Bug Summary

File:dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c
Warning:line 1789, column 9
Value stored to 'dcfclk' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name dcn32_fpu.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -3dnow -target-feature -mmx -target-feature +save-args -target-feature +retpoline-external-thunk -target-feature +sse -target-feature +sse2 -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/llvm16/lib/clang/16 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/legacy-dpm -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu13 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/inc -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/inc/pmfw_if -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D SUSPEND -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /home/ben/Projects/scan/2024-01-11-110808-61670-1 -x c /usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26#include "dcn32_fpu.h"
27#include "dc_link_dp.h"
28#include "dcn32/dcn32_resource.h"
29#include "dcn20/dcn20_resource.h"
30#include "display_mode_vba_util_32.h"
31// We need this includes for WATERMARKS_* defines
32#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33#include "dcn30/dcn30_resource.h"
34
35#define DC_LOGGER_INIT(logger)
36
37struct _vcs_dpi_ip_params_st dcn3_2_ip = {
38 .gpuvm_enable = 0,
39 .gpuvm_max_page_table_levels = 4,
40 .hostvm_enable = 0,
41 .rob_buffer_size_kbytes = 128,
42 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE256,
43 .config_return_buffer_size_in_kbytes = 1280,
44 .compressed_buffer_segment_size_in_kbytes = 64,
45 .meta_fifo_size_in_kentries = 22,
46 .zero_size_buffer_entries = 512,
47 .compbuf_reserved_space_64b = 256,
48 .compbuf_reserved_space_zs = 64,
49 .dpp_output_buffer_pixels = 2560,
50 .opp_output_buffer_lines = 1,
51 .pixel_chunk_size_kbytes = 8,
52 .alpha_pixel_chunk_size_kbytes = 4,
53 .min_pixel_chunk_size_bytes = 1024,
54 .dcc_meta_buffer_size_bytes = 6272,
55 .meta_chunk_size_kbytes = 2,
56 .min_meta_chunk_size_bytes = 256,
57 .writeback_chunk_size_kbytes = 8,
58 .ptoi_supported = false0,
59 .num_dsc = 4,
60 .maximum_dsc_bits_per_component = 12,
61 .maximum_pixels_per_line_per_dsc_unit = 6016,
62 .dsc422_native_support = true1,
63 .is_line_buffer_bpp_fixed = true1,
64 .line_buffer_fixed_bpp = 57,
65 .line_buffer_size_bits = 1171920,
66 .max_line_buffer_lines = 32,
67 .writeback_interface_buffer_size_kbytes = 90,
68 .max_num_dpp = 4,
69 .max_num_otg = 4,
70 .max_num_hdmi_frl_outputs = 1,
71 .max_num_wb = 1,
72 .max_dchub_pscl_bw_pix_per_clk = 4,
73 .max_pscl_lb_bw_pix_per_clk = 2,
74 .max_lb_vscl_bw_pix_per_clk = 4,
75 .max_vscl_hscl_bw_pix_per_clk = 4,
76 .max_hscl_ratio = 6,
77 .max_vscl_ratio = 6,
78 .max_hscl_taps = 8,
79 .max_vscl_taps = 8,
80 .dpte_buffer_size_in_pte_reqs_luma = 64,
81 .dpte_buffer_size_in_pte_reqs_chroma = 34,
82 .dispclk_ramp_margin_percent = 1,
83 .max_inter_dcn_tile_repeaters = 8,
84 .cursor_buffer_size = 16,
85 .cursor_chunk_size = 2,
86 .writeback_line_buffer_buffer_size = 0,
87 .writeback_min_hscl_ratio = 1,
88 .writeback_min_vscl_ratio = 1,
89 .writeback_max_hscl_ratio = 1,
90 .writeback_max_vscl_ratio = 1,
91 .writeback_max_hscl_taps = 1,
92 .writeback_max_vscl_taps = 1,
93 .dppclk_delay_subtotal = 47,
94 .dppclk_delay_scl = 50,
95 .dppclk_delay_scl_lb_only = 16,
96 .dppclk_delay_cnvc_formatter = 28,
97 .dppclk_delay_cnvc_cursor = 6,
98 .dispclk_delay_subtotal = 125,
99 .dynamic_metadata_vm_enabled = false0,
100 .odm_combine_4to1_supported = false0,
101 .dcc_supported = true1,
102 .max_num_dp2p0_outputs = 2,
103 .max_num_dp2p0_streams = 4,
104};
105
106struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
107 .clock_limits = {
108 {
109 .state = 0,
110 .dcfclk_mhz = 1564.0,
111 .fabricclk_mhz = 400.0,
112 .dispclk_mhz = 2150.0,
113 .dppclk_mhz = 2150.0,
114 .phyclk_mhz = 810.0,
115 .phyclk_d18_mhz = 667.0,
116 .phyclk_d32_mhz = 625.0,
117 .socclk_mhz = 1200.0,
118 .dscclk_mhz = 716.667,
119 .dram_speed_mts = 16000.0,
120 .dtbclk_mhz = 1564.0,
121 },
122 },
123 .num_states = 1,
124 .sr_exit_time_us = 42.97,
125 .sr_enter_plus_exit_time_us = 49.94,
126 .sr_exit_z8_time_us = 285.0,
127 .sr_enter_plus_exit_z8_time_us = 320,
128 .writeback_latency_us = 12.0,
129 .round_trip_ping_latency_dcfclk_cycles = 263,
130 .urgent_latency_pixel_data_only_us = 4.0,
131 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
132 .urgent_latency_vm_data_only_us = 4.0,
133 .fclk_change_latency_us = 20,
134 .usr_retraining_latency_us = 2,
135 .smn_latency_us = 2,
136 .mall_allocated_for_dcn_mbytes = 64,
137 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
138 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
139 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
140 .pct_ideal_sdp_bw_after_urgent = 90.0,
141 .pct_ideal_fabric_bw_after_urgent = 67.0,
142 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
143 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
144 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
145 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
146 .max_avg_sdp_bw_use_normal_percent = 80.0,
147 .max_avg_fabric_bw_use_normal_percent = 60.0,
148 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
149 .max_avg_dram_bw_use_normal_percent = 15.0,
150 .num_chans = 8,
151 .dram_channel_width_bytes = 2,
152 .fabric_datapath_to_dcn_data_return_bytes = 64,
153 .return_bus_width_bytes = 64,
154 .downspread_percent = 0.38,
155 .dcn_downspread_percent = 0.5,
156 .dram_clock_change_latency_us = 400,
157 .dispclk_dppclk_vco_speed_mhz = 4300.0,
158 .do_urgent_latency_adjustment = true1,
159 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
160 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
161};
162
163void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
164{
165 /* defaults */
166 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
167 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
168 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
169 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
170 /* For min clocks use as reported by PM FW and report those as min */
171 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
172 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
173 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
174 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
175
176 dc_assert_fp_enabled();
177
178 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
179 if (dcfclk_mhz_for_the_second_state)
180 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
181 else
182 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183
184 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
185 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
186
187 /* Set A - Normal - default values */
188 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].valid = true1;
189 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us = pstate_latency_us;
190 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.fclk_change_latency_us = fclk_change_latency_us;
191 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.sr_exit_time_us = sr_exit_time_us;
192 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
193 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
194 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
195 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.max_dcfclk = 0xFFFF;
196 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.min_uclk = min_uclk_mhz;
197 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A0].pmfw_breakdown.max_uclk = 0xFFFF;
198
199 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].valid = true1;
201 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.pstate_latency_us = pstate_latency_us;
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.fclk_change_latency_us = fclk_change_latency_us;
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_exit_time_us = sr_exit_time_us;
204 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
206 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.max_dcfclk = 0xFFFF;
207 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
208 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B1].pmfw_breakdown.max_uclk = 0xFFFF;
209
210 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
211 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
212 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].valid = true1;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.pstate_latency_us = 50;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.fclk_change_latency_us = fclk_change_latency_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_exit_time_us = sr_exit_time_us;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.max_dcfclk = 0xFFFF;
221 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.min_uclk = min_uclk_mhz;
222 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C2].pmfw_breakdown.max_uclk = 0xFFFF;
223 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
224 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
225 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
226 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
227 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
228 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
229 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
230 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
231 }
232 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
233 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
234 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].valid = true1;
235 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.fclk_change_latency_us = fclk_change_latency_us;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.wm_type = WATERMARKS_MALL;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.max_dcfclk = 0xFFFF;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.min_uclk = min_uclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D3].pmfw_breakdown.max_uclk = 0xFFFF;
244}
245
246/*
247 * Finds dummy_latency_index when MCLK switching using firmware based
248 * vblank stretch is enabled. This function will iterate through the
249 * table of dummy pstate latencies until the lowest value that allows
250 * dm_allow_self_refresh_and_mclk_switch to happen is found
251 */
252int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
253 struct dc_state *context,
254 display_e2e_pipe_params_st *pipes,
255 int pipe_cnt,
256 int vlevel)
257{
258 const int max_latency_table_entries = 4;
259 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
260 int dummy_latency_index = 0;
261
262 dc_assert_fp_enabled();
263
264 while (dummy_latency_index < max_latency_table_entries) {
265 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
266 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
267 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false0);
268
269 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
270 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
271 break;
272
273 dummy_latency_index++;
274 }
275
276 if (dummy_latency_index == max_latency_table_entries) {
277 ASSERT(dummy_latency_index != max_latency_table_entries)do { if (({ static int __warned; int __ret = !!(!(dummy_latency_index
!= max_latency_table_entries)); if (__ret && !__warned
) { printf("WARNING %s failed at %s:%d\n", "!(dummy_latency_index != max_latency_table_entries)"
, "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 277); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
278 /* If the execution gets here, it means dummy p_states are
279 * not possible. This should never happen and would mean
280 * something is severely wrong.
