ring)__builtin_offsetof(struct bge_ring_data, bge_tx_ring); |
| 3708 | tosync = newcons - cons; |
| 3709 | |
| 3710 | toff = offset + (cons * sizeof (struct bge_tx_bd)); |
| 3711 | |
| 3712 | if (tosync < 0) { |
| 3713 | tlen = (BGE_TX_RING_CNT512 - cons) * sizeof (struct bge_tx_bd); |
| 3714 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (toff), (tlen), (0x02|0x08)) |
| 3715 | toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (toff), (tlen), (0x02|0x08)); |
| 3716 | tosync = -tosync; |
| 3717 | } |
| 3718 | |
| 3719 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_tx_bd )), (0x02|0x08)) |
| 3720 | offset, tosync * sizeof (struct bge_tx_bd),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_tx_bd )), (0x02|0x08)) |
| 3721 | BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (offset), (tosync * sizeof (struct bge_tx_bd )), (0x02|0x08)); |
| 3722 | |
| 3723 | /* |
| 3724 | * Go through our tx ring and free mbufs for those |
| 3725 | * frames that have been sent. |
| 3726 | */ |
| 3727 | freed = 0; |
| 3728 | while (cons != newcons) { |
| 3729 | cur_tx = &sc->bge_rdata->bge_tx_ring[cons]; |
Value stored to 'cur_tx' is never read | |
| 3730 | m = sc->bge_cdata.bge_tx_chain[cons]; |
| 3731 | if (m != NULL((void *)0)) { |
| 3732 | dmamap = sc->bge_cdata.bge_tx_map[cons]; |
| 3733 | |
| 3734 | sc->bge_cdata.bge_tx_chain[cons] = NULL((void *)0); |
| 3735 | sc->bge_cdata.bge_tx_map[cons] = NULL((void *)0); |
| 3736 | bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x08)) |
| 3737 | dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x08)); |
| 3738 | bus_dmamap_unload(sc->bge_dmatag, dmamap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmamap)); |
| 3739 | |
| 3740 | m_freem(m); |
| 3741 | } |
| 3742 | freed++; |
| 3743 | BGE_INC(cons, BGE_TX_RING_CNT)(cons) = (cons + 1) % 512; |
| 3744 | } |
| 3745 | |
| 3746 | txcnt = atomic_sub_int_nv(&sc->bge_txcnt, freed)_atomic_sub_int_nv(&sc->bge_txcnt, freed); |
| 3747 | |
| 3748 | sc->bge_tx_saved_considx = cons; |
| 3749 | |
| 3750 | if (ifq_is_oactive(&ifp->if_snd)) |
| 3751 | ifq_restart(&ifp->if_snd); |
| 3752 | else if (txcnt == 0) |
| 3753 | ifp->if_timer = 0; |
| 3754 | } |
| 3755 | |
| 3756 | int |
| 3757 | bge_intr(void *xsc) |
| 3758 | { |
| 3759 | struct bge_softc *sc; |
| 3760 | struct ifnet *ifp; |
| 3761 | u_int32_t statusword, statustag; |
| 3762 | |
| 3763 | sc = xsc; |
| 3764 | ifp = &sc->arpcom.ac_if; |
| 3765 | |
| 3766 | /* read status word from status block */ |
| 3767 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 | 0x08)) |
| 3768 | offsetof(struct bge_ring_data, bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 | 0x08)) |
| 3769 | sizeof (struct bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 | 0x08)) |
| 3770 | BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x02 | 0x08)); |
| 3771 | |
| 3772 | statusword = sc->bge_rdata->bge_status_block.bge_status; |
| 3773 | statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24; |
| 3774 | |
| 3775 | if (sc->bge_flags & BGE_TAGGED_STATUS0x00200000) { |
| 3776 | if (sc->bge_lasttag == statustag && |
| 3777 | (CSR_READ_4(sc, BGE_PCI_PCISTATE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x70))) & |
| 3778 | BGE_PCISTATE_INTR_NOT_ACTIVE0x00000002)) |
| 3779 | return (0); |
| 3780 | sc->bge_lasttag = statustag; |
| 3781 | } else { |
| 3782 | if (!(statusword & BGE_STATFLAG_UPDATED0x00000001) && |
| 3783 | (CSR_READ_4(sc, BGE_PCI_PCISTATE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x70))) & |
| 3784 | BGE_PCISTATE_INTR_NOT_ACTIVE0x00000002)) |
| 3785 | return (0); |
| 3786 | /* Ack interrupt and stop others from occurring. */ |
| 3787 | bge_writembx(sc, BGE_MBX_IRQ0_LO0x0204, 1); |
| 3788 | statustag = 0; |
| 3789 | } |
| 3790 | |
| 3791 | /* clear status word */ |
| 3792 | sc->bge_rdata->bge_status_block.bge_status = 0; |
| 3793 | |
| 3794 | bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x01 | 0x04)) |
| 3795 | offsetof(struct bge_ring_data, bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x01 | 0x04)) |
| 3796 | sizeof (struct bge_status_block),(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x01 | 0x04)) |
| 3797 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( sc->bge_ring_map), (__builtin_offsetof(struct bge_ring_data , bge_status_block)), (sizeof (struct bge_status_block)), (0x01 | 0x04)); |
| 3798 | |
| 3799 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 || |
| 3800 | statusword & BGE_STATFLAG_LINKSTATE_CHANGED0x00000002 || |
| 3801 | BGE_STS_BIT(sc, BGE_STS_LINK_EVT)((sc)->bge_sts & (0x00000002))) { |
| 3802 | KERNEL_LOCK()_kernel_lock(); |
| 3803 | bge_link_upd(sc); |
| 3804 | KERNEL_UNLOCK()_kernel_unlock(); |
| 3805 | } |
| 3806 | |
| 3807 | /* Re-enable interrupts. */ |
| 3808 | bge_writembx(sc, BGE_MBX_IRQ0_LO0x0204, statustag); |
| 3809 | |
| 3810 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 3811 | /* Check RX return ring producer/consumer */ |
| 3812 | bge_rxeof(sc); |
| 3813 | |
| 3814 | /* Check TX ring producer/consumer */ |
| 3815 | bge_txeof(sc); |
| 3816 | } |
| 3817 | |
| 3818 | return (1); |
| 3819 | } |
| 3820 | |
| 3821 | void |
| 3822 | bge_tick(void *xsc) |
| 3823 | { |
| 3824 | struct bge_softc *sc = xsc; |
| 3825 | struct mii_data *mii = &sc->bge_mii; |
| 3826 | int s; |
| 3827 | |
| 3828 | s = splnet()splraise(0x4); |
| 3829 | |
| 3830 | if (BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) { |
| 3831 | mtx_enter(&sc->bge_kstat_mtx); |
| 3832 | bge_stats_update_regs(sc); |
| 3833 | mtx_leave(&sc->bge_kstat_mtx); |
| 3834 | } else |
| 3835 | bge_stats_update(sc); |
| 3836 | |
| 3837 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 3838 | /* |
| 3839 | * Since in TBI mode auto-polling can't be used we should poll |
| 3840 | * link status manually. Here we register pending link event |
| 3841 | * and trigger interrupt. |
| 3842 | */ |
| 3843 | BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT)((sc)->bge_sts |= (0x00000002)); |
| 3844 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00000004))))); |
| 3845 | } else { |
| 3846 | /* |
| 3847 | * Do not touch PHY if we have link up. This could break |
| 3848 | * IPMI/ASF mode or produce extra input errors. |
| 3849 | * (extra input errors was reported for bcm5701 & bcm5704). |
| 3850 | */ |
| 3851 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001))) |
| 3852 | mii_tick(mii); |
| 3853 | } |
| 3854 | |
| 3855 | timeout_add_sec(&sc->bge_timeout, 1); |
| 3856 | |
| 3857 | splx(s)spllower(s); |
| 3858 | } |
| 3859 | |
| 3860 | void |
| 3861 | bge_stats_update_regs(struct bge_softc *sc) |
| 3862 | { |
| 3863 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 3864 | uint32_t collisions, discards, inerrors; |
| 3865 | uint32_t ucast, mcast, bcast; |
| 3866 | u_int32_t val; |
| 3867 | #if NKSTAT1 > 0 |
| 3868 | struct kstat_kv *kvs = sc->bge_kstat->ks_data; |
| 3869 | #endif |
| 3870 | |
| 3871 | collisions = CSR_READ_4(sc, BGE_MAC_STATS +((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, etherStatsCollisions )))) |
| 3872 | offsetof(struct bge_mac_stats_regs, etherStatsCollisions))((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, etherStatsCollisions )))); |
| 3873 | |
| 3874 | /* |
| 3875 | * XXX |
| 3876 | * Unlike other controllers, the BGE_RXLP_LOCSTAT_IFIN_DROPS counter |
| 3877 | * of the BCM5717, BCM5718, BCM5762, BCM5719 A0 and BCM5720 A0 |
| 3878 | * controllers includes the number of unwanted multicast frames. |
| 3879 | * This comes from a silicon bug and known workaround to get rough |
| 3880 | * (not exact) counter is to enable interrupt on MBUF low watermark |
| 3881 | * attention. This can be accomplished by setting BGE_HCCMODE_ATTN |
| 3882 | * bit of BGE_HDD_MODE, BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE |
| 3883 | * and BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. However |
| 3884 | * that change would generate more interrupts and there are still |
