File: | dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c |
Warning: | line 1789, column 9 Value stored to 'dcfclk' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | // SPDX-License-Identifier: MIT |
2 | /* |
3 | * Copyright 2022 Advanced Micro Devices, Inc. |
4 | * |
5 | * Permission is hereby granted, free of charge, to any person obtaining a |
6 | * copy of this software and associated documentation files (the "Software"), |
7 | * to deal in the Software without restriction, including without limitation |
8 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
9 | * and/or sell copies of the Software, and to permit persons to whom the |
10 | * Software is furnished to do so, subject to the following conditions: |
11 | * |
12 | * The above copyright notice and this permission notice shall be included in |
13 | * all copies or substantial portions of the Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
19 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
20 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
21 | * OTHER DEALINGS IN THE SOFTWARE. |
22 | * |
23 | * Authors: AMD |
24 | * |
25 | */ |
26 | #include "dcn32_fpu.h" |
27 | #include "dc_link_dp.h" |
28 | #include "dcn32/dcn32_resource.h" |
29 | #include "dcn20/dcn20_resource.h" |
30 | #include "display_mode_vba_util_32.h" |
31 | // We need this includes for WATERMARKS_* defines |
32 | #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h" |
33 | #include "dcn30/dcn30_resource.h" |
34 | |
35 | #define DC_LOGGER_INIT(logger) |
36 | |
37 | struct _vcs_dpi_ip_params_st dcn3_2_ip = { |
38 | .gpuvm_enable = 0, |
39 | .gpuvm_max_page_table_levels = 4, |
40 | .hostvm_enable = 0, |
41 | .rob_buffer_size_kbytes = 128, |
42 | .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE256, |
43 | .config_return_buffer_size_in_kbytes = 1280, |
44 | .compressed_buffer_segment_size_in_kbytes = 64, |
45 | .meta_fifo_size_in_kentries = 22, |
46 | .zero_size_buffer_entries = 512, |
47 | .compbuf_reserved_space_64b = 256, |
48 | .compbuf_reserved_space_zs = 64, |
49 | .dpp_output_buffer_pixels = 2560, |
50 | .opp_output_buffer_lines = 1, |
51 | .pixel_chunk_size_kbytes = 8, |
52 | .alpha_pixel_chunk_size_kbytes = 4, |
53 | .min_pixel_chunk_size_bytes = 1024, |
54 | .dcc_meta_buffer_size_bytes = 6272, |
55 | .meta_chunk_size_kbytes = 2, |
56 | .min_meta_chunk_size_bytes = 256, |
57 | .writeback_chunk_size_kbytes = 8, |
58 | .ptoi_supported = false0, |
59 | .num_dsc = 4, |
60 | .maximum_dsc_bits_per_component = 12, |
61 | .maximum_pixels_per_line_per_dsc_unit = 6016, |
62 | .dsc422_native_support = true1, |
63 | .is_line_buffer_bpp_fixed = true1, |
64 | .line_buffer_fixed_bpp = 57, |
65 | .line_buffer_size_bits = 1171920, |
66 | .max_line_buffer_lines = 32, |
67 | .writeback_interface_buffer_size_kbytes = 90, |
68 | .max_num_dpp = 4, |
69 | .max_num_otg = 4, |
70 | .max_num_hdmi_frl_outputs = 1, |
71 | .max_num_wb = 1, |
72 | .max_dchub_pscl_bw_pix_per_clk = 4, |
73 | .max_pscl_lb_bw_pix_per_clk = 2, |
74 | .max_lb_vscl_bw_pix_per_clk = 4, |
75 | .max_vscl_hscl_bw_pix_per_clk = 4, |
76 | .max_hscl_ratio = 6, |
77 | .max_vscl_ratio = 6, |
78 | .max_hscl_taps = 8, |
79 | .max_vscl_taps = 8, |
80 | .dpte_buffer_size_in_pte_reqs_luma = 64, |
81 | .dpte_buffer_size_in_pte_reqs_chroma = 34, |
82 | .dispclk_ramp_margin_percent = 1, |
83 | .max_inter_dcn_tile_repeaters = 8, |
84 | .cursor_buffer_size = 16, |
85 | .cursor_chunk_size = 2, |
86 | .writeback_line_buffer_buffer_size = 0, |
87 | .writeback_min_hscl_ratio = 1, |
88 | .writeback_min_vscl_ratio = 1, |
89 | .writeback_max_hscl_ratio = 1, |
90 | .writeback_max_vscl_ratio = 1, |
91 | .writeback_max_hscl_taps = 1, |
92 | .writeback_max_vscl_taps = 1, |
93 | .dppclk_delay_subtotal = 47, |
94 | .dppclk_delay_scl = 50, |
95 | .dppclk_delay_scl_lb_only = 16, |
96 | .dppclk_delay_cnvc_formatter = 28, |
97 | .dppclk_delay_cnvc_cursor = 6, |
98 | .dispclk_delay_subtotal = 125, |
99 | .dynamic_metadata_vm_enabled = false0, |
100 | .odm_combine_4to1_supported = false0, |
101 | .dcc_supported = true1, |
102 | .max_num_dp2p0_outputs = 2, |
103 | .max_num_dp2p0_streams = 4, |
104 | }; |
105 | |
106 | struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { |
107 | .clock_limits = { |
108 | { |
109 | .state = 0, |
110 | .dcfclk_mhz = 1564.0, |
111 | .fabricclk_mhz = 400.0, |
112 | .dispclk_mhz = 2150.0, |
113 | .dppclk_mhz = 2150.0, |
114 | .phyclk_mhz = 810.0, |
115 | .phyclk_d18_mhz = 667.0, |
116 | .phyclk_d32_mhz = 625.0, |
117 | .socclk_mhz = 1200.0, |
118 | .dscclk_mhz = 716.667, |
119 | .dram_speed_mts = 16000.0, |
120 | .dtbclk_mhz = 1564.0, |
121 | }, |
122 | }, |
123 | .num_states = 1, |
124 | .sr_exit_time_us = 42.97, |
125 | .sr_enter_plus_exit_time_us = 49.94, |
126 | .sr_exit_z8_time_us = 285.0, |
127 | .sr_enter_plus_exit_z8_time_us = 320, |
128 | .writeback_latency_us = 12.0, |
129 | .round_trip_ping_latency_dcfclk_cycles = 263, |
130 | .urgent_latency_pixel_data_only_us = 4.0, |
131 | .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, |
132 | .urgent_latency_vm_data_only_us = 4.0, |
133 | .fclk_change_latency_us = 20, |
134 | .usr_retraining_latency_us = 2, |
135 | .smn_latency_us = 2, |
136 | .mall_allocated_for_dcn_mbytes = 64, |
137 | .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, |
138 | .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, |
139 | .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, |
140 | .pct_ideal_sdp_bw_after_urgent = 90.0, |
141 | .pct_ideal_fabric_bw_after_urgent = 67.0, |
142 | .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, |
143 | .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented |
144 | .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented |
145 | .pct_ideal_dram_bw_after_urgent_strobe = 67.0, |
146 | .max_avg_sdp_bw_use_normal_percent = 80.0, |
147 | .max_avg_fabric_bw_use_normal_percent = 60.0, |
148 | .max_avg_dram_bw_use_normal_strobe_percent = 50.0, |
149 | .max_avg_dram_bw_use_normal_percent = 15.0, |
150 | .num_chans = 8, |
151 | .dram_channel_width_bytes = 2, |
152 | .fabric_datapath_to_dcn_data_return_bytes = 64, |
153 | .return_bus_width_bytes = 64, |
154 | .downspread_percent = 0.38, |
155 | .dcn_downspread_percent = 0.5, |
156 | .dram_clock_change_latency_us = 400, |
157 | .dispclk_dppclk_vco_speed_mhz = 4300.0, |
158 | .do_urgent_latency_adjustment = true1, |
159 | .urgent_latency_adjustment_fabric_clock_component_us = 1.0, |
160 | .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000, |
161 | }; |
162 | |
163 | void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr) |
164 | { |
165 | /* defaults */ |
166 | double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us; |
167 | double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us; |
168 | double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us; |
169 | double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us; |
170 | /* For min clocks use as reported by PM FW and report those as min */ |
171 | uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz; |
172 | uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; |
173 | uint16_t setb_min_uclk_mhz = min_uclk_mhz; |
174 | uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz; |
175 | |
176 | dc_assert_fp_enabled(); |
177 | |
178 | /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */ |
179 | if (dcfclk_mhz_for_the_second_state) |
180 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state; |
181 | else |
182 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz; |
183 | |
184 | if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz) |
185 | setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz; |
186 | |
187 | /* Set A - Normal - default values */ |
188 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].valid = true1; |
189 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us = pstate_latency_us; |
190 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
191 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.sr_exit_time_us = sr_exit_time_us; |
192 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
193 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; |
194 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
195 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.max_dcfclk = 0xFFFF; |
196 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.min_uclk = min_uclk_mhz; |
197 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.max_uclk = 0xFFFF; |
198 | |
199 | /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */ |
200 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].valid = true1; |
201 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.pstate_latency_us = pstate_latency_us; |
202 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
203 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_exit_time_us = sr_exit_time_us; |
204 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
205 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE; |
206 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.max_dcfclk = 0xFFFF; |
207 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_uclk = setb_min_uclk_mhz; |
208 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.max_uclk = 0xFFFF; |
209 | |
210 | /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */ |
211 | /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */ |
212 | if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) { |
213 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].valid = true1; |
214 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.pstate_latency_us = 50; |
215 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
216 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_exit_time_us = sr_exit_time_us; |
217 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us; |
218 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE; |
219 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
220 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.max_dcfclk = 0xFFFF; |
221 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.min_uclk = min_uclk_mhz; |
222 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.max_uclk = 0xFFFF; |
223 | clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16; |
224 | clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50; |
225 | clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16; |
226 | clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9; |
227 | clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16; |
228 | clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8; |
229 | clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16; |
230 | clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5; |
231 | } |
232 | /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */ |
233 | /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */ |
234 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].valid = true1; |
235 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us; |
236 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.fclk_change_latency_us = fclk_change_latency_us; |
237 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD |
238 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD |
239 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.wm_type = WATERMARKS_MALL; |
240 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz; |
241 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.max_dcfclk = 0xFFFF; |
242 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.min_uclk = min_uclk_mhz; |
243 | clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.max_uclk = 0xFFFF; |
244 | } |
245 | |
246 | /* |
247 | * Finds dummy_latency_index when MCLK switching using firmware based |
248 | * vblank stretch is enabled. This function will iterate through the |
249 | * table of dummy pstate latencies until the lowest value that allows |
250 | * dm_allow_self_refresh_and_mclk_switch to happen is found |
251 | */ |
252 | int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc, |
253 | struct dc_state *context, |
254 | display_e2e_pipe_params_st *pipes, |
255 | int pipe_cnt, |
256 | int vlevel) |
257 | { |
258 | const int max_latency_table_entries = 4; |
259 | const struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
260 | int dummy_latency_index = 0; |
261 | |
262 | dc_assert_fp_enabled(); |
263 | |
264 | while (dummy_latency_index < max_latency_table_entries) { |
265 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
266 | dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
267 | dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false0); |
268 | |
269 | if (vlevel < context->bw_ctx.dml.vba.soc.num_states && |
270 | vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) |
271 | break; |
272 | |
273 | dummy_latency_index++; |
274 | } |
275 | |
276 | if (dummy_latency_index == max_latency_table_entries) { |
277 | ASSERT(dummy_latency_index != max_latency_table_entries)do { if (({ static int __warned; int __ret = !!(!(dummy_latency_index != max_latency_table_entries)); if (__ret && !__warned ) { printf("WARNING %s failed at %s:%d\n", "!(dummy_latency_index != max_latency_table_entries)" , "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 277); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
278 | /* If the execution gets here, it means dummy p_states are |
279 | * not possible. This should never happen and would mean |
280 | * something is severely wrong. |
281 | * Here we reset dummy_latency_index to 3, because it is |
282 | * better to have underflows than system crashes. |
283 | */ |
284 | dummy_latency_index = max_latency_table_entries - 1; |
285 | } |
286 | |
287 | return dummy_latency_index; |
288 | } |
289 | |
290 | /** |
291 | * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes |
292 | * and populate pipe_ctx with those params. |
293 | * @dc: [in] current dc state |
294 | * @context: [in] new dc state |
295 | * @pipes: [in] DML pipe params array |
296 | * @pipe_cnt: [in] DML pipe count |
297 | * |
298 | * This function must be called AFTER the phantom pipes are added to context |
299 | * and run through DML (so that the DLG params for the phantom pipes can be |
300 | * populated), and BEFORE we program the timing for the phantom pipes. |
301 | */ |
302 | void dcn32_helper_populate_phantom_dlg_params(struct dc *dc, |
303 | struct dc_state *context, |
304 | display_e2e_pipe_params_st *pipes, |
305 | int pipe_cnt) |
306 | { |
307 | uint32_t i, pipe_idx; |