281 * Here we reset dummy_latency_index to 3, because it is
282 * better to have underflows than system crashes.
283 */
284 dummy_latency_index = max_latency_table_entries - 1;
285 }
286
287 return dummy_latency_index;
288}
289
290/**
291 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
292 * and populate pipe_ctx with those params.
293 * @dc: [in] current dc state
294 * @context: [in] new dc state
295 * @pipes: [in] DML pipe params array
296 * @pipe_cnt: [in] DML pipe count
297 *
298 * This function must be called AFTER the phantom pipes are added to context
299 * and run through DML (so that the DLG params for the phantom pipes can be
300 * populated), and BEFORE we program the timing for the phantom pipes.
301 */
302void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
303 struct dc_state *context,
304 display_e2e_pipe_params_st *pipes,
305 int pipe_cnt)
306{
307 uint32_t i, pipe_idx;
308
309 dc_assert_fp_enabled();
310
311 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
312 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
313
314 if (!pipe->stream)
315 continue;
316
317 if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
318 pipes[pipe_idx].pipe.dest.vstartup_start =
319 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
320 pipes[pipe_idx].pipe.dest.vupdate_offset =
321 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
322 pipes[pipe_idx].pipe.dest.vupdate_width =
323 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
324 pipes[pipe_idx].pipe.dest.vready_offset =
325 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
326 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
327 }
328 pipe_idx++;
329 }
330}
331
332/**
333 * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
334 * @context: [in] New DC state to be programmed
335 * @pipe_e2e: [in] DML pipe end to end context
336 *
337 * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
338 * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
339 * determined by DPPClk requirements
340 *
341 * This function follows the same policy as DML:
342 * - Check for ODM combine requirements / policy first
343 * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
344 * MPC is required
345 *
346 * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
347 */
348uint8_t dcn32_predict_pipe_split(struct dc_state *context,
349 display_e2e_pipe_params_st *pipe_e2e)
350{
351 double pscl_throughput;
352 double pscl_throughput_chroma;
353 double dpp_clk_single_dpp, clock;
354 double clk_frequency = 0.0;
355 double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
356 bool_Bool total_available_pipes_support = false0;
357 uint32_t number_of_dpp = 0;
358 enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
359 double req_dispclk_per_surface = 0;
360 uint8_t num_splits = 0;
361
362 dc_assert_fp_enabled();
363
364 dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
365 pipe_e2e->pipe.dest.hactive,
366 pipe_e2e->dout.output_format,
367 pipe_e2e->dout.output_type,
368 pipe_e2e->pipe.dest.odm_combine_policy,
369 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
370 context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
371 pipe_e2e->dout.dsc_enable != 0,
372 0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
373 context->bw_ctx.dml.ip.max_num_dpp,
374 pipe_e2e->pipe.dest.pixel_rate_mhz,
375 context->bw_ctx.dml.soc.dcn_downspread_percent,
376 context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
377 context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
378 pipe_e2e->dout.dsc_slices,
379 /* Output */
380 &total_available_pipes_support,
381 &number_of_dpp,
382 &odm_mode,
383 &req_dispclk_per_surface);
384
385 dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
386 pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
387 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
388 pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
389 context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
390 context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
391 pipe_e2e->pipe.dest.pixel_rate_mhz,
392 pipe_e2e->pipe.src.source_format,
393 pipe_e2e->pipe.scale_taps.htaps,
394 pipe_e2e->pipe.scale_taps.htaps_c,
395 pipe_e2e->pipe.scale_taps.vtaps,
396 pipe_e2e->pipe.scale_taps.vtaps_c,
397 /* Output */
398 &pscl_throughput, &pscl_throughput_chroma,
399 &dpp_clk_single_dpp);
400
401 clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
402
403 if (clock > 0)
404 clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
405
406 if (odm_mode == dm_odm_combine_mode_2to1)
407 num_splits = 1;
408 else if (odm_mode == dm_odm_combine_mode_4to1)
409 num_splits = 3;
410 else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
411 num_splits = 1;
412
413 return num_splits;
414}
415
416static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
417{
418 float memory_bw_kbytes_sec;
419 float fabric_bw_kbytes_sec;
420 float sdp_bw_kbytes_sec;
421 float limiting_bw_kbytes_sec;
422
423 memory_bw_kbytes_sec = entry->dram_speed_mts *
424 dcn3_2_soc.num_chans *
425 dcn3_2_soc.dram_channel_width_bytes *
426 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
427
428 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
429 dcn3_2_soc.return_bus_width_bytes *
430 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
431
432 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
433 dcn3_2_soc.return_bus_width_bytes *
434 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
435
436 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
437
438 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
439 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
440
441 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
442 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
443
444 return limiting_bw_kbytes_sec;
445}
446
447static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
448{
449 if (entry->dcfclk_mhz > 0) {
450 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
451
452 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
453 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
454 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
455 } else if (entry->fabricclk_mhz > 0) {
456 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
457
458 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
459 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
460 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
461 } else if (entry->dram_speed_mts > 0) {
462 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
463 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
464
465 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
466 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
467 }
468}
469
470void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
471 unsigned int *num_entries,
472 struct _vcs_dpi_voltage_scaling_st *entry)
473{
474 int i = 0;
475 int index = 0;
476 float net_bw_of_new_state = 0;
477
478 dc_assert_fp_enabled();
479
480 get_optimal_ntuple(entry);
481
482 if (*num_entries == 0) {
483 table[0] = *entry;
484 (*num_entries)++;
485 } else {
486 net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
487 while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
488 index++;
489 if (index >= *num_entries)
490 break;
491 }
492
493 for (i = *num_entries; i > index; i--)
494 table[i] = table[i - 1];
495
496 table[index] = *entry;
497 (*num_entries)++;
498 }
499}
500
501/**
502 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
503 * @dc: current dc state
504 * @context: new dc state
505 * @ref_pipe: Main pipe for the phantom stream
506 * @phantom_stream: target phantom stream state
507 * @pipes: DML pipe params
508 * @pipe_cnt: number of DML pipes
509 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
510 *
511 * Set timing params of the phantom stream based on calculated output from DML.
512 * This function first gets the DML pipe index using the DC pipe index, then
513 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
514 * lines required for SubVP MCLK switching and assigns to the phantom stream
515 * accordingly.
516 *
517 * - The number of SubVP lines calculated in DML does not take into account
518 * FW processing delays and required pstate allow width, so we must include
519 * that separately.
520 *
521 * - Set phantom backporch = vstartup of main pipe
522 */
523void dcn32_set_phantom_stream_timing(struct dc *dc,
524 struct dc_state *context,
525 struct pipe_ctx *ref_pipe,
526 struct dc_stream_state *phantom_stream,
527 display_e2e_pipe_params_st *pipes,
528 unsigned int pipe_cnt,
529 unsigned int dc_pipe_idx)
530{
531 unsigned int i, pipe_idx;
532 struct pipe_ctx *pipe;
533 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
534 unsigned int num_dpp;
535 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
536 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
537 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
538 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
539
540 dc_assert_fp_enabled();
541
542 // Find DML pipe index (pipe_idx) using dc_pipe_idx
543 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
544 pipe = &context->res_ctx.pipe_ctx[i];
545
546 if (!pipe->stream)
547 continue;
548
549 if (i == dc_pipe_idx)
550 break;
551
552 pipe_idx++;
553 }
554
555 // Calculate lines required for pstate allow width and FW processing delays
556 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
557 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
558 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
559 (double)ref_pipe->stream->timing.h_total;
560
561 // Update clks_cfg for calling into recalculate
562 pipes[0].clks_cfg.voltage = vlevel;
563 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
564 pipes[0].clks_cfg.socclk_mhz = socclk;
565
566 // DML calculation for MALL region doesn't take into account FW delay
567 // and required pstate allow width for multi-display cases
568 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
569 * to 2 swaths (i.e. 16 lines)
570 */
571 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
572 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
573
574 // W/A for DCC corruption with certain high resolution timings.
575 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
576 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
577 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
578
579 // For backporch of phantom pipe, use vstartup of the main pipe
580 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
581
582 phantom_stream->dst.y = 0;
583 phantom_stream->dst.height = phantom_vactive;
584 phantom_stream->src.y = 0;
585 phantom_stream->src.height = phantom_vactive;
586
587 phantom_stream->timing.v_addressable = phantom_vactive;
588 phantom_stream->timing.v_front_porch = 1;
589 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
590 phantom_stream->timing.v_front_porch +
591 phantom_stream->timing.v_sync_width +
592 phantom_bp;
593 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
594}
595
596/**
597 * dcn32_get_num_free_pipes - Calculate number of free pipes
598 * @dc: current dc state
599 * @context: new dc state
600 *
601 * This function assumes that a "used" pipe is a pipe that has
602 * both a stream and a plane assigned to it.
