File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Sema/Sema.h |
Warning: | line 2191, column 12 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file provides Sema routines for C++ overloading. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "clang/AST/ASTContext.h" | |||
14 | #include "clang/AST/CXXInheritance.h" | |||
15 | #include "clang/AST/DeclObjC.h" | |||
16 | #include "clang/AST/DependenceFlags.h" | |||
17 | #include "clang/AST/Expr.h" | |||
18 | #include "clang/AST/ExprCXX.h" | |||
19 | #include "clang/AST/ExprObjC.h" | |||
20 | #include "clang/AST/TypeOrdering.h" | |||
21 | #include "clang/Basic/Diagnostic.h" | |||
22 | #include "clang/Basic/DiagnosticOptions.h" | |||
23 | #include "clang/Basic/PartialDiagnostic.h" | |||
24 | #include "clang/Basic/SourceManager.h" | |||
25 | #include "clang/Basic/TargetInfo.h" | |||
26 | #include "clang/Sema/Initialization.h" | |||
27 | #include "clang/Sema/Lookup.h" | |||
28 | #include "clang/Sema/Overload.h" | |||
29 | #include "clang/Sema/SemaInternal.h" | |||
30 | #include "clang/Sema/Template.h" | |||
31 | #include "clang/Sema/TemplateDeduction.h" | |||
32 | #include "llvm/ADT/DenseSet.h" | |||
33 | #include "llvm/ADT/Optional.h" | |||
34 | #include "llvm/ADT/STLExtras.h" | |||
35 | #include "llvm/ADT/SmallPtrSet.h" | |||
36 | #include "llvm/ADT/SmallString.h" | |||
37 | #include <algorithm> | |||
38 | #include <cstdlib> | |||
39 | ||||
40 | using namespace clang; | |||
41 | using namespace sema; | |||
42 | ||||
43 | using AllowedExplicit = Sema::AllowedExplicit; | |||
44 | ||||
45 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { | |||
46 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { | |||
47 | return P->hasAttr<PassObjectSizeAttr>(); | |||
48 | }); | |||
49 | } | |||
50 | ||||
51 | /// A convenience routine for creating a decayed reference to a function. | |||
52 | static ExprResult | |||
53 | CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, | |||
54 | const Expr *Base, bool HadMultipleCandidates, | |||
55 | SourceLocation Loc = SourceLocation(), | |||
56 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ | |||
57 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) | |||
58 | return ExprError(); | |||
59 | // If FoundDecl is different from Fn (such as if one is a template | |||
60 | // and the other a specialization), make sure DiagnoseUseOfDecl is | |||
61 | // called on both. | |||
62 | // FIXME: This would be more comprehensively addressed by modifying | |||
63 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | |||
64 | // being used. | |||
65 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) | |||
66 | return ExprError(); | |||
67 | DeclRefExpr *DRE = new (S.Context) | |||
68 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); | |||
69 | if (HadMultipleCandidates) | |||
70 | DRE->setHadMultipleCandidates(true); | |||
71 | ||||
72 | S.MarkDeclRefReferenced(DRE, Base); | |||
73 | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { | |||
74 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | |||
75 | S.ResolveExceptionSpec(Loc, FPT); | |||
76 | DRE->setType(Fn->getType()); | |||
77 | } | |||
78 | } | |||
79 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), | |||
80 | CK_FunctionToPointerDecay); | |||
81 | } | |||
82 | ||||
83 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | |||
84 | bool InOverloadResolution, | |||
85 | StandardConversionSequence &SCS, | |||
86 | bool CStyle, | |||
87 | bool AllowObjCWritebackConversion); | |||
88 | ||||
89 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, | |||
90 | QualType &ToType, | |||
91 | bool InOverloadResolution, | |||
92 | StandardConversionSequence &SCS, | |||
93 | bool CStyle); | |||
94 | static OverloadingResult | |||
95 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
96 | UserDefinedConversionSequence& User, | |||
97 | OverloadCandidateSet& Conversions, | |||
98 | AllowedExplicit AllowExplicit, | |||
99 | bool AllowObjCConversionOnExplicit); | |||
100 | ||||
101 | static ImplicitConversionSequence::CompareKind | |||
102 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | |||
103 | const StandardConversionSequence& SCS1, | |||
104 | const StandardConversionSequence& SCS2); | |||
105 | ||||
106 | static ImplicitConversionSequence::CompareKind | |||
107 | CompareQualificationConversions(Sema &S, | |||
108 | const StandardConversionSequence& SCS1, | |||
109 | const StandardConversionSequence& SCS2); | |||
110 | ||||
111 | static ImplicitConversionSequence::CompareKind | |||
112 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | |||
113 | const StandardConversionSequence& SCS1, | |||
114 | const StandardConversionSequence& SCS2); | |||
115 | ||||
116 | /// GetConversionRank - Retrieve the implicit conversion rank | |||
117 | /// corresponding to the given implicit conversion kind. | |||
118 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { | |||
119 | static const ImplicitConversionRank | |||
120 | Rank[(int)ICK_Num_Conversion_Kinds] = { | |||
121 | ICR_Exact_Match, | |||
122 | ICR_Exact_Match, | |||
123 | ICR_Exact_Match, | |||
124 | ICR_Exact_Match, | |||
125 | ICR_Exact_Match, | |||
126 | ICR_Exact_Match, | |||
127 | ICR_Promotion, | |||
128 | ICR_Promotion, | |||
129 | ICR_Promotion, | |||
130 | ICR_Conversion, | |||
131 | ICR_Conversion, | |||
132 | ICR_Conversion, | |||
133 | ICR_Conversion, | |||
134 | ICR_Conversion, | |||
135 | ICR_Conversion, | |||
136 | ICR_Conversion, | |||
137 | ICR_Conversion, | |||
138 | ICR_Conversion, | |||
139 | ICR_Conversion, | |||
140 | ICR_Conversion, | |||
141 | ICR_OCL_Scalar_Widening, | |||
142 | ICR_Complex_Real_Conversion, | |||
143 | ICR_Conversion, | |||
144 | ICR_Conversion, | |||
145 | ICR_Writeback_Conversion, | |||
146 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- | |||
147 | // it was omitted by the patch that added | |||
148 | // ICK_Zero_Event_Conversion | |||
149 | ICR_C_Conversion, | |||
150 | ICR_C_Conversion_Extension | |||
151 | }; | |||
152 | return Rank[(int)Kind]; | |||
153 | } | |||
154 | ||||
155 | /// GetImplicitConversionName - Return the name of this kind of | |||
156 | /// implicit conversion. | |||
157 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { | |||
158 | static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { | |||
159 | "No conversion", | |||
160 | "Lvalue-to-rvalue", | |||
161 | "Array-to-pointer", | |||
162 | "Function-to-pointer", | |||
163 | "Function pointer conversion", | |||
164 | "Qualification", | |||
165 | "Integral promotion", | |||
166 | "Floating point promotion", | |||
167 | "Complex promotion", | |||
168 | "Integral conversion", | |||
169 | "Floating conversion", | |||
170 | "Complex conversion", | |||
171 | "Floating-integral conversion", | |||
172 | "Pointer conversion", | |||
173 | "Pointer-to-member conversion", | |||
174 | "Boolean conversion", | |||
175 | "Compatible-types conversion", | |||
176 | "Derived-to-base conversion", | |||
177 | "Vector conversion", | |||
178 | "SVE Vector conversion", | |||
179 | "Vector splat", | |||
180 | "Complex-real conversion", | |||
181 | "Block Pointer conversion", | |||
182 | "Transparent Union Conversion", | |||
183 | "Writeback conversion", | |||
184 | "OpenCL Zero Event Conversion", | |||
185 | "C specific type conversion", | |||
186 | "Incompatible pointer conversion" | |||
187 | }; | |||
188 | return Name[Kind]; | |||
189 | } | |||
190 | ||||
191 | /// StandardConversionSequence - Set the standard conversion | |||
192 | /// sequence to the identity conversion. | |||
193 | void StandardConversionSequence::setAsIdentityConversion() { | |||
194 | First = ICK_Identity; | |||
195 | Second = ICK_Identity; | |||
196 | Third = ICK_Identity; | |||
197 | DeprecatedStringLiteralToCharPtr = false; | |||
198 | QualificationIncludesObjCLifetime = false; | |||
199 | ReferenceBinding = false; | |||
200 | DirectBinding = false; | |||
201 | IsLvalueReference = true; | |||
202 | BindsToFunctionLvalue = false; | |||
203 | BindsToRvalue = false; | |||
204 | BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
205 | ObjCLifetimeConversionBinding = false; | |||
206 | CopyConstructor = nullptr; | |||
207 | } | |||
208 | ||||
209 | /// getRank - Retrieve the rank of this standard conversion sequence | |||
210 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | |||
211 | /// implicit conversions. | |||
212 | ImplicitConversionRank StandardConversionSequence::getRank() const { | |||
213 | ImplicitConversionRank Rank = ICR_Exact_Match; | |||
214 | if (GetConversionRank(First) > Rank) | |||
215 | Rank = GetConversionRank(First); | |||
216 | if (GetConversionRank(Second) > Rank) | |||
217 | Rank = GetConversionRank(Second); | |||
218 | if (GetConversionRank(Third) > Rank) | |||
219 | Rank = GetConversionRank(Third); | |||
220 | return Rank; | |||
221 | } | |||
222 | ||||
223 | /// isPointerConversionToBool - Determines whether this conversion is | |||
224 | /// a conversion of a pointer or pointer-to-member to bool. This is | |||
225 | /// used as part of the ranking of standard conversion sequences | |||
226 | /// (C++ 13.3.3.2p4). | |||
227 | bool StandardConversionSequence::isPointerConversionToBool() const { | |||
228 | // Note that FromType has not necessarily been transformed by the | |||
229 | // array-to-pointer or function-to-pointer implicit conversions, so | |||
230 | // check for their presence as well as checking whether FromType is | |||
231 | // a pointer. | |||
232 | if (getToType(1)->isBooleanType() && | |||
233 | (getFromType()->isPointerType() || | |||
234 | getFromType()->isMemberPointerType() || | |||
235 | getFromType()->isObjCObjectPointerType() || | |||
236 | getFromType()->isBlockPointerType() || | |||
237 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | |||
238 | return true; | |||
239 | ||||
240 | return false; | |||
241 | } | |||
242 | ||||
243 | /// isPointerConversionToVoidPointer - Determines whether this | |||
244 | /// conversion is a conversion of a pointer to a void pointer. This is | |||
245 | /// used as part of the ranking of standard conversion sequences (C++ | |||
246 | /// 13.3.3.2p4). | |||
247 | bool | |||
248 | StandardConversionSequence:: | |||
249 | isPointerConversionToVoidPointer(ASTContext& Context) const { | |||
250 | QualType FromType = getFromType(); | |||
251 | QualType ToType = getToType(1); | |||
252 | ||||
253 | // Note that FromType has not necessarily been transformed by the | |||
254 | // array-to-pointer implicit conversion, so check for its presence | |||
255 | // and redo the conversion to get a pointer. | |||
256 | if (First == ICK_Array_To_Pointer) | |||
257 | FromType = Context.getArrayDecayedType(FromType); | |||
258 | ||||
259 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) | |||
260 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | |||
261 | return ToPtrType->getPointeeType()->isVoidType(); | |||
262 | ||||
263 | return false; | |||
264 | } | |||
265 | ||||
266 | /// Skip any implicit casts which could be either part of a narrowing conversion | |||
267 | /// or after one in an implicit conversion. | |||
268 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, | |||
269 | const Expr *Converted) { | |||
270 | // We can have cleanups wrapping the converted expression; these need to be | |||
271 | // preserved so that destructors run if necessary. | |||
272 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { | |||
273 | Expr *Inner = | |||
274 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); | |||
275 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), | |||
276 | EWC->getObjects()); | |||
277 | } | |||
278 | ||||
279 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { | |||
280 | switch (ICE->getCastKind()) { | |||
281 | case CK_NoOp: | |||
282 | case CK_IntegralCast: | |||
283 | case CK_IntegralToBoolean: | |||
284 | case CK_IntegralToFloating: | |||
285 | case CK_BooleanToSignedIntegral: | |||
286 | case CK_FloatingToIntegral: | |||
287 | case CK_FloatingToBoolean: | |||
288 | case CK_FloatingCast: | |||
289 | Converted = ICE->getSubExpr(); | |||
290 | continue; | |||
291 | ||||
292 | default: | |||
293 | return Converted; | |||
294 | } | |||
295 | } | |||
296 | ||||
297 | return Converted; | |||
298 | } | |||
299 | ||||
300 | /// Check if this standard conversion sequence represents a narrowing | |||
301 | /// conversion, according to C++11 [dcl.init.list]p7. | |||
302 | /// | |||
303 | /// \param Ctx The AST context. | |||
304 | /// \param Converted The result of applying this standard conversion sequence. | |||
305 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the | |||
306 | /// value of the expression prior to the narrowing conversion. | |||
307 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the | |||
308 | /// type of the expression prior to the narrowing conversion. | |||
309 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions | |||
310 | /// from floating point types to integral types should be ignored. | |||
311 | NarrowingKind StandardConversionSequence::getNarrowingKind( | |||
312 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, | |||
313 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { | |||
314 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((void)0); | |||
315 | ||||
316 | // C++11 [dcl.init.list]p7: | |||
317 | // A narrowing conversion is an implicit conversion ... | |||
318 | QualType FromType = getToType(0); | |||
319 | QualType ToType = getToType(1); | |||
320 | ||||
321 | // A conversion to an enumeration type is narrowing if the conversion to | |||
322 | // the underlying type is narrowing. This only arises for expressions of | |||
323 | // the form 'Enum{init}'. | |||
324 | if (auto *ET = ToType->getAs<EnumType>()) | |||
325 | ToType = ET->getDecl()->getIntegerType(); | |||
326 | ||||
327 | switch (Second) { | |||
328 | // 'bool' is an integral type; dispatch to the right place to handle it. | |||
329 | case ICK_Boolean_Conversion: | |||
330 | if (FromType->isRealFloatingType()) | |||
331 | goto FloatingIntegralConversion; | |||
332 | if (FromType->isIntegralOrUnscopedEnumerationType()) | |||
333 | goto IntegralConversion; | |||
334 | // -- from a pointer type or pointer-to-member type to bool, or | |||
335 | return NK_Type_Narrowing; | |||
336 | ||||
337 | // -- from a floating-point type to an integer type, or | |||
338 | // | |||
339 | // -- from an integer type or unscoped enumeration type to a floating-point | |||
340 | // type, except where the source is a constant expression and the actual | |||
341 | // value after conversion will fit into the target type and will produce | |||
342 | // the original value when converted back to the original type, or | |||
343 | case ICK_Floating_Integral: | |||
344 | FloatingIntegralConversion: | |||
345 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { | |||
346 | return NK_Type_Narrowing; | |||
347 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | |||
348 | ToType->isRealFloatingType()) { | |||
349 | if (IgnoreFloatToIntegralConversion) | |||
350 | return NK_Not_Narrowing; | |||
351 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
352 | assert(Initializer && "Unknown conversion expression")((void)0); | |||
353 | ||||
354 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
355 | if (Initializer->isValueDependent()) | |||
356 | return NK_Dependent_Narrowing; | |||
357 | ||||
358 | if (Optional<llvm::APSInt> IntConstantValue = | |||
359 | Initializer->getIntegerConstantExpr(Ctx)) { | |||
360 | // Convert the integer to the floating type. | |||
361 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); | |||
362 | Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), | |||
363 | llvm::APFloat::rmNearestTiesToEven); | |||
364 | // And back. | |||
365 | llvm::APSInt ConvertedValue = *IntConstantValue; | |||
366 | bool ignored; | |||
367 | Result.convertToInteger(ConvertedValue, | |||
368 | llvm::APFloat::rmTowardZero, &ignored); | |||
369 | // If the resulting value is different, this was a narrowing conversion. | |||
370 | if (*IntConstantValue != ConvertedValue) { | |||
371 | ConstantValue = APValue(*IntConstantValue); | |||
372 | ConstantType = Initializer->getType(); | |||
373 | return NK_Constant_Narrowing; | |||
374 | } | |||
375 | } else { | |||
376 | // Variables are always narrowings. | |||
377 | return NK_Variable_Narrowing; | |||
378 | } | |||
379 | } | |||
380 | return NK_Not_Narrowing; | |||
381 | ||||
382 | // -- from long double to double or float, or from double to float, except | |||
383 | // where the source is a constant expression and the actual value after | |||
384 | // conversion is within the range of values that can be represented (even | |||
385 | // if it cannot be represented exactly), or | |||
386 | case ICK_Floating_Conversion: | |||
387 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && | |||
388 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { | |||
389 | // FromType is larger than ToType. | |||
390 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
391 | ||||
392 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
393 | if (Initializer->isValueDependent()) | |||
394 | return NK_Dependent_Narrowing; | |||
395 | ||||
396 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { | |||
397 | // Constant! | |||
398 | assert(ConstantValue.isFloat())((void)0); | |||
399 | llvm::APFloat FloatVal = ConstantValue.getFloat(); | |||
400 | // Convert the source value into the target type. | |||
401 | bool ignored; | |||
402 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( | |||
403 | Ctx.getFloatTypeSemantics(ToType), | |||
404 | llvm::APFloat::rmNearestTiesToEven, &ignored); | |||
405 | // If there was no overflow, the source value is within the range of | |||
406 | // values that can be represented. | |||
407 | if (ConvertStatus & llvm::APFloat::opOverflow) { | |||
408 | ConstantType = Initializer->getType(); | |||
409 | return NK_Constant_Narrowing; | |||
410 | } | |||
411 | } else { | |||
412 | return NK_Variable_Narrowing; | |||
413 | } | |||
414 | } | |||
415 | return NK_Not_Narrowing; | |||
416 | ||||
417 | // -- from an integer type or unscoped enumeration type to an integer type | |||
418 | // that cannot represent all the values of the original type, except where | |||
419 | // the source is a constant expression and the actual value after | |||
420 | // conversion will fit into the target type and will produce the original | |||
421 | // value when converted back to the original type. | |||
422 | case ICK_Integral_Conversion: | |||
423 | IntegralConversion: { | |||
424 | assert(FromType->isIntegralOrUnscopedEnumerationType())((void)0); | |||
425 | assert(ToType->isIntegralOrUnscopedEnumerationType())((void)0); | |||
426 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); | |||
427 | const unsigned FromWidth = Ctx.getIntWidth(FromType); | |||
428 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); | |||
429 | const unsigned ToWidth = Ctx.getIntWidth(ToType); | |||
430 | ||||
431 | if (FromWidth > ToWidth || | |||
432 | (FromWidth == ToWidth && FromSigned != ToSigned) || | |||
433 | (FromSigned && !ToSigned)) { | |||
434 | // Not all values of FromType can be represented in ToType. | |||
435 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | |||
436 | ||||
437 | // If it's value-dependent, we can't tell whether it's narrowing. | |||
438 | if (Initializer->isValueDependent()) | |||
439 | return NK_Dependent_Narrowing; | |||
440 | ||||
441 | Optional<llvm::APSInt> OptInitializerValue; | |||
442 | if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { | |||
443 | // Such conversions on variables are always narrowing. | |||
444 | return NK_Variable_Narrowing; | |||
445 | } | |||
446 | llvm::APSInt &InitializerValue = *OptInitializerValue; | |||
447 | bool Narrowing = false; | |||
448 | if (FromWidth < ToWidth) { | |||
449 | // Negative -> unsigned is narrowing. Otherwise, more bits is never | |||
450 | // narrowing. | |||
451 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) | |||
452 | Narrowing = true; | |||
453 | } else { | |||
454 | // Add a bit to the InitializerValue so we don't have to worry about | |||
455 | // signed vs. unsigned comparisons. | |||
456 | InitializerValue = InitializerValue.extend( | |||
457 | InitializerValue.getBitWidth() + 1); | |||
458 | // Convert the initializer to and from the target width and signed-ness. | |||
459 | llvm::APSInt ConvertedValue = InitializerValue; | |||
460 | ConvertedValue = ConvertedValue.trunc(ToWidth); | |||
461 | ConvertedValue.setIsSigned(ToSigned); | |||
462 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); | |||
463 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); | |||
464 | // If the result is different, this was a narrowing conversion. | |||
465 | if (ConvertedValue != InitializerValue) | |||
466 | Narrowing = true; | |||
467 | } | |||
468 | if (Narrowing) { | |||
469 | ConstantType = Initializer->getType(); | |||
470 | ConstantValue = APValue(InitializerValue); | |||
471 | return NK_Constant_Narrowing; | |||
472 | } | |||
473 | } | |||
474 | return NK_Not_Narrowing; | |||
475 | } | |||
476 | ||||
477 | default: | |||
478 | // Other kinds of conversions are not narrowings. | |||
479 | return NK_Not_Narrowing; | |||
480 | } | |||
481 | } | |||
482 | ||||
483 | /// dump - Print this standard conversion sequence to standard | |||
484 | /// error. Useful for debugging overloading issues. | |||
485 | LLVM_DUMP_METHOD__attribute__((noinline)) void StandardConversionSequence::dump() const { | |||
486 | raw_ostream &OS = llvm::errs(); | |||
487 | bool PrintedSomething = false; | |||
488 | if (First != ICK_Identity) { | |||
489 | OS << GetImplicitConversionName(First); | |||
490 | PrintedSomething = true; | |||
491 | } | |||
492 | ||||
493 | if (Second != ICK_Identity) { | |||
494 | if (PrintedSomething) { | |||
495 | OS << " -> "; | |||
496 | } | |||
497 | OS << GetImplicitConversionName(Second); | |||
498 | ||||
499 | if (CopyConstructor) { | |||
500 | OS << " (by copy constructor)"; | |||
501 | } else if (DirectBinding) { | |||
502 | OS << " (direct reference binding)"; | |||
503 | } else if (ReferenceBinding) { | |||
504 | OS << " (reference binding)"; | |||
505 | } | |||
506 | PrintedSomething = true; | |||
507 | } | |||
508 | ||||
509 | if (Third != ICK_Identity) { | |||
510 | if (PrintedSomething) { | |||
511 | OS << " -> "; | |||
512 | } | |||
513 | OS << GetImplicitConversionName(Third); | |||
514 | PrintedSomething = true; | |||
515 | } | |||
516 | ||||
517 | if (!PrintedSomething) { | |||
518 | OS << "No conversions required"; | |||
519 | } | |||
520 | } | |||
521 | ||||
522 | /// dump - Print this user-defined conversion sequence to standard | |||
523 | /// error. Useful for debugging overloading issues. | |||
524 | void UserDefinedConversionSequence::dump() const { | |||
525 | raw_ostream &OS = llvm::errs(); | |||
526 | if (Before.First || Before.Second || Before.Third) { | |||
527 | Before.dump(); | |||
528 | OS << " -> "; | |||
529 | } | |||
530 | if (ConversionFunction) | |||
531 | OS << '\'' << *ConversionFunction << '\''; | |||
532 | else | |||
533 | OS << "aggregate initialization"; | |||
534 | if (After.First || After.Second || After.Third) { | |||
535 | OS << " -> "; | |||
536 | After.dump(); | |||
537 | } | |||
538 | } | |||
539 | ||||
540 | /// dump - Print this implicit conversion sequence to standard | |||
541 | /// error. Useful for debugging overloading issues. | |||
542 | void ImplicitConversionSequence::dump() const { | |||
543 | raw_ostream &OS = llvm::errs(); | |||
544 | if (isStdInitializerListElement()) | |||
545 | OS << "Worst std::initializer_list element conversion: "; | |||
546 | switch (ConversionKind) { | |||
547 | case StandardConversion: | |||
548 | OS << "Standard conversion: "; | |||
549 | Standard.dump(); | |||
550 | break; | |||
551 | case UserDefinedConversion: | |||
552 | OS << "User-defined conversion: "; | |||
553 | UserDefined.dump(); | |||
554 | break; | |||
555 | case EllipsisConversion: | |||
556 | OS << "Ellipsis conversion"; | |||
557 | break; | |||
558 | case AmbiguousConversion: | |||
559 | OS << "Ambiguous conversion"; | |||
560 | break; | |||
561 | case BadConversion: | |||
562 | OS << "Bad conversion"; | |||
563 | break; | |||
564 | } | |||
565 | ||||
566 | OS << "\n"; | |||
567 | } | |||
568 | ||||
569 | void AmbiguousConversionSequence::construct() { | |||
570 | new (&conversions()) ConversionSet(); | |||
571 | } | |||
572 | ||||
573 | void AmbiguousConversionSequence::destruct() { | |||
574 | conversions().~ConversionSet(); | |||
575 | } | |||
576 | ||||
577 | void | |||
578 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | |||
579 | FromTypePtr = O.FromTypePtr; | |||
580 | ToTypePtr = O.ToTypePtr; | |||
581 | new (&conversions()) ConversionSet(O.conversions()); | |||
582 | } | |||
583 | ||||
584 | namespace { | |||
585 | // Structure used by DeductionFailureInfo to store | |||
586 | // template argument information. | |||
587 | struct DFIArguments { | |||
588 | TemplateArgument FirstArg; | |||
589 | TemplateArgument SecondArg; | |||
590 | }; | |||
591 | // Structure used by DeductionFailureInfo to store | |||
592 | // template parameter and template argument information. | |||
593 | struct DFIParamWithArguments : DFIArguments { | |||
594 | TemplateParameter Param; | |||
595 | }; | |||
596 | // Structure used by DeductionFailureInfo to store template argument | |||
597 | // information and the index of the problematic call argument. | |||
598 | struct DFIDeducedMismatchArgs : DFIArguments { | |||
599 | TemplateArgumentList *TemplateArgs; | |||
600 | unsigned CallArgIndex; | |||
601 | }; | |||
602 | // Structure used by DeductionFailureInfo to store information about | |||
603 | // unsatisfied constraints. | |||
604 | struct CNSInfo { | |||
605 | TemplateArgumentList *TemplateArgs; | |||
606 | ConstraintSatisfaction Satisfaction; | |||
607 | }; | |||
608 | } | |||
609 | ||||
610 | /// Convert from Sema's representation of template deduction information | |||
611 | /// to the form used in overload-candidate information. | |||
612 | DeductionFailureInfo | |||
613 | clang::MakeDeductionFailureInfo(ASTContext &Context, | |||
614 | Sema::TemplateDeductionResult TDK, | |||
615 | TemplateDeductionInfo &Info) { | |||
616 | DeductionFailureInfo Result; | |||
617 | Result.Result = static_cast<unsigned>(TDK); | |||
618 | Result.HasDiagnostic = false; | |||
619 | switch (TDK) { | |||
620 | case Sema::TDK_Invalid: | |||
621 | case Sema::TDK_InstantiationDepth: | |||
622 | case Sema::TDK_TooManyArguments: | |||
623 | case Sema::TDK_TooFewArguments: | |||
624 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
625 | case Sema::TDK_CUDATargetMismatch: | |||
626 | Result.Data = nullptr; | |||
627 | break; | |||
628 | ||||
629 | case Sema::TDK_Incomplete: | |||
630 | case Sema::TDK_InvalidExplicitArguments: | |||
631 | Result.Data = Info.Param.getOpaqueValue(); | |||
632 | break; | |||
633 | ||||
634 | case Sema::TDK_DeducedMismatch: | |||
635 | case Sema::TDK_DeducedMismatchNested: { | |||
636 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
637 | auto *Saved = new (Context) DFIDeducedMismatchArgs; | |||
638 | Saved->FirstArg = Info.FirstArg; | |||
639 | Saved->SecondArg = Info.SecondArg; | |||
640 | Saved->TemplateArgs = Info.take(); | |||
641 | Saved->CallArgIndex = Info.CallArgIndex; | |||
642 | Result.Data = Saved; | |||
643 | break; | |||
644 | } | |||
645 | ||||
646 | case Sema::TDK_NonDeducedMismatch: { | |||
647 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
648 | DFIArguments *Saved = new (Context) DFIArguments; | |||
649 | Saved->FirstArg = Info.FirstArg; | |||
650 | Saved->SecondArg = Info.SecondArg; | |||
651 | Result.Data = Saved; | |||
652 | break; | |||
653 | } | |||
654 | ||||
655 | case Sema::TDK_IncompletePack: | |||
656 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. | |||
657 | case Sema::TDK_Inconsistent: | |||
658 | case Sema::TDK_Underqualified: { | |||
659 | // FIXME: Should allocate from normal heap so that we can free this later. | |||
660 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; | |||
661 | Saved->Param = Info.Param; | |||
662 | Saved->FirstArg = Info.FirstArg; | |||
663 | Saved->SecondArg = Info.SecondArg; | |||
664 | Result.Data = Saved; | |||
665 | break; | |||
666 | } | |||
667 | ||||
668 | case Sema::TDK_SubstitutionFailure: | |||
669 | Result.Data = Info.take(); | |||
670 | if (Info.hasSFINAEDiagnostic()) { | |||
671 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( | |||
672 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); | |||
673 | Info.takeSFINAEDiagnostic(*Diag); | |||
674 | Result.HasDiagnostic = true; | |||
675 | } | |||
676 | break; | |||
677 | ||||
678 | case Sema::TDK_ConstraintsNotSatisfied: { | |||
679 | CNSInfo *Saved = new (Context) CNSInfo; | |||
680 | Saved->TemplateArgs = Info.take(); | |||
681 | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; | |||
682 | Result.Data = Saved; | |||
683 | break; | |||
684 | } | |||
685 | ||||
686 | case Sema::TDK_Success: | |||
687 | case Sema::TDK_NonDependentConversionFailure: | |||
688 | llvm_unreachable("not a deduction failure")__builtin_unreachable(); | |||
689 | } | |||
690 | ||||
691 | return Result; | |||
692 | } | |||
693 | ||||
694 | void DeductionFailureInfo::Destroy() { | |||
695 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
696 | case Sema::TDK_Success: | |||
697 | case Sema::TDK_Invalid: | |||
698 | case Sema::TDK_InstantiationDepth: | |||
699 | case Sema::TDK_Incomplete: | |||
700 | case Sema::TDK_TooManyArguments: | |||
701 | case Sema::TDK_TooFewArguments: | |||
702 | case Sema::TDK_InvalidExplicitArguments: | |||
703 | case Sema::TDK_CUDATargetMismatch: | |||
704 | case Sema::TDK_NonDependentConversionFailure: | |||
705 | break; | |||
706 | ||||
707 | case Sema::TDK_IncompletePack: | |||
708 | case Sema::TDK_Inconsistent: | |||
709 | case Sema::TDK_Underqualified: | |||
710 | case Sema::TDK_DeducedMismatch: | |||
711 | case Sema::TDK_DeducedMismatchNested: | |||
712 | case Sema::TDK_NonDeducedMismatch: | |||
713 | // FIXME: Destroy the data? | |||
714 | Data = nullptr; | |||
715 | break; | |||
716 | ||||
717 | case Sema::TDK_SubstitutionFailure: | |||
718 | // FIXME: Destroy the template argument list? | |||
719 | Data = nullptr; | |||
720 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | |||
721 | Diag->~PartialDiagnosticAt(); | |||
722 | HasDiagnostic = false; | |||
723 | } | |||
724 | break; | |||
725 | ||||
726 | case Sema::TDK_ConstraintsNotSatisfied: | |||
727 | // FIXME: Destroy the template argument list? | |||
728 | Data = nullptr; | |||
729 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | |||
730 | Diag->~PartialDiagnosticAt(); | |||
731 | HasDiagnostic = false; | |||
732 | } | |||
733 | break; | |||
734 | ||||
735 | // Unhandled | |||
736 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
737 | break; | |||
738 | } | |||
739 | } | |||
740 | ||||
741 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { | |||
742 | if (HasDiagnostic) | |||
743 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); | |||
744 | return nullptr; | |||
745 | } | |||
746 | ||||
747 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { | |||
748 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
749 | case Sema::TDK_Success: | |||
750 | case Sema::TDK_Invalid: | |||
751 | case Sema::TDK_InstantiationDepth: | |||
752 | case Sema::TDK_TooManyArguments: | |||
753 | case Sema::TDK_TooFewArguments: | |||
754 | case Sema::TDK_SubstitutionFailure: | |||
755 | case Sema::TDK_DeducedMismatch: | |||
756 | case Sema::TDK_DeducedMismatchNested: | |||
757 | case Sema::TDK_NonDeducedMismatch: | |||
758 | case Sema::TDK_CUDATargetMismatch: | |||
759 | case Sema::TDK_NonDependentConversionFailure: | |||
760 | case Sema::TDK_ConstraintsNotSatisfied: | |||
761 | return TemplateParameter(); | |||
762 | ||||
763 | case Sema::TDK_Incomplete: | |||
764 | case Sema::TDK_InvalidExplicitArguments: | |||
765 | return TemplateParameter::getFromOpaqueValue(Data); | |||
766 | ||||
767 | case Sema::TDK_IncompletePack: | |||
768 | case Sema::TDK_Inconsistent: | |||
769 | case Sema::TDK_Underqualified: | |||
770 | return static_cast<DFIParamWithArguments*>(Data)->Param; | |||
771 | ||||
772 | // Unhandled | |||
773 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
774 | break; | |||
775 | } | |||
776 | ||||
777 | return TemplateParameter(); | |||
778 | } | |||
779 | ||||
780 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { | |||
781 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
782 | case Sema::TDK_Success: | |||
783 | case Sema::TDK_Invalid: | |||
784 | case Sema::TDK_InstantiationDepth: | |||
785 | case Sema::TDK_TooManyArguments: | |||
786 | case Sema::TDK_TooFewArguments: | |||
787 | case Sema::TDK_Incomplete: | |||
788 | case Sema::TDK_IncompletePack: | |||
789 | case Sema::TDK_InvalidExplicitArguments: | |||
790 | case Sema::TDK_Inconsistent: | |||
791 | case Sema::TDK_Underqualified: | |||
792 | case Sema::TDK_NonDeducedMismatch: | |||
793 | case Sema::TDK_CUDATargetMismatch: | |||
794 | case Sema::TDK_NonDependentConversionFailure: | |||
795 | return nullptr; | |||
796 | ||||
797 | case Sema::TDK_DeducedMismatch: | |||
798 | case Sema::TDK_DeducedMismatchNested: | |||
799 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; | |||
800 | ||||
801 | case Sema::TDK_SubstitutionFailure: | |||
802 | return static_cast<TemplateArgumentList*>(Data); | |||
803 | ||||
804 | case Sema::TDK_ConstraintsNotSatisfied: | |||
805 | return static_cast<CNSInfo*>(Data)->TemplateArgs; | |||
806 | ||||
807 | // Unhandled | |||
808 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
809 | break; | |||
810 | } | |||
811 | ||||
812 | return nullptr; | |||
813 | } | |||
814 | ||||
815 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { | |||
816 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
817 | case Sema::TDK_Success: | |||
818 | case Sema::TDK_Invalid: | |||
819 | case Sema::TDK_InstantiationDepth: | |||
820 | case Sema::TDK_Incomplete: | |||
821 | case Sema::TDK_TooManyArguments: | |||
822 | case Sema::TDK_TooFewArguments: | |||
823 | case Sema::TDK_InvalidExplicitArguments: | |||
824 | case Sema::TDK_SubstitutionFailure: | |||
825 | case Sema::TDK_CUDATargetMismatch: | |||
826 | case Sema::TDK_NonDependentConversionFailure: | |||
827 | case Sema::TDK_ConstraintsNotSatisfied: | |||
828 | return nullptr; | |||
829 | ||||
830 | case Sema::TDK_IncompletePack: | |||
831 | case Sema::TDK_Inconsistent: | |||
832 | case Sema::TDK_Underqualified: | |||
833 | case Sema::TDK_DeducedMismatch: | |||
834 | case Sema::TDK_DeducedMismatchNested: | |||
835 | case Sema::TDK_NonDeducedMismatch: | |||
836 | return &static_cast<DFIArguments*>(Data)->FirstArg; | |||
837 | ||||
838 | // Unhandled | |||
839 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
840 | break; | |||
841 | } | |||
842 | ||||
843 | return nullptr; | |||
844 | } | |||
845 | ||||
846 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { | |||
847 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
848 | case Sema::TDK_Success: | |||
849 | case Sema::TDK_Invalid: | |||
850 | case Sema::TDK_InstantiationDepth: | |||
851 | case Sema::TDK_Incomplete: | |||
852 | case Sema::TDK_IncompletePack: | |||
853 | case Sema::TDK_TooManyArguments: | |||
854 | case Sema::TDK_TooFewArguments: | |||
855 | case Sema::TDK_InvalidExplicitArguments: | |||
856 | case Sema::TDK_SubstitutionFailure: | |||
857 | case Sema::TDK_CUDATargetMismatch: | |||
858 | case Sema::TDK_NonDependentConversionFailure: | |||
859 | case Sema::TDK_ConstraintsNotSatisfied: | |||
860 | return nullptr; | |||
861 | ||||
862 | case Sema::TDK_Inconsistent: | |||
863 | case Sema::TDK_Underqualified: | |||
864 | case Sema::TDK_DeducedMismatch: | |||
865 | case Sema::TDK_DeducedMismatchNested: | |||
866 | case Sema::TDK_NonDeducedMismatch: | |||
867 | return &static_cast<DFIArguments*>(Data)->SecondArg; | |||
868 | ||||
869 | // Unhandled | |||
870 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
871 | break; | |||
872 | } | |||
873 | ||||
874 | return nullptr; | |||
875 | } | |||
876 | ||||
877 | llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { | |||
878 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | |||
879 | case Sema::TDK_DeducedMismatch: | |||
880 | case Sema::TDK_DeducedMismatchNested: | |||
881 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; | |||
882 | ||||
883 | default: | |||
884 | return llvm::None; | |||
885 | } | |||
886 | } | |||
887 | ||||
888 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | |||
889 | OverloadedOperatorKind Op) { | |||
890 | if (!AllowRewrittenCandidates) | |||
891 | return false; | |||
892 | return Op == OO_EqualEqual || Op == OO_Spaceship; | |||
893 | } | |||
894 | ||||
895 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | |||
896 | ASTContext &Ctx, const FunctionDecl *FD) { | |||
897 | if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) | |||
898 | return false; | |||
899 | // Don't bother adding a reversed candidate that can never be a better | |||
900 | // match than the non-reversed version. | |||
901 | return FD->getNumParams() != 2 || | |||
902 | !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), | |||
903 | FD->getParamDecl(1)->getType()) || | |||
904 | FD->hasAttr<EnableIfAttr>(); | |||
905 | } | |||
906 | ||||
907 | void OverloadCandidateSet::destroyCandidates() { | |||
908 | for (iterator i = begin(), e = end(); i != e; ++i) { | |||
909 | for (auto &C : i->Conversions) | |||
910 | C.~ImplicitConversionSequence(); | |||
911 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) | |||
912 | i->DeductionFailure.Destroy(); | |||
913 | } | |||
914 | } | |||
915 | ||||
916 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { | |||
917 | destroyCandidates(); | |||
918 | SlabAllocator.Reset(); | |||
919 | NumInlineBytesUsed = 0; | |||
920 | Candidates.clear(); | |||
921 | Functions.clear(); | |||
922 | Kind = CSK; | |||
923 | } | |||
924 | ||||
925 | namespace { | |||
926 | class UnbridgedCastsSet { | |||
927 | struct Entry { | |||
928 | Expr **Addr; | |||
929 | Expr *Saved; | |||
930 | }; | |||
931 | SmallVector<Entry, 2> Entries; | |||
932 | ||||
933 | public: | |||
934 | void save(Sema &S, Expr *&E) { | |||
935 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((void)0); | |||
936 | Entry entry = { &E, E }; | |||
937 | Entries.push_back(entry); | |||
938 | E = S.stripARCUnbridgedCast(E); | |||
939 | } | |||
940 | ||||
941 | void restore() { | |||
942 | for (SmallVectorImpl<Entry>::iterator | |||
943 | i = Entries.begin(), e = Entries.end(); i != e; ++i) | |||
944 | *i->Addr = i->Saved; | |||
945 | } | |||
946 | }; | |||
947 | } | |||
948 | ||||
949 | /// checkPlaceholderForOverload - Do any interesting placeholder-like | |||
950 | /// preprocessing on the given expression. | |||
951 | /// | |||
952 | /// \param unbridgedCasts a collection to which to add unbridged casts; | |||
953 | /// without this, they will be immediately diagnosed as errors | |||
954 | /// | |||
955 | /// Return true on unrecoverable error. | |||
956 | static bool | |||
957 | checkPlaceholderForOverload(Sema &S, Expr *&E, | |||
958 | UnbridgedCastsSet *unbridgedCasts = nullptr) { | |||
959 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { | |||
960 | // We can't handle overloaded expressions here because overload | |||
961 | // resolution might reasonably tweak them. | |||
962 | if (placeholder->getKind() == BuiltinType::Overload) return false; | |||
963 | ||||
964 | // If the context potentially accepts unbridged ARC casts, strip | |||
965 | // the unbridged cast and add it to the collection for later restoration. | |||
966 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && | |||
967 | unbridgedCasts) { | |||
968 | unbridgedCasts->save(S, E); | |||
969 | return false; | |||
970 | } | |||
971 | ||||
972 | // Go ahead and check everything else. | |||
973 | ExprResult result = S.CheckPlaceholderExpr(E); | |||
974 | if (result.isInvalid()) | |||
975 | return true; | |||
976 | ||||
977 | E = result.get(); | |||
978 | return false; | |||
979 | } | |||
980 | ||||
981 | // Nothing to do. | |||
982 | return false; | |||
983 | } | |||
984 | ||||
985 | /// checkArgPlaceholdersForOverload - Check a set of call operands for | |||
986 | /// placeholders. | |||
987 | static bool checkArgPlaceholdersForOverload(Sema &S, | |||
988 | MultiExprArg Args, | |||
989 | UnbridgedCastsSet &unbridged) { | |||
990 | for (unsigned i = 0, e = Args.size(); i != e; ++i) | |||
991 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) | |||
992 | return true; | |||
993 | ||||
994 | return false; | |||
995 | } | |||
996 | ||||
997 | /// Determine whether the given New declaration is an overload of the | |||
998 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if | |||
999 | /// New and Old cannot be overloaded, e.g., if New has the same signature as | |||
1000 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't | |||
1001 | /// functions (or function templates) at all. When it does return Ovl_Match or | |||
1002 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be | |||
1003 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying | |||
1004 | /// declaration. | |||
1005 | /// | |||
1006 | /// Example: Given the following input: | |||
1007 | /// | |||
1008 | /// void f(int, float); // #1 | |||
1009 | /// void f(int, int); // #2 | |||
1010 | /// int f(int, int); // #3 | |||
1011 | /// | |||
1012 | /// When we process #1, there is no previous declaration of "f", so IsOverload | |||
1013 | /// will not be used. | |||
1014 | /// | |||
1015 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing | |||
1016 | /// the parameter types, we see that #1 and #2 are overloaded (since they have | |||
1017 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is | |||
1018 | /// unchanged. | |||
1019 | /// | |||
1020 | /// When we process #3, Old is an overload set containing #1 and #2. We compare | |||
1021 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then | |||
1022 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of | |||
1023 | /// functions are not part of the signature), IsOverload returns Ovl_Match and | |||
1024 | /// MatchedDecl will be set to point to the FunctionDecl for #2. | |||
1025 | /// | |||
1026 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class | |||
1027 | /// by a using declaration. The rules for whether to hide shadow declarations | |||
1028 | /// ignore some properties which otherwise figure into a function template's | |||
1029 | /// signature. | |||
1030 | Sema::OverloadKind | |||
1031 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, | |||
1032 | NamedDecl *&Match, bool NewIsUsingDecl) { | |||
1033 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); | |||
1034 | I != E; ++I) { | |||
1035 | NamedDecl *OldD = *I; | |||
1036 | ||||
1037 | bool OldIsUsingDecl = false; | |||
1038 | if (isa<UsingShadowDecl>(OldD)) { | |||
1039 | OldIsUsingDecl = true; | |||
1040 | ||||
1041 | // We can always introduce two using declarations into the same | |||
1042 | // context, even if they have identical signatures. | |||
1043 | if (NewIsUsingDecl) continue; | |||
1044 | ||||
1045 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); | |||
1046 | } | |||
1047 | ||||
1048 | // A using-declaration does not conflict with another declaration | |||
1049 | // if one of them is hidden. | |||
1050 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) | |||
1051 | continue; | |||
1052 | ||||
1053 | // If either declaration was introduced by a using declaration, | |||
1054 | // we'll need to use slightly different rules for matching. | |||
1055 | // Essentially, these rules are the normal rules, except that | |||
1056 | // function templates hide function templates with different | |||
1057 | // return types or template parameter lists. | |||
1058 | bool UseMemberUsingDeclRules = | |||
1059 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && | |||
1060 | !New->getFriendObjectKind(); | |||
1061 | ||||
1062 | if (FunctionDecl *OldF = OldD->getAsFunction()) { | |||
1063 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { | |||
1064 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { | |||
1065 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); | |||
1066 | continue; | |||
1067 | } | |||
1068 | ||||
1069 | if (!isa<FunctionTemplateDecl>(OldD) && | |||
1070 | !shouldLinkPossiblyHiddenDecl(*I, New)) | |||
1071 | continue; | |||
1072 | ||||
1073 | Match = *I; | |||
1074 | return Ovl_Match; | |||
1075 | } | |||
1076 | ||||
1077 | // Builtins that have custom typechecking or have a reference should | |||
1078 | // not be overloadable or redeclarable. | |||
1079 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { | |||
1080 | Match = *I; | |||
1081 | return Ovl_NonFunction; | |||
1082 | } | |||
1083 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { | |||
1084 | // We can overload with these, which can show up when doing | |||
1085 | // redeclaration checks for UsingDecls. | |||
1086 | assert(Old.getLookupKind() == LookupUsingDeclName)((void)0); | |||
1087 | } else if (isa<TagDecl>(OldD)) { | |||
1088 | // We can always overload with tags by hiding them. | |||
1089 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { | |||
1090 | // Optimistically assume that an unresolved using decl will | |||
1091 | // overload; if it doesn't, we'll have to diagnose during | |||
1092 | // template instantiation. | |||
1093 | // | |||
1094 | // Exception: if the scope is dependent and this is not a class | |||
1095 | // member, the using declaration can only introduce an enumerator. | |||
1096 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { | |||
1097 | Match = *I; | |||
1098 | return Ovl_NonFunction; | |||
1099 | } | |||
1100 | } else { | |||
1101 | // (C++ 13p1): | |||
1102 | // Only function declarations can be overloaded; object and type | |||
1103 | // declarations cannot be overloaded. | |||
1104 | Match = *I; | |||
1105 | return Ovl_NonFunction; | |||
1106 | } | |||
1107 | } | |||
1108 | ||||
1109 | // C++ [temp.friend]p1: | |||
1110 | // For a friend function declaration that is not a template declaration: | |||
1111 | // -- if the name of the friend is a qualified or unqualified template-id, | |||
1112 | // [...], otherwise | |||
1113 | // -- if the name of the friend is a qualified-id and a matching | |||
1114 | // non-template function is found in the specified class or namespace, | |||
1115 | // the friend declaration refers to that function, otherwise, | |||
1116 | // -- if the name of the friend is a qualified-id and a matching function | |||
1117 | // template is found in the specified class or namespace, the friend | |||
1118 | // declaration refers to the deduced specialization of that function | |||
1119 | // template, otherwise | |||
1120 | // -- the name shall be an unqualified-id [...] | |||
1121 | // If we get here for a qualified friend declaration, we've just reached the | |||
1122 | // third bullet. If the type of the friend is dependent, skip this lookup | |||
1123 | // until instantiation. | |||
1124 | if (New->getFriendObjectKind() && New->getQualifier() && | |||
1125 | !New->getDescribedFunctionTemplate() && | |||
1126 | !New->getDependentSpecializationInfo() && | |||
1127 | !New->getType()->isDependentType()) { | |||
1128 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); | |||
1129 | TemplateSpecResult.addAllDecls(Old); | |||
1130 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, | |||
1131 | /*QualifiedFriend*/true)) { | |||
1132 | New->setInvalidDecl(); | |||
1133 | return Ovl_Overload; | |||
1134 | } | |||
1135 | ||||
1136 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); | |||
1137 | return Ovl_Match; | |||
1138 | } | |||
1139 | ||||
1140 | return Ovl_Overload; | |||
1141 | } | |||
1142 | ||||
1143 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, | |||
1144 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, | |||
1145 | bool ConsiderRequiresClauses) { | |||
1146 | // C++ [basic.start.main]p2: This function shall not be overloaded. | |||
1147 | if (New->isMain()) | |||
1148 | return false; | |||
1149 | ||||
1150 | // MSVCRT user defined entry points cannot be overloaded. | |||
1151 | if (New->isMSVCRTEntryPoint()) | |||
1152 | return false; | |||
1153 | ||||
1154 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | |||
1155 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | |||
1156 | ||||
1157 | // C++ [temp.fct]p2: | |||
1158 | // A function template can be overloaded with other function templates | |||
1159 | // and with normal (non-template) functions. | |||
1160 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) | |||
1161 | return true; | |||
1162 | ||||
1163 | // Is the function New an overload of the function Old? | |||
1164 | QualType OldQType = Context.getCanonicalType(Old->getType()); | |||
1165 | QualType NewQType = Context.getCanonicalType(New->getType()); | |||
1166 | ||||
1167 | // Compare the signatures (C++ 1.3.10) of the two functions to | |||
1168 | // determine whether they are overloads. If we find any mismatch | |||
1169 | // in the signature, they are overloads. | |||
1170 | ||||
1171 | // If either of these functions is a K&R-style function (no | |||
1172 | // prototype), then we consider them to have matching signatures. | |||
1173 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | |||
1174 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) | |||
1175 | return false; | |||
1176 | ||||
1177 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); | |||
1178 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); | |||
1179 | ||||
1180 | // The signature of a function includes the types of its | |||
1181 | // parameters (C++ 1.3.10), which includes the presence or absence | |||
1182 | // of the ellipsis; see C++ DR 357). | |||
1183 | if (OldQType != NewQType && | |||
1184 | (OldType->getNumParams() != NewType->getNumParams() || | |||
1185 | OldType->isVariadic() != NewType->isVariadic() || | |||
1186 | !FunctionParamTypesAreEqual(OldType, NewType))) | |||
1187 | return true; | |||
1188 | ||||
1189 | // C++ [temp.over.link]p4: | |||
1190 | // The signature of a function template consists of its function | |||
1191 | // signature, its return type and its template parameter list. The names | |||
1192 | // of the template parameters are significant only for establishing the | |||
1193 | // relationship between the template parameters and the rest of the | |||
1194 | // signature. | |||
1195 | // | |||
1196 | // We check the return type and template parameter lists for function | |||
1197 | // templates first; the remaining checks follow. | |||
1198 | // | |||
1199 | // However, we don't consider either of these when deciding whether | |||
1200 | // a member introduced by a shadow declaration is hidden. | |||
1201 | if (!UseMemberUsingDeclRules && NewTemplate && | |||
1202 | (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | |||
1203 | OldTemplate->getTemplateParameters(), | |||
1204 | false, TPL_TemplateMatch) || | |||
1205 | !Context.hasSameType(Old->getDeclaredReturnType(), | |||
1206 | New->getDeclaredReturnType()))) | |||
1207 | return true; | |||
1208 | ||||
1209 | // If the function is a class member, its signature includes the | |||
1210 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. | |||
1211 | // | |||
1212 | // As part of this, also check whether one of the member functions | |||
1213 | // is static, in which case they are not overloads (C++ | |||
1214 | // 13.1p2). While not part of the definition of the signature, | |||
1215 | // this check is important to determine whether these functions | |||
1216 | // can be overloaded. | |||
1217 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | |||
1218 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | |||
1219 | if (OldMethod && NewMethod && | |||
1220 | !OldMethod->isStatic() && !NewMethod->isStatic()) { | |||
1221 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { | |||
1222 | if (!UseMemberUsingDeclRules && | |||
1223 | (OldMethod->getRefQualifier() == RQ_None || | |||
1224 | NewMethod->getRefQualifier() == RQ_None)) { | |||
1225 | // C++0x [over.load]p2: | |||
1226 | // - Member function declarations with the same name and the same | |||
1227 | // parameter-type-list as well as member function template | |||
1228 | // declarations with the same name, the same parameter-type-list, and | |||
1229 | // the same template parameter lists cannot be overloaded if any of | |||
1230 | // them, but not all, have a ref-qualifier (8.3.5). | |||
1231 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) | |||
1232 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); | |||
1233 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); | |||
1234 | } | |||
1235 | return true; | |||
1236 | } | |||
1237 | ||||
1238 | // We may not have applied the implicit const for a constexpr member | |||
1239 | // function yet (because we haven't yet resolved whether this is a static | |||
1240 | // or non-static member function). Add it now, on the assumption that this | |||
1241 | // is a redeclaration of OldMethod. | |||
1242 | auto OldQuals = OldMethod->getMethodQualifiers(); | |||
1243 | auto NewQuals = NewMethod->getMethodQualifiers(); | |||
1244 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && | |||
1245 | !isa<CXXConstructorDecl>(NewMethod)) | |||
1246 | NewQuals.addConst(); | |||
1247 | // We do not allow overloading based off of '__restrict'. | |||
1248 | OldQuals.removeRestrict(); | |||
1249 | NewQuals.removeRestrict(); | |||
1250 | if (OldQuals != NewQuals) | |||
1251 | return true; | |||
1252 | } | |||
1253 | ||||
1254 | // Though pass_object_size is placed on parameters and takes an argument, we | |||
1255 | // consider it to be a function-level modifier for the sake of function | |||
1256 | // identity. Either the function has one or more parameters with | |||
1257 | // pass_object_size or it doesn't. | |||
1258 | if (functionHasPassObjectSizeParams(New) != | |||
1259 | functionHasPassObjectSizeParams(Old)) | |||
1260 | return true; | |||
1261 | ||||
1262 | // enable_if attributes are an order-sensitive part of the signature. | |||
1263 | for (specific_attr_iterator<EnableIfAttr> | |||
1264 | NewI = New->specific_attr_begin<EnableIfAttr>(), | |||
1265 | NewE = New->specific_attr_end<EnableIfAttr>(), | |||
1266 | OldI = Old->specific_attr_begin<EnableIfAttr>(), | |||
1267 | OldE = Old->specific_attr_end<EnableIfAttr>(); | |||
1268 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { | |||
1269 | if (NewI == NewE || OldI == OldE) | |||
1270 | return true; | |||
1271 | llvm::FoldingSetNodeID NewID, OldID; | |||
1272 | NewI->getCond()->Profile(NewID, Context, true); | |||
1273 | OldI->getCond()->Profile(OldID, Context, true); | |||
1274 | if (NewID != OldID) | |||
1275 | return true; | |||
1276 | } | |||
1277 | ||||
1278 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { | |||
1279 | // Don't allow overloading of destructors. (In theory we could, but it | |||
1280 | // would be a giant change to clang.) | |||
1281 | if (!isa<CXXDestructorDecl>(New)) { | |||
1282 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), | |||
1283 | OldTarget = IdentifyCUDATarget(Old); | |||
1284 | if (NewTarget != CFT_InvalidTarget) { | |||
1285 | assert((OldTarget != CFT_InvalidTarget) &&((void)0) | |||
1286 | "Unexpected invalid target.")((void)0); | |||
1287 | ||||
1288 | // Allow overloading of functions with same signature and different CUDA | |||
1289 | // target attributes. | |||
1290 | if (NewTarget != OldTarget) | |||
1291 | return true; | |||
1292 | } | |||
1293 | } | |||
1294 | } | |||
1295 | ||||
1296 | if (ConsiderRequiresClauses) { | |||
1297 | Expr *NewRC = New->getTrailingRequiresClause(), | |||
1298 | *OldRC = Old->getTrailingRequiresClause(); | |||
1299 | if ((NewRC != nullptr) != (OldRC != nullptr)) | |||
1300 | // RC are most certainly different - these are overloads. | |||
1301 | return true; | |||
1302 | ||||
1303 | if (NewRC) { | |||
1304 | llvm::FoldingSetNodeID NewID, OldID; | |||
1305 | NewRC->Profile(NewID, Context, /*Canonical=*/true); | |||
1306 | OldRC->Profile(OldID, Context, /*Canonical=*/true); | |||
1307 | if (NewID != OldID) | |||
1308 | // RCs are not equivalent - these are overloads. | |||
1309 | return true; | |||
1310 | } | |||
1311 | } | |||
1312 | ||||
1313 | // The signatures match; this is not an overload. | |||
1314 | return false; | |||
1315 | } | |||
1316 | ||||
1317 | /// Tries a user-defined conversion from From to ToType. | |||
1318 | /// | |||
1319 | /// Produces an implicit conversion sequence for when a standard conversion | |||
1320 | /// is not an option. See TryImplicitConversion for more information. | |||
1321 | static ImplicitConversionSequence | |||
1322 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
1323 | bool SuppressUserConversions, | |||
1324 | AllowedExplicit AllowExplicit, | |||
1325 | bool InOverloadResolution, | |||
1326 | bool CStyle, | |||
1327 | bool AllowObjCWritebackConversion, | |||
1328 | bool AllowObjCConversionOnExplicit) { | |||
1329 | ImplicitConversionSequence ICS; | |||
1330 | ||||
1331 | if (SuppressUserConversions) { | |||
1332 | // We're not in the case above, so there is no conversion that | |||
1333 | // we can perform. | |||
1334 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1335 | return ICS; | |||
1336 | } | |||
1337 | ||||
1338 | // Attempt user-defined conversion. | |||
1339 | OverloadCandidateSet Conversions(From->getExprLoc(), | |||
1340 | OverloadCandidateSet::CSK_Normal); | |||
1341 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, | |||
1342 | Conversions, AllowExplicit, | |||
1343 | AllowObjCConversionOnExplicit)) { | |||
1344 | case OR_Success: | |||
1345 | case OR_Deleted: | |||
1346 | ICS.setUserDefined(); | |||
1347 | // C++ [over.ics.user]p4: | |||
1348 | // A conversion of an expression of class type to the same class | |||
1349 | // type is given Exact Match rank, and a conversion of an | |||
1350 | // expression of class type to a base class of that type is | |||
1351 | // given Conversion rank, in spite of the fact that a copy | |||
1352 | // constructor (i.e., a user-defined conversion function) is | |||
1353 | // called for those cases. | |||
1354 | if (CXXConstructorDecl *Constructor | |||
1355 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | |||
1356 | QualType FromCanon | |||
1357 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); | |||
1358 | QualType ToCanon | |||
1359 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); | |||
1360 | if (Constructor->isCopyConstructor() && | |||
1361 | (FromCanon == ToCanon || | |||
1362 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { | |||
1363 | // Turn this into a "standard" conversion sequence, so that it | |||
1364 | // gets ranked with standard conversion sequences. | |||
1365 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; | |||
1366 | ICS.setStandard(); | |||
1367 | ICS.Standard.setAsIdentityConversion(); | |||
1368 | ICS.Standard.setFromType(From->getType()); | |||
1369 | ICS.Standard.setAllToTypes(ToType); | |||
1370 | ICS.Standard.CopyConstructor = Constructor; | |||
1371 | ICS.Standard.FoundCopyConstructor = Found; | |||
1372 | if (ToCanon != FromCanon) | |||
1373 | ICS.Standard.Second = ICK_Derived_To_Base; | |||
1374 | } | |||
1375 | } | |||
1376 | break; | |||
1377 | ||||
1378 | case OR_Ambiguous: | |||
1379 | ICS.setAmbiguous(); | |||
1380 | ICS.Ambiguous.setFromType(From->getType()); | |||
1381 | ICS.Ambiguous.setToType(ToType); | |||
1382 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | |||
1383 | Cand != Conversions.end(); ++Cand) | |||
1384 | if (Cand->Best) | |||
1385 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | |||
1386 | break; | |||
1387 | ||||
1388 | // Fall through. | |||
1389 | case OR_No_Viable_Function: | |||
1390 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1391 | break; | |||
1392 | } | |||
1393 | ||||
1394 | return ICS; | |||
1395 | } | |||
1396 | ||||
1397 | /// TryImplicitConversion - Attempt to perform an implicit conversion | |||
1398 | /// from the given expression (Expr) to the given type (ToType). This | |||
1399 | /// function returns an implicit conversion sequence that can be used | |||
1400 | /// to perform the initialization. Given | |||
1401 | /// | |||
1402 | /// void f(float f); | |||
1403 | /// void g(int i) { f(i); } | |||
1404 | /// | |||
1405 | /// this routine would produce an implicit conversion sequence to | |||
1406 | /// describe the initialization of f from i, which will be a standard | |||
1407 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | |||
1408 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | |||
1409 | // | |||
1410 | /// Note that this routine only determines how the conversion can be | |||
1411 | /// performed; it does not actually perform the conversion. As such, | |||
1412 | /// it will not produce any diagnostics if no conversion is available, | |||
1413 | /// but will instead return an implicit conversion sequence of kind | |||
1414 | /// "BadConversion". | |||
1415 | /// | |||
1416 | /// If @p SuppressUserConversions, then user-defined conversions are | |||
1417 | /// not permitted. | |||
1418 | /// If @p AllowExplicit, then explicit user-defined conversions are | |||
1419 | /// permitted. | |||
1420 | /// | |||
1421 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C | |||
1422 | /// writeback conversion, which allows __autoreleasing id* parameters to | |||
1423 | /// be initialized with __strong id* or __weak id* arguments. | |||
1424 | static ImplicitConversionSequence | |||
1425 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, | |||
1426 | bool SuppressUserConversions, | |||
1427 | AllowedExplicit AllowExplicit, | |||
1428 | bool InOverloadResolution, | |||
1429 | bool CStyle, | |||
1430 | bool AllowObjCWritebackConversion, | |||
1431 | bool AllowObjCConversionOnExplicit) { | |||
1432 | ImplicitConversionSequence ICS; | |||
1433 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, | |||
1434 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ | |||
1435 | ICS.setStandard(); | |||
1436 | return ICS; | |||
1437 | } | |||
1438 | ||||
1439 | if (!S.getLangOpts().CPlusPlus) { | |||
1440 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
1441 | return ICS; | |||
1442 | } | |||
1443 | ||||
1444 | // C++ [over.ics.user]p4: | |||
1445 | // A conversion of an expression of class type to the same class | |||
1446 | // type is given Exact Match rank, and a conversion of an | |||
1447 | // expression of class type to a base class of that type is | |||
1448 | // given Conversion rank, in spite of the fact that a copy/move | |||
1449 | // constructor (i.e., a user-defined conversion function) is | |||
1450 | // called for those cases. | |||
1451 | QualType FromType = From->getType(); | |||
1452 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && | |||
1453 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || | |||
1454 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { | |||
1455 | ICS.setStandard(); | |||
1456 | ICS.Standard.setAsIdentityConversion(); | |||
1457 | ICS.Standard.setFromType(FromType); | |||
1458 | ICS.Standard.setAllToTypes(ToType); | |||
1459 | ||||
1460 | // We don't actually check at this point whether there is a valid | |||
1461 | // copy/move constructor, since overloading just assumes that it | |||
1462 | // exists. When we actually perform initialization, we'll find the | |||
1463 | // appropriate constructor to copy the returned object, if needed. | |||
1464 | ICS.Standard.CopyConstructor = nullptr; | |||
1465 | ||||
1466 | // Determine whether this is considered a derived-to-base conversion. | |||
1467 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1468 | ICS.Standard.Second = ICK_Derived_To_Base; | |||
1469 | ||||
1470 | return ICS; | |||
1471 | } | |||
1472 | ||||
1473 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | |||
1474 | AllowExplicit, InOverloadResolution, CStyle, | |||
1475 | AllowObjCWritebackConversion, | |||
1476 | AllowObjCConversionOnExplicit); | |||
1477 | } | |||
1478 | ||||
1479 | ImplicitConversionSequence | |||
1480 | Sema::TryImplicitConversion(Expr *From, QualType ToType, | |||
1481 | bool SuppressUserConversions, | |||
1482 | AllowedExplicit AllowExplicit, | |||
1483 | bool InOverloadResolution, | |||
1484 | bool CStyle, | |||
1485 | bool AllowObjCWritebackConversion) { | |||
1486 | return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, | |||
1487 | AllowExplicit, InOverloadResolution, CStyle, | |||
1488 | AllowObjCWritebackConversion, | |||
1489 | /*AllowObjCConversionOnExplicit=*/false); | |||
1490 | } | |||
1491 | ||||
1492 | /// PerformImplicitConversion - Perform an implicit conversion of the | |||
1493 | /// expression From to the type ToType. Returns the | |||
1494 | /// converted expression. Flavor is the kind of conversion we're | |||
1495 | /// performing, used in the error message. If @p AllowExplicit, | |||
1496 | /// explicit user-defined conversions are permitted. | |||
1497 | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, | |||
1498 | AssignmentAction Action, | |||
1499 | bool AllowExplicit) { | |||
1500 | if (checkPlaceholderForOverload(*this, From)) | |||
1501 | return ExprError(); | |||
1502 | ||||
1503 | // Objective-C ARC: Determine whether we will allow the writeback conversion. | |||
1504 | bool AllowObjCWritebackConversion | |||
1505 | = getLangOpts().ObjCAutoRefCount && | |||
1506 | (Action == AA_Passing || Action == AA_Sending); | |||
1507 | if (getLangOpts().ObjC) | |||
1508 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, | |||
1509 | From->getType(), From); | |||
1510 | ImplicitConversionSequence ICS = ::TryImplicitConversion( | |||
1511 | *this, From, ToType, | |||
1512 | /*SuppressUserConversions=*/false, | |||
1513 | AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, | |||
1514 | /*InOverloadResolution=*/false, | |||
1515 | /*CStyle=*/false, AllowObjCWritebackConversion, | |||
1516 | /*AllowObjCConversionOnExplicit=*/false); | |||
1517 | return PerformImplicitConversion(From, ToType, ICS, Action); | |||
1518 | } | |||
1519 | ||||
1520 | /// Determine whether the conversion from FromType to ToType is a valid | |||
1521 | /// conversion that strips "noexcept" or "noreturn" off the nested function | |||
1522 | /// type. | |||
1523 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, | |||
1524 | QualType &ResultTy) { | |||
1525 | if (Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1526 | return false; | |||
1527 | ||||
1528 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) | |||
1529 | // or F(t noexcept) -> F(t) | |||
1530 | // where F adds one of the following at most once: | |||
1531 | // - a pointer | |||
1532 | // - a member pointer | |||
1533 | // - a block pointer | |||
1534 | // Changes here need matching changes in FindCompositePointerType. | |||
1535 | CanQualType CanTo = Context.getCanonicalType(ToType); | |||
1536 | CanQualType CanFrom = Context.getCanonicalType(FromType); | |||
1537 | Type::TypeClass TyClass = CanTo->getTypeClass(); | |||
1538 | if (TyClass != CanFrom->getTypeClass()) return false; | |||
1539 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { | |||
1540 | if (TyClass == Type::Pointer) { | |||
1541 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); | |||
1542 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); | |||
1543 | } else if (TyClass == Type::BlockPointer) { | |||
1544 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); | |||
1545 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); | |||
1546 | } else if (TyClass == Type::MemberPointer) { | |||
1547 | auto ToMPT = CanTo.castAs<MemberPointerType>(); | |||
1548 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); | |||
1549 | // A function pointer conversion cannot change the class of the function. | |||
1550 | if (ToMPT->getClass() != FromMPT->getClass()) | |||
1551 | return false; | |||
1552 | CanTo = ToMPT->getPointeeType(); | |||
1553 | CanFrom = FromMPT->getPointeeType(); | |||
1554 | } else { | |||
1555 | return false; | |||
1556 | } | |||
1557 | ||||
1558 | TyClass = CanTo->getTypeClass(); | |||
1559 | if (TyClass != CanFrom->getTypeClass()) return false; | |||
1560 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) | |||
1561 | return false; | |||
1562 | } | |||
1563 | ||||
1564 | const auto *FromFn = cast<FunctionType>(CanFrom); | |||
1565 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | |||
1566 | ||||
1567 | const auto *ToFn = cast<FunctionType>(CanTo); | |||
1568 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | |||
1569 | ||||
1570 | bool Changed = false; | |||
1571 | ||||
1572 | // Drop 'noreturn' if not present in target type. | |||
1573 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { | |||
1574 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); | |||
1575 | Changed = true; | |||
1576 | } | |||
1577 | ||||
1578 | // Drop 'noexcept' if not present in target type. | |||
1579 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { | |||
1580 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); | |||
1581 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { | |||
1582 | FromFn = cast<FunctionType>( | |||
1583 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), | |||
1584 | EST_None) | |||
1585 | .getTypePtr()); | |||
1586 | Changed = true; | |||
1587 | } | |||
1588 | ||||
1589 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid | |||
1590 | // only if the ExtParameterInfo lists of the two function prototypes can be | |||
1591 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. | |||
1592 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | |||
1593 | bool CanUseToFPT, CanUseFromFPT; | |||
1594 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, | |||
1595 | CanUseFromFPT, NewParamInfos) && | |||
1596 | CanUseToFPT && !CanUseFromFPT) { | |||
1597 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); | |||
1598 | ExtInfo.ExtParameterInfos = | |||
1599 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); | |||
1600 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), | |||
1601 | FromFPT->getParamTypes(), ExtInfo); | |||
1602 | FromFn = QT->getAs<FunctionType>(); | |||
1603 | Changed = true; | |||
1604 | } | |||
1605 | } | |||
1606 | ||||
1607 | if (!Changed) | |||
1608 | return false; | |||
1609 | ||||
1610 | assert(QualType(FromFn, 0).isCanonical())((void)0); | |||
1611 | if (QualType(FromFn, 0) != CanTo) return false; | |||
1612 | ||||
1613 | ResultTy = ToType; | |||
1614 | return true; | |||
1615 | } | |||
1616 | ||||
1617 | /// Determine whether the conversion from FromType to ToType is a valid | |||
1618 | /// vector conversion. | |||
1619 | /// | |||
1620 | /// \param ICK Will be set to the vector conversion kind, if this is a vector | |||
1621 | /// conversion. | |||
1622 | static bool IsVectorConversion(Sema &S, QualType FromType, | |||
1623 | QualType ToType, ImplicitConversionKind &ICK) { | |||
1624 | // We need at least one of these types to be a vector type to have a vector | |||
1625 | // conversion. | |||
1626 | if (!ToType->isVectorType() && !FromType->isVectorType()) | |||
1627 | return false; | |||
1628 | ||||
1629 | // Identical types require no conversions. | |||
1630 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | |||
1631 | return false; | |||
1632 | ||||
1633 | // There are no conversions between extended vector types, only identity. | |||
1634 | if (ToType->isExtVectorType()) { | |||
1635 | // There are no conversions between extended vector types other than the | |||
1636 | // identity conversion. | |||
1637 | if (FromType->isExtVectorType()) | |||
1638 | return false; | |||
1639 | ||||
1640 | // Vector splat from any arithmetic type to a vector. | |||
1641 | if (FromType->isArithmeticType()) { | |||
1642 | ICK = ICK_Vector_Splat; | |||
1643 | return true; | |||
1644 | } | |||
1645 | } | |||
1646 | ||||
1647 | if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) | |||
1648 | if (S.Context.areCompatibleSveTypes(FromType, ToType) || | |||
1649 | S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { | |||
1650 | ICK = ICK_SVE_Vector_Conversion; | |||
1651 | return true; | |||
1652 | } | |||
1653 | ||||
1654 | // We can perform the conversion between vector types in the following cases: | |||
1655 | // 1)vector types are equivalent AltiVec and GCC vector types | |||
1656 | // 2)lax vector conversions are permitted and the vector types are of the | |||
1657 | // same size | |||
1658 | // 3)the destination type does not have the ARM MVE strict-polymorphism | |||
1659 | // attribute, which inhibits lax vector conversion for overload resolution | |||
1660 | // only | |||
1661 | if (ToType->isVectorType() && FromType->isVectorType()) { | |||
1662 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || | |||
1663 | (S.isLaxVectorConversion(FromType, ToType) && | |||
1664 | !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { | |||
1665 | ICK = ICK_Vector_Conversion; | |||
1666 | return true; | |||
1667 | } | |||
1668 | } | |||
1669 | ||||
1670 | return false; | |||
1671 | } | |||
1672 | ||||
1673 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | |||
1674 | bool InOverloadResolution, | |||
1675 | StandardConversionSequence &SCS, | |||
1676 | bool CStyle); | |||
1677 | ||||
1678 | /// IsStandardConversion - Determines whether there is a standard | |||
1679 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | |||
1680 | /// expression From to the type ToType. Standard conversion sequences | |||
1681 | /// only consider non-class types; for conversions that involve class | |||
1682 | /// types, use TryImplicitConversion. If a conversion exists, SCS will | |||
1683 | /// contain the standard conversion sequence required to perform this | |||
1684 | /// conversion and this routine will return true. Otherwise, this | |||
1685 | /// routine will return false and the value of SCS is unspecified. | |||
1686 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | |||
1687 | bool InOverloadResolution, | |||
1688 | StandardConversionSequence &SCS, | |||
1689 | bool CStyle, | |||
1690 | bool AllowObjCWritebackConversion) { | |||
1691 | QualType FromType = From->getType(); | |||
1692 | ||||
1693 | // Standard conversions (C++ [conv]) | |||
1694 | SCS.setAsIdentityConversion(); | |||
1695 | SCS.IncompatibleObjC = false; | |||
1696 | SCS.setFromType(FromType); | |||
1697 | SCS.CopyConstructor = nullptr; | |||
1698 | ||||
1699 | // There are no standard conversions for class types in C++, so | |||
1700 | // abort early. When overloading in C, however, we do permit them. | |||
1701 | if (S.getLangOpts().CPlusPlus && | |||
1702 | (FromType->isRecordType() || ToType->isRecordType())) | |||
1703 | return false; | |||
1704 | ||||
1705 | // The first conversion can be an lvalue-to-rvalue conversion, | |||
1706 | // array-to-pointer conversion, or function-to-pointer conversion | |||
1707 | // (C++ 4p1). | |||
1708 | ||||
1709 | if (FromType == S.Context.OverloadTy) { | |||
1710 | DeclAccessPair AccessPair; | |||
1711 | if (FunctionDecl *Fn | |||
1712 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, | |||
1713 | AccessPair)) { | |||
1714 | // We were able to resolve the address of the overloaded function, | |||
1715 | // so we can convert to the type of that function. | |||
1716 | FromType = Fn->getType(); | |||
1717 | SCS.setFromType(FromType); | |||
1718 | ||||
1719 | // we can sometimes resolve &foo<int> regardless of ToType, so check | |||
1720 | // if the type matches (identity) or we are converting to bool | |||
1721 | if (!S.Context.hasSameUnqualifiedType( | |||
1722 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { | |||
1723 | QualType resultTy; | |||
1724 | // if the function type matches except for [[noreturn]], it's ok | |||
1725 | if (!S.IsFunctionConversion(FromType, | |||
1726 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) | |||
1727 | // otherwise, only a boolean conversion is standard | |||
1728 | if (!ToType->isBooleanType()) | |||
1729 | return false; | |||
1730 | } | |||
1731 | ||||
1732 | // Check if the "from" expression is taking the address of an overloaded | |||
1733 | // function and recompute the FromType accordingly. Take advantage of the | |||
1734 | // fact that non-static member functions *must* have such an address-of | |||
1735 | // expression. | |||
1736 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); | |||
1737 | if (Method && !Method->isStatic()) { | |||
1738 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&((void)0) | |||
1739 | "Non-unary operator on non-static member address")((void)0); | |||
1740 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((void)0) | |||
1741 | == UO_AddrOf &&((void)0) | |||
1742 | "Non-address-of operator on non-static member address")((void)0); | |||
1743 | const Type *ClassType | |||
1744 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); | |||
1745 | FromType = S.Context.getMemberPointerType(FromType, ClassType); | |||
1746 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { | |||
1747 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((void)0) | |||
1748 | UO_AddrOf &&((void)0) | |||
1749 | "Non-address-of operator for overloaded function expression")((void)0); | |||
1750 | FromType = S.Context.getPointerType(FromType); | |||
1751 | } | |||
1752 | ||||
1753 | // Check that we've computed the proper type after overload resolution. | |||
1754 | // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't | |||
1755 | // be calling it from within an NDEBUG block. | |||
1756 | assert(S.Context.hasSameType(((void)0) | |||
1757 | FromType,((void)0) | |||
1758 | S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((void)0); | |||
1759 | } else { | |||
1760 | return false; | |||
1761 | } | |||
1762 | } | |||
1763 | // Lvalue-to-rvalue conversion (C++11 4.1): | |||
1764 | // A glvalue (3.10) of a non-function, non-array type T can | |||
1765 | // be converted to a prvalue. | |||
1766 | bool argIsLValue = From->isGLValue(); | |||
1767 | if (argIsLValue && | |||
1768 | !FromType->isFunctionType() && !FromType->isArrayType() && | |||
1769 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { | |||
1770 | SCS.First = ICK_Lvalue_To_Rvalue; | |||
1771 | ||||
1772 | // C11 6.3.2.1p2: | |||
1773 | // ... if the lvalue has atomic type, the value has the non-atomic version | |||
1774 | // of the type of the lvalue ... | |||
1775 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) | |||
1776 | FromType = Atomic->getValueType(); | |||
1777 | ||||
1778 | // If T is a non-class type, the type of the rvalue is the | |||
1779 | // cv-unqualified version of T. Otherwise, the type of the rvalue | |||
1780 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | |||
1781 | // just strip the qualifiers because they don't matter. | |||
1782 | FromType = FromType.getUnqualifiedType(); | |||
1783 | } else if (FromType->isArrayType()) { | |||
1784 | // Array-to-pointer conversion (C++ 4.2) | |||
1785 | SCS.First = ICK_Array_To_Pointer; | |||
1786 | ||||
1787 | // An lvalue or rvalue of type "array of N T" or "array of unknown | |||
1788 | // bound of T" can be converted to an rvalue of type "pointer to | |||
1789 | // T" (C++ 4.2p1). | |||
1790 | FromType = S.Context.getArrayDecayedType(FromType); | |||
1791 | ||||
1792 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { | |||
1793 | // This conversion is deprecated in C++03 (D.4) | |||
1794 | SCS.DeprecatedStringLiteralToCharPtr = true; | |||
1795 | ||||
1796 | // For the purpose of ranking in overload resolution | |||
1797 | // (13.3.3.1.1), this conversion is considered an | |||
1798 | // array-to-pointer conversion followed by a qualification | |||
1799 | // conversion (4.4). (C++ 4.2p2) | |||
1800 | SCS.Second = ICK_Identity; | |||
1801 | SCS.Third = ICK_Qualification; | |||
1802 | SCS.QualificationIncludesObjCLifetime = false; | |||
1803 | SCS.setAllToTypes(FromType); | |||
1804 | return true; | |||
1805 | } | |||
1806 | } else if (FromType->isFunctionType() && argIsLValue) { | |||
1807 | // Function-to-pointer conversion (C++ 4.3). | |||
1808 | SCS.First = ICK_Function_To_Pointer; | |||
1809 | ||||
1810 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) | |||
1811 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | |||
1812 | if (!S.checkAddressOfFunctionIsAvailable(FD)) | |||
1813 | return false; | |||
1814 | ||||
1815 | // An lvalue of function type T can be converted to an rvalue of | |||
1816 | // type "pointer to T." The result is a pointer to the | |||
1817 | // function. (C++ 4.3p1). | |||
1818 | FromType = S.Context.getPointerType(FromType); | |||
1819 | } else { | |||
1820 | // We don't require any conversions for the first step. | |||
1821 | SCS.First = ICK_Identity; | |||
1822 | } | |||
1823 | SCS.setToType(0, FromType); | |||
1824 | ||||
1825 | // The second conversion can be an integral promotion, floating | |||
1826 | // point promotion, integral conversion, floating point conversion, | |||
1827 | // floating-integral conversion, pointer conversion, | |||
1828 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). | |||
1829 | // For overloading in C, this can also be a "compatible-type" | |||
1830 | // conversion. | |||
1831 | bool IncompatibleObjC = false; | |||
1832 | ImplicitConversionKind SecondICK = ICK_Identity; | |||
1833 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { | |||
1834 | // The unqualified versions of the types are the same: there's no | |||
1835 | // conversion to do. | |||
1836 | SCS.Second = ICK_Identity; | |||
1837 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { | |||
1838 | // Integral promotion (C++ 4.5). | |||
1839 | SCS.Second = ICK_Integral_Promotion; | |||
1840 | FromType = ToType.getUnqualifiedType(); | |||
1841 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { | |||
1842 | // Floating point promotion (C++ 4.6). | |||
1843 | SCS.Second = ICK_Floating_Promotion; | |||
1844 | FromType = ToType.getUnqualifiedType(); | |||
1845 | } else if (S.IsComplexPromotion(FromType, ToType)) { | |||
1846 | // Complex promotion (Clang extension) | |||
1847 | SCS.Second = ICK_Complex_Promotion; | |||
1848 | FromType = ToType.getUnqualifiedType(); | |||
1849 | } else if (ToType->isBooleanType() && | |||
1850 | (FromType->isArithmeticType() || | |||
1851 | FromType->isAnyPointerType() || | |||
1852 | FromType->isBlockPointerType() || | |||
1853 | FromType->isMemberPointerType())) { | |||
1854 | // Boolean conversions (C++ 4.12). | |||
1855 | SCS.Second = ICK_Boolean_Conversion; | |||
1856 | FromType = S.Context.BoolTy; | |||
1857 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | |||
1858 | ToType->isIntegralType(S.Context)) { | |||
1859 | // Integral conversions (C++ 4.7). | |||
1860 | SCS.Second = ICK_Integral_Conversion; | |||
1861 | FromType = ToType.getUnqualifiedType(); | |||
1862 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { | |||
1863 | // Complex conversions (C99 6.3.1.6) | |||
1864 | SCS.Second = ICK_Complex_Conversion; | |||
1865 | FromType = ToType.getUnqualifiedType(); | |||
1866 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || | |||
1867 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { | |||
1868 | // Complex-real conversions (C99 6.3.1.7) | |||
1869 | SCS.Second = ICK_Complex_Real; | |||
1870 | FromType = ToType.getUnqualifiedType(); | |||
1871 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { | |||
1872 | // FIXME: disable conversions between long double and __float128 if | |||
1873 | // their representation is different until there is back end support | |||
1874 | // We of course allow this conversion if long double is really double. | |||
1875 | ||||
1876 | // Conversions between bfloat and other floats are not permitted. | |||
1877 | if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) | |||
1878 | return false; | |||
1879 | if (&S.Context.getFloatTypeSemantics(FromType) != | |||
1880 | &S.Context.getFloatTypeSemantics(ToType)) { | |||
1881 | bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && | |||
1882 | ToType == S.Context.LongDoubleTy) || | |||
1883 | (FromType == S.Context.LongDoubleTy && | |||
1884 | ToType == S.Context.Float128Ty)); | |||
1885 | if (Float128AndLongDouble && | |||
1886 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == | |||
1887 | &llvm::APFloat::PPCDoubleDouble())) | |||
1888 | return false; | |||
1889 | } | |||
1890 | // Floating point conversions (C++ 4.8). | |||
1891 | SCS.Second = ICK_Floating_Conversion; | |||
1892 | FromType = ToType.getUnqualifiedType(); | |||
1893 | } else if ((FromType->isRealFloatingType() && | |||
1894 | ToType->isIntegralType(S.Context)) || | |||
1895 | (FromType->isIntegralOrUnscopedEnumerationType() && | |||
1896 | ToType->isRealFloatingType())) { | |||
1897 | // Conversions between bfloat and int are not permitted. | |||
1898 | if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) | |||
1899 | return false; | |||
1900 | ||||
1901 | // Floating-integral conversions (C++ 4.9). | |||
1902 | SCS.Second = ICK_Floating_Integral; | |||
1903 | FromType = ToType.getUnqualifiedType(); | |||
1904 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { | |||
1905 | SCS.Second = ICK_Block_Pointer_Conversion; | |||
1906 | } else if (AllowObjCWritebackConversion && | |||
1907 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { | |||
1908 | SCS.Second = ICK_Writeback_Conversion; | |||
1909 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, | |||
1910 | FromType, IncompatibleObjC)) { | |||
1911 | // Pointer conversions (C++ 4.10). | |||
1912 | SCS.Second = ICK_Pointer_Conversion; | |||
1913 | SCS.IncompatibleObjC = IncompatibleObjC; | |||
1914 | FromType = FromType.getUnqualifiedType(); | |||
1915 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, | |||
1916 | InOverloadResolution, FromType)) { | |||
1917 | // Pointer to member conversions (4.11). | |||
1918 | SCS.Second = ICK_Pointer_Member; | |||
1919 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { | |||
1920 | SCS.Second = SecondICK; | |||
1921 | FromType = ToType.getUnqualifiedType(); | |||
1922 | } else if (!S.getLangOpts().CPlusPlus && | |||
1923 | S.Context.typesAreCompatible(ToType, FromType)) { | |||
1924 | // Compatible conversions (Clang extension for C function overloading) | |||
1925 | SCS.Second = ICK_Compatible_Conversion; | |||
1926 | FromType = ToType.getUnqualifiedType(); | |||
1927 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, | |||
1928 | InOverloadResolution, | |||
1929 | SCS, CStyle)) { | |||
1930 | SCS.Second = ICK_TransparentUnionConversion; | |||
1931 | FromType = ToType; | |||
1932 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, | |||
1933 | CStyle)) { | |||
1934 | // tryAtomicConversion has updated the standard conversion sequence | |||
1935 | // appropriately. | |||
1936 | return true; | |||
1937 | } else if (ToType->isEventT() && | |||
1938 | From->isIntegerConstantExpr(S.getASTContext()) && | |||
1939 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { | |||
1940 | SCS.Second = ICK_Zero_Event_Conversion; | |||
1941 | FromType = ToType; | |||
1942 | } else if (ToType->isQueueT() && | |||
1943 | From->isIntegerConstantExpr(S.getASTContext()) && | |||
1944 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { | |||
1945 | SCS.Second = ICK_Zero_Queue_Conversion; | |||
1946 | FromType = ToType; | |||
1947 | } else if (ToType->isSamplerT() && | |||
1948 | From->isIntegerConstantExpr(S.getASTContext())) { | |||
1949 | SCS.Second = ICK_Compatible_Conversion; | |||
1950 | FromType = ToType; | |||
1951 | } else { | |||
1952 | // No second conversion required. | |||
1953 | SCS.Second = ICK_Identity; | |||
1954 | } | |||
1955 | SCS.setToType(1, FromType); | |||
1956 | ||||
1957 | // The third conversion can be a function pointer conversion or a | |||
1958 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). | |||
1959 | bool ObjCLifetimeConversion; | |||
1960 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { | |||
1961 | // Function pointer conversions (removing 'noexcept') including removal of | |||
1962 | // 'noreturn' (Clang extension). | |||
1963 | SCS.Third = ICK_Function_Conversion; | |||
1964 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, | |||
1965 | ObjCLifetimeConversion)) { | |||
1966 | SCS.Third = ICK_Qualification; | |||
1967 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; | |||
1968 | FromType = ToType; | |||
1969 | } else { | |||
1970 | // No conversion required | |||
1971 | SCS.Third = ICK_Identity; | |||
1972 | } | |||
1973 | ||||
1974 | // C++ [over.best.ics]p6: | |||
1975 | // [...] Any difference in top-level cv-qualification is | |||
1976 | // subsumed by the initialization itself and does not constitute | |||
1977 | // a conversion. [...] | |||
1978 | QualType CanonFrom = S.Context.getCanonicalType(FromType); | |||
1979 | QualType CanonTo = S.Context.getCanonicalType(ToType); | |||
1980 | if (CanonFrom.getLocalUnqualifiedType() | |||
1981 | == CanonTo.getLocalUnqualifiedType() && | |||
1982 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { | |||
1983 | FromType = ToType; | |||
1984 | CanonFrom = CanonTo; | |||
1985 | } | |||
1986 | ||||
1987 | SCS.setToType(2, FromType); | |||
1988 | ||||
1989 | if (CanonFrom == CanonTo) | |||
1990 | return true; | |||
1991 | ||||
1992 | // If we have not converted the argument type to the parameter type, | |||
1993 | // this is a bad conversion sequence, unless we're resolving an overload in C. | |||
1994 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) | |||
1995 | return false; | |||
1996 | ||||
1997 | ExprResult ER = ExprResult{From}; | |||
1998 | Sema::AssignConvertType Conv = | |||
1999 | S.CheckSingleAssignmentConstraints(ToType, ER, | |||
2000 | /*Diagnose=*/false, | |||
2001 | /*DiagnoseCFAudited=*/false, | |||
2002 | /*ConvertRHS=*/false); | |||
2003 | ImplicitConversionKind SecondConv; | |||
2004 | switch (Conv) { | |||
2005 | case Sema::Compatible: | |||
2006 | SecondConv = ICK_C_Only_Conversion; | |||
2007 | break; | |||
2008 | // For our purposes, discarding qualifiers is just as bad as using an | |||
2009 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop | |||
2010 | // qualifiers, as well. | |||
2011 | case Sema::CompatiblePointerDiscardsQualifiers: | |||
2012 | case Sema::IncompatiblePointer: | |||
2013 | case Sema::IncompatiblePointerSign: | |||
2014 | SecondConv = ICK_Incompatible_Pointer_Conversion; | |||
2015 | break; | |||
2016 | default: | |||
2017 | return false; | |||
2018 | } | |||
2019 | ||||
2020 | // First can only be an lvalue conversion, so we pretend that this was the | |||
2021 | // second conversion. First should already be valid from earlier in the | |||
2022 | // function. | |||
2023 | SCS.Second = SecondConv; | |||
2024 | SCS.setToType(1, ToType); | |||
2025 | ||||
2026 | // Third is Identity, because Second should rank us worse than any other | |||
2027 | // conversion. This could also be ICK_Qualification, but it's simpler to just | |||
2028 | // lump everything in with the second conversion, and we don't gain anything | |||
2029 | // from making this ICK_Qualification. | |||
2030 | SCS.Third = ICK_Identity; | |||
2031 | SCS.setToType(2, ToType); | |||
2032 | return true; | |||
2033 | } | |||
2034 | ||||
2035 | static bool | |||
2036 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, | |||
2037 | QualType &ToType, | |||
2038 | bool InOverloadResolution, | |||
2039 | StandardConversionSequence &SCS, | |||
2040 | bool CStyle) { | |||
2041 | ||||
2042 | const RecordType *UT = ToType->getAsUnionType(); | |||
2043 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | |||
2044 | return false; | |||
2045 | // The field to initialize within the transparent union. | |||
2046 | RecordDecl *UD = UT->getDecl(); | |||
2047 | // It's compatible if the expression matches any of the fields. | |||
2048 | for (const auto *it : UD->fields()) { | |||
2049 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, | |||
2050 | CStyle, /*AllowObjCWritebackConversion=*/false)) { | |||
2051 | ToType = it->getType(); | |||
2052 | return true; | |||
2053 | } | |||
2054 | } | |||
2055 | return false; | |||
2056 | } | |||
2057 | ||||
2058 | /// IsIntegralPromotion - Determines whether the conversion from the | |||
2059 | /// expression From (whose potentially-adjusted type is FromType) to | |||
2060 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | |||
2061 | /// sets PromotedType to the promoted type. | |||
2062 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | |||
2063 | const BuiltinType *To = ToType->getAs<BuiltinType>(); | |||
2064 | // All integers are built-in. | |||
2065 | if (!To) { | |||
2066 | return false; | |||
2067 | } | |||
2068 | ||||
2069 | // An rvalue of type char, signed char, unsigned char, short int, or | |||
2070 | // unsigned short int can be converted to an rvalue of type int if | |||
2071 | // int can represent all the values of the source type; otherwise, | |||
2072 | // the source rvalue can be converted to an rvalue of type unsigned | |||
2073 | // int (C++ 4.5p1). | |||
2074 | if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && | |||
2075 | !FromType->isEnumeralType()) { | |||
2076 | if (// We can promote any signed, promotable integer type to an int | |||
2077 | (FromType->isSignedIntegerType() || | |||
2078 | // We can promote any unsigned integer type whose size is | |||
2079 | // less than int to an int. | |||
2080 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { | |||
2081 | return To->getKind() == BuiltinType::Int; | |||
2082 | } | |||
2083 | ||||
2084 | return To->getKind() == BuiltinType::UInt; | |||
2085 | } | |||
2086 | ||||
2087 | // C++11 [conv.prom]p3: | |||
2088 | // A prvalue of an unscoped enumeration type whose underlying type is not | |||
2089 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the | |||
2090 | // following types that can represent all the values of the enumeration | |||
2091 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, | |||
2092 | // unsigned int, long int, unsigned long int, long long int, or unsigned | |||
2093 | // long long int. If none of the types in that list can represent all the | |||
2094 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration | |||
2095 | // type can be converted to an rvalue a prvalue of the extended integer type | |||
2096 | // with lowest integer conversion rank (4.13) greater than the rank of long | |||
2097 | // long in which all the values of the enumeration can be represented. If | |||
2098 | // there are two such extended types, the signed one is chosen. | |||
2099 | // C++11 [conv.prom]p4: | |||
2100 | // A prvalue of an unscoped enumeration type whose underlying type is fixed | |||
2101 | // can be converted to a prvalue of its underlying type. Moreover, if | |||
2102 | // integral promotion can be applied to its underlying type, a prvalue of an | |||
2103 | // unscoped enumeration type whose underlying type is fixed can also be | |||
2104 | // converted to a prvalue of the promoted underlying type. | |||
2105 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { | |||
2106 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not | |||
2107 | // provided for a scoped enumeration. | |||
2108 | if (FromEnumType->getDecl()->isScoped()) | |||
2109 | return false; | |||
2110 | ||||
2111 | // We can perform an integral promotion to the underlying type of the enum, | |||
2112 | // even if that's not the promoted type. Note that the check for promoting | |||
2113 | // the underlying type is based on the type alone, and does not consider | |||
2114 | // the bitfield-ness of the actual source expression. | |||
2115 | if (FromEnumType->getDecl()->isFixed()) { | |||
2116 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); | |||
2117 | return Context.hasSameUnqualifiedType(Underlying, ToType) || | |||
2118 | IsIntegralPromotion(nullptr, Underlying, ToType); | |||
2119 | } | |||
2120 | ||||
2121 | // We have already pre-calculated the promotion type, so this is trivial. | |||
2122 | if (ToType->isIntegerType() && | |||
2123 | isCompleteType(From->getBeginLoc(), FromType)) | |||
2124 | return Context.hasSameUnqualifiedType( | |||
2125 | ToType, FromEnumType->getDecl()->getPromotionType()); | |||
2126 | ||||
2127 | // C++ [conv.prom]p5: | |||
2128 | // If the bit-field has an enumerated type, it is treated as any other | |||
2129 | // value of that type for promotion purposes. | |||
2130 | // | |||
2131 | // ... so do not fall through into the bit-field checks below in C++. | |||
2132 | if (getLangOpts().CPlusPlus) | |||
2133 | return false; | |||
2134 | } | |||
2135 | ||||
2136 | // C++0x [conv.prom]p2: | |||
2137 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted | |||
2138 | // to an rvalue a prvalue of the first of the following types that can | |||
2139 | // represent all the values of its underlying type: int, unsigned int, | |||
2140 | // long int, unsigned long int, long long int, or unsigned long long int. | |||
2141 | // If none of the types in that list can represent all the values of its | |||
2142 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, | |||
2143 | // or wchar_t can be converted to an rvalue a prvalue of its underlying | |||
2144 | // type. | |||
2145 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && | |||
2146 | ToType->isIntegerType()) { | |||
2147 | // Determine whether the type we're converting from is signed or | |||
2148 | // unsigned. | |||
2149 | bool FromIsSigned = FromType->isSignedIntegerType(); | |||
2150 | uint64_t FromSize = Context.getTypeSize(FromType); | |||
2151 | ||||
2152 | // The types we'll try to promote to, in the appropriate | |||
2153 | // order. Try each of these types. | |||
2154 | QualType PromoteTypes[6] = { | |||
2155 | Context.IntTy, Context.UnsignedIntTy, | |||
2156 | Context.LongTy, Context.UnsignedLongTy , | |||
2157 | Context.LongLongTy, Context.UnsignedLongLongTy | |||
2158 | }; | |||
2159 | for (int Idx = 0; Idx < 6; ++Idx) { | |||
2160 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | |||
2161 | if (FromSize < ToSize || | |||
2162 | (FromSize == ToSize && | |||
2163 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | |||
2164 | // We found the type that we can promote to. If this is the | |||
2165 | // type we wanted, we have a promotion. Otherwise, no | |||
2166 | // promotion. | |||
2167 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | |||
2168 | } | |||
2169 | } | |||
2170 | } | |||
2171 | ||||
2172 | // An rvalue for an integral bit-field (9.6) can be converted to an | |||
2173 | // rvalue of type int if int can represent all the values of the | |||
2174 | // bit-field; otherwise, it can be converted to unsigned int if | |||
2175 | // unsigned int can represent all the values of the bit-field. If | |||
2176 | // the bit-field is larger yet, no integral promotion applies to | |||
2177 | // it. If the bit-field has an enumerated type, it is treated as any | |||
2178 | // other value of that type for promotion purposes (C++ 4.5p3). | |||
2179 | // FIXME: We should delay checking of bit-fields until we actually perform the | |||
2180 | // conversion. | |||
2181 | // | |||
2182 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be | |||
2183 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum | |||
2184 | // bit-fields and those whose underlying type is larger than int) for GCC | |||
2185 | // compatibility. | |||
2186 | if (From) { | |||
2187 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { | |||
2188 | Optional<llvm::APSInt> BitWidth; | |||
2189 | if (FromType->isIntegralType(Context) && | |||
2190 | (BitWidth = | |||
2191 | MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { | |||
2192 | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); | |||
2193 | ToSize = Context.getTypeSize(ToType); | |||
2194 | ||||
2195 | // Are we promoting to an int from a bitfield that fits in an int? | |||
2196 | if (*BitWidth < ToSize || | |||
2197 | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { | |||
2198 | return To->getKind() == BuiltinType::Int; | |||
2199 | } | |||
2200 | ||||
2201 | // Are we promoting to an unsigned int from an unsigned bitfield | |||
2202 | // that fits into an unsigned int? | |||
2203 | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { | |||
2204 | return To->getKind() == BuiltinType::UInt; | |||
2205 | } | |||
2206 | ||||
2207 | return false; | |||
2208 | } | |||
2209 | } | |||
2210 | } | |||
2211 | ||||
2212 | // An rvalue of type bool can be converted to an rvalue of type int, | |||
2213 | // with false becoming zero and true becoming one (C++ 4.5p4). | |||
2214 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | |||
2215 | return true; | |||
2216 | } | |||
2217 | ||||
2218 | return false; | |||
2219 | } | |||
2220 | ||||
2221 | /// IsFloatingPointPromotion - Determines whether the conversion from | |||
2222 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | |||
2223 | /// returns true and sets PromotedType to the promoted type. | |||
2224 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | |||
2225 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | |||
2226 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | |||
2227 | /// An rvalue of type float can be converted to an rvalue of type | |||
2228 | /// double. (C++ 4.6p1). | |||
2229 | if (FromBuiltin->getKind() == BuiltinType::Float && | |||
2230 | ToBuiltin->getKind() == BuiltinType::Double) | |||
2231 | return true; | |||
2232 | ||||
2233 | // C99 6.3.1.5p1: | |||
2234 | // When a float is promoted to double or long double, or a | |||
2235 | // double is promoted to long double [...]. | |||
2236 | if (!getLangOpts().CPlusPlus && | |||
2237 | (FromBuiltin->getKind() == BuiltinType::Float || | |||
2238 | FromBuiltin->getKind() == BuiltinType::Double) && | |||
2239 | (ToBuiltin->getKind() == BuiltinType::LongDouble || | |||
2240 | ToBuiltin->getKind() == BuiltinType::Float128)) | |||
2241 | return true; | |||
2242 | ||||
2243 | // Half can be promoted to float. | |||
2244 | if (!getLangOpts().NativeHalfType && | |||
2245 | FromBuiltin->getKind() == BuiltinType::Half && | |||
2246 | ToBuiltin->getKind() == BuiltinType::Float) | |||
2247 | return true; | |||
2248 | } | |||
2249 | ||||
2250 | return false; | |||
2251 | } | |||
2252 | ||||
2253 | /// Determine if a conversion is a complex promotion. | |||
2254 | /// | |||
2255 | /// A complex promotion is defined as a complex -> complex conversion | |||
2256 | /// where the conversion between the underlying real types is a | |||
2257 | /// floating-point or integral promotion. | |||
2258 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | |||
2259 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | |||
2260 | if (!FromComplex) | |||
2261 | return false; | |||
2262 | ||||
2263 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | |||
2264 | if (!ToComplex) | |||
2265 | return false; | |||
2266 | ||||
2267 | return IsFloatingPointPromotion(FromComplex->getElementType(), | |||
2268 | ToComplex->getElementType()) || | |||
2269 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), | |||
2270 | ToComplex->getElementType()); | |||
2271 | } | |||
2272 | ||||
2273 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | |||
2274 | /// the pointer type FromPtr to a pointer to type ToPointee, with the | |||
2275 | /// same type qualifiers as FromPtr has on its pointee type. ToType, | |||
2276 | /// if non-empty, will be a pointer to ToType that may or may not have | |||
2277 | /// the right set of qualifiers on its pointee. | |||
2278 | /// | |||
2279 | static QualType | |||
2280 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, | |||
2281 | QualType ToPointee, QualType ToType, | |||
2282 | ASTContext &Context, | |||
2283 | bool StripObjCLifetime = false) { | |||
2284 | assert((FromPtr->getTypeClass() == Type::Pointer ||((void)0) | |||
2285 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&((void)0) | |||
2286 | "Invalid similarly-qualified pointer type")((void)0); | |||
2287 | ||||
2288 | /// Conversions to 'id' subsume cv-qualifier conversions. | |||
2289 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) | |||
2290 | return ToType.getUnqualifiedType(); | |||
2291 | ||||
2292 | QualType CanonFromPointee | |||
2293 | = Context.getCanonicalType(FromPtr->getPointeeType()); | |||
2294 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); | |||
2295 | Qualifiers Quals = CanonFromPointee.getQualifiers(); | |||
2296 | ||||
2297 | if (StripObjCLifetime) | |||
2298 | Quals.removeObjCLifetime(); | |||
2299 | ||||
2300 | // Exact qualifier match -> return the pointer type we're converting to. | |||
2301 | if (CanonToPointee.getLocalQualifiers() == Quals) { | |||
2302 | // ToType is exactly what we need. Return it. | |||
2303 | if (!ToType.isNull()) | |||
2304 | return ToType.getUnqualifiedType(); | |||
2305 | ||||
2306 | // Build a pointer to ToPointee. It has the right qualifiers | |||
2307 | // already. | |||
2308 | if (isa<ObjCObjectPointerType>(ToType)) | |||
2309 | return Context.getObjCObjectPointerType(ToPointee); | |||
2310 | return Context.getPointerType(ToPointee); | |||
2311 | } | |||
2312 | ||||
2313 | // Just build a canonical type that has the right qualifiers. | |||
2314 | QualType QualifiedCanonToPointee | |||
2315 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); | |||
2316 | ||||
2317 | if (isa<ObjCObjectPointerType>(ToType)) | |||
2318 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); | |||
2319 | return Context.getPointerType(QualifiedCanonToPointee); | |||
2320 | } | |||
2321 | ||||
2322 | static bool isNullPointerConstantForConversion(Expr *Expr, | |||
2323 | bool InOverloadResolution, | |||
2324 | ASTContext &Context) { | |||
2325 | // Handle value-dependent integral null pointer constants correctly. | |||
2326 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | |||
2327 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && | |||
2328 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) | |||
2329 | return !InOverloadResolution; | |||
2330 | ||||
2331 | return Expr->isNullPointerConstant(Context, | |||
2332 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | |||
2333 | : Expr::NPC_ValueDependentIsNull); | |||
2334 | } | |||
2335 | ||||
2336 | /// IsPointerConversion - Determines whether the conversion of the | |||
2337 | /// expression From, which has the (possibly adjusted) type FromType, | |||
2338 | /// can be converted to the type ToType via a pointer conversion (C++ | |||
2339 | /// 4.10). If so, returns true and places the converted type (that | |||
2340 | /// might differ from ToType in its cv-qualifiers at some level) into | |||
2341 | /// ConvertedType. | |||
2342 | /// | |||
2343 | /// This routine also supports conversions to and from block pointers | |||
2344 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | |||
2345 | /// pointers to interfaces. FIXME: Once we've determined the | |||
2346 | /// appropriate overloading rules for Objective-C, we may want to | |||
2347 | /// split the Objective-C checks into a different routine; however, | |||
2348 | /// GCC seems to consider all of these conversions to be pointer | |||
2349 | /// conversions, so for now they live here. IncompatibleObjC will be | |||
2350 | /// set if the conversion is an allowed Objective-C conversion that | |||
2351 | /// should result in a warning. | |||
2352 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | |||
2353 | bool InOverloadResolution, | |||
2354 | QualType& ConvertedType, | |||
2355 | bool &IncompatibleObjC) { | |||
2356 | IncompatibleObjC = false; | |||
2357 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, | |||
2358 | IncompatibleObjC)) | |||
2359 | return true; | |||
2360 | ||||
2361 | // Conversion from a null pointer constant to any Objective-C pointer type. | |||
2362 | if (ToType->isObjCObjectPointerType() && | |||
2363 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2364 | ConvertedType = ToType; | |||
2365 | return true; | |||
2366 | } | |||
2367 | ||||
2368 | // Blocks: Block pointers can be converted to void*. | |||
2369 | if (FromType->isBlockPointerType() && ToType->isPointerType() && | |||
2370 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | |||
2371 | ConvertedType = ToType; | |||
2372 | return true; | |||
2373 | } | |||
2374 | // Blocks: A null pointer constant can be converted to a block | |||
2375 | // pointer type. | |||
2376 | if (ToType->isBlockPointerType() && | |||
2377 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2378 | ConvertedType = ToType; | |||
2379 | return true; | |||
2380 | } | |||
2381 | ||||
2382 | // If the left-hand-side is nullptr_t, the right side can be a null | |||
2383 | // pointer constant. | |||
2384 | if (ToType->isNullPtrType() && | |||
2385 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2386 | ConvertedType = ToType; | |||
2387 | return true; | |||
2388 | } | |||
2389 | ||||
2390 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | |||
2391 | if (!ToTypePtr) | |||
2392 | return false; | |||
2393 | ||||
2394 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | |||
2395 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | |||
2396 | ConvertedType = ToType; | |||
2397 | return true; | |||
2398 | } | |||
2399 | ||||
2400 | // Beyond this point, both types need to be pointers | |||
2401 | // , including objective-c pointers. | |||
2402 | QualType ToPointeeType = ToTypePtr->getPointeeType(); | |||
2403 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && | |||
2404 | !getLangOpts().ObjCAutoRefCount) { | |||
2405 | ConvertedType = BuildSimilarlyQualifiedPointerType( | |||
2406 | FromType->getAs<ObjCObjectPointerType>(), | |||
2407 | ToPointeeType, | |||
2408 | ToType, Context); | |||
2409 | return true; | |||
2410 | } | |||
2411 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | |||
2412 | if (!FromTypePtr) | |||
2413 | return false; | |||
2414 | ||||
2415 | QualType FromPointeeType = FromTypePtr->getPointeeType(); | |||
2416 | ||||
2417 | // If the unqualified pointee types are the same, this can't be a | |||
2418 | // pointer conversion, so don't do all of the work below. | |||
2419 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) | |||
2420 | return false; | |||
2421 | ||||
2422 | // An rvalue of type "pointer to cv T," where T is an object type, | |||
2423 | // can be converted to an rvalue of type "pointer to cv void" (C++ | |||
2424 | // 4.10p2). | |||
2425 | if (FromPointeeType->isIncompleteOrObjectType() && | |||
2426 | ToPointeeType->isVoidType()) { | |||
2427 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2428 | ToPointeeType, | |||
2429 | ToType, Context, | |||
2430 | /*StripObjCLifetime=*/true); | |||
2431 | return true; | |||
2432 | } | |||
2433 | ||||
2434 | // MSVC allows implicit function to void* type conversion. | |||
2435 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && | |||
2436 | ToPointeeType->isVoidType()) { | |||