| 3885 | * possibilities of losing multiple frames during |
| 3886 | * BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. Given that |
| 3887 | * the workaround still would not get correct counter I don't think |
| 3888 | * it's worth to implement it. So ignore reading the counter on |
| 3889 | * controllers that have the silicon bug. |
| 3890 | */ |
| 3891 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57170x5717 && |
| 3892 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) != BGE_ASICREV_BCM57620x5762 && |
| 3893 | sc->bge_chipid != BGE_CHIPID_BCM5719_A00x05719000 && |
| 3894 | sc->bge_chipid != BGE_CHIPID_BCM5720_A00x05720000) |
| 3895 | discards = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x2250)) ); |
| 3896 | else |
| 3897 | discards = 0; |
| 3898 | |
| 3899 | inerrors = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x2254)) ); |
| 3900 | |
| 3901 | ifp->if_collisionsif_data.ifi_collisions += collisions; |
| 3902 | ifp->if_ierrorsif_data.ifi_ierrors += discards + inerrors; |
| 3903 | |
| 3904 | ucast = CSR_READ_4(sc, BGE_MAC_STATS +((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts )))) |
| 3905 | offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts))((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts )))); |
| 3906 | mcast = CSR_READ_4(sc, BGE_MAC_STATS +((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts )))) |
| 3907 | offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts))((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts )))); |
| 3908 | bcast = CSR_READ_4(sc, BGE_MAC_STATS +((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts )))) |
| 3909 | offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts))((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts )))); |
| 3910 | if (sc->bge_flags & BGE_RDMA_BUG0x00800000) { |
| 3911 | /* |
| 3912 | * If controller transmitted more than BGE_NUM_RDMA_CHANNELS |
| 3913 | * frames, it's safe to disable workaround for DMA engine's |
| 3914 | * miscalculation of TXMBUF space. |
| 3915 | */ |
| 3916 | if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS4) { |
| 3917 | val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x4910)) ); |
| 3918 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57190x5719) |
| 3919 | val &= ~BGE_RDMA_TX_LENGTH_WA_57190x02000000; |
| 3920 | else |
| 3921 | val &= ~BGE_RDMA_TX_LENGTH_WA_57200x00200000; |
| 3922 | CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x4910) , (val))); |
| 3923 | sc->bge_flags &= ~BGE_RDMA_BUG0x00800000; |
| 3924 | } |
| 3925 | } |
| 3926 | |
| 3927 | #if NKSTAT1 > 0 |
| 3928 | kstat_kv_u32(&kvs[bge_stat_out_ucast_pkt])(&kvs[bge_stat_out_ucast_pkt])->kv_v.v_u32 += ucast; |
| 3929 | kstat_kv_u32(&kvs[bge_stat_out_mcast_pkt])(&kvs[bge_stat_out_mcast_pkt])->kv_v.v_u32 += mcast; |
| 3930 | kstat_kv_u32(&kvs[bge_stat_out_bcast_pkt])(&kvs[bge_stat_out_bcast_pkt])->kv_v.v_u32 += bcast; |
| 3931 | kstat_kv_u32(&kvs[bge_stat_collisions])(&kvs[bge_stat_collisions])->kv_v.v_u32 += collisions; |
| 3932 | kstat_kv_u32(&kvs[bge_stat_if_in_drops])(&kvs[bge_stat_if_in_drops])->kv_v.v_u32 += discards; |
| 3933 | kstat_kv_u32(&kvs[bge_stat_if_in_errors])(&kvs[bge_stat_if_in_errors])->kv_v.v_u32 += inerrors; |
| 3934 | #endif |
| 3935 | } |
| 3936 | |
| 3937 | void |
| 3938 | bge_stats_update(struct bge_softc *sc) |
| 3939 | { |
| 3940 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 3941 | bus_size_t stats = BGE_MEMWIN_START0x00008000 + BGE_STATS_BLOCK0x00000300; |
| 3942 | u_int32_t cnt; |
| 3943 | |
| 3944 | #define READ_STAT(sc, stats, stat) \ |
| 3945 | CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))((sc->bge_btag)->read_4((sc->bge_bhandle), (stats + __builtin_offsetof (struct bge_stats, stat)))) |
| 3946 | |
| 3947 | cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); |
| 3948 | ifp->if_collisionsif_data.ifi_collisions += (u_int32_t)(cnt - sc->bge_tx_collisions); |
| 3949 | sc->bge_tx_collisions = cnt; |
| 3950 | |
| 3951 | cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); |
| 3952 | sc->bge_rx_overruns = cnt; |
| 3953 | cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); |
| 3954 | ifp->if_ierrorsif_data.ifi_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrors); |
| 3955 | sc->bge_rx_inerrors = cnt; |
| 3956 | cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); |
| 3957 | ifp->if_ierrorsif_data.ifi_ierrors += (u_int32_t)(cnt - sc->bge_rx_discards); |
| 3958 | sc->bge_rx_discards = cnt; |
| 3959 | |
| 3960 | cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); |
| 3961 | ifp->if_oerrorsif_data.ifi_oerrors += (u_int32_t)(cnt - sc->bge_tx_discards); |
| 3962 | sc->bge_tx_discards = cnt; |
| 3963 | |
| 3964 | #undef READ_STAT |
| 3965 | } |
| 3966 | |
| 3967 | /* |
| 3968 | * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. |
| 3969 | */ |
| 3970 | int |
| 3971 | bge_compact_dma_runt(struct mbuf *pkt) |
| 3972 | { |
| 3973 | struct mbuf *m, *prev, *n = NULL((void *)0); |
| 3974 | int totlen, newprevlen; |
| 3975 | |
| 3976 | prev = NULL((void *)0); |
| 3977 | totlen = 0; |
| 3978 | |
| 3979 | for (m = pkt; m != NULL((void *)0); prev = m,m = m->m_nextm_hdr.mh_next) { |
| 3980 | int mlen = m->m_lenm_hdr.mh_len; |
| 3981 | int shortfall = 8 - mlen ; |
| 3982 | |
| 3983 | totlen += mlen; |
| 3984 | if (mlen == 0) |
| 3985 | continue; |
| 3986 | if (mlen >= 8) |
| 3987 | continue; |
| 3988 | |
| 3989 | /* If we get here, mbuf data is too small for DMA engine. |
| 3990 | * Try to fix by shuffling data to prev or next in chain. |
| 3991 | * If that fails, do a compacting deep-copy of the whole chain. |
| 3992 | */ |
| 3993 | |
| 3994 | /* Internal frag. If fits in prev, copy it there. */ |
| 3995 | if (prev && m_trailingspace(prev) >= m->m_lenm_hdr.mh_len) { |
| 3996 | bcopy(m->m_datam_hdr.mh_data, prev->m_datam_hdr.mh_data+prev->m_lenm_hdr.mh_len, mlen); |
| 3997 | prev->m_lenm_hdr.mh_len += mlen; |
| 3998 | m->m_lenm_hdr.mh_len = 0; |
| 3999 | /* XXX stitch chain */ |
| 4000 | prev->m_nextm_hdr.mh_next = m_free(m); |
| 4001 | m = prev; |
| 4002 | continue; |
| 4003 | } else if (m->m_nextm_hdr.mh_next != NULL((void *)0) && |
| 4004 | m_trailingspace(m) >= shortfall && |
| 4005 | m->m_nextm_hdr.mh_next->m_lenm_hdr.mh_len >= (8 + shortfall)) { |
| 4006 | /* m is writable and have enough data in next, pull up. */ |
| 4007 | |
| 4008 | bcopy(m->m_nextm_hdr.mh_next->m_datam_hdr.mh_data, m->m_datam_hdr.mh_data+m->m_lenm_hdr.mh_len, shortfall); |
| 4009 | m->m_lenm_hdr.mh_len += shortfall; |
| 4010 | m->m_nextm_hdr.mh_next->m_lenm_hdr.mh_len -= shortfall; |
| 4011 | m->m_nextm_hdr.mh_next->m_datam_hdr.mh_data += shortfall; |
| 4012 | } else if (m->m_nextm_hdr.mh_next == NULL((void *)0) || 1) { |
| 4013 | /* Got a runt at the very end of the packet. |
| 4014 | * borrow data from the tail of the preceding mbuf and |
| 4015 | * update its length in-place. (The original data is still |
| 4016 | * valid, so we can do this even if prev is not writable.) |
| 4017 | */ |
| 4018 | |
| 4019 | /* if we'd make prev a runt, just move all of its data. */ |
| 4020 | #ifdef DEBUG |
| 4021 | KASSERT(prev != NULL /*, ("runt but null PREV")*/)((prev != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_bge.c" , 4021, "prev != NULL")); |
| 4022 | KASSERT(prev->m_len >= 8 /*, ("runt prev")*/)((prev->m_hdr.mh_len >= 8) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_bge.c", 4022, "prev->m_len >= 8" )); |
| 4023 | #endif |
| 4024 | if ((prev->m_lenm_hdr.mh_len - shortfall) < 8) |
| 4025 | shortfall = prev->m_lenm_hdr.mh_len; |
| 4026 | |
| 4027 | newprevlen = prev->m_lenm_hdr.mh_len - shortfall; |
| 4028 | |
| 4029 | MGET(n, M_NOWAIT, MT_DATA)n = m_get((0x0002), (1)); |
| 4030 | if (n == NULL((void *)0)) |
| 4031 | return (ENOBUFS55); |
| 4032 | KASSERT(m->m_len + shortfall < MLEN((m->m_hdr.mh_len + shortfall < (256 - sizeof(struct m_hdr ))) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_bge.c" , 4034, "m->m_len + shortfall < MLEN")) |
