File: | src/gnu/usr.bin/binutils/gdb/symtab.c |
Warning: | line 2287, column 3 Value stored to 'best_linetable' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Symbol table lookup for the GNU debugger, GDB. |
2 | |
3 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
5 | Free Software Foundation, Inc. |
6 | |
7 | This file is part of GDB. |
8 | |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by |
11 | the Free Software Foundation; either version 2 of the License, or |
12 | (at your option) any later version. |
13 | |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software |
21 | Foundation, Inc., 59 Temple Place - Suite 330, |
22 | Boston, MA 02111-1307, USA. */ |
23 | |
24 | #include "defs.h" |
25 | #include "symtab.h" |
26 | #include "gdbtypes.h" |
27 | #include "gdbcore.h" |
28 | #include "frame.h" |
29 | #include "target.h" |
30 | #include "value.h" |
31 | #include "symfile.h" |
32 | #include "objfiles.h" |
33 | #include "gdbcmd.h" |
34 | #include "call-cmds.h" |
35 | #include "gdb_regex.h" |
36 | #include "expression.h" |
37 | #include "language.h" |
38 | #include "demangle.h" |
39 | #include "inferior.h" |
40 | #include "linespec.h" |
41 | #include "source.h" |
42 | #include "filenames.h" /* for FILENAME_CMP */ |
43 | #include "objc-lang.h" |
44 | #include "ada-lang.h" |
45 | |
46 | #include "hashtab.h" |
47 | |
48 | #include "gdb_obstack.h" |
49 | #include "block.h" |
50 | #include "dictionary.h" |
51 | |
52 | #include <sys/types.h> |
53 | #include <fcntl.h> |
54 | #include "gdb_string.h" |
55 | #include "gdb_stat.h" |
56 | #include <ctype.h> |
57 | #include "cp-abi.h" |
58 | |
59 | /* Prototypes for local functions */ |
60 | |
61 | static void completion_list_add_name (char *, char *, int, char *, char *); |
62 | |
63 | static void rbreak_command (char *, int); |
64 | |
65 | static void types_info (char *, int); |
66 | |
67 | static void functions_info (char *, int); |
68 | |
69 | static void variables_info (char *, int); |
70 | |
71 | static void sources_info (char *, int); |
72 | |
73 | static void output_source_filename (const char *, int *); |
74 | |
75 | static int find_line_common (struct linetable *, int, int *); |
76 | |
77 | /* This one is used by linespec.c */ |
78 | |
79 | char *operator_chars (char *p, char **end); |
80 | |
81 | static struct symbol *lookup_symbol_aux (const char *name, |
82 | const char *linkage_name, |
83 | const struct block *block, |
84 | const domain_enum domain, |
85 | int *is_a_field_of_this, |
86 | struct symtab **symtab); |
87 | |
88 | static |
89 | struct symbol *lookup_symbol_aux_local (const char *name, |
90 | const char *linkage_name, |
91 | const struct block *block, |
92 | const domain_enum domain, |
93 | struct symtab **symtab); |
94 | |
95 | static |
96 | struct symbol *lookup_symbol_aux_symtabs (int block_index, |
97 | const char *name, |
98 | const char *linkage_name, |
99 | const domain_enum domain, |
100 | struct symtab **symtab); |
101 | |
102 | static |
103 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, |
104 | const char *name, |
105 | const char *linkage_name, |
106 | const domain_enum domain, |
107 | struct symtab **symtab); |
108 | |
109 | #if 0 |
110 | static |
111 | struct symbol *lookup_symbol_aux_minsyms (const char *name, |
112 | const char *linkage_name, |
113 | const domain_enum domain, |
114 | int *is_a_field_of_this, |
115 | struct symtab **symtab); |
116 | #endif |
117 | |
118 | /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c. |
119 | Signals the presence of objects compiled by HP compilers. */ |
120 | int deprecated_hp_som_som_object_present = 0; |
121 | |
122 | static void fixup_section (struct general_symbol_info *, struct objfile *); |
123 | |
124 | static int file_matches (char *, char **, int); |
125 | |
126 | static void print_symbol_info (domain_enum, |
127 | struct symtab *, struct symbol *, int, char *); |
128 | |
129 | static void print_msymbol_info (struct minimal_symbol *); |
130 | |
131 | static void symtab_symbol_info (char *, domain_enum, int); |
132 | |
133 | void _initialize_symtab (void); |
134 | |
135 | /* */ |
136 | |
137 | /* The single non-language-specific builtin type */ |
138 | struct type *builtin_type_error; |
139 | |
140 | /* Block in which the most recently searched-for symbol was found. |
141 | Might be better to make this a parameter to lookup_symbol and |
142 | value_of_this. */ |
143 | |
144 | const struct block *block_found; |
145 | |
146 | /* Check for a symtab of a specific name; first in symtabs, then in |
147 | psymtabs. *If* there is no '/' in the name, a match after a '/' |
148 | in the symtab filename will also work. */ |
149 | |
150 | struct symtab * |
151 | lookup_symtab (const char *name) |
152 | { |
153 | struct symtab *s; |
154 | struct partial_symtab *ps; |
155 | struct objfile *objfile; |
156 | char *real_path = NULL((void*)0); |
157 | char *full_path = NULL((void*)0); |
158 | |
159 | /* Here we are interested in canonicalizing an absolute path, not |
160 | absolutizing a relative path. */ |
161 | if (IS_ABSOLUTE_PATH (name)((((name)[0]) == '/'))) |
162 | { |
163 | full_path = xfullpath (name); |
164 | make_cleanup (xfree, full_path); |
165 | real_path = gdb_realpath (name); |
166 | make_cleanup (xfree, real_path); |
167 | } |
168 | |
169 | got_symtab: |
170 | |
171 | /* First, search for an exact match */ |
172 | |
173 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
174 | { |
175 | if (FILENAME_CMP (name, s->filename)strcmp(name, s->filename) == 0) |
176 | { |
177 | return s; |
178 | } |
179 | |
180 | /* If the user gave us an absolute path, try to find the file in |
181 | this symtab and use its absolute path. */ |
182 | |
183 | if (full_path != NULL((void*)0)) |
184 | { |
185 | const char *fp = symtab_to_fullname (s); |
186 | if (fp != NULL((void*)0) && FILENAME_CMP (full_path, fp)strcmp(full_path, fp) == 0) |
187 | { |
188 | return s; |
189 | } |
190 | } |
191 | |
192 | if (real_path != NULL((void*)0)) |
193 | { |
194 | char *fullname = symtab_to_fullname (s); |
195 | if (fullname != NULL((void*)0)) |
196 | { |
197 | char *rp = gdb_realpath (fullname); |
198 | make_cleanup (xfree, rp); |
199 | if (FILENAME_CMP (real_path, rp)strcmp(real_path, rp) == 0) |
200 | { |
201 | return s; |
202 | } |
203 | } |
204 | } |
205 | } |
206 | |
207 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
208 | |
209 | if (lbasename (name) == name) |
210 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
211 | { |
212 | if (FILENAME_CMP (lbasename (s->filename), name)strcmp(lbasename (s->filename), name) == 0) |
213 | return s; |
214 | } |
215 | |
216 | /* Same search rules as above apply here, but now we look thru the |
217 | psymtabs. */ |
218 | |
219 | ps = lookup_partial_symtab (name); |
220 | if (!ps) |
221 | return (NULL((void*)0)); |
222 | |
223 | if (ps->readin) |
224 | error ("Internal: readin %s pst for `%s' found when no symtab found.", |
225 | ps->filename, name); |
226 | |
227 | s = PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
228 | |
229 | if (s) |
230 | return s; |
231 | |
232 | /* At this point, we have located the psymtab for this file, but |
233 | the conversion to a symtab has failed. This usually happens |
234 | when we are looking up an include file. In this case, |
235 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has |
236 | been created. So, we need to run through the symtabs again in |
237 | order to find the file. |
238 | XXX - This is a crock, and should be fixed inside of the the |
239 | symbol parsing routines. */ |
240 | goto got_symtab; |
241 | } |
242 | |
243 | /* Lookup the partial symbol table of a source file named NAME. |
244 | *If* there is no '/' in the name, a match after a '/' |
245 | in the psymtab filename will also work. */ |
246 | |
247 | struct partial_symtab * |
248 | lookup_partial_symtab (const char *name) |
249 | { |
250 | struct partial_symtab *pst; |
251 | struct objfile *objfile; |
252 | char *full_path = NULL((void*)0); |
253 | char *real_path = NULL((void*)0); |
254 | |
255 | /* Here we are interested in canonicalizing an absolute path, not |
256 | absolutizing a relative path. */ |
257 | if (IS_ABSOLUTE_PATH (name)((((name)[0]) == '/'))) |
258 | { |
259 | full_path = xfullpath (name); |
260 | make_cleanup (xfree, full_path); |
261 | real_path = gdb_realpath (name); |
262 | make_cleanup (xfree, real_path); |
263 | } |
264 | |
265 | ALL_PSYMTABS (objfile, pst)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((pst) = (objfile) -> psymtabs ; (pst) != ((void*)0); (pst) = (pst) -> next) |
266 | { |
267 | if (FILENAME_CMP (name, pst->filename)strcmp(name, pst->filename) == 0) |
268 | { |
269 | return (pst); |
270 | } |
271 | |
272 | /* If the user gave us an absolute path, try to find the file in |
273 | this symtab and use its absolute path. */ |
274 | if (full_path != NULL((void*)0)) |
275 | { |
276 | psymtab_to_fullname (pst); |
277 | if (pst->fullname != NULL((void*)0) |
278 | && FILENAME_CMP (full_path, pst->fullname)strcmp(full_path, pst->fullname) == 0) |
279 | { |
280 | return pst; |
281 | } |
282 | } |
283 | |
284 | if (real_path != NULL((void*)0)) |
285 | { |
286 | char *rp = NULL((void*)0); |
287 | psymtab_to_fullname (pst); |
288 | if (pst->fullname != NULL((void*)0)) |
289 | { |
290 | rp = gdb_realpath (pst->fullname); |
291 | make_cleanup (xfree, rp); |
292 | } |
293 | if (rp != NULL((void*)0) && FILENAME_CMP (real_path, rp)strcmp(real_path, rp) == 0) |
294 | { |
295 | return pst; |
296 | } |
297 | } |
298 | } |
299 | |
300 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
301 | |
302 | if (lbasename (name) == name) |
303 | ALL_PSYMTABS (objfile, pst)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((pst) = (objfile) -> psymtabs ; (pst) != ((void*)0); (pst) = (pst) -> next) |
304 | { |
305 | if (FILENAME_CMP (lbasename (pst->filename), name)strcmp(lbasename (pst->filename), name) == 0) |
306 | return (pst); |
307 | } |
308 | |
309 | return (NULL((void*)0)); |
310 | } |
311 | |
312 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the |
313 | full method name, which consist of the class name (from T), the unadorned |
314 | method name from METHOD_ID, and the signature for the specific overload, |
315 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
316 | |
317 | char * |
318 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
319 | { |
320 | int mangled_name_len; |
321 | char *mangled_name; |
322 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists [method_id].fn_fields; |
323 | struct fn_field *method = &f[signature_id]; |
324 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists [method_id].name; |
325 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id)(f)[signature_id].physname; |
326 | char *newname = type_name_no_tag (type); |
327 | |
328 | /* Does the form of physname indicate that it is the full mangled name |
329 | of a constructor (not just the args)? */ |
330 | int is_full_physname_constructor; |
331 | |
332 | int is_constructor; |
333 | int is_destructor = is_destructor_name (physname); |
334 | /* Need a new type prefix. */ |
335 | char *const_prefix = method->is_const ? "C" : ""; |
336 | char *volatile_prefix = method->is_volatile ? "V" : ""; |
337 | char buf[20]; |
338 | int len = (newname == NULL((void*)0) ? 0 : strlen (newname)); |
339 | |
340 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
341 | or an operator name. */ |
342 | if ((physname[0] == '_' && physname[1] == 'Z') |
343 | || is_operator_name (field_name)) |
344 | return xstrdup (physname); |
345 | |
346 | is_full_physname_constructor = is_constructor_name (physname); |
347 | |
348 | is_constructor = |
349 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
350 | |
351 | if (!is_destructor) |
352 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
353 | |
354 | if (is_destructor || is_full_physname_constructor) |
355 | { |
356 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
357 | strcpy (mangled_name, physname); |
358 | return mangled_name; |
359 | } |
360 | |
361 | if (len == 0) |
362 | { |
363 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
364 | } |
365 | else if (physname[0] == 't' || physname[0] == 'Q') |
366 | { |
367 | /* The physname for template and qualified methods already includes |
368 | the class name. */ |
369 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
370 | newname = NULL((void*)0); |
371 | len = 0; |
372 | } |
373 | else |
374 | { |
375 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); |
376 | } |
377 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) |
378 | + strlen (buf) + len + strlen (physname) + 1); |
379 | |
380 | { |
381 | mangled_name = (char *) xmalloc (mangled_name_len); |
382 | if (is_constructor) |
383 | mangled_name[0] = '\0'; |
384 | else |
385 | strcpy (mangled_name, field_name); |
386 | } |
387 | strcat (mangled_name, buf); |
388 | /* If the class doesn't have a name, i.e. newname NULL, then we just |
389 | mangle it using 0 for the length of the class. Thus it gets mangled |
390 | as something starting with `::' rather than `classname::'. */ |
391 | if (newname != NULL((void*)0)) |
392 | strcat (mangled_name, newname); |
393 | |
394 | strcat (mangled_name, physname); |
395 | return (mangled_name); |
396 | } |
397 | |
398 | |
399 | /* Initialize the language dependent portion of a symbol |
400 | depending upon the language for the symbol. */ |
401 | void |
402 | symbol_init_language_specific (struct general_symbol_info *gsymbol, |
403 | enum language language) |
404 | { |
405 | gsymbol->language = language; |
406 | if (gsymbol->language == language_cplus |
407 | || gsymbol->language == language_java |
408 | || gsymbol->language == language_objc) |
409 | { |
410 | gsymbol->language_specific.cplus_specific.demangled_name = NULL((void*)0); |
411 | } |
412 | else |
413 | { |
414 | memset (&gsymbol->language_specific, 0, |
415 | sizeof (gsymbol->language_specific)); |
416 | } |
417 | } |
418 | |
419 | /* Functions to initialize a symbol's mangled name. */ |
420 | |
421 | /* Create the hash table used for demangled names. Each hash entry is |
422 | a pair of strings; one for the mangled name and one for the demangled |
423 | name. The entry is hashed via just the mangled name. */ |
424 | |
425 | static void |
426 | create_demangled_names_hash (struct objfile *objfile) |
427 | { |
428 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. |
429 | The hash table code will round this up to the next prime number. |
430 | Choosing a much larger table size wastes memory, and saves only about |
431 | 1% in symbol reading. */ |
432 | |
433 | objfile->demangled_names_hash = htab_create_alloc |
434 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, |
435 | NULL((void*)0), xcalloc, xfree); |
436 | } |
437 | |
438 | /* Try to determine the demangled name for a symbol, based on the |
439 | language of that symbol. If the language is set to language_auto, |
440 | it will attempt to find any demangling algorithm that works and |
441 | then set the language appropriately. The returned name is allocated |
442 | by the demangler and should be xfree'd. */ |
443 | |
444 | static char * |
445 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, |
446 | const char *mangled) |
447 | { |
448 | char *demangled = NULL((void*)0); |
449 | |
450 | if (gsymbol->language == language_unknown) |
451 | gsymbol->language = language_auto; |
452 | |
453 | if (gsymbol->language == language_objc |
454 | || gsymbol->language == language_auto) |
455 | { |
456 | demangled = |
457 | objc_demangle (mangled, 0); |
458 | if (demangled != NULL((void*)0)) |
459 | { |
460 | gsymbol->language = language_objc; |
461 | return demangled; |
462 | } |
463 | } |
464 | if (gsymbol->language == language_cplus |
465 | || gsymbol->language == language_auto) |
466 | { |
467 | demangled = |
468 | cplus_demangle (mangled, DMGL_PARAMS(1 << 0) | DMGL_ANSI(1 << 1)); |
469 | if (demangled != NULL((void*)0)) |
470 | { |
471 | gsymbol->language = language_cplus; |
472 | return demangled; |
473 | } |
474 | } |
475 | if (gsymbol->language == language_java) |
476 | { |
477 | demangled = |
478 | cplus_demangle (mangled, |
479 | DMGL_PARAMS(1 << 0) | DMGL_ANSI(1 << 1) | DMGL_JAVA(1 << 2)); |
480 | if (demangled != NULL((void*)0)) |
481 | { |
482 | gsymbol->language = language_java; |
483 | return demangled; |
484 | } |
485 | } |
486 | return NULL((void*)0); |
487 | } |
488 | |
489 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
490 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE |
491 | is used, and the memory comes from that objfile's objfile_obstack. |
492 | LINKAGE_NAME is copied, so the pointer can be discarded after |
493 | calling this function. */ |
494 | |
495 | /* We have to be careful when dealing with Java names: when we run |
496 | into a Java minimal symbol, we don't know it's a Java symbol, so it |
497 | gets demangled as a C++ name. This is unfortunate, but there's not |
498 | much we can do about it: but when demangling partial symbols and |
499 | regular symbols, we'd better not reuse the wrong demangled name. |
500 | (See PR gdb/1039.) We solve this by putting a distinctive prefix |
501 | on Java names when storing them in the hash table. */ |
502 | |
503 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I |
504 | don't mind the Java prefix so much: different languages have |
505 | different demangling requirements, so it's only natural that we |
506 | need to keep language data around in our demangling cache. But |
507 | it's not good that the minimal symbol has the wrong demangled name. |
508 | Unfortunately, I can't think of any easy solution to that |
509 | problem. */ |
510 | |
511 | #define JAVA_PREFIX"##JAVA$$" "##JAVA$$" |
512 | #define JAVA_PREFIX_LEN8 8 |
513 | |
514 | void |
515 | symbol_set_names (struct general_symbol_info *gsymbol, |
516 | const char *linkage_name, int len, struct objfile *objfile) |
517 | { |
518 | char **slot; |
519 | /* A 0-terminated copy of the linkage name. */ |
520 | const char *linkage_name_copy; |
521 | /* A copy of the linkage name that might have a special Java prefix |
522 | added to it, for use when looking names up in the hash table. */ |
523 | const char *lookup_name; |
524 | /* The length of lookup_name. */ |
525 | int lookup_len; |
526 | |
527 | if (objfile->demangled_names_hash == NULL((void*)0)) |
528 | create_demangled_names_hash (objfile); |
529 | |
530 | /* The stabs reader generally provides names that are not |
531 | NUL-terminated; most of the other readers don't do this, so we |
532 | can just use the given copy, unless we're in the Java case. */ |
533 | if (gsymbol->language == language_java) |
534 | { |
535 | char *alloc_name; |
536 | lookup_len = len + JAVA_PREFIX_LEN8; |
537 | |
538 | alloc_name = alloca (lookup_len + 1)__builtin_alloca(lookup_len + 1); |
539 | memcpy (alloc_name, JAVA_PREFIX"##JAVA$$", JAVA_PREFIX_LEN8); |
540 | memcpy (alloc_name + JAVA_PREFIX_LEN8, linkage_name, len); |
541 | alloc_name[lookup_len] = '\0'; |
542 | |
543 | lookup_name = alloc_name; |
544 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN8; |
545 | } |
546 | else if (linkage_name[len] != '\0') |
547 | { |
548 | char *alloc_name; |
549 | lookup_len = len; |
550 | |
551 | alloc_name = alloca (lookup_len + 1)__builtin_alloca(lookup_len + 1); |
552 | memcpy (alloc_name, linkage_name, len); |
553 | alloc_name[lookup_len] = '\0'; |
554 | |
555 | lookup_name = alloc_name; |