2437 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2438 | ToPointeeType, | |||
2439 | ToType, Context); | |||
2440 | return true; | |||
2441 | } | |||
2442 | ||||
2443 | // When we're overloading in C, we allow a special kind of pointer | |||
2444 | // conversion for compatible-but-not-identical pointee types. | |||
2445 | if (!getLangOpts().CPlusPlus && | |||
2446 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | |||
2447 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2448 | ToPointeeType, | |||
2449 | ToType, Context); | |||
2450 | return true; | |||
2451 | } | |||
2452 | ||||
2453 | // C++ [conv.ptr]p3: | |||
2454 | // | |||
2455 | // An rvalue of type "pointer to cv D," where D is a class type, | |||
2456 | // can be converted to an rvalue of type "pointer to cv B," where | |||
2457 | // B is a base class (clause 10) of D. If B is an inaccessible | |||
2458 | // (clause 11) or ambiguous (10.2) base class of D, a program that | |||
2459 | // necessitates this conversion is ill-formed. The result of the | |||
2460 | // conversion is a pointer to the base class sub-object of the | |||
2461 | // derived class object. The null pointer value is converted to | |||
2462 | // the null pointer value of the destination type. | |||
2463 | // | |||
2464 | // Note that we do not check for ambiguity or inaccessibility | |||
2465 | // here. That is handled by CheckPointerConversion. | |||
2466 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && | |||
2467 | ToPointeeType->isRecordType() && | |||
2468 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | |||
2469 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { | |||
2470 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2471 | ToPointeeType, | |||
2472 | ToType, Context); | |||
2473 | return true; | |||
2474 | } | |||
2475 | ||||
2476 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && | |||
2477 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { | |||
2478 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | |||
2479 | ToPointeeType, | |||
2480 | ToType, Context); | |||
2481 | return true; | |||
2482 | } | |||
2483 | ||||
2484 | return false; | |||
2485 | } | |||
2486 | ||||
2487 | /// Adopt the given qualifiers for the given type. | |||
2488 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ | |||
2489 | Qualifiers TQs = T.getQualifiers(); | |||
2490 | ||||
2491 | // Check whether qualifiers already match. | |||
2492 | if (TQs == Qs) | |||
2493 | return T; | |||
2494 | ||||
2495 | if (Qs.compatiblyIncludes(TQs)) | |||
2496 | return Context.getQualifiedType(T, Qs); | |||
2497 | ||||
2498 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); | |||
2499 | } | |||
2500 | ||||
2501 | /// isObjCPointerConversion - Determines whether this is an | |||
2502 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | |||
2503 | /// with the same arguments and return values. | |||
2504 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | |||
2505 | QualType& ConvertedType, | |||
2506 | bool &IncompatibleObjC) { | |||
2507 | if (!getLangOpts().ObjC) | |||
2508 | return false; | |||
2509 | ||||
2510 | // The set of qualifiers on the type we're converting from. | |||
2511 | Qualifiers FromQualifiers = FromType.getQualifiers(); | |||
2512 | ||||
2513 | // First, we handle all conversions on ObjC object pointer types. | |||
2514 | const ObjCObjectPointerType* ToObjCPtr = | |||
2515 | ToType->getAs<ObjCObjectPointerType>(); | |||
2516 | const ObjCObjectPointerType *FromObjCPtr = | |||
2517 | FromType->getAs<ObjCObjectPointerType>(); | |||
2518 | ||||
2519 | if (ToObjCPtr && FromObjCPtr) { | |||
2520 | // If the pointee types are the same (ignoring qualifications), | |||
2521 | // then this is not a pointer conversion. | |||
2522 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), | |||
2523 | FromObjCPtr->getPointeeType())) | |||
2524 | return false; | |||
2525 | ||||
2526 | // Conversion between Objective-C pointers. | |||
2527 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | |||
2528 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | |||
2529 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | |||
2530 | if (getLangOpts().CPlusPlus && LHS && RHS && | |||
2531 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | |||
2532 | FromObjCPtr->getPointeeType())) | |||
2533 | return false; | |||
2534 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | |||
2535 | ToObjCPtr->getPointeeType(), | |||
2536 | ToType, Context); | |||
2537 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2538 | return true; | |||
2539 | } | |||
2540 | ||||
2541 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | |||
2542 | // Okay: this is some kind of implicit downcast of Objective-C | |||
2543 | // interfaces, which is permitted. However, we're going to | |||
2544 | // complain about it. | |||
2545 | IncompatibleObjC = true; | |||
2546 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | |||
2547 | ToObjCPtr->getPointeeType(), | |||
2548 | ToType, Context); | |||
2549 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2550 | return true; | |||
2551 | } | |||
2552 | } | |||
2553 | // Beyond this point, both types need to be C pointers or block pointers. | |||
2554 | QualType ToPointeeType; | |||
2555 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | |||
2556 | ToPointeeType = ToCPtr->getPointeeType(); | |||
2557 | else if (const BlockPointerType *ToBlockPtr = | |||
2558 | ToType->getAs<BlockPointerType>()) { | |||
2559 | // Objective C++: We're able to convert from a pointer to any object | |||
2560 | // to a block pointer type. | |||
2561 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | |||
2562 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2563 | return true; | |||
2564 | } | |||
2565 | ToPointeeType = ToBlockPtr->getPointeeType(); | |||
2566 | } | |||
2567 | else if (FromType->getAs<BlockPointerType>() && | |||
2568 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | |||
2569 | // Objective C++: We're able to convert from a block pointer type to a | |||
2570 | // pointer to any object. | |||
2571 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2572 | return true; | |||
2573 | } | |||
2574 | else | |||
2575 | return false; | |||
2576 | ||||
2577 | QualType FromPointeeType; | |||
2578 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | |||
2579 | FromPointeeType = FromCPtr->getPointeeType(); | |||
2580 | else if (const BlockPointerType *FromBlockPtr = | |||
2581 | FromType->getAs<BlockPointerType>()) | |||
2582 | FromPointeeType = FromBlockPtr->getPointeeType(); | |||
2583 | else | |||
2584 | return false; | |||
2585 | ||||
2586 | // If we have pointers to pointers, recursively check whether this | |||
2587 | // is an Objective-C conversion. | |||
2588 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | |||
2589 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | |||
2590 | IncompatibleObjC)) { | |||
2591 | // We always complain about this conversion. | |||
2592 | IncompatibleObjC = true; | |||
2593 | ConvertedType = Context.getPointerType(ConvertedType); | |||
2594 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2595 | return true; | |||
2596 | } | |||
2597 | // Allow conversion of pointee being objective-c pointer to another one; | |||
2598 | // as in I* to id. | |||
2599 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && | |||
2600 | ToPointeeType->getAs<ObjCObjectPointerType>() && | |||
2601 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | |||
2602 | IncompatibleObjC)) { | |||
2603 | ||||
2604 | ConvertedType = Context.getPointerType(ConvertedType); | |||
2605 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | |||
2606 | return true; | |||
2607 | } | |||
2608 | ||||
2609 | // If we have pointers to functions or blocks, check whether the only | |||
2610 | // differences in the argument and result types are in Objective-C | |||
2611 | // pointer conversions. If so, we permit the conversion (but | |||
2612 | // complain about it). | |||
2613 | const FunctionProtoType *FromFunctionType | |||
2614 | = FromPointeeType->getAs<FunctionProtoType>(); | |||
2615 | const FunctionProtoType *ToFunctionType | |||
2616 | = ToPointeeType->getAs<FunctionProtoType>(); | |||
2617 | if (FromFunctionType && ToFunctionType) { | |||
2618 | // If the function types are exactly the same, this isn't an | |||
2619 | // Objective-C pointer conversion. | |||
2620 | if (Context.getCanonicalType(FromPointeeType) | |||
2621 | == Context.getCanonicalType(ToPointeeType)) | |||
2622 | return false; | |||
2623 | ||||
2624 | // Perform the quick checks that will tell us whether these | |||
2625 | // function types are obviously different. | |||
2626 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | |||
2627 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | |||
2628 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) | |||
2629 | return false; | |||
2630 | ||||
2631 | bool HasObjCConversion = false; | |||
2632 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == | |||
2633 | Context.getCanonicalType(ToFunctionType->getReturnType())) { | |||
2634 | // Okay, the types match exactly. Nothing to do. | |||
2635 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), | |||
2636 | ToFunctionType->getReturnType(), | |||
2637 | ConvertedType, IncompatibleObjC)) { | |||
2638 | // Okay, we have an Objective-C pointer conversion. | |||
2639 | HasObjCConversion = true; | |||
2640 | } else { | |||
2641 | // Function types are too different. Abort. | |||
2642 | return false; | |||
2643 | } | |||
2644 | ||||
2645 | // Check argument types. | |||
2646 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | |||
2647 | ArgIdx != NumArgs; ++ArgIdx) { | |||
2648 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | |||
2649 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | |||
2650 | if (Context.getCanonicalType(FromArgType) | |||
2651 | == Context.getCanonicalType(ToArgType)) { | |||
2652 | // Okay, the types match exactly. Nothing to do. | |||
2653 | } else if (isObjCPointerConversion(FromArgType, ToArgType, | |||
2654 | ConvertedType, IncompatibleObjC)) { | |||
2655 | // Okay, we have an Objective-C pointer conversion. | |||
2656 | HasObjCConversion = true; | |||
2657 | } else { | |||
2658 | // Argument types are too different. Abort. | |||
2659 | return false; | |||
2660 | } | |||
2661 | } | |||
2662 | ||||
2663 | if (HasObjCConversion) { | |||
2664 | // We had an Objective-C conversion. Allow this pointer | |||
2665 | // conversion, but complain about it. | |||
2666 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | |||
2667 | IncompatibleObjC = true; | |||
2668 | return true; | |||
2669 | } | |||
2670 | } | |||
2671 | ||||
2672 | return false; | |||
2673 | } | |||
2674 | ||||
2675 | /// Determine whether this is an Objective-C writeback conversion, | |||
2676 | /// used for parameter passing when performing automatic reference counting. | |||
2677 | /// | |||
2678 | /// \param FromType The type we're converting form. | |||
2679 | /// | |||
2680 | /// \param ToType The type we're converting to. | |||
2681 | /// | |||
2682 | /// \param ConvertedType The type that will be produced after applying | |||
2683 | /// this conversion. | |||
2684 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, | |||
2685 | QualType &ConvertedType) { | |||
2686 | if (!getLangOpts().ObjCAutoRefCount || | |||
2687 | Context.hasSameUnqualifiedType(FromType, ToType)) | |||
2688 | return false; | |||
2689 | ||||
2690 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). | |||
2691 | QualType ToPointee; | |||
2692 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) | |||
2693 | ToPointee = ToPointer->getPointeeType(); | |||
2694 | else | |||
2695 | return false; | |||
2696 | ||||
2697 | Qualifiers ToQuals = ToPointee.getQualifiers(); | |||
2698 | if (!ToPointee->isObjCLifetimeType() || | |||
2699 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || | |||
2700 | !ToQuals.withoutObjCLifetime().empty()) | |||
2701 | return false; | |||
2702 | ||||
2703 | // Argument must be a pointer to __strong to __weak. | |||
2704 | QualType FromPointee; | |||
2705 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) | |||
2706 | FromPointee = FromPointer->getPointeeType(); | |||
2707 | else | |||
2708 | return false; | |||
2709 | ||||
2710 | Qualifiers FromQuals = FromPointee.getQualifiers(); | |||
2711 | if (!FromPointee->isObjCLifetimeType() || | |||
2712 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && | |||
2713 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) | |||
2714 | return false; | |||
2715 | ||||
2716 | // Make sure that we have compatible qualifiers. | |||
2717 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); | |||
2718 | if (!ToQuals.compatiblyIncludes(FromQuals)) | |||
2719 | return false; | |||
2720 | ||||
2721 | // Remove qualifiers from the pointee type we're converting from; they | |||
2722 | // aren't used in the compatibility check belong, and we'll be adding back | |||
2723 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. | |||
2724 | FromPointee = FromPointee.getUnqualifiedType(); | |||
2725 | ||||
2726 | // The unqualified form of the pointee types must be compatible. | |||
2727 | ToPointee = ToPointee.getUnqualifiedType(); | |||
2728 | bool IncompatibleObjC; | |||
2729 | if (Context.typesAreCompatible(FromPointee, ToPointee)) | |||
2730 | FromPointee = ToPointee; | |||
2731 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, | |||
2732 | IncompatibleObjC)) | |||
2733 | return false; | |||
2734 | ||||
2735 | /// Construct the type we're converting to, which is a pointer to | |||
2736 | /// __autoreleasing pointee. | |||
2737 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); | |||
2738 | ConvertedType = Context.getPointerType(FromPointee); | |||
2739 | return true; | |||
2740 | } | |||
2741 | ||||
2742 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, | |||
2743 | QualType& ConvertedType) { | |||
2744 | QualType ToPointeeType; | |||
2745 | if (const BlockPointerType *ToBlockPtr = | |||
2746 | ToType->getAs<BlockPointerType>()) | |||
2747 | ToPointeeType = ToBlockPtr->getPointeeType(); | |||
2748 | else | |||
2749 | return false; | |||
2750 | ||||
2751 | QualType FromPointeeType; | |||
2752 | if (const BlockPointerType *FromBlockPtr = | |||
2753 | FromType->getAs<BlockPointerType>()) | |||
2754 | FromPointeeType = FromBlockPtr->getPointeeType(); | |||
2755 | else | |||
2756 | return false; | |||
2757 | // We have pointer to blocks, check whether the only | |||
2758 | // differences in the argument and result types are in Objective-C | |||
2759 | // pointer conversions. If so, we permit the conversion. | |||
2760 | ||||
2761 | const FunctionProtoType *FromFunctionType | |||
2762 | = FromPointeeType->getAs<FunctionProtoType>(); | |||
2763 | const FunctionProtoType *ToFunctionType | |||
2764 | = ToPointeeType->getAs<FunctionProtoType>(); | |||
2765 | ||||
2766 | if (!FromFunctionType || !ToFunctionType) | |||
2767 | return false; | |||
2768 | ||||
2769 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) | |||
2770 | return true; | |||
2771 | ||||
2772 | // Perform the quick checks that will tell us whether these | |||
2773 | // function types are obviously different. | |||
2774 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | |||
2775 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) | |||
2776 | return false; | |||
2777 | ||||
2778 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); | |||
2779 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); | |||
2780 | if (FromEInfo != ToEInfo) | |||
2781 | return false; | |||
2782 | ||||
2783 | bool IncompatibleObjC = false; | |||
2784 | if (Context.hasSameType(FromFunctionType->getReturnType(), | |||
2785 | ToFunctionType->getReturnType())) { | |||
2786 | // Okay, the types match exactly. Nothing to do. | |||
2787 | } else { | |||
2788 | QualType RHS = FromFunctionType->getReturnType(); | |||
2789 | QualType LHS = ToFunctionType->getReturnType(); | |||
2790 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && | |||
2791 | !RHS.hasQualifiers() && LHS.hasQualifiers()) | |||
2792 | LHS = LHS.getUnqualifiedType(); | |||
2793 | ||||
2794 | if (Context.hasSameType(RHS,LHS)) { | |||
2795 | // OK exact match. | |||
2796 | } else if (isObjCPointerConversion(RHS, LHS, | |||
2797 | ConvertedType, IncompatibleObjC)) { | |||
2798 | if (IncompatibleObjC) | |||
2799 | return false; | |||
2800 | // Okay, we have an Objective-C pointer conversion. | |||
2801 | } | |||
2802 | else | |||
2803 | return false; | |||
2804 | } | |||
2805 | ||||
2806 | // Check argument types. | |||
2807 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | |||
2808 | ArgIdx != NumArgs; ++ArgIdx) { | |||
2809 | IncompatibleObjC = false; | |||
2810 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | |||
2811 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | |||
2812 | if (Context.hasSameType(FromArgType, ToArgType)) { | |||
2813 | // Okay, the types match exactly. Nothing to do. | |||
2814 | } else if (isObjCPointerConversion(ToArgType, FromArgType, | |||
2815 | ConvertedType, IncompatibleObjC)) { | |||
2816 | if (IncompatibleObjC) | |||
2817 | return false; | |||
2818 | // Okay, we have an Objective-C pointer conversion. | |||
2819 | } else | |||
2820 | // Argument types are too different. Abort. | |||
2821 | return false; | |||
2822 | } | |||
2823 | ||||
2824 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | |||
2825 | bool CanUseToFPT, CanUseFromFPT; | |||
2826 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, | |||
2827 | CanUseToFPT, CanUseFromFPT, | |||
2828 | NewParamInfos)) | |||
2829 | return false; | |||
2830 | ||||
2831 | ConvertedType = ToType; | |||
2832 | return true; | |||
2833 | } | |||
2834 | ||||
2835 | enum { | |||
2836 | ft_default, | |||
2837 | ft_different_class, | |||
2838 | ft_parameter_arity, | |||
2839 | ft_parameter_mismatch, | |||
2840 | ft_return_type, | |||
2841 | ft_qualifer_mismatch, | |||
2842 | ft_noexcept | |||
2843 | }; | |||
2844 | ||||
2845 | /// Attempts to get the FunctionProtoType from a Type. Handles | |||
2846 | /// MemberFunctionPointers properly. | |||
2847 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { | |||
2848 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) | |||
2849 | return FPT; | |||
2850 | ||||
2851 | if (auto *MPT = FromType->getAs<MemberPointerType>()) | |||
2852 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); | |||
2853 | ||||
2854 | return nullptr; | |||
2855 | } | |||
2856 | ||||
2857 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing | |||
2858 | /// function types. Catches different number of parameter, mismatch in | |||
2859 | /// parameter types, and different return types. | |||
2860 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | |||
2861 | QualType FromType, QualType ToType) { | |||
2862 | // If either type is not valid, include no extra info. | |||
2863 | if (FromType.isNull() || ToType.isNull()) { | |||
2864 | PDiag << ft_default; | |||
2865 | return; | |||
2866 | } | |||
2867 | ||||
2868 | // Get the function type from the pointers. | |||
2869 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { | |||
2870 | const auto *FromMember = FromType->castAs<MemberPointerType>(), | |||
2871 | *ToMember = ToType->castAs<MemberPointerType>(); | |||
2872 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { | |||
2873 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) | |||
2874 | << QualType(FromMember->getClass(), 0); | |||
2875 | return; | |||
2876 | } | |||
2877 | FromType = FromMember->getPointeeType(); | |||
2878 | ToType = ToMember->getPointeeType(); | |||
2879 | } | |||
2880 | ||||
2881 | if (FromType->isPointerType()) | |||
2882 | FromType = FromType->getPointeeType(); | |||
2883 | if (ToType->isPointerType()) | |||
2884 | ToType = ToType->getPointeeType(); | |||
2885 | ||||
2886 | // Remove references. | |||
2887 | FromType = FromType.getNonReferenceType(); | |||
2888 | ToType = ToType.getNonReferenceType(); | |||
2889 | ||||
2890 | // Don't print extra info for non-specialized template functions. | |||
2891 | if (FromType->isInstantiationDependentType() && | |||
2892 | !FromType->getAs<TemplateSpecializationType>()) { | |||
2893 | PDiag << ft_default; | |||
2894 | return; | |||
2895 | } | |||
2896 | ||||
2897 | // No extra info for same types. | |||
2898 | if (Context.hasSameType(FromType, ToType)) { | |||
2899 | PDiag << ft_default; | |||
2900 | return; | |||
2901 | } | |||
2902 | ||||
2903 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), | |||
2904 | *ToFunction = tryGetFunctionProtoType(ToType); | |||
2905 | ||||
2906 | // Both types need to be function types. | |||
2907 | if (!FromFunction || !ToFunction) { | |||
2908 | PDiag << ft_default; | |||
2909 | return; | |||
2910 | } | |||
2911 | ||||
2912 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { | |||
2913 | PDiag << ft_parameter_arity << ToFunction->getNumParams() | |||
2914 | << FromFunction->getNumParams(); | |||
2915 | return; | |||
2916 | } | |||
2917 | ||||
2918 | // Handle different parameter types. | |||
2919 | unsigned ArgPos; | |||
2920 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { | |||
2921 | PDiag << ft_parameter_mismatch << ArgPos + 1 | |||
2922 | << ToFunction->getParamType(ArgPos) | |||
2923 | << FromFunction->getParamType(ArgPos); | |||
2924 | return; | |||
2925 | } | |||
2926 | ||||
2927 | // Handle different return type. | |||
2928 | if (!Context.hasSameType(FromFunction->getReturnType(), | |||
2929 | ToFunction->getReturnType())) { | |||
2930 | PDiag << ft_return_type << ToFunction->getReturnType() | |||
2931 | << FromFunction->getReturnType(); | |||
2932 | return; | |||
2933 | } | |||
2934 | ||||
2935 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { | |||
2936 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() | |||
2937 | << FromFunction->getMethodQuals(); | |||
2938 | return; | |||
2939 | } | |||
2940 | ||||
2941 | // Handle exception specification differences on canonical type (in C++17 | |||
2942 | // onwards). | |||
2943 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) | |||
2944 | ->isNothrow() != | |||
2945 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) | |||
2946 | ->isNothrow()) { | |||
2947 | PDiag << ft_noexcept; | |||
2948 | return; | |||
2949 | } | |||
2950 | ||||
2951 | // Unable to find a difference, so add no extra info. | |||
2952 | PDiag << ft_default; | |||
2953 | } | |||
2954 | ||||
2955 | /// FunctionParamTypesAreEqual - This routine checks two function proto types | |||
2956 | /// for equality of their argument types. Caller has already checked that | |||
2957 | /// they have same number of arguments. If the parameters are different, | |||
2958 | /// ArgPos will have the parameter index of the first different parameter. | |||
2959 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | |||
2960 | const FunctionProtoType *NewType, | |||
2961 | unsigned *ArgPos) { | |||
2962 | for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), | |||
2963 | N = NewType->param_type_begin(), | |||
2964 | E = OldType->param_type_end(); | |||
2965 | O && (O != E); ++O, ++N) { | |||
2966 | // Ignore address spaces in pointee type. This is to disallow overloading | |||
2967 | // on __ptr32/__ptr64 address spaces. | |||
2968 | QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); | |||
2969 | QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); | |||
2970 | ||||
2971 | if (!Context.hasSameType(Old, New)) { | |||
2972 | if (ArgPos) | |||
2973 | *ArgPos = O - OldType->param_type_begin(); | |||
2974 | return false; | |||
2975 | } | |||
2976 | } | |||
2977 | return true; | |||
2978 | } | |||
2979 | ||||
2980 | /// CheckPointerConversion - Check the pointer conversion from the | |||
2981 | /// expression From to the type ToType. This routine checks for | |||
2982 | /// ambiguous or inaccessible derived-to-base pointer | |||
2983 | /// conversions for which IsPointerConversion has already returned | |||
2984 | /// true. It returns true and produces a diagnostic if there was an | |||
2985 | /// error, or returns false otherwise. | |||
2986 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | |||
2987 | CastKind &Kind, | |||
2988 | CXXCastPath& BasePath, | |||
2989 | bool IgnoreBaseAccess, | |||
2990 | bool Diagnose) { | |||
2991 | QualType FromType = From->getType(); | |||
2992 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; | |||
2993 | ||||
2994 | Kind = CK_BitCast; | |||
2995 | ||||
2996 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && | |||
2997 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == | |||
2998 | Expr::NPCK_ZeroExpression) { | |||
2999 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) | |||
3000 | DiagRuntimeBehavior(From->getExprLoc(), From, | |||
3001 | PDiag(diag::warn_impcast_bool_to_null_pointer) | |||
3002 | << ToType << From->getSourceRange()); | |||
3003 | else if (!isUnevaluatedContext()) | |||
3004 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) | |||
3005 | << ToType << From->getSourceRange(); | |||
3006 | } | |||
3007 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | |||
3008 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { | |||
3009 | QualType FromPointeeType = FromPtrType->getPointeeType(), | |||
3010 | ToPointeeType = ToPtrType->getPointeeType(); | |||
3011 | ||||
3012 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | |||
3013 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | |||
3014 | // We must have a derived-to-base conversion. Check an | |||
3015 | // ambiguous or inaccessible conversion. | |||
3016 | unsigned InaccessibleID = 0; | |||
3017 | unsigned AmbiguousID = 0; | |||
3018 | if (Diagnose) { | |||
3019 | InaccessibleID = diag::err_upcast_to_inaccessible_base; | |||
3020 | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; | |||
3021 | } | |||
3022 | if (CheckDerivedToBaseConversion( | |||
3023 | FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, | |||
3024 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), | |||
3025 | &BasePath, IgnoreBaseAccess)) | |||
3026 | return true; | |||
3027 | ||||
3028 | // The conversion was successful. | |||
3029 | Kind = CK_DerivedToBase; | |||
3030 | } | |||
3031 | ||||
3032 | if (Diagnose && !IsCStyleOrFunctionalCast && | |||
3033 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { | |||
3034 | assert(getLangOpts().MSVCCompat &&((void)0) | |||
3035 | "this should only be possible with MSVCCompat!")((void)0); | |||
3036 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) | |||
3037 | << From->getSourceRange(); | |||
3038 | } | |||
3039 | } | |||
3040 | } else if (const ObjCObjectPointerType *ToPtrType = | |||
3041 | ToType->getAs<ObjCObjectPointerType>()) { | |||
3042 | if (const ObjCObjectPointerType *FromPtrType = | |||
3043 | FromType->getAs<ObjCObjectPointerType>()) { | |||
3044 | // Objective-C++ conversions are always okay. | |||
3045 | // FIXME: We should have a different class of conversions for the | |||
3046 | // Objective-C++ implicit conversions. | |||
3047 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | |||
3048 | return false; | |||
3049 | } else if (FromType->isBlockPointerType()) { | |||
3050 | Kind = CK_BlockPointerToObjCPointerCast; | |||
3051 | } else { | |||
3052 | Kind = CK_CPointerToObjCPointerCast; | |||
3053 | } | |||
3054 | } else if (ToType->isBlockPointerType()) { | |||
3055 | if (!FromType->isBlockPointerType()) | |||
3056 | Kind = CK_AnyPointerToBlockPointerCast; | |||
3057 | } | |||
3058 | ||||
3059 | // We shouldn't fall into this case unless it's valid for other | |||
3060 | // reasons. | |||
3061 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | |||
3062 | Kind = CK_NullToPointer; | |||
3063 | ||||
3064 | return false; | |||
3065 | } | |||
3066 | ||||
3067 | /// IsMemberPointerConversion - Determines whether the conversion of the | |||
3068 | /// expression From, which has the (possibly adjusted) type FromType, can be | |||
3069 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | |||
3070 | /// If so, returns true and places the converted type (that might differ from | |||
3071 | /// ToType in its cv-qualifiers at some level) into ConvertedType. | |||
3072 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | |||
3073 | QualType ToType, | |||
3074 | bool InOverloadResolution, | |||
3075 | QualType &ConvertedType) { | |||
3076 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | |||
3077 | if (!ToTypePtr) | |||
3078 | return false; | |||
3079 | ||||
3080 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | |||
3081 | if (From->isNullPointerConstant(Context, | |||
3082 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | |||
3083 | : Expr::NPC_ValueDependentIsNull)) { | |||
3084 | ConvertedType = ToType; | |||
3085 | return true; | |||
3086 | } | |||
3087 | ||||
3088 | // Otherwise, both types have to be member pointers. | |||
3089 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | |||
3090 | if (!FromTypePtr) | |||
3091 | return false; | |||
3092 | ||||
3093 | // A pointer to member of B can be converted to a pointer to member of D, | |||
3094 | // where D is derived from B (C++ 4.11p2). | |||
3095 | QualType FromClass(FromTypePtr->getClass(), 0); | |||
3096 | QualType ToClass(ToTypePtr->getClass(), 0); | |||
3097 | ||||
3098 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && | |||
3099 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { | |||
3100 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | |||
3101 | ToClass.getTypePtr()); | |||
3102 | return true; | |||
3103 | } | |||
3104 | ||||
3105 | return false; | |||
3106 | } | |||
3107 | ||||
3108 | /// CheckMemberPointerConversion - Check the member pointer conversion from the | |||
3109 | /// expression From to the type ToType. This routine checks for ambiguous or | |||
3110 | /// virtual or inaccessible base-to-derived member pointer conversions | |||
3111 | /// for which IsMemberPointerConversion has already returned true. It returns | |||
3112 | /// true and produces a diagnostic if there was an error, or returns false | |||
3113 | /// otherwise. | |||
3114 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | |||
3115 | CastKind &Kind, | |||
3116 | CXXCastPath &BasePath, | |||
3117 | bool IgnoreBaseAccess) { | |||
3118 | QualType FromType = From->getType(); | |||
3119 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | |||
3120 | if (!FromPtrType) { | |||
3121 | // This must be a null pointer to member pointer conversion | |||
3122 | assert(From->isNullPointerConstant(Context,((void)0) | |||
3123 | Expr::NPC_ValueDependentIsNull) &&((void)0) | |||
3124 | "Expr must be null pointer constant!")((void)0); | |||
3125 | Kind = CK_NullToMemberPointer; | |||
3126 | return false; | |||
3127 | } | |||
3128 | ||||
3129 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | |||
3130 | assert(ToPtrType && "No member pointer cast has a target type "((void)0) | |||
3131 | "that is not a member pointer.")((void)0); | |||
3132 | ||||
3133 | QualType FromClass = QualType(FromPtrType->getClass(), 0); | |||
3134 | QualType ToClass = QualType(ToPtrType->getClass(), 0); | |||
3135 | ||||
3136 | // FIXME: What about dependent types? | |||
3137 | assert(FromClass->isRecordType() && "Pointer into non-class.")((void)0); | |||
3138 | assert(ToClass->isRecordType() && "Pointer into non-class.")((void)0); | |||
3139 | ||||
3140 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | |||
3141 | /*DetectVirtual=*/true); | |||
3142 | bool DerivationOkay = | |||
3143 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); | |||
3144 | assert(DerivationOkay &&((void)0) | |||
3145 | "Should not have been called if derivation isn't OK.")((void)0); | |||
3146 | (void)DerivationOkay; | |||
3147 | ||||
3148 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | |||
3149 | getUnqualifiedType())) { | |||
3150 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | |||
3151 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | |||
3152 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | |||
3153 | return true; | |||
3154 | } | |||
3155 | ||||
3156 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { | |||
3157 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | |||
3158 | << FromClass << ToClass << QualType(VBase, 0) | |||
3159 | << From->getSourceRange(); | |||
3160 | return true; | |||
3161 | } | |||
3162 | ||||
3163 | if (!IgnoreBaseAccess) | |||
3164 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | |||
3165 | Paths.front(), | |||
3166 | diag::err_downcast_from_inaccessible_base); | |||
3167 | ||||
3168 | // Must be a base to derived member conversion. | |||
3169 | BuildBasePathArray(Paths, BasePath); | |||
3170 | Kind = CK_BaseToDerivedMemberPointer; | |||
3171 | return false; | |||
3172 | } | |||
3173 | ||||
3174 | /// Determine whether the lifetime conversion between the two given | |||
3175 | /// qualifiers sets is nontrivial. | |||
3176 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, | |||
3177 | Qualifiers ToQuals) { | |||
3178 | // Converting anything to const __unsafe_unretained is trivial. | |||
3179 | if (ToQuals.hasConst() && | |||
3180 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) | |||
3181 | return false; | |||
3182 | ||||
3183 | return true; | |||
3184 | } | |||
3185 | ||||
3186 | /// Perform a single iteration of the loop for checking if a qualification | |||
3187 | /// conversion is valid. | |||
3188 | /// | |||
3189 | /// Specifically, check whether any change between the qualifiers of \p | |||
3190 | /// FromType and \p ToType is permissible, given knowledge about whether every | |||
3191 | /// outer layer is const-qualified. | |||
3192 | static bool isQualificationConversionStep(QualType FromType, QualType ToType, | |||
3193 | bool CStyle, bool IsTopLevel, | |||
3194 | bool &PreviousToQualsIncludeConst, | |||
3195 | bool &ObjCLifetimeConversion) { | |||
3196 | Qualifiers FromQuals = FromType.getQualifiers(); | |||
3197 | Qualifiers ToQuals = ToType.getQualifiers(); | |||
3198 | ||||
3199 | // Ignore __unaligned qualifier if this type is void. | |||
3200 | if (ToType.getUnqualifiedType()->isVoidType()) | |||
3201 | FromQuals.removeUnaligned(); | |||
3202 | ||||
3203 | // Objective-C ARC: | |||
3204 | // Check Objective-C lifetime conversions. | |||
3205 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { | |||
3206 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { | |||
3207 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) | |||
3208 | ObjCLifetimeConversion = true; | |||
3209 | FromQuals.removeObjCLifetime(); | |||
3210 | ToQuals.removeObjCLifetime(); | |||
3211 | } else { | |||
3212 | // Qualification conversions cannot cast between different | |||
3213 | // Objective-C lifetime qualifiers. | |||
3214 | return false; | |||
3215 | } | |||
3216 | } | |||
3217 | ||||
3218 | // Allow addition/removal of GC attributes but not changing GC attributes. | |||
3219 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && | |||
3220 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { | |||
3221 | FromQuals.removeObjCGCAttr(); | |||
3222 | ToQuals.removeObjCGCAttr(); | |||
3223 | } | |||
3224 | ||||
3225 | // -- for every j > 0, if const is in cv 1,j then const is in cv | |||
3226 | // 2,j, and similarly for volatile. | |||
3227 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) | |||
3228 | return false; | |||
3229 | ||||
3230 | // If address spaces mismatch: | |||
3231 | // - in top level it is only valid to convert to addr space that is a | |||
3232 | // superset in all cases apart from C-style casts where we allow | |||
3233 | // conversions between overlapping address spaces. | |||
3234 | // - in non-top levels it is not a valid conversion. | |||
3235 | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && | |||
3236 | (!IsTopLevel || | |||
3237 | !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || | |||
3238 | (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) | |||
3239 | return false; | |||
3240 | ||||
3241 | // -- if the cv 1,j and cv 2,j are different, then const is in | |||
3242 | // every cv for 0 < k < j. | |||
3243 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && | |||
3244 | !PreviousToQualsIncludeConst) | |||
3245 | return false; | |||
3246 | ||||
3247 | // Keep track of whether all prior cv-qualifiers in the "to" type | |||
3248 | // include const. | |||
3249 | PreviousToQualsIncludeConst = | |||
3250 | PreviousToQualsIncludeConst && ToQuals.hasConst(); | |||
3251 | return true; | |||
3252 | } | |||
3253 | ||||
3254 | /// IsQualificationConversion - Determines whether the conversion from | |||
3255 | /// an rvalue of type FromType to ToType is a qualification conversion | |||
3256 | /// (C++ 4.4). | |||
3257 | /// | |||
3258 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate | |||
3259 | /// when the qualification conversion involves a change in the Objective-C | |||
3260 | /// object lifetime. | |||
3261 | bool | |||
3262 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, | |||
3263 | bool CStyle, bool &ObjCLifetimeConversion) { | |||
3264 | FromType = Context.getCanonicalType(FromType); | |||
3265 | ToType = Context.getCanonicalType(ToType); | |||
3266 | ObjCLifetimeConversion = false; | |||
3267 | ||||
3268 | // If FromType and ToType are the same type, this is not a | |||
3269 | // qualification conversion. | |||
3270 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | |||
3271 | return false; | |||
3272 | ||||
3273 | // (C++ 4.4p4): | |||
3274 | // A conversion can add cv-qualifiers at levels other than the first | |||
3275 | // in multi-level pointers, subject to the following rules: [...] | |||
3276 | bool PreviousToQualsIncludeConst = true; | |||
3277 | bool UnwrappedAnyPointer = false; | |||
3278 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { | |||
3279 | if (!isQualificationConversionStep( | |||
3280 | FromType, ToType, CStyle, !UnwrappedAnyPointer, | |||
3281 | PreviousToQualsIncludeConst, ObjCLifetimeConversion)) | |||
3282 | return false; | |||
3283 | UnwrappedAnyPointer = true; | |||
3284 | } | |||
3285 | ||||
3286 | // We are left with FromType and ToType being the pointee types | |||
3287 | // after unwrapping the original FromType and ToType the same number | |||
3288 | // of times. If we unwrapped any pointers, and if FromType and | |||
3289 | // ToType have the same unqualified type (since we checked | |||
3290 | // qualifiers above), then this is a qualification conversion. | |||
3291 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | |||
3292 | } | |||
3293 | ||||
3294 | /// - Determine whether this is a conversion from a scalar type to an | |||
3295 | /// atomic type. | |||
3296 | /// | |||
3297 | /// If successful, updates \c SCS's second and third steps in the conversion | |||
3298 | /// sequence to finish the conversion. | |||
3299 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | |||
3300 | bool InOverloadResolution, | |||
3301 | StandardConversionSequence &SCS, | |||
3302 | bool CStyle) { | |||
3303 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); | |||
3304 | if (!ToAtomic) | |||
3305 | return false; | |||
3306 | ||||
3307 | StandardConversionSequence InnerSCS; | |||
3308 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), | |||
3309 | InOverloadResolution, InnerSCS, | |||
3310 | CStyle, /*AllowObjCWritebackConversion=*/false)) | |||
3311 | return false; | |||
3312 | ||||
3313 | SCS.Second = InnerSCS.Second; | |||
3314 | SCS.setToType(1, InnerSCS.getToType(1)); | |||
3315 | SCS.Third = InnerSCS.Third; | |||
3316 | SCS.QualificationIncludesObjCLifetime | |||
3317 | = InnerSCS.QualificationIncludesObjCLifetime; | |||
3318 | SCS.setToType(2, InnerSCS.getToType(2)); | |||
3319 | return true; | |||
3320 | } | |||
3321 | ||||
3322 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, | |||
3323 | CXXConstructorDecl *Constructor, | |||
3324 | QualType Type) { | |||
3325 | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); | |||
3326 | if (CtorType->getNumParams() > 0) { | |||
3327 | QualType FirstArg = CtorType->getParamType(0); | |||
3328 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) | |||
3329 | return true; | |||
3330 | } | |||
3331 | return false; | |||
3332 | } | |||
3333 | ||||
3334 | static OverloadingResult | |||
3335 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, | |||
3336 | CXXRecordDecl *To, | |||
3337 | UserDefinedConversionSequence &User, | |||
3338 | OverloadCandidateSet &CandidateSet, | |||
3339 | bool AllowExplicit) { | |||
3340 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3341 | for (auto *D : S.LookupConstructors(To)) { | |||
3342 | auto Info = getConstructorInfo(D); | |||
3343 | if (!Info) | |||
3344 | continue; | |||
3345 | ||||
3346 | bool Usable = !Info.Constructor->isInvalidDecl() && | |||
3347 | S.isInitListConstructor(Info.Constructor); | |||
3348 | if (Usable) { | |||
3349 | bool SuppressUserConversions = false; | |||
3350 | if (Info.ConstructorTmpl) | |||
3351 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, | |||
3352 | /*ExplicitArgs*/ nullptr, From, | |||
3353 | CandidateSet, SuppressUserConversions, | |||
3354 | /*PartialOverloading*/ false, | |||
3355 | AllowExplicit); | |||
3356 | else | |||
3357 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, | |||
3358 | CandidateSet, SuppressUserConversions, | |||
3359 | /*PartialOverloading*/ false, AllowExplicit); | |||
3360 | } | |||
3361 | } | |||
3362 | ||||
3363 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
3364 | ||||
3365 | OverloadCandidateSet::iterator Best; | |||
3366 | switch (auto Result = | |||
3367 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | |||
3368 | case OR_Deleted: | |||
3369 | case OR_Success: { | |||
3370 | // Record the standard conversion we used and the conversion function. | |||
3371 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | |||
3372 | QualType ThisType = Constructor->getThisType(); | |||
3373 | // Initializer lists don't have conversions as such. | |||
3374 | User.Before.setAsIdentityConversion(); | |||
3375 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3376 | User.ConversionFunction = Constructor; | |||
3377 | User.FoundConversionFunction = Best->FoundDecl; | |||
3378 | User.After.setAsIdentityConversion(); | |||
3379 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | |||
3380 | User.After.setAllToTypes(ToType); | |||
3381 | return Result; | |||
3382 | } | |||
3383 | ||||
3384 | case OR_No_Viable_Function: | |||
3385 | return OR_No_Viable_Function; | |||
3386 | case OR_Ambiguous: | |||
3387 | return OR_Ambiguous; | |||
3388 | } | |||
3389 | ||||
3390 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); | |||
3391 | } | |||
3392 | ||||
3393 | /// Determines whether there is a user-defined conversion sequence | |||
3394 | /// (C++ [over.ics.user]) that converts expression From to the type | |||
3395 | /// ToType. If such a conversion exists, User will contain the | |||
3396 | /// user-defined conversion sequence that performs such a conversion | |||
3397 | /// and this routine will return true. Otherwise, this routine returns | |||
3398 | /// false and User is unspecified. | |||
3399 | /// | |||
3400 | /// \param AllowExplicit true if the conversion should consider C++0x | |||
3401 | /// "explicit" conversion functions as well as non-explicit conversion | |||
3402 | /// functions (C++0x [class.conv.fct]p2). | |||
3403 | /// | |||
3404 | /// \param AllowObjCConversionOnExplicit true if the conversion should | |||
3405 | /// allow an extra Objective-C pointer conversion on uses of explicit | |||
3406 | /// constructors. Requires \c AllowExplicit to also be set. | |||
3407 | static OverloadingResult | |||
3408 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | |||
3409 | UserDefinedConversionSequence &User, | |||
3410 | OverloadCandidateSet &CandidateSet, | |||
3411 | AllowedExplicit AllowExplicit, | |||
3412 | bool AllowObjCConversionOnExplicit) { | |||
3413 | assert(AllowExplicit != AllowedExplicit::None ||((void)0) | |||
3414 | !AllowObjCConversionOnExplicit)((void)0); | |||
3415 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3416 | ||||
3417 | // Whether we will only visit constructors. | |||
3418 | bool ConstructorsOnly = false; | |||
3419 | ||||
3420 | // If the type we are conversion to is a class type, enumerate its | |||
3421 | // constructors. | |||
3422 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | |||
3423 | // C++ [over.match.ctor]p1: | |||
3424 | // When objects of class type are direct-initialized (8.5), or | |||
3425 | // copy-initialized from an expression of the same or a | |||
3426 | // derived class type (8.5), overload resolution selects the | |||
3427 | // constructor. [...] For copy-initialization, the candidate | |||
3428 | // functions are all the converting constructors (12.3.1) of | |||
3429 | // that class. The argument list is the expression-list within | |||
3430 | // the parentheses of the initializer. | |||
3431 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || | |||
3432 | (From->getType()->getAs<RecordType>() && | |||
3433 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) | |||
3434 | ConstructorsOnly = true; | |||
3435 | ||||
3436 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { | |||
3437 | // We're not going to find any constructors. | |||
3438 | } else if (CXXRecordDecl *ToRecordDecl | |||
3439 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | |||
3440 | ||||
3441 | Expr **Args = &From; | |||
3442 | unsigned NumArgs = 1; | |||
3443 | bool ListInitializing = false; | |||
3444 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { | |||
3445 | // But first, see if there is an init-list-constructor that will work. | |||
3446 | OverloadingResult Result = IsInitializerListConstructorConversion( | |||
3447 | S, From, ToType, ToRecordDecl, User, CandidateSet, | |||
3448 | AllowExplicit == AllowedExplicit::All); | |||
3449 | if (Result != OR_No_Viable_Function) | |||
3450 | return Result; | |||
3451 | // Never mind. | |||
3452 | CandidateSet.clear( | |||
3453 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
3454 | ||||
3455 | // If we're list-initializing, we pass the individual elements as | |||
3456 | // arguments, not the entire list. | |||
3457 | Args = InitList->getInits(); | |||
3458 | NumArgs = InitList->getNumInits(); | |||
3459 | ListInitializing = true; | |||
3460 | } | |||
3461 | ||||
3462 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { | |||
3463 | auto Info = getConstructorInfo(D); | |||
3464 | if (!Info) | |||
3465 | continue; | |||
3466 | ||||
3467 | bool Usable = !Info.Constructor->isInvalidDecl(); | |||
3468 | if (!ListInitializing) | |||
3469 | Usable = Usable && Info.Constructor->isConvertingConstructor( | |||
3470 | /*AllowExplicit*/ true); | |||
3471 | if (Usable) { | |||
3472 | bool SuppressUserConversions = !ConstructorsOnly; | |||
3473 | // C++20 [over.best.ics.general]/4.5: | |||
3474 | // if the target is the first parameter of a constructor [of class | |||
3475 | // X] and the constructor [...] is a candidate by [...] the second | |||
3476 | // phase of [over.match.list] when the initializer list has exactly | |||
3477 | // one element that is itself an initializer list, [...] and the | |||
3478 | // conversion is to X or reference to cv X, user-defined conversion | |||
3479 | // sequences are not cnosidered. | |||
3480 | if (SuppressUserConversions && ListInitializing) { | |||
3481 | SuppressUserConversions = | |||
3482 | NumArgs == 1 && isa<InitListExpr>(Args[0]) && | |||
3483 | isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, | |||
3484 | ToType); | |||
3485 | } | |||
3486 | if (Info.ConstructorTmpl) | |||
3487 | S.AddTemplateOverloadCandidate( | |||
3488 | Info.ConstructorTmpl, Info.FoundDecl, | |||
3489 | /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), | |||
3490 | CandidateSet, SuppressUserConversions, | |||
3491 | /*PartialOverloading*/ false, | |||
3492 | AllowExplicit == AllowedExplicit::All); | |||
3493 | else | |||
3494 | // Allow one user-defined conversion when user specifies a | |||
3495 | // From->ToType conversion via an static cast (c-style, etc). | |||
3496 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, | |||
3497 | llvm::makeArrayRef(Args, NumArgs), | |||
3498 | CandidateSet, SuppressUserConversions, | |||
3499 | /*PartialOverloading*/ false, | |||
3500 | AllowExplicit == AllowedExplicit::All); | |||
3501 | } | |||
3502 | } | |||
3503 | } | |||
3504 | } | |||
3505 | ||||
3506 | // Enumerate conversion functions, if we're allowed to. | |||
3507 | if (ConstructorsOnly || isa<InitListExpr>(From)) { | |||
3508 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { | |||
3509 | // No conversion functions from incomplete types. | |||
3510 | } else if (const RecordType *FromRecordType = | |||
3511 | From->getType()->getAs<RecordType>()) { | |||
3512 | if (CXXRecordDecl *FromRecordDecl | |||
3513 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | |||
3514 | // Add all of the conversion functions as candidates. | |||
3515 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); | |||
3516 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
3517 | DeclAccessPair FoundDecl = I.getPair(); | |||
3518 | NamedDecl *D = FoundDecl.getDecl(); | |||
3519 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | |||
3520 | if (isa<UsingShadowDecl>(D)) | |||
3521 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
3522 | ||||
3523 | CXXConversionDecl *Conv; | |||
3524 | FunctionTemplateDecl *ConvTemplate; | |||
3525 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | |||
3526 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
3527 | else | |||
3528 | Conv = cast<CXXConversionDecl>(D); | |||
3529 | ||||
3530 | if (ConvTemplate) | |||
3531 | S.AddTemplateConversionCandidate( | |||
3532 | ConvTemplate, FoundDecl, ActingContext, From, ToType, | |||
3533 | CandidateSet, AllowObjCConversionOnExplicit, | |||
3534 | AllowExplicit != AllowedExplicit::None); | |||
3535 | else | |||
3536 | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, | |||
3537 | CandidateSet, AllowObjCConversionOnExplicit, | |||
3538 | AllowExplicit != AllowedExplicit::None); | |||
3539 | } | |||
3540 | } | |||
3541 | } | |||
3542 | ||||
3543 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
3544 | ||||
3545 | OverloadCandidateSet::iterator Best; | |||
3546 | switch (auto Result = | |||
3547 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | |||
3548 | case OR_Success: | |||
3549 | case OR_Deleted: | |||
3550 | // Record the standard conversion we used and the conversion function. | |||
3551 | if (CXXConstructorDecl *Constructor | |||
3552 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { | |||
3553 | // C++ [over.ics.user]p1: | |||
3554 | // If the user-defined conversion is specified by a | |||
3555 | // constructor (12.3.1), the initial standard conversion | |||
3556 | // sequence converts the source type to the type required by | |||
3557 | // the argument of the constructor. | |||
3558 | // | |||
3559 | QualType ThisType = Constructor->getThisType(); | |||
3560 | if (isa<InitListExpr>(From)) { | |||
3561 | // Initializer lists don't have conversions as such. | |||
3562 | User.Before.setAsIdentityConversion(); | |||
3563 | } else { | |||
3564 | if (Best->Conversions[0].isEllipsis()) | |||
3565 | User.EllipsisConversion = true; | |||
3566 | else { | |||
3567 | User.Before = Best->Conversions[0].Standard; | |||
3568 | User.EllipsisConversion = false; | |||
3569 | } | |||
3570 | } | |||
3571 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3572 | User.ConversionFunction = Constructor; | |||
3573 | User.FoundConversionFunction = Best->FoundDecl; | |||
3574 | User.After.setAsIdentityConversion(); | |||
3575 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | |||
3576 | User.After.setAllToTypes(ToType); | |||
3577 | return Result; | |||
3578 | } | |||
3579 | if (CXXConversionDecl *Conversion | |||
3580 | = dyn_cast<CXXConversionDecl>(Best->Function)) { | |||
3581 | // C++ [over.ics.user]p1: | |||
3582 | // | |||
3583 | // [...] If the user-defined conversion is specified by a | |||
3584 | // conversion function (12.3.2), the initial standard | |||
3585 | // conversion sequence converts the source type to the | |||
3586 | // implicit object parameter of the conversion function. | |||
3587 | User.Before = Best->Conversions[0].Standard; | |||
3588 | User.HadMultipleCandidates = HadMultipleCandidates; | |||
3589 | User.ConversionFunction = Conversion; | |||
3590 | User.FoundConversionFunction = Best->FoundDecl; | |||
3591 | User.EllipsisConversion = false; | |||
3592 | ||||
3593 | // C++ [over.ics.user]p2: | |||
3594 | // The second standard conversion sequence converts the | |||
3595 | // result of the user-defined conversion to the target type | |||
3596 | // for the sequence. Since an implicit conversion sequence | |||
3597 | // is an initialization, the special rules for | |||
3598 | // initialization by user-defined conversion apply when | |||
3599 | // selecting the best user-defined conversion for a | |||
3600 | // user-defined conversion sequence (see 13.3.3 and | |||
3601 | // 13.3.3.1). | |||
3602 | User.After = Best->FinalConversion; | |||
3603 | return Result; | |||
3604 | } | |||
3605 | llvm_unreachable("Not a constructor or conversion function?")__builtin_unreachable(); | |||
3606 | ||||
3607 | case OR_No_Viable_Function: | |||
3608 | return OR_No_Viable_Function; | |||
3609 | ||||
3610 | case OR_Ambiguous: | |||
3611 | return OR_Ambiguous; | |||
3612 | } | |||
3613 | ||||
3614 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); | |||
3615 | } | |||
3616 | ||||
3617 | bool | |||
3618 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | |||
3619 | ImplicitConversionSequence ICS; | |||
3620 | OverloadCandidateSet CandidateSet(From->getExprLoc(), | |||
3621 | OverloadCandidateSet::CSK_Normal); | |||
3622 | OverloadingResult OvResult = | |||
3623 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, | |||
3624 | CandidateSet, AllowedExplicit::None, false); | |||
3625 | ||||
3626 | if (!(OvResult == OR_Ambiguous || | |||
3627 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) | |||
3628 | return false; | |||
3629 | ||||
3630 | auto Cands = CandidateSet.CompleteCandidates( | |||
3631 | *this, | |||
3632 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, | |||
3633 | From); | |||
3634 | if (OvResult == OR_Ambiguous) | |||
3635 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) | |||
3636 | << From->getType() << ToType << From->getSourceRange(); | |||
3637 | else { // OR_No_Viable_Function && !CandidateSet.empty() | |||
3638 | if (!RequireCompleteType(From->getBeginLoc(), ToType, | |||
3639 | diag::err_typecheck_nonviable_condition_incomplete, | |||
3640 | From->getType(), From->getSourceRange())) | |||
3641 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) | |||
3642 | << false << From->getType() << From->getSourceRange() << ToType; | |||
3643 | } | |||
3644 | ||||
3645 | CandidateSet.NoteCandidates( | |||
3646 | *this, From, Cands); | |||
3647 | return true; | |||
3648 | } | |||
3649 | ||||
3650 | // Helper for compareConversionFunctions that gets the FunctionType that the | |||
3651 | // conversion-operator return value 'points' to, or nullptr. | |||
3652 | static const FunctionType * | |||
3653 | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { | |||
3654 | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); | |||
3655 | const PointerType *RetPtrTy = | |||
3656 | ConvFuncTy->getReturnType()->getAs<PointerType>(); | |||
3657 | ||||
3658 | if (!RetPtrTy) | |||
3659 | return nullptr; | |||
3660 | ||||
3661 | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); | |||
3662 | } | |||
3663 | ||||
3664 | /// Compare the user-defined conversion functions or constructors | |||
3665 | /// of two user-defined conversion sequences to determine whether any ordering | |||
3666 | /// is possible. | |||
3667 | static ImplicitConversionSequence::CompareKind | |||
3668 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, | |||
3669 | FunctionDecl *Function2) { | |||
3670 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); | |||
3671 | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); | |||
3672 | if (!Conv1 || !Conv2) | |||
3673 | return ImplicitConversionSequence::Indistinguishable; | |||
3674 | ||||
3675 | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) | |||
3676 | return ImplicitConversionSequence::Indistinguishable; | |||
3677 | ||||
3678 | // Objective-C++: | |||
3679 | // If both conversion functions are implicitly-declared conversions from | |||
3680 | // a lambda closure type to a function pointer and a block pointer, | |||
3681 | // respectively, always prefer the conversion to a function pointer, | |||
3682 | // because the function pointer is more lightweight and is more likely | |||
3683 | // to keep code working. | |||
3684 | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { | |||
3685 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); | |||
3686 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); | |||
3687 | if (Block1 != Block2) | |||
3688 | return Block1 ? ImplicitConversionSequence::Worse | |||
3689 | : ImplicitConversionSequence::Better; | |||
3690 | } | |||
3691 | ||||
3692 | // In order to support multiple calling conventions for the lambda conversion | |||
3693 | // operator (such as when the free and member function calling convention is | |||
3694 | // different), prefer the 'free' mechanism, followed by the calling-convention | |||
3695 | // of operator(). The latter is in place to support the MSVC-like solution of | |||
3696 | // defining ALL of the possible conversions in regards to calling-convention. | |||
3697 | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); | |||
3698 | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); | |||
3699 | ||||
3700 | if (Conv1FuncRet && Conv2FuncRet && | |||
3701 | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { | |||
3702 | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); | |||
3703 | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); | |||
3704 | ||||
3705 | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); | |||
3706 | const FunctionProtoType *CallOpProto = | |||
3707 | CallOp->getType()->getAs<FunctionProtoType>(); | |||
3708 | ||||
3709 | CallingConv CallOpCC = | |||
3710 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); | |||
3711 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( | |||
3712 | CallOpProto->isVariadic(), /*IsCXXMethod=*/false); | |||
3713 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( | |||
3714 | CallOpProto->isVariadic(), /*IsCXXMethod=*/true); | |||
3715 | ||||
3716 | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; | |||
3717 | for (CallingConv CC : PrefOrder) { | |||
3718 | if (Conv1CC == CC) | |||
3719 | return ImplicitConversionSequence::Better; | |||
3720 | if (Conv2CC == CC) | |||
3721 | return ImplicitConversionSequence::Worse; | |||
3722 | } | |||
3723 | } | |||
3724 | ||||
3725 | return ImplicitConversionSequence::Indistinguishable; | |||
3726 | } | |||
3727 | ||||
3728 | static bool hasDeprecatedStringLiteralToCharPtrConversion( | |||
3729 | const ImplicitConversionSequence &ICS) { | |||
3730 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || | |||
3731 | (ICS.isUserDefined() && | |||
3732 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); | |||
3733 | } | |||
3734 | ||||
3735 | /// CompareImplicitConversionSequences - Compare two implicit | |||
3736 | /// conversion sequences to determine whether one is better than the | |||
3737 | /// other or if they are indistinguishable (C++ 13.3.3.2). | |||
3738 | static ImplicitConversionSequence::CompareKind | |||
3739 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, | |||
3740 | const ImplicitConversionSequence& ICS1, | |||
3741 | const ImplicitConversionSequence& ICS2) | |||
3742 | { | |||
3743 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | |||
3744 | // conversion sequences (as defined in 13.3.3.1) | |||
3745 | // -- a standard conversion sequence (13.3.3.1.1) is a better | |||
3746 | // conversion sequence than a user-defined conversion sequence or | |||
3747 | // an ellipsis conversion sequence, and | |||
3748 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better | |||
3749 | // conversion sequence than an ellipsis conversion sequence | |||
3750 | // (13.3.3.1.3). | |||
3751 | // | |||
3752 | // C++0x [over.best.ics]p10: | |||
3753 | // For the purpose of ranking implicit conversion sequences as | |||
3754 | // described in 13.3.3.2, the ambiguous conversion sequence is | |||
3755 | // treated as a user-defined sequence that is indistinguishable | |||
3756 | // from any other user-defined conversion sequence. | |||
3757 | ||||
3758 | // String literal to 'char *' conversion has been deprecated in C++03. It has | |||
3759 | // been removed from C++11. We still accept this conversion, if it happens at | |||
3760 | // the best viable function. Otherwise, this conversion is considered worse | |||
3761 | // than ellipsis conversion. Consider this as an extension; this is not in the | |||
3762 | // standard. For example: | |||
3763 | // | |||
3764 | // int &f(...); // #1 | |||
3765 | // void f(char*); // #2 | |||
3766 | // void g() { int &r = f("foo"); } | |||
3767 | // | |||
3768 | // In C++03, we pick #2 as the best viable function. | |||
3769 | // In C++11, we pick #1 as the best viable function, because ellipsis | |||
3770 | // conversion is better than string-literal to char* conversion (since there | |||
3771 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't | |||
3772 | // convert arguments, #2 would be the best viable function in C++11. | |||
3773 | // If the best viable function has this conversion, a warning will be issued | |||
3774 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. | |||
3775 | ||||
3776 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | |||
3777 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != | |||
3778 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) | |||
3779 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) | |||
3780 | ? ImplicitConversionSequence::Worse | |||
3781 | : ImplicitConversionSequence::Better; | |||
3782 | ||||
3783 | if (ICS1.getKindRank() < ICS2.getKindRank()) | |||
3784 | return ImplicitConversionSequence::Better; | |||
3785 | if (ICS2.getKindRank() < ICS1.getKindRank()) | |||
3786 | return ImplicitConversionSequence::Worse; | |||
3787 | ||||
3788 | // The following checks require both conversion sequences to be of | |||
3789 | // the same kind. | |||
3790 | if (ICS1.getKind() != ICS2.getKind()) | |||
3791 | return ImplicitConversionSequence::Indistinguishable; | |||
3792 | ||||
3793 | ImplicitConversionSequence::CompareKind Result = | |||
3794 | ImplicitConversionSequence::Indistinguishable; | |||
3795 | ||||
3796 | // Two implicit conversion sequences of the same form are | |||
3797 | // indistinguishable conversion sequences unless one of the | |||
3798 | // following rules apply: (C++ 13.3.3.2p3): | |||
3799 | ||||
3800 | // List-initialization sequence L1 is a better conversion sequence than | |||
3801 | // list-initialization sequence L2 if: | |||
3802 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, | |||
3803 | // if not that, | |||
3804 | // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", | |||
3805 | // and N1 is smaller than N2., | |||
3806 | // even if one of the other rules in this paragraph would otherwise apply. | |||
3807 | if (!ICS1.isBad()) { | |||
3808 | if (ICS1.isStdInitializerListElement() && | |||
3809 | !ICS2.isStdInitializerListElement()) | |||
3810 | return ImplicitConversionSequence::Better; | |||
3811 | if (!ICS1.isStdInitializerListElement() && | |||
3812 | ICS2.isStdInitializerListElement()) | |||
3813 | return ImplicitConversionSequence::Worse; | |||
3814 | } | |||
3815 | ||||
3816 | if (ICS1.isStandard()) | |||
3817 | // Standard conversion sequence S1 is a better conversion sequence than | |||
3818 | // standard conversion sequence S2 if [...] | |||
3819 | Result = CompareStandardConversionSequences(S, Loc, | |||
3820 | ICS1.Standard, ICS2.Standard); | |||
3821 | else if (ICS1.isUserDefined()) { | |||
3822 | // User-defined conversion sequence U1 is a better conversion | |||
3823 | // sequence than another user-defined conversion sequence U2 if | |||
3824 | // they contain the same user-defined conversion function or | |||
3825 | // constructor and if the second standard conversion sequence of | |||
3826 | // U1 is better than the second standard conversion sequence of | |||
3827 | // U2 (C++ 13.3.3.2p3). | |||
3828 | if (ICS1.UserDefined.ConversionFunction == | |||
3829 | ICS2.UserDefined.ConversionFunction) | |||
3830 | Result = CompareStandardConversionSequences(S, Loc, | |||
3831 | ICS1.UserDefined.After, | |||
3832 | ICS2.UserDefined.After); | |||
3833 | else | |||
3834 | Result = compareConversionFunctions(S, | |||
3835 | ICS1.UserDefined.ConversionFunction, | |||
3836 | ICS2.UserDefined.ConversionFunction); | |||
3837 | } | |||
3838 | ||||
3839 | return Result; | |||
3840 | } | |||
3841 | ||||
3842 | // Per 13.3.3.2p3, compare the given standard conversion sequences to | |||
3843 | // determine if one is a proper subset of the other. | |||
3844 | static ImplicitConversionSequence::CompareKind | |||
3845 | compareStandardConversionSubsets(ASTContext &Context, | |||
3846 | const StandardConversionSequence& SCS1, | |||
3847 | const StandardConversionSequence& SCS2) { | |||
3848 | ImplicitConversionSequence::CompareKind Result | |||
3849 | = ImplicitConversionSequence::Indistinguishable; | |||
3850 | ||||
3851 | // the identity conversion sequence is considered to be a subsequence of | |||
3852 | // any non-identity conversion sequence | |||
3853 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) | |||
3854 | return ImplicitConversionSequence::Better; | |||
3855 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) | |||
3856 | return ImplicitConversionSequence::Worse; | |||
3857 | ||||
3858 | if (SCS1.Second != SCS2.Second) { | |||
3859 | if (SCS1.Second == ICK_Identity) | |||
3860 | Result = ImplicitConversionSequence::Better; | |||
3861 | else if (SCS2.Second == ICK_Identity) | |||
3862 | Result = ImplicitConversionSequence::Worse; | |||
3863 | else | |||
3864 | return ImplicitConversionSequence::Indistinguishable; | |||
3865 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) | |||
3866 | return ImplicitConversionSequence::Indistinguishable; | |||
3867 | ||||
3868 | if (SCS1.Third == SCS2.Third) { | |||
3869 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | |||
3870 | : ImplicitConversionSequence::Indistinguishable; | |||
3871 | } | |||
3872 | ||||
3873 | if (SCS1.Third == ICK_Identity) | |||
3874 | return Result == ImplicitConversionSequence::Worse | |||
3875 | ? ImplicitConversionSequence::Indistinguishable | |||
3876 | : ImplicitConversionSequence::Better; | |||
3877 | ||||
3878 | if (SCS2.Third == ICK_Identity) | |||
3879 | return Result == ImplicitConversionSequence::Better | |||
3880 | ? ImplicitConversionSequence::Indistinguishable | |||
3881 | : ImplicitConversionSequence::Worse; | |||
3882 | ||||
3883 | return ImplicitConversionSequence::Indistinguishable; | |||
3884 | } | |||
3885 | ||||
3886 | /// Determine whether one of the given reference bindings is better | |||
3887 | /// than the other based on what kind of bindings they are. | |||
3888 | static bool | |||
3889 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, | |||
3890 | const StandardConversionSequence &SCS2) { | |||
3891 | // C++0x [over.ics.rank]p3b4: | |||
3892 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | |||
3893 | // implicit object parameter of a non-static member function declared | |||
3894 | // without a ref-qualifier, and *either* S1 binds an rvalue reference | |||
3895 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an | |||
3896 | // lvalue reference to a function lvalue and S2 binds an rvalue | |||
3897 | // reference*. | |||
3898 | // | |||
3899 | // FIXME: Rvalue references. We're going rogue with the above edits, | |||
3900 | // because the semantics in the current C++0x working paper (N3225 at the | |||
3901 | // time of this writing) break the standard definition of std::forward | |||
3902 | // and std::reference_wrapper when dealing with references to functions. | |||
3903 | // Proposed wording changes submitted to CWG for consideration. | |||
3904 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || | |||
3905 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) | |||
3906 | return false; | |||
3907 | ||||
3908 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && | |||
3909 | SCS2.IsLvalueReference) || | |||
3910 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && | |||
3911 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); | |||
3912 | } | |||
3913 | ||||
3914 | enum class FixedEnumPromotion { | |||
3915 | None, | |||
3916 | ToUnderlyingType, | |||
3917 | ToPromotedUnderlyingType | |||
3918 | }; | |||
3919 | ||||
3920 | /// Returns kind of fixed enum promotion the \a SCS uses. | |||
3921 | static FixedEnumPromotion | |||
3922 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { | |||
3923 | ||||
3924 | if (SCS.Second != ICK_Integral_Promotion) | |||
3925 | return FixedEnumPromotion::None; | |||
3926 | ||||
3927 | QualType FromType = SCS.getFromType(); | |||
3928 | if (!FromType->isEnumeralType()) | |||
3929 | return FixedEnumPromotion::None; | |||
3930 | ||||
3931 | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); | |||
3932 | if (!Enum->isFixed()) | |||
3933 | return FixedEnumPromotion::None; | |||
3934 | ||||
3935 | QualType UnderlyingType = Enum->getIntegerType(); | |||
3936 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) | |||
3937 | return FixedEnumPromotion::ToUnderlyingType; | |||
3938 | ||||
3939 | return FixedEnumPromotion::ToPromotedUnderlyingType; | |||
3940 | } | |||
3941 | ||||
3942 | /// CompareStandardConversionSequences - Compare two standard | |||
3943 | /// conversion sequences to determine whether one is better than the | |||
3944 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | |||
3945 | static ImplicitConversionSequence::CompareKind | |||
3946 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | |||
3947 | const StandardConversionSequence& SCS1, | |||
3948 | const StandardConversionSequence& SCS2) | |||
3949 | { | |||
3950 | // Standard conversion sequence S1 is a better conversion sequence | |||
3951 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | |||
3952 | ||||
3953 | // -- S1 is a proper subsequence of S2 (comparing the conversion | |||
3954 | // sequences in the canonical form defined by 13.3.3.1.1, | |||
3955 | // excluding any Lvalue Transformation; the identity conversion | |||
3956 | // sequence is considered to be a subsequence of any | |||
3957 | // non-identity conversion sequence) or, if not that, | |||
3958 | if (ImplicitConversionSequence::CompareKind CK | |||
3959 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) | |||
3960 | return CK; | |||
3961 | ||||
3962 | // -- the rank of S1 is better than the rank of S2 (by the rules | |||
3963 | // defined below), or, if not that, | |||
3964 | ImplicitConversionRank Rank1 = SCS1.getRank(); | |||
3965 | ImplicitConversionRank Rank2 = SCS2.getRank(); | |||
3966 | if (Rank1 < Rank2) | |||
3967 | return ImplicitConversionSequence::Better; | |||
3968 | else if (Rank2 < Rank1) | |||
3969 | return ImplicitConversionSequence::Worse; | |||
3970 | ||||
3971 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | |||
3972 | // are indistinguishable unless one of the following rules | |||
3973 | // applies: | |||
3974 | ||||
3975 | // A conversion that is not a conversion of a pointer, or | |||
3976 | // pointer to member, to bool is better than another conversion | |||
3977 | // that is such a conversion. | |||
3978 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | |||
3979 | return SCS2.isPointerConversionToBool() | |||
3980 | ? ImplicitConversionSequence::Better | |||
3981 | : ImplicitConversionSequence::Worse; | |||
3982 | ||||
3983 | // C++14 [over.ics.rank]p4b2: | |||
3984 | // This is retroactively applied to C++11 by CWG 1601. | |||
3985 | // | |||
3986 | // A conversion that promotes an enumeration whose underlying type is fixed | |||
3987 | // to its underlying type is better than one that promotes to the promoted | |||
3988 | // underlying type, if the two are different. | |||
3989 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); | |||
3990 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); | |||
3991 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && | |||
3992 | FEP1 != FEP2) | |||
3993 | return FEP1 == FixedEnumPromotion::ToUnderlyingType | |||
3994 | ? ImplicitConversionSequence::Better | |||
3995 | : ImplicitConversionSequence::Worse; | |||
3996 | ||||
3997 | // C++ [over.ics.rank]p4b2: | |||
3998 | // | |||
3999 | // If class B is derived directly or indirectly from class A, | |||
4000 | // conversion of B* to A* is better than conversion of B* to | |||
4001 | // void*, and conversion of A* to void* is better than conversion | |||
4002 | // of B* to void*. | |||
4003 | bool SCS1ConvertsToVoid | |||
4004 | = SCS1.isPointerConversionToVoidPointer(S.Context); | |||
4005 | bool SCS2ConvertsToVoid | |||
4006 | = SCS2.isPointerConversionToVoidPointer(S.Context); | |||
4007 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | |||
4008 | // Exactly one of the conversion sequences is a conversion to | |||
4009 | // a void pointer; it's the worse conversion. | |||
4010 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | |||
4011 | : ImplicitConversionSequence::Worse; | |||
4012 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | |||
4013 | // Neither conversion sequence converts to a void pointer; compare | |||
4014 | // their derived-to-base conversions. | |||
4015 | if (ImplicitConversionSequence::CompareKind DerivedCK | |||
4016 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) | |||
4017 | return DerivedCK; | |||
4018 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && | |||
4019 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { | |||
4020 | // Both conversion sequences are conversions to void | |||
4021 | // pointers. Compare the source types to determine if there's an | |||
4022 | // inheritance relationship in their sources. | |||
4023 | QualType FromType1 = SCS1.getFromType(); | |||
4024 | QualType FromType2 = SCS2.getFromType(); | |||
4025 | ||||
4026 | // Adjust the types we're converting from via the array-to-pointer | |||
4027 | // conversion, if we need to. | |||
4028 | if (SCS1.First == ICK_Array_To_Pointer) | |||
4029 | FromType1 = S.Context.getArrayDecayedType(FromType1); | |||
4030 | if (SCS2.First == ICK_Array_To_Pointer) | |||
4031 | FromType2 = S.Context.getArrayDecayedType(FromType2); | |||
4032 | ||||
4033 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); | |||
4034 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); | |||
4035 | ||||
4036 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4037 | return ImplicitConversionSequence::Better; | |||
4038 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4039 | return ImplicitConversionSequence::Worse; | |||
4040 | ||||
4041 | // Objective-C++: If one interface is more specific than the | |||
4042 | // other, it is the better one. | |||
4043 | const ObjCObjectPointerType* FromObjCPtr1 | |||
4044 | = FromType1->getAs<ObjCObjectPointerType>(); | |||
4045 | const ObjCObjectPointerType* FromObjCPtr2 | |||
4046 | = FromType2->getAs<ObjCObjectPointerType>(); | |||
4047 | if (FromObjCPtr1 && FromObjCPtr2) { | |||
4048 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, | |||
4049 | FromObjCPtr2); | |||
4050 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, | |||
4051 | FromObjCPtr1); | |||
4052 | if (AssignLeft != AssignRight) { | |||
4053 | return AssignLeft? ImplicitConversionSequence::Better | |||
4054 | : ImplicitConversionSequence::Worse; | |||
4055 | } | |||
4056 | } | |||
4057 | } | |||
4058 | ||||
4059 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | |||
4060 | // Check for a better reference binding based on the kind of bindings. | |||
4061 | if (isBetterReferenceBindingKind(SCS1, SCS2)) | |||
4062 | return ImplicitConversionSequence::Better; | |||
4063 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) | |||
4064 | return ImplicitConversionSequence::Worse; | |||
4065 | } | |||
4066 | ||||
4067 | // Compare based on qualification conversions (C++ 13.3.3.2p3, | |||
4068 | // bullet 3). | |||
4069 | if (ImplicitConversionSequence::CompareKind QualCK | |||
4070 | = CompareQualificationConversions(S, SCS1, SCS2)) | |||
4071 | return QualCK; | |||
4072 | ||||
4073 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | |||
4074 | // C++ [over.ics.rank]p3b4: | |||
4075 | // -- S1 and S2 are reference bindings (8.5.3), and the types to | |||
4076 | // which the references refer are the same type except for | |||
4077 | // top-level cv-qualifiers, and the type to which the reference | |||
4078 | // initialized by S2 refers is more cv-qualified than the type | |||
4079 | // to which the reference initialized by S1 refers. | |||
4080 | QualType T1 = SCS1.getToType(2); | |||
4081 | QualType T2 = SCS2.getToType(2); | |||
4082 | T1 = S.Context.getCanonicalType(T1); | |||
4083 | T2 = S.Context.getCanonicalType(T2); | |||
4084 | Qualifiers T1Quals, T2Quals; | |||
4085 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4086 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4087 | if (UnqualT1 == UnqualT2) { | |||
4088 | // Objective-C++ ARC: If the references refer to objects with different | |||
4089 | // lifetimes, prefer bindings that don't change lifetime. | |||
4090 | if (SCS1.ObjCLifetimeConversionBinding != | |||
4091 | SCS2.ObjCLifetimeConversionBinding) { | |||
4092 | return SCS1.ObjCLifetimeConversionBinding | |||
4093 | ? ImplicitConversionSequence::Worse | |||
4094 | : ImplicitConversionSequence::Better; | |||
4095 | } | |||
4096 | ||||
4097 | // If the type is an array type, promote the element qualifiers to the | |||
4098 | // type for comparison. | |||
4099 | if (isa<ArrayType>(T1) && T1Quals) | |||
4100 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | |||
4101 | if (isa<ArrayType>(T2) && T2Quals) | |||
4102 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | |||
4103 | if (T2.isMoreQualifiedThan(T1)) | |||
4104 | return ImplicitConversionSequence::Better; | |||
4105 | if (T1.isMoreQualifiedThan(T2)) | |||
4106 | return ImplicitConversionSequence::Worse; | |||
4107 | } | |||
4108 | } | |||
4109 | ||||
4110 | // In Microsoft mode (below 19.28), prefer an integral conversion to a | |||
4111 | // floating-to-integral conversion if the integral conversion | |||
4112 | // is between types of the same size. | |||
4113 | // For example: | |||
4114 | // void f(float); | |||
4115 | // void f(int); | |||
4116 | // int main { | |||
4117 | // long a; | |||
4118 | // f(a); | |||
4119 | // } | |||
4120 | // Here, MSVC will call f(int) instead of generating a compile error | |||
4121 | // as clang will do in standard mode. | |||
4122 | if (S.getLangOpts().MSVCCompat && | |||
4123 | !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && | |||
4124 | SCS1.Second == ICK_Integral_Conversion && | |||
4125 | SCS2.Second == ICK_Floating_Integral && | |||
4126 | S.Context.getTypeSize(SCS1.getFromType()) == | |||
4127 | S.Context.getTypeSize(SCS1.getToType(2))) | |||
4128 | return ImplicitConversionSequence::Better; | |||
4129 | ||||
4130 | // Prefer a compatible vector conversion over a lax vector conversion | |||
4131 | // For example: | |||
4132 | // | |||
4133 | // typedef float __v4sf __attribute__((__vector_size__(16))); | |||
4134 | // void f(vector float); | |||
4135 | // void f(vector signed int); | |||
4136 | // int main() { | |||
4137 | // __v4sf a; | |||
4138 | // f(a); | |||
4139 | // } | |||
4140 | // Here, we'd like to choose f(vector float) and not | |||
4141 | // report an ambiguous call error | |||
4142 | if (SCS1.Second == ICK_Vector_Conversion && | |||
4143 | SCS2.Second == ICK_Vector_Conversion) { | |||
4144 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | |||
4145 | SCS1.getFromType(), SCS1.getToType(2)); | |||
4146 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | |||
4147 | SCS2.getFromType(), SCS2.getToType(2)); | |||
4148 | ||||
4149 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) | |||
4150 | return SCS1IsCompatibleVectorConversion | |||
4151 | ? ImplicitConversionSequence::Better | |||
4152 | : ImplicitConversionSequence::Worse; | |||
4153 | } | |||
4154 | ||||
4155 | if (SCS1.Second == ICK_SVE_Vector_Conversion && | |||
4156 | SCS2.Second == ICK_SVE_Vector_Conversion) { | |||
4157 | bool SCS1IsCompatibleSVEVectorConversion = | |||
4158 | S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); | |||
4159 | bool SCS2IsCompatibleSVEVectorConversion = | |||
4160 | S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); | |||
4161 | ||||
4162 | if (SCS1IsCompatibleSVEVectorConversion != | |||
4163 | SCS2IsCompatibleSVEVectorConversion) | |||
4164 | return SCS1IsCompatibleSVEVectorConversion | |||
4165 | ? ImplicitConversionSequence::Better | |||
4166 | : ImplicitConversionSequence::Worse; | |||
4167 | } | |||
4168 | ||||
4169 | return ImplicitConversionSequence::Indistinguishable; | |||
4170 | } | |||
4171 | ||||
4172 | /// CompareQualificationConversions - Compares two standard conversion | |||
4173 | /// sequences to determine whether they can be ranked based on their | |||
4174 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | |||
4175 | static ImplicitConversionSequence::CompareKind | |||
4176 | CompareQualificationConversions(Sema &S, | |||
4177 | const StandardConversionSequence& SCS1, | |||
4178 | const StandardConversionSequence& SCS2) { | |||
4179 | // C++ 13.3.3.2p3: | |||
4180 | // -- S1 and S2 differ only in their qualification conversion and | |||
4181 | // yield similar types T1 and T2 (C++ 4.4), respectively, and the | |||
4182 | // cv-qualification signature of type T1 is a proper subset of | |||
4183 | // the cv-qualification signature of type T2, and S1 is not the | |||
4184 | // deprecated string literal array-to-pointer conversion (4.2). | |||
4185 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | |||
4186 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | |||
4187 | return ImplicitConversionSequence::Indistinguishable; | |||
4188 | ||||
4189 | // FIXME: the example in the standard doesn't use a qualification | |||
4190 | // conversion (!) | |||
4191 | QualType T1 = SCS1.getToType(2); | |||
4192 | QualType T2 = SCS2.getToType(2); | |||
4193 | T1 = S.Context.getCanonicalType(T1); | |||
4194 | T2 = S.Context.getCanonicalType(T2); | |||
4195 | assert(!T1->isReferenceType() && !T2->isReferenceType())((void)0); | |||
4196 | Qualifiers T1Quals, T2Quals; | |||
4197 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4198 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4199 | ||||
4200 | // If the types are the same, we won't learn anything by unwrapping | |||
4201 | // them. | |||
4202 | if (UnqualT1 == UnqualT2) | |||
4203 | return ImplicitConversionSequence::Indistinguishable; | |||
4204 | ||||
4205 | ImplicitConversionSequence::CompareKind Result | |||
4206 | = ImplicitConversionSequence::Indistinguishable; | |||
4207 | ||||
4208 | // Objective-C++ ARC: | |||
4209 | // Prefer qualification conversions not involving a change in lifetime | |||
4210 | // to qualification conversions that do not change lifetime. | |||
4211 | if (SCS1.QualificationIncludesObjCLifetime != | |||
4212 | SCS2.QualificationIncludesObjCLifetime) { | |||
4213 | Result = SCS1.QualificationIncludesObjCLifetime | |||
4214 | ? ImplicitConversionSequence::Worse | |||
4215 | : ImplicitConversionSequence::Better; | |||
4216 | } | |||
4217 | ||||
4218 | while (S.Context.UnwrapSimilarTypes(T1, T2)) { | |||
4219 | // Within each iteration of the loop, we check the qualifiers to | |||
4220 | // determine if this still looks like a qualification | |||
4221 | // conversion. Then, if all is well, we unwrap one more level of | |||
4222 | // pointers or pointers-to-members and do it all again | |||
4223 | // until there are no more pointers or pointers-to-members left | |||
4224 | // to unwrap. This essentially mimics what | |||
4225 | // IsQualificationConversion does, but here we're checking for a | |||
4226 | // strict subset of qualifiers. | |||
4227 | if (T1.getQualifiers().withoutObjCLifetime() == | |||
4228 | T2.getQualifiers().withoutObjCLifetime()) | |||
4229 | // The qualifiers are the same, so this doesn't tell us anything | |||
4230 | // about how the sequences rank. | |||
4231 | // ObjC ownership quals are omitted above as they interfere with | |||
4232 | // the ARC overload rule. | |||
4233 | ; | |||
4234 | else if (T2.isMoreQualifiedThan(T1)) { | |||
4235 | // T1 has fewer qualifiers, so it could be the better sequence. | |||
4236 | if (Result == ImplicitConversionSequence::Worse) | |||
4237 | // Neither has qualifiers that are a subset of the other's | |||
4238 | // qualifiers. | |||
4239 | return ImplicitConversionSequence::Indistinguishable; | |||
4240 | ||||
4241 | Result = ImplicitConversionSequence::Better; | |||
4242 | } else if (T1.isMoreQualifiedThan(T2)) { | |||
4243 | // T2 has fewer qualifiers, so it could be the better sequence. | |||
4244 | if (Result == ImplicitConversionSequence::Better) | |||
4245 | // Neither has qualifiers that are a subset of the other's | |||
4246 | // qualifiers. | |||
4247 | return ImplicitConversionSequence::Indistinguishable; | |||
4248 | ||||
4249 | Result = ImplicitConversionSequence::Worse; | |||
4250 | } else { | |||
4251 | // Qualifiers are disjoint. | |||
4252 | return ImplicitConversionSequence::Indistinguishable; | |||
4253 | } | |||
4254 | ||||
4255 | // If the types after this point are equivalent, we're done. | |||
4256 | if (S.Context.hasSameUnqualifiedType(T1, T2)) | |||
4257 | break; | |||
4258 | } | |||
4259 | ||||
4260 | // Check that the winning standard conversion sequence isn't using | |||
4261 | // the deprecated string literal array to pointer conversion. | |||
4262 | switch (Result) { | |||
4263 | case ImplicitConversionSequence::Better: | |||
4264 | if (SCS1.DeprecatedStringLiteralToCharPtr) | |||
4265 | Result = ImplicitConversionSequence::Indistinguishable; | |||
4266 | break; | |||
4267 | ||||
4268 | case ImplicitConversionSequence::Indistinguishable: | |||
4269 | break; | |||
4270 | ||||
4271 | case ImplicitConversionSequence::Worse: | |||
4272 | if (SCS2.DeprecatedStringLiteralToCharPtr) | |||
4273 | Result = ImplicitConversionSequence::Indistinguishable; | |||
4274 | break; | |||
4275 | } | |||
4276 | ||||
4277 | return Result; | |||
4278 | } | |||
4279 | ||||
4280 | /// CompareDerivedToBaseConversions - Compares two standard conversion | |||
4281 | /// sequences to determine whether they can be ranked based on their | |||
4282 | /// various kinds of derived-to-base conversions (C++ | |||
4283 | /// [over.ics.rank]p4b3). As part of these checks, we also look at | |||
4284 | /// conversions between Objective-C interface types. | |||
4285 | static ImplicitConversionSequence::CompareKind | |||
4286 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | |||
4287 | const StandardConversionSequence& SCS1, | |||
4288 | const StandardConversionSequence& SCS2) { | |||
4289 | QualType FromType1 = SCS1.getFromType(); | |||
4290 | QualType ToType1 = SCS1.getToType(1); | |||
4291 | QualType FromType2 = SCS2.getFromType(); | |||
4292 | QualType ToType2 = SCS2.getToType(1); | |||
4293 | ||||
4294 | // Adjust the types we're converting from via the array-to-pointer | |||
4295 | // conversion, if we need to. | |||
4296 | if (SCS1.First == ICK_Array_To_Pointer) | |||
4297 | FromType1 = S.Context.getArrayDecayedType(FromType1); | |||
4298 | if (SCS2.First == ICK_Array_To_Pointer) | |||
4299 | FromType2 = S.Context.getArrayDecayedType(FromType2); | |||
4300 | ||||
4301 | // Canonicalize all of the types. | |||
4302 | FromType1 = S.Context.getCanonicalType(FromType1); | |||
4303 | ToType1 = S.Context.getCanonicalType(ToType1); | |||
4304 | FromType2 = S.Context.getCanonicalType(FromType2); | |||
4305 | ToType2 = S.Context.getCanonicalType(ToType2); | |||
4306 | ||||
4307 | // C++ [over.ics.rank]p4b3: | |||
4308 | // | |||
4309 | // If class B is derived directly or indirectly from class A and | |||
4310 | // class C is derived directly or indirectly from B, | |||
4311 | // | |||
4312 | // Compare based on pointer conversions. | |||
4313 | if (SCS1.Second == ICK_Pointer_Conversion && | |||
4314 | SCS2.Second == ICK_Pointer_Conversion && | |||
4315 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ | |||
4316 | FromType1->isPointerType() && FromType2->isPointerType() && | |||
4317 | ToType1->isPointerType() && ToType2->isPointerType()) { | |||
4318 | QualType FromPointee1 = | |||
4319 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4320 | QualType ToPointee1 = | |||
4321 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4322 | QualType FromPointee2 = | |||
4323 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4324 | QualType ToPointee2 = | |||
4325 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | |||
4326 | ||||
4327 | // -- conversion of C* to B* is better than conversion of C* to A*, | |||
4328 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | |||
4329 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | |||
4330 | return ImplicitConversionSequence::Better; | |||
4331 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | |||
4332 | return ImplicitConversionSequence::Worse; | |||
4333 | } | |||
4334 | ||||
4335 | // -- conversion of B* to A* is better than conversion of C* to A*, | |||
4336 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | |||
4337 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4338 | return ImplicitConversionSequence::Better; | |||
4339 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4340 | return ImplicitConversionSequence::Worse; | |||
4341 | } | |||
4342 | } else if (SCS1.Second == ICK_Pointer_Conversion && | |||
4343 | SCS2.Second == ICK_Pointer_Conversion) { | |||
4344 | const ObjCObjectPointerType *FromPtr1 | |||
4345 | = FromType1->getAs<ObjCObjectPointerType>(); | |||
4346 | const ObjCObjectPointerType *FromPtr2 | |||
4347 | = FromType2->getAs<ObjCObjectPointerType>(); | |||
4348 | const ObjCObjectPointerType *ToPtr1 | |||
4349 | = ToType1->getAs<ObjCObjectPointerType>(); | |||
4350 | const ObjCObjectPointerType *ToPtr2 | |||
4351 | = ToType2->getAs<ObjCObjectPointerType>(); | |||
4352 | ||||
4353 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { | |||
4354 | // Apply the same conversion ranking rules for Objective-C pointer types | |||
4355 | // that we do for C++ pointers to class types. However, we employ the | |||
4356 | // Objective-C pseudo-subtyping relationship used for assignment of | |||
4357 | // Objective-C pointer types. | |||
4358 | bool FromAssignLeft | |||
4359 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); | |||
4360 | bool FromAssignRight | |||
4361 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); | |||
4362 | bool ToAssignLeft | |||
4363 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); | |||
4364 | bool ToAssignRight | |||
4365 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); | |||
4366 | ||||
4367 | // A conversion to an a non-id object pointer type or qualified 'id' | |||
4368 | // type is better than a conversion to 'id'. | |||
4369 | if (ToPtr1->isObjCIdType() && | |||
4370 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) | |||
4371 | return ImplicitConversionSequence::Worse; | |||
4372 | if (ToPtr2->isObjCIdType() && | |||
4373 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) | |||
4374 | return ImplicitConversionSequence::Better; | |||
4375 | ||||
4376 | // A conversion to a non-id object pointer type is better than a | |||
4377 | // conversion to a qualified 'id' type | |||
4378 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) | |||
4379 | return ImplicitConversionSequence::Worse; | |||
4380 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) | |||
4381 | return ImplicitConversionSequence::Better; | |||
4382 | ||||
4383 | // A conversion to an a non-Class object pointer type or qualified 'Class' | |||
4384 | // type is better than a conversion to 'Class'. | |||
4385 | if (ToPtr1->isObjCClassType() && | |||
4386 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) | |||
4387 | return ImplicitConversionSequence::Worse; | |||
4388 | if (ToPtr2->isObjCClassType() && | |||
4389 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) | |||
4390 | return ImplicitConversionSequence::Better; | |||
4391 | ||||
4392 | // A conversion to a non-Class object pointer type is better than a | |||
4393 | // conversion to a qualified 'Class' type. | |||
4394 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) | |||
4395 | return ImplicitConversionSequence::Worse; | |||
4396 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) | |||
4397 | return ImplicitConversionSequence::Better; | |||
4398 | ||||
4399 | // -- "conversion of C* to B* is better than conversion of C* to A*," | |||
4400 | if (S.Context.hasSameType(FromType1, FromType2) && | |||
4401 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && | |||
4402 | (ToAssignLeft != ToAssignRight)) { | |||
4403 | if (FromPtr1->isSpecialized()) { | |||
4404 | // "conversion of B<A> * to B * is better than conversion of B * to | |||
4405 | // C *. | |||
4406 | bool IsFirstSame = | |||
4407 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); | |||
4408 | bool IsSecondSame = | |||
4409 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); | |||
4410 | if (IsFirstSame) { | |||
4411 | if (!IsSecondSame) | |||
4412 | return ImplicitConversionSequence::Better; | |||
4413 | } else if (IsSecondSame) | |||
4414 | return ImplicitConversionSequence::Worse; | |||
4415 | } | |||
4416 | return ToAssignLeft? ImplicitConversionSequence::Worse | |||
4417 | : ImplicitConversionSequence::Better; | |||
4418 | } | |||
4419 | ||||
4420 | // -- "conversion of B* to A* is better than conversion of C* to A*," | |||
4421 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && | |||
4422 | (FromAssignLeft != FromAssignRight)) | |||
4423 | return FromAssignLeft? ImplicitConversionSequence::Better | |||
4424 | : ImplicitConversionSequence::Worse; | |||
4425 | } | |||
4426 | } | |||
4427 | ||||
4428 | // Ranking of member-pointer types. | |||
4429 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | |||
4430 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | |||
4431 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | |||
4432 | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); | |||
4433 | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); | |||
4434 | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); | |||
4435 | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); | |||
4436 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); | |||
4437 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); | |||
4438 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); | |||
4439 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); | |||
4440 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | |||
4441 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | |||
4442 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | |||
4443 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | |||
4444 | // conversion of A::* to B::* is better than conversion of A::* to C::*, | |||
4445 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | |||
4446 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | |||
4447 | return ImplicitConversionSequence::Worse; | |||
4448 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | |||
4449 | return ImplicitConversionSequence::Better; | |||
4450 | } | |||
4451 | // conversion of B::* to C::* is better than conversion of A::* to C::* | |||
4452 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | |||
4453 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | |||
4454 | return ImplicitConversionSequence::Better; | |||
4455 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | |||
4456 | return ImplicitConversionSequence::Worse; | |||
4457 | } | |||
4458 | } | |||
4459 | ||||
4460 | if (SCS1.Second == ICK_Derived_To_Base) { | |||
4461 | // -- conversion of C to B is better than conversion of C to A, | |||
4462 | // -- binding of an expression of type C to a reference of type | |||
4463 | // B& is better than binding an expression of type C to a | |||
4464 | // reference of type A&, | |||
4465 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | |||
4466 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | |||
4467 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) | |||
4468 | return ImplicitConversionSequence::Better; | |||
4469 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) | |||
4470 | return ImplicitConversionSequence::Worse; | |||
4471 | } | |||
4472 | ||||
4473 | // -- conversion of B to A is better than conversion of C to A. | |||
4474 | // -- binding of an expression of type B to a reference of type | |||
4475 | // A& is better than binding an expression of type C to a | |||
4476 | // reference of type A&, | |||
4477 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | |||
4478 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | |||
4479 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) | |||
4480 | return ImplicitConversionSequence::Better; | |||
4481 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) | |||
4482 | return ImplicitConversionSequence::Worse; | |||
4483 | } | |||
4484 | } | |||
4485 | ||||
4486 | return ImplicitConversionSequence::Indistinguishable; | |||
4487 | } | |||
4488 | ||||
4489 | /// Determine whether the given type is valid, e.g., it is not an invalid | |||
4490 | /// C++ class. | |||
4491 | static bool isTypeValid(QualType T) { | |||
4492 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) | |||
4493 | return !Record->isInvalidDecl(); | |||
4494 | ||||
4495 | return true; | |||
4496 | } | |||
4497 | ||||
4498 | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { | |||
4499 | if (!T.getQualifiers().hasUnaligned()) | |||
4500 | return T; | |||
4501 | ||||
4502 | Qualifiers Q; | |||
4503 | T = Ctx.getUnqualifiedArrayType(T, Q); | |||
4504 | Q.removeUnaligned(); | |||
4505 | return Ctx.getQualifiedType(T, Q); | |||
4506 | } | |||
4507 | ||||
4508 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | |||
4509 | /// determine whether they are reference-compatible, | |||
4510 | /// reference-related, or incompatible, for use in C++ initialization by | |||
4511 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | |||
4512 | /// type, and the first type (T1) is the pointee type of the reference | |||
4513 | /// type being initialized. | |||
4514 | Sema::ReferenceCompareResult | |||
4515 | Sema::CompareReferenceRelationship(SourceLocation Loc, | |||
4516 | QualType OrigT1, QualType OrigT2, | |||
4517 | ReferenceConversions *ConvOut) { | |||
4518 | assert(!OrigT1->isReferenceType() &&((void)0) | |||
4519 | "T1 must be the pointee type of the reference type")((void)0); | |||
4520 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((void)0); | |||
4521 | ||||
4522 | QualType T1 = Context.getCanonicalType(OrigT1); | |||
4523 | QualType T2 = Context.getCanonicalType(OrigT2); | |||
4524 | Qualifiers T1Quals, T2Quals; | |||
4525 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | |||
4526 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | |||
4527 | ||||
4528 | ReferenceConversions ConvTmp; | |||
4529 | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; | |||
4530 | Conv = ReferenceConversions(); | |||
4531 | ||||
4532 | // C++2a [dcl.init.ref]p4: | |||
4533 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | |||
4534 | // reference-related to "cv2 T2" if T1 is similar to T2, or | |||
4535 | // T1 is a base class of T2. | |||
4536 | // "cv1 T1" is reference-compatible with "cv2 T2" if | |||
4537 | // a prvalue of type "pointer to cv2 T2" can be converted to the type | |||
4538 | // "pointer to cv1 T1" via a standard conversion sequence. | |||
4539 | ||||
4540 | // Check for standard conversions we can apply to pointers: derived-to-base | |||
4541 | // conversions, ObjC pointer conversions, and function pointer conversions. | |||
4542 | // (Qualification conversions are checked last.) | |||
4543 | QualType ConvertedT2; | |||
4544 | if (UnqualT1 == UnqualT2) { | |||
4545 | // Nothing to do. | |||
4546 | } else if (isCompleteType(Loc, OrigT2) && | |||
4547 | isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && | |||
4548 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) | |||
4549 | Conv |= ReferenceConversions::DerivedToBase; | |||
4550 | else if (UnqualT1->isObjCObjectOrInterfaceType() && | |||
4551 | UnqualT2->isObjCObjectOrInterfaceType() && | |||
4552 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) | |||
4553 | Conv |= ReferenceConversions::ObjC; | |||
4554 | else if (UnqualT2->isFunctionType() && | |||
4555 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { | |||
4556 | Conv |= ReferenceConversions::Function; | |||
4557 | // No need to check qualifiers; function types don't have them. | |||
4558 | return Ref_Compatible; | |||
4559 | } | |||
4560 | bool ConvertedReferent = Conv != 0; | |||
4561 | ||||
4562 | // We can have a qualification conversion. Compute whether the types are | |||
4563 | // similar at the same time. | |||
4564 | bool PreviousToQualsIncludeConst = true; | |||
4565 | bool TopLevel = true; | |||
4566 | do { | |||
4567 | if (T1 == T2) | |||
4568 | break; | |||
4569 | ||||
4570 | // We will need a qualification conversion. | |||
4571 | Conv |= ReferenceConversions::Qualification; | |||
4572 | ||||
4573 | // Track whether we performed a qualification conversion anywhere other | |||
4574 | // than the top level. This matters for ranking reference bindings in | |||
4575 | // overload resolution. | |||
4576 | if (!TopLevel) | |||
4577 | Conv |= ReferenceConversions::NestedQualification; | |||
4578 | ||||
4579 | // MS compiler ignores __unaligned qualifier for references; do the same. | |||
4580 | T1 = withoutUnaligned(Context, T1); | |||
4581 | T2 = withoutUnaligned(Context, T2); | |||
4582 | ||||
4583 | // If we find a qualifier mismatch, the types are not reference-compatible, | |||
4584 | // but are still be reference-related if they're similar. | |||
4585 | bool ObjCLifetimeConversion = false; | |||
4586 | if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, | |||
4587 | PreviousToQualsIncludeConst, | |||
4588 | ObjCLifetimeConversion)) | |||
4589 | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) | |||
4590 | ? Ref_Related | |||
4591 | : Ref_Incompatible; | |||
4592 | ||||
4593 | // FIXME: Should we track this for any level other than the first? | |||
4594 | if (ObjCLifetimeConversion) | |||
4595 | Conv |= ReferenceConversions::ObjCLifetime; | |||
4596 | ||||
4597 | TopLevel = false; | |||
4598 | } while (Context.UnwrapSimilarTypes(T1, T2)); | |||
4599 | ||||
4600 | // At this point, if the types are reference-related, we must either have the | |||
4601 | // same inner type (ignoring qualifiers), or must have already worked out how | |||
4602 | // to convert the referent. | |||
4603 | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) | |||
4604 | ? Ref_Compatible | |||
4605 | : Ref_Incompatible; | |||
4606 | } | |||
4607 | ||||
4608 | /// Look for a user-defined conversion to a value reference-compatible | |||
4609 | /// with DeclType. Return true if something definite is found. | |||
4610 | static bool | |||
4611 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, | |||
4612 | QualType DeclType, SourceLocation DeclLoc, | |||
4613 | Expr *Init, QualType T2, bool AllowRvalues, | |||
4614 | bool AllowExplicit) { | |||
4615 | assert(T2->isRecordType() && "Can only find conversions of record types.")((void)0); | |||
4616 | auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); | |||
4617 | ||||
4618 | OverloadCandidateSet CandidateSet( | |||
4619 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); | |||
4620 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | |||
4621 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
4622 | NamedDecl *D = *I; | |||
4623 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | |||
4624 | if (isa<UsingShadowDecl>(D)) | |||
4625 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
4626 | ||||
4627 | FunctionTemplateDecl *ConvTemplate | |||
4628 | = dyn_cast<FunctionTemplateDecl>(D); | |||
4629 | CXXConversionDecl *Conv; | |||
4630 | if (ConvTemplate) | |||
4631 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
4632 | else | |||
4633 | Conv = cast<CXXConversionDecl>(D); | |||
4634 | ||||
4635 | if (AllowRvalues) { | |||
4636 | // If we are initializing an rvalue reference, don't permit conversion | |||
4637 | // functions that return lvalues. | |||
4638 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { | |||
4639 | const ReferenceType *RefType | |||
4640 | = Conv->getConversionType()->getAs<LValueReferenceType>(); | |||
4641 | if (RefType && !RefType->getPointeeType()->isFunctionType()) | |||
4642 | continue; | |||
4643 | } | |||
4644 | ||||
4645 | if (!ConvTemplate && | |||
4646 | S.CompareReferenceRelationship( | |||
4647 | DeclLoc, | |||
4648 | Conv->getConversionType() | |||
4649 | .getNonReferenceType() | |||
4650 | .getUnqualifiedType(), | |||
4651 | DeclType.getNonReferenceType().getUnqualifiedType()) == | |||
4652 | Sema::Ref_Incompatible) | |||
4653 | continue; | |||
4654 | } else { | |||
4655 | // If the conversion function doesn't return a reference type, | |||
4656 | // it can't be considered for this conversion. An rvalue reference | |||
4657 | // is only acceptable if its referencee is a function type. | |||
4658 | ||||
4659 | const ReferenceType *RefType = | |||
4660 | Conv->getConversionType()->getAs<ReferenceType>(); | |||
4661 | if (!RefType || | |||
4662 | (!RefType->isLValueReferenceType() && | |||
4663 | !RefType->getPointeeType()->isFunctionType())) | |||
4664 | continue; | |||
4665 | } | |||
4666 | ||||
4667 | if (ConvTemplate) | |||
4668 | S.AddTemplateConversionCandidate( | |||
4669 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | |||
4670 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | |||
4671 | else | |||
4672 | S.AddConversionCandidate( | |||
4673 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | |||
4674 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | |||
4675 | } | |||
4676 | ||||
4677 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
4678 | ||||
4679 | OverloadCandidateSet::iterator Best; | |||
4680 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { | |||
4681 | case OR_Success: | |||
4682 | // C++ [over.ics.ref]p1: | |||
4683 | // | |||
4684 | // [...] If the parameter binds directly to the result of | |||
4685 | // applying a conversion function to the argument | |||
4686 | // expression, the implicit conversion sequence is a | |||
4687 | // user-defined conversion sequence (13.3.3.1.2), with the | |||
4688 | // second standard conversion sequence either an identity | |||
4689 | // conversion or, if the conversion function returns an | |||
4690 | // entity of a type that is a derived class of the parameter | |||
4691 | // type, a derived-to-base Conversion. | |||
4692 | if (!Best->FinalConversion.DirectBinding) | |||
4693 | return false; | |||
4694 | ||||
4695 | ICS.setUserDefined(); | |||
4696 | ICS.UserDefined.Before = Best->Conversions[0].Standard; | |||
4697 | ICS.UserDefined.After = Best->FinalConversion; | |||
4698 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; | |||
4699 | ICS.UserDefined.ConversionFunction = Best->Function; | |||
4700 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; | |||
4701 | ICS.UserDefined.EllipsisConversion = false; | |||
4702 | assert(ICS.UserDefined.After.ReferenceBinding &&((void)0) | |||
4703 | ICS.UserDefined.After.DirectBinding &&((void)0) | |||
4704 | "Expected a direct reference binding!")((void)0); | |||
4705 | return true; | |||
4706 | ||||
4707 | case OR_Ambiguous: | |||
4708 | ICS.setAmbiguous(); | |||
4709 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | |||
4710 | Cand != CandidateSet.end(); ++Cand) | |||
4711 | if (Cand->Best) | |||
4712 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | |||
4713 | return true; | |||
4714 | ||||
4715 | case OR_No_Viable_Function: | |||
4716 | case OR_Deleted: | |||
4717 | // There was no suitable conversion, or we found a deleted | |||
4718 | // conversion; continue with other checks. | |||
4719 | return false; | |||
4720 | } | |||
4721 | ||||
4722 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); | |||
4723 | } | |||
4724 | ||||
4725 | /// Compute an implicit conversion sequence for reference | |||
4726 | /// initialization. | |||
4727 | static ImplicitConversionSequence | |||
4728 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, | |||
4729 | SourceLocation DeclLoc, | |||
4730 | bool SuppressUserConversions, | |||
4731 | bool AllowExplicit) { | |||
4732 | assert(DeclType->isReferenceType() && "Reference init needs a reference")((void)0); | |||
4733 | ||||
4734 | // Most paths end in a failed conversion. | |||
4735 | ImplicitConversionSequence ICS; | |||
4736 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
4737 | ||||
4738 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); | |||
4739 | QualType T2 = Init->getType(); | |||
4740 | ||||
4741 | // If the initializer is the address of an overloaded function, try | |||
4742 | // to resolve the overloaded function. If all goes well, T2 is the | |||
4743 | // type of the resulting function. | |||
4744 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | |||
4745 | DeclAccessPair Found; | |||
4746 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | |||
4747 | false, Found)) | |||
4748 | T2 = Fn->getType(); | |||
4749 | } | |||
4750 | ||||
4751 | // Compute some basic properties of the types and the initializer. | |||
4752 | bool isRValRef = DeclType->isRValueReferenceType(); | |||
4753 | Expr::Classification InitCategory = Init->Classify(S.Context); | |||
4754 | ||||
4755 | Sema::ReferenceConversions RefConv; | |||
4756 | Sema::ReferenceCompareResult RefRelationship = | |||
4757 | S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); | |||
4758 | ||||
4759 | auto SetAsReferenceBinding = [&](bool BindsDirectly) { | |||
4760 | ICS.setStandard(); | |||
4761 | ICS.Standard.First = ICK_Identity; | |||
4762 | // FIXME: A reference binding can be a function conversion too. We should | |||
4763 | // consider that when ordering reference-to-function bindings. | |||
4764 | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) | |||
4765 | ? ICK_Derived_To_Base | |||