603 *
604 * Return: Number of free pipes available in the context
605 */
606static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
607{
608 unsigned int i;
609 unsigned int free_pipes = 0;
610 unsigned int num_pipes = 0;
611
612 for (i = 0; i < dc->res_pool->pipe_count; i++) {
613 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
614
615 if (pipe->stream && !pipe->top_pipe) {
616 while (pipe) {
617 num_pipes++;
618 pipe = pipe->bottom_pipe;
619 }
620 }
621 }
622
623 free_pipes = dc->res_pool->pipe_count - num_pipes;
624 return free_pipes;
625}
626
627/**
628 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
629 * @dc: current dc state
630 * @context: new dc state
631 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
632 *
633 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
634 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
635 * we are forcing SubVP P-State switching on the current config.
636 *
637 * The number of pipes used for the chosen surface must be less than or equal to the
638 * number of free pipes available.
639 *
640 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
641 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
642 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
643 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
644 *
645 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
646 */
647static bool_Bool dcn32_assign_subvp_pipe(struct dc *dc,
648 struct dc_state *context,
649 unsigned int *index)
650{
651 unsigned int i, pipe_idx;
652 unsigned int max_frame_time = 0;
653 bool_Bool valid_assignment_found = false0;
654 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
655 bool_Bool current_assignment_freesync = false0;
656 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
657
658 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
659 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
660 unsigned int num_pipes = 0;
661 unsigned int refresh_rate = 0;
662
663 if (!pipe->stream)
664 continue;
665
666 // Round up
667 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
668 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
669 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
670 /* SubVP pipe candidate requirements:
671 * - Refresh rate < 120hz
672 * - Not able to switch in vactive naturally (switching in active means the
673 * DET provides enough buffer to hide the P-State switch latency -- trying
674 * to combine this with SubVP can cause issues with the scheduling).
675 * - Not TMZ surface
676 */
677 if (pipe->plane_state && !pipe->top_pipe &&
678 pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120 && !pipe->plane_state->address.tmz_surface &&
679 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
680 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
681 dcn32_allow_subvp_with_active_margin(pipe)))) {
682 while (pipe) {
683 num_pipes++;
684 pipe = pipe->bottom_pipe;
685 }
686
687 pipe = &context->res_ctx.pipe_ctx[i];
688 if (num_pipes <= free_pipes) {
689 struct dc_stream_state *stream = pipe->stream;
690 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
691 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
692 if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
693 *index = i;
694 max_frame_time = frame_us;
695 valid_assignment_found = true1;
696 current_assignment_freesync = false0;
697 /* For the 2-Freesync display case, still choose the one with the
698 * longest frame time
699 */
700 } else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
701 (current_assignment_freesync && frame_us > max_frame_time))) {
702 *index = i;
703 valid_assignment_found = true1;
704 current_assignment_freesync = true1;
705 }
706 }
707 }
708 pipe_idx++;
709 }
710 return valid_assignment_found;
711}
712
713/**
714 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
715 * @dc: current dc state
716 * @context: new dc state
717 *
718 * This function returns true if there are enough free pipes
719 * to create the required phantom pipes for any given stream
720 * (that does not already have phantom pipe assigned).
721 *
722 * e.g. For a 2 stream config where the first stream uses one
723 * pipe and the second stream uses 2 pipes (i.e. pipe split),
724 * this function will return true because there is 1 remaining
725 * pipe which can be used as the phantom pipe for the non pipe
726 * split pipe.
727 *
728 * Return:
729 * True if there are enough free pipes to assign phantom pipes to at least one
730 * stream that does not already have phantom pipes assigned. Otherwise false.
731 */
732static bool_Bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
733{
734 unsigned int i, split_cnt, free_pipes;
735 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
736 bool_Bool subvp_possible = false0;
737
738 for (i = 0; i < dc->res_pool->pipe_count; i++) {
739 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
740
741 // Find the minimum pipe split count for non SubVP pipes
742 if (pipe->stream && !pipe->top_pipe &&
743 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
744 split_cnt = 0;
745 while (pipe) {
746 split_cnt++;
747 pipe = pipe->bottom_pipe;
748 }
749
750 if (split_cnt < min_pipe_split)
751 min_pipe_split = split_cnt;
752 }
753 }
754
755 free_pipes = dcn32_get_num_free_pipes(dc, context);
756
757 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
758 // should not equal to the pipe_count)
759 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
760 subvp_possible = true1;
761
762 return subvp_possible;
763}
764
765/**
766 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
767 * @dc: current dc state
768 * @context: new dc state
769 *
770 * High level algorithm:
771 * 1. Find longest microschedule length (in us) between the two SubVP pipes
772 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
773 * pipes still allows for the maximum microschedule to fit in the active
774 * region for both pipes.
775 *
776 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
777 */
778static bool_Bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
779{
780 struct pipe_ctx *subvp_pipes[2];
781 struct dc_stream_state *phantom = NULL((void *)0);
782 uint32_t microschedule_lines = 0;
783 uint32_t index = 0;
784 uint32_t i;
785 uint32_t max_microschedule_us = 0;
786 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
787
788 for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
790 uint32_t time_us = 0;
791
792 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
793 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
794 */
795 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
796 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
797 phantom = pipe->stream->mall_stream_config.paired_stream;
798 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
799 phantom->timing.v_addressable;
800
801 // Round up when calculating microschedule time (+ 1 at the end)
802 time_us = (microschedule_lines * phantom->timing.h_total) /
803 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
804 dc->caps.subvp_prefetch_end_to_mall_start_us +
805 dc->caps.subvp_fw_processing_delay_us + 1;
806 if (time_us > max_microschedule_us)
807 max_microschedule_us = time_us;
808
809 subvp_pipes[index] = pipe;
810 index++;
811
812 // Maximum 2 SubVP pipes
813 if (index == 2)
814 break;
815 }
816 }
817 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
818 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
819 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
820 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
821 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
822 subvp_pipes[0]->stream->timing.h_total) /
823 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
824 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
825 subvp_pipes[1]->stream->timing.h_total) /
826 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
827
828 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
829 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
830 return true1;
831
832 return false0;
833}
834
835/**
836 * subvp_drr_schedulable - Determine if SubVP + DRR config is schedulable
837 * @dc: current dc state
838 * @context: new dc state
839 * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
840 *
841 * High level algorithm:
842 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
843 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
844 * (the margin is equal to the MALL region + DRR margin (500us))
845 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
846 * then report the configuration as supported
847 *
848 * Return: True if the SubVP + DRR config is schedulable, false otherwise
849 */
850static bool_Bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
851{
852 bool_Bool schedulable = false0;
853 uint32_t i;
854 struct pipe_ctx *pipe = NULL((void *)0);
855 struct dc_crtc_timing *main_timing = NULL((void *)0);
856 struct dc_crtc_timing *phantom_timing = NULL((void *)0);
857 struct dc_crtc_timing *drr_timing = NULL((void *)0);
858 int16_t prefetch_us = 0;
859 int16_t mall_region_us = 0;
860 int16_t drr_frame_us = 0; // nominal frame time
861 int16_t subvp_active_us = 0;
862 int16_t stretched_drr_us = 0;
863 int16_t drr_stretched_vblank_us = 0;
864 int16_t max_vblank_mallregion = 0;
865
866 // Find SubVP pipe
867 for (i = 0; i < dc->res_pool->pipe_count; i++) {
868 pipe = &context->res_ctx.pipe_ctx[i];
869
870 // We check for master pipe, but it shouldn't matter since we only need
871 // the pipe for timing info (stream should be same for any pipe splits)
872 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
873 continue;
874
875 // Find the SubVP pipe
876 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
877 break;
878 }
879
880 main_timing = &pipe->stream->timing;
881 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
882 drr_timing = &drr_pipe->stream->timing;
883 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
884 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
885 dc->caps.subvp_prefetch_end_to_mall_start_us;
886 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
887 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
888 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
889 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
890 // P-State allow width and FW delays already included phantom_timing->v_addressable
891 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
892 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
893 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US500;
894 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
895 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
896 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
897
898 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
899 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
900 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
901 * and the max of (VBLANK blanking time, MALL region)).
902 */
903 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
904 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
905 schedulable = true1;
906
907 return schedulable;
908}
909
910
911/**
912 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
913 * @dc: current dc state
914 * @context: new dc state
915 *
916 * High level algorithm:
917 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
918 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
919 * then report the configuration as supported
920 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
921 *
922 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
923 */
924static bool_Bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
925{
926 struct pipe_ctx *pipe = NULL((void *)0);
927 struct pipe_ctx *subvp_pipe = NULL((void *)0);
928 bool_Bool found = false0;
929 bool_Bool schedulable = false0;
930 uint32_t i = 0;
931 uint8_t vblank_index = 0;
932 uint16_t prefetch_us = 0;
933 uint16_t mall_region_us = 0;
934 uint16_t vblank_frame_us = 0;
935 uint16_t subvp_active_us = 0;
936 uint16_t vblank_blank_us = 0;
937 uint16_t max_vblank_mallregion = 0;
938 struct dc_crtc_timing *main_timing = NULL((void *)0);
939 struct dc_crtc_timing *phantom_timing = NULL((void *)0);
940 struct dc_crtc_timing *vblank_timing = NULL((void *)0);
941
942 /* For SubVP + VBLANK/DRR cases, we assume there can only be
943 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
944 * is supported, it is either a single VBLANK case or two VBLANK
945 * displays which are synchronized (in which case they have identical
946 * timings).