556 | linkage_name_copy = alloc_name; |
557 | } |
558 | else |
559 | { |
560 | lookup_len = len; |
561 | lookup_name = linkage_name; |
562 | linkage_name_copy = linkage_name; |
563 | } |
564 | |
565 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
566 | lookup_name, INSERT); |
567 | |
568 | /* If this name is not in the hash table, add it. */ |
569 | if (*slot == NULL((void*)0)) |
570 | { |
571 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
572 | linkage_name_copy); |
573 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
574 | |
575 | /* If there is a demangled name, place it right after the mangled name. |
576 | Otherwise, just place a second zero byte after the end of the mangled |
577 | name. */ |
578 | *slot = obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (lookup_len + demangled_len + 2)); if (__o->chunk_limit - __o ->next_free < __len) _obstack_newchunk (__o, __len); (( __o)->next_free += (__len)); (void) 0; }); __extension__ ( { struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base; if (__o1->next_free == value) __o1-> maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free ) - (char *) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }) |
579 | lookup_len + demangled_len + 2)__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack ); __extension__ ({ struct obstack *__o = (__h); int __len = ( (lookup_len + demangled_len + 2)); if (__o->chunk_limit - __o ->next_free < __len) _obstack_newchunk (__o, __len); (( __o)->next_free += (__len)); (void) 0; }); __extension__ ( { struct obstack *__o1 = (__h); void *value; value = (void *) __o1->object_base; if (__o1->next_free == value) __o1-> maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free ) - (char *) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask )) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk > __o1->chunk_limit - (char *)__o1->chunk) __o1-> next_free = __o1->chunk_limit; __o1->object_base = __o1 ->next_free; value; }); }); |
580 | memcpy (*slot, lookup_name, lookup_len + 1); |
581 | if (demangled_name != NULL((void*)0)) |
582 | { |
583 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
584 | xfree (demangled_name); |
585 | } |
586 | else |
587 | (*slot)[lookup_len + 1] = '\0'; |
588 | } |
589 | |
590 | gsymbol->name = *slot + lookup_len - len; |
591 | if ((*slot)[lookup_len + 1] != '\0') |
592 | gsymbol->language_specific.cplus_specific.demangled_name |
593 | = &(*slot)[lookup_len + 1]; |
594 | else |
595 | gsymbol->language_specific.cplus_specific.demangled_name = NULL((void*)0); |
596 | } |
597 | |
598 | /* Initialize the demangled name of GSYMBOL if possible. Any required space |
599 | to store the name is obtained from the specified obstack. The function |
600 | symbol_set_names, above, should be used instead where possible for more |
601 | efficient memory usage. */ |
602 | |
603 | void |
604 | symbol_init_demangled_name (struct general_symbol_info *gsymbol, |
605 | struct obstack *obstack) |
606 | { |
607 | char *mangled = gsymbol->name; |
608 | char *demangled = NULL((void*)0); |
609 | |
610 | demangled = symbol_find_demangled_name (gsymbol, mangled); |
611 | if (gsymbol->language == language_cplus |
612 | || gsymbol->language == language_java |
613 | || gsymbol->language == language_objc) |
614 | { |
615 | if (demangled) |
616 | { |
617 | gsymbol->language_specific.cplus_specific.demangled_name |
618 | = obsavestring (demangled, strlen (demangled), obstack); |
619 | xfree (demangled); |
620 | } |
621 | else |
622 | gsymbol->language_specific.cplus_specific.demangled_name = NULL((void*)0); |
623 | } |
624 | else |
625 | { |
626 | /* Unknown language; just clean up quietly. */ |
627 | if (demangled) |
628 | xfree (demangled); |
629 | } |
630 | } |
631 | |
632 | /* Return the source code name of a symbol. In languages where |
633 | demangling is necessary, this is the demangled name. */ |
634 | |
635 | char * |
636 | symbol_natural_name (const struct general_symbol_info *gsymbol) |
637 | { |
638 | switch (gsymbol->language) |
639 | { |
640 | case language_cplus: |
641 | case language_java: |
642 | case language_objc: |
643 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL((void*)0)) |
644 | return gsymbol->language_specific.cplus_specific.demangled_name; |
645 | break; |
646 | case language_ada: |
647 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL((void*)0)) |
648 | return gsymbol->language_specific.cplus_specific.demangled_name; |
649 | else |
650 | return ada_decode_symbol (gsymbol); |
651 | break; |
652 | default: |
653 | break; |
654 | } |
655 | return gsymbol->name; |
656 | } |
657 | |
658 | /* Return the demangled name for a symbol based on the language for |
659 | that symbol. If no demangled name exists, return NULL. */ |
660 | char * |
661 | symbol_demangled_name (struct general_symbol_info *gsymbol) |
662 | { |
663 | switch (gsymbol->language) |
664 | { |
665 | case language_cplus: |
666 | case language_java: |
667 | case language_objc: |
668 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL((void*)0)) |
669 | return gsymbol->language_specific.cplus_specific.demangled_name; |
670 | break; |
671 | case language_ada: |
672 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL((void*)0)) |
673 | return gsymbol->language_specific.cplus_specific.demangled_name; |
674 | else |
675 | return ada_decode_symbol (gsymbol); |
676 | break; |
677 | default: |
678 | break; |
679 | } |
680 | return NULL((void*)0); |
681 | } |
682 | |
683 | /* Return the search name of a symbol---generally the demangled or |
684 | linkage name of the symbol, depending on how it will be searched for. |
685 | If there is no distinct demangled name, then returns the same value |
686 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
687 | char *symbol_search_name (const struct general_symbol_info *gsymbol) { |
688 | if (gsymbol->language == language_ada) |
689 | return gsymbol->name; |
690 | else |
691 | return symbol_natural_name (gsymbol); |
692 | } |
693 | |
694 | /* Initialize the structure fields to zero values. */ |
695 | void |
696 | init_sal (struct symtab_and_line *sal) |
697 | { |
698 | sal->symtab = 0; |
699 | sal->section = 0; |
700 | sal->line = 0; |
701 | sal->pc = 0; |
702 | sal->end = 0; |
703 | } |
704 | |
705 | |
706 | |
707 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
708 | none. We return the psymtab that contains a symbol whose address |
709 | exactly matches PC, or, if we cannot find an exact match, the |
710 | psymtab that contains a symbol whose address is closest to PC. */ |
711 | struct partial_symtab * |
712 | find_pc_sect_psymtab (CORE_ADDR pc, asection *section) |
713 | { |
714 | struct partial_symtab *pst; |
715 | struct objfile *objfile; |
716 | struct minimal_symbol *msymbol; |
717 | |
718 | /* If we know that this is not a text address, return failure. This is |
719 | necessary because we loop based on texthigh and textlow, which do |
720 | not include the data ranges. */ |
721 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); |
722 | if (msymbol |
723 | && (msymbol->type == mst_data |
724 | || msymbol->type == mst_bss |
725 | || msymbol->type == mst_abs |
726 | || msymbol->type == mst_file_data |
727 | || msymbol->type == mst_file_bss)) |
728 | return NULL((void*)0); |
729 | |
730 | ALL_PSYMTABS (objfile, pst)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((pst) = (objfile) -> psymtabs ; (pst) != ((void*)0); (pst) = (pst) -> next) |
731 | { |
732 | if (pc >= pst->textlow && pc < pst->texthigh) |
733 | { |
734 | struct partial_symtab *tpst; |
735 | struct partial_symtab *best_pst = pst; |
736 | struct partial_symbol *best_psym = NULL((void*)0); |
737 | |
738 | /* An objfile that has its functions reordered might have |
739 | many partial symbol tables containing the PC, but |
740 | we want the partial symbol table that contains the |
741 | function containing the PC. */ |
742 | if (!(objfile->flags & OBJF_REORDERED(1 << 2)) && |
743 | section == 0) /* can't validate section this way */ |
744 | return (pst); |
745 | |
746 | if (msymbol == NULL((void*)0)) |
747 | return (pst); |
748 | |
749 | /* The code range of partial symtabs sometimes overlap, so, in |
750 | the loop below, we need to check all partial symtabs and |
751 | find the one that fits better for the given PC address. We |
752 | select the partial symtab that contains a symbol whose |
753 | address is closest to the PC address. By closest we mean |
754 | that find_pc_sect_symbol returns the symbol with address |
755 | that is closest and still less than the given PC. */ |
756 | for (tpst = pst; tpst != NULL((void*)0); tpst = tpst->next) |
757 | { |
758 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
759 | { |
760 | struct partial_symbol *p; |
761 | |
762 | p = find_pc_sect_psymbol (tpst, pc, section); |
763 | if (p != NULL((void*)0) |
764 | && SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address |
765 | == SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address) |
766 | return (tpst); |
767 | if (p != NULL((void*)0)) |
768 | { |
769 | /* We found a symbol in this partial symtab which |
770 | matches (or is closest to) PC, check whether it |
771 | is closer than our current BEST_PSYM. Since |
772 | this symbol address is necessarily lower or |
773 | equal to PC, the symbol closer to PC is the |
774 | symbol which address is the highest. */ |
775 | /* This way we return the psymtab which contains |
776 | such best match symbol. This can help in cases |
777 | where the symbol information/debuginfo is not |
778 | complete, like for instance on IRIX6 with gcc, |
779 | where no debug info is emitted for |
780 | statics. (See also the nodebug.exp |
781 | testcase.) */ |
782 | if (best_psym == NULL((void*)0) |
783 | || SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address |
784 | > SYMBOL_VALUE_ADDRESS (best_psym)(best_psym)->ginfo.value.address) |
785 | { |
786 | best_psym = p; |
787 | best_pst = tpst; |
788 | } |
789 | } |
790 | |
791 | } |
792 | } |
793 | return (best_pst); |
794 | } |
795 | } |
796 | return (NULL((void*)0)); |
797 | } |
798 | |
799 | /* Find which partial symtab contains PC. Return 0 if none. |
800 | Backward compatibility, no section */ |
801 | |
802 | struct partial_symtab * |
803 | find_pc_psymtab (CORE_ADDR pc) |
804 | { |
805 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); |
806 | } |
807 | |
808 | /* Find which partial symbol within a psymtab matches PC and SECTION. |
809 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ |
810 | |
811 | struct partial_symbol * |
812 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
813 | asection *section) |
814 | { |
815 | struct partial_symbol *best = NULL((void*)0), *p, **pp; |
816 | CORE_ADDR best_pc; |
817 | |
818 | if (!psymtab) |
819 | psymtab = find_pc_sect_psymtab (pc, section); |
820 | if (!psymtab) |
821 | return 0; |
822 | |
823 | /* Cope with programs that start at address 0 */ |
824 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; |
825 | |
826 | /* Search the global symbols as well as the static symbols, so that |
827 | find_pc_partial_function doesn't use a minimal symbol and thus |
828 | cache a bad endaddr. */ |
829 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; |
830 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
831 | < psymtab->n_global_syms); |
832 | pp++) |
833 | { |
834 | p = *pp; |
835 | if (SYMBOL_DOMAIN (p)(p)->domain == VAR_DOMAIN |
836 | && SYMBOL_CLASS (p)(p)->aclass == LOC_BLOCK |
837 | && pc >= SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address |
838 | && (SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address > best_pc |
839 | || (psymtab->textlow == 0 |
840 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address == 0))) |
841 | { |
842 | if (section) /* match on a specific section */ |
843 | { |
844 | fixup_psymbol_section (p, psymtab->objfile); |
845 | if (SYMBOL_BFD_SECTION (p)(p)->ginfo.bfd_section != section) |
846 | continue; |
847 | } |
848 | best_pc = SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address; |
849 | best = p; |
850 | } |
851 | } |
852 | |
853 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; |
854 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
855 | < psymtab->n_static_syms); |
856 | pp++) |
857 | { |
858 | p = *pp; |
859 | if (SYMBOL_DOMAIN (p)(p)->domain == VAR_DOMAIN |
860 | && SYMBOL_CLASS (p)(p)->aclass == LOC_BLOCK |
861 | && pc >= SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address |
862 | && (SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address > best_pc |
863 | || (psymtab->textlow == 0 |
864 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address == 0))) |
865 | { |
866 | if (section) /* match on a specific section */ |
867 | { |
868 | fixup_psymbol_section (p, psymtab->objfile); |
869 | if (SYMBOL_BFD_SECTION (p)(p)->ginfo.bfd_section != section) |
870 | continue; |
871 | } |
872 | best_pc = SYMBOL_VALUE_ADDRESS (p)(p)->ginfo.value.address; |
873 | best = p; |
874 | } |
875 | } |
876 | |
877 | return best; |
878 | } |
879 | |
880 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. |
881 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ |
882 | |
883 | struct partial_symbol * |
884 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
885 | { |
886 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); |
887 | } |
888 | |
889 | /* Debug symbols usually don't have section information. We need to dig that |
890 | out of the minimal symbols and stash that in the debug symbol. */ |
891 | |
892 | static void |
893 | fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile) |
894 | { |
895 | struct minimal_symbol *msym; |
896 | msym = lookup_minimal_symbol (ginfo->name, NULL((void*)0), objfile); |
897 | |
898 | if (msym) |
899 | { |
900 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym)(msym)->ginfo.bfd_section; |
901 | ginfo->section = SYMBOL_SECTION (msym)(msym)->ginfo.section; |
902 | } |
903 | else if (objfile) |
904 | { |
905 | /* Static, function-local variables do appear in the linker |
906 | (minimal) symbols, but are frequently given names that won't |
907 | be found via lookup_minimal_symbol(). E.g., it has been |
908 | observed in frv-uclinux (ELF) executables that a static, |
909 | function-local variable named "foo" might appear in the |
910 | linker symbols as "foo.6" or "foo.3". Thus, there is no |
911 | point in attempting to extend the lookup-by-name mechanism to |
912 | handle this case due to the fact that there can be multiple |
913 | names. |
914 | |
915 | So, instead, search the section table when lookup by name has |
916 | failed. The ``addr'' and ``endaddr'' fields may have already |
917 | been relocated. If so, the relocation offset (i.e. the |
918 | ANOFFSET value) needs to be subtracted from these values when |
919 | performing the comparison. We unconditionally subtract it, |
920 | because, when no relocation has been performed, the ANOFFSET |
921 | value will simply be zero. |
922 | |
923 | The address of the symbol whose section we're fixing up HAS |
924 | NOT BEEN adjusted (relocated) yet. It can't have been since |
925 | the section isn't yet known and knowing the section is |
926 | necessary in order to add the correct relocation value. In |
927 | other words, we wouldn't even be in this function (attempting |
928 | to compute the section) if it were already known. |
929 | |
930 | Note that it is possible to search the minimal symbols |
931 | (subtracting the relocation value if necessary) to find the |
932 | matching minimal symbol, but this is overkill and much less |
933 | efficient. It is not necessary to find the matching minimal |
934 | symbol, only its section. |
935 | |
936 | Note that this technique (of doing a section table search) |
937 | can fail when unrelocated section addresses overlap. For |
938 | this reason, we still attempt a lookup by name prior to doing |
939 | a search of the section table. */ |
940 | |
941 | CORE_ADDR addr; |
942 | struct obj_section *s; |
943 | |
944 | addr = ginfo->value.address; |
945 | |
946 | ALL_OBJFILE_OSECTIONS (objfile, s)for (s = objfile->sections; s < objfile->sections_end ; s++) |
947 | { |
948 | int idx = s->the_bfd_section->index; |
949 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx)((idx == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/symtab.c" , 949, "Section index is uninitialized"), -1) : objfile->section_offsets ->offsets[idx]); |
950 | |
951 | if (s->addr - offset <= addr && addr < s->endaddr - offset) |
952 | { |
953 | ginfo->bfd_section = s->the_bfd_section; |
954 | ginfo->section = idx; |
955 | return; |
956 | } |
957 | } |
958 | } |
959 | } |
960 | |
961 | struct symbol * |
962 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
963 | { |
964 | if (!sym) |
965 | return NULL((void*)0); |
966 | |
967 | if (SYMBOL_BFD_SECTION (sym)(sym)->ginfo.bfd_section) |
968 | return sym; |
969 | |
970 | fixup_section (&sym->ginfo, objfile); |
971 | |
972 | return sym; |
973 | } |
974 | |
975 | struct partial_symbol * |
976 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
977 | { |
978 | if (!psym) |
979 | return NULL((void*)0); |
980 | |
981 | if (SYMBOL_BFD_SECTION (psym)(psym)->ginfo.bfd_section) |
982 | return psym; |
983 | |
984 | fixup_section (&psym->ginfo, objfile); |
985 | |
986 | return psym; |
987 | } |
988 | |
989 | /* Find the definition for a specified symbol name NAME |
990 | in domain DOMAIN, visible from lexical block BLOCK. |
991 | Returns the struct symbol pointer, or zero if no symbol is found. |
992 | If SYMTAB is non-NULL, store the symbol table in which the |
993 | symbol was found there, or NULL if not found. |
994 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
995 | NAME is a field of the current implied argument `this'. If so set |
996 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
997 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
998 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ |
999 | |
1000 | /* This function has a bunch of loops in it and it would seem to be |
1001 | attractive to put in some QUIT's (though I'm not really sure |
1002 | whether it can run long enough to be really important). But there |
1003 | are a few calls for which it would appear to be bad news to quit |
1004 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1005 | that there is C++ code below which can error(), but that probably |
1006 | doesn't affect these calls since they are looking for a known |
1007 | variable and thus can probably assume it will never hit the C++ |
1008 | code). */ |
1009 | |
1010 | struct symbol * |
1011 | lookup_symbol (const char *name, const struct block *block, |
1012 | const domain_enum domain, int *is_a_field_of_this, |
1013 | struct symtab **symtab) |
1014 | { |
1015 | char *demangled_name = NULL((void*)0); |
1016 | const char *modified_name = NULL((void*)0); |
1017 | const char *mangled_name = NULL((void*)0); |
1018 | int needtofreename = 0; |
1019 | struct symbol *returnval; |
1020 | |
1021 | modified_name = name; |
1022 | |
1023 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
1024 | we can always binary search. */ |
1025 | if (current_language->la_language == language_cplus) |
1026 | { |
1027 | demangled_name = cplus_demangle (name, DMGL_ANSI(1 << 1) | DMGL_PARAMS(1 << 0)); |
1028 | if (demangled_name) |
1029 | { |
1030 | mangled_name = name; |
1031 | modified_name = demangled_name; |