4766 | : (RefConv & Sema::ReferenceConversions::ObjC) | |||
4767 | ? ICK_Compatible_Conversion | |||
4768 | : ICK_Identity; | |||
4769 | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank | |||
4770 | // a reference binding that performs a non-top-level qualification | |||
4771 | // conversion as a qualification conversion, not as an identity conversion. | |||
4772 | ICS.Standard.Third = (RefConv & | |||
4773 | Sema::ReferenceConversions::NestedQualification) | |||
4774 | ? ICK_Qualification | |||
4775 | : ICK_Identity; | |||
4776 | ICS.Standard.setFromType(T2); | |||
4777 | ICS.Standard.setToType(0, T2); | |||
4778 | ICS.Standard.setToType(1, T1); | |||
4779 | ICS.Standard.setToType(2, T1); | |||
4780 | ICS.Standard.ReferenceBinding = true; | |||
4781 | ICS.Standard.DirectBinding = BindsDirectly; | |||
4782 | ICS.Standard.IsLvalueReference = !isRValRef; | |||
4783 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | |||
4784 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); | |||
4785 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
4786 | ICS.Standard.ObjCLifetimeConversionBinding = | |||
4787 | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; | |||
4788 | ICS.Standard.CopyConstructor = nullptr; | |||
4789 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | |||
4790 | }; | |||
4791 | ||||
4792 | // C++0x [dcl.init.ref]p5: | |||
4793 | // A reference to type "cv1 T1" is initialized by an expression | |||
4794 | // of type "cv2 T2" as follows: | |||
4795 | ||||
4796 | // -- If reference is an lvalue reference and the initializer expression | |||
4797 | if (!isRValRef) { | |||
4798 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is | |||
4799 | // reference-compatible with "cv2 T2," or | |||
4800 | // | |||
4801 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | |||
4802 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { | |||
4803 | // C++ [over.ics.ref]p1: | |||
4804 | // When a parameter of reference type binds directly (8.5.3) | |||
4805 | // to an argument expression, the implicit conversion sequence | |||
4806 | // is the identity conversion, unless the argument expression | |||
4807 | // has a type that is a derived class of the parameter type, | |||
4808 | // in which case the implicit conversion sequence is a | |||
4809 | // derived-to-base Conversion (13.3.3.1). | |||
4810 | SetAsReferenceBinding(/*BindsDirectly=*/true); | |||
4811 | ||||
4812 | // Nothing more to do: the inaccessibility/ambiguity check for | |||
4813 | // derived-to-base conversions is suppressed when we're | |||
4814 | // computing the implicit conversion sequence (C++ | |||
4815 | // [over.best.ics]p2). | |||
4816 | return ICS; | |||
4817 | } | |||
4818 | ||||
4819 | // -- has a class type (i.e., T2 is a class type), where T1 is | |||
4820 | // not reference-related to T2, and can be implicitly | |||
4821 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" | |||
4822 | // is reference-compatible with "cv3 T3" 92) (this | |||
4823 | // conversion is selected by enumerating the applicable | |||
4824 | // conversion functions (13.3.1.6) and choosing the best | |||
4825 | // one through overload resolution (13.3)), | |||
4826 | if (!SuppressUserConversions && T2->isRecordType() && | |||
4827 | S.isCompleteType(DeclLoc, T2) && | |||
4828 | RefRelationship == Sema::Ref_Incompatible) { | |||
4829 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | |||
4830 | Init, T2, /*AllowRvalues=*/false, | |||
4831 | AllowExplicit)) | |||
4832 | return ICS; | |||
4833 | } | |||
4834 | } | |||
4835 | ||||
4836 | // -- Otherwise, the reference shall be an lvalue reference to a | |||
4837 | // non-volatile const type (i.e., cv1 shall be const), or the reference | |||
4838 | // shall be an rvalue reference. | |||
4839 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { | |||
4840 | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) | |||
4841 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); | |||
4842 | return ICS; | |||
4843 | } | |||
4844 | ||||
4845 | // -- If the initializer expression | |||
4846 | // | |||
4847 | // -- is an xvalue, class prvalue, array prvalue or function | |||
4848 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or | |||
4849 | if (RefRelationship == Sema::Ref_Compatible && | |||
4850 | (InitCategory.isXValue() || | |||
4851 | (InitCategory.isPRValue() && | |||
4852 | (T2->isRecordType() || T2->isArrayType())) || | |||
4853 | (InitCategory.isLValue() && T2->isFunctionType()))) { | |||
4854 | // In C++11, this is always a direct binding. In C++98/03, it's a direct | |||
4855 | // binding unless we're binding to a class prvalue. | |||
4856 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we | |||
4857 | // allow the use of rvalue references in C++98/03 for the benefit of | |||
4858 | // standard library implementors; therefore, we need the xvalue check here. | |||
4859 | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || | |||
4860 | !(InitCategory.isPRValue() || T2->isRecordType())); | |||
4861 | return ICS; | |||
4862 | } | |||
4863 | ||||
4864 | // -- has a class type (i.e., T2 is a class type), where T1 is not | |||
4865 | // reference-related to T2, and can be implicitly converted to | |||
4866 | // an xvalue, class prvalue, or function lvalue of type | |||
4867 | // "cv3 T3", where "cv1 T1" is reference-compatible with | |||
4868 | // "cv3 T3", | |||
4869 | // | |||
4870 | // then the reference is bound to the value of the initializer | |||
4871 | // expression in the first case and to the result of the conversion | |||
4872 | // in the second case (or, in either case, to an appropriate base | |||
4873 | // class subobject). | |||
4874 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | |||
4875 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && | |||
4876 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | |||
4877 | Init, T2, /*AllowRvalues=*/true, | |||
4878 | AllowExplicit)) { | |||
4879 | // In the second case, if the reference is an rvalue reference | |||
4880 | // and the second standard conversion sequence of the | |||
4881 | // user-defined conversion sequence includes an lvalue-to-rvalue | |||
4882 | // conversion, the program is ill-formed. | |||
4883 | if (ICS.isUserDefined() && isRValRef && | |||
4884 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) | |||
4885 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
4886 | ||||
4887 | return ICS; | |||
4888 | } | |||
4889 | ||||
4890 | // A temporary of function type cannot be created; don't even try. | |||
4891 | if (T1->isFunctionType()) | |||
4892 | return ICS; | |||
4893 | ||||
4894 | // -- Otherwise, a temporary of type "cv1 T1" is created and | |||
4895 | // initialized from the initializer expression using the | |||
4896 | // rules for a non-reference copy initialization (8.5). The | |||
4897 | // reference is then bound to the temporary. If T1 is | |||
4898 | // reference-related to T2, cv1 must be the same | |||
4899 | // cv-qualification as, or greater cv-qualification than, | |||
4900 | // cv2; otherwise, the program is ill-formed. | |||
4901 | if (RefRelationship == Sema::Ref_Related) { | |||
4902 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | |||
4903 | // we would be reference-compatible or reference-compatible with | |||
4904 | // added qualification. But that wasn't the case, so the reference | |||
4905 | // initialization fails. | |||
4906 | // | |||
4907 | // Note that we only want to check address spaces and cvr-qualifiers here. | |||
4908 | // ObjC GC, lifetime and unaligned qualifiers aren't important. | |||
4909 | Qualifiers T1Quals = T1.getQualifiers(); | |||
4910 | Qualifiers T2Quals = T2.getQualifiers(); | |||
4911 | T1Quals.removeObjCGCAttr(); | |||
4912 | T1Quals.removeObjCLifetime(); | |||
4913 | T2Quals.removeObjCGCAttr(); | |||
4914 | T2Quals.removeObjCLifetime(); | |||
4915 | // MS compiler ignores __unaligned qualifier for references; do the same. | |||
4916 | T1Quals.removeUnaligned(); | |||
4917 | T2Quals.removeUnaligned(); | |||
4918 | if (!T1Quals.compatiblyIncludes(T2Quals)) | |||
4919 | return ICS; | |||
4920 | } | |||
4921 | ||||
4922 | // If at least one of the types is a class type, the types are not | |||
4923 | // related, and we aren't allowed any user conversions, the | |||
4924 | // reference binding fails. This case is important for breaking | |||
4925 | // recursion, since TryImplicitConversion below will attempt to | |||
4926 | // create a temporary through the use of a copy constructor. | |||
4927 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | |||
4928 | (T1->isRecordType() || T2->isRecordType())) | |||
4929 | return ICS; | |||
4930 | ||||
4931 | // If T1 is reference-related to T2 and the reference is an rvalue | |||
4932 | // reference, the initializer expression shall not be an lvalue. | |||
4933 | if (RefRelationship >= Sema::Ref_Related && isRValRef && | |||
4934 | Init->Classify(S.Context).isLValue()) { | |||
4935 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); | |||
4936 | return ICS; | |||
4937 | } | |||
4938 | ||||
4939 | // C++ [over.ics.ref]p2: | |||
4940 | // When a parameter of reference type is not bound directly to | |||
4941 | // an argument expression, the conversion sequence is the one | |||
4942 | // required to convert the argument expression to the | |||
4943 | // underlying type of the reference according to | |||
4944 | // 13.3.3.1. Conceptually, this conversion sequence corresponds | |||
4945 | // to copy-initializing a temporary of the underlying type with | |||
4946 | // the argument expression. Any difference in top-level | |||
4947 | // cv-qualification is subsumed by the initialization itself | |||
4948 | // and does not constitute a conversion. | |||
4949 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, | |||
4950 | AllowedExplicit::None, | |||
4951 | /*InOverloadResolution=*/false, | |||
4952 | /*CStyle=*/false, | |||
4953 | /*AllowObjCWritebackConversion=*/false, | |||
4954 | /*AllowObjCConversionOnExplicit=*/false); | |||
4955 | ||||
4956 | // Of course, that's still a reference binding. | |||
4957 | if (ICS.isStandard()) { | |||
4958 | ICS.Standard.ReferenceBinding = true; | |||
4959 | ICS.Standard.IsLvalueReference = !isRValRef; | |||
4960 | ICS.Standard.BindsToFunctionLvalue = false; | |||
4961 | ICS.Standard.BindsToRvalue = true; | |||
4962 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
4963 | ICS.Standard.ObjCLifetimeConversionBinding = false; | |||
4964 | } else if (ICS.isUserDefined()) { | |||
4965 | const ReferenceType *LValRefType = | |||
4966 | ICS.UserDefined.ConversionFunction->getReturnType() | |||
4967 | ->getAs<LValueReferenceType>(); | |||
4968 | ||||
4969 | // C++ [over.ics.ref]p3: | |||
4970 | // Except for an implicit object parameter, for which see 13.3.1, a | |||
4971 | // standard conversion sequence cannot be formed if it requires [...] | |||
4972 | // binding an rvalue reference to an lvalue other than a function | |||
4973 | // lvalue. | |||
4974 | // Note that the function case is not possible here. | |||
4975 | if (isRValRef && LValRefType) { | |||
4976 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | |||
4977 | return ICS; | |||
4978 | } | |||
4979 | ||||
4980 | ICS.UserDefined.After.ReferenceBinding = true; | |||
4981 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; | |||
4982 | ICS.UserDefined.After.BindsToFunctionLvalue = false; | |||
4983 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; | |||
4984 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
4985 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; | |||
4986 | } | |||
4987 | ||||
4988 | return ICS; | |||
4989 | } | |||
4990 | ||||
4991 | static ImplicitConversionSequence | |||
4992 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | |||
4993 | bool SuppressUserConversions, | |||
4994 | bool InOverloadResolution, | |||
4995 | bool AllowObjCWritebackConversion, | |||
4996 | bool AllowExplicit = false); | |||
4997 | ||||
4998 | /// TryListConversion - Try to copy-initialize a value of type ToType from the | |||
4999 | /// initializer list From. | |||
5000 | static ImplicitConversionSequence | |||
5001 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, | |||
5002 | bool SuppressUserConversions, | |||
5003 | bool InOverloadResolution, | |||
5004 | bool AllowObjCWritebackConversion) { | |||
5005 | // C++11 [over.ics.list]p1: | |||
5006 | // When an argument is an initializer list, it is not an expression and | |||
5007 | // special rules apply for converting it to a parameter type. | |||
5008 | ||||
5009 | ImplicitConversionSequence Result; | |||
5010 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); | |||
5011 | ||||
5012 | // We need a complete type for what follows. Incomplete types can never be | |||
5013 | // initialized from init lists. | |||
5014 | if (!S.isCompleteType(From->getBeginLoc(), ToType)) | |||
5015 | return Result; | |||
5016 | ||||
5017 | // Per DR1467: | |||
5018 | // If the parameter type is a class X and the initializer list has a single | |||
5019 | // element of type cv U, where U is X or a class derived from X, the | |||
5020 | // implicit conversion sequence is the one required to convert the element | |||
5021 | // to the parameter type. | |||
5022 | // | |||
5023 | // Otherwise, if the parameter type is a character array [... ] | |||
5024 | // and the initializer list has a single element that is an | |||
5025 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the | |||
5026 | // implicit conversion sequence is the identity conversion. | |||
5027 | if (From->getNumInits() == 1) { | |||
5028 | if (ToType->isRecordType()) { | |||
5029 | QualType InitType = From->getInit(0)->getType(); | |||
5030 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || | |||
5031 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) | |||
5032 | return TryCopyInitialization(S, From->getInit(0), ToType, | |||
5033 | SuppressUserConversions, | |||
5034 | InOverloadResolution, | |||
5035 | AllowObjCWritebackConversion); | |||
5036 | } | |||
5037 | ||||
5038 | if (const auto *AT = S.Context.getAsArrayType(ToType)) { | |||
5039 | if (S.IsStringInit(From->getInit(0), AT)) { | |||
5040 | InitializedEntity Entity = | |||
5041 | InitializedEntity::InitializeParameter(S.Context, ToType, | |||
5042 | /*Consumed=*/false); | |||
5043 | if (S.CanPerformCopyInitialization(Entity, From)) { | |||
5044 | Result.setStandard(); | |||
5045 | Result.Standard.setAsIdentityConversion(); | |||
5046 | Result.Standard.setFromType(ToType); | |||
5047 | Result.Standard.setAllToTypes(ToType); | |||
5048 | return Result; | |||
5049 | } | |||
5050 | } | |||
5051 | } | |||
5052 | } | |||
5053 | ||||
5054 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). | |||
5055 | // C++11 [over.ics.list]p2: | |||
5056 | // If the parameter type is std::initializer_list<X> or "array of X" and | |||
5057 | // all the elements can be implicitly converted to X, the implicit | |||
5058 | // conversion sequence is the worst conversion necessary to convert an | |||
5059 | // element of the list to X. | |||
5060 | // | |||
5061 | // C++14 [over.ics.list]p3: | |||
5062 | // Otherwise, if the parameter type is "array of N X", if the initializer | |||
5063 | // list has exactly N elements or if it has fewer than N elements and X is | |||
5064 | // default-constructible, and if all the elements of the initializer list | |||
5065 | // can be implicitly converted to X, the implicit conversion sequence is | |||
5066 | // the worst conversion necessary to convert an element of the list to X. | |||
5067 | // | |||
5068 | // FIXME: We're missing a lot of these checks. | |||
5069 | bool toStdInitializerList = false; | |||
5070 | QualType X; | |||
5071 | if (ToType->isArrayType()) | |||
5072 | X = S.Context.getAsArrayType(ToType)->getElementType(); | |||
5073 | else | |||
5074 | toStdInitializerList = S.isStdInitializerList(ToType, &X); | |||
5075 | if (!X.isNull()) { | |||
5076 | for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { | |||
5077 | Expr *Init = From->getInit(i); | |||
5078 | ImplicitConversionSequence ICS = | |||
5079 | TryCopyInitialization(S, Init, X, SuppressUserConversions, | |||
5080 | InOverloadResolution, | |||
5081 | AllowObjCWritebackConversion); | |||
5082 | // If a single element isn't convertible, fail. | |||
5083 | if (ICS.isBad()) { | |||
5084 | Result = ICS; | |||
5085 | break; | |||
5086 | } | |||
5087 | // Otherwise, look for the worst conversion. | |||
5088 | if (Result.isBad() || CompareImplicitConversionSequences( | |||
5089 | S, From->getBeginLoc(), ICS, Result) == | |||
5090 | ImplicitConversionSequence::Worse) | |||
5091 | Result = ICS; | |||
5092 | } | |||
5093 | ||||
5094 | // For an empty list, we won't have computed any conversion sequence. | |||
5095 | // Introduce the identity conversion sequence. | |||
5096 | if (From->getNumInits() == 0) { | |||
5097 | Result.setStandard(); | |||
5098 | Result.Standard.setAsIdentityConversion(); | |||
5099 | Result.Standard.setFromType(ToType); | |||
5100 | Result.Standard.setAllToTypes(ToType); | |||
5101 | } | |||
5102 | ||||
5103 | Result.setStdInitializerListElement(toStdInitializerList); | |||
5104 | return Result; | |||
5105 | } | |||
5106 | ||||
5107 | // C++14 [over.ics.list]p4: | |||
5108 | // C++11 [over.ics.list]p3: | |||
5109 | // Otherwise, if the parameter is a non-aggregate class X and overload | |||
5110 | // resolution chooses a single best constructor [...] the implicit | |||
5111 | // conversion sequence is a user-defined conversion sequence. If multiple | |||
5112 | // constructors are viable but none is better than the others, the | |||
5113 | // implicit conversion sequence is a user-defined conversion sequence. | |||
5114 | if (ToType->isRecordType() && !ToType->isAggregateType()) { | |||
5115 | // This function can deal with initializer lists. | |||
5116 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | |||
5117 | AllowedExplicit::None, | |||
5118 | InOverloadResolution, /*CStyle=*/false, | |||
5119 | AllowObjCWritebackConversion, | |||
5120 | /*AllowObjCConversionOnExplicit=*/false); | |||
5121 | } | |||
5122 | ||||
5123 | // C++14 [over.ics.list]p5: | |||
5124 | // C++11 [over.ics.list]p4: | |||
5125 | // Otherwise, if the parameter has an aggregate type which can be | |||
5126 | // initialized from the initializer list [...] the implicit conversion | |||
5127 | // sequence is a user-defined conversion sequence. | |||
5128 | if (ToType->isAggregateType()) { | |||
5129 | // Type is an aggregate, argument is an init list. At this point it comes | |||
5130 | // down to checking whether the initialization works. | |||
5131 | // FIXME: Find out whether this parameter is consumed or not. | |||
5132 | InitializedEntity Entity = | |||
5133 | InitializedEntity::InitializeParameter(S.Context, ToType, | |||
5134 | /*Consumed=*/false); | |||
5135 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, | |||
5136 | From)) { | |||
5137 | Result.setUserDefined(); | |||
5138 | Result.UserDefined.Before.setAsIdentityConversion(); | |||
5139 | // Initializer lists don't have a type. | |||
5140 | Result.UserDefined.Before.setFromType(QualType()); | |||
5141 | Result.UserDefined.Before.setAllToTypes(QualType()); | |||
5142 | ||||
5143 | Result.UserDefined.After.setAsIdentityConversion(); | |||
5144 | Result.UserDefined.After.setFromType(ToType); | |||
5145 | Result.UserDefined.After.setAllToTypes(ToType); | |||
5146 | Result.UserDefined.ConversionFunction = nullptr; | |||
5147 | } | |||
5148 | return Result; | |||
5149 | } | |||
5150 | ||||
5151 | // C++14 [over.ics.list]p6: | |||
5152 | // C++11 [over.ics.list]p5: | |||
5153 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. | |||
5154 | if (ToType->isReferenceType()) { | |||
5155 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't | |||
5156 | // mention initializer lists in any way. So we go by what list- | |||
5157 | // initialization would do and try to extrapolate from that. | |||
5158 | ||||
5159 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); | |||
5160 | ||||
5161 | // If the initializer list has a single element that is reference-related | |||
5162 | // to the parameter type, we initialize the reference from that. | |||
5163 | if (From->getNumInits() == 1) { | |||
5164 | Expr *Init = From->getInit(0); | |||
5165 | ||||
5166 | QualType T2 = Init->getType(); | |||
5167 | ||||
5168 | // If the initializer is the address of an overloaded function, try | |||
5169 | // to resolve the overloaded function. If all goes well, T2 is the | |||
5170 | // type of the resulting function. | |||
5171 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | |||
5172 | DeclAccessPair Found; | |||
5173 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( | |||
5174 | Init, ToType, false, Found)) | |||
5175 | T2 = Fn->getType(); | |||
5176 | } | |||
5177 | ||||
5178 | // Compute some basic properties of the types and the initializer. | |||
5179 | Sema::ReferenceCompareResult RefRelationship = | |||
5180 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); | |||
5181 | ||||
5182 | if (RefRelationship >= Sema::Ref_Related) { | |||
5183 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), | |||
5184 | SuppressUserConversions, | |||
5185 | /*AllowExplicit=*/false); | |||
5186 | } | |||
5187 | } | |||
5188 | ||||
5189 | // Otherwise, we bind the reference to a temporary created from the | |||
5190 | // initializer list. | |||
5191 | Result = TryListConversion(S, From, T1, SuppressUserConversions, | |||
5192 | InOverloadResolution, | |||
5193 | AllowObjCWritebackConversion); | |||
5194 | if (Result.isFailure()) | |||
5195 | return Result; | |||
5196 | assert(!Result.isEllipsis() &&((void)0) | |||
5197 | "Sub-initialization cannot result in ellipsis conversion.")((void)0); | |||
5198 | ||||
5199 | // Can we even bind to a temporary? | |||
5200 | if (ToType->isRValueReferenceType() || | |||
5201 | (T1.isConstQualified() && !T1.isVolatileQualified())) { | |||
5202 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : | |||
5203 | Result.UserDefined.After; | |||
5204 | SCS.ReferenceBinding = true; | |||
5205 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); | |||
5206 | SCS.BindsToRvalue = true; | |||
5207 | SCS.BindsToFunctionLvalue = false; | |||
5208 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; | |||
5209 | SCS.ObjCLifetimeConversionBinding = false; | |||
5210 | } else | |||
5211 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, | |||
5212 | From, ToType); | |||
5213 | return Result; | |||
5214 | } | |||
5215 | ||||
5216 | // C++14 [over.ics.list]p7: | |||
5217 | // C++11 [over.ics.list]p6: | |||
5218 | // Otherwise, if the parameter type is not a class: | |||
5219 | if (!ToType->isRecordType()) { | |||
5220 | // - if the initializer list has one element that is not itself an | |||
5221 | // initializer list, the implicit conversion sequence is the one | |||
5222 | // required to convert the element to the parameter type. | |||
5223 | unsigned NumInits = From->getNumInits(); | |||
5224 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) | |||
5225 | Result = TryCopyInitialization(S, From->getInit(0), ToType, | |||
5226 | SuppressUserConversions, | |||
5227 | InOverloadResolution, | |||
5228 | AllowObjCWritebackConversion); | |||
5229 | // - if the initializer list has no elements, the implicit conversion | |||
5230 | // sequence is the identity conversion. | |||
5231 | else if (NumInits == 0) { | |||
5232 | Result.setStandard(); | |||
5233 | Result.Standard.setAsIdentityConversion(); | |||
5234 | Result.Standard.setFromType(ToType); | |||
5235 | Result.Standard.setAllToTypes(ToType); | |||
5236 | } | |||
5237 | return Result; | |||
5238 | } | |||
5239 | ||||
5240 | // C++14 [over.ics.list]p8: | |||
5241 | // C++11 [over.ics.list]p7: | |||
5242 | // In all cases other than those enumerated above, no conversion is possible | |||
5243 | return Result; | |||
5244 | } | |||
5245 | ||||
5246 | /// TryCopyInitialization - Try to copy-initialize a value of type | |||
5247 | /// ToType from the expression From. Return the implicit conversion | |||
5248 | /// sequence required to pass this argument, which may be a bad | |||
5249 | /// conversion sequence (meaning that the argument cannot be passed to | |||
5250 | /// a parameter of this type). If @p SuppressUserConversions, then we | |||
5251 | /// do not permit any user-defined conversion sequences. | |||
5252 | static ImplicitConversionSequence | |||
5253 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | |||
5254 | bool SuppressUserConversions, | |||
5255 | bool InOverloadResolution, | |||
5256 | bool AllowObjCWritebackConversion, | |||
5257 | bool AllowExplicit) { | |||
5258 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) | |||
5259 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, | |||
5260 | InOverloadResolution,AllowObjCWritebackConversion); | |||
5261 | ||||
5262 | if (ToType->isReferenceType()) | |||
5263 | return TryReferenceInit(S, From, ToType, | |||
5264 | /*FIXME:*/ From->getBeginLoc(), | |||
5265 | SuppressUserConversions, AllowExplicit); | |||
5266 | ||||
5267 | return TryImplicitConversion(S, From, ToType, | |||
5268 | SuppressUserConversions, | |||
5269 | AllowedExplicit::None, | |||
5270 | InOverloadResolution, | |||
5271 | /*CStyle=*/false, | |||
5272 | AllowObjCWritebackConversion, | |||
5273 | /*AllowObjCConversionOnExplicit=*/false); | |||
5274 | } | |||
5275 | ||||
5276 | static bool TryCopyInitialization(const CanQualType FromQTy, | |||
5277 | const CanQualType ToQTy, | |||
5278 | Sema &S, | |||
5279 | SourceLocation Loc, | |||
5280 | ExprValueKind FromVK) { | |||
5281 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); | |||
5282 | ImplicitConversionSequence ICS = | |||
5283 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); | |||
5284 | ||||
5285 | return !ICS.isBad(); | |||
5286 | } | |||
5287 | ||||
5288 | /// TryObjectArgumentInitialization - Try to initialize the object | |||
5289 | /// parameter of the given member function (@c Method) from the | |||
5290 | /// expression @p From. | |||
5291 | static ImplicitConversionSequence | |||
5292 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, | |||
5293 | Expr::Classification FromClassification, | |||
5294 | CXXMethodDecl *Method, | |||
5295 | CXXRecordDecl *ActingContext) { | |||
5296 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); | |||
5297 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or | |||
5298 | // const volatile object. | |||
5299 | Qualifiers Quals = Method->getMethodQualifiers(); | |||
5300 | if (isa<CXXDestructorDecl>(Method)) { | |||
5301 | Quals.addConst(); | |||
5302 | Quals.addVolatile(); | |||
5303 | } | |||
5304 | ||||
5305 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); | |||
5306 | ||||
5307 | // Set up the conversion sequence as a "bad" conversion, to allow us | |||
5308 | // to exit early. | |||
5309 | ImplicitConversionSequence ICS; | |||
5310 | ||||
5311 | // We need to have an object of class type. | |||
5312 | if (const PointerType *PT = FromType->getAs<PointerType>()) { | |||
5313 | FromType = PT->getPointeeType(); | |||
5314 | ||||
5315 | // When we had a pointer, it's implicitly dereferenced, so we | |||
5316 | // better have an lvalue. | |||
5317 | assert(FromClassification.isLValue())((void)0); | |||
5318 | } | |||
5319 | ||||
5320 | assert(FromType->isRecordType())((void)0); | |||
5321 | ||||
5322 | // C++0x [over.match.funcs]p4: | |||
5323 | // For non-static member functions, the type of the implicit object | |||
5324 | // parameter is | |||
5325 | // | |||
5326 | // - "lvalue reference to cv X" for functions declared without a | |||
5327 | // ref-qualifier or with the & ref-qualifier | |||
5328 | // - "rvalue reference to cv X" for functions declared with the && | |||
5329 | // ref-qualifier | |||
5330 | // | |||
5331 | // where X is the class of which the function is a member and cv is the | |||
5332 | // cv-qualification on the member function declaration. | |||
5333 | // | |||
5334 | // However, when finding an implicit conversion sequence for the argument, we | |||
5335 | // are not allowed to perform user-defined conversions | |||
5336 | // (C++ [over.match.funcs]p5). We perform a simplified version of | |||
5337 | // reference binding here, that allows class rvalues to bind to | |||
5338 | // non-constant references. | |||
5339 | ||||
5340 | // First check the qualifiers. | |||
5341 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); | |||
5342 | if (ImplicitParamType.getCVRQualifiers() | |||
5343 | != FromTypeCanon.getLocalCVRQualifiers() && | |||
5344 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { | |||
5345 | ICS.setBad(BadConversionSequence::bad_qualifiers, | |||
5346 | FromType, ImplicitParamType); | |||
5347 | return ICS; | |||
5348 | } | |||
5349 | ||||
5350 | if (FromTypeCanon.hasAddressSpace()) { | |||
5351 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); | |||
5352 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); | |||
5353 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { | |||
5354 | ICS.setBad(BadConversionSequence::bad_qualifiers, | |||
5355 | FromType, ImplicitParamType); | |||
5356 | return ICS; | |||
5357 | } | |||
5358 | } | |||
5359 | ||||
5360 | // Check that we have either the same type or a derived type. It | |||
5361 | // affects the conversion rank. | |||
5362 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); | |||
5363 | ImplicitConversionKind SecondKind; | |||
5364 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | |||
5365 | SecondKind = ICK_Identity; | |||
5366 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) | |||
5367 | SecondKind = ICK_Derived_To_Base; | |||
5368 | else { | |||
5369 | ICS.setBad(BadConversionSequence::unrelated_class, | |||
5370 | FromType, ImplicitParamType); | |||
5371 | return ICS; | |||
5372 | } | |||
5373 | ||||
5374 | // Check the ref-qualifier. | |||
5375 | switch (Method->getRefQualifier()) { | |||
5376 | case RQ_None: | |||
5377 | // Do nothing; we don't care about lvalueness or rvalueness. | |||
5378 | break; | |||
5379 | ||||
5380 | case RQ_LValue: | |||
5381 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { | |||
5382 | // non-const lvalue reference cannot bind to an rvalue | |||
5383 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, | |||
5384 | ImplicitParamType); | |||
5385 | return ICS; | |||
5386 | } | |||
5387 | break; | |||
5388 | ||||
5389 | case RQ_RValue: | |||
5390 | if (!FromClassification.isRValue()) { | |||
5391 | // rvalue reference cannot bind to an lvalue | |||
5392 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, | |||
5393 | ImplicitParamType); | |||
5394 | return ICS; | |||
5395 | } | |||
5396 | break; | |||
5397 | } | |||
5398 | ||||
5399 | // Success. Mark this as a reference binding. | |||
5400 | ICS.setStandard(); | |||
5401 | ICS.Standard.setAsIdentityConversion(); | |||
5402 | ICS.Standard.Second = SecondKind; | |||
5403 | ICS.Standard.setFromType(FromType); | |||
5404 | ICS.Standard.setAllToTypes(ImplicitParamType); | |||
5405 | ICS.Standard.ReferenceBinding = true; | |||
5406 | ICS.Standard.DirectBinding = true; | |||
5407 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; | |||
5408 | ICS.Standard.BindsToFunctionLvalue = false; | |||
5409 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); | |||
5410 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier | |||
5411 | = (Method->getRefQualifier() == RQ_None); | |||
5412 | return ICS; | |||
5413 | } | |||
5414 | ||||
5415 | /// PerformObjectArgumentInitialization - Perform initialization of | |||
5416 | /// the implicit object parameter for the given Method with the given | |||
5417 | /// expression. | |||
5418 | ExprResult | |||
5419 | Sema::PerformObjectArgumentInitialization(Expr *From, | |||
5420 | NestedNameSpecifier *Qualifier, | |||
5421 | NamedDecl *FoundDecl, | |||
5422 | CXXMethodDecl *Method) { | |||
5423 | QualType FromRecordType, DestType; | |||
5424 | QualType ImplicitParamRecordType = | |||
5425 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); | |||
5426 | ||||
5427 | Expr::Classification FromClassification; | |||
5428 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | |||
5429 | FromRecordType = PT->getPointeeType(); | |||
5430 | DestType = Method->getThisType(); | |||
5431 | FromClassification = Expr::Classification::makeSimpleLValue(); | |||
5432 | } else { | |||
5433 | FromRecordType = From->getType(); | |||
5434 | DestType = ImplicitParamRecordType; | |||
5435 | FromClassification = From->Classify(Context); | |||
5436 | ||||
5437 | // When performing member access on a prvalue, materialize a temporary. | |||
5438 | if (From->isPRValue()) { | |||
5439 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, | |||
5440 | Method->getRefQualifier() != | |||
5441 | RefQualifierKind::RQ_RValue); | |||
5442 | } | |||
5443 | } | |||
5444 | ||||
5445 | // Note that we always use the true parent context when performing | |||
5446 | // the actual argument initialization. | |||
5447 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( | |||
5448 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, | |||
5449 | Method->getParent()); | |||
5450 | if (ICS.isBad()) { | |||
5451 | switch (ICS.Bad.Kind) { | |||
5452 | case BadConversionSequence::bad_qualifiers: { | |||
5453 | Qualifiers FromQs = FromRecordType.getQualifiers(); | |||
5454 | Qualifiers ToQs = DestType.getQualifiers(); | |||
5455 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | |||
5456 | if (CVR) { | |||
5457 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) | |||
5458 | << Method->getDeclName() << FromRecordType << (CVR - 1) | |||
5459 | << From->getSourceRange(); | |||
5460 | Diag(Method->getLocation(), diag::note_previous_decl) | |||
5461 | << Method->getDeclName(); | |||
5462 | return ExprError(); | |||
5463 | } | |||
5464 | break; | |||
5465 | } | |||
5466 | ||||
5467 | case BadConversionSequence::lvalue_ref_to_rvalue: | |||
5468 | case BadConversionSequence::rvalue_ref_to_lvalue: { | |||
5469 | bool IsRValueQualified = | |||
5470 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; | |||
5471 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) | |||
5472 | << Method->getDeclName() << FromClassification.isRValue() | |||
5473 | << IsRValueQualified; | |||
5474 | Diag(Method->getLocation(), diag::note_previous_decl) | |||
5475 | << Method->getDeclName(); | |||
5476 | return ExprError(); | |||
5477 | } | |||
5478 | ||||
5479 | case BadConversionSequence::no_conversion: | |||
5480 | case BadConversionSequence::unrelated_class: | |||
5481 | break; | |||
5482 | } | |||
5483 | ||||
5484 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) | |||
5485 | << ImplicitParamRecordType << FromRecordType | |||
5486 | << From->getSourceRange(); | |||
5487 | } | |||
5488 | ||||
5489 | if (ICS.Standard.Second == ICK_Derived_To_Base) { | |||
5490 | ExprResult FromRes = | |||
5491 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | |||
5492 | if (FromRes.isInvalid()) | |||
5493 | return ExprError(); | |||
5494 | From = FromRes.get(); | |||
5495 | } | |||
5496 | ||||
5497 | if (!Context.hasSameType(From->getType(), DestType)) { | |||
5498 | CastKind CK; | |||
5499 | QualType PteeTy = DestType->getPointeeType(); | |||
5500 | LangAS DestAS = | |||
5501 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); | |||
5502 | if (FromRecordType.getAddressSpace() != DestAS) | |||
5503 | CK = CK_AddressSpaceConversion; | |||
5504 | else | |||
5505 | CK = CK_NoOp; | |||
5506 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); | |||
5507 | } | |||
5508 | return From; | |||
5509 | } | |||
5510 | ||||
5511 | /// TryContextuallyConvertToBool - Attempt to contextually convert the | |||
5512 | /// expression From to bool (C++0x [conv]p3). | |||
5513 | static ImplicitConversionSequence | |||
5514 | TryContextuallyConvertToBool(Sema &S, Expr *From) { | |||
5515 | // C++ [dcl.init]/17.8: | |||
5516 | // - Otherwise, if the initialization is direct-initialization, the source | |||
5517 | // type is std::nullptr_t, and the destination type is bool, the initial | |||
5518 | // value of the object being initialized is false. | |||
5519 | if (From->getType()->isNullPtrType()) | |||
5520 | return ImplicitConversionSequence::getNullptrToBool(From->getType(), | |||
5521 | S.Context.BoolTy, | |||
5522 | From->isGLValue()); | |||
5523 | ||||
5524 | // All other direct-initialization of bool is equivalent to an implicit | |||
5525 | // conversion to bool in which explicit conversions are permitted. | |||
5526 | return TryImplicitConversion(S, From, S.Context.BoolTy, | |||
5527 | /*SuppressUserConversions=*/false, | |||
5528 | AllowedExplicit::Conversions, | |||
5529 | /*InOverloadResolution=*/false, | |||
5530 | /*CStyle=*/false, | |||
5531 | /*AllowObjCWritebackConversion=*/false, | |||
5532 | /*AllowObjCConversionOnExplicit=*/false); | |||
5533 | } | |||
5534 | ||||
5535 | /// PerformContextuallyConvertToBool - Perform a contextual conversion | |||
5536 | /// of the expression From to bool (C++0x [conv]p3). | |||
5537 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { | |||
5538 | if (checkPlaceholderForOverload(*this, From)) | |||
5539 | return ExprError(); | |||
5540 | ||||
5541 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); | |||
5542 | if (!ICS.isBad()) | |||
5543 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | |||
5544 | ||||
5545 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | |||
5546 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) | |||
5547 | << From->getType() << From->getSourceRange(); | |||
5548 | return ExprError(); | |||
5549 | } | |||
5550 | ||||
5551 | /// Check that the specified conversion is permitted in a converted constant | |||
5552 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion | |||
5553 | /// is acceptable. | |||
5554 | static bool CheckConvertedConstantConversions(Sema &S, | |||
5555 | StandardConversionSequence &SCS) { | |||
5556 | // Since we know that the target type is an integral or unscoped enumeration | |||
5557 | // type, most conversion kinds are impossible. All possible First and Third | |||
5558 | // conversions are fine. | |||
5559 | switch (SCS.Second) { | |||
5560 | case ICK_Identity: | |||
5561 | case ICK_Integral_Promotion: | |||
5562 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. | |||
5563 | case ICK_Zero_Queue_Conversion: | |||
5564 | return true; | |||
5565 | ||||
5566 | case ICK_Boolean_Conversion: | |||
5567 | // Conversion from an integral or unscoped enumeration type to bool is | |||
5568 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral | |||
5569 | // conversion, so we allow it in a converted constant expression. | |||
5570 | // | |||
5571 | // FIXME: Per core issue 1407, we should not allow this, but that breaks | |||
5572 | // a lot of popular code. We should at least add a warning for this | |||
5573 | // (non-conforming) extension. | |||
5574 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && | |||
5575 | SCS.getToType(2)->isBooleanType(); | |||
5576 | ||||
5577 | case ICK_Pointer_Conversion: | |||
5578 | case ICK_Pointer_Member: | |||
5579 | // C++1z: null pointer conversions and null member pointer conversions are | |||
5580 | // only permitted if the source type is std::nullptr_t. | |||
5581 | return SCS.getFromType()->isNullPtrType(); | |||
5582 | ||||
5583 | case ICK_Floating_Promotion: | |||
5584 | case ICK_Complex_Promotion: | |||
5585 | case ICK_Floating_Conversion: | |||
5586 | case ICK_Complex_Conversion: | |||
5587 | case ICK_Floating_Integral: | |||
5588 | case ICK_Compatible_Conversion: | |||
5589 | case ICK_Derived_To_Base: | |||
5590 | case ICK_Vector_Conversion: | |||
5591 | case ICK_SVE_Vector_Conversion: | |||
5592 | case ICK_Vector_Splat: | |||
5593 | case ICK_Complex_Real: | |||
5594 | case ICK_Block_Pointer_Conversion: | |||
5595 | case ICK_TransparentUnionConversion: | |||
5596 | case ICK_Writeback_Conversion: | |||
5597 | case ICK_Zero_Event_Conversion: | |||
5598 | case ICK_C_Only_Conversion: | |||
5599 | case ICK_Incompatible_Pointer_Conversion: | |||
5600 | return false; | |||
5601 | ||||
5602 | case ICK_Lvalue_To_Rvalue: | |||
5603 | case ICK_Array_To_Pointer: | |||
5604 | case ICK_Function_To_Pointer: | |||
5605 | llvm_unreachable("found a first conversion kind in Second")__builtin_unreachable(); | |||
5606 | ||||
5607 | case ICK_Function_Conversion: | |||
5608 | case ICK_Qualification: | |||
5609 | llvm_unreachable("found a third conversion kind in Second")__builtin_unreachable(); | |||
5610 | ||||
5611 | case ICK_Num_Conversion_Kinds: | |||
5612 | break; | |||
5613 | } | |||
5614 | ||||
5615 | llvm_unreachable("unknown conversion kind")__builtin_unreachable(); | |||
5616 | } | |||
5617 | ||||
5618 | /// CheckConvertedConstantExpression - Check that the expression From is a | |||
5619 | /// converted constant expression of type T, perform the conversion and produce | |||
5620 | /// the converted expression, per C++11 [expr.const]p3. | |||
5621 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, | |||
5622 | QualType T, APValue &Value, | |||
5623 | Sema::CCEKind CCE, | |||
5624 | bool RequireInt, | |||
5625 | NamedDecl *Dest) { | |||
5626 | assert(S.getLangOpts().CPlusPlus11 &&((void)0) | |||
5627 | "converted constant expression outside C++11")((void)0); | |||
5628 | ||||
5629 | if (checkPlaceholderForOverload(S, From)) | |||
5630 | return ExprError(); | |||
5631 | ||||
5632 | // C++1z [expr.const]p3: | |||
5633 | // A converted constant expression of type T is an expression, | |||
5634 | // implicitly converted to type T, where the converted | |||
5635 | // expression is a constant expression and the implicit conversion | |||
5636 | // sequence contains only [... list of conversions ...]. | |||
5637 | ImplicitConversionSequence ICS = | |||
5638 | CCE == Sema::CCEK_ExplicitBool | |||
5639 | ? TryContextuallyConvertToBool(S, From) | |||
5640 | : TryCopyInitialization(S, From, T, | |||
5641 | /*SuppressUserConversions=*/false, | |||
5642 | /*InOverloadResolution=*/false, | |||
5643 | /*AllowObjCWritebackConversion=*/false, | |||
5644 | /*AllowExplicit=*/false); | |||
5645 | StandardConversionSequence *SCS = nullptr; | |||
5646 | switch (ICS.getKind()) { | |||
5647 | case ImplicitConversionSequence::StandardConversion: | |||
5648 | SCS = &ICS.Standard; | |||
5649 | break; | |||
5650 | case ImplicitConversionSequence::UserDefinedConversion: | |||
5651 | if (T->isRecordType()) | |||
5652 | SCS = &ICS.UserDefined.Before; | |||
5653 | else | |||
5654 | SCS = &ICS.UserDefined.After; | |||
5655 | break; | |||
5656 | case ImplicitConversionSequence::AmbiguousConversion: | |||
5657 | case ImplicitConversionSequence::BadConversion: | |||
5658 | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) | |||
5659 | return S.Diag(From->getBeginLoc(), | |||
5660 | diag::err_typecheck_converted_constant_expression) | |||
5661 | << From->getType() << From->getSourceRange() << T; | |||
5662 | return ExprError(); | |||
5663 | ||||
5664 | case ImplicitConversionSequence::EllipsisConversion: | |||
5665 | llvm_unreachable("ellipsis conversion in converted constant expression")__builtin_unreachable(); | |||
5666 | } | |||
5667 | ||||
5668 | // Check that we would only use permitted conversions. | |||
5669 | if (!CheckConvertedConstantConversions(S, *SCS)) { | |||
5670 | return S.Diag(From->getBeginLoc(), | |||
5671 | diag::err_typecheck_converted_constant_expression_disallowed) | |||
5672 | << From->getType() << From->getSourceRange() << T; | |||
5673 | } | |||
5674 | // [...] and where the reference binding (if any) binds directly. | |||
5675 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { | |||
5676 | return S.Diag(From->getBeginLoc(), | |||
5677 | diag::err_typecheck_converted_constant_expression_indirect) | |||
5678 | << From->getType() << From->getSourceRange() << T; | |||
5679 | } | |||
5680 | ||||
5681 | // Usually we can simply apply the ImplicitConversionSequence we formed | |||
5682 | // earlier, but that's not guaranteed to work when initializing an object of | |||
5683 | // class type. | |||
5684 | ExprResult Result; | |||
5685 | if (T->isRecordType()) { | |||
5686 | assert(CCE == Sema::CCEK_TemplateArg &&((void)0) | |||
5687 | "unexpected class type converted constant expr")((void)0); | |||
5688 | Result = S.PerformCopyInitialization( | |||
5689 | InitializedEntity::InitializeTemplateParameter( | |||
5690 | T, cast<NonTypeTemplateParmDecl>(Dest)), | |||
5691 | SourceLocation(), From); | |||
5692 | } else { | |||
5693 | Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); | |||
5694 | } | |||
5695 | if (Result.isInvalid()) | |||
5696 | return Result; | |||
5697 | ||||
5698 | // C++2a [intro.execution]p5: | |||
5699 | // A full-expression is [...] a constant-expression [...] | |||
5700 | Result = | |||
5701 | S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), | |||
5702 | /*DiscardedValue=*/false, /*IsConstexpr=*/true); | |||
5703 | if (Result.isInvalid()) | |||
5704 | return Result; | |||
5705 | ||||
5706 | // Check for a narrowing implicit conversion. | |||
5707 | bool ReturnPreNarrowingValue = false; | |||
5708 | APValue PreNarrowingValue; | |||
5709 | QualType PreNarrowingType; | |||
5710 | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, | |||
5711 | PreNarrowingType)) { | |||
5712 | case NK_Dependent_Narrowing: | |||
5713 | // Implicit conversion to a narrower type, but the expression is | |||
5714 | // value-dependent so we can't tell whether it's actually narrowing. | |||
5715 | case NK_Variable_Narrowing: | |||
5716 | // Implicit conversion to a narrower type, and the value is not a constant | |||
5717 | // expression. We'll diagnose this in a moment. | |||
5718 | case NK_Not_Narrowing: | |||
5719 | break; | |||
5720 | ||||
5721 | case NK_Constant_Narrowing: | |||
5722 | if (CCE == Sema::CCEK_ArrayBound && | |||
5723 | PreNarrowingType->isIntegralOrEnumerationType() && | |||
5724 | PreNarrowingValue.isInt()) { | |||
5725 | // Don't diagnose array bound narrowing here; we produce more precise | |||
5726 | // errors by allowing the un-narrowed value through. | |||
5727 | ReturnPreNarrowingValue = true; | |||
5728 | break; | |||
5729 | } | |||
5730 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | |||
5731 | << CCE << /*Constant*/ 1 | |||
5732 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; | |||
5733 | break; | |||
5734 | ||||
5735 | case NK_Type_Narrowing: | |||
5736 | // FIXME: It would be better to diagnose that the expression is not a | |||
5737 | // constant expression. | |||
5738 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | |||
5739 | << CCE << /*Constant*/ 0 << From->getType() << T; | |||
5740 | break; | |||
5741 | } | |||
5742 | ||||
5743 | if (Result.get()->isValueDependent()) { | |||
5744 | Value = APValue(); | |||
5745 | return Result; | |||
5746 | } | |||
5747 | ||||
5748 | // Check the expression is a constant expression. | |||
5749 | SmallVector<PartialDiagnosticAt, 8> Notes; | |||
5750 | Expr::EvalResult Eval; | |||
5751 | Eval.Diag = &Notes; | |||
5752 | ||||
5753 | ConstantExprKind Kind; | |||
5754 | if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) | |||
5755 | Kind = ConstantExprKind::ClassTemplateArgument; | |||
5756 | else if (CCE == Sema::CCEK_TemplateArg) | |||
5757 | Kind = ConstantExprKind::NonClassTemplateArgument; | |||
5758 | else | |||
5759 | Kind = ConstantExprKind::Normal; | |||
5760 | ||||
5761 | if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || | |||
5762 | (RequireInt && !Eval.Val.isInt())) { | |||
5763 | // The expression can't be folded, so we can't keep it at this position in | |||
5764 | // the AST. | |||
5765 | Result = ExprError(); | |||
5766 | } else { | |||
5767 | Value = Eval.Val; | |||
5768 | ||||
5769 | if (Notes.empty()) { | |||
5770 | // It's a constant expression. | |||
5771 | Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); | |||
5772 | if (ReturnPreNarrowingValue) | |||
5773 | Value = std::move(PreNarrowingValue); | |||
5774 | return E; | |||
5775 | } | |||
5776 | } | |||
5777 | ||||
5778 | // It's not a constant expression. Produce an appropriate diagnostic. | |||
5779 | if (Notes.size() == 1 && | |||
5780 | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { | |||
5781 | S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; | |||
5782 | } else if (!Notes.empty() && Notes[0].second.getDiagID() == | |||
5783 | diag::note_constexpr_invalid_template_arg) { | |||
5784 | Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); | |||
5785 | for (unsigned I = 0; I < Notes.size(); ++I) | |||
5786 | S.Diag(Notes[I].first, Notes[I].second); | |||
5787 | } else { | |||
5788 | S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) | |||
5789 | << CCE << From->getSourceRange(); | |||
5790 | for (unsigned I = 0; I < Notes.size(); ++I) | |||
5791 | S.Diag(Notes[I].first, Notes[I].second); | |||
5792 | } | |||
5793 | return ExprError(); | |||
5794 | } | |||
5795 | ||||
5796 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | |||
5797 | APValue &Value, CCEKind CCE, | |||
5798 | NamedDecl *Dest) { | |||
5799 | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, | |||
5800 | Dest); | |||
5801 | } | |||
5802 | ||||
5803 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | |||
5804 | llvm::APSInt &Value, | |||
5805 | CCEKind CCE) { | |||
5806 | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((void)0); | |||
5807 | ||||
5808 | APValue V; | |||
5809 | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, | |||
5810 | /*Dest=*/nullptr); | |||
5811 | if (!R.isInvalid() && !R.get()->isValueDependent()) | |||
5812 | Value = V.getInt(); | |||
5813 | return R; | |||
5814 | } | |||
5815 | ||||
5816 | ||||
5817 | /// dropPointerConversions - If the given standard conversion sequence | |||
5818 | /// involves any pointer conversions, remove them. This may change | |||
5819 | /// the result type of the conversion sequence. | |||
5820 | static void dropPointerConversion(StandardConversionSequence &SCS) { | |||
5821 | if (SCS.Second == ICK_Pointer_Conversion) { | |||
5822 | SCS.Second = ICK_Identity; | |||
5823 | SCS.Third = ICK_Identity; | |||
5824 | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; | |||
5825 | } | |||
5826 | } | |||
5827 | ||||
5828 | /// TryContextuallyConvertToObjCPointer - Attempt to contextually | |||
5829 | /// convert the expression From to an Objective-C pointer type. | |||
5830 | static ImplicitConversionSequence | |||
5831 | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { | |||
5832 | // Do an implicit conversion to 'id'. | |||
5833 | QualType Ty = S.Context.getObjCIdType(); | |||
5834 | ImplicitConversionSequence ICS | |||
5835 | = TryImplicitConversion(S, From, Ty, | |||
5836 | // FIXME: Are these flags correct? | |||
5837 | /*SuppressUserConversions=*/false, | |||
5838 | AllowedExplicit::Conversions, | |||
5839 | /*InOverloadResolution=*/false, | |||
5840 | /*CStyle=*/false, | |||
5841 | /*AllowObjCWritebackConversion=*/false, | |||
5842 | /*AllowObjCConversionOnExplicit=*/true); | |||
5843 | ||||
5844 | // Strip off any final conversions to 'id'. | |||
5845 | switch (ICS.getKind()) { | |||
5846 | case ImplicitConversionSequence::BadConversion: | |||
5847 | case ImplicitConversionSequence::AmbiguousConversion: | |||
5848 | case ImplicitConversionSequence::EllipsisConversion: | |||
5849 | break; | |||
5850 | ||||
5851 | case ImplicitConversionSequence::UserDefinedConversion: | |||
5852 | dropPointerConversion(ICS.UserDefined.After); | |||
5853 | break; | |||
5854 | ||||
5855 | case ImplicitConversionSequence::StandardConversion: | |||
5856 | dropPointerConversion(ICS.Standard); | |||
5857 | break; | |||
5858 | } | |||
5859 | ||||
5860 | return ICS; | |||
5861 | } | |||
5862 | ||||
5863 | /// PerformContextuallyConvertToObjCPointer - Perform a contextual | |||
5864 | /// conversion of the expression From to an Objective-C pointer type. | |||
5865 | /// Returns a valid but null ExprResult if no conversion sequence exists. | |||
5866 | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { | |||
5867 | if (checkPlaceholderForOverload(*this, From)) | |||
5868 | return ExprError(); | |||
5869 | ||||
5870 | QualType Ty = Context.getObjCIdType(); | |||
5871 | ImplicitConversionSequence ICS = | |||
5872 | TryContextuallyConvertToObjCPointer(*this, From); | |||
5873 | if (!ICS.isBad()) | |||
5874 | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); | |||
5875 | return ExprResult(); | |||
5876 | } | |||
5877 | ||||
5878 | /// Determine whether the provided type is an integral type, or an enumeration | |||
5879 | /// type of a permitted flavor. | |||
5880 | bool Sema::ICEConvertDiagnoser::match(QualType T) { | |||
5881 | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() | |||
5882 | : T->isIntegralOrUnscopedEnumerationType(); | |||
5883 | } | |||
5884 | ||||
5885 | static ExprResult | |||
5886 | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, | |||
5887 | Sema::ContextualImplicitConverter &Converter, | |||
5888 | QualType T, UnresolvedSetImpl &ViableConversions) { | |||
5889 | ||||
5890 | if (Converter.Suppress) | |||
5891 | return ExprError(); | |||
5892 | ||||
5893 | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); | |||
5894 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | |||
5895 | CXXConversionDecl *Conv = | |||
5896 | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); | |||
5897 | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); | |||
5898 | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); | |||
5899 | } | |||
5900 | return From; | |||
5901 | } | |||
5902 | ||||
5903 | static bool | |||
5904 | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | |||
5905 | Sema::ContextualImplicitConverter &Converter, | |||
5906 | QualType T, bool HadMultipleCandidates, | |||
5907 | UnresolvedSetImpl &ExplicitConversions) { | |||
5908 | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { | |||
5909 | DeclAccessPair Found = ExplicitConversions[0]; | |||
5910 | CXXConversionDecl *Conversion = | |||
5911 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | |||
5912 | ||||
5913 | // The user probably meant to invoke the given explicit | |||
5914 | // conversion; use it. | |||
5915 | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); | |||
5916 | std::string TypeStr; | |||
5917 | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); | |||
5918 | ||||
5919 | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) | |||
5920 | << FixItHint::CreateInsertion(From->getBeginLoc(), | |||
5921 | "static_cast<" + TypeStr + ">(") | |||
5922 | << FixItHint::CreateInsertion( | |||
5923 | SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); | |||
5924 | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); | |||
5925 | ||||
5926 | // If we aren't in a SFINAE context, build a call to the | |||
5927 | // explicit conversion function. | |||
5928 | if (SemaRef.isSFINAEContext()) | |||
5929 | return true; | |||
5930 | ||||
5931 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | |||
5932 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | |||
5933 | HadMultipleCandidates); | |||
5934 | if (Result.isInvalid()) | |||
5935 | return true; | |||
5936 | // Record usage of conversion in an implicit cast. | |||
5937 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | |||
5938 | CK_UserDefinedConversion, Result.get(), | |||
5939 | nullptr, Result.get()->getValueKind(), | |||
5940 | SemaRef.CurFPFeatureOverrides()); | |||
5941 | } | |||
5942 | return false; | |||
5943 | } | |||
5944 | ||||
5945 | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | |||
5946 | Sema::ContextualImplicitConverter &Converter, | |||
5947 | QualType T, bool HadMultipleCandidates, | |||
5948 | DeclAccessPair &Found) { | |||
5949 | CXXConversionDecl *Conversion = | |||
5950 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | |||
5951 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | |||
5952 | ||||
5953 | QualType ToType = Conversion->getConversionType().getNonReferenceType(); | |||
5954 | if (!Converter.SuppressConversion) { | |||
5955 | if (SemaRef.isSFINAEContext()) | |||
5956 | return true; | |||
5957 | ||||
5958 | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) | |||
5959 | << From->getSourceRange(); | |||
5960 | } | |||
5961 | ||||
5962 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | |||
5963 | HadMultipleCandidates); | |||
5964 | if (Result.isInvalid()) | |||
5965 | return true; | |||
5966 | // Record usage of conversion in an implicit cast. | |||
5967 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | |||
5968 | CK_UserDefinedConversion, Result.get(), | |||
5969 | nullptr, Result.get()->getValueKind(), | |||
5970 | SemaRef.CurFPFeatureOverrides()); | |||
5971 | return false; | |||
5972 | } | |||
5973 | ||||
5974 | static ExprResult finishContextualImplicitConversion( | |||
5975 | Sema &SemaRef, SourceLocation Loc, Expr *From, | |||
5976 | Sema::ContextualImplicitConverter &Converter) { | |||
5977 | if (!Converter.match(From->getType()) && !Converter.Suppress) | |||
5978 | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) | |||
5979 | << From->getSourceRange(); | |||
5980 | ||||
5981 | return SemaRef.DefaultLvalueConversion(From); | |||
5982 | } | |||
5983 | ||||
5984 | static void | |||
5985 | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, | |||
5986 | UnresolvedSetImpl &ViableConversions, | |||
5987 | OverloadCandidateSet &CandidateSet) { | |||
5988 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | |||
5989 | DeclAccessPair FoundDecl = ViableConversions[I]; | |||
5990 | NamedDecl *D = FoundDecl.getDecl(); | |||
5991 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | |||
5992 | if (isa<UsingShadowDecl>(D)) | |||
5993 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
5994 | ||||
5995 | CXXConversionDecl *Conv; | |||
5996 | FunctionTemplateDecl *ConvTemplate; | |||
5997 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | |||
5998 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
5999 | else | |||
6000 | Conv = cast<CXXConversionDecl>(D); | |||
6001 | ||||
6002 | if (ConvTemplate) | |||
6003 | SemaRef.AddTemplateConversionCandidate( | |||
6004 | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, | |||
6005 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); | |||
6006 | else | |||
6007 | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, | |||
6008 | ToType, CandidateSet, | |||
6009 | /*AllowObjCConversionOnExplicit=*/false, | |||
6010 | /*AllowExplicit*/ true); | |||
6011 | } | |||
6012 | } | |||
6013 | ||||
6014 | /// Attempt to convert the given expression to a type which is accepted | |||
6015 | /// by the given converter. | |||
6016 | /// | |||
6017 | /// This routine will attempt to convert an expression of class type to a | |||
6018 | /// type accepted by the specified converter. In C++11 and before, the class | |||
6019 | /// must have a single non-explicit conversion function converting to a matching | |||
6020 | /// type. In C++1y, there can be multiple such conversion functions, but only | |||
6021 | /// one target type. | |||
6022 | /// | |||
6023 | /// \param Loc The source location of the construct that requires the | |||
6024 | /// conversion. | |||
6025 | /// | |||
6026 | /// \param From The expression we're converting from. | |||
6027 | /// | |||
6028 | /// \param Converter Used to control and diagnose the conversion process. | |||
6029 | /// | |||
6030 | /// \returns The expression, converted to an integral or enumeration type if | |||
6031 | /// successful. | |||
6032 | ExprResult Sema::PerformContextualImplicitConversion( | |||
6033 | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { | |||
6034 | // We can't perform any more checking for type-dependent expressions. | |||
6035 | if (From->isTypeDependent()) | |||
6036 | return From; | |||
6037 | ||||
6038 | // Process placeholders immediately. | |||
6039 | if (From->hasPlaceholderType()) { | |||
6040 | ExprResult result = CheckPlaceholderExpr(From); | |||
6041 | if (result.isInvalid()) | |||
6042 | return result; | |||
6043 | From = result.get(); | |||
6044 | } | |||
6045 | ||||
6046 | // If the expression already has a matching type, we're golden. | |||
6047 | QualType T = From->getType(); | |||
6048 | if (Converter.match(T)) | |||
6049 | return DefaultLvalueConversion(From); | |||
6050 | ||||
6051 | // FIXME: Check for missing '()' if T is a function type? | |||
6052 | ||||
6053 | // We can only perform contextual implicit conversions on objects of class | |||
6054 | // type. | |||
6055 | const RecordType *RecordTy = T->getAs<RecordType>(); | |||
6056 | if (!RecordTy || !getLangOpts().CPlusPlus) { | |||
6057 | if (!Converter.Suppress) | |||
6058 | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); | |||
6059 | return From; | |||
6060 | } | |||
6061 | ||||
6062 | // We must have a complete class type. | |||
6063 | struct TypeDiagnoserPartialDiag : TypeDiagnoser { | |||
6064 | ContextualImplicitConverter &Converter; | |||
6065 | Expr *From; | |||
6066 | ||||
6067 | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) | |||
6068 | : Converter(Converter), From(From) {} | |||
6069 | ||||
6070 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |||
6071 | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); | |||
6072 | } | |||
6073 | } IncompleteDiagnoser(Converter, From); | |||
6074 | ||||
6075 | if (Converter.Suppress ? !isCompleteType(Loc, T) | |||
6076 | : RequireCompleteType(Loc, T, IncompleteDiagnoser)) | |||
6077 | return From; | |||
6078 | ||||
6079 | // Look for a conversion to an integral or enumeration type. | |||
6080 | UnresolvedSet<4> | |||
6081 | ViableConversions; // These are *potentially* viable in C++1y. | |||
6082 | UnresolvedSet<4> ExplicitConversions; | |||
6083 | const auto &Conversions = | |||
6084 | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); | |||
6085 | ||||
6086 | bool HadMultipleCandidates = | |||
6087 | (std::distance(Conversions.begin(), Conversions.end()) > 1); | |||
6088 | ||||
6089 | // To check that there is only one target type, in C++1y: | |||
6090 | QualType ToType; | |||
6091 | bool HasUniqueTargetType = true; | |||
6092 | ||||
6093 | // Collect explicit or viable (potentially in C++1y) conversions. | |||
6094 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
6095 | NamedDecl *D = (*I)->getUnderlyingDecl(); | |||
6096 | CXXConversionDecl *Conversion; | |||
6097 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | |||
6098 | if (ConvTemplate) { | |||
6099 | if (getLangOpts().CPlusPlus14) | |||
6100 | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | |||
6101 | else | |||
6102 | continue; // C++11 does not consider conversion operator templates(?). | |||
6103 | } else | |||
6104 | Conversion = cast<CXXConversionDecl>(D); | |||
6105 | ||||
6106 | assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&((void)0) | |||
6107 | "Conversion operator templates are considered potentially "((void)0) | |||
6108 | "viable in C++1y")((void)0); | |||
6109 | ||||
6110 | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); | |||
6111 | if (Converter.match(CurToType) || ConvTemplate) { | |||
6112 | ||||
6113 | if (Conversion->isExplicit()) { | |||
6114 | // FIXME: For C++1y, do we need this restriction? | |||
6115 | // cf. diagnoseNoViableConversion() | |||
6116 | if (!ConvTemplate) | |||
6117 | ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); | |||
6118 | } else { | |||
6119 | if (!ConvTemplate && getLangOpts().CPlusPlus14) { | |||
6120 | if (ToType.isNull()) | |||
6121 | ToType = CurToType.getUnqualifiedType(); | |||
6122 | else if (HasUniqueTargetType && | |||
6123 | (CurToType.getUnqualifiedType() != ToType)) | |||
6124 | HasUniqueTargetType = false; | |||
6125 | } | |||
6126 | ViableConversions.addDecl(I.getDecl(), I.getAccess()); | |||
6127 | } | |||
6128 | } | |||
6129 | } | |||
6130 | ||||
6131 | if (getLangOpts().CPlusPlus14) { | |||
6132 | // C++1y [conv]p6: | |||
6133 | // ... An expression e of class type E appearing in such a context | |||
6134 | // is said to be contextually implicitly converted to a specified | |||
6135 | // type T and is well-formed if and only if e can be implicitly | |||
6136 | // converted to a type T that is determined as follows: E is searched | |||
6137 | // for conversion functions whose return type is cv T or reference to | |||
6138 | // cv T such that T is allowed by the context. There shall be | |||
6139 | // exactly one such T. | |||
6140 | ||||
6141 | // If no unique T is found: | |||
6142 | if (ToType.isNull()) { | |||
6143 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | |||
6144 | HadMultipleCandidates, | |||
6145 | ExplicitConversions)) | |||
6146 | return ExprError(); | |||
6147 | return finishContextualImplicitConversion(*this, Loc, From, Converter); | |||
6148 | } | |||
6149 | ||||
6150 | // If more than one unique Ts are found: | |||
6151 | if (!HasUniqueTargetType) | |||
6152 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | |||
6153 | ViableConversions); | |||
6154 | ||||
6155 | // If one unique T is found: | |||
6156 | // First, build a candidate set from the previously recorded | |||
6157 | // potentially viable conversions. | |||
6158 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); | |||
6159 | collectViableConversionCandidates(*this, From, ToType, ViableConversions, | |||
6160 | CandidateSet); | |||
6161 | ||||
6162 | // Then, perform overload resolution over the candidate set. | |||
6163 | OverloadCandidateSet::iterator Best; | |||
6164 | switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { | |||
6165 | case OR_Success: { | |||
6166 | // Apply this conversion. | |||
6167 | DeclAccessPair Found = | |||
6168 | DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); | |||
6169 | if (recordConversion(*this, Loc, From, Converter, T, | |||
6170 | HadMultipleCandidates, Found)) | |||
6171 | return ExprError(); | |||
6172 | break; | |||
6173 | } | |||
6174 | case OR_Ambiguous: | |||
6175 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | |||
6176 | ViableConversions); | |||
6177 | case OR_No_Viable_Function: | |||
6178 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | |||
6179 | HadMultipleCandidates, | |||
6180 | ExplicitConversions)) | |||
6181 | return ExprError(); | |||
6182 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
6183 | case OR_Deleted: | |||
6184 | // We'll complain below about a non-integral condition type. | |||
6185 | break; | |||
6186 | } | |||
6187 | } else { | |||
6188 | switch (ViableConversions.size()) { | |||
6189 | case 0: { | |||
6190 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, | |||
6191 | HadMultipleCandidates, | |||
6192 | ExplicitConversions)) | |||
6193 | return ExprError(); | |||
6194 | ||||
6195 | // We'll complain below about a non-integral condition type. | |||
6196 | break; | |||
6197 | } | |||
6198 | case 1: { | |||
6199 | // Apply this conversion. | |||
6200 | DeclAccessPair Found = ViableConversions[0]; | |||
6201 | if (recordConversion(*this, Loc, From, Converter, T, | |||
6202 | HadMultipleCandidates, Found)) | |||
6203 | return ExprError(); | |||
6204 | break; | |||
6205 | } | |||
6206 | default: | |||
6207 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, | |||
6208 | ViableConversions); | |||
6209 | } | |||
6210 | } | |||
6211 | ||||
6212 | return finishContextualImplicitConversion(*this, Loc, From, Converter); | |||
6213 | } | |||
6214 | ||||
6215 | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is | |||
6216 | /// an acceptable non-member overloaded operator for a call whose | |||
6217 | /// arguments have types T1 (and, if non-empty, T2). This routine | |||
6218 | /// implements the check in C++ [over.match.oper]p3b2 concerning | |||
6219 | /// enumeration types. | |||
6220 | static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, | |||
6221 | FunctionDecl *Fn, | |||
6222 | ArrayRef<Expr *> Args) { | |||
6223 | QualType T1 = Args[0]->getType(); | |||
6224 | QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); | |||
6225 | ||||
6226 | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) | |||
6227 | return true; | |||
6228 | ||||
6229 | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) | |||
6230 | return true; | |||
6231 | ||||
6232 | const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); | |||
6233 | if (Proto->getNumParams() < 1) | |||
6234 | return false; | |||
6235 | ||||
6236 | if (T1->isEnumeralType()) { | |||
6237 | QualType ArgType = Proto->getParamType(0).getNonReferenceType(); | |||
6238 | if (Context.hasSameUnqualifiedType(T1, ArgType)) | |||
6239 | return true; | |||
6240 | } | |||
6241 | ||||
6242 | if (Proto->getNumParams() < 2) | |||
6243 | return false; | |||
6244 | ||||
6245 | if (!T2.isNull() && T2->isEnumeralType()) { | |||
6246 | QualType ArgType = Proto->getParamType(1).getNonReferenceType(); | |||
6247 | if (Context.hasSameUnqualifiedType(T2, ArgType)) | |||
6248 | return true; | |||
6249 | } | |||
6250 | ||||
6251 | return false; | |||
6252 | } | |||
6253 | ||||
6254 | /// AddOverloadCandidate - Adds the given function to the set of | |||
6255 | /// candidate functions, using the given function call arguments. If | |||
6256 | /// @p SuppressUserConversions, then don't allow user-defined | |||
6257 | /// conversions via constructors or conversion operators. | |||
6258 | /// | |||
6259 | /// \param PartialOverloading true if we are performing "partial" overloading | |||
6260 | /// based on an incomplete set of function arguments. This feature is used by | |||
6261 | /// code completion. | |||
6262 | void Sema::AddOverloadCandidate( | |||
6263 | FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, | |||
6264 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | |||
6265 | bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, | |||
6266 | ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, | |||
6267 | OverloadCandidateParamOrder PO) { | |||
6268 | const FunctionProtoType *Proto | |||
6269 | = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); | |||
6270 | assert(Proto && "Functions without a prototype cannot be overloaded")((void)0); | |||
6271 | assert(!Function->getDescribedFunctionTemplate() &&((void)0) | |||
6272 | "Use AddTemplateOverloadCandidate for function templates")((void)0); | |||
6273 | ||||
6274 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { | |||
6275 | if (!isa<CXXConstructorDecl>(Method)) { | |||
6276 | // If we get here, it's because we're calling a member function | |||
6277 | // that is named without a member access expression (e.g., | |||
6278 | // "this->f") that was either written explicitly or created | |||
6279 | // implicitly. This can happen with a qualified call to a member | |||
6280 | // function, e.g., X::f(). We use an empty type for the implied | |||
6281 | // object argument (C++ [over.call.func]p3), and the acting context | |||
6282 | // is irrelevant. | |||
6283 | AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), | |||
6284 | Expr::Classification::makeSimpleLValue(), Args, | |||
6285 | CandidateSet, SuppressUserConversions, | |||
6286 | PartialOverloading, EarlyConversions, PO); | |||
6287 | return; | |||
6288 | } | |||
6289 | // We treat a constructor like a non-member function, since its object | |||
6290 | // argument doesn't participate in overload resolution. | |||
6291 | } | |||
6292 | ||||
6293 | if (!CandidateSet.isNewCandidate(Function, PO)) | |||
6294 | return; | |||
6295 | ||||
6296 | // C++11 [class.copy]p11: [DR1402] | |||
6297 | // A defaulted move constructor that is defined as deleted is ignored by | |||
6298 | // overload resolution. | |||
6299 | CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); | |||
6300 | if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && | |||
6301 | Constructor->isMoveConstructor()) | |||
6302 | return; | |||
6303 | ||||
6304 | // Overload resolution is always an unevaluated context. | |||
6305 | EnterExpressionEvaluationContext Unevaluated( | |||
6306 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
6307 | ||||
6308 | // C++ [over.match.oper]p3: | |||
6309 | // if no operand has a class type, only those non-member functions in the | |||
6310 | // lookup set that have a first parameter of type T1 or "reference to | |||
6311 | // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there | |||
6312 | // is a right operand) a second parameter of type T2 or "reference to | |||
6313 | // (possibly cv-qualified) T2", when T2 is an enumeration type, are | |||
6314 | // candidate functions. | |||
6315 | if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && | |||
6316 | !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) | |||
6317 | return; | |||
6318 | ||||
6319 | // Add this candidate | |||
6320 | OverloadCandidate &Candidate = | |||
6321 | CandidateSet.addCandidate(Args.size(), EarlyConversions); | |||
6322 | Candidate.FoundDecl = FoundDecl; | |||
6323 | Candidate.Function = Function; | |||
6324 | Candidate.Viable = true; | |||
6325 | Candidate.RewriteKind = | |||
6326 | CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); | |||
6327 | Candidate.IsSurrogate = false; | |||
6328 | Candidate.IsADLCandidate = IsADLCandidate; | |||
6329 | Candidate.IgnoreObjectArgument = false; | |||
6330 | Candidate.ExplicitCallArguments = Args.size(); | |||
6331 | ||||
6332 | // Explicit functions are not actually candidates at all if we're not | |||
6333 | // allowing them in this context, but keep them around so we can point | |||
6334 | // to them in diagnostics. | |||
6335 | if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { | |||
6336 | Candidate.Viable = false; | |||
6337 | Candidate.FailureKind = ovl_fail_explicit; | |||
6338 | return; | |||
6339 | } | |||
6340 | ||||
6341 | if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && | |||
6342 | !Function->getAttr<TargetAttr>()->isDefaultVersion()) { | |||
6343 | Candidate.Viable = false; | |||
6344 | Candidate.FailureKind = ovl_non_default_multiversion_function; | |||
6345 | return; | |||
6346 | } | |||
6347 | ||||
6348 | if (Constructor) { | |||
6349 | // C++ [class.copy]p3: | |||
6350 | // A member function template is never instantiated to perform the copy | |||
6351 | // of a class object to an object of its class type. | |||
6352 | QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); | |||
6353 | if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && | |||
6354 | (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || | |||
6355 | IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), | |||
6356 | ClassType))) { | |||
6357 | Candidate.Viable = false; | |||
6358 | Candidate.FailureKind = ovl_fail_illegal_constructor; | |||
6359 | return; | |||
6360 | } | |||
6361 | ||||
6362 | // C++ [over.match.funcs]p8: (proposed DR resolution) | |||
6363 | // A constructor inherited from class type C that has a first parameter | |||
6364 | // of type "reference to P" (including such a constructor instantiated | |||
6365 | // from a template) is excluded from the set of candidate functions when | |||
6366 | // constructing an object of type cv D if the argument list has exactly | |||
6367 | // one argument and D is reference-related to P and P is reference-related | |||
6368 | // to C. | |||
6369 | auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); | |||
6370 | if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && | |||
6371 | Constructor->getParamDecl(0)->getType()->isReferenceType()) { | |||
6372 | QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); | |||
6373 | QualType C = Context.getRecordType(Constructor->getParent()); | |||
6374 | QualType D = Context.getRecordType(Shadow->getParent()); | |||
6375 | SourceLocation Loc = Args.front()->getExprLoc(); | |||
6376 | if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && | |||
6377 | (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { | |||
6378 | Candidate.Viable = false; | |||
6379 | Candidate.FailureKind = ovl_fail_inhctor_slice; | |||
6380 | return; | |||
6381 | } | |||
6382 | } | |||
6383 | ||||
6384 | // Check that the constructor is capable of constructing an object in the | |||
6385 | // destination address space. | |||
6386 | if (!Qualifiers::isAddressSpaceSupersetOf( | |||
6387 | Constructor->getMethodQualifiers().getAddressSpace(), | |||
6388 | CandidateSet.getDestAS())) { | |||
6389 | Candidate.Viable = false; | |||
6390 | Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; | |||
6391 | } | |||
6392 | } | |||
6393 | ||||
6394 | unsigned NumParams = Proto->getNumParams(); | |||
6395 | ||||
6396 | // (C++ 13.3.2p2): A candidate function having fewer than m | |||
6397 | // parameters is viable only if it has an ellipsis in its parameter | |||
6398 | // list (8.3.5). | |||
6399 | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | |||
6400 | !Proto->isVariadic()) { | |||
6401 | Candidate.Viable = false; | |||
6402 | Candidate.FailureKind = ovl_fail_too_many_arguments; | |||
6403 | return; | |||
6404 | } | |||
6405 | ||||
6406 | // (C++ 13.3.2p2): A candidate function having more than m parameters | |||
6407 | // is viable only if the (m+1)st parameter has a default argument | |||
6408 | // (8.3.6). For the purposes of overload resolution, the | |||
6409 | // parameter list is truncated on the right, so that there are | |||
6410 | // exactly m parameters. | |||
6411 | unsigned MinRequiredArgs = Function->getMinRequiredArguments(); | |||
6412 | if (Args.size() < MinRequiredArgs && !PartialOverloading) { | |||
6413 | // Not enough arguments. | |||
6414 | Candidate.Viable = false; | |||
6415 | Candidate.FailureKind = ovl_fail_too_few_arguments; | |||
6416 | return; | |||
6417 | } | |||
6418 | ||||
6419 | // (CUDA B.1): Check for invalid calls between targets. | |||
6420 | if (getLangOpts().CUDA) | |||
6421 | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) | |||
6422 | // Skip the check for callers that are implicit members, because in this | |||
6423 | // case we may not yet know what the member's target is; the target is | |||
6424 | // inferred for the member automatically, based on the bases and fields of | |||
6425 | // the class. | |||
6426 | if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { | |||
6427 | Candidate.Viable = false; | |||
6428 | Candidate.FailureKind = ovl_fail_bad_target; | |||
6429 | return; | |||
6430 | } | |||
6431 | ||||
6432 | if (Function->getTrailingRequiresClause()) { | |||
6433 | ConstraintSatisfaction Satisfaction; | |||
6434 | if (CheckFunctionConstraints(Function, Satisfaction) || | |||
6435 | !Satisfaction.IsSatisfied) { | |||
6436 | Candidate.Viable = false; | |||
6437 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | |||
6438 | return; | |||
6439 | } | |||
6440 | } | |||
6441 | ||||
6442 | // Determine the implicit conversion sequences for each of the | |||
6443 | // arguments. | |||
6444 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | |||
6445 | unsigned ConvIdx = | |||
6446 | PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; | |||
6447 | if (Candidate.Conversions[ConvIdx].isInitialized()) { | |||
6448 | // We already formed a conversion sequence for this parameter during | |||
6449 | // template argument deduction. | |||
6450 | } else if (ArgIdx < NumParams) { | |||
6451 | // (C++ 13.3.2p3): for F to be a viable function, there shall | |||
6452 | // exist for each argument an implicit conversion sequence | |||
6453 | // (13.3.3.1) that converts that argument to the corresponding | |||
6454 | // parameter of F. | |||
6455 | QualType ParamType = Proto->getParamType(ArgIdx); | |||
6456 | Candidate.Conversions[ConvIdx] = TryCopyInitialization( | |||
6457 | *this, Args[ArgIdx], ParamType, SuppressUserConversions, | |||
6458 | /*InOverloadResolution=*/true, | |||
6459 | /*AllowObjCWritebackConversion=*/ | |||
6460 | getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); | |||
6461 | if (Candidate.Conversions[ConvIdx].isBad()) { | |||
6462 | Candidate.Viable = false; | |||
6463 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
6464 | return; | |||
6465 | } | |||
6466 | } else { | |||
6467 | // (C++ 13.3.2p2): For the purposes of overload resolution, any | |||
6468 | // argument for which there is no corresponding parameter is | |||
6469 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | |||
6470 | Candidate.Conversions[ConvIdx].setEllipsis(); | |||
6471 | } | |||
6472 | } | |||
6473 | ||||
6474 | if (EnableIfAttr *FailedAttr = | |||
6475 | CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { | |||
6476 | Candidate.Viable = false; | |||
6477 | Candidate.FailureKind = ovl_fail_enable_if; | |||
6478 | Candidate.DeductionFailure.Data = FailedAttr; | |||
6479 | return; | |||
6480 | } | |||
6481 | } | |||
6482 | ||||
6483 | ObjCMethodDecl * | |||
6484 | Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, | |||
6485 | SmallVectorImpl<ObjCMethodDecl *> &Methods) { | |||
6486 | if (Methods.size() <= 1) | |||
6487 | return nullptr; | |||
6488 | ||||
6489 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | |||
6490 | bool Match = true; | |||
6491 | ObjCMethodDecl *Method = Methods[b]; | |||
6492 | unsigned NumNamedArgs = Sel.getNumArgs(); | |||
6493 | // Method might have more arguments than selector indicates. This is due | |||
6494 | // to addition of c-style arguments in method. | |||
6495 | if (Method->param_size() > NumNamedArgs) | |||
6496 | NumNamedArgs = Method->param_size(); | |||
6497 | if (Args.size() < NumNamedArgs) | |||
6498 | continue; | |||
6499 | ||||
6500 | for (unsigned i = 0; i < NumNamedArgs; i++) { | |||
6501 | // We can't do any type-checking on a type-dependent argument. | |||
6502 | if (Args[i]->isTypeDependent()) { | |||
6503 | Match = false; | |||
6504 | break; | |||
6505 | } | |||
6506 | ||||
6507 | ParmVarDecl *param = Method->parameters()[i]; | |||
6508 | Expr *argExpr = Args[i]; | |||
6509 | assert(argExpr && "SelectBestMethod(): missing expression")((void)0); | |||
6510 | ||||
6511 | // Strip the unbridged-cast placeholder expression off unless it's | |||
6512 | // a consumed argument. | |||
6513 | if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && | |||
6514 | !param->hasAttr<CFConsumedAttr>()) | |||
6515 | argExpr = stripARCUnbridgedCast(argExpr); | |||
6516 | ||||
6517 | // If the parameter is __unknown_anytype, move on to the next method. | |||
6518 | if (param->getType() == Context.UnknownAnyTy) { | |||
6519 | Match = false; | |||
6520 | break; | |||
6521 | } | |||
6522 | ||||
6523 | ImplicitConversionSequence ConversionState | |||
6524 | = TryCopyInitialization(*this, argExpr, param->getType(), | |||
6525 | /*SuppressUserConversions*/false, | |||
6526 | /*InOverloadResolution=*/true, | |||
6527 | /*AllowObjCWritebackConversion=*/ | |||
6528 | getLangOpts().ObjCAutoRefCount, | |||
6529 | /*AllowExplicit*/false); | |||
6530 | // This function looks for a reasonably-exact match, so we consider | |||
6531 | // incompatible pointer conversions to be a failure here. | |||
6532 | if (ConversionState.isBad() || | |||
6533 | (ConversionState.isStandard() && | |||
6534 | ConversionState.Standard.Second == | |||
6535 | ICK_Incompatible_Pointer_Conversion)) { | |||
6536 | Match = false; | |||
6537 | break; | |||
6538 | } | |||
6539 | } | |||
6540 | // Promote additional arguments to variadic methods. | |||
6541 | if (Match && Method->isVariadic()) { | |||
6542 | for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { | |||
6543 | if (Args[i]->isTypeDependent()) { | |||
6544 | Match = false; | |||
6545 | break; | |||
6546 | } | |||
6547 | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | |||
6548 | nullptr); | |||
6549 | if (Arg.isInvalid()) { | |||
6550 | Match = false; | |||
6551 | break; | |||
6552 | } | |||
6553 | } | |||
6554 | } else { | |||
6555 | // Check for extra arguments to non-variadic methods. | |||
6556 | if (Args.size() != NumNamedArgs) | |||
6557 | Match = false; | |||
6558 | else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { | |||
6559 | // Special case when selectors have no argument. In this case, select | |||
6560 | // one with the most general result type of 'id'. | |||
6561 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { | |||
6562 | QualType ReturnT = Methods[b]->getReturnType(); | |||
6563 | if (ReturnT->isObjCIdType()) | |||
6564 | return Methods[b]; | |||
6565 | } | |||
6566 | } | |||
6567 | } | |||
6568 | ||||
6569 | if (Match) | |||
6570 | return Method; | |||
6571 | } | |||
6572 | return nullptr; | |||
6573 | } | |||
6574 | ||||
6575 | static bool convertArgsForAvailabilityChecks( | |||
6576 | Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, | |||
6577 | ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, | |||
6578 | Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { | |||
6579 | if (ThisArg) { | |||
6580 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); | |||
6581 | assert(!isa<CXXConstructorDecl>(Method) &&((void)0) | |||
6582 | "Shouldn't have `this` for ctors!")((void)0); | |||
6583 | assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((void)0); | |||
6584 | ExprResult R = S.PerformObjectArgumentInitialization( | |||
6585 | ThisArg, /*Qualifier=*/nullptr, Method, Method); | |||
6586 | if (R.isInvalid()) | |||
6587 | return false; | |||
6588 | ConvertedThis = R.get(); | |||
6589 | } else { | |||
6590 | if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { | |||
6591 | (void)MD; | |||
6592 | assert((MissingImplicitThis || MD->isStatic() ||((void)0) | |||
6593 | isa<CXXConstructorDecl>(MD)) &&((void)0) | |||
6594 | "Expected `this` for non-ctor instance methods")((void)0); | |||
6595 | } | |||
6596 | ConvertedThis = nullptr; | |||
6597 | } | |||
6598 | ||||
6599 | // Ignore any variadic arguments. Converting them is pointless, since the | |||
6600 | // user can't refer to them in the function condition. | |||
6601 | unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); | |||
6602 | ||||
6603 | // Convert the arguments. | |||
6604 | for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { | |||
6605 | ExprResult R; | |||
6606 | R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( | |||
6607 | S.Context, Function->getParamDecl(I)), | |||
6608 | SourceLocation(), Args[I]); | |||
6609 | ||||
6610 | if (R.isInvalid()) | |||
6611 | return false; | |||
6612 | ||||
6613 | ConvertedArgs.push_back(R.get()); | |||
6614 | } | |||
6615 | ||||
6616 | if (Trap.hasErrorOccurred()) | |||
6617 | return false; | |||
6618 | ||||
6619 | // Push default arguments if needed. | |||
6620 | if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { | |||
6621 | for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { | |||
6622 | ParmVarDecl *P = Function->getParamDecl(i); | |||
6623 | if (!P->hasDefaultArg()) | |||
6624 | return false; | |||
6625 | ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); | |||
6626 | if (R.isInvalid()) | |||
6627 | return false; | |||
6628 | ConvertedArgs.push_back(R.get()); | |||
6629 | } | |||
6630 | ||||
6631 | if (Trap.hasErrorOccurred()) | |||
6632 | return false; | |||
6633 | } | |||
6634 | return true; | |||
6635 | } | |||
6636 | ||||
6637 | EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, | |||
6638 | SourceLocation CallLoc, | |||
6639 | ArrayRef<Expr *> Args, | |||
6640 | bool MissingImplicitThis) { | |||
6641 | auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); | |||
6642 | if (EnableIfAttrs.begin() == EnableIfAttrs.end()) | |||
6643 | return nullptr; | |||
6644 | ||||
6645 | SFINAETrap Trap(*this); | |||
6646 | SmallVector<Expr *, 16> ConvertedArgs; | |||
6647 | // FIXME: We should look into making enable_if late-parsed. | |||
6648 | Expr *DiscardedThis; | |||
6649 | if (!convertArgsForAvailabilityChecks( | |||
6650 | *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, | |||
6651 | /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) | |||
6652 | return *EnableIfAttrs.begin(); | |||
6653 | ||||
6654 | for (auto *EIA : EnableIfAttrs) { | |||
6655 | APValue Result; | |||
6656 | // FIXME: This doesn't consider value-dependent cases, because doing so is | |||
6657 | // very difficult. Ideally, we should handle them more gracefully. | |||
6658 | if (EIA->getCond()->isValueDependent() || | |||
6659 | !EIA->getCond()->EvaluateWithSubstitution( | |||
6660 | Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) | |||
6661 | return EIA; | |||
6662 | ||||
6663 | if (!Result.isInt() || !Result.getInt().getBoolValue()) | |||
6664 | return EIA; | |||
6665 | } | |||
6666 | return nullptr; | |||
6667 | } | |||
6668 | ||||
6669 | template <typename CheckFn> | |||
6670 | static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, | |||
6671 | bool ArgDependent, SourceLocation Loc, | |||
6672 | CheckFn &&IsSuccessful) { | |||
6673 | SmallVector<const DiagnoseIfAttr *, 8> Attrs; | |||
6674 | for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { | |||
6675 | if (ArgDependent == DIA->getArgDependent()) | |||
6676 | Attrs.push_back(DIA); | |||
6677 | } | |||
6678 | ||||
6679 | // Common case: No diagnose_if attributes, so we can quit early. | |||
6680 | if (Attrs.empty()) | |||
6681 | return false; | |||
6682 | ||||
6683 | auto WarningBegin = std::stable_partition( | |||
6684 | Attrs.begin(), Attrs.end(), | |||
6685 | [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); | |||
6686 | ||||
6687 | // Note that diagnose_if attributes are late-parsed, so they appear in the | |||
6688 | // correct order (unlike enable_if attributes). | |||
6689 | auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), | |||
6690 | IsSuccessful); | |||
6691 | if (ErrAttr != WarningBegin) { | |||
6692 | const DiagnoseIfAttr *DIA = *ErrAttr; | |||
6693 | S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); | |||
6694 | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) | |||
6695 | << DIA->getParent() << DIA->getCond()->getSourceRange(); | |||
6696 | return true; | |||
6697 | } | |||
6698 | ||||
6699 | for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) | |||
6700 | if (IsSuccessful(DIA)) { | |||
6701 | S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); | |||
6702 | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) | |||
6703 | << DIA->getParent() << DIA->getCond()->getSourceRange(); | |||
6704 | } | |||
6705 | ||||
6706 | return false; | |||
6707 | } | |||
6708 | ||||
6709 | bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, | |||
6710 | const Expr *ThisArg, | |||
6711 | ArrayRef<const Expr *> Args, | |||
6712 | SourceLocation Loc) { | |||
6713 | return diagnoseDiagnoseIfAttrsWith( | |||
6714 | *this, Function, /*ArgDependent=*/true, Loc, | |||
6715 | [&](const DiagnoseIfAttr *DIA) { | |||
6716 | APValue Result; | |||
6717 | // It's sane to use the same Args for any redecl of this function, since | |||
6718 | // EvaluateWithSubstitution only cares about the position of each | |||
6719 | // argument in the arg list, not the ParmVarDecl* it maps to. | |||
6720 | if (!DIA->getCond()->EvaluateWithSubstitution( | |||
6721 | Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) | |||
6722 | return false; | |||
6723 | return Result.isInt() && Result.getInt().getBoolValue(); | |||
6724 | }); | |||
6725 | } | |||
6726 | ||||
6727 | bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, | |||
6728 | SourceLocation Loc) { | |||
6729 | return diagnoseDiagnoseIfAttrsWith( | |||
6730 | *this, ND, /*ArgDependent=*/false, Loc, | |||
6731 | [&](const DiagnoseIfAttr *DIA) { | |||
6732 | bool Result; | |||
6733 | return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && | |||
6734 | Result; | |||
6735 | }); | |||
6736 | } | |||
6737 | ||||
6738 | /// Add all of the function declarations in the given function set to | |||
6739 | /// the overload candidate set. | |||
6740 | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, | |||
6741 | ArrayRef<Expr *> Args, | |||
6742 | OverloadCandidateSet &CandidateSet, | |||
6743 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
6744 | bool SuppressUserConversions, | |||
6745 | bool PartialOverloading, | |||
6746 | bool FirstArgumentIsBase) { | |||
6747 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | |||
6748 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | |||
6749 | ArrayRef<Expr *> FunctionArgs = Args; | |||
6750 | ||||
6751 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | |||
6752 | FunctionDecl *FD = | |||
6753 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); | |||
6754 | ||||
6755 | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { | |||
6756 | QualType ObjectType; | |||
6757 | Expr::Classification ObjectClassification; | |||
6758 | if (Args.size() > 0) { | |||
6759 | if (Expr *E = Args[0]) { | |||
6760 | // Use the explicit base to restrict the lookup: | |||
6761 | ObjectType = E->getType(); | |||
6762 | // Pointers in the object arguments are implicitly dereferenced, so we | |||
6763 | // always classify them as l-values. | |||
6764 | if (!ObjectType.isNull() && ObjectType->isPointerType()) | |||
6765 | ObjectClassification = Expr::Classification::makeSimpleLValue(); | |||
6766 | else | |||
6767 | ObjectClassification = E->Classify(Context); | |||
6768 | } // .. else there is an implicit base. | |||
6769 | FunctionArgs = Args.slice(1); | |||
6770 | } | |||
6771 | if (FunTmpl) { | |||
6772 | AddMethodTemplateCandidate( | |||
6773 | FunTmpl, F.getPair(), | |||
6774 | cast<CXXRecordDecl>(FunTmpl->getDeclContext()), | |||
6775 | ExplicitTemplateArgs, ObjectType, ObjectClassification, | |||
6776 | FunctionArgs, CandidateSet, SuppressUserConversions, | |||
6777 | PartialOverloading); | |||
6778 | } else { | |||
6779 | AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), | |||
6780 | cast<CXXMethodDecl>(FD)->getParent(), ObjectType, | |||
6781 | ObjectClassification, FunctionArgs, CandidateSet, | |||
6782 | SuppressUserConversions, PartialOverloading); | |||
6783 | } | |||
6784 | } else { | |||
6785 | // This branch handles both standalone functions and static methods. | |||
6786 | ||||
6787 | // Slice the first argument (which is the base) when we access | |||
6788 | // static method as non-static. | |||
6789 | if (Args.size() > 0 && | |||
6790 | (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && | |||
6791 | !isa<CXXConstructorDecl>(FD)))) { | |||
6792 | assert(cast<CXXMethodDecl>(FD)->isStatic())((void)0); | |||
6793 | FunctionArgs = Args.slice(1); | |||
6794 | } | |||
6795 | if (FunTmpl) { | |||
6796 | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), | |||
6797 | ExplicitTemplateArgs, FunctionArgs, | |||
6798 | CandidateSet, SuppressUserConversions, | |||
6799 | PartialOverloading); | |||
6800 | } else { | |||
6801 | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, | |||
6802 | SuppressUserConversions, PartialOverloading); | |||
6803 | } | |||
6804 | } | |||
6805 | } | |||
6806 | } | |||
6807 | ||||
6808 | /// AddMethodCandidate - Adds a named decl (which is some kind of | |||
6809 | /// method) as a method candidate to the given overload set. | |||
6810 | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, | |||
6811 | Expr::Classification ObjectClassification, | |||
6812 | ArrayRef<Expr *> Args, | |||
6813 | OverloadCandidateSet &CandidateSet, | |||
6814 | bool SuppressUserConversions, | |||
6815 | OverloadCandidateParamOrder PO) { | |||
6816 | NamedDecl *Decl = FoundDecl.getDecl(); | |||
6817 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); | |||
6818 | ||||
6819 | if (isa<UsingShadowDecl>(Decl)) | |||
6820 | Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); | |||
6821 | ||||
6822 | if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { | |||
6823 | assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((void)0) | |||
6824 | "Expected a member function template")((void)0); | |||
6825 | AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, | |||
6826 | /*ExplicitArgs*/ nullptr, ObjectType, | |||
6827 | ObjectClassification, Args, CandidateSet, | |||
6828 | SuppressUserConversions, false, PO); | |||
6829 | } else { | |||
6830 | AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, | |||
6831 | ObjectType, ObjectClassification, Args, CandidateSet, | |||
6832 | SuppressUserConversions, false, None, PO); | |||
6833 | } | |||
6834 | } | |||
6835 | ||||
6836 | /// AddMethodCandidate - Adds the given C++ member function to the set | |||
6837 | /// of candidate functions, using the given function call arguments | |||
6838 | /// and the object argument (@c Object). For example, in a call | |||
6839 | /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain | |||
6840 | /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't | |||
6841 | /// allow user-defined conversions via constructors or conversion | |||
6842 | /// operators. | |||
6843 | void | |||
6844 | Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, | |||
6845 | CXXRecordDecl *ActingContext, QualType ObjectType, | |||
6846 | Expr::Classification ObjectClassification, | |||
6847 | ArrayRef<Expr *> Args, | |||
6848 | OverloadCandidateSet &CandidateSet, | |||
6849 | bool SuppressUserConversions, | |||
6850 | bool PartialOverloading, | |||
6851 | ConversionSequenceList EarlyConversions, | |||
6852 | OverloadCandidateParamOrder PO) { | |||
6853 | const FunctionProtoType *Proto | |||
6854 | = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); | |||
6855 | assert(Proto && "Methods without a prototype cannot be overloaded")((void)0); | |||
6856 | assert(!isa<CXXConstructorDecl>(Method) &&((void)0) | |||
6857 | "Use AddOverloadCandidate for constructors")((void)0); | |||
6858 | ||||
6859 | if (!CandidateSet.isNewCandidate(Method, PO)) | |||
6860 | return; | |||
6861 | ||||
6862 | // C++11 [class.copy]p23: [DR1402] | |||
6863 | // A defaulted move assignment operator that is defined as deleted is | |||
6864 | // ignored by overload resolution. | |||
6865 | if (Method->isDefaulted() && Method->isDeleted() && | |||
6866 | Method->isMoveAssignmentOperator()) | |||
6867 | return; | |||
6868 | ||||
6869 | // Overload resolution is always an unevaluated context. | |||
6870 | EnterExpressionEvaluationContext Unevaluated( | |||
6871 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
6872 | ||||
6873 | // Add this candidate | |||
6874 | OverloadCandidate &Candidate = | |||
6875 | CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); | |||
6876 | Candidate.FoundDecl = FoundDecl; | |||
6877 | Candidate.Function = Method; | |||
6878 | Candidate.RewriteKind = | |||
6879 | CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); | |||
6880 | Candidate.IsSurrogate = false; | |||
6881 | Candidate.IgnoreObjectArgument = false; | |||
6882 | Candidate.ExplicitCallArguments = Args.size(); | |||
6883 | ||||
6884 | unsigned NumParams = Proto->getNumParams(); | |||
6885 | ||||
6886 | // (C++ 13.3.2p2): A candidate function having fewer than m | |||
6887 | // parameters is viable only if it has an ellipsis in its parameter | |||
6888 | // list (8.3.5). | |||
6889 | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && | |||
6890 | !Proto->isVariadic()) { | |||
6891 | Candidate.Viable = false; | |||
6892 | Candidate.FailureKind = ovl_fail_too_many_arguments; | |||
6893 | return; | |||
6894 | } | |||
6895 | ||||
6896 | // (C++ 13.3.2p2): A candidate function having more than m parameters | |||
6897 | // is viable only if the (m+1)st parameter has a default argument | |||
6898 | // (8.3.6). For the purposes of overload resolution, the | |||
6899 | // parameter list is truncated on the right, so that there are | |||
6900 | // exactly m parameters. | |||
6901 | unsigned MinRequiredArgs = Method->getMinRequiredArguments(); | |||
6902 | if (Args.size() < MinRequiredArgs && !PartialOverloading) { | |||
6903 | // Not enough arguments. | |||
6904 | Candidate.Viable = false; | |||
6905 | Candidate.FailureKind = ovl_fail_too_few_arguments; | |||
6906 | return; | |||
6907 | } | |||
6908 | ||||
6909 | Candidate.Viable = true; | |||
6910 | ||||
6911 | if (Method->isStatic() || ObjectType.isNull()) | |||
6912 | // The implicit object argument is ignored. | |||
6913 | Candidate.IgnoreObjectArgument = true; | |||
6914 | else { | |||
6915 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; | |||
6916 | // Determine the implicit conversion sequence for the object | |||
6917 | // parameter. | |||
6918 | Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( | |||
6919 | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, | |||
6920 | Method, ActingContext); | |||
6921 | if (Candidate.Conversions[ConvIdx].isBad()) { | |||
6922 | Candidate.Viable = false; | |||
6923 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
6924 | return; | |||
6925 | } | |||
6926 | } | |||
6927 | ||||
6928 | // (CUDA B.1): Check for invalid calls between targets. | |||
6929 | if (getLangOpts().CUDA) | |||
6930 | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) | |||
6931 | if (!IsAllowedCUDACall(Caller, Method)) { | |||
6932 | Candidate.Viable = false; | |||
6933 | Candidate.FailureKind = ovl_fail_bad_target; | |||
6934 | return; | |||
6935 | } | |||
6936 | ||||
6937 | if (Method->getTrailingRequiresClause()) { | |||
6938 | ConstraintSatisfaction Satisfaction; | |||
6939 | if (CheckFunctionConstraints(Method, Satisfaction) || | |||
6940 | !Satisfaction.IsSatisfied) { | |||
6941 | Candidate.Viable = false; | |||
6942 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | |||
6943 | return; | |||
6944 | } | |||
6945 | } | |||
6946 | ||||
6947 | // Determine the implicit conversion sequences for each of the | |||
6948 | // arguments. | |||
6949 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { | |||
6950 | unsigned ConvIdx = | |||
6951 | PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); | |||
6952 | if (Candidate.Conversions[ConvIdx].isInitialized()) { | |||
6953 | // We already formed a conversion sequence for this parameter during | |||
6954 | // template argument deduction. | |||
6955 | } else if (ArgIdx < NumParams) { | |||
6956 | // (C++ 13.3.2p3): for F to be a viable function, there shall | |||
6957 | // exist for each argument an implicit conversion sequence | |||
6958 | // (13.3.3.1) that converts that argument to the corresponding | |||
6959 | // parameter of F. | |||
6960 | QualType ParamType = Proto->getParamType(ArgIdx); | |||
6961 | Candidate.Conversions[ConvIdx] | |||
6962 | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | |||
6963 | SuppressUserConversions, | |||
6964 | /*InOverloadResolution=*/true, | |||
6965 | /*AllowObjCWritebackConversion=*/ | |||
6966 | getLangOpts().ObjCAutoRefCount); | |||
6967 | if (Candidate.Conversions[ConvIdx].isBad()) { | |||
6968 | Candidate.Viable = false; | |||
6969 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
6970 | return; | |||
6971 | } | |||
6972 | } else { | |||
6973 | // (C++ 13.3.2p2): For the purposes of overload resolution, any | |||
6974 | // argument for which there is no corresponding parameter is | |||
6975 | // considered to "match the ellipsis" (C+ 13.3.3.1.3). | |||
6976 | Candidate.Conversions[ConvIdx].setEllipsis(); | |||
6977 | } | |||
6978 | } | |||
6979 | ||||
6980 | if (EnableIfAttr *FailedAttr = | |||
6981 | CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { | |||
6982 | Candidate.Viable = false; | |||
6983 | Candidate.FailureKind = ovl_fail_enable_if; | |||
6984 | Candidate.DeductionFailure.Data = FailedAttr; | |||
6985 | return; | |||
6986 | } | |||
6987 | ||||
6988 | if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && | |||
6989 | !Method->getAttr<TargetAttr>()->isDefaultVersion()) { | |||
6990 | Candidate.Viable = false; | |||
6991 | Candidate.FailureKind = ovl_non_default_multiversion_function; | |||
6992 | } | |||
6993 | } | |||
6994 | ||||
6995 | /// Add a C++ member function template as a candidate to the candidate | |||
6996 | /// set, using template argument deduction to produce an appropriate member | |||
6997 | /// function template specialization. | |||
6998 | void Sema::AddMethodTemplateCandidate( | |||
6999 | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, | |||
7000 | CXXRecordDecl *ActingContext, | |||
7001 | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, | |||
7002 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, | |||
7003 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | |||
7004 | bool PartialOverloading, OverloadCandidateParamOrder PO) { | |||
7005 | if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) | |||
7006 | return; | |||
7007 | ||||
7008 | // C++ [over.match.funcs]p7: | |||
7009 | // In each case where a candidate is a function template, candidate | |||
7010 | // function template specializations are generated using template argument | |||
7011 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as | |||
7012 | // candidate functions in the usual way.113) A given name can refer to one | |||
7013 | // or more function templates and also to a set of overloaded non-template | |||
7014 | // functions. In such a case, the candidate functions generated from each | |||
7015 | // function template are combined with the set of non-template candidate | |||
7016 | // functions. | |||
7017 | TemplateDeductionInfo Info(CandidateSet.getLocation()); | |||
7018 | FunctionDecl *Specialization = nullptr; | |||
7019 | ConversionSequenceList Conversions; | |||
7020 | if (TemplateDeductionResult Result = DeduceTemplateArguments( | |||
7021 | MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, | |||
7022 | PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { | |||
7023 | return CheckNonDependentConversions( | |||
7024 | MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, | |||
7025 | SuppressUserConversions, ActingContext, ObjectType, | |||
7026 | ObjectClassification, PO); | |||
7027 | })) { | |||
7028 | OverloadCandidate &Candidate = | |||
7029 | CandidateSet.addCandidate(Conversions.size(), Conversions); | |||
7030 | Candidate.FoundDecl = FoundDecl; | |||
7031 | Candidate.Function = MethodTmpl->getTemplatedDecl(); | |||
7032 | Candidate.Viable = false; | |||
7033 | Candidate.RewriteKind = | |||
7034 | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); | |||
7035 | Candidate.IsSurrogate = false; | |||
7036 | Candidate.IgnoreObjectArgument = | |||
7037 | cast<CXXMethodDecl>(Candidate.Function)->isStatic() || | |||
7038 | ObjectType.isNull(); | |||
7039 | Candidate.ExplicitCallArguments = Args.size(); | |||
7040 | if (Result == TDK_NonDependentConversionFailure) | |||
7041 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7042 | else { | |||
7043 | Candidate.FailureKind = ovl_fail_bad_deduction; | |||
7044 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | |||
7045 | Info); | |||
7046 | } | |||
7047 | return; | |||
7048 | } | |||
7049 | ||||
7050 | // Add the function template specialization produced by template argument | |||
7051 | // deduction as a candidate. | |||
7052 | assert(Specialization && "Missing member function template specialization?")((void)0); | |||
7053 | assert(isa<CXXMethodDecl>(Specialization) &&((void)0) | |||
7054 | "Specialization is not a member function?")((void)0); | |||
7055 | AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, | |||
7056 | ActingContext, ObjectType, ObjectClassification, Args, | |||
7057 | CandidateSet, SuppressUserConversions, PartialOverloading, | |||
7058 | Conversions, PO); | |||
7059 | } | |||
7060 | ||||
7061 | /// Determine whether a given function template has a simple explicit specifier | |||
7062 | /// or a non-value-dependent explicit-specification that evaluates to true. | |||
7063 | static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { | |||
7064 | return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); | |||
7065 | } | |||
7066 | ||||
7067 | /// Add a C++ function template specialization as a candidate | |||
7068 | /// in the candidate set, using template argument deduction to produce | |||
7069 | /// an appropriate function template specialization. | |||
7070 | void Sema::AddTemplateOverloadCandidate( | |||
7071 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | |||
7072 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | |||
7073 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, | |||
7074 | bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, | |||
7075 | OverloadCandidateParamOrder PO) { | |||
7076 | if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) | |||
7077 | return; | |||
7078 | ||||
7079 | // If the function template has a non-dependent explicit specification, | |||
7080 | // exclude it now if appropriate; we are not permitted to perform deduction | |||
7081 | // and substitution in this case. | |||
7082 | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { | |||
7083 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | |||
7084 | Candidate.FoundDecl = FoundDecl; | |||
7085 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | |||
7086 | Candidate.Viable = false; | |||
7087 | Candidate.FailureKind = ovl_fail_explicit; | |||
7088 | return; | |||
7089 | } | |||
7090 | ||||
7091 | // C++ [over.match.funcs]p7: | |||
7092 | // In each case where a candidate is a function template, candidate | |||
7093 | // function template specializations are generated using template argument | |||
7094 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as | |||
7095 | // candidate functions in the usual way.113) A given name can refer to one | |||
7096 | // or more function templates and also to a set of overloaded non-template | |||
7097 | // functions. In such a case, the candidate functions generated from each | |||
7098 | // function template are combined with the set of non-template candidate | |||
7099 | // functions. | |||
7100 | TemplateDeductionInfo Info(CandidateSet.getLocation()); | |||
7101 | FunctionDecl *Specialization = nullptr; | |||
7102 | ConversionSequenceList Conversions; | |||
7103 | if (TemplateDeductionResult Result = DeduceTemplateArguments( | |||
7104 | FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, | |||
7105 | PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { | |||
7106 | return CheckNonDependentConversions( | |||
7107 | FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, | |||
7108 | SuppressUserConversions, nullptr, QualType(), {}, PO); | |||
7109 | })) { | |||
7110 | OverloadCandidate &Candidate = | |||
7111 | CandidateSet.addCandidate(Conversions.size(), Conversions); | |||
7112 | Candidate.FoundDecl = FoundDecl; | |||
7113 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | |||
7114 | Candidate.Viable = false; | |||
7115 | Candidate.RewriteKind = | |||
7116 | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); | |||
7117 | Candidate.IsSurrogate = false; | |||
7118 | Candidate.IsADLCandidate = IsADLCandidate; | |||
7119 | // Ignore the object argument if there is one, since we don't have an object | |||
7120 | // type. | |||
7121 | Candidate.IgnoreObjectArgument = | |||
7122 | isa<CXXMethodDecl>(Candidate.Function) && | |||
7123 | !isa<CXXConstructorDecl>(Candidate.Function); | |||
7124 | Candidate.ExplicitCallArguments = Args.size(); | |||
7125 | if (Result == TDK_NonDependentConversionFailure) | |||
7126 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7127 | else { | |||
7128 | Candidate.FailureKind = ovl_fail_bad_deduction; | |||