308 | |
309 | dc_assert_fp_enabled(); |
310 | |
311 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
312 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
313 | |
314 | if (!pipe->stream) |
315 | continue; |
316 | |
317 | if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { |
318 | pipes[pipe_idx].pipe.dest.vstartup_start = |
319 | get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
320 | pipes[pipe_idx].pipe.dest.vupdate_offset = |
321 | get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
322 | pipes[pipe_idx].pipe.dest.vupdate_width = |
323 | get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
324 | pipes[pipe_idx].pipe.dest.vready_offset = |
325 | get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
326 | pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest; |
327 | } |
328 | pipe_idx++; |
329 | } |
330 | } |
331 | |
332 | /** |
333 | * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe |
334 | * @context: [in] New DC state to be programmed |
335 | * @pipe_e2e: [in] DML pipe end to end context |
336 | * |
337 | * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both |
338 | * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is |
339 | * determined by DPPClk requirements |
340 | * |
341 | * This function follows the same policy as DML: |
342 | * - Check for ODM combine requirements / policy first |
343 | * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and |
344 | * MPC is required |
345 | * |
346 | * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits). |
347 | */ |
348 | uint8_t dcn32_predict_pipe_split(struct dc_state *context, |
349 | display_e2e_pipe_params_st *pipe_e2e) |
350 | { |
351 | double pscl_throughput; |
352 | double pscl_throughput_chroma; |
353 | double dpp_clk_single_dpp, clock; |
354 | double clk_frequency = 0.0; |
355 | double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz; |
356 | bool_Bool total_available_pipes_support = false0; |
357 | uint32_t number_of_dpp = 0; |
358 | enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled; |
359 | double req_dispclk_per_surface = 0; |
360 | uint8_t num_splits = 0; |
361 | |
362 | dc_assert_fp_enabled(); |
363 | |
364 | dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit, |
365 | pipe_e2e->pipe.dest.hactive, |
366 | pipe_e2e->dout.output_format, |
367 | pipe_e2e->dout.output_type, |
368 | pipe_e2e->pipe.dest.odm_combine_policy, |
369 | context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz, |
370 | context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz, |
371 | pipe_e2e->dout.dsc_enable != 0, |
372 | 0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */ |
373 | context->bw_ctx.dml.ip.max_num_dpp, |
374 | pipe_e2e->pipe.dest.pixel_rate_mhz, |
375 | context->bw_ctx.dml.soc.dcn_downspread_percent, |
376 | context->bw_ctx.dml.ip.dispclk_ramp_margin_percent, |
377 | context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz, |
378 | pipe_e2e->dout.dsc_slices, |
379 | /* Output */ |
380 | &total_available_pipes_support, |
381 | &number_of_dpp, |
382 | &odm_mode, |
383 | &req_dispclk_per_surface); |
384 | |
385 | dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio, |
386 | pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c, |
387 | pipe_e2e->pipe.scale_ratio_depth.vscl_ratio, |
388 | pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c, |
389 | context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk, |
390 | context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk, |
391 | pipe_e2e->pipe.dest.pixel_rate_mhz, |
392 | pipe_e2e->pipe.src.source_format, |
393 | pipe_e2e->pipe.scale_taps.htaps, |
394 | pipe_e2e->pipe.scale_taps.htaps_c, |
395 | pipe_e2e->pipe.scale_taps.vtaps, |
396 | pipe_e2e->pipe.scale_taps.vtaps_c, |
397 | /* Output */ |
398 | &pscl_throughput, &pscl_throughput_chroma, |
399 | &dpp_clk_single_dpp); |
400 | |
401 | clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100); |
402 | |
403 | if (clock > 0) |
404 | clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock); |
405 | |
406 | if (odm_mode == dm_odm_combine_mode_2to1) |
407 | num_splits = 1; |
408 | else if (odm_mode == dm_odm_combine_mode_4to1) |
409 | num_splits = 3; |
410 | else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz) |
411 | num_splits = 1; |
412 | |
413 | return num_splits; |
414 | } |
415 | |
416 | static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) |
417 | { |
418 | float memory_bw_kbytes_sec; |
419 | float fabric_bw_kbytes_sec; |
420 | float sdp_bw_kbytes_sec; |
421 | float limiting_bw_kbytes_sec; |
422 | |
423 | memory_bw_kbytes_sec = entry->dram_speed_mts * |
424 | dcn3_2_soc.num_chans * |
425 | dcn3_2_soc.dram_channel_width_bytes * |
426 | ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
427 | |
428 | fabric_bw_kbytes_sec = entry->fabricclk_mhz * |
429 | dcn3_2_soc.return_bus_width_bytes * |
430 | ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); |
431 | |
432 | sdp_bw_kbytes_sec = entry->dcfclk_mhz * |
433 | dcn3_2_soc.return_bus_width_bytes * |
434 | ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); |
435 | |
436 | limiting_bw_kbytes_sec = memory_bw_kbytes_sec; |
437 | |
438 | if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) |
439 | limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; |
440 | |
441 | if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) |
442 | limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; |
443 | |
444 | return limiting_bw_kbytes_sec; |
445 | } |
446 | |
447 | static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) |
448 | { |
449 | if (entry->dcfclk_mhz > 0) { |
450 | float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); |
451 | |
452 | entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
453 | entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * |
454 | dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
455 | } else if (entry->fabricclk_mhz > 0) { |
456 | float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); |
457 | |
458 | entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
459 | entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * |
460 | dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); |
461 | } else if (entry->dram_speed_mts > 0) { |
462 | float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * |
463 | dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); |
464 | |
465 | entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); |
466 | entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); |
467 | } |
468 | } |
469 | |
470 | void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, |
471 | unsigned int *num_entries, |
472 | struct _vcs_dpi_voltage_scaling_st *entry) |
473 | { |
474 | int i = 0; |
475 | int index = 0; |
476 | float net_bw_of_new_state = 0; |
477 | |
478 | dc_assert_fp_enabled(); |
479 | |
480 | get_optimal_ntuple(entry); |
481 | |
482 | if (*num_entries == 0) { |
483 | table[0] = *entry; |
484 | (*num_entries)++; |
485 | } else { |
486 | net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry); |
487 | while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) { |
488 | index++; |
489 | if (index >= *num_entries) |
490 | break; |
491 | } |
492 | |
493 | for (i = *num_entries; i > index; i--) |
494 | table[i] = table[i - 1]; |
495 | |
496 | table[index] = *entry; |
497 | (*num_entries)++; |
498 | } |
499 | } |
500 | |
501 | /** |
502 | * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream |
503 | * @dc: current dc state |
504 | * @context: new dc state |
505 | * @ref_pipe: Main pipe for the phantom stream |
506 | * @phantom_stream: target phantom stream state |
507 | * @pipes: DML pipe params |
508 | * @pipe_cnt: number of DML pipes |
509 | * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) |
510 | * |
511 | * Set timing params of the phantom stream based on calculated output from DML. |
512 | * This function first gets the DML pipe index using the DC pipe index, then |
513 | * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of |
514 | * lines required for SubVP MCLK switching and assigns to the phantom stream |
515 | * accordingly. |
516 | * |
517 | * - The number of SubVP lines calculated in DML does not take into account |
518 | * FW processing delays and required pstate allow width, so we must include |
519 | * that separately. |
520 | * |
521 | * - Set phantom backporch = vstartup of main pipe |
522 | */ |
523 | void dcn32_set_phantom_stream_timing(struct dc *dc, |
524 | struct dc_state *context, |
525 | struct pipe_ctx *ref_pipe, |
526 | struct dc_stream_state *phantom_stream, |
527 | display_e2e_pipe_params_st *pipes, |
528 | unsigned int pipe_cnt, |
529 | unsigned int dc_pipe_idx) |
530 | { |
531 | unsigned int i, pipe_idx; |
532 | struct pipe_ctx *pipe; |
533 | uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; |
534 | unsigned int num_dpp; |
535 | unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; |
536 | unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
537 | unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; |
538 | struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
539 | |
540 | dc_assert_fp_enabled(); |
541 | |
542 | // Find DML pipe index (pipe_idx) using dc_pipe_idx |
543 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
544 | pipe = &context->res_ctx.pipe_ctx[i]; |
545 | |
546 | if (!pipe->stream) |
547 | continue; |
548 | |
549 | if (i == dc_pipe_idx) |
550 | break; |
551 | |
552 | pipe_idx++; |
553 | } |
554 | |
555 | // Calculate lines required for pstate allow width and FW processing delays |
556 | pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + |
557 | dc->caps.subvp_pstate_allow_width_us) / 1000000) * |
558 | (ref_pipe->stream->timing.pix_clk_100hz * 100) / |
559 | (double)ref_pipe->stream->timing.h_total; |
560 | |
561 | // Update clks_cfg for calling into recalculate |
562 | pipes[0].clks_cfg.voltage = vlevel; |
563 | pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
564 | pipes[0].clks_cfg.socclk_mhz = socclk; |
565 | |
566 | // DML calculation for MALL region doesn't take into account FW delay |
567 | // and required pstate allow width for multi-display cases |
568 | /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned |
569 | * to 2 swaths (i.e. 16 lines) |
570 | */ |
571 | phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + |
572 | pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines; |
573 | |
574 | // W/A for DCC corruption with certain high resolution timings. |
575 | // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive. |
576 | num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]]; |
577 | phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0; |
578 | |
579 | // For backporch of phantom pipe, use vstartup of the main pipe |
580 | phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
581 | |
582 | phantom_stream->dst.y = 0; |
583 | phantom_stream->dst.height = phantom_vactive; |
584 | phantom_stream->src.y = 0; |
585 | phantom_stream->src.height = phantom_vactive; |
586 | |
587 | phantom_stream->timing.v_addressable = phantom_vactive; |
588 | phantom_stream->timing.v_front_porch = 1; |
589 | phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + |
590 | phantom_stream->timing.v_front_porch + |
591 | phantom_stream->timing.v_sync_width + |
592 | phantom_bp; |
593 | phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing |
594 | } |
595 | |
596 | /** |
597 | * dcn32_get_num_free_pipes - Calculate number of free pipes |
598 | * @dc: current dc state |
599 | * @context: new dc state |
600 | * |
601 | * This function assumes that a "used" pipe is a pipe that has |
602 | * both a stream and a plane assigned to it. |
603 | * |
604 | * Return: Number of free pipes available in the context |
605 | */ |
606 | static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) |
607 | { |
608 | unsigned int i; |
609 | unsigned int free_pipes = 0; |
610 | unsigned int num_pipes = 0; |
611 | |
612 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
613 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
614 | |
615 | if (pipe->stream && !pipe->top_pipe) { |
616 | while (pipe) { |
617 | num_pipes++; |
618 | pipe = pipe->bottom_pipe; |
619 | } |
620 | } |
621 | } |
622 | |
623 | free_pipes = dc->res_pool->pipe_count - num_pipes; |
624 | return free_pipes; |
625 | } |
626 | |
627 | /** |
628 | * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP. |
629 | * @dc: current dc state |
630 | * @context: new dc state |
631 | * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned |
632 | * |
633 | * We enter this function if we are Sub-VP capable (i.e. enough pipes available) |
634 | * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if |
635 | * we are forcing SubVP P-State switching on the current config. |
636 | * |
637 | * The number of pipes used for the chosen surface must be less than or equal to the |
638 | * number of free pipes available. |
639 | * |
640 | * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). |
641 | * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own |
642 | * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't |
643 | * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). |
644 | * |
645 | * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. |
646 | */ |
647 | static bool_Bool dcn32_assign_subvp_pipe(struct dc *dc, |
648 | struct dc_state *context, |
649 | unsigned int *index) |
650 | { |
651 | unsigned int i, pipe_idx; |
652 | unsigned int max_frame_time = 0; |
653 | bool_Bool valid_assignment_found = false0; |
654 | unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); |
655 | bool_Bool current_assignment_freesync = false0; |
656 | struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
657 | |
658 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
659 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
660 | unsigned int num_pipes = 0; |
661 | unsigned int refresh_rate = 0; |
662 | |
663 | if (!pipe->stream) |
664 | continue; |
665 | |
666 | // Round up |
667 | refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + |
668 | pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) |
669 | / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); |
670 | /* SubVP pipe candidate requirements: |
671 | * - Refresh rate < 120hz |
672 | * - Not able to switch in vactive naturally (switching in active means the |
673 | * DET provides enough buffer to hide the P-State switch latency -- trying |