| 4033 | /*,((m->m_hdr.mh_len + shortfall < (256 - sizeof(struct m_hdr ))) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_bge.c" , 4034, "m->m_len + shortfall < MLEN")) |
| 4034 | ("runt %d +prev %d too big\n", m->m_len, shortfall)*/)((m->m_hdr.mh_len + shortfall < (256 - sizeof(struct m_hdr ))) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_bge.c" , 4034, "m->m_len + shortfall < MLEN")); |
| 4035 | |
| 4036 | /* first copy the data we're stealing from prev */ |
| 4037 | bcopy(prev->m_datam_hdr.mh_data + newprevlen, n->m_datam_hdr.mh_data, shortfall); |
| 4038 | |
| 4039 | /* update prev->m_len accordingly */ |
| 4040 | prev->m_lenm_hdr.mh_len -= shortfall; |
| 4041 | |
| 4042 | /* copy data from runt m */ |
| 4043 | bcopy(m->m_datam_hdr.mh_data, n->m_datam_hdr.mh_data + shortfall, m->m_lenm_hdr.mh_len); |
| 4044 | |
| 4045 | /* n holds what we stole from prev, plus m */ |
| 4046 | n->m_lenm_hdr.mh_len = shortfall + m->m_lenm_hdr.mh_len; |
| 4047 | |
| 4048 | /* stitch n into chain and free m */ |
| 4049 | n->m_nextm_hdr.mh_next = m->m_nextm_hdr.mh_next; |
| 4050 | prev->m_nextm_hdr.mh_next = n; |
| 4051 | /* KASSERT(m->m_next == NULL); */ |
| 4052 | m->m_nextm_hdr.mh_next = NULL((void *)0); |
| 4053 | m_free(m); |
| 4054 | m = n; /* for continuing loop */ |
| 4055 | } |
| 4056 | } |
| 4057 | return (0); |
| 4058 | } |
| 4059 | |
| 4060 | /* |
| 4061 | * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. |
| 4062 | * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, |
| 4063 | * but when such padded frames employ the bge IP/TCP checksum offload, |
| 4064 | * the hardware checksum assist gives incorrect results (possibly |
| 4065 | * from incorporating its own padding into the UDP/TCP checksum; who knows). |
| 4066 | * If we pad such runts with zeros, the onboard checksum comes out correct. |
| 4067 | */ |
| 4068 | int |
| 4069 | bge_cksum_pad(struct mbuf *m) |
| 4070 | { |
| 4071 | int padlen = ETHER_MIN_NOPAD(64 - 4) - m->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 4072 | struct mbuf *last; |
| 4073 | |
| 4074 | /* If there's only the packet-header and we can pad there, use it. */ |
| 4075 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.len == m->m_lenm_hdr.mh_len && m_trailingspace(m) >= padlen) { |
| 4076 | last = m; |
| 4077 | } else { |
| 4078 | /* |
| 4079 | * Walk packet chain to find last mbuf. We will either |
| 4080 | * pad there, or append a new mbuf and pad it. |
| 4081 | */ |
| 4082 | for (last = m; last->m_nextm_hdr.mh_next != NULL((void *)0); last = last->m_nextm_hdr.mh_next); |
| 4083 | if (m_trailingspace(last) < padlen) { |
| 4084 | /* Allocate new empty mbuf, pad it. Compact later. */ |
| 4085 | struct mbuf *n; |
| 4086 | |
| 4087 | MGET(n, M_DONTWAIT, MT_DATA)n = m_get((0x0002), (1)); |
| 4088 | if (n == NULL((void *)0)) |
| 4089 | return (ENOBUFS55); |
| 4090 | n->m_lenm_hdr.mh_len = 0; |
| 4091 | last->m_nextm_hdr.mh_next = n; |
| 4092 | last = n; |
| 4093 | } |
| 4094 | } |
| 4095 | |
| 4096 | /* Now zero the pad area, to avoid the bge cksum-assist bug. */ |
| 4097 | memset(mtod(last, caddr_t) + last->m_len, 0, padlen)__builtin_memset((((caddr_t)((last)->m_hdr.mh_data)) + last ->m_hdr.mh_len), (0), (padlen)); |
| 4098 | last->m_lenm_hdr.mh_len += padlen; |
| 4099 | m->m_pkthdrM_dat.MH.MH_pkthdr.len += padlen; |
| 4100 | |
| 4101 | return (0); |
| 4102 | } |
| 4103 | |
| 4104 | /* |
| 4105 | * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data |
| 4106 | * pointers to descriptors. |
| 4107 | */ |
| 4108 | int |
| 4109 | bge_encap(struct bge_softc *sc, struct mbuf *m, int *txinc) |
| 4110 | { |
| 4111 | struct bge_tx_bd *f = NULL((void *)0); |
| 4112 | u_int32_t frag, cur; |
| 4113 | u_int16_t csum_flags = 0; |
| 4114 | bus_dmamap_t dmamap; |
| 4115 | int i = 0; |
| 4116 | |
| 4117 | cur = frag = (sc->bge_tx_prodidx + *txinc) % BGE_TX_RING_CNT512; |
| 4118 | |
| 4119 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags) { |
| 4120 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_IPV4_CSUM_OUT0x0001) |
| 4121 | csum_flags |= BGE_TXBDFLAG_IP_CSUM0x0002; |
| 4122 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & |
| 4123 | (M_TCP_CSUM_OUT0x0002 | M_UDP_CSUM_OUT0x0004)) { |
| 4124 | csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM0x0001; |
| 4125 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.len < ETHER_MIN_NOPAD(64 - 4) && |
| 4126 | bge_cksum_pad(m) != 0) |
| 4127 | return (ENOBUFS55); |
| 4128 | } |
| 4129 | } |
| 4130 | |
| 4131 | if (sc->bge_flags & BGE_JUMBO_FRAME0x04000000 && |
| 4132 | m->m_pkthdrM_dat.MH.MH_pkthdr.len > ETHER_MAX_LEN1518) |
| 4133 | csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME0x0008; |
| 4134 | |
| 4135 | if (!(BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5700_BX0x71)) |
| 4136 | goto doit; |
| 4137 | |
| 4138 | /* |
| 4139 | * bcm5700 Revision B silicon cannot handle DMA descriptors with |
| 4140 | * less than eight bytes. If we encounter a teeny mbuf |
| 4141 | * at the end of a chain, we can pad. Otherwise, copy. |
| 4142 | */ |
| 4143 | if (bge_compact_dma_runt(m) != 0) |
| 4144 | return (ENOBUFS55); |
| 4145 | |
| 4146 | doit: |
| 4147 | dmamap = sc->bge_txdma[cur]; |
| 4148 | |
| 4149 | /* |
| 4150 | * Start packing the mbufs in this chain into |
| 4151 | * the fragment pointers. Stop when we run out |
| 4152 | * of fragments or hit the end of the mbuf chain. |
| 4153 | */ |
| 4154 | switch (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmamap), (m), (0x0001)) |
| 4155 | BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmamap), (m), (0x0001))) { |
| 4156 | case 0: |
| 4157 | break; |
| 4158 | case EFBIG27: |
| 4159 | if (m_defrag(m, M_DONTWAIT0x0002) == 0 && |
| 4160 | bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmamap), (m), (0x0001)) |
| 4161 | BUS_DMA_NOWAIT)(*(sc->bge_dmatag)->_dmamap_load_mbuf)((sc->bge_dmatag ), (dmamap), (m), (0x0001)) == 0) |
| 4162 | break; |
| 4163 | |
| 4164 | /* FALLTHROUGH */ |
| 4165 | default: |
| 4166 | return (ENOBUFS55); |
| 4167 | } |
| 4168 | |
| 4169 | for (i = 0; i < dmamap->dm_nsegs; i++) { |
| 4170 | f = &sc->bge_rdata->bge_tx_ring[frag]; |
| 4171 | if (sc->bge_cdata.bge_tx_chain[frag] != NULL((void *)0)) |
| 4172 | break; |
| 4173 | BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr)do { (f->bge_addr).bge_addr_lo = ((u_int64_t) (dmamap-> dm_segs[i].ds_addr) & 0xffffffff); if (sizeof(bus_addr_t) == 8) (f->bge_addr).bge_addr_hi = ((u_int64_t) (dmamap-> dm_segs[i].ds_addr) >> 32); else (f->bge_addr).bge_addr_hi = 0; } while(0); |
| 4174 | f->bge_len = dmamap->dm_segs[i].ds_len; |
| 4175 | f->bge_flags = csum_flags; |
| 4176 | f->bge_vlan_tag = 0; |
| 4177 | #if NVLAN1 > 0 |
| 4178 | if (m->m_flagsm_hdr.mh_flags & M_VLANTAG0x0020) { |
| 4179 | f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG0x0040; |
| 4180 | f->bge_vlan_tag = m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag; |
| 4181 | } |
| 4182 | #endif |
| 4183 | cur = frag; |
| 4184 | BGE_INC(frag, BGE_TX_RING_CNT)(frag) = (frag + 1) % 512; |
| 4185 | } |
| 4186 | |
| 4187 | if (i < dmamap->dm_nsegs) |
| 4188 | goto fail_unload; |
| 4189 | |
| 4190 | if (frag == sc->bge_tx_saved_considx) |
| 4191 | goto fail_unload; |
| 4192 | |
| 4193 | bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x04)) |
| 4194 | BUS_DMASYNC_PREWRITE)(*(sc->bge_dmatag)->_dmamap_sync)((sc->bge_dmatag), ( dmamap), (0), (dmamap->dm_mapsize), (0x04)); |
| 4195 | |
| 4196 | sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END0x0004; |
| 4197 | sc->bge_cdata.bge_tx_chain[cur] = m; |
| 4198 | sc->bge_cdata.bge_tx_map[cur] = dmamap; |
| 4199 | |
| 4200 | *txinc += dmamap->dm_nsegs; |
| 4201 | |
| 4202 | return (0); |
| 4203 | |
| 4204 | fail_unload: |
| 4205 | bus_dmamap_unload(sc->bge_dmatag, dmamap)(*(sc->bge_dmatag)->_dmamap_unload)((sc->bge_dmatag) , (dmamap)); |