947 */
948 for (i = 0; i < dc->res_pool->pipe_count; i++) {
949 pipe = &context->res_ctx.pipe_ctx[i];
950
951 // We check for master pipe, but it shouldn't matter since we only need
952 // the pipe for timing info (stream should be same for any pipe splits)
953 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
954 continue;
955
956 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
957 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
958 vblank_index = i;
959 found = true1;
960 }
961
962 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
963 subvp_pipe = pipe;
964 }
965 // Use ignore_msa_timing_param flag to identify as DRR
966 if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
967 // SUBVP + DRR case
968 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
969 } else if (found) {
970 main_timing = &subvp_pipe->stream->timing;
971 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
972 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
973 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
974 // Also include the prefetch end to mallstart delay time
975 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
976 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
977 dc->caps.subvp_prefetch_end_to_mall_start_us;
978 // P-State allow width and FW delays already included phantom_timing->v_addressable
979 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
980 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
981 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
982 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
983 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
984 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
985 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
986 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
987 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
988
989 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
990 // and the max of (VBLANK blanking time, MALL region)
991 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
992 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
993 schedulable = true1;
994 }
995 return schedulable;
996}
997
998/**
999 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1000 * and handle static analysis based on the case.
1001 * @dc: current dc state
1002 * @context: new dc state
1003 * @vlevel: Voltage level calculated by DML
1004 *
1005 * Three cases:
1006 * 1. SubVP + SubVP
1007 * 2. SubVP + VBLANK (DRR checked internally)
1008 * 3. SubVP + VACTIVE (currently unsupported)
1009 *
1010 * Return: True if statically schedulable, false otherwise
1011 */
1012static bool_Bool subvp_validate_static_schedulability(struct dc *dc,
1013 struct dc_state *context,
1014 int vlevel)
1015{
1016 bool_Bool schedulable = true1; // true by default for single display case
1017 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1018 uint32_t i, pipe_idx;
1019 uint8_t subvp_count = 0;
1020 uint8_t vactive_count = 0;
1021
1022 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1023 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1024
1025 if (!pipe->stream)
1026 continue;
1027
1028 if (pipe->plane_state && !pipe->top_pipe &&
1029 pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1030 subvp_count++;
1031
1032 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1033 // switching (SubVP + VACTIVE unsupported). In situations where we force
1034 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1035 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
1036 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1037 vactive_count++;
1038 }
1039 pipe_idx++;
1040 }
1041
1042 if (subvp_count == 2) {
1043 // Static schedulability check for SubVP + SubVP case
1044 schedulable = subvp_subvp_schedulable(dc, context);
1045 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
1046 // Static schedulability check for SubVP + VBLANK case. Also handle the case where
1047 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
1048 if (vactive_count > 0)
1049 schedulable = false0;
1050 else
1051 schedulable = subvp_vblank_schedulable(dc, context);
1052 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1053 vactive_count > 0) {
1054 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1055 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1056 // SubVP + VACTIVE currently unsupported
1057 schedulable = false0;
1058 }
1059 return schedulable;
1060}
1061
1062static void dcn32_full_validate_bw_helper(struct dc *dc,
1063 struct dc_state *context,
1064 display_e2e_pipe_params_st *pipes,
1065 int *vlevel,
1066 int *split,
1067 bool_Bool *merge,
1068 int *pipe_cnt)
1069{
1070 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1071 unsigned int dc_pipe_idx = 0;
1072 bool_Bool found_supported_config = false0;
1073 struct pipe_ctx *pipe = NULL((void *)0);
1074 uint32_t non_subvp_pipes = 0;
1075 bool_Bool drr_pipe_found = false0;
1076 uint32_t drr_pipe_index = 0;
1077 uint32_t i = 0;
1078
1079 dc_assert_fp_enabled();
1080
1081 /*
1082 * DML favors voltage over p-state, but we're more interested in
1083 * supporting p-state over voltage. We can't support p-state in
1084 * prefetch mode > 0 so try capping the prefetch mode to start.
1085 * Override present for testing.
1086 */
1087 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1088 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1089 dm_prefetch_support_uclk_fclk_and_stutter;
1090 else
1091 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1092 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1093
1094 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1095 /* This may adjust vlevel and maxMpcComb */
1096 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1097 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1098 vba->VoltageLevel = *vlevel;
1099 }
1100
1101 /* Conditions for setting up phantom pipes for SubVP:
1102 * 1. Not force disable SubVP
1103 * 2. Full update (i.e. !fast_validate)
1104 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1105 * 4. Display configuration passes validation
1106 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1107 */
1108 if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1109 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1110 (*vlevel == context->bw_ctx.dml.soc.num_states ||
1111 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1112 dc->debug.force_subvp_mclk_switch)) {
1113
1114 dcn32_merge_pipes_for_subvp(dc, context);
1115 memset(merge, 0, MAX_PIPES * sizeof(bool))__builtin_memset((merge), (0), (6 * sizeof(_Bool)));
1116
1117 /* to re-initialize viewport after the pipe merge */
1118 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1119 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1120
1121 if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1122 continue;
1123
1124 resource_build_scaling_params(pipe_ctx);
1125 }
1126
1127 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1128 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1129 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1130 * Adding phantom pipes won't change the validation result, so change the DML input param
1131 * for P-State support before adding phantom pipes and recalculating the DML result.
1132 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1133 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1134 * enough to support MCLK switching.
1135 */
1136 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1137 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1138 dm_prefetch_support_uclk_fclk_and_stutter) {
1139 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1140 dm_prefetch_support_stutter;
1141 /* There are params (such as FabricClock) that need to be recalculated
1142 * after validation fails (otherwise it will be 0). Calculation for
1143 * phantom vactive requires call into DML, so we must ensure all the
1144 * vba params are valid otherwise we'll get incorrect phantom vactive.
1145 */
1146 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1147 }
1148
1149 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1150
1151 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false0);
1152 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1153 // so the phantom pipe DLG params can be assigned correctly.
1154 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1155 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1156
1157 if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1158 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1159 && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1160 found_supported_config = true1;
1161 } else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1162 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1163 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
1164 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
1165 * at it's native refresh rate / timing.
1166 */
1167 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1168 pipe = &context->res_ctx.pipe_ctx[i];
1169 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1170 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1171 non_subvp_pipes++;
1172 // Use ignore_msa_timing_param flag to identify as DRR
1173 if (pipe->stream->ignore_msa_timing_param) {
1174 drr_pipe_found = true1;
1175 drr_pipe_index = i;
1176 }
1177 }
1178 }
1179 // If there is only 1 remaining non SubVP pipe that is DRR, check static
1180 // schedulability for SubVP + DRR.
1181 if (non_subvp_pipes == 1 && drr_pipe_found) {
1182 found_supported_config = subvp_drr_schedulable(dc, context,
1183 &context->res_ctx.pipe_ctx[drr_pipe_index]);
1184 }
1185 }
1186 }
1187
1188 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1189 // remove phantom pipes and repopulate dml pipes
1190 if (!found_supported_config) {
1191 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1192 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1193 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false0);
1194
1195 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1196 /* This may adjust vlevel and maxMpcComb */
1197 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1198 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1199 vba->VoltageLevel = *vlevel;
1200 }
1201 } else {
1202 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1203 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1204
1205 /* Call validate_apply_pipe_split flags after calling DML getters for
1206 * phantom dlg params, or some of the VBA params indicating pipe split
1207 * can be overwritten by the getters.
1208 *
1209 * When setting up SubVP config, all pipes are merged before attempting to
1210 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1211 * and phantom pipes will be split in the regular pipe splitting sequence.
1212 */
1213 memset(split, 0, MAX_PIPES * sizeof(int))__builtin_memset((split), (0), (6 * sizeof(int)));
1214 memset(merge, 0, MAX_PIPES * sizeof(bool))__builtin_memset((merge), (0), (6 * sizeof(_Bool)));
1215 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1216 vba->VoltageLevel = *vlevel;
1217 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1218 // until driver has acquired the DMCUB lock to do it safely.