7129 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | |||
7130 | Info); | |||
7131 | } | |||
7132 | return; | |||
7133 | } | |||
7134 | ||||
7135 | // Add the function template specialization produced by template argument | |||
7136 | // deduction as a candidate. | |||
7137 | assert(Specialization && "Missing function template specialization?")((void)0); | |||
7138 | AddOverloadCandidate( | |||
7139 | Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, | |||
7140 | PartialOverloading, AllowExplicit, | |||
7141 | /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); | |||
7142 | } | |||
7143 | ||||
7144 | /// Check that implicit conversion sequences can be formed for each argument | |||
7145 | /// whose corresponding parameter has a non-dependent type, per DR1391's | |||
7146 | /// [temp.deduct.call]p10. | |||
7147 | bool Sema::CheckNonDependentConversions( | |||
7148 | FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, | |||
7149 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, | |||
7150 | ConversionSequenceList &Conversions, bool SuppressUserConversions, | |||
7151 | CXXRecordDecl *ActingContext, QualType ObjectType, | |||
7152 | Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { | |||
7153 | // FIXME: The cases in which we allow explicit conversions for constructor | |||
7154 | // arguments never consider calling a constructor template. It's not clear | |||
7155 | // that is correct. | |||
7156 | const bool AllowExplicit = false; | |||
7157 | ||||
7158 | auto *FD = FunctionTemplate->getTemplatedDecl(); | |||
7159 | auto *Method = dyn_cast<CXXMethodDecl>(FD); | |||
7160 | bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); | |||
7161 | unsigned ThisConversions = HasThisConversion ? 1 : 0; | |||
7162 | ||||
7163 | Conversions = | |||
7164 | CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); | |||
7165 | ||||
7166 | // Overload resolution is always an unevaluated context. | |||
7167 | EnterExpressionEvaluationContext Unevaluated( | |||
7168 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
7169 | ||||
7170 | // For a method call, check the 'this' conversion here too. DR1391 doesn't | |||
7171 | // require that, but this check should never result in a hard error, and | |||
7172 | // overload resolution is permitted to sidestep instantiations. | |||
7173 | if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && | |||
7174 | !ObjectType.isNull()) { | |||
7175 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; | |||
7176 | Conversions[ConvIdx] = TryObjectArgumentInitialization( | |||
7177 | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, | |||
7178 | Method, ActingContext); | |||
7179 | if (Conversions[ConvIdx].isBad()) | |||
7180 | return true; | |||
7181 | } | |||
7182 | ||||
7183 | for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; | |||
7184 | ++I) { | |||
7185 | QualType ParamType = ParamTypes[I]; | |||
7186 | if (!ParamType->isDependentType()) { | |||
7187 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed | |||
7188 | ? 0 | |||
7189 | : (ThisConversions + I); | |||
7190 | Conversions[ConvIdx] | |||
7191 | = TryCopyInitialization(*this, Args[I], ParamType, | |||
7192 | SuppressUserConversions, | |||
7193 | /*InOverloadResolution=*/true, | |||
7194 | /*AllowObjCWritebackConversion=*/ | |||
7195 | getLangOpts().ObjCAutoRefCount, | |||
7196 | AllowExplicit); | |||
7197 | if (Conversions[ConvIdx].isBad()) | |||
7198 | return true; | |||
7199 | } | |||
7200 | } | |||
7201 | ||||
7202 | return false; | |||
7203 | } | |||
7204 | ||||
7205 | /// Determine whether this is an allowable conversion from the result | |||
7206 | /// of an explicit conversion operator to the expected type, per C++ | |||
7207 | /// [over.match.conv]p1 and [over.match.ref]p1. | |||
7208 | /// | |||
7209 | /// \param ConvType The return type of the conversion function. | |||
7210 | /// | |||
7211 | /// \param ToType The type we are converting to. | |||
7212 | /// | |||
7213 | /// \param AllowObjCPointerConversion Allow a conversion from one | |||
7214 | /// Objective-C pointer to another. | |||
7215 | /// | |||
7216 | /// \returns true if the conversion is allowable, false otherwise. | |||
7217 | static bool isAllowableExplicitConversion(Sema &S, | |||
7218 | QualType ConvType, QualType ToType, | |||
7219 | bool AllowObjCPointerConversion) { | |||
7220 | QualType ToNonRefType = ToType.getNonReferenceType(); | |||
7221 | ||||
7222 | // Easy case: the types are the same. | |||
7223 | if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) | |||
7224 | return true; | |||
7225 | ||||
7226 | // Allow qualification conversions. | |||
7227 | bool ObjCLifetimeConversion; | |||
7228 | if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, | |||
7229 | ObjCLifetimeConversion)) | |||
7230 | return true; | |||
7231 | ||||
7232 | // If we're not allowed to consider Objective-C pointer conversions, | |||
7233 | // we're done. | |||
7234 | if (!AllowObjCPointerConversion) | |||
7235 | return false; | |||
7236 | ||||
7237 | // Is this an Objective-C pointer conversion? | |||
7238 | bool IncompatibleObjC = false; | |||
7239 | QualType ConvertedType; | |||
7240 | return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, | |||
7241 | IncompatibleObjC); | |||
7242 | } | |||
7243 | ||||
7244 | /// AddConversionCandidate - Add a C++ conversion function as a | |||
7245 | /// candidate in the candidate set (C++ [over.match.conv], | |||
7246 | /// C++ [over.match.copy]). From is the expression we're converting from, | |||
7247 | /// and ToType is the type that we're eventually trying to convert to | |||
7248 | /// (which may or may not be the same type as the type that the | |||
7249 | /// conversion function produces). | |||
7250 | void Sema::AddConversionCandidate( | |||
7251 | CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, | |||
7252 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, | |||
7253 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | |||
7254 | bool AllowExplicit, bool AllowResultConversion) { | |||
7255 | assert(!Conversion->getDescribedFunctionTemplate() &&((void)0) | |||
7256 | "Conversion function templates use AddTemplateConversionCandidate")((void)0); | |||
7257 | QualType ConvType = Conversion->getConversionType().getNonReferenceType(); | |||
7258 | if (!CandidateSet.isNewCandidate(Conversion)) | |||
7259 | return; | |||
7260 | ||||
7261 | // If the conversion function has an undeduced return type, trigger its | |||
7262 | // deduction now. | |||
7263 | if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { | |||
7264 | if (DeduceReturnType(Conversion, From->getExprLoc())) | |||
7265 | return; | |||
7266 | ConvType = Conversion->getConversionType().getNonReferenceType(); | |||
7267 | } | |||
7268 | ||||
7269 | // If we don't allow any conversion of the result type, ignore conversion | |||
7270 | // functions that don't convert to exactly (possibly cv-qualified) T. | |||
7271 | if (!AllowResultConversion && | |||
7272 | !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) | |||
7273 | return; | |||
7274 | ||||
7275 | // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion | |||
7276 | // operator is only a candidate if its return type is the target type or | |||
7277 | // can be converted to the target type with a qualification conversion. | |||
7278 | // | |||
7279 | // FIXME: Include such functions in the candidate list and explain why we | |||
7280 | // can't select them. | |||
7281 | if (Conversion->isExplicit() && | |||
7282 | !isAllowableExplicitConversion(*this, ConvType, ToType, | |||
7283 | AllowObjCConversionOnExplicit)) | |||
7284 | return; | |||
7285 | ||||
7286 | // Overload resolution is always an unevaluated context. | |||
7287 | EnterExpressionEvaluationContext Unevaluated( | |||
7288 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
7289 | ||||
7290 | // Add this candidate | |||
7291 | OverloadCandidate &Candidate = CandidateSet.addCandidate(1); | |||
7292 | Candidate.FoundDecl = FoundDecl; | |||
7293 | Candidate.Function = Conversion; | |||
7294 | Candidate.IsSurrogate = false; | |||
7295 | Candidate.IgnoreObjectArgument = false; | |||
7296 | Candidate.FinalConversion.setAsIdentityConversion(); | |||
7297 | Candidate.FinalConversion.setFromType(ConvType); | |||
7298 | Candidate.FinalConversion.setAllToTypes(ToType); | |||
7299 | Candidate.Viable = true; | |||
7300 | Candidate.ExplicitCallArguments = 1; | |||
7301 | ||||
7302 | // Explicit functions are not actually candidates at all if we're not | |||
7303 | // allowing them in this context, but keep them around so we can point | |||
7304 | // to them in diagnostics. | |||
7305 | if (!AllowExplicit && Conversion->isExplicit()) { | |||
7306 | Candidate.Viable = false; | |||
7307 | Candidate.FailureKind = ovl_fail_explicit; | |||
7308 | return; | |||
7309 | } | |||
7310 | ||||
7311 | // C++ [over.match.funcs]p4: | |||
7312 | // For conversion functions, the function is considered to be a member of | |||
7313 | // the class of the implicit implied object argument for the purpose of | |||
7314 | // defining the type of the implicit object parameter. | |||
7315 | // | |||
7316 | // Determine the implicit conversion sequence for the implicit | |||
7317 | // object parameter. | |||
7318 | QualType ImplicitParamType = From->getType(); | |||
7319 | if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) | |||
7320 | ImplicitParamType = FromPtrType->getPointeeType(); | |||
7321 | CXXRecordDecl *ConversionContext | |||
7322 | = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); | |||
7323 | ||||
7324 | Candidate.Conversions[0] = TryObjectArgumentInitialization( | |||
7325 | *this, CandidateSet.getLocation(), From->getType(), | |||
7326 | From->Classify(Context), Conversion, ConversionContext); | |||
7327 | ||||
7328 | if (Candidate.Conversions[0].isBad()) { | |||
7329 | Candidate.Viable = false; | |||
7330 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7331 | return; | |||
7332 | } | |||
7333 | ||||
7334 | if (Conversion->getTrailingRequiresClause()) { | |||
7335 | ConstraintSatisfaction Satisfaction; | |||
7336 | if (CheckFunctionConstraints(Conversion, Satisfaction) || | |||
7337 | !Satisfaction.IsSatisfied) { | |||
7338 | Candidate.Viable = false; | |||
7339 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; | |||
7340 | return; | |||
7341 | } | |||
7342 | } | |||
7343 | ||||
7344 | // We won't go through a user-defined type conversion function to convert a | |||
7345 | // derived to base as such conversions are given Conversion Rank. They only | |||
7346 | // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] | |||
7347 | QualType FromCanon | |||
7348 | = Context.getCanonicalType(From->getType().getUnqualifiedType()); | |||
7349 | QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); | |||
7350 | if (FromCanon == ToCanon || | |||
7351 | IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { | |||
7352 | Candidate.Viable = false; | |||
7353 | Candidate.FailureKind = ovl_fail_trivial_conversion; | |||
7354 | return; | |||
7355 | } | |||
7356 | ||||
7357 | // To determine what the conversion from the result of calling the | |||
7358 | // conversion function to the type we're eventually trying to | |||
7359 | // convert to (ToType), we need to synthesize a call to the | |||
7360 | // conversion function and attempt copy initialization from it. This | |||
7361 | // makes sure that we get the right semantics with respect to | |||
7362 | // lvalues/rvalues and the type. Fortunately, we can allocate this | |||
7363 | // call on the stack and we don't need its arguments to be | |||
7364 | // well-formed. | |||
7365 | DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), | |||
7366 | VK_LValue, From->getBeginLoc()); | |||
7367 | ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, | |||
7368 | Context.getPointerType(Conversion->getType()), | |||
7369 | CK_FunctionToPointerDecay, &ConversionRef, | |||
7370 | VK_PRValue, FPOptionsOverride()); | |||
7371 | ||||
7372 | QualType ConversionType = Conversion->getConversionType(); | |||
7373 | if (!isCompleteType(From->getBeginLoc(), ConversionType)) { | |||
7374 | Candidate.Viable = false; | |||
7375 | Candidate.FailureKind = ovl_fail_bad_final_conversion; | |||
7376 | return; | |||
7377 | } | |||
7378 | ||||
7379 | ExprValueKind VK = Expr::getValueKindForType(ConversionType); | |||
7380 | ||||
7381 | // Note that it is safe to allocate CallExpr on the stack here because | |||
7382 | // there are 0 arguments (i.e., nothing is allocated using ASTContext's | |||
7383 | // allocator). | |||
7384 | QualType CallResultType = ConversionType.getNonLValueExprType(Context); | |||
7385 | ||||
7386 | alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; | |||
7387 | CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( | |||
7388 | Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); | |||
7389 | ||||
7390 | ImplicitConversionSequence ICS = | |||
7391 | TryCopyInitialization(*this, TheTemporaryCall, ToType, | |||
7392 | /*SuppressUserConversions=*/true, | |||
7393 | /*InOverloadResolution=*/false, | |||
7394 | /*AllowObjCWritebackConversion=*/false); | |||
7395 | ||||
7396 | switch (ICS.getKind()) { | |||
7397 | case ImplicitConversionSequence::StandardConversion: | |||
7398 | Candidate.FinalConversion = ICS.Standard; | |||
7399 | ||||
7400 | // C++ [over.ics.user]p3: | |||
7401 | // If the user-defined conversion is specified by a specialization of a | |||
7402 | // conversion function template, the second standard conversion sequence | |||
7403 | // shall have exact match rank. | |||
7404 | if (Conversion->getPrimaryTemplate() && | |||
7405 | GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { | |||
7406 | Candidate.Viable = false; | |||
7407 | Candidate.FailureKind = ovl_fail_final_conversion_not_exact; | |||
7408 | return; | |||
7409 | } | |||
7410 | ||||
7411 | // C++0x [dcl.init.ref]p5: | |||
7412 | // In the second case, if the reference is an rvalue reference and | |||
7413 | // the second standard conversion sequence of the user-defined | |||
7414 | // conversion sequence includes an lvalue-to-rvalue conversion, the | |||
7415 | // program is ill-formed. | |||
7416 | if (ToType->isRValueReferenceType() && | |||
7417 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { | |||
7418 | Candidate.Viable = false; | |||
7419 | Candidate.FailureKind = ovl_fail_bad_final_conversion; | |||
7420 | return; | |||
7421 | } | |||
7422 | break; | |||
7423 | ||||
7424 | case ImplicitConversionSequence::BadConversion: | |||
7425 | Candidate.Viable = false; | |||
7426 | Candidate.FailureKind = ovl_fail_bad_final_conversion; | |||
7427 | return; | |||
7428 | ||||
7429 | default: | |||
7430 | llvm_unreachable(__builtin_unreachable() | |||
7431 | "Can only end up with a standard conversion sequence or failure")__builtin_unreachable(); | |||
7432 | } | |||
7433 | ||||
7434 | if (EnableIfAttr *FailedAttr = | |||
7435 | CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { | |||
7436 | Candidate.Viable = false; | |||
7437 | Candidate.FailureKind = ovl_fail_enable_if; | |||
7438 | Candidate.DeductionFailure.Data = FailedAttr; | |||
7439 | return; | |||
7440 | } | |||
7441 | ||||
7442 | if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && | |||
7443 | !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { | |||
7444 | Candidate.Viable = false; | |||
7445 | Candidate.FailureKind = ovl_non_default_multiversion_function; | |||
7446 | } | |||
7447 | } | |||
7448 | ||||
7449 | /// Adds a conversion function template specialization | |||
7450 | /// candidate to the overload set, using template argument deduction | |||
7451 | /// to deduce the template arguments of the conversion function | |||
7452 | /// template from the type that we are converting to (C++ | |||
7453 | /// [temp.deduct.conv]). | |||
7454 | void Sema::AddTemplateConversionCandidate( | |||
7455 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | |||
7456 | CXXRecordDecl *ActingDC, Expr *From, QualType ToType, | |||
7457 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | |||
7458 | bool AllowExplicit, bool AllowResultConversion) { | |||
7459 | assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((void)0) | |||
7460 | "Only conversion function templates permitted here")((void)0); | |||
7461 | ||||
7462 | if (!CandidateSet.isNewCandidate(FunctionTemplate)) | |||
7463 | return; | |||
7464 | ||||
7465 | // If the function template has a non-dependent explicit specification, | |||
7466 | // exclude it now if appropriate; we are not permitted to perform deduction | |||
7467 | // and substitution in this case. | |||
7468 | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { | |||
7469 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | |||
7470 | Candidate.FoundDecl = FoundDecl; | |||
7471 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | |||
7472 | Candidate.Viable = false; | |||
7473 | Candidate.FailureKind = ovl_fail_explicit; | |||
7474 | return; | |||
7475 | } | |||
7476 | ||||
7477 | TemplateDeductionInfo Info(CandidateSet.getLocation()); | |||
7478 | CXXConversionDecl *Specialization = nullptr; | |||
7479 | if (TemplateDeductionResult Result | |||
7480 | = DeduceTemplateArguments(FunctionTemplate, ToType, | |||
7481 | Specialization, Info)) { | |||
7482 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); | |||
7483 | Candidate.FoundDecl = FoundDecl; | |||
7484 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); | |||
7485 | Candidate.Viable = false; | |||
7486 | Candidate.FailureKind = ovl_fail_bad_deduction; | |||
7487 | Candidate.IsSurrogate = false; | |||
7488 | Candidate.IgnoreObjectArgument = false; | |||
7489 | Candidate.ExplicitCallArguments = 1; | |||
7490 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, | |||
7491 | Info); | |||
7492 | return; | |||
7493 | } | |||
7494 | ||||
7495 | // Add the conversion function template specialization produced by | |||
7496 | // template argument deduction as a candidate. | |||
7497 | assert(Specialization && "Missing function template specialization?")((void)0); | |||
7498 | AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, | |||
7499 | CandidateSet, AllowObjCConversionOnExplicit, | |||
7500 | AllowExplicit, AllowResultConversion); | |||
7501 | } | |||
7502 | ||||
7503 | /// AddSurrogateCandidate - Adds a "surrogate" candidate function that | |||
7504 | /// converts the given @c Object to a function pointer via the | |||
7505 | /// conversion function @c Conversion, and then attempts to call it | |||
7506 | /// with the given arguments (C++ [over.call.object]p2-4). Proto is | |||
7507 | /// the type of function that we'll eventually be calling. | |||
7508 | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, | |||
7509 | DeclAccessPair FoundDecl, | |||
7510 | CXXRecordDecl *ActingContext, | |||
7511 | const FunctionProtoType *Proto, | |||
7512 | Expr *Object, | |||
7513 | ArrayRef<Expr *> Args, | |||
7514 | OverloadCandidateSet& CandidateSet) { | |||
7515 | if (!CandidateSet.isNewCandidate(Conversion)) | |||
7516 | return; | |||
7517 | ||||
7518 | // Overload resolution is always an unevaluated context. | |||
7519 | EnterExpressionEvaluationContext Unevaluated( | |||
7520 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
7521 | ||||
7522 | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); | |||
7523 | Candidate.FoundDecl = FoundDecl; | |||
7524 | Candidate.Function = nullptr; | |||
7525 | Candidate.Surrogate = Conversion; | |||
7526 | Candidate.Viable = true; | |||
7527 | Candidate.IsSurrogate = true; | |||
7528 | Candidate.IgnoreObjectArgument = false; | |||
7529 | Candidate.ExplicitCallArguments = Args.size(); | |||
7530 | ||||
7531 | // Determine the implicit conversion sequence for the implicit | |||
7532 | // object parameter. | |||
7533 | ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( | |||
7534 | *this, CandidateSet.getLocation(), Object->getType(), | |||
7535 | Object->Classify(Context), Conversion, ActingContext); | |||
7536 | if (ObjectInit.isBad()) { | |||
7537 | Candidate.Viable = false; | |||
7538 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7539 | Candidate.Conversions[0] = ObjectInit; | |||
7540 | return; | |||
7541 | } | |||
7542 | ||||
7543 | // The first conversion is actually a user-defined conversion whose | |||
7544 | // first conversion is ObjectInit's standard conversion (which is | |||
7545 | // effectively a reference binding). Record it as such. | |||
7546 | Candidate.Conversions[0].setUserDefined(); | |||
7547 | Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; | |||
7548 | Candidate.Conversions[0].UserDefined.EllipsisConversion = false; | |||
7549 | Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; | |||
7550 | Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; | |||
7551 | Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; | |||
7552 | Candidate.Conversions[0].UserDefined.After | |||
7553 | = Candidate.Conversions[0].UserDefined.Before; | |||
7554 | Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); | |||
7555 | ||||
7556 | // Find the | |||
7557 | unsigned NumParams = Proto->getNumParams(); | |||
7558 | ||||
7559 | // (C++ 13.3.2p2): A candidate function having fewer than m | |||
7560 | // parameters is viable only if it has an ellipsis in its parameter | |||
7561 | // list (8.3.5). | |||
7562 | if (Args.size() > NumParams && !Proto->isVariadic()) { | |||
7563 | Candidate.Viable = false; | |||
7564 | Candidate.FailureKind = ovl_fail_too_many_arguments; | |||
7565 | return; | |||
7566 | } | |||
7567 | ||||
7568 | // Function types don't have any default arguments, so just check if | |||
7569 | // we have enough arguments. | |||
7570 | if (Args.size() < NumParams) { | |||
7571 | // Not enough arguments. | |||
7572 | Candidate.Viable = false; | |||
7573 | Candidate.FailureKind = ovl_fail_too_few_arguments; | |||
7574 | return; | |||
7575 | } | |||
7576 | ||||
7577 | // Determine the implicit conversion sequences for each of the | |||
7578 | // arguments. | |||
7579 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
7580 | if (ArgIdx < NumParams) { | |||
7581 | // (C++ 13.3.2p3): for F to be a viable function, there shall | |||
7582 | // exist for each argument an implicit conversion sequence | |||
7583 | // (13.3.3.1) that converts that argument to the corresponding | |||
7584 | // parameter of F. | |||
7585 | QualType ParamType = Proto->getParamType(ArgIdx); | |||
7586 | Candidate.Conversions[ArgIdx + 1] | |||
7587 | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | |||
7588 | /*SuppressUserConversions=*/false, | |||
7589 | /*InOverloadResolution=*/false, | |||
7590 | /*AllowObjCWritebackConversion=*/ | |||
7591 | getLangOpts().ObjCAutoRefCount); | |||
7592 | if (Candidate.Conversions[ArgIdx + 1].isBad()) { | |||
7593 | Candidate.Viable = false; | |||
7594 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7595 | return; | |||
7596 | } | |||
7597 | } else { | |||
7598 | // (C++ 13.3.2p2): For the purposes of overload resolution, any | |||
7599 | // argument for which there is no corresponding parameter is | |||
7600 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | |||
7601 | Candidate.Conversions[ArgIdx + 1].setEllipsis(); | |||
7602 | } | |||
7603 | } | |||
7604 | ||||
7605 | if (EnableIfAttr *FailedAttr = | |||
7606 | CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { | |||
7607 | Candidate.Viable = false; | |||
7608 | Candidate.FailureKind = ovl_fail_enable_if; | |||
7609 | Candidate.DeductionFailure.Data = FailedAttr; | |||
7610 | return; | |||
7611 | } | |||
7612 | } | |||
7613 | ||||
7614 | /// Add all of the non-member operator function declarations in the given | |||
7615 | /// function set to the overload candidate set. | |||
7616 | void Sema::AddNonMemberOperatorCandidates( | |||
7617 | const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, | |||
7618 | OverloadCandidateSet &CandidateSet, | |||
7619 | TemplateArgumentListInfo *ExplicitTemplateArgs) { | |||
7620 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | |||
7621 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | |||
7622 | ArrayRef<Expr *> FunctionArgs = Args; | |||
7623 | ||||
7624 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | |||
7625 | FunctionDecl *FD = | |||
7626 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); | |||
7627 | ||||
7628 | // Don't consider rewritten functions if we're not rewriting. | |||
7629 | if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) | |||
7630 | continue; | |||
7631 | ||||
7632 | assert(!isa<CXXMethodDecl>(FD) &&((void)0) | |||
7633 | "unqualified operator lookup found a member function")((void)0); | |||
7634 | ||||
7635 | if (FunTmpl) { | |||
7636 | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, | |||
7637 | FunctionArgs, CandidateSet); | |||
7638 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) | |||
7639 | AddTemplateOverloadCandidate( | |||
7640 | FunTmpl, F.getPair(), ExplicitTemplateArgs, | |||
7641 | {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, | |||
7642 | true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); | |||
7643 | } else { | |||
7644 | if (ExplicitTemplateArgs) | |||
7645 | continue; | |||
7646 | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); | |||
7647 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) | |||
7648 | AddOverloadCandidate(FD, F.getPair(), | |||
7649 | {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, | |||
7650 | false, false, true, false, ADLCallKind::NotADL, | |||
7651 | None, OverloadCandidateParamOrder::Reversed); | |||
7652 | } | |||
7653 | } | |||
7654 | } | |||
7655 | ||||
7656 | /// Add overload candidates for overloaded operators that are | |||
7657 | /// member functions. | |||
7658 | /// | |||
7659 | /// Add the overloaded operator candidates that are member functions | |||
7660 | /// for the operator Op that was used in an operator expression such | |||
7661 | /// as "x Op y". , Args/NumArgs provides the operator arguments, and | |||
7662 | /// CandidateSet will store the added overload candidates. (C++ | |||
7663 | /// [over.match.oper]). | |||
7664 | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, | |||
7665 | SourceLocation OpLoc, | |||
7666 | ArrayRef<Expr *> Args, | |||
7667 | OverloadCandidateSet &CandidateSet, | |||
7668 | OverloadCandidateParamOrder PO) { | |||
7669 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | |||
7670 | ||||
7671 | // C++ [over.match.oper]p3: | |||
7672 | // For a unary operator @ with an operand of a type whose | |||
7673 | // cv-unqualified version is T1, and for a binary operator @ with | |||
7674 | // a left operand of a type whose cv-unqualified version is T1 and | |||
7675 | // a right operand of a type whose cv-unqualified version is T2, | |||
7676 | // three sets of candidate functions, designated member | |||
7677 | // candidates, non-member candidates and built-in candidates, are | |||
7678 | // constructed as follows: | |||
7679 | QualType T1 = Args[0]->getType(); | |||
7680 | ||||
7681 | // -- If T1 is a complete class type or a class currently being | |||
7682 | // defined, the set of member candidates is the result of the | |||
7683 | // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, | |||
7684 | // the set of member candidates is empty. | |||
7685 | if (const RecordType *T1Rec = T1->getAs<RecordType>()) { | |||
7686 | // Complete the type if it can be completed. | |||
7687 | if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) | |||
7688 | return; | |||
7689 | // If the type is neither complete nor being defined, bail out now. | |||
7690 | if (!T1Rec->getDecl()->getDefinition()) | |||
7691 | return; | |||
7692 | ||||
7693 | LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); | |||
7694 | LookupQualifiedName(Operators, T1Rec->getDecl()); | |||
7695 | Operators.suppressDiagnostics(); | |||
7696 | ||||
7697 | for (LookupResult::iterator Oper = Operators.begin(), | |||
7698 | OperEnd = Operators.end(); | |||
7699 | Oper != OperEnd; | |||
7700 | ++Oper) | |||
7701 | AddMethodCandidate(Oper.getPair(), Args[0]->getType(), | |||
7702 | Args[0]->Classify(Context), Args.slice(1), | |||
7703 | CandidateSet, /*SuppressUserConversion=*/false, PO); | |||
7704 | } | |||
7705 | } | |||
7706 | ||||
7707 | /// AddBuiltinCandidate - Add a candidate for a built-in | |||
7708 | /// operator. ResultTy and ParamTys are the result and parameter types | |||
7709 | /// of the built-in candidate, respectively. Args and NumArgs are the | |||
7710 | /// arguments being passed to the candidate. IsAssignmentOperator | |||
7711 | /// should be true when this built-in candidate is an assignment | |||
7712 | /// operator. NumContextualBoolArguments is the number of arguments | |||
7713 | /// (at the beginning of the argument list) that will be contextually | |||
7714 | /// converted to bool. | |||
7715 | void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, | |||
7716 | OverloadCandidateSet& CandidateSet, | |||
7717 | bool IsAssignmentOperator, | |||
7718 | unsigned NumContextualBoolArguments) { | |||
7719 | // Overload resolution is always an unevaluated context. | |||
7720 | EnterExpressionEvaluationContext Unevaluated( | |||
7721 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
7722 | ||||
7723 | // Add this candidate | |||
7724 | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); | |||
7725 | Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); | |||
7726 | Candidate.Function = nullptr; | |||
7727 | Candidate.IsSurrogate = false; | |||
7728 | Candidate.IgnoreObjectArgument = false; | |||
7729 | std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); | |||
7730 | ||||
7731 | // Determine the implicit conversion sequences for each of the | |||
7732 | // arguments. | |||
7733 | Candidate.Viable = true; | |||
7734 | Candidate.ExplicitCallArguments = Args.size(); | |||
7735 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
7736 | // C++ [over.match.oper]p4: | |||
7737 | // For the built-in assignment operators, conversions of the | |||
7738 | // left operand are restricted as follows: | |||
7739 | // -- no temporaries are introduced to hold the left operand, and | |||
7740 | // -- no user-defined conversions are applied to the left | |||
7741 | // operand to achieve a type match with the left-most | |||
7742 | // parameter of a built-in candidate. | |||
7743 | // | |||
7744 | // We block these conversions by turning off user-defined | |||
7745 | // conversions, since that is the only way that initialization of | |||
7746 | // a reference to a non-class type can occur from something that | |||
7747 | // is not of the same type. | |||
7748 | if (ArgIdx < NumContextualBoolArguments) { | |||
7749 | assert(ParamTys[ArgIdx] == Context.BoolTy &&((void)0) | |||
7750 | "Contextual conversion to bool requires bool type")((void)0); | |||
7751 | Candidate.Conversions[ArgIdx] | |||
7752 | = TryContextuallyConvertToBool(*this, Args[ArgIdx]); | |||
7753 | } else { | |||
7754 | Candidate.Conversions[ArgIdx] | |||
7755 | = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], | |||
7756 | ArgIdx == 0 && IsAssignmentOperator, | |||
7757 | /*InOverloadResolution=*/false, | |||
7758 | /*AllowObjCWritebackConversion=*/ | |||
7759 | getLangOpts().ObjCAutoRefCount); | |||
7760 | } | |||
7761 | if (Candidate.Conversions[ArgIdx].isBad()) { | |||
7762 | Candidate.Viable = false; | |||
7763 | Candidate.FailureKind = ovl_fail_bad_conversion; | |||
7764 | break; | |||
7765 | } | |||
7766 | } | |||
7767 | } | |||
7768 | ||||
7769 | namespace { | |||
7770 | ||||
7771 | /// BuiltinCandidateTypeSet - A set of types that will be used for the | |||
7772 | /// candidate operator functions for built-in operators (C++ | |||
7773 | /// [over.built]). The types are separated into pointer types and | |||
7774 | /// enumeration types. | |||
7775 | class BuiltinCandidateTypeSet { | |||
7776 | /// TypeSet - A set of types. | |||
7777 | typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, | |||
7778 | llvm::SmallPtrSet<QualType, 8>> TypeSet; | |||
7779 | ||||
7780 | /// PointerTypes - The set of pointer types that will be used in the | |||
7781 | /// built-in candidates. | |||
7782 | TypeSet PointerTypes; | |||
7783 | ||||
7784 | /// MemberPointerTypes - The set of member pointer types that will be | |||
7785 | /// used in the built-in candidates. | |||
7786 | TypeSet MemberPointerTypes; | |||
7787 | ||||
7788 | /// EnumerationTypes - The set of enumeration types that will be | |||
7789 | /// used in the built-in candidates. | |||
7790 | TypeSet EnumerationTypes; | |||
7791 | ||||
7792 | /// The set of vector types that will be used in the built-in | |||
7793 | /// candidates. | |||
7794 | TypeSet VectorTypes; | |||
7795 | ||||
7796 | /// The set of matrix types that will be used in the built-in | |||
7797 | /// candidates. | |||
7798 | TypeSet MatrixTypes; | |||
7799 | ||||
7800 | /// A flag indicating non-record types are viable candidates | |||
7801 | bool HasNonRecordTypes; | |||
7802 | ||||
7803 | /// A flag indicating whether either arithmetic or enumeration types | |||
7804 | /// were present in the candidate set. | |||
7805 | bool HasArithmeticOrEnumeralTypes; | |||
7806 | ||||
7807 | /// A flag indicating whether the nullptr type was present in the | |||
7808 | /// candidate set. | |||
7809 | bool HasNullPtrType; | |||
7810 | ||||
7811 | /// Sema - The semantic analysis instance where we are building the | |||
7812 | /// candidate type set. | |||
7813 | Sema &SemaRef; | |||
7814 | ||||
7815 | /// Context - The AST context in which we will build the type sets. | |||
7816 | ASTContext &Context; | |||
7817 | ||||
7818 | bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | |||
7819 | const Qualifiers &VisibleQuals); | |||
7820 | bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); | |||
7821 | ||||
7822 | public: | |||
7823 | /// iterator - Iterates through the types that are part of the set. | |||
7824 | typedef TypeSet::iterator iterator; | |||
7825 | ||||
7826 | BuiltinCandidateTypeSet(Sema &SemaRef) | |||
7827 | : HasNonRecordTypes(false), | |||
7828 | HasArithmeticOrEnumeralTypes(false), | |||
7829 | HasNullPtrType(false), | |||
7830 | SemaRef(SemaRef), | |||
7831 | Context(SemaRef.Context) { } | |||
7832 | ||||
7833 | void AddTypesConvertedFrom(QualType Ty, | |||
7834 | SourceLocation Loc, | |||
7835 | bool AllowUserConversions, | |||
7836 | bool AllowExplicitConversions, | |||
7837 | const Qualifiers &VisibleTypeConversionsQuals); | |||
7838 | ||||
7839 | llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } | |||
7840 | llvm::iterator_range<iterator> member_pointer_types() { | |||
7841 | return MemberPointerTypes; | |||
7842 | } | |||
7843 | llvm::iterator_range<iterator> enumeration_types() { | |||
7844 | return EnumerationTypes; | |||
7845 | } | |||
7846 | llvm::iterator_range<iterator> vector_types() { return VectorTypes; } | |||
7847 | llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } | |||
7848 | ||||
7849 | bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } | |||
7850 | bool hasNonRecordTypes() { return HasNonRecordTypes; } | |||
7851 | bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } | |||
7852 | bool hasNullPtrType() const { return HasNullPtrType; } | |||
7853 | }; | |||
7854 | ||||
7855 | } // end anonymous namespace | |||
7856 | ||||
7857 | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to | |||
7858 | /// the set of pointer types along with any more-qualified variants of | |||
7859 | /// that type. For example, if @p Ty is "int const *", this routine | |||
7860 | /// will add "int const *", "int const volatile *", "int const | |||
7861 | /// restrict *", and "int const volatile restrict *" to the set of | |||
7862 | /// pointer types. Returns true if the add of @p Ty itself succeeded, | |||
7863 | /// false otherwise. | |||
7864 | /// | |||
7865 | /// FIXME: what to do about extended qualifiers? | |||
7866 | bool | |||
7867 | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | |||
7868 | const Qualifiers &VisibleQuals) { | |||
7869 | ||||
7870 | // Insert this type. | |||
7871 | if (!PointerTypes.insert(Ty)) | |||
7872 | return false; | |||
7873 | ||||
7874 | QualType PointeeTy; | |||
7875 | const PointerType *PointerTy = Ty->getAs<PointerType>(); | |||
7876 | bool buildObjCPtr = false; | |||
7877 | if (!PointerTy) { | |||
7878 | const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); | |||
7879 | PointeeTy = PTy->getPointeeType(); | |||
7880 | buildObjCPtr = true; | |||
7881 | } else { | |||
7882 | PointeeTy = PointerTy->getPointeeType(); | |||
7883 | } | |||
7884 | ||||
7885 | // Don't add qualified variants of arrays. For one, they're not allowed | |||
7886 | // (the qualifier would sink to the element type), and for another, the | |||
7887 | // only overload situation where it matters is subscript or pointer +- int, | |||
7888 | // and those shouldn't have qualifier variants anyway. | |||
7889 | if (PointeeTy->isArrayType()) | |||
7890 | return true; | |||
7891 | ||||
7892 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | |||
7893 | bool hasVolatile = VisibleQuals.hasVolatile(); | |||
7894 | bool hasRestrict = VisibleQuals.hasRestrict(); | |||
7895 | ||||
7896 | // Iterate through all strict supersets of BaseCVR. | |||
7897 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | |||
7898 | if ((CVR | BaseCVR) != CVR) continue; | |||
7899 | // Skip over volatile if no volatile found anywhere in the types. | |||
7900 | if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; | |||
7901 | ||||
7902 | // Skip over restrict if no restrict found anywhere in the types, or if | |||
7903 | // the type cannot be restrict-qualified. | |||
7904 | if ((CVR & Qualifiers::Restrict) && | |||
7905 | (!hasRestrict || | |||
7906 | (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) | |||
7907 | continue; | |||
7908 | ||||
7909 | // Build qualified pointee type. | |||
7910 | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | |||
7911 | ||||
7912 | // Build qualified pointer type. | |||
7913 | QualType QPointerTy; | |||
7914 | if (!buildObjCPtr) | |||
7915 | QPointerTy = Context.getPointerType(QPointeeTy); | |||
7916 | else | |||
7917 | QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); | |||
7918 | ||||
7919 | // Insert qualified pointer type. | |||
7920 | PointerTypes.insert(QPointerTy); | |||
7921 | } | |||
7922 | ||||
7923 | return true; | |||
7924 | } | |||
7925 | ||||
7926 | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty | |||
7927 | /// to the set of pointer types along with any more-qualified variants of | |||
7928 | /// that type. For example, if @p Ty is "int const *", this routine | |||
7929 | /// will add "int const *", "int const volatile *", "int const | |||
7930 | /// restrict *", and "int const volatile restrict *" to the set of | |||
7931 | /// pointer types. Returns true if the add of @p Ty itself succeeded, | |||
7932 | /// false otherwise. | |||
7933 | /// | |||
7934 | /// FIXME: what to do about extended qualifiers? | |||
7935 | bool | |||
7936 | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( | |||
7937 | QualType Ty) { | |||
7938 | // Insert this type. | |||
7939 | if (!MemberPointerTypes.insert(Ty)) | |||
7940 | return false; | |||
7941 | ||||
7942 | const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); | |||
7943 | assert(PointerTy && "type was not a member pointer type!")((void)0); | |||
7944 | ||||
7945 | QualType PointeeTy = PointerTy->getPointeeType(); | |||
7946 | // Don't add qualified variants of arrays. For one, they're not allowed | |||
7947 | // (the qualifier would sink to the element type), and for another, the | |||
7948 | // only overload situation where it matters is subscript or pointer +- int, | |||
7949 | // and those shouldn't have qualifier variants anyway. | |||
7950 | if (PointeeTy->isArrayType()) | |||
7951 | return true; | |||
7952 | const Type *ClassTy = PointerTy->getClass(); | |||
7953 | ||||
7954 | // Iterate through all strict supersets of the pointee type's CVR | |||
7955 | // qualifiers. | |||
7956 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | |||
7957 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | |||
7958 | if ((CVR | BaseCVR) != CVR) continue; | |||
7959 | ||||
7960 | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | |||
7961 | MemberPointerTypes.insert( | |||
7962 | Context.getMemberPointerType(QPointeeTy, ClassTy)); | |||
7963 | } | |||
7964 | ||||
7965 | return true; | |||
7966 | } | |||
7967 | ||||
7968 | /// AddTypesConvertedFrom - Add each of the types to which the type @p | |||
7969 | /// Ty can be implicit converted to the given set of @p Types. We're | |||
7970 | /// primarily interested in pointer types and enumeration types. We also | |||
7971 | /// take member pointer types, for the conditional operator. | |||
7972 | /// AllowUserConversions is true if we should look at the conversion | |||
7973 | /// functions of a class type, and AllowExplicitConversions if we | |||
7974 | /// should also include the explicit conversion functions of a class | |||
7975 | /// type. | |||
7976 | void | |||
7977 | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, | |||
7978 | SourceLocation Loc, | |||
7979 | bool AllowUserConversions, | |||
7980 | bool AllowExplicitConversions, | |||
7981 | const Qualifiers &VisibleQuals) { | |||
7982 | // Only deal with canonical types. | |||
7983 | Ty = Context.getCanonicalType(Ty); | |||
7984 | ||||
7985 | // Look through reference types; they aren't part of the type of an | |||
7986 | // expression for the purposes of conversions. | |||
7987 | if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) | |||
7988 | Ty = RefTy->getPointeeType(); | |||
7989 | ||||
7990 | // If we're dealing with an array type, decay to the pointer. | |||
7991 | if (Ty->isArrayType()) | |||
7992 | Ty = SemaRef.Context.getArrayDecayedType(Ty); | |||
7993 | ||||
7994 | // Otherwise, we don't care about qualifiers on the type. | |||
7995 | Ty = Ty.getLocalUnqualifiedType(); | |||
7996 | ||||
7997 | // Flag if we ever add a non-record type. | |||
7998 | const RecordType *TyRec = Ty->getAs<RecordType>(); | |||
7999 | HasNonRecordTypes = HasNonRecordTypes || !TyRec; | |||
8000 | ||||
8001 | // Flag if we encounter an arithmetic type. | |||
8002 | HasArithmeticOrEnumeralTypes = | |||
8003 | HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); | |||
8004 | ||||
8005 | if (Ty->isObjCIdType() || Ty->isObjCClassType()) | |||
8006 | PointerTypes.insert(Ty); | |||
8007 | else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { | |||
8008 | // Insert our type, and its more-qualified variants, into the set | |||
8009 | // of types. | |||
8010 | if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) | |||
8011 | return; | |||
8012 | } else if (Ty->isMemberPointerType()) { | |||
8013 | // Member pointers are far easier, since the pointee can't be converted. | |||
8014 | if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) | |||
8015 | return; | |||
8016 | } else if (Ty->isEnumeralType()) { | |||
8017 | HasArithmeticOrEnumeralTypes = true; | |||
8018 | EnumerationTypes.insert(Ty); | |||
8019 | } else if (Ty->isVectorType()) { | |||
8020 | // We treat vector types as arithmetic types in many contexts as an | |||
8021 | // extension. | |||
8022 | HasArithmeticOrEnumeralTypes = true; | |||
8023 | VectorTypes.insert(Ty); | |||
8024 | } else if (Ty->isMatrixType()) { | |||
8025 | // Similar to vector types, we treat vector types as arithmetic types in | |||
8026 | // many contexts as an extension. | |||
8027 | HasArithmeticOrEnumeralTypes = true; | |||
8028 | MatrixTypes.insert(Ty); | |||
8029 | } else if (Ty->isNullPtrType()) { | |||
8030 | HasNullPtrType = true; | |||
8031 | } else if (AllowUserConversions && TyRec) { | |||
8032 | // No conversion functions in incomplete types. | |||
8033 | if (!SemaRef.isCompleteType(Loc, Ty)) | |||
8034 | return; | |||
8035 | ||||
8036 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | |||
8037 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | |||
8038 | if (isa<UsingShadowDecl>(D)) | |||
8039 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
8040 | ||||
8041 | // Skip conversion function templates; they don't tell us anything | |||
8042 | // about which builtin types we can convert to. | |||
8043 | if (isa<FunctionTemplateDecl>(D)) | |||
8044 | continue; | |||
8045 | ||||
8046 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | |||
8047 | if (AllowExplicitConversions || !Conv->isExplicit()) { | |||
8048 | AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, | |||
8049 | VisibleQuals); | |||
8050 | } | |||
8051 | } | |||
8052 | } | |||
8053 | } | |||
8054 | /// Helper function for adjusting address spaces for the pointer or reference | |||
8055 | /// operands of builtin operators depending on the argument. | |||
8056 | static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, | |||
8057 | Expr *Arg) { | |||
8058 | return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); | |||
8059 | } | |||
8060 | ||||
8061 | /// Helper function for AddBuiltinOperatorCandidates() that adds | |||
8062 | /// the volatile- and non-volatile-qualified assignment operators for the | |||
8063 | /// given type to the candidate set. | |||
8064 | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, | |||
8065 | QualType T, | |||
8066 | ArrayRef<Expr *> Args, | |||
8067 | OverloadCandidateSet &CandidateSet) { | |||
8068 | QualType ParamTypes[2]; | |||
8069 | ||||
8070 | // T& operator=(T&, T) | |||
8071 | ParamTypes[0] = S.Context.getLValueReferenceType( | |||
8072 | AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); | |||
8073 | ParamTypes[1] = T; | |||
8074 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8075 | /*IsAssignmentOperator=*/true); | |||
8076 | ||||
8077 | if (!S.Context.getCanonicalType(T).isVolatileQualified()) { | |||
8078 | // volatile T& operator=(volatile T&, T) | |||
8079 | ParamTypes[0] = S.Context.getLValueReferenceType( | |||
8080 | AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), | |||
8081 | Args[0])); | |||
8082 | ParamTypes[1] = T; | |||
8083 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8084 | /*IsAssignmentOperator=*/true); | |||
8085 | } | |||
8086 | } | |||
8087 | ||||
8088 | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, | |||
8089 | /// if any, found in visible type conversion functions found in ArgExpr's type. | |||
8090 | static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { | |||
8091 | Qualifiers VRQuals; | |||
8092 | const RecordType *TyRec; | |||
8093 | if (const MemberPointerType *RHSMPType = | |||
8094 | ArgExpr->getType()->getAs<MemberPointerType>()) | |||
8095 | TyRec = RHSMPType->getClass()->getAs<RecordType>(); | |||
8096 | else | |||
8097 | TyRec = ArgExpr->getType()->getAs<RecordType>(); | |||
8098 | if (!TyRec) { | |||
8099 | // Just to be safe, assume the worst case. | |||
8100 | VRQuals.addVolatile(); | |||
8101 | VRQuals.addRestrict(); | |||
8102 | return VRQuals; | |||
8103 | } | |||
8104 | ||||
8105 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | |||
8106 | if (!ClassDecl->hasDefinition()) | |||
8107 | return VRQuals; | |||
8108 | ||||
8109 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { | |||
8110 | if (isa<UsingShadowDecl>(D)) | |||
8111 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
8112 | if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { | |||
8113 | QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); | |||
8114 | if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) | |||
8115 | CanTy = ResTypeRef->getPointeeType(); | |||
8116 | // Need to go down the pointer/mempointer chain and add qualifiers | |||
8117 | // as see them. | |||
8118 | bool done = false; | |||
8119 | while (!done) { | |||
8120 | if (CanTy.isRestrictQualified()) | |||
8121 | VRQuals.addRestrict(); | |||
8122 | if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) | |||
8123 | CanTy = ResTypePtr->getPointeeType(); | |||
8124 | else if (const MemberPointerType *ResTypeMPtr = | |||
8125 | CanTy->getAs<MemberPointerType>()) | |||
8126 | CanTy = ResTypeMPtr->getPointeeType(); | |||
8127 | else | |||
8128 | done = true; | |||
8129 | if (CanTy.isVolatileQualified()) | |||
8130 | VRQuals.addVolatile(); | |||
8131 | if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) | |||
8132 | return VRQuals; | |||
8133 | } | |||
8134 | } | |||
8135 | } | |||
8136 | return VRQuals; | |||
8137 | } | |||
8138 | ||||
8139 | namespace { | |||
8140 | ||||
8141 | /// Helper class to manage the addition of builtin operator overload | |||
8142 | /// candidates. It provides shared state and utility methods used throughout | |||
8143 | /// the process, as well as a helper method to add each group of builtin | |||
8144 | /// operator overloads from the standard to a candidate set. | |||
8145 | class BuiltinOperatorOverloadBuilder { | |||
8146 | // Common instance state available to all overload candidate addition methods. | |||
8147 | Sema &S; | |||
8148 | ArrayRef<Expr *> Args; | |||
8149 | Qualifiers VisibleTypeConversionsQuals; | |||
8150 | bool HasArithmeticOrEnumeralCandidateType; | |||
8151 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; | |||
8152 | OverloadCandidateSet &CandidateSet; | |||
8153 | ||||
8154 | static constexpr int ArithmeticTypesCap = 24; | |||
8155 | SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; | |||
8156 | ||||
8157 | // Define some indices used to iterate over the arithmetic types in | |||
8158 | // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic | |||
8159 | // types are that preserved by promotion (C++ [over.built]p2). | |||
8160 | unsigned FirstIntegralType, | |||
8161 | LastIntegralType; | |||
8162 | unsigned FirstPromotedIntegralType, | |||
8163 | LastPromotedIntegralType; | |||
8164 | unsigned FirstPromotedArithmeticType, | |||
8165 | LastPromotedArithmeticType; | |||
8166 | unsigned NumArithmeticTypes; | |||
8167 | ||||
8168 | void InitArithmeticTypes() { | |||
8169 | // Start of promoted types. | |||
8170 | FirstPromotedArithmeticType = 0; | |||
8171 | ArithmeticTypes.push_back(S.Context.FloatTy); | |||
8172 | ArithmeticTypes.push_back(S.Context.DoubleTy); | |||
8173 | ArithmeticTypes.push_back(S.Context.LongDoubleTy); | |||
8174 | if (S.Context.getTargetInfo().hasFloat128Type()) | |||
8175 | ArithmeticTypes.push_back(S.Context.Float128Ty); | |||
8176 | ||||
8177 | // Start of integral types. | |||
8178 | FirstIntegralType = ArithmeticTypes.size(); | |||
8179 | FirstPromotedIntegralType = ArithmeticTypes.size(); | |||
8180 | ArithmeticTypes.push_back(S.Context.IntTy); | |||
8181 | ArithmeticTypes.push_back(S.Context.LongTy); | |||
8182 | ArithmeticTypes.push_back(S.Context.LongLongTy); | |||
8183 | if (S.Context.getTargetInfo().hasInt128Type() || | |||
8184 | (S.Context.getAuxTargetInfo() && | |||
8185 | S.Context.getAuxTargetInfo()->hasInt128Type())) | |||
8186 | ArithmeticTypes.push_back(S.Context.Int128Ty); | |||
8187 | ArithmeticTypes.push_back(S.Context.UnsignedIntTy); | |||
8188 | ArithmeticTypes.push_back(S.Context.UnsignedLongTy); | |||
8189 | ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); | |||
8190 | if (S.Context.getTargetInfo().hasInt128Type() || | |||
8191 | (S.Context.getAuxTargetInfo() && | |||
8192 | S.Context.getAuxTargetInfo()->hasInt128Type())) | |||
8193 | ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); | |||
8194 | LastPromotedIntegralType = ArithmeticTypes.size(); | |||
8195 | LastPromotedArithmeticType = ArithmeticTypes.size(); | |||
8196 | // End of promoted types. | |||
8197 | ||||
8198 | ArithmeticTypes.push_back(S.Context.BoolTy); | |||
8199 | ArithmeticTypes.push_back(S.Context.CharTy); | |||
8200 | ArithmeticTypes.push_back(S.Context.WCharTy); | |||
8201 | if (S.Context.getLangOpts().Char8) | |||
8202 | ArithmeticTypes.push_back(S.Context.Char8Ty); | |||
8203 | ArithmeticTypes.push_back(S.Context.Char16Ty); | |||
8204 | ArithmeticTypes.push_back(S.Context.Char32Ty); | |||
8205 | ArithmeticTypes.push_back(S.Context.SignedCharTy); | |||
8206 | ArithmeticTypes.push_back(S.Context.ShortTy); | |||
8207 | ArithmeticTypes.push_back(S.Context.UnsignedCharTy); | |||
8208 | ArithmeticTypes.push_back(S.Context.UnsignedShortTy); | |||
8209 | LastIntegralType = ArithmeticTypes.size(); | |||
8210 | NumArithmeticTypes = ArithmeticTypes.size(); | |||
8211 | // End of integral types. | |||
8212 | // FIXME: What about complex? What about half? | |||
8213 | ||||
8214 | assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((void)0) | |||
8215 | "Enough inline storage for all arithmetic types.")((void)0); | |||
8216 | } | |||
8217 | ||||
8218 | /// Helper method to factor out the common pattern of adding overloads | |||
8219 | /// for '++' and '--' builtin operators. | |||
8220 | void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, | |||
8221 | bool HasVolatile, | |||
8222 | bool HasRestrict) { | |||
8223 | QualType ParamTypes[2] = { | |||
8224 | S.Context.getLValueReferenceType(CandidateTy), | |||
8225 | S.Context.IntTy | |||
8226 | }; | |||
8227 | ||||
8228 | // Non-volatile version. | |||
8229 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8230 | ||||
8231 | // Use a heuristic to reduce number of builtin candidates in the set: | |||
8232 | // add volatile version only if there are conversions to a volatile type. | |||
8233 | if (HasVolatile) { | |||
8234 | ParamTypes[0] = | |||
8235 | S.Context.getLValueReferenceType( | |||
8236 | S.Context.getVolatileType(CandidateTy)); | |||
8237 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8238 | } | |||
8239 | ||||
8240 | // Add restrict version only if there are conversions to a restrict type | |||
8241 | // and our candidate type is a non-restrict-qualified pointer. | |||
8242 | if (HasRestrict && CandidateTy->isAnyPointerType() && | |||
8243 | !CandidateTy.isRestrictQualified()) { | |||
8244 | ParamTypes[0] | |||
8245 | = S.Context.getLValueReferenceType( | |||
8246 | S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); | |||
8247 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8248 | ||||
8249 | if (HasVolatile) { | |||
8250 | ParamTypes[0] | |||
8251 | = S.Context.getLValueReferenceType( | |||
8252 | S.Context.getCVRQualifiedType(CandidateTy, | |||
8253 | (Qualifiers::Volatile | | |||
8254 | Qualifiers::Restrict))); | |||
8255 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8256 | } | |||
8257 | } | |||
8258 | ||||
8259 | } | |||
8260 | ||||
8261 | /// Helper to add an overload candidate for a binary builtin with types \p L | |||
8262 | /// and \p R. | |||
8263 | void AddCandidate(QualType L, QualType R) { | |||
8264 | QualType LandR[2] = {L, R}; | |||
8265 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | |||
8266 | } | |||
8267 | ||||
8268 | public: | |||
8269 | BuiltinOperatorOverloadBuilder( | |||
8270 | Sema &S, ArrayRef<Expr *> Args, | |||
8271 | Qualifiers VisibleTypeConversionsQuals, | |||
8272 | bool HasArithmeticOrEnumeralCandidateType, | |||
8273 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, | |||
8274 | OverloadCandidateSet &CandidateSet) | |||
8275 | : S(S), Args(Args), | |||
8276 | VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), | |||
8277 | HasArithmeticOrEnumeralCandidateType( | |||
8278 | HasArithmeticOrEnumeralCandidateType), | |||
8279 | CandidateTypes(CandidateTypes), | |||
8280 | CandidateSet(CandidateSet) { | |||
8281 | ||||
8282 | InitArithmeticTypes(); | |||
8283 | } | |||
8284 | ||||
8285 | // Increment is deprecated for bool since C++17. | |||
8286 | // | |||
8287 | // C++ [over.built]p3: | |||
8288 | // | |||
8289 | // For every pair (T, VQ), where T is an arithmetic type other | |||
8290 | // than bool, and VQ is either volatile or empty, there exist | |||
8291 | // candidate operator functions of the form | |||
8292 | // | |||
8293 | // VQ T& operator++(VQ T&); | |||
8294 | // T operator++(VQ T&, int); | |||
8295 | // | |||
8296 | // C++ [over.built]p4: | |||
8297 | // | |||
8298 | // For every pair (T, VQ), where T is an arithmetic type other | |||
8299 | // than bool, and VQ is either volatile or empty, there exist | |||
8300 | // candidate operator functions of the form | |||
8301 | // | |||
8302 | // VQ T& operator--(VQ T&); | |||
8303 | // T operator--(VQ T&, int); | |||
8304 | void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { | |||
8305 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8306 | return; | |||
8307 | ||||
8308 | for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { | |||
8309 | const auto TypeOfT = ArithmeticTypes[Arith]; | |||
8310 | if (TypeOfT == S.Context.BoolTy) { | |||
8311 | if (Op == OO_MinusMinus) | |||
8312 | continue; | |||
8313 | if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) | |||
8314 | continue; | |||
8315 | } | |||
8316 | addPlusPlusMinusMinusStyleOverloads( | |||
8317 | TypeOfT, | |||
8318 | VisibleTypeConversionsQuals.hasVolatile(), | |||
8319 | VisibleTypeConversionsQuals.hasRestrict()); | |||
8320 | } | |||
8321 | } | |||
8322 | ||||
8323 | // C++ [over.built]p5: | |||
8324 | // | |||
8325 | // For every pair (T, VQ), where T is a cv-qualified or | |||
8326 | // cv-unqualified object type, and VQ is either volatile or | |||
8327 | // empty, there exist candidate operator functions of the form | |||
8328 | // | |||
8329 | // T*VQ& operator++(T*VQ&); | |||
8330 | // T*VQ& operator--(T*VQ&); | |||
8331 | // T* operator++(T*VQ&, int); | |||
8332 | // T* operator--(T*VQ&, int); | |||
8333 | void addPlusPlusMinusMinusPointerOverloads() { | |||
8334 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | |||
8335 | // Skip pointer types that aren't pointers to object types. | |||
8336 | if (!PtrTy->getPointeeType()->isObjectType()) | |||
8337 | continue; | |||
8338 | ||||
8339 | addPlusPlusMinusMinusStyleOverloads( | |||
8340 | PtrTy, | |||
8341 | (!PtrTy.isVolatileQualified() && | |||
8342 | VisibleTypeConversionsQuals.hasVolatile()), | |||
8343 | (!PtrTy.isRestrictQualified() && | |||
8344 | VisibleTypeConversionsQuals.hasRestrict())); | |||
8345 | } | |||
8346 | } | |||
8347 | ||||
8348 | // C++ [over.built]p6: | |||
8349 | // For every cv-qualified or cv-unqualified object type T, there | |||
8350 | // exist candidate operator functions of the form | |||
8351 | // | |||
8352 | // T& operator*(T*); | |||
8353 | // | |||
8354 | // C++ [over.built]p7: | |||
8355 | // For every function type T that does not have cv-qualifiers or a | |||
8356 | // ref-qualifier, there exist candidate operator functions of the form | |||
8357 | // T& operator*(T*); | |||
8358 | void addUnaryStarPointerOverloads() { | |||
8359 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) { | |||
8360 | QualType PointeeTy = ParamTy->getPointeeType(); | |||
8361 | if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) | |||
8362 | continue; | |||
8363 | ||||
8364 | if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) | |||
8365 | if (Proto->getMethodQuals() || Proto->getRefQualifier()) | |||
8366 | continue; | |||
8367 | ||||
8368 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); | |||
8369 | } | |||
8370 | } | |||
8371 | ||||
8372 | // C++ [over.built]p9: | |||
8373 | // For every promoted arithmetic type T, there exist candidate | |||
8374 | // operator functions of the form | |||
8375 | // | |||
8376 | // T operator+(T); | |||
8377 | // T operator-(T); | |||
8378 | void addUnaryPlusOrMinusArithmeticOverloads() { | |||
8379 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8380 | return; | |||
8381 | ||||
8382 | for (unsigned Arith = FirstPromotedArithmeticType; | |||
8383 | Arith < LastPromotedArithmeticType; ++Arith) { | |||
8384 | QualType ArithTy = ArithmeticTypes[Arith]; | |||
8385 | S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); | |||
8386 | } | |||
8387 | ||||
8388 | // Extension: We also add these operators for vector types. | |||
8389 | for (QualType VecTy : CandidateTypes[0].vector_types()) | |||
8390 | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); | |||
8391 | } | |||
8392 | ||||
8393 | // C++ [over.built]p8: | |||
8394 | // For every type T, there exist candidate operator functions of | |||
8395 | // the form | |||
8396 | // | |||
8397 | // T* operator+(T*); | |||
8398 | void addUnaryPlusPointerOverloads() { | |||
8399 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) | |||
8400 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); | |||
8401 | } | |||
8402 | ||||
8403 | // C++ [over.built]p10: | |||
8404 | // For every promoted integral type T, there exist candidate | |||
8405 | // operator functions of the form | |||
8406 | // | |||
8407 | // T operator~(T); | |||
8408 | void addUnaryTildePromotedIntegralOverloads() { | |||
8409 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8410 | return; | |||
8411 | ||||
8412 | for (unsigned Int = FirstPromotedIntegralType; | |||
8413 | Int < LastPromotedIntegralType; ++Int) { | |||
8414 | QualType IntTy = ArithmeticTypes[Int]; | |||
8415 | S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); | |||
8416 | } | |||
8417 | ||||
8418 | // Extension: We also add this operator for vector types. | |||
8419 | for (QualType VecTy : CandidateTypes[0].vector_types()) | |||
8420 | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); | |||
8421 | } | |||
8422 | ||||
8423 | // C++ [over.match.oper]p16: | |||
8424 | // For every pointer to member type T or type std::nullptr_t, there | |||
8425 | // exist candidate operator functions of the form | |||
8426 | // | |||
8427 | // bool operator==(T,T); | |||
8428 | // bool operator!=(T,T); | |||
8429 | void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { | |||
8430 | /// Set of (canonical) types that we've already handled. | |||
8431 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
8432 | ||||
8433 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
8434 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | |||
8435 | // Don't add the same builtin candidate twice. | |||
8436 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | |||
8437 | continue; | |||
8438 | ||||
8439 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; | |||
8440 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8441 | } | |||
8442 | ||||
8443 | if (CandidateTypes[ArgIdx].hasNullPtrType()) { | |||
8444 | CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); | |||
8445 | if (AddedTypes.insert(NullPtrTy).second) { | |||
8446 | QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; | |||
8447 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8448 | } | |||
8449 | } | |||
8450 | } | |||
8451 | } | |||
8452 | ||||
8453 | // C++ [over.built]p15: | |||
8454 | // | |||
8455 | // For every T, where T is an enumeration type or a pointer type, | |||
8456 | // there exist candidate operator functions of the form | |||
8457 | // | |||
8458 | // bool operator<(T, T); | |||
8459 | // bool operator>(T, T); | |||
8460 | // bool operator<=(T, T); | |||
8461 | // bool operator>=(T, T); | |||
8462 | // bool operator==(T, T); | |||
8463 | // bool operator!=(T, T); | |||
8464 | // R operator<=>(T, T) | |||
8465 | void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { | |||
8466 | // C++ [over.match.oper]p3: | |||
8467 | // [...]the built-in candidates include all of the candidate operator | |||
8468 | // functions defined in 13.6 that, compared to the given operator, [...] | |||
8469 | // do not have the same parameter-type-list as any non-template non-member | |||
8470 | // candidate. | |||
8471 | // | |||
8472 | // Note that in practice, this only affects enumeration types because there | |||
8473 | // aren't any built-in candidates of record type, and a user-defined operator | |||
8474 | // must have an operand of record or enumeration type. Also, the only other | |||
8475 | // overloaded operator with enumeration arguments, operator=, | |||
8476 | // cannot be overloaded for enumeration types, so this is the only place | |||
8477 | // where we must suppress candidates like this. | |||
8478 | llvm::DenseSet<std::pair<CanQualType, CanQualType> > | |||
8479 | UserDefinedBinaryOperators; | |||
8480 | ||||
8481 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
8482 | if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { | |||
8483 | for (OverloadCandidateSet::iterator C = CandidateSet.begin(), | |||
8484 | CEnd = CandidateSet.end(); | |||
8485 | C != CEnd; ++C) { | |||
8486 | if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) | |||
8487 | continue; | |||
8488 | ||||
8489 | if (C->Function->isFunctionTemplateSpecialization()) | |||
8490 | continue; | |||
8491 | ||||
8492 | // We interpret "same parameter-type-list" as applying to the | |||
8493 | // "synthesized candidate, with the order of the two parameters | |||
8494 | // reversed", not to the original function. | |||
8495 | bool Reversed = C->isReversed(); | |||
8496 | QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) | |||
8497 | ->getType() | |||
8498 | .getUnqualifiedType(); | |||
8499 | QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) | |||
8500 | ->getType() | |||
8501 | .getUnqualifiedType(); | |||
8502 | ||||
8503 | // Skip if either parameter isn't of enumeral type. | |||
8504 | if (!FirstParamType->isEnumeralType() || | |||
8505 | !SecondParamType->isEnumeralType()) | |||
8506 | continue; | |||
8507 | ||||
8508 | // Add this operator to the set of known user-defined operators. | |||
8509 | UserDefinedBinaryOperators.insert( | |||
8510 | std::make_pair(S.Context.getCanonicalType(FirstParamType), | |||
8511 | S.Context.getCanonicalType(SecondParamType))); | |||
8512 | } | |||
8513 | } | |||
8514 | } | |||
8515 | ||||
8516 | /// Set of (canonical) types that we've already handled. | |||
8517 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
8518 | ||||
8519 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
8520 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { | |||
8521 | // Don't add the same builtin candidate twice. | |||
8522 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | |||
8523 | continue; | |||
8524 | if (IsSpaceship && PtrTy->isFunctionPointerType()) | |||
8525 | continue; | |||
8526 | ||||
8527 | QualType ParamTypes[2] = {PtrTy, PtrTy}; | |||
8528 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8529 | } | |||
8530 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | |||
8531 | CanQualType CanonType = S.Context.getCanonicalType(EnumTy); | |||
8532 | ||||
8533 | // Don't add the same builtin candidate twice, or if a user defined | |||
8534 | // candidate exists. | |||
8535 | if (!AddedTypes.insert(CanonType).second || | |||
8536 | UserDefinedBinaryOperators.count(std::make_pair(CanonType, | |||
8537 | CanonType))) | |||
8538 | continue; | |||
8539 | QualType ParamTypes[2] = {EnumTy, EnumTy}; | |||
8540 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8541 | } | |||
8542 | } | |||
8543 | } | |||
8544 | ||||
8545 | // C++ [over.built]p13: | |||
8546 | // | |||
8547 | // For every cv-qualified or cv-unqualified object type T | |||
8548 | // there exist candidate operator functions of the form | |||
8549 | // | |||
8550 | // T* operator+(T*, ptrdiff_t); | |||
8551 | // T& operator[](T*, ptrdiff_t); [BELOW] | |||
8552 | // T* operator-(T*, ptrdiff_t); | |||
8553 | // T* operator+(ptrdiff_t, T*); | |||
8554 | // T& operator[](ptrdiff_t, T*); [BELOW] | |||
8555 | // | |||
8556 | // C++ [over.built]p14: | |||
8557 | // | |||
8558 | // For every T, where T is a pointer to object type, there | |||
8559 | // exist candidate operator functions of the form | |||
8560 | // | |||
8561 | // ptrdiff_t operator-(T, T); | |||
8562 | void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { | |||
8563 | /// Set of (canonical) types that we've already handled. | |||
8564 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
8565 | ||||
8566 | for (int Arg = 0; Arg < 2; ++Arg) { | |||
8567 | QualType AsymmetricParamTypes[2] = { | |||
8568 | S.Context.getPointerDiffType(), | |||
8569 | S.Context.getPointerDiffType(), | |||
8570 | }; | |||
8571 | for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { | |||
8572 | QualType PointeeTy = PtrTy->getPointeeType(); | |||
8573 | if (!PointeeTy->isObjectType()) | |||
8574 | continue; | |||
8575 | ||||
8576 | AsymmetricParamTypes[Arg] = PtrTy; | |||
8577 | if (Arg == 0 || Op == OO_Plus) { | |||
8578 | // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) | |||
8579 | // T* operator+(ptrdiff_t, T*); | |||
8580 | S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); | |||
8581 | } | |||
8582 | if (Op == OO_Minus) { | |||
8583 | // ptrdiff_t operator-(T, T); | |||
8584 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | |||
8585 | continue; | |||
8586 | ||||
8587 | QualType ParamTypes[2] = {PtrTy, PtrTy}; | |||
8588 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8589 | } | |||
8590 | } | |||
8591 | } | |||
8592 | } | |||
8593 | ||||
8594 | // C++ [over.built]p12: | |||
8595 | // | |||
8596 | // For every pair of promoted arithmetic types L and R, there | |||
8597 | // exist candidate operator functions of the form | |||
8598 | // | |||
8599 | // LR operator*(L, R); | |||
8600 | // LR operator/(L, R); | |||
8601 | // LR operator+(L, R); | |||
8602 | // LR operator-(L, R); | |||
8603 | // bool operator<(L, R); | |||
8604 | // bool operator>(L, R); | |||
8605 | // bool operator<=(L, R); | |||
8606 | // bool operator>=(L, R); | |||
8607 | // bool operator==(L, R); | |||
8608 | // bool operator!=(L, R); | |||
8609 | // | |||
8610 | // where LR is the result of the usual arithmetic conversions | |||
8611 | // between types L and R. | |||
8612 | // | |||
8613 | // C++ [over.built]p24: | |||
8614 | // | |||
8615 | // For every pair of promoted arithmetic types L and R, there exist | |||
8616 | // candidate operator functions of the form | |||
8617 | // | |||
8618 | // LR operator?(bool, L, R); | |||
8619 | // | |||
8620 | // where LR is the result of the usual arithmetic conversions | |||
8621 | // between types L and R. | |||
8622 | // Our candidates ignore the first parameter. | |||
8623 | void addGenericBinaryArithmeticOverloads() { | |||
8624 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8625 | return; | |||
8626 | ||||
8627 | for (unsigned Left = FirstPromotedArithmeticType; | |||
8628 | Left < LastPromotedArithmeticType; ++Left) { | |||
8629 | for (unsigned Right = FirstPromotedArithmeticType; | |||
8630 | Right < LastPromotedArithmeticType; ++Right) { | |||
8631 | QualType LandR[2] = { ArithmeticTypes[Left], | |||
8632 | ArithmeticTypes[Right] }; | |||
8633 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | |||
8634 | } | |||
8635 | } | |||
8636 | ||||
8637 | // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the | |||
8638 | // conditional operator for vector types. | |||
8639 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) | |||
8640 | for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { | |||
8641 | QualType LandR[2] = {Vec1Ty, Vec2Ty}; | |||
8642 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | |||
8643 | } | |||
8644 | } | |||
8645 | ||||
8646 | /// Add binary operator overloads for each candidate matrix type M1, M2: | |||
8647 | /// * (M1, M1) -> M1 | |||
8648 | /// * (M1, M1.getElementType()) -> M1 | |||
8649 | /// * (M2.getElementType(), M2) -> M2 | |||
8650 | /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. | |||
8651 | void addMatrixBinaryArithmeticOverloads() { | |||
8652 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8653 | return; | |||
8654 | ||||
8655 | for (QualType M1 : CandidateTypes[0].matrix_types()) { | |||
8656 | AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); | |||
8657 | AddCandidate(M1, M1); | |||
8658 | } | |||
8659 | ||||
8660 | for (QualType M2 : CandidateTypes[1].matrix_types()) { | |||
8661 | AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); | |||
8662 | if (!CandidateTypes[0].containsMatrixType(M2)) | |||
8663 | AddCandidate(M2, M2); | |||
8664 | } | |||
8665 | } | |||
8666 | ||||
8667 | // C++2a [over.built]p14: | |||
8668 | // | |||
8669 | // For every integral type T there exists a candidate operator function | |||
8670 | // of the form | |||
8671 | // | |||
8672 | // std::strong_ordering operator<=>(T, T) | |||
8673 | // | |||
8674 | // C++2a [over.built]p15: | |||
8675 | // | |||
8676 | // For every pair of floating-point types L and R, there exists a candidate | |||
8677 | // operator function of the form | |||
8678 | // | |||
8679 | // std::partial_ordering operator<=>(L, R); | |||
8680 | // | |||
8681 | // FIXME: The current specification for integral types doesn't play nice with | |||
8682 | // the direction of p0946r0, which allows mixed integral and unscoped-enum | |||
8683 | // comparisons. Under the current spec this can lead to ambiguity during | |||
8684 | // overload resolution. For example: | |||
8685 | // | |||
8686 | // enum A : int {a}; | |||
8687 | // auto x = (a <=> (long)42); | |||
8688 | // | |||
8689 | // error: call is ambiguous for arguments 'A' and 'long'. | |||
8690 | // note: candidate operator<=>(int, int) | |||
8691 | // note: candidate operator<=>(long, long) | |||
8692 | // | |||
8693 | // To avoid this error, this function deviates from the specification and adds | |||
8694 | // the mixed overloads `operator<=>(L, R)` where L and R are promoted | |||
8695 | // arithmetic types (the same as the generic relational overloads). | |||
8696 | // | |||
8697 | // For now this function acts as a placeholder. | |||
8698 | void addThreeWayArithmeticOverloads() { | |||
8699 | addGenericBinaryArithmeticOverloads(); | |||
8700 | } | |||
8701 | ||||
8702 | // C++ [over.built]p17: | |||
8703 | // | |||
8704 | // For every pair of promoted integral types L and R, there | |||
8705 | // exist candidate operator functions of the form | |||
8706 | // | |||
8707 | // LR operator%(L, R); | |||
8708 | // LR operator&(L, R); | |||
8709 | // LR operator^(L, R); | |||
8710 | // LR operator|(L, R); | |||
8711 | // L operator<<(L, R); | |||
8712 | // L operator>>(L, R); | |||
8713 | // | |||
8714 | // where LR is the result of the usual arithmetic conversions | |||
8715 | // between types L and R. | |||
8716 | void addBinaryBitwiseArithmeticOverloads() { | |||
8717 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8718 | return; | |||
8719 | ||||
8720 | for (unsigned Left = FirstPromotedIntegralType; | |||
8721 | Left < LastPromotedIntegralType; ++Left) { | |||
8722 | for (unsigned Right = FirstPromotedIntegralType; | |||
8723 | Right < LastPromotedIntegralType; ++Right) { | |||
8724 | QualType LandR[2] = { ArithmeticTypes[Left], | |||
8725 | ArithmeticTypes[Right] }; | |||
8726 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); | |||
8727 | } | |||
8728 | } | |||
8729 | } | |||
8730 | ||||
8731 | // C++ [over.built]p20: | |||
8732 | // | |||
8733 | // For every pair (T, VQ), where T is an enumeration or | |||
8734 | // pointer to member type and VQ is either volatile or | |||
8735 | // empty, there exist candidate operator functions of the form | |||
8736 | // | |||
8737 | // VQ T& operator=(VQ T&, T); | |||
8738 | void addAssignmentMemberPointerOrEnumeralOverloads() { | |||
8739 | /// Set of (canonical) types that we've already handled. | |||
8740 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
8741 | ||||
8742 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | |||
8743 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | |||
8744 | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) | |||
8745 | continue; | |||
8746 | ||||
8747 | AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); | |||
8748 | } | |||
8749 | ||||
8750 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | |||
8751 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | |||
8752 | continue; | |||
8753 | ||||
8754 | AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); | |||
8755 | } | |||
8756 | } | |||
8757 | } | |||
8758 | ||||
8759 | // C++ [over.built]p19: | |||
8760 | // | |||
8761 | // For every pair (T, VQ), where T is any type and VQ is either | |||
8762 | // volatile or empty, there exist candidate operator functions | |||
8763 | // of the form | |||
8764 | // | |||
8765 | // T*VQ& operator=(T*VQ&, T*); | |||
8766 | // | |||
8767 | // C++ [over.built]p21: | |||
8768 | // | |||
8769 | // For every pair (T, VQ), where T is a cv-qualified or | |||
8770 | // cv-unqualified object type and VQ is either volatile or | |||
8771 | // empty, there exist candidate operator functions of the form | |||
8772 | // | |||
8773 | // T*VQ& operator+=(T*VQ&, ptrdiff_t); | |||
8774 | // T*VQ& operator-=(T*VQ&, ptrdiff_t); | |||
8775 | void addAssignmentPointerOverloads(bool isEqualOp) { | |||
8776 | /// Set of (canonical) types that we've already handled. | |||
8777 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
8778 | ||||
8779 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | |||
8780 | // If this is operator=, keep track of the builtin candidates we added. | |||
8781 | if (isEqualOp) | |||
8782 | AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); | |||
8783 | else if (!PtrTy->getPointeeType()->isObjectType()) | |||
8784 | continue; | |||
8785 | ||||
8786 | // non-volatile version | |||
8787 | QualType ParamTypes[2] = { | |||
8788 | S.Context.getLValueReferenceType(PtrTy), | |||
8789 | isEqualOp ? PtrTy : S.Context.getPointerDiffType(), | |||
8790 | }; | |||
8791 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8792 | /*IsAssignmentOperator=*/ isEqualOp); | |||
8793 | ||||
8794 | bool NeedVolatile = !PtrTy.isVolatileQualified() && | |||
8795 | VisibleTypeConversionsQuals.hasVolatile(); | |||
8796 | if (NeedVolatile) { | |||
8797 | // volatile version | |||
8798 | ParamTypes[0] = | |||
8799 | S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); | |||
8800 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8801 | /*IsAssignmentOperator=*/isEqualOp); | |||
8802 | } | |||
8803 | ||||
8804 | if (!PtrTy.isRestrictQualified() && | |||
8805 | VisibleTypeConversionsQuals.hasRestrict()) { | |||
8806 | // restrict version | |||
8807 | ParamTypes[0] = | |||
8808 | S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); | |||
8809 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8810 | /*IsAssignmentOperator=*/isEqualOp); | |||
8811 | ||||
8812 | if (NeedVolatile) { | |||
8813 | // volatile restrict version | |||
8814 | ParamTypes[0] = | |||
8815 | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( | |||
8816 | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); | |||
8817 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8818 | /*IsAssignmentOperator=*/isEqualOp); | |||
8819 | } | |||
8820 | } | |||
8821 | } | |||
8822 | ||||
8823 | if (isEqualOp) { | |||
8824 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { | |||
8825 | // Make sure we don't add the same candidate twice. | |||
8826 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | |||
8827 | continue; | |||
8828 | ||||
8829 | QualType ParamTypes[2] = { | |||
8830 | S.Context.getLValueReferenceType(PtrTy), | |||
8831 | PtrTy, | |||
8832 | }; | |||
8833 | ||||
8834 | // non-volatile version | |||
8835 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8836 | /*IsAssignmentOperator=*/true); | |||
8837 | ||||
8838 | bool NeedVolatile = !PtrTy.isVolatileQualified() && | |||
8839 | VisibleTypeConversionsQuals.hasVolatile(); | |||
8840 | if (NeedVolatile) { | |||
8841 | // volatile version | |||
8842 | ParamTypes[0] = S.Context.getLValueReferenceType( | |||
8843 | S.Context.getVolatileType(PtrTy)); | |||
8844 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8845 | /*IsAssignmentOperator=*/true); | |||
8846 | } | |||
8847 | ||||
8848 | if (!PtrTy.isRestrictQualified() && | |||
8849 | VisibleTypeConversionsQuals.hasRestrict()) { | |||
8850 | // restrict version | |||
8851 | ParamTypes[0] = S.Context.getLValueReferenceType( | |||
8852 | S.Context.getRestrictType(PtrTy)); | |||
8853 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8854 | /*IsAssignmentOperator=*/true); | |||
8855 | ||||
8856 | if (NeedVolatile) { | |||
8857 | // volatile restrict version | |||
8858 | ParamTypes[0] = | |||
8859 | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( | |||
8860 | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); | |||
8861 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8862 | /*IsAssignmentOperator=*/true); | |||
8863 | } | |||
8864 | } | |||
8865 | } | |||
8866 | } | |||
8867 | } | |||
8868 | ||||
8869 | // C++ [over.built]p18: | |||
8870 | // | |||
8871 | // For every triple (L, VQ, R), where L is an arithmetic type, | |||
8872 | // VQ is either volatile or empty, and R is a promoted | |||
8873 | // arithmetic type, there exist candidate operator functions of | |||
8874 | // the form | |||
8875 | // | |||
8876 | // VQ L& operator=(VQ L&, R); | |||
8877 | // VQ L& operator*=(VQ L&, R); | |||
8878 | // VQ L& operator/=(VQ L&, R); | |||
8879 | // VQ L& operator+=(VQ L&, R); | |||
8880 | // VQ L& operator-=(VQ L&, R); | |||
8881 | void addAssignmentArithmeticOverloads(bool isEqualOp) { | |||
8882 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8883 | return; | |||
8884 | ||||
8885 | for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { | |||
8886 | for (unsigned Right = FirstPromotedArithmeticType; | |||
8887 | Right < LastPromotedArithmeticType; ++Right) { | |||
8888 | QualType ParamTypes[2]; | |||
8889 | ParamTypes[1] = ArithmeticTypes[Right]; | |||
8890 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( | |||
8891 | S, ArithmeticTypes[Left], Args[0]); | |||
8892 | // Add this built-in operator as a candidate (VQ is empty). | |||
8893 | ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); | |||
8894 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8895 | /*IsAssignmentOperator=*/isEqualOp); | |||
8896 | ||||
8897 | // Add this built-in operator as a candidate (VQ is 'volatile'). | |||
8898 | if (VisibleTypeConversionsQuals.hasVolatile()) { | |||
8899 | ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); | |||
8900 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | |||
8901 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8902 | /*IsAssignmentOperator=*/isEqualOp); | |||
8903 | } | |||
8904 | } | |||
8905 | } | |||
8906 | ||||
8907 | // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. | |||
8908 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) | |||
8909 | for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { | |||
8910 | QualType ParamTypes[2]; | |||
8911 | ParamTypes[1] = Vec2Ty; | |||
8912 | // Add this built-in operator as a candidate (VQ is empty). | |||
8913 | ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); | |||
8914 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8915 | /*IsAssignmentOperator=*/isEqualOp); | |||
8916 | ||||
8917 | // Add this built-in operator as a candidate (VQ is 'volatile'). | |||
8918 | if (VisibleTypeConversionsQuals.hasVolatile()) { | |||
8919 | ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); | |||
8920 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | |||
8921 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8922 | /*IsAssignmentOperator=*/isEqualOp); | |||
8923 | } | |||
8924 | } | |||
8925 | } | |||
8926 | ||||
8927 | // C++ [over.built]p22: | |||
8928 | // | |||
8929 | // For every triple (L, VQ, R), where L is an integral type, VQ | |||
8930 | // is either volatile or empty, and R is a promoted integral | |||
8931 | // type, there exist candidate operator functions of the form | |||
8932 | // | |||
8933 | // VQ L& operator%=(VQ L&, R); | |||
8934 | // VQ L& operator<<=(VQ L&, R); | |||
8935 | // VQ L& operator>>=(VQ L&, R); | |||
8936 | // VQ L& operator&=(VQ L&, R); | |||
8937 | // VQ L& operator^=(VQ L&, R); | |||
8938 | // VQ L& operator|=(VQ L&, R); | |||
8939 | void addAssignmentIntegralOverloads() { | |||
8940 | if (!HasArithmeticOrEnumeralCandidateType) | |||
8941 | return; | |||
8942 | ||||
8943 | for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { | |||
8944 | for (unsigned Right = FirstPromotedIntegralType; | |||
8945 | Right < LastPromotedIntegralType; ++Right) { | |||
8946 | QualType ParamTypes[2]; | |||
8947 | ParamTypes[1] = ArithmeticTypes[Right]; | |||
8948 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( | |||
8949 | S, ArithmeticTypes[Left], Args[0]); | |||
8950 | // Add this built-in operator as a candidate (VQ is empty). | |||
8951 | ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); | |||
8952 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8953 | if (VisibleTypeConversionsQuals.hasVolatile()) { | |||
8954 | // Add this built-in operator as a candidate (VQ is 'volatile'). | |||
8955 | ParamTypes[0] = LeftBaseTy; | |||
8956 | ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); | |||
8957 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); | |||
8958 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
8959 | } | |||
8960 | } | |||
8961 | } | |||
8962 | } | |||
8963 | ||||
8964 | // C++ [over.operator]p23: | |||
8965 | // | |||
8966 | // There also exist candidate operator functions of the form | |||
8967 | // | |||
8968 | // bool operator!(bool); | |||
8969 | // bool operator&&(bool, bool); | |||
8970 | // bool operator||(bool, bool); | |||
8971 | void addExclaimOverload() { | |||
8972 | QualType ParamTy = S.Context.BoolTy; | |||
8973 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, | |||
8974 | /*IsAssignmentOperator=*/false, | |||
8975 | /*NumContextualBoolArguments=*/1); | |||
8976 | } | |||
8977 | void addAmpAmpOrPipePipeOverload() { | |||
8978 | QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; | |||
8979 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, | |||
8980 | /*IsAssignmentOperator=*/false, | |||
8981 | /*NumContextualBoolArguments=*/2); | |||
8982 | } | |||
8983 | ||||
8984 | // C++ [over.built]p13: | |||
8985 | // | |||
8986 | // For every cv-qualified or cv-unqualified object type T there | |||
8987 | // exist candidate operator functions of the form | |||
8988 | // | |||
8989 | // T* operator+(T*, ptrdiff_t); [ABOVE] | |||
8990 | // T& operator[](T*, ptrdiff_t); | |||
8991 | // T* operator-(T*, ptrdiff_t); [ABOVE] | |||
8992 | // T* operator+(ptrdiff_t, T*); [ABOVE] | |||
8993 | // T& operator[](ptrdiff_t, T*); | |||
8994 | void addSubscriptOverloads() { | |||
8995 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | |||
8996 | QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; | |||
8997 | QualType PointeeType = PtrTy->getPointeeType(); | |||
8998 | if (!PointeeType->isObjectType()) | |||
8999 | continue; | |||
9000 | ||||
9001 | // T& operator[](T*, ptrdiff_t) | |||
9002 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9003 | } | |||
9004 | ||||
9005 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { | |||
9006 | QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; | |||
9007 | QualType PointeeType = PtrTy->getPointeeType(); | |||
9008 | if (!PointeeType->isObjectType()) | |||
9009 | continue; | |||
9010 | ||||
9011 | // T& operator[](ptrdiff_t, T*) | |||
9012 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9013 | } | |||
9014 | } | |||
9015 | ||||
9016 | // C++ [over.built]p11: | |||
9017 | // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, | |||
9018 | // C1 is the same type as C2 or is a derived class of C2, T is an object | |||
9019 | // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, | |||
9020 | // there exist candidate operator functions of the form | |||
9021 | // | |||
9022 | // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); | |||
9023 | // | |||
9024 | // where CV12 is the union of CV1 and CV2. | |||
9025 | void addArrowStarOverloads() { | |||
9026 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { | |||
9027 | QualType C1Ty = PtrTy; | |||
9028 | QualType C1; | |||
9029 | QualifierCollector Q1; | |||
9030 | C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); | |||
9031 | if (!isa<RecordType>(C1)) | |||
9032 | continue; | |||
9033 | // heuristic to reduce number of builtin candidates in the set. | |||
9034 | // Add volatile/restrict version only if there are conversions to a | |||
9035 | // volatile/restrict type. | |||
9036 | if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) | |||
9037 | continue; | |||
9038 | if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) | |||
9039 | continue; | |||
9040 | for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { | |||
9041 | const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); | |||
9042 | QualType C2 = QualType(mptr->getClass(), 0); | |||
9043 | C2 = C2.getUnqualifiedType(); | |||
9044 | if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) | |||
9045 | break; | |||
9046 | QualType ParamTypes[2] = {PtrTy, MemPtrTy}; | |||
9047 | // build CV12 T& | |||
9048 | QualType T = mptr->getPointeeType(); | |||
9049 | if (!VisibleTypeConversionsQuals.hasVolatile() && | |||
9050 | T.isVolatileQualified()) | |||
9051 | continue; | |||
9052 | if (!VisibleTypeConversionsQuals.hasRestrict() && | |||
9053 | T.isRestrictQualified()) | |||
9054 | continue; | |||
9055 | T = Q1.apply(S.Context, T); | |||
9056 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9057 | } | |||
9058 | } | |||
9059 | } | |||
9060 | ||||
9061 | // Note that we don't consider the first argument, since it has been | |||
9062 | // contextually converted to bool long ago. The candidates below are | |||
9063 | // therefore added as binary. | |||
9064 | // | |||
9065 | // C++ [over.built]p25: | |||
9066 | // For every type T, where T is a pointer, pointer-to-member, or scoped | |||
9067 | // enumeration type, there exist candidate operator functions of the form | |||
9068 | // | |||
9069 | // T operator?(bool, T, T); | |||
9070 | // | |||
9071 | void addConditionalOperatorOverloads() { | |||
9072 | /// Set of (canonical) types that we've already handled. | |||
9073 | llvm::SmallPtrSet<QualType, 8> AddedTypes; | |||
9074 | ||||
9075 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | |||
9076 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { | |||
9077 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) | |||
9078 | continue; | |||
9079 | ||||
9080 | QualType ParamTypes[2] = {PtrTy, PtrTy}; | |||
9081 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9082 | } | |||
9083 | ||||
9084 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { | |||
9085 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) | |||
9086 | continue; | |||
9087 | ||||
9088 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; | |||
9089 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9090 | } | |||
9091 | ||||
9092 | if (S.getLangOpts().CPlusPlus11) { | |||
9093 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { | |||
9094 | if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) | |||
9095 | continue; | |||
9096 | ||||
9097 | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) | |||
9098 | continue; | |||
9099 | ||||
9100 | QualType ParamTypes[2] = {EnumTy, EnumTy}; | |||
9101 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); | |||
9102 | } | |||
9103 | } | |||
9104 | } | |||
9105 | } | |||
9106 | }; | |||
9107 | ||||
9108 | } // end anonymous namespace | |||
9109 | ||||
9110 | /// AddBuiltinOperatorCandidates - Add the appropriate built-in | |||
9111 | /// operator overloads to the candidate set (C++ [over.built]), based | |||
9112 | /// on the operator @p Op and the arguments given. For example, if the | |||
9113 | /// operator is a binary '+', this routine might add "int | |||
9114 | /// operator+(int, int)" to cover integer addition. | |||
9115 | void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, | |||
9116 | SourceLocation OpLoc, | |||
9117 | ArrayRef<Expr *> Args, | |||
9118 | OverloadCandidateSet &CandidateSet) { | |||
9119 | // Find all of the types that the arguments can convert to, but only | |||
9120 | // if the operator we're looking at has built-in operator candidates | |||
9121 | // that make use of these types. Also record whether we encounter non-record | |||
9122 | // candidate types or either arithmetic or enumeral candidate types. | |||
9123 | Qualifiers VisibleTypeConversionsQuals; | |||
9124 | VisibleTypeConversionsQuals.addConst(); | |||
9125 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) | |||
9126 | VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); | |||
9127 | ||||
9128 | bool HasNonRecordCandidateType = false; | |||
9129 | bool HasArithmeticOrEnumeralCandidateType = false; | |||
9130 | SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; | |||
9131 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
9132 | CandidateTypes.emplace_back(*this); | |||
9133 | CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), | |||
9134 | OpLoc, | |||
9135 | true, | |||
9136 | (Op == OO_Exclaim || | |||
9137 | Op == OO_AmpAmp || | |||
9138 | Op == OO_PipePipe), | |||
9139 | VisibleTypeConversionsQuals); | |||
9140 | HasNonRecordCandidateType = HasNonRecordCandidateType || | |||
9141 | CandidateTypes[ArgIdx].hasNonRecordTypes(); | |||
9142 | HasArithmeticOrEnumeralCandidateType = | |||
9143 | HasArithmeticOrEnumeralCandidateType || | |||
9144 | CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); | |||
9145 | } | |||
9146 | ||||
9147 | // Exit early when no non-record types have been added to the candidate set | |||
9148 | // for any of the arguments to the operator. | |||
9149 | // | |||
9150 | // We can't exit early for !, ||, or &&, since there we have always have | |||
9151 | // 'bool' overloads. | |||
9152 | if (!HasNonRecordCandidateType && | |||
9153 | !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) | |||
9154 | return; | |||
9155 | ||||
9156 | // Setup an object to manage the common state for building overloads. | |||
9157 | BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, | |||
9158 | VisibleTypeConversionsQuals, | |||
9159 | HasArithmeticOrEnumeralCandidateType, | |||
9160 | CandidateTypes, CandidateSet); | |||
9161 | ||||
9162 | // Dispatch over the operation to add in only those overloads which apply. | |||
9163 | switch (Op) { | |||
9164 | case OO_None: | |||
9165 | case NUM_OVERLOADED_OPERATORS: | |||
9166 | llvm_unreachable("Expected an overloaded operator")__builtin_unreachable(); | |||
9167 | ||||
9168 | case OO_New: | |||
9169 | case OO_Delete: | |||
9170 | case OO_Array_New: | |||
9171 | case OO_Array_Delete: | |||
9172 | case OO_Call: | |||
9173 | llvm_unreachable(__builtin_unreachable() | |||
9174 | "Special operators don't use AddBuiltinOperatorCandidates")__builtin_unreachable(); | |||
9175 | ||||
9176 | case OO_Comma: | |||
9177 | case OO_Arrow: | |||
9178 | case OO_Coawait: | |||
9179 | // C++ [over.match.oper]p3: | |||
9180 | // -- For the operator ',', the unary operator '&', the | |||
9181 | // operator '->', or the operator 'co_await', the | |||
9182 | // built-in candidates set is empty. | |||
9183 | break; | |||
9184 | ||||
9185 | case OO_Plus: // '+' is either unary or binary | |||
9186 | if (Args.size() == 1) | |||
9187 | OpBuilder.addUnaryPlusPointerOverloads(); | |||
9188 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
9189 | ||||
9190 | case OO_Minus: // '-' is either unary or binary | |||
9191 | if (Args.size() == 1) { | |||
9192 | OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); | |||
9193 | } else { | |||
9194 | OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); | |||
9195 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9196 | OpBuilder.addMatrixBinaryArithmeticOverloads(); | |||
9197 | } | |||
9198 | break; | |||
9199 | ||||
9200 | case OO_Star: // '*' is either unary or binary | |||
9201 | if (Args.size() == 1) | |||
9202 | OpBuilder.addUnaryStarPointerOverloads(); | |||
9203 | else { | |||
9204 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9205 | OpBuilder.addMatrixBinaryArithmeticOverloads(); | |||
9206 | } | |||
9207 | break; | |||
9208 | ||||
9209 | case OO_Slash: | |||
9210 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9211 | break; | |||
9212 | ||||
9213 | case OO_PlusPlus: | |||
9214 | case OO_MinusMinus: | |||
9215 | OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); | |||
9216 | OpBuilder.addPlusPlusMinusMinusPointerOverloads(); | |||
9217 | break; | |||
9218 | ||||
9219 | case OO_EqualEqual: | |||
9220 | case OO_ExclaimEqual: | |||
9221 | OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); | |||
9222 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); | |||
9223 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9224 | break; | |||
9225 | ||||
9226 | case OO_Less: | |||
9227 | case OO_Greater: | |||
9228 | case OO_LessEqual: | |||
9229 | case OO_GreaterEqual: | |||
9230 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); | |||
9231 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9232 | break; | |||
9233 | ||||
9234 | case OO_Spaceship: | |||
9235 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); | |||
9236 | OpBuilder.addThreeWayArithmeticOverloads(); | |||
9237 | break; | |||
9238 | ||||
9239 | case OO_Percent: | |||
9240 | case OO_Caret: | |||
9241 | case OO_Pipe: | |||
9242 | case OO_LessLess: | |||
9243 | case OO_GreaterGreater: | |||
9244 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); | |||
9245 | break; | |||
9246 | ||||
9247 | case OO_Amp: // '&' is either unary or binary | |||
9248 | if (Args.size() == 1) | |||
9249 | // C++ [over.match.oper]p3: | |||
9250 | // -- For the operator ',', the unary operator '&', or the | |||
9251 | // operator '->', the built-in candidates set is empty. | |||
9252 | break; | |||
9253 | ||||
9254 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); | |||
9255 | break; | |||
9256 | ||||
9257 | case OO_Tilde: | |||
9258 | OpBuilder.addUnaryTildePromotedIntegralOverloads(); | |||
9259 | break; | |||
9260 | ||||
9261 | case OO_Equal: | |||
9262 | OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); | |||
9263 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
9264 | ||||
9265 | case OO_PlusEqual: | |||
9266 | case OO_MinusEqual: | |||
9267 | OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); | |||
9268 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
9269 | ||||
9270 | case OO_StarEqual: | |||
9271 | case OO_SlashEqual: | |||
9272 | OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); | |||
9273 | break; | |||
9274 | ||||
9275 | case OO_PercentEqual: | |||
9276 | case OO_LessLessEqual: | |||
9277 | case OO_GreaterGreaterEqual: | |||
9278 | case OO_AmpEqual: | |||
9279 | case OO_CaretEqual: | |||
9280 | case OO_PipeEqual: | |||
9281 | OpBuilder.addAssignmentIntegralOverloads(); | |||
9282 | break; | |||
9283 | ||||
9284 | case OO_Exclaim: | |||
9285 | OpBuilder.addExclaimOverload(); | |||
9286 | break; | |||
9287 | ||||
9288 | case OO_AmpAmp: | |||
9289 | case OO_PipePipe: | |||
9290 | OpBuilder.addAmpAmpOrPipePipeOverload(); | |||
9291 | break; | |||
9292 | ||||
9293 | case OO_Subscript: | |||
9294 | OpBuilder.addSubscriptOverloads(); | |||
9295 | break; | |||
9296 | ||||
9297 | case OO_ArrowStar: | |||
9298 | OpBuilder.addArrowStarOverloads(); | |||
9299 | break; | |||
9300 | ||||
9301 | case OO_Conditional: | |||
9302 | OpBuilder.addConditionalOperatorOverloads(); | |||
9303 | OpBuilder.addGenericBinaryArithmeticOverloads(); | |||
9304 | break; | |||
9305 | } | |||
9306 | } | |||
9307 | ||||
9308 | /// Add function candidates found via argument-dependent lookup | |||
9309 | /// to the set of overloading candidates. | |||
9310 | /// | |||
9311 | /// This routine performs argument-dependent name lookup based on the | |||
9312 | /// given function name (which may also be an operator name) and adds | |||
9313 | /// all of the overload candidates found by ADL to the overload | |||
9314 | /// candidate set (C++ [basic.lookup.argdep]). | |||
9315 | void | |||
9316 | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, | |||
9317 | SourceLocation Loc, | |||
9318 | ArrayRef<Expr *> Args, | |||
9319 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
9320 | OverloadCandidateSet& CandidateSet, | |||
9321 | bool PartialOverloading) { | |||
9322 | ADLResult Fns; | |||
9323 | ||||
9324 | // FIXME: This approach for uniquing ADL results (and removing | |||
9325 | // redundant candidates from the set) relies on pointer-equality, | |||
9326 | // which means we need to key off the canonical decl. However, | |||
9327 | // always going back to the canonical decl might not get us the | |||
9328 | // right set of default arguments. What default arguments are | |||
9329 | // we supposed to consider on ADL candidates, anyway? | |||
9330 | ||||
9331 | // FIXME: Pass in the explicit template arguments? | |||
9332 | ArgumentDependentLookup(Name, Loc, Args, Fns); | |||
9333 | ||||
9334 | // Erase all of the candidates we already knew about. | |||
9335 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), | |||
9336 | CandEnd = CandidateSet.end(); | |||
9337 | Cand != CandEnd; ++Cand) | |||
9338 | if (Cand->Function) { | |||
9339 | Fns.erase(Cand->Function); | |||
9340 | if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) | |||
9341 | Fns.erase(FunTmpl); | |||
9342 | } | |||
9343 | ||||
9344 | // For each of the ADL candidates we found, add it to the overload | |||
9345 | // set. | |||
9346 | for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { | |||
9347 | DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); | |||
9348 | ||||
9349 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | |||
9350 | if (ExplicitTemplateArgs) | |||
9351 | continue; | |||
9352 | ||||
9353 | AddOverloadCandidate( | |||
9354 | FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, | |||
9355 | PartialOverloading, /*AllowExplicit=*/true, | |||
9356 | /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); | |||
9357 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { | |||
9358 | AddOverloadCandidate( | |||
9359 | FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, | |||
9360 | /*SuppressUserConversions=*/false, PartialOverloading, | |||
9361 | /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, | |||
9362 | ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); | |||
9363 | } | |||
9364 | } else { | |||
9365 | auto *FTD = cast<FunctionTemplateDecl>(*I); | |||
9366 | AddTemplateOverloadCandidate( | |||
9367 | FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, | |||
9368 | /*SuppressUserConversions=*/false, PartialOverloading, | |||
9369 | /*AllowExplicit=*/true, ADLCallKind::UsesADL); | |||
9370 | if (CandidateSet.getRewriteInfo().shouldAddReversed( | |||
9371 | Context, FTD->getTemplatedDecl())) { | |||
9372 | AddTemplateOverloadCandidate( | |||
9373 | FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, | |||
9374 | CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, | |||
9375 | /*AllowExplicit=*/true, ADLCallKind::UsesADL, | |||
9376 | OverloadCandidateParamOrder::Reversed); | |||
9377 | } | |||
9378 | } | |||
9379 | } | |||
9380 | } | |||
9381 | ||||
9382 | namespace { | |||
9383 | enum class Comparison { Equal, Better, Worse }; | |||
9384 | } | |||
9385 | ||||
9386 | /// Compares the enable_if attributes of two FunctionDecls, for the purposes of | |||
9387 | /// overload resolution. | |||
9388 | /// | |||
9389 | /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff | |||
9390 | /// Cand1's first N enable_if attributes have precisely the same conditions as | |||
9391 | /// Cand2's first N enable_if attributes (where N = the number of enable_if | |||
9392 | /// attributes on Cand2), and Cand1 has more than N enable_if attributes. | |||
9393 | /// | |||
9394 | /// Note that you can have a pair of candidates such that Cand1's enable_if | |||
9395 | /// attributes are worse than Cand2's, and Cand2's enable_if attributes are | |||
9396 | /// worse than Cand1's. | |||
9397 | static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, | |||
9398 | const FunctionDecl *Cand2) { | |||
9399 | // Common case: One (or both) decls don't have enable_if attrs. | |||
9400 | bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); | |||
9401 | bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); | |||
9402 | if (!Cand1Attr || !Cand2Attr) { | |||
9403 | if (Cand1Attr == Cand2Attr) | |||
9404 | return Comparison::Equal; | |||
9405 | return Cand1Attr ? Comparison::Better : Comparison::Worse; | |||
9406 | } | |||
9407 | ||||
9408 | auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); | |||
9409 | auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); | |||
9410 | ||||
9411 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; | |||
9412 | for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { | |||
9413 | Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); | |||
9414 | Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); | |||
9415 | ||||
9416 | // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 | |||
9417 | // has fewer enable_if attributes than Cand2, and vice versa. | |||
9418 | if (!Cand1A) | |||
9419 | return Comparison::Worse; | |||
9420 | if (!Cand2A) | |||
9421 | return Comparison::Better; | |||
9422 | ||||
9423 | Cand1ID.clear(); | |||
9424 | Cand2ID.clear(); | |||
9425 | ||||
9426 | (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); | |||
9427 | (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); | |||
9428 | if (Cand1ID != Cand2ID) | |||
9429 | return Comparison::Worse; | |||
9430 | } | |||
9431 | ||||
9432 | return Comparison::Equal; | |||
9433 | } | |||
9434 | ||||
9435 | static Comparison | |||
9436 | isBetterMultiversionCandidate(const OverloadCandidate &Cand1, | |||
9437 | const OverloadCandidate &Cand2) { | |||
9438 | if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || | |||
9439 | !Cand2.Function->isMultiVersion()) | |||
9440 | return Comparison::Equal; | |||
9441 | ||||
9442 | // If both are invalid, they are equal. If one of them is invalid, the other | |||
9443 | // is better. | |||
9444 | if (Cand1.Function->isInvalidDecl()) { | |||
9445 | if (Cand2.Function->isInvalidDecl()) | |||
9446 | return Comparison::Equal; | |||
9447 | return Comparison::Worse; | |||
9448 | } | |||
9449 | if (Cand2.Function->isInvalidDecl()) | |||
9450 | return Comparison::Better; | |||
9451 | ||||
9452 | // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer | |||
9453 | // cpu_dispatch, else arbitrarily based on the identifiers. | |||
9454 | bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); | |||
9455 | bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); | |||
9456 | const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); | |||
9457 | const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); | |||
9458 | ||||
9459 | if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) | |||
9460 | return Comparison::Equal; | |||
9461 | ||||
9462 | if (Cand1CPUDisp && !Cand2CPUDisp) | |||
9463 | return Comparison::Better; | |||
9464 | if (Cand2CPUDisp && !Cand1CPUDisp) | |||
9465 | return Comparison::Worse; | |||
9466 | ||||
9467 | if (Cand1CPUSpec && Cand2CPUSpec) { | |||
9468 | if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) | |||
9469 | return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() | |||
9470 | ? Comparison::Better | |||
9471 | : Comparison::Worse; | |||
9472 | ||||
9473 | std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> | |||
9474 | FirstDiff = std::mismatch( | |||
9475 | Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), | |||
9476 | Cand2CPUSpec->cpus_begin(), | |||
9477 | [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { | |||
9478 | return LHS->getName() == RHS->getName(); | |||
9479 | }); | |||
9480 | ||||
9481 | assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((void)0) | |||
9482 | "Two different cpu-specific versions should not have the same "((void)0) | |||
9483 | "identifier list, otherwise they'd be the same decl!")((void)0); | |||
9484 | return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() | |||
9485 | ? Comparison::Better | |||
9486 | : Comparison::Worse; | |||
9487 | } | |||
9488 | llvm_unreachable("No way to get here unless both had cpu_dispatch")__builtin_unreachable(); | |||
9489 | } | |||
9490 | ||||
9491 | /// Compute the type of the implicit object parameter for the given function, | |||
9492 | /// if any. Returns None if there is no implicit object parameter, and a null | |||
9493 | /// QualType if there is a 'matches anything' implicit object parameter. | |||
9494 | static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, | |||
9495 | const FunctionDecl *F) { | |||
9496 | if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) | |||
9497 | return llvm::None; | |||
9498 | ||||
9499 | auto *M = cast<CXXMethodDecl>(F); | |||
9500 | // Static member functions' object parameters match all types. | |||
9501 | if (M->isStatic()) | |||
9502 | return QualType(); | |||
9503 | ||||
9504 | QualType T = M->getThisObjectType(); | |||
9505 | if (M->getRefQualifier() == RQ_RValue) | |||
9506 | return Context.getRValueReferenceType(T); | |||
9507 | return Context.getLValueReferenceType(T); | |||
9508 | } | |||
9509 | ||||
9510 | static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, | |||
9511 | const FunctionDecl *F2, unsigned NumParams) { | |||
9512 | if (declaresSameEntity(F1, F2)) | |||
9513 | return true; | |||
9514 | ||||
9515 | auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { | |||
9516 | if (First) { | |||
9517 | if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) | |||
9518 | return *T; | |||
9519 | } | |||
9520 | assert(I < F->getNumParams())((void)0); | |||
9521 | return F->getParamDecl(I++)->getType(); | |||
9522 | }; | |||
9523 | ||||
9524 | unsigned I1 = 0, I2 = 0; | |||
9525 | for (unsigned I = 0; I != NumParams; ++I) { | |||
9526 | QualType T1 = NextParam(F1, I1, I == 0); | |||
9527 | QualType T2 = NextParam(F2, I2, I == 0); | |||
9528 | if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2)) | |||
9529 | return false; | |||
9530 | } | |||
9531 | return true; | |||
9532 | } | |||
9533 | ||||
9534 | /// isBetterOverloadCandidate - Determines whether the first overload | |||
9535 | /// candidate is a better candidate than the second (C++ 13.3.3p1). | |||
9536 | bool clang::isBetterOverloadCandidate( | |||
9537 | Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, | |||
9538 | SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { | |||
9539 | // Define viable functions to be better candidates than non-viable | |||
9540 | // functions. | |||
9541 | if (!Cand2.Viable) | |||
9542 | return Cand1.Viable; | |||
9543 | else if (!Cand1.Viable) | |||
9544 | return false; | |||
9545 | ||||
9546 | // [CUDA] A function with 'never' preference is marked not viable, therefore | |||
9547 | // is never shown up here. The worst preference shown up here is 'wrong side', | |||
9548 | // e.g. an H function called by a HD function in device compilation. This is | |||
9549 | // valid AST as long as the HD function is not emitted, e.g. it is an inline | |||
9550 | // function which is called only by an H function. A deferred diagnostic will | |||
9551 | // be triggered if it is emitted. However a wrong-sided function is still | |||
9552 | // a viable candidate here. | |||
9553 | // | |||