1032 | needtofreename = 1; |
1033 | } |
1034 | } |
1035 | else if (current_language->la_language == language_java) |
1036 | { |
1037 | demangled_name = cplus_demangle (name, |
1038 | DMGL_ANSI(1 << 1) | DMGL_PARAMS(1 << 0) | DMGL_JAVA(1 << 2)); |
1039 | if (demangled_name) |
1040 | { |
1041 | mangled_name = name; |
1042 | modified_name = demangled_name; |
1043 | needtofreename = 1; |
1044 | } |
1045 | } |
1046 | |
1047 | if (case_sensitivity == case_sensitive_off) |
1048 | { |
1049 | char *copy; |
1050 | int len, i; |
1051 | |
1052 | len = strlen (name); |
1053 | copy = (char *) alloca (len + 1)__builtin_alloca(len + 1); |
1054 | for (i= 0; i < len; i++) |
1055 | copy[i] = tolower (name[i]); |
1056 | copy[len] = 0; |
1057 | modified_name = copy; |
1058 | } |
1059 | |
1060 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
1061 | domain, is_a_field_of_this, symtab); |
1062 | if (needtofreename) |
1063 | xfree (demangled_name); |
1064 | |
1065 | return returnval; |
1066 | } |
1067 | |
1068 | /* Behave like lookup_symbol_aux except that NAME is the natural name |
1069 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1070 | non-NULL, ensure that the symbol's linkage name matches as |
1071 | well. */ |
1072 | |
1073 | static struct symbol * |
1074 | lookup_symbol_aux (const char *name, const char *linkage_name, |
1075 | const struct block *block, const domain_enum domain, |
1076 | int *is_a_field_of_this, struct symtab **symtab) |
1077 | { |
1078 | struct symbol *sym; |
1079 | |
1080 | /* Make sure we do something sensible with is_a_field_of_this, since |
1081 | the callers that set this parameter to some non-null value will |
1082 | certainly use it later and expect it to be either 0 or 1. |
1083 | If we don't set it, the contents of is_a_field_of_this are |
1084 | undefined. */ |
1085 | if (is_a_field_of_this != NULL((void*)0)) |
1086 | *is_a_field_of_this = 0; |
1087 | |
1088 | /* Search specified block and its superiors. Don't search |
1089 | STATIC_BLOCK or GLOBAL_BLOCK. */ |
1090 | |
1091 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain, |
1092 | symtab); |
1093 | if (sym != NULL((void*)0)) |
1094 | return sym; |
1095 | |
1096 | /* If requested to do so by the caller and if appropriate for the |
1097 | current language, check to see if NAME is a field of `this'. */ |
1098 | |
1099 | if (current_language->la_value_of_this != NULL((void*)0) |
1100 | && is_a_field_of_this != NULL((void*)0)) |
1101 | { |
1102 | struct value *v = current_language->la_value_of_this (0); |
1103 | |
1104 | if (v && check_field (v, name)) |
1105 | { |
1106 | *is_a_field_of_this = 1; |
1107 | if (symtab != NULL((void*)0)) |
1108 | *symtab = NULL((void*)0); |
1109 | return NULL((void*)0); |
1110 | } |
1111 | } |
1112 | |
1113 | /* Now do whatever is appropriate for the current language to look |
1114 | up static and global variables. */ |
1115 | |
1116 | sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name, |
1117 | block, domain, |
1118 | symtab); |
1119 | if (sym != NULL((void*)0)) |
1120 | return sym; |
1121 | |
1122 | /* Now search all static file-level symbols. Not strictly correct, |
1123 | but more useful than an error. Do the symtabs first, then check |
1124 | the psymtabs. If a psymtab indicates the existence of the |
1125 | desired name as a file-level static, then do psymtab-to-symtab |
1126 | conversion on the fly and return the found symbol. */ |
1127 | |
1128 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, |
1129 | domain, symtab); |
1130 | if (sym != NULL((void*)0)) |
1131 | return sym; |
1132 | |
1133 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, |
1134 | domain, symtab); |
1135 | if (sym != NULL((void*)0)) |
1136 | return sym; |
1137 | |
1138 | if (symtab != NULL((void*)0)) |
1139 | *symtab = NULL((void*)0); |
1140 | return NULL((void*)0); |
1141 | } |
1142 | |
1143 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
1144 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
1145 | |
1146 | static struct symbol * |
1147 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
1148 | const struct block *block, |
1149 | const domain_enum domain, |
1150 | struct symtab **symtab) |
1151 | { |
1152 | struct symbol *sym; |
1153 | const struct block *static_block = block_static_block (block); |
1154 | |
1155 | /* Check if either no block is specified or it's a global block. */ |
1156 | |
1157 | if (static_block == NULL((void*)0)) |
1158 | return NULL((void*)0); |
1159 | |
1160 | while (block != static_block) |
1161 | { |
1162 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain, |
1163 | symtab); |
1164 | if (sym != NULL((void*)0)) |
1165 | return sym; |
1166 | block = BLOCK_SUPERBLOCK (block)(block)->superblock; |
1167 | } |
1168 | |
1169 | /* We've reached the static block without finding a result. */ |
1170 | |
1171 | return NULL((void*)0); |
1172 | } |
1173 | |
1174 | /* Look up a symbol in a block; if found, locate its symtab, fixup the |
1175 | symbol, and set block_found appropriately. */ |
1176 | |
1177 | struct symbol * |
1178 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
1179 | const struct block *block, |
1180 | const domain_enum domain, |
1181 | struct symtab **symtab) |
1182 | { |
1183 | struct symbol *sym; |
1184 | struct objfile *objfile = NULL((void*)0); |
1185 | struct blockvector *bv; |
1186 | struct block *b; |
1187 | struct symtab *s = NULL((void*)0); |
1188 | |
1189 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
1190 | if (sym) |
1191 | { |
1192 | block_found = block; |
1193 | if (symtab != NULL((void*)0)) |
1194 | { |
1195 | /* Search the list of symtabs for one which contains the |
1196 | address of the start of this block. */ |
1197 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
1198 | { |
1199 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1200 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1201 | if (BLOCK_START (b)(b)->startaddr <= BLOCK_START (block)(block)->startaddr |
1202 | && BLOCK_END (b)(b)->endaddr > BLOCK_START (block)(block)->startaddr) |
1203 | goto found; |
1204 | } |
1205 | found: |
1206 | *symtab = s; |
1207 | } |
1208 | |
1209 | return fixup_symbol_section (sym, objfile); |
1210 | } |
1211 | |
1212 | return NULL((void*)0); |
1213 | } |
1214 | |
1215 | /* Check to see if the symbol is defined in one of the symtabs. |
1216 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, |
1217 | depending on whether or not we want to search global symbols or |
1218 | static symbols. */ |
1219 | |
1220 | static struct symbol * |
1221 | lookup_symbol_aux_symtabs (int block_index, |
1222 | const char *name, const char *linkage_name, |
1223 | const domain_enum domain, |
1224 | struct symtab **symtab) |
1225 | { |
1226 | struct symbol *sym; |
1227 | struct objfile *objfile; |
1228 | struct blockvector *bv; |
1229 | const struct block *block; |
1230 | struct symtab *s; |
1231 | |
1232 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
1233 | { |
1234 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1235 | block = BLOCKVECTOR_BLOCK (bv, block_index)(bv)->block[block_index]; |
1236 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
1237 | if (sym) |
1238 | { |
1239 | block_found = block; |
1240 | if (symtab != NULL((void*)0)) |
1241 | *symtab = s; |
1242 | return fixup_symbol_section (sym, objfile); |
1243 | } |
1244 | } |
1245 | |
1246 | return NULL((void*)0); |
1247 | } |
1248 | |
1249 | /* Check to see if the symbol is defined in one of the partial |
1250 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or |
1251 | STATIC_BLOCK, depending on whether or not we want to search global |
1252 | symbols or static symbols. */ |
1253 | |
1254 | static struct symbol * |
1255 | lookup_symbol_aux_psymtabs (int block_index, const char *name, |
1256 | const char *linkage_name, |
1257 | const domain_enum domain, |
1258 | struct symtab **symtab) |
1259 | { |
1260 | struct symbol *sym; |
1261 | struct objfile *objfile; |
1262 | struct blockvector *bv; |
1263 | const struct block *block; |
1264 | struct partial_symtab *ps; |
1265 | struct symtab *s; |
1266 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); |
1267 | |
1268 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
1269 | { |
1270 | if (!ps->readin |
1271 | && lookup_partial_symbol (ps, name, linkage_name, |
1272 | psymtab_index, domain)) |
1273 | { |
1274 | s = PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
1275 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1276 | block = BLOCKVECTOR_BLOCK (bv, block_index)(bv)->block[block_index]; |
1277 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
1278 | if (!sym) |
1279 | { |
1280 | /* This shouldn't be necessary, but as a last resort try |
1281 | looking in the statics even though the psymtab claimed |
1282 | the symbol was global, or vice-versa. It's possible |
1283 | that the psymtab gets it wrong in some cases. */ |
1284 | |
1285 | /* FIXME: carlton/2002-09-30: Should we really do that? |
1286 | If that happens, isn't it likely to be a GDB error, in |
1287 | which case we should fix the GDB error rather than |
1288 | silently dealing with it here? So I'd vote for |
1289 | removing the check for the symbol in the other |
1290 | block. */ |
1291 | block = BLOCKVECTOR_BLOCK (bv,(bv)->block[block_index == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK ] |
1292 | block_index == GLOBAL_BLOCK ?(bv)->block[block_index == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK ] |
1293 | STATIC_BLOCK : GLOBAL_BLOCK)(bv)->block[block_index == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK ]; |
1294 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
1295 | if (!sym) |
1296 | error ("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>).", |
1297 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1298 | name, ps->filename, name, name); |
1299 | } |
1300 | if (symtab != NULL((void*)0)) |
1301 | *symtab = s; |
1302 | return fixup_symbol_section (sym, objfile); |
1303 | } |
1304 | } |
1305 | |
1306 | return NULL((void*)0); |
1307 | } |
1308 | |
1309 | #if 0 |
1310 | /* Check for the possibility of the symbol being a function or a |
1311 | mangled variable that is stored in one of the minimal symbol |
1312 | tables. Eventually, all global symbols might be resolved in this |
1313 | way. */ |
1314 | |
1315 | /* NOTE: carlton/2002-12-05: At one point, this function was part of |
1316 | lookup_symbol_aux, and what are now 'return' statements within |
1317 | lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if |
1318 | sym was NULL. As far as I can tell, this was basically accidental; |
1319 | it didn't happen every time that msymbol was non-NULL, but only if |
1320 | some additional conditions held as well, and it caused problems |
1321 | with HP-generated symbol tables. */ |
1322 | |
1323 | /* NOTE: carlton/2003-05-14: This function was once used as part of |
1324 | lookup_symbol. It is currently unnecessary for correctness |
1325 | reasons, however, and using it doesn't seem to be any faster than |
1326 | using lookup_symbol_aux_psymtabs, so I'm commenting it out. */ |
1327 | |
1328 | static struct symbol * |
1329 | lookup_symbol_aux_minsyms (const char *name, |
1330 | const char *linkage_name, |
1331 | const domain_enum domain, |
1332 | int *is_a_field_of_this, |
1333 | struct symtab **symtab) |
1334 | { |
1335 | struct symbol *sym; |
1336 | struct blockvector *bv; |
1337 | const struct block *block; |
1338 | struct minimal_symbol *msymbol; |
1339 | struct symtab *s; |
1340 | |
1341 | if (domain == VAR_DOMAIN) |
1342 | { |
1343 | msymbol = lookup_minimal_symbol (name, NULL((void*)0), NULL((void*)0)); |
1344 | |
1345 | if (msymbol != NULL((void*)0)) |
1346 | { |
1347 | /* OK, we found a minimal symbol in spite of not finding any |
1348 | symbol. There are various possible explanations for |
1349 | this. One possibility is the symbol exists in code not |
1350 | compiled -g. Another possibility is that the 'psymtab' |
1351 | isn't doing its job. A third possibility, related to #2, |
1352 | is that we were confused by name-mangling. For instance, |
1353 | maybe the psymtab isn't doing its job because it only |
1354 | know about demangled names, but we were given a mangled |
1355 | name... */ |
1356 | |
1357 | /* We first use the address in the msymbol to try to locate |
1358 | the appropriate symtab. Note that find_pc_sect_symtab() |
1359 | has a side-effect of doing psymtab-to-symtab expansion, |
1360 | for the found symtab. */ |
1361 | s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address, |
1362 | SYMBOL_BFD_SECTION (msymbol)(msymbol)->ginfo.bfd_section); |
1363 | if (s != NULL((void*)0)) |
1364 | { |
1365 | /* This is a function which has a symtab for its address. */ |
1366 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1367 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1368 | |
1369 | /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the |
1370 | `name' argument to lookup_block_symbol. But the name |
1371 | of a minimal symbol is always mangled, so that seems |
1372 | to be clearly the wrong thing to pass as the |
1373 | unmangled name. */ |
1374 | sym = |
1375 | lookup_block_symbol (block, name, linkage_name, domain); |
1376 | /* We kept static functions in minimal symbol table as well as |
1377 | in static scope. We want to find them in the symbol table. */ |
1378 | if (!sym) |
1379 | { |
1380 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)(bv)->block[STATIC_BLOCK]; |
1381 | sym = lookup_block_symbol (block, name, |
1382 | linkage_name, domain); |
1383 | } |
1384 | |
1385 | /* NOTE: carlton/2002-12-04: The following comment was |
1386 | taken from a time when two versions of this function |
1387 | were part of the body of lookup_symbol_aux: this |
1388 | comment was taken from the version of the function |
1389 | that was #ifdef HPUXHPPA, and the comment was right |
1390 | before the 'return NULL' part of lookup_symbol_aux. |
1391 | (Hence the "Fall through and return 0" comment.) |
1392 | Elena did some digging into the situation for |
1393 | Fortran, and she reports: |
1394 | |
1395 | "I asked around (thanks to Jeff Knaggs), and I think |
1396 | the story for Fortran goes like this: |
1397 | |
1398 | "Apparently, in older Fortrans, '_' was not part of |
1399 | the user namespace. g77 attached a final '_' to |
1400 | procedure names as the exported symbols for linkage |
1401 | (foo_) , but the symbols went in the debug info just |
1402 | like 'foo'. The rationale behind this is not |
1403 | completely clear, and maybe it was done to other |
1404 | symbols as well, not just procedures." */ |
1405 | |
1406 | /* If we get here with sym == 0, the symbol was |
1407 | found in the minimal symbol table |
1408 | but not in the symtab. |
1409 | Fall through and return 0 to use the msymbol |
1410 | definition of "foo_". |
1411 | (Note that outer code generally follows up a call |
1412 | to this routine with a call to lookup_minimal_symbol(), |
1413 | so a 0 return means we'll just flow into that other routine). |
1414 | |
1415 | This happens for Fortran "foo_" symbols, |
1416 | which are "foo" in the symtab. |
1417 | |
1418 | This can also happen if "asm" is used to make a |
1419 | regular symbol but not a debugging symbol, e.g. |
1420 | asm(".globl _main"); |
1421 | asm("_main:"); |
1422 | */ |
1423 | |
1424 | if (symtab != NULL((void*)0) && sym != NULL((void*)0)) |
1425 | *symtab = s; |
1426 | return fixup_symbol_section (sym, s->objfile); |
1427 | } |
1428 | } |
1429 | } |
1430 | |
1431 | return NULL((void*)0); |
1432 | } |
1433 | #endif /* 0 */ |
1434 | |
1435 | /* A default version of lookup_symbol_nonlocal for use by languages |
1436 | that can't think of anything better to do. This implements the C |
1437 | lookup rules. */ |
1438 | |
1439 | struct symbol * |
1440 | basic_lookup_symbol_nonlocal (const char *name, |
1441 | const char *linkage_name, |
1442 | const struct block *block, |
1443 | const domain_enum domain, |
1444 | struct symtab **symtab) |
1445 | { |
1446 | struct symbol *sym; |
1447 | |
1448 | /* NOTE: carlton/2003-05-19: The comments below were written when |
1449 | this (or what turned into this) was part of lookup_symbol_aux; |
1450 | I'm much less worried about these questions now, since these |
1451 | decisions have turned out well, but I leave these comments here |
1452 | for posterity. */ |
1453 | |
1454 | /* NOTE: carlton/2002-12-05: There is a question as to whether or |
1455 | not it would be appropriate to search the current global block |
1456 | here as well. (That's what this code used to do before the |
1457 | is_a_field_of_this check was moved up.) On the one hand, it's |
1458 | redundant with the lookup_symbol_aux_symtabs search that happens |
1459 | next. On the other hand, if decode_line_1 is passed an argument |
1460 | like filename:var, then the user presumably wants 'var' to be |
1461 | searched for in filename. On the third hand, there shouldn't be |
1462 | multiple global variables all of which are named 'var', and it's |
1463 | not like decode_line_1 has ever restricted its search to only |
1464 | global variables in a single filename. All in all, only |
1465 | searching the static block here seems best: it's correct and it's |
1466 | cleanest. */ |
1467 | |
1468 | /* NOTE: carlton/2002-12-05: There's also a possible performance |
1469 | issue here: if you usually search for global symbols in the |
1470 | current file, then it would be slightly better to search the |
1471 | current global block before searching all the symtabs. But there |
1472 | are other factors that have a much greater effect on performance |
1473 | than that one, so I don't think we should worry about that for |
1474 | now. */ |
1475 | |
1476 | sym = lookup_symbol_static (name, linkage_name, block, domain, symtab); |
1477 | if (sym != NULL((void*)0)) |
1478 | return sym; |
1479 | |
1480 | return lookup_symbol_global (name, linkage_name, domain, symtab); |
1481 | } |
1482 | |
1483 | /* Lookup a symbol in the static block associated to BLOCK, if there |
1484 | is one; do nothing if BLOCK is NULL or a global block. */ |
1485 | |
1486 | struct symbol * |
1487 | lookup_symbol_static (const char *name, |
1488 | const char *linkage_name, |
1489 | const struct block *block, |
1490 | const domain_enum domain, |
1491 | struct symtab **symtab) |
1492 | { |
1493 | const struct block *static_block = block_static_block (block); |
1494 | |
1495 | if (static_block != NULL((void*)0)) |
1496 | return lookup_symbol_aux_block (name, linkage_name, static_block, |
1497 | domain, symtab); |
1498 | else |
1499 | return NULL((void*)0); |
1500 | } |
1501 | |
1502 | /* Lookup a symbol in all files' global blocks (searching psymtabs if |
1503 | necessary). */ |
1504 | |
1505 | struct symbol * |
1506 | lookup_symbol_global (const char *name, |
1507 | const char *linkage_name, |
1508 | const domain_enum domain, |
1509 | struct symtab **symtab) |
1510 | { |
1511 | struct symbol *sym; |
1512 | |
1513 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, |
1514 | domain, symtab); |
1515 | if (sym != NULL((void*)0)) |
1516 | return sym; |
1517 | |
1518 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, |
1519 | domain, symtab); |
1520 | } |
1521 | |
1522 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1523 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's |
1524 | linkage name matches it. Check the global symbols if GLOBAL, the |