1219 }
1220 }
1221}
1222
1223static bool_Bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1224{
1225 int i;
1226
1227 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1228 if (!context->res_ctx.pipe_ctx[i].stream)
1229 continue;
1230 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1231 return true1;
1232 }
1233 return false0;
1234}
1235
1236static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1237 display_e2e_pipe_params_st *pipes,
1238 int pipe_cnt, int vlevel)
1239{
1240 int i, pipe_idx, active_hubp_count = 0;
1241 bool_Bool usr_retraining_support = false0;
1242 bool_Bool unbounded_req_enabled = false0;
1243
1244 dc_assert_fp_enabled();
1245
1246 /* Writeback MCIF_WB arbitration parameters */
1247 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1248
1249 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1250 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1251 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1252 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1253 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1254 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1255 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1256 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1257 != dm_dram_clock_change_unsupported;
1258 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1259
1260 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1261 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1262 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1263 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1264 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false0;
1265 else
1266 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true1;
1267
1268 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1269 ASSERT(usr_retraining_support)do { if (({ static int __warned; int __ret = !!(!(usr_retraining_support
)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(usr_retraining_support)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1269); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1270
1271 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1272 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1273
1274 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1275
1276 if (unbounded_req_enabled && pipe_cnt > 1) {
1277 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1278 ASSERT(false)do { if (({ static int __warned; int __ret = !!(!(0)); if (__ret
&& !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(0)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1278); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1279 unbounded_req_enabled = false0;
1280 }
1281
1282 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1283 if (!context->res_ctx.pipe_ctx[i].stream)
1284 continue;
1285 if (context->res_ctx.pipe_ctx[i].plane_state)
1286 active_hubp_count++;
1287 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1288 pipe_idx);
1289 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1290 pipe_idx);
1291 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1292 pipe_idx);
1293 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1294 pipe_idx);
1295
1296 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1297 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1298 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1299 context->res_ctx.pipe_ctx[i].unbounded_req = false0;
1300 } else {
1301 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1302 pipe_idx);
1303 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1304 }
1305
1306 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1307 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1308 if (context->res_ctx.pipe_ctx[i].plane_state)
1309 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1310 else
1311 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1312 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1313 pipe_idx++;
1314 }
1315 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1316 if (!active_hubp_count) {
1317 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1318 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1319 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1320 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1321 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1322 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1323 context->bw_ctx.bw.dcn.clk.p_state_change_support = true1;
1324 }
1325 /*save a original dppclock copy*/
1326 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1327 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1328 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1329 * 1000;
1330 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1331 * 1000;
1332
1333 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1334
1335 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1336 if (context->res_ctx.pipe_ctx[i].stream)
1337 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1338 }
1339
1340 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1341
1342 if (!context->res_ctx.pipe_ctx[i].stream)
1343 continue;
1344
1345 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1346 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1347 pipe_cnt, pipe_idx);
1348
1349 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1350 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1351 pipe_idx++;
1352 }
1353}
1354
1355static struct pipe_ctx *dcn32_find_split_pipe(
1356 struct dc *dc,
1357 struct dc_state *context,
1358 int old_index)
1359{
1360 struct pipe_ctx *pipe = NULL((void *)0);
1361 int i;
1362
1363 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL((void *)0)) {
1364 pipe = &context->res_ctx.pipe_ctx[old_index];
1365 pipe->pipe_idx = old_index;
1366 }
1367
1368 if (!pipe)
1369 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1370 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL((void *)0)
1371 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL((void *)0)) {
1372 if (context->res_ctx.pipe_ctx[i].stream == NULL((void *)0)) {
1373 pipe = &context->res_ctx.pipe_ctx[i];
1374 pipe->pipe_idx = i;
1375 break;
1376 }
1377 }
1378 }
1379
1380 /*
1381 * May need to fix pipes getting tossed from 1 opp to another on flip
1382 * Add for debugging transient underflow during topology updates:
1383 * ASSERT(pipe);
1384 */
1385 if (!pipe)
1386 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1387 if (context->res_ctx.pipe_ctx[i].stream == NULL((void *)0)) {
1388 pipe = &context->res_ctx.pipe_ctx[i];
1389 pipe->pipe_idx = i;
1390 break;
1391 }
1392 }
1393
1394 return pipe;
1395}
1396
1397static bool_Bool dcn32_split_stream_for_mpc_or_odm(
1398 const struct dc *dc,
1399 struct resource_context *res_ctx,
1400 struct pipe_ctx *pri_pipe,
1401 struct pipe_ctx *sec_pipe,
1402 bool_Bool odm)
1403{
1404 int pipe_idx = sec_pipe->pipe_idx;
1405 const struct resource_pool *pool = dc->res_pool;
1406
1407 DC_LOGGER_INIT(dc->ctx->logger);
1408
1409 if (odm && pri_pipe->plane_state) {
1410 /* ODM + window MPO, where MPO window is on left half only */
1411 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1412 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1413
1414 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",do { } while(0)
1415 __func__,do { } while(0)
1416 pri_pipe->pipe_idx)do { } while(0);
1417 return true1;
1418 }
1419
1420 /* ODM + window MPO, where MPO window is on right half only */
1421 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1422
1423 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",do { } while(0)
1424 __func__,do { } while(0)
1425 pri_pipe->pipe_idx)do { } while(0);
1426 return true1;
1427 }
1428 }
1429
1430 *sec_pipe = *pri_pipe;
1431
1432 sec_pipe->pipe_idx = pipe_idx;
1433 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1434 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1435 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1436 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1437 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1438 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1439 sec_pipe->stream_res.dsc = NULL((void *)0);
1440 if (odm) {
1441 if (pri_pipe->next_odm_pipe) {
1442 ASSERT(pri_pipe->next_odm_pipe != sec_pipe)do { if (({ static int __warned; int __ret = !!(!(pri_pipe->
next_odm_pipe != sec_pipe)); if (__ret && !__warned) {
printf("WARNING %s failed at %s:%d\n", "!(pri_pipe->next_odm_pipe != sec_pipe)"
, "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1442); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1443 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1444 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1445 }
1446 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1447 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1448 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1449 }
1450 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1451 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1452 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1453 }
1454 pri_pipe->next_odm_pipe = sec_pipe;
1455 sec_pipe->prev_odm_pipe = pri_pipe;
1456 ASSERT(sec_pipe->top_pipe == NULL)do { if (({ static int __warned; int __ret = !!(!(sec_pipe->
top_pipe == ((void *)0))); if (__ret && !__warned) { printf
("WARNING %s failed at %s:%d\n", "!(sec_pipe->top_pipe == ((void *)0))"
, "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1456); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1457
1458 if (!sec_pipe->top_pipe)
1459 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1460 else
1461 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1462 if (sec_pipe->stream->timing.flags.DSC == 1) {
1463 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1464 ASSERT(sec_pipe->stream_res.dsc)do { if (({ static int __warned; int __ret = !!(!(sec_pipe->
stream_res.dsc)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(sec_pipe->stream_res.dsc)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1464); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1465 if (sec_pipe->stream_res.dsc == NULL((void *)0))
1466 return false0;
1467 }
1468 } else {
1469 if (pri_pipe->bottom_pipe) {
1470 ASSERT(pri_pipe->bottom_pipe != sec_pipe)do { if (({ static int __warned; int __ret = !!(!(pri_pipe->
bottom_pipe != sec_pipe)); if (__ret && !__warned) { printf
("WARNING %s failed at %s:%d\n", "!(pri_pipe->bottom_pipe != sec_pipe)"
, "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1470); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1471 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1472 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1473 }
1474 pri_pipe->bottom_pipe = sec_pipe;
1475 sec_pipe->top_pipe = pri_pipe;
1476
1477 ASSERT(pri_pipe->plane_state)do { if (({ static int __warned; int __ret = !!(!(pri_pipe->
plane_state)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(pri_pipe->plane_state)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1477); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1478 }
1479
1480 return true1;
1481}
1482
1483bool_Bool dcn32_internal_validate_bw(struct dc *dc,
1484 struct dc_state *context,
1485 display_e2e_pipe_params_st *pipes,
1486 int *pipe_cnt_out,
1487 int *vlevel_out,
1488 bool_Bool fast_validate)
1489{
1490 bool_Bool out = false0;
1491 bool_Bool repopulate_pipes = false0;
1492 int split[MAX_PIPES6] = { 0 };
1493 bool_Bool merge[MAX_PIPES6] = { false0 };
1494 bool_Bool newly_split[MAX_PIPES6] = { false0 };
1495 int pipe_cnt, i, pipe_idx;
1496 int vlevel = context->bw_ctx.dml.soc.num_states;
1497 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1498
1499 dc_assert_fp_enabled();
1500
1501 ASSERT(pipes)do { if (({ static int __warned; int __ret = !!(!(pipes)); if
(__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(pipes)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1501); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1502 if (!pipes)
1503 return false0;
1504
1505 // For each full update, remove all existing phantom pipes first
1506 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1507
1508 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1509
1510 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1511
1512 if (!pipe_cnt) {
1513 out = true1;
1514 goto validate_out;
1515 }
1516
1517 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1518
1519 if (!fast_validate)
1520 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1521
1522 if (fast_validate ||
1523 (dc->debug.dml_disallow_alternate_prefetch_modes &&
1524 (vlevel == context->bw_ctx.dml.soc.num_states ||
1525 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1526 /*
1527 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1528 * tried alternate prefetch modes during full validation.
1529 *
1530 * If mode is unsupported or there is no p-state support, then
1531 * fall back to favouring voltage.
1532 *
1533 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1534 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1535 */
1536 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1537 dm_prefetch_support_fclk_and_stutter;
1538
1539 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1540
1541 /* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */
1542 if (vlevel == context->bw_ctx.dml.soc.num_states) {
1543 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1544 dm_prefetch_support_stutter;
1545 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1546 }
1547
1548 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1549 memset(split, 0, sizeof(split))__builtin_memset((split), (0), (sizeof(split)));
1550 memset(merge, 0, sizeof(merge))__builtin_memset((merge), (0), (sizeof(merge)));
1551 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1552 // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1553 vba->VoltageLevel = vlevel;
1554 }
1555 }
1556
1557 dml_log_mode_support_params(&context->bw_ctx.dml);
1558
1559 if (vlevel == context->bw_ctx.dml.soc.num_states)
1560 goto validate_fail;
1561
1562 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1563 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1564 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1565
1566 if (!pipe->stream)
1567 continue;
1568
1569 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1570 && !dc->config.enable_windowed_mpo_odm
1571 && pipe->plane_state && mpo_pipe
1572 && memcmp(&mpo_pipe->plane_res.scl_data.recout,__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout
), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect
)))
1573 &pipe->plane_res.scl_data.recout,__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout
), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect
)))
1574 sizeof(struct rect))__builtin_memcmp((&mpo_pipe->plane_res.scl_data.recout
), (&pipe->plane_res.scl_data.recout), (sizeof(struct rect
)))
!= 0) {
1575 ASSERT(mpo_pipe->plane_state != pipe->plane_state)do { if (({ static int __warned; int __ret = !!(!(mpo_pipe->
plane_state != pipe->plane_state)); if (__ret && !