9554 | // If Cand1 can be emitted and Cand2 cannot be emitted in the current | |||
9555 | // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 | |||
9556 | // can be emitted, Cand1 is not better than Cand2. This rule should have | |||
9557 | // precedence over other rules. | |||
9558 | // | |||
9559 | // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then | |||
9560 | // other rules should be used to determine which is better. This is because | |||
9561 | // host/device based overloading resolution is mostly for determining | |||
9562 | // viability of a function. If two functions are both viable, other factors | |||
9563 | // should take precedence in preference, e.g. the standard-defined preferences | |||
9564 | // like argument conversion ranks or enable_if partial-ordering. The | |||
9565 | // preference for pass-object-size parameters is probably most similar to a | |||
9566 | // type-based-overloading decision and so should take priority. | |||
9567 | // | |||
9568 | // If other rules cannot determine which is better, CUDA preference will be | |||
9569 | // used again to determine which is better. | |||
9570 | // | |||
9571 | // TODO: Currently IdentifyCUDAPreference does not return correct values | |||
9572 | // for functions called in global variable initializers due to missing | |||
9573 | // correct context about device/host. Therefore we can only enforce this | |||
9574 | // rule when there is a caller. We should enforce this rule for functions | |||
9575 | // in global variable initializers once proper context is added. | |||
9576 | // | |||
9577 | // TODO: We can only enable the hostness based overloading resolution when | |||
9578 | // -fgpu-exclude-wrong-side-overloads is on since this requires deferring | |||
9579 | // overloading resolution diagnostics. | |||
9580 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && | |||
9581 | S.getLangOpts().GPUExcludeWrongSideOverloads) { | |||
9582 | if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { | |||
9583 | bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); | |||
9584 | bool IsCand1ImplicitHD = | |||
9585 | Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); | |||
9586 | bool IsCand2ImplicitHD = | |||
9587 | Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); | |||
9588 | auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); | |||
9589 | auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); | |||
9590 | assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never)((void)0); | |||
9591 | // The implicit HD function may be a function in a system header which | |||
9592 | // is forced by pragma. In device compilation, if we prefer HD candidates | |||
9593 | // over wrong-sided candidates, overloading resolution may change, which | |||
9594 | // may result in non-deferrable diagnostics. As a workaround, we let | |||
9595 | // implicit HD candidates take equal preference as wrong-sided candidates. | |||
9596 | // This will preserve the overloading resolution. | |||
9597 | // TODO: We still need special handling of implicit HD functions since | |||
9598 | // they may incur other diagnostics to be deferred. We should make all | |||
9599 | // host/device related diagnostics deferrable and remove special handling | |||
9600 | // of implicit HD functions. | |||
9601 | auto EmitThreshold = | |||
9602 | (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && | |||
9603 | (IsCand1ImplicitHD || IsCand2ImplicitHD)) | |||
9604 | ? Sema::CFP_Never | |||
9605 | : Sema::CFP_WrongSide; | |||
9606 | auto Cand1Emittable = P1 > EmitThreshold; | |||
9607 | auto Cand2Emittable = P2 > EmitThreshold; | |||
9608 | if (Cand1Emittable && !Cand2Emittable) | |||
9609 | return true; | |||
9610 | if (!Cand1Emittable && Cand2Emittable) | |||
9611 | return false; | |||
9612 | } | |||
9613 | } | |||
9614 | ||||
9615 | // C++ [over.match.best]p1: | |||
9616 | // | |||
9617 | // -- if F is a static member function, ICS1(F) is defined such | |||
9618 | // that ICS1(F) is neither better nor worse than ICS1(G) for | |||
9619 | // any function G, and, symmetrically, ICS1(G) is neither | |||
9620 | // better nor worse than ICS1(F). | |||
9621 | unsigned StartArg = 0; | |||
9622 | if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) | |||
9623 | StartArg = 1; | |||
9624 | ||||
9625 | auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { | |||
9626 | // We don't allow incompatible pointer conversions in C++. | |||
9627 | if (!S.getLangOpts().CPlusPlus) | |||
9628 | return ICS.isStandard() && | |||
9629 | ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; | |||
9630 | ||||
9631 | // The only ill-formed conversion we allow in C++ is the string literal to | |||
9632 | // char* conversion, which is only considered ill-formed after C++11. | |||
9633 | return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | |||
9634 | hasDeprecatedStringLiteralToCharPtrConversion(ICS); | |||
9635 | }; | |||
9636 | ||||
9637 | // Define functions that don't require ill-formed conversions for a given | |||
9638 | // argument to be better candidates than functions that do. | |||
9639 | unsigned NumArgs = Cand1.Conversions.size(); | |||
9640 | assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((void)0); | |||
9641 | bool HasBetterConversion = false; | |||
9642 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | |||
9643 | bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); | |||
9644 | bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); | |||
9645 | if (Cand1Bad != Cand2Bad) { | |||
9646 | if (Cand1Bad) | |||
9647 | return false; | |||
9648 | HasBetterConversion = true; | |||
9649 | } | |||
9650 | } | |||
9651 | ||||
9652 | if (HasBetterConversion) | |||
9653 | return true; | |||
9654 | ||||
9655 | // C++ [over.match.best]p1: | |||
9656 | // A viable function F1 is defined to be a better function than another | |||
9657 | // viable function F2 if for all arguments i, ICSi(F1) is not a worse | |||
9658 | // conversion sequence than ICSi(F2), and then... | |||
9659 | bool HasWorseConversion = false; | |||
9660 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | |||
9661 | switch (CompareImplicitConversionSequences(S, Loc, | |||
9662 | Cand1.Conversions[ArgIdx], | |||
9663 | Cand2.Conversions[ArgIdx])) { | |||
9664 | case ImplicitConversionSequence::Better: | |||
9665 | // Cand1 has a better conversion sequence. | |||
9666 | HasBetterConversion = true; | |||
9667 | break; | |||
9668 | ||||
9669 | case ImplicitConversionSequence::Worse: | |||
9670 | if (Cand1.Function && Cand2.Function && | |||
9671 | Cand1.isReversed() != Cand2.isReversed() && | |||
9672 | haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, | |||
9673 | NumArgs)) { | |||
9674 | // Work around large-scale breakage caused by considering reversed | |||
9675 | // forms of operator== in C++20: | |||
9676 | // | |||
9677 | // When comparing a function against a reversed function with the same | |||
9678 | // parameter types, if we have a better conversion for one argument and | |||
9679 | // a worse conversion for the other, the implicit conversion sequences | |||
9680 | // are treated as being equally good. | |||
9681 | // | |||
9682 | // This prevents a comparison function from being considered ambiguous | |||
9683 | // with a reversed form that is written in the same way. | |||
9684 | // | |||
9685 | // We diagnose this as an extension from CreateOverloadedBinOp. | |||
9686 | HasWorseConversion = true; | |||
9687 | break; | |||
9688 | } | |||
9689 | ||||
9690 | // Cand1 can't be better than Cand2. | |||
9691 | return false; | |||
9692 | ||||
9693 | case ImplicitConversionSequence::Indistinguishable: | |||
9694 | // Do nothing. | |||
9695 | break; | |||
9696 | } | |||
9697 | } | |||
9698 | ||||
9699 | // -- for some argument j, ICSj(F1) is a better conversion sequence than | |||
9700 | // ICSj(F2), or, if not that, | |||
9701 | if (HasBetterConversion && !HasWorseConversion) | |||
9702 | return true; | |||
9703 | ||||
9704 | // -- the context is an initialization by user-defined conversion | |||
9705 | // (see 8.5, 13.3.1.5) and the standard conversion sequence | |||
9706 | // from the return type of F1 to the destination type (i.e., | |||
9707 | // the type of the entity being initialized) is a better | |||
9708 | // conversion sequence than the standard conversion sequence | |||
9709 | // from the return type of F2 to the destination type. | |||
9710 | if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && | |||
9711 | Cand1.Function && Cand2.Function && | |||
9712 | isa<CXXConversionDecl>(Cand1.Function) && | |||
9713 | isa<CXXConversionDecl>(Cand2.Function)) { | |||
9714 | // First check whether we prefer one of the conversion functions over the | |||
9715 | // other. This only distinguishes the results in non-standard, extension | |||
9716 | // cases such as the conversion from a lambda closure type to a function | |||
9717 | // pointer or block. | |||
9718 | ImplicitConversionSequence::CompareKind Result = | |||
9719 | compareConversionFunctions(S, Cand1.Function, Cand2.Function); | |||
9720 | if (Result == ImplicitConversionSequence::Indistinguishable) | |||
9721 | Result = CompareStandardConversionSequences(S, Loc, | |||
9722 | Cand1.FinalConversion, | |||
9723 | Cand2.FinalConversion); | |||
9724 | ||||
9725 | if (Result != ImplicitConversionSequence::Indistinguishable) | |||
9726 | return Result == ImplicitConversionSequence::Better; | |||
9727 | ||||
9728 | // FIXME: Compare kind of reference binding if conversion functions | |||
9729 | // convert to a reference type used in direct reference binding, per | |||
9730 | // C++14 [over.match.best]p1 section 2 bullet 3. | |||
9731 | } | |||
9732 | ||||
9733 | // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, | |||
9734 | // as combined with the resolution to CWG issue 243. | |||
9735 | // | |||
9736 | // When the context is initialization by constructor ([over.match.ctor] or | |||
9737 | // either phase of [over.match.list]), a constructor is preferred over | |||
9738 | // a conversion function. | |||
9739 | if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && | |||
9740 | Cand1.Function && Cand2.Function && | |||
9741 | isa<CXXConstructorDecl>(Cand1.Function) != | |||
9742 | isa<CXXConstructorDecl>(Cand2.Function)) | |||
9743 | return isa<CXXConstructorDecl>(Cand1.Function); | |||
9744 | ||||
9745 | // -- F1 is a non-template function and F2 is a function template | |||
9746 | // specialization, or, if not that, | |||
9747 | bool Cand1IsSpecialization = Cand1.Function && | |||
9748 | Cand1.Function->getPrimaryTemplate(); | |||
9749 | bool Cand2IsSpecialization = Cand2.Function && | |||
9750 | Cand2.Function->getPrimaryTemplate(); | |||
9751 | if (Cand1IsSpecialization != Cand2IsSpecialization) | |||
9752 | return Cand2IsSpecialization; | |||
9753 | ||||
9754 | // -- F1 and F2 are function template specializations, and the function | |||
9755 | // template for F1 is more specialized than the template for F2 | |||
9756 | // according to the partial ordering rules described in 14.5.5.2, or, | |||
9757 | // if not that, | |||
9758 | if (Cand1IsSpecialization && Cand2IsSpecialization) { | |||
9759 | if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( | |||
9760 | Cand1.Function->getPrimaryTemplate(), | |||
9761 | Cand2.Function->getPrimaryTemplate(), Loc, | |||
9762 | isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion | |||
9763 | : TPOC_Call, | |||
9764 | Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, | |||
9765 | Cand1.isReversed() ^ Cand2.isReversed())) | |||
9766 | return BetterTemplate == Cand1.Function->getPrimaryTemplate(); | |||
9767 | } | |||
9768 | ||||
9769 | // -— F1 and F2 are non-template functions with the same | |||
9770 | // parameter-type-lists, and F1 is more constrained than F2 [...], | |||
9771 | if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && | |||
9772 | !Cand2IsSpecialization && Cand1.Function->hasPrototype() && | |||
9773 | Cand2.Function->hasPrototype()) { | |||
9774 | auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); | |||
9775 | auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); | |||
9776 | if (PT1->getNumParams() == PT2->getNumParams() && | |||
9777 | PT1->isVariadic() == PT2->isVariadic() && | |||
9778 | S.FunctionParamTypesAreEqual(PT1, PT2)) { | |||
9779 | Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); | |||
9780 | Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); | |||
9781 | if (RC1 && RC2) { | |||
9782 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; | |||
9783 | if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, | |||
9784 | {RC2}, AtLeastAsConstrained1) || | |||
9785 | S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, | |||
9786 | {RC1}, AtLeastAsConstrained2)) | |||
9787 | return false; | |||
9788 | if (AtLeastAsConstrained1 != AtLeastAsConstrained2) | |||
9789 | return AtLeastAsConstrained1; | |||
9790 | } else if (RC1 || RC2) { | |||
9791 | return RC1 != nullptr; | |||
9792 | } | |||
9793 | } | |||
9794 | } | |||
9795 | ||||
9796 | // -- F1 is a constructor for a class D, F2 is a constructor for a base | |||
9797 | // class B of D, and for all arguments the corresponding parameters of | |||
9798 | // F1 and F2 have the same type. | |||
9799 | // FIXME: Implement the "all parameters have the same type" check. | |||
9800 | bool Cand1IsInherited = | |||
9801 | dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); | |||
9802 | bool Cand2IsInherited = | |||
9803 | dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); | |||
9804 | if (Cand1IsInherited != Cand2IsInherited) | |||
9805 | return Cand2IsInherited; | |||
9806 | else if (Cand1IsInherited) { | |||
9807 | assert(Cand2IsInherited)((void)0); | |||
9808 | auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); | |||
9809 | auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); | |||
9810 | if (Cand1Class->isDerivedFrom(Cand2Class)) | |||
9811 | return true; | |||
9812 | if (Cand2Class->isDerivedFrom(Cand1Class)) | |||
9813 | return false; | |||
9814 | // Inherited from sibling base classes: still ambiguous. | |||
9815 | } | |||
9816 | ||||
9817 | // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not | |||
9818 | // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate | |||
9819 | // with reversed order of parameters and F1 is not | |||
9820 | // | |||
9821 | // We rank reversed + different operator as worse than just reversed, but | |||
9822 | // that comparison can never happen, because we only consider reversing for | |||
9823 | // the maximally-rewritten operator (== or <=>). | |||
9824 | if (Cand1.RewriteKind != Cand2.RewriteKind) | |||
9825 | return Cand1.RewriteKind < Cand2.RewriteKind; | |||
9826 | ||||
9827 | // Check C++17 tie-breakers for deduction guides. | |||
9828 | { | |||
9829 | auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); | |||
9830 | auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); | |||
9831 | if (Guide1 && Guide2) { | |||
9832 | // -- F1 is generated from a deduction-guide and F2 is not | |||
9833 | if (Guide1->isImplicit() != Guide2->isImplicit()) | |||
9834 | return Guide2->isImplicit(); | |||
9835 | ||||
9836 | // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not | |||
9837 | if (Guide1->isCopyDeductionCandidate()) | |||
9838 | return true; | |||
9839 | } | |||
9840 | } | |||
9841 | ||||
9842 | // Check for enable_if value-based overload resolution. | |||
9843 | if (Cand1.Function && Cand2.Function) { | |||
9844 | Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); | |||
9845 | if (Cmp != Comparison::Equal) | |||
9846 | return Cmp == Comparison::Better; | |||
9847 | } | |||
9848 | ||||
9849 | bool HasPS1 = Cand1.Function != nullptr && | |||
9850 | functionHasPassObjectSizeParams(Cand1.Function); | |||
9851 | bool HasPS2 = Cand2.Function != nullptr && | |||
9852 | functionHasPassObjectSizeParams(Cand2.Function); | |||
9853 | if (HasPS1 != HasPS2 && HasPS1) | |||
9854 | return true; | |||
9855 | ||||
9856 | auto MV = isBetterMultiversionCandidate(Cand1, Cand2); | |||
9857 | if (MV == Comparison::Better) | |||
9858 | return true; | |||
9859 | if (MV == Comparison::Worse) | |||
9860 | return false; | |||
9861 | ||||
9862 | // If other rules cannot determine which is better, CUDA preference is used | |||
9863 | // to determine which is better. | |||
9864 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { | |||
9865 | FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); | |||
9866 | return S.IdentifyCUDAPreference(Caller, Cand1.Function) > | |||
9867 | S.IdentifyCUDAPreference(Caller, Cand2.Function); | |||
9868 | } | |||
9869 | ||||
9870 | // General member function overloading is handled above, so this only handles | |||
9871 | // constructors with address spaces. | |||
9872 | // This only handles address spaces since C++ has no other | |||
9873 | // qualifier that can be used with constructors. | |||
9874 | const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); | |||
9875 | const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); | |||
9876 | if (CD1 && CD2) { | |||
9877 | LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); | |||
9878 | LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); | |||
9879 | if (AS1 != AS2) { | |||
9880 | if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) | |||
9881 | return true; | |||
9882 | if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) | |||
9883 | return false; | |||
9884 | } | |||
9885 | } | |||
9886 | ||||
9887 | return false; | |||
9888 | } | |||
9889 | ||||
9890 | /// Determine whether two declarations are "equivalent" for the purposes of | |||
9891 | /// name lookup and overload resolution. This applies when the same internal/no | |||
9892 | /// linkage entity is defined by two modules (probably by textually including | |||
9893 | /// the same header). In such a case, we don't consider the declarations to | |||
9894 | /// declare the same entity, but we also don't want lookups with both | |||
9895 | /// declarations visible to be ambiguous in some cases (this happens when using | |||
9896 | /// a modularized libstdc++). | |||
9897 | bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, | |||
9898 | const NamedDecl *B) { | |||
9899 | auto *VA = dyn_cast_or_null<ValueDecl>(A); | |||
9900 | auto *VB = dyn_cast_or_null<ValueDecl>(B); | |||
9901 | if (!VA || !VB) | |||
9902 | return false; | |||
9903 | ||||
9904 | // The declarations must be declaring the same name as an internal linkage | |||
9905 | // entity in different modules. | |||
9906 | if (!VA->getDeclContext()->getRedeclContext()->Equals( | |||
9907 | VB->getDeclContext()->getRedeclContext()) || | |||
9908 | getOwningModule(VA) == getOwningModule(VB) || | |||
9909 | VA->isExternallyVisible() || VB->isExternallyVisible()) | |||
9910 | return false; | |||
9911 | ||||
9912 | // Check that the declarations appear to be equivalent. | |||
9913 | // | |||
9914 | // FIXME: Checking the type isn't really enough to resolve the ambiguity. | |||
9915 | // For constants and functions, we should check the initializer or body is | |||
9916 | // the same. For non-constant variables, we shouldn't allow it at all. | |||
9917 | if (Context.hasSameType(VA->getType(), VB->getType())) | |||
9918 | return true; | |||
9919 | ||||
9920 | // Enum constants within unnamed enumerations will have different types, but | |||
9921 | // may still be similar enough to be interchangeable for our purposes. | |||
9922 | if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { | |||
9923 | if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { | |||
9924 | // Only handle anonymous enums. If the enumerations were named and | |||
9925 | // equivalent, they would have been merged to the same type. | |||
9926 | auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); | |||
9927 | auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); | |||
9928 | if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || | |||
9929 | !Context.hasSameType(EnumA->getIntegerType(), | |||
9930 | EnumB->getIntegerType())) | |||
9931 | return false; | |||
9932 | // Allow this only if the value is the same for both enumerators. | |||
9933 | return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); | |||
9934 | } | |||
9935 | } | |||
9936 | ||||
9937 | // Nothing else is sufficiently similar. | |||
9938 | return false; | |||
9939 | } | |||
9940 | ||||
9941 | void Sema::diagnoseEquivalentInternalLinkageDeclarations( | |||
9942 | SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { | |||
9943 | assert(D && "Unknown declaration")((void)0); | |||
9944 | Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; | |||
9945 | ||||
9946 | Module *M = getOwningModule(D); | |||
9947 | Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) | |||
9948 | << !M << (M ? M->getFullModuleName() : ""); | |||
9949 | ||||
9950 | for (auto *E : Equiv) { | |||
9951 | Module *M = getOwningModule(E); | |||
9952 | Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) | |||
9953 | << !M << (M ? M->getFullModuleName() : ""); | |||
9954 | } | |||
9955 | } | |||
9956 | ||||
9957 | /// Computes the best viable function (C++ 13.3.3) | |||
9958 | /// within an overload candidate set. | |||
9959 | /// | |||
9960 | /// \param Loc The location of the function name (or operator symbol) for | |||
9961 | /// which overload resolution occurs. | |||
9962 | /// | |||
9963 | /// \param Best If overload resolution was successful or found a deleted | |||
9964 | /// function, \p Best points to the candidate function found. | |||
9965 | /// | |||
9966 | /// \returns The result of overload resolution. | |||
9967 | OverloadingResult | |||
9968 | OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, | |||
9969 | iterator &Best) { | |||
9970 | llvm::SmallVector<OverloadCandidate *, 16> Candidates; | |||
9971 | std::transform(begin(), end(), std::back_inserter(Candidates), | |||
9972 | [](OverloadCandidate &Cand) { return &Cand; }); | |||
9973 | ||||
9974 | // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but | |||
9975 | // are accepted by both clang and NVCC. However, during a particular | |||
9976 | // compilation mode only one call variant is viable. We need to | |||
9977 | // exclude non-viable overload candidates from consideration based | |||
9978 | // only on their host/device attributes. Specifically, if one | |||
9979 | // candidate call is WrongSide and the other is SameSide, we ignore | |||
9980 | // the WrongSide candidate. | |||
9981 | // We only need to remove wrong-sided candidates here if | |||
9982 | // -fgpu-exclude-wrong-side-overloads is off. When | |||
9983 | // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared | |||
9984 | // uniformly in isBetterOverloadCandidate. | |||
9985 | if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { | |||
9986 | const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); | |||
9987 | bool ContainsSameSideCandidate = | |||
9988 | llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { | |||
9989 | // Check viable function only. | |||
9990 | return Cand->Viable && Cand->Function && | |||
9991 | S.IdentifyCUDAPreference(Caller, Cand->Function) == | |||
9992 | Sema::CFP_SameSide; | |||
9993 | }); | |||
9994 | if (ContainsSameSideCandidate) { | |||
9995 | auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { | |||
9996 | // Check viable function only to avoid unnecessary data copying/moving. | |||
9997 | return Cand->Viable && Cand->Function && | |||
9998 | S.IdentifyCUDAPreference(Caller, Cand->Function) == | |||
9999 | Sema::CFP_WrongSide; | |||
10000 | }; | |||
10001 | llvm::erase_if(Candidates, IsWrongSideCandidate); | |||
10002 | } | |||
10003 | } | |||
10004 | ||||
10005 | // Find the best viable function. | |||
10006 | Best = end(); | |||
10007 | for (auto *Cand : Candidates) { | |||
10008 | Cand->Best = false; | |||
10009 | if (Cand->Viable) | |||
10010 | if (Best == end() || | |||
10011 | isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) | |||
10012 | Best = Cand; | |||
10013 | } | |||
10014 | ||||
10015 | // If we didn't find any viable functions, abort. | |||
10016 | if (Best == end()) | |||
10017 | return OR_No_Viable_Function; | |||
10018 | ||||
10019 | llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; | |||
10020 | ||||
10021 | llvm::SmallVector<OverloadCandidate*, 4> PendingBest; | |||
10022 | PendingBest.push_back(&*Best); | |||
10023 | Best->Best = true; | |||
10024 | ||||
10025 | // Make sure that this function is better than every other viable | |||
10026 | // function. If not, we have an ambiguity. | |||
10027 | while (!PendingBest.empty()) { | |||
10028 | auto *Curr = PendingBest.pop_back_val(); | |||
10029 | for (auto *Cand : Candidates) { | |||
10030 | if (Cand->Viable && !Cand->Best && | |||
10031 | !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { | |||
10032 | PendingBest.push_back(Cand); | |||
10033 | Cand->Best = true; | |||
10034 | ||||
10035 | if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, | |||
10036 | Curr->Function)) | |||
10037 | EquivalentCands.push_back(Cand->Function); | |||
10038 | else | |||
10039 | Best = end(); | |||
10040 | } | |||
10041 | } | |||
10042 | } | |||
10043 | ||||
10044 | // If we found more than one best candidate, this is ambiguous. | |||
10045 | if (Best == end()) | |||
10046 | return OR_Ambiguous; | |||
10047 | ||||
10048 | // Best is the best viable function. | |||
10049 | if (Best->Function && Best->Function->isDeleted()) | |||
10050 | return OR_Deleted; | |||
10051 | ||||
10052 | if (!EquivalentCands.empty()) | |||
10053 | S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, | |||
10054 | EquivalentCands); | |||
10055 | ||||
10056 | return OR_Success; | |||
10057 | } | |||
10058 | ||||
10059 | namespace { | |||
10060 | ||||
10061 | enum OverloadCandidateKind { | |||
10062 | oc_function, | |||
10063 | oc_method, | |||
10064 | oc_reversed_binary_operator, | |||
10065 | oc_constructor, | |||
10066 | oc_implicit_default_constructor, | |||
10067 | oc_implicit_copy_constructor, | |||
10068 | oc_implicit_move_constructor, | |||
10069 | oc_implicit_copy_assignment, | |||
10070 | oc_implicit_move_assignment, | |||
10071 | oc_implicit_equality_comparison, | |||
10072 | oc_inherited_constructor | |||
10073 | }; | |||
10074 | ||||
10075 | enum OverloadCandidateSelect { | |||
10076 | ocs_non_template, | |||
10077 | ocs_template, | |||
10078 | ocs_described_template, | |||
10079 | }; | |||
10080 | ||||
10081 | static std::pair<OverloadCandidateKind, OverloadCandidateSelect> | |||
10082 | ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, | |||
10083 | OverloadCandidateRewriteKind CRK, | |||
10084 | std::string &Description) { | |||
10085 | ||||
10086 | bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); | |||
10087 | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { | |||
10088 | isTemplate = true; | |||
10089 | Description = S.getTemplateArgumentBindingsText( | |||
10090 | FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); | |||
10091 | } | |||
10092 | ||||
10093 | OverloadCandidateSelect Select = [&]() { | |||
10094 | if (!Description.empty()) | |||
10095 | return ocs_described_template; | |||
10096 | return isTemplate ? ocs_template : ocs_non_template; | |||
10097 | }(); | |||
10098 | ||||
10099 | OverloadCandidateKind Kind = [&]() { | |||
10100 | if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) | |||
10101 | return oc_implicit_equality_comparison; | |||
10102 | ||||
10103 | if (CRK & CRK_Reversed) | |||
10104 | return oc_reversed_binary_operator; | |||
10105 | ||||
10106 | if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { | |||
10107 | if (!Ctor->isImplicit()) { | |||
10108 | if (isa<ConstructorUsingShadowDecl>(Found)) | |||
10109 | return oc_inherited_constructor; | |||
10110 | else | |||
10111 | return oc_constructor; | |||
10112 | } | |||
10113 | ||||
10114 | if (Ctor->isDefaultConstructor()) | |||
10115 | return oc_implicit_default_constructor; | |||
10116 | ||||
10117 | if (Ctor->isMoveConstructor()) | |||
10118 | return oc_implicit_move_constructor; | |||
10119 | ||||
10120 | assert(Ctor->isCopyConstructor() &&((void)0) | |||
10121 | "unexpected sort of implicit constructor")((void)0); | |||
10122 | return oc_implicit_copy_constructor; | |||
10123 | } | |||
10124 | ||||
10125 | if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { | |||
10126 | // This actually gets spelled 'candidate function' for now, but | |||
10127 | // it doesn't hurt to split it out. | |||
10128 | if (!Meth->isImplicit()) | |||
10129 | return oc_method; | |||
10130 | ||||
10131 | if (Meth->isMoveAssignmentOperator()) | |||
10132 | return oc_implicit_move_assignment; | |||
10133 | ||||
10134 | if (Meth->isCopyAssignmentOperator()) | |||
10135 | return oc_implicit_copy_assignment; | |||
10136 | ||||
10137 | assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((void)0); | |||
10138 | return oc_method; | |||
10139 | } | |||
10140 | ||||
10141 | return oc_function; | |||
10142 | }(); | |||
10143 | ||||
10144 | return std::make_pair(Kind, Select); | |||
10145 | } | |||
10146 | ||||
10147 | void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { | |||
10148 | // FIXME: It'd be nice to only emit a note once per using-decl per overload | |||
10149 | // set. | |||
10150 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) | |||
10151 | S.Diag(FoundDecl->getLocation(), | |||
10152 | diag::note_ovl_candidate_inherited_constructor) | |||
10153 | << Shadow->getNominatedBaseClass(); | |||
10154 | } | |||
10155 | ||||
10156 | } // end anonymous namespace | |||
10157 | ||||
10158 | static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, | |||
10159 | const FunctionDecl *FD) { | |||
10160 | for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { | |||
10161 | bool AlwaysTrue; | |||
10162 | if (EnableIf->getCond()->isValueDependent() || | |||
10163 | !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) | |||
10164 | return false; | |||
10165 | if (!AlwaysTrue) | |||
10166 | return false; | |||
10167 | } | |||
10168 | return true; | |||
10169 | } | |||
10170 | ||||
10171 | /// Returns true if we can take the address of the function. | |||
10172 | /// | |||
10173 | /// \param Complain - If true, we'll emit a diagnostic | |||
10174 | /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are | |||
10175 | /// we in overload resolution? | |||
10176 | /// \param Loc - The location of the statement we're complaining about. Ignored | |||
10177 | /// if we're not complaining, or if we're in overload resolution. | |||
10178 | static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, | |||
10179 | bool Complain, | |||
10180 | bool InOverloadResolution, | |||
10181 | SourceLocation Loc) { | |||
10182 | if (!isFunctionAlwaysEnabled(S.Context, FD)) { | |||
10183 | if (Complain) { | |||
10184 | if (InOverloadResolution) | |||
10185 | S.Diag(FD->getBeginLoc(), | |||
10186 | diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); | |||
10187 | else | |||
10188 | S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; | |||
10189 | } | |||
10190 | return false; | |||
10191 | } | |||
10192 | ||||
10193 | if (FD->getTrailingRequiresClause()) { | |||
10194 | ConstraintSatisfaction Satisfaction; | |||
10195 | if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) | |||
10196 | return false; | |||
10197 | if (!Satisfaction.IsSatisfied) { | |||
10198 | if (Complain) { | |||
10199 | if (InOverloadResolution) | |||
10200 | S.Diag(FD->getBeginLoc(), | |||
10201 | diag::note_ovl_candidate_unsatisfied_constraints); | |||
10202 | else | |||
10203 | S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) | |||
10204 | << FD; | |||
10205 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); | |||
10206 | } | |||
10207 | return false; | |||
10208 | } | |||
10209 | } | |||
10210 | ||||
10211 | auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { | |||
10212 | return P->hasAttr<PassObjectSizeAttr>(); | |||
10213 | }); | |||
10214 | if (I == FD->param_end()) | |||
10215 | return true; | |||
10216 | ||||
10217 | if (Complain) { | |||
10218 | // Add one to ParamNo because it's user-facing | |||
10219 | unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; | |||
10220 | if (InOverloadResolution) | |||
10221 | S.Diag(FD->getLocation(), | |||
10222 | diag::note_ovl_candidate_has_pass_object_size_params) | |||
10223 | << ParamNo; | |||
10224 | else | |||
10225 | S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) | |||
10226 | << FD << ParamNo; | |||
10227 | } | |||
10228 | return false; | |||
10229 | } | |||
10230 | ||||
10231 | static bool checkAddressOfCandidateIsAvailable(Sema &S, | |||
10232 | const FunctionDecl *FD) { | |||
10233 | return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, | |||
10234 | /*InOverloadResolution=*/true, | |||
10235 | /*Loc=*/SourceLocation()); | |||
10236 | } | |||
10237 | ||||
10238 | bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, | |||
10239 | bool Complain, | |||
10240 | SourceLocation Loc) { | |||
10241 | return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, | |||
10242 | /*InOverloadResolution=*/false, | |||
10243 | Loc); | |||
10244 | } | |||
10245 | ||||
10246 | // Don't print candidates other than the one that matches the calling | |||
10247 | // convention of the call operator, since that is guaranteed to exist. | |||
10248 | static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { | |||
10249 | const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); | |||
10250 | ||||
10251 | if (!ConvD) | |||
10252 | return false; | |||
10253 | const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); | |||
10254 | if (!RD->isLambda()) | |||
10255 | return false; | |||
10256 | ||||
10257 | CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); | |||
10258 | CallingConv CallOpCC = | |||
10259 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); | |||
10260 | QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); | |||
10261 | CallingConv ConvToCC = | |||
10262 | ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); | |||
10263 | ||||
10264 | return ConvToCC != CallOpCC; | |||
10265 | } | |||
10266 | ||||
10267 | // Notes the location of an overload candidate. | |||
10268 | void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, | |||
10269 | OverloadCandidateRewriteKind RewriteKind, | |||
10270 | QualType DestType, bool TakingAddress) { | |||
10271 | if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) | |||
10272 | return; | |||
10273 | if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && | |||
10274 | !Fn->getAttr<TargetAttr>()->isDefaultVersion()) | |||
10275 | return; | |||
10276 | if (shouldSkipNotingLambdaConversionDecl(Fn)) | |||
10277 | return; | |||
10278 | ||||
10279 | std::string FnDesc; | |||
10280 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = | |||
10281 | ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); | |||
10282 | PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) | |||
10283 | << (unsigned)KSPair.first << (unsigned)KSPair.second | |||
10284 | << Fn << FnDesc; | |||
10285 | ||||
10286 | HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); | |||
10287 | Diag(Fn->getLocation(), PD); | |||
10288 | MaybeEmitInheritedConstructorNote(*this, Found); | |||
10289 | } | |||
10290 | ||||
10291 | static void | |||
10292 | MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { | |||
10293 | // Perhaps the ambiguity was caused by two atomic constraints that are | |||
10294 | // 'identical' but not equivalent: | |||
10295 | // | |||
10296 | // void foo() requires (sizeof(T) > 4) { } // #1 | |||
10297 | // void foo() requires (sizeof(T) > 4) && T::value { } // #2 | |||
10298 | // | |||
10299 | // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause | |||
10300 | // #2 to subsume #1, but these constraint are not considered equivalent | |||
10301 | // according to the subsumption rules because they are not the same | |||
10302 | // source-level construct. This behavior is quite confusing and we should try | |||
10303 | // to help the user figure out what happened. | |||
10304 | ||||
10305 | SmallVector<const Expr *, 3> FirstAC, SecondAC; | |||
10306 | FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; | |||
10307 | for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { | |||
10308 | if (!I->Function) | |||
10309 | continue; | |||
10310 | SmallVector<const Expr *, 3> AC; | |||
10311 | if (auto *Template = I->Function->getPrimaryTemplate()) | |||
10312 | Template->getAssociatedConstraints(AC); | |||
10313 | else | |||
10314 | I->Function->getAssociatedConstraints(AC); | |||
10315 | if (AC.empty()) | |||
10316 | continue; | |||
10317 | if (FirstCand == nullptr) { | |||
10318 | FirstCand = I->Function; | |||
10319 | FirstAC = AC; | |||
10320 | } else if (SecondCand == nullptr) { | |||
10321 | SecondCand = I->Function; | |||
10322 | SecondAC = AC; | |||
10323 | } else { | |||
10324 | // We have more than one pair of constrained functions - this check is | |||
10325 | // expensive and we'd rather not try to diagnose it. | |||
10326 | return; | |||
10327 | } | |||
10328 | } | |||
10329 | if (!SecondCand) | |||
10330 | return; | |||
10331 | // The diagnostic can only happen if there are associated constraints on | |||
10332 | // both sides (there needs to be some identical atomic constraint). | |||
10333 | if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, | |||
10334 | SecondCand, SecondAC)) | |||
10335 | // Just show the user one diagnostic, they'll probably figure it out | |||
10336 | // from here. | |||
10337 | return; | |||
10338 | } | |||
10339 | ||||
10340 | // Notes the location of all overload candidates designated through | |||
10341 | // OverloadedExpr | |||
10342 | void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, | |||
10343 | bool TakingAddress) { | |||
10344 | assert(OverloadedExpr->getType() == Context.OverloadTy)((void)0); | |||
10345 | ||||
10346 | OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); | |||
10347 | OverloadExpr *OvlExpr = Ovl.Expression; | |||
10348 | ||||
10349 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | |||
10350 | IEnd = OvlExpr->decls_end(); | |||
10351 | I != IEnd; ++I) { | |||
10352 | if (FunctionTemplateDecl *FunTmpl = | |||
10353 | dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { | |||
10354 | NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, | |||
10355 | TakingAddress); | |||
10356 | } else if (FunctionDecl *Fun | |||
10357 | = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { | |||
10358 | NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); | |||
10359 | } | |||
10360 | } | |||
10361 | } | |||
10362 | ||||
10363 | /// Diagnoses an ambiguous conversion. The partial diagnostic is the | |||
10364 | /// "lead" diagnostic; it will be given two arguments, the source and | |||
10365 | /// target types of the conversion. | |||
10366 | void ImplicitConversionSequence::DiagnoseAmbiguousConversion( | |||
10367 | Sema &S, | |||
10368 | SourceLocation CaretLoc, | |||
10369 | const PartialDiagnostic &PDiag) const { | |||
10370 | S.Diag(CaretLoc, PDiag) | |||
10371 | << Ambiguous.getFromType() << Ambiguous.getToType(); | |||
10372 | unsigned CandsShown = 0; | |||
10373 | AmbiguousConversionSequence::const_iterator I, E; | |||
10374 | for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { | |||
10375 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) | |||
10376 | break; | |||
10377 | ++CandsShown; | |||
10378 | S.NoteOverloadCandidate(I->first, I->second); | |||
10379 | } | |||
10380 | S.Diags.overloadCandidatesShown(CandsShown); | |||
10381 | if (I != E) | |||
10382 | S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); | |||
10383 | } | |||
10384 | ||||
10385 | static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, | |||
10386 | unsigned I, bool TakingCandidateAddress) { | |||
10387 | const ImplicitConversionSequence &Conv = Cand->Conversions[I]; | |||
10388 | assert(Conv.isBad())((void)0); | |||
10389 | assert(Cand->Function && "for now, candidate must be a function")((void)0); | |||
10390 | FunctionDecl *Fn = Cand->Function; | |||
10391 | ||||
10392 | // There's a conversion slot for the object argument if this is a | |||
10393 | // non-constructor method. Note that 'I' corresponds the | |||
10394 | // conversion-slot index. | |||
10395 | bool isObjectArgument = false; | |||
10396 | if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { | |||
10397 | if (I == 0) | |||
10398 | isObjectArgument = true; | |||
10399 | else | |||
10400 | I--; | |||
10401 | } | |||
10402 | ||||
10403 | std::string FnDesc; | |||
10404 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | |||
10405 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), | |||
10406 | FnDesc); | |||
10407 | ||||
10408 | Expr *FromExpr = Conv.Bad.FromExpr; | |||
10409 | QualType FromTy = Conv.Bad.getFromType(); | |||
10410 | QualType ToTy = Conv.Bad.getToType(); | |||
10411 | ||||
10412 | if (FromTy == S.Context.OverloadTy) { | |||
10413 | assert(FromExpr && "overload set argument came from implicit argument?")((void)0); | |||
10414 | Expr *E = FromExpr->IgnoreParens(); | |||
10415 | if (isa<UnaryOperator>(E)) | |||
10416 | E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | |||
10417 | DeclarationName Name = cast<OverloadExpr>(E)->getName(); | |||
10418 | ||||
10419 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) | |||
10420 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10421 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy | |||
10422 | << Name << I + 1; | |||
10423 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10424 | return; | |||
10425 | } | |||
10426 | ||||
10427 | // Do some hand-waving analysis to see if the non-viability is due | |||
10428 | // to a qualifier mismatch. | |||
10429 | CanQualType CFromTy = S.Context.getCanonicalType(FromTy); | |||
10430 | CanQualType CToTy = S.Context.getCanonicalType(ToTy); | |||
10431 | if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) | |||
10432 | CToTy = RT->getPointeeType(); | |||
10433 | else { | |||
10434 | // TODO: detect and diagnose the full richness of const mismatches. | |||
10435 | if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) | |||
10436 | if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { | |||
10437 | CFromTy = FromPT->getPointeeType(); | |||
10438 | CToTy = ToPT->getPointeeType(); | |||
10439 | } | |||
10440 | } | |||
10441 | ||||
10442 | if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && | |||
10443 | !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { | |||
10444 | Qualifiers FromQs = CFromTy.getQualifiers(); | |||
10445 | Qualifiers ToQs = CToTy.getQualifiers(); | |||
10446 | ||||
10447 | if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { | |||
10448 | if (isObjectArgument) | |||
10449 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) | |||
10450 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | |||
10451 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | |||
10452 | << FromQs.getAddressSpace() << ToQs.getAddressSpace(); | |||
10453 | else | |||
10454 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) | |||
10455 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | |||
10456 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | |||
10457 | << FromQs.getAddressSpace() << ToQs.getAddressSpace() | |||
10458 | << ToTy->isReferenceType() << I + 1; | |||
10459 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10460 | return; | |||
10461 | } | |||
10462 | ||||
10463 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | |||
10464 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) | |||
10465 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10466 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10467 | << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() | |||
10468 | << (unsigned)isObjectArgument << I + 1; | |||
10469 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10470 | return; | |||
10471 | } | |||
10472 | ||||
10473 | if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { | |||
10474 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) | |||
10475 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10476 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10477 | << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() | |||
10478 | << (unsigned)isObjectArgument << I + 1; | |||
10479 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10480 | return; | |||
10481 | } | |||
10482 | ||||
10483 | if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { | |||
10484 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) | |||
10485 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10486 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10487 | << FromQs.hasUnaligned() << I + 1; | |||
10488 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10489 | return; | |||
10490 | } | |||
10491 | ||||
10492 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | |||
10493 | assert(CVR && "expected qualifiers mismatch")((void)0); | |||
10494 | ||||
10495 | if (isObjectArgument) { | |||
10496 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) | |||
10497 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10498 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10499 | << (CVR - 1); | |||
10500 | } else { | |||
10501 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) | |||
10502 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10503 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10504 | << (CVR - 1) << I + 1; | |||
10505 | } | |||
10506 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10507 | return; | |||
10508 | } | |||
10509 | ||||
10510 | if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || | |||
10511 | Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { | |||
10512 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) | |||
10513 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10514 | << (unsigned)isObjectArgument << I + 1 | |||
10515 | << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) | |||
10516 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); | |||
10517 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10518 | return; | |||
10519 | } | |||
10520 | ||||
10521 | // Special diagnostic for failure to convert an initializer list, since | |||
10522 | // telling the user that it has type void is not useful. | |||
10523 | if (FromExpr && isa<InitListExpr>(FromExpr)) { | |||
10524 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) | |||
10525 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10526 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10527 | << ToTy << (unsigned)isObjectArgument << I + 1; | |||
10528 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10529 | return; | |||
10530 | } | |||
10531 | ||||
10532 | // Diagnose references or pointers to incomplete types differently, | |||
10533 | // since it's far from impossible that the incompleteness triggered | |||
10534 | // the failure. | |||
10535 | QualType TempFromTy = FromTy.getNonReferenceType(); | |||
10536 | if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) | |||
10537 | TempFromTy = PTy->getPointeeType(); | |||
10538 | if (TempFromTy->isIncompleteType()) { | |||
10539 | // Emit the generic diagnostic and, optionally, add the hints to it. | |||
10540 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) | |||
10541 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10542 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10543 | << ToTy << (unsigned)isObjectArgument << I + 1 | |||
10544 | << (unsigned)(Cand->Fix.Kind); | |||
10545 | ||||
10546 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10547 | return; | |||
10548 | } | |||
10549 | ||||
10550 | // Diagnose base -> derived pointer conversions. | |||
10551 | unsigned BaseToDerivedConversion = 0; | |||
10552 | if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { | |||
10553 | if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { | |||
10554 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | |||
10555 | FromPtrTy->getPointeeType()) && | |||
10556 | !FromPtrTy->getPointeeType()->isIncompleteType() && | |||
10557 | !ToPtrTy->getPointeeType()->isIncompleteType() && | |||
10558 | S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), | |||
10559 | FromPtrTy->getPointeeType())) | |||
10560 | BaseToDerivedConversion = 1; | |||
10561 | } | |||
10562 | } else if (const ObjCObjectPointerType *FromPtrTy | |||
10563 | = FromTy->getAs<ObjCObjectPointerType>()) { | |||
10564 | if (const ObjCObjectPointerType *ToPtrTy | |||
10565 | = ToTy->getAs<ObjCObjectPointerType>()) | |||
10566 | if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) | |||
10567 | if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) | |||
10568 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( | |||
10569 | FromPtrTy->getPointeeType()) && | |||
10570 | FromIface->isSuperClassOf(ToIface)) | |||
10571 | BaseToDerivedConversion = 2; | |||
10572 | } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { | |||
10573 | if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && | |||
10574 | !FromTy->isIncompleteType() && | |||
10575 | !ToRefTy->getPointeeType()->isIncompleteType() && | |||
10576 | S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { | |||
10577 | BaseToDerivedConversion = 3; | |||
10578 | } | |||
10579 | } | |||
10580 | ||||
10581 | if (BaseToDerivedConversion) { | |||
10582 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) | |||
10583 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10584 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | |||
10585 | << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; | |||
10586 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10587 | return; | |||
10588 | } | |||
10589 | ||||
10590 | if (isa<ObjCObjectPointerType>(CFromTy) && | |||
10591 | isa<PointerType>(CToTy)) { | |||
10592 | Qualifiers FromQs = CFromTy.getQualifiers(); | |||
10593 | Qualifiers ToQs = CToTy.getQualifiers(); | |||
10594 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { | |||
10595 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) | |||
10596 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | |||
10597 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | |||
10598 | << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; | |||
10599 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10600 | return; | |||
10601 | } | |||
10602 | } | |||
10603 | ||||
10604 | if (TakingCandidateAddress && | |||
10605 | !checkAddressOfCandidateIsAvailable(S, Cand->Function)) | |||
10606 | return; | |||
10607 | ||||
10608 | // Emit the generic diagnostic and, optionally, add the hints to it. | |||
10609 | PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); | |||
10610 | FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
10611 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy | |||
10612 | << ToTy << (unsigned)isObjectArgument << I + 1 | |||
10613 | << (unsigned)(Cand->Fix.Kind); | |||
10614 | ||||
10615 | // If we can fix the conversion, suggest the FixIts. | |||
10616 | for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), | |||
10617 | HE = Cand->Fix.Hints.end(); HI != HE; ++HI) | |||
10618 | FDiag << *HI; | |||
10619 | S.Diag(Fn->getLocation(), FDiag); | |||
10620 | ||||
10621 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
10622 | } | |||
10623 | ||||
10624 | /// Additional arity mismatch diagnosis specific to a function overload | |||
10625 | /// candidates. This is not covered by the more general DiagnoseArityMismatch() | |||
10626 | /// over a candidate in any candidate set. | |||
10627 | static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, | |||
10628 | unsigned NumArgs) { | |||
10629 | FunctionDecl *Fn = Cand->Function; | |||
10630 | unsigned MinParams = Fn->getMinRequiredArguments(); | |||
10631 | ||||
10632 | // With invalid overloaded operators, it's possible that we think we | |||
10633 | // have an arity mismatch when in fact it looks like we have the | |||
10634 | // right number of arguments, because only overloaded operators have | |||
10635 | // the weird behavior of overloading member and non-member functions. | |||
10636 | // Just don't report anything. | |||
10637 | if (Fn->isInvalidDecl() && | |||
10638 | Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) | |||
10639 | return true; | |||
10640 | ||||
10641 | if (NumArgs < MinParams) { | |||
10642 | assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||((void)0) | |||
10643 | (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0) | |||
10644 | Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))((void)0); | |||
10645 | } else { | |||
10646 | assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||((void)0) | |||
10647 | (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0) | |||
10648 | Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))((void)0); | |||
10649 | } | |||
10650 | ||||
10651 | return false; | |||
10652 | } | |||
10653 | ||||
10654 | /// General arity mismatch diagnosis over a candidate in a candidate set. | |||
10655 | static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, | |||
10656 | unsigned NumFormalArgs) { | |||
10657 | assert(isa<FunctionDecl>(D) &&((void)0) | |||
10658 | "The templated declaration should at least be a function"((void)0) | |||
10659 | " when diagnosing bad template argument deduction due to too many"((void)0) | |||
10660 | " or too few arguments")((void)0); | |||
10661 | ||||
10662 | FunctionDecl *Fn = cast<FunctionDecl>(D); | |||
10663 | ||||
10664 | // TODO: treat calls to a missing default constructor as a special case | |||
10665 | const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); | |||
10666 | unsigned MinParams = Fn->getMinRequiredArguments(); | |||
10667 | ||||
10668 | // at least / at most / exactly | |||
10669 | unsigned mode, modeCount; | |||
10670 | if (NumFormalArgs < MinParams) { | |||
10671 | if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || | |||
10672 | FnTy->isTemplateVariadic()) | |||
10673 | mode = 0; // "at least" | |||
10674 | else | |||
10675 | mode = 2; // "exactly" | |||
10676 | modeCount = MinParams; | |||
10677 | } else { | |||
10678 | if (MinParams != FnTy->getNumParams()) | |||
10679 | mode = 1; // "at most" | |||
10680 | else | |||
10681 | mode = 2; // "exactly" | |||
10682 | modeCount = FnTy->getNumParams(); | |||
10683 | } | |||
10684 | ||||
10685 | std::string Description; | |||
10686 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | |||
10687 | ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); | |||
10688 | ||||
10689 | if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) | |||
10690 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) | |||
10691 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | |||
10692 | << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; | |||
10693 | else | |||
10694 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) | |||
10695 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second | |||
10696 | << Description << mode << modeCount << NumFormalArgs; | |||
10697 | ||||
10698 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10699 | } | |||
10700 | ||||
10701 | /// Arity mismatch diagnosis specific to a function overload candidate. | |||
10702 | static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, | |||
10703 | unsigned NumFormalArgs) { | |||
10704 | if (!CheckArityMismatch(S, Cand, NumFormalArgs)) | |||
10705 | DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); | |||
10706 | } | |||
10707 | ||||
10708 | static TemplateDecl *getDescribedTemplate(Decl *Templated) { | |||
10709 | if (TemplateDecl *TD = Templated->getDescribedTemplate()) | |||
10710 | return TD; | |||
10711 | llvm_unreachable("Unsupported: Getting the described template declaration"__builtin_unreachable() | |||
10712 | " for bad deduction diagnosis")__builtin_unreachable(); | |||
10713 | } | |||
10714 | ||||
10715 | /// Diagnose a failed template-argument deduction. | |||
10716 | static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, | |||
10717 | DeductionFailureInfo &DeductionFailure, | |||
10718 | unsigned NumArgs, | |||
10719 | bool TakingCandidateAddress) { | |||
10720 | TemplateParameter Param = DeductionFailure.getTemplateParameter(); | |||
10721 | NamedDecl *ParamD; | |||
10722 | (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || | |||
10723 | (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || | |||
10724 | (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); | |||
10725 | switch (DeductionFailure.Result) { | |||
10726 | case Sema::TDK_Success: | |||
10727 | llvm_unreachable("TDK_success while diagnosing bad deduction")__builtin_unreachable(); | |||
10728 | ||||
10729 | case Sema::TDK_Incomplete: { | |||
10730 | assert(ParamD && "no parameter found for incomplete deduction result")((void)0); | |||
10731 | S.Diag(Templated->getLocation(), | |||
10732 | diag::note_ovl_candidate_incomplete_deduction) | |||
10733 | << ParamD->getDeclName(); | |||
10734 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10735 | return; | |||
10736 | } | |||
10737 | ||||
10738 | case Sema::TDK_IncompletePack: { | |||
10739 | assert(ParamD && "no parameter found for incomplete deduction result")((void)0); | |||
10740 | S.Diag(Templated->getLocation(), | |||
10741 | diag::note_ovl_candidate_incomplete_deduction_pack) | |||
10742 | << ParamD->getDeclName() | |||
10743 | << (DeductionFailure.getFirstArg()->pack_size() + 1) | |||
10744 | << *DeductionFailure.getFirstArg(); | |||
10745 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10746 | return; | |||
10747 | } | |||
10748 | ||||
10749 | case Sema::TDK_Underqualified: { | |||
10750 | assert(ParamD && "no parameter found for bad qualifiers deduction result")((void)0); | |||
10751 | TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); | |||
10752 | ||||
10753 | QualType Param = DeductionFailure.getFirstArg()->getAsType(); | |||
10754 | ||||
10755 | // Param will have been canonicalized, but it should just be a | |||
10756 | // qualified version of ParamD, so move the qualifiers to that. | |||
10757 | QualifierCollector Qs; | |||
10758 | Qs.strip(Param); | |||
10759 | QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); | |||
10760 | assert(S.Context.hasSameType(Param, NonCanonParam))((void)0); | |||
10761 | ||||
10762 | // Arg has also been canonicalized, but there's nothing we can do | |||
10763 | // about that. It also doesn't matter as much, because it won't | |||
10764 | // have any template parameters in it (because deduction isn't | |||
10765 | // done on dependent types). | |||
10766 | QualType Arg = DeductionFailure.getSecondArg()->getAsType(); | |||
10767 | ||||
10768 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) | |||
10769 | << ParamD->getDeclName() << Arg << NonCanonParam; | |||
10770 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10771 | return; | |||
10772 | } | |||
10773 | ||||
10774 | case Sema::TDK_Inconsistent: { | |||
10775 | assert(ParamD && "no parameter found for inconsistent deduction result")((void)0); | |||
10776 | int which = 0; | |||
10777 | if (isa<TemplateTypeParmDecl>(ParamD)) | |||
10778 | which = 0; | |||
10779 | else if (isa<NonTypeTemplateParmDecl>(ParamD)) { | |||
10780 | // Deduction might have failed because we deduced arguments of two | |||
10781 | // different types for a non-type template parameter. | |||
10782 | // FIXME: Use a different TDK value for this. | |||
10783 | QualType T1 = | |||
10784 | DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); | |||
10785 | QualType T2 = | |||
10786 | DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); | |||
10787 | if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { | |||
10788 | S.Diag(Templated->getLocation(), | |||
10789 | diag::note_ovl_candidate_inconsistent_deduction_types) | |||
10790 | << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 | |||
10791 | << *DeductionFailure.getSecondArg() << T2; | |||
10792 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10793 | return; | |||
10794 | } | |||
10795 | ||||
10796 | which = 1; | |||
10797 | } else { | |||
10798 | which = 2; | |||
10799 | } | |||
10800 | ||||
10801 | // Tweak the diagnostic if the problem is that we deduced packs of | |||
10802 | // different arities. We'll print the actual packs anyway in case that | |||
10803 | // includes additional useful information. | |||
10804 | if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && | |||
10805 | DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && | |||
10806 | DeductionFailure.getFirstArg()->pack_size() != | |||
10807 | DeductionFailure.getSecondArg()->pack_size()) { | |||
10808 | which = 3; | |||
10809 | } | |||
10810 | ||||
10811 | S.Diag(Templated->getLocation(), | |||
10812 | diag::note_ovl_candidate_inconsistent_deduction) | |||
10813 | << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() | |||
10814 | << *DeductionFailure.getSecondArg(); | |||
10815 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10816 | return; | |||
10817 | } | |||
10818 | ||||
10819 | case Sema::TDK_InvalidExplicitArguments: | |||
10820 | assert(ParamD && "no parameter found for invalid explicit arguments")((void)0); | |||
10821 | if (ParamD->getDeclName()) | |||
10822 | S.Diag(Templated->getLocation(), | |||
10823 | diag::note_ovl_candidate_explicit_arg_mismatch_named) | |||
10824 | << ParamD->getDeclName(); | |||
10825 | else { | |||
10826 | int index = 0; | |||
10827 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) | |||
10828 | index = TTP->getIndex(); | |||
10829 | else if (NonTypeTemplateParmDecl *NTTP | |||
10830 | = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) | |||
10831 | index = NTTP->getIndex(); | |||
10832 | else | |||
10833 | index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); | |||
10834 | S.Diag(Templated->getLocation(), | |||
10835 | diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) | |||
10836 | << (index + 1); | |||
10837 | } | |||
10838 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10839 | return; | |||
10840 | ||||
10841 | case Sema::TDK_ConstraintsNotSatisfied: { | |||
10842 | // Format the template argument list into the argument string. | |||
10843 | SmallString<128> TemplateArgString; | |||
10844 | TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); | |||
10845 | TemplateArgString = " "; | |||
10846 | TemplateArgString += S.getTemplateArgumentBindingsText( | |||
10847 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | |||
10848 | if (TemplateArgString.size() == 1) | |||
10849 | TemplateArgString.clear(); | |||
10850 | S.Diag(Templated->getLocation(), | |||
10851 | diag::note_ovl_candidate_unsatisfied_constraints) | |||
10852 | << TemplateArgString; | |||
10853 | ||||
10854 | S.DiagnoseUnsatisfiedConstraint( | |||
10855 | static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); | |||
10856 | return; | |||
10857 | } | |||
10858 | case Sema::TDK_TooManyArguments: | |||
10859 | case Sema::TDK_TooFewArguments: | |||
10860 | DiagnoseArityMismatch(S, Found, Templated, NumArgs); | |||
10861 | return; | |||
10862 | ||||
10863 | case Sema::TDK_InstantiationDepth: | |||
10864 | S.Diag(Templated->getLocation(), | |||
10865 | diag::note_ovl_candidate_instantiation_depth); | |||
10866 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10867 | return; | |||
10868 | ||||
10869 | case Sema::TDK_SubstitutionFailure: { | |||
10870 | // Format the template argument list into the argument string. | |||
10871 | SmallString<128> TemplateArgString; | |||
10872 | if (TemplateArgumentList *Args = | |||
10873 | DeductionFailure.getTemplateArgumentList()) { | |||
10874 | TemplateArgString = " "; | |||
10875 | TemplateArgString += S.getTemplateArgumentBindingsText( | |||
10876 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | |||
10877 | if (TemplateArgString.size() == 1) | |||
10878 | TemplateArgString.clear(); | |||
10879 | } | |||
10880 | ||||
10881 | // If this candidate was disabled by enable_if, say so. | |||
10882 | PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); | |||
10883 | if (PDiag && PDiag->second.getDiagID() == | |||
10884 | diag::err_typename_nested_not_found_enable_if) { | |||
10885 | // FIXME: Use the source range of the condition, and the fully-qualified | |||
10886 | // name of the enable_if template. These are both present in PDiag. | |||
10887 | S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) | |||
10888 | << "'enable_if'" << TemplateArgString; | |||
10889 | return; | |||
10890 | } | |||
10891 | ||||
10892 | // We found a specific requirement that disabled the enable_if. | |||
10893 | if (PDiag && PDiag->second.getDiagID() == | |||
10894 | diag::err_typename_nested_not_found_requirement) { | |||
10895 | S.Diag(Templated->getLocation(), | |||
10896 | diag::note_ovl_candidate_disabled_by_requirement) | |||
10897 | << PDiag->second.getStringArg(0) << TemplateArgString; | |||
10898 | return; | |||
10899 | } | |||
10900 | ||||
10901 | // Format the SFINAE diagnostic into the argument string. | |||
10902 | // FIXME: Add a general mechanism to include a PartialDiagnostic *'s | |||
10903 | // formatted message in another diagnostic. | |||
10904 | SmallString<128> SFINAEArgString; | |||
10905 | SourceRange R; | |||
10906 | if (PDiag) { | |||
10907 | SFINAEArgString = ": "; | |||
10908 | R = SourceRange(PDiag->first, PDiag->first); | |||
10909 | PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); | |||
10910 | } | |||
10911 | ||||
10912 | S.Diag(Templated->getLocation(), | |||
10913 | diag::note_ovl_candidate_substitution_failure) | |||
10914 | << TemplateArgString << SFINAEArgString << R; | |||
10915 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10916 | return; | |||
10917 | } | |||
10918 | ||||
10919 | case Sema::TDK_DeducedMismatch: | |||
10920 | case Sema::TDK_DeducedMismatchNested: { | |||
10921 | // Format the template argument list into the argument string. | |||
10922 | SmallString<128> TemplateArgString; | |||
10923 | if (TemplateArgumentList *Args = | |||
10924 | DeductionFailure.getTemplateArgumentList()) { | |||
10925 | TemplateArgString = " "; | |||
10926 | TemplateArgString += S.getTemplateArgumentBindingsText( | |||
10927 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); | |||
10928 | if (TemplateArgString.size() == 1) | |||
10929 | TemplateArgString.clear(); | |||
10930 | } | |||
10931 | ||||
10932 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) | |||
10933 | << (*DeductionFailure.getCallArgIndex() + 1) | |||
10934 | << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() | |||
10935 | << TemplateArgString | |||
10936 | << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); | |||
10937 | break; | |||
10938 | } | |||
10939 | ||||
10940 | case Sema::TDK_NonDeducedMismatch: { | |||
10941 | // FIXME: Provide a source location to indicate what we couldn't match. | |||
10942 | TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); | |||
10943 | TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); | |||
10944 | if (FirstTA.getKind() == TemplateArgument::Template && | |||
10945 | SecondTA.getKind() == TemplateArgument::Template) { | |||
10946 | TemplateName FirstTN = FirstTA.getAsTemplate(); | |||
10947 | TemplateName SecondTN = SecondTA.getAsTemplate(); | |||
10948 | if (FirstTN.getKind() == TemplateName::Template && | |||
10949 | SecondTN.getKind() == TemplateName::Template) { | |||
10950 | if (FirstTN.getAsTemplateDecl()->getName() == | |||
10951 | SecondTN.getAsTemplateDecl()->getName()) { | |||
10952 | // FIXME: This fixes a bad diagnostic where both templates are named | |||
10953 | // the same. This particular case is a bit difficult since: | |||
10954 | // 1) It is passed as a string to the diagnostic printer. | |||
10955 | // 2) The diagnostic printer only attempts to find a better | |||
10956 | // name for types, not decls. | |||
10957 | // Ideally, this should folded into the diagnostic printer. | |||
10958 | S.Diag(Templated->getLocation(), | |||
10959 | diag::note_ovl_candidate_non_deduced_mismatch_qualified) | |||
10960 | << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); | |||
10961 | return; | |||
10962 | } | |||
10963 | } | |||
10964 | } | |||
10965 | ||||
10966 | if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && | |||
10967 | !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) | |||
10968 | return; | |||
10969 | ||||
10970 | // FIXME: For generic lambda parameters, check if the function is a lambda | |||
10971 | // call operator, and if so, emit a prettier and more informative | |||
10972 | // diagnostic that mentions 'auto' and lambda in addition to | |||
10973 | // (or instead of?) the canonical template type parameters. | |||
10974 | S.Diag(Templated->getLocation(), | |||
10975 | diag::note_ovl_candidate_non_deduced_mismatch) | |||
10976 | << FirstTA << SecondTA; | |||
10977 | return; | |||
10978 | } | |||
10979 | // TODO: diagnose these individually, then kill off | |||
10980 | // note_ovl_candidate_bad_deduction, which is uselessly vague. | |||
10981 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
10982 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); | |||
10983 | MaybeEmitInheritedConstructorNote(S, Found); | |||
10984 | return; | |||
10985 | case Sema::TDK_CUDATargetMismatch: | |||
10986 | S.Diag(Templated->getLocation(), | |||
10987 | diag::note_cuda_ovl_candidate_target_mismatch); | |||
10988 | return; | |||
10989 | } | |||
10990 | } | |||
10991 | ||||
10992 | /// Diagnose a failed template-argument deduction, for function calls. | |||
10993 | static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, | |||
10994 | unsigned NumArgs, | |||
10995 | bool TakingCandidateAddress) { | |||
10996 | unsigned TDK = Cand->DeductionFailure.Result; | |||
10997 | if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { | |||
10998 | if (CheckArityMismatch(S, Cand, NumArgs)) | |||
10999 | return; | |||
11000 | } | |||
11001 | DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern | |||
11002 | Cand->DeductionFailure, NumArgs, TakingCandidateAddress); | |||
11003 | } | |||
11004 | ||||
11005 | /// CUDA: diagnose an invalid call across targets. | |||
11006 | static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { | |||
11007 | FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); | |||
11008 | FunctionDecl *Callee = Cand->Function; | |||
11009 | ||||
11010 | Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), | |||
11011 | CalleeTarget = S.IdentifyCUDATarget(Callee); | |||
11012 | ||||
11013 | std::string FnDesc; | |||
11014 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | |||
11015 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, | |||
11016 | Cand->getRewriteKind(), FnDesc); | |||
11017 | ||||
11018 | S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) | |||
11019 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template | |||
11020 | << FnDesc /* Ignored */ | |||
11021 | << CalleeTarget << CallerTarget; | |||
11022 | ||||
11023 | // This could be an implicit constructor for which we could not infer the | |||
11024 | // target due to a collsion. Diagnose that case. | |||
11025 | CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); | |||
11026 | if (Meth != nullptr && Meth->isImplicit()) { | |||
11027 | CXXRecordDecl *ParentClass = Meth->getParent(); | |||
11028 | Sema::CXXSpecialMember CSM; | |||
11029 | ||||
11030 | switch (FnKindPair.first) { | |||
11031 | default: | |||
11032 | return; | |||
11033 | case oc_implicit_default_constructor: | |||
11034 | CSM = Sema::CXXDefaultConstructor; | |||
11035 | break; | |||
11036 | case oc_implicit_copy_constructor: | |||
11037 | CSM = Sema::CXXCopyConstructor; | |||
11038 | break; | |||
11039 | case oc_implicit_move_constructor: | |||
11040 | CSM = Sema::CXXMoveConstructor; | |||
11041 | break; | |||
11042 | case oc_implicit_copy_assignment: | |||
11043 | CSM = Sema::CXXCopyAssignment; | |||
11044 | break; | |||
11045 | case oc_implicit_move_assignment: | |||
11046 | CSM = Sema::CXXMoveAssignment; | |||
11047 | break; | |||
11048 | }; | |||
11049 | ||||
11050 | bool ConstRHS = false; | |||
11051 | if (Meth->getNumParams()) { | |||
11052 | if (const ReferenceType *RT = | |||
11053 | Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { | |||
11054 | ConstRHS = RT->getPointeeType().isConstQualified(); | |||
11055 | } | |||
11056 | } | |||
11057 | ||||
11058 | S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, | |||
11059 | /* ConstRHS */ ConstRHS, | |||
11060 | /* Diagnose */ true); | |||
11061 | } | |||
11062 | } | |||
11063 | ||||
11064 | static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { | |||
11065 | FunctionDecl *Callee = Cand->Function; | |||
11066 | EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); | |||
11067 | ||||
11068 | S.Diag(Callee->getLocation(), | |||
11069 | diag::note_ovl_candidate_disabled_by_function_cond_attr) | |||
11070 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | |||
11071 | } | |||
11072 | ||||
11073 | static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { | |||
11074 | ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); | |||
11075 | assert(ES.isExplicit() && "not an explicit candidate")((void)0); | |||
11076 | ||||
11077 | unsigned Kind; | |||
11078 | switch (Cand->Function->getDeclKind()) { | |||
11079 | case Decl::Kind::CXXConstructor: | |||
11080 | Kind = 0; | |||
11081 | break; | |||
11082 | case Decl::Kind::CXXConversion: | |||
11083 | Kind = 1; | |||
11084 | break; | |||
11085 | case Decl::Kind::CXXDeductionGuide: | |||
11086 | Kind = Cand->Function->isImplicit() ? 0 : 2; | |||
11087 | break; | |||
11088 | default: | |||
11089 | llvm_unreachable("invalid Decl")__builtin_unreachable(); | |||
11090 | } | |||
11091 | ||||
11092 | // Note the location of the first (in-class) declaration; a redeclaration | |||
11093 | // (particularly an out-of-class definition) will typically lack the | |||
11094 | // 'explicit' specifier. | |||
11095 | // FIXME: This is probably a good thing to do for all 'candidate' notes. | |||
11096 | FunctionDecl *First = Cand->Function->getFirstDecl(); | |||
11097 | if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) | |||
11098 | First = Pattern->getFirstDecl(); | |||
11099 | ||||
11100 | S.Diag(First->getLocation(), | |||
11101 | diag::note_ovl_candidate_explicit) | |||
11102 | << Kind << (ES.getExpr() ? 1 : 0) | |||
11103 | << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); | |||
11104 | } | |||
11105 | ||||
11106 | /// Generates a 'note' diagnostic for an overload candidate. We've | |||
11107 | /// already generated a primary error at the call site. | |||
11108 | /// | |||
11109 | /// It really does need to be a single diagnostic with its caret | |||
11110 | /// pointed at the candidate declaration. Yes, this creates some | |||
11111 | /// major challenges of technical writing. Yes, this makes pointing | |||
11112 | /// out problems with specific arguments quite awkward. It's still | |||
11113 | /// better than generating twenty screens of text for every failed | |||
11114 | /// overload. | |||
11115 | /// | |||
11116 | /// It would be great to be able to express per-candidate problems | |||
11117 | /// more richly for those diagnostic clients that cared, but we'd | |||
11118 | /// still have to be just as careful with the default diagnostics. | |||
11119 | /// \param CtorDestAS Addr space of object being constructed (for ctor | |||
11120 | /// candidates only). | |||
11121 | static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, | |||
11122 | unsigned NumArgs, | |||
11123 | bool TakingCandidateAddress, | |||
11124 | LangAS CtorDestAS = LangAS::Default) { | |||
11125 | FunctionDecl *Fn = Cand->Function; | |||
11126 | if (shouldSkipNotingLambdaConversionDecl(Fn)) | |||
11127 | return; | |||
11128 | ||||
11129 | // Note deleted candidates, but only if they're viable. | |||
11130 | if (Cand->Viable) { | |||
11131 | if (Fn->isDeleted()) { | |||
11132 | std::string FnDesc; | |||
11133 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | |||
11134 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, | |||
11135 | Cand->getRewriteKind(), FnDesc); | |||
11136 | ||||
11137 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) | |||
11138 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc | |||
11139 | << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); | |||
11140 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
11141 | return; | |||
11142 | } | |||
11143 | ||||
11144 | // We don't really have anything else to say about viable candidates. | |||
11145 | S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | |||
11146 | return; | |||
11147 | } | |||
11148 | ||||
11149 | switch (Cand->FailureKind) { | |||
11150 | case ovl_fail_too_many_arguments: | |||
11151 | case ovl_fail_too_few_arguments: | |||
11152 | return DiagnoseArityMismatch(S, Cand, NumArgs); | |||
11153 | ||||
11154 | case ovl_fail_bad_deduction: | |||
11155 | return DiagnoseBadDeduction(S, Cand, NumArgs, | |||
11156 | TakingCandidateAddress); | |||
11157 | ||||
11158 | case ovl_fail_illegal_constructor: { | |||
11159 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) | |||
11160 | << (Fn->getPrimaryTemplate() ? 1 : 0); | |||
11161 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
11162 | return; | |||
11163 | } | |||
11164 | ||||
11165 | case ovl_fail_object_addrspace_mismatch: { | |||
11166 | Qualifiers QualsForPrinting; | |||
11167 | QualsForPrinting.setAddressSpace(CtorDestAS); | |||
11168 | S.Diag(Fn->getLocation(), | |||
11169 | diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) | |||
11170 | << QualsForPrinting; | |||
11171 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
11172 | return; | |||
11173 | } | |||
11174 | ||||
11175 | case ovl_fail_trivial_conversion: | |||
11176 | case ovl_fail_bad_final_conversion: | |||
11177 | case ovl_fail_final_conversion_not_exact: | |||
11178 | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | |||
11179 | ||||
11180 | case ovl_fail_bad_conversion: { | |||
11181 | unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); | |||
11182 | for (unsigned N = Cand->Conversions.size(); I != N; ++I) | |||
11183 | if (Cand->Conversions[I].isBad()) | |||
11184 | return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); | |||
11185 | ||||
11186 | // FIXME: this currently happens when we're called from SemaInit | |||
11187 | // when user-conversion overload fails. Figure out how to handle | |||
11188 | // those conditions and diagnose them well. | |||
11189 | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); | |||
11190 | } | |||
11191 | ||||
11192 | case ovl_fail_bad_target: | |||
11193 | return DiagnoseBadTarget(S, Cand); | |||
11194 | ||||
11195 | case ovl_fail_enable_if: | |||
11196 | return DiagnoseFailedEnableIfAttr(S, Cand); | |||
11197 | ||||
11198 | case ovl_fail_explicit: | |||
11199 | return DiagnoseFailedExplicitSpec(S, Cand); | |||
11200 | ||||
11201 | case ovl_fail_inhctor_slice: | |||
11202 | // It's generally not interesting to note copy/move constructors here. | |||
11203 | if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) | |||
11204 | return; | |||
11205 | S.Diag(Fn->getLocation(), | |||
11206 | diag::note_ovl_candidate_inherited_constructor_slice) | |||
11207 | << (Fn->getPrimaryTemplate() ? 1 : 0) | |||
11208 | << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); | |||
11209 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); | |||
11210 | return; | |||
11211 | ||||
11212 | case ovl_fail_addr_not_available: { | |||
11213 | bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); | |||
11214 | (void)Available; | |||
11215 | assert(!Available)((void)0); | |||
11216 | break; | |||
11217 | } | |||
11218 | case ovl_non_default_multiversion_function: | |||
11219 | // Do nothing, these should simply be ignored. | |||
11220 | break; | |||
11221 | ||||
11222 | case ovl_fail_constraints_not_satisfied: { | |||
11223 | std::string FnDesc; | |||
11224 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = | |||
11225 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, | |||
11226 | Cand->getRewriteKind(), FnDesc); | |||
11227 | ||||
11228 | S.Diag(Fn->getLocation(), | |||
11229 | diag::note_ovl_candidate_constraints_not_satisfied) | |||
11230 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template | |||
11231 | << FnDesc /* Ignored */; | |||
11232 | ConstraintSatisfaction Satisfaction; | |||
11233 | if (S.CheckFunctionConstraints(Fn, Satisfaction)) | |||
11234 | break; | |||
11235 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); | |||
11236 | } | |||
11237 | } | |||
11238 | } | |||
11239 | ||||
11240 | static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { | |||
11241 | if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) | |||
11242 | return; | |||
11243 | ||||
11244 | // Desugar the type of the surrogate down to a function type, | |||
11245 | // retaining as many typedefs as possible while still showing | |||
11246 | // the function type (and, therefore, its parameter types). | |||
11247 | QualType FnType = Cand->Surrogate->getConversionType(); | |||
11248 | bool isLValueReference = false; | |||
11249 | bool isRValueReference = false; | |||
11250 | bool isPointer = false; | |||
11251 | if (const LValueReferenceType *FnTypeRef = | |||
11252 | FnType->getAs<LValueReferenceType>()) { | |||
11253 | FnType = FnTypeRef->getPointeeType(); | |||
11254 | isLValueReference = true; | |||
11255 | } else if (const RValueReferenceType *FnTypeRef = | |||
11256 | FnType->getAs<RValueReferenceType>()) { | |||
11257 | FnType = FnTypeRef->getPointeeType(); | |||
11258 | isRValueReference = true; | |||
11259 | } | |||
11260 | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { | |||
11261 | FnType = FnTypePtr->getPointeeType(); | |||
11262 | isPointer = true; | |||
11263 | } | |||
11264 | // Desugar down to a function type. | |||
11265 | FnType = QualType(FnType->getAs<FunctionType>(), 0); | |||
11266 | // Reconstruct the pointer/reference as appropriate. | |||
11267 | if (isPointer) FnType = S.Context.getPointerType(FnType); | |||
11268 | if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); | |||
11269 | if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); | |||
11270 | ||||
11271 | S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) | |||
11272 | << FnType; | |||
11273 | } | |||
11274 | ||||
11275 | static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, | |||
11276 | SourceLocation OpLoc, | |||
11277 | OverloadCandidate *Cand) { | |||
11278 | assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((void)0); | |||
11279 | std::string TypeStr("operator"); | |||
11280 | TypeStr += Opc; | |||
11281 | TypeStr += "("; | |||
11282 | TypeStr += Cand->BuiltinParamTypes[0].getAsString(); | |||
11283 | if (Cand->Conversions.size() == 1) { | |||
11284 | TypeStr += ")"; | |||
11285 | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; | |||
11286 | } else { | |||
11287 | TypeStr += ", "; | |||
11288 | TypeStr += Cand->BuiltinParamTypes[1].getAsString(); | |||
11289 | TypeStr += ")"; | |||
11290 | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; | |||
11291 | } | |||
11292 | } | |||
11293 | ||||
11294 | static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, | |||
11295 | OverloadCandidate *Cand) { | |||
11296 | for (const ImplicitConversionSequence &ICS : Cand->Conversions) { | |||
11297 | if (ICS.isBad()) break; // all meaningless after first invalid | |||
11298 | if (!ICS.isAmbiguous()) continue; | |||
11299 | ||||
11300 | ICS.DiagnoseAmbiguousConversion( | |||
11301 | S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); | |||
11302 | } | |||
11303 | } | |||
11304 | ||||
11305 | static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { | |||
11306 | if (Cand->Function) | |||
11307 | return Cand->Function->getLocation(); | |||
11308 | if (Cand->IsSurrogate) | |||
11309 | return Cand->Surrogate->getLocation(); | |||
11310 | return SourceLocation(); | |||
11311 | } | |||
11312 | ||||
11313 | static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { | |||
11314 | switch ((Sema::TemplateDeductionResult)DFI.Result) { | |||
11315 | case Sema::TDK_Success: | |||
11316 | case Sema::TDK_NonDependentConversionFailure: | |||
11317 | llvm_unreachable("non-deduction failure while diagnosing bad deduction")__builtin_unreachable(); | |||
11318 | ||||
11319 | case Sema::TDK_Invalid: | |||
11320 | case Sema::TDK_Incomplete: | |||
11321 | case Sema::TDK_IncompletePack: | |||
11322 | return 1; | |||
11323 | ||||
11324 | case Sema::TDK_Underqualified: | |||
11325 | case Sema::TDK_Inconsistent: | |||
11326 | return 2; | |||
11327 | ||||
11328 | case Sema::TDK_SubstitutionFailure: | |||
11329 | case Sema::TDK_DeducedMismatch: | |||
11330 | case Sema::TDK_ConstraintsNotSatisfied: | |||
11331 | case Sema::TDK_DeducedMismatchNested: | |||
11332 | case Sema::TDK_NonDeducedMismatch: | |||
11333 | case Sema::TDK_MiscellaneousDeductionFailure: | |||
11334 | case Sema::TDK_CUDATargetMismatch: | |||
11335 | return 3; | |||
11336 | ||||
11337 | case Sema::TDK_InstantiationDepth: | |||
11338 | return 4; | |||
11339 | ||||
11340 | case Sema::TDK_InvalidExplicitArguments: | |||
11341 | return 5; | |||
11342 | ||||
11343 | case Sema::TDK_TooManyArguments: | |||
11344 | case Sema::TDK_TooFewArguments: | |||
11345 | return 6; | |||
11346 | } | |||
11347 | llvm_unreachable("Unhandled deduction result")__builtin_unreachable(); | |||
11348 | } | |||
11349 | ||||
11350 | namespace { | |||
11351 | struct CompareOverloadCandidatesForDisplay { | |||
11352 | Sema &S; | |||
11353 | SourceLocation Loc; | |||
11354 | size_t NumArgs; | |||
11355 | OverloadCandidateSet::CandidateSetKind CSK; | |||
11356 | ||||
11357 | CompareOverloadCandidatesForDisplay( | |||
11358 | Sema &S, SourceLocation Loc, size_t NArgs, | |||
11359 | OverloadCandidateSet::CandidateSetKind CSK) | |||
11360 | : S(S), NumArgs(NArgs), CSK(CSK) {} | |||
11361 | ||||
11362 | OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { | |||
11363 | // If there are too many or too few arguments, that's the high-order bit we | |||
11364 | // want to sort by, even if the immediate failure kind was something else. | |||
11365 | if (C->FailureKind == ovl_fail_too_many_arguments || | |||
11366 | C->FailureKind == ovl_fail_too_few_arguments) | |||
11367 | return static_cast<OverloadFailureKind>(C->FailureKind); | |||
11368 | ||||
11369 | if (C->Function) { | |||
11370 | if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) | |||
11371 | return ovl_fail_too_many_arguments; | |||
11372 | if (NumArgs < C->Function->getMinRequiredArguments()) | |||
11373 | return ovl_fail_too_few_arguments; | |||
11374 | } | |||
11375 | ||||
11376 | return static_cast<OverloadFailureKind>(C->FailureKind); | |||
11377 | } | |||
11378 | ||||
11379 | bool operator()(const OverloadCandidate *L, | |||
11380 | const OverloadCandidate *R) { | |||
11381 | // Fast-path this check. | |||
11382 | if (L == R) return false; | |||
11383 | ||||
11384 | // Order first by viability. | |||
11385 | if (L->Viable) { | |||
11386 | if (!R->Viable) return true; | |||
11387 | ||||
11388 | // TODO: introduce a tri-valued comparison for overload | |||
11389 | // candidates. Would be more worthwhile if we had a sort | |||
11390 | // that could exploit it. | |||
11391 | if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) | |||
11392 | return true; | |||
11393 | if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) | |||
11394 | return false; | |||
11395 | } else if (R->Viable) | |||
11396 | return false; | |||
11397 | ||||
11398 | assert(L->Viable == R->Viable)((void)0); | |||
11399 | ||||
11400 | // Criteria by which we can sort non-viable candidates: | |||
11401 | if (!L->Viable) { | |||
11402 | OverloadFailureKind LFailureKind = EffectiveFailureKind(L); | |||
11403 | OverloadFailureKind RFailureKind = EffectiveFailureKind(R); | |||
11404 | ||||
11405 | // 1. Arity mismatches come after other candidates. | |||
11406 | if (LFailureKind == ovl_fail_too_many_arguments || | |||
11407 | LFailureKind == ovl_fail_too_few_arguments) { | |||
11408 | if (RFailureKind == ovl_fail_too_many_arguments || | |||
11409 | RFailureKind == ovl_fail_too_few_arguments) { | |||
11410 | int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); | |||
11411 | int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); | |||
11412 | if (LDist == RDist) { | |||
11413 | if (LFailureKind == RFailureKind) | |||
11414 | // Sort non-surrogates before surrogates. | |||
11415 | return !L->IsSurrogate && R->IsSurrogate; | |||
11416 | // Sort candidates requiring fewer parameters than there were | |||
11417 | // arguments given after candidates requiring more parameters | |||
11418 | // than there were arguments given. | |||
11419 | return LFailureKind == ovl_fail_too_many_arguments; | |||
11420 | } | |||
11421 | return LDist < RDist; | |||
11422 | } | |||
11423 | return false; | |||
11424 | } | |||
11425 | if (RFailureKind == ovl_fail_too_many_arguments || | |||
11426 | RFailureKind == ovl_fail_too_few_arguments) | |||
11427 | return true; | |||
11428 | ||||
11429 | // 2. Bad conversions come first and are ordered by the number | |||
11430 | // of bad conversions and quality of good conversions. | |||
11431 | if (LFailureKind == ovl_fail_bad_conversion) { | |||
11432 | if (RFailureKind != ovl_fail_bad_conversion) | |||
11433 | return true; | |||
11434 | ||||
11435 | // The conversion that can be fixed with a smaller number of changes, | |||
11436 | // comes first. | |||
11437 | unsigned numLFixes = L->Fix.NumConversionsFixed; | |||
11438 | unsigned numRFixes = R->Fix.NumConversionsFixed; | |||
11439 | numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes; | |||
11440 | numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes; | |||
11441 | if (numLFixes != numRFixes) { | |||
11442 | return numLFixes < numRFixes; | |||
11443 | } | |||
11444 | ||||
11445 | // If there's any ordering between the defined conversions... | |||
11446 | // FIXME: this might not be transitive. | |||
11447 | assert(L->Conversions.size() == R->Conversions.size())((void)0); | |||
11448 | ||||
11449 | int leftBetter = 0; | |||
11450 | unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); | |||
11451 | for (unsigned E = L->Conversions.size(); I != E; ++I) { | |||
11452 | switch (CompareImplicitConversionSequences(S, Loc, | |||
11453 | L->Conversions[I], | |||
11454 | R->Conversions[I])) { | |||
11455 | case ImplicitConversionSequence::Better: | |||
11456 | leftBetter++; | |||
11457 | break; | |||
11458 | ||||
11459 | case ImplicitConversionSequence::Worse: | |||
11460 | leftBetter--; | |||
11461 | break; | |||
11462 | ||||
11463 | case ImplicitConversionSequence::Indistinguishable: | |||
11464 | break; | |||
11465 | } | |||
11466 | } | |||
11467 | if (leftBetter > 0) return true; | |||
11468 | if (leftBetter < 0) return false; | |||
11469 | ||||
11470 | } else if (RFailureKind == ovl_fail_bad_conversion) | |||
11471 | return false; | |||
11472 | ||||
11473 | if (LFailureKind == ovl_fail_bad_deduction) { | |||
11474 | if (RFailureKind != ovl_fail_bad_deduction) | |||
11475 | return true; | |||
11476 | ||||
11477 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) | |||
11478 | return RankDeductionFailure(L->DeductionFailure) | |||
11479 | < RankDeductionFailure(R->DeductionFailure); | |||
11480 | } else if (RFailureKind == ovl_fail_bad_deduction) | |||
11481 | return false; | |||
11482 | ||||
11483 | // TODO: others? | |||
11484 | } | |||
11485 | ||||
11486 | // Sort everything else by location. | |||
11487 | SourceLocation LLoc = GetLocationForCandidate(L); | |||
11488 | SourceLocation RLoc = GetLocationForCandidate(R); | |||
11489 | ||||
11490 | // Put candidates without locations (e.g. builtins) at the end. | |||
11491 | if (LLoc.isInvalid()) return false; | |||
11492 | if (RLoc.isInvalid()) return true; | |||
11493 | ||||
11494 | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | |||
11495 | } | |||
11496 | }; | |||
11497 | } | |||
11498 | ||||
11499 | /// CompleteNonViableCandidate - Normally, overload resolution only | |||
11500 | /// computes up to the first bad conversion. Produces the FixIt set if | |||
11501 | /// possible. | |||
11502 | static void | |||
11503 | CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, | |||
11504 | ArrayRef<Expr *> Args, | |||
11505 | OverloadCandidateSet::CandidateSetKind CSK) { | |||
11506 | assert(!Cand->Viable)((void)0); | |||
11507 | ||||
11508 | // Don't do anything on failures other than bad conversion. | |||
11509 | if (Cand->FailureKind != ovl_fail_bad_conversion) | |||
11510 | return; | |||
11511 | ||||
11512 | // We only want the FixIts if all the arguments can be corrected. | |||
11513 | bool Unfixable = false; | |||
11514 | // Use a implicit copy initialization to check conversion fixes. | |||
11515 | Cand->Fix.setConversionChecker(TryCopyInitialization); | |||
11516 | ||||
11517 | // Attempt to fix the bad conversion. | |||
11518 | unsigned ConvCount = Cand->Conversions.size(); | |||
11519 | for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; | |||
11520 | ++ConvIdx) { | |||
11521 | assert(ConvIdx != ConvCount && "no bad conversion in candidate")((void)0); | |||
11522 | if (Cand->Conversions[ConvIdx].isInitialized() && | |||
11523 | Cand->Conversions[ConvIdx].isBad()) { | |||
11524 | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); | |||
11525 | break; | |||
11526 | } | |||
11527 | } | |||
11528 | ||||
11529 | // FIXME: this should probably be preserved from the overload | |||
11530 | // operation somehow. | |||
11531 | bool SuppressUserConversions = false; | |||
11532 | ||||
11533 | unsigned ConvIdx = 0; | |||
11534 | unsigned ArgIdx = 0; | |||
11535 | ArrayRef<QualType> ParamTypes; | |||
11536 | bool Reversed = Cand->isReversed(); | |||
11537 | ||||
11538 | if (Cand->IsSurrogate) { | |||
11539 | QualType ConvType | |||
11540 | = Cand->Surrogate->getConversionType().getNonReferenceType(); | |||
11541 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | |||
11542 | ConvType = ConvPtrType->getPointeeType(); | |||
11543 | ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); | |||
11544 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. | |||
11545 | ConvIdx = 1; | |||
11546 | } else if (Cand->Function) { | |||
11547 | ParamTypes = | |||
11548 | Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); | |||
11549 | if (isa<CXXMethodDecl>(Cand->Function) && | |||
11550 | !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { | |||
11551 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. | |||
11552 | ConvIdx = 1; | |||
11553 | if (CSK == OverloadCandidateSet::CSK_Operator && | |||
11554 | Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) | |||
11555 | // Argument 0 is 'this', which doesn't have a corresponding parameter. | |||
11556 | ArgIdx = 1; | |||
11557 | } | |||
11558 | } else { | |||
11559 | // Builtin operator. | |||
11560 | assert(ConvCount <= 3)((void)0); | |||
11561 | ParamTypes = Cand->BuiltinParamTypes; | |||
11562 | } | |||
11563 | ||||
11564 | // Fill in the rest of the conversions. | |||
11565 | for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; | |||
11566 | ConvIdx != ConvCount; | |||
11567 | ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { | |||
11568 | assert(ArgIdx < Args.size() && "no argument for this arg conversion")((void)0); | |||
11569 | if (Cand->Conversions[ConvIdx].isInitialized()) { | |||
11570 | // We've already checked this conversion. | |||
11571 | } else if (ParamIdx < ParamTypes.size()) { | |||
11572 | if (ParamTypes[ParamIdx]->isDependentType()) | |||
11573 | Cand->Conversions[ConvIdx].setAsIdentityConversion( | |||
11574 | Args[ArgIdx]->getType()); | |||
11575 | else { | |||
11576 | Cand->Conversions[ConvIdx] = | |||
11577 | TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], | |||
11578 | SuppressUserConversions, | |||
11579 | /*InOverloadResolution=*/true, | |||
11580 | /*AllowObjCWritebackConversion=*/ | |||
11581 | S.getLangOpts().ObjCAutoRefCount); | |||
11582 | // Store the FixIt in the candidate if it exists. | |||
11583 | if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) | |||
11584 | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); | |||
11585 | } | |||
11586 | } else | |||
11587 | Cand->Conversions[ConvIdx].setEllipsis(); | |||
11588 | } | |||
11589 | } | |||
11590 | ||||
11591 | SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( | |||
11592 | Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, | |||
11593 | SourceLocation OpLoc, | |||
11594 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { | |||
11595 | // Sort the candidates by viability and position. Sorting directly would | |||
11596 | // be prohibitive, so we make a set of pointers and sort those. | |||
11597 | SmallVector<OverloadCandidate*, 32> Cands; | |||
11598 | if (OCD == OCD_AllCandidates) Cands.reserve(size()); | |||
11599 | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | |||
11600 | if (!Filter(*Cand)) | |||
11601 | continue; | |||
11602 | switch (OCD) { | |||
11603 | case OCD_AllCandidates: | |||
11604 | if (!Cand->Viable) { | |||
11605 | if (!Cand->Function && !Cand->IsSurrogate) { | |||
11606 | // This a non-viable builtin candidate. We do not, in general, | |||
11607 | // want to list every possible builtin candidate. | |||
11608 | continue; | |||
11609 | } | |||
11610 | CompleteNonViableCandidate(S, Cand, Args, Kind); | |||
11611 | } | |||
11612 | break; | |||
11613 | ||||
11614 | case OCD_ViableCandidates: | |||
11615 | if (!Cand->Viable) | |||
11616 | continue; | |||
11617 | break; | |||
11618 | ||||
11619 | case OCD_AmbiguousCandidates: | |||
11620 | if (!Cand->Best) | |||
11621 | continue; | |||
11622 | break; | |||
11623 | } | |||
11624 | ||||
11625 | Cands.push_back(Cand); | |||
11626 | } | |||
11627 | ||||
11628 | llvm::stable_sort( | |||
11629 | Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); | |||
11630 | ||||
11631 | return Cands; | |||
11632 | } | |||
11633 | ||||
11634 | bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, | |||
11635 | SourceLocation OpLoc) { | |||
11636 | bool DeferHint = false; | |||
11637 | if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { | |||
11638 | // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or | |||
11639 | // host device candidates. | |||
11640 | auto WrongSidedCands = | |||
11641 | CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { | |||
11642 | return (Cand.Viable == false && | |||
11643 | Cand.FailureKind == ovl_fail_bad_target) || | |||
11644 | (Cand.Function && | |||
11645 | Cand.Function->template hasAttr<CUDAHostAttr>() && | |||
11646 | Cand.Function->template hasAttr<CUDADeviceAttr>()); | |||
11647 | }); | |||
11648 | DeferHint = !WrongSidedCands.empty(); | |||
11649 | } | |||
11650 | return DeferHint; | |||
11651 | } | |||
11652 | ||||
11653 | /// When overload resolution fails, prints diagnostic messages containing the | |||
11654 | /// candidates in the candidate set. | |||
11655 | void OverloadCandidateSet::NoteCandidates( | |||
11656 | PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, | |||
11657 | ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, | |||
11658 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { | |||
11659 | ||||
11660 | auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); | |||
11661 | ||||
11662 | S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); | |||
11663 | ||||
11664 | NoteCandidates(S, Args, Cands, Opc, OpLoc); | |||
11665 | ||||
11666 | if (OCD == OCD_AmbiguousCandidates) | |||
11667 | MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); | |||
11668 | } | |||
11669 | ||||
11670 | void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, | |||
11671 | ArrayRef<OverloadCandidate *> Cands, | |||
11672 | StringRef Opc, SourceLocation OpLoc) { | |||
11673 | bool ReportedAmbiguousConversions = false; | |||
11674 | ||||
11675 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | |||
11676 | unsigned CandsShown = 0; | |||
11677 | auto I = Cands.begin(), E = Cands.end(); | |||
11678 | for (; I != E; ++I) { | |||
11679 | OverloadCandidate *Cand = *I; | |||
11680 | ||||
11681 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && | |||
11682 | ShowOverloads == Ovl_Best) { | |||
11683 | break; | |||
11684 | } | |||
11685 | ++CandsShown; | |||
11686 | ||||
11687 | if (Cand->Function) | |||
11688 | NoteFunctionCandidate(S, Cand, Args.size(), | |||
11689 | /*TakingCandidateAddress=*/false, DestAS); | |||
11690 | else if (Cand->IsSurrogate) | |||
11691 | NoteSurrogateCandidate(S, Cand); | |||
11692 | else { | |||
11693 | assert(Cand->Viable &&((void)0) | |||
11694 | "Non-viable built-in candidates are not added to Cands.")((void)0); | |||
11695 | // Generally we only see ambiguities including viable builtin | |||
11696 | // operators if overload resolution got screwed up by an | |||
11697 | // ambiguous user-defined conversion. | |||
11698 | // | |||
11699 | // FIXME: It's quite possible for different conversions to see | |||
11700 | // different ambiguities, though. | |||
11701 | if (!ReportedAmbiguousConversions) { | |||
11702 | NoteAmbiguousUserConversions(S, OpLoc, Cand); | |||
11703 | ReportedAmbiguousConversions = true; | |||
11704 | } | |||
11705 | ||||
11706 | // If this is a viable builtin, print it. | |||
11707 | NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); | |||
11708 | } | |||
11709 | } | |||
11710 | ||||
11711 | // Inform S.Diags that we've shown an overload set with N elements. This may | |||
11712 | // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). | |||
11713 | S.Diags.overloadCandidatesShown(CandsShown); | |||
11714 | ||||
11715 | if (I != E) | |||
11716 | S.Diag(OpLoc, diag::note_ovl_too_many_candidates, | |||
11717 | shouldDeferDiags(S, Args, OpLoc)) | |||
11718 | << int(E - I); | |||
11719 | } | |||
11720 | ||||
11721 | static SourceLocation | |||
11722 | GetLocationForCandidate(const TemplateSpecCandidate *Cand) { | |||
11723 | return Cand->Specialization ? Cand->Specialization->getLocation() | |||
11724 | : SourceLocation(); | |||
11725 | } | |||
11726 | ||||
11727 | namespace { | |||
11728 | struct CompareTemplateSpecCandidatesForDisplay { | |||
11729 | Sema &S; | |||
11730 | CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} | |||
11731 | ||||
11732 | bool operator()(const TemplateSpecCandidate *L, | |||
11733 | const TemplateSpecCandidate *R) { | |||
11734 | // Fast-path this check. | |||
11735 | if (L == R) | |||
11736 | return false; | |||
11737 | ||||
11738 | // Assuming that both candidates are not matches... | |||
11739 | ||||
11740 | // Sort by the ranking of deduction failures. | |||
11741 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) | |||
11742 | return RankDeductionFailure(L->DeductionFailure) < | |||
11743 | RankDeductionFailure(R->DeductionFailure); | |||
11744 | ||||
11745 | // Sort everything else by location. | |||
11746 | SourceLocation LLoc = GetLocationForCandidate(L); | |||
11747 | SourceLocation RLoc = GetLocationForCandidate(R); | |||
11748 | ||||
11749 | // Put candidates without locations (e.g. builtins) at the end. | |||
11750 | if (LLoc.isInvalid()) | |||
11751 | return false; | |||
11752 | if (RLoc.isInvalid()) | |||
11753 | return true; | |||
11754 | ||||
11755 | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | |||
11756 | } | |||
11757 | }; | |||
11758 | } | |||
11759 | ||||
11760 | /// Diagnose a template argument deduction failure. | |||
11761 | /// We are treating these failures as overload failures due to bad | |||
11762 | /// deductions. | |||
11763 | void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, | |||
11764 | bool ForTakingAddress) { | |||
11765 | DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern | |||
11766 | DeductionFailure, /*NumArgs=*/0, ForTakingAddress); | |||
11767 | } | |||
11768 | ||||
11769 | void TemplateSpecCandidateSet::destroyCandidates() { | |||
11770 | for (iterator i = begin(), e = end(); i != e; ++i) { | |||
11771 | i->DeductionFailure.Destroy(); | |||
11772 | } | |||
11773 | } | |||
11774 | ||||
11775 | void TemplateSpecCandidateSet::clear() { | |||
11776 | destroyCandidates(); | |||
11777 | Candidates.clear(); | |||
11778 | } | |||
11779 | ||||
11780 | /// NoteCandidates - When no template specialization match is found, prints | |||
11781 | /// diagnostic messages containing the non-matching specializations that form | |||
11782 | /// the candidate set. | |||
11783 | /// This is analoguous to OverloadCandidateSet::NoteCandidates() with | |||
11784 | /// OCD == OCD_AllCandidates and Cand->Viable == false. | |||
11785 | void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { | |||
11786 | // Sort the candidates by position (assuming no candidate is a match). | |||
11787 | // Sorting directly would be prohibitive, so we make a set of pointers | |||
11788 | // and sort those. | |||
11789 | SmallVector<TemplateSpecCandidate *, 32> Cands; | |||
11790 | Cands.reserve(size()); | |||
11791 | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { | |||
11792 | if (Cand->Specialization) | |||
11793 | Cands.push_back(Cand); | |||
11794 | // Otherwise, this is a non-matching builtin candidate. We do not, | |||
11795 | // in general, want to list every possible builtin candidate. | |||
11796 | } | |||
11797 | ||||
11798 | llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); | |||
11799 | ||||
11800 | // FIXME: Perhaps rename OverloadsShown and getShowOverloads() | |||
11801 | // for generalization purposes (?). | |||
11802 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); | |||
11803 | ||||
11804 | SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; | |||
11805 | unsigned CandsShown = 0; | |||
11806 | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { | |||
11807 | TemplateSpecCandidate *Cand = *I; | |||
11808 | ||||
11809 | // Set an arbitrary limit on the number of candidates we'll spam | |||
11810 | // the user with. FIXME: This limit should depend on details of the | |||
11811 | // candidate list. | |||
11812 | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) | |||
11813 | break; | |||
11814 | ++CandsShown; | |||
11815 | ||||
11816 | assert(Cand->Specialization &&((void)0) | |||
11817 | "Non-matching built-in candidates are not added to Cands.")((void)0); | |||
11818 | Cand->NoteDeductionFailure(S, ForTakingAddress); | |||
11819 | } | |||
11820 | ||||
11821 | if (I != E) | |||
11822 | S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); | |||
11823 | } | |||
11824 | ||||
11825 | // [PossiblyAFunctionType] --> [Return] | |||
11826 | // NonFunctionType --> NonFunctionType | |||
11827 | // R (A) --> R(A) | |||
11828 | // R (*)(A) --> R (A) | |||
11829 | // R (&)(A) --> R (A) | |||
11830 | // R (S::*)(A) --> R (A) | |||
11831 | QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { | |||
11832 | QualType Ret = PossiblyAFunctionType; | |||
11833 | if (const PointerType *ToTypePtr = | |||
11834 | PossiblyAFunctionType->getAs<PointerType>()) | |||
11835 | Ret = ToTypePtr->getPointeeType(); | |||
11836 | else if (const ReferenceType *ToTypeRef = | |||
11837 | PossiblyAFunctionType->getAs<ReferenceType>()) | |||
11838 | Ret = ToTypeRef->getPointeeType(); | |||
11839 | else if (const MemberPointerType *MemTypePtr = | |||
11840 | PossiblyAFunctionType->getAs<MemberPointerType>()) | |||
11841 | Ret = MemTypePtr->getPointeeType(); | |||
11842 | Ret = | |||
11843 | Context.getCanonicalType(Ret).getUnqualifiedType(); | |||
11844 | return Ret; | |||
11845 | } | |||
11846 | ||||
11847 | static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, | |||
11848 | bool Complain = true) { | |||
11849 | if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | |||
11850 | S.DeduceReturnType(FD, Loc, Complain)) | |||
11851 | return true; | |||
11852 | ||||
11853 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); | |||
11854 | if (S.getLangOpts().CPlusPlus17 && | |||
11855 | isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && | |||
11856 | !S.ResolveExceptionSpec(Loc, FPT)) | |||
11857 | return true; | |||
11858 | ||||
11859 | return false; | |||
11860 | } | |||
11861 | ||||
11862 | namespace { | |||
11863 | // A helper class to help with address of function resolution | |||
11864 | // - allows us to avoid passing around all those ugly parameters | |||
11865 | class AddressOfFunctionResolver { | |||
11866 | Sema& S; | |||
11867 | Expr* SourceExpr; | |||
11868 | const QualType& TargetType; | |||
11869 | QualType TargetFunctionType; // Extracted function type from target type | |||
11870 | ||||
11871 | bool Complain; | |||
11872 | //DeclAccessPair& ResultFunctionAccessPair; | |||
11873 | ASTContext& Context; | |||
11874 | ||||
11875 | bool TargetTypeIsNonStaticMemberFunction; | |||
11876 | bool FoundNonTemplateFunction; | |||
11877 | bool StaticMemberFunctionFromBoundPointer; | |||
11878 | bool HasComplained; | |||
11879 | ||||
11880 | OverloadExpr::FindResult OvlExprInfo; | |||
11881 | OverloadExpr *OvlExpr; | |||
11882 | TemplateArgumentListInfo OvlExplicitTemplateArgs; | |||
11883 | SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; | |||
11884 | TemplateSpecCandidateSet FailedCandidates; | |||
11885 | ||||
11886 | public: | |||
11887 | AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, | |||
11888 | const QualType &TargetType, bool Complain) | |||
11889 | : S(S), SourceExpr(SourceExpr), TargetType(TargetType), | |||
11890 | Complain(Complain), Context(S.getASTContext()), | |||
11891 | TargetTypeIsNonStaticMemberFunction( | |||
11892 | !!TargetType->getAs<MemberPointerType>()), | |||
11893 | FoundNonTemplateFunction(false), | |||
11894 | StaticMemberFunctionFromBoundPointer(false), | |||
11895 | HasComplained(false), | |||
11896 | OvlExprInfo(OverloadExpr::find(SourceExpr)), | |||
11897 | OvlExpr(OvlExprInfo.Expression), | |||
11898 | FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { | |||
11899 | ExtractUnqualifiedFunctionTypeFromTargetType(); | |||
11900 | ||||
11901 | if (TargetFunctionType->isFunctionType()) { | |||
11902 | if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) | |||
11903 | if (!UME->isImplicitAccess() && | |||
11904 | !S.ResolveSingleFunctionTemplateSpecialization(UME)) | |||
11905 | StaticMemberFunctionFromBoundPointer = true; | |||
11906 | } else if (OvlExpr->hasExplicitTemplateArgs()) { | |||
11907 | DeclAccessPair dap; | |||
11908 | if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( | |||
11909 | OvlExpr, false, &dap)) { | |||
11910 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) | |||
11911 | if (!Method->isStatic()) { | |||
11912 | // If the target type is a non-function type and the function found | |||
11913 | // is a non-static member function, pretend as if that was the | |||
11914 | // target, it's the only possible type to end up with. | |||
11915 | TargetTypeIsNonStaticMemberFunction = true; | |||
11916 | ||||
11917 | // And skip adding the function if its not in the proper form. | |||
11918 | // We'll diagnose this due to an empty set of functions. | |||