1525 | static symbols if not */ |
1526 | |
1527 | struct partial_symbol * |
1528 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1529 | const char *linkage_name, int global, |
1530 | domain_enum domain) |
1531 | { |
1532 | struct partial_symbol *temp; |
1533 | struct partial_symbol **start, **psym; |
1534 | struct partial_symbol **top, **real_top, **bottom, **center; |
1535 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1536 | int do_linear_search = 1; |
1537 | |
1538 | if (length == 0) |
1539 | { |
1540 | return (NULL((void*)0)); |
1541 | } |
1542 | start = (global ? |
1543 | pst->objfile->global_psymbols.list + pst->globals_offset : |
1544 | pst->objfile->static_psymbols.list + pst->statics_offset); |
1545 | |
1546 | if (global) /* This means we can use a binary search. */ |
1547 | { |
1548 | do_linear_search = 0; |
1549 | |
1550 | /* Binary search. This search is guaranteed to end with center |
1551 | pointing at the earliest partial symbol whose name might be |
1552 | correct. At that point *all* partial symbols with an |
1553 | appropriate name will be checked against the correct |
1554 | domain. */ |
1555 | |
1556 | bottom = start; |
1557 | top = start + length - 1; |
1558 | real_top = top; |
1559 | while (top > bottom) |
1560 | { |
1561 | center = bottom + (top - bottom) / 2; |
1562 | if (!(center < top)) |
1563 | internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/symtab.c", __LINE__1563, "failed internal consistency check"); |
1564 | if (!do_linear_search |
1565 | && (SYMBOL_LANGUAGE (*center)(*center)->ginfo.language == language_java)) |
1566 | { |
1567 | do_linear_search = 1; |
1568 | } |
1569 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center)(symbol_search_name (&(*center)->ginfo)), name) >= 0) |
1570 | { |
1571 | top = center; |
1572 | } |
1573 | else |
1574 | { |
1575 | bottom = center + 1; |
1576 | } |
1577 | } |
1578 | if (!(top == bottom)) |
1579 | internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/symtab.c", __LINE__1579, "failed internal consistency check"); |
1580 | |
1581 | while (top <= real_top |
1582 | && (linkage_name != NULL((void*)0) |
1583 | ? strcmp (SYMBOL_LINKAGE_NAME (*top)(*top)->ginfo.name, linkage_name) == 0 |
1584 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name)(strcmp_iw ((symbol_search_name (&(*top)->ginfo)), (name )) == 0))) |
1585 | { |
1586 | if (SYMBOL_DOMAIN (*top)(*top)->domain == domain) |
1587 | { |
1588 | return (*top); |
1589 | } |
1590 | top++; |
1591 | } |
1592 | } |
1593 | |
1594 | /* Can't use a binary search or else we found during the binary search that |
1595 | we should also do a linear search. */ |
1596 | |
1597 | if (do_linear_search) |
1598 | { |
1599 | for (psym = start; psym < start + length; psym++) |
1600 | { |
1601 | if (domain == SYMBOL_DOMAIN (*psym)(*psym)->domain) |
1602 | { |
1603 | if (linkage_name != NULL((void*)0) |
1604 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym)(*psym)->ginfo.name, linkage_name) == 0 |
1605 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)(strcmp_iw ((symbol_search_name (&(*psym)->ginfo)), (name )) == 0)) |
1606 | { |
1607 | return (*psym); |
1608 | } |
1609 | } |
1610 | } |
1611 | } |
1612 | |
1613 | return (NULL((void*)0)); |
1614 | } |
1615 | |
1616 | /* Look up a type named NAME in the struct_domain. The type returned |
1617 | must not be opaque -- i.e., must have at least one field |
1618 | defined. */ |
1619 | |
1620 | struct type * |
1621 | lookup_transparent_type (const char *name) |
1622 | { |
1623 | return current_language->la_lookup_transparent_type (name); |
1624 | } |
1625 | |
1626 | /* The standard implementation of lookup_transparent_type. This code |
1627 | was modeled on lookup_symbol -- the parts not relevant to looking |
1628 | up types were just left out. In particular it's assumed here that |
1629 | types are available in struct_domain and only at file-static or |
1630 | global blocks. */ |
1631 | |
1632 | struct type * |
1633 | basic_lookup_transparent_type (const char *name) |
1634 | { |
1635 | struct symbol *sym; |
1636 | struct symtab *s = NULL((void*)0); |
1637 | struct partial_symtab *ps; |
1638 | struct blockvector *bv; |
1639 | struct objfile *objfile; |
1640 | struct block *block; |
1641 | |
1642 | /* Now search all the global symbols. Do the symtab's first, then |
1643 | check the psymtab's. If a psymtab indicates the existence |
1644 | of the desired name as a global, then do psymtab-to-symtab |
1645 | conversion on the fly and return the found symbol. */ |
1646 | |
1647 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
1648 | { |
1649 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1650 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1651 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1652 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))(((((sym)->type)->main_type->code == TYPE_CODE_STRUCT ) || (((sym)->type)->main_type->code == TYPE_CODE_UNION )) && (((sym)->type)->main_type->nfields == 0 ) && (((sym)->type)->main_type->type_specific .cplus_stuff && (((sym)->type)->main_type->type_specific .cplus_stuff->nfn_fields == 0)))) |
1653 | { |
1654 | return SYMBOL_TYPE (sym)(sym)->type; |
1655 | } |
1656 | } |
1657 | |
1658 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
1659 | { |
1660 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL((void*)0), |
1661 | 1, STRUCT_DOMAIN)) |
1662 | { |
1663 | s = PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
1664 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1665 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1666 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1667 | if (!sym) |
1668 | { |
1669 | /* This shouldn't be necessary, but as a last resort |
1670 | * try looking in the statics even though the psymtab |
1671 | * claimed the symbol was global. It's possible that |
1672 | * the psymtab gets it wrong in some cases. |
1673 | */ |
1674 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)(bv)->block[STATIC_BLOCK]; |
1675 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1676 | if (!sym) |
1677 | error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
1678 | %s may be an inlined function, or may be a template function\n\ |
1679 | (if a template, try specifying an instantiation: %s<type>).", |
1680 | name, ps->filename, name, name); |
1681 | } |
1682 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))(((((sym)->type)->main_type->code == TYPE_CODE_STRUCT ) || (((sym)->type)->main_type->code == TYPE_CODE_UNION )) && (((sym)->type)->main_type->nfields == 0 ) && (((sym)->type)->main_type->type_specific .cplus_stuff && (((sym)->type)->main_type->type_specific .cplus_stuff->nfn_fields == 0)))) |
1683 | return SYMBOL_TYPE (sym)(sym)->type; |
1684 | } |
1685 | } |
1686 | |
1687 | /* Now search the static file-level symbols. |
1688 | Not strictly correct, but more useful than an error. |
1689 | Do the symtab's first, then |
1690 | check the psymtab's. If a psymtab indicates the existence |
1691 | of the desired name as a file-level static, then do psymtab-to-symtab |
1692 | conversion on the fly and return the found symbol. |
1693 | */ |
1694 | |
1695 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
1696 | { |
1697 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1698 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)(bv)->block[STATIC_BLOCK]; |
1699 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1700 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))(((((sym)->type)->main_type->code == TYPE_CODE_STRUCT ) || (((sym)->type)->main_type->code == TYPE_CODE_UNION )) && (((sym)->type)->main_type->nfields == 0 ) && (((sym)->type)->main_type->type_specific .cplus_stuff && (((sym)->type)->main_type->type_specific .cplus_stuff->nfn_fields == 0)))) |
1701 | { |
1702 | return SYMBOL_TYPE (sym)(sym)->type; |
1703 | } |
1704 | } |
1705 | |
1706 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
1707 | { |
1708 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL((void*)0), 0, STRUCT_DOMAIN)) |
1709 | { |
1710 | s = PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
1711 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1712 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)(bv)->block[STATIC_BLOCK]; |
1713 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1714 | if (!sym) |
1715 | { |
1716 | /* This shouldn't be necessary, but as a last resort |
1717 | * try looking in the globals even though the psymtab |
1718 | * claimed the symbol was static. It's possible that |
1719 | * the psymtab gets it wrong in some cases. |
1720 | */ |
1721 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1722 | sym = lookup_block_symbol (block, name, NULL((void*)0), STRUCT_DOMAIN); |
1723 | if (!sym) |
1724 | error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
1725 | %s may be an inlined function, or may be a template function\n\ |
1726 | (if a template, try specifying an instantiation: %s<type>).", |
1727 | name, ps->filename, name, name); |
1728 | } |
1729 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))(((((sym)->type)->main_type->code == TYPE_CODE_STRUCT ) || (((sym)->type)->main_type->code == TYPE_CODE_UNION )) && (((sym)->type)->main_type->nfields == 0 ) && (((sym)->type)->main_type->type_specific .cplus_stuff && (((sym)->type)->main_type->type_specific .cplus_stuff->nfn_fields == 0)))) |
1730 | return SYMBOL_TYPE (sym)(sym)->type; |
1731 | } |
1732 | } |
1733 | return (struct type *) 0; |
1734 | } |
1735 | |
1736 | |
1737 | /* Find the psymtab containing main(). */ |
1738 | /* FIXME: What about languages without main() or specially linked |
1739 | executables that have no main() ? */ |
1740 | |
1741 | struct partial_symtab * |
1742 | find_main_psymtab (void) |
1743 | { |
1744 | struct partial_symtab *pst; |
1745 | struct objfile *objfile; |
1746 | |
1747 | ALL_PSYMTABS (objfile, pst)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((pst) = (objfile) -> psymtabs ; (pst) != ((void*)0); (pst) = (pst) -> next) |
1748 | { |
1749 | if (lookup_partial_symbol (pst, main_name (), NULL((void*)0), 1, VAR_DOMAIN)) |
1750 | { |
1751 | return (pst); |
1752 | } |
1753 | } |
1754 | return (NULL((void*)0)); |
1755 | } |
1756 | |
1757 | /* Search BLOCK for symbol NAME in DOMAIN. |
1758 | |
1759 | Note that if NAME is the demangled form of a C++ symbol, we will fail |
1760 | to find a match during the binary search of the non-encoded names, but |
1761 | for now we don't worry about the slight inefficiency of looking for |
1762 | a match we'll never find, since it will go pretty quick. Once the |
1763 | binary search terminates, we drop through and do a straight linear |
1764 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
1765 | symbol (language_cplus or language_objc set) has both the encoded and |
1766 | non-encoded names tested for a match. |
1767 | |
1768 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
1769 | particular mangled name. |
1770 | */ |
1771 | |
1772 | struct symbol * |
1773 | lookup_block_symbol (const struct block *block, const char *name, |
1774 | const char *linkage_name, |
1775 | const domain_enum domain) |
1776 | { |
1777 | struct dict_iterator iter; |
1778 | struct symbol *sym; |
1779 | |
1780 | if (!BLOCK_FUNCTION (block)(block)->function) |
1781 | { |
1782 | for (sym = dict_iter_name_first (BLOCK_DICT (block)(block)->dict, name, &iter); |
1783 | sym != NULL((void*)0); |
1784 | sym = dict_iter_name_next (name, &iter)) |
1785 | { |
1786 | if (SYMBOL_DOMAIN (sym)(sym)->domain == domain |
1787 | && (linkage_name != NULL((void*)0) |
1788 | ? strcmp (SYMBOL_LINKAGE_NAME (sym)(sym)->ginfo.name, linkage_name) == 0 : 1)) |
1789 | return sym; |
1790 | } |
1791 | return NULL((void*)0); |
1792 | } |
1793 | else |
1794 | { |
1795 | /* Note that parameter symbols do not always show up last in the |
1796 | list; this loop makes sure to take anything else other than |
1797 | parameter symbols first; it only uses parameter symbols as a |
1798 | last resort. Note that this only takes up extra computation |
1799 | time on a match. */ |
1800 | |
1801 | struct symbol *sym_found = NULL((void*)0); |
1802 | |
1803 | for (sym = dict_iter_name_first (BLOCK_DICT (block)(block)->dict, name, &iter); |
1804 | sym != NULL((void*)0); |
1805 | sym = dict_iter_name_next (name, &iter)) |
1806 | { |
1807 | if (SYMBOL_DOMAIN (sym)(sym)->domain == domain |
1808 | && (linkage_name != NULL((void*)0) |
1809 | ? strcmp (SYMBOL_LINKAGE_NAME (sym)(sym)->ginfo.name, linkage_name) == 0 : 1)) |
1810 | { |
1811 | sym_found = sym; |
1812 | if (SYMBOL_CLASS (sym)(sym)->aclass != LOC_ARG && |
1813 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_LOCAL_ARG && |
1814 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_REF_ARG && |
1815 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_REGPARM && |
1816 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_REGPARM_ADDR && |
1817 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_BASEREG_ARG && |
1818 | SYMBOL_CLASS (sym)(sym)->aclass != LOC_COMPUTED_ARG) |
1819 | { |
1820 | break; |
1821 | } |
1822 | } |
1823 | } |
1824 | return (sym_found); /* Will be NULL if not found. */ |
1825 | } |
1826 | } |
1827 | |
1828 | /* Find the symtab associated with PC and SECTION. Look through the |
1829 | psymtabs and read in another symtab if necessary. */ |
1830 | |
1831 | struct symtab * |
1832 | find_pc_sect_symtab (CORE_ADDR pc, asection *section) |
1833 | { |
1834 | struct block *b; |
1835 | struct blockvector *bv; |
1836 | struct symtab *s = NULL((void*)0); |
1837 | struct symtab *best_s = NULL((void*)0); |
1838 | struct partial_symtab *ps; |
1839 | struct objfile *objfile; |
1840 | CORE_ADDR distance = 0; |
1841 | struct minimal_symbol *msymbol; |
1842 | |
1843 | /* If we know that this is not a text address, return failure. This is |
1844 | necessary because we loop based on the block's high and low code |
1845 | addresses, which do not include the data ranges, and because |
1846 | we call find_pc_sect_psymtab which has a similar restriction based |
1847 | on the partial_symtab's texthigh and textlow. */ |
1848 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); |
1849 | if (msymbol |
1850 | && (msymbol->type == mst_data |
1851 | || msymbol->type == mst_bss |
1852 | || msymbol->type == mst_abs |
1853 | || msymbol->type == mst_file_data |
1854 | || msymbol->type == mst_file_bss)) |
1855 | return NULL((void*)0); |
1856 | |
1857 | /* Search all symtabs for the one whose file contains our address, and which |
1858 | is the smallest of all the ones containing the address. This is designed |
1859 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 |
1860 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from |
1861 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. |
1862 | |
1863 | This happens for native ecoff format, where code from included files |
1864 | gets its own symtab. The symtab for the included file should have |
1865 | been read in already via the dependency mechanism. |
1866 | It might be swifter to create several symtabs with the same name |
1867 | like xcoff does (I'm not sure). |
1868 | |
1869 | It also happens for objfiles that have their functions reordered. |
1870 | For these, the symtab we are looking for is not necessarily read in. */ |
1871 | |
1872 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
1873 | { |
1874 | bv = BLOCKVECTOR (s)(s)->blockvector; |
1875 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)(bv)->block[GLOBAL_BLOCK]; |
1876 | |
1877 | if (BLOCK_START (b)(b)->startaddr <= pc |
1878 | && BLOCK_END (b)(b)->endaddr > pc |
1879 | && (distance == 0 |
1880 | || BLOCK_END (b)(b)->endaddr - BLOCK_START (b)(b)->startaddr < distance)) |
1881 | { |
1882 | /* For an objfile that has its functions reordered, |
1883 | find_pc_psymtab will find the proper partial symbol table |
1884 | and we simply return its corresponding symtab. */ |
1885 | /* In order to better support objfiles that contain both |
1886 | stabs and coff debugging info, we continue on if a psymtab |
1887 | can't be found. */ |
1888 | if ((objfile->flags & OBJF_REORDERED(1 << 2)) && objfile->psymtabs) |
1889 | { |
1890 | ps = find_pc_sect_psymtab (pc, section); |
1891 | if (ps) |
1892 | return PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
1893 | } |
1894 | if (section != 0) |
1895 | { |
1896 | struct dict_iterator iter; |
1897 | struct symbol *sym = NULL((void*)0); |
1898 | |
1899 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
1900 | { |
1901 | fixup_symbol_section (sym, objfile); |
1902 | if (section == SYMBOL_BFD_SECTION (sym)(sym)->ginfo.bfd_section) |
1903 | break; |
1904 | } |
1905 | if (sym == NULL((void*)0)) |
1906 | continue; /* no symbol in this symtab matches section */ |
1907 | } |
1908 | distance = BLOCK_END (b)(b)->endaddr - BLOCK_START (b)(b)->startaddr; |
1909 | best_s = s; |
1910 | } |
1911 | } |
1912 | |
1913 | if (best_s != NULL((void*)0)) |
1914 | return (best_s); |
1915 | |
1916 | s = NULL((void*)0); |
1917 | ps = find_pc_sect_psymtab (pc, section); |
1918 | if (ps) |
1919 | { |
1920 | if (ps->readin) |
1921 | /* Might want to error() here (in case symtab is corrupt and |
1922 | will cause a core dump), but maybe we can successfully |
1923 | continue, so let's not. */ |
1924 | warning ("\ |
1925 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n", |
1926 | paddr_nz (pc)); |
1927 | s = PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
1928 | } |
1929 | return (s); |
1930 | } |
1931 | |
1932 | /* Find the symtab associated with PC. Look through the psymtabs and |
1933 | read in another symtab if necessary. Backward compatibility, no section */ |
1934 | |
1935 | struct symtab * |
1936 | find_pc_symtab (CORE_ADDR pc) |
1937 | { |
1938 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); |
1939 | } |
1940 | |
1941 | |
1942 | /* Find the source file and line number for a given PC value and SECTION. |
1943 | Return a structure containing a symtab pointer, a line number, |
1944 | and a pc range for the entire source line. |
1945 | The value's .pc field is NOT the specified pc. |
1946 | NOTCURRENT nonzero means, if specified pc is on a line boundary, |
1947 | use the line that ends there. Otherwise, in that case, the line |
1948 | that begins there is used. */ |
1949 | |
1950 | /* The big complication here is that a line may start in one file, and end just |
1951 | before the start of another file. This usually occurs when you #include |
1952 | code in the middle of a subroutine. To properly find the end of a line's PC |
1953 | range, we must search all symtabs associated with this compilation unit, and |
1954 | find the one whose first PC is closer than that of the next line in this |
1955 | symtab. */ |
1956 | |
1957 | /* If it's worth the effort, we could be using a binary search. */ |
1958 | |
1959 | struct symtab_and_line |
1960 | find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent) |
1961 | { |
1962 | struct symtab *s; |
1963 | struct linetable *l; |
1964 | int len; |
1965 | int i; |
1966 | struct linetable_entry *item; |
1967 | struct symtab_and_line val; |
1968 | struct blockvector *bv; |
1969 | struct minimal_symbol *msymbol; |
1970 | struct minimal_symbol *mfunsym; |
1971 | |
1972 | /* Info on best line seen so far, and where it starts, and its file. */ |
1973 | |
1974 | struct linetable_entry *best = NULL((void*)0); |
1975 | CORE_ADDR best_end = 0; |
1976 | struct symtab *best_symtab = 0; |