__warned) { printf("WARNING %s failed at %s:%d\n", "!(mpo_pipe->plane_state != pipe->plane_state)"
, "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1575); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1576 goto validate_fail;
1577 }
1578 pipe_idx++;
1579 }
1580
1581 /* merge pipes if necessary */
1582 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1583 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1584
1585 /*skip pipes that don't need merging*/
1586 if (!merge[i])
1587 continue;
1588
1589 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1590 if (pipe->prev_odm_pipe) {
1591 /*split off odm pipe*/
1592 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1593 if (pipe->next_odm_pipe)
1594 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1595
1596 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1597 if (pipe->bottom_pipe) {
1598 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1599 /*MPC split rules will handle this case*/
1600 pipe->bottom_pipe->top_pipe = NULL((void *)0);
1601 } else {
1602 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1603 * the previous ODM pipe and its associated stream assets
1604 */
1605 if (pipe->prev_odm_pipe->bottom_pipe) {
1606 /* 3 plane MPO*/
1607 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1608 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1609 } else {
1610 /* 2 plane MPO*/
1611 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1612 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1613 }
1614
1615 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource))__builtin_memcpy((&pipe->bottom_pipe->stream_res), (
&pipe->bottom_pipe->top_pipe->stream_res), (sizeof
(struct stream_resource)))
;
1616 }
1617 }
1618
1619 if (pipe->top_pipe) {
1620 pipe->top_pipe->bottom_pipe = NULL((void *)0);
1621 }
1622
1623 pipe->bottom_pipe = NULL((void *)0);
1624 pipe->next_odm_pipe = NULL((void *)0);
1625 pipe->plane_state = NULL((void *)0);
1626 pipe->stream = NULL((void *)0);
1627 pipe->top_pipe = NULL((void *)0);
1628 pipe->prev_odm_pipe = NULL((void *)0);
1629 if (pipe->stream_res.dsc)
1630 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1631 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res))__builtin_memset((&pipe->plane_res), (0), (sizeof(pipe
->plane_res)))
;
1632 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res))__builtin_memset((&pipe->stream_res), (0), (sizeof(pipe
->stream_res)))
;
1633 repopulate_pipes = true1;
1634 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1635 struct pipe_ctx *top_pipe = pipe->top_pipe;
1636 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1637
1638 top_pipe->bottom_pipe = bottom_pipe;
1639 if (bottom_pipe)
1640 bottom_pipe->top_pipe = top_pipe;
1641
1642 pipe->top_pipe = NULL((void *)0);
1643 pipe->bottom_pipe = NULL((void *)0);
1644 pipe->plane_state = NULL((void *)0);
1645 pipe->stream = NULL((void *)0);
1646 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res))__builtin_memset((&pipe->plane_res), (0), (sizeof(pipe
->plane_res)))
;
1647 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res))__builtin_memset((&pipe->stream_res), (0), (sizeof(pipe
->stream_res)))
;
1648 repopulate_pipes = true1;
1649 } else
1650 ASSERT(0)do { if (({ static int __warned; int __ret = !!(!(0)); if (__ret
&& !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(0)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1650); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
; /* Should never try to merge master pipe */
1651
1652 }
1653
1654 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1655 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1656 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1657 struct pipe_ctx *hsplit_pipe = NULL((void *)0);
1658 bool_Bool odm;
1659 int old_index = -1;
1660
1661 if (!pipe->stream || newly_split[i])
1662 continue;
1663
1664 pipe_idx++;
1665 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1666
1667 if (!pipe->plane_state && !odm)
1668 continue;
1669
1670 if (split[i]) {
1671 if (odm) {
1672 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1673 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1674 else if (old_pipe->next_odm_pipe)
1675 old_index = old_pipe->next_odm_pipe->pipe_idx;
1676 } else {
1677 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1678 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1679 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1680 else if (old_pipe->bottom_pipe &&
1681 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1682 old_index = old_pipe->bottom_pipe->pipe_idx;
1683 }
1684 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1685 ASSERT(hsplit_pipe)do { if (({ static int __warned; int __ret = !!(!(hsplit_pipe
)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(hsplit_pipe)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1685); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1686 if (!hsplit_pipe)
1687 goto validate_fail;
1688
1689 if (!dcn32_split_stream_for_mpc_or_odm(
1690 dc, &context->res_ctx,
1691 pipe, hsplit_pipe, odm))
1692 goto validate_fail;
1693
1694 newly_split[hsplit_pipe->pipe_idx] = true1;
1695 repopulate_pipes = true1;
1696 }
1697 if (split[i] == 4) {
1698 struct pipe_ctx *pipe_4to1;
1699
1700 if (odm && old_pipe->next_odm_pipe)
1701 old_index = old_pipe->next_odm_pipe->pipe_idx;
1702 else if (!odm && old_pipe->bottom_pipe &&
1703 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1704 old_index = old_pipe->bottom_pipe->pipe_idx;
1705 else
1706 old_index = -1;
1707 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1708 ASSERT(pipe_4to1)do { if (({ static int __warned; int __ret = !!(!(pipe_4to1))
; if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(pipe_4to1)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1708); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1709 if (!pipe_4to1)
1710 goto validate_fail;
1711 if (!dcn32_split_stream_for_mpc_or_odm(
1712 dc, &context->res_ctx,
1713 pipe, pipe_4to1, odm))
1714 goto validate_fail;
1715 newly_split[pipe_4to1->pipe_idx] = true1;
1716
1717 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1718 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1719 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1720 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1721 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1722 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1723 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1724 else
1725 old_index = -1;
1726 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1727 ASSERT(pipe_4to1)do { if (({ static int __warned; int __ret = !!(!(pipe_4to1))
; if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n"
, "!(pipe_4to1)", "/usr/src/sys/dev/pci/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c"
, 1727); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do
{} while (0); } while (0)
;
1728 if (!pipe_4to1)
1729 goto validate_fail;
1730 if (!dcn32_split_stream_for_mpc_or_odm(
1731 dc, &context->res_ctx,
1732 hsplit_pipe, pipe_4to1, odm))
1733 goto validate_fail;
1734 newly_split[pipe_4to1->pipe_idx] = true1;
1735 }
1736 if (odm)
1737 dcn20_build_mapped_resource(dc, context, pipe->stream);
1738 }
1739
1740 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1741 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1742
1743 if (pipe->plane_state) {
1744 if (!resource_build_scaling_params(pipe))
1745 goto validate_fail;
1746 }
1747 }
1748
1749 /* Actual dsc count per stream dsc validation*/
1750 if (!dcn20_validate_dsc(dc, context)) {
1751 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1752 goto validate_fail;
1753 }
1754
1755 if (repopulate_pipes) {
1756 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1757
1758 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1759 * we have to re-calculate the DET allocation and run through DML once more to
1760 * ensure all the params are calculated correctly. We do not need to run the
1761 * pipe split check again after this call (pipes are already split / merged).
1762 * */
1763 if (!fast_validate) {
1764 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1765 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1766 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1767 }
1768 }
1769 *vlevel_out = vlevel;
1770 *pipe_cnt_out = pipe_cnt;
1771
1772 out = true1;
1773 goto validate_out;
1774
1775validate_fail:
1776 out = false0;
1777
1778validate_out:
1779 return out;
1780}
1781
1782
1783void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1784 display_e2e_pipe_params_st *pipes,
1785 int pipe_cnt,
1786 int vlevel)
1787{
1788 int i, pipe_idx, vlevel_temp = 0;
1789 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
Value stored to 'dcfclk' during its initialization is never read
1790 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1791 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
1792 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1793 bool_Bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1794 dm_dram_clock_change_unsupported;
1795 unsigned int dummy_latency_index = 0;
1796 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1797 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1798 unsigned int min_dram_speed_mts_margin;
1799
1800 dc_assert_fp_enabled();
1801
1802 // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
1803 if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
1804 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1805 pstate_en = true1;
1806 }
1807
1808 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false0;
1809
1810 if (!pstate_en) {
1811 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1812 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching =
1813 dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1814
1815 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1816 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1817 context, pipes, pipe_cnt, vlevel);
1818
1819 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
1820 * we reinstate the original dram_clock_change_latency_us on the context
1821 * and all variables that may have changed up to this point, except the
1822 * newly found dummy_latency_index
1823 */
1824 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1825 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us;
1826 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
1827 * prefetch is scheduled correctly to account for dummy pstate.
1828 */
1829 if (dummy_latency_index == 0)
1830 context->bw_ctx.dml.soc.fclk_change_latency_us =
1831 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1832 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false0);
1833 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1834 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1835 pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] !=
1836 dm_dram_clock_change_unsupported;
1837 }
1838 }
1839
1840 /* Set B:
1841 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
1842 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
1843 * calculations to cover bootup clocks.