674 | * to combine this with SubVP can cause issues with the scheduling). |
675 | * - Not TMZ surface |
676 | */ |
677 | if (pipe->plane_state && !pipe->top_pipe && |
678 | pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120 && !pipe->plane_state->address.tmz_surface && |
679 | (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 || |
680 | (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 && |
681 | dcn32_allow_subvp_with_active_margin(pipe)))) { |
682 | while (pipe) { |
683 | num_pipes++; |
684 | pipe = pipe->bottom_pipe; |
685 | } |
686 | |
687 | pipe = &context->res_ctx.pipe_ctx[i]; |
688 | if (num_pipes <= free_pipes) { |
689 | struct dc_stream_state *stream = pipe->stream; |
690 | unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / |
691 | (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; |
692 | if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) { |
693 | *index = i; |
694 | max_frame_time = frame_us; |
695 | valid_assignment_found = true1; |
696 | current_assignment_freesync = false0; |
697 | /* For the 2-Freesync display case, still choose the one with the |
698 | * longest frame time |
699 | */ |
700 | } else if (stream->ignore_msa_timing_param && (!valid_assignment_found || |
701 | (current_assignment_freesync && frame_us > max_frame_time))) { |
702 | *index = i; |
703 | valid_assignment_found = true1; |
704 | current_assignment_freesync = true1; |
705 | } |
706 | } |
707 | } |
708 | pipe_idx++; |
709 | } |
710 | return valid_assignment_found; |
711 | } |
712 | |
713 | /** |
714 | * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP. |
715 | * @dc: current dc state |
716 | * @context: new dc state |
717 | * |
718 | * This function returns true if there are enough free pipes |
719 | * to create the required phantom pipes for any given stream |
720 | * (that does not already have phantom pipe assigned). |
721 | * |
722 | * e.g. For a 2 stream config where the first stream uses one |
723 | * pipe and the second stream uses 2 pipes (i.e. pipe split), |
724 | * this function will return true because there is 1 remaining |
725 | * pipe which can be used as the phantom pipe for the non pipe |
726 | * split pipe. |
727 | * |
728 | * Return: |
729 | * True if there are enough free pipes to assign phantom pipes to at least one |
730 | * stream that does not already have phantom pipes assigned. Otherwise false. |
731 | */ |
732 | static bool_Bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) |
733 | { |
734 | unsigned int i, split_cnt, free_pipes; |
735 | unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 |
736 | bool_Bool subvp_possible = false0; |
737 | |
738 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
739 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
740 | |
741 | // Find the minimum pipe split count for non SubVP pipes |
742 | if (pipe->stream && !pipe->top_pipe && |
743 | pipe->stream->mall_stream_config.type == SUBVP_NONE) { |
744 | split_cnt = 0; |
745 | while (pipe) { |
746 | split_cnt++; |
747 | pipe = pipe->bottom_pipe; |
748 | } |
749 | |
750 | if (split_cnt < min_pipe_split) |
751 | min_pipe_split = split_cnt; |
752 | } |
753 | } |
754 | |
755 | free_pipes = dcn32_get_num_free_pipes(dc, context); |
756 | |
757 | // SubVP only possible if at least one pipe is being used (i.e. free_pipes |
758 | // should not equal to the pipe_count) |
759 | if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) |
760 | subvp_possible = true1; |
761 | |
762 | return subvp_possible; |
763 | } |
764 | |
765 | /** |
766 | * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable |
767 | * @dc: current dc state |
768 | * @context: new dc state |
769 | * |
770 | * High level algorithm: |
771 | * 1. Find longest microschedule length (in us) between the two SubVP pipes |
772 | * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both |
773 | * pipes still allows for the maximum microschedule to fit in the active |
774 | * region for both pipes. |
775 | * |
776 | * Return: True if the SubVP + SubVP config is schedulable, false otherwise |
777 | */ |
778 | static bool_Bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) |
779 | { |
780 | struct pipe_ctx *subvp_pipes[2]; |
781 | struct dc_stream_state *phantom = NULL((void *)0); |
782 | uint32_t microschedule_lines = 0; |
783 | uint32_t index = 0; |
784 | uint32_t i; |
785 | uint32_t max_microschedule_us = 0; |
786 | int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; |
787 | |
788 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
789 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
790 | uint32_t time_us = 0; |
791 | |
792 | /* Loop to calculate the maximum microschedule time between the two SubVP pipes, |
793 | * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. |
794 | */ |
795 | if (pipe->stream && pipe->plane_state && !pipe->top_pipe && |
796 | pipe->stream->mall_stream_config.type == SUBVP_MAIN) { |
797 | phantom = pipe->stream->mall_stream_config.paired_stream; |
798 | microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + |
799 | phantom->timing.v_addressable; |
800 | |
801 | // Round up when calculating microschedule time (+ 1 at the end) |
802 | time_us = (microschedule_lines * phantom->timing.h_total) / |
803 | (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + |
804 | dc->caps.subvp_prefetch_end_to_mall_start_us + |
805 | dc->caps.subvp_fw_processing_delay_us + 1; |
806 | if (time_us > max_microschedule_us) |
807 | max_microschedule_us = time_us; |
808 | |
809 | subvp_pipes[index] = pipe; |
810 | index++; |
811 | |
812 | // Maximum 2 SubVP pipes |
813 | if (index == 2) |
814 | break; |
815 | } |
816 | } |
817 | vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / |
818 | (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
819 | vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / |
820 | (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
821 | vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * |
822 | subvp_pipes[0]->stream->timing.h_total) / |
823 | (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
824 | vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * |
825 | subvp_pipes[1]->stream->timing.h_total) / |
826 | (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; |
827 | |
828 | if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && |
829 | (vactive2_us - vblank1_us) / 2 > max_microschedule_us) |
830 | return true1; |
831 | |
832 | return false0; |
833 | } |
834 | |
835 | /** |
836 | * subvp_drr_schedulable - Determine if SubVP + DRR config is schedulable |
837 | * @dc: current dc state |
838 | * @context: new dc state |
839 | * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config |
840 | * |
841 | * High level algorithm: |
842 | * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe |
843 | * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching |
844 | * (the margin is equal to the MALL region + DRR margin (500us)) |
845 | * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) |
846 | * then report the configuration as supported |
847 | * |
848 | * Return: True if the SubVP + DRR config is schedulable, false otherwise |
849 | */ |
850 | static bool_Bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe) |
851 | { |
852 | bool_Bool schedulable = false0; |
853 | uint32_t i; |
854 | struct pipe_ctx *pipe = NULL((void *)0); |
855 | struct dc_crtc_timing *main_timing = NULL((void *)0); |
856 | struct dc_crtc_timing *phantom_timing = NULL((void *)0); |
857 | struct dc_crtc_timing *drr_timing = NULL((void *)0); |
858 | int16_t prefetch_us = 0; |
859 | int16_t mall_region_us = 0; |
860 | int16_t drr_frame_us = 0; // nominal frame time |
861 | int16_t subvp_active_us = 0; |
862 | int16_t stretched_drr_us = 0; |
863 | int16_t drr_stretched_vblank_us = 0; |
864 | int16_t max_vblank_mallregion = 0; |
865 | |
866 | // Find SubVP pipe |
867 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
868 | pipe = &context->res_ctx.pipe_ctx[i]; |
869 | |
870 | // We check for master pipe, but it shouldn't matter since we only need |
871 | // the pipe for timing info (stream should be same for any pipe splits) |
872 | if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) |
873 | continue; |
874 | |
875 | // Find the SubVP pipe |
876 | if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) |
877 | break; |
878 | } |
879 | |
880 | main_timing = &pipe->stream->timing; |
881 | phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing; |
882 | drr_timing = &drr_pipe->stream->timing; |
883 | prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / |
884 | (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + |
885 | dc->caps.subvp_prefetch_end_to_mall_start_us; |
886 | subvp_active_us = main_timing->v_addressable * main_timing->h_total / |
887 | (double)(main_timing->pix_clk_100hz * 100) * 1000000; |
888 | drr_frame_us = drr_timing->v_total * drr_timing->h_total / |
889 | (double)(drr_timing->pix_clk_100hz * 100) * 1000000; |
890 | // P-State allow width and FW delays already included phantom_timing->v_addressable |
891 | mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / |
892 | (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; |
893 | stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US500; |
894 | drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / |
895 | (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); |
896 | max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; |
897 | |
898 | /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the |
899 | * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis |
900 | * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, |
901 | * and the max of (VBLANK blanking time, MALL region)). |
902 | */ |
903 | if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && |
904 | subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) |
905 | schedulable = true1; |
906 | |
907 | return schedulable; |
908 | } |
909 | |
910 | |
911 | /** |
912 | * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable |
913 | * @dc: current dc state |
914 | * @context: new dc state |
915 | * |
916 | * High level algorithm: |
917 | * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe |
918 | * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) |
919 | * then report the configuration as supported |
920 | * 3. If the VBLANK display is DRR, then take the DRR static schedulability path |
921 | * |
922 | * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise |
923 | */ |
924 | static bool_Bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) |
925 | { |
926 | struct pipe_ctx *pipe = NULL((void *)0); |
927 | struct pipe_ctx *subvp_pipe = NULL((void *)0); |
928 | bool_Bool found = false0; |
929 | bool_Bool schedulable = false0; |
930 | uint32_t i = 0; |
931 | uint8_t vblank_index = 0; |
932 | uint16_t prefetch_us = 0; |
933 | uint16_t mall_region_us = 0; |
934 | uint16_t vblank_frame_us = 0; |
935 | uint16_t subvp_active_us = 0; |
936 | uint16_t vblank_blank_us = 0; |
937 | uint16_t max_vblank_mallregion = 0; |
938 | struct dc_crtc_timing *main_timing = NULL((void *)0); |
939 | struct dc_crtc_timing *phantom_timing = NULL((void *)0); |
940 | struct dc_crtc_timing *vblank_timing = NULL((void *)0); |
941 | |
942 | /* For SubVP + VBLANK/DRR cases, we assume there can only be |
943 | * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK |
944 | * is supported, it is either a single VBLANK case or two VBLANK |
945 | * displays which are synchronized (in which case they have identical |
946 | * timings). |
947 | */ |
948 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
949 | pipe = &context->res_ctx.pipe_ctx[i]; |
950 | |
951 | // We check for master pipe, but it shouldn't matter since we only need |
952 | // the pipe for timing info (stream should be same for any pipe splits) |
953 | if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) |
954 | continue; |
955 | |
956 | if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) { |
957 | // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). |
958 | vblank_index = i; |
959 | found = true1; |
960 | } |
961 | |
962 | if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) |
963 | subvp_pipe = pipe; |
964 | } |
965 | // Use ignore_msa_timing_param flag to identify as DRR |
966 | if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) { |
967 | // SUBVP + DRR case |
968 | schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]); |
969 | } else if (found) { |
970 | main_timing = &subvp_pipe->stream->timing; |
971 | phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; |
972 | vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; |
973 | // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe |
974 | // Also include the prefetch end to mallstart delay time |
975 | prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / |
976 | (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + |
977 | dc->caps.subvp_prefetch_end_to_mall_start_us; |
978 | // P-State allow width and FW delays already included phantom_timing->v_addressable |
979 | mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / |
980 | (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; |
981 | vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / |
982 | (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; |
983 | vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / |
984 | (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; |
985 | subvp_active_us = main_timing->v_addressable * main_timing->h_total / |
986 | (double)(main_timing->pix_clk_100hz * 100) * 1000000; |
987 | max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; |
988 | |
989 | // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, |
990 | // and the max of (VBLANK blanking time, MALL region) |
991 | // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) |
992 | if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) |
993 | schedulable = true1; |
994 | } |
995 | return schedulable; |
996 | } |
997 | |
998 | /** |
999 | * subvp_validate_static_schedulability - Check which SubVP case is calculated |
1000 | * and handle static analysis based on the case. |
1001 | * @dc: current dc state |
1002 | * @context: new dc state |
1003 | * @vlevel: Voltage level calculated by DML |
1004 | * |
1005 | * Three cases: |
1006 | * 1. SubVP + SubVP |
1007 | * 2. SubVP + VBLANK (DRR checked internally) |
1008 | * 3. SubVP + VACTIVE (currently unsupported) |
1009 | * |
1010 | * Return: True if statically schedulable, false otherwise |