| 4206 | |
| 4207 | return (ENOBUFS55); |
| 4208 | } |
| 4209 | |
| 4210 | /* |
| 4211 | * Main transmit routine. To avoid having to do mbuf copies, we put pointers |
| 4212 | * to the mbuf data regions directly in the transmit descriptors. |
| 4213 | */ |
| 4214 | void |
| 4215 | bge_start(struct ifqueue *ifq) |
| 4216 | { |
| 4217 | struct ifnet *ifp = ifq->ifq_if; |
| 4218 | struct bge_softc *sc = ifp->if_softc; |
| 4219 | struct mbuf *m; |
| 4220 | int txinc; |
| 4221 | |
| 4222 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001))) { |
| 4223 | ifq_purge(ifq); |
| 4224 | return; |
| 4225 | } |
| 4226 | |
| 4227 | txinc = 0; |
| 4228 | while (1) { |
| 4229 | /* Check if we have enough free send BDs. */ |
| 4230 | if (sc->bge_txcnt + txinc + BGE_NTXSEG30 + 16 >= |
| 4231 | BGE_TX_RING_CNT512) { |
| 4232 | ifq_set_oactive(ifq); |
| 4233 | break; |
| 4234 | } |
| 4235 | |
| 4236 | m = ifq_dequeue(ifq); |
| 4237 | if (m == NULL((void *)0)) |
| 4238 | break; |
| 4239 | |
| 4240 | if (bge_encap(sc, m, &txinc) != 0) { |
| 4241 | m_freem(m); |
| 4242 | continue; |
| 4243 | } |
| 4244 | |
| 4245 | #if NBPFILTER1 > 0 |
| 4246 | if (ifp->if_bpf) |
| 4247 | bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 4248 | #endif |
| 4249 | } |
| 4250 | |
| 4251 | if (txinc != 0) { |
| 4252 | /* Transmit */ |
| 4253 | sc->bge_tx_prodidx = (sc->bge_tx_prodidx + txinc) % |
| 4254 | BGE_TX_RING_CNT512; |
| 4255 | bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO0x0304, sc->bge_tx_prodidx); |
| 4256 | if (BGE_CHIPREV(sc->bge_chipid)((sc->bge_chipid) >> 8) == BGE_CHIPREV_5700_BX0x71) |
| 4257 | bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO0x0304, |
| 4258 | sc->bge_tx_prodidx); |
| 4259 | |
| 4260 | atomic_add_int(&sc->bge_txcnt, txinc)_atomic_add_int(&sc->bge_txcnt, txinc); |
| 4261 | |
| 4262 | /* |
| 4263 | * Set a timeout in case the chip goes out to lunch. |
| 4264 | */ |
| 4265 | ifp->if_timer = 5; |
| 4266 | } |
| 4267 | } |
| 4268 | |
| 4269 | void |
| 4270 | bge_init(void *xsc) |
| 4271 | { |
| 4272 | struct bge_softc *sc = xsc; |
| 4273 | struct ifnet *ifp; |
| 4274 | u_int16_t *m; |
| 4275 | u_int32_t mode; |
| 4276 | int s; |
| 4277 | |
| 4278 | s = splnet()splraise(0x4); |
| 4279 | |
| 4280 | ifp = &sc->arpcom.ac_if; |
| 4281 | |
| 4282 | /* Cancel pending I/O and flush buffers. */ |
| 4283 | bge_stop(sc, 0); |
| 4284 | bge_sig_pre_reset(sc, BGE_RESET_START1); |
| 4285 | bge_reset(sc); |
| 4286 | bge_sig_legacy(sc, BGE_RESET_START1); |
| 4287 | bge_sig_post_reset(sc, BGE_RESET_START1); |
| 4288 | |
| 4289 | bge_chipinit(sc); |
| 4290 | |
| 4291 | /* |
| 4292 | * Init the various state machines, ring |
| 4293 | * control blocks and firmware. |
| 4294 | */ |
| 4295 | if (bge_blockinit(sc)) { |
| 4296 | printf("%s: initialization failure\n", sc->bge_dev.dv_xname); |
| 4297 | splx(s)spllower(s); |
| 4298 | return; |
| 4299 | } |
| 4300 | |
| 4301 | /* Specify MRU. */ |
| 4302 | if (BGE_IS_JUMBO_CAPABLE(sc)((sc)->bge_flags & 0x00000100)) |
| 4303 | CSR_WRITE_4(sc, BGE_RX_MTU,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x043C) , (9022 + 4))) |
| 4304 | BGE_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x043C) , (9022 + 4))); |
| 4305 | else |
| 4306 | CSR_WRITE_4(sc, BGE_RX_MTU,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x043C) , (1518 + 4))) |
| 4307 | ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x043C) , (1518 + 4))); |
| 4308 | |
| 4309 | /* Load our MAC address. */ |
| 4310 | m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; |
| 4311 | CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0410) , ((__uint16_t)(__builtin_constant_p(m[0]) ? (__uint16_t)(((__uint16_t )(m[0]) & 0xffU) << 8 | ((__uint16_t)(m[0]) & 0xff00U ) >> 8) : __swap16md(m[0]))))); |
| 4312 | CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]))((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0414) , (((__uint16_t)(__builtin_constant_p(m[1]) ? (__uint16_t)((( __uint16_t)(m[1]) & 0xffU) << 8 | ((__uint16_t)(m[1 ]) & 0xff00U) >> 8) : __swap16md(m[1])) << 16 ) | (__uint16_t)(__builtin_constant_p(m[2]) ? (__uint16_t)((( __uint16_t)(m[2]) & 0xffU) << 8 | ((__uint16_t)(m[2 ]) & 0xff00U) >> 8) : __swap16md(m[2]))))); |
| 4313 | |
| 4314 | if (!(ifp->if_capabilitiesif_data.ifi_capabilities & IFCAP_VLAN_HWTAGGING0x00000020)) { |
| 4315 | /* Disable hardware decapsulation of VLAN frames. */ |
| 4316 | BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0468) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0468 ))) | (0x00000400))))); |
| 4317 | } |
| 4318 | |
| 4319 | /* Program promiscuous mode and multicast filters. */ |
| 4320 | bge_iff(sc); |
| 4321 | |
| 4322 | /* Init RX ring. */ |
| 4323 | bge_init_rx_ring_std(sc); |
| 4324 | |
| 4325 | /* |
| 4326 | * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's |
| 4327 | * memory to ensure that the chip has in fact read the first |
| 4328 | * entry of the ring. |
| 4329 | */ |
| 4330 | if (sc->bge_chipid == BGE_CHIPID_BCM5705_A00x3000) { |
| 4331 | u_int32_t v, i; |
| 4332 | for (i = 0; i < 10; i++) { |
| 4333 | DELAY(20)(*delay_func)(20); |
| 4334 | v = bge_readmem_ind(sc, BGE_STD_RX_RINGS0x00006000 + 8); |
| 4335 | if (v == (MCLBYTES(1 << 11) - ETHER_ALIGN2)) |
| 4336 | break; |
| 4337 | } |
| 4338 | if (i == 10) |
| 4339 | printf("%s: 5705 A0 chip failed to load RX ring\n", |
| 4340 | sc->bge_dev.dv_xname); |
| 4341 | } |
| 4342 | |
| 4343 | /* Init Jumbo RX ring. */ |
| 4344 | if (sc->bge_flags & BGE_JUMBO_RING0x01000000) |
| 4345 | bge_init_rx_ring_jumbo(sc); |
| 4346 | |
| 4347 | /* Init our RX return ring index */ |
| 4348 | sc->bge_rx_saved_considx = 0; |
| 4349 | |
| 4350 | /* Init our RX/TX stat counters. */ |
| 4351 | sc->bge_tx_collisions = 0; |
| 4352 | sc->bge_rx_discards = 0; |
| 4353 | sc->bge_rx_inerrors = 0; |
| 4354 | sc->bge_rx_overruns = 0; |
| 4355 | sc->bge_tx_discards = 0; |
| 4356 | |
| 4357 | /* Init TX ring. */ |
| 4358 | bge_init_tx_ring(sc); |
| 4359 | |
| 4360 | /* Enable TX MAC state machine lockup fix. */ |
| 4361 | mode = CSR_READ_4(sc, BGE_TX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x045C)) ); |
| 4362 | if (BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000) || |
| 4363 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM59060x0c) |
| 4364 | mode |= BGE_TXMODE_MBUF_LOCKUP_FIX0x00000100; |
| 4365 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57200x5720 || |
| 4366 | BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) { |
| 4367 | mode &= ~(BGE_TXMODE_JMB_FRM_LEN0x00400000 | BGE_TXMODE_CNT_DN_MODE0x00800000); |
| 4368 | mode |= CSR_READ_4(sc, BGE_TX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x045C)) ) & |
| 4369 | (BGE_TXMODE_JMB_FRM_LEN0x00400000 | BGE_TXMODE_CNT_DN_MODE0x00800000); |
| 4370 | } |
| 4371 | |
| 4372 | /* Turn on transmitter */ |
| 4373 | CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x045C) , (mode | 0x00000002))); |
| 4374 | DELAY(100)(*delay_func)(100); |
| 4375 | |
| 4376 | mode = CSR_READ_4(sc, BGE_RX_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0468)) ); |
| 4377 | if (BGE_IS_5755_PLUS(sc)((sc)->bge_flags & 0x00004000)) |
| 4378 | mode |= BGE_RXMODE_IPV6_ENABLE0x01000000; |
| 4379 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57620x5762) |
| 4380 | mode |= BGE_RXMODE_IPV4_FRAG_FIX0x02000000; |
| 4381 | |
| 4382 | /* Turn on receiver */ |
| 4383 | CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0468) , (mode | 0x00000002))); |
| 4384 | DELAY(10)(*delay_func)(10); |
| 4385 | |
| 4386 | /* |
| 4387 | * Set the number of good frames to receive after RX MBUF |
| 4388 | * Low Watermark has been reached. After the RX MAC receives |
| 4389 | * this number of frames, it will drop subsequent incoming |
| 4390 | * frames until the MBUF High Watermark is reached. |
| 4391 | */ |
| 4392 | if (BGE_IS_57765_PLUS(sc)((sc)->bge_flags & 0x00040000)) |