1844 * DCFCLK: soc.clock_limits[2] when available
1845 * UCLK: soc.clock_limits[2] when available
1846 */
1847 if (dcn3_2_soc.num_states > 2) {
1848 vlevel_temp = 2;
1849 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
1850 } else
1851 dcfclk = 615; //DCFCLK Vmin_lv
1852
1853 pipes[0].clks_cfg.voltage = vlevel_temp;
1854 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1855 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1856
1857 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].valid) {
1858 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.pstate_latency_us;
1859 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.fclk_change_latency_us;
1860 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_enter_plus_exit_time_us;
1861 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B1].dml_input.sr_exit_time_us;
1862 }
1863 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1864 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1865 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1866 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1867 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1868 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1869 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1870 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1871 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1872 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1873
1874 /* Set D:
1875 * All clocks min.
1876 * DCFCLK: Min, as reported by PM FW when available
1877 * UCLK : Min, as reported by PM FW when available
1878 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
1879 */
1880
1881 if (dcn3_2_soc.num_states > 2) {
1882 vlevel_temp = 0;
1883 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
1884 } else
1885 dcfclk = 615; //DCFCLK Vmin_lv
1886
1887 pipes[0].clks_cfg.voltage = vlevel_temp;
1888 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1889 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1890
1891 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].valid) {
1892 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.pstate_latency_us;
1893 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.fclk_change_latency_us;
1894 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_enter_plus_exit_time_us;
1895 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D3].dml_input.sr_exit_time_us;
1896 }
1897 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1898 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1899 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1900 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1901 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1902 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1903 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1904 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1905 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1906 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1907
1908 /* Set C, for Dummy P-State:
1909 * All clocks min.
1910 * DCFCLK: Min, as reported by PM FW, when available
1911 * UCLK : Min, as reported by PM FW, when available
1912 * pstate latency as per UCLK state dummy pstate latency
1913 */
1914
1915 // For Set A and Set C use values from validation
1916 pipes[0].clks_cfg.voltage = vlevel;
1917 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
1918 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
1919
1920 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1921 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
1922 }
1923
1924 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].valid) {
1925 min_dram_speed_mts = dram_speed_from_validation;
1926 min_dram_speed_mts_margin = 160;
1927
1928 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1929 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
1930
1931 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
1932 dm_dram_clock_change_unsupported) {
1933 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
1934
1935 min_dram_speed_mts =
1936 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
1937 }
1938
1939 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1940 /* find largest table entry that is lower than dram speed,
1941 * but lower than DPM0 still uses DPM0
1942 */
1943 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
1944 if (min_dram_speed_mts + min_dram_speed_mts_margin >
1945 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
1946 break;
1947 }
1948
1949 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1950 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1951
1952 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.fclk_change_latency_us;
1953 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_enter_plus_exit_time_us;
1954 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].dml_input.sr_exit_time_us;
1955 }
1956
1957 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1958 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1959 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1960 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1961 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1962 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1963 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1964 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1965 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
1966 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
1967 * value.
1968 */
1969 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1970 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1971
1972 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C2].valid)) {
1973 /* The only difference between A and C is p-state latency, if p-state is not supported
1974 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
1975 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
1976 */
1977 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
1978 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
1979 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
1980 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
1981 */
1982 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1983 } else {
1984 /* Set A:
1985 * All clocks min.
1986 * DCFCLK: Min, as reported by PM FW, when available
1987 * UCLK: Min, as reported by PM FW, when available
1988 */
1989 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1990 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1991 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1992 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1993 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1994 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1995 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1996 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1997 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1998 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1999 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2000 }
2001
2002 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2003 if (!context->res_ctx.pipe_ctx[i].stream)
2004 continue;
2005
2006 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2007 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2008
2009 if (dc->config.forced_clocks) {
2010 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2011 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2012 }
2013 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2014 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2015 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2016 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2017
2018 pipe_idx++;
2019 }
2020
2021 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2022
2023 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && dummy_latency_index == 0)
2024 context->bw_ctx.dml.soc.fclk_change_latency_us =
2025 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2026
2027 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2028
2029 if (!pstate_en)
2030 /* Restore full p-state latency */
2031 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2032 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.pstate_latency_us;
2033
2034 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2035 dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2036 if (dummy_latency_index == 0)
2037 context->bw_ctx.dml.soc.fclk_change_latency_us =
2038 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A0].dml_input.fclk_change_latency_us;
2039 }
2040}
2041
2042static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2043 unsigned int *optimal_dcfclk,
2044 unsigned int *optimal_fclk)
2045{
2046 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2047
2048 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2049 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2050 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2051 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2052
2053 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2054
2055 if (optimal_fclk)
2056 *optimal_fclk = bw_from_dram /
2057 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2058
2059 if (optimal_dcfclk)
2060 *optimal_dcfclk = bw_from_dram /
2061 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2062}
2063
2064static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2065 unsigned int index)
2066{
2067 int i;
2068
2069 if (*num_entries == 0)
2070 return;
2071
2072 for (i = index; i < *num_entries - 1; i++) {
2073 table[i] = table[i + 1];
2074 }
2075 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st))__builtin_memset((&table[--(*num_entries)]), (0), (sizeof
(struct _vcs_dpi_voltage_scaling_st)))
;
2076}
2077
2078void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2079{
2080 int i;
2081 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2082 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2083
2084 for (i = 0; i < MAX_NUM_DPM_LVL8; i++) {
2085 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2086 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2087 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2088 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2089 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2090 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2091 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2092 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2093 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2094 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2095 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2096 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2097 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2098 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2099 }
2100
2101 /* Scan through clock values we currently have and if they are 0,
2102 * then populate it with dcn3_2_soc.clock_limits[] value.
2103 *
2104 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2105 * 0, will cause it to skip building the clock table.
2106 */
2107 if (max_dcfclk_mhz == 0)
2108 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2109 if (max_dispclk_mhz == 0)
2110 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2111 if (max_dtbclk_mhz == 0)
2112 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2113 if (max_uclk_mhz == 0)
2114 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2115}
2116
2117static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
2118 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2119{
2120 int i, j;
2121 struct _vcs_dpi_voltage_scaling_st entry = {0};
2122
2123 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2124 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2125
2126 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2127
2128 static const unsigned int num_dcfclk_stas = 5;
2129 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {199, 615, 906, 1324, 1564};
2130
2131 unsigned int num_uclk_dpms = 0;
2132 unsigned int num_fclk_dpms = 0;
2133 unsigned int num_dcfclk_dpms = 0;
2134
2135 for (i = 0; i < MAX_NUM_DPM_LVL8; i++) {
2136 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2137 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2138 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2139 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2140 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2141 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2142 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2143 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2144 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2145 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2146 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2147 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2148 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2149 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2150
2151 if (bw_params->clk_table.entries[i].memclk_mhz > 0)
2152 num_uclk_dpms++;
2153 if (bw_params->clk_table.entries[i].fclk_mhz > 0)
2154 num_fclk_dpms++;
2155 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
2156 num_dcfclk_dpms++;
2157 }
2158
2159 if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
2160 return -1;
2161
2162 if (max_dppclk_mhz == 0)
2163 max_dppclk_mhz = max_dispclk_mhz;
2164
2165 if (max_fclk_mhz == 0)
2166 max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2167
2168 if (max_phyclk_mhz == 0)
2169 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2170
2171 *num_entries = 0;
2172 entry.dispclk_mhz = max_dispclk_mhz;
2173 entry.dscclk_mhz = max_dispclk_mhz / 3;
2174 entry.dppclk_mhz = max_dppclk_mhz;
2175 entry.dtbclk_mhz = max_dtbclk_mhz;
2176 entry.phyclk_mhz = max_phyclk_mhz;
2177 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2178 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2179
2180 // Insert all the DCFCLK STAs
2181 for (i = 0; i < num_dcfclk_stas; i++) {
2182 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2183 entry.fabricclk_mhz = 0;
2184 entry.dram_speed_mts = 0;
2185
2186 insert_entry_into_table_sorted(table, num_entries, &entry);
2187 }
2188
2189 // Insert the max DCFCLK
2190 entry.dcfclk_mhz = max_dcfclk_mhz;
2191 entry.fabricclk_mhz = 0;
2192 entry.dram_speed_mts = 0;
2193
2194 insert_entry_into_table_sorted(table, num_entries, &entry);
2195
2196 // Insert the UCLK DPMS
2197 for (i = 0; i < num_uclk_dpms; i++) {
2198 entry.dcfclk_mhz = 0;
2199 entry.fabricclk_mhz = 0;
2200 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2201
2202 insert_entry_into_table_sorted(table, num_entries, &entry);
2203 }
2204
2205 // If FCLK is coarse grained, insert individual DPMs.
2206 if (num_fclk_dpms > 2) {
2207 for (i = 0; i < num_fclk_dpms; i++) {
2208 entry.dcfclk_mhz = 0;
2209 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2210 entry.dram_speed_mts = 0;
2211
2212 insert_entry_into_table_sorted(table, num_entries, &entry);
2213 }
2214 }
2215 // If FCLK fine grained, only insert max
2216 else {
2217 entry.dcfclk_mhz = 0;
2218 entry.fabricclk_mhz = max_fclk_mhz;
2219 entry.dram_speed_mts = 0;
2220
2221 insert_entry_into_table_sorted(table, num_entries, &entry);
2222 }
2223
2224 // At this point, the table contains all "points of interest" based on
2225 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2226 // ratios (by derate, are exact).
2227
2228 // Remove states that require higher clocks than are supported
2229 for (i = *num_entries - 1; i >= 0 ; i--) {
2230 if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
2231 table[i].fabricclk_mhz > max_fclk_mhz ||
2232 table[i].dram_speed_mts > max_uclk_mhz * 16)
2233 remove_entry_from_table_at_index(table, num_entries, i);
2234 }
2235
2236 // At this point, the table only contains supported points of interest
2237 // it could be used as is, but some states may be redundant due to
2238 // coarse grained nature of some clocks, so we want to round up to
2239 // coarse grained DPMs and remove duplicates.