11919 | if (!OvlExprInfo.HasFormOfMemberPointer) | |||
11920 | return; | |||
11921 | } | |||
11922 | ||||
11923 | Matches.push_back(std::make_pair(dap, Fn)); | |||
11924 | } | |||
11925 | return; | |||
11926 | } | |||
11927 | ||||
11928 | if (OvlExpr->hasExplicitTemplateArgs()) | |||
11929 | OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); | |||
11930 | ||||
11931 | if (FindAllFunctionsThatMatchTargetTypeExactly()) { | |||
11932 | // C++ [over.over]p4: | |||
11933 | // If more than one function is selected, [...] | |||
11934 | if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { | |||
11935 | if (FoundNonTemplateFunction) | |||
11936 | EliminateAllTemplateMatches(); | |||
11937 | else | |||
11938 | EliminateAllExceptMostSpecializedTemplate(); | |||
11939 | } | |||
11940 | } | |||
11941 | ||||
11942 | if (S.getLangOpts().CUDA && Matches.size() > 1) | |||
11943 | EliminateSuboptimalCudaMatches(); | |||
11944 | } | |||
11945 | ||||
11946 | bool hasComplained() const { return HasComplained; } | |||
11947 | ||||
11948 | private: | |||
11949 | bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { | |||
11950 | QualType Discard; | |||
11951 | return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || | |||
11952 | S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); | |||
11953 | } | |||
11954 | ||||
11955 | /// \return true if A is considered a better overload candidate for the | |||
11956 | /// desired type than B. | |||
11957 | bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { | |||
11958 | // If A doesn't have exactly the correct type, we don't want to classify it | |||
11959 | // as "better" than anything else. This way, the user is required to | |||
11960 | // disambiguate for us if there are multiple candidates and no exact match. | |||
11961 | return candidateHasExactlyCorrectType(A) && | |||
11962 | (!candidateHasExactlyCorrectType(B) || | |||
11963 | compareEnableIfAttrs(S, A, B) == Comparison::Better); | |||
11964 | } | |||
11965 | ||||
11966 | /// \return true if we were able to eliminate all but one overload candidate, | |||
11967 | /// false otherwise. | |||
11968 | bool eliminiateSuboptimalOverloadCandidates() { | |||
11969 | // Same algorithm as overload resolution -- one pass to pick the "best", | |||
11970 | // another pass to be sure that nothing is better than the best. | |||
11971 | auto Best = Matches.begin(); | |||
11972 | for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) | |||
11973 | if (isBetterCandidate(I->second, Best->second)) | |||
11974 | Best = I; | |||
11975 | ||||
11976 | const FunctionDecl *BestFn = Best->second; | |||
11977 | auto IsBestOrInferiorToBest = [this, BestFn]( | |||
11978 | const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { | |||
11979 | return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); | |||
11980 | }; | |||
11981 | ||||
11982 | // Note: We explicitly leave Matches unmodified if there isn't a clear best | |||
11983 | // option, so we can potentially give the user a better error | |||
11984 | if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) | |||
11985 | return false; | |||
11986 | Matches[0] = *Best; | |||
11987 | Matches.resize(1); | |||
11988 | return true; | |||
11989 | } | |||
11990 | ||||
11991 | bool isTargetTypeAFunction() const { | |||
11992 | return TargetFunctionType->isFunctionType(); | |||
11993 | } | |||
11994 | ||||
11995 | // [ToType] [Return] | |||
11996 | ||||
11997 | // R (*)(A) --> R (A), IsNonStaticMemberFunction = false | |||
11998 | // R (&)(A) --> R (A), IsNonStaticMemberFunction = false | |||
11999 | // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true | |||
12000 | void inline ExtractUnqualifiedFunctionTypeFromTargetType() { | |||
12001 | TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); | |||
12002 | } | |||
12003 | ||||
12004 | // return true if any matching specializations were found | |||
12005 | bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, | |||
12006 | const DeclAccessPair& CurAccessFunPair) { | |||
12007 | if (CXXMethodDecl *Method | |||
12008 | = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { | |||
12009 | // Skip non-static function templates when converting to pointer, and | |||
12010 | // static when converting to member pointer. | |||
12011 | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) | |||
12012 | return false; | |||
12013 | } | |||
12014 | else if (TargetTypeIsNonStaticMemberFunction) | |||
12015 | return false; | |||
12016 | ||||
12017 | // C++ [over.over]p2: | |||
12018 | // If the name is a function template, template argument deduction is | |||
12019 | // done (14.8.2.2), and if the argument deduction succeeds, the | |||
12020 | // resulting template argument list is used to generate a single | |||
12021 | // function template specialization, which is added to the set of | |||
12022 | // overloaded functions considered. | |||
12023 | FunctionDecl *Specialization = nullptr; | |||
12024 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | |||
12025 | if (Sema::TemplateDeductionResult Result | |||
12026 | = S.DeduceTemplateArguments(FunctionTemplate, | |||
12027 | &OvlExplicitTemplateArgs, | |||
12028 | TargetFunctionType, Specialization, | |||
12029 | Info, /*IsAddressOfFunction*/true)) { | |||
12030 | // Make a note of the failed deduction for diagnostics. | |||
12031 | FailedCandidates.addCandidate() | |||
12032 | .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), | |||
12033 | MakeDeductionFailureInfo(Context, Result, Info)); | |||
12034 | return false; | |||
12035 | } | |||
12036 | ||||
12037 | // Template argument deduction ensures that we have an exact match or | |||
12038 | // compatible pointer-to-function arguments that would be adjusted by ICS. | |||
12039 | // This function template specicalization works. | |||
12040 | assert(S.isSameOrCompatibleFunctionType(((void)0) | |||
12041 | Context.getCanonicalType(Specialization->getType()),((void)0) | |||
12042 | Context.getCanonicalType(TargetFunctionType)))((void)0); | |||
12043 | ||||
12044 | if (!S.checkAddressOfFunctionIsAvailable(Specialization)) | |||
12045 | return false; | |||
12046 | ||||
12047 | Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); | |||
12048 | return true; | |||
12049 | } | |||
12050 | ||||
12051 | bool AddMatchingNonTemplateFunction(NamedDecl* Fn, | |||
12052 | const DeclAccessPair& CurAccessFunPair) { | |||
12053 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | |||
12054 | // Skip non-static functions when converting to pointer, and static | |||
12055 | // when converting to member pointer. | |||
12056 | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) | |||
12057 | return false; | |||
12058 | } | |||
12059 | else if (TargetTypeIsNonStaticMemberFunction) | |||
12060 | return false; | |||
12061 | ||||
12062 | if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { | |||
12063 | if (S.getLangOpts().CUDA) | |||
12064 | if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) | |||
12065 | if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) | |||
12066 | return false; | |||
12067 | if (FunDecl->isMultiVersion()) { | |||
12068 | const auto *TA = FunDecl->getAttr<TargetAttr>(); | |||
12069 | if (TA && !TA->isDefaultVersion()) | |||
12070 | return false; | |||
12071 | } | |||
12072 | ||||
12073 | // If any candidate has a placeholder return type, trigger its deduction | |||
12074 | // now. | |||
12075 | if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), | |||
12076 | Complain)) { | |||
12077 | HasComplained |= Complain; | |||
12078 | return false; | |||
12079 | } | |||
12080 | ||||
12081 | if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) | |||
12082 | return false; | |||
12083 | ||||
12084 | // If we're in C, we need to support types that aren't exactly identical. | |||
12085 | if (!S.getLangOpts().CPlusPlus || | |||
12086 | candidateHasExactlyCorrectType(FunDecl)) { | |||
12087 | Matches.push_back(std::make_pair( | |||
12088 | CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); | |||
12089 | FoundNonTemplateFunction = true; | |||
12090 | return true; | |||
12091 | } | |||
12092 | } | |||
12093 | ||||
12094 | return false; | |||
12095 | } | |||
12096 | ||||
12097 | bool FindAllFunctionsThatMatchTargetTypeExactly() { | |||
12098 | bool Ret = false; | |||
12099 | ||||
12100 | // If the overload expression doesn't have the form of a pointer to | |||
12101 | // member, don't try to convert it to a pointer-to-member type. | |||
12102 | if (IsInvalidFormOfPointerToMemberFunction()) | |||
12103 | return false; | |||
12104 | ||||
12105 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | |||
12106 | E = OvlExpr->decls_end(); | |||
12107 | I != E; ++I) { | |||
12108 | // Look through any using declarations to find the underlying function. | |||
12109 | NamedDecl *Fn = (*I)->getUnderlyingDecl(); | |||
12110 | ||||
12111 | // C++ [over.over]p3: | |||
12112 | // Non-member functions and static member functions match | |||
12113 | // targets of type "pointer-to-function" or "reference-to-function." | |||
12114 | // Nonstatic member functions match targets of | |||
12115 | // type "pointer-to-member-function." | |||
12116 | // Note that according to DR 247, the containing class does not matter. | |||
12117 | if (FunctionTemplateDecl *FunctionTemplate | |||
12118 | = dyn_cast<FunctionTemplateDecl>(Fn)) { | |||
12119 | if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) | |||
12120 | Ret = true; | |||
12121 | } | |||
12122 | // If we have explicit template arguments supplied, skip non-templates. | |||
12123 | else if (!OvlExpr->hasExplicitTemplateArgs() && | |||
12124 | AddMatchingNonTemplateFunction(Fn, I.getPair())) | |||
12125 | Ret = true; | |||
12126 | } | |||
12127 | assert(Ret || Matches.empty())((void)0); | |||
12128 | return Ret; | |||
12129 | } | |||
12130 | ||||
12131 | void EliminateAllExceptMostSpecializedTemplate() { | |||
12132 | // [...] and any given function template specialization F1 is | |||
12133 | // eliminated if the set contains a second function template | |||
12134 | // specialization whose function template is more specialized | |||
12135 | // than the function template of F1 according to the partial | |||
12136 | // ordering rules of 14.5.5.2. | |||
12137 | ||||
12138 | // The algorithm specified above is quadratic. We instead use a | |||
12139 | // two-pass algorithm (similar to the one used to identify the | |||
12140 | // best viable function in an overload set) that identifies the | |||
12141 | // best function template (if it exists). | |||
12142 | ||||
12143 | UnresolvedSet<4> MatchesCopy; // TODO: avoid! | |||
12144 | for (unsigned I = 0, E = Matches.size(); I != E; ++I) | |||
12145 | MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); | |||
12146 | ||||
12147 | // TODO: It looks like FailedCandidates does not serve much purpose | |||
12148 | // here, since the no_viable diagnostic has index 0. | |||
12149 | UnresolvedSetIterator Result = S.getMostSpecialized( | |||
12150 | MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, | |||
12151 | SourceExpr->getBeginLoc(), S.PDiag(), | |||
12152 | S.PDiag(diag::err_addr_ovl_ambiguous) | |||
12153 | << Matches[0].second->getDeclName(), | |||
12154 | S.PDiag(diag::note_ovl_candidate) | |||
12155 | << (unsigned)oc_function << (unsigned)ocs_described_template, | |||
12156 | Complain, TargetFunctionType); | |||
12157 | ||||
12158 | if (Result != MatchesCopy.end()) { | |||
12159 | // Make it the first and only element | |||
12160 | Matches[0].first = Matches[Result - MatchesCopy.begin()].first; | |||
12161 | Matches[0].second = cast<FunctionDecl>(*Result); | |||
12162 | Matches.resize(1); | |||
12163 | } else | |||
12164 | HasComplained |= Complain; | |||
12165 | } | |||
12166 | ||||
12167 | void EliminateAllTemplateMatches() { | |||
12168 | // [...] any function template specializations in the set are | |||
12169 | // eliminated if the set also contains a non-template function, [...] | |||
12170 | for (unsigned I = 0, N = Matches.size(); I != N; ) { | |||
12171 | if (Matches[I].second->getPrimaryTemplate() == nullptr) | |||
12172 | ++I; | |||
12173 | else { | |||
12174 | Matches[I] = Matches[--N]; | |||
12175 | Matches.resize(N); | |||
12176 | } | |||
12177 | } | |||
12178 | } | |||
12179 | ||||
12180 | void EliminateSuboptimalCudaMatches() { | |||
12181 | S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); | |||
12182 | } | |||
12183 | ||||
12184 | public: | |||
12185 | void ComplainNoMatchesFound() const { | |||
12186 | assert(Matches.empty())((void)0); | |||
12187 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) | |||
12188 | << OvlExpr->getName() << TargetFunctionType | |||
12189 | << OvlExpr->getSourceRange(); | |||
12190 | if (FailedCandidates.empty()) | |||
12191 | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, | |||
12192 | /*TakingAddress=*/true); | |||
12193 | else { | |||
12194 | // We have some deduction failure messages. Use them to diagnose | |||
12195 | // the function templates, and diagnose the non-template candidates | |||
12196 | // normally. | |||
12197 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | |||
12198 | IEnd = OvlExpr->decls_end(); | |||
12199 | I != IEnd; ++I) | |||
12200 | if (FunctionDecl *Fun = | |||
12201 | dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) | |||
12202 | if (!functionHasPassObjectSizeParams(Fun)) | |||
12203 | S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, | |||
12204 | /*TakingAddress=*/true); | |||
12205 | FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); | |||
12206 | } | |||
12207 | } | |||
12208 | ||||
12209 | bool IsInvalidFormOfPointerToMemberFunction() const { | |||
12210 | return TargetTypeIsNonStaticMemberFunction && | |||
12211 | !OvlExprInfo.HasFormOfMemberPointer; | |||
12212 | } | |||
12213 | ||||
12214 | void ComplainIsInvalidFormOfPointerToMemberFunction() const { | |||
12215 | // TODO: Should we condition this on whether any functions might | |||
12216 | // have matched, or is it more appropriate to do that in callers? | |||
12217 | // TODO: a fixit wouldn't hurt. | |||
12218 | S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) | |||
12219 | << TargetType << OvlExpr->getSourceRange(); | |||
12220 | } | |||
12221 | ||||
12222 | bool IsStaticMemberFunctionFromBoundPointer() const { | |||
12223 | return StaticMemberFunctionFromBoundPointer; | |||
12224 | } | |||
12225 | ||||
12226 | void ComplainIsStaticMemberFunctionFromBoundPointer() const { | |||
12227 | S.Diag(OvlExpr->getBeginLoc(), | |||
12228 | diag::err_invalid_form_pointer_member_function) | |||
12229 | << OvlExpr->getSourceRange(); | |||
12230 | } | |||
12231 | ||||
12232 | void ComplainOfInvalidConversion() const { | |||
12233 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) | |||
12234 | << OvlExpr->getName() << TargetType; | |||
12235 | } | |||
12236 | ||||
12237 | void ComplainMultipleMatchesFound() const { | |||
12238 | assert(Matches.size() > 1)((void)0); | |||
12239 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) | |||
12240 | << OvlExpr->getName() << OvlExpr->getSourceRange(); | |||
12241 | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, | |||
12242 | /*TakingAddress=*/true); | |||
12243 | } | |||
12244 | ||||
12245 | bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } | |||
12246 | ||||
12247 | int getNumMatches() const { return Matches.size(); } | |||
12248 | ||||
12249 | FunctionDecl* getMatchingFunctionDecl() const { | |||
12250 | if (Matches.size() != 1) return nullptr; | |||
12251 | return Matches[0].second; | |||
12252 | } | |||
12253 | ||||
12254 | const DeclAccessPair* getMatchingFunctionAccessPair() const { | |||
12255 | if (Matches.size() != 1) return nullptr; | |||
12256 | return &Matches[0].first; | |||
12257 | } | |||
12258 | }; | |||
12259 | } | |||
12260 | ||||
12261 | /// ResolveAddressOfOverloadedFunction - Try to resolve the address of | |||
12262 | /// an overloaded function (C++ [over.over]), where @p From is an | |||
12263 | /// expression with overloaded function type and @p ToType is the type | |||
12264 | /// we're trying to resolve to. For example: | |||
12265 | /// | |||
12266 | /// @code | |||
12267 | /// int f(double); | |||
12268 | /// int f(int); | |||
12269 | /// | |||
12270 | /// int (*pfd)(double) = f; // selects f(double) | |||
12271 | /// @endcode | |||
12272 | /// | |||
12273 | /// This routine returns the resulting FunctionDecl if it could be | |||
12274 | /// resolved, and NULL otherwise. When @p Complain is true, this | |||
12275 | /// routine will emit diagnostics if there is an error. | |||
12276 | FunctionDecl * | |||
12277 | Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, | |||
12278 | QualType TargetType, | |||
12279 | bool Complain, | |||
12280 | DeclAccessPair &FoundResult, | |||
12281 | bool *pHadMultipleCandidates) { | |||
12282 | assert(AddressOfExpr->getType() == Context.OverloadTy)((void)0); | |||
12283 | ||||
12284 | AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, | |||
12285 | Complain); | |||
12286 | int NumMatches = Resolver.getNumMatches(); | |||
12287 | FunctionDecl *Fn = nullptr; | |||
12288 | bool ShouldComplain = Complain && !Resolver.hasComplained(); | |||
12289 | if (NumMatches == 0 && ShouldComplain) { | |||
12290 | if (Resolver.IsInvalidFormOfPointerToMemberFunction()) | |||
12291 | Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); | |||
12292 | else | |||
12293 | Resolver.ComplainNoMatchesFound(); | |||
12294 | } | |||
12295 | else if (NumMatches > 1 && ShouldComplain) | |||
12296 | Resolver.ComplainMultipleMatchesFound(); | |||
12297 | else if (NumMatches == 1) { | |||
12298 | Fn = Resolver.getMatchingFunctionDecl(); | |||
12299 | assert(Fn)((void)0); | |||
12300 | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) | |||
12301 | ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); | |||
12302 | FoundResult = *Resolver.getMatchingFunctionAccessPair(); | |||
12303 | if (Complain) { | |||
12304 | if (Resolver.IsStaticMemberFunctionFromBoundPointer()) | |||
12305 | Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); | |||
12306 | else | |||
12307 | CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); | |||
12308 | } | |||
12309 | } | |||
12310 | ||||
12311 | if (pHadMultipleCandidates) | |||
12312 | *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); | |||
12313 | return Fn; | |||
12314 | } | |||
12315 | ||||
12316 | /// Given an expression that refers to an overloaded function, try to | |||
12317 | /// resolve that function to a single function that can have its address taken. | |||
12318 | /// This will modify `Pair` iff it returns non-null. | |||
12319 | /// | |||
12320 | /// This routine can only succeed if from all of the candidates in the overload | |||
12321 | /// set for SrcExpr that can have their addresses taken, there is one candidate | |||
12322 | /// that is more constrained than the rest. | |||
12323 | FunctionDecl * | |||
12324 | Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { | |||
12325 | OverloadExpr::FindResult R = OverloadExpr::find(E); | |||
12326 | OverloadExpr *Ovl = R.Expression; | |||
12327 | bool IsResultAmbiguous = false; | |||
12328 | FunctionDecl *Result = nullptr; | |||
12329 | DeclAccessPair DAP; | |||
12330 | SmallVector<FunctionDecl *, 2> AmbiguousDecls; | |||
12331 | ||||
12332 | auto CheckMoreConstrained = | |||
12333 | [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { | |||
12334 | SmallVector<const Expr *, 1> AC1, AC2; | |||
12335 | FD1->getAssociatedConstraints(AC1); | |||
12336 | FD2->getAssociatedConstraints(AC2); | |||
12337 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; | |||
12338 | if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) | |||
12339 | return None; | |||
12340 | if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) | |||
12341 | return None; | |||
12342 | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) | |||
12343 | return None; | |||
12344 | return AtLeastAsConstrained1; | |||
12345 | }; | |||
12346 | ||||
12347 | // Don't use the AddressOfResolver because we're specifically looking for | |||
12348 | // cases where we have one overload candidate that lacks | |||
12349 | // enable_if/pass_object_size/... | |||
12350 | for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { | |||
12351 | auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); | |||
12352 | if (!FD) | |||
12353 | return nullptr; | |||
12354 | ||||
12355 | if (!checkAddressOfFunctionIsAvailable(FD)) | |||
12356 | continue; | |||
12357 | ||||
12358 | // We have more than one result - see if it is more constrained than the | |||
12359 | // previous one. | |||
12360 | if (Result) { | |||
12361 | Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, | |||
12362 | Result); | |||
12363 | if (!MoreConstrainedThanPrevious) { | |||
12364 | IsResultAmbiguous = true; | |||
12365 | AmbiguousDecls.push_back(FD); | |||
12366 | continue; | |||
12367 | } | |||
12368 | if (!*MoreConstrainedThanPrevious) | |||
12369 | continue; | |||
12370 | // FD is more constrained - replace Result with it. | |||
12371 | } | |||
12372 | IsResultAmbiguous = false; | |||
12373 | DAP = I.getPair(); | |||
12374 | Result = FD; | |||
12375 | } | |||
12376 | ||||
12377 | if (IsResultAmbiguous) | |||
12378 | return nullptr; | |||
12379 | ||||
12380 | if (Result) { | |||
12381 | SmallVector<const Expr *, 1> ResultAC; | |||
12382 | // We skipped over some ambiguous declarations which might be ambiguous with | |||
12383 | // the selected result. | |||
12384 | for (FunctionDecl *Skipped : AmbiguousDecls) | |||
12385 | if (!CheckMoreConstrained(Skipped, Result).hasValue()) | |||
12386 | return nullptr; | |||
12387 | Pair = DAP; | |||
12388 | } | |||
12389 | return Result; | |||
12390 | } | |||
12391 | ||||
12392 | /// Given an overloaded function, tries to turn it into a non-overloaded | |||
12393 | /// function reference using resolveAddressOfSingleOverloadCandidate. This | |||
12394 | /// will perform access checks, diagnose the use of the resultant decl, and, if | |||
12395 | /// requested, potentially perform a function-to-pointer decay. | |||
12396 | /// | |||
12397 | /// Returns false if resolveAddressOfSingleOverloadCandidate fails. | |||
12398 | /// Otherwise, returns true. This may emit diagnostics and return true. | |||
12399 | bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( | |||
12400 | ExprResult &SrcExpr, bool DoFunctionPointerConverion) { | |||
12401 | Expr *E = SrcExpr.get(); | |||
12402 | assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((void)0); | |||
12403 | ||||
12404 | DeclAccessPair DAP; | |||
12405 | FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); | |||
12406 | if (!Found || Found->isCPUDispatchMultiVersion() || | |||
12407 | Found->isCPUSpecificMultiVersion()) | |||
12408 | return false; | |||
12409 | ||||
12410 | // Emitting multiple diagnostics for a function that is both inaccessible and | |||
12411 | // unavailable is consistent with our behavior elsewhere. So, always check | |||
12412 | // for both. | |||
12413 | DiagnoseUseOfDecl(Found, E->getExprLoc()); | |||
12414 | CheckAddressOfMemberAccess(E, DAP); | |||
12415 | Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); | |||
12416 | if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) | |||
12417 | SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); | |||
12418 | else | |||
12419 | SrcExpr = Fixed; | |||
12420 | return true; | |||
12421 | } | |||
12422 | ||||
12423 | /// Given an expression that refers to an overloaded function, try to | |||
12424 | /// resolve that overloaded function expression down to a single function. | |||
12425 | /// | |||
12426 | /// This routine can only resolve template-ids that refer to a single function | |||
12427 | /// template, where that template-id refers to a single template whose template | |||
12428 | /// arguments are either provided by the template-id or have defaults, | |||
12429 | /// as described in C++0x [temp.arg.explicit]p3. | |||
12430 | /// | |||
12431 | /// If no template-ids are found, no diagnostics are emitted and NULL is | |||
12432 | /// returned. | |||
12433 | FunctionDecl * | |||
12434 | Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, | |||
12435 | bool Complain, | |||
12436 | DeclAccessPair *FoundResult) { | |||
12437 | // C++ [over.over]p1: | |||
12438 | // [...] [Note: any redundant set of parentheses surrounding the | |||
12439 | // overloaded function name is ignored (5.1). ] | |||
12440 | // C++ [over.over]p1: | |||
12441 | // [...] The overloaded function name can be preceded by the & | |||
12442 | // operator. | |||
12443 | ||||
12444 | // If we didn't actually find any template-ids, we're done. | |||
12445 | if (!ovl->hasExplicitTemplateArgs()) | |||
12446 | return nullptr; | |||
12447 | ||||
12448 | TemplateArgumentListInfo ExplicitTemplateArgs; | |||
12449 | ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); | |||
12450 | TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); | |||
12451 | ||||
12452 | // Look through all of the overloaded functions, searching for one | |||
12453 | // whose type matches exactly. | |||
12454 | FunctionDecl *Matched = nullptr; | |||
12455 | for (UnresolvedSetIterator I = ovl->decls_begin(), | |||
12456 | E = ovl->decls_end(); I != E; ++I) { | |||
12457 | // C++0x [temp.arg.explicit]p3: | |||
12458 | // [...] In contexts where deduction is done and fails, or in contexts | |||
12459 | // where deduction is not done, if a template argument list is | |||
12460 | // specified and it, along with any default template arguments, | |||
12461 | // identifies a single function template specialization, then the | |||
12462 | // template-id is an lvalue for the function template specialization. | |||
12463 | FunctionTemplateDecl *FunctionTemplate | |||
12464 | = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); | |||
12465 | ||||
12466 | // C++ [over.over]p2: | |||
12467 | // If the name is a function template, template argument deduction is | |||
12468 | // done (14.8.2.2), and if the argument deduction succeeds, the | |||
12469 | // resulting template argument list is used to generate a single | |||
12470 | // function template specialization, which is added to the set of | |||
12471 | // overloaded functions considered. | |||
12472 | FunctionDecl *Specialization = nullptr; | |||
12473 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); | |||
12474 | if (TemplateDeductionResult Result | |||
12475 | = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, | |||
12476 | Specialization, Info, | |||
12477 | /*IsAddressOfFunction*/true)) { | |||
12478 | // Make a note of the failed deduction for diagnostics. | |||
12479 | // TODO: Actually use the failed-deduction info? | |||
12480 | FailedCandidates.addCandidate() | |||
12481 | .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), | |||
12482 | MakeDeductionFailureInfo(Context, Result, Info)); | |||
12483 | continue; | |||
12484 | } | |||
12485 | ||||
12486 | assert(Specialization && "no specialization and no error?")((void)0); | |||
12487 | ||||
12488 | // Multiple matches; we can't resolve to a single declaration. | |||
12489 | if (Matched) { | |||
12490 | if (Complain) { | |||
12491 | Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) | |||
12492 | << ovl->getName(); | |||
12493 | NoteAllOverloadCandidates(ovl); | |||
12494 | } | |||
12495 | return nullptr; | |||
12496 | } | |||
12497 | ||||
12498 | Matched = Specialization; | |||
12499 | if (FoundResult) *FoundResult = I.getPair(); | |||
12500 | } | |||
12501 | ||||
12502 | if (Matched && | |||
12503 | completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) | |||
12504 | return nullptr; | |||
12505 | ||||
12506 | return Matched; | |||
12507 | } | |||
12508 | ||||
12509 | // Resolve and fix an overloaded expression that can be resolved | |||
12510 | // because it identifies a single function template specialization. | |||
12511 | // | |||
12512 | // Last three arguments should only be supplied if Complain = true | |||
12513 | // | |||
12514 | // Return true if it was logically possible to so resolve the | |||
12515 | // expression, regardless of whether or not it succeeded. Always | |||
12516 | // returns true if 'complain' is set. | |||
12517 | bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( | |||
12518 | ExprResult &SrcExpr, bool doFunctionPointerConverion, | |||
12519 | bool complain, SourceRange OpRangeForComplaining, | |||
12520 | QualType DestTypeForComplaining, | |||
12521 | unsigned DiagIDForComplaining) { | |||
12522 | assert(SrcExpr.get()->getType() == Context.OverloadTy)((void)0); | |||
12523 | ||||
12524 | OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); | |||
12525 | ||||
12526 | DeclAccessPair found; | |||
12527 | ExprResult SingleFunctionExpression; | |||
12528 | if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( | |||
12529 | ovl.Expression, /*complain*/ false, &found)) { | |||
12530 | if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { | |||
12531 | SrcExpr = ExprError(); | |||
12532 | return true; | |||
12533 | } | |||
12534 | ||||
12535 | // It is only correct to resolve to an instance method if we're | |||
12536 | // resolving a form that's permitted to be a pointer to member. | |||
12537 | // Otherwise we'll end up making a bound member expression, which | |||
12538 | // is illegal in all the contexts we resolve like this. | |||
12539 | if (!ovl.HasFormOfMemberPointer && | |||
12540 | isa<CXXMethodDecl>(fn) && | |||
12541 | cast<CXXMethodDecl>(fn)->isInstance()) { | |||
12542 | if (!complain) return false; | |||
12543 | ||||
12544 | Diag(ovl.Expression->getExprLoc(), | |||
12545 | diag::err_bound_member_function) | |||
12546 | << 0 << ovl.Expression->getSourceRange(); | |||
12547 | ||||
12548 | // TODO: I believe we only end up here if there's a mix of | |||
12549 | // static and non-static candidates (otherwise the expression | |||
12550 | // would have 'bound member' type, not 'overload' type). | |||
12551 | // Ideally we would note which candidate was chosen and why | |||
12552 | // the static candidates were rejected. | |||
12553 | SrcExpr = ExprError(); | |||
12554 | return true; | |||
12555 | } | |||
12556 | ||||
12557 | // Fix the expression to refer to 'fn'. | |||
12558 | SingleFunctionExpression = | |||
12559 | FixOverloadedFunctionReference(SrcExpr.get(), found, fn); | |||
12560 | ||||
12561 | // If desired, do function-to-pointer decay. | |||
12562 | if (doFunctionPointerConverion) { | |||
12563 | SingleFunctionExpression = | |||
12564 | DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); | |||
12565 | if (SingleFunctionExpression.isInvalid()) { | |||
12566 | SrcExpr = ExprError(); | |||
12567 | return true; | |||
12568 | } | |||
12569 | } | |||
12570 | } | |||
12571 | ||||
12572 | if (!SingleFunctionExpression.isUsable()) { | |||
12573 | if (complain) { | |||
12574 | Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) | |||
12575 | << ovl.Expression->getName() | |||
12576 | << DestTypeForComplaining | |||
12577 | << OpRangeForComplaining | |||
12578 | << ovl.Expression->getQualifierLoc().getSourceRange(); | |||
12579 | NoteAllOverloadCandidates(SrcExpr.get()); | |||
12580 | ||||
12581 | SrcExpr = ExprError(); | |||
12582 | return true; | |||
12583 | } | |||
12584 | ||||
12585 | return false; | |||
12586 | } | |||
12587 | ||||
12588 | SrcExpr = SingleFunctionExpression; | |||
12589 | return true; | |||
12590 | } | |||
12591 | ||||
12592 | /// Add a single candidate to the overload set. | |||
12593 | static void AddOverloadedCallCandidate(Sema &S, | |||
12594 | DeclAccessPair FoundDecl, | |||
12595 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
12596 | ArrayRef<Expr *> Args, | |||
12597 | OverloadCandidateSet &CandidateSet, | |||
12598 | bool PartialOverloading, | |||
12599 | bool KnownValid) { | |||
12600 | NamedDecl *Callee = FoundDecl.getDecl(); | |||
12601 | if (isa<UsingShadowDecl>(Callee)) | |||
12602 | Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); | |||
12603 | ||||
12604 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { | |||
12605 | if (ExplicitTemplateArgs) { | |||
12606 | assert(!KnownValid && "Explicit template arguments?")((void)0); | |||
12607 | return; | |||
12608 | } | |||
12609 | // Prevent ill-formed function decls to be added as overload candidates. | |||
12610 | if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) | |||
12611 | return; | |||
12612 | ||||
12613 | S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, | |||
12614 | /*SuppressUserConversions=*/false, | |||
12615 | PartialOverloading); | |||
12616 | return; | |||
12617 | } | |||
12618 | ||||
12619 | if (FunctionTemplateDecl *FuncTemplate | |||
12620 | = dyn_cast<FunctionTemplateDecl>(Callee)) { | |||
12621 | S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, | |||
12622 | ExplicitTemplateArgs, Args, CandidateSet, | |||
12623 | /*SuppressUserConversions=*/false, | |||
12624 | PartialOverloading); | |||
12625 | return; | |||
12626 | } | |||
12627 | ||||
12628 | assert(!KnownValid && "unhandled case in overloaded call candidate")((void)0); | |||
12629 | } | |||
12630 | ||||
12631 | /// Add the overload candidates named by callee and/or found by argument | |||
12632 | /// dependent lookup to the given overload set. | |||
12633 | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, | |||
12634 | ArrayRef<Expr *> Args, | |||
12635 | OverloadCandidateSet &CandidateSet, | |||
12636 | bool PartialOverloading) { | |||
12637 | ||||
12638 | #ifndef NDEBUG1 | |||
12639 | // Verify that ArgumentDependentLookup is consistent with the rules | |||
12640 | // in C++0x [basic.lookup.argdep]p3: | |||
12641 | // | |||
12642 | // Let X be the lookup set produced by unqualified lookup (3.4.1) | |||
12643 | // and let Y be the lookup set produced by argument dependent | |||
12644 | // lookup (defined as follows). If X contains | |||
12645 | // | |||
12646 | // -- a declaration of a class member, or | |||
12647 | // | |||
12648 | // -- a block-scope function declaration that is not a | |||
12649 | // using-declaration, or | |||
12650 | // | |||
12651 | // -- a declaration that is neither a function or a function | |||
12652 | // template | |||
12653 | // | |||
12654 | // then Y is empty. | |||
12655 | ||||
12656 | if (ULE->requiresADL()) { | |||
12657 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | |||
12658 | E = ULE->decls_end(); I != E; ++I) { | |||
12659 | assert(!(*I)->getDeclContext()->isRecord())((void)0); | |||
12660 | assert(isa<UsingShadowDecl>(*I) ||((void)0) | |||
12661 | !(*I)->getDeclContext()->isFunctionOrMethod())((void)0); | |||
12662 | assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())((void)0); | |||
12663 | } | |||
12664 | } | |||
12665 | #endif | |||
12666 | ||||
12667 | // It would be nice to avoid this copy. | |||
12668 | TemplateArgumentListInfo TABuffer; | |||
12669 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | |||
12670 | if (ULE->hasExplicitTemplateArgs()) { | |||
12671 | ULE->copyTemplateArgumentsInto(TABuffer); | |||
12672 | ExplicitTemplateArgs = &TABuffer; | |||
12673 | } | |||
12674 | ||||
12675 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | |||
12676 | E = ULE->decls_end(); I != E; ++I) | |||
12677 | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, | |||
12678 | CandidateSet, PartialOverloading, | |||
12679 | /*KnownValid*/ true); | |||
12680 | ||||
12681 | if (ULE->requiresADL()) | |||
12682 | AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), | |||
12683 | Args, ExplicitTemplateArgs, | |||
12684 | CandidateSet, PartialOverloading); | |||
12685 | } | |||
12686 | ||||
12687 | /// Add the call candidates from the given set of lookup results to the given | |||
12688 | /// overload set. Non-function lookup results are ignored. | |||
12689 | void Sema::AddOverloadedCallCandidates( | |||
12690 | LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
12691 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { | |||
12692 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | |||
12693 | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, | |||
12694 | CandidateSet, false, /*KnownValid*/ false); | |||
12695 | } | |||
12696 | ||||
12697 | /// Determine whether a declaration with the specified name could be moved into | |||
12698 | /// a different namespace. | |||
12699 | static bool canBeDeclaredInNamespace(const DeclarationName &Name) { | |||
12700 | switch (Name.getCXXOverloadedOperator()) { | |||
12701 | case OO_New: case OO_Array_New: | |||
12702 | case OO_Delete: case OO_Array_Delete: | |||
12703 | return false; | |||
12704 | ||||
12705 | default: | |||
12706 | return true; | |||
12707 | } | |||
12708 | } | |||
12709 | ||||
12710 | /// Attempt to recover from an ill-formed use of a non-dependent name in a | |||
12711 | /// template, where the non-dependent name was declared after the template | |||
12712 | /// was defined. This is common in code written for a compilers which do not | |||
12713 | /// correctly implement two-stage name lookup. | |||
12714 | /// | |||
12715 | /// Returns true if a viable candidate was found and a diagnostic was issued. | |||
12716 | static bool DiagnoseTwoPhaseLookup( | |||
12717 | Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, | |||
12718 | LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, | |||
12719 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | |||
12720 | CXXRecordDecl **FoundInClass = nullptr) { | |||
12721 | if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) | |||
12722 | return false; | |||
12723 | ||||
12724 | for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { | |||
12725 | if (DC->isTransparentContext()) | |||
12726 | continue; | |||
12727 | ||||
12728 | SemaRef.LookupQualifiedName(R, DC); | |||
12729 | ||||
12730 | if (!R.empty()) { | |||
12731 | R.suppressDiagnostics(); | |||
12732 | ||||
12733 | OverloadCandidateSet Candidates(FnLoc, CSK); | |||
12734 | SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, | |||
12735 | Candidates); | |||
12736 | ||||
12737 | OverloadCandidateSet::iterator Best; | |||
12738 | OverloadingResult OR = | |||
12739 | Candidates.BestViableFunction(SemaRef, FnLoc, Best); | |||
12740 | ||||
12741 | if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { | |||
12742 | // We either found non-function declarations or a best viable function | |||
12743 | // at class scope. A class-scope lookup result disables ADL. Don't | |||
12744 | // look past this, but let the caller know that we found something that | |||
12745 | // either is, or might be, usable in this class. | |||
12746 | if (FoundInClass) { | |||
12747 | *FoundInClass = RD; | |||
12748 | if (OR == OR_Success) { | |||
12749 | R.clear(); | |||
12750 | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); | |||
12751 | R.resolveKind(); | |||
12752 | } | |||
12753 | } | |||
12754 | return false; | |||
12755 | } | |||
12756 | ||||
12757 | if (OR != OR_Success) { | |||
12758 | // There wasn't a unique best function or function template. | |||
12759 | return false; | |||
12760 | } | |||
12761 | ||||
12762 | // Find the namespaces where ADL would have looked, and suggest | |||
12763 | // declaring the function there instead. | |||
12764 | Sema::AssociatedNamespaceSet AssociatedNamespaces; | |||
12765 | Sema::AssociatedClassSet AssociatedClasses; | |||
12766 | SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, | |||
12767 | AssociatedNamespaces, | |||
12768 | AssociatedClasses); | |||
12769 | Sema::AssociatedNamespaceSet SuggestedNamespaces; | |||
12770 | if (canBeDeclaredInNamespace(R.getLookupName())) { | |||
12771 | DeclContext *Std = SemaRef.getStdNamespace(); | |||
12772 | for (Sema::AssociatedNamespaceSet::iterator | |||
12773 | it = AssociatedNamespaces.begin(), | |||
12774 | end = AssociatedNamespaces.end(); it != end; ++it) { | |||
12775 | // Never suggest declaring a function within namespace 'std'. | |||
12776 | if (Std && Std->Encloses(*it)) | |||
12777 | continue; | |||
12778 | ||||
12779 | // Never suggest declaring a function within a namespace with a | |||
12780 | // reserved name, like __gnu_cxx. | |||
12781 | NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); | |||
12782 | if (NS && | |||
12783 | NS->getQualifiedNameAsString().find("__") != std::string::npos) | |||
12784 | continue; | |||
12785 | ||||
12786 | SuggestedNamespaces.insert(*it); | |||
12787 | } | |||
12788 | } | |||
12789 | ||||
12790 | SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) | |||
12791 | << R.getLookupName(); | |||
12792 | if (SuggestedNamespaces.empty()) { | |||
12793 | SemaRef.Diag(Best->Function->getLocation(), | |||
12794 | diag::note_not_found_by_two_phase_lookup) | |||
12795 | << R.getLookupName() << 0; | |||
12796 | } else if (SuggestedNamespaces.size() == 1) { | |||
12797 | SemaRef.Diag(Best->Function->getLocation(), | |||
12798 | diag::note_not_found_by_two_phase_lookup) | |||
12799 | << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); | |||
12800 | } else { | |||
12801 | // FIXME: It would be useful to list the associated namespaces here, | |||
12802 | // but the diagnostics infrastructure doesn't provide a way to produce | |||
12803 | // a localized representation of a list of items. | |||
12804 | SemaRef.Diag(Best->Function->getLocation(), | |||
12805 | diag::note_not_found_by_two_phase_lookup) | |||
12806 | << R.getLookupName() << 2; | |||
12807 | } | |||
12808 | ||||
12809 | // Try to recover by calling this function. | |||
12810 | return true; | |||
12811 | } | |||
12812 | ||||
12813 | R.clear(); | |||
12814 | } | |||
12815 | ||||
12816 | return false; | |||
12817 | } | |||
12818 | ||||
12819 | /// Attempt to recover from ill-formed use of a non-dependent operator in a | |||
12820 | /// template, where the non-dependent operator was declared after the template | |||
12821 | /// was defined. | |||
12822 | /// | |||
12823 | /// Returns true if a viable candidate was found and a diagnostic was issued. | |||
12824 | static bool | |||
12825 | DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, | |||
12826 | SourceLocation OpLoc, | |||
12827 | ArrayRef<Expr *> Args) { | |||
12828 | DeclarationName OpName = | |||
12829 | SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); | |||
12830 | LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); | |||
12831 | return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, | |||
12832 | OverloadCandidateSet::CSK_Operator, | |||
12833 | /*ExplicitTemplateArgs=*/nullptr, Args); | |||
12834 | } | |||
12835 | ||||
12836 | namespace { | |||
12837 | class BuildRecoveryCallExprRAII { | |||
12838 | Sema &SemaRef; | |||
12839 | public: | |||
12840 | BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { | |||
12841 | assert(SemaRef.IsBuildingRecoveryCallExpr == false)((void)0); | |||
12842 | SemaRef.IsBuildingRecoveryCallExpr = true; | |||
12843 | } | |||
12844 | ||||
12845 | ~BuildRecoveryCallExprRAII() { | |||
12846 | SemaRef.IsBuildingRecoveryCallExpr = false; | |||
12847 | } | |||
12848 | }; | |||
12849 | ||||
12850 | } | |||
12851 | ||||
12852 | /// Attempts to recover from a call where no functions were found. | |||
12853 | /// | |||
12854 | /// This function will do one of three things: | |||
12855 | /// * Diagnose, recover, and return a recovery expression. | |||
12856 | /// * Diagnose, fail to recover, and return ExprError(). | |||
12857 | /// * Do not diagnose, do not recover, and return ExprResult(). The caller is | |||
12858 | /// expected to diagnose as appropriate. | |||
12859 | static ExprResult | |||
12860 | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | |||
12861 | UnresolvedLookupExpr *ULE, | |||
12862 | SourceLocation LParenLoc, | |||
12863 | MutableArrayRef<Expr *> Args, | |||
12864 | SourceLocation RParenLoc, | |||
12865 | bool EmptyLookup, bool AllowTypoCorrection) { | |||
12866 | // Do not try to recover if it is already building a recovery call. | |||
12867 | // This stops infinite loops for template instantiations like | |||
12868 | // | |||
12869 | // template <typename T> auto foo(T t) -> decltype(foo(t)) {} | |||
12870 | // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} | |||
12871 | if (SemaRef.IsBuildingRecoveryCallExpr) | |||
12872 | return ExprResult(); | |||
12873 | BuildRecoveryCallExprRAII RCE(SemaRef); | |||
12874 | ||||
12875 | CXXScopeSpec SS; | |||
12876 | SS.Adopt(ULE->getQualifierLoc()); | |||
12877 | SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); | |||
12878 | ||||
12879 | TemplateArgumentListInfo TABuffer; | |||
12880 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; | |||
12881 | if (ULE->hasExplicitTemplateArgs()) { | |||
12882 | ULE->copyTemplateArgumentsInto(TABuffer); | |||
12883 | ExplicitTemplateArgs = &TABuffer; | |||
12884 | } | |||
12885 | ||||
12886 | LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), | |||
12887 | Sema::LookupOrdinaryName); | |||
12888 | CXXRecordDecl *FoundInClass = nullptr; | |||
12889 | if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, | |||
12890 | OverloadCandidateSet::CSK_Normal, | |||
12891 | ExplicitTemplateArgs, Args, &FoundInClass)) { | |||
12892 | // OK, diagnosed a two-phase lookup issue. | |||
12893 | } else if (EmptyLookup) { | |||
12894 | // Try to recover from an empty lookup with typo correction. | |||
12895 | R.clear(); | |||
12896 | NoTypoCorrectionCCC NoTypoValidator{}; | |||
12897 | FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), | |||
12898 | ExplicitTemplateArgs != nullptr, | |||
12899 | dyn_cast<MemberExpr>(Fn)); | |||
12900 | CorrectionCandidateCallback &Validator = | |||
12901 | AllowTypoCorrection | |||
12902 | ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) | |||
12903 | : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); | |||
12904 | if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, | |||
12905 | Args)) | |||
12906 | return ExprError(); | |||
12907 | } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { | |||
12908 | // We found a usable declaration of the name in a dependent base of some | |||
12909 | // enclosing class. | |||
12910 | // FIXME: We should also explain why the candidates found by name lookup | |||
12911 | // were not viable. | |||
12912 | if (SemaRef.DiagnoseDependentMemberLookup(R)) | |||
12913 | return ExprError(); | |||
12914 | } else { | |||
12915 | // We had viable candidates and couldn't recover; let the caller diagnose | |||
12916 | // this. | |||
12917 | return ExprResult(); | |||
12918 | } | |||
12919 | ||||
12920 | // If we get here, we should have issued a diagnostic and formed a recovery | |||
12921 | // lookup result. | |||
12922 | assert(!R.empty() && "lookup results empty despite recovery")((void)0); | |||
12923 | ||||
12924 | // If recovery created an ambiguity, just bail out. | |||
12925 | if (R.isAmbiguous()) { | |||
12926 | R.suppressDiagnostics(); | |||
12927 | return ExprError(); | |||
12928 | } | |||
12929 | ||||
12930 | // Build an implicit member call if appropriate. Just drop the | |||
12931 | // casts and such from the call, we don't really care. | |||
12932 | ExprResult NewFn = ExprError(); | |||
12933 | if ((*R.begin())->isCXXClassMember()) | |||
12934 | NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, | |||
12935 | ExplicitTemplateArgs, S); | |||
12936 | else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) | |||
12937 | NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, | |||
12938 | ExplicitTemplateArgs); | |||
12939 | else | |||
12940 | NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); | |||
12941 | ||||
12942 | if (NewFn.isInvalid()) | |||
12943 | return ExprError(); | |||
12944 | ||||
12945 | // This shouldn't cause an infinite loop because we're giving it | |||
12946 | // an expression with viable lookup results, which should never | |||
12947 | // end up here. | |||
12948 | return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, | |||
12949 | MultiExprArg(Args.data(), Args.size()), | |||
12950 | RParenLoc); | |||
12951 | } | |||
12952 | ||||
12953 | /// Constructs and populates an OverloadedCandidateSet from | |||
12954 | /// the given function. | |||
12955 | /// \returns true when an the ExprResult output parameter has been set. | |||
12956 | bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, | |||
12957 | UnresolvedLookupExpr *ULE, | |||
12958 | MultiExprArg Args, | |||
12959 | SourceLocation RParenLoc, | |||
12960 | OverloadCandidateSet *CandidateSet, | |||
12961 | ExprResult *Result) { | |||
12962 | #ifndef NDEBUG1 | |||
12963 | if (ULE->requiresADL()) { | |||
12964 | // To do ADL, we must have found an unqualified name. | |||
12965 | assert(!ULE->getQualifier() && "qualified name with ADL")((void)0); | |||
12966 | ||||
12967 | // We don't perform ADL for implicit declarations of builtins. | |||
12968 | // Verify that this was correctly set up. | |||
12969 | FunctionDecl *F; | |||
12970 | if (ULE->decls_begin() != ULE->decls_end() && | |||
12971 | ULE->decls_begin() + 1 == ULE->decls_end() && | |||
12972 | (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && | |||
12973 | F->getBuiltinID() && F->isImplicit()) | |||
12974 | llvm_unreachable("performing ADL for builtin")__builtin_unreachable(); | |||
12975 | ||||
12976 | // We don't perform ADL in C. | |||
12977 | assert(getLangOpts().CPlusPlus && "ADL enabled in C")((void)0); | |||
12978 | } | |||
12979 | #endif | |||
12980 | ||||
12981 | UnbridgedCastsSet UnbridgedCasts; | |||
12982 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { | |||
12983 | *Result = ExprError(); | |||
12984 | return true; | |||
12985 | } | |||
12986 | ||||
12987 | // Add the functions denoted by the callee to the set of candidate | |||
12988 | // functions, including those from argument-dependent lookup. | |||
12989 | AddOverloadedCallCandidates(ULE, Args, *CandidateSet); | |||
12990 | ||||
12991 | if (getLangOpts().MSVCCompat && | |||
12992 | CurContext->isDependentContext() && !isSFINAEContext() && | |||
12993 | (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { | |||
12994 | ||||
12995 | OverloadCandidateSet::iterator Best; | |||
12996 | if (CandidateSet->empty() || | |||
12997 | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == | |||
12998 | OR_No_Viable_Function) { | |||
12999 | // In Microsoft mode, if we are inside a template class member function | |||
13000 | // then create a type dependent CallExpr. The goal is to postpone name | |||
13001 | // lookup to instantiation time to be able to search into type dependent | |||
13002 | // base classes. | |||
13003 | CallExpr *CE = | |||
13004 | CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, | |||
13005 | RParenLoc, CurFPFeatureOverrides()); | |||
13006 | CE->markDependentForPostponedNameLookup(); | |||
13007 | *Result = CE; | |||
13008 | return true; | |||
13009 | } | |||
13010 | } | |||
13011 | ||||
13012 | if (CandidateSet->empty()) | |||
13013 | return false; | |||
13014 | ||||
13015 | UnbridgedCasts.restore(); | |||
13016 | return false; | |||
13017 | } | |||
13018 | ||||
13019 | // Guess at what the return type for an unresolvable overload should be. | |||
13020 | static QualType chooseRecoveryType(OverloadCandidateSet &CS, | |||
13021 | OverloadCandidateSet::iterator *Best) { | |||
13022 | llvm::Optional<QualType> Result; | |||
13023 | // Adjust Type after seeing a candidate. | |||
13024 | auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { | |||
13025 | if (!Candidate.Function) | |||
13026 | return; | |||
13027 | if (Candidate.Function->isInvalidDecl()) | |||
13028 | return; | |||
13029 | QualType T = Candidate.Function->getReturnType(); | |||
13030 | if (T.isNull()) | |||
13031 | return; | |||
13032 | if (!Result) | |||
13033 | Result = T; | |||
13034 | else if (Result != T) | |||
13035 | Result = QualType(); | |||
13036 | }; | |||
13037 | ||||
13038 | // Look for an unambiguous type from a progressively larger subset. | |||
13039 | // e.g. if types disagree, but all *viable* overloads return int, choose int. | |||
13040 | // | |||
13041 | // First, consider only the best candidate. | |||
13042 | if (Best && *Best != CS.end()) | |||
13043 | ConsiderCandidate(**Best); | |||
13044 | // Next, consider only viable candidates. | |||
13045 | if (!Result) | |||
13046 | for (const auto &C : CS) | |||
13047 | if (C.Viable) | |||
13048 | ConsiderCandidate(C); | |||
13049 | // Finally, consider all candidates. | |||
13050 | if (!Result) | |||
13051 | for (const auto &C : CS) | |||
13052 | ConsiderCandidate(C); | |||
13053 | ||||
13054 | if (!Result) | |||
13055 | return QualType(); | |||
13056 | auto Value = Result.getValue(); | |||
13057 | if (Value.isNull() || Value->isUndeducedType()) | |||
13058 | return QualType(); | |||
13059 | return Value; | |||
13060 | } | |||
13061 | ||||
13062 | /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns | |||
13063 | /// the completed call expression. If overload resolution fails, emits | |||
13064 | /// diagnostics and returns ExprError() | |||
13065 | static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | |||
13066 | UnresolvedLookupExpr *ULE, | |||
13067 | SourceLocation LParenLoc, | |||
13068 | MultiExprArg Args, | |||
13069 | SourceLocation RParenLoc, | |||
13070 | Expr *ExecConfig, | |||
13071 | OverloadCandidateSet *CandidateSet, | |||
13072 | OverloadCandidateSet::iterator *Best, | |||
13073 | OverloadingResult OverloadResult, | |||
13074 | bool AllowTypoCorrection) { | |||
13075 | switch (OverloadResult) { | |||
13076 | case OR_Success: { | |||
13077 | FunctionDecl *FDecl = (*Best)->Function; | |||
13078 | SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); | |||
13079 | if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) | |||
13080 | return ExprError(); | |||
13081 | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | |||
13082 | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, | |||
13083 | ExecConfig, /*IsExecConfig=*/false, | |||
13084 | (*Best)->IsADLCandidate); | |||
13085 | } | |||
13086 | ||||
13087 | case OR_No_Viable_Function: { | |||
13088 | // Try to recover by looking for viable functions which the user might | |||
13089 | // have meant to call. | |||
13090 | ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, | |||
13091 | Args, RParenLoc, | |||
13092 | CandidateSet->empty(), | |||
13093 | AllowTypoCorrection); | |||
13094 | if (Recovery.isInvalid() || Recovery.isUsable()) | |||
13095 | return Recovery; | |||
13096 | ||||
13097 | // If the user passes in a function that we can't take the address of, we | |||
13098 | // generally end up emitting really bad error messages. Here, we attempt to | |||
13099 | // emit better ones. | |||
13100 | for (const Expr *Arg : Args) { | |||
13101 | if (!Arg->getType()->isFunctionType()) | |||
13102 | continue; | |||
13103 | if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { | |||
13104 | auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | |||
13105 | if (FD && | |||
13106 | !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, | |||
13107 | Arg->getExprLoc())) | |||
13108 | return ExprError(); | |||
13109 | } | |||
13110 | } | |||
13111 | ||||
13112 | CandidateSet->NoteCandidates( | |||
13113 | PartialDiagnosticAt( | |||
13114 | Fn->getBeginLoc(), | |||
13115 | SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) | |||
13116 | << ULE->getName() << Fn->getSourceRange()), | |||
13117 | SemaRef, OCD_AllCandidates, Args); | |||
13118 | break; | |||
13119 | } | |||
13120 | ||||
13121 | case OR_Ambiguous: | |||
13122 | CandidateSet->NoteCandidates( | |||
13123 | PartialDiagnosticAt(Fn->getBeginLoc(), | |||
13124 | SemaRef.PDiag(diag::err_ovl_ambiguous_call) | |||
13125 | << ULE->getName() << Fn->getSourceRange()), | |||
13126 | SemaRef, OCD_AmbiguousCandidates, Args); | |||
13127 | break; | |||
13128 | ||||
13129 | case OR_Deleted: { | |||
13130 | CandidateSet->NoteCandidates( | |||
13131 | PartialDiagnosticAt(Fn->getBeginLoc(), | |||
13132 | SemaRef.PDiag(diag::err_ovl_deleted_call) | |||
13133 | << ULE->getName() << Fn->getSourceRange()), | |||
13134 | SemaRef, OCD_AllCandidates, Args); | |||
13135 | ||||
13136 | // We emitted an error for the unavailable/deleted function call but keep | |||
13137 | // the call in the AST. | |||
13138 | FunctionDecl *FDecl = (*Best)->Function; | |||
13139 | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); | |||
13140 | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, | |||
13141 | ExecConfig, /*IsExecConfig=*/false, | |||
13142 | (*Best)->IsADLCandidate); | |||
13143 | } | |||
13144 | } | |||
13145 | ||||
13146 | // Overload resolution failed, try to recover. | |||
13147 | SmallVector<Expr *, 8> SubExprs = {Fn}; | |||
13148 | SubExprs.append(Args.begin(), Args.end()); | |||
13149 | return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, | |||
13150 | chooseRecoveryType(*CandidateSet, Best)); | |||
13151 | } | |||
13152 | ||||
13153 | static void markUnaddressableCandidatesUnviable(Sema &S, | |||
13154 | OverloadCandidateSet &CS) { | |||
13155 | for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { | |||
13156 | if (I->Viable && | |||
13157 | !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { | |||
13158 | I->Viable = false; | |||
13159 | I->FailureKind = ovl_fail_addr_not_available; | |||
13160 | } | |||
13161 | } | |||
13162 | } | |||
13163 | ||||
13164 | /// BuildOverloadedCallExpr - Given the call expression that calls Fn | |||
13165 | /// (which eventually refers to the declaration Func) and the call | |||
13166 | /// arguments Args/NumArgs, attempt to resolve the function call down | |||
13167 | /// to a specific function. If overload resolution succeeds, returns | |||
13168 | /// the call expression produced by overload resolution. | |||
13169 | /// Otherwise, emits diagnostics and returns ExprError. | |||
13170 | ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, | |||
13171 | UnresolvedLookupExpr *ULE, | |||
13172 | SourceLocation LParenLoc, | |||
13173 | MultiExprArg Args, | |||
13174 | SourceLocation RParenLoc, | |||
13175 | Expr *ExecConfig, | |||
13176 | bool AllowTypoCorrection, | |||
13177 | bool CalleesAddressIsTaken) { | |||
13178 | OverloadCandidateSet CandidateSet(Fn->getExprLoc(), | |||
13179 | OverloadCandidateSet::CSK_Normal); | |||
13180 | ExprResult result; | |||
13181 | ||||
13182 | if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, | |||
13183 | &result)) | |||
13184 | return result; | |||
13185 | ||||
13186 | // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that | |||
13187 | // functions that aren't addressible are considered unviable. | |||
13188 | if (CalleesAddressIsTaken) | |||
13189 | markUnaddressableCandidatesUnviable(*this, CandidateSet); | |||
13190 | ||||
13191 | OverloadCandidateSet::iterator Best; | |||
13192 | OverloadingResult OverloadResult = | |||
13193 | CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); | |||
13194 | ||||
13195 | return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, | |||
13196 | ExecConfig, &CandidateSet, &Best, | |||
13197 | OverloadResult, AllowTypoCorrection); | |||
13198 | } | |||
13199 | ||||
13200 | static bool IsOverloaded(const UnresolvedSetImpl &Functions) { | |||
13201 | return Functions.size() > 1 || | |||
13202 | (Functions.size() == 1 && | |||
13203 | isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); | |||
13204 | } | |||
13205 | ||||
13206 | ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, | |||
13207 | NestedNameSpecifierLoc NNSLoc, | |||
13208 | DeclarationNameInfo DNI, | |||
13209 | const UnresolvedSetImpl &Fns, | |||
13210 | bool PerformADL) { | |||
13211 | return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, | |||
13212 | PerformADL, IsOverloaded(Fns), | |||
13213 | Fns.begin(), Fns.end()); | |||
13214 | } | |||
13215 | ||||
13216 | /// Create a unary operation that may resolve to an overloaded | |||
13217 | /// operator. | |||
13218 | /// | |||
13219 | /// \param OpLoc The location of the operator itself (e.g., '*'). | |||
13220 | /// | |||
13221 | /// \param Opc The UnaryOperatorKind that describes this operator. | |||
13222 | /// | |||
13223 | /// \param Fns The set of non-member functions that will be | |||
13224 | /// considered by overload resolution. The caller needs to build this | |||
13225 | /// set based on the context using, e.g., | |||
13226 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | |||
13227 | /// set should not contain any member functions; those will be added | |||
13228 | /// by CreateOverloadedUnaryOp(). | |||
13229 | /// | |||
13230 | /// \param Input The input argument. | |||
13231 | ExprResult | |||
13232 | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, | |||
13233 | const UnresolvedSetImpl &Fns, | |||
13234 | Expr *Input, bool PerformADL) { | |||
13235 | OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); | |||
13236 | assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((void)0); | |||
13237 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | |||
13238 | // TODO: provide better source location info. | |||
13239 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | |||
13240 | ||||
13241 | if (checkPlaceholderForOverload(*this, Input)) | |||
13242 | return ExprError(); | |||
13243 | ||||
13244 | Expr *Args[2] = { Input, nullptr }; | |||
13245 | unsigned NumArgs = 1; | |||
13246 | ||||
13247 | // For post-increment and post-decrement, add the implicit '0' as | |||
13248 | // the second argument, so that we know this is a post-increment or | |||
13249 | // post-decrement. | |||
13250 | if (Opc == UO_PostInc || Opc == UO_PostDec) { | |||
13251 | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | |||
13252 | Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, | |||
13253 | SourceLocation()); | |||
13254 | NumArgs = 2; | |||
13255 | } | |||
13256 | ||||
13257 | ArrayRef<Expr *> ArgsArray(Args, NumArgs); | |||
13258 | ||||
13259 | if (Input->isTypeDependent()) { | |||
13260 | if (Fns.empty()) | |||
13261 | return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, | |||
13262 | VK_PRValue, OK_Ordinary, OpLoc, false, | |||
13263 | CurFPFeatureOverrides()); | |||
13264 | ||||
13265 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | |||
13266 | ExprResult Fn = CreateUnresolvedLookupExpr( | |||
13267 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); | |||
13268 | if (Fn.isInvalid()) | |||
13269 | return ExprError(); | |||
13270 | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, | |||
13271 | Context.DependentTy, VK_PRValue, OpLoc, | |||
13272 | CurFPFeatureOverrides()); | |||
13273 | } | |||
13274 | ||||
13275 | // Build an empty overload set. | |||
13276 | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); | |||
13277 | ||||
13278 | // Add the candidates from the given function set. | |||
13279 | AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); | |||
13280 | ||||
13281 | // Add operator candidates that are member functions. | |||
13282 | AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | |||
13283 | ||||
13284 | // Add candidates from ADL. | |||
13285 | if (PerformADL) { | |||
13286 | AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, | |||
13287 | /*ExplicitTemplateArgs*/nullptr, | |||
13288 | CandidateSet); | |||
13289 | } | |||
13290 | ||||
13291 | // Add builtin operator candidates. | |||
13292 | AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); | |||
13293 | ||||
13294 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
13295 | ||||
13296 | // Perform overload resolution. | |||
13297 | OverloadCandidateSet::iterator Best; | |||
13298 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | |||
13299 | case OR_Success: { | |||
13300 | // We found a built-in operator or an overloaded operator. | |||
13301 | FunctionDecl *FnDecl = Best->Function; | |||
13302 | ||||
13303 | if (FnDecl) { | |||
13304 | Expr *Base = nullptr; | |||
13305 | // We matched an overloaded operator. Build a call to that | |||
13306 | // operator. | |||
13307 | ||||
13308 | // Convert the arguments. | |||
13309 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | |||
13310 | CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); | |||
13311 | ||||
13312 | ExprResult InputRes = | |||
13313 | PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, | |||
13314 | Best->FoundDecl, Method); | |||
13315 | if (InputRes.isInvalid()) | |||
13316 | return ExprError(); | |||
13317 | Base = Input = InputRes.get(); | |||
13318 | } else { | |||
13319 | // Convert the arguments. | |||
13320 | ExprResult InputInit | |||
13321 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | |||
13322 | Context, | |||
13323 | FnDecl->getParamDecl(0)), | |||
13324 | SourceLocation(), | |||
13325 | Input); | |||
13326 | if (InputInit.isInvalid()) | |||
13327 | return ExprError(); | |||
13328 | Input = InputInit.get(); | |||
13329 | } | |||
13330 | ||||
13331 | // Build the actual expression node. | |||
13332 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, | |||
13333 | Base, HadMultipleCandidates, | |||
13334 | OpLoc); | |||
13335 | if (FnExpr.isInvalid()) | |||
13336 | return ExprError(); | |||
13337 | ||||
13338 | // Determine the result type. | |||
13339 | QualType ResultTy = FnDecl->getReturnType(); | |||
13340 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
13341 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
13342 | ||||
13343 | Args[0] = Input; | |||
13344 | CallExpr *TheCall = CXXOperatorCallExpr::Create( | |||
13345 | Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, | |||
13346 | CurFPFeatureOverrides(), Best->IsADLCandidate); | |||
13347 | ||||
13348 | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) | |||
13349 | return ExprError(); | |||
13350 | ||||
13351 | if (CheckFunctionCall(FnDecl, TheCall, | |||
13352 | FnDecl->getType()->castAs<FunctionProtoType>())) | |||
13353 | return ExprError(); | |||
13354 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); | |||
13355 | } else { | |||
13356 | // We matched a built-in operator. Convert the arguments, then | |||
13357 | // break out so that we will build the appropriate built-in | |||
13358 | // operator node. | |||
13359 | ExprResult InputRes = PerformImplicitConversion( | |||
13360 | Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, | |||
13361 | CCK_ForBuiltinOverloadedOp); | |||
13362 | if (InputRes.isInvalid()) | |||
13363 | return ExprError(); | |||
13364 | Input = InputRes.get(); | |||
13365 | break; | |||
13366 | } | |||
13367 | } | |||
13368 | ||||
13369 | case OR_No_Viable_Function: | |||
13370 | // This is an erroneous use of an operator which can be overloaded by | |||
13371 | // a non-member function. Check for non-member operators which were | |||
13372 | // defined too late to be candidates. | |||
13373 | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) | |||
13374 | // FIXME: Recover by calling the found function. | |||
13375 | return ExprError(); | |||
13376 | ||||
13377 | // No viable function; fall through to handling this as a | |||
13378 | // built-in operator, which will produce an error message for us. | |||
13379 | break; | |||
13380 | ||||
13381 | case OR_Ambiguous: | |||
13382 | CandidateSet.NoteCandidates( | |||
13383 | PartialDiagnosticAt(OpLoc, | |||
13384 | PDiag(diag::err_ovl_ambiguous_oper_unary) | |||
13385 | << UnaryOperator::getOpcodeStr(Opc) | |||
13386 | << Input->getType() << Input->getSourceRange()), | |||
13387 | *this, OCD_AmbiguousCandidates, ArgsArray, | |||
13388 | UnaryOperator::getOpcodeStr(Opc), OpLoc); | |||
13389 | return ExprError(); | |||
13390 | ||||
13391 | case OR_Deleted: | |||
13392 | CandidateSet.NoteCandidates( | |||
13393 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) | |||
13394 | << UnaryOperator::getOpcodeStr(Opc) | |||
13395 | << Input->getSourceRange()), | |||
13396 | *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), | |||
13397 | OpLoc); | |||
13398 | return ExprError(); | |||
13399 | } | |||
13400 | ||||
13401 | // Either we found no viable overloaded operator or we matched a | |||
13402 | // built-in operator. In either case, fall through to trying to | |||
13403 | // build a built-in operation. | |||
13404 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |||
13405 | } | |||
13406 | ||||
13407 | /// Perform lookup for an overloaded binary operator. | |||
13408 | void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, | |||
13409 | OverloadedOperatorKind Op, | |||
13410 | const UnresolvedSetImpl &Fns, | |||
13411 | ArrayRef<Expr *> Args, bool PerformADL) { | |||
13412 | SourceLocation OpLoc = CandidateSet.getLocation(); | |||
13413 | ||||
13414 | OverloadedOperatorKind ExtraOp = | |||
13415 | CandidateSet.getRewriteInfo().AllowRewrittenCandidates | |||
13416 | ? getRewrittenOverloadedOperator(Op) | |||
13417 | : OO_None; | |||
13418 | ||||
13419 | // Add the candidates from the given function set. This also adds the | |||
13420 | // rewritten candidates using these functions if necessary. | |||
13421 | AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); | |||
13422 | ||||
13423 | // Add operator candidates that are member functions. | |||
13424 | AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); | |||
13425 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) | |||
13426 | AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, | |||
13427 | OverloadCandidateParamOrder::Reversed); | |||
13428 | ||||
13429 | // In C++20, also add any rewritten member candidates. | |||
13430 | if (ExtraOp) { | |||
13431 | AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); | |||
13432 | if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) | |||
13433 | AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, | |||
13434 | CandidateSet, | |||
13435 | OverloadCandidateParamOrder::Reversed); | |||
13436 | } | |||
13437 | ||||
13438 | // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not | |||
13439 | // performed for an assignment operator (nor for operator[] nor operator->, | |||
13440 | // which don't get here). | |||
13441 | if (Op != OO_Equal && PerformADL) { | |||
13442 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | |||
13443 | AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, | |||
13444 | /*ExplicitTemplateArgs*/ nullptr, | |||
13445 | CandidateSet); | |||
13446 | if (ExtraOp) { | |||
13447 | DeclarationName ExtraOpName = | |||
13448 | Context.DeclarationNames.getCXXOperatorName(ExtraOp); | |||
13449 | AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, | |||
13450 | /*ExplicitTemplateArgs*/ nullptr, | |||
13451 | CandidateSet); | |||
13452 | } | |||
13453 | } | |||
13454 | ||||
13455 | // Add builtin operator candidates. | |||
13456 | // | |||
13457 | // FIXME: We don't add any rewritten candidates here. This is strictly | |||
13458 | // incorrect; a builtin candidate could be hidden by a non-viable candidate, | |||
13459 | // resulting in our selecting a rewritten builtin candidate. For example: | |||
13460 | // | |||
13461 | // enum class E { e }; | |||
13462 | // bool operator!=(E, E) requires false; | |||
13463 | // bool k = E::e != E::e; | |||
13464 | // | |||
13465 | // ... should select the rewritten builtin candidate 'operator==(E, E)'. But | |||
13466 | // it seems unreasonable to consider rewritten builtin candidates. A core | |||
13467 | // issue has been filed proposing to removed this requirement. | |||
13468 | AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); | |||
13469 | } | |||
13470 | ||||
13471 | /// Create a binary operation that may resolve to an overloaded | |||
13472 | /// operator. | |||
13473 | /// | |||
13474 | /// \param OpLoc The location of the operator itself (e.g., '+'). | |||
13475 | /// | |||
13476 | /// \param Opc The BinaryOperatorKind that describes this operator. | |||
13477 | /// | |||
13478 | /// \param Fns The set of non-member functions that will be | |||
13479 | /// considered by overload resolution. The caller needs to build this | |||
13480 | /// set based on the context using, e.g., | |||
13481 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | |||
13482 | /// set should not contain any member functions; those will be added | |||
13483 | /// by CreateOverloadedBinOp(). | |||
13484 | /// | |||
13485 | /// \param LHS Left-hand argument. | |||
13486 | /// \param RHS Right-hand argument. | |||
13487 | /// \param PerformADL Whether to consider operator candidates found by ADL. | |||
13488 | /// \param AllowRewrittenCandidates Whether to consider candidates found by | |||
13489 | /// C++20 operator rewrites. | |||
13490 | /// \param DefaultedFn If we are synthesizing a defaulted operator function, | |||
13491 | /// the function in question. Such a function is never a candidate in | |||
13492 | /// our overload resolution. This also enables synthesizing a three-way | |||
13493 | /// comparison from < and == as described in C++20 [class.spaceship]p1. | |||
13494 | ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, | |||
13495 | BinaryOperatorKind Opc, | |||
13496 | const UnresolvedSetImpl &Fns, Expr *LHS, | |||
13497 | Expr *RHS, bool PerformADL, | |||
13498 | bool AllowRewrittenCandidates, | |||
13499 | FunctionDecl *DefaultedFn) { | |||
13500 | Expr *Args[2] = { LHS, RHS }; | |||
13501 | LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple | |||
13502 | ||||
13503 | if (!getLangOpts().CPlusPlus20) | |||
13504 | AllowRewrittenCandidates = false; | |||
13505 | ||||
13506 | OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); | |||
13507 | ||||
13508 | // If either side is type-dependent, create an appropriate dependent | |||
13509 | // expression. | |||
13510 | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | |||
13511 | if (Fns.empty()) { | |||
13512 | // If there are no functions to store, just build a dependent | |||
13513 | // BinaryOperator or CompoundAssignment. | |||
13514 | if (BinaryOperator::isCompoundAssignmentOp(Opc)) | |||
13515 | return CompoundAssignOperator::Create( | |||
13516 | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, | |||
13517 | OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, | |||
13518 | Context.DependentTy); | |||
13519 | return BinaryOperator::Create( | |||
13520 | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, | |||
13521 | OK_Ordinary, OpLoc, CurFPFeatureOverrides()); | |||
13522 | } | |||
13523 | ||||
13524 | // FIXME: save results of ADL from here? | |||
13525 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | |||
13526 | // TODO: provide better source location info in DNLoc component. | |||
13527 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | |||
13528 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); | |||
13529 | ExprResult Fn = CreateUnresolvedLookupExpr( | |||
13530 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); | |||
13531 | if (Fn.isInvalid()) | |||
13532 | return ExprError(); | |||
13533 | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, | |||
13534 | Context.DependentTy, VK_PRValue, OpLoc, | |||
13535 | CurFPFeatureOverrides()); | |||
13536 | } | |||
13537 | ||||
13538 | // Always do placeholder-like conversions on the RHS. | |||
13539 | if (checkPlaceholderForOverload(*this, Args[1])) | |||
13540 | return ExprError(); | |||
13541 | ||||
13542 | // Do placeholder-like conversion on the LHS; note that we should | |||
13543 | // not get here with a PseudoObject LHS. | |||
13544 | assert(Args[0]->getObjectKind() != OK_ObjCProperty)((void)0); | |||
13545 | if (checkPlaceholderForOverload(*this, Args[0])) | |||
13546 | return ExprError(); | |||
13547 | ||||
13548 | // If this is the assignment operator, we only perform overload resolution | |||
13549 | // if the left-hand side is a class or enumeration type. This is actually | |||
13550 | // a hack. The standard requires that we do overload resolution between the | |||
13551 | // various built-in candidates, but as DR507 points out, this can lead to | |||
13552 | // problems. So we do it this way, which pretty much follows what GCC does. | |||
13553 | // Note that we go the traditional code path for compound assignment forms. | |||
13554 | if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) | |||
13555 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | |||
13556 | ||||
13557 | // If this is the .* operator, which is not overloadable, just | |||
13558 | // create a built-in binary operator. | |||
13559 | if (Opc == BO_PtrMemD) | |||
13560 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | |||
13561 | ||||
13562 | // Build the overload set. | |||
13563 | OverloadCandidateSet CandidateSet( | |||
13564 | OpLoc, OverloadCandidateSet::CSK_Operator, | |||
13565 | OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); | |||
13566 | if (DefaultedFn) | |||
13567 | CandidateSet.exclude(DefaultedFn); | |||
13568 | LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); | |||
13569 | ||||
13570 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
13571 | ||||
13572 | // Perform overload resolution. | |||
13573 | OverloadCandidateSet::iterator Best; | |||
13574 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | |||
13575 | case OR_Success: { | |||
13576 | // We found a built-in operator or an overloaded operator. | |||
13577 | FunctionDecl *FnDecl = Best->Function; | |||
13578 | ||||
13579 | bool IsReversed = Best->isReversed(); | |||
13580 | if (IsReversed) | |||
13581 | std::swap(Args[0], Args[1]); | |||
13582 | ||||
13583 | if (FnDecl) { | |||
13584 | Expr *Base = nullptr; | |||
13585 | // We matched an overloaded operator. Build a call to that | |||
13586 | // operator. | |||
13587 | ||||
13588 | OverloadedOperatorKind ChosenOp = | |||
13589 | FnDecl->getDeclName().getCXXOverloadedOperator(); | |||
13590 | ||||
13591 | // C++2a [over.match.oper]p9: | |||
13592 | // If a rewritten operator== candidate is selected by overload | |||
13593 | // resolution for an operator@, its return type shall be cv bool | |||
13594 | if (Best->RewriteKind && ChosenOp == OO_EqualEqual && | |||
13595 | !FnDecl->getReturnType()->isBooleanType()) { | |||
13596 | bool IsExtension = | |||
13597 | FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); | |||
13598 | Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool | |||
13599 | : diag::err_ovl_rewrite_equalequal_not_bool) | |||
13600 | << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) | |||
13601 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | |||
13602 | Diag(FnDecl->getLocation(), diag::note_declared_at); | |||
13603 | if (!IsExtension) | |||
13604 | return ExprError(); | |||
13605 | } | |||
13606 | ||||
13607 | if (AllowRewrittenCandidates && !IsReversed && | |||
13608 | CandidateSet.getRewriteInfo().isReversible()) { | |||
13609 | // We could have reversed this operator, but didn't. Check if some | |||
13610 | // reversed form was a viable candidate, and if so, if it had a | |||
13611 | // better conversion for either parameter. If so, this call is | |||
13612 | // formally ambiguous, and allowing it is an extension. | |||
13613 | llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; | |||
13614 | for (OverloadCandidate &Cand : CandidateSet) { | |||
13615 | if (Cand.Viable && Cand.Function && Cand.isReversed() && | |||
13616 | haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { | |||
13617 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { | |||
13618 | if (CompareImplicitConversionSequences( | |||
13619 | *this, OpLoc, Cand.Conversions[ArgIdx], | |||
13620 | Best->Conversions[ArgIdx]) == | |||
13621 | ImplicitConversionSequence::Better) { | |||
13622 | AmbiguousWith.push_back(Cand.Function); | |||
13623 | break; | |||
13624 | } | |||
13625 | } | |||
13626 | } | |||
13627 | } | |||
13628 | ||||
13629 | if (!AmbiguousWith.empty()) { | |||
13630 | bool AmbiguousWithSelf = | |||
13631 | AmbiguousWith.size() == 1 && | |||
13632 | declaresSameEntity(AmbiguousWith.front(), FnDecl); | |||
13633 | Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) | |||
13634 | << BinaryOperator::getOpcodeStr(Opc) | |||
13635 | << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf | |||
13636 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | |||
13637 | if (AmbiguousWithSelf) { | |||
13638 | Diag(FnDecl->getLocation(), | |||
13639 | diag::note_ovl_ambiguous_oper_binary_reversed_self); | |||
13640 | } else { | |||
13641 | Diag(FnDecl->getLocation(), | |||
13642 | diag::note_ovl_ambiguous_oper_binary_selected_candidate); | |||
13643 | for (auto *F : AmbiguousWith) | |||
13644 | Diag(F->getLocation(), | |||
13645 | diag::note_ovl_ambiguous_oper_binary_reversed_candidate); | |||
13646 | } | |||
13647 | } | |||
13648 | } | |||
13649 | ||||
13650 | // Convert the arguments. | |||
13651 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | |||
13652 | // Best->Access is only meaningful for class members. | |||
13653 | CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); | |||
13654 | ||||
13655 | ExprResult Arg1 = | |||
13656 | PerformCopyInitialization( | |||
13657 | InitializedEntity::InitializeParameter(Context, | |||
13658 | FnDecl->getParamDecl(0)), | |||
13659 | SourceLocation(), Args[1]); | |||
13660 | if (Arg1.isInvalid()) | |||
13661 | return ExprError(); | |||
13662 | ||||
13663 | ExprResult Arg0 = | |||
13664 | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, | |||
13665 | Best->FoundDecl, Method); | |||
13666 | if (Arg0.isInvalid()) | |||
13667 | return ExprError(); | |||
13668 | Base = Args[0] = Arg0.getAs<Expr>(); | |||
13669 | Args[1] = RHS = Arg1.getAs<Expr>(); | |||
13670 | } else { | |||
13671 | // Convert the arguments. | |||
13672 | ExprResult Arg0 = PerformCopyInitialization( | |||
13673 | InitializedEntity::InitializeParameter(Context, | |||
13674 | FnDecl->getParamDecl(0)), | |||
13675 | SourceLocation(), Args[0]); | |||
13676 | if (Arg0.isInvalid()) | |||
13677 | return ExprError(); | |||
13678 | ||||
13679 | ExprResult Arg1 = | |||
13680 | PerformCopyInitialization( | |||
13681 | InitializedEntity::InitializeParameter(Context, | |||
13682 | FnDecl->getParamDecl(1)), | |||
13683 | SourceLocation(), Args[1]); | |||
13684 | if (Arg1.isInvalid()) | |||
13685 | return ExprError(); | |||
13686 | Args[0] = LHS = Arg0.getAs<Expr>(); | |||
13687 | Args[1] = RHS = Arg1.getAs<Expr>(); | |||
13688 | } | |||
13689 | ||||
13690 | // Build the actual expression node. | |||
13691 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, | |||
13692 | Best->FoundDecl, Base, | |||
13693 | HadMultipleCandidates, OpLoc); | |||
13694 | if (FnExpr.isInvalid()) | |||
13695 | return ExprError(); | |||
13696 | ||||
13697 | // Determine the result type. | |||
13698 | QualType ResultTy = FnDecl->getReturnType(); | |||
13699 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
13700 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
13701 | ||||
13702 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( | |||
13703 | Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, | |||
13704 | CurFPFeatureOverrides(), Best->IsADLCandidate); | |||
13705 | ||||
13706 | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, | |||
13707 | FnDecl)) | |||
13708 | return ExprError(); | |||
13709 | ||||
13710 | ArrayRef<const Expr *> ArgsArray(Args, 2); | |||
13711 | const Expr *ImplicitThis = nullptr; | |||
13712 | // Cut off the implicit 'this'. | |||
13713 | if (isa<CXXMethodDecl>(FnDecl)) { | |||
13714 | ImplicitThis = ArgsArray[0]; | |||
13715 | ArgsArray = ArgsArray.slice(1); | |||
13716 | } | |||
13717 | ||||
13718 | // Check for a self move. | |||
13719 | if (Op == OO_Equal) | |||
13720 | DiagnoseSelfMove(Args[0], Args[1], OpLoc); | |||
13721 | ||||
13722 | if (ImplicitThis) { | |||
13723 | QualType ThisType = Context.getPointerType(ImplicitThis->getType()); | |||
13724 | QualType ThisTypeFromDecl = Context.getPointerType( | |||
13725 | cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); | |||
13726 | ||||
13727 | CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, | |||
13728 | ThisTypeFromDecl); | |||
13729 | } | |||
13730 | ||||
13731 | checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, | |||
13732 | isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), | |||
13733 | VariadicDoesNotApply); | |||
13734 | ||||
13735 | ExprResult R = MaybeBindToTemporary(TheCall); | |||
13736 | if (R.isInvalid()) | |||
13737 | return ExprError(); | |||
13738 | ||||
13739 | R = CheckForImmediateInvocation(R, FnDecl); | |||
13740 | if (R.isInvalid()) | |||
13741 | return ExprError(); | |||
13742 | ||||
13743 | // For a rewritten candidate, we've already reversed the arguments | |||
13744 | // if needed. Perform the rest of the rewrite now. | |||
13745 | if ((Best->RewriteKind & CRK_DifferentOperator) || | |||
13746 | (Op == OO_Spaceship && IsReversed)) { | |||
13747 | if (Op == OO_ExclaimEqual) { | |||
13748 | assert(ChosenOp == OO_EqualEqual && "unexpected operator name")((void)0); | |||
13749 | R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); | |||
13750 | } else { | |||
13751 | assert(ChosenOp == OO_Spaceship && "unexpected operator name")((void)0); | |||
13752 | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | |||
13753 | Expr *ZeroLiteral = | |||
13754 | IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); | |||
13755 | ||||
13756 | Sema::CodeSynthesisContext Ctx; | |||
13757 | Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; | |||
13758 | Ctx.Entity = FnDecl; | |||
13759 | pushCodeSynthesisContext(Ctx); | |||
13760 | ||||
13761 | R = CreateOverloadedBinOp( | |||
13762 | OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), | |||
13763 | IsReversed ? R.get() : ZeroLiteral, PerformADL, | |||
13764 | /*AllowRewrittenCandidates=*/false); | |||
13765 | ||||
13766 | popCodeSynthesisContext(); | |||
13767 | } | |||
13768 | if (R.isInvalid()) | |||
13769 | return ExprError(); | |||
13770 | } else { | |||
13771 | assert(ChosenOp == Op && "unexpected operator name")((void)0); | |||
13772 | } | |||
13773 | ||||
13774 | // Make a note in the AST if we did any rewriting. | |||
13775 | if (Best->RewriteKind != CRK_None) | |||
13776 | R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); | |||
13777 | ||||
13778 | return R; | |||
13779 | } else { | |||
13780 | // We matched a built-in operator. Convert the arguments, then | |||
13781 | // break out so that we will build the appropriate built-in | |||
13782 | // operator node. | |||
13783 | ExprResult ArgsRes0 = PerformImplicitConversion( | |||
13784 | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], | |||
13785 | AA_Passing, CCK_ForBuiltinOverloadedOp); | |||
13786 | if (ArgsRes0.isInvalid()) | |||
13787 | return ExprError(); | |||
13788 | Args[0] = ArgsRes0.get(); | |||
13789 | ||||
13790 | ExprResult ArgsRes1 = PerformImplicitConversion( | |||
13791 | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], | |||
13792 | AA_Passing, CCK_ForBuiltinOverloadedOp); | |||
13793 | if (ArgsRes1.isInvalid()) | |||
13794 | return ExprError(); | |||
13795 | Args[1] = ArgsRes1.get(); | |||
13796 | break; | |||
13797 | } | |||
13798 | } | |||
13799 | ||||
13800 | case OR_No_Viable_Function: { | |||
13801 | // C++ [over.match.oper]p9: | |||
13802 | // If the operator is the operator , [...] and there are no | |||
13803 | // viable functions, then the operator is assumed to be the | |||
13804 | // built-in operator and interpreted according to clause 5. | |||
13805 | if (Opc == BO_Comma) | |||
13806 | break; | |||
13807 | ||||
13808 | // When defaulting an 'operator<=>', we can try to synthesize a three-way | |||
13809 | // compare result using '==' and '<'. | |||
13810 | if (DefaultedFn && Opc == BO_Cmp) { | |||
13811 | ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], | |||
13812 | Args[1], DefaultedFn); | |||
13813 | if (E.isInvalid() || E.isUsable()) | |||
13814 | return E; | |||
13815 | } | |||
13816 | ||||
13817 | // For class as left operand for assignment or compound assignment | |||
13818 | // operator do not fall through to handling in built-in, but report that | |||
13819 | // no overloaded assignment operator found | |||
13820 | ExprResult Result = ExprError(); | |||
13821 | StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); | |||
13822 | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, | |||
13823 | Args, OpLoc); | |||
13824 | DeferDiagsRAII DDR(*this, | |||
13825 | CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); | |||
13826 | if (Args[0]->getType()->isRecordType() && | |||
13827 | Opc >= BO_Assign && Opc <= BO_OrAssign) { | |||
13828 | Diag(OpLoc, diag::err_ovl_no_viable_oper) | |||
13829 | << BinaryOperator::getOpcodeStr(Opc) | |||
13830 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | |||
13831 | if (Args[0]->getType()->isIncompleteType()) { | |||
13832 | Diag(OpLoc, diag::note_assign_lhs_incomplete) | |||
13833 | << Args[0]->getType() | |||
13834 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | |||
13835 | } | |||
13836 | } else { | |||
13837 | // This is an erroneous use of an operator which can be overloaded by | |||
13838 | // a non-member function. Check for non-member operators which were | |||
13839 | // defined too late to be candidates. | |||
13840 | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) | |||
13841 | // FIXME: Recover by calling the found function. | |||
13842 | return ExprError(); | |||
13843 | ||||
13844 | // No viable function; try to create a built-in operation, which will | |||
13845 | // produce an error. Then, show the non-viable candidates. | |||
13846 | Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | |||
13847 | } | |||
13848 | assert(Result.isInvalid() &&((void)0) | |||
13849 | "C++ binary operator overloading is missing candidates!")((void)0); | |||
13850 | CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); | |||
13851 | return Result; | |||
13852 | } | |||
13853 | ||||
13854 | case OR_Ambiguous: | |||
13855 | CandidateSet.NoteCandidates( | |||
13856 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) | |||
13857 | << BinaryOperator::getOpcodeStr(Opc) | |||
13858 | << Args[0]->getType() | |||
13859 | << Args[1]->getType() | |||
13860 | << Args[0]->getSourceRange() | |||
13861 | << Args[1]->getSourceRange()), | |||
13862 | *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), | |||
13863 | OpLoc); | |||
13864 | return ExprError(); | |||
13865 | ||||
13866 | case OR_Deleted: | |||
13867 | if (isImplicitlyDeleted(Best->Function)) { | |||
13868 | FunctionDecl *DeletedFD = Best->Function; | |||
13869 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); | |||
13870 | if (DFK.isSpecialMember()) { | |||
13871 | Diag(OpLoc, diag::err_ovl_deleted_special_oper) | |||
13872 | << Args[0]->getType() << DFK.asSpecialMember(); | |||
13873 | } else { | |||
13874 | assert(DFK.isComparison())((void)0); | |||
13875 | Diag(OpLoc, diag::err_ovl_deleted_comparison) | |||
13876 | << Args[0]->getType() << DeletedFD; | |||
13877 | } | |||
13878 | ||||
13879 | // The user probably meant to call this special member. Just | |||
13880 | // explain why it's deleted. | |||
13881 | NoteDeletedFunction(DeletedFD); | |||
13882 | return ExprError(); | |||
13883 | } | |||
13884 | CandidateSet.NoteCandidates( | |||
13885 | PartialDiagnosticAt( | |||
13886 | OpLoc, PDiag(diag::err_ovl_deleted_oper) | |||
13887 | << getOperatorSpelling(Best->Function->getDeclName() | |||
13888 | .getCXXOverloadedOperator()) | |||
13889 | << Args[0]->getSourceRange() | |||
13890 | << Args[1]->getSourceRange()), | |||
13891 | *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), | |||
13892 | OpLoc); | |||
13893 | return ExprError(); | |||
13894 | } | |||
13895 | ||||
13896 | // We matched a built-in operator; build it. | |||
13897 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | |||
13898 | } | |||
13899 | ||||
13900 | ExprResult Sema::BuildSynthesizedThreeWayComparison( | |||
13901 | SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, | |||
13902 | FunctionDecl *DefaultedFn) { | |||
13903 | const ComparisonCategoryInfo *Info = | |||
13904 | Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); | |||
13905 | // If we're not producing a known comparison category type, we can't | |||
13906 | // synthesize a three-way comparison. Let the caller diagnose this. | |||
13907 | if (!Info) | |||
13908 | return ExprResult((Expr*)nullptr); | |||
13909 | ||||
13910 | // If we ever want to perform this synthesis more generally, we will need to | |||
13911 | // apply the temporary materialization conversion to the operands. | |||
13912 | assert(LHS->isGLValue() && RHS->isGLValue() &&((void)0) | |||
13913 | "cannot use prvalue expressions more than once")((void)0); | |||
13914 | Expr *OrigLHS = LHS; | |||
13915 | Expr *OrigRHS = RHS; | |||
13916 | ||||
13917 | // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to | |||
13918 | // each of them multiple times below. | |||
13919 | LHS = new (Context) | |||
13920 | OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), | |||
13921 | LHS->getObjectKind(), LHS); | |||
13922 | RHS = new (Context) | |||
13923 | OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), | |||
13924 | RHS->getObjectKind(), RHS); | |||
13925 | ||||
13926 | ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, | |||
13927 | DefaultedFn); | |||
13928 | if (Eq.isInvalid()) | |||
13929 | return ExprError(); | |||
13930 | ||||
13931 | ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, | |||
13932 | true, DefaultedFn); | |||
13933 | if (Less.isInvalid()) | |||
13934 | return ExprError(); | |||
13935 | ||||
13936 | ExprResult Greater; | |||
13937 | if (Info->isPartial()) { | |||
13938 | Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, | |||
13939 | DefaultedFn); | |||
13940 | if (Greater.isInvalid()) | |||
13941 | return ExprError(); | |||
13942 | } | |||
13943 | ||||
13944 | // Form the list of comparisons we're going to perform. | |||
13945 | struct Comparison { | |||
13946 | ExprResult Cmp; | |||
13947 | ComparisonCategoryResult Result; | |||
13948 | } Comparisons[4] = | |||
13949 | { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal | |||
13950 | : ComparisonCategoryResult::Equivalent}, | |||
13951 | {Less, ComparisonCategoryResult::Less}, | |||
13952 | {Greater, ComparisonCategoryResult::Greater}, | |||
13953 | {ExprResult(), ComparisonCategoryResult::Unordered}, | |||
13954 | }; | |||
13955 | ||||
13956 | int I = Info->isPartial() ? 3 : 2; | |||
13957 | ||||
13958 | // Combine the comparisons with suitable conditional expressions. | |||
13959 | ExprResult Result; | |||
13960 | for (; I >= 0; --I) { | |||
13961 | // Build a reference to the comparison category constant. | |||
13962 | auto *VI = Info->lookupValueInfo(Comparisons[I].Result); | |||
13963 | // FIXME: Missing a constant for a comparison category. Diagnose this? | |||
13964 | if (!VI) | |||
13965 | return ExprResult((Expr*)nullptr); | |||
13966 | ExprResult ThisResult = | |||
13967 | BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); | |||
13968 | if (ThisResult.isInvalid()) | |||
13969 | return ExprError(); | |||
13970 | ||||
13971 | // Build a conditional unless this is the final case. | |||
13972 | if (Result.get()) { | |||
13973 | Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), | |||
13974 | ThisResult.get(), Result.get()); | |||
13975 | if (Result.isInvalid()) | |||
13976 | return ExprError(); | |||
13977 | } else { | |||
13978 | Result = ThisResult; | |||
13979 | } | |||
13980 | } | |||
13981 | ||||
13982 | // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to | |||
13983 | // bind the OpaqueValueExprs before they're (repeatedly) used. | |||
13984 | Expr *SyntacticForm = BinaryOperator::Create( | |||
13985 | Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), | |||
13986 | Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, | |||
13987 | CurFPFeatureOverrides()); | |||
13988 | Expr *SemanticForm[] = {LHS, RHS, Result.get()}; | |||
13989 | return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); | |||
13990 | } | |||
13991 | ||||
13992 | ExprResult | |||
13993 | Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, | |||
13994 | SourceLocation RLoc, | |||
13995 | Expr *Base, Expr *Idx) { | |||
13996 | Expr *Args[2] = { Base, Idx }; | |||
13997 | DeclarationName OpName = | |||
13998 | Context.DeclarationNames.getCXXOperatorName(OO_Subscript); | |||
13999 | ||||
14000 | // If either side is type-dependent, create an appropriate dependent | |||
14001 | // expression. | |||
14002 | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | |||
14003 | ||||
14004 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators | |||
14005 | // CHECKME: no 'operator' keyword? | |||
14006 | DeclarationNameInfo OpNameInfo(OpName, LLoc); | |||
14007 | OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | |||
14008 | ExprResult Fn = CreateUnresolvedLookupExpr( | |||
14009 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); | |||
14010 | if (Fn.isInvalid()) | |||
14011 | return ExprError(); | |||
14012 | // Can't add any actual overloads yet | |||
14013 | ||||
14014 | return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, | |||
14015 | Context.DependentTy, VK_PRValue, RLoc, | |||
14016 | CurFPFeatureOverrides()); | |||
14017 | } | |||
14018 | ||||
14019 | // Handle placeholders on both operands. | |||
14020 | if (checkPlaceholderForOverload(*this, Args[0])) | |||
14021 | return ExprError(); | |||
14022 | if (checkPlaceholderForOverload(*this, Args[1])) | |||
14023 | return ExprError(); | |||
14024 | ||||
14025 | // Build an empty overload set. | |||
14026 | OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); | |||
14027 | ||||
14028 | // Subscript can only be overloaded as a member function. | |||
14029 | ||||
14030 | // Add operator candidates that are member functions. | |||
14031 | AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | |||
14032 | ||||
14033 | // Add builtin operator candidates. | |||
14034 | AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); | |||
14035 | ||||
14036 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
14037 | ||||
14038 | // Perform overload resolution. | |||
14039 | OverloadCandidateSet::iterator Best; | |||
14040 | switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { | |||
14041 | case OR_Success: { | |||
14042 | // We found a built-in operator or an overloaded operator. | |||
14043 | FunctionDecl *FnDecl = Best->Function; | |||
14044 | ||||
14045 | if (FnDecl) { | |||
14046 | // We matched an overloaded operator. Build a call to that | |||
14047 | // operator. | |||
14048 | ||||
14049 | CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); | |||
14050 | ||||
14051 | // Convert the arguments. | |||
14052 | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | |||
14053 | ExprResult Arg0 = | |||
14054 | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, | |||
14055 | Best->FoundDecl, Method); | |||
14056 | if (Arg0.isInvalid()) | |||
14057 | return ExprError(); | |||
14058 | Args[0] = Arg0.get(); | |||
14059 | ||||
14060 | // Convert the arguments. | |||
14061 | ExprResult InputInit | |||
14062 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | |||
14063 | Context, | |||
14064 | FnDecl->getParamDecl(0)), | |||
14065 | SourceLocation(), | |||
14066 | Args[1]); | |||
14067 | if (InputInit.isInvalid()) | |||
14068 | return ExprError(); | |||
14069 | ||||
14070 | Args[1] = InputInit.getAs<Expr>(); | |||
14071 | ||||
14072 | // Build the actual expression node. | |||
14073 | DeclarationNameInfo OpLocInfo(OpName, LLoc); | |||
14074 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); | |||
14075 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, | |||
14076 | Best->FoundDecl, | |||
14077 | Base, | |||
14078 | HadMultipleCandidates, | |||
14079 | OpLocInfo.getLoc(), | |||
14080 | OpLocInfo.getInfo()); | |||
14081 | if (FnExpr.isInvalid()) | |||
14082 | return ExprError(); | |||
14083 | ||||
14084 | // Determine the result type | |||
14085 | QualType ResultTy = FnDecl->getReturnType(); | |||
14086 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
14087 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
14088 | ||||
14089 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( | |||
14090 | Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, | |||
14091 | CurFPFeatureOverrides()); | |||
14092 | if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) | |||
14093 | return ExprError(); | |||
14094 | ||||
14095 | if (CheckFunctionCall(Method, TheCall, | |||
14096 | Method->getType()->castAs<FunctionProtoType>())) | |||
14097 | return ExprError(); | |||
14098 | ||||
14099 | return MaybeBindToTemporary(TheCall); | |||
14100 | } else { | |||
14101 | // We matched a built-in operator. Convert the arguments, then | |||
14102 | // break out so that we will build the appropriate built-in | |||
14103 | // operator node. | |||
14104 | ExprResult ArgsRes0 = PerformImplicitConversion( | |||
14105 | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], | |||
14106 | AA_Passing, CCK_ForBuiltinOverloadedOp); | |||
14107 | if (ArgsRes0.isInvalid()) | |||
14108 | return ExprError(); | |||
14109 | Args[0] = ArgsRes0.get(); | |||
14110 | ||||
14111 | ExprResult ArgsRes1 = PerformImplicitConversion( | |||
14112 | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], | |||
14113 | AA_Passing, CCK_ForBuiltinOverloadedOp); | |||
14114 | if (ArgsRes1.isInvalid()) | |||
14115 | return ExprError(); | |||
14116 | Args[1] = ArgsRes1.get(); | |||
14117 | ||||
14118 | break; | |||
14119 | } | |||
14120 | } | |||
14121 | ||||
14122 | case OR_No_Viable_Function: { | |||
14123 | PartialDiagnostic PD = CandidateSet.empty() | |||
14124 | ? (PDiag(diag::err_ovl_no_oper) | |||
14125 | << Args[0]->getType() << /*subscript*/ 0 | |||
14126 | << Args[0]->getSourceRange() << Args[1]->getSourceRange()) | |||
14127 | : (PDiag(diag::err_ovl_no_viable_subscript) | |||
14128 | << Args[0]->getType() << Args[0]->getSourceRange() | |||
14129 | << Args[1]->getSourceRange()); | |||
14130 | CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, | |||
14131 | OCD_AllCandidates, Args, "[]", LLoc); | |||
14132 | return ExprError(); | |||
14133 | } | |||
14134 | ||||
14135 | case OR_Ambiguous: | |||
14136 | CandidateSet.NoteCandidates( | |||
14137 | PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) | |||
14138 | << "[]" << Args[0]->getType() | |||
14139 | << Args[1]->getType() | |||
14140 | << Args[0]->getSourceRange() | |||
14141 | << Args[1]->getSourceRange()), | |||
14142 | *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); | |||
14143 | return ExprError(); | |||
14144 | ||||
14145 | case OR_Deleted: | |||
14146 | CandidateSet.NoteCandidates( | |||
14147 | PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) | |||
14148 | << "[]" << Args[0]->getSourceRange() | |||
14149 | << Args[1]->getSourceRange()), | |||
14150 | *this, OCD_AllCandidates, Args, "[]", LLoc); | |||
14151 | return ExprError(); | |||
14152 | } | |||
14153 | ||||
14154 | // We matched a built-in operator; build it. | |||
14155 | return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); | |||
14156 | } | |||
14157 | ||||
14158 | /// BuildCallToMemberFunction - Build a call to a member | |||
14159 | /// function. MemExpr is the expression that refers to the member | |||
14160 | /// function (and includes the object parameter), Args/NumArgs are the | |||
14161 | /// arguments to the function call (not including the object | |||
14162 | /// parameter). The caller needs to validate that the member | |||
14163 | /// expression refers to a non-static member function or an overloaded | |||
14164 | /// member function. | |||
14165 | ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, | |||
14166 | SourceLocation LParenLoc, | |||
14167 | MultiExprArg Args, | |||
14168 | SourceLocation RParenLoc, | |||
14169 | bool AllowRecovery) { | |||
14170 | assert(MemExprE->getType() == Context.BoundMemberTy ||((void)0) | |||
14171 | MemExprE->getType() == Context.OverloadTy)((void)0); | |||
14172 | ||||
14173 | // Dig out the member expression. This holds both the object | |||
14174 | // argument and the member function we're referring to. | |||
14175 | Expr *NakedMemExpr = MemExprE->IgnoreParens(); | |||
14176 | ||||
14177 | // Determine whether this is a call to a pointer-to-member function. | |||
14178 | if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { | |||
14179 | assert(op->getType() == Context.BoundMemberTy)((void)0); | |||
14180 | assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((void)0); | |||
14181 | ||||
14182 | QualType fnType = | |||
14183 | op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); | |||
14184 | ||||
14185 | const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); | |||
14186 | QualType resultType = proto->getCallResultType(Context); | |||
14187 | ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); | |||
14188 | ||||
14189 | // Check that the object type isn't more qualified than the | |||
14190 | // member function we're calling. | |||
14191 | Qualifiers funcQuals = proto->getMethodQuals(); | |||
14192 | ||||
14193 | QualType objectType = op->getLHS()->getType(); | |||
14194 | if (op->getOpcode() == BO_PtrMemI) | |||
14195 | objectType = objectType->castAs<PointerType>()->getPointeeType(); | |||
14196 | Qualifiers objectQuals = objectType.getQualifiers(); | |||
14197 | ||||
14198 | Qualifiers difference = objectQuals - funcQuals; | |||
14199 | difference.removeObjCGCAttr(); | |||
14200 | difference.removeAddressSpace(); | |||
14201 | if (difference) { | |||
14202 | std::string qualsString = difference.getAsString(); | |||
14203 | Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) | |||
14204 | << fnType.getUnqualifiedType() | |||
14205 | << qualsString | |||
14206 | << (qualsString.find(' ') == std::string::npos ? 1 : 2); | |||
14207 | } | |||
14208 | ||||
14209 | CXXMemberCallExpr *call = CXXMemberCallExpr::Create( | |||
14210 | Context, MemExprE, Args, resultType, valueKind, RParenLoc, | |||
14211 | CurFPFeatureOverrides(), proto->getNumParams()); | |||
14212 | ||||
14213 | if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), | |||
14214 | call, nullptr)) | |||
14215 | return ExprError(); | |||
14216 | ||||
14217 | if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) | |||
14218 | return ExprError(); | |||
14219 | ||||
14220 | if (CheckOtherCall(call, proto)) | |||
14221 | return ExprError(); | |||
14222 | ||||
14223 | return MaybeBindToTemporary(call); | |||
14224 | } | |||
14225 | ||||
14226 | // We only try to build a recovery expr at this level if we can preserve | |||
14227 | // the return type, otherwise we return ExprError() and let the caller | |||
14228 | // recover. | |||
14229 | auto BuildRecoveryExpr = [&](QualType Type) { | |||
14230 | if (!AllowRecovery) | |||
14231 | return ExprError(); | |||
14232 | std::vector<Expr *> SubExprs = {MemExprE}; | |||
14233 | llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); | |||
14234 | return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, | |||
14235 | Type); | |||
14236 | }; | |||
14237 | if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) | |||
14238 | return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, | |||
14239 | RParenLoc, CurFPFeatureOverrides()); | |||
14240 | ||||
14241 | UnbridgedCastsSet UnbridgedCasts; | |||
14242 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | |||
14243 | return ExprError(); | |||
14244 | ||||
14245 | MemberExpr *MemExpr; | |||
14246 | CXXMethodDecl *Method = nullptr; | |||
14247 | DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); | |||
14248 | NestedNameSpecifier *Qualifier = nullptr; | |||
14249 | if (isa<MemberExpr>(NakedMemExpr)) { | |||
14250 | MemExpr = cast<MemberExpr>(NakedMemExpr); | |||
14251 | Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); | |||
14252 | FoundDecl = MemExpr->getFoundDecl(); | |||
14253 | Qualifier = MemExpr->getQualifier(); | |||
14254 | UnbridgedCasts.restore(); | |||
14255 | } else { | |||
14256 | UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); | |||
14257 | Qualifier = UnresExpr->getQualifier(); | |||
14258 | ||||
14259 | QualType ObjectType = UnresExpr->getBaseType(); | |||
14260 | Expr::Classification ObjectClassification | |||
14261 | = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() | |||
14262 | : UnresExpr->getBase()->Classify(Context); | |||
14263 | ||||
14264 | // Add overload candidates | |||
14265 | OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), | |||
14266 | OverloadCandidateSet::CSK_Normal); | |||
14267 | ||||
14268 | // FIXME: avoid copy. | |||
14269 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | |||
14270 | if (UnresExpr->hasExplicitTemplateArgs()) { | |||
14271 | UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | |||
14272 | TemplateArgs = &TemplateArgsBuffer; | |||
14273 | } | |||
14274 | ||||
14275 | for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), | |||
14276 | E = UnresExpr->decls_end(); I != E; ++I) { | |||
14277 | ||||
14278 | NamedDecl *Func = *I; | |||
14279 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); | |||
14280 | if (isa<UsingShadowDecl>(Func)) | |||
14281 | Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); | |||
14282 | ||||
14283 | ||||
14284 | // Microsoft supports direct constructor calls. | |||
14285 | if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { | |||
14286 | AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, | |||
14287 | CandidateSet, | |||
14288 | /*SuppressUserConversions*/ false); | |||
14289 | } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { | |||
14290 | // If explicit template arguments were provided, we can't call a | |||
14291 | // non-template member function. | |||
14292 | if (TemplateArgs) | |||
14293 | continue; | |||
14294 | ||||
14295 | AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, | |||
14296 | ObjectClassification, Args, CandidateSet, | |||
14297 | /*SuppressUserConversions=*/false); | |||
14298 | } else { | |||
14299 | AddMethodTemplateCandidate( | |||
14300 | cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, | |||
14301 | TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, | |||
14302 | /*SuppressUserConversions=*/false); | |||
14303 | } | |||
14304 | } | |||
14305 | ||||
14306 | DeclarationName DeclName = UnresExpr->getMemberName(); | |||
14307 | ||||
14308 | UnbridgedCasts.restore(); | |||
14309 | ||||
14310 | OverloadCandidateSet::iterator Best; | |||
14311 | bool Succeeded = false; | |||
14312 | switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), | |||
14313 | Best)) { | |||
14314 | case OR_Success: | |||
14315 | Method = cast<CXXMethodDecl>(Best->Function); | |||
14316 | FoundDecl = Best->FoundDecl; | |||
14317 | CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); | |||
14318 | if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) | |||
14319 | break; | |||
14320 | // If FoundDecl is different from Method (such as if one is a template | |||
14321 | // and the other a specialization), make sure DiagnoseUseOfDecl is | |||
14322 | // called on both. | |||
14323 | // FIXME: This would be more comprehensively addressed by modifying | |||
14324 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | |||
14325 | // being used. | |||