| 4393 | CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0504) , (1))); |
| 4394 | else |
| 4395 | CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0504) , (2))); |
| 4396 | |
| 4397 | /* Tell firmware we're alive. */ |
| 4398 | BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6800) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6800 ))) | (0x00010000))))); |
| 4399 | |
| 4400 | /* Enable host interrupts. */ |
| 4401 | BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x68), ( (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x68))) | (0x00000001))))); |
| 4402 | BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x68), ( (((sc->bge_btag)->read_4((sc->bge_bhandle), (0x68))) & ~(0x00000002))))); |
| 4403 | bge_writembx(sc, BGE_MBX_IRQ0_LO0x0204, 0); |
| 4404 | |
| 4405 | bge_ifmedia_upd(ifp); |
| 4406 | |
| 4407 | ifp->if_flags |= IFF_RUNNING0x40; |
| 4408 | ifq_clr_oactive(&ifp->if_snd); |
| 4409 | |
| 4410 | splx(s)spllower(s); |
| 4411 | |
| 4412 | timeout_add_sec(&sc->bge_timeout, 1); |
| 4413 | } |
| 4414 | |
| 4415 | /* |
| 4416 | * Set media options. |
| 4417 | */ |
| 4418 | int |
| 4419 | bge_ifmedia_upd(struct ifnet *ifp) |
| 4420 | { |
| 4421 | struct bge_softc *sc = ifp->if_softc; |
| 4422 | struct mii_data *mii = &sc->bge_mii; |
| 4423 | struct ifmedia *ifm = &sc->bge_ifmedia; |
| 4424 | |
| 4425 | /* If this is a 1000baseX NIC, enable the TBI port. */ |
| 4426 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 4427 | if (IFM_TYPE(ifm->ifm_media)((ifm->ifm_media) & 0x000000000000ff00ULL) != IFM_ETHER0x0000000000000100ULL) |
| 4428 | return (EINVAL22); |
| 4429 | switch(IFM_SUBTYPE(ifm->ifm_media)((ifm->ifm_media) & 0x00000000000000ffULL)) { |
| 4430 | case IFM_AUTO0ULL: |
| 4431 | /* |
| 4432 | * The BCM5704 ASIC appears to have a special |
| 4433 | * mechanism for programming the autoneg |
| 4434 | * advertisement registers in TBI mode. |
| 4435 | */ |
| 4436 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) { |
| 4437 | u_int32_t sgdig; |
| 4438 | sgdig = CSR_READ_4(sc, BGE_SGDIG_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x05B4)) ); |
| 4439 | if (sgdig & BGE_SGDIGSTS_DONE0x00000002) { |
| 4440 | CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0444) , (0))); |
| 4441 | sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x05B0)) ); |
| 4442 | sgdig |= BGE_SGDIGCFG_AUTO0x80000000 | |
| 4443 | BGE_SGDIGCFG_PAUSE_CAP0x00000800 | |
| 4444 | BGE_SGDIGCFG_ASYM_PAUSE0x00001000; |
| 4445 | CSR_WRITE_4(sc, BGE_SGDIG_CFG,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x05B0) , (sgdig | 0x40000000))) |
| 4446 | sgdig | BGE_SGDIGCFG_SEND)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x05B0) , (sgdig | 0x40000000))); |
| 4447 | DELAY(5)(*delay_func)(5); |
| 4448 | CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x05B0) , (sgdig))); |
| 4449 | } |
| 4450 | } |
| 4451 | break; |
| 4452 | case IFM_1000_SX11: |
| 4453 | if ((ifm->ifm_media & IFM_GMASK0x00ffff0000000000ULL) == IFM_FDX0x0000010000000000ULL) { |
| 4454 | BGE_CLRBIT(sc, BGE_MAC_MODE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) & ~(0x00000002))))) |
| 4455 | BGE_MACMODE_HALF_DUPLEX)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) & ~(0x00000002))))); |
| 4456 | } else { |
| 4457 | BGE_SETBIT(sc, BGE_MAC_MODE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) | (0x00000002))))) |
| 4458 | BGE_MACMODE_HALF_DUPLEX)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) | (0x00000002))))); |
| 4459 | } |
| 4460 | DELAY(40)(*delay_func)(40); |
| 4461 | break; |
| 4462 | default: |
| 4463 | return (EINVAL22); |
| 4464 | } |
| 4465 | /* XXX 802.3x flow control for 1000BASE-SX */ |
| 4466 | return (0); |
| 4467 | } |
| 4468 | |
| 4469 | BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT)((sc)->bge_sts |= (0x00000002)); |
| 4470 | if (mii->mii_instance) { |
| 4471 | struct mii_softc *miisc; |
| 4472 | LIST_FOREACH(miisc, &mii->mii_phys, mii_list)for((miisc) = ((&mii->mii_phys)->lh_first); (miisc) != ((void *)0); (miisc) = ((miisc)->mii_list.le_next)) |
| 4473 | mii_phy_reset(miisc); |
| 4474 | } |
| 4475 | mii_mediachg(mii); |
| 4476 | |
| 4477 | /* |
| 4478 | * Force an interrupt so that we will call bge_link_upd |
| 4479 | * if needed and clear any pending link state attention. |
| 4480 | * Without this we are not getting any further interrupts |
| 4481 | * for link state changes and thus will not UP the link and |
| 4482 | * not be able to send in bge_start. The only way to get |
| 4483 | * things working was to receive a packet and get a RX intr. |
| 4484 | */ |
| 4485 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07 || |
| 4486 | sc->bge_flags & BGE_IS_57880x00000800) |
| 4487 | BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6808) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6808 ))) | (0x00000004))))); |
| 4488 | else |
| 4489 | BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x3C00) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x3C00 ))) | (0x00000008))))); |
| 4490 | |
| 4491 | return (0); |
| 4492 | } |
| 4493 | |
| 4494 | /* |
| 4495 | * Report current media status. |
| 4496 | */ |
| 4497 | void |
| 4498 | bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) |
| 4499 | { |
| 4500 | struct bge_softc *sc = ifp->if_softc; |
| 4501 | struct mii_data *mii = &sc->bge_mii; |
| 4502 | |
| 4503 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 4504 | ifmr->ifm_status = IFM_AVALID0x0000000000000001ULL; |
| 4505 | ifmr->ifm_active = IFM_ETHER0x0000000000000100ULL; |
| 4506 | if (CSR_READ_4(sc, BGE_MAC_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0404)) ) & |
| 4507 | BGE_MACSTAT_TBI_PCS_SYNCHED0x00000001) { |
| 4508 | ifmr->ifm_status |= IFM_ACTIVE0x0000000000000002ULL; |
| 4509 | } else { |
| 4510 | ifmr->ifm_active |= IFM_NONE2ULL; |
| 4511 | return; |
| 4512 | } |
| 4513 | ifmr->ifm_active |= IFM_1000_SX11; |
| 4514 | if (CSR_READ_4(sc, BGE_MAC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400)) ) & BGE_MACMODE_HALF_DUPLEX0x00000002) |
| 4515 | ifmr->ifm_active |= IFM_HDX0x0000020000000000ULL; |
| 4516 | else |
| 4517 | ifmr->ifm_active |= IFM_FDX0x0000010000000000ULL; |
| 4518 | return; |
| 4519 | } |
| 4520 | |
| 4521 | mii_pollstat(mii); |
| 4522 | ifmr->ifm_status = mii->mii_media_status; |
| 4523 | ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) | |
| 4524 | sc->bge_flowflags; |
| 4525 | } |
| 4526 | |
| 4527 | int |
| 4528 | bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) |
| 4529 | { |
| 4530 | struct bge_softc *sc = ifp->if_softc; |
| 4531 | struct ifreq *ifr = (struct ifreq *) data; |
| 4532 | int s, error = 0; |
| 4533 | struct mii_data *mii; |
| 4534 | |
| 4535 | s = splnet()splraise(0x4); |
| 4536 | |
| 4537 | switch(command) { |
| 4538 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 4539 | ifp->if_flags |= IFF_UP0x1; |
| 4540 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 4541 | bge_init(sc); |
| 4542 | break; |
| 4543 | |
| 4544 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 4545 | if (ifp->if_flags & IFF_UP0x1) { |
| 4546 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4547 | error = ENETRESET52; |
| 4548 | else |
| 4549 | bge_init(sc); |
| 4550 | } else { |
| 4551 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4552 | bge_stop(sc, 0); |
| 4553 | } |
| 4554 | break; |
| 4555 | |
| 4556 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 4557 | /* XXX Flow control is not supported for 1000BASE-SX */ |
| 4558 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 4559 | ifr->ifr_mediaifr_ifru.ifru_media &= ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 4560 | sc->bge_flowflags = 0; |
| 4561 | } |
| 4562 | |
| 4563 | /* Flow control requires full-duplex mode. */ |
| 4564 | if (IFM_SUBTYPE(ifr->ifr_media)((ifr->ifr_ifru.ifru_media) & 0x00000000000000ffULL) == IFM_AUTO0ULL || |
| 4565 | (ifr->ifr_mediaifr_ifru.ifru_media & IFM_FDX0x0000010000000000ULL) == 0) { |