2240
2241 // Round up UCLKs
2242 for (i = *num_entries - 1; i >= 0 ; i--) {
2243 for (j = 0; j < num_uclk_dpms; j++) {
2244 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2245 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2246 break;
2247 }
2248 }
2249 }
2250
2251 // If FCLK is coarse grained, round up to next DPMs
2252 if (num_fclk_dpms > 2) {
2253 for (i = *num_entries - 1; i >= 0 ; i--) {
2254 for (j = 0; j < num_fclk_dpms; j++) {
2255 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2256 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2257 break;
2258 }
2259 }
2260 }
2261 }
2262 // Otherwise, round up to minimum.
2263 else {
2264 for (i = *num_entries - 1; i >= 0 ; i--) {
2265 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2266 table[i].fabricclk_mhz = min_fclk_mhz;
2267 break;
2268 }
2269 }
2270 }
2271
2272 // Round DCFCLKs up to minimum
2273 for (i = *num_entries - 1; i >= 0 ; i--) {
2274 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2275 table[i].dcfclk_mhz = min_dcfclk_mhz;
2276 break;
2277 }
2278 }
2279
2280 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2281 i = 0;
2282 while (i < *num_entries - 1) {
2283 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2284 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2285 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2286 remove_entry_from_table_at_index(table, num_entries, i + 1);
2287 else
2288 i++;
2289 }
2290
2291 // Fix up the state indicies
2292 for (i = *num_entries - 1; i >= 0 ; i--) {
2293 table[i].state = i;
2294 }
2295
2296 return 0;
2297}
2298
2299/*
2300 * dcn32_update_bw_bounding_box
2301 *
2302 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2303 * spreadsheet with actual values as per dGPU SKU:
2304 * - with passed few options from dc->config
2305 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2306 * need to get it from PM FW)
2307 * - with passed latency values (passed in ns units) in dc-> bb override for
2308 * debugging purposes
2309 * - with passed latencies from VBIOS (in 100_ns units) if available for
2310 * certain dGPU SKU
2311 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2312 * of the same ASIC)
2313 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2314 * FW for different clocks (which might differ for certain dGPU SKU of the
2315 * same ASIC)
2316 */
2317void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2318{
2319 dc_assert_fp_enabled();
2320
2321 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)(dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS)) {
2322 /* Overrides from dc->config options */
2323 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2324
2325 /* Override from passed dc->bb_overrides if available*/
2326 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2327 && dc->bb_overrides.sr_exit_time_ns) {
2328 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2329 }
2330
2331 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2332 != dc->bb_overrides.sr_enter_plus_exit_time_ns
2333 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2334 dcn3_2_soc.sr_enter_plus_exit_time_us =
2335 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2336 }
2337
2338 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2339 && dc->bb_overrides.urgent_latency_ns) {
2340 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2341 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2342 }
2343
2344 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2345 != dc->bb_overrides.dram_clock_change_latency_ns
2346 && dc->bb_overrides.dram_clock_change_latency_ns) {
2347 dcn3_2_soc.dram_clock_change_latency_us =
2348 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2349 }
2350
2351 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2352 != dc->bb_overrides.fclk_clock_change_latency_ns
2353 && dc->bb_overrides.fclk_clock_change_latency_ns) {
2354 dcn3_2_soc.fclk_change_latency_us =
2355 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2356 }
2357
2358 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2359 != dc->bb_overrides.dummy_clock_change_latency_ns
2360 && dc->bb_overrides.dummy_clock_change_latency_ns) {
2361 dcn3_2_soc.dummy_pstate_latency_us =
2362 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2363 }
2364
2365 /* Override from VBIOS if VBIOS bb_info available */
2366 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2367 struct bp_soc_bb_info bb_info = {0};
2368
2369 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2370 if (bb_info.dram_clock_change_latency_100ns > 0)
2371 dcn3_2_soc.dram_clock_change_latency_us =
2372 bb_info.dram_clock_change_latency_100ns * 10;
2373
2374 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2375 dcn3_2_soc.sr_enter_plus_exit_time_us =
2376 bb_info.dram_sr_enter_exit_latency_100ns * 10;
2377
2378 if (bb_info.dram_sr_exit_latency_100ns > 0)
2379 dcn3_2_soc.sr_exit_time_us =
2380 bb_info.dram_sr_exit_latency_100ns * 10;
2381 }
2382 }
2383
2384 /* Override from VBIOS for num_chan */
2385 if (dc->ctx->dc_bios->vram_info.num_chans) {
2386 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2387 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2388 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2389 }
2390
2391 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2392 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2393 }
2394
2395 /* DML DSC delay factor workaround */
2396 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2397
2398 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2399
2400 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2401 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2402 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2403
2404 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2405 if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)(dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2406 if (dc->debug.use_legacy_soc_bb_mechanism) {
2407 unsigned int i = 0, j = 0, num_states = 0;
2408
2409 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES20] = {0};
2410 unsigned int dram_speed_mts[DC__VOLTAGE_STATES20] = {0};
2411 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {0};
2412 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES20] = {0};
2413 unsigned int min_dcfclk = UINT_MAX0xffffffffU;
2414 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2415 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2416 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES20] = {199, 615, 906, 1324, 1564};
2417 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2418 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2419
2420 for (i = 0; i < MAX_NUM_DPM_LVL8; i++) {
2421 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2422 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2423 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2424 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2425 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2426 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2427 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2428 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2429 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2430 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2431 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2432 }
2433 if (min_dcfclk > dcfclk_sta_targets[0])
2434 dcfclk_sta_targets[0] = min_dcfclk;
2435 if (!max_dcfclk_mhz)
2436 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2437 if (!max_dispclk_mhz)
2438 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2439 if (!max_dppclk_mhz)
2440 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2441 if (!max_phyclk_mhz)
2442 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2443
2444 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2445 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2446 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2447 num_dcfclk_sta_targets++;
2448 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2449 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2450 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2451 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2452 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2453 break;
2454 }
2455 }
2456 // Update size of array since we "removed" duplicates
2457 num_dcfclk_sta_targets = i + 1;
2458 }
2459
2460 num_uclk_states = bw_params->clk_table.num_entries;
2461
2462 // Calculate optimal dcfclk for each uclk
2463 for (i = 0; i < num_uclk_states; i++) {
2464 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2465 &optimal_dcfclk_for_uclk[i], NULL((void *)0));
2466 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2467 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2468 }
2469 }
2470
2471 // Calculate optimal uclk for each dcfclk sta target
2472 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2473 for (j = 0; j < num_uclk_states; j++) {
2474 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2475 optimal_uclk_for_dcfclk_sta_targets[i] =
2476 bw_params->clk_table.entries[j].memclk_mhz * 16;
2477 break;
2478 }
2479 }
2480 }
2481
2482 i = 0;
2483 j = 0;
2484 // create the final dcfclk and uclk table
2485 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES20) {
2486 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2487 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2488 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2489 } else {
2490 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2491 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2492 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2493 } else {
2494 j = num_uclk_states;
2495 }
2496 }
2497 }
2498
2499 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES20) {
2500 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2501 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2502 }
2503
2504 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES20 &&
2505 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2506 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2507 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2508 }
2509
2510 dcn3_2_soc.num_states = num_states;
2511 for (i = 0; i < dcn3_2_soc.num_states; i++) {
2512 dcn3_2_soc.clock_limits[i].state = i;
2513 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2514 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2515
2516 /* Fill all states with max values of all these clocks */
2517 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2518 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2519 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2520 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
2521
2522 /* Populate from bw_params for DTBCLK, SOCCLK */
2523 if (i > 0) {
2524 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2525 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2526 } else {
2527 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2528 }
2529 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2530 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2531 }
2532
2533 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2534 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2535 else
2536 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2537
2538 if (!dram_speed_mts[i] && i > 0)
2539 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2540 else
2541 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2542
2543 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2544 /* PHYCLK_D18, PHYCLK_D32 */
2545 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2546 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2547 }
2548 } else {
2549 build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2550 }
2551
2552 /* Re-init DML with updated bb */
2553 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2554 if (dc->current_state)
2555 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2556 }
2557}
2558
2559void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2560 int pipe_cnt)
2561{
2562 dc_assert_fp_enabled();
2563
2564 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2565 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2566}
2567
2568bool_Bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2569{
2570 bool_Bool allow = false0;
2571 uint32_t refresh_rate = 0;
2572
2573 /* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2574 * only for now. There must be no scaling as well.
2575 *
2576 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2577 * for p-state switching.
2578 */
2579 if (pipe->stream && pipe->plane_state) {
2580 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2581 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2582 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2583 if (pipe->stream->timing.v_addressable == 1440 &&
2584 pipe->stream->timing.h_addressable == 2560 &&
2585 refresh_rate >= 55 && refresh_rate <= 65 &&
2586 pipe->plane_state->src_rect.height == 1440 &&
2587 pipe->plane_state->src_rect.width == 2560 &&
2588 pipe->plane_state->dst_rect.height == 1440 &&
2589 pipe->plane_state->dst_rect.width == 2560)
2590 allow = true1;
2591 }
2592 return allow;
2593}