1977 | |
1978 | /* Store here the first line number |
1979 | of a file which contains the line at the smallest pc after PC. |
1980 | If we don't find a line whose range contains PC, |
1981 | we will use a line one less than this, |
1982 | with a range from the start of that file to the first line's pc. */ |
1983 | struct linetable_entry *alt = NULL((void*)0); |
1984 | struct symtab *alt_symtab = 0; |
1985 | |
1986 | /* Info on best line seen in this file. */ |
1987 | |
1988 | struct linetable_entry *prev; |
1989 | |
1990 | /* If this pc is not from the current frame, |
1991 | it is the address of the end of a call instruction. |
1992 | Quite likely that is the start of the following statement. |
1993 | But what we want is the statement containing the instruction. |
1994 | Fudge the pc to make sure we get that. */ |
1995 | |
1996 | init_sal (&val); /* initialize to zeroes */ |
1997 | |
1998 | /* It's tempting to assume that, if we can't find debugging info for |
1999 | any function enclosing PC, that we shouldn't search for line |
2000 | number info, either. However, GAS can emit line number info for |
2001 | assembly files --- very helpful when debugging hand-written |
2002 | assembly code. In such a case, we'd have no debug info for the |
2003 | function, but we would have line info. */ |
2004 | |
2005 | if (notcurrent) |
2006 | pc -= 1; |
2007 | |
2008 | /* elz: added this because this function returned the wrong |
2009 | information if the pc belongs to a stub (import/export) |
2010 | to call a shlib function. This stub would be anywhere between |
2011 | two functions in the target, and the line info was erroneously |
2012 | taken to be the one of the line before the pc. |
2013 | */ |
2014 | /* RT: Further explanation: |
2015 | |
2016 | * We have stubs (trampolines) inserted between procedures. |
2017 | * |
2018 | * Example: "shr1" exists in a shared library, and a "shr1" stub also |
2019 | * exists in the main image. |
2020 | * |
2021 | * In the minimal symbol table, we have a bunch of symbols |
2022 | * sorted by start address. The stubs are marked as "trampoline", |
2023 | * the others appear as text. E.g.: |
2024 | * |
2025 | * Minimal symbol table for main image |
2026 | * main: code for main (text symbol) |
2027 | * shr1: stub (trampoline symbol) |
2028 | * foo: code for foo (text symbol) |
2029 | * ... |
2030 | * Minimal symbol table for "shr1" image: |
2031 | * ... |
2032 | * shr1: code for shr1 (text symbol) |
2033 | * ... |
2034 | * |
2035 | * So the code below is trying to detect if we are in the stub |
2036 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), |
2037 | * and if found, do the symbolization from the real-code address |
2038 | * rather than the stub address. |
2039 | * |
2040 | * Assumptions being made about the minimal symbol table: |
2041 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only |
2042 | * if we're really in the trampoline. If we're beyond it (say |
2043 | * we're in "foo" in the above example), it'll have a closer |
2044 | * symbol (the "foo" text symbol for example) and will not |
2045 | * return the trampoline. |
2046 | * 2. lookup_minimal_symbol_text() will find a real text symbol |
2047 | * corresponding to the trampoline, and whose address will |
2048 | * be different than the trampoline address. I put in a sanity |
2049 | * check for the address being the same, to avoid an |
2050 | * infinite recursion. |
2051 | */ |
2052 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2053 | if (msymbol != NULL((void*)0)) |
2054 | if (MSYMBOL_TYPE (msymbol)(msymbol)->type == mst_solib_trampoline) |
2055 | { |
2056 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol)(msymbol)->ginfo.name, |
2057 | NULL((void*)0)); |
2058 | if (mfunsym == NULL((void*)0)) |
2059 | /* I eliminated this warning since it is coming out |
2060 | * in the following situation: |
2061 | * gdb shmain // test program with shared libraries |
2062 | * (gdb) break shr1 // function in shared lib |
2063 | * Warning: In stub for ... |
2064 | * In the above situation, the shared lib is not loaded yet, |
2065 | * so of course we can't find the real func/line info, |
2066 | * but the "break" still works, and the warning is annoying. |
2067 | * So I commented out the warning. RT */ |
2068 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
2069 | /* fall through */ |
2070 | else if (SYMBOL_VALUE (mfunsym)(mfunsym)->ginfo.value.ivalue == SYMBOL_VALUE (msymbol)(msymbol)->ginfo.value.ivalue) |
2071 | /* Avoid infinite recursion */ |
2072 | /* See above comment about why warning is commented out */ |
2073 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
2074 | /* fall through */ |
2075 | else |
2076 | return find_pc_line (SYMBOL_VALUE (mfunsym)(mfunsym)->ginfo.value.ivalue, 0); |
2077 | } |
2078 | |
2079 | |
2080 | s = find_pc_sect_symtab (pc, section); |
2081 | if (!s) |
2082 | { |
2083 | /* if no symbol information, return previous pc */ |
2084 | if (notcurrent) |
2085 | pc++; |
2086 | val.pc = pc; |
2087 | return val; |
2088 | } |
2089 | |
2090 | bv = BLOCKVECTOR (s)(s)->blockvector; |
2091 | |
2092 | /* Look at all the symtabs that share this blockvector. |
2093 | They all have the same apriori range, that we found was right; |
2094 | but they have different line tables. */ |
2095 | |
2096 | for (; s && BLOCKVECTOR (s)(s)->blockvector == bv; s = s->next) |
2097 | { |
2098 | /* Find the best line in this symtab. */ |
2099 | l = LINETABLE (s)(s)->linetable; |
2100 | if (!l) |
2101 | continue; |
2102 | len = l->nitems; |
2103 | if (len <= 0) |
2104 | { |
2105 | /* I think len can be zero if the symtab lacks line numbers |
2106 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; |
2107 | I'm not sure which, and maybe it depends on the symbol |
2108 | reader). */ |
2109 | continue; |
2110 | } |
2111 | |
2112 | prev = NULL((void*)0); |
2113 | item = l->item; /* Get first line info */ |
2114 | |
2115 | /* Is this file's first line closer than the first lines of other files? |
2116 | If so, record this file, and its first line, as best alternate. */ |
2117 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2118 | { |
2119 | alt = item; |
2120 | alt_symtab = s; |
2121 | } |
2122 | |
2123 | for (i = 0; i < len; i++, item++) |
2124 | { |
2125 | /* Leave prev pointing to the linetable entry for the last line |
2126 | that started at or before PC. */ |
2127 | if (item->pc > pc) |
2128 | break; |
2129 | |
2130 | prev = item; |
2131 | } |
2132 | |
2133 | /* At this point, prev points at the line whose start addr is <= pc, and |
2134 | item points at the next line. If we ran off the end of the linetable |
2135 | (pc >= start of the last line), then prev == item. If pc < start of |
2136 | the first line, prev will not be set. */ |
2137 | |
2138 | /* Is this file's best line closer than the best in the other files? |
2139 | If so, record this file, and its best line, as best so far. Don't |
2140 | save prev if it represents the end of a function (i.e. line number |
2141 | 0) instead of a real line. */ |
2142 | |
2143 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
2144 | { |
2145 | best = prev; |
2146 | best_symtab = s; |
2147 | |
2148 | /* Discard BEST_END if it's before the PC of the current BEST. */ |
2149 | if (best_end <= best->pc) |
2150 | best_end = 0; |
2151 | } |
2152 | |
2153 | /* If another line (denoted by ITEM) is in the linetable and its |
2154 | PC is after BEST's PC, but before the current BEST_END, then |
2155 | use ITEM's PC as the new best_end. */ |
2156 | if (best && i < len && item->pc > best->pc |
2157 | && (best_end == 0 || best_end > item->pc)) |
2158 | best_end = item->pc; |
2159 | } |
2160 | |
2161 | if (!best_symtab) |
2162 | { |
2163 | if (!alt_symtab) |
2164 | { /* If we didn't find any line # info, just |
2165 | return zeros. */ |
2166 | val.pc = pc; |
2167 | } |
2168 | else |
2169 | { |
2170 | val.symtab = alt_symtab; |
2171 | val.line = alt->line - 1; |
2172 | |
2173 | /* Don't return line 0, that means that we didn't find the line. */ |
2174 | if (val.line == 0) |
2175 | ++val.line; |
2176 | |
2177 | val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))((bv)->block[GLOBAL_BLOCK])->endaddr; |
2178 | val.end = alt->pc; |
2179 | } |
2180 | } |
2181 | else if (best->line == 0) |
2182 | { |
2183 | /* If our best fit is in a range of PC's for which no line |
2184 | number info is available (line number is zero) then we didn't |
2185 | find any valid line information. */ |
2186 | val.pc = pc; |
2187 | } |
2188 | else |
2189 | { |
2190 | val.symtab = best_symtab; |
2191 | val.line = best->line; |
2192 | val.pc = best->pc; |
2193 | if (best_end && (!alt || best_end < alt->pc)) |
2194 | val.end = best_end; |
2195 | else if (alt) |
2196 | val.end = alt->pc; |
2197 | else |
2198 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))((bv)->block[GLOBAL_BLOCK])->endaddr; |
2199 | } |
2200 | val.section = section; |
2201 | return val; |
2202 | } |
2203 | |
2204 | /* Backward compatibility (no section) */ |
2205 | |
2206 | struct symtab_and_line |
2207 | find_pc_line (CORE_ADDR pc, int notcurrent) |
2208 | { |
2209 | asection *section; |
2210 | |
2211 | section = find_pc_overlay (pc); |
2212 | if (pc_in_unmapped_range (pc, section)) |
2213 | pc = overlay_mapped_address (pc, section); |
2214 | return find_pc_sect_line (pc, section, notcurrent); |
2215 | } |
2216 | |
2217 | /* Find line number LINE in any symtab whose name is the same as |
2218 | SYMTAB. |
2219 | |
2220 | If found, return the symtab that contains the linetable in which it was |
2221 | found, set *INDEX to the index in the linetable of the best entry |
2222 | found, and set *EXACT_MATCH nonzero if the value returned is an |
2223 | exact match. |
2224 | |
2225 | If not found, return NULL. */ |
2226 | |
2227 | struct symtab * |
2228 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
2229 | { |
2230 | int exact; |
2231 | |
2232 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE |
2233 | so far seen. */ |
2234 | |
2235 | int best_index; |
2236 | struct linetable *best_linetable; |
2237 | struct symtab *best_symtab; |
2238 | |
2239 | /* First try looking it up in the given symtab. */ |
2240 | best_linetable = LINETABLE (symtab)(symtab)->linetable; |
2241 | best_symtab = symtab; |
2242 | best_index = find_line_common (best_linetable, line, &exact); |
2243 | if (best_index < 0 || !exact) |
2244 | { |
2245 | /* Didn't find an exact match. So we better keep looking for |
2246 | another symtab with the same name. In the case of xcoff, |
2247 | multiple csects for one source file (produced by IBM's FORTRAN |
2248 | compiler) produce multiple symtabs (this is unavoidable |
2249 | assuming csects can be at arbitrary places in memory and that |
2250 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ |
2251 | |
2252 | /* BEST is the smallest linenumber > LINE so far seen, |
2253 | or 0 if none has been seen so far. |
2254 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ |
2255 | int best; |
2256 | |
2257 | struct objfile *objfile; |
2258 | struct symtab *s; |
2259 | |
2260 | if (best_index >= 0) |
2261 | best = best_linetable->item[best_index].line; |
2262 | else |
2263 | best = 0; |
2264 | |
2265 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
2266 | { |
2267 | struct linetable *l; |
2268 | int ind; |
2269 | |
2270 | if (strcmp (symtab->filename, s->filename) != 0) |
2271 | continue; |
2272 | l = LINETABLE (s)(s)->linetable; |
2273 | ind = find_line_common (l, line, &exact); |
2274 | if (ind >= 0) |
2275 | { |
2276 | if (exact) |
2277 | { |
2278 | best_index = ind; |
2279 | best_linetable = l; |
2280 | best_symtab = s; |
2281 | goto done; |
2282 | } |
2283 | if (best == 0 || l->item[ind].line < best) |
2284 | { |
2285 | best = l->item[ind].line; |
2286 | best_index = ind; |
2287 | best_linetable = l; |
Value stored to 'best_linetable' is never read | |
2288 | best_symtab = s; |
2289 | } |
2290 | } |
2291 | } |
2292 | } |
2293 | done: |
2294 | if (best_index < 0) |
2295 | return NULL((void*)0); |
2296 | |
2297 | if (index) |
2298 | *index = best_index; |
2299 | if (exact_match) |
2300 | *exact_match = exact; |
2301 | |
2302 | return best_symtab; |
2303 | } |
2304 | |
2305 | /* Set the PC value for a given source file and line number and return true. |
2306 | Returns zero for invalid line number (and sets the PC to 0). |
2307 | The source file is specified with a struct symtab. */ |
2308 | |
2309 | int |
2310 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
2311 | { |
2312 | struct linetable *l; |
2313 | int ind; |
2314 | |
2315 | *pc = 0; |
2316 | if (symtab == 0) |
2317 | return 0; |
2318 | |
2319 | symtab = find_line_symtab (symtab, line, &ind, NULL((void*)0)); |
2320 | if (symtab != NULL((void*)0)) |
2321 | { |
2322 | l = LINETABLE (symtab)(symtab)->linetable; |
2323 | *pc = l->item[ind].pc; |
2324 | return 1; |
2325 | } |
2326 | else |
2327 | return 0; |
2328 | } |
2329 | |
2330 | /* Find the range of pc values in a line. |
2331 | Store the starting pc of the line into *STARTPTR |
2332 | and the ending pc (start of next line) into *ENDPTR. |
2333 | Returns 1 to indicate success. |
2334 | Returns 0 if could not find the specified line. */ |
2335 | |
2336 | int |
2337 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2338 | CORE_ADDR *endptr) |
2339 | { |
2340 | CORE_ADDR startaddr; |
2341 | struct symtab_and_line found_sal; |
2342 | |
2343 | startaddr = sal.pc; |
2344 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
2345 | return 0; |
2346 | |
2347 | /* This whole function is based on address. For example, if line 10 has |
2348 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then |
2349 | "info line *0x123" should say the line goes from 0x100 to 0x200 |
2350 | and "info line *0x355" should say the line goes from 0x300 to 0x400. |
2351 | This also insures that we never give a range like "starts at 0x134 |
2352 | and ends at 0x12c". */ |
2353 | |
2354 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); |
2355 | if (found_sal.line != sal.line) |
2356 | { |
2357 | /* The specified line (sal) has zero bytes. */ |
2358 | *startptr = found_sal.pc; |
2359 | *endptr = found_sal.pc; |
2360 | } |
2361 | else |
2362 | { |
2363 | *startptr = found_sal.pc; |
2364 | *endptr = found_sal.end; |
2365 | } |
2366 | return 1; |
2367 | } |
2368 | |
2369 | /* Given a line table and a line number, return the index into the line |
2370 | table for the pc of the nearest line whose number is >= the specified one. |
2371 | Return -1 if none is found. The value is >= 0 if it is an index. |
2372 | |
2373 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ |
2374 | |
2375 | static int |
2376 | find_line_common (struct linetable *l, int lineno, |
2377 | int *exact_match) |
2378 | { |
2379 | int i; |
2380 | int len; |
2381 | |
2382 | /* BEST is the smallest linenumber > LINENO so far seen, |
2383 | or 0 if none has been seen so far. |
2384 | BEST_INDEX identifies the item for it. */ |
2385 | |
2386 | int best_index = -1; |
2387 | int best = 0; |
2388 | |
2389 | if (lineno <= 0) |
2390 | return -1; |
2391 | if (l == 0) |
2392 | return -1; |
2393 | |
2394 | len = l->nitems; |
2395 | for (i = 0; i < len; i++) |
2396 | { |
2397 | struct linetable_entry *item = &(l->item[i]); |
2398 | |
2399 | if (item->line == lineno) |
2400 | { |
2401 | /* Return the first (lowest address) entry which matches. */ |
2402 | *exact_match = 1; |
2403 | return i; |
2404 | } |
2405 | |
2406 | if (item->line > lineno && (best == 0 || item->line < best)) |
2407 | { |
2408 | best = item->line; |
2409 | best_index = i; |
2410 | } |
2411 | } |
2412 | |
2413 | /* If we got here, we didn't get an exact match. */ |
2414 | |
2415 | *exact_match = 0; |
2416 | return best_index; |
2417 | } |
2418 | |
2419 | int |
2420 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
2421 | { |
2422 | struct symtab_and_line sal; |
2423 | sal = find_pc_line (pc, 0); |
2424 | *startptr = sal.pc; |
2425 | *endptr = sal.end; |
2426 | return sal.symtab != 0; |
2427 | } |
2428 | |
2429 | /* Given a function symbol SYM, find the symtab and line for the start |
2430 | of the function. |
2431 | If the argument FUNFIRSTLINE is nonzero, we want the first line |
2432 | of real code inside the function. */ |
2433 | |
2434 | struct symtab_and_line |
2435 | find_function_start_sal (struct symbol *sym, int funfirstline) |
2436 | { |
2437 | CORE_ADDR pc; |
2438 | struct symtab_and_line sal; |
2439 | |
2440 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym))((sym)->ginfo.value.block)->startaddr; |
2441 | fixup_symbol_section (sym, NULL((void*)0)); |
2442 | if (funfirstline) |
2443 | { /* skip "first line" of function (which is actually its prologue) */ |
2444 | asection *section = SYMBOL_BFD_SECTION (sym)(sym)->ginfo.bfd_section; |
2445 | /* If function is in an unmapped overlay, use its unmapped LMA |
2446 | address, so that SKIP_PROLOGUE has something unique to work on */ |
2447 | if (section_is_overlay (section) && |
2448 | !section_is_mapped (section)) |
2449 | pc = overlay_unmapped_address (pc, section); |
2450 | |
2451 | pc += DEPRECATED_FUNCTION_START_OFFSET(gdbarch_deprecated_function_start_offset (current_gdbarch)); |
2452 | pc = SKIP_PROLOGUE (pc)(gdbarch_skip_prologue (current_gdbarch, pc)); |
2453 | |
2454 | /* For overlays, map pc back into its mapped VMA range */ |
2455 | pc = overlay_mapped_address (pc, section); |
2456 | } |
2457 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym)(sym)->ginfo.bfd_section, 0); |
2458 | |
2459 | /* Check if SKIP_PROLOGUE left us in mid-line, and the next |
2460 | line is still part of the same function. */ |
2461 | if (sal.pc != pc |
2462 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym))((sym)->ginfo.value.block)->startaddr <= sal.end |
2463 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))((sym)->ginfo.value.block)->endaddr) |
2464 | { |
2465 | /* First pc of next line */ |
2466 | pc = sal.end; |
2467 | /* Recalculate the line number (might not be N+1). */ |
2468 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym)(sym)->ginfo.bfd_section, 0); |
2469 | } |
2470 | sal.pc = pc; |
2471 | |
2472 | return sal; |
2473 | } |
2474 | |
2475 | /* If P is of the form "operator[ \t]+..." where `...' is |
2476 | some legitimate operator text, return a pointer to the |
2477 | beginning of the substring of the operator text. |
2478 | Otherwise, return "". */ |
2479 | char * |
2480 | operator_chars (char *p, char **end) |
2481 | { |
2482 | *end = ""; |
2483 | if (strncmp (p, "operator", 8)) |
2484 | return *end; |
2485 | p += 8; |
2486 | |
2487 | /* Don't get faked out by `operator' being part of a longer |
2488 | identifier. */ |
2489 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
2490 | return *end; |
2491 | |
2492 | /* Allow some whitespace between `operator' and the operator symbol. */ |
2493 | while (*p == ' ' || *p == '\t') |
2494 | p++; |
2495 | |
2496 | /* Recognize 'operator TYPENAME'. */ |
2497 | |
2498 | if (isalpha (*p) || *p == '_' || *p == '$') |
2499 | { |
2500 | char *q = p + 1; |
2501 | while (isalnum (*q) || *q == '_' || *q == '$') |
2502 | q++; |
2503 | *end = q; |
2504 | return p; |
2505 | } |
2506 | |
2507 | while (*p) |
2508 | switch (*p) |
2509 | { |
2510 | case '\\': /* regexp quoting */ |
2511 | if (p[1] == '*') |
2512 | { |
2513 | if (p[2] == '=') /* 'operator\*=' */ |
2514 | *end = p + 3; |
2515 | else /* 'operator\*' */ |