| 4566 | ifr->ifr_mediaifr_ifru.ifru_media &= ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 4567 | } |
| 4568 | if (IFM_SUBTYPE(ifr->ifr_media)((ifr->ifr_ifru.ifru_media) & 0x00000000000000ffULL) != IFM_AUTO0ULL) { |
| 4569 | if ((ifr->ifr_mediaifr_ifru.ifru_media & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) == IFM_FLOW0x0000040000000000ULL) { |
| 4570 | /* We can do both TXPAUSE and RXPAUSE. */ |
| 4571 | ifr->ifr_mediaifr_ifru.ifru_media |= |
| 4572 | IFM_ETH_TXPAUSE0x0000000000040000ULL | IFM_ETH_RXPAUSE0x0000000000020000ULL; |
| 4573 | } |
| 4574 | sc->bge_flowflags = ifr->ifr_mediaifr_ifru.ifru_media & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 4575 | } |
| 4576 | /* FALLTHROUGH */ |
| 4577 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 4578 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 4579 | error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, |
| 4580 | command); |
| 4581 | } else { |
| 4582 | mii = &sc->bge_mii; |
| 4583 | error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, |
| 4584 | command); |
| 4585 | } |
| 4586 | break; |
| 4587 | |
| 4588 | case SIOCGIFRXR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((170))): |
| 4589 | error = bge_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_dataifr_ifru.ifru_data); |
| 4590 | break; |
| 4591 | |
| 4592 | default: |
| 4593 | error = ether_ioctl(ifp, &sc->arpcom, command, data); |
| 4594 | } |
| 4595 | |
| 4596 | if (error == ENETRESET52) { |
| 4597 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4598 | bge_iff(sc); |
| 4599 | error = 0; |
| 4600 | } |
| 4601 | |
| 4602 | splx(s)spllower(s); |
| 4603 | return (error); |
| 4604 | } |
| 4605 | |
| 4606 | int |
| 4607 | bge_rxrinfo(struct bge_softc *sc, struct if_rxrinfo *ifri) |
| 4608 | { |
| 4609 | struct if_rxring_info ifr[2]; |
| 4610 | u_int n = 0; |
| 4611 | |
| 4612 | memset(ifr, 0, sizeof(ifr))__builtin_memset((ifr), (0), (sizeof(ifr))); |
| 4613 | |
| 4614 | if (ISSET(sc->bge_flags, BGE_RXRING_VALID)((sc->bge_flags) & (0x00000002))) { |
| 4615 | ifr[n].ifr_size = sc->bge_rx_std_len; |
| 4616 | strlcpy(ifr[n].ifr_name, "std", sizeof(ifr[n].ifr_name)); |
| 4617 | ifr[n].ifr_info = sc->bge_std_ring; |
| 4618 | |
| 4619 | n++; |
| 4620 | } |
| 4621 | |
| 4622 | if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)((sc->bge_flags) & (0x00000004))) { |
| 4623 | ifr[n].ifr_size = BGE_JLEN((9022 + 2) + (sizeof(u_int64_t) - ((9022 + 2) % sizeof(u_int64_t )))); |
| 4624 | strlcpy(ifr[n].ifr_name, "jumbo", sizeof(ifr[n].ifr_name)); |
| 4625 | ifr[n].ifr_info = sc->bge_jumbo_ring; |
| 4626 | |
| 4627 | n++; |
| 4628 | } |
| 4629 | |
| 4630 | return (if_rxr_info_ioctl(ifri, n, ifr)); |
| 4631 | } |
| 4632 | |
| 4633 | void |
| 4634 | bge_watchdog(struct ifnet *ifp) |
| 4635 | { |
| 4636 | struct bge_softc *sc; |
| 4637 | |
| 4638 | sc = ifp->if_softc; |
| 4639 | |
| 4640 | printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname); |
| 4641 | |
| 4642 | bge_init(sc); |
| 4643 | |
| 4644 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 4645 | } |
| 4646 | |
| 4647 | void |
| 4648 | bge_stop_block(struct bge_softc *sc, bus_size_t reg, u_int32_t bit) |
| 4649 | { |
| 4650 | int i; |
| 4651 | |
| 4652 | BGE_CLRBIT(sc, reg, bit)((sc->bge_btag)->write_4((sc->bge_bhandle), (reg), ( (((sc->bge_btag)->read_4((sc->bge_bhandle), (reg))) & ~(bit))))); |
| 4653 | |
| 4654 | for (i = 0; i < BGE_TIMEOUT100000; i++) { |
| 4655 | if ((CSR_READ_4(sc, reg)((sc->bge_btag)->read_4((sc->bge_bhandle), (reg))) & bit) == 0) |
| 4656 | return; |
| 4657 | delay(100)(*delay_func)(100); |
| 4658 | } |
| 4659 | |
| 4660 | DPRINTFN(5, ("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n", |
| 4661 | sc->bge_dev.dv_xname, (u_long) reg, bit)); |
| 4662 | } |
| 4663 | |
| 4664 | /* |
| 4665 | * Stop the adapter and free any mbufs allocated to the |
| 4666 | * RX and TX lists. |
| 4667 | */ |
| 4668 | void |
| 4669 | bge_stop(struct bge_softc *sc, int softonly) |
| 4670 | { |
| 4671 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4672 | struct ifmedia_entry *ifm; |
| 4673 | struct mii_data *mii; |
| 4674 | int mtmp, itmp; |
| 4675 | |
| 4676 | timeout_del(&sc->bge_timeout); |
| 4677 | timeout_del(&sc->bge_rxtimeout); |
| 4678 | timeout_del(&sc->bge_rxtimeout_jumbo); |
| 4679 | |
| 4680 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 4681 | ifp->if_timer = 0; |
| 4682 | |
| 4683 | if (!softonly) { |
| 4684 | /* |
| 4685 | * Tell firmware we're shutting down. |
| 4686 | */ |
| 4687 | /* bge_stop_fw(sc); */ |
| 4688 | bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN0); |
| 4689 | |
| 4690 | /* |
| 4691 | * Disable all of the receiver blocks |
| 4692 | */ |
| 4693 | bge_stop_block(sc, BGE_RX_MODE0x0468, BGE_RXMODE_ENABLE0x00000002); |
| 4694 | bge_stop_block(sc, BGE_RBDI_MODE0x2C00, BGE_RBDIMODE_ENABLE0x00000002); |
| 4695 | bge_stop_block(sc, BGE_RXLP_MODE0x2000, BGE_RXLPMODE_ENABLE0x00000002); |
| 4696 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) |
| 4697 | bge_stop_block(sc, BGE_RXLS_MODE0x3400, BGE_RXLSMODE_ENABLE0x00000002); |
| 4698 | bge_stop_block(sc, BGE_RDBDI_MODE0x2400, BGE_RBDIMODE_ENABLE0x00000002); |
| 4699 | bge_stop_block(sc, BGE_RDC_MODE0x2800, BGE_RDCMODE_ENABLE0x00000002); |
| 4700 | bge_stop_block(sc, BGE_RBDC_MODE0x3000, BGE_RBDCMODE_ENABLE0x00000002); |
| 4701 | |
| 4702 | /* |
| 4703 | * Disable all of the transmit blocks |
| 4704 | */ |
| 4705 | bge_stop_block(sc, BGE_SRS_MODE0x1400, BGE_SRSMODE_ENABLE0x00000002); |
| 4706 | bge_stop_block(sc, BGE_SBDI_MODE0x1800, BGE_SBDIMODE_ENABLE0x00000002); |
| 4707 | bge_stop_block(sc, BGE_SDI_MODE0x0C00, BGE_SDIMODE_ENABLE0x00000002); |
| 4708 | bge_stop_block(sc, BGE_RDMA_MODE0x4800, BGE_RDMAMODE_ENABLE0x00000002); |
| 4709 | bge_stop_block(sc, BGE_SDC_MODE0x1000, BGE_SDCMODE_ENABLE0x00000002); |
| 4710 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) |
| 4711 | bge_stop_block(sc, BGE_DMAC_MODE0x6400, BGE_DMACMODE_ENABLE0x00000002); |
| 4712 | bge_stop_block(sc, BGE_SBDC_MODE0x1C00, BGE_SBDCMODE_ENABLE0x00000002); |
| 4713 | |
| 4714 | /* |
| 4715 | * Shut down all of the memory managers and related |
| 4716 | * state machines. |
| 4717 | */ |
| 4718 | bge_stop_block(sc, BGE_HCC_MODE0x3C00, BGE_HCCMODE_ENABLE0x00000002); |
| 4719 | bge_stop_block(sc, BGE_WDMA_MODE0x4C00, BGE_WDMAMODE_ENABLE0x00000002); |
| 4720 | if (BGE_IS_5700_FAMILY(sc)((sc)->bge_flags & 0x00010000)) |
| 4721 | bge_stop_block(sc, BGE_MBCF_MODE0x3800, BGE_MBCFMODE_ENABLE0x00000002); |
| 4722 | |
| 4723 | CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5C00) , (0xFFFFFFFF))); |
| 4724 | CSR_WRITE_4(sc, BGE_FTQ_RESET, 0)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x5C00) , (0))); |
| 4725 | |
| 4726 | if (!BGE_IS_5705_PLUS(sc)((sc)->bge_flags & 0x00001000)) { |
| 4727 | bge_stop_block(sc, BGE_BMAN_MODE0x4400, BGE_BMANMODE_ENABLE0x00000002); |
| 4728 | bge_stop_block(sc, BGE_MARB_MODE0x4000, BGE_MARBMODE_ENABLE0x00000002); |
| 4729 | } |
| 4730 | |
| 4731 | bge_reset(sc); |
| 4732 | bge_sig_legacy(sc, BGE_RESET_SHUTDOWN0); |
| 4733 | bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN0); |
| 4734 | |
| 4735 | /* |
| 4736 | * Tell firmware we're shutting down. |
| 4737 | */ |
| 4738 | BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x6800) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x6800 ))) & ~(0x00010000))))); |
| 4739 | } |
| 4740 | |
| 4741 | intr_barrier(sc->bge_intrhand); |
| 4742 | ifq_barrier(&ifp->if_snd); |
| 4743 | |
| 4744 | ifq_clr_oactive(&ifp->if_snd); |
| 4745 | |
| 4746 | /* Free the RX lists. */ |
| 4747 | bge_free_rx_ring_std(sc); |
| 4748 | |
| 4749 | /* Free jumbo RX list. */ |
| 4750 | if (sc->bge_flags & BGE_JUMBO_RING0x01000000) |
| 4751 | bge_free_rx_ring_jumbo(sc); |
| 4752 | |
| 4753 | /* Free TX buffers. */ |
| 4754 | bge_free_tx_ring(sc); |
| 4755 | |
| 4756 | /* |