1011 | */ |
1012 | static bool_Bool subvp_validate_static_schedulability(struct dc *dc, |
1013 | struct dc_state *context, |
1014 | int vlevel) |
1015 | { |
1016 | bool_Bool schedulable = true1; // true by default for single display case |
1017 | struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
1018 | uint32_t i, pipe_idx; |
1019 | uint8_t subvp_count = 0; |
1020 | uint8_t vactive_count = 0; |
1021 | |
1022 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
1023 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
1024 | |
1025 | if (!pipe->stream) |
1026 | continue; |
1027 | |
1028 | if (pipe->plane_state && !pipe->top_pipe && |
1029 | pipe->stream->mall_stream_config.type == SUBVP_MAIN) |
1030 | subvp_count++; |
1031 | |
1032 | // Count how many planes that aren't SubVP/phantom are capable of VACTIVE |
1033 | // switching (SubVP + VACTIVE unsupported). In situations where we force |
1034 | // SubVP for a VACTIVE plane, we don't want to increment the vactive_count. |
1035 | if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 && |
1036 | pipe->stream->mall_stream_config.type == SUBVP_NONE) { |
1037 | vactive_count++; |
1038 | } |
1039 | pipe_idx++; |
1040 | } |
1041 | |
1042 | if (subvp_count == 2) { |
1043 | // Static schedulability check for SubVP + SubVP case |
1044 | schedulable = subvp_subvp_schedulable(dc, context); |
1045 | } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) { |
1046 | // Static schedulability check for SubVP + VBLANK case. Also handle the case where |
1047 | // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK) |
1048 | if (vactive_count > 0) |
1049 | schedulable = false0; |
1050 | else |
1051 | schedulable = subvp_vblank_schedulable(dc, context); |
1052 | } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp && |
1053 | vactive_count > 0) { |
1054 | // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default. |
1055 | // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count. |
1056 | // SubVP + VACTIVE currently unsupported |
1057 | schedulable = false0; |
1058 | } |
1059 | return schedulable; |
1060 | } |
1061 | |
1062 | static void dcn32_full_validate_bw_helper(struct dc *dc, |
1063 | struct dc_state *context, |
1064 | display_e2e_pipe_params_st *pipes, |
1065 | int *vlevel, |
1066 | int *split, |
1067 | bool_Bool *merge, |
1068 | int *pipe_cnt) |
1069 | { |
1070 | struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
1071 | unsigned int dc_pipe_idx = 0; |
1072 | bool_Bool found_supported_config = false0; |
1073 | struct pipe_ctx *pipe = NULL((void *)0); |
1074 | uint32_t non_subvp_pipes = 0; |
1075 | bool_Bool drr_pipe_found = false0; |
1076 | uint32_t drr_pipe_index = 0; |
1077 | uint32_t i = 0; |
1078 | |
1079 | dc_assert_fp_enabled(); |
1080 | |
1081 | /* |
1082 | * DML favors voltage over p-state, but we're more interested in |
1083 | * supporting p-state over voltage. We can't support p-state in |
1084 | * prefetch mode > 0 so try capping the prefetch mode to start. |
1085 | * Override present for testing. |
1086 | */ |
1087 | if (dc->debug.dml_disallow_alternate_prefetch_modes) |
1088 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1089 | dm_prefetch_support_uclk_fclk_and_stutter; |
1090 | else |
1091 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1092 | dm_prefetch_support_uclk_fclk_and_stutter_if_possible; |
1093 | |
1094 | *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
1095 | /* This may adjust vlevel and maxMpcComb */ |
1096 | if (*vlevel < context->bw_ctx.dml.soc.num_states) { |
1097 | *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
1098 | vba->VoltageLevel = *vlevel; |
1099 | } |
1100 | |
1101 | /* Conditions for setting up phantom pipes for SubVP: |
1102 | * 1. Not force disable SubVP |
1103 | * 2. Full update (i.e. !fast_validate) |
1104 | * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) |
1105 | * 4. Display configuration passes validation |
1106 | * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) |
1107 | */ |
1108 | if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) && |
1109 | !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && |
1110 | (*vlevel == context->bw_ctx.dml.soc.num_states || |
1111 | vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || |
1112 | dc->debug.force_subvp_mclk_switch)) { |
1113 | |
1114 | dcn32_merge_pipes_for_subvp(dc, context); |
1115 | memset(merge, 0, MAX_PIPES * sizeof(bool))__builtin_memset((merge), (0), (6 * sizeof(_Bool))); |
1116 | |
1117 | /* to re-initialize viewport after the pipe merge */ |
1118 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1119 | struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; |
1120 | |
1121 | if (!pipe_ctx->plane_state || !pipe_ctx->stream) |
1122 | continue; |
1123 | |
1124 | resource_build_scaling_params(pipe_ctx); |
1125 | } |
1126 | |
1127 | while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && |
1128 | dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { |
1129 | /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. |
1130 | * Adding phantom pipes won't change the validation result, so change the DML input param |
1131 | * for P-State support before adding phantom pipes and recalculating the DML result. |
1132 | * However, this case is only applicable for SubVP + DRR cases because the prefetch mode |
1133 | * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched |
1134 | * enough to support MCLK switching. |
1135 | */ |
1136 | if (*vlevel == context->bw_ctx.dml.soc.num_states && |
1137 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final == |
1138 | dm_prefetch_support_uclk_fclk_and_stutter) { |
1139 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1140 | dm_prefetch_support_stutter; |
1141 | /* There are params (such as FabricClock) that need to be recalculated |
1142 | * after validation fails (otherwise it will be 0). Calculation for |
1143 | * phantom vactive requires call into DML, so we must ensure all the |
1144 | * vba params are valid otherwise we'll get incorrect phantom vactive. |
1145 | */ |
1146 | *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
1147 | } |
1148 | |
1149 | dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); |
1150 | |
1151 | *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false0); |
1152 | // Populate dppclk to trigger a recalculate in dml_get_voltage_level |
1153 | // so the phantom pipe DLG params can be assigned correctly. |
1154 | pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0); |
1155 | *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
1156 | |
1157 | if (*vlevel < context->bw_ctx.dml.soc.num_states && |
1158 | vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported |
1159 | && subvp_validate_static_schedulability(dc, context, *vlevel)) { |
1160 | found_supported_config = true1; |
1161 | } else if (*vlevel < context->bw_ctx.dml.soc.num_states && |
1162 | vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { |
1163 | /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles |
1164 | * the case for SubVP + DRR, where the DRR display does not support MCLK switch |
1165 | * at it's native refresh rate / timing. |
1166 | */ |
1167 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1168 | pipe = &context->res_ctx.pipe_ctx[i]; |
1169 | if (pipe->stream && pipe->plane_state && !pipe->top_pipe && |
1170 | pipe->stream->mall_stream_config.type == SUBVP_NONE) { |
1171 | non_subvp_pipes++; |
1172 | // Use ignore_msa_timing_param flag to identify as DRR |
1173 | if (pipe->stream->ignore_msa_timing_param) { |
1174 | drr_pipe_found = true1; |
1175 | drr_pipe_index = i; |
1176 | } |
1177 | } |
1178 | } |
1179 | // If there is only 1 remaining non SubVP pipe that is DRR, check static |
1180 | // schedulability for SubVP + DRR. |
1181 | if (non_subvp_pipes == 1 && drr_pipe_found) { |
1182 | found_supported_config = subvp_drr_schedulable(dc, context, |
1183 | &context->res_ctx.pipe_ctx[drr_pipe_index]); |
1184 | } |
1185 | } |
1186 | } |
1187 | |
1188 | // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) |
1189 | // remove phantom pipes and repopulate dml pipes |
1190 | if (!found_supported_config) { |
1191 | dc->res_pool->funcs->remove_phantom_pipes(dc, context); |
1192 | vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; |
1193 | *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false0); |
1194 | |
1195 | *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); |
1196 | /* This may adjust vlevel and maxMpcComb */ |
1197 | if (*vlevel < context->bw_ctx.dml.soc.num_states) { |
1198 | *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
1199 | vba->VoltageLevel = *vlevel; |
1200 | } |
1201 | } else { |
1202 | // Most populate phantom DLG params before programming hardware / timing for phantom pipe |
1203 | dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt); |
1204 | |
1205 | /* Call validate_apply_pipe_split flags after calling DML getters for |
1206 | * phantom dlg params, or some of the VBA params indicating pipe split |
1207 | * can be overwritten by the getters. |
1208 | * |
1209 | * When setting up SubVP config, all pipes are merged before attempting to |
1210 | * add phantom pipes. If pipe split (ODM / MPC) is required, both the main |
1211 | * and phantom pipes will be split in the regular pipe splitting sequence. |
1212 | */ |
1213 | memset(split, 0, MAX_PIPES * sizeof(int))__builtin_memset((split), (0), (6 * sizeof(int))); |
1214 | memset(merge, 0, MAX_PIPES * sizeof(bool))__builtin_memset((merge), (0), (6 * sizeof(_Bool))); |
1215 | *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); |
1216 | vba->VoltageLevel = *vlevel; |
1217 | // Note: We can't apply the phantom pipes to hardware at this time. We have to wait |
1218 | // until driver has acquired the DMCUB lock to do it safely. |
1219 | } |
1220 | } |
1221 | } |
1222 | |
1223 | static bool_Bool is_dtbclk_required(struct dc *dc, struct dc_state *context) |
1224 | { |
1225 | int i; |
1226 | |
1227 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1228 | if (!context->res_ctx.pipe_ctx[i].stream) |
1229 | continue; |
1230 | if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) |
1231 | return true1; |
1232 | } |
1233 | return false0; |
1234 | } |
1235 | |
1236 | static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, |
1237 | display_e2e_pipe_params_st *pipes, |
1238 | int pipe_cnt, int vlevel) |
1239 | { |
1240 | int i, pipe_idx, active_hubp_count = 0; |
1241 | bool_Bool usr_retraining_support = false0; |
1242 | bool_Bool unbounded_req_enabled = false0; |
1243 | |
1244 | dc_assert_fp_enabled(); |
1245 | |
1246 | /* Writeback MCIF_WB arbitration parameters */ |
1247 | dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); |
1248 | |
1249 | context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; |
1250 | context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; |
1251 | context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; |
1252 | context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; |
1253 | context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; |
1254 | context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; |
1255 | context->bw_ctx.bw.dcn.clk.p_state_change_support = |
1256 | context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] |
1257 | != dm_dram_clock_change_unsupported; |
1258 | context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); |
1259 | |
1260 | context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; |
1261 | context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); |
1262 | context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; |
1263 | if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) |
1264 | context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false0; |
1265 | else |
1266 | context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true1; |
1267 | |
1268 | usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
1269 | ASSERT(usr_retraining_support)do { if (({ static int __warned; int __ret = !!(!(usr_retraining_support )); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(usr_retraining_support)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1269); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1270 | |
1271 | if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) |
1272 | context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; |
1273 | |
1274 | unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt); |
1275 | |
1276 | if (unbounded_req_enabled && pipe_cnt > 1) { |
1277 | // Unbounded requesting should not ever be used when more than 1 pipe is enabled. |
1278 | ASSERT(false)do { if (({ static int __warned; int __ret = !!(!(0)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(0)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1278); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1279 | unbounded_req_enabled = false0; |
1280 | } |
1281 | |
1282 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
1283 | if (!context->res_ctx.pipe_ctx[i].stream) |
1284 | continue; |
1285 | if (context->res_ctx.pipe_ctx[i].plane_state) |
1286 | active_hubp_count++; |
1287 | pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, |
1288 | pipe_idx); |
1289 | pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, |
1290 | pipe_idx); |
1291 | pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, |
1292 | pipe_idx); |
1293 | pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, |
1294 | pipe_idx); |
1295 | |
1296 | if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) { |
1297 | // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests |
1298 | context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; |
1299 | context->res_ctx.pipe_ctx[i].unbounded_req = false0; |
1300 | } else { |
1301 | context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, |
1302 | pipe_idx); |
1303 | context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled; |
1304 | } |
1305 | |
1306 | if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) |
1307 | context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; |
1308 | if (context->res_ctx.pipe_ctx[i].plane_state) |
1309 | context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; |
1310 | else |
1311 | context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0; |
1312 | context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; |
1313 | pipe_idx++; |
1314 | } |