2516 | *end = p + 2; |
2517 | return p; |
2518 | } |
2519 | else if (p[1] == '[') |
2520 | { |
2521 | if (p[2] == ']') |
2522 | error ("mismatched quoting on brackets, try 'operator\\[\\]'"); |
2523 | else if (p[2] == '\\' && p[3] == ']') |
2524 | { |
2525 | *end = p + 4; /* 'operator\[\]' */ |
2526 | return p; |
2527 | } |
2528 | else |
2529 | error ("nothing is allowed between '[' and ']'"); |
2530 | } |
2531 | else |
2532 | { |
2533 | /* Gratuitous qoute: skip it and move on. */ |
2534 | p++; |
2535 | continue; |
2536 | } |
2537 | break; |
2538 | case '!': |
2539 | case '=': |
2540 | case '*': |
2541 | case '/': |
2542 | case '%': |
2543 | case '^': |
2544 | if (p[1] == '=') |
2545 | *end = p + 2; |
2546 | else |
2547 | *end = p + 1; |
2548 | return p; |
2549 | case '<': |
2550 | case '>': |
2551 | case '+': |
2552 | case '-': |
2553 | case '&': |
2554 | case '|': |
2555 | if (p[0] == '-' && p[1] == '>') |
2556 | { |
2557 | /* Struct pointer member operator 'operator->'. */ |
2558 | if (p[2] == '*') |
2559 | { |
2560 | *end = p + 3; /* 'operator->*' */ |
2561 | return p; |
2562 | } |
2563 | else if (p[2] == '\\') |
2564 | { |
2565 | *end = p + 4; /* Hopefully 'operator->\*' */ |
2566 | return p; |
2567 | } |
2568 | else |
2569 | { |
2570 | *end = p + 2; /* 'operator->' */ |
2571 | return p; |
2572 | } |
2573 | } |
2574 | if (p[1] == '=' || p[1] == p[0]) |
2575 | *end = p + 2; |
2576 | else |
2577 | *end = p + 1; |
2578 | return p; |
2579 | case '~': |
2580 | case ',': |
2581 | *end = p + 1; |
2582 | return p; |
2583 | case '(': |
2584 | if (p[1] != ')') |
2585 | error ("`operator ()' must be specified without whitespace in `()'"); |
2586 | *end = p + 2; |
2587 | return p; |
2588 | case '?': |
2589 | if (p[1] != ':') |
2590 | error ("`operator ?:' must be specified without whitespace in `?:'"); |
2591 | *end = p + 2; |
2592 | return p; |
2593 | case '[': |
2594 | if (p[1] != ']') |
2595 | error ("`operator []' must be specified without whitespace in `[]'"); |
2596 | *end = p + 2; |
2597 | return p; |
2598 | default: |
2599 | error ("`operator %s' not supported", p); |
2600 | break; |
2601 | } |
2602 | |
2603 | *end = ""; |
2604 | return *end; |
2605 | } |
2606 | |
2607 | |
2608 | /* If FILE is not already in the table of files, return zero; |
2609 | otherwise return non-zero. Optionally add FILE to the table if ADD |
2610 | is non-zero. If *FIRST is non-zero, forget the old table |
2611 | contents. */ |
2612 | static int |
2613 | filename_seen (const char *file, int add, int *first) |
2614 | { |
2615 | /* Table of files seen so far. */ |
2616 | static const char **tab = NULL((void*)0); |
2617 | /* Allocated size of tab in elements. |
2618 | Start with one 256-byte block (when using GNU malloc.c). |
2619 | 24 is the malloc overhead when range checking is in effect. */ |
2620 | static int tab_alloc_size = (256 - 24) / sizeof (char *); |
2621 | /* Current size of tab in elements. */ |
2622 | static int tab_cur_size; |
2623 | const char **p; |
2624 | |
2625 | if (*first) |
2626 | { |
2627 | if (tab == NULL((void*)0)) |
2628 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
2629 | tab_cur_size = 0; |
2630 | } |
2631 | |
2632 | /* Is FILE in tab? */ |
2633 | for (p = tab; p < tab + tab_cur_size; p++) |
2634 | if (strcmp (*p, file) == 0) |
2635 | return 1; |
2636 | |
2637 | /* No; maybe add it to tab. */ |
2638 | if (add) |
2639 | { |
2640 | if (tab_cur_size == tab_alloc_size) |
2641 | { |
2642 | tab_alloc_size *= 2; |
2643 | tab = (const char **) xrealloc ((char *) tab, |
2644 | tab_alloc_size * sizeof (*tab)); |
2645 | } |
2646 | tab[tab_cur_size++] = file; |
2647 | } |
2648 | |
2649 | return 0; |
2650 | } |
2651 | |
2652 | /* Slave routine for sources_info. Force line breaks at ,'s. |
2653 | NAME is the name to print and *FIRST is nonzero if this is the first |
2654 | name printed. Set *FIRST to zero. */ |
2655 | static void |
2656 | output_source_filename (const char *name, int *first) |
2657 | { |
2658 | /* Since a single source file can result in several partial symbol |
2659 | tables, we need to avoid printing it more than once. Note: if |
2660 | some of the psymtabs are read in and some are not, it gets |
2661 | printed both under "Source files for which symbols have been |
2662 | read" and "Source files for which symbols will be read in on |
2663 | demand". I consider this a reasonable way to deal with the |
2664 | situation. I'm not sure whether this can also happen for |
2665 | symtabs; it doesn't hurt to check. */ |
2666 | |
2667 | /* Was NAME already seen? */ |
2668 | if (filename_seen (name, 1, first)) |
2669 | { |
2670 | /* Yes; don't print it again. */ |
2671 | return; |
2672 | } |
2673 | /* No; print it and reset *FIRST. */ |
2674 | if (*first) |
2675 | { |
2676 | *first = 0; |
2677 | } |
2678 | else |
2679 | { |
2680 | printf_filtered (", "); |
2681 | } |
2682 | |
2683 | wrap_here (""); |
2684 | fputs_filtered (name, gdb_stdout); |
2685 | } |
2686 | |
2687 | static void |
2688 | sources_info (char *ignore, int from_tty) |
2689 | { |
2690 | struct symtab *s; |
2691 | struct partial_symtab *ps; |
2692 | struct objfile *objfile; |
2693 | int first; |
2694 | |
2695 | if (!have_full_symbols () && !have_partial_symbols ()) |
2696 | { |
2697 | error ("No symbol table is loaded. Use the \"file\" command."); |
2698 | } |
2699 | |
2700 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2701 | |
2702 | first = 1; |
2703 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
2704 | { |
2705 | const char *fullname = symtab_to_fullname (s); |
2706 | output_source_filename (fullname ? fullname : s->filename, &first); |
2707 | } |
2708 | printf_filtered ("\n\n"); |
2709 | |
2710 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2711 | |
2712 | first = 1; |
2713 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
2714 | { |
2715 | if (!ps->readin) |
2716 | { |
2717 | const char *fullname = psymtab_to_fullname (ps); |
2718 | output_source_filename (fullname ? fullname : ps->filename, &first); |
2719 | } |
2720 | } |
2721 | printf_filtered ("\n"); |
2722 | } |
2723 | |
2724 | static int |
2725 | file_matches (char *file, char *files[], int nfiles) |
2726 | { |
2727 | int i; |
2728 | |
2729 | if (file != NULL((void*)0) && nfiles != 0) |
2730 | { |
2731 | for (i = 0; i < nfiles; i++) |
2732 | { |
2733 | if (strcmp (files[i], lbasename (file)) == 0) |
2734 | return 1; |
2735 | } |
2736 | } |
2737 | else if (nfiles == 0) |
2738 | return 1; |
2739 | return 0; |
2740 | } |
2741 | |
2742 | /* Free any memory associated with a search. */ |
2743 | void |
2744 | free_search_symbols (struct symbol_search *symbols) |
2745 | { |
2746 | struct symbol_search *p; |
2747 | struct symbol_search *next; |
2748 | |
2749 | for (p = symbols; p != NULL((void*)0); p = next) |
2750 | { |
2751 | next = p->next; |
2752 | xfree (p); |
2753 | } |
2754 | } |
2755 | |
2756 | static void |
2757 | do_free_search_symbols_cleanup (void *symbols) |
2758 | { |
2759 | free_search_symbols (symbols); |
2760 | } |
2761 | |
2762 | struct cleanup * |
2763 | make_cleanup_free_search_symbols (struct symbol_search *symbols) |
2764 | { |
2765 | return make_cleanup (do_free_search_symbols_cleanup, symbols); |
2766 | } |
2767 | |
2768 | /* Helper function for sort_search_symbols and qsort. Can only |
2769 | sort symbols, not minimal symbols. */ |
2770 | static int |
2771 | compare_search_syms (const void *sa, const void *sb) |
2772 | { |
2773 | struct symbol_search **sym_a = (struct symbol_search **) sa; |
2774 | struct symbol_search **sym_b = (struct symbol_search **) sb; |
2775 | |
2776 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol)(demangle ? (symbol_natural_name (&((*sym_a)->symbol)-> ginfo)) : ((*sym_a)->symbol)->ginfo.name), |
2777 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)(demangle ? (symbol_natural_name (&((*sym_b)->symbol)-> ginfo)) : ((*sym_b)->symbol)->ginfo.name)); |
2778 | } |
2779 | |
2780 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave |
2781 | prevtail where it is, but update its next pointer to point to |
2782 | the first of the sorted symbols. */ |
2783 | static struct symbol_search * |
2784 | sort_search_symbols (struct symbol_search *prevtail, int nfound) |
2785 | { |
2786 | struct symbol_search **symbols, *symp, *old_next; |
2787 | int i; |
2788 | |
2789 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) |
2790 | * nfound); |
2791 | symp = prevtail->next; |
2792 | for (i = 0; i < nfound; i++) |
2793 | { |
2794 | symbols[i] = symp; |
2795 | symp = symp->next; |
2796 | } |
2797 | /* Generally NULL. */ |
2798 | old_next = symp; |
2799 | |
2800 | qsort (symbols, nfound, sizeof (struct symbol_search *), |
2801 | compare_search_syms); |
2802 | |
2803 | symp = prevtail; |
2804 | for (i = 0; i < nfound; i++) |
2805 | { |
2806 | symp->next = symbols[i]; |
2807 | symp = symp->next; |
2808 | } |
2809 | symp->next = old_next; |
2810 | |
2811 | xfree (symbols); |
2812 | return symp; |
2813 | } |
2814 | |
2815 | /* Search the symbol table for matches to the regular expression REGEXP, |
2816 | returning the results in *MATCHES. |
2817 | |
2818 | Only symbols of KIND are searched: |
2819 | FUNCTIONS_DOMAIN - search all functions |
2820 | TYPES_DOMAIN - search all type names |
2821 | METHODS_DOMAIN - search all methods NOT IMPLEMENTED |
2822 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
2823 | and constants (enums) |
2824 | |
2825 | free_search_symbols should be called when *MATCHES is no longer needed. |
2826 | |
2827 | The results are sorted locally; each symtab's global and static blocks are |
2828 | separately alphabetized. |
2829 | */ |
2830 | void |
2831 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
2832 | struct symbol_search **matches) |
2833 | { |
2834 | struct symtab *s; |
2835 | struct partial_symtab *ps; |
2836 | struct blockvector *bv; |
2837 | struct blockvector *prev_bv = 0; |
2838 | struct block *b; |
2839 | int i = 0; |
2840 | struct dict_iterator iter; |
2841 | struct symbol *sym; |
2842 | struct partial_symbol **psym; |
2843 | struct objfile *objfile; |
2844 | struct minimal_symbol *msymbol; |
2845 | char *val; |
2846 | int found_misc = 0; |
2847 | static enum minimal_symbol_type types[] |
2848 | = |
2849 | {mst_data, mst_text, mst_abs, mst_unknown}; |
2850 | static enum minimal_symbol_type types2[] |
2851 | = |
2852 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; |
2853 | static enum minimal_symbol_type types3[] |
2854 | = |
2855 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; |
2856 | static enum minimal_symbol_type types4[] |
2857 | = |
2858 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; |
2859 | enum minimal_symbol_type ourtype; |
2860 | enum minimal_symbol_type ourtype2; |
2861 | enum minimal_symbol_type ourtype3; |
2862 | enum minimal_symbol_type ourtype4; |
2863 | struct symbol_search *sr; |
2864 | struct symbol_search *psr; |
2865 | struct symbol_search *tail; |
2866 | struct cleanup *old_chain = NULL((void*)0); |
2867 | |
2868 | if (kind < VARIABLES_DOMAIN) |
2869 | error ("must search on specific domain"); |
2870 | |
2871 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
2872 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; |
2873 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; |
2874 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; |
2875 | |
2876 | sr = *matches = NULL((void*)0); |
2877 | tail = NULL((void*)0); |
2878 | |
2879 | if (regexp != NULL((void*)0)) |
2880 | { |
2881 | /* Make sure spacing is right for C++ operators. |
2882 | This is just a courtesy to make the matching less sensitive |
2883 | to how many spaces the user leaves between 'operator' |
2884 | and <TYPENAME> or <OPERATOR>. */ |
2885 | char *opend; |
2886 | char *opname = operator_chars (regexp, &opend); |
2887 | if (*opname) |
2888 | { |
2889 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ |
2890 | if (isalpha (*opname) || *opname == '_' || *opname == '$') |
2891 | { |
2892 | /* There should 1 space between 'operator' and 'TYPENAME'. */ |
2893 | if (opname[-1] != ' ' || opname[-2] == ' ') |
2894 | fix = 1; |
2895 | } |
2896 | else |
2897 | { |
2898 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
2899 | if (opname[-1] == ' ') |
2900 | fix = 0; |
2901 | } |
2902 | /* If wrong number of spaces, fix it. */ |
2903 | if (fix >= 0) |
2904 | { |
2905 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1)__builtin_alloca(8 + fix + strlen (opname) + 1); |
2906 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
2907 | regexp = tmp; |
2908 | } |
2909 | } |
2910 | |
2911 | if (0 != (val = re_compxre_comp (regexp))) |
2912 | error ("Invalid regexp (%s): %s", val, regexp); |
2913 | } |
2914 | |
2915 | /* Search through the partial symtabs *first* for all symbols |
2916 | matching the regexp. That way we don't have to reproduce all of |
2917 | the machinery below. */ |
2918 | |
2919 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
2920 | { |
2921 | struct partial_symbol **bound, **gbound, **sbound; |
2922 | int keep_going = 1; |
2923 | |
2924 | if (ps->readin) |
2925 | continue; |
2926 | |
2927 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; |
2928 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; |
2929 | bound = gbound; |
2930 | |
2931 | /* Go through all of the symbols stored in a partial |
2932 | symtab in one loop. */ |
2933 | psym = objfile->global_psymbols.list + ps->globals_offset; |
2934 | while (keep_going) |
2935 | { |
2936 | if (psym >= bound) |
2937 | { |
2938 | if (bound == gbound && ps->n_static_syms != 0) |
2939 | { |
2940 | psym = objfile->static_psymbols.list + ps->statics_offset; |
2941 | bound = sbound; |
2942 | } |
2943 | else |
2944 | keep_going = 0; |
2945 | continue; |
2946 | } |
2947 | else |
2948 | { |
2949 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
2950 | |
2951 | /* If it would match (logic taken from loop below) |
2952 | load the file and go on to the next one */ |
2953 | if (file_matches (ps->filename, files, nfiles) |
2954 | && ((regexp == NULL((void*)0) |
2955 | || re_execxre_exec (SYMBOL_NATURAL_NAME (*psym)(symbol_natural_name (&(*psym)->ginfo))) != 0) |
2956 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym)(*psym)->aclass != LOC_TYPEDEF |
2957 | && SYMBOL_CLASS (*psym)(*psym)->aclass != LOC_BLOCK) |
2958 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym)(*psym)->aclass == LOC_BLOCK) |
2959 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym)(*psym)->aclass == LOC_TYPEDEF) |
2960 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym)(*psym)->aclass == LOC_BLOCK)))) |
2961 | { |
2962 | PSYMTAB_TO_SYMTAB (ps)((ps) -> symtab != ((void*)0) ? (ps) -> symtab : psymtab_to_symtab (ps)); |
2963 | keep_going = 0; |
2964 | } |
2965 | } |
2966 | psym++; |
2967 | } |
2968 | } |
2969 | |
2970 | /* Here, we search through the minimal symbol tables for functions |
2971 | and variables that match, and force their symbols to be read. |
2972 | This is in particular necessary for demangled variable names, |
2973 | which are no longer put into the partial symbol tables. |
2974 | The symbol will then be found during the scan of symtabs below. |
2975 | |
2976 | For functions, find_pc_symtab should succeed if we have debug info |
2977 | for the function, for variables we have to call lookup_symbol |
2978 | to determine if the variable has debug info. |
2979 | If the lookup fails, set found_misc so that we will rescan to print |
2980 | any matching symbols without debug info. |
2981 | */ |
2982 | |
2983 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
2984 | { |
2985 | ALL_MSYMBOLS (objfile, msymbol)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((msymbol) = (objfile) -> msymbols ; (msymbol)->ginfo.name != ((void*)0); (msymbol)++) |
2986 | { |
2987 | if (MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype || |
2988 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype2 || |
2989 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype3 || |
2990 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype4) |
2991 | { |
2992 | if (regexp == NULL((void*)0) |
2993 | || re_execxre_exec (SYMBOL_NATURAL_NAME (msymbol)(symbol_natural_name (&(msymbol)->ginfo))) != 0) |
2994 | { |
2995 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address)) |
2996 | { |
2997 | /* FIXME: carlton/2003-02-04: Given that the |
2998 | semantics of lookup_symbol keeps on changing |
2999 | slightly, it would be a nice idea if we had a |
3000 | function lookup_symbol_minsym that found the |
3001 | symbol associated to a given minimal symbol (if |
3002 | any). */ |
3003 | if (kind == FUNCTIONS_DOMAIN |
3004 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol)(msymbol)->ginfo.name, |
3005 | (struct block *) NULL((void*)0), |
3006 | VAR_DOMAIN, |
3007 | 0, (struct symtab **) NULL((void*)0)) == NULL((void*)0)) |
3008 | found_misc = 1; |
3009 | } |
3010 | } |
3011 | } |
3012 | } |
3013 | } |
3014 | |
3015 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
3016 | { |
3017 | bv = BLOCKVECTOR (s)(s)->blockvector; |
3018 | /* Often many files share a blockvector. |
3019 | Scan each blockvector only once so that |
3020 | we don't get every symbol many times. |
3021 | It happens that the first symtab in the list |
3022 | for any given blockvector is the main file. */ |
3023 | if (bv != prev_bv) |
3024 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3025 | { |
3026 | struct symbol_search *prevtail = tail; |
3027 | int nfound = 0; |
3028 | b = BLOCKVECTOR_BLOCK (bv, i)(bv)->block[i]; |
3029 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3030 | { |
3031 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3032 | if (file_matches (s->filename, files, nfiles) |
3033 | && ((regexp == NULL((void*)0) |
3034 | || re_execxre_exec (SYMBOL_NATURAL_NAME (sym)(symbol_natural_name (&(sym)->ginfo))) != 0) |
3035 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym)(sym)->aclass != LOC_TYPEDEF |
3036 | && SYMBOL_CLASS (sym)(sym)->aclass != LOC_BLOCK |
3037 | && SYMBOL_CLASS (sym)(sym)->aclass != LOC_CONST) |
3038 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym)(sym)->aclass == LOC_BLOCK) |
3039 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym)(sym)->aclass == LOC_TYPEDEF) |
3040 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym)(sym)->aclass == LOC_BLOCK)))) |
3041 | { |
3042 | /* match */ |
3043 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); |
3044 | psr->block = i; |
3045 | psr->symtab = s; |
3046 | psr->symbol = sym; |
3047 | psr->msymbol = NULL((void*)0); |
3048 | psr->next = NULL((void*)0); |
3049 | if (tail == NULL((void*)0)) |
3050 | sr = psr; |
3051 | else |
3052 | tail->next = psr; |
3053 | tail = psr; |
3054 | nfound ++; |
3055 | } |
3056 | } |
3057 | if (nfound > 0) |
3058 | { |
3059 | if (prevtail == NULL((void*)0)) |
3060 | { |
3061 | struct symbol_search dummy; |
3062 | |
3063 | dummy.next = sr; |
3064 | tail = sort_search_symbols (&dummy, nfound); |
3065 | sr = dummy.next; |
3066 | |
3067 | old_chain = make_cleanup_free_search_symbols (sr); |
3068 | } |
3069 | else |
3070 | tail = sort_search_symbols (prevtail, nfound); |
3071 | } |
3072 | } |
3073 | prev_bv = bv; |
3074 | } |
3075 | |
3076 | /* If there are no eyes, avoid all contact. I mean, if there are |
3077 | no debug symbols, then print directly from the msymbol_vector. */ |
3078 | |
3079 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
3080 | { |