| 4757 | * Isolate/power down the PHY, but leave the media selection |
| 4758 | * unchanged so that things will be put back to normal when |
| 4759 | * we bring the interface back up. |
| 4760 | */ |
| 4761 | if (!(sc->bge_flags & BGE_FIBER_TBI0x00000200)) { |
| 4762 | mii = &sc->bge_mii; |
| 4763 | itmp = ifp->if_flags; |
| 4764 | ifp->if_flags |= IFF_UP0x1; |
| 4765 | ifm = mii->mii_media.ifm_cur; |
| 4766 | mtmp = ifm->ifm_media; |
| 4767 | ifm->ifm_media = IFM_ETHER0x0000000000000100ULL|IFM_NONE2ULL; |
| 4768 | mii_mediachg(mii); |
| 4769 | ifm->ifm_media = mtmp; |
| 4770 | ifp->if_flags = itmp; |
| 4771 | } |
| 4772 | |
| 4773 | sc->bge_tx_saved_considx = BGE_TXCONS_UNSET0xFFFF; |
| 4774 | |
| 4775 | if (!softonly) { |
| 4776 | /* Clear MAC's link state (PHY may still have link UP). */ |
| 4777 | BGE_STS_CLRBIT(sc, BGE_STS_LINK)((sc)->bge_sts &= ~(0x00000001)); |
| 4778 | } |
| 4779 | } |
| 4780 | |
| 4781 | void |
| 4782 | bge_link_upd(struct bge_softc *sc) |
| 4783 | { |
| 4784 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4785 | struct mii_data *mii = &sc->bge_mii; |
| 4786 | u_int32_t status; |
| 4787 | int link; |
| 4788 | |
| 4789 | /* Clear 'pending link event' flag */ |
| 4790 | BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT)((sc)->bge_sts &= ~(0x00000002)); |
| 4791 | |
| 4792 | /* |
| 4793 | * Process link state changes. |
| 4794 | * Grrr. The link status word in the status block does |
| 4795 | * not work correctly on the BCM5700 rev AX and BX chips, |
| 4796 | * according to all available information. Hence, we have |
| 4797 | * to enable MII interrupts in order to properly obtain |
| 4798 | * async link changes. Unfortunately, this also means that |
| 4799 | * we have to read the MAC status register to detect link |
| 4800 | * changes, thereby adding an additional register access to |
| 4801 | * the interrupt handler. |
| 4802 | * |
| 4803 | */ |
| 4804 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57000x07) { |
| 4805 | status = CSR_READ_4(sc, BGE_MAC_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0404)) ); |
| 4806 | if (status & BGE_MACSTAT_MI_INTERRUPT0x00800000) { |
| 4807 | mii_pollstat(mii); |
| 4808 | |
| 4809 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 4810 | mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL && |
| 4811 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) != IFM_NONE2ULL) |
| 4812 | BGE_STS_SETBIT(sc, BGE_STS_LINK)((sc)->bge_sts |= (0x00000001)); |
| 4813 | else if (BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 4814 | (!(mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL) || |
| 4815 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_NONE2ULL)) |
| 4816 | BGE_STS_CLRBIT(sc, BGE_STS_LINK)((sc)->bge_sts &= ~(0x00000001)); |
| 4817 | |
| 4818 | /* Clear the interrupt */ |
| 4819 | CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0408) , (0x00800000))) |
| 4820 | BGE_EVTENB_MI_INTERRUPT)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0408) , (0x00800000))); |
| 4821 | bge_miibus_readreg(&sc->bge_dev, sc->bge_phy_addr, |
| 4822 | BRGPHY_MII_ISR0x1A); |
| 4823 | bge_miibus_writereg(&sc->bge_dev, sc->bge_phy_addr, |
| 4824 | BRGPHY_MII_IMR0x1B, BRGPHY_INTRS~(0x0002|0x0004|0x0008)); |
| 4825 | } |
| 4826 | return; |
| 4827 | } |
| 4828 | |
| 4829 | if (sc->bge_flags & BGE_FIBER_TBI0x00000200) { |
| 4830 | status = CSR_READ_4(sc, BGE_MAC_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0404)) ); |
| 4831 | if (status & BGE_MACSTAT_TBI_PCS_SYNCHED0x00000001) { |
| 4832 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001))) { |
| 4833 | BGE_STS_SETBIT(sc, BGE_STS_LINK)((sc)->bge_sts |= (0x00000001)); |
| 4834 | if (BGE_ASICREV(sc->bge_chipid)((sc->bge_chipid) >> 12) == BGE_ASICREV_BCM57040x02) |
| 4835 | BGE_CLRBIT(sc, BGE_MAC_MODE,((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) & ~(0x00020000))))) |
| 4836 | BGE_MACMODE_TBI_SEND_CFGS)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0400) , ((((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400 ))) & ~(0x00020000))))); |
| 4837 | CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0xFFFFFFFF))); |
| 4838 | status = CSR_READ_4(sc, BGE_MAC_MODE)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0400)) ); |
| 4839 | link = (status & BGE_MACMODE_HALF_DUPLEX0x00000002) ? |
| 4840 | LINK_STATE_HALF_DUPLEX5 : |
| 4841 | LINK_STATE_FULL_DUPLEX6; |
| 4842 | ifp->if_baudrateif_data.ifi_baudrate = IF_Gbps(1)((((((1) * 1000ULL) * 1000ULL) * 1000ULL))); |
| 4843 | if (ifp->if_link_stateif_data.ifi_link_state != link) { |
| 4844 | ifp->if_link_stateif_data.ifi_link_state = link; |
| 4845 | if_link_state_change(ifp); |
| 4846 | } |
| 4847 | } |
| 4848 | } else if (BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001))) { |
| 4849 | BGE_STS_CLRBIT(sc, BGE_STS_LINK)((sc)->bge_sts &= ~(0x00000001)); |
| 4850 | link = LINK_STATE_DOWN2; |
| 4851 | ifp->if_baudrateif_data.ifi_baudrate = 0; |
| 4852 | if (ifp->if_link_stateif_data.ifi_link_state != link) { |
| 4853 | ifp->if_link_stateif_data.ifi_link_state = link; |
| 4854 | if_link_state_change(ifp); |
| 4855 | } |
| 4856 | } |
| 4857 | } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)((sc)->bge_sts & (0x00000004))) { |
| 4858 | /* |
| 4859 | * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit |
| 4860 | * in status word always set. Workaround this bug by reading |
| 4861 | * PHY link status directly. |
| 4862 | */ |
| 4863 | link = (CSR_READ_4(sc, BGE_MI_STS)((sc->bge_btag)->read_4((sc->bge_bhandle), (0x0450)) ) & BGE_MISTS_LINK0x00000001)? |
| 4864 | BGE_STS_LINK0x00000001 : 0; |
| 4865 | |
| 4866 | if (BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) != link) { |
| 4867 | mii_pollstat(mii); |
| 4868 | |
| 4869 | if (!BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 4870 | mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL && |
| 4871 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) != IFM_NONE2ULL) |
| 4872 | BGE_STS_SETBIT(sc, BGE_STS_LINK)((sc)->bge_sts |= (0x00000001)); |
| 4873 | else if (BGE_STS_BIT(sc, BGE_STS_LINK)((sc)->bge_sts & (0x00000001)) && |
| 4874 | (!(mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL) || |
| 4875 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) == IFM_NONE2ULL)) |
| 4876 | BGE_STS_CLRBIT(sc, BGE_STS_LINK)((sc)->bge_sts &= ~(0x00000001)); |
| 4877 | } |
| 4878 | } else { |
| 4879 | /* |
| 4880 | * For controllers that call mii_tick, we have to poll |
| 4881 | * link status. |
| 4882 | */ |
| 4883 | mii_pollstat(mii); |
| 4884 | } |
| 4885 | |
| 4886 | /* Clear the attention */ |
| 4887 | CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))) |
| 4888 | BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))) |
| 4889 | BGE_MACSTAT_LINK_CHANGED)((sc->bge_btag)->write_4((sc->bge_bhandle), (0x0404) , (0x00000010| 0x00000008|0x00400000| 0x00001000))); |
| 4890 | } |
| 4891 | |
| 4892 | #if NKSTAT1 > 0 |
| 4893 | |
| 4894 | struct bge_stat { |
| 4895 | char name[KSTAT_KV_NAMELEN16]; |
| 4896 | enum kstat_kv_unit unit; |
| 4897 | bus_size_t reg; |
| 4898 | }; |
| 4899 | |
| 4900 | #define MACREG(_f)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, _f) \ |
| 4901 | BGE_MAC_STATS0x0800 + offsetof(struct bge_mac_stats_regs, _f)__builtin_offsetof(struct bge_mac_stats_regs, _f) |
| 4902 | |
| 4903 | static const struct bge_stat bge_kstat_tpl[] = { |
| 4904 | /* MAC stats */ |
| 4905 | [bge_stat_out_octets] = { "out octets", KSTAT_KV_U_BYTES, |
| 4906 | MACREG(ifHCOutOctets)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCOutOctets ) }, |
| 4907 | [bge_stat_collisions] = { "collisions", KSTAT_KV_U_NONE, 0 }, |
| 4908 | [bge_stat_xon_sent] = { "xon sent", KSTAT_KV_U_NONE, |
| 4909 | MACREG(outXonSent)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, outXonSent ) }, |
| 4910 | [bge_stat_xoff_sent] = { "xoff sent", KSTAT_KV_U_NONE, |
| 4911 | MACREG(outXonSent)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, outXonSent ) }, |