1315 | /* If DCN isn't making memory requests we can allow pstate change and lower clocks */ |
1316 | if (!active_hubp_count) { |
1317 | context->bw_ctx.bw.dcn.clk.socclk_khz = 0; |
1318 | context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; |
1319 | context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0; |
1320 | context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0; |
1321 | context->bw_ctx.bw.dcn.clk.dramclk_khz = 0; |
1322 | context->bw_ctx.bw.dcn.clk.fclk_khz = 0; |
1323 | context->bw_ctx.bw.dcn.clk.p_state_change_support = true1; |
1324 | } |
1325 | /*save a original dppclock copy*/ |
1326 | context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; |
1327 | context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; |
1328 | context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz |
1329 | * 1000; |
1330 | context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz |
1331 | * 1000; |
1332 | |
1333 | context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; |
1334 | |
1335 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1336 | if (context->res_ctx.pipe_ctx[i].stream) |
1337 | context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; |
1338 | } |
1339 | |
1340 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
1341 | |
1342 | if (!context->res_ctx.pipe_ctx[i].stream) |
1343 | continue; |
1344 | |
1345 | context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, |
1346 | &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, |
1347 | pipe_cnt, pipe_idx); |
1348 | |
1349 | context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, |
1350 | &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
1351 | pipe_idx++; |
1352 | } |
1353 | } |
1354 | |
1355 | static struct pipe_ctx *dcn32_find_split_pipe( |
1356 | struct dc *dc, |
1357 | struct dc_state *context, |
1358 | int old_index) |
1359 | { |
1360 | struct pipe_ctx *pipe = NULL((void *)0); |
1361 | int i; |
1362 | |
1363 | if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL((void *)0)) { |
1364 | pipe = &context->res_ctx.pipe_ctx[old_index]; |
1365 | pipe->pipe_idx = old_index; |
1366 | } |
1367 | |
1368 | if (!pipe) |
1369 | for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { |
1370 | if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL((void *)0) |
1371 | && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL((void *)0)) { |
1372 | if (context->res_ctx.pipe_ctx[i].stream == NULL((void *)0)) { |
1373 | pipe = &context->res_ctx.pipe_ctx[i]; |
1374 | pipe->pipe_idx = i; |
1375 | break; |
1376 | } |
1377 | } |
1378 | } |
1379 | |
1380 | /* |
1381 | * May need to fix pipes getting tossed from 1 opp to another on flip |
1382 | * Add for debugging transient underflow during topology updates: |
1383 | * ASSERT(pipe); |
1384 | */ |
1385 | if (!pipe) |
1386 | for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { |
1387 | if (context->res_ctx.pipe_ctx[i].stream == NULL((void *)0)) { |
1388 | pipe = &context->res_ctx.pipe_ctx[i]; |
1389 | pipe->pipe_idx = i; |
1390 | break; |
1391 | } |
1392 | } |
1393 | |
1394 | return pipe; |
1395 | } |
1396 | |
1397 | static bool_Bool dcn32_split_stream_for_mpc_or_odm( |
1398 | const struct dc *dc, |
1399 | struct resource_context *res_ctx, |
1400 | struct pipe_ctx *pri_pipe, |
1401 | struct pipe_ctx *sec_pipe, |
1402 | bool_Bool odm) |
1403 | { |
1404 | int pipe_idx = sec_pipe->pipe_idx; |
1405 | const struct resource_pool *pool = dc->res_pool; |
1406 | |
1407 | DC_LOGGER_INIT(dc->ctx->logger); |
1408 | |
1409 | if (odm && pri_pipe->plane_state) { |
1410 | /* ODM + window MPO, where MPO window is on left half only */ |
1411 | if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= |
1412 | pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { |
1413 | |
1414 | DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",do { } while(0) |
1415 | __func__,do { } while(0) |
1416 | pri_pipe->pipe_idx)do { } while(0); |
1417 | return true1; |
1418 | } |
1419 | |
1420 | /* ODM + window MPO, where MPO window is on right half only */ |
1421 | if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) { |
1422 | |
1423 | DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",do { } while(0) |
1424 | __func__,do { } while(0) |
1425 | pri_pipe->pipe_idx)do { } while(0); |
1426 | return true1; |
1427 | } |
1428 | } |
1429 | |
1430 | *sec_pipe = *pri_pipe; |
1431 | |
1432 | sec_pipe->pipe_idx = pipe_idx; |
1433 | sec_pipe->plane_res.mi = pool->mis[pipe_idx]; |
1434 | sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; |
1435 | sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; |
1436 | sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; |
1437 | sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; |
1438 | sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; |
1439 | sec_pipe->stream_res.dsc = NULL((void *)0); |
1440 | if (odm) { |
1441 | if (pri_pipe->next_odm_pipe) { |
1442 | ASSERT(pri_pipe->next_odm_pipe != sec_pipe)do { if (({ static int __warned; int __ret = !!(!(pri_pipe-> next_odm_pipe != sec_pipe)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n", "!(pri_pipe->next_odm_pipe != sec_pipe)" , "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1442); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1443 | sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; |
1444 | sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; |
1445 | } |
1446 | if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { |
1447 | pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; |
1448 | sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; |
1449 | } |
1450 | if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { |
1451 | pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; |
1452 | sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; |
1453 | } |
1454 | pri_pipe->next_odm_pipe = sec_pipe; |
1455 | sec_pipe->prev_odm_pipe = pri_pipe; |
1456 | ASSERT(sec_pipe->top_pipe == NULL)do { if (({ static int __warned; int __ret = !!(!(sec_pipe-> top_pipe == ((void *)0))); if (__ret && !__warned) { printf ("WARNING %s failed at %s:%d\n", "!(sec_pipe->top_pipe == ((void *)0))" , "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1456); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1457 | |
1458 | if (!sec_pipe->top_pipe) |
1459 | sec_pipe->stream_res.opp = pool->opps[pipe_idx]; |
1460 | else |
1461 | sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; |
1462 | if (sec_pipe->stream->timing.flags.DSC == 1) { |
1463 | dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); |
1464 | ASSERT(sec_pipe->stream_res.dsc)do { if (({ static int __warned; int __ret = !!(!(sec_pipe-> stream_res.dsc)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(sec_pipe->stream_res.dsc)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1464); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1465 | if (sec_pipe->stream_res.dsc == NULL((void *)0)) |
1466 | return false0; |
1467 | } |
1468 | } else { |
1469 | if (pri_pipe->bottom_pipe) { |
1470 | ASSERT(pri_pipe->bottom_pipe != sec_pipe)do { if (({ static int __warned; int __ret = !!(!(pri_pipe-> bottom_pipe != sec_pipe)); if (__ret && !__warned) { printf ("WARNING %s failed at %s:%d\n", "!(pri_pipe->bottom_pipe != sec_pipe)" , "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1470); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1471 | sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; |
1472 | sec_pipe->bottom_pipe->top_pipe = sec_pipe; |
1473 | } |
1474 | pri_pipe->bottom_pipe = sec_pipe; |
1475 | sec_pipe->top_pipe = pri_pipe; |
1476 | |
1477 | ASSERT(pri_pipe->plane_state)do { if (({ static int __warned; int __ret = !!(!(pri_pipe-> plane_state)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(pri_pipe->plane_state)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1477); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1478 | } |
1479 | |
1480 | return true1; |
1481 | } |
1482 | |
1483 | bool_Bool dcn32_internal_validate_bw(struct dc *dc, |
1484 | struct dc_state *context, |
1485 | display_e2e_pipe_params_st *pipes, |
1486 | int *pipe_cnt_out, |
1487 | int *vlevel_out, |
1488 | bool_Bool fast_validate) |
1489 | { |
1490 | bool_Bool out = false0; |
1491 | bool_Bool repopulate_pipes = false0; |
1492 | int split[MAX_PIPES6] = { 0 }; |
1493 | bool_Bool merge[MAX_PIPES6] = { false0 }; |
1494 | bool_Bool newly_split[MAX_PIPES6] = { false0 }; |
1495 | int pipe_cnt, i, pipe_idx; |
1496 | int vlevel = context->bw_ctx.dml.soc.num_states; |
1497 | struct vba_vars_st *vba = &context->bw_ctx.dml.vba; |
1498 | |
1499 | dc_assert_fp_enabled(); |
1500 | |
1501 | ASSERT(pipes)do { if (({ static int __warned; int __ret = !!(!(pipes)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(pipes)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1501); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1502 | if (!pipes) |
1503 | return false0; |
1504 | |
1505 | // For each full update, remove all existing phantom pipes first |
1506 | dc->res_pool->funcs->remove_phantom_pipes(dc, context); |
1507 | |
1508 | dc->res_pool->funcs->update_soc_for_wm_a(dc, context); |
1509 | |
1510 | pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); |
1511 | |
1512 | if (!pipe_cnt) { |
1513 | out = true1; |
1514 | goto validate_out; |
1515 | } |
1516 | |
1517 | dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); |
1518 | |
1519 | if (!fast_validate) |
1520 | dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt); |
1521 | |
1522 | if (fast_validate || |
1523 | (dc->debug.dml_disallow_alternate_prefetch_modes && |
1524 | (vlevel == context->bw_ctx.dml.soc.num_states || |
1525 | vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) { |
1526 | /* |
1527 | * If dml_disallow_alternate_prefetch_modes is false, then we have already |
1528 | * tried alternate prefetch modes during full validation. |
1529 | * |
1530 | * If mode is unsupported or there is no p-state support, then |
1531 | * fall back to favouring voltage. |
1532 | * |
1533 | * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try |
1534 | * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2) |
1535 | */ |
1536 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1537 | dm_prefetch_support_fclk_and_stutter; |
1538 | |
1539 | vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
1540 | |
1541 | /* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */ |
1542 | if (vlevel == context->bw_ctx.dml.soc.num_states) { |
1543 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1544 | dm_prefetch_support_stutter; |
1545 | vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
1546 | } |
1547 | |
1548 | if (vlevel < context->bw_ctx.dml.soc.num_states) { |
1549 | memset(split, 0, sizeof(split))__builtin_memset((split), (0), (sizeof(split))); |
1550 | memset(merge, 0, sizeof(merge))__builtin_memset((merge), (0), (sizeof(merge))); |
1551 | vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); |
1552 | // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML |
1553 | vba->VoltageLevel = vlevel; |
1554 | } |
1555 | } |
1556 | |
1557 | dml_log_mode_support_params(&context->bw_ctx.dml); |
1558 | |
1559 | if (vlevel == context->bw_ctx.dml.soc.num_states) |
1560 | goto validate_fail; |
1561 | |
1562 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
1563 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
1564 | struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; |
1565 | |
1566 | if (!pipe->stream) |
1567 | continue; |
1568 | |
1569 | if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled |
1570 | && !dc->config.enable_windowed_mpo_odm |
1571 | && pipe->plane_state && mpo_pipe |
1572 | && memcmp(&mpo_pipe->plane_res.scl_data.recout,__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout ), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect ))) |
1573 | &pipe->plane_res.scl_data.recout,__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout ), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect ))) |
1574 | sizeof(struct rect))__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout ), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect ))) != 0) { |
1575 | ASSERT(mpo_pipe->plane_state != pipe->plane_state)do { if (({ static int __warned; int __ret = !!(!(mpo_pipe-> plane_state != pipe->plane_state)); if (__ret && ! __warned) { printf("WARNING %s failed at %s:%d\n", "!(mpo_pipe->plane_state != pipe->plane_state)" , "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1575); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1576 | goto validate_fail; |
1577 | } |
1578 | pipe_idx++; |
1579 | } |
1580 | |
1581 | /* merge pipes if necessary */ |
1582 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1583 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
1584 | |
1585 | /*skip pipes that don't need merging*/ |
1586 | if (!merge[i]) |
1587 | continue; |
1588 | |
1589 | /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ |
1590 | if (pipe->prev_odm_pipe) { |
1591 | /*split off odm pipe*/ |
1592 | pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; |
1593 | if (pipe->next_odm_pipe) |
1594 | pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; |
1595 | |
1596 | /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/ |
1597 | if (pipe->bottom_pipe) { |
1598 | if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) { |
1599 | /*MPC split rules will handle this case*/ |
1600 | pipe->bottom_pipe->top_pipe = NULL((void *)0); |
1601 | } else { |
1602 | /* when merging an ODM pipes, the bottom MPC pipe must now point to |
1603 | * the previous ODM pipe and its associated stream assets |
1604 | */ |
1605 | if (pipe->prev_odm_pipe->bottom_pipe) { |
1606 | /* 3 plane MPO*/ |
1607 | pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe; |
1608 | pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe; |
1609 | } else { |
1610 | /* 2 plane MPO*/ |
1611 | pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe; |
1612 | pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe; |
1613 | } |
1614 | |
1615 | memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource))__builtin_memcpy((&pipe->bottom_pipe->stream_res), ( &pipe->bottom_pipe->top_pipe->stream_res), (sizeof (struct stream_resource))); |
1616 | } |
1617 | } |
1618 | |
1619 | if (pipe->top_pipe) { |
1620 | pipe->top_pipe->bottom_pipe = NULL((void *)0); |
1621 | } |
1622 | |
1623 | pipe->bottom_pipe = NULL((void *)0); |
1624 | pipe->next_odm_pipe = NULL((void *)0); |
1625 | pipe->plane_state = NULL((void *)0); |