14326 | if (Method != FoundDecl.getDecl() && | |||
14327 | DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) | |||
14328 | break; | |||
14329 | Succeeded = true; | |||
14330 | break; | |||
14331 | ||||
14332 | case OR_No_Viable_Function: | |||
14333 | CandidateSet.NoteCandidates( | |||
14334 | PartialDiagnosticAt( | |||
14335 | UnresExpr->getMemberLoc(), | |||
14336 | PDiag(diag::err_ovl_no_viable_member_function_in_call) | |||
14337 | << DeclName << MemExprE->getSourceRange()), | |||
14338 | *this, OCD_AllCandidates, Args); | |||
14339 | break; | |||
14340 | case OR_Ambiguous: | |||
14341 | CandidateSet.NoteCandidates( | |||
14342 | PartialDiagnosticAt(UnresExpr->getMemberLoc(), | |||
14343 | PDiag(diag::err_ovl_ambiguous_member_call) | |||
14344 | << DeclName << MemExprE->getSourceRange()), | |||
14345 | *this, OCD_AmbiguousCandidates, Args); | |||
14346 | break; | |||
14347 | case OR_Deleted: | |||
14348 | CandidateSet.NoteCandidates( | |||
14349 | PartialDiagnosticAt(UnresExpr->getMemberLoc(), | |||
14350 | PDiag(diag::err_ovl_deleted_member_call) | |||
14351 | << DeclName << MemExprE->getSourceRange()), | |||
14352 | *this, OCD_AllCandidates, Args); | |||
14353 | break; | |||
14354 | } | |||
14355 | // Overload resolution fails, try to recover. | |||
14356 | if (!Succeeded) | |||
14357 | return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); | |||
14358 | ||||
14359 | MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); | |||
14360 | ||||
14361 | // If overload resolution picked a static member, build a | |||
14362 | // non-member call based on that function. | |||
14363 | if (Method->isStatic()) { | |||
14364 | return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, | |||
14365 | RParenLoc); | |||
14366 | } | |||
14367 | ||||
14368 | MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); | |||
14369 | } | |||
14370 | ||||
14371 | QualType ResultType = Method->getReturnType(); | |||
14372 | ExprValueKind VK = Expr::getValueKindForType(ResultType); | |||
14373 | ResultType = ResultType.getNonLValueExprType(Context); | |||
14374 | ||||
14375 | assert(Method && "Member call to something that isn't a method?")((void)0); | |||
14376 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); | |||
14377 | CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( | |||
14378 | Context, MemExprE, Args, ResultType, VK, RParenLoc, | |||
14379 | CurFPFeatureOverrides(), Proto->getNumParams()); | |||
14380 | ||||
14381 | // Check for a valid return type. | |||
14382 | if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), | |||
14383 | TheCall, Method)) | |||
14384 | return BuildRecoveryExpr(ResultType); | |||
14385 | ||||
14386 | // Convert the object argument (for a non-static member function call). | |||
14387 | // We only need to do this if there was actually an overload; otherwise | |||
14388 | // it was done at lookup. | |||
14389 | if (!Method->isStatic()) { | |||
14390 | ExprResult ObjectArg = | |||
14391 | PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, | |||
14392 | FoundDecl, Method); | |||
14393 | if (ObjectArg.isInvalid()) | |||
14394 | return ExprError(); | |||
14395 | MemExpr->setBase(ObjectArg.get()); | |||
14396 | } | |||
14397 | ||||
14398 | // Convert the rest of the arguments | |||
14399 | if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, | |||
14400 | RParenLoc)) | |||
14401 | return BuildRecoveryExpr(ResultType); | |||
14402 | ||||
14403 | DiagnoseSentinelCalls(Method, LParenLoc, Args); | |||
14404 | ||||
14405 | if (CheckFunctionCall(Method, TheCall, Proto)) | |||
14406 | return ExprError(); | |||
14407 | ||||
14408 | // In the case the method to call was not selected by the overloading | |||
14409 | // resolution process, we still need to handle the enable_if attribute. Do | |||
14410 | // that here, so it will not hide previous -- and more relevant -- errors. | |||
14411 | if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { | |||
14412 | if (const EnableIfAttr *Attr = | |||
14413 | CheckEnableIf(Method, LParenLoc, Args, true)) { | |||
14414 | Diag(MemE->getMemberLoc(), | |||
14415 | diag::err_ovl_no_viable_member_function_in_call) | |||
14416 | << Method << Method->getSourceRange(); | |||
14417 | Diag(Method->getLocation(), | |||
14418 | diag::note_ovl_candidate_disabled_by_function_cond_attr) | |||
14419 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | |||
14420 | return ExprError(); | |||
14421 | } | |||
14422 | } | |||
14423 | ||||
14424 | if ((isa<CXXConstructorDecl>(CurContext) || | |||
14425 | isa<CXXDestructorDecl>(CurContext)) && | |||
14426 | TheCall->getMethodDecl()->isPure()) { | |||
14427 | const CXXMethodDecl *MD = TheCall->getMethodDecl(); | |||
14428 | ||||
14429 | if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && | |||
14430 | MemExpr->performsVirtualDispatch(getLangOpts())) { | |||
14431 | Diag(MemExpr->getBeginLoc(), | |||
14432 | diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) | |||
14433 | << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) | |||
14434 | << MD->getParent(); | |||
14435 | ||||
14436 | Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); | |||
14437 | if (getLangOpts().AppleKext) | |||
14438 | Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) | |||
14439 | << MD->getParent() << MD->getDeclName(); | |||
14440 | } | |||
14441 | } | |||
14442 | ||||
14443 | if (CXXDestructorDecl *DD = | |||
14444 | dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { | |||
14445 | // a->A::f() doesn't go through the vtable, except in AppleKext mode. | |||
14446 | bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; | |||
14447 | CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, | |||
14448 | CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, | |||
14449 | MemExpr->getMemberLoc()); | |||
14450 | } | |||
14451 | ||||
14452 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), | |||
14453 | TheCall->getMethodDecl()); | |||
14454 | } | |||
14455 | ||||
14456 | /// BuildCallToObjectOfClassType - Build a call to an object of class | |||
14457 | /// type (C++ [over.call.object]), which can end up invoking an | |||
14458 | /// overloaded function call operator (@c operator()) or performing a | |||
14459 | /// user-defined conversion on the object argument. | |||
14460 | ExprResult | |||
14461 | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, | |||
14462 | SourceLocation LParenLoc, | |||
14463 | MultiExprArg Args, | |||
14464 | SourceLocation RParenLoc) { | |||
14465 | if (checkPlaceholderForOverload(*this, Obj)) | |||
14466 | return ExprError(); | |||
14467 | ExprResult Object = Obj; | |||
14468 | ||||
14469 | UnbridgedCastsSet UnbridgedCasts; | |||
14470 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) | |||
14471 | return ExprError(); | |||
14472 | ||||
14473 | assert(Object.get()->getType()->isRecordType() &&((void)0) | |||
14474 | "Requires object type argument")((void)0); | |||
14475 | ||||
14476 | // C++ [over.call.object]p1: | |||
14477 | // If the primary-expression E in the function call syntax | |||
14478 | // evaluates to a class object of type "cv T", then the set of | |||
14479 | // candidate functions includes at least the function call | |||
14480 | // operators of T. The function call operators of T are obtained by | |||
14481 | // ordinary lookup of the name operator() in the context of | |||
14482 | // (E).operator(). | |||
14483 | OverloadCandidateSet CandidateSet(LParenLoc, | |||
14484 | OverloadCandidateSet::CSK_Operator); | |||
14485 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); | |||
14486 | ||||
14487 | if (RequireCompleteType(LParenLoc, Object.get()->getType(), | |||
14488 | diag::err_incomplete_object_call, Object.get())) | |||
14489 | return true; | |||
14490 | ||||
14491 | const auto *Record = Object.get()->getType()->castAs<RecordType>(); | |||
14492 | LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); | |||
14493 | LookupQualifiedName(R, Record->getDecl()); | |||
14494 | R.suppressDiagnostics(); | |||
14495 | ||||
14496 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | |||
14497 | Oper != OperEnd; ++Oper) { | |||
14498 | AddMethodCandidate(Oper.getPair(), Object.get()->getType(), | |||
14499 | Object.get()->Classify(Context), Args, CandidateSet, | |||
14500 | /*SuppressUserConversion=*/false); | |||
14501 | } | |||
14502 | ||||
14503 | // C++ [over.call.object]p2: | |||
14504 | // In addition, for each (non-explicit in C++0x) conversion function | |||
14505 | // declared in T of the form | |||
14506 | // | |||
14507 | // operator conversion-type-id () cv-qualifier; | |||
14508 | // | |||
14509 | // where cv-qualifier is the same cv-qualification as, or a | |||
14510 | // greater cv-qualification than, cv, and where conversion-type-id | |||
14511 | // denotes the type "pointer to function of (P1,...,Pn) returning | |||
14512 | // R", or the type "reference to pointer to function of | |||
14513 | // (P1,...,Pn) returning R", or the type "reference to function | |||
14514 | // of (P1,...,Pn) returning R", a surrogate call function [...] | |||
14515 | // is also considered as a candidate function. Similarly, | |||
14516 | // surrogate call functions are added to the set of candidate | |||
14517 | // functions for each conversion function declared in an | |||
14518 | // accessible base class provided the function is not hidden | |||
14519 | // within T by another intervening declaration. | |||
14520 | const auto &Conversions = | |||
14521 | cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); | |||
14522 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | |||
14523 | NamedDecl *D = *I; | |||
14524 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | |||
14525 | if (isa<UsingShadowDecl>(D)) | |||
14526 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
14527 | ||||
14528 | // Skip over templated conversion functions; they aren't | |||
14529 | // surrogates. | |||
14530 | if (isa<FunctionTemplateDecl>(D)) | |||
14531 | continue; | |||
14532 | ||||
14533 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | |||
14534 | if (!Conv->isExplicit()) { | |||
14535 | // Strip the reference type (if any) and then the pointer type (if | |||
14536 | // any) to get down to what might be a function type. | |||
14537 | QualType ConvType = Conv->getConversionType().getNonReferenceType(); | |||
14538 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | |||
14539 | ConvType = ConvPtrType->getPointeeType(); | |||
14540 | ||||
14541 | if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) | |||
14542 | { | |||
14543 | AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, | |||
14544 | Object.get(), Args, CandidateSet); | |||
14545 | } | |||
14546 | } | |||
14547 | } | |||
14548 | ||||
14549 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
14550 | ||||
14551 | // Perform overload resolution. | |||
14552 | OverloadCandidateSet::iterator Best; | |||
14553 | switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), | |||
14554 | Best)) { | |||
14555 | case OR_Success: | |||
14556 | // Overload resolution succeeded; we'll build the appropriate call | |||
14557 | // below. | |||
14558 | break; | |||
14559 | ||||
14560 | case OR_No_Viable_Function: { | |||
14561 | PartialDiagnostic PD = | |||
14562 | CandidateSet.empty() | |||
14563 | ? (PDiag(diag::err_ovl_no_oper) | |||
14564 | << Object.get()->getType() << /*call*/ 1 | |||
14565 | << Object.get()->getSourceRange()) | |||
14566 | : (PDiag(diag::err_ovl_no_viable_object_call) | |||
14567 | << Object.get()->getType() << Object.get()->getSourceRange()); | |||
14568 | CandidateSet.NoteCandidates( | |||
14569 | PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, | |||
14570 | OCD_AllCandidates, Args); | |||
14571 | break; | |||
14572 | } | |||
14573 | case OR_Ambiguous: | |||
14574 | CandidateSet.NoteCandidates( | |||
14575 | PartialDiagnosticAt(Object.get()->getBeginLoc(), | |||
14576 | PDiag(diag::err_ovl_ambiguous_object_call) | |||
14577 | << Object.get()->getType() | |||
14578 | << Object.get()->getSourceRange()), | |||
14579 | *this, OCD_AmbiguousCandidates, Args); | |||
14580 | break; | |||
14581 | ||||
14582 | case OR_Deleted: | |||
14583 | CandidateSet.NoteCandidates( | |||
14584 | PartialDiagnosticAt(Object.get()->getBeginLoc(), | |||
14585 | PDiag(diag::err_ovl_deleted_object_call) | |||
14586 | << Object.get()->getType() | |||
14587 | << Object.get()->getSourceRange()), | |||
14588 | *this, OCD_AllCandidates, Args); | |||
14589 | break; | |||
14590 | } | |||
14591 | ||||
14592 | if (Best == CandidateSet.end()) | |||
14593 | return true; | |||
14594 | ||||
14595 | UnbridgedCasts.restore(); | |||
14596 | ||||
14597 | if (Best->Function == nullptr) { | |||
14598 | // Since there is no function declaration, this is one of the | |||
14599 | // surrogate candidates. Dig out the conversion function. | |||
14600 | CXXConversionDecl *Conv | |||
14601 | = cast<CXXConversionDecl>( | |||
14602 | Best->Conversions[0].UserDefined.ConversionFunction); | |||
14603 | ||||
14604 | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, | |||
14605 | Best->FoundDecl); | |||
14606 | if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) | |||
14607 | return ExprError(); | |||
14608 | assert(Conv == Best->FoundDecl.getDecl() &&((void)0) | |||
14609 | "Found Decl & conversion-to-functionptr should be same, right?!")((void)0); | |||
14610 | // We selected one of the surrogate functions that converts the | |||
14611 | // object parameter to a function pointer. Perform the conversion | |||
14612 | // on the object argument, then let BuildCallExpr finish the job. | |||
14613 | ||||
14614 | // Create an implicit member expr to refer to the conversion operator. | |||
14615 | // and then call it. | |||
14616 | ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, | |||
14617 | Conv, HadMultipleCandidates); | |||
14618 | if (Call.isInvalid()) | |||
14619 | return ExprError(); | |||
14620 | // Record usage of conversion in an implicit cast. | |||
14621 | Call = ImplicitCastExpr::Create( | |||
14622 | Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), | |||
14623 | nullptr, VK_PRValue, CurFPFeatureOverrides()); | |||
14624 | ||||
14625 | return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); | |||
14626 | } | |||
14627 | ||||
14628 | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); | |||
14629 | ||||
14630 | // We found an overloaded operator(). Build a CXXOperatorCallExpr | |||
14631 | // that calls this method, using Object for the implicit object | |||
14632 | // parameter and passing along the remaining arguments. | |||
14633 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | |||
14634 | ||||
14635 | // An error diagnostic has already been printed when parsing the declaration. | |||
14636 | if (Method->isInvalidDecl()) | |||
14637 | return ExprError(); | |||
14638 | ||||
14639 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); | |||
14640 | unsigned NumParams = Proto->getNumParams(); | |||
14641 | ||||
14642 | DeclarationNameInfo OpLocInfo( | |||
14643 | Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); | |||
14644 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); | |||
14645 | ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | |||
14646 | Obj, HadMultipleCandidates, | |||
14647 | OpLocInfo.getLoc(), | |||
14648 | OpLocInfo.getInfo()); | |||
14649 | if (NewFn.isInvalid()) | |||
14650 | return true; | |||
14651 | ||||
14652 | // The number of argument slots to allocate in the call. If we have default | |||
14653 | // arguments we need to allocate space for them as well. We additionally | |||
14654 | // need one more slot for the object parameter. | |||
14655 | unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); | |||
14656 | ||||
14657 | // Build the full argument list for the method call (the implicit object | |||
14658 | // parameter is placed at the beginning of the list). | |||
14659 | SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); | |||
14660 | ||||
14661 | bool IsError = false; | |||
14662 | ||||
14663 | // Initialize the implicit object parameter. | |||
14664 | ExprResult ObjRes = | |||
14665 | PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, | |||
14666 | Best->FoundDecl, Method); | |||
14667 | if (ObjRes.isInvalid()) | |||
14668 | IsError = true; | |||
14669 | else | |||
14670 | Object = ObjRes; | |||
14671 | MethodArgs[0] = Object.get(); | |||
14672 | ||||
14673 | // Check the argument types. | |||
14674 | for (unsigned i = 0; i != NumParams; i++) { | |||
14675 | Expr *Arg; | |||
14676 | if (i < Args.size()) { | |||
14677 | Arg = Args[i]; | |||
14678 | ||||
14679 | // Pass the argument. | |||
14680 | ||||
14681 | ExprResult InputInit | |||
14682 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( | |||
14683 | Context, | |||
14684 | Method->getParamDecl(i)), | |||
14685 | SourceLocation(), Arg); | |||
14686 | ||||
14687 | IsError |= InputInit.isInvalid(); | |||
14688 | Arg = InputInit.getAs<Expr>(); | |||
14689 | } else { | |||
14690 | ExprResult DefArg | |||
14691 | = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); | |||
14692 | if (DefArg.isInvalid()) { | |||
14693 | IsError = true; | |||
14694 | break; | |||
14695 | } | |||
14696 | ||||
14697 | Arg = DefArg.getAs<Expr>(); | |||
14698 | } | |||
14699 | ||||
14700 | MethodArgs[i + 1] = Arg; | |||
14701 | } | |||
14702 | ||||
14703 | // If this is a variadic call, handle args passed through "...". | |||
14704 | if (Proto->isVariadic()) { | |||
14705 | // Promote the arguments (C99 6.5.2.2p7). | |||
14706 | for (unsigned i = NumParams, e = Args.size(); i < e; i++) { | |||
14707 | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, | |||
14708 | nullptr); | |||
14709 | IsError |= Arg.isInvalid(); | |||
14710 | MethodArgs[i + 1] = Arg.get(); | |||
14711 | } | |||
14712 | } | |||
14713 | ||||
14714 | if (IsError) | |||
14715 | return true; | |||
14716 | ||||
14717 | DiagnoseSentinelCalls(Method, LParenLoc, Args); | |||
14718 | ||||
14719 | // Once we've built TheCall, all of the expressions are properly owned. | |||
14720 | QualType ResultTy = Method->getReturnType(); | |||
14721 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
14722 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
14723 | ||||
14724 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( | |||
14725 | Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, | |||
14726 | CurFPFeatureOverrides()); | |||
14727 | ||||
14728 | if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) | |||
14729 | return true; | |||
14730 | ||||
14731 | if (CheckFunctionCall(Method, TheCall, Proto)) | |||
14732 | return true; | |||
14733 | ||||
14734 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); | |||
14735 | } | |||
14736 | ||||
14737 | /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> | |||
14738 | /// (if one exists), where @c Base is an expression of class type and | |||
14739 | /// @c Member is the name of the member we're trying to find. | |||
14740 | ExprResult | |||
14741 | Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, | |||
14742 | bool *NoArrowOperatorFound) { | |||
14743 | assert(Base->getType()->isRecordType() &&((void)0) | |||
14744 | "left-hand side must have class type")((void)0); | |||
14745 | ||||
14746 | if (checkPlaceholderForOverload(*this, Base)) | |||
14747 | return ExprError(); | |||
14748 | ||||
14749 | SourceLocation Loc = Base->getExprLoc(); | |||
14750 | ||||
14751 | // C++ [over.ref]p1: | |||
14752 | // | |||
14753 | // [...] An expression x->m is interpreted as (x.operator->())->m | |||
14754 | // for a class object x of type T if T::operator->() exists and if | |||
14755 | // the operator is selected as the best match function by the | |||
14756 | // overload resolution mechanism (13.3). | |||
14757 | DeclarationName OpName = | |||
14758 | Context.DeclarationNames.getCXXOperatorName(OO_Arrow); | |||
14759 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); | |||
14760 | ||||
14761 | if (RequireCompleteType(Loc, Base->getType(), | |||
14762 | diag::err_typecheck_incomplete_tag, Base)) | |||
14763 | return ExprError(); | |||
14764 | ||||
14765 | LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); | |||
14766 | LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); | |||
14767 | R.suppressDiagnostics(); | |||
14768 | ||||
14769 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | |||
14770 | Oper != OperEnd; ++Oper) { | |||
14771 | AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), | |||
14772 | None, CandidateSet, /*SuppressUserConversion=*/false); | |||
14773 | } | |||
14774 | ||||
14775 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
14776 | ||||
14777 | // Perform overload resolution. | |||
14778 | OverloadCandidateSet::iterator Best; | |||
14779 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { | |||
14780 | case OR_Success: | |||
14781 | // Overload resolution succeeded; we'll build the call below. | |||
14782 | break; | |||
14783 | ||||
14784 | case OR_No_Viable_Function: { | |||
14785 | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); | |||
14786 | if (CandidateSet.empty()) { | |||
14787 | QualType BaseType = Base->getType(); | |||
14788 | if (NoArrowOperatorFound) { | |||
14789 | // Report this specific error to the caller instead of emitting a | |||
14790 | // diagnostic, as requested. | |||
14791 | *NoArrowOperatorFound = true; | |||
14792 | return ExprError(); | |||
14793 | } | |||
14794 | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | |||
14795 | << BaseType << Base->getSourceRange(); | |||
14796 | if (BaseType->isRecordType() && !BaseType->isPointerType()) { | |||
14797 | Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) | |||
14798 | << FixItHint::CreateReplacement(OpLoc, "."); | |||
14799 | } | |||
14800 | } else | |||
14801 | Diag(OpLoc, diag::err_ovl_no_viable_oper) | |||
14802 | << "operator->" << Base->getSourceRange(); | |||
14803 | CandidateSet.NoteCandidates(*this, Base, Cands); | |||
14804 | return ExprError(); | |||
14805 | } | |||
14806 | case OR_Ambiguous: | |||
14807 | CandidateSet.NoteCandidates( | |||
14808 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) | |||
14809 | << "->" << Base->getType() | |||
14810 | << Base->getSourceRange()), | |||
14811 | *this, OCD_AmbiguousCandidates, Base); | |||
14812 | return ExprError(); | |||
14813 | ||||
14814 | case OR_Deleted: | |||
14815 | CandidateSet.NoteCandidates( | |||
14816 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) | |||
14817 | << "->" << Base->getSourceRange()), | |||
14818 | *this, OCD_AllCandidates, Base); | |||
14819 | return ExprError(); | |||
14820 | } | |||
14821 | ||||
14822 | CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); | |||
14823 | ||||
14824 | // Convert the object parameter. | |||
14825 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | |||
14826 | ExprResult BaseResult = | |||
14827 | PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, | |||
14828 | Best->FoundDecl, Method); | |||
14829 | if (BaseResult.isInvalid()) | |||
14830 | return ExprError(); | |||
14831 | Base = BaseResult.get(); | |||
14832 | ||||
14833 | // Build the operator call. | |||
14834 | ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, | |||
14835 | Base, HadMultipleCandidates, OpLoc); | |||
14836 | if (FnExpr.isInvalid()) | |||
14837 | return ExprError(); | |||
14838 | ||||
14839 | QualType ResultTy = Method->getReturnType(); | |||
14840 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
14841 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
14842 | CXXOperatorCallExpr *TheCall = | |||
14843 | CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, | |||
14844 | ResultTy, VK, OpLoc, CurFPFeatureOverrides()); | |||
14845 | ||||
14846 | if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) | |||
14847 | return ExprError(); | |||
14848 | ||||
14849 | if (CheckFunctionCall(Method, TheCall, | |||
14850 | Method->getType()->castAs<FunctionProtoType>())) | |||
14851 | return ExprError(); | |||
14852 | ||||
14853 | return MaybeBindToTemporary(TheCall); | |||
14854 | } | |||
14855 | ||||
14856 | /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to | |||
14857 | /// a literal operator described by the provided lookup results. | |||
14858 | ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, | |||
14859 | DeclarationNameInfo &SuffixInfo, | |||
14860 | ArrayRef<Expr*> Args, | |||
14861 | SourceLocation LitEndLoc, | |||
14862 | TemplateArgumentListInfo *TemplateArgs) { | |||
14863 | SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); | |||
14864 | ||||
14865 | OverloadCandidateSet CandidateSet(UDSuffixLoc, | |||
14866 | OverloadCandidateSet::CSK_Normal); | |||
14867 | AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, | |||
14868 | TemplateArgs); | |||
14869 | ||||
14870 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | |||
14871 | ||||
14872 | // Perform overload resolution. This will usually be trivial, but might need | |||
14873 | // to perform substitutions for a literal operator template. | |||
14874 | OverloadCandidateSet::iterator Best; | |||
14875 | switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { | |||
14876 | case OR_Success: | |||
14877 | case OR_Deleted: | |||
14878 | break; | |||
14879 | ||||
14880 | case OR_No_Viable_Function: | |||
14881 | CandidateSet.NoteCandidates( | |||
14882 | PartialDiagnosticAt(UDSuffixLoc, | |||
14883 | PDiag(diag::err_ovl_no_viable_function_in_call) | |||
14884 | << R.getLookupName()), | |||
14885 | *this, OCD_AllCandidates, Args); | |||
14886 | return ExprError(); | |||
14887 | ||||
14888 | case OR_Ambiguous: | |||
14889 | CandidateSet.NoteCandidates( | |||
14890 | PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) | |||
14891 | << R.getLookupName()), | |||
14892 | *this, OCD_AmbiguousCandidates, Args); | |||
14893 | return ExprError(); | |||
14894 | } | |||
14895 | ||||
14896 | FunctionDecl *FD = Best->Function; | |||
14897 | ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, | |||
14898 | nullptr, HadMultipleCandidates, | |||
14899 | SuffixInfo.getLoc(), | |||
14900 | SuffixInfo.getInfo()); | |||
14901 | if (Fn.isInvalid()) | |||
14902 | return true; | |||
14903 | ||||
14904 | // Check the argument types. This should almost always be a no-op, except | |||
14905 | // that array-to-pointer decay is applied to string literals. | |||
14906 | Expr *ConvArgs[2]; | |||
14907 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { | |||
14908 | ExprResult InputInit = PerformCopyInitialization( | |||
14909 | InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), | |||
14910 | SourceLocation(), Args[ArgIdx]); | |||
14911 | if (InputInit.isInvalid()) | |||
14912 | return true; | |||
14913 | ConvArgs[ArgIdx] = InputInit.get(); | |||
14914 | } | |||
14915 | ||||
14916 | QualType ResultTy = FD->getReturnType(); | |||
14917 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); | |||
14918 | ResultTy = ResultTy.getNonLValueExprType(Context); | |||
14919 | ||||
14920 | UserDefinedLiteral *UDL = UserDefinedLiteral::Create( | |||
14921 | Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, | |||
14922 | VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); | |||
14923 | ||||
14924 | if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) | |||
14925 | return ExprError(); | |||
14926 | ||||
14927 | if (CheckFunctionCall(FD, UDL, nullptr)) | |||
14928 | return ExprError(); | |||
14929 | ||||
14930 | return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); | |||
14931 | } | |||
14932 | ||||
14933 | /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the | |||
14934 | /// given LookupResult is non-empty, it is assumed to describe a member which | |||
14935 | /// will be invoked. Otherwise, the function will be found via argument | |||
14936 | /// dependent lookup. | |||
14937 | /// CallExpr is set to a valid expression and FRS_Success returned on success, | |||
14938 | /// otherwise CallExpr is set to ExprError() and some non-success value | |||
14939 | /// is returned. | |||
14940 | Sema::ForRangeStatus | |||
14941 | Sema::BuildForRangeBeginEndCall(SourceLocation Loc, | |||
14942 | SourceLocation RangeLoc, | |||
14943 | const DeclarationNameInfo &NameInfo, | |||
14944 | LookupResult &MemberLookup, | |||
14945 | OverloadCandidateSet *CandidateSet, | |||
14946 | Expr *Range, ExprResult *CallExpr) { | |||
14947 | Scope *S = nullptr; | |||
14948 | ||||
14949 | CandidateSet->clear(OverloadCandidateSet::CSK_Normal); | |||
14950 | if (!MemberLookup.empty()) { | |||
| ||||
14951 | ExprResult MemberRef = | |||
14952 | BuildMemberReferenceExpr(Range, Range->getType(), Loc, | |||
14953 | /*IsPtr=*/false, CXXScopeSpec(), | |||
14954 | /*TemplateKWLoc=*/SourceLocation(), | |||
14955 | /*FirstQualifierInScope=*/nullptr, | |||
14956 | MemberLookup, | |||
14957 | /*TemplateArgs=*/nullptr, S); | |||
14958 | if (MemberRef.isInvalid()) { | |||
14959 | *CallExpr = ExprError(); | |||
14960 | return FRS_DiagnosticIssued; | |||
14961 | } | |||
14962 | *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); | |||
14963 | if (CallExpr->isInvalid()) { | |||
14964 | *CallExpr = ExprError(); | |||
14965 | return FRS_DiagnosticIssued; | |||
14966 | } | |||
14967 | } else { | |||
14968 | ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, | |||
14969 | NestedNameSpecifierLoc(), | |||
14970 | NameInfo, UnresolvedSet<0>()); | |||
14971 | if (FnR.isInvalid()) | |||
14972 | return FRS_DiagnosticIssued; | |||
14973 | UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); | |||
14974 | ||||
14975 | bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, | |||
14976 | CandidateSet, CallExpr); | |||
14977 | if (CandidateSet->empty() || CandidateSetError) { | |||
14978 | *CallExpr = ExprError(); | |||
14979 | return FRS_NoViableFunction; | |||
14980 | } | |||
14981 | OverloadCandidateSet::iterator Best; | |||
14982 | OverloadingResult OverloadResult = | |||
14983 | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); | |||
14984 | ||||
14985 | if (OverloadResult == OR_No_Viable_Function) { | |||
14986 | *CallExpr = ExprError(); | |||
14987 | return FRS_NoViableFunction; | |||
14988 | } | |||
14989 | *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, | |||
14990 | Loc, nullptr, CandidateSet, &Best, | |||
14991 | OverloadResult, | |||
14992 | /*AllowTypoCorrection=*/false); | |||
14993 | if (CallExpr->isInvalid() || OverloadResult != OR_Success) { | |||
14994 | *CallExpr = ExprError(); | |||
14995 | return FRS_DiagnosticIssued; | |||
14996 | } | |||
14997 | } | |||
14998 | return FRS_Success; | |||
14999 | } | |||
15000 | ||||
15001 | ||||
15002 | /// FixOverloadedFunctionReference - E is an expression that refers to | |||
15003 | /// a C++ overloaded function (possibly with some parentheses and | |||
15004 | /// perhaps a '&' around it). We have resolved the overloaded function | |||
15005 | /// to the function declaration Fn, so patch up the expression E to | |||
15006 | /// refer (possibly indirectly) to Fn. Returns the new expr. | |||
15007 | Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, | |||
15008 | FunctionDecl *Fn) { | |||
15009 | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | |||
15010 | Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), | |||
15011 | Found, Fn); | |||
15012 | if (SubExpr == PE->getSubExpr()) | |||
15013 | return PE; | |||
15014 | ||||
15015 | return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); | |||
15016 | } | |||
15017 | ||||
15018 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | |||
15019 | Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), | |||
15020 | Found, Fn); | |||
15021 | assert(Context.hasSameType(ICE->getSubExpr()->getType(),((void)0) | |||
15022 | SubExpr->getType()) &&((void)0) | |||
15023 | "Implicit cast type cannot be determined from overload")((void)0); | |||
15024 | assert(ICE->path_empty() && "fixing up hierarchy conversion?")((void)0); | |||
15025 | if (SubExpr == ICE->getSubExpr()) | |||
15026 | return ICE; | |||
15027 | ||||
15028 | return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), | |||
15029 | SubExpr, nullptr, ICE->getValueKind(), | |||
15030 | CurFPFeatureOverrides()); | |||
15031 | } | |||
15032 | ||||
15033 | if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { | |||
15034 | if (!GSE->isResultDependent()) { | |||
15035 | Expr *SubExpr = | |||
15036 | FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); | |||
15037 | if (SubExpr == GSE->getResultExpr()) | |||
15038 | return GSE; | |||
15039 | ||||
15040 | // Replace the resulting type information before rebuilding the generic | |||
15041 | // selection expression. | |||
15042 | ArrayRef<Expr *> A = GSE->getAssocExprs(); | |||
15043 | SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); | |||
15044 | unsigned ResultIdx = GSE->getResultIndex(); | |||
15045 | AssocExprs[ResultIdx] = SubExpr; | |||
15046 | ||||
15047 | return GenericSelectionExpr::Create( | |||
15048 | Context, GSE->getGenericLoc(), GSE->getControllingExpr(), | |||
15049 | GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), | |||
15050 | GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), | |||
15051 | ResultIdx); | |||
15052 | } | |||
15053 | // Rather than fall through to the unreachable, return the original generic | |||
15054 | // selection expression. | |||
15055 | return GSE; | |||
15056 | } | |||
15057 | ||||
15058 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { | |||
15059 | assert(UnOp->getOpcode() == UO_AddrOf &&((void)0) | |||
15060 | "Can only take the address of an overloaded function")((void)0); | |||
15061 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | |||
15062 | if (Method->isStatic()) { | |||
15063 | // Do nothing: static member functions aren't any different | |||
15064 | // from non-member functions. | |||
15065 | } else { | |||
15066 | // Fix the subexpression, which really has to be an | |||
15067 | // UnresolvedLookupExpr holding an overloaded member function | |||
15068 | // or template. | |||
15069 | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | |||
15070 | Found, Fn); | |||
15071 | if (SubExpr == UnOp->getSubExpr()) | |||
15072 | return UnOp; | |||
15073 | ||||
15074 | assert(isa<DeclRefExpr>(SubExpr)((void)0) | |||
15075 | && "fixed to something other than a decl ref")((void)0); | |||
15076 | assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((void)0) | |||
15077 | && "fixed to a member ref with no nested name qualifier")((void)0); | |||
15078 | ||||
15079 | // We have taken the address of a pointer to member | |||
15080 | // function. Perform the computation here so that we get the | |||
15081 | // appropriate pointer to member type. | |||
15082 | QualType ClassType | |||
15083 | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | |||
15084 | QualType MemPtrType | |||
15085 | = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); | |||
15086 | // Under the MS ABI, lock down the inheritance model now. | |||
15087 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
15088 | (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); | |||
15089 | ||||
15090 | return UnaryOperator::Create( | |||
15091 | Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, | |||
15092 | UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); | |||
15093 | } | |||
15094 | } | |||
15095 | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | |||
15096 | Found, Fn); | |||
15097 | if (SubExpr == UnOp->getSubExpr()) | |||
15098 | return UnOp; | |||
15099 | ||||
15100 | return UnaryOperator::Create( | |||
15101 | Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), | |||
15102 | VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, | |||
15103 | CurFPFeatureOverrides()); | |||
15104 | } | |||
15105 | ||||
15106 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | |||
15107 | // FIXME: avoid copy. | |||
15108 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | |||
15109 | if (ULE->hasExplicitTemplateArgs()) { | |||
15110 | ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); | |||
15111 | TemplateArgs = &TemplateArgsBuffer; | |||
15112 | } | |||
15113 | ||||
15114 | DeclRefExpr *DRE = | |||
15115 | BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), | |||
15116 | ULE->getQualifierLoc(), Found.getDecl(), | |||
15117 | ULE->getTemplateKeywordLoc(), TemplateArgs); | |||
15118 | DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); | |||
15119 | return DRE; | |||
15120 | } | |||
15121 | ||||
15122 | if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { | |||
15123 | // FIXME: avoid copy. | |||
15124 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; | |||
15125 | if (MemExpr->hasExplicitTemplateArgs()) { | |||
15126 | MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | |||
15127 | TemplateArgs = &TemplateArgsBuffer; | |||
15128 | } | |||
15129 | ||||
15130 | Expr *Base; | |||
15131 | ||||
15132 | // If we're filling in a static method where we used to have an | |||
15133 | // implicit member access, rewrite to a simple decl ref. | |||
15134 | if (MemExpr->isImplicitAccess()) { | |||
15135 | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | |||
15136 | DeclRefExpr *DRE = BuildDeclRefExpr( | |||
15137 | Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), | |||
15138 | MemExpr->getQualifierLoc(), Found.getDecl(), | |||
15139 | MemExpr->getTemplateKeywordLoc(), TemplateArgs); | |||
15140 | DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); | |||
15141 | return DRE; | |||
15142 | } else { | |||
15143 | SourceLocation Loc = MemExpr->getMemberLoc(); | |||
15144 | if (MemExpr->getQualifier()) | |||
15145 | Loc = MemExpr->getQualifierLoc().getBeginLoc(); | |||
15146 | Base = | |||
15147 | BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); | |||
15148 | } | |||
15149 | } else | |||
15150 | Base = MemExpr->getBase(); | |||
15151 | ||||
15152 | ExprValueKind valueKind; | |||
15153 | QualType type; | |||
15154 | if (cast<CXXMethodDecl>(Fn)->isStatic()) { | |||
15155 | valueKind = VK_LValue; | |||
15156 | type = Fn->getType(); | |||
15157 | } else { | |||
15158 | valueKind = VK_PRValue; | |||
15159 | type = Context.BoundMemberTy; | |||
15160 | } | |||
15161 | ||||
15162 | return BuildMemberExpr( | |||
15163 | Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), | |||
15164 | MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, | |||
15165 | /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), | |||
15166 | type, valueKind, OK_Ordinary, TemplateArgs); | |||
15167 | } | |||
15168 | ||||
15169 | llvm_unreachable("Invalid reference to overloaded function")__builtin_unreachable(); | |||
15170 | } | |||
15171 | ||||
15172 | ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, | |||
15173 | DeclAccessPair Found, | |||
15174 | FunctionDecl *Fn) { | |||
15175 | return FixOverloadedFunctionReference(E.get(), Found, Fn); | |||
15176 | } |
1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the SmallVector class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_ADT_SMALLVECTOR_H |
14 | #define LLVM_ADT_SMALLVECTOR_H |
15 | |
16 | #include "llvm/ADT/iterator_range.h" |
17 | #include "llvm/Support/Compiler.h" |
18 | #include "llvm/Support/ErrorHandling.h" |
19 | #include "llvm/Support/MemAlloc.h" |
20 | #include "llvm/Support/type_traits.h" |
21 | #include <algorithm> |
22 | #include <cassert> |
23 | #include <cstddef> |
24 | #include <cstdlib> |
25 | #include <cstring> |
26 | #include <functional> |
27 | #include <initializer_list> |
28 | #include <iterator> |
29 | #include <limits> |
30 | #include <memory> |
31 | #include <new> |
32 | #include <type_traits> |
33 | #include <utility> |
34 | |
35 | namespace llvm { |
36 | |
37 | /// This is all the stuff common to all SmallVectors. |
38 | /// |
39 | /// The template parameter specifies the type which should be used to hold the |
40 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
41 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
42 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
43 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
44 | /// buffering bitcode output - which can exceed 4GB. |
45 | template <class Size_T> class SmallVectorBase { |
46 | protected: |
47 | void *BeginX; |
48 | Size_T Size = 0, Capacity; |
49 | |
50 | /// The maximum value of the Size_T used. |
51 | static constexpr size_t SizeTypeMax() { |
52 | return std::numeric_limits<Size_T>::max(); |
53 | } |
54 | |
55 | SmallVectorBase() = delete; |
56 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
57 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
58 | |
59 | /// This is a helper for \a grow() that's out of line to reduce code |
60 | /// duplication. This function will report a fatal error if it can't grow at |
61 | /// least to \p MinSize. |
62 | void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); |
63 | |
64 | /// This is an implementation of the grow() method which only works |
65 | /// on POD-like data types and is out of line to reduce code duplication. |
66 | /// This function will report a fatal error if it cannot increase capacity. |
67 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
68 | |
69 | public: |
70 | size_t size() const { return Size; } |
71 | size_t capacity() const { return Capacity; } |
72 | |
73 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; } |
74 | |
75 | /// Set the array size to \p N, which the current array must have enough |
76 | /// capacity for. |
77 | /// |
78 | /// This does not construct or destroy any elements in the vector. |
79 | /// |
80 | /// Clients can use this in conjunction with capacity() to write past the end |
81 | /// of the buffer when they know that more elements are available, and only |
82 | /// update the size later. This avoids the cost of value initializing elements |
83 | /// which will only be overwritten. |
84 | void set_size(size_t N) { |
85 | assert(N <= capacity())((void)0); |
86 | Size = N; |
87 | } |
88 | }; |
89 | |
90 | template <class T> |
91 | using SmallVectorSizeType = |
92 | typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
93 | uint32_t>::type; |
94 | |
95 | /// Figure out the offset of the first element. |
96 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
97 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
98 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
99 | alignas(T) char FirstEl[sizeof(T)]; |
100 | }; |
101 | |
102 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
103 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
104 | /// to avoid unnecessarily requiring T to be complete. |
105 | template <typename T, typename = void> |
106 | class SmallVectorTemplateCommon |
107 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
108 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
109 | |
110 | /// Find the address of the first element. For this pointer math to be valid |
111 | /// with small-size of 0 for T with lots of alignment, it's important that |
112 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
113 | void *getFirstEl() const { |
114 | return const_cast<void *>(reinterpret_cast<const void *>( |
115 | reinterpret_cast<const char *>(this) + |
116 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl ))); |
117 | } |
118 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
119 | |
120 | protected: |
121 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
122 | |
123 | void grow_pod(size_t MinSize, size_t TSize) { |
124 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
125 | } |
126 | |
127 | /// Return true if this is a smallvector which has not had dynamic |
128 | /// memory allocated for it. |
129 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
130 | |
131 | /// Put this vector in a state of being small. |
132 | void resetToSmall() { |
133 | this->BeginX = getFirstEl(); |
134 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
135 | } |
136 | |
137 | /// Return true if V is an internal reference to the given range. |
138 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
139 | // Use std::less to avoid UB. |
140 | std::less<> LessThan; |
141 | return !LessThan(V, First) && LessThan(V, Last); |
142 | } |
143 | |
144 | /// Return true if V is an internal reference to this vector. |
145 | bool isReferenceToStorage(const void *V) const { |
146 | return isReferenceToRange(V, this->begin(), this->end()); |
147 | } |
148 | |
149 | /// Return true if First and Last form a valid (possibly empty) range in this |
150 | /// vector's storage. |
151 | bool isRangeInStorage(const void *First, const void *Last) const { |
152 | // Use std::less to avoid UB. |
153 | std::less<> LessThan; |
154 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
155 | !LessThan(this->end(), Last); |
156 | } |
157 | |
158 | /// Return true unless Elt will be invalidated by resizing the vector to |
159 | /// NewSize. |
160 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
161 | // Past the end. |
162 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true)) |
163 | return true; |
164 | |
165 | // Return false if Elt will be destroyed by shrinking. |
166 | if (NewSize <= this->size()) |
167 | return Elt < this->begin() + NewSize; |
168 | |
169 | // Return false if we need to grow. |
170 | return NewSize <= this->capacity(); |
171 | } |
172 | |
173 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
174 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
175 | assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0) |
176 | "Attempting to reference an element of the vector in an operation "((void)0) |
177 | "that invalidates it")((void)0); |
178 | } |
179 | |
180 | /// Check whether Elt will be invalidated by increasing the size of the |
181 | /// vector by N. |
182 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
183 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
184 | } |
185 | |
186 | /// Check whether any part of the range will be invalidated by clearing. |
187 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
188 | if (From == To) |
189 | return; |
190 | this->assertSafeToReferenceAfterResize(From, 0); |
191 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
192 | } |
193 | template < |
194 | class ItTy, |
195 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
196 | bool> = false> |
197 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
198 | |
199 | /// Check whether any part of the range will be invalidated by growing. |
200 | void assertSafeToAddRange(const T *From, const T *To) { |
201 | if (From == To) |
202 | return; |
203 | this->assertSafeToAdd(From, To - From); |
204 | this->assertSafeToAdd(To - 1, To - From); |
205 | } |
206 | template < |
207 | class ItTy, |
208 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
209 | bool> = false> |
210 | void assertSafeToAddRange(ItTy, ItTy) {} |
211 | |
212 | /// Reserve enough space to add one element, and return the updated element |
213 | /// pointer in case it was a reference to the storage. |
214 | template <class U> |
215 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
216 | size_t N) { |
217 | size_t NewSize = This->size() + N; |
218 | if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true )) |
219 | return &Elt; |
220 | |
221 | bool ReferencesStorage = false; |
222 | int64_t Index = -1; |
223 | if (!U::TakesParamByValue) { |
224 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt )), false)) { |
225 | ReferencesStorage = true; |
226 | Index = &Elt - This->begin(); |
227 | } |
228 | } |
229 | This->grow(NewSize); |
230 | return ReferencesStorage ? This->begin() + Index : &Elt; |
231 | } |
232 | |
233 | public: |
234 | using size_type = size_t; |
235 | using difference_type = ptrdiff_t; |
236 | using value_type = T; |
237 | using iterator = T *; |
238 | using const_iterator = const T *; |
239 | |
240 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
241 | using reverse_iterator = std::reverse_iterator<iterator>; |
242 | |
243 | using reference = T &; |
244 | using const_reference = const T &; |
245 | using pointer = T *; |
246 | using const_pointer = const T *; |
247 | |
248 | using Base::capacity; |
249 | using Base::empty; |
250 | using Base::size; |
251 | |
252 | // forward iterator creation methods. |
253 | iterator begin() { return (iterator)this->BeginX; } |
254 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
255 | iterator end() { return begin() + size(); } |
256 | const_iterator end() const { return begin() + size(); } |
257 | |
258 | // reverse iterator creation methods. |
259 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
260 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
261 | reverse_iterator rend() { return reverse_iterator(begin()); } |
262 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
263 | |
264 | size_type size_in_bytes() const { return size() * sizeof(T); } |
265 | size_type max_size() const { |
266 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
267 | } |
268 | |
269 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
270 | |
271 | /// Return a pointer to the vector's buffer, even if empty(). |
272 | pointer data() { return pointer(begin()); } |
273 | /// Return a pointer to the vector's buffer, even if empty(). |
274 | const_pointer data() const { return const_pointer(begin()); } |
275 | |
276 | reference operator[](size_type idx) { |
277 | assert(idx < size())((void)0); |
278 | return begin()[idx]; |
279 | } |
280 | const_reference operator[](size_type idx) const { |
281 | assert(idx < size())((void)0); |
282 | return begin()[idx]; |
283 | } |
284 | |
285 | reference front() { |
286 | assert(!empty())((void)0); |
287 | return begin()[0]; |
288 | } |
289 | const_reference front() const { |
290 | assert(!empty())((void)0); |
291 | return begin()[0]; |
292 | } |
293 | |
294 | reference back() { |
295 | assert(!empty())((void)0); |
296 | return end()[-1]; |
297 | } |
298 | const_reference back() const { |
299 | assert(!empty())((void)0); |
300 | return end()[-1]; |
301 | } |
302 | }; |
303 | |
304 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
305 | /// method implementations that are designed to work with non-trivial T's. |
306 | /// |
307 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
308 | /// trivial destruction. While the standard doesn't specify that you're allowed |
309 | /// copy these types with memcpy, there is no way for the type to observe this. |
310 | /// This catches the important case of std::pair<POD, POD>, which is not |
311 | /// trivially assignable. |
312 | template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
313 | (is_trivially_move_constructible<T>::value) && |
314 | std::is_trivially_destructible<T>::value> |
315 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
316 | friend class SmallVectorTemplateCommon<T>; |
317 | |
318 | protected: |
319 | static constexpr bool TakesParamByValue = false; |
320 | using ValueParamT = const T &; |
321 | |
322 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
323 | |
324 | static void destroy_range(T *S, T *E) { |
325 | while (S != E) { |
326 | --E; |
327 | E->~T(); |
328 | } |
329 | } |
330 | |
331 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
332 | /// constructing elements as needed. |
333 | template<typename It1, typename It2> |
334 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
335 | std::uninitialized_copy(std::make_move_iterator(I), |
336 | std::make_move_iterator(E), Dest); |
337 | } |
338 | |
339 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
340 | /// constructing elements as needed. |
341 | template<typename It1, typename It2> |
342 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
343 | std::uninitialized_copy(I, E, Dest); |
344 | } |
345 | |
346 | /// Grow the allocated memory (without initializing new elements), doubling |
347 | /// the size of the allocated memory. Guarantees space for at least one more |
348 | /// element, or MinSize more elements if specified. |
349 | void grow(size_t MinSize = 0); |
350 | |
351 | /// Create a new allocation big enough for \p MinSize and pass back its size |
352 | /// in \p NewCapacity. This is the first section of \a grow(). |
353 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { |
354 | return static_cast<T *>( |
355 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
356 | MinSize, sizeof(T), NewCapacity)); |
357 | } |
358 | |
359 | /// Move existing elements over to the new allocation \p NewElts, the middle |
360 | /// section of \a grow(). |
361 | void moveElementsForGrow(T *NewElts); |
362 | |
363 | /// Transfer ownership of the allocation, finishing up \a grow(). |
364 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
365 | |
366 | /// Reserve enough space to add one element, and return the updated element |
367 | /// pointer in case it was a reference to the storage. |
368 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
369 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
370 | } |
371 | |
372 | /// Reserve enough space to add one element, and return the updated element |
373 | /// pointer in case it was a reference to the storage. |
374 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
375 | return const_cast<T *>( |
376 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
377 | } |
378 | |
379 | static T &&forward_value_param(T &&V) { return std::move(V); } |
380 | static const T &forward_value_param(const T &V) { return V; } |
381 | |
382 | void growAndAssign(size_t NumElts, const T &Elt) { |
383 | // Grow manually in case Elt is an internal reference. |
384 | size_t NewCapacity; |
385 | T *NewElts = mallocForGrow(NumElts, NewCapacity); |
386 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
387 | this->destroy_range(this->begin(), this->end()); |
388 | takeAllocationForGrow(NewElts, NewCapacity); |
389 | this->set_size(NumElts); |
390 | } |
391 | |
392 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
393 | // Grow manually in case one of Args is an internal reference. |
394 | size_t NewCapacity; |
395 | T *NewElts = mallocForGrow(0, NewCapacity); |
396 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
397 | moveElementsForGrow(NewElts); |
398 | takeAllocationForGrow(NewElts, NewCapacity); |
399 | this->set_size(this->size() + 1); |
400 | return this->back(); |
401 | } |
402 | |
403 | public: |
404 | void push_back(const T &Elt) { |
405 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
406 | ::new ((void *)this->end()) T(*EltPtr); |
407 | this->set_size(this->size() + 1); |
408 | } |
409 | |
410 | void push_back(T &&Elt) { |
411 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
412 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
413 | this->set_size(this->size() + 1); |
414 | } |
415 | |
416 | void pop_back() { |
417 | this->set_size(this->size() - 1); |
418 | this->end()->~T(); |
419 | } |
420 | }; |
421 | |
422 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
423 | template <typename T, bool TriviallyCopyable> |
424 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
425 | size_t NewCapacity; |
426 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
427 | moveElementsForGrow(NewElts); |
428 | takeAllocationForGrow(NewElts, NewCapacity); |
429 | } |
430 | |
431 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
432 | template <typename T, bool TriviallyCopyable> |
433 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
434 | T *NewElts) { |
435 | // Move the elements over. |
436 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
437 | |
438 | // Destroy the original elements. |
439 | destroy_range(this->begin(), this->end()); |
440 | } |
441 | |
442 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
443 | template <typename T, bool TriviallyCopyable> |
444 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
445 | T *NewElts, size_t NewCapacity) { |
446 | // If this wasn't grown from the inline copy, deallocate the old space. |
447 | if (!this->isSmall()) |
448 | free(this->begin()); |
449 | |
450 | this->BeginX = NewElts; |
451 | this->Capacity = NewCapacity; |
452 | } |
453 | |
454 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
455 | /// method implementations that are designed to work with trivially copyable |
456 | /// T's. This allows using memcpy in place of copy/move construction and |
457 | /// skipping destruction. |
458 | template <typename T> |
459 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
460 | friend class SmallVectorTemplateCommon<T>; |
461 | |
462 | protected: |
463 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
464 | /// overhead related to mitigations for reference invalidation. |
465 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
466 | |
467 | /// Either const T& or T, depending on whether it's cheap enough to take |
468 | /// parameters by value. |
469 | using ValueParamT = |
470 | typename std::conditional<TakesParamByValue, T, const T &>::type; |
471 | |
472 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
473 | |
474 | // No need to do a destroy loop for POD's. |
475 | static void destroy_range(T *, T *) {} |
476 | |
477 | /// Move the range [I, E) onto the uninitialized memory |
478 | /// starting with "Dest", constructing elements into it as needed. |
479 | template<typename It1, typename It2> |
480 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
481 | // Just do a copy. |
482 | uninitialized_copy(I, E, Dest); |
483 | } |
484 | |
485 | /// Copy the range [I, E) onto the uninitialized memory |
486 | /// starting with "Dest", constructing elements into it as needed. |
487 | template<typename It1, typename It2> |
488 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
489 | // Arbitrary iterator types; just use the basic implementation. |
490 | std::uninitialized_copy(I, E, Dest); |
491 | } |
492 | |
493 | /// Copy the range [I, E) onto the uninitialized memory |
494 | /// starting with "Dest", constructing elements into it as needed. |
495 | template <typename T1, typename T2> |
496 | static void uninitialized_copy( |
497 | T1 *I, T1 *E, T2 *Dest, |
498 | std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, |
499 | T2>::value> * = nullptr) { |
500 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
501 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
502 | // use memcpy here. Note that I and E are iterators and thus might be |
503 | // invalid for memcpy if they are equal. |
504 | if (I != E) |
505 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
506 | } |
507 | |
508 | /// Double the size of the allocated memory, guaranteeing space for at |
509 | /// least one more element or MinSize if specified. |
510 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
511 | |
512 | /// Reserve enough space to add one element, and return the updated element |
513 | /// pointer in case it was a reference to the storage. |
514 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
515 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
516 | } |
517 | |
518 | /// Reserve enough space to add one element, and return the updated element |
519 | /// pointer in case it was a reference to the storage. |
520 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
521 | return const_cast<T *>( |
522 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
523 | } |
524 | |
525 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
526 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
527 | |
528 | void growAndAssign(size_t NumElts, T Elt) { |
529 | // Elt has been copied in case it's an internal reference, side-stepping |
530 | // reference invalidation problems without losing the realloc optimization. |
531 | this->set_size(0); |
532 | this->grow(NumElts); |
533 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
534 | this->set_size(NumElts); |
535 | } |
536 | |
537 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
538 | // Use push_back with a copy in case Args has an internal reference, |
539 | // side-stepping reference invalidation problems without losing the realloc |
540 | // optimization. |
541 | push_back(T(std::forward<ArgTypes>(Args)...)); |
542 | return this->back(); |
543 | } |
544 | |
545 | public: |
546 | void push_back(ValueParamT Elt) { |
547 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
548 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
549 | this->set_size(this->size() + 1); |
550 | } |
551 | |
552 | void pop_back() { this->set_size(this->size() - 1); } |
553 | }; |
554 | |
555 | /// This class consists of common code factored out of the SmallVector class to |
556 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
557 | template <typename T> |
558 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
559 | using SuperClass = SmallVectorTemplateBase<T>; |
560 | |
561 | public: |
562 | using iterator = typename SuperClass::iterator; |
563 | using const_iterator = typename SuperClass::const_iterator; |
564 | using reference = typename SuperClass::reference; |
565 | using size_type = typename SuperClass::size_type; |
566 | |
567 | protected: |
568 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
569 | using ValueParamT = typename SuperClass::ValueParamT; |
570 | |
571 | // Default ctor - Initialize to empty. |
572 | explicit SmallVectorImpl(unsigned N) |
573 | : SmallVectorTemplateBase<T>(N) {} |
574 | |
575 | public: |
576 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
577 | |
578 | ~SmallVectorImpl() { |
579 | // Subclass has already destructed this vector's elements. |
580 | // If this wasn't grown from the inline copy, deallocate the old space. |
581 | if (!this->isSmall()) |
582 | free(this->begin()); |
583 | } |
584 | |
585 | void clear() { |
586 | this->destroy_range(this->begin(), this->end()); |
587 | this->Size = 0; |
588 | } |
589 | |
590 | private: |
591 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
592 | if (N < this->size()) { |
593 | this->pop_back_n(this->size() - N); |
594 | } else if (N > this->size()) { |
595 | this->reserve(N); |
596 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
597 | if (ForOverwrite) |
598 | new (&*I) T; |
599 | else |
600 | new (&*I) T(); |
601 | this->set_size(N); |
602 | } |
603 | } |
604 | |
605 | public: |
606 | void resize(size_type N) { resizeImpl<false>(N); } |
607 | |
608 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
609 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
610 | |
611 | void resize(size_type N, ValueParamT NV) { |
612 | if (N == this->size()) |
613 | return; |
614 | |
615 | if (N < this->size()) { |
616 | this->pop_back_n(this->size() - N); |
617 | return; |
618 | } |
619 | |
620 | // N > this->size(). Defer to append. |
621 | this->append(N - this->size(), NV); |
622 | } |
623 | |
624 | void reserve(size_type N) { |
625 | if (this->capacity() < N) |
626 | this->grow(N); |
627 | } |
628 | |
629 | void pop_back_n(size_type NumItems) { |
630 | assert(this->size() >= NumItems)((void)0); |
631 | this->destroy_range(this->end() - NumItems, this->end()); |
632 | this->set_size(this->size() - NumItems); |
633 | } |
634 | |
635 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
636 | T Result = ::std::move(this->back()); |
637 | this->pop_back(); |
638 | return Result; |
639 | } |
640 | |
641 | void swap(SmallVectorImpl &RHS); |
642 | |
643 | /// Add the specified range to the end of the SmallVector. |
644 | template <typename in_iter, |
645 | typename = std::enable_if_t<std::is_convertible< |
646 | typename std::iterator_traits<in_iter>::iterator_category, |
647 | std::input_iterator_tag>::value>> |
648 | void append(in_iter in_start, in_iter in_end) { |
649 | this->assertSafeToAddRange(in_start, in_end); |
650 | size_type NumInputs = std::distance(in_start, in_end); |
651 | this->reserve(this->size() + NumInputs); |
652 | this->uninitialized_copy(in_start, in_end, this->end()); |
653 | this->set_size(this->size() + NumInputs); |
654 | } |
655 | |
656 | /// Append \p NumInputs copies of \p Elt to the end. |
657 | void append(size_type NumInputs, ValueParamT Elt) { |
658 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
659 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
660 | this->set_size(this->size() + NumInputs); |
661 | } |
662 | |
663 | void append(std::initializer_list<T> IL) { |
664 | append(IL.begin(), IL.end()); |
665 | } |
666 | |
667 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
668 | |
669 | void assign(size_type NumElts, ValueParamT Elt) { |
670 | // Note that Elt could be an internal reference. |
671 | if (NumElts > this->capacity()) { |
672 | this->growAndAssign(NumElts, Elt); |
673 | return; |
674 | } |
675 | |
676 | // Assign over existing elements. |
677 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
678 | if (NumElts > this->size()) |
679 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
680 | else if (NumElts < this->size()) |
681 | this->destroy_range(this->begin() + NumElts, this->end()); |
682 | this->set_size(NumElts); |
683 | } |
684 | |
685 | // FIXME: Consider assigning over existing elements, rather than clearing & |
686 | // re-initializing them - for all assign(...) variants. |
687 | |
688 | template <typename in_iter, |
689 | typename = std::enable_if_t<std::is_convertible< |
690 | typename std::iterator_traits<in_iter>::iterator_category, |
691 | std::input_iterator_tag>::value>> |
692 | void assign(in_iter in_start, in_iter in_end) { |
693 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
694 | clear(); |
695 | append(in_start, in_end); |
696 | } |
697 | |
698 | void assign(std::initializer_list<T> IL) { |
699 | clear(); |
700 | append(IL); |
701 | } |
702 | |
703 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
704 | |
705 | iterator erase(const_iterator CI) { |
706 | // Just cast away constness because this is a non-const member function. |
707 | iterator I = const_cast<iterator>(CI); |
708 | |
709 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0); |
710 | |
711 | iterator N = I; |
712 | // Shift all elts down one. |
713 | std::move(I+1, this->end(), I); |
714 | // Drop the last elt. |
715 | this->pop_back(); |
716 | return(N); |
717 | } |
718 | |
719 | iterator erase(const_iterator CS, const_iterator CE) { |
720 | // Just cast away constness because this is a non-const member function. |
721 | iterator S = const_cast<iterator>(CS); |
722 | iterator E = const_cast<iterator>(CE); |
723 | |
724 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0); |
725 | |
726 | iterator N = S; |
727 | // Shift all elts down. |
728 | iterator I = std::move(E, this->end(), S); |
729 | // Drop the last elts. |
730 | this->destroy_range(I, this->end()); |
731 | this->set_size(I - this->begin()); |
732 | return(N); |
733 | } |
734 | |
735 | private: |
736 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
737 | // Callers ensure that ArgType is derived from T. |
738 | static_assert( |
739 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
740 | T>::value, |
741 | "ArgType must be derived from T!"); |
742 | |
743 | if (I == this->end()) { // Important special case for empty vector. |
744 | this->push_back(::std::forward<ArgType>(Elt)); |
745 | return this->end()-1; |
746 | } |
747 | |
748 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
749 | |
750 | // Grow if necessary. |
751 | size_t Index = I - this->begin(); |
752 | std::remove_reference_t<ArgType> *EltPtr = |
753 | this->reserveForParamAndGetAddress(Elt); |
754 | I = this->begin() + Index; |
755 | |
756 | ::new ((void*) this->end()) T(::std::move(this->back())); |
757 | // Push everything else over. |
758 | std::move_backward(I, this->end()-1, this->end()); |
759 | this->set_size(this->size() + 1); |
760 | |
761 | // If we just moved the element we're inserting, be sure to update |
762 | // the reference (never happens if TakesParamByValue). |
763 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
764 | "ArgType must be 'T' when taking by value!"); |
765 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
766 | ++EltPtr; |
767 | |
768 | *I = ::std::forward<ArgType>(*EltPtr); |
769 | return I; |
770 | } |
771 | |
772 | public: |
773 | iterator insert(iterator I, T &&Elt) { |
774 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
775 | } |
776 | |
777 | iterator insert(iterator I, const T &Elt) { |
778 | return insert_one_impl(I, this->forward_value_param(Elt)); |
779 | } |
780 | |
781 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
782 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
783 | size_t InsertElt = I - this->begin(); |
784 | |
785 | if (I == this->end()) { // Important special case for empty vector. |
786 | append(NumToInsert, Elt); |
787 | return this->begin()+InsertElt; |
788 | } |
789 | |
790 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
791 | |
792 | // Ensure there is enough space, and get the (maybe updated) address of |
793 | // Elt. |
794 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
795 | |
796 | // Uninvalidate the iterator. |
797 | I = this->begin()+InsertElt; |
798 | |
799 | // If there are more elements between the insertion point and the end of the |
800 | // range than there are being inserted, we can use a simple approach to |
801 | // insertion. Since we already reserved space, we know that this won't |
802 | // reallocate the vector. |
803 | if (size_t(this->end()-I) >= NumToInsert) { |
804 | T *OldEnd = this->end(); |
805 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
806 | std::move_iterator<iterator>(this->end())); |
807 | |
808 | // Copy the existing elements that get replaced. |
809 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
810 | |
811 | // If we just moved the element we're inserting, be sure to update |
812 | // the reference (never happens if TakesParamByValue). |
813 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
814 | EltPtr += NumToInsert; |
815 | |
816 | std::fill_n(I, NumToInsert, *EltPtr); |
817 | return I; |
818 | } |
819 | |
820 | // Otherwise, we're inserting more elements than exist already, and we're |
821 | // not inserting at the end. |
822 | |
823 | // Move over the elements that we're about to overwrite. |
824 | T *OldEnd = this->end(); |
825 | this->set_size(this->size() + NumToInsert); |
826 | size_t NumOverwritten = OldEnd-I; |
827 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
828 | |
829 | // If we just moved the element we're inserting, be sure to update |
830 | // the reference (never happens if TakesParamByValue). |
831 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
832 | EltPtr += NumToInsert; |
833 | |
834 | // Replace the overwritten part. |
835 | std::fill_n(I, NumOverwritten, *EltPtr); |
836 | |
837 | // Insert the non-overwritten middle part. |
838 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
839 | return I; |
840 | } |
841 | |
842 | template <typename ItTy, |
843 | typename = std::enable_if_t<std::is_convertible< |
844 | typename std::iterator_traits<ItTy>::iterator_category, |
845 | std::input_iterator_tag>::value>> |
846 | iterator insert(iterator I, ItTy From, ItTy To) { |
847 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
848 | size_t InsertElt = I - this->begin(); |
849 | |
850 | if (I == this->end()) { // Important special case for empty vector. |
851 | append(From, To); |
852 | return this->begin()+InsertElt; |
853 | } |
854 | |
855 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
856 | |
857 | // Check that the reserve that follows doesn't invalidate the iterators. |
858 | this->assertSafeToAddRange(From, To); |
859 | |
860 | size_t NumToInsert = std::distance(From, To); |
861 | |
862 | // Ensure there is enough space. |
863 | reserve(this->size() + NumToInsert); |
864 | |
865 | // Uninvalidate the iterator. |
866 | I = this->begin()+InsertElt; |
867 | |
868 | // If there are more elements between the insertion point and the end of the |
869 | // range than there are being inserted, we can use a simple approach to |
870 | // insertion. Since we already reserved space, we know that this won't |
871 | // reallocate the vector. |
872 | if (size_t(this->end()-I) >= NumToInsert) { |
873 | T *OldEnd = this->end(); |
874 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
875 | std::move_iterator<iterator>(this->end())); |
876 | |
877 | // Copy the existing elements that get replaced. |
878 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
879 | |
880 | std::copy(From, To, I); |
881 | return I; |
882 | } |
883 | |
884 | // Otherwise, we're inserting more elements than exist already, and we're |
885 | // not inserting at the end. |
886 | |
887 | // Move over the elements that we're about to overwrite. |
888 | T *OldEnd = this->end(); |
889 | this->set_size(this->size() + NumToInsert); |
890 | size_t NumOverwritten = OldEnd-I; |
891 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
892 | |
893 | // Replace the overwritten part. |
894 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
895 | *J = *From; |
896 | ++J; ++From; |
897 | } |
898 | |
899 | // Insert the non-overwritten middle part. |
900 | this->uninitialized_copy(From, To, OldEnd); |
901 | return I; |
902 | } |
903 | |
904 | void insert(iterator I, std::initializer_list<T> IL) { |
905 | insert(I, IL.begin(), IL.end()); |
906 | } |
907 | |
908 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
909 | if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity ()), false)) |
910 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
911 | |
912 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
913 | this->set_size(this->size() + 1); |
914 | return this->back(); |
915 | } |
916 | |
917 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
918 | |
919 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
920 | |
921 | bool operator==(const SmallVectorImpl &RHS) const { |
922 | if (this->size() != RHS.size()) return false; |
923 | return std::equal(this->begin(), this->end(), RHS.begin()); |
924 | } |
925 | bool operator!=(const SmallVectorImpl &RHS) const { |
926 | return !(*this == RHS); |
927 | } |
928 | |
929 | bool operator<(const SmallVectorImpl &RHS) const { |
930 | return std::lexicographical_compare(this->begin(), this->end(), |
931 | RHS.begin(), RHS.end()); |
932 | } |
933 | }; |
934 | |
935 | template <typename T> |
936 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
937 | if (this == &RHS) return; |
938 | |
939 | // We can only avoid copying elements if neither vector is small. |
940 | if (!this->isSmall() && !RHS.isSmall()) { |
941 | std::swap(this->BeginX, RHS.BeginX); |
942 | std::swap(this->Size, RHS.Size); |
943 | std::swap(this->Capacity, RHS.Capacity); |
944 | return; |
945 | } |
946 | this->reserve(RHS.size()); |
947 | RHS.reserve(this->size()); |
948 | |
949 | // Swap the shared elements. |
950 | size_t NumShared = this->size(); |
951 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
952 | for (size_type i = 0; i != NumShared; ++i) |
953 | std::swap((*this)[i], RHS[i]); |
954 | |
955 | // Copy over the extra elts. |
956 | if (this->size() > RHS.size()) { |
957 | size_t EltDiff = this->size() - RHS.size(); |
958 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
959 | RHS.set_size(RHS.size() + EltDiff); |
960 | this->destroy_range(this->begin()+NumShared, this->end()); |
961 | this->set_size(NumShared); |
962 | } else if (RHS.size() > this->size()) { |
963 | size_t EltDiff = RHS.size() - this->size(); |
964 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
965 | this->set_size(this->size() + EltDiff); |
966 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
967 | RHS.set_size(NumShared); |
968 | } |
969 | } |
970 | |
971 | template <typename T> |
972 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
973 | operator=(const SmallVectorImpl<T> &RHS) { |
974 | // Avoid self-assignment. |
975 | if (this == &RHS) return *this; |
976 | |
977 | // If we already have sufficient space, assign the common elements, then |
978 | // destroy any excess. |
979 | size_t RHSSize = RHS.size(); |
980 | size_t CurSize = this->size(); |
981 | if (CurSize >= RHSSize) { |
982 | // Assign common elements. |
983 | iterator NewEnd; |
984 | if (RHSSize) |
985 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
986 | else |
987 | NewEnd = this->begin(); |
988 | |
989 | // Destroy excess elements. |
990 | this->destroy_range(NewEnd, this->end()); |
991 | |
992 | // Trim. |
993 | this->set_size(RHSSize); |
994 | return *this; |
995 | } |
996 | |
997 | // If we have to grow to have enough elements, destroy the current elements. |
998 | // This allows us to avoid copying them during the grow. |
999 | // FIXME: don't do this if they're efficiently moveable. |
1000 | if (this->capacity() < RHSSize) { |
1001 | // Destroy current elements. |
1002 | this->clear(); |
1003 | CurSize = 0; |
1004 | this->grow(RHSSize); |
1005 | } else if (CurSize) { |
1006 | // Otherwise, use assignment for the already-constructed elements. |
1007 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1008 | } |
1009 | |
1010 | // Copy construct the new elements in place. |
1011 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
1012 | this->begin()+CurSize); |
1013 | |
1014 | // Set end. |
1015 | this->set_size(RHSSize); |
1016 | return *this; |
1017 | } |
1018 | |
1019 | template <typename T> |
1020 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
1021 | // Avoid self-assignment. |
1022 | if (this == &RHS) return *this; |
1023 | |
1024 | // If the RHS isn't small, clear this vector and then steal its buffer. |
1025 | if (!RHS.isSmall()) { |
1026 | this->destroy_range(this->begin(), this->end()); |
1027 | if (!this->isSmall()) free(this->begin()); |
1028 | this->BeginX = RHS.BeginX; |
1029 | this->Size = RHS.Size; |
1030 | this->Capacity = RHS.Capacity; |
1031 | RHS.resetToSmall(); |
1032 | return *this; |
1033 | } |
1034 | |
1035 | // If we already have sufficient space, assign the common elements, then |
1036 | // destroy any excess. |
1037 | size_t RHSSize = RHS.size(); |
1038 | size_t CurSize = this->size(); |
1039 | if (CurSize >= RHSSize) { |
1040 | // Assign common elements. |
1041 | iterator NewEnd = this->begin(); |
1042 | if (RHSSize) |
1043 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
1044 | |
1045 | // Destroy excess elements and trim the bounds. |
1046 | this->destroy_range(NewEnd, this->end()); |
1047 | this->set_size(RHSSize); |
1048 | |
1049 | // Clear the RHS. |
1050 | RHS.clear(); |
1051 | |
1052 | return *this; |
1053 | } |
1054 | |
1055 | // If we have to grow to have enough elements, destroy the current elements. |
1056 | // This allows us to avoid copying them during the grow. |
1057 | // FIXME: this may not actually make any sense if we can efficiently move |
1058 | // elements. |
1059 | if (this->capacity() < RHSSize) { |
1060 | // Destroy current elements. |
1061 | this->clear(); |
1062 | CurSize = 0; |
1063 | this->grow(RHSSize); |
1064 | } else if (CurSize) { |
1065 | // Otherwise, use assignment for the already-constructed elements. |
1066 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
1067 | } |
1068 | |
1069 | // Move-construct the new elements in place. |
1070 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
1071 | this->begin()+CurSize); |
1072 | |
1073 | // Set end. |
1074 | this->set_size(RHSSize); |
1075 | |
1076 | RHS.clear(); |
1077 | return *this; |
1078 | } |
1079 | |
1080 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
1081 | /// to avoid allocating unnecessary storage. |
1082 | template <typename T, unsigned N> |
1083 | struct SmallVectorStorage { |
1084 | alignas(T) char InlineElts[N * sizeof(T)]; |
1085 | }; |
1086 | |
1087 | /// We need the storage to be properly aligned even for small-size of 0 so that |
1088 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
1089 | /// well-defined. |
1090 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
1091 | |
1092 | /// Forward declaration of SmallVector so that |
1093 | /// calculateSmallVectorDefaultInlinedElements can reference |
1094 | /// `sizeof(SmallVector<T, 0>)`. |
1095 | template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector; |
1096 | |
1097 | /// Helper class for calculating the default number of inline elements for |
1098 | /// `SmallVector<T>`. |
1099 | /// |
1100 | /// This should be migrated to a constexpr function when our minimum |
1101 | /// compiler support is enough for multi-statement constexpr functions. |
1102 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
1103 | // Parameter controlling the default number of inlined elements |
1104 | // for `SmallVector<T>`. |
1105 | // |
1106 | // The default number of inlined elements ensures that |
1107 | // 1. There is at least one inlined element. |
1108 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
1109 | // it contradicts 1. |
1110 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
1111 | |
1112 | // static_assert that sizeof(T) is not "too big". |
1113 | // |
1114 | // Because our policy guarantees at least one inlined element, it is possible |
1115 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
1116 | // amount of inline storage. We generally consider it an antipattern for a |
1117 | // SmallVector to allocate an excessive amount of inline storage, so we want |
1118 | // to call attention to these cases and make sure that users are making an |
1119 | // intentional decision if they request a lot of inline storage. |
1120 | // |
1121 | // We want this assertion to trigger in pathological cases, but otherwise |
1122 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
1123 | // larger than kPreferredSmallVectorSizeof (otherwise, |
1124 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
1125 | // pattern seems useful in practice). |
1126 | // |
1127 | // One wrinkle is that this assertion is in theory non-portable, since |
1128 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
1129 | // to be much of an issue, because most LLVM development happens on 64-bit |
1130 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
1131 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
1132 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
1133 | // 64-bit host, is expected to be very rare. |
1134 | static_assert( |
1135 | sizeof(T) <= 256, |
1136 | "You are trying to use a default number of inlined elements for " |
1137 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
1138 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
1139 | "sure you really want that much inline storage."); |
1140 | |
1141 | // Discount the size of the header itself when calculating the maximum inline |
1142 | // bytes. |
1143 | static constexpr size_t PreferredInlineBytes = |
1144 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
1145 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
1146 | static constexpr size_t value = |
1147 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
1148 | }; |
1149 | |
1150 | /// This is a 'vector' (really, a variable-sized array), optimized |
1151 | /// for the case when the array is small. It contains some number of elements |
1152 | /// in-place, which allows it to avoid heap allocation when the actual number of |
1153 | /// elements is below that threshold. This allows normal "small" cases to be |
1154 | /// fast without losing generality for large inputs. |
1155 | /// |
1156 | /// \note |
1157 | /// In the absence of a well-motivated choice for the number of inlined |
1158 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
1159 | /// omitting the \p N). This will choose a default number of inlined elements |
1160 | /// reasonable for allocation on the stack (for example, trying to keep \c |
1161 | /// sizeof(SmallVector<T>) around 64 bytes). |
1162 | /// |
1163 | /// \warning This does not attempt to be exception safe. |
1164 | /// |
1165 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
1166 | template <typename T, |
1167 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
1168 | class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>, |
1169 | SmallVectorStorage<T, N> { |
1170 | public: |
1171 | SmallVector() : SmallVectorImpl<T>(N) {} |
1172 | |
1173 | ~SmallVector() { |
1174 | // Destroy the constructed elements in the vector. |
1175 | this->destroy_range(this->begin(), this->end()); |
1176 | } |
1177 | |
1178 | explicit SmallVector(size_t Size, const T &Value = T()) |
1179 | : SmallVectorImpl<T>(N) { |
1180 | this->assign(Size, Value); |
1181 | } |
1182 | |
1183 | template <typename ItTy, |
1184 | typename = std::enable_if_t<std::is_convertible< |
1185 | typename std::iterator_traits<ItTy>::iterator_category, |
1186 | std::input_iterator_tag>::value>> |
1187 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
1188 | this->append(S, E); |
1189 | } |
1190 | |
1191 | template <typename RangeTy> |
1192 | explicit SmallVector(const iterator_range<RangeTy> &R) |
1193 | : SmallVectorImpl<T>(N) { |
1194 | this->append(R.begin(), R.end()); |
1195 | } |
1196 | |
1197 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
1198 | this->assign(IL); |
1199 | } |
1200 | |
1201 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
1202 | if (!RHS.empty()) |
1203 | SmallVectorImpl<T>::operator=(RHS); |
1204 | } |
1205 | |
1206 | SmallVector &operator=(const SmallVector &RHS) { |
1207 | SmallVectorImpl<T>::operator=(RHS); |
1208 | return *this; |
1209 | } |
1210 | |
1211 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
1212 | if (!RHS.empty()) |
1213 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1214 | } |
1215 | |
1216 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
1217 | if (!RHS.empty()) |
1218 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1219 | } |
1220 | |
1221 | SmallVector &operator=(SmallVector &&RHS) { |
1222 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1223 | return *this; |
1224 | } |
1225 | |
1226 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
1227 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
1228 | return *this; |
1229 | } |
1230 | |
1231 | SmallVector &operator=(std::initializer_list<T> IL) { |
1232 | this->assign(IL); |
1233 | return *this; |
1234 | } |
1235 | }; |
1236 | |
1237 | template <typename T, unsigned N> |
1238 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
1239 | return X.capacity_in_bytes(); |
1240 | } |
1241 | |
1242 | /// Given a range of type R, iterate the entire range and return a |
1243 | /// SmallVector with elements of the vector. This is useful, for example, |
1244 | /// when you want to iterate a range and then sort the results. |
1245 | template <unsigned Size, typename R> |
1246 | SmallVector<typename std::remove_const<typename std::remove_reference< |
1247 | decltype(*std::begin(std::declval<R &>()))>::type>::type, |
1248 | Size> |
1249 | to_vector(R &&Range) { |
1250 | return {std::begin(Range), std::end(Range)}; |
1251 | } |
1252 | |
1253 | } // end namespace llvm |
1254 | |
1255 | namespace std { |
1256 | |
1257 | /// Implement std::swap in terms of SmallVector swap. |
1258 | template<typename T> |
1259 | inline void |
1260 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
1261 | LHS.swap(RHS); |
1262 | } |
1263 | |
1264 | /// Implement std::swap in terms of SmallVector swap. |
1265 | template<typename T, unsigned N> |
1266 | inline void |
1267 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
1268 | LHS.swap(RHS); |
1269 | } |
1270 | |
1271 | } // end namespace std |
1272 | |
1273 | #endif // LLVM_ADT_SMALLVECTOR_H |
1 | //===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file defines the Sema class, which performs semantic analysis and | |||
10 | // builds ASTs. | |||
11 | // | |||
12 | //===----------------------------------------------------------------------===// | |||
13 | ||||
14 | #ifndef LLVM_CLANG_SEMA_SEMA_H | |||
15 | #define LLVM_CLANG_SEMA_SEMA_H | |||
16 | ||||
17 | #include "clang/AST/ASTConcept.h" | |||
18 | #include "clang/AST/ASTFwd.h" | |||
19 | #include "clang/AST/Attr.h" | |||
20 | #include "clang/AST/Availability.h" | |||
21 | #include "clang/AST/ComparisonCategories.h" | |||
22 | #include "clang/AST/DeclTemplate.h" | |||
23 | #include "clang/AST/DeclarationName.h" | |||
24 | #include "clang/AST/Expr.h" | |||
25 | #include "clang/AST/ExprCXX.h" | |||
26 | #include "clang/AST/ExprConcepts.h" | |||
27 | #include "clang/AST/ExprObjC.h" | |||
28 | #include "clang/AST/ExprOpenMP.h" | |||
29 | #include "clang/AST/ExternalASTSource.h" | |||
30 | #include "clang/AST/LocInfoType.h" | |||
31 | #include "clang/AST/MangleNumberingContext.h" | |||
32 | #include "clang/AST/NSAPI.h" | |||
33 | #include "clang/AST/PrettyPrinter.h" | |||
34 | #include "clang/AST/StmtCXX.h" | |||
35 | #include "clang/AST/StmtOpenMP.h" | |||
36 | #include "clang/AST/TypeLoc.h" | |||
37 | #include "clang/AST/TypeOrdering.h" | |||
38 | #include "clang/Basic/BitmaskEnum.h" | |||
39 | #include "clang/Basic/Builtins.h" | |||
40 | #include "clang/Basic/DarwinSDKInfo.h" | |||
41 | #include "clang/Basic/ExpressionTraits.h" | |||
42 | #include "clang/Basic/Module.h" | |||
43 | #include "clang/Basic/OpenCLOptions.h" | |||
44 | #include "clang/Basic/OpenMPKinds.h" | |||
45 | #include "clang/Basic/PragmaKinds.h" | |||
46 | #include "clang/Basic/Specifiers.h" | |||
47 | #include "clang/Basic/TemplateKinds.h" | |||
48 | #include "clang/Basic/TypeTraits.h" | |||
49 | #include "clang/Sema/AnalysisBasedWarnings.h" | |||
50 | #include "clang/Sema/CleanupInfo.h" | |||
51 | #include "clang/Sema/DeclSpec.h" | |||
52 | #include "clang/Sema/ExternalSemaSource.h" | |||
53 | #include "clang/Sema/IdentifierResolver.h" | |||
54 | #include "clang/Sema/ObjCMethodList.h" | |||
55 | #include "clang/Sema/Ownership.h" | |||
56 | #include "clang/Sema/Scope.h" | |||
57 | #include "clang/Sema/SemaConcept.h" | |||
58 | #include "clang/Sema/TypoCorrection.h" | |||
59 | #include "clang/Sema/Weak.h" | |||
60 | #include "llvm/ADT/ArrayRef.h" | |||
61 | #include "llvm/ADT/Optional.h" | |||
62 | #include "llvm/ADT/SetVector.h" | |||
63 | #include "llvm/ADT/SmallBitVector.h" | |||
64 | #include "llvm/ADT/SmallPtrSet.h" | |||
65 | #include "llvm/ADT/SmallSet.h" | |||
66 | #include "llvm/ADT/SmallVector.h" | |||
67 | #include "llvm/ADT/TinyPtrVector.h" | |||
68 | #include "llvm/Frontend/OpenMP/OMPConstants.h" | |||
69 | #include <deque> | |||
70 | #include <memory> | |||
71 | #include <string> | |||
72 | #include <tuple> | |||
73 | #include <vector> | |||
74 | ||||
75 | namespace llvm { | |||
76 | class APSInt; | |||
77 | template <typename ValueT> struct DenseMapInfo; | |||
78 | template <typename ValueT, typename ValueInfoT> class DenseSet; | |||
79 | class SmallBitVector; | |||
80 | struct InlineAsmIdentifierInfo; | |||
81 | } | |||
82 | ||||
83 | namespace clang { | |||
84 | class ADLResult; | |||
85 | class ASTConsumer; | |||
86 | class ASTContext; | |||
87 | class ASTMutationListener; | |||
88 | class ASTReader; | |||
89 | class ASTWriter; | |||
90 | class ArrayType; | |||
91 | class ParsedAttr; | |||
92 | class BindingDecl; | |||
93 | class BlockDecl; | |||
94 | class CapturedDecl; | |||
95 | class CXXBasePath; | |||
96 | class CXXBasePaths; | |||
97 | class CXXBindTemporaryExpr; | |||
98 | typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath; | |||
99 | class CXXConstructorDecl; | |||
100 | class CXXConversionDecl; | |||
101 | class CXXDeleteExpr; | |||
102 | class CXXDestructorDecl; | |||
103 | class CXXFieldCollector; | |||
104 | class CXXMemberCallExpr; | |||
105 | class CXXMethodDecl; | |||
106 | class CXXScopeSpec; | |||
107 | class CXXTemporary; | |||
108 | class CXXTryStmt; | |||
109 | class CallExpr; | |||
110 | class ClassTemplateDecl; | |||
111 | class ClassTemplatePartialSpecializationDecl; | |||
112 | class ClassTemplateSpecializationDecl; | |||
113 | class VarTemplatePartialSpecializationDecl; | |||
114 | class CodeCompleteConsumer; | |||
115 | class CodeCompletionAllocator; | |||
116 | class CodeCompletionTUInfo; | |||
117 | class CodeCompletionResult; | |||
118 | class CoroutineBodyStmt; | |||
119 | class Decl; | |||
120 | class DeclAccessPair; | |||
121 | class DeclContext; | |||
122 | class DeclRefExpr; | |||
123 | class DeclaratorDecl; | |||
124 | class DeducedTemplateArgument; | |||
125 | class DependentDiagnostic; | |||
126 | class DesignatedInitExpr; | |||
127 | class Designation; | |||
128 | class EnableIfAttr; | |||
129 | class EnumConstantDecl; | |||
130 | class Expr; | |||
131 | class ExtVectorType; | |||
132 | class FormatAttr; | |||
133 | class FriendDecl; | |||
134 | class FunctionDecl; | |||
135 | class FunctionProtoType; | |||
136 | class FunctionTemplateDecl; | |||
137 | class ImplicitConversionSequence; | |||
138 | typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList; | |||
139 | class InitListExpr; | |||
140 | class InitializationKind; | |||
141 | class InitializationSequence; | |||
142 | class InitializedEntity; | |||
143 | class IntegerLiteral; | |||
144 | class LabelStmt; | |||
145 | class LambdaExpr; | |||
146 | class LangOptions; | |||
147 | class LocalInstantiationScope; | |||
148 | class LookupResult; | |||
149 | class MacroInfo; | |||
150 | typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath; | |||
151 | class ModuleLoader; | |||
152 | class MultiLevelTemplateArgumentList; | |||
153 | class NamedDecl; | |||
154 | class ObjCCategoryDecl; | |||
155 | class ObjCCategoryImplDecl; | |||
156 | class ObjCCompatibleAliasDecl; | |||
157 | class ObjCContainerDecl; | |||
158 | class ObjCImplDecl; | |||
159 | class ObjCImplementationDecl; | |||
160 | class ObjCInterfaceDecl; | |||
161 | class ObjCIvarDecl; | |||
162 | template <class T> class ObjCList; | |||
163 | class ObjCMessageExpr; | |||
164 | class ObjCMethodDecl; | |||
165 | class ObjCPropertyDecl; | |||
166 | class ObjCProtocolDecl; | |||
167 | class OMPThreadPrivateDecl; | |||
168 | class OMPRequiresDecl; | |||
169 | class OMPDeclareReductionDecl; | |||
170 | class OMPDeclareSimdDecl; | |||
171 | class OMPClause; | |||
172 | struct OMPVarListLocTy; | |||
173 | struct OverloadCandidate; | |||
174 | enum class OverloadCandidateParamOrder : char; | |||
175 | enum OverloadCandidateRewriteKind : unsigned; | |||
176 | class OverloadCandidateSet; | |||
177 | class OverloadExpr; | |||
178 | class ParenListExpr; | |||
179 | class ParmVarDecl; | |||
180 | class Preprocessor; | |||
181 | class PseudoDestructorTypeStorage; | |||
182 | class PseudoObjectExpr; | |||
183 | class QualType; | |||
184 | class StandardConversionSequence; | |||
185 | class Stmt; | |||
186 | class StringLiteral; | |||
187 | class SwitchStmt; | |||
188 | class TemplateArgument; | |||
189 | class TemplateArgumentList; | |||
190 | class TemplateArgumentLoc; | |||
191 | class TemplateDecl; | |||
192 | class TemplateInstantiationCallback; | |||
193 | class TemplateParameterList; | |||
194 | class TemplatePartialOrderingContext; | |||
195 | class TemplateTemplateParmDecl; | |||
196 | class Token; | |||
197 | class TypeAliasDecl; | |||
198 | class TypedefDecl; | |||
199 | class TypedefNameDecl; | |||
200 | class TypeLoc; | |||
201 | class TypoCorrectionConsumer; | |||
202 | class UnqualifiedId; | |||
203 | class UnresolvedLookupExpr; | |||
204 | class UnresolvedMemberExpr; | |||
205 | class UnresolvedSetImpl; | |||
206 | class UnresolvedSetIterator; | |||
207 | class UsingDecl; | |||
208 | class UsingShadowDecl; | |||
209 | class ValueDecl; | |||
210 | class VarDecl; | |||
211 | class VarTemplateSpecializationDecl; | |||
212 | class VisibilityAttr; | |||
213 | class VisibleDeclConsumer; | |||
214 | class IndirectFieldDecl; | |||
215 | struct DeductionFailureInfo; | |||
216 | class TemplateSpecCandidateSet; | |||
217 | ||||
218 | namespace sema { | |||
219 | class AccessedEntity; | |||
220 | class BlockScopeInfo; | |||
221 | class Capture; | |||
222 | class CapturedRegionScopeInfo; | |||
223 | class CapturingScopeInfo; | |||
224 | class CompoundScopeInfo; | |||
225 | class DelayedDiagnostic; | |||
226 | class DelayedDiagnosticPool; | |||
227 | class FunctionScopeInfo; | |||
228 | class LambdaScopeInfo; | |||
229 | class PossiblyUnreachableDiag; | |||
230 | class SemaPPCallbacks; | |||
231 | class TemplateDeductionInfo; | |||
232 | } | |||
233 | ||||
234 | namespace threadSafety { | |||
235 | class BeforeSet; | |||
236 | void threadSafetyCleanup(BeforeSet* Cache); | |||
237 | } | |||
238 | ||||
239 | // FIXME: No way to easily map from TemplateTypeParmTypes to | |||
240 | // TemplateTypeParmDecls, so we have this horrible PointerUnion. | |||
241 | typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>, | |||
242 | SourceLocation> UnexpandedParameterPack; | |||
243 | ||||
244 | /// Describes whether we've seen any nullability information for the given | |||
245 | /// file. | |||
246 | struct FileNullability { | |||
247 | /// The first pointer declarator (of any pointer kind) in the file that does | |||
248 | /// not have a corresponding nullability annotation. | |||
249 | SourceLocation PointerLoc; | |||
250 | ||||
251 | /// The end location for the first pointer declarator in the file. Used for | |||
252 | /// placing fix-its. | |||
253 | SourceLocation PointerEndLoc; | |||
254 | ||||
255 | /// Which kind of pointer declarator we saw. | |||
256 | uint8_t PointerKind; | |||
257 | ||||
258 | /// Whether we saw any type nullability annotations in the given file. | |||
259 | bool SawTypeNullability = false; | |||
260 | }; | |||
261 | ||||
262 | /// A mapping from file IDs to a record of whether we've seen nullability | |||
263 | /// information in that file. | |||
264 | class FileNullabilityMap { | |||
265 | /// A mapping from file IDs to the nullability information for each file ID. | |||
266 | llvm::DenseMap<FileID, FileNullability> Map; | |||
267 | ||||
268 | /// A single-element cache based on the file ID. | |||
269 | struct { | |||
270 | FileID File; | |||
271 | FileNullability Nullability; | |||
272 | } Cache; | |||
273 | ||||
274 | public: | |||
275 | FileNullability &operator[](FileID file) { | |||
276 | // Check the single-element cache. | |||
277 | if (file == Cache.File) | |||
278 | return Cache.Nullability; | |||
279 | ||||
280 | // It's not in the single-element cache; flush the cache if we have one. | |||
281 | if (!Cache.File.isInvalid()) { | |||
282 | Map[Cache.File] = Cache.Nullability; | |||
283 | } | |||
284 | ||||
285 | // Pull this entry into the cache. | |||
286 | Cache.File = file; | |||
287 | Cache.Nullability = Map[file]; | |||
288 | return Cache.Nullability; | |||
289 | } | |||
290 | }; | |||
291 | ||||
292 | /// Tracks expected type during expression parsing, for use in code completion. | |||
293 | /// The type is tied to a particular token, all functions that update or consume | |||
294 | /// the type take a start location of the token they are looking at as a | |||
295 | /// parameter. This avoids updating the type on hot paths in the parser. | |||
296 | class PreferredTypeBuilder { | |||
297 | public: | |||
298 | PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {} | |||
299 | ||||
300 | void enterCondition(Sema &S, SourceLocation Tok); | |||
301 | void enterReturn(Sema &S, SourceLocation Tok); | |||
302 | void enterVariableInit(SourceLocation Tok, Decl *D); | |||
303 | /// Handles e.g. BaseType{ .D = Tok... | |||
304 | void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType, | |||
305 | const Designation &D); | |||
306 | /// Computing a type for the function argument may require running | |||
307 | /// overloading, so we postpone its computation until it is actually needed. | |||
308 | /// | |||
309 | /// Clients should be very careful when using this funciton, as it stores a | |||
310 | /// function_ref, clients should make sure all calls to get() with the same | |||
311 | /// location happen while function_ref is alive. | |||
312 | /// | |||
313 | /// The callback should also emit signature help as a side-effect, but only | |||
314 | /// if the completion point has been reached. | |||
315 | void enterFunctionArgument(SourceLocation Tok, | |||
316 | llvm::function_ref<QualType()> ComputeType); | |||
317 | ||||
318 | void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc); | |||
319 | void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind, | |||
320 | SourceLocation OpLoc); | |||
321 | void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op); | |||
322 | void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base); | |||
323 | void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS); | |||
324 | /// Handles all type casts, including C-style cast, C++ casts, etc. | |||
325 | void enterTypeCast(SourceLocation Tok, QualType CastType); | |||
326 | ||||
327 | /// Get the expected type associated with this location, if any. | |||
328 | /// | |||
329 | /// If the location is a function argument, determining the expected type | |||
330 | /// involves considering all function overloads and the arguments so far. | |||
331 | /// In this case, signature help for these function overloads will be reported | |||
332 | /// as a side-effect (only if the completion point has been reached). | |||
333 | QualType get(SourceLocation Tok) const { | |||
334 | if (!Enabled || Tok != ExpectedLoc) | |||
335 | return QualType(); | |||
336 | if (!Type.isNull()) | |||
337 | return Type; | |||
338 | if (ComputeType) | |||
339 | return ComputeType(); | |||
340 | return QualType(); | |||
341 | } | |||
342 | ||||
343 | private: | |||
344 | bool Enabled; | |||
345 | /// Start position of a token for which we store expected type. | |||
346 | SourceLocation ExpectedLoc; | |||
347 | /// Expected type for a token starting at ExpectedLoc. | |||
348 | QualType Type; | |||
349 | /// A function to compute expected type at ExpectedLoc. It is only considered | |||
350 | /// if Type is null. | |||
351 | llvm::function_ref<QualType()> ComputeType; | |||
352 | }; | |||
353 | ||||
354 | /// Sema - This implements semantic analysis and AST building for C. | |||
355 | class Sema final { | |||
356 | Sema(const Sema &) = delete; | |||
357 | void operator=(const Sema &) = delete; | |||
358 | ||||
359 | ///Source of additional semantic information. | |||
360 | ExternalSemaSource *ExternalSource; | |||
361 | ||||
362 | ///Whether Sema has generated a multiplexer and has to delete it. | |||
363 | bool isMultiplexExternalSource; | |||
364 | ||||
365 | static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD); | |||
366 | ||||
367 | bool isVisibleSlow(const NamedDecl *D); | |||
368 | ||||
369 | /// Determine whether two declarations should be linked together, given that | |||
370 | /// the old declaration might not be visible and the new declaration might | |||
371 | /// not have external linkage. | |||
372 | bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old, | |||
373 | const NamedDecl *New) { | |||
374 | if (isVisible(Old)) | |||
375 | return true; | |||
376 | // See comment in below overload for why it's safe to compute the linkage | |||
377 | // of the new declaration here. | |||
378 | if (New->isExternallyDeclarable()) { | |||
379 | assert(Old->isExternallyDeclarable() &&((void)0) | |||
380 | "should not have found a non-externally-declarable previous decl")((void)0); | |||
381 | return true; | |||
382 | } | |||
383 | return false; | |||
384 | } | |||
385 | bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New); | |||
386 | ||||
387 | void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, | |||
388 | QualType ResultTy, | |||
389 | ArrayRef<QualType> Args); | |||
390 | ||||
391 | public: | |||
392 | /// The maximum alignment, same as in llvm::Value. We duplicate them here | |||
393 | /// because that allows us not to duplicate the constants in clang code, | |||
394 | /// which we must to since we can't directly use the llvm constants. | |||
395 | /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp | |||
396 | /// | |||
397 | /// This is the greatest alignment value supported by load, store, and alloca | |||
398 | /// instructions, and global values. | |||
399 | static const unsigned MaxAlignmentExponent = 29; | |||
400 | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; | |||
401 | ||||
402 | typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy; | |||
403 | typedef OpaquePtr<TemplateName> TemplateTy; | |||
404 | typedef OpaquePtr<QualType> TypeTy; | |||
405 | ||||
406 | OpenCLOptions OpenCLFeatures; | |||
407 | FPOptions CurFPFeatures; | |||
408 | ||||
409 | const LangOptions &LangOpts; | |||
410 | Preprocessor &PP; | |||
411 | ASTContext &Context; | |||
412 | ASTConsumer &Consumer; | |||
413 | DiagnosticsEngine &Diags; | |||
414 | SourceManager &SourceMgr; | |||
415 | ||||
416 | /// Flag indicating whether or not to collect detailed statistics. | |||
417 | bool CollectStats; | |||
418 | ||||
419 | /// Code-completion consumer. | |||
420 | CodeCompleteConsumer *CodeCompleter; | |||
421 | ||||
422 | /// CurContext - This is the current declaration context of parsing. | |||
423 | DeclContext *CurContext; | |||
424 | ||||
425 | /// Generally null except when we temporarily switch decl contexts, | |||
426 | /// like in \see ActOnObjCTemporaryExitContainerContext. | |||
427 | DeclContext *OriginalLexicalContext; | |||
428 | ||||
429 | /// VAListTagName - The declaration name corresponding to __va_list_tag. | |||
430 | /// This is used as part of a hack to omit that class from ADL results. | |||
431 | DeclarationName VAListTagName; | |||
432 | ||||
433 | bool MSStructPragmaOn; // True when \#pragma ms_struct on | |||
434 | ||||
435 | /// Controls member pointer representation format under the MS ABI. | |||
436 | LangOptions::PragmaMSPointersToMembersKind | |||
437 | MSPointerToMemberRepresentationMethod; | |||
438 | ||||
439 | /// Stack of active SEH __finally scopes. Can be empty. | |||
440 | SmallVector<Scope*, 2> CurrentSEHFinally; | |||
441 | ||||
442 | /// Source location for newly created implicit MSInheritanceAttrs | |||
443 | SourceLocation ImplicitMSInheritanceAttrLoc; | |||
444 | ||||
445 | /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by | |||
446 | /// `TransformTypos` in order to keep track of any TypoExprs that are created | |||
447 | /// recursively during typo correction and wipe them away if the correction | |||
448 | /// fails. | |||
449 | llvm::SmallVector<TypoExpr *, 2> TypoExprs; | |||
450 | ||||
451 | /// pragma clang section kind | |||
452 | enum PragmaClangSectionKind { | |||
453 | PCSK_Invalid = 0, | |||
454 | PCSK_BSS = 1, | |||
455 | PCSK_Data = 2, | |||
456 | PCSK_Rodata = 3, | |||
457 | PCSK_Text = 4, | |||
458 | PCSK_Relro = 5 | |||
459 | }; | |||
460 | ||||
461 | enum PragmaClangSectionAction { | |||
462 | PCSA_Set = 0, | |||
463 | PCSA_Clear = 1 | |||
464 | }; | |||
465 | ||||
466 | struct PragmaClangSection { | |||
467 | std::string SectionName; | |||
468 | bool Valid = false; | |||
469 | SourceLocation PragmaLocation; | |||
470 | }; | |||
471 | ||||
472 | PragmaClangSection PragmaClangBSSSection; | |||
473 | PragmaClangSection PragmaClangDataSection; | |||
474 | PragmaClangSection PragmaClangRodataSection; | |||
475 | PragmaClangSection PragmaClangRelroSection; | |||
476 | PragmaClangSection PragmaClangTextSection; | |||
477 | ||||
478 | enum PragmaMsStackAction { | |||
479 | PSK_Reset = 0x0, // #pragma () | |||
480 | PSK_Set = 0x1, // #pragma (value) | |||
481 | PSK_Push = 0x2, // #pragma (push[, id]) | |||
482 | PSK_Pop = 0x4, // #pragma (pop[, id]) | |||
483 | PSK_Show = 0x8, // #pragma (show) -- only for "pack"! | |||
484 | PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value) | |||
485 | PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value) | |||
486 | }; | |||
487 | ||||
488 | // #pragma pack and align. | |||
489 | class AlignPackInfo { | |||
490 | public: | |||
491 | // `Native` represents default align mode, which may vary based on the | |||
492 | // platform. | |||
493 | enum Mode : unsigned char { Native, Natural, Packed, Mac68k }; | |||
494 | ||||
495 | // #pragma pack info constructor | |||
496 | AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL) | |||
497 | : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) { | |||
498 | assert(Num == PackNumber && "The pack number has been truncated.")((void)0); | |||
499 | } | |||
500 | ||||
501 | // #pragma align info constructor | |||
502 | AlignPackInfo(AlignPackInfo::Mode M, bool IsXL) | |||
503 | : PackAttr(false), AlignMode(M), | |||
504 | PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {} | |||
505 | ||||
506 | explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {} | |||
507 | ||||
508 | AlignPackInfo() : AlignPackInfo(Native, false) {} | |||
509 | ||||
510 | // When a AlignPackInfo itself cannot be used, this returns an 32-bit | |||
511 | // integer encoding for it. This should only be passed to | |||
512 | // AlignPackInfo::getFromRawEncoding, it should not be inspected directly. | |||
513 | static uint32_t getRawEncoding(const AlignPackInfo &Info) { | |||
514 | std::uint32_t Encoding{}; | |||
515 | if (Info.IsXLStack()) | |||
516 | Encoding |= IsXLMask; | |||
517 | ||||
518 | Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1; | |||
519 | ||||
520 | if (Info.IsPackAttr()) | |||
521 | Encoding |= PackAttrMask; | |||
522 | ||||
523 | Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4; | |||
524 | ||||
525 | return Encoding; | |||
526 | } | |||
527 | ||||
528 | static AlignPackInfo getFromRawEncoding(unsigned Encoding) { | |||
529 | bool IsXL = static_cast<bool>(Encoding & IsXLMask); | |||
530 | AlignPackInfo::Mode M = | |||
531 | static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1); | |||
532 | int PackNumber = (Encoding & PackNumMask) >> 4; | |||
533 | ||||
534 | if (Encoding & PackAttrMask) | |||
535 | return AlignPackInfo(M, PackNumber, IsXL); | |||
536 | ||||
537 | return AlignPackInfo(M, IsXL); | |||
538 | } | |||
539 | ||||
540 | bool IsPackAttr() const { return PackAttr; } | |||
541 | ||||
542 | bool IsAlignAttr() const { return !PackAttr; } | |||
543 | ||||
544 | Mode getAlignMode() const { return AlignMode; } | |||
545 | ||||
546 | unsigned getPackNumber() const { return PackNumber; } | |||
547 | ||||
548 | bool IsPackSet() const { | |||
549 | // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack | |||
550 | // attriute on a decl. | |||
551 | return PackNumber != UninitPackVal && PackNumber != 0; | |||
552 | } | |||
553 | ||||
554 | bool IsXLStack() const { return XLStack; } | |||
555 | ||||
556 | bool operator==(const AlignPackInfo &Info) const { | |||
557 | return std::tie(AlignMode, PackNumber, PackAttr, XLStack) == | |||
558 | std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr, | |||
559 | Info.XLStack); | |||
560 | } | |||
561 | ||||
562 | bool operator!=(const AlignPackInfo &Info) const { | |||
563 | return !(*this == Info); | |||
564 | } | |||
565 | ||||
566 | private: | |||
567 | /// \brief True if this is a pragma pack attribute, | |||
568 | /// not a pragma align attribute. | |||
569 | bool PackAttr; | |||
570 | ||||
571 | /// \brief The alignment mode that is in effect. | |||
572 | Mode AlignMode; | |||
573 | ||||
574 | /// \brief The pack number of the stack. | |||
575 | unsigned char PackNumber; | |||
576 | ||||
577 | /// \brief True if it is a XL #pragma align/pack stack. | |||
578 | bool XLStack; | |||
579 | ||||
580 | /// \brief Uninitialized pack value. | |||
581 | static constexpr unsigned char UninitPackVal = -1; | |||
582 | ||||