3081 | ALL_MSYMBOLS (objfile, msymbol)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((msymbol) = (objfile) -> msymbols ; (msymbol)->ginfo.name != ((void*)0); (msymbol)++) |
3082 | { |
3083 | if (MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype || |
3084 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype2 || |
3085 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype3 || |
3086 | MSYMBOL_TYPE (msymbol)(msymbol)->type == ourtype4) |
3087 | { |
3088 | if (regexp == NULL((void*)0) |
3089 | || re_execxre_exec (SYMBOL_NATURAL_NAME (msymbol)(symbol_natural_name (&(msymbol)->ginfo))) != 0) |
3090 | { |
3091 | /* Functions: Look up by address. */ |
3092 | if (kind != FUNCTIONS_DOMAIN || |
3093 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address))) |
3094 | { |
3095 | /* Variables/Absolutes: Look up by name */ |
3096 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol)(msymbol)->ginfo.name, |
3097 | (struct block *) NULL((void*)0), VAR_DOMAIN, |
3098 | 0, (struct symtab **) NULL((void*)0)) == NULL((void*)0)) |
3099 | { |
3100 | /* match */ |
3101 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); |
3102 | psr->block = i; |
3103 | psr->msymbol = msymbol; |
3104 | psr->symtab = NULL((void*)0); |
3105 | psr->symbol = NULL((void*)0); |
3106 | psr->next = NULL((void*)0); |
3107 | if (tail == NULL((void*)0)) |
3108 | { |
3109 | sr = psr; |
3110 | old_chain = make_cleanup_free_search_symbols (sr); |
3111 | } |
3112 | else |
3113 | tail->next = psr; |
3114 | tail = psr; |
3115 | } |
3116 | } |
3117 | } |
3118 | } |
3119 | } |
3120 | } |
3121 | |
3122 | *matches = sr; |
3123 | if (sr != NULL((void*)0)) |
3124 | discard_cleanups (old_chain); |
3125 | } |
3126 | |
3127 | /* Helper function for symtab_symbol_info, this function uses |
3128 | the data returned from search_symbols() to print information |
3129 | regarding the match to gdb_stdout. |
3130 | */ |
3131 | static void |
3132 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
3133 | int block, char *last) |
3134 | { |
3135 | if (last == NULL((void*)0) || strcmp (last, s->filename) != 0) |
3136 | { |
3137 | fputs_filtered ("\nFile ", gdb_stdout); |
3138 | fputs_filtered (s->filename, gdb_stdout); |
3139 | fputs_filtered (":\n", gdb_stdout); |
3140 | } |
3141 | |
3142 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
3143 | printf_filtered ("static "); |
3144 | |
3145 | /* Typedef that is not a C++ class */ |
3146 | if (kind == TYPES_DOMAIN |
3147 | && SYMBOL_DOMAIN (sym)(sym)->domain != STRUCT_DOMAIN) |
3148 | typedef_print (SYMBOL_TYPE (sym)(sym)->type, sym, gdb_stdout); |
3149 | /* variable, func, or typedef-that-is-c++-class */ |
3150 | else if (kind < TYPES_DOMAIN || |
3151 | (kind == TYPES_DOMAIN && |
3152 | SYMBOL_DOMAIN (sym)(sym)->domain == STRUCT_DOMAIN)) |
3153 | { |
3154 | type_print (SYMBOL_TYPE (sym)(sym)->type, |
3155 | (SYMBOL_CLASS (sym)(sym)->aclass == LOC_TYPEDEF |
3156 | ? "" : SYMBOL_PRINT_NAME (sym)(demangle ? (symbol_natural_name (&(sym)->ginfo)) : (sym )->ginfo.name)), |
3157 | gdb_stdout, 0); |
3158 | |
3159 | printf_filtered (";\n"); |
3160 | } |
3161 | } |
3162 | |
3163 | /* This help function for symtab_symbol_info() prints information |
3164 | for non-debugging symbols to gdb_stdout. |
3165 | */ |
3166 | static void |
3167 | print_msymbol_info (struct minimal_symbol *msymbol) |
3168 | { |
3169 | char *tmp; |
3170 | |
3171 | if (TARGET_ADDR_BIT(gdbarch_addr_bit (current_gdbarch)) <= 32) |
3172 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address |
3173 | & (CORE_ADDR) 0xffffffff, |
3174 | 8); |
3175 | else |
3176 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address, |
3177 | 16); |
3178 | printf_filtered ("%s %s\n", |
3179 | tmp, SYMBOL_PRINT_NAME (msymbol)(demangle ? (symbol_natural_name (&(msymbol)->ginfo)) : (msymbol)->ginfo.name)); |
3180 | } |
3181 | |
3182 | /* This is the guts of the commands "info functions", "info types", and |
3183 | "info variables". It calls search_symbols to find all matches and then |
3184 | print_[m]symbol_info to print out some useful information about the |
3185 | matches. |
3186 | */ |
3187 | static void |
3188 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
3189 | { |
3190 | static char *classnames[] |
3191 | = |
3192 | {"variable", "function", "type", "method"}; |
3193 | struct symbol_search *symbols; |
3194 | struct symbol_search *p; |
3195 | struct cleanup *old_chain; |
3196 | char *last_filename = NULL((void*)0); |
3197 | int first = 1; |
3198 | |
3199 | /* must make sure that if we're interrupted, symbols gets freed */ |
3200 | search_symbols (regexp, kind, 0, (char **) NULL((void*)0), &symbols); |
3201 | old_chain = make_cleanup_free_search_symbols (symbols); |
3202 | |
3203 | printf_filtered (regexp |
3204 | ? "All %ss matching regular expression \"%s\":\n" |
3205 | : "All defined %ss:\n", |
3206 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
3207 | |
3208 | for (p = symbols; p != NULL((void*)0); p = p->next) |
3209 | { |
3210 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3211 | |
3212 | if (p->msymbol != NULL((void*)0)) |
3213 | { |
3214 | if (first) |
3215 | { |
3216 | printf_filtered ("\nNon-debugging symbols:\n"); |
3217 | first = 0; |
3218 | } |
3219 | print_msymbol_info (p->msymbol); |
3220 | } |
3221 | else |
3222 | { |
3223 | print_symbol_info (kind, |
3224 | p->symtab, |
3225 | p->symbol, |
3226 | p->block, |
3227 | last_filename); |
3228 | last_filename = p->symtab->filename; |
3229 | } |
3230 | } |
3231 | |
3232 | do_cleanups (old_chain); |
3233 | } |
3234 | |
3235 | static void |
3236 | variables_info (char *regexp, int from_tty) |
3237 | { |
3238 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
3239 | } |
3240 | |
3241 | static void |
3242 | functions_info (char *regexp, int from_tty) |
3243 | { |
3244 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
3245 | } |
3246 | |
3247 | |
3248 | static void |
3249 | types_info (char *regexp, int from_tty) |
3250 | { |
3251 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
3252 | } |
3253 | |
3254 | /* Breakpoint all functions matching regular expression. */ |
3255 | |
3256 | void |
3257 | rbreak_command_wrapper (char *regexp, int from_tty) |
3258 | { |
3259 | rbreak_command (regexp, from_tty); |
3260 | } |
3261 | |
3262 | static void |
3263 | rbreak_command (char *regexp, int from_tty) |
3264 | { |
3265 | struct symbol_search *ss; |
3266 | struct symbol_search *p; |
3267 | struct cleanup *old_chain; |
3268 | |
3269 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL((void*)0), &ss); |
3270 | old_chain = make_cleanup_free_search_symbols (ss); |
3271 | |
3272 | for (p = ss; p != NULL((void*)0); p = p->next) |
3273 | { |
3274 | if (p->msymbol == NULL((void*)0)) |
3275 | { |
3276 | char *string = alloca (strlen (p->symtab->filename)__builtin_alloca(strlen (p->symtab->filename) + strlen ( (p->symbol)->ginfo.name) + 4) |
3277 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol))__builtin_alloca(strlen (p->symtab->filename) + strlen ( (p->symbol)->ginfo.name) + 4) |
3278 | + 4)__builtin_alloca(strlen (p->symtab->filename) + strlen ( (p->symbol)->ginfo.name) + 4); |
3279 | strcpy (string, p->symtab->filename); |
3280 | strcat (string, ":'"); |
3281 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)(p->symbol)->ginfo.name); |
3282 | strcat (string, "'"); |
3283 | break_command (string, from_tty); |
3284 | print_symbol_info (FUNCTIONS_DOMAIN, |
3285 | p->symtab, |
3286 | p->symbol, |
3287 | p->block, |
3288 | p->symtab->filename); |
3289 | } |
3290 | else |
3291 | { |
3292 | break_command (SYMBOL_LINKAGE_NAME (p->msymbol)(p->msymbol)->ginfo.name, from_tty); |
3293 | printf_filtered ("<function, no debug info> %s;\n", |
3294 | SYMBOL_PRINT_NAME (p->msymbol)(demangle ? (symbol_natural_name (&(p->msymbol)->ginfo )) : (p->msymbol)->ginfo.name)); |
3295 | } |
3296 | } |
3297 | |
3298 | do_cleanups (old_chain); |
3299 | } |
3300 | |
3301 | |
3302 | /* Helper routine for make_symbol_completion_list. */ |
3303 | |
3304 | static int return_val_size; |
3305 | static int return_val_index; |
3306 | static char **return_val; |
3307 | |
3308 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word)completion_list_add_name ((symbol_natural_name (&(symbol) ->ginfo)), (sym_text), (len), (text), (word)) \ |
3309 | completion_list_add_name \ |
3310 | (SYMBOL_NATURAL_NAME (symbol)(symbol_natural_name (&(symbol)->ginfo)), (sym_text), (len), (text), (word)) |
3311 | |
3312 | /* Test to see if the symbol specified by SYMNAME (which is already |
3313 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3314 | characters. If so, add it to the current completion list. */ |
3315 | |
3316 | static void |
3317 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3318 | char *text, char *word) |
3319 | { |
3320 | int newsize; |
3321 | int i; |
3322 | |
3323 | /* clip symbols that cannot match */ |
3324 | |
3325 | if (strncmp (symname, sym_text, sym_text_len) != 0) |
3326 | { |
3327 | return; |
3328 | } |
3329 | |
3330 | /* We have a match for a completion, so add SYMNAME to the current list |
3331 | of matches. Note that the name is moved to freshly malloc'd space. */ |
3332 | |
3333 | { |
3334 | char *new; |
3335 | if (word == sym_text) |
3336 | { |
3337 | new = xmalloc (strlen (symname) + 5); |
3338 | strcpy (new, symname); |
3339 | } |
3340 | else if (word > sym_text) |
3341 | { |
3342 | /* Return some portion of symname. */ |
3343 | new = xmalloc (strlen (symname) + 5); |
3344 | strcpy (new, symname + (word - sym_text)); |
3345 | } |
3346 | else |
3347 | { |
3348 | /* Return some of SYM_TEXT plus symname. */ |
3349 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); |
3350 | strncpy (new, word, sym_text - word); |
3351 | new[sym_text - word] = '\0'; |
3352 | strcat (new, symname); |
3353 | } |
3354 | |
3355 | if (return_val_index + 3 > return_val_size) |
3356 | { |
3357 | newsize = (return_val_size *= 2) * sizeof (char *); |
3358 | return_val = (char **) xrealloc ((char *) return_val, newsize); |
3359 | } |
3360 | return_val[return_val_index++] = new; |
3361 | return_val[return_val_index] = NULL((void*)0); |
3362 | } |
3363 | } |
3364 | |
3365 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3366 | again and feed all the selectors into the mill. */ |
3367 | |
3368 | static void |
3369 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, |
3370 | int sym_text_len, char *text, char *word) |
3371 | { |
3372 | static char *tmp = NULL((void*)0); |
3373 | static unsigned int tmplen = 0; |
3374 | |
3375 | char *method, *category, *selector; |
3376 | char *tmp2 = NULL((void*)0); |
3377 | |
3378 | method = SYMBOL_NATURAL_NAME (msymbol)(symbol_natural_name (&(msymbol)->ginfo)); |
3379 | |
3380 | /* Is it a method? */ |
3381 | if ((method[0] != '-') && (method[0] != '+')) |
3382 | return; |
3383 | |
3384 | if (sym_text[0] == '[') |
3385 | /* Complete on shortened method method. */ |
3386 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); |
3387 | |
3388 | while ((strlen (method) + 1) >= tmplen) |
3389 | { |
3390 | if (tmplen == 0) |
3391 | tmplen = 1024; |
3392 | else |
3393 | tmplen *= 2; |
3394 | tmp = xrealloc (tmp, tmplen); |
3395 | } |
3396 | selector = strchr (method, ' '); |
3397 | if (selector != NULL((void*)0)) |
3398 | selector++; |
3399 | |
3400 | category = strchr (method, '('); |
3401 | |
3402 | if ((category != NULL((void*)0)) && (selector != NULL((void*)0))) |
3403 | { |
3404 | memcpy (tmp, method, (category - method)); |
3405 | tmp[category - method] = ' '; |
3406 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); |
3407 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3408 | if (sym_text[0] == '[') |
3409 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); |
3410 | } |
3411 | |
3412 | if (selector != NULL((void*)0)) |
3413 | { |
3414 | /* Complete on selector only. */ |
3415 | strcpy (tmp, selector); |
3416 | tmp2 = strchr (tmp, ']'); |
3417 | if (tmp2 != NULL((void*)0)) |
3418 | *tmp2 = '\0'; |
3419 | |
3420 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3421 | } |
3422 | } |
3423 | |
3424 | /* Break the non-quoted text based on the characters which are in |
3425 | symbols. FIXME: This should probably be language-specific. */ |
3426 | |
3427 | static char * |
3428 | language_search_unquoted_string (char *text, char *p) |
3429 | { |
3430 | for (; p > text; --p) |
3431 | { |
3432 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') |
3433 | continue; |
3434 | else |
3435 | { |
3436 | if ((current_language->la_language == language_objc)) |
3437 | { |
3438 | if (p[-1] == ':') /* might be part of a method name */ |
3439 | continue; |
3440 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) |
3441 | p -= 2; /* beginning of a method name */ |
3442 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
3443 | { /* might be part of a method name */ |
3444 | char *t = p; |
3445 | |
3446 | /* Seeing a ' ' or a '(' is not conclusive evidence |
3447 | that we are in the middle of a method name. However, |
3448 | finding "-[" or "+[" should be pretty un-ambiguous. |
3449 | Unfortunately we have to find it now to decide. */ |
3450 | |
3451 | while (t > text) |
3452 | if (isalnum (t[-1]) || t[-1] == '_' || |
3453 | t[-1] == ' ' || t[-1] == ':' || |
3454 | t[-1] == '(' || t[-1] == ')') |
3455 | --t; |
3456 | else |
3457 | break; |
3458 | |
3459 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) |
3460 | p = t - 2; /* method name detected */ |
3461 | /* else we leave with p unchanged */ |
3462 | } |
3463 | } |
3464 | break; |
3465 | } |
3466 | } |
3467 | return p; |
3468 | } |
3469 | |
3470 | |
3471 | /* Return a NULL terminated array of all symbols (regardless of class) |
3472 | which begin by matching TEXT. If the answer is no symbols, then |
3473 | the return value is an array which contains only a NULL pointer. |
3474 | |
3475 | Problem: All of the symbols have to be copied because readline frees them. |
3476 | I'm not going to worry about this; hopefully there won't be that many. */ |
3477 | |
3478 | char ** |
3479 | make_symbol_completion_list (char *text, char *word) |
3480 | { |
3481 | struct symbol *sym; |
3482 | struct symtab *s; |
3483 | struct partial_symtab *ps; |
3484 | struct minimal_symbol *msymbol; |
3485 | struct objfile *objfile; |
3486 | struct block *b, *surrounding_static_block = 0; |
3487 | struct dict_iterator iter; |
3488 | int j; |
3489 | struct partial_symbol **psym; |
3490 | /* The symbol we are completing on. Points in same buffer as text. */ |
3491 | char *sym_text; |
3492 | /* Length of sym_text. */ |
3493 | int sym_text_len; |
3494 | |
3495 | /* Now look for the symbol we are supposed to complete on. |
3496 | FIXME: This should be language-specific. */ |
3497 | { |
3498 | char *p; |
3499 | char quote_found; |
3500 | char *quote_pos = NULL((void*)0); |
3501 | |
3502 | /* First see if this is a quoted string. */ |
3503 | quote_found = '\0'; |
3504 | for (p = text; *p != '\0'; ++p) |
3505 | { |
3506 | if (quote_found != '\0') |
3507 | { |
3508 | if (*p == quote_found) |
3509 | /* Found close quote. */ |
3510 | quote_found = '\0'; |
3511 | else if (*p == '\\' && p[1] == quote_found) |
3512 | /* A backslash followed by the quote character |
3513 | doesn't end the string. */ |
3514 | ++p; |
3515 | } |
3516 | else if (*p == '\'' || *p == '"') |
3517 | { |
3518 | quote_found = *p; |
3519 | quote_pos = p; |
3520 | } |
3521 | } |
3522 | if (quote_found == '\'') |
3523 | /* A string within single quotes can be a symbol, so complete on it. */ |
3524 | sym_text = quote_pos + 1; |
3525 | else if (quote_found == '"') |
3526 | /* A double-quoted string is never a symbol, nor does it make sense |
3527 | to complete it any other way. */ |
3528 | { |
3529 | return_val = (char **) xmalloc (sizeof (char *)); |
3530 | return_val[0] = NULL((void*)0); |
3531 | return return_val; |
3532 | } |
3533 | else |
3534 | { |
3535 | /* It is not a quoted string. Break it based on the characters |
3536 | which are in symbols. */ |
3537 | while (p > text) |
3538 | { |
3539 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') |
3540 | --p; |
3541 | else |
3542 | break; |
3543 | } |
3544 | sym_text = p; |
3545 | } |
3546 | } |
3547 | |
3548 | sym_text_len = strlen (sym_text); |
3549 | |
3550 | return_val_size = 100; |
3551 | return_val_index = 0; |
3552 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); |
3553 | return_val[0] = NULL((void*)0); |
3554 | |
3555 | /* Look through the partial symtabs for all symbols which begin |
3556 | by matching SYM_TEXT. Add each one that you find to the list. */ |
3557 | |
3558 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
3559 | { |
3560 | /* If the psymtab's been read in we'll get it when we search |
3561 | through the blockvector. */ |
3562 | if (ps->readin) |
3563 | continue; |
3564 | |
3565 | for (psym = objfile->global_psymbols.list + ps->globals_offset; |
3566 | psym < (objfile->global_psymbols.list + ps->globals_offset |
3567 | + ps->n_global_syms); |
3568 | psym++) |
3569 | { |
3570 | /* If interrupted, then quit. */ |
3571 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3572 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(*psym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3573 | } |
3574 | |
3575 | for (psym = objfile->static_psymbols.list + ps->statics_offset; |
3576 | psym < (objfile->static_psymbols.list + ps->statics_offset |
3577 | + ps->n_static_syms); |
3578 | psym++) |
3579 | { |
3580 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3581 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(*psym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3582 | } |
3583 | } |
3584 | |
3585 | /* At this point scan through the misc symbol vectors and add each |
3586 | symbol you find to the list. Eventually we want to ignore |
3587 | anything that isn't a text symbol (everything else will be |
3588 | handled by the psymtab code above). */ |
3589 | |
3590 | ALL_MSYMBOLS (objfile, msymbol)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((msymbol) = (objfile) -> msymbols ; (msymbol)->ginfo.name != ((void*)0); (msymbol)++) |
3591 | { |
3592 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3593 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(msymbol )->ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3594 | |
3595 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
3596 | } |
3597 | |
3598 | /* Search upwards from currently selected frame (so that we can |
3599 | complete on local vars. */ |
3600 | |
3601 | for (b = get_selected_block (0); b != NULL((void*)0); b = BLOCK_SUPERBLOCK (b)(b)->superblock) |
3602 | { |
3603 | if (!BLOCK_SUPERBLOCK (b)(b)->superblock) |
3604 | { |
3605 | surrounding_static_block = b; /* For elmin of dups */ |
3606 | } |
3607 | |
3608 | /* Also catch fields of types defined in this places which match our |
3609 | text string. Only complete on types visible from current context. */ |
3610 | |
3611 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3612 | { |
3613 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3614 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(sym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3615 | if (SYMBOL_CLASS (sym)(sym)->aclass == LOC_TYPEDEF) |
3616 | { |
3617 | struct type *t = SYMBOL_TYPE (sym)(sym)->type; |
3618 | enum type_code c = TYPE_CODE (t)(t)->main_type->code; |
3619 | |
3620 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) |
3621 | { |