| 4912 | [bge_stat_xmit_errors] = { "xmit errors", KSTAT_KV_U_NONE, |
| 4913 | MACREG(dot3StatsInternalMacTransmitErrors)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsInternalMacTransmitErrors ) }, |
| 4914 | [bge_stat_coll_frames] = { "coll frames", KSTAT_KV_U_PACKETS, |
| 4915 | MACREG(dot3StatsSingleCollisionFrames)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsSingleCollisionFrames ) }, |
| 4916 | [bge_stat_multicoll_frames] = { "multicoll frames", KSTAT_KV_U_PACKETS, |
| 4917 | MACREG(dot3StatsMultipleCollisionFrames)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsMultipleCollisionFrames ) }, |
| 4918 | [bge_stat_deferred_xmit] = { "deferred xmit", KSTAT_KV_U_NONE, |
| 4919 | MACREG(dot3StatsDeferredTransmissions)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsDeferredTransmissions ) }, |
| 4920 | [bge_stat_excess_coll] = { "excess coll", KSTAT_KV_U_NONE, |
| 4921 | MACREG(dot3StatsExcessiveCollisions)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsExcessiveCollisions ) }, |
| 4922 | [bge_stat_late_coll] = { "late coll", KSTAT_KV_U_NONE, |
| 4923 | MACREG(dot3StatsLateCollisions)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsLateCollisions ) }, |
| 4924 | [bge_stat_out_ucast_pkt] = { "out ucast pkts", KSTAT_KV_U_PACKETS, 0 }, |
| 4925 | [bge_stat_out_mcast_pkt] = { "out mcast pkts", KSTAT_KV_U_PACKETS, 0 }, |
| 4926 | [bge_stat_out_bcast_pkt] = { "out bcast pkts", KSTAT_KV_U_PACKETS, 0 }, |
| 4927 | [bge_stat_in_octets] = { "in octets", KSTAT_KV_U_BYTES, |
| 4928 | MACREG(ifHCInOctets)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCInOctets ) }, |
| 4929 | [bge_stat_fragments] = { "fragments", KSTAT_KV_U_NONE, |
| 4930 | MACREG(etherStatsFragments)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, etherStatsFragments ) }, |
| 4931 | [bge_stat_in_ucast_pkt] = { "in ucast pkts", KSTAT_KV_U_PACKETS, |
| 4932 | MACREG(ifHCInUcastPkts)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCInUcastPkts ) }, |
| 4933 | [bge_stat_in_mcast_pkt] = { "in mcast pkts", KSTAT_KV_U_PACKETS, |
| 4934 | MACREG(ifHCInMulticastPkts)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCInMulticastPkts ) }, |
| 4935 | [bge_stat_in_bcast_pkt] = { "in bcast pkts", KSTAT_KV_U_PACKETS, |
| 4936 | MACREG(ifHCInBroadcastPkts)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, ifHCInBroadcastPkts ) }, |
| 4937 | [bge_stat_fcs_errors] = { "FCS errors", KSTAT_KV_U_NONE, |
| 4938 | MACREG(dot3StatsFCSErrors)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsFCSErrors ) }, |
| 4939 | [bge_stat_align_errors] = { "align errors", KSTAT_KV_U_NONE, |
| 4940 | MACREG(dot3StatsAlignmentErrors)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsAlignmentErrors ) }, |
| 4941 | [bge_stat_xon_rcvd] = { "xon rcvd", KSTAT_KV_U_NONE, |
| 4942 | MACREG(xonPauseFramesReceived)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, xonPauseFramesReceived ) }, |
| 4943 | [bge_stat_xoff_rcvd] = { "xoff rcvd", KSTAT_KV_U_NONE, |
| 4944 | MACREG(xoffPauseFramesReceived)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, xoffPauseFramesReceived ) }, |
| 4945 | [bge_stat_ctrl_frame_rcvd] = { "ctrlframes rcvd", KSTAT_KV_U_NONE, |
| 4946 | MACREG(macControlFramesReceived)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, macControlFramesReceived ) }, |
| 4947 | [bge_stat_xoff_entered] = { "xoff entered", KSTAT_KV_U_NONE, |
| 4948 | MACREG(xoffStateEntered)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, xoffStateEntered ) }, |
| 4949 | [bge_stat_too_long_frames] = { "too long frames", KSTAT_KV_U_NONE, |
| 4950 | MACREG(dot3StatsFramesTooLong)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, dot3StatsFramesTooLong ) }, |
| 4951 | [bge_stat_jabbers] = { "jabbers", KSTAT_KV_U_NONE, |
| 4952 | MACREG(etherStatsJabbers)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, etherStatsJabbers ) }, |
| 4953 | [bge_stat_too_short_pkts] = { "too short pkts", KSTAT_KV_U_NONE, |
| 4954 | MACREG(etherStatsUndersizePkts)0x0800 + __builtin_offsetof(struct bge_mac_stats_regs, etherStatsUndersizePkts ) }, |
| 4955 | |
| 4956 | /* Send Data Initiator stats */ |
| 4957 | [bge_stat_dma_rq_full] = { "DMA RQ full", KSTAT_KV_U_NONE, |
| 4958 | BGE_LOCSTATS_DMA_RQ_FULL0x0CC0 }, |
| 4959 | [bge_stat_dma_hprq_full] = { "DMA HPRQ full", KSTAT_KV_U_NONE, |
| 4960 | BGE_LOCSTATS_DMA_HIPRIO_RQ_FULL0x0CC4 }, |
| 4961 | [bge_stat_sdc_queue_full] = { "SDC queue full", KSTAT_KV_U_NONE, |
| 4962 | BGE_LOCSTATS_SDC_QUEUE_FULL0x0CC8 }, |
| 4963 | [bge_stat_nic_sendprod_set] = { "sendprod set", KSTAT_KV_U_NONE, |
| 4964 | BGE_LOCSTATS_NIC_SENDPROD_SET0x0CCC }, |
| 4965 | [bge_stat_status_updated] = { "stats updated", KSTAT_KV_U_NONE, |
| 4966 | BGE_LOCSTATS_STATS_UPDATED0x0CD0 }, |
| 4967 | [bge_stat_irqs] = { "irqs", KSTAT_KV_U_NONE, BGE_LOCSTATS_IRQS0x0CD4 }, |
| 4968 | [bge_stat_avoided_irqs] = { "avoided irqs", KSTAT_KV_U_NONE, |
| 4969 | BGE_LOCSTATS_AVOIDED_IRQS0x0CD8 }, |
| 4970 | [bge_stat_tx_thresh_hit] = { "tx thresh hit", KSTAT_KV_U_NONE, |
| 4971 | BGE_LOCSTATS_TX_THRESH_HIT0x0CDC }, |
| 4972 | |
| 4973 | /* Receive List Placement stats */ |
| 4974 | [bge_stat_filtdrop] = { "filtdrop", KSTAT_KV_U_NONE, |
| 4975 | BGE_RXLP_LOCSTAT_FILTDROP0x2240 }, |
| 4976 | [bge_stat_dma_wrq_full] = { "DMA WRQ full", KSTAT_KV_U_NONE, |
| 4977 | BGE_RXLP_LOCSTAT_DMA_WRQ_FULL0x2244 }, |
| 4978 | [bge_stat_dma_hpwrq_full] = { "DMA HPWRQ full", KSTAT_KV_U_NONE, |
| 4979 | BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL0x2248 }, |
| 4980 | [bge_stat_out_of_bds] = { "out of BDs", KSTAT_KV_U_NONE, |
| 4981 | BGE_RXLP_LOCSTAT_OUT_OF_BDS0x224C }, |
| 4982 | [bge_stat_if_in_drops] = { "if in drops", KSTAT_KV_U_NONE, 0 }, |
| 4983 | [bge_stat_if_in_errors] = { "if in errors", KSTAT_KV_U_NONE, 0 }, |
| 4984 | [bge_stat_rx_thresh_hit] = { "rx thresh hit", KSTAT_KV_U_NONE, |
| 4985 | BGE_RXLP_LOCSTAT_RXTHRESH_HIT0x2258 }, |
| 4986 | }; |
| 4987 | |
| 4988 | int |
| 4989 | bge_kstat_read(struct kstat *ks) |
| 4990 | { |
| 4991 | struct bge_softc *sc = ks->ks_softc; |
| 4992 | struct kstat_kv *kvs = ks->ks_data; |
| 4993 | int i; |
| 4994 | |
| 4995 | bge_stats_update_regs(sc); |
| 4996 | |
| 4997 | for (i = 0; i < nitems(bge_kstat_tpl)(sizeof((bge_kstat_tpl)) / sizeof((bge_kstat_tpl)[0])); i++) { |
| 4998 | if (bge_kstat_tpl[i].reg != 0) |
| 4999 | kstat_kv_u32(kvs)(kvs)->kv_v.v_u32 += CSR_READ_4(sc,((sc->bge_btag)->read_4((sc->bge_bhandle), (bge_kstat_tpl [i].reg))) |
| 5000 | bge_kstat_tpl[i].reg)((sc->bge_btag)->read_4((sc->bge_bhandle), (bge_kstat_tpl [i].reg))); |
| 5001 | kvs++; |
| 5002 | } |
| 5003 | |
| 5004 | getnanouptime(&ks->ks_updated); |
| 5005 | return 0; |
| 5006 | } |
| 5007 | |
| 5008 | void |
| 5009 | bge_kstat_attach(struct bge_softc *sc) |
| 5010 | { |
| 5011 | struct kstat *ks; |
| 5012 | struct kstat_kv *kvs; |
| 5013 | int i; |
| 5014 | |
| 5015 | |
| 5016 | ks = kstat_create(sc->bge_dev.dv_xname, 0, "bge-stats", 0, |
| 5017 | KSTAT_T_KV1, 0); |
| 5018 | if (ks == NULL((void *)0)) |
| 5019 | return; |
| 5020 | |
| 5021 | kvs = mallocarray(nitems(bge_kstat_tpl)(sizeof((bge_kstat_tpl)) / sizeof((bge_kstat_tpl)[0])), sizeof(*kvs), M_DEVBUF2, |
| 5022 | M_ZERO0x0008 | M_WAITOK0x0001); |
| 5023 | for (i = 0; i < nitems(bge_kstat_tpl)(sizeof((bge_kstat_tpl)) / sizeof((bge_kstat_tpl)[0])); i++) { |
| 5024 | const struct bge_stat *tpl = &bge_kstat_tpl[i]; |
| 5025 | kstat_kv_unit_init(&kvs[i], tpl->name, KSTAT_KV_T_UINT32, |
| 5026 | tpl->unit); |
| 5027 | } |
| 5028 | |
| 5029 | kstat_set_mutex(ks, &sc->bge_kstat_mtx); |
| 5030 | ks->ks_softc = sc; |
| 5031 | ks->ks_data = kvs; |
| 5032 | ks->ks_datalen = nitems(bge_kstat_tpl)(sizeof((bge_kstat_tpl)) / sizeof((bge_kstat_tpl)[0])) * sizeof(*kvs); |
| 5033 | ks->ks_read = bge_kstat_read; |
| 5034 | |
| 5035 | sc->bge_kstat = ks; |
| 5036 | kstat_install(ks); |
| 5037 | } |
| 5038 | #endif /* NKSTAT > 0 */ |