1626 | pipe->stream = NULL((void *)0); |
1627 | pipe->top_pipe = NULL((void *)0); |
1628 | pipe->prev_odm_pipe = NULL((void *)0); |
1629 | if (pipe->stream_res.dsc) |
1630 | dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); |
1631 | memset(&pipe->plane_res, 0, sizeof(pipe->plane_res))__builtin_memset((&pipe->plane_res), (0), (sizeof(pipe ->plane_res))); |
1632 | memset(&pipe->stream_res, 0, sizeof(pipe->stream_res))__builtin_memset((&pipe->stream_res), (0), (sizeof(pipe ->stream_res))); |
1633 | repopulate_pipes = true1; |
1634 | } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { |
1635 | struct pipe_ctx *top_pipe = pipe->top_pipe; |
1636 | struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; |
1637 | |
1638 | top_pipe->bottom_pipe = bottom_pipe; |
1639 | if (bottom_pipe) |
1640 | bottom_pipe->top_pipe = top_pipe; |
1641 | |
1642 | pipe->top_pipe = NULL((void *)0); |
1643 | pipe->bottom_pipe = NULL((void *)0); |
1644 | pipe->plane_state = NULL((void *)0); |
1645 | pipe->stream = NULL((void *)0); |
1646 | memset(&pipe->plane_res, 0, sizeof(pipe->plane_res))__builtin_memset((&pipe->plane_res), (0), (sizeof(pipe ->plane_res))); |
1647 | memset(&pipe->stream_res, 0, sizeof(pipe->stream_res))__builtin_memset((&pipe->stream_res), (0), (sizeof(pipe ->stream_res))); |
1648 | repopulate_pipes = true1; |
1649 | } else |
1650 | ASSERT(0)do { if (({ static int __warned; int __ret = !!(!(0)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(0)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1650); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); /* Should never try to merge master pipe */ |
1651 | |
1652 | } |
1653 | |
1654 | for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { |
1655 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
1656 | struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; |
1657 | struct pipe_ctx *hsplit_pipe = NULL((void *)0); |
1658 | bool_Bool odm; |
1659 | int old_index = -1; |
1660 | |
1661 | if (!pipe->stream || newly_split[i]) |
1662 | continue; |
1663 | |
1664 | pipe_idx++; |
1665 | odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; |
1666 | |
1667 | if (!pipe->plane_state && !odm) |
1668 | continue; |
1669 | |
1670 | if (split[i]) { |
1671 | if (odm) { |
1672 | if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) |
1673 | old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; |
1674 | else if (old_pipe->next_odm_pipe) |
1675 | old_index = old_pipe->next_odm_pipe->pipe_idx; |
1676 | } else { |
1677 | if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && |
1678 | old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
1679 | old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; |
1680 | else if (old_pipe->bottom_pipe && |
1681 | old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
1682 | old_index = old_pipe->bottom_pipe->pipe_idx; |
1683 | } |
1684 | hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); |
1685 | ASSERT(hsplit_pipe)do { if (({ static int __warned; int __ret = !!(!(hsplit_pipe )); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(hsplit_pipe)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1685); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1686 | if (!hsplit_pipe) |
1687 | goto validate_fail; |
1688 | |
1689 | if (!dcn32_split_stream_for_mpc_or_odm( |
1690 | dc, &context->res_ctx, |
1691 | pipe, hsplit_pipe, odm)) |
1692 | goto validate_fail; |
1693 | |
1694 | newly_split[hsplit_pipe->pipe_idx] = true1; |
1695 | repopulate_pipes = true1; |
1696 | } |
1697 | if (split[i] == 4) { |
1698 | struct pipe_ctx *pipe_4to1; |
1699 | |
1700 | if (odm && old_pipe->next_odm_pipe) |
1701 | old_index = old_pipe->next_odm_pipe->pipe_idx; |
1702 | else if (!odm && old_pipe->bottom_pipe && |
1703 | old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
1704 | old_index = old_pipe->bottom_pipe->pipe_idx; |
1705 | else |
1706 | old_index = -1; |
1707 | pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); |
1708 | ASSERT(pipe_4to1)do { if (({ static int __warned; int __ret = !!(!(pipe_4to1)) ; if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(pipe_4to1)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1708); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1709 | if (!pipe_4to1) |
1710 | goto validate_fail; |
1711 | if (!dcn32_split_stream_for_mpc_or_odm( |
1712 | dc, &context->res_ctx, |
1713 | pipe, pipe_4to1, odm)) |
1714 | goto validate_fail; |
1715 | newly_split[pipe_4to1->pipe_idx] = true1; |
1716 | |
1717 | if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe |
1718 | && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) |
1719 | old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; |
1720 | else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && |
1721 | old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && |
1722 | old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) |
1723 | old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; |
1724 | else |
1725 | old_index = -1; |
1726 | pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); |
1727 | ASSERT(pipe_4to1)do { if (({ static int __warned; int __ret = !!(!(pipe_4to1)) ; if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(pipe_4to1)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c" , 1727); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
1728 | if (!pipe_4to1) |
1729 | goto validate_fail; |
1730 | if (!dcn32_split_stream_for_mpc_or_odm( |
1731 | dc, &context->res_ctx, |
1732 | hsplit_pipe, pipe_4to1, odm)) |
1733 | goto validate_fail; |
1734 | newly_split[pipe_4to1->pipe_idx] = true1; |
1735 | } |
1736 | if (odm) |
1737 | dcn20_build_mapped_resource(dc, context, pipe->stream); |
1738 | } |
1739 | |
1740 | for (i = 0; i < dc->res_pool->pipe_count; i++) { |
1741 | struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; |
1742 | |
1743 | if (pipe->plane_state) { |
1744 | if (!resource_build_scaling_params(pipe)) |
1745 | goto validate_fail; |
1746 | } |
1747 | } |
1748 | |
1749 | /* Actual dsc count per stream dsc validation*/ |
1750 | if (!dcn20_validate_dsc(dc, context)) { |
1751 | vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; |
1752 | goto validate_fail; |
1753 | } |
1754 | |
1755 | if (repopulate_pipes) { |
1756 | pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); |
1757 | |
1758 | /* repopulate_pipes = 1 means the pipes were either split or merged. In this case |
1759 | * we have to re-calculate the DET allocation and run through DML once more to |
1760 | * ensure all the params are calculated correctly. We do not need to run the |
1761 | * pipe split check again after this call (pipes are already split / merged). |
1762 | * */ |
1763 | if (!fast_validate) { |
1764 | context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = |
1765 | dm_prefetch_support_uclk_fclk_and_stutter_if_possible; |
1766 | vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); |
1767 | } |
1768 | } |
1769 | *vlevel_out = vlevel; |
1770 | *pipe_cnt_out = pipe_cnt; |
1771 | |
1772 | out = true1; |
1773 | goto validate_out; |
1774 | |
1775 | validate_fail: |
1776 | out = false0; |
1777 | |
1778 | validate_out: |
1779 | return out; |
1780 | } |
1781 | |
1782 | |
1783 | void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context, |
1784 | display_e2e_pipe_params_st *pipes, |
1785 | int pipe_cnt, |
1786 | int vlevel) |
1787 | { |
1788 | int i, pipe_idx, vlevel_temp = 0; |
1789 | double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
Value stored to 'dcfclk' during its initialization is never read | |
1790 | double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
1791 | double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed; |
1792 | double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation; |
1793 | bool_Bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != |
1794 | dm_dram_clock_change_unsupported; |
1795 | unsigned int dummy_latency_index = 0; |
1796 | int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; |
1797 | unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; |
1798 | unsigned int min_dram_speed_mts_margin; |
1799 | |
1800 | dc_assert_fp_enabled(); |
1801 | |
1802 | // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK |
1803 | if (!pstate_en && dcn32_subvp_in_use(dc, context)) { |
1804 | context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; |
1805 | pstate_en = true1; |
1806 | } |
1807 | |
1808 | context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false0; |
1809 | |
1810 | if (!pstate_en) { |
1811 | /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */ |
1812 | context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = |
1813 | dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context); |
1814 | |
1815 | if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
1816 | dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc, |
1817 | context, pipes, pipe_cnt, vlevel); |
1818 | |
1819 | /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch |
1820 | * we reinstate the original dram_clock_change_latency_us on the context |
1821 | * and all variables that may have changed up to this point, except the |
1822 | * newly found dummy_latency_index |
1823 | */ |
1824 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
1825 | dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us; |
1826 | /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so |
1827 | * prefetch is scheduled correctly to account for dummy pstate. |
1828 | */ |
1829 | if (dummy_latency_index == 0) |
1830 | context->bw_ctx.dml.soc.fclk_change_latency_us = |
1831 | dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
1832 | dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false0); |
1833 | maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; |
1834 | dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; |
1835 | pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] != |
1836 | dm_dram_clock_change_unsupported; |
1837 | } |
1838 | } |
1839 | |
1840 | /* Set B: |
1841 | * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, |
1842 | * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark |
1843 | * calculations to cover bootup clocks. |
1844 | * DCFCLK: soc.clock_limits[2] when available |
1845 | * UCLK: soc.clock_limits[2] when available |
1846 | */ |
1847 | if (dcn3_2_soc.num_states > 2) { |
1848 | vlevel_temp = 2; |
1849 | dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; |
1850 | } else |
1851 | dcfclk = 615; //DCFCLK Vmin_lv |
1852 | |
1853 | pipes[0].clks_cfg.voltage = vlevel_temp; |
1854 | pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
1855 | pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; |
1856 | |
1857 | if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].valid) { |
1858 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.pstate_latency_us; |
1859 | context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.fclk_change_latency_us; |
1860 | context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_enter_plus_exit_time_us; |
1861 | context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_exit_time_us; |
1862 | } |
1863 | context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1864 | context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1865 | context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1866 | context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1867 | context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1868 | context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1869 | context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1870 | context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1871 | context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1872 | context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1873 | |
1874 | /* Set D: |
1875 | * All clocks min. |
1876 | * DCFCLK: Min, as reported by PM FW when available |
1877 | * UCLK : Min, as reported by PM FW when available |
1878 | * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) |
1879 | */ |
1880 | |
1881 | if (dcn3_2_soc.num_states > 2) { |
1882 | vlevel_temp = 0; |
1883 | dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; |
1884 | } else |
1885 | dcfclk = 615; //DCFCLK Vmin_lv |
1886 | |
1887 | pipes[0].clks_cfg.voltage = vlevel_temp; |
1888 | pipes[0].clks_cfg.dcfclk_mhz = dcfclk; |
1889 | pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; |
1890 | |
1891 | if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].valid) { |
1892 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.pstate_latency_us; |
1893 | context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.fclk_change_latency_us; |
1894 | context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_enter_plus_exit_time_us; |
1895 | context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_exit_time_us; |
1896 | } |
1897 | context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1898 | context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1899 | context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1900 | context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1901 | context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1902 | context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1903 | context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1904 | context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1905 | context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1906 | context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1907 | |
1908 | /* Set C, for Dummy P-State: |
1909 | * All clocks min. |
1910 | * DCFCLK: Min, as reported by PM FW, when available |
1911 | * UCLK : Min, as reported by PM FW, when available |
1912 | * pstate latency as per UCLK state dummy pstate latency |
1913 | */ |
1914 | |
1915 | // For Set A and Set C use values from validation |
1916 | pipes[0].clks_cfg.voltage = vlevel; |
1917 | pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; |
1918 | pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; |
1919 | |
1920 | if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
1921 | pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching; |
1922 | } |
1923 | |
1924 | if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].valid) { |
1925 | min_dram_speed_mts = dram_speed_from_validation; |
1926 | min_dram_speed_mts_margin = 160; |
1927 | |
1928 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