583 | // Masks to encode and decode an AlignPackInfo. | |||
584 | static constexpr uint32_t IsXLMask{0x0000'0001}; | |||
585 | static constexpr uint32_t AlignModeMask{0x0000'0006}; | |||
586 | static constexpr uint32_t PackAttrMask{0x00000'0008}; | |||
587 | static constexpr uint32_t PackNumMask{0x0000'01F0}; | |||
588 | }; | |||
589 | ||||
590 | template<typename ValueType> | |||
591 | struct PragmaStack { | |||
592 | struct Slot { | |||
593 | llvm::StringRef StackSlotLabel; | |||
594 | ValueType Value; | |||
595 | SourceLocation PragmaLocation; | |||
596 | SourceLocation PragmaPushLocation; | |||
597 | Slot(llvm::StringRef StackSlotLabel, ValueType Value, | |||
598 | SourceLocation PragmaLocation, SourceLocation PragmaPushLocation) | |||
599 | : StackSlotLabel(StackSlotLabel), Value(Value), | |||
600 | PragmaLocation(PragmaLocation), | |||
601 | PragmaPushLocation(PragmaPushLocation) {} | |||
602 | }; | |||
603 | ||||
604 | void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action, | |||
605 | llvm::StringRef StackSlotLabel, ValueType Value) { | |||
606 | if (Action == PSK_Reset) { | |||
607 | CurrentValue = DefaultValue; | |||
608 | CurrentPragmaLocation = PragmaLocation; | |||
609 | return; | |||
610 | } | |||
611 | if (Action & PSK_Push) | |||
612 | Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation, | |||
613 | PragmaLocation); | |||
614 | else if (Action & PSK_Pop) { | |||
615 | if (!StackSlotLabel.empty()) { | |||
616 | // If we've got a label, try to find it and jump there. | |||
617 | auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) { | |||
618 | return x.StackSlotLabel == StackSlotLabel; | |||
619 | }); | |||
620 | // If we found the label so pop from there. | |||
621 | if (I != Stack.rend()) { | |||
622 | CurrentValue = I->Value; | |||
623 | CurrentPragmaLocation = I->PragmaLocation; | |||
624 | Stack.erase(std::prev(I.base()), Stack.end()); | |||
625 | } | |||
626 | } else if (!Stack.empty()) { | |||
627 | // We do not have a label, just pop the last entry. | |||
628 | CurrentValue = Stack.back().Value; | |||
629 | CurrentPragmaLocation = Stack.back().PragmaLocation; | |||
630 | Stack.pop_back(); | |||
631 | } | |||
632 | } | |||
633 | if (Action & PSK_Set) { | |||
634 | CurrentValue = Value; | |||
635 | CurrentPragmaLocation = PragmaLocation; | |||
636 | } | |||
637 | } | |||
638 | ||||
639 | // MSVC seems to add artificial slots to #pragma stacks on entering a C++ | |||
640 | // method body to restore the stacks on exit, so it works like this: | |||
641 | // | |||
642 | // struct S { | |||
643 | // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>) | |||
644 | // void Method {} | |||
645 | // #pragma <name>(pop, InternalPragmaSlot) | |||
646 | // }; | |||
647 | // | |||
648 | // It works even with #pragma vtordisp, although MSVC doesn't support | |||
649 | // #pragma vtordisp(push [, id], n) | |||
650 | // syntax. | |||
651 | // | |||
652 | // Push / pop a named sentinel slot. | |||
653 | void SentinelAction(PragmaMsStackAction Action, StringRef Label) { | |||
654 | assert((Action == PSK_Push || Action == PSK_Pop) &&((void)0) | |||
655 | "Can only push / pop #pragma stack sentinels!")((void)0); | |||
656 | Act(CurrentPragmaLocation, Action, Label, CurrentValue); | |||
657 | } | |||
658 | ||||
659 | // Constructors. | |||
660 | explicit PragmaStack(const ValueType &Default) | |||
661 | : DefaultValue(Default), CurrentValue(Default) {} | |||
662 | ||||
663 | bool hasValue() const { return CurrentValue != DefaultValue; } | |||
664 | ||||
665 | SmallVector<Slot, 2> Stack; | |||
666 | ValueType DefaultValue; // Value used for PSK_Reset action. | |||
667 | ValueType CurrentValue; | |||
668 | SourceLocation CurrentPragmaLocation; | |||
669 | }; | |||
670 | // FIXME: We should serialize / deserialize these if they occur in a PCH (but | |||
671 | // we shouldn't do so if they're in a module). | |||
672 | ||||
673 | /// Whether to insert vtordisps prior to virtual bases in the Microsoft | |||
674 | /// C++ ABI. Possible values are 0, 1, and 2, which mean: | |||
675 | /// | |||
676 | /// 0: Suppress all vtordisps | |||
677 | /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial | |||
678 | /// structors | |||
679 | /// 2: Always insert vtordisps to support RTTI on partially constructed | |||
680 | /// objects | |||
681 | PragmaStack<MSVtorDispMode> VtorDispStack; | |||
682 | PragmaStack<AlignPackInfo> AlignPackStack; | |||
683 | // The current #pragma align/pack values and locations at each #include. | |||
684 | struct AlignPackIncludeState { | |||
685 | AlignPackInfo CurrentValue; | |||
686 | SourceLocation CurrentPragmaLocation; | |||
687 | bool HasNonDefaultValue, ShouldWarnOnInclude; | |||
688 | }; | |||
689 | SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack; | |||
690 | // Segment #pragmas. | |||
691 | PragmaStack<StringLiteral *> DataSegStack; | |||
692 | PragmaStack<StringLiteral *> BSSSegStack; | |||
693 | PragmaStack<StringLiteral *> ConstSegStack; | |||
694 | PragmaStack<StringLiteral *> CodeSegStack; | |||
695 | ||||
696 | // This stack tracks the current state of Sema.CurFPFeatures. | |||
697 | PragmaStack<FPOptionsOverride> FpPragmaStack; | |||
698 | FPOptionsOverride CurFPFeatureOverrides() { | |||
699 | FPOptionsOverride result; | |||
700 | if (!FpPragmaStack.hasValue()) { | |||
701 | result = FPOptionsOverride(); | |||
702 | } else { | |||
703 | result = FpPragmaStack.CurrentValue; | |||
704 | } | |||
705 | return result; | |||
706 | } | |||
707 | ||||
708 | // RAII object to push / pop sentinel slots for all MS #pragma stacks. | |||
709 | // Actions should be performed only if we enter / exit a C++ method body. | |||
710 | class PragmaStackSentinelRAII { | |||
711 | public: | |||
712 | PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct); | |||
713 | ~PragmaStackSentinelRAII(); | |||
714 | ||||
715 | private: | |||
716 | Sema &S; | |||
717 | StringRef SlotLabel; | |||
718 | bool ShouldAct; | |||
719 | }; | |||
720 | ||||
721 | /// A mapping that describes the nullability we've seen in each header file. | |||
722 | FileNullabilityMap NullabilityMap; | |||
723 | ||||
724 | /// Last section used with #pragma init_seg. | |||
725 | StringLiteral *CurInitSeg; | |||
726 | SourceLocation CurInitSegLoc; | |||
727 | ||||
728 | /// VisContext - Manages the stack for \#pragma GCC visibility. | |||
729 | void *VisContext; // Really a "PragmaVisStack*" | |||
730 | ||||
731 | /// This an attribute introduced by \#pragma clang attribute. | |||
732 | struct PragmaAttributeEntry { | |||
733 | SourceLocation Loc; | |||
734 | ParsedAttr *Attribute; | |||
735 | SmallVector<attr::SubjectMatchRule, 4> MatchRules; | |||
736 | bool IsUsed; | |||
737 | }; | |||
738 | ||||
739 | /// A push'd group of PragmaAttributeEntries. | |||
740 | struct PragmaAttributeGroup { | |||
741 | /// The location of the push attribute. | |||
742 | SourceLocation Loc; | |||
743 | /// The namespace of this push group. | |||
744 | const IdentifierInfo *Namespace; | |||
745 | SmallVector<PragmaAttributeEntry, 2> Entries; | |||
746 | }; | |||
747 | ||||
748 | SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack; | |||
749 | ||||
750 | /// The declaration that is currently receiving an attribute from the | |||
751 | /// #pragma attribute stack. | |||
752 | const Decl *PragmaAttributeCurrentTargetDecl; | |||
753 | ||||
754 | /// This represents the last location of a "#pragma clang optimize off" | |||
755 | /// directive if such a directive has not been closed by an "on" yet. If | |||
756 | /// optimizations are currently "on", this is set to an invalid location. | |||
757 | SourceLocation OptimizeOffPragmaLocation; | |||
758 | ||||
759 | /// Flag indicating if Sema is building a recovery call expression. | |||
760 | /// | |||
761 | /// This flag is used to avoid building recovery call expressions | |||
762 | /// if Sema is already doing so, which would cause infinite recursions. | |||
763 | bool IsBuildingRecoveryCallExpr; | |||
764 | ||||
765 | /// Used to control the generation of ExprWithCleanups. | |||
766 | CleanupInfo Cleanup; | |||
767 | ||||
768 | /// ExprCleanupObjects - This is the stack of objects requiring | |||
769 | /// cleanup that are created by the current full expression. | |||
770 | SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects; | |||
771 | ||||
772 | /// Store a set of either DeclRefExprs or MemberExprs that contain a reference | |||
773 | /// to a variable (constant) that may or may not be odr-used in this Expr, and | |||
774 | /// we won't know until all lvalue-to-rvalue and discarded value conversions | |||
775 | /// have been applied to all subexpressions of the enclosing full expression. | |||
776 | /// This is cleared at the end of each full expression. | |||
777 | using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>, | |||
778 | llvm::SmallPtrSet<Expr *, 4>>; | |||
779 | MaybeODRUseExprSet MaybeODRUseExprs; | |||
780 | ||||
781 | std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope; | |||
782 | ||||
783 | /// Stack containing information about each of the nested | |||
784 | /// function, block, and method scopes that are currently active. | |||
785 | SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes; | |||
786 | ||||
787 | /// The index of the first FunctionScope that corresponds to the current | |||
788 | /// context. | |||
789 | unsigned FunctionScopesStart = 0; | |||
790 | ||||
791 | ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const { | |||
792 | return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart, | |||
793 | FunctionScopes.end()); | |||
794 | } | |||
795 | ||||
796 | /// Stack containing information needed when in C++2a an 'auto' is encountered | |||
797 | /// in a function declaration parameter type specifier in order to invent a | |||
798 | /// corresponding template parameter in the enclosing abbreviated function | |||
799 | /// template. This information is also present in LambdaScopeInfo, stored in | |||
800 | /// the FunctionScopes stack. | |||
801 | SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos; | |||
802 | ||||
803 | /// The index of the first InventedParameterInfo that refers to the current | |||
804 | /// context. | |||
805 | unsigned InventedParameterInfosStart = 0; | |||
806 | ||||
807 | ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const { | |||
808 | return llvm::makeArrayRef(InventedParameterInfos.begin() + | |||
809 | InventedParameterInfosStart, | |||
810 | InventedParameterInfos.end()); | |||
811 | } | |||
812 | ||||
813 | typedef LazyVector<TypedefNameDecl *, ExternalSemaSource, | |||
814 | &ExternalSemaSource::ReadExtVectorDecls, 2, 2> | |||
815 | ExtVectorDeclsType; | |||
816 | ||||
817 | /// ExtVectorDecls - This is a list all the extended vector types. This allows | |||
818 | /// us to associate a raw vector type with one of the ext_vector type names. | |||
819 | /// This is only necessary for issuing pretty diagnostics. | |||
820 | ExtVectorDeclsType ExtVectorDecls; | |||
821 | ||||
822 | /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. | |||
823 | std::unique_ptr<CXXFieldCollector> FieldCollector; | |||
824 | ||||
825 | typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType; | |||
826 | ||||
827 | /// Set containing all declared private fields that are not used. | |||
828 | NamedDeclSetType UnusedPrivateFields; | |||
829 | ||||
830 | /// Set containing all typedefs that are likely unused. | |||
831 | llvm::SmallSetVector<const TypedefNameDecl *, 4> | |||
832 | UnusedLocalTypedefNameCandidates; | |||
833 | ||||
834 | /// Delete-expressions to be analyzed at the end of translation unit | |||
835 | /// | |||
836 | /// This list contains class members, and locations of delete-expressions | |||
837 | /// that could not be proven as to whether they mismatch with new-expression | |||
838 | /// used in initializer of the field. | |||
839 | typedef std::pair<SourceLocation, bool> DeleteExprLoc; | |||
840 | typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs; | |||
841 | llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs; | |||
842 | ||||
843 | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy; | |||
844 | ||||
845 | /// PureVirtualClassDiagSet - a set of class declarations which we have | |||
846 | /// emitted a list of pure virtual functions. Used to prevent emitting the | |||
847 | /// same list more than once. | |||
848 | std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet; | |||
849 | ||||
850 | /// ParsingInitForAutoVars - a set of declarations with auto types for which | |||
851 | /// we are currently parsing the initializer. | |||
852 | llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars; | |||
853 | ||||
854 | /// Look for a locally scoped extern "C" declaration by the given name. | |||
855 | NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name); | |||
856 | ||||
857 | typedef LazyVector<VarDecl *, ExternalSemaSource, | |||
858 | &ExternalSemaSource::ReadTentativeDefinitions, 2, 2> | |||
859 | TentativeDefinitionsType; | |||
860 | ||||
861 | /// All the tentative definitions encountered in the TU. | |||
862 | TentativeDefinitionsType TentativeDefinitions; | |||
863 | ||||
864 | /// All the external declarations encoutered and used in the TU. | |||
865 | SmallVector<VarDecl *, 4> ExternalDeclarations; | |||
866 | ||||
867 | typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource, | |||
868 | &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2> | |||
869 | UnusedFileScopedDeclsType; | |||
870 | ||||
871 | /// The set of file scoped decls seen so far that have not been used | |||
872 | /// and must warn if not used. Only contains the first declaration. | |||
873 | UnusedFileScopedDeclsType UnusedFileScopedDecls; | |||
874 | ||||
875 | typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource, | |||
876 | &ExternalSemaSource::ReadDelegatingConstructors, 2, 2> | |||
877 | DelegatingCtorDeclsType; | |||
878 | ||||
879 | /// All the delegating constructors seen so far in the file, used for | |||
880 | /// cycle detection at the end of the TU. | |||
881 | DelegatingCtorDeclsType DelegatingCtorDecls; | |||
882 | ||||
883 | /// All the overriding functions seen during a class definition | |||
884 | /// that had their exception spec checks delayed, plus the overridden | |||
885 | /// function. | |||
886 | SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2> | |||
887 | DelayedOverridingExceptionSpecChecks; | |||
888 | ||||
889 | /// All the function redeclarations seen during a class definition that had | |||
890 | /// their exception spec checks delayed, plus the prior declaration they | |||
891 | /// should be checked against. Except during error recovery, the new decl | |||
892 | /// should always be a friend declaration, as that's the only valid way to | |||
893 | /// redeclare a special member before its class is complete. | |||
894 | SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2> | |||
895 | DelayedEquivalentExceptionSpecChecks; | |||
896 | ||||
897 | typedef llvm::MapVector<const FunctionDecl *, | |||
898 | std::unique_ptr<LateParsedTemplate>> | |||
899 | LateParsedTemplateMapT; | |||
900 | LateParsedTemplateMapT LateParsedTemplateMap; | |||
901 | ||||
902 | /// Callback to the parser to parse templated functions when needed. | |||
903 | typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT); | |||
904 | typedef void LateTemplateParserCleanupCB(void *P); | |||
905 | LateTemplateParserCB *LateTemplateParser; | |||
906 | LateTemplateParserCleanupCB *LateTemplateParserCleanup; | |||
907 | void *OpaqueParser; | |||
908 | ||||
909 | void SetLateTemplateParser(LateTemplateParserCB *LTP, | |||
910 | LateTemplateParserCleanupCB *LTPCleanup, | |||
911 | void *P) { | |||
912 | LateTemplateParser = LTP; | |||
913 | LateTemplateParserCleanup = LTPCleanup; | |||
914 | OpaqueParser = P; | |||
915 | } | |||
916 | ||||
917 | // Does the work necessary to deal with a SYCL kernel lambda. At the moment, | |||
918 | // this just marks the list of lambdas required to name the kernel. | |||
919 | void AddSYCLKernelLambda(const FunctionDecl *FD); | |||
920 | ||||
921 | class DelayedDiagnostics; | |||
922 | ||||
923 | class DelayedDiagnosticsState { | |||
924 | sema::DelayedDiagnosticPool *SavedPool; | |||
925 | friend class Sema::DelayedDiagnostics; | |||
926 | }; | |||
927 | typedef DelayedDiagnosticsState ParsingDeclState; | |||
928 | typedef DelayedDiagnosticsState ProcessingContextState; | |||
929 | ||||
930 | /// A class which encapsulates the logic for delaying diagnostics | |||
931 | /// during parsing and other processing. | |||
932 | class DelayedDiagnostics { | |||
933 | /// The current pool of diagnostics into which delayed | |||
934 | /// diagnostics should go. | |||
935 | sema::DelayedDiagnosticPool *CurPool; | |||
936 | ||||
937 | public: | |||
938 | DelayedDiagnostics() : CurPool(nullptr) {} | |||
939 | ||||
940 | /// Adds a delayed diagnostic. | |||
941 | void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h | |||
942 | ||||
943 | /// Determines whether diagnostics should be delayed. | |||
944 | bool shouldDelayDiagnostics() { return CurPool != nullptr; } | |||
945 | ||||
946 | /// Returns the current delayed-diagnostics pool. | |||
947 | sema::DelayedDiagnosticPool *getCurrentPool() const { | |||
948 | return CurPool; | |||
949 | } | |||
950 | ||||
951 | /// Enter a new scope. Access and deprecation diagnostics will be | |||
952 | /// collected in this pool. | |||
953 | DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) { | |||
954 | DelayedDiagnosticsState state; | |||
955 | state.SavedPool = CurPool; | |||
956 | CurPool = &pool; | |||
957 | return state; | |||
958 | } | |||
959 | ||||
960 | /// Leave a delayed-diagnostic state that was previously pushed. | |||
961 | /// Do not emit any of the diagnostics. This is performed as part | |||
962 | /// of the bookkeeping of popping a pool "properly". | |||
963 | void popWithoutEmitting(DelayedDiagnosticsState state) { | |||
964 | CurPool = state.SavedPool; | |||
965 | } | |||
966 | ||||
967 | /// Enter a new scope where access and deprecation diagnostics are | |||
968 | /// not delayed. | |||
969 | DelayedDiagnosticsState pushUndelayed() { | |||
970 | DelayedDiagnosticsState state; | |||
971 | state.SavedPool = CurPool; | |||
972 | CurPool = nullptr; | |||
973 | return state; | |||
974 | } | |||
975 | ||||
976 | /// Undo a previous pushUndelayed(). | |||
977 | void popUndelayed(DelayedDiagnosticsState state) { | |||
978 | assert(CurPool == nullptr)((void)0); | |||
979 | CurPool = state.SavedPool; | |||
980 | } | |||
981 | } DelayedDiagnostics; | |||
982 | ||||
983 | /// A RAII object to temporarily push a declaration context. | |||
984 | class ContextRAII { | |||
985 | private: | |||
986 | Sema &S; | |||
987 | DeclContext *SavedContext; | |||
988 | ProcessingContextState SavedContextState; | |||
989 | QualType SavedCXXThisTypeOverride; | |||
990 | unsigned SavedFunctionScopesStart; | |||
991 | unsigned SavedInventedParameterInfosStart; | |||
992 | ||||
993 | public: | |||
994 | ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true) | |||
995 | : S(S), SavedContext(S.CurContext), | |||
996 | SavedContextState(S.DelayedDiagnostics.pushUndelayed()), | |||
997 | SavedCXXThisTypeOverride(S.CXXThisTypeOverride), | |||
998 | SavedFunctionScopesStart(S.FunctionScopesStart), | |||
999 | SavedInventedParameterInfosStart(S.InventedParameterInfosStart) | |||
1000 | { | |||
1001 | assert(ContextToPush && "pushing null context")((void)0); | |||
1002 | S.CurContext = ContextToPush; | |||
1003 | if (NewThisContext) | |||
1004 | S.CXXThisTypeOverride = QualType(); | |||
1005 | // Any saved FunctionScopes do not refer to this context. | |||
1006 | S.FunctionScopesStart = S.FunctionScopes.size(); | |||
1007 | S.InventedParameterInfosStart = S.InventedParameterInfos.size(); | |||
1008 | } | |||
1009 | ||||
1010 | void pop() { | |||
1011 | if (!SavedContext) return; | |||
1012 | S.CurContext = SavedContext; | |||
1013 | S.DelayedDiagnostics.popUndelayed(SavedContextState); | |||
1014 | S.CXXThisTypeOverride = SavedCXXThisTypeOverride; | |||
1015 | S.FunctionScopesStart = SavedFunctionScopesStart; | |||
1016 | S.InventedParameterInfosStart = SavedInventedParameterInfosStart; | |||
1017 | SavedContext = nullptr; | |||
1018 | } | |||
1019 | ||||
1020 | ~ContextRAII() { | |||
1021 | pop(); | |||
1022 | } | |||
1023 | }; | |||
1024 | ||||
1025 | /// Whether the AST is currently being rebuilt to correct immediate | |||
1026 | /// invocations. Immediate invocation candidates and references to consteval | |||
1027 | /// functions aren't tracked when this is set. | |||
1028 | bool RebuildingImmediateInvocation = false; | |||
1029 | ||||
1030 | /// Used to change context to isConstantEvaluated without pushing a heavy | |||
1031 | /// ExpressionEvaluationContextRecord object. | |||
1032 | bool isConstantEvaluatedOverride; | |||
1033 | ||||
1034 | bool isConstantEvaluated() { | |||
1035 | return ExprEvalContexts.back().isConstantEvaluated() || | |||
1036 | isConstantEvaluatedOverride; | |||
1037 | } | |||
1038 | ||||
1039 | /// RAII object to handle the state changes required to synthesize | |||
1040 | /// a function body. | |||
1041 | class SynthesizedFunctionScope { | |||
1042 | Sema &S; | |||
1043 | Sema::ContextRAII SavedContext; | |||
1044 | bool PushedCodeSynthesisContext = false; | |||
1045 | ||||
1046 | public: | |||
1047 | SynthesizedFunctionScope(Sema &S, DeclContext *DC) | |||
1048 | : S(S), SavedContext(S, DC) { | |||
1049 | S.PushFunctionScope(); | |||
1050 | S.PushExpressionEvaluationContext( | |||
1051 | Sema::ExpressionEvaluationContext::PotentiallyEvaluated); | |||
1052 | if (auto *FD = dyn_cast<FunctionDecl>(DC)) | |||
1053 | FD->setWillHaveBody(true); | |||
1054 | else | |||
1055 | assert(isa<ObjCMethodDecl>(DC))((void)0); | |||
1056 | } | |||
1057 | ||||
1058 | void addContextNote(SourceLocation UseLoc) { | |||
1059 | assert(!PushedCodeSynthesisContext)((void)0); | |||
1060 | ||||
1061 | Sema::CodeSynthesisContext Ctx; | |||
1062 | Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction; | |||
1063 | Ctx.PointOfInstantiation = UseLoc; | |||
1064 | Ctx.Entity = cast<Decl>(S.CurContext); | |||
1065 | S.pushCodeSynthesisContext(Ctx); | |||
1066 | ||||
1067 | PushedCodeSynthesisContext = true; | |||
1068 | } | |||
1069 | ||||
1070 | ~SynthesizedFunctionScope() { | |||
1071 | if (PushedCodeSynthesisContext) | |||
1072 | S.popCodeSynthesisContext(); | |||
1073 | if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext)) | |||
1074 | FD->setWillHaveBody(false); | |||
1075 | S.PopExpressionEvaluationContext(); | |||
1076 | S.PopFunctionScopeInfo(); | |||
1077 | } | |||
1078 | }; | |||
1079 | ||||
1080 | /// WeakUndeclaredIdentifiers - Identifiers contained in | |||
1081 | /// \#pragma weak before declared. rare. may alias another | |||
1082 | /// identifier, declared or undeclared | |||
1083 | llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers; | |||
1084 | ||||
1085 | /// ExtnameUndeclaredIdentifiers - Identifiers contained in | |||
1086 | /// \#pragma redefine_extname before declared. Used in Solaris system headers | |||
1087 | /// to define functions that occur in multiple standards to call the version | |||
1088 | /// in the currently selected standard. | |||
1089 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers; | |||
1090 | ||||
1091 | ||||
1092 | /// Load weak undeclared identifiers from the external source. | |||
1093 | void LoadExternalWeakUndeclaredIdentifiers(); | |||
1094 | ||||
1095 | /// WeakTopLevelDecl - Translation-unit scoped declarations generated by | |||
1096 | /// \#pragma weak during processing of other Decls. | |||
1097 | /// I couldn't figure out a clean way to generate these in-line, so | |||
1098 | /// we store them here and handle separately -- which is a hack. | |||
1099 | /// It would be best to refactor this. | |||
1100 | SmallVector<Decl*,2> WeakTopLevelDecl; | |||
1101 | ||||
1102 | IdentifierResolver IdResolver; | |||
1103 | ||||
1104 | /// Translation Unit Scope - useful to Objective-C actions that need | |||
1105 | /// to lookup file scope declarations in the "ordinary" C decl namespace. | |||
1106 | /// For example, user-defined classes, built-in "id" type, etc. | |||
1107 | Scope *TUScope; | |||
1108 | ||||
1109 | /// The C++ "std" namespace, where the standard library resides. | |||
1110 | LazyDeclPtr StdNamespace; | |||
1111 | ||||
1112 | /// The C++ "std::bad_alloc" class, which is defined by the C++ | |||
1113 | /// standard library. | |||
1114 | LazyDeclPtr StdBadAlloc; | |||
1115 | ||||
1116 | /// The C++ "std::align_val_t" enum class, which is defined by the C++ | |||
1117 | /// standard library. | |||
1118 | LazyDeclPtr StdAlignValT; | |||
1119 | ||||
1120 | /// The C++ "std::experimental" namespace, where the experimental parts | |||
1121 | /// of the standard library resides. | |||
1122 | NamespaceDecl *StdExperimentalNamespaceCache; | |||
1123 | ||||
1124 | /// The C++ "std::initializer_list" template, which is defined in | |||
1125 | /// \<initializer_list>. | |||
1126 | ClassTemplateDecl *StdInitializerList; | |||
1127 | ||||
1128 | /// The C++ "std::coroutine_traits" template, which is defined in | |||
1129 | /// \<coroutine_traits> | |||
1130 | ClassTemplateDecl *StdCoroutineTraitsCache; | |||
1131 | ||||
1132 | /// The C++ "type_info" declaration, which is defined in \<typeinfo>. | |||
1133 | RecordDecl *CXXTypeInfoDecl; | |||
1134 | ||||
1135 | /// The MSVC "_GUID" struct, which is defined in MSVC header files. | |||
1136 | RecordDecl *MSVCGuidDecl; | |||
1137 | ||||
1138 | /// Caches identifiers/selectors for NSFoundation APIs. | |||
1139 | std::unique_ptr<NSAPI> NSAPIObj; | |||
1140 | ||||
1141 | /// The declaration of the Objective-C NSNumber class. | |||
1142 | ObjCInterfaceDecl *NSNumberDecl; | |||
1143 | ||||
1144 | /// The declaration of the Objective-C NSValue class. | |||
1145 | ObjCInterfaceDecl *NSValueDecl; | |||
1146 | ||||
1147 | /// Pointer to NSNumber type (NSNumber *). | |||
1148 | QualType NSNumberPointer; | |||
1149 | ||||
1150 | /// Pointer to NSValue type (NSValue *). | |||
1151 | QualType NSValuePointer; | |||
1152 | ||||
1153 | /// The Objective-C NSNumber methods used to create NSNumber literals. | |||
1154 | ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods]; | |||
1155 | ||||
1156 | /// The declaration of the Objective-C NSString class. | |||
1157 | ObjCInterfaceDecl *NSStringDecl; | |||
1158 | ||||
1159 | /// Pointer to NSString type (NSString *). | |||
1160 | QualType NSStringPointer; | |||
1161 | ||||
1162 | /// The declaration of the stringWithUTF8String: method. | |||
1163 | ObjCMethodDecl *StringWithUTF8StringMethod; | |||
1164 | ||||
1165 | /// The declaration of the valueWithBytes:objCType: method. | |||
1166 | ObjCMethodDecl *ValueWithBytesObjCTypeMethod; | |||
1167 | ||||
1168 | /// The declaration of the Objective-C NSArray class. | |||
1169 | ObjCInterfaceDecl *NSArrayDecl; | |||
1170 | ||||
1171 | /// The declaration of the arrayWithObjects:count: method. | |||
1172 | ObjCMethodDecl *ArrayWithObjectsMethod; | |||
1173 | ||||
1174 | /// The declaration of the Objective-C NSDictionary class. | |||
1175 | ObjCInterfaceDecl *NSDictionaryDecl; | |||
1176 | ||||
1177 | /// The declaration of the dictionaryWithObjects:forKeys:count: method. | |||
1178 | ObjCMethodDecl *DictionaryWithObjectsMethod; | |||
1179 | ||||
1180 | /// id<NSCopying> type. | |||
1181 | QualType QIDNSCopying; | |||
1182 | ||||
1183 | /// will hold 'respondsToSelector:' | |||
1184 | Selector RespondsToSelectorSel; | |||
1185 | ||||
1186 | /// A flag to remember whether the implicit forms of operator new and delete | |||
1187 | /// have been declared. | |||
1188 | bool GlobalNewDeleteDeclared; | |||
1189 | ||||
1190 | /// Describes how the expressions currently being parsed are | |||
1191 | /// evaluated at run-time, if at all. | |||
1192 | enum class ExpressionEvaluationContext { | |||
1193 | /// The current expression and its subexpressions occur within an | |||
1194 | /// unevaluated operand (C++11 [expr]p7), such as the subexpression of | |||
1195 | /// \c sizeof, where the type of the expression may be significant but | |||
1196 | /// no code will be generated to evaluate the value of the expression at | |||
1197 | /// run time. | |||
1198 | Unevaluated, | |||
1199 | ||||
1200 | /// The current expression occurs within a braced-init-list within | |||
1201 | /// an unevaluated operand. This is mostly like a regular unevaluated | |||
1202 | /// context, except that we still instantiate constexpr functions that are | |||
1203 | /// referenced here so that we can perform narrowing checks correctly. | |||
1204 | UnevaluatedList, | |||
1205 | ||||
1206 | /// The current expression occurs within a discarded statement. | |||
1207 | /// This behaves largely similarly to an unevaluated operand in preventing | |||
1208 | /// definitions from being required, but not in other ways. | |||
1209 | DiscardedStatement, | |||
1210 | ||||
1211 | /// The current expression occurs within an unevaluated | |||
1212 | /// operand that unconditionally permits abstract references to | |||
1213 | /// fields, such as a SIZE operator in MS-style inline assembly. | |||
1214 | UnevaluatedAbstract, | |||
1215 | ||||
1216 | /// The current context is "potentially evaluated" in C++11 terms, | |||
1217 | /// but the expression is evaluated at compile-time (like the values of | |||
1218 | /// cases in a switch statement). | |||
1219 | ConstantEvaluated, | |||
1220 | ||||
1221 | /// The current expression is potentially evaluated at run time, | |||
1222 | /// which means that code may be generated to evaluate the value of the | |||
1223 | /// expression at run time. | |||
1224 | PotentiallyEvaluated, | |||
1225 | ||||
1226 | /// The current expression is potentially evaluated, but any | |||
1227 | /// declarations referenced inside that expression are only used if | |||
1228 | /// in fact the current expression is used. | |||
1229 | /// | |||
1230 | /// This value is used when parsing default function arguments, for which | |||
1231 | /// we would like to provide diagnostics (e.g., passing non-POD arguments | |||
1232 | /// through varargs) but do not want to mark declarations as "referenced" | |||
1233 | /// until the default argument is used. | |||
1234 | PotentiallyEvaluatedIfUsed | |||
1235 | }; | |||
1236 | ||||
1237 | using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>; | |||
1238 | ||||
1239 | /// Data structure used to record current or nested | |||
1240 | /// expression evaluation contexts. | |||
1241 | struct ExpressionEvaluationContextRecord { | |||
1242 | /// The expression evaluation context. | |||
1243 | ExpressionEvaluationContext Context; | |||
1244 | ||||
1245 | /// Whether the enclosing context needed a cleanup. | |||
1246 | CleanupInfo ParentCleanup; | |||
1247 | ||||
1248 | /// The number of active cleanup objects when we entered | |||
1249 | /// this expression evaluation context. | |||
1250 | unsigned NumCleanupObjects; | |||
1251 | ||||
1252 | /// The number of typos encountered during this expression evaluation | |||
1253 | /// context (i.e. the number of TypoExprs created). | |||
1254 | unsigned NumTypos; | |||
1255 | ||||
1256 | MaybeODRUseExprSet SavedMaybeODRUseExprs; | |||
1257 | ||||
1258 | /// The lambdas that are present within this context, if it | |||
1259 | /// is indeed an unevaluated context. | |||
1260 | SmallVector<LambdaExpr *, 2> Lambdas; | |||
1261 | ||||
1262 | /// The declaration that provides context for lambda expressions | |||
1263 | /// and block literals if the normal declaration context does not | |||
1264 | /// suffice, e.g., in a default function argument. | |||
1265 | Decl *ManglingContextDecl; | |||
1266 | ||||
1267 | /// If we are processing a decltype type, a set of call expressions | |||
1268 | /// for which we have deferred checking the completeness of the return type. | |||
1269 | SmallVector<CallExpr *, 8> DelayedDecltypeCalls; | |||
1270 | ||||
1271 | /// If we are processing a decltype type, a set of temporary binding | |||
1272 | /// expressions for which we have deferred checking the destructor. | |||
1273 | SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds; | |||
1274 | ||||
1275 | llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs; | |||
1276 | ||||
1277 | /// Expressions appearing as the LHS of a volatile assignment in this | |||
1278 | /// context. We produce a warning for these when popping the context if | |||
1279 | /// they are not discarded-value expressions nor unevaluated operands. | |||
1280 | SmallVector<Expr*, 2> VolatileAssignmentLHSs; | |||
1281 | ||||
1282 | /// Set of candidates for starting an immediate invocation. | |||
1283 | llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates; | |||
1284 | ||||
1285 | /// Set of DeclRefExprs referencing a consteval function when used in a | |||
1286 | /// context not already known to be immediately invoked. | |||
1287 | llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval; | |||
1288 | ||||
1289 | /// \brief Describes whether we are in an expression constext which we have | |||
1290 | /// to handle differently. | |||
1291 | enum ExpressionKind { | |||
1292 | EK_Decltype, EK_TemplateArgument, EK_Other | |||
1293 | } ExprContext; | |||
1294 | ||||
1295 | ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context, | |||
1296 | unsigned NumCleanupObjects, | |||
1297 | CleanupInfo ParentCleanup, | |||
1298 | Decl *ManglingContextDecl, | |||
1299 | ExpressionKind ExprContext) | |||
1300 | : Context(Context), ParentCleanup(ParentCleanup), | |||
1301 | NumCleanupObjects(NumCleanupObjects), NumTypos(0), | |||
1302 | ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {} | |||
1303 | ||||
1304 | bool isUnevaluated() const { | |||
1305 | return Context == ExpressionEvaluationContext::Unevaluated || | |||
1306 | Context == ExpressionEvaluationContext::UnevaluatedAbstract || | |||
1307 | Context == ExpressionEvaluationContext::UnevaluatedList; | |||
1308 | } | |||
1309 | bool isConstantEvaluated() const { | |||
1310 | return Context == ExpressionEvaluationContext::ConstantEvaluated; | |||
1311 | } | |||
1312 | }; | |||
1313 | ||||
1314 | /// A stack of expression evaluation contexts. | |||
1315 | SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts; | |||
1316 | ||||
1317 | /// Emit a warning for all pending noderef expressions that we recorded. | |||
1318 | void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec); | |||
1319 | ||||
1320 | /// Compute the mangling number context for a lambda expression or | |||
1321 | /// block literal. Also return the extra mangling decl if any. | |||
1322 | /// | |||
1323 | /// \param DC - The DeclContext containing the lambda expression or | |||
1324 | /// block literal. | |||
1325 | std::tuple<MangleNumberingContext *, Decl *> | |||
1326 | getCurrentMangleNumberContext(const DeclContext *DC); | |||
1327 | ||||
1328 | ||||
1329 | /// SpecialMemberOverloadResult - The overloading result for a special member | |||
1330 | /// function. | |||
1331 | /// | |||
1332 | /// This is basically a wrapper around PointerIntPair. The lowest bits of the | |||
1333 | /// integer are used to determine whether overload resolution succeeded. | |||
1334 | class SpecialMemberOverloadResult { | |||
1335 | public: | |||
1336 | enum Kind { | |||
1337 | NoMemberOrDeleted, | |||
1338 | Ambiguous, | |||
1339 | Success | |||
1340 | }; | |||
1341 | ||||
1342 | private: | |||
1343 | llvm::PointerIntPair<CXXMethodDecl*, 2> Pair; | |||
1344 | ||||
1345 | public: | |||
1346 | SpecialMemberOverloadResult() : Pair() {} | |||
1347 | SpecialMemberOverloadResult(CXXMethodDecl *MD) | |||
1348 | : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {} | |||
1349 | ||||
1350 | CXXMethodDecl *getMethod() const { return Pair.getPointer(); } | |||
1351 | void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); } | |||
1352 | ||||
1353 | Kind getKind() const { return static_cast<Kind>(Pair.getInt()); } | |||
1354 | void setKind(Kind K) { Pair.setInt(K); } | |||
1355 | }; | |||
1356 | ||||
1357 | class SpecialMemberOverloadResultEntry | |||
1358 | : public llvm::FastFoldingSetNode, | |||
1359 | public SpecialMemberOverloadResult { | |||
1360 | public: | |||
1361 | SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID) | |||
1362 | : FastFoldingSetNode(ID) | |||
1363 | {} | |||
1364 | }; | |||
1365 | ||||
1366 | /// A cache of special member function overload resolution results | |||
1367 | /// for C++ records. | |||
1368 | llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache; | |||
1369 | ||||
1370 | /// A cache of the flags available in enumerations with the flag_bits | |||
1371 | /// attribute. | |||
1372 | mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache; | |||
1373 | ||||
1374 | /// The kind of translation unit we are processing. | |||
1375 | /// | |||
1376 | /// When we're processing a complete translation unit, Sema will perform | |||
1377 | /// end-of-translation-unit semantic tasks (such as creating | |||
1378 | /// initializers for tentative definitions in C) once parsing has | |||
1379 | /// completed. Modules and precompiled headers perform different kinds of | |||
1380 | /// checks. | |||
1381 | const TranslationUnitKind TUKind; | |||
1382 | ||||
1383 | llvm::BumpPtrAllocator BumpAlloc; | |||
1384 | ||||
1385 | /// The number of SFINAE diagnostics that have been trapped. | |||
1386 | unsigned NumSFINAEErrors; | |||
1387 | ||||
1388 | typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>> | |||
1389 | UnparsedDefaultArgInstantiationsMap; | |||
1390 | ||||
1391 | /// A mapping from parameters with unparsed default arguments to the | |||
1392 | /// set of instantiations of each parameter. | |||
1393 | /// | |||
1394 | /// This mapping is a temporary data structure used when parsing | |||
1395 | /// nested class templates or nested classes of class templates, | |||
1396 | /// where we might end up instantiating an inner class before the | |||
1397 | /// default arguments of its methods have been parsed. | |||
1398 | UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations; | |||
1399 | ||||
1400 | // Contains the locations of the beginning of unparsed default | |||
1401 | // argument locations. | |||
1402 | llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs; | |||
1403 | ||||
1404 | /// UndefinedInternals - all the used, undefined objects which require a | |||
1405 | /// definition in this translation unit. | |||
1406 | llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed; | |||
1407 | ||||
1408 | /// Determine if VD, which must be a variable or function, is an external | |||
1409 | /// symbol that nonetheless can't be referenced from outside this translation | |||
1410 | /// unit because its type has no linkage and it's not extern "C". | |||
1411 | bool isExternalWithNoLinkageType(ValueDecl *VD); | |||
1412 | ||||
1413 | /// Obtain a sorted list of functions that are undefined but ODR-used. | |||
1414 | void getUndefinedButUsed( | |||
1415 | SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined); | |||
1416 | ||||
1417 | /// Retrieves list of suspicious delete-expressions that will be checked at | |||
1418 | /// the end of translation unit. | |||
1419 | const llvm::MapVector<FieldDecl *, DeleteLocs> & | |||
1420 | getMismatchingDeleteExpressions() const; | |||
1421 | ||||
1422 | typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods; | |||
1423 | typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool; | |||
1424 | ||||
1425 | /// Method Pool - allows efficient lookup when typechecking messages to "id". | |||
1426 | /// We need to maintain a list, since selectors can have differing signatures | |||
1427 | /// across classes. In Cocoa, this happens to be extremely uncommon (only 1% | |||
1428 | /// of selectors are "overloaded"). | |||
1429 | /// At the head of the list it is recorded whether there were 0, 1, or >= 2 | |||
1430 | /// methods inside categories with a particular selector. | |||
1431 | GlobalMethodPool MethodPool; | |||
1432 | ||||
1433 | /// Method selectors used in a \@selector expression. Used for implementation | |||
1434 | /// of -Wselector. | |||
1435 | llvm::MapVector<Selector, SourceLocation> ReferencedSelectors; | |||
1436 | ||||
1437 | /// List of SourceLocations where 'self' is implicitly retained inside a | |||
1438 | /// block. | |||
1439 | llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1> | |||
1440 | ImplicitlyRetainedSelfLocs; | |||
1441 | ||||
1442 | /// Kinds of C++ special members. | |||
1443 | enum CXXSpecialMember { | |||
1444 | CXXDefaultConstructor, | |||
1445 | CXXCopyConstructor, | |||
1446 | CXXMoveConstructor, | |||
1447 | CXXCopyAssignment, | |||
1448 | CXXMoveAssignment, | |||
1449 | CXXDestructor, | |||
1450 | CXXInvalid | |||
1451 | }; | |||
1452 | ||||
1453 | typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember> | |||
1454 | SpecialMemberDecl; | |||
1455 | ||||
1456 | /// The C++ special members which we are currently in the process of | |||
1457 | /// declaring. If this process recursively triggers the declaration of the | |||
1458 | /// same special member, we should act as if it is not yet declared. | |||
1459 | llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared; | |||
1460 | ||||
1461 | /// Kinds of defaulted comparison operator functions. | |||
1462 | enum class DefaultedComparisonKind : unsigned char { | |||
1463 | /// This is not a defaultable comparison operator. | |||
1464 | None, | |||
1465 | /// This is an operator== that should be implemented as a series of | |||
1466 | /// subobject comparisons. | |||
1467 | Equal, | |||
1468 | /// This is an operator<=> that should be implemented as a series of | |||
1469 | /// subobject comparisons. | |||
1470 | ThreeWay, | |||
1471 | /// This is an operator!= that should be implemented as a rewrite in terms | |||
1472 | /// of a == comparison. | |||
1473 | NotEqual, | |||
1474 | /// This is an <, <=, >, or >= that should be implemented as a rewrite in | |||
1475 | /// terms of a <=> comparison. | |||
1476 | Relational, | |||
1477 | }; | |||
1478 | ||||
1479 | /// The function definitions which were renamed as part of typo-correction | |||
1480 | /// to match their respective declarations. We want to keep track of them | |||
1481 | /// to ensure that we don't emit a "redefinition" error if we encounter a | |||
1482 | /// correctly named definition after the renamed definition. | |||
1483 | llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions; | |||
1484 | ||||
1485 | /// Stack of types that correspond to the parameter entities that are | |||
1486 | /// currently being copy-initialized. Can be empty. | |||
1487 | llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes; | |||
1488 | ||||
1489 | void ReadMethodPool(Selector Sel); | |||
1490 | void updateOutOfDateSelector(Selector Sel); | |||
1491 | ||||
1492 | /// Private Helper predicate to check for 'self'. | |||
1493 | bool isSelfExpr(Expr *RExpr); | |||
1494 | bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method); | |||
1495 | ||||
1496 | /// Cause the active diagnostic on the DiagosticsEngine to be | |||
1497 | /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and | |||
1498 | /// should not be used elsewhere. | |||
1499 | void EmitCurrentDiagnostic(unsigned DiagID); | |||
1500 | ||||
1501 | /// Records and restores the CurFPFeatures state on entry/exit of compound | |||
1502 | /// statements. | |||
1503 | class FPFeaturesStateRAII { | |||
1504 | public: | |||
1505 | FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures) { | |||
1506 | OldOverrides = S.FpPragmaStack.CurrentValue; | |||
1507 | } | |||
1508 | ~FPFeaturesStateRAII() { | |||
1509 | S.CurFPFeatures = OldFPFeaturesState; | |||
1510 | S.FpPragmaStack.CurrentValue = OldOverrides; | |||
1511 | } | |||
1512 | FPOptionsOverride getOverrides() { return OldOverrides; } | |||
1513 | ||||
1514 | private: | |||
1515 | Sema& S; | |||
1516 | FPOptions OldFPFeaturesState; | |||
1517 | FPOptionsOverride OldOverrides; | |||
1518 | }; | |||
1519 | ||||
1520 | void addImplicitTypedef(StringRef Name, QualType T); | |||
1521 | ||||
1522 | bool WarnedStackExhausted = false; | |||
1523 | ||||
1524 | /// Increment when we find a reference; decrement when we find an ignored | |||
1525 | /// assignment. Ultimately the value is 0 if every reference is an ignored | |||
1526 | /// assignment. | |||
1527 | llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments; | |||
1528 | ||||
1529 | Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo; | |||
1530 | ||||
1531 | public: | |||
1532 | Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, | |||
1533 | TranslationUnitKind TUKind = TU_Complete, | |||
1534 | CodeCompleteConsumer *CompletionConsumer = nullptr); | |||
1535 | ~Sema(); | |||
1536 | ||||
1537 | /// Perform initialization that occurs after the parser has been | |||
1538 | /// initialized but before it parses anything. | |||
1539 | void Initialize(); | |||
1540 | ||||
1541 | /// This virtual key function only exists to limit the emission of debug info | |||
1542 | /// describing the Sema class. GCC and Clang only emit debug info for a class | |||
1543 | /// with a vtable when the vtable is emitted. Sema is final and not | |||
1544 | /// polymorphic, but the debug info size savings are so significant that it is | |||
1545 | /// worth adding a vtable just to take advantage of this optimization. | |||
1546 | virtual void anchor(); | |||
1547 | ||||
1548 | const LangOptions &getLangOpts() const { return LangOpts; } | |||
1549 | OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; } | |||
1550 | FPOptions &getCurFPFeatures() { return CurFPFeatures; } | |||
1551 | ||||
1552 | DiagnosticsEngine &getDiagnostics() const { return Diags; } | |||
1553 | SourceManager &getSourceManager() const { return SourceMgr; } | |||
1554 | Preprocessor &getPreprocessor() const { return PP; } | |||
1555 | ASTContext &getASTContext() const { return Context; } | |||
1556 | ASTConsumer &getASTConsumer() const { return Consumer; } | |||
1557 | ASTMutationListener *getASTMutationListener() const; | |||
1558 | ExternalSemaSource* getExternalSource() const { return ExternalSource; } | |||
1559 | DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, | |||
1560 | StringRef Platform); | |||
1561 | ||||
1562 | ///Registers an external source. If an external source already exists, | |||
1563 | /// creates a multiplex external source and appends to it. | |||
1564 | /// | |||
1565 | ///\param[in] E - A non-null external sema source. | |||
1566 | /// | |||
1567 | void addExternalSource(ExternalSemaSource *E); | |||
1568 | ||||
1569 | void PrintStats() const; | |||
1570 | ||||
1571 | /// Warn that the stack is nearly exhausted. | |||
1572 | void warnStackExhausted(SourceLocation Loc); | |||
1573 | ||||
1574 | /// Run some code with "sufficient" stack space. (Currently, at least 256K is | |||
1575 | /// guaranteed). Produces a warning if we're low on stack space and allocates | |||
1576 | /// more in that case. Use this in code that may recurse deeply (for example, | |||
1577 | /// in template instantiation) to avoid stack overflow. | |||
1578 | void runWithSufficientStackSpace(SourceLocation Loc, | |||
1579 | llvm::function_ref<void()> Fn); | |||
1580 | ||||
1581 | /// Helper class that creates diagnostics with optional | |||
1582 | /// template instantiation stacks. | |||
1583 | /// | |||
1584 | /// This class provides a wrapper around the basic DiagnosticBuilder | |||
1585 | /// class that emits diagnostics. ImmediateDiagBuilder is | |||
1586 | /// responsible for emitting the diagnostic (as DiagnosticBuilder | |||
1587 | /// does) and, if the diagnostic comes from inside a template | |||
1588 | /// instantiation, printing the template instantiation stack as | |||
1589 | /// well. | |||
1590 | class ImmediateDiagBuilder : public DiagnosticBuilder { | |||
1591 | Sema &SemaRef; | |||
1592 | unsigned DiagID; | |||
1593 | ||||
1594 | public: | |||
1595 | ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) | |||
1596 | : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {} | |||
1597 | ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID) | |||
1598 | : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {} | |||
1599 | ||||
1600 | // This is a cunning lie. DiagnosticBuilder actually performs move | |||
1601 | // construction in its copy constructor (but due to varied uses, it's not | |||
1602 | // possible to conveniently express this as actual move construction). So | |||
1603 | // the default copy ctor here is fine, because the base class disables the | |||
1604 | // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op | |||
1605 | // in that case anwyay. | |||
1606 | ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default; | |||
1607 | ||||
1608 | ~ImmediateDiagBuilder() { | |||
1609 | // If we aren't active, there is nothing to do. | |||
1610 | if (!isActive()) return; | |||
1611 | ||||
1612 | // Otherwise, we need to emit the diagnostic. First clear the diagnostic | |||
1613 | // builder itself so it won't emit the diagnostic in its own destructor. | |||
1614 | // | |||
1615 | // This seems wasteful, in that as written the DiagnosticBuilder dtor will | |||
1616 | // do its own needless checks to see if the diagnostic needs to be | |||
1617 | // emitted. However, because we take care to ensure that the builder | |||
1618 | // objects never escape, a sufficiently smart compiler will be able to | |||
1619 | // eliminate that code. | |||
1620 | Clear(); | |||
1621 | ||||
1622 | // Dispatch to Sema to emit the diagnostic. | |||
1623 | SemaRef.EmitCurrentDiagnostic(DiagID); | |||
1624 | } | |||
1625 | ||||
1626 | /// Teach operator<< to produce an object of the correct type. | |||
1627 | template <typename T> | |||
1628 | friend const ImmediateDiagBuilder & | |||
1629 | operator<<(const ImmediateDiagBuilder &Diag, const T &Value) { | |||
1630 | const DiagnosticBuilder &BaseDiag = Diag; | |||
1631 | BaseDiag << Value; | |||
1632 | return Diag; | |||
1633 | } | |||
1634 | ||||
1635 | // It is necessary to limit this to rvalue reference to avoid calling this | |||
1636 | // function with a bitfield lvalue argument since non-const reference to | |||
1637 | // bitfield is not allowed. | |||
1638 | template <typename T, typename = typename std::enable_if< | |||
1639 | !std::is_lvalue_reference<T>::value>::type> | |||
1640 | const ImmediateDiagBuilder &operator<<(T &&V) const { | |||
1641 | const DiagnosticBuilder &BaseDiag = *this; | |||
1642 | BaseDiag << std::move(V); | |||
1643 | return *this; | |||
1644 | } | |||
1645 | }; | |||
1646 | ||||
1647 | /// A generic diagnostic builder for errors which may or may not be deferred. | |||
1648 | /// | |||
1649 | /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch) | |||
1650 | /// which are not allowed to appear inside __device__ functions and are | |||
1651 | /// allowed to appear in __host__ __device__ functions only if the host+device | |||
1652 | /// function is never codegen'ed. | |||
1653 | /// | |||
1654 | /// To handle this, we use the notion of "deferred diagnostics", where we | |||
1655 | /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed. | |||
1656 | /// | |||
1657 | /// This class lets you emit either a regular diagnostic, a deferred | |||
1658 | /// diagnostic, or no diagnostic at all, according to an argument you pass to | |||
1659 | /// its constructor, thus simplifying the process of creating these "maybe | |||
1660 | /// deferred" diagnostics. | |||
1661 | class SemaDiagnosticBuilder { | |||
1662 | public: | |||
1663 | enum Kind { | |||
1664 | /// Emit no diagnostics. | |||
1665 | K_Nop, | |||
1666 | /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()). | |||
1667 | K_Immediate, | |||
1668 | /// Emit the diagnostic immediately, and, if it's a warning or error, also | |||
1669 | /// emit a call stack showing how this function can be reached by an a | |||
1670 | /// priori known-emitted function. | |||
1671 | K_ImmediateWithCallStack, | |||
1672 | /// Create a deferred diagnostic, which is emitted only if the function | |||
1673 | /// it's attached to is codegen'ed. Also emit a call stack as with | |||
1674 | /// K_ImmediateWithCallStack. | |||
1675 | K_Deferred | |||
1676 | }; | |||
1677 | ||||
1678 | SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID, | |||
1679 | FunctionDecl *Fn, Sema &S); | |||
1680 | SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D); | |||
1681 | SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default; | |||
1682 | ~SemaDiagnosticBuilder(); | |||
1683 | ||||
1684 | bool isImmediate() const { return ImmediateDiag.hasValue(); } | |||
1685 | ||||
1686 | /// Convertible to bool: True if we immediately emitted an error, false if | |||
1687 | /// we didn't emit an error or we created a deferred error. | |||
1688 | /// | |||
1689 | /// Example usage: | |||
1690 | /// | |||
1691 | /// if (SemaDiagnosticBuilder(...) << foo << bar) | |||
1692 | /// return ExprError(); | |||
1693 | /// | |||
1694 | /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably | |||
1695 | /// want to use these instead of creating a SemaDiagnosticBuilder yourself. | |||
1696 | operator bool() const { return isImmediate(); } | |||
1697 | ||||
1698 | template <typename T> | |||
1699 | friend const SemaDiagnosticBuilder & | |||
1700 | operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) { | |||
1701 | if (Diag.ImmediateDiag.hasValue()) | |||
1702 | *Diag.ImmediateDiag << Value; | |||
1703 | else if (Diag.PartialDiagId.hasValue()) | |||
1704 | Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second | |||
1705 | << Value; | |||
1706 | return Diag; | |||
1707 | } | |||
1708 | ||||
1709 | // It is necessary to limit this to rvalue reference to avoid calling this | |||
1710 | // function with a bitfield lvalue argument since non-const reference to | |||
1711 | // bitfield is not allowed. | |||
1712 | template <typename T, typename = typename std::enable_if< | |||
1713 | !std::is_lvalue_reference<T>::value>::type> | |||
1714 | const SemaDiagnosticBuilder &operator<<(T &&V) const { | |||
1715 | if (ImmediateDiag.hasValue()) | |||
1716 | *ImmediateDiag << std::move(V); | |||
1717 | else if (PartialDiagId.hasValue()) | |||
1718 | S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V); | |||
1719 | return *this; | |||
1720 | } | |||
1721 | ||||
1722 | friend const SemaDiagnosticBuilder & | |||
1723 | operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) { | |||
1724 | if (Diag.ImmediateDiag.hasValue()) | |||
1725 | PD.Emit(*Diag.ImmediateDiag); | |||
1726 | else if (Diag.PartialDiagId.hasValue()) | |||
1727 | Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD; | |||
1728 | return Diag; | |||
1729 | } | |||
1730 | ||||
1731 | void AddFixItHint(const FixItHint &Hint) const { | |||
1732 | if (ImmediateDiag.hasValue()) | |||
1733 | ImmediateDiag->AddFixItHint(Hint); | |||
1734 | else if (PartialDiagId.hasValue()) | |||
1735 | S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint); | |||
1736 | } | |||
1737 | ||||
1738 | friend ExprResult ExprError(const SemaDiagnosticBuilder &) { | |||
1739 | return ExprError(); | |||
1740 | } | |||
1741 | friend StmtResult StmtError(const SemaDiagnosticBuilder &) { | |||
1742 | return StmtError(); | |||
1743 | } | |||
1744 | operator ExprResult() const { return ExprError(); } | |||
1745 | operator StmtResult() const { return StmtError(); } | |||
1746 | operator TypeResult() const { return TypeError(); } | |||
1747 | operator DeclResult() const { return DeclResult(true); } | |||
1748 | operator MemInitResult() const { return MemInitResult(true); } | |||
1749 | ||||
1750 | private: | |||
1751 | Sema &S; | |||
1752 | SourceLocation Loc; | |||
1753 | unsigned DiagID; | |||
1754 | FunctionDecl *Fn; | |||
1755 | bool ShowCallStack; | |||
1756 | ||||
1757 | // Invariant: At most one of these Optionals has a value. | |||
1758 | // FIXME: Switch these to a Variant once that exists. | |||
1759 | llvm::Optional<ImmediateDiagBuilder> ImmediateDiag; | |||
1760 | llvm::Optional<unsigned> PartialDiagId; | |||
1761 | }; | |||
1762 | ||||
1763 | /// Is the last error level diagnostic immediate. This is used to determined | |||
1764 | /// whether the next info diagnostic should be immediate. | |||
1765 | bool IsLastErrorImmediate = true; | |||
1766 | ||||
1767 | /// Emit a diagnostic. | |||
1768 | SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, | |||
1769 | bool DeferHint = false); | |||
1770 | ||||
1771 | /// Emit a partial diagnostic. | |||
1772 | SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD, | |||
1773 | bool DeferHint = false); | |||
1774 | ||||
1775 | /// Build a partial diagnostic. | |||
1776 | PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h | |||
1777 | ||||
1778 | /// Whether deferrable diagnostics should be deferred. | |||
1779 | bool DeferDiags = false; | |||
1780 | ||||
1781 | /// RAII class to control scope of DeferDiags. | |||
1782 | class DeferDiagsRAII { | |||
1783 | Sema &S; | |||
1784 | bool SavedDeferDiags = false; | |||
1785 | ||||
1786 | public: | |||
1787 | DeferDiagsRAII(Sema &S, bool DeferDiags) | |||
1788 | : S(S), SavedDeferDiags(S.DeferDiags) { | |||
1789 | S.DeferDiags = DeferDiags; | |||
1790 | } | |||
1791 | ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; } | |||
1792 | }; | |||
1793 | ||||
1794 | /// Whether uncompilable error has occurred. This includes error happens | |||
1795 | /// in deferred diagnostics. | |||
1796 | bool hasUncompilableErrorOccurred() const; | |||
1797 | ||||
1798 | bool findMacroSpelling(SourceLocation &loc, StringRef name); | |||
1799 | ||||
1800 | /// Get a string to suggest for zero-initialization of a type. | |||
1801 | std::string | |||
1802 | getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const; | |||
1803 | std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const; | |||
1804 | ||||
1805 | /// Calls \c Lexer::getLocForEndOfToken() | |||
1806 | SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0); | |||
1807 | ||||
1808 | /// Retrieve the module loader associated with the preprocessor. | |||
1809 | ModuleLoader &getModuleLoader() const; | |||
1810 | ||||
1811 | /// Invent a new identifier for parameters of abbreviated templates. | |||
1812 | IdentifierInfo * | |||
1813 | InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName, | |||
1814 | unsigned Index); | |||
1815 | ||||
1816 | void emitAndClearUnusedLocalTypedefWarnings(); | |||
1817 | ||||
1818 | private: | |||
1819 | /// Function or variable declarations to be checked for whether the deferred | |||
1820 | /// diagnostics should be emitted. | |||
1821 | llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags; | |||
1822 | ||||
1823 | public: | |||
1824 | // Emit all deferred diagnostics. | |||
1825 | void emitDeferredDiags(); | |||
1826 | ||||
1827 | enum TUFragmentKind { | |||
1828 | /// The global module fragment, between 'module;' and a module-declaration. | |||
1829 | Global, | |||
1830 | /// A normal translation unit fragment. For a non-module unit, this is the | |||
1831 | /// entire translation unit. Otherwise, it runs from the module-declaration | |||
1832 | /// to the private-module-fragment (if any) or the end of the TU (if not). | |||
1833 | Normal, | |||
1834 | /// The private module fragment, between 'module :private;' and the end of | |||
1835 | /// the translation unit. | |||
1836 | Private | |||
1837 | }; | |||
1838 | ||||
1839 | void ActOnStartOfTranslationUnit(); | |||
1840 | void ActOnEndOfTranslationUnit(); | |||
1841 | void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind); | |||
1842 | ||||
1843 | void CheckDelegatingCtorCycles(); | |||
1844 | ||||
1845 | Scope *getScopeForContext(DeclContext *Ctx); | |||
1846 | ||||
1847 | void PushFunctionScope(); | |||
1848 | void PushBlockScope(Scope *BlockScope, BlockDecl *Block); | |||
1849 | sema::LambdaScopeInfo *PushLambdaScope(); | |||
1850 | ||||
1851 | /// This is used to inform Sema what the current TemplateParameterDepth | |||
1852 | /// is during Parsing. Currently it is used to pass on the depth | |||
1853 | /// when parsing generic lambda 'auto' parameters. | |||
1854 | void RecordParsingTemplateParameterDepth(unsigned Depth); | |||
1855 | ||||
1856 | void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD, | |||
1857 | RecordDecl *RD, CapturedRegionKind K, | |||
1858 | unsigned OpenMPCaptureLevel = 0); | |||
1859 | ||||
1860 | /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short | |||
1861 | /// time after they've been popped. | |||
1862 | class PoppedFunctionScopeDeleter { | |||
1863 | Sema *Self; | |||
1864 | ||||
1865 | public: | |||
1866 | explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {} | |||
1867 | void operator()(sema::FunctionScopeInfo *Scope) const; | |||
1868 | }; | |||
1869 | ||||
1870 | using PoppedFunctionScopePtr = | |||
1871 | std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>; | |||
1872 | ||||
1873 | PoppedFunctionScopePtr | |||
1874 | PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr, | |||
1875 | const Decl *D = nullptr, | |||
1876 | QualType BlockType = QualType()); | |||
1877 | ||||
1878 | sema::FunctionScopeInfo *getCurFunction() const { | |||
1879 | return FunctionScopes.empty() ? nullptr : FunctionScopes.back(); | |||
1880 | } | |||
1881 | ||||
1882 | sema::FunctionScopeInfo *getEnclosingFunction() const; | |||
1883 | ||||
1884 | void setFunctionHasBranchIntoScope(); | |||
1885 | void setFunctionHasBranchProtectedScope(); | |||
1886 | void setFunctionHasIndirectGoto(); | |||
1887 | void setFunctionHasMustTail(); | |||
1888 | ||||
1889 | void PushCompoundScope(bool IsStmtExpr); | |||
1890 | void PopCompoundScope(); | |||
1891 | ||||
1892 | sema::CompoundScopeInfo &getCurCompoundScope() const; | |||
1893 | ||||
1894 | bool hasAnyUnrecoverableErrorsInThisFunction() const; | |||
1895 | ||||
1896 | /// Retrieve the current block, if any. | |||
1897 | sema::BlockScopeInfo *getCurBlock(); | |||
1898 | ||||
1899 | /// Get the innermost lambda enclosing the current location, if any. This | |||
1900 | /// looks through intervening non-lambda scopes such as local functions and | |||
1901 | /// blocks. | |||
1902 | sema::LambdaScopeInfo *getEnclosingLambda() const; | |||
1903 | ||||
1904 | /// Retrieve the current lambda scope info, if any. | |||
1905 | /// \param IgnoreNonLambdaCapturingScope true if should find the top-most | |||
1906 | /// lambda scope info ignoring all inner capturing scopes that are not | |||
1907 | /// lambda scopes. | |||
1908 | sema::LambdaScopeInfo * | |||
1909 | getCurLambda(bool IgnoreNonLambdaCapturingScope = false); | |||
1910 | ||||
1911 | /// Retrieve the current generic lambda info, if any. | |||
1912 | sema::LambdaScopeInfo *getCurGenericLambda(); | |||
1913 | ||||
1914 | /// Retrieve the current captured region, if any. | |||
1915 | sema::CapturedRegionScopeInfo *getCurCapturedRegion(); | |||
1916 | ||||
1917 | /// Retrieve the current function, if any, that should be analyzed for | |||
1918 | /// potential availability violations. | |||
1919 | sema::FunctionScopeInfo *getCurFunctionAvailabilityContext(); | |||
1920 | ||||
1921 | /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls | |||
1922 | SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; } | |||
1923 | ||||
1924 | /// Called before parsing a function declarator belonging to a function | |||
1925 | /// declaration. | |||
1926 | void ActOnStartFunctionDeclarationDeclarator(Declarator &D, | |||
1927 | unsigned TemplateParameterDepth); | |||
1928 | ||||
1929 | /// Called after parsing a function declarator belonging to a function | |||
1930 | /// declaration. | |||
1931 | void ActOnFinishFunctionDeclarationDeclarator(Declarator &D); | |||
1932 | ||||
1933 | void ActOnComment(SourceRange Comment); | |||
1934 | ||||
1935 | //===--------------------------------------------------------------------===// | |||
1936 | // Type Analysis / Processing: SemaType.cpp. | |||
1937 | // | |||
1938 | ||||
1939 | QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, | |||
1940 | const DeclSpec *DS = nullptr); | |||
1941 | QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA, | |||
1942 | const DeclSpec *DS = nullptr); | |||
1943 | QualType BuildPointerType(QualType T, | |||
1944 | SourceLocation Loc, DeclarationName Entity); | |||
1945 | QualType BuildReferenceType(QualType T, bool LValueRef, | |||
1946 | SourceLocation Loc, DeclarationName Entity); | |||
1947 | QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, | |||
1948 | Expr *ArraySize, unsigned Quals, | |||
1949 | SourceRange Brackets, DeclarationName Entity); | |||
1950 | QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc); | |||
1951 | QualType BuildExtVectorType(QualType T, Expr *ArraySize, | |||
1952 | SourceLocation AttrLoc); | |||
1953 | QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns, | |||
1954 | SourceLocation AttrLoc); | |||
1955 | ||||
1956 | QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, | |||
1957 | SourceLocation AttrLoc); | |||
1958 | ||||
1959 | /// Same as above, but constructs the AddressSpace index if not provided. | |||
1960 | QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, | |||
1961 | SourceLocation AttrLoc); | |||
1962 | ||||
1963 | bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc); | |||
1964 | ||||
1965 | bool CheckFunctionReturnType(QualType T, SourceLocation Loc); | |||
1966 | ||||
1967 | /// Build a function type. | |||
1968 | /// | |||
1969 | /// This routine checks the function type according to C++ rules and | |||
1970 | /// under the assumption that the result type and parameter types have | |||
1971 | /// just been instantiated from a template. It therefore duplicates | |||
1972 | /// some of the behavior of GetTypeForDeclarator, but in a much | |||
1973 | /// simpler form that is only suitable for this narrow use case. | |||
1974 | /// | |||
1975 | /// \param T The return type of the function. | |||
1976 | /// | |||
1977 | /// \param ParamTypes The parameter types of the function. This array | |||
1978 | /// will be modified to account for adjustments to the types of the | |||
1979 | /// function parameters. | |||
1980 | /// | |||
1981 | /// \param Loc The location of the entity whose type involves this | |||
1982 | /// function type or, if there is no such entity, the location of the | |||
1983 | /// type that will have function type. | |||
1984 | /// | |||
1985 | /// \param Entity The name of the entity that involves the function | |||
1986 | /// type, if known. | |||
1987 | /// | |||
1988 | /// \param EPI Extra information about the function type. Usually this will | |||
1989 | /// be taken from an existing function with the same prototype. | |||
1990 | /// | |||
1991 | /// \returns A suitable function type, if there are no errors. The | |||
1992 | /// unqualified type will always be a FunctionProtoType. | |||
1993 | /// Otherwise, returns a NULL type. | |||
1994 | QualType BuildFunctionType(QualType T, | |||
1995 | MutableArrayRef<QualType> ParamTypes, | |||
1996 | SourceLocation Loc, DeclarationName Entity, | |||
1997 | const FunctionProtoType::ExtProtoInfo &EPI); | |||
1998 | ||||
1999 | QualType BuildMemberPointerType(QualType T, QualType Class, | |||
2000 | SourceLocation Loc, | |||
2001 | DeclarationName Entity); | |||
2002 | QualType BuildBlockPointerType(QualType T, | |||
2003 | SourceLocation Loc, DeclarationName Entity); | |||
2004 | QualType BuildParenType(QualType T); | |||
2005 | QualType BuildAtomicType(QualType T, SourceLocation Loc); | |||
2006 | QualType BuildReadPipeType(QualType T, | |||
2007 | SourceLocation Loc); | |||
2008 | QualType BuildWritePipeType(QualType T, | |||
2009 | SourceLocation Loc); | |||
2010 | QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc); | |||
2011 | ||||
2012 | TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S); | |||
2013 | TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy); | |||
2014 | ||||
2015 | /// Package the given type and TSI into a ParsedType. | |||
2016 | ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo); | |||
2017 | DeclarationNameInfo GetNameForDeclarator(Declarator &D); | |||
2018 | DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name); | |||
2019 | static QualType GetTypeFromParser(ParsedType Ty, | |||
2020 | TypeSourceInfo **TInfo = nullptr); | |||
2021 | CanThrowResult canThrow(const Stmt *E); | |||
2022 | /// Determine whether the callee of a particular function call can throw. | |||
2023 | /// E, D and Loc are all optional. | |||
2024 | static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D, | |||
2025 | SourceLocation Loc = SourceLocation()); | |||
2026 | const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc, | |||
2027 | const FunctionProtoType *FPT); | |||
2028 | void UpdateExceptionSpec(FunctionDecl *FD, | |||
2029 | const FunctionProtoType::ExceptionSpecInfo &ESI); | |||
2030 | bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range); | |||
2031 | bool CheckDistantExceptionSpec(QualType T); | |||
2032 | bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New); | |||
2033 | bool CheckEquivalentExceptionSpec( | |||
2034 | const FunctionProtoType *Old, SourceLocation OldLoc, | |||
2035 | const FunctionProtoType *New, SourceLocation NewLoc); | |||
2036 | bool CheckEquivalentExceptionSpec( | |||
2037 | const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, | |||
2038 | const FunctionProtoType *Old, SourceLocation OldLoc, | |||
2039 | const FunctionProtoType *New, SourceLocation NewLoc); | |||
2040 | bool handlerCanCatch(QualType HandlerType, QualType ExceptionType); | |||
2041 | bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, | |||
2042 | const PartialDiagnostic &NestedDiagID, | |||
2043 | const PartialDiagnostic &NoteID, | |||
2044 | const PartialDiagnostic &NoThrowDiagID, | |||
2045 | const FunctionProtoType *Superset, | |||
2046 | SourceLocation SuperLoc, | |||
2047 | const FunctionProtoType *Subset, | |||
2048 | SourceLocation SubLoc); | |||
2049 | bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID, | |||
2050 | const PartialDiagnostic &NoteID, | |||
2051 | const FunctionProtoType *Target, | |||
2052 | SourceLocation TargetLoc, | |||
2053 | const FunctionProtoType *Source, | |||
2054 | SourceLocation SourceLoc); | |||
2055 | ||||
2056 | TypeResult ActOnTypeName(Scope *S, Declarator &D); | |||
2057 | ||||
2058 | /// The parser has parsed the context-sensitive type 'instancetype' | |||
2059 | /// in an Objective-C message declaration. Return the appropriate type. | |||
2060 | ParsedType ActOnObjCInstanceType(SourceLocation Loc); | |||
2061 | ||||
2062 | /// Abstract class used to diagnose incomplete types. | |||
2063 | struct TypeDiagnoser { | |||
2064 | TypeDiagnoser() {} | |||
2065 | ||||
2066 | virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0; | |||
2067 | virtual ~TypeDiagnoser() {} | |||
2068 | }; | |||
2069 | ||||
2070 | static int getPrintable(int I) { return I; } | |||
2071 | static unsigned getPrintable(unsigned I) { return I; } | |||
2072 | static bool getPrintable(bool B) { return B; } | |||
2073 | static const char * getPrintable(const char *S) { return S; } | |||
2074 | static StringRef getPrintable(StringRef S) { return S; } | |||
2075 | static const std::string &getPrintable(const std::string &S) { return S; } | |||
2076 | static const IdentifierInfo *getPrintable(const IdentifierInfo *II) { | |||
2077 | return II; | |||
2078 | } | |||
2079 | static DeclarationName getPrintable(DeclarationName N) { return N; } | |||
2080 | static QualType getPrintable(QualType T) { return T; } | |||
2081 | static SourceRange getPrintable(SourceRange R) { return R; } | |||
2082 | static SourceRange getPrintable(SourceLocation L) { return L; } | |||
2083 | static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); } | |||
2084 | static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();} | |||
2085 | ||||
2086 | template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser { | |||
2087 | protected: | |||
2088 | unsigned DiagID; | |||
2089 | std::tuple<const Ts &...> Args; | |||
2090 | ||||
2091 | template <std::size_t... Is> | |||
2092 | void emit(const SemaDiagnosticBuilder &DB, | |||
2093 | std::index_sequence<Is...>) const { | |||
2094 | // Apply all tuple elements to the builder in order. | |||
2095 | bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...}; | |||
2096 | (void)Dummy; | |||
2097 | } | |||
2098 | ||||
2099 | public: | |||
2100 | BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args) | |||
2101 | : TypeDiagnoser(), DiagID(DiagID), Args(Args...) { | |||
2102 | assert(DiagID != 0 && "no diagnostic for type diagnoser")((void)0); | |||
2103 | } | |||
2104 | ||||
2105 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |||
2106 | const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID); | |||
2107 | emit(DB, std::index_sequence_for<Ts...>()); | |||
2108 | DB << T; | |||
2109 | } | |||
2110 | }; | |||
2111 | ||||
2112 | /// Do a check to make sure \p Name looks like a legal argument for the | |||
2113 | /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name | |||
2114 | /// is invalid for the given declaration. | |||
2115 | /// | |||
2116 | /// \p AL is used to provide caret diagnostics in case of a malformed name. | |||
2117 | /// | |||
2118 | /// \returns true if the name is a valid swift name for \p D, false otherwise. | |||
2119 | bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, | |||
2120 | const ParsedAttr &AL, bool IsAsync); | |||
2121 | ||||
2122 | /// A derivative of BoundTypeDiagnoser for which the diagnostic's type | |||
2123 | /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless. | |||
2124 | /// For example, a diagnostic with no other parameters would generally have | |||
2125 | /// the form "...%select{incomplete|sizeless}0 type %1...". | |||
2126 | template <typename... Ts> | |||
2127 | class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> { | |||
2128 | public: | |||
2129 | SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args) | |||
2130 | : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {} | |||
2131 | ||||
2132 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |||
2133 | const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID); | |||
2134 | this->emit(DB, std::index_sequence_for<Ts...>()); | |||
2135 | DB << T->isSizelessType() << T; | |||
2136 | } | |||
2137 | }; | |||
2138 | ||||
2139 | enum class CompleteTypeKind { | |||
2140 | /// Apply the normal rules for complete types. In particular, | |||
2141 | /// treat all sizeless types as incomplete. | |||
2142 | Normal, | |||
2143 | ||||
2144 | /// Relax the normal rules for complete types so that they include | |||
2145 | /// sizeless built-in types. | |||
2146 | AcceptSizeless, | |||
2147 | ||||
2148 | // FIXME: Eventually we should flip the default to Normal and opt in | |||
2149 | // to AcceptSizeless rather than opt out of it. | |||
2150 | Default = AcceptSizeless | |||
2151 | }; | |||
2152 | ||||
2153 | private: | |||
2154 | /// Methods for marking which expressions involve dereferencing a pointer | |||
2155 | /// marked with the 'noderef' attribute. Expressions are checked bottom up as | |||
2156 | /// they are parsed, meaning that a noderef pointer may not be accessed. For | |||
2157 | /// example, in `&*p` where `p` is a noderef pointer, we will first parse the | |||
2158 | /// `*p`, but need to check that `address of` is called on it. This requires | |||
2159 | /// keeping a container of all pending expressions and checking if the address | |||
2160 | /// of them are eventually taken. | |||
2161 | void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E); | |||
2162 | void CheckAddressOfNoDeref(const Expr *E); | |||
2163 | void CheckMemberAccessOfNoDeref(const MemberExpr *E); | |||
2164 | ||||
2165 | bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T, | |||
2166 | CompleteTypeKind Kind, TypeDiagnoser *Diagnoser); | |||
2167 | ||||
2168 | struct ModuleScope { | |||
2169 | SourceLocation BeginLoc; | |||
2170 | clang::Module *Module = nullptr; | |||
2171 | bool ModuleInterface = false; | |||
2172 | bool ImplicitGlobalModuleFragment = false; | |||
2173 | VisibleModuleSet OuterVisibleModules; | |||
2174 | }; | |||
2175 | /// The modules we're currently parsing. | |||
2176 | llvm::SmallVector<ModuleScope, 16> ModuleScopes; | |||
2177 | ||||
2178 | /// Namespace definitions that we will export when they finish. | |||
2179 | llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces; | |||
2180 | ||||
2181 | /// Get the module whose scope we are currently within. | |||
2182 | Module *getCurrentModule() const { | |||
2183 | return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module; | |||
2184 | } | |||
2185 | ||||
2186 | VisibleModuleSet VisibleModules; | |||
2187 | ||||
2188 | public: | |||
2189 | /// Get the module owning an entity. | |||
2190 | Module *getOwningModule(const Decl *Entity) { | |||
2191 | return Entity->getOwningModule(); | |||
| ||||
2192 | } | |||
2193 | ||||
2194 | /// Make a merged definition of an existing hidden definition \p ND | |||
2195 | /// visible at the specified location. | |||
2196 | void makeMergedDefinitionVisible(NamedDecl *ND); | |||
2197 | ||||
2198 | bool isModuleVisible(const Module *M, bool ModulePrivate = false); | |||
2199 | ||||
2200 | // When loading a non-modular PCH files, this is used to restore module | |||
2201 | // visibility. | |||
2202 | void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) { | |||
2203 | VisibleModules.setVisible(Mod, ImportLoc); | |||
2204 | } | |||
2205 | ||||
2206 | /// Determine whether a declaration is visible to name lookup. | |||
2207 | bool isVisible(const NamedDecl *D) { | |||
2208 | return D->isUnconditionallyVisible() || isVisibleSlow(D); | |||
2209 | } | |||
2210 | ||||
2211 | /// Determine whether any declaration of an entity is visible. | |||
2212 | bool | |||
2213 | hasVisibleDeclaration(const NamedDecl *D, | |||
2214 | llvm::SmallVectorImpl<Module *> *Modules = nullptr) { | |||
2215 | return isVisible(D) || hasVisibleDeclarationSlow(D, Modules); | |||
2216 | } | |||
2217 | bool hasVisibleDeclarationSlow(const NamedDecl *D, | |||
2218 | llvm::SmallVectorImpl<Module *> *Modules); | |||
2219 | ||||
2220 | bool hasVisibleMergedDefinition(NamedDecl *Def); | |||
2221 | bool hasMergedDefinitionInCurrentModule(NamedDecl *Def); | |||
2222 | ||||
2223 | /// Determine if \p D and \p Suggested have a structurally compatible | |||
2224 | /// layout as described in C11 6.2.7/1. | |||
2225 | bool hasStructuralCompatLayout(Decl *D, Decl *Suggested); | |||
2226 | ||||
2227 | /// Determine if \p D has a visible definition. If not, suggest a declaration | |||
2228 | /// that should be made visible to expose the definition. | |||
2229 | bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, | |||
2230 | bool OnlyNeedComplete = false); | |||
2231 | bool hasVisibleDefinition(const NamedDecl *D) { | |||
2232 | NamedDecl *Hidden; | |||
2233 | return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden); | |||
2234 | } | |||
2235 | ||||
2236 | /// Determine if the template parameter \p D has a visible default argument. | |||
2237 | bool | |||
2238 | hasVisibleDefaultArgument(const NamedDecl *D, | |||
2239 | llvm::SmallVectorImpl<Module *> *Modules = nullptr); | |||
2240 | ||||
2241 | /// Determine if there is a visible declaration of \p D that is an explicit | |||
2242 | /// specialization declaration for a specialization of a template. (For a | |||
2243 | /// member specialization, use hasVisibleMemberSpecialization.) | |||
2244 | bool hasVisibleExplicitSpecialization( | |||
2245 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr); | |||
2246 | ||||
2247 | /// Determine if there is a visible declaration of \p D that is a member | |||
2248 | /// specialization declaration (as opposed to an instantiated declaration). | |||
2249 | bool hasVisibleMemberSpecialization( | |||
2250 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr); | |||
2251 | ||||
2252 | /// Determine if \p A and \p B are equivalent internal linkage declarations | |||
2253 | /// from different modules, and thus an ambiguity error can be downgraded to | |||
2254 | /// an extension warning. | |||
2255 | bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A, | |||
2256 | const NamedDecl *B); | |||
2257 | void diagnoseEquivalentInternalLinkageDeclarations( | |||
2258 | SourceLocation Loc, const NamedDecl *D, | |||
2259 | ArrayRef<const NamedDecl *> Equiv); | |||
2260 | ||||
2261 | bool isUsualDeallocationFunction(const CXXMethodDecl *FD); | |||
2262 | ||||
2263 | bool isCompleteType(SourceLocation Loc, QualType T, | |||
2264 | CompleteTypeKind Kind = CompleteTypeKind::Default) { | |||
2265 | return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr); | |||
2266 | } | |||
2267 | bool RequireCompleteType(SourceLocation Loc, QualType T, | |||
2268 | CompleteTypeKind Kind, TypeDiagnoser &Diagnoser); | |||
2269 | bool RequireCompleteType(SourceLocation Loc, QualType T, | |||
2270 | CompleteTypeKind Kind, unsigned DiagID); | |||
2271 | ||||
2272 | bool RequireCompleteType(SourceLocation Loc, QualType T, | |||
2273 | TypeDiagnoser &Diagnoser) { | |||
2274 | return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser); | |||
2275 | } | |||
2276 | bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) { | |||
2277 | return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID); | |||
2278 | } | |||
2279 | ||||
2280 | template <typename... Ts> | |||
2281 | bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID, | |||
2282 | const Ts &...Args) { | |||
2283 | BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
2284 | return RequireCompleteType(Loc, T, Diagnoser); | |||
2285 | } | |||
2286 | ||||
2287 | template <typename... Ts> | |||
2288 | bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID, | |||
2289 | const Ts &... Args) { | |||
2290 | SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
2291 | return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser); | |||
2292 | } | |||
2293 | ||||
2294 | /// Get the type of expression E, triggering instantiation to complete the | |||
2295 | /// type if necessary -- that is, if the expression refers to a templated | |||
2296 | /// static data member of incomplete array type. | |||
2297 | /// | |||
2298 | /// May still return an incomplete type if instantiation was not possible or | |||
2299 | /// if the type is incomplete for a different reason. Use | |||
2300 | /// RequireCompleteExprType instead if a diagnostic is expected for an | |||
2301 | /// incomplete expression type. | |||
2302 | QualType getCompletedType(Expr *E); | |||
2303 | ||||
2304 | void completeExprArrayBound(Expr *E); | |||
2305 | bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, | |||
2306 | TypeDiagnoser &Diagnoser); | |||
2307 | bool RequireCompleteExprType(Expr *E, unsigned DiagID); | |||
2308 | ||||
2309 | template <typename... Ts> | |||
2310 | bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) { | |||
2311 | BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
2312 | return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser); | |||
2313 | } | |||
2314 | ||||
2315 | template <typename... Ts> | |||
2316 | bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID, | |||
2317 | const Ts &... Args) { | |||
2318 | SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
2319 | return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser); | |||
2320 | } | |||
2321 | ||||
2322 | bool RequireLiteralType(SourceLocation Loc, QualType T, | |||
2323 | TypeDiagnoser &Diagnoser); | |||
2324 | bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID); | |||
2325 | ||||
2326 | template <typename... Ts> | |||
2327 | bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID, | |||
2328 | const Ts &...Args) { | |||
2329 | BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
2330 | return RequireLiteralType(Loc, T, Diagnoser); | |||
2331 | } | |||
2332 | ||||
2333 | QualType getElaboratedType(ElaboratedTypeKeyword Keyword, | |||
2334 | const CXXScopeSpec &SS, QualType T, | |||
2335 | TagDecl *OwnedTagDecl = nullptr); | |||
2336 | ||||
2337 | QualType getDecltypeForParenthesizedExpr(Expr *E); | |||
2338 | QualType BuildTypeofExprType(Expr *E, SourceLocation Loc); | |||
2339 | /// If AsUnevaluated is false, E is treated as though it were an evaluated | |||
2340 | /// context, such as when building a type for decltype(auto). | |||
2341 | QualType BuildDecltypeType(Expr *E, SourceLocation Loc, | |||
2342 | bool AsUnevaluated = true); | |||
2343 | QualType BuildUnaryTransformType(QualType BaseType, | |||
2344 | UnaryTransformType::UTTKind UKind, | |||
2345 | SourceLocation Loc); | |||
2346 | ||||
2347 | //===--------------------------------------------------------------------===// | |||
2348 | // Symbol table / Decl tracking callbacks: SemaDecl.cpp. | |||
2349 | // | |||
2350 | ||||
2351 | struct SkipBodyInfo { | |||
2352 | SkipBodyInfo() | |||
2353 | : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr), | |||
2354 | New(nullptr) {} | |||
2355 | bool ShouldSkip; | |||
2356 | bool CheckSameAsPrevious; | |||
2357 | NamedDecl *Previous; | |||
2358 | NamedDecl *New; | |||
2359 | }; | |||
2360 | ||||
2361 | DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr); | |||
2362 | ||||
2363 | void DiagnoseUseOfUnimplementedSelectors(); | |||
2364 | ||||
2365 | bool isSimpleTypeSpecifier(tok::TokenKind Kind) const; | |||
2366 | ||||
2367 | ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, | |||
2368 | Scope *S, CXXScopeSpec *SS = nullptr, | |||
2369 | bool isClassName = false, bool HasTrailingDot = false, | |||
2370 | ParsedType ObjectType = nullptr, | |||
2371 | bool IsCtorOrDtorName = false, | |||
2372 | bool WantNontrivialTypeSourceInfo = false, | |||
2373 | bool IsClassTemplateDeductionContext = true, | |||
2374 | IdentifierInfo **CorrectedII = nullptr); | |||
2375 | TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S); | |||
2376 | bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S); | |||
2377 | void DiagnoseUnknownTypeName(IdentifierInfo *&II, | |||
2378 | SourceLocation IILoc, | |||
2379 | Scope *S, | |||
2380 | CXXScopeSpec *SS, | |||
2381 | ParsedType &SuggestedType, | |||
2382 | bool IsTemplateName = false); | |||
2383 | ||||
2384 | /// Attempt to behave like MSVC in situations where lookup of an unqualified | |||
2385 | /// type name has failed in a dependent context. In these situations, we | |||
2386 | /// automatically form a DependentTypeName that will retry lookup in a related | |||
2387 | /// scope during instantiation. | |||
2388 | ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, | |||
2389 | SourceLocation NameLoc, | |||
2390 | bool IsTemplateTypeArg); | |||
2391 | ||||
2392 | /// Describes the result of the name lookup and resolution performed | |||
2393 | /// by \c ClassifyName(). | |||
2394 | enum NameClassificationKind { | |||
2395 | /// This name is not a type or template in this context, but might be | |||
2396 | /// something else. | |||
2397 | NC_Unknown, | |||
2398 | /// Classification failed; an error has been produced. | |||
2399 | NC_Error, | |||
2400 | /// The name has been typo-corrected to a keyword. | |||
2401 | NC_Keyword, | |||
2402 | /// The name was classified as a type. | |||
2403 | NC_Type, | |||
2404 | /// The name was classified as a specific non-type, non-template | |||
2405 | /// declaration. ActOnNameClassifiedAsNonType should be called to | |||
2406 | /// convert the declaration to an expression. | |||
2407 | NC_NonType, | |||
2408 | /// The name was classified as an ADL-only function name. | |||
2409 | /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the | |||
2410 | /// result to an expression. | |||
2411 | NC_UndeclaredNonType, | |||
2412 | /// The name denotes a member of a dependent type that could not be | |||
2413 | /// resolved. ActOnNameClassifiedAsDependentNonType should be called to | |||
2414 | /// convert the result to an expression. | |||
2415 | NC_DependentNonType, | |||
2416 | /// The name was classified as an overload set, and an expression | |||
2417 | /// representing that overload set has been formed. | |||
2418 | /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable | |||
2419 | /// expression referencing the overload set. | |||
2420 | NC_OverloadSet, | |||
2421 | /// The name was classified as a template whose specializations are types. | |||
2422 | NC_TypeTemplate, | |||
2423 | /// The name was classified as a variable template name. | |||
2424 | NC_VarTemplate, | |||
2425 | /// The name was classified as a function template name. | |||
2426 | NC_FunctionTemplate, | |||
2427 | /// The name was classified as an ADL-only function template name. | |||
2428 | NC_UndeclaredTemplate, | |||
2429 | /// The name was classified as a concept name. | |||
2430 | NC_Concept, | |||
2431 | }; | |||
2432 | ||||
2433 | class NameClassification { | |||
2434 | NameClassificationKind Kind; | |||
2435 | union { | |||
2436 | ExprResult Expr; | |||
2437 | NamedDecl *NonTypeDecl; | |||
2438 | TemplateName Template; | |||
2439 | ParsedType Type; | |||
2440 | }; | |||
2441 | ||||
2442 | explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {} | |||
2443 | ||||
2444 | public: | |||
2445 | NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {} | |||
2446 | ||||
2447 | NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {} | |||
2448 | ||||
2449 | static NameClassification Error() { | |||
2450 | return NameClassification(NC_Error); | |||
2451 | } | |||
2452 | ||||
2453 | static NameClassification Unknown() { | |||
2454 | return NameClassification(NC_Unknown); | |||
2455 | } | |||
2456 | ||||
2457 | static NameClassification OverloadSet(ExprResult E) { | |||
2458 | NameClassification Result(NC_OverloadSet); | |||
2459 | Result.Expr = E; | |||
2460 | return Result; | |||
2461 | } | |||
2462 | ||||
2463 | static NameClassification NonType(NamedDecl *D) { | |||
2464 | NameClassification Result(NC_NonType); | |||
2465 | Result.NonTypeDecl = D; | |||
2466 | return Result; | |||
2467 | } | |||
2468 | ||||
2469 | static NameClassification UndeclaredNonType() { | |||
2470 | return NameClassification(NC_UndeclaredNonType); | |||
2471 | } | |||
2472 | ||||
2473 | static NameClassification DependentNonType() { | |||
2474 | return NameClassification(NC_DependentNonType); | |||
2475 | } | |||
2476 | ||||
2477 | static NameClassification TypeTemplate(TemplateName Name) { | |||
2478 | NameClassification Result(NC_TypeTemplate); | |||
2479 | Result.Template = Name; | |||
2480 | return Result; | |||
2481 | } | |||
2482 | ||||
2483 | static NameClassification VarTemplate(TemplateName Name) { | |||
2484 | NameClassification Result(NC_VarTemplate); | |||
2485 | Result.Template = Name; | |||
2486 | return Result; | |||
2487 | } | |||
2488 | ||||
2489 | static NameClassification FunctionTemplate(TemplateName Name) { | |||
2490 | NameClassification Result(NC_FunctionTemplate); | |||
2491 | Result.Template = Name; | |||
2492 | return Result; | |||
2493 | } | |||
2494 | ||||
2495 | static NameClassification Concept(TemplateName Name) { | |||
2496 | NameClassification Result(NC_Concept); | |||
2497 | Result.Template = Name; | |||
2498 | return Result; | |||
2499 | } | |||
2500 | ||||
2501 | static NameClassification UndeclaredTemplate(TemplateName Name) { | |||
2502 | NameClassification Result(NC_UndeclaredTemplate); | |||
2503 | Result.Template = Name; | |||
2504 | return Result; | |||
2505 | } | |||
2506 | ||||
2507 | NameClassificationKind getKind() const { return Kind; } | |||
2508 | ||||
2509 | ExprResult getExpression() const { | |||
2510 | assert(Kind == NC_OverloadSet)((void)0); | |||
2511 | return Expr; | |||
2512 | } | |||
2513 | ||||
2514 | ParsedType getType() const { | |||
2515 | assert(Kind == NC_Type)((void)0); | |||
2516 | return Type; | |||
2517 | } | |||
2518 | ||||
2519 | NamedDecl *getNonTypeDecl() const { | |||
2520 | assert(Kind == NC_NonType)((void)0); | |||
2521 | return NonTypeDecl; | |||
2522 | } | |||
2523 | ||||
2524 | TemplateName getTemplateName() const { | |||
2525 | assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||((void)0) | |||
2526 | Kind == NC_VarTemplate || Kind == NC_Concept ||((void)0) | |||
2527 | Kind == NC_UndeclaredTemplate)((void)0); | |||
2528 | return Template; | |||
2529 | } | |||
2530 | ||||
2531 | TemplateNameKind getTemplateNameKind() const { | |||
2532 | switch (Kind) { | |||
2533 | case NC_TypeTemplate: | |||
2534 | return TNK_Type_template; | |||
2535 | case NC_FunctionTemplate: | |||
2536 | return TNK_Function_template; | |||
2537 | case NC_VarTemplate: | |||
2538 | return TNK_Var_template; | |||
2539 | case NC_Concept: | |||
2540 | return TNK_Concept_template; | |||
2541 | case NC_UndeclaredTemplate: | |||
2542 | return TNK_Undeclared_template; | |||
2543 | default: | |||
2544 | llvm_unreachable("unsupported name classification.")__builtin_unreachable(); | |||
2545 | } | |||
2546 | } | |||
2547 | }; | |||
2548 | ||||
2549 | /// Perform name lookup on the given name, classifying it based on | |||
2550 | /// the results of name lookup and the following token. | |||
2551 | /// | |||
2552 | /// This routine is used by the parser to resolve identifiers and help direct | |||
2553 | /// parsing. When the identifier cannot be found, this routine will attempt | |||
2554 | /// to correct the typo and classify based on the resulting name. | |||
2555 | /// | |||
2556 | /// \param S The scope in which we're performing name lookup. | |||
2557 | /// | |||
2558 | /// \param SS The nested-name-specifier that precedes the name. | |||
2559 | /// | |||
2560 | /// \param Name The identifier. If typo correction finds an alternative name, | |||
2561 | /// this pointer parameter will be updated accordingly. | |||
2562 | /// | |||
2563 | /// \param NameLoc The location of the identifier. | |||
2564 | /// | |||
2565 | /// \param NextToken The token following the identifier. Used to help | |||
2566 | /// disambiguate the name. | |||
2567 | /// | |||
2568 | /// \param CCC The correction callback, if typo correction is desired. | |||
2569 | NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, | |||
2570 | IdentifierInfo *&Name, SourceLocation NameLoc, | |||
2571 | const Token &NextToken, | |||
2572 | CorrectionCandidateCallback *CCC = nullptr); | |||
2573 | ||||
2574 | /// Act on the result of classifying a name as an undeclared (ADL-only) | |||
2575 | /// non-type declaration. | |||
2576 | ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, | |||
2577 | SourceLocation NameLoc); | |||
2578 | /// Act on the result of classifying a name as an undeclared member of a | |||
2579 | /// dependent base class. | |||
2580 | ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, | |||
2581 | IdentifierInfo *Name, | |||
2582 | SourceLocation NameLoc, | |||
2583 | bool IsAddressOfOperand); | |||
2584 | /// Act on the result of classifying a name as a specific non-type | |||
2585 | /// declaration. | |||
2586 | ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, | |||
2587 | NamedDecl *Found, | |||
2588 | SourceLocation NameLoc, | |||
2589 | const Token &NextToken); | |||
2590 | /// Act on the result of classifying a name as an overload set. | |||
2591 | ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet); | |||
2592 | ||||
2593 | /// Describes the detailed kind of a template name. Used in diagnostics. | |||
2594 | enum class TemplateNameKindForDiagnostics { | |||
2595 | ClassTemplate, | |||
2596 | FunctionTemplate, | |||
2597 | VarTemplate, | |||
2598 | AliasTemplate, | |||
2599 | TemplateTemplateParam, | |||
2600 | Concept, | |||
2601 | DependentTemplate | |||
2602 | }; | |||
2603 | TemplateNameKindForDiagnostics | |||
2604 | getTemplateNameKindForDiagnostics(TemplateName Name); | |||
2605 | ||||
2606 | /// Determine whether it's plausible that E was intended to be a | |||
2607 | /// template-name. | |||
2608 | bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) { | |||
2609 | if (!getLangOpts().CPlusPlus || E.isInvalid()) | |||
2610 | return false; | |||
2611 | Dependent = false; | |||
2612 | if (auto *DRE = dyn_cast<DeclRefExpr>(E.get())) | |||
2613 | return !DRE->hasExplicitTemplateArgs(); | |||
2614 | if (auto *ME = dyn_cast<MemberExpr>(E.get())) | |||
2615 | return !ME->hasExplicitTemplateArgs(); | |||
2616 | Dependent = true; | |||
2617 | if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get())) | |||
2618 | return !DSDRE->hasExplicitTemplateArgs(); | |||
2619 | if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get())) | |||
2620 | return !DSME->hasExplicitTemplateArgs(); | |||
2621 | // Any additional cases recognized here should also be handled by | |||
2622 | // diagnoseExprIntendedAsTemplateName. | |||
2623 | return false; | |||
2624 | } | |||
2625 | void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, | |||
2626 | SourceLocation Less, | |||
2627 | SourceLocation Greater); | |||
2628 | ||||
2629 | void warnOnReservedIdentifier(const NamedDecl *D); | |||
2630 | ||||
2631 | Decl *ActOnDeclarator(Scope *S, Declarator &D); | |||
2632 | ||||
2633 | NamedDecl *HandleDeclarator(Scope *S, Declarator &D, | |||
2634 | MultiTemplateParamsArg TemplateParameterLists); | |||
2635 | bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, | |||
2636 | QualType &T, SourceLocation Loc, | |||
2637 | unsigned FailedFoldDiagID); | |||
2638 | void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S); | |||
2639 | bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info); | |||
2640 | bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, | |||
2641 | DeclarationName Name, SourceLocation Loc, | |||
2642 | bool IsTemplateId); | |||
2643 | void | |||
2644 | diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, | |||
2645 | SourceLocation FallbackLoc, | |||
2646 | SourceLocation ConstQualLoc = SourceLocation(), | |||
2647 | SourceLocation VolatileQualLoc = SourceLocation(), | |||
2648 | SourceLocation RestrictQualLoc = SourceLocation(), | |||
2649 | SourceLocation AtomicQualLoc = SourceLocation(), | |||
2650 | SourceLocation UnalignedQualLoc = SourceLocation()); | |||
2651 | ||||
2652 | static bool adjustContextForLocalExternDecl(DeclContext *&DC); | |||
2653 | void DiagnoseFunctionSpecifiers(const DeclSpec &DS); | |||
2654 | NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D, | |||
2655 | const LookupResult &R); | |||
2656 | NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R); | |||
2657 | NamedDecl *getShadowedDeclaration(const BindingDecl *D, | |||
2658 | const LookupResult &R); | |||
2659 | void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, | |||
2660 | const LookupResult &R); | |||
2661 | void CheckShadow(Scope *S, VarDecl *D); | |||
2662 | ||||
2663 | /// Warn if 'E', which is an expression that is about to be modified, refers | |||
2664 | /// to a shadowing declaration. | |||
2665 | void CheckShadowingDeclModification(Expr *E, SourceLocation Loc); | |||
2666 | ||||
2667 | void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI); | |||
2668 | ||||
2669 | private: | |||
2670 | /// Map of current shadowing declarations to shadowed declarations. Warn if | |||
2671 | /// it looks like the user is trying to modify the shadowing declaration. | |||
2672 | llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls; | |||
2673 | ||||
2674 | public: | |||
2675 | void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange); | |||
2676 | void handleTagNumbering(const TagDecl *Tag, Scope *TagScope); | |||
2677 | void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, | |||
2678 | TypedefNameDecl *NewTD); | |||
2679 | void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D); | |||
2680 | NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | |||
2681 | TypeSourceInfo *TInfo, | |||
2682 | LookupResult &Previous); | |||
2683 | NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D, | |||
2684 | LookupResult &Previous, bool &Redeclaration); | |||
2685 | NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, | |||
2686 | TypeSourceInfo *TInfo, | |||
2687 | LookupResult &Previous, | |||
2688 | MultiTemplateParamsArg TemplateParamLists, | |||
2689 | bool &AddToScope, | |||
2690 | ArrayRef<BindingDecl *> Bindings = None); | |||
2691 | NamedDecl * | |||
2692 | ActOnDecompositionDeclarator(Scope *S, Declarator &D, | |||
2693 | MultiTemplateParamsArg TemplateParamLists); | |||
2694 | // Returns true if the variable declaration is a redeclaration | |||
2695 | bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); | |||
2696 | void CheckVariableDeclarationType(VarDecl *NewVD); | |||
2697 | bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, | |||
2698 | Expr *Init); | |||
2699 | void CheckCompleteVariableDeclaration(VarDecl *VD); | |||
2700 | void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD); | |||
2701 | void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D); | |||
2702 | ||||
2703 | NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, | |||
2704 | TypeSourceInfo *TInfo, | |||
2705 | LookupResult &Previous, | |||
2706 | MultiTemplateParamsArg TemplateParamLists, | |||
2707 | bool &AddToScope); | |||
2708 | bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); | |||
2709 | ||||
2710 | enum class CheckConstexprKind { | |||
2711 | /// Diagnose issues that are non-constant or that are extensions. | |||
2712 | Diagnose, | |||
2713 | /// Identify whether this function satisfies the formal rules for constexpr | |||
2714 | /// functions in the current lanugage mode (with no extensions). | |||
2715 | CheckValid | |||
2716 | }; | |||
2717 | ||||
2718 | bool CheckConstexprFunctionDefinition(const FunctionDecl *FD, | |||
2719 | CheckConstexprKind Kind); | |||
2720 | ||||
2721 | void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD); | |||
2722 | void FindHiddenVirtualMethods(CXXMethodDecl *MD, | |||
2723 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods); | |||
2724 | void NoteHiddenVirtualMethods(CXXMethodDecl *MD, | |||
2725 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods); | |||
2726 | // Returns true if the function declaration is a redeclaration | |||
2727 | bool CheckFunctionDeclaration(Scope *S, | |||
2728 | FunctionDecl *NewFD, LookupResult &Previous, | |||
2729 | bool IsMemberSpecialization); | |||
2730 | bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl); | |||
2731 | bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, | |||
2732 | QualType NewT, QualType OldT); | |||
2733 | void CheckMain(FunctionDecl *FD, const DeclSpec &D); | |||
2734 | void CheckMSVCRTEntryPoint(FunctionDecl *FD); | |||
2735 | Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, | |||
2736 | bool IsDefinition); | |||
2737 | void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D); | |||
2738 | Decl *ActOnParamDeclarator(Scope *S, Declarator &D); | |||
2739 | ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, | |||
2740 | SourceLocation Loc, | |||
2741 | QualType T); | |||
2742 | ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc, | |||
2743 | SourceLocation NameLoc, IdentifierInfo *Name, | |||
2744 | QualType T, TypeSourceInfo *TSInfo, | |||
2745 | StorageClass SC); | |||
2746 | void ActOnParamDefaultArgument(Decl *param, | |||
2747 | SourceLocation EqualLoc, | |||
2748 | Expr *defarg); | |||
2749 | void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, | |||
2750 | SourceLocation ArgLoc); | |||
2751 | void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc); | |||
2752 | ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, | |||
2753 | SourceLocation EqualLoc); | |||
2754 | void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, | |||
2755 | SourceLocation EqualLoc); | |||
2756 | ||||
2757 | // Contexts where using non-trivial C union types can be disallowed. This is | |||
2758 | // passed to err_non_trivial_c_union_in_invalid_context. | |||
2759 | enum NonTrivialCUnionContext { | |||
2760 | // Function parameter. | |||
2761 | NTCUC_FunctionParam, | |||
2762 | // Function return. | |||
2763 | NTCUC_FunctionReturn, | |||
2764 | // Default-initialized object. | |||
2765 | NTCUC_DefaultInitializedObject, | |||
2766 | // Variable with automatic storage duration. | |||
2767 | NTCUC_AutoVar, | |||
2768 | // Initializer expression that might copy from another object. | |||
2769 | NTCUC_CopyInit, | |||
2770 | // Assignment. | |||
2771 | NTCUC_Assignment, | |||
2772 | // Compound literal. | |||
2773 | NTCUC_CompoundLiteral, | |||
2774 | // Block capture. | |||
2775 | NTCUC_BlockCapture, | |||
2776 | // lvalue-to-rvalue conversion of volatile type. | |||
2777 | NTCUC_LValueToRValueVolatile, | |||
2778 | }; | |||
2779 | ||||
2780 | /// Emit diagnostics if the initializer or any of its explicit or | |||
2781 | /// implicitly-generated subexpressions require copying or | |||
2782 | /// default-initializing a type that is or contains a C union type that is | |||
2783 | /// non-trivial to copy or default-initialize. | |||
2784 | void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc); | |||
2785 | ||||
2786 | // These flags are passed to checkNonTrivialCUnion. | |||
2787 | enum NonTrivialCUnionKind { | |||
2788 | NTCUK_Init = 0x1, | |||
2789 | NTCUK_Destruct = 0x2, | |||
2790 | NTCUK_Copy = 0x4, | |||
2791 | }; | |||
2792 | ||||
2793 | /// Emit diagnostics if a non-trivial C union type or a struct that contains | |||
2794 | /// a non-trivial C union is used in an invalid context. | |||
2795 | void checkNonTrivialCUnion(QualType QT, SourceLocation Loc, | |||
2796 | NonTrivialCUnionContext UseContext, | |||
2797 | unsigned NonTrivialKind); | |||
2798 | ||||
2799 | void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit); | |||
2800 | void ActOnUninitializedDecl(Decl *dcl); | |||
2801 | void ActOnInitializerError(Decl *Dcl); | |||
2802 | ||||
2803 | void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc); | |||
2804 | void ActOnCXXForRangeDecl(Decl *D); | |||
2805 | StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, | |||
2806 | IdentifierInfo *Ident, | |||
2807 | ParsedAttributes &Attrs, | |||
2808 | SourceLocation AttrEnd); | |||
2809 | void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc); | |||
2810 | void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc); | |||
2811 | void CheckStaticLocalForDllExport(VarDecl *VD); | |||
2812 | void FinalizeDeclaration(Decl *D); | |||
2813 | DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | |||
2814 | ArrayRef<Decl *> Group); | |||
2815 | DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group); | |||
2816 | ||||
2817 | /// Should be called on all declarations that might have attached | |||
2818 | /// documentation comments. | |||
2819 | void ActOnDocumentableDecl(Decl *D); | |||
2820 | void ActOnDocumentableDecls(ArrayRef<Decl *> Group); | |||
2821 | ||||
2822 | void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | |||
2823 | SourceLocation LocAfterDecls); | |||
2824 | void CheckForFunctionRedefinition( | |||
2825 | FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr, | |||
2826 | SkipBodyInfo *SkipBody = nullptr); | |||
2827 | Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D, | |||
2828 | MultiTemplateParamsArg TemplateParamLists, | |||
2829 | SkipBodyInfo *SkipBody = nullptr); | |||
2830 | Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D, | |||
2831 | SkipBodyInfo *SkipBody = nullptr); | |||
2832 | void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D); | |||
2833 | ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr); | |||
2834 | ExprResult ActOnRequiresClause(ExprResult ConstraintExpr); | |||
2835 | void ActOnStartOfObjCMethodDef(Scope *S, Decl *D); | |||
2836 | bool isObjCMethodDecl(Decl *D) { | |||
2837 | return D && isa<ObjCMethodDecl>(D); | |||
2838 | } | |||
2839 | ||||
2840 | /// Determine whether we can delay parsing the body of a function or | |||
2841 | /// function template until it is used, assuming we don't care about emitting | |||
2842 | /// code for that function. | |||
2843 | /// | |||
2844 | /// This will be \c false if we may need the body of the function in the | |||
2845 | /// middle of parsing an expression (where it's impractical to switch to | |||
2846 | /// parsing a different function), for instance, if it's constexpr in C++11 | |||
2847 | /// or has an 'auto' return type in C++14. These cases are essentially bugs. | |||
2848 | bool canDelayFunctionBody(const Declarator &D); | |||
2849 | ||||
2850 | /// Determine whether we can skip parsing the body of a function | |||
2851 | /// definition, assuming we don't care about analyzing its body or emitting | |||
2852 | /// code for that function. | |||
2853 | /// | |||
2854 | /// This will be \c false only if we may need the body of the function in | |||
2855 | /// order to parse the rest of the program (for instance, if it is | |||
2856 | /// \c constexpr in C++11 or has an 'auto' return type in C++14). | |||
2857 | bool canSkipFunctionBody(Decl *D); | |||
2858 | ||||
2859 | void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope); | |||
2860 | Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body); | |||
2861 | Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation); | |||
2862 | Decl *ActOnSkippedFunctionBody(Decl *Decl); | |||
2863 | void ActOnFinishInlineFunctionDef(FunctionDecl *D); | |||
2864 | ||||
2865 | /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an | |||
2866 | /// attribute for which parsing is delayed. | |||
2867 | void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs); | |||
2868 | ||||
2869 | /// Diagnose any unused parameters in the given sequence of | |||
2870 | /// ParmVarDecl pointers. | |||
2871 | void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters); | |||
2872 | ||||
2873 | /// Diagnose whether the size of parameters or return value of a | |||
2874 | /// function or obj-c method definition is pass-by-value and larger than a | |||
2875 | /// specified threshold. | |||
2876 | void | |||
2877 | DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters, | |||
2878 | QualType ReturnTy, NamedDecl *D); | |||
2879 | ||||
2880 | void DiagnoseInvalidJumps(Stmt *Body); | |||
2881 | Decl *ActOnFileScopeAsmDecl(Expr *expr, | |||
2882 | SourceLocation AsmLoc, | |||
2883 | SourceLocation RParenLoc); | |||
2884 | ||||
2885 | /// Handle a C++11 empty-declaration and attribute-declaration. | |||
2886 | Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList, | |||
2887 | SourceLocation SemiLoc); | |||
2888 | ||||
2889 | enum class ModuleDeclKind { | |||
2890 | Interface, ///< 'export module X;' | |||
2891 | Implementation, ///< 'module X;' | |||
2892 | }; | |||
2893 | ||||
2894 | /// The parser has processed a module-declaration that begins the definition | |||
2895 | /// of a module interface or implementation. | |||
2896 | DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc, | |||
2897 | SourceLocation ModuleLoc, ModuleDeclKind MDK, | |||
2898 | ModuleIdPath Path, bool IsFirstDecl); | |||
2899 | ||||
2900 | /// The parser has