3622 | for (j = TYPE_N_BASECLASSES (t)(t)->main_type->type_specific.cplus_stuff->n_baseclasses; j < TYPE_NFIELDS (t)(t)->main_type->nfields; j++) |
3623 | { |
3624 | if (TYPE_FIELD_NAME (t, j)(((t)->main_type->fields[j]).name)) |
3625 | { |
3626 | completion_list_add_name (TYPE_FIELD_NAME (t, j)(((t)->main_type->fields[j]).name), |
3627 | sym_text, sym_text_len, text, word); |
3628 | } |
3629 | } |
3630 | } |
3631 | } |
3632 | } |
3633 | } |
3634 | |
3635 | /* Go through the symtabs and check the externs and statics for |
3636 | symbols which match. */ |
3637 | |
3638 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
3639 | { |
3640 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3641 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)((s)->blockvector)->block[GLOBAL_BLOCK]; |
3642 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3643 | { |
3644 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(sym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3645 | } |
3646 | } |
3647 | |
3648 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
3649 | { |
3650 | QUIT{ if (quit_flag) quit (); if (deprecated_interactive_hook) deprecated_interactive_hook (); }; |
3651 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK)((s)->blockvector)->block[STATIC_BLOCK]; |
3652 | /* Don't do this block twice. */ |
3653 | if (b == surrounding_static_block) |
3654 | continue; |
3655 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3656 | { |
3657 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(sym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3658 | } |
3659 | } |
3660 | |
3661 | return (return_val); |
3662 | } |
3663 | |
3664 | /* Like make_symbol_completion_list, but returns a list of symbols |
3665 | defined in a source file FILE. */ |
3666 | |
3667 | char ** |
3668 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) |
3669 | { |
3670 | struct symbol *sym; |
3671 | struct symtab *s; |
3672 | struct block *b; |
3673 | struct dict_iterator iter; |
3674 | /* The symbol we are completing on. Points in same buffer as text. */ |
3675 | char *sym_text; |
3676 | /* Length of sym_text. */ |
3677 | int sym_text_len; |
3678 | |
3679 | /* Now look for the symbol we are supposed to complete on. |
3680 | FIXME: This should be language-specific. */ |
3681 | { |
3682 | char *p; |
3683 | char quote_found; |
3684 | char *quote_pos = NULL((void*)0); |
3685 | |
3686 | /* First see if this is a quoted string. */ |
3687 | quote_found = '\0'; |
3688 | for (p = text; *p != '\0'; ++p) |
3689 | { |
3690 | if (quote_found != '\0') |
3691 | { |
3692 | if (*p == quote_found) |
3693 | /* Found close quote. */ |
3694 | quote_found = '\0'; |
3695 | else if (*p == '\\' && p[1] == quote_found) |
3696 | /* A backslash followed by the quote character |
3697 | doesn't end the string. */ |
3698 | ++p; |
3699 | } |
3700 | else if (*p == '\'' || *p == '"') |
3701 | { |
3702 | quote_found = *p; |
3703 | quote_pos = p; |
3704 | } |
3705 | } |
3706 | if (quote_found == '\'') |
3707 | /* A string within single quotes can be a symbol, so complete on it. */ |
3708 | sym_text = quote_pos + 1; |
3709 | else if (quote_found == '"') |
3710 | /* A double-quoted string is never a symbol, nor does it make sense |
3711 | to complete it any other way. */ |
3712 | { |
3713 | return_val = (char **) xmalloc (sizeof (char *)); |
3714 | return_val[0] = NULL((void*)0); |
3715 | return return_val; |
3716 | } |
3717 | else |
3718 | { |
3719 | /* Not a quoted string. */ |
3720 | sym_text = language_search_unquoted_string (text, p); |
3721 | } |
3722 | } |
3723 | |
3724 | sym_text_len = strlen (sym_text); |
3725 | |
3726 | return_val_size = 10; |
3727 | return_val_index = 0; |
3728 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); |
3729 | return_val[0] = NULL((void*)0); |
3730 | |
3731 | /* Find the symtab for SRCFILE (this loads it if it was not yet read |
3732 | in). */ |
3733 | s = lookup_symtab (srcfile); |
3734 | if (s == NULL((void*)0)) |
3735 | { |
3736 | /* Maybe they typed the file with leading directories, while the |
3737 | symbol tables record only its basename. */ |
3738 | const char *tail = lbasename (srcfile); |
3739 | |
3740 | if (tail > srcfile) |
3741 | s = lookup_symtab (tail); |
3742 | } |
3743 | |
3744 | /* If we have no symtab for that file, return an empty list. */ |
3745 | if (s == NULL((void*)0)) |
3746 | return (return_val); |
3747 | |
3748 | /* Go through this symtab and check the externs and statics for |
3749 | symbols which match. */ |
3750 | |
3751 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)((s)->blockvector)->block[GLOBAL_BLOCK]; |
3752 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3753 | { |
3754 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(sym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3755 | } |
3756 | |
3757 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK)((s)->blockvector)->block[STATIC_BLOCK]; |
3758 | ALL_BLOCK_SYMBOLS (b, iter, sym)for ((sym) = dict_iterator_first (((b)->dict), &(iter) ); (sym); (sym) = dict_iterator_next (&(iter))) |
3759 | { |
3760 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word)completion_list_add_name ((symbol_natural_name (&(sym)-> ginfo)), (sym_text), (sym_text_len), (text), (word)); |
3761 | } |
3762 | |
3763 | return (return_val); |
3764 | } |
3765 | |
3766 | /* A helper function for make_source_files_completion_list. It adds |
3767 | another file name to a list of possible completions, growing the |
3768 | list as necessary. */ |
3769 | |
3770 | static void |
3771 | add_filename_to_list (const char *fname, char *text, char *word, |
3772 | char ***list, int *list_used, int *list_alloced) |
3773 | { |
3774 | char *new; |
3775 | size_t fnlen = strlen (fname); |
3776 | |
3777 | if (*list_used + 1 >= *list_alloced) |
3778 | { |
3779 | *list_alloced *= 2; |
3780 | *list = (char **) xrealloc ((char *) *list, |
3781 | *list_alloced * sizeof (char *)); |
3782 | } |
3783 | |
3784 | if (word == text) |
3785 | { |
3786 | /* Return exactly fname. */ |
3787 | new = xmalloc (fnlen + 5); |
3788 | strcpy (new, fname); |
3789 | } |
3790 | else if (word > text) |
3791 | { |
3792 | /* Return some portion of fname. */ |
3793 | new = xmalloc (fnlen + 5); |
3794 | strcpy (new, fname + (word - text)); |
3795 | } |
3796 | else |
3797 | { |
3798 | /* Return some of TEXT plus fname. */ |
3799 | new = xmalloc (fnlen + (text - word) + 5); |
3800 | strncpy (new, word, text - word); |
3801 | new[text - word] = '\0'; |
3802 | strcat (new, fname); |
3803 | } |
3804 | (*list)[*list_used] = new; |
3805 | (*list)[++*list_used] = NULL((void*)0); |
3806 | } |
3807 | |
3808 | static int |
3809 | not_interesting_fname (const char *fname) |
3810 | { |
3811 | static const char *illegal_aliens[] = { |
3812 | "_globals_", /* inserted by coff_symtab_read */ |
3813 | NULL((void*)0) |
3814 | }; |
3815 | int i; |
3816 | |
3817 | for (i = 0; illegal_aliens[i]; i++) |
3818 | { |
3819 | if (strcmp (fname, illegal_aliens[i]) == 0) |
3820 | return 1; |
3821 | } |
3822 | return 0; |
3823 | } |
3824 | |
3825 | /* Return a NULL terminated array of all source files whose names |
3826 | begin with matching TEXT. The file names are looked up in the |
3827 | symbol tables of this program. If the answer is no matchess, then |
3828 | the return value is an array which contains only a NULL pointer. */ |
3829 | |
3830 | char ** |
3831 | make_source_files_completion_list (char *text, char *word) |
3832 | { |
3833 | struct symtab *s; |
3834 | struct partial_symtab *ps; |
3835 | struct objfile *objfile; |
3836 | int first = 1; |
3837 | int list_alloced = 1; |
3838 | int list_used = 0; |
3839 | size_t text_len = strlen (text); |
3840 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); |
3841 | const char *base_name; |
3842 | |
3843 | list[0] = NULL((void*)0); |
3844 | |
3845 | if (!have_full_symbols () && !have_partial_symbols ()) |
3846 | return list; |
3847 | |
3848 | ALL_SYMTABS (objfile, s)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((s) = (objfile) -> symtabs; ( s) != ((void*)0); (s) = (s) -> next) |
3849 | { |
3850 | if (not_interesting_fname (s->filename)) |
3851 | continue; |
3852 | if (!filename_seen (s->filename, 1, &first) |
3853 | #if HAVE_DOS_BASED_FILE_SYSTEM |
3854 | && strncasecmp (s->filename, text, text_len) == 0 |
3855 | #else |
3856 | && strncmp (s->filename, text, text_len) == 0 |
3857 | #endif |
3858 | ) |
3859 | { |
3860 | /* This file matches for a completion; add it to the current |
3861 | list of matches. */ |
3862 | add_filename_to_list (s->filename, text, word, |
3863 | &list, &list_used, &list_alloced); |
3864 | } |
3865 | else |
3866 | { |
3867 | /* NOTE: We allow the user to type a base name when the |
3868 | debug info records leading directories, but not the other |
3869 | way around. This is what subroutines of breakpoint |
3870 | command do when they parse file names. */ |
3871 | base_name = lbasename (s->filename); |
3872 | if (base_name != s->filename |
3873 | && !filename_seen (base_name, 1, &first) |
3874 | #if HAVE_DOS_BASED_FILE_SYSTEM |
3875 | && strncasecmp (base_name, text, text_len) == 0 |
3876 | #else |
3877 | && strncmp (base_name, text, text_len) == 0 |
3878 | #endif |
3879 | ) |
3880 | add_filename_to_list (base_name, text, word, |
3881 | &list, &list_used, &list_alloced); |
3882 | } |
3883 | } |
3884 | |
3885 | ALL_PSYMTABS (objfile, ps)for ((objfile) = object_files; (objfile) != ((void*)0); (objfile ) = (objfile)->next) for ((ps) = (objfile) -> psymtabs; (ps) != ((void*)0); (ps) = (ps) -> next) |
3886 | { |
3887 | if (not_interesting_fname (ps->filename)) |
3888 | continue; |
3889 | if (!ps->readin) |
3890 | { |
3891 | if (!filename_seen (ps->filename, 1, &first) |
3892 | #if HAVE_DOS_BASED_FILE_SYSTEM |
3893 | && strncasecmp (ps->filename, text, text_len) == 0 |
3894 | #else |
3895 | && strncmp (ps->filename, text, text_len) == 0 |
3896 | #endif |
3897 | ) |
3898 | { |
3899 | /* This file matches for a completion; add it to the |
3900 | current list of matches. */ |
3901 | add_filename_to_list (ps->filename, text, word, |
3902 | &list, &list_used, &list_alloced); |
3903 | |
3904 | } |
3905 | else |
3906 | { |
3907 | base_name = lbasename (ps->filename); |
3908 | if (base_name != ps->filename |
3909 | && !filename_seen (base_name, 1, &first) |
3910 | #if HAVE_DOS_BASED_FILE_SYSTEM |
3911 | && strncasecmp (base_name, text, text_len) == 0 |
3912 | #else |
3913 | && strncmp (base_name, text, text_len) == 0 |
3914 | #endif |
3915 | ) |
3916 | add_filename_to_list (base_name, text, word, |
3917 | &list, &list_used, &list_alloced); |
3918 | } |
3919 | } |
3920 | } |
3921 | |
3922 | return list; |
3923 | } |
3924 | |
3925 | /* Determine if PC is in the prologue of a function. The prologue is the area |
3926 | between the first instruction of a function, and the first executable line. |
3927 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. |
3928 | |
3929 | If non-zero, func_start is where we think the prologue starts, possibly |
3930 | by previous examination of symbol table information. |
3931 | */ |
3932 | |
3933 | int |
3934 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
3935 | { |
3936 | struct symtab_and_line sal; |
3937 | CORE_ADDR func_addr, func_end; |
3938 | |
3939 | /* We have several sources of information we can consult to figure |
3940 | this out. |
3941 | - Compilers usually emit line number info that marks the prologue |
3942 | as its own "source line". So the ending address of that "line" |
3943 | is the end of the prologue. If available, this is the most |
3944 | reliable method. |
3945 | - The minimal symbols and partial symbols, which can usually tell |
3946 | us the starting and ending addresses of a function. |
3947 | - If we know the function's start address, we can call the |
3948 | architecture-defined SKIP_PROLOGUE function to analyze the |
3949 | instruction stream and guess where the prologue ends. |
3950 | - Our `func_start' argument; if non-zero, this is the caller's |
3951 | best guess as to the function's entry point. At the time of |
3952 | this writing, handle_inferior_event doesn't get this right, so |
3953 | it should be our last resort. */ |
3954 | |
3955 | /* Consult the partial symbol table, to find which function |
3956 | the PC is in. */ |
3957 | if (! find_pc_partial_function (pc, NULL((void*)0), &func_addr, &func_end)) |
3958 | { |
3959 | CORE_ADDR prologue_end; |
3960 | |
3961 | /* We don't even have minsym information, so fall back to using |
3962 | func_start, if given. */ |
3963 | if (! func_start) |
3964 | return 1; /* We *might* be in a prologue. */ |
3965 | |
3966 | prologue_end = SKIP_PROLOGUE (func_start)(gdbarch_skip_prologue (current_gdbarch, func_start)); |
3967 | |
3968 | return func_start <= pc && pc < prologue_end; |
3969 | } |
3970 | |
3971 | /* If we have line number information for the function, that's |
3972 | usually pretty reliable. */ |
3973 | sal = find_pc_line (func_addr, 0); |
3974 | |
3975 | /* Now sal describes the source line at the function's entry point, |
3976 | which (by convention) is the prologue. The end of that "line", |
3977 | sal.end, is the end of the prologue. |
3978 | |
3979 | Note that, for functions whose source code is all on a single |
3980 | line, the line number information doesn't always end up this way. |
3981 | So we must verify that our purported end-of-prologue address is |
3982 | *within* the function, not at its start or end. */ |
3983 | if (sal.line == 0 |
3984 | || sal.end <= func_addr |
3985 | || func_end <= sal.end) |
3986 | { |
3987 | /* We don't have any good line number info, so use the minsym |
3988 | information, together with the architecture-specific prologue |
3989 | scanning code. */ |
3990 | CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr)(gdbarch_skip_prologue (current_gdbarch, func_addr)); |
3991 | |
3992 | return func_addr <= pc && pc < prologue_end; |
3993 | } |
3994 | |
3995 | /* We have line number info, and it looks good. */ |
3996 | return func_addr <= pc && pc < sal.end; |
3997 | } |
3998 | |
3999 | /* Given PC at the function's start address, attempt to find the |
4000 | prologue end using SAL information. Return zero if the skip fails. |
4001 | |
4002 | A non-optimized prologue traditionally has one SAL for the function |
4003 | and a second for the function body. A single line function has |
4004 | them both pointing at the same line. |
4005 | |
4006 | An optimized prologue is similar but the prologue may contain |
4007 | instructions (SALs) from the instruction body. Need to skip those |
4008 | while not getting into the function body. |
4009 | |
4010 | The functions end point and an increasing SAL line are used as |
4011 | indicators of the prologue's endpoint. |
4012 | |
4013 | This code is based on the function refine_prologue_limit (versions |
4014 | found in both ia64 and ppc). */ |
4015 | |
4016 | CORE_ADDR |
4017 | skip_prologue_using_sal (CORE_ADDR func_addr) |
4018 | { |
4019 | struct symtab_and_line prologue_sal; |
4020 | CORE_ADDR start_pc; |
4021 | CORE_ADDR end_pc; |
4022 | |
4023 | /* Get an initial range for the function. */ |
4024 | find_pc_partial_function (func_addr, NULL((void*)0), &start_pc, &end_pc); |
4025 | start_pc += DEPRECATED_FUNCTION_START_OFFSET(gdbarch_deprecated_function_start_offset (current_gdbarch)); |
4026 | |
4027 | prologue_sal = find_pc_line (start_pc, 0); |
4028 | if (prologue_sal.line != 0) |
4029 | { |
4030 | while (prologue_sal.end < end_pc) |
4031 | { |
4032 | struct symtab_and_line sal; |
4033 | |
4034 | sal = find_pc_line (prologue_sal.end, 0); |
4035 | if (sal.line == 0) |
4036 | break; |
4037 | /* Assume that a consecutive SAL for the same (or larger) |
4038 | line mark the prologue -> body transition. */ |
4039 | if (sal.line >= prologue_sal.line) |
4040 | break; |
4041 | /* The case in which compiler's optimizer/scheduler has |
4042 | moved instructions into the prologue. We look ahead in |
4043 | the function looking for address ranges whose |
4044 | corresponding line number is less the first one that we |
4045 | found for the function. This is more conservative then |
4046 | refine_prologue_limit which scans a large number of SALs |
4047 | looking for any in the prologue */ |
4048 | prologue_sal = sal; |
4049 | } |
4050 | } |
4051 | return prologue_sal.end; |
4052 | } |
4053 | |
4054 | struct symtabs_and_lines |
4055 | decode_line_spec (char *string, int funfirstline) |
4056 | { |
4057 | struct symtabs_and_lines sals; |
4058 | struct symtab_and_line cursal; |
4059 | |
4060 | if (string == 0) |
4061 | error ("Empty line specification."); |
4062 | |
4063 | /* We use whatever is set as the current source line. We do not try |
4064 | and get a default or it will recursively call us! */ |
4065 | cursal = get_current_source_symtab_and_line (); |
4066 | |
4067 | sals = decode_line_1 (&string, funfirstline, |
4068 | cursal.symtab, cursal.line, |
4069 | (char ***) NULL((void*)0), NULL((void*)0)); |
4070 | |
4071 | if (*string) |
4072 | error ("Junk at end of line specification: %s", string); |
4073 | return sals; |
4074 | } |
4075 | |
4076 | /* Track MAIN */ |
4077 | static char *name_of_main; |
4078 | |
4079 | void |
4080 | set_main_name (const char *name) |
4081 | { |
4082 | if (name_of_main != NULL((void*)0)) |
4083 | { |
4084 | xfree (name_of_main); |
4085 | name_of_main = NULL((void*)0); |
4086 | } |
4087 | if (name != NULL((void*)0)) |
4088 | { |
4089 | name_of_main = xstrdup (name); |
4090 | } |
4091 | } |
4092 | |
4093 | char * |
4094 | main_name (void) |
4095 | { |
4096 | if (name_of_main != NULL((void*)0)) |
4097 | return name_of_main; |
4098 | else |
4099 | return "main"; |
4100 | } |
4101 | |
4102 | |
4103 | void |
4104 | _initialize_symtab (void) |
4105 | { |
4106 | add_info ("variables", variables_info, |
4107 | "All global and static variable names, or those matching REGEXP."); |
4108 | if (dbx_commands) |
4109 | add_com ("whereis", class_info, variables_info, |
4110 | "All global and static variable names, or those matching REGEXP."); |
4111 | |
4112 | add_info ("functions", functions_info, |
4113 | "All function names, or those matching REGEXP."); |
4114 | |
4115 | |
4116 | /* FIXME: This command has at least the following problems: |
4117 | 1. It prints builtin types (in a very strange and confusing fashion). |
4118 | 2. It doesn't print right, e.g. with |
4119 | typedef struct foo *FOO |
4120 | type_print prints "FOO" when we want to make it (in this situation) |
4121 | print "struct foo *". |
4122 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4123 | there is much disagreement "info types" can be fixed). */ |
4124 | add_info ("types", types_info, |
4125 | "All type names, or those matching REGEXP."); |
4126 | |
4127 | add_info ("sources", sources_info, |
4128 | "Source files in the program."); |
4129 | |
4130 | add_com ("rbreak", class_breakpoint, rbreak_command, |
4131 | "Set a breakpoint for all functions matching REGEXP."); |
4132 | |
4133 | if (xdb_commands) |
4134 | { |
4135 | add_com ("lf", class_info, sources_info, "Source files in the program"); |
4136 | add_com ("lg", class_info, variables_info, |
4137 | "All global and static variable names, or those matching REGEXP."); |
4138 | } |
4139 | |
4140 | /* Initialize the one built-in type that isn't language dependent... */ |
4141 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, |
4142 | "<unknown type>", (struct objfile *) NULL((void*)0)); |
4143 | } |