1929 | dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; |
1930 | |
1931 | if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] == |
1932 | dm_dram_clock_change_unsupported) { |
1933 | int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1; |
1934 | |
1935 | min_dram_speed_mts = |
1936 | dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16; |
1937 | } |
1938 | |
1939 | if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
1940 | /* find largest table entry that is lower than dram speed, |
1941 | * but lower than DPM0 still uses DPM0 |
1942 | */ |
1943 | for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--) |
1944 | if (min_dram_speed_mts + min_dram_speed_mts_margin > |
1945 | dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts) |
1946 | break; |
1947 | } |
1948 | |
1949 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
1950 | dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
1951 | |
1952 | context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.fclk_change_latency_us; |
1953 | context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_enter_plus_exit_time_us; |
1954 | context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_exit_time_us; |
1955 | } |
1956 | |
1957 | context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1958 | context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1959 | context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1960 | context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1961 | context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1962 | context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1963 | context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1964 | context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1965 | /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state. |
1966 | * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM |
1967 | * value. |
1968 | */ |
1969 | context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1970 | context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1971 | |
1972 | if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].valid)) { |
1973 | /* The only difference between A and C is p-state latency, if p-state is not supported |
1974 | * with full p-state latency we want to calculate DLG based on dummy p-state latency, |
1975 | * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30. |
1976 | */ |
1977 | context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; |
1978 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; |
1979 | /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case |
1980 | * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported |
1981 | */ |
1982 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1983 | } else { |
1984 | /* Set A: |
1985 | * All clocks min. |
1986 | * DCFCLK: Min, as reported by PM FW, when available |
1987 | * UCLK: Min, as reported by PM FW, when available |
1988 | */ |
1989 | dc->res_pool->funcs->update_soc_for_wm_a(dc, context); |
1990 | context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1991 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1992 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1993 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1994 | context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1995 | context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1996 | context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1997 | context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1998 | context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
1999 | context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; |
2000 | } |
2001 | |
2002 | for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { |
2003 | if (!context->res_ctx.pipe_ctx[i].stream) |
2004 | continue; |
2005 | |
2006 | pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); |
2007 | pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); |
2008 | |
2009 | if (dc->config.forced_clocks) { |
2010 | pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; |
2011 | pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; |
2012 | } |
2013 | if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) |
2014 | pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; |
2015 | if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) |
2016 | pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; |
2017 | |
2018 | pipe_idx++; |
2019 | } |
2020 | |
2021 | context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; |
2022 | |
2023 | if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && dummy_latency_index == 0) |
2024 | context->bw_ctx.dml.soc.fclk_change_latency_us = |
2025 | dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us; |
2026 | |
2027 | dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); |
2028 | |
2029 | if (!pstate_en) |
2030 | /* Restore full p-state latency */ |
2031 | context->bw_ctx.dml.soc.dram_clock_change_latency_us = |
2032 | dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us; |
2033 | |
2034 | if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) { |
2035 | dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context); |
2036 | if (dummy_latency_index == 0) |
2037 | context->bw_ctx.dml.soc.fclk_change_latency_us = |
2038 | dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.fclk_change_latency_us; |
2039 | } |
2040 | } |
2041 | |
2042 | static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, |
2043 | unsigned int *optimal_dcfclk, |
2044 | unsigned int *optimal_fclk) |
2045 | { |
2046 | double bw_from_dram, bw_from_dram1, bw_from_dram2; |
2047 | |
2048 | bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * |
2049 | dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); |
2050 | bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * |
2051 | dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); |
2052 | |
2053 | bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; |
2054 | |
2055 | if (optimal_fclk) |
2056 | *optimal_fclk = bw_from_dram / |
2057 | (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
2058 | |
2059 | if (optimal_dcfclk) |
2060 | *optimal_dcfclk = bw_from_dram / |
2061 | (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); |
2062 | } |
2063 | |
2064 | static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, |
2065 | unsigned int index) |
2066 | { |
2067 | int i; |
2068 | |
2069 | if (*num_entries == 0) |
2070 | return; |
2071 | |
2072 | for (i = index; i < *num_entries - 1; i++) { |
2073 | table[i] = table[i + 1]; |
2074 | } |
2075 | memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st))__builtin_memset((&table[--(*num_entries)]), (0), (sizeof (struct _vcs_dpi_voltage_scaling_st))); |
2076 | } |
2077 | |
2078 | void dcn32_patch_dpm_table(struct clk_bw_params *bw_params) |
2079 | { |
2080 | int i; |
2081 | unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, |
2082 | max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; |
2083 | |
2084 | for (i = 0; i < MAX_NUM_DPM_LVL8; i++) { |
2085 | if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
2086 | max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
2087 | if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) |
2088 | max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
2089 | if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) |
2090 | max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; |
2091 | if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
2092 | max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
2093 | if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
2094 | max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
2095 | if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
2096 | max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
2097 | if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) |
2098 | max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
2099 | } |
2100 | |
2101 | /* Scan through clock values we currently have and if they are 0, |
2102 | * then populate it with dcn3_2_soc.clock_limits[] value. |
2103 | * |
2104 | * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being |
2105 | * 0, will cause it to skip building the clock table. |
2106 | */ |
2107 | if (max_dcfclk_mhz == 0) |
2108 | bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
2109 | if (max_dispclk_mhz == 0) |
2110 | bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; |
2111 | if (max_dtbclk_mhz == 0) |
2112 | bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz; |
2113 | if (max_uclk_mhz == 0) |
2114 | bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16; |
2115 | } |
2116 | |
2117 | static int build_synthetic_soc_states(struct clk_bw_params *bw_params, |
2118 | struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) |
2119 | { |
2120 | int i, j; |
2121 | struct _vcs_dpi_voltage_scaling_st entry = {0}; |
2122 | |
2123 | unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, |
2124 | max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; |
2125 | |
2126 | unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; |
2127 | |
2128 | static const unsigned int num_dcfclk_stas = 5; |
2129 | unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {199, 615, 906, 1324, 1564}; |
2130 | |
2131 | unsigned int num_uclk_dpms = 0; |
2132 | unsigned int num_fclk_dpms = 0; |
2133 | unsigned int num_dcfclk_dpms = 0; |
2134 | |
2135 | for (i = 0; i < MAX_NUM_DPM_LVL8; i++) { |
2136 | if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
2137 | max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
2138 | if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) |
2139 | max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
2140 | if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) |
2141 | max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; |
2142 | if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
2143 | max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
2144 | if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
2145 | max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
2146 | if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
2147 | max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
2148 | if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) |
2149 | max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
2150 | |
2151 | if (bw_params->clk_table.entries[i].memclk_mhz > 0) |
2152 | num_uclk_dpms++; |
2153 | if (bw_params->clk_table.entries[i].fclk_mhz > 0) |
2154 | num_fclk_dpms++; |
2155 | if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) |
2156 | num_dcfclk_dpms++; |
2157 | } |
2158 | |
2159 | if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz) |
2160 | return -1; |
2161 | |
2162 | if (max_dppclk_mhz == 0) |
2163 | max_dppclk_mhz = max_dispclk_mhz; |
2164 | |
2165 | if (max_fclk_mhz == 0) |
2166 | max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; |
2167 | |
2168 | if (max_phyclk_mhz == 0) |
2169 | max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; |
2170 | |
2171 | *num_entries = 0; |
2172 | entry.dispclk_mhz = max_dispclk_mhz; |
2173 | entry.dscclk_mhz = max_dispclk_mhz / 3; |
2174 | entry.dppclk_mhz = max_dppclk_mhz; |
2175 | entry.dtbclk_mhz = max_dtbclk_mhz; |
2176 | entry.phyclk_mhz = max_phyclk_mhz; |
2177 | entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; |
2178 | entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; |
2179 | |
2180 | // Insert all the DCFCLK STAs |
2181 | for (i = 0; i < num_dcfclk_stas; i++) { |
2182 | entry.dcfclk_mhz = dcfclk_sta_targets[i]; |
2183 | entry.fabricclk_mhz = 0; |
2184 | entry.dram_speed_mts = 0; |
2185 | |
2186 | insert_entry_into_table_sorted(table, num_entries, &entry); |
2187 | } |
2188 | |
2189 | // Insert the max DCFCLK |
2190 | entry.dcfclk_mhz = max_dcfclk_mhz; |
2191 | entry.fabricclk_mhz = 0; |
2192 | entry.dram_speed_mts = 0; |
2193 | |
2194 | insert_entry_into_table_sorted(table, num_entries, &entry); |
2195 | |
2196 | // Insert the UCLK DPMS |
2197 | for (i = 0; i < num_uclk_dpms; i++) { |
2198 | entry.dcfclk_mhz = 0; |
2199 | entry.fabricclk_mhz = 0; |
2200 | entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; |
2201 | |
2202 | insert_entry_into_table_sorted(table, num_entries, &entry); |
2203 | } |
2204 | |
2205 | // If FCLK is coarse grained, insert individual DPMs. |
2206 | if (num_fclk_dpms > 2) { |
2207 | for (i = 0; i < num_fclk_dpms; i++) { |
2208 | entry.dcfclk_mhz = 0; |
2209 | entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; |
2210 | entry.dram_speed_mts = 0; |
2211 | |
2212 | insert_entry_into_table_sorted(table, num_entries, &entry); |
2213 | } |
2214 | } |
2215 | // If FCLK fine grained, only insert max |
2216 | else { |
2217 | entry.dcfclk_mhz = 0; |
2218 | entry.fabricclk_mhz = max_fclk_mhz; |
2219 | entry.dram_speed_mts = 0; |
2220 | |
2221 | insert_entry_into_table_sorted(table, num_entries, &entry); |
2222 | } |
2223 | |
2224 | // At this point, the table contains all "points of interest" based on |
2225 | // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock |
2226 | // ratios (by derate, are exact). |
2227 | |
2228 | // Remove states that require higher clocks than are supported |
2229 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2230 | if (table[i].dcfclk_mhz > max_dcfclk_mhz || |
2231 | table[i].fabricclk_mhz > max_fclk_mhz || |
2232 | table[i].dram_speed_mts > max_uclk_mhz * 16) |
2233 | remove_entry_from_table_at_index(table, num_entries, i); |
2234 | } |
2235 | |
2236 | // At this point, the table only contains supported points of interest |
2237 | // it could be used as is, but some states may be redundant due to |
2238 | // coarse grained nature of some clocks, so we want to round up to |
2239 | // coarse grained DPMs and remove duplicates. |
2240 | |
2241 | // Round up UCLKs |
2242 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2243 | for (j = 0; j < num_uclk_dpms; j++) { |
2244 | if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { |
2245 | table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; |
2246 | break; |
2247 | } |
2248 | } |
2249 | } |
2250 | |
2251 | // If FCLK is coarse grained, round up to next DPMs |
2252 | if (num_fclk_dpms > 2) { |
2253 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2254 | for (j = 0; j < num_fclk_dpms; j++) { |
2255 | if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { |
2256 | table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; |
2257 | break; |
2258 | } |
2259 | } |
2260 | } |
2261 | } |
2262 | // Otherwise, round up to minimum. |
2263 | else { |
2264 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2265 | if (table[i].fabricclk_mhz < min_fclk_mhz) { |
2266 | table[i].fabricclk_mhz = min_fclk_mhz; |
2267 | break; |
2268 | } |
2269 | } |
2270 | } |
2271 | |
2272 | // Round DCFCLKs up to minimum |
2273 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2274 | if (table[i].dcfclk_mhz < min_dcfclk_mhz) { |
2275 | table[i].dcfclk_mhz = min_dcfclk_mhz; |
2276 | break; |
2277 | } |
2278 | } |
2279 | |
2280 | // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. |
2281 | i = 0; |
2282 | while (i < *num_entries - 1) { |
2283 | if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && |
2284 | table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && |
2285 | table[i].dram_speed_mts == table[i + 1].dram_speed_mts) |
2286 | remove_entry_from_table_at_index(table, num_entries, i + 1); |
2287 | else |
2288 | i++; |
2289 | } |
2290 | |
2291 | // Fix up the state indicies |
2292 | for (i = *num_entries - 1; i >= 0 ; i--) { |
2293 | table[i].state = i; |
2294 | } |
2295 | |
2296 | return 0; |
2297 | } |
2298 | |
2299 | /* |
2300 | * dcn32_update_bw_bounding_box |
2301 | * |
2302 | * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from |
2303 | * spreadsheet with actual values as per dGPU SKU: |
2304 | * - with passed few options from dc->config |
2305 | * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might |
2306 | * need to get it from PM FW) |
2307 | * - with passed latency values (passed in ns units) in dc-> bb override for |
2308 | * debugging purposes |
2309 | * - with passed latencies from VBIOS (in 100_ns units) if available for |
2310 | * certain dGPU SKU |
2311 | * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU |
2312 | * of the same ASIC) |
2313 | * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM |
2314 | * FW for different clocks (which might differ for certain dGPU SKU of the |
2315 | * same ASIC) |
2316 | */ |
2317 | void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params) |
2318 | { |
2319 | dc_assert_fp_enabled(); |
2320 | |
2321 | if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)(dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS)) { |
2322 | /* Overrides from dc->config options */ |
2323 | dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; |
2324 | |
2325 | /* Override from passed dc->bb_overrides if available*/ |
2326 | if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns |
2327 | && dc->bb_overrides.sr_exit_time_ns) { |
2328 | dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; |
2329 | } |
2330 | |
2331 | if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) |
2332 | != dc->bb_overrides.sr_enter_plus_exit_time_ns |
2333 | && dc->bb_overrides.sr_enter_plus_exit_time_ns) { |
2334 | dcn3_2_soc.sr_enter_plus_exit_time_us = |
2335 | dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; |
2336 | } |
2337 | |
2338 | if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns |
2339 | && dc->bb_overrides.urgent_latency_ns) { |
2340 | dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
2341 | dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0; |
2342 | } |
2343 | |
2344 | if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) |
2345 | != dc->bb_overrides.dram_clock_change_latency_ns |
2346 | && dc->bb_overrides.dram_clock_change_latency_ns) { |
2347 | dcn3_2_soc.dram_clock_change_latency_us = |
2348 | dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; |
2349 | } |
2350 | |
2351 | if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000) |
2352 | != dc->bb_overrides.fclk_clock_change_latency_ns |
2353 | && dc->bb_overrides.fclk_clock_change_latency_ns) { |
2354 | dcn3_2_soc.fclk_change_latency_us = |
2355 | dc->bb_overrides.fclk_clock_change_latency_ns / 1000; |
2356 | } |
2357 | |
2358 | if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) |
2359 | != dc->bb_overrides.dummy_clock_change_latency_ns |
2360 | && dc->bb_overrides.dummy_clock_change_latency_ns) { |
2361 | dcn3_2_soc.dummy_pstate_latency_us = |
2362 | dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; |
2363 | } |
2364 | |
2365 | /* Override from VBIOS if VBIOS bb_info available */ |
2366 | if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { |
2367 | struct bp_soc_bb_info bb_info = {0}; |
2368 | |
2369 | if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { |
2370 | if (bb_info.dram_clock_change_latency_100ns > 0) |
2371 | dcn3_2_soc.dram_clock_change_latency_us = |
2372 | bb_info.dram_clock_change_latency_100ns * 10; |
2373 | |
2374 | if (bb_info.dram_sr_enter_exit_latency_100ns > 0) |
2375 | dcn3_2_soc.sr_enter_plus_exit_time_us = |
2376 | bb_info.dram_sr_enter_exit_latency_100ns * 10; |
2377 | |
2378 | if (bb_info.dram_sr_exit_latency_100ns > 0) |
2379 | dcn3_2_soc.sr_exit_time_us = |
2380 | bb_info.dram_sr_exit_latency_100ns * 10; |
2381 | } |
2382 | } |
2383 | |
2384 | /* Override from VBIOS for num_chan */ |
2385 | if (dc->ctx->dc_bios->vram_info.num_chans) { |
2386 | dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; |
2387 | dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc, |
2388 | dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel); |
2389 | } |
2390 | |
2391 | if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) |
2392 | dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; |
2393 | } |
2394 | |
2395 | /* DML DSC delay factor workaround */ |
2396 | dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0; |
2397 | |
2398 | dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0; |
2399 | |
2400 | /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ |
2401 | dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
2402 | dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; |
2403 | |
2404 | /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ |
2405 | if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)(dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS)) && (bw_params->clk_table.entries[0].memclk_mhz)) { |
2406 | if (dc->debug.use_legacy_soc_bb_mechanism) { |
2407 | unsigned int i = 0, j = 0, num_states = 0; |
2408 | |
2409 | unsigned int dcfclk_mhz[DC__VOLTAGE_STATES20] = {0}; |
2410 | unsigned int dram_speed_mts[DC__VOLTAGE_STATES20] = {0}; |
2411 | unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {0}; |
2412 | unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES20] = {0}; |
2413 | unsigned int min_dcfclk = UINT_MAX0xffffffffU; |
2414 | /* Set 199 as first value in STA target array to have a minimum DCFCLK value. |
2415 | * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ |
2416 | unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {199, 615, 906, 1324, 1564}; |
2417 | unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; |
2418 | unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; |
2419 | |
2420 | for (i = 0; i < MAX_NUM_DPM_LVL8; i++) { |
2421 | if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) |
2422 | max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; |
2423 | if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && |
2424 | bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) |
2425 | min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; |
2426 | if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) |
2427 | max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; |
2428 | if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) |
2429 | max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; |
2430 | if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) |
2431 | max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; |
2432 | } |
2433 | if (min_dcfclk > dcfclk_sta_targets[0]) |
2434 | dcfclk_sta_targets[0] = min_dcfclk; |
2435 | if (!max_dcfclk_mhz) |
2436 | max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; |
2437 | if (!max_dispclk_mhz) |
2438 | max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; |
2439 | if (!max_dppclk_mhz) |
2440 | max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; |
2441 | if (!max_phyclk_mhz) |
2442 | max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; |
2443 | |
2444 | if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
2445 | // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array |
2446 | dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; |
2447 | num_dcfclk_sta_targets++; |
2448 | } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { |
2449 | // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates |
2450 | for (i = 0; i < num_dcfclk_sta_targets; i++) { |
2451 | if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { |
2452 | dcfclk_sta_targets[i] = max_dcfclk_mhz; |
2453 | break; |
2454 | } |
2455 | } |
2456 | // Update size of array since we "removed" duplicates |
2457 | num_dcfclk_sta_targets = i + 1; |
2458 | } |
2459 | |
2460 | num_uclk_states = bw_params->clk_table.num_entries; |
2461 | |
2462 | // Calculate optimal dcfclk for each uclk |
2463 | for (i = 0; i < num_uclk_states; i++) { |
2464 | dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, |
2465 | &optimal_dcfclk_for_uclk[i], NULL((void *)0)); |
2466 | if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { |
2467 | optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; |
2468 | } |
2469 | } |
2470 | |
2471 | // Calculate optimal uclk for each dcfclk sta target |
2472 | for (i = 0; i < num_dcfclk_sta_targets; i++) { |
2473 | for (j = 0; j < num_uclk_states; j++) { |
2474 | if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { |
2475 | optimal_uclk_for_dcfclk_sta_targets[i] = |
2476 | bw_params->clk_table.entries[j].memclk_mhz * 16; |
2477 | break; |
2478 | } |
2479 | } |
2480 | } |
2481 | |
2482 | i = 0; |
2483 | j = 0; |
2484 | // create the final dcfclk and uclk table |
2485 | while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES20) { |
2486 | if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { |
2487 | dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
2488 | dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
2489 | } else { |
2490 | if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
2491 | dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
2492 | dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
2493 | } else { |
2494 | j = num_uclk_states; |
2495 | } |
2496 | } |
2497 | } |
2498 | |
2499 | while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES20) { |
2500 | dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; |
2501 | dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; |
2502 | } |
2503 | |
2504 | while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES20 && |
2505 | optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { |
2506 | dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; |
2507 | dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; |
2508 | } |
2509 | |
2510 | dcn3_2_soc.num_states = num_states; |
2511 | for (i = 0; i < dcn3_2_soc.num_states; i++) { |
2512 | dcn3_2_soc.clock_limits[i].state = i; |
2513 | dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; |
2514 | dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; |
2515 | |
2516 | /* Fill all states with max values of all these clocks */ |
2517 | dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; |
2518 | dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; |
2519 | dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; |
2520 | dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; |
2521 | |
2522 | /* Populate from bw_params for DTBCLK, SOCCLK */ |
2523 | if (i > 0) { |
2524 | if (!bw_params->clk_table.entries[i].dtbclk_mhz) { |
2525 | dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; |
2526 | } else { |
2527 | dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
2528 | } |
2529 | } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { |
2530 | dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; |
2531 | } |
2532 | |
2533 | if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) |
2534 | dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; |
2535 | else |
2536 | dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; |
2537 | |
2538 | if (!dram_speed_mts[i] && i > 0) |
2539 | dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; |
2540 | else |
2541 | dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; |
2542 | |
2543 | /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ |
2544 | /* PHYCLK_D18, PHYCLK_D32 */ |
2545 | dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; |
2546 | dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; |
2547 | } |
2548 | } else { |
2549 | build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); |
2550 | } |
2551 | |
2552 | /* Re-init DML with updated bb */ |
2553 | dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); |
2554 | if (dc->current_state) |
2555 | dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); |
2556 | } |
2557 | } |
2558 | |
2559 | void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes, |
2560 | int pipe_cnt) |
2561 | { |
2562 | dc_assert_fp_enabled(); |
2563 | |
2564 | pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; |
2565 | pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; |
2566 | } |
2567 | |
2568 | bool_Bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe) |
2569 | { |
2570 | bool_Bool allow = false0; |
2571 | uint32_t refresh_rate = 0; |
2572 | |
2573 | /* Allow subvp on displays that have active margin for 2560x1440@60hz displays |
2574 | * only for now. There must be no scaling as well. |
2575 | * |
2576 | * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs |
2577 | * for p-state switching. |
2578 | */ |
2579 | if (pipe->stream && pipe->plane_state) { |
2580 | refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 + |
2581 | pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1) |
2582 | / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total); |
2583 | if (pipe->stream->timing.v_addressable == 1440 && |
2584 | pipe->stream->timing.h_addressable == 2560 && |
2585 | refresh_rate >= 55 && refresh_rate <= 65 && |
2586 | pipe->plane_state->src_rect.height == 1440 && |
2587 | pipe->plane_state->src_rect.width == 2560 && |
2588 | pipe->plane_state->dst_rect.height == 1440 && |
2589 | pipe->plane_state->dst_rect.width == 2560) |
2590 | allow = true1; |
2591 | } |
2592 | return allow; |
2593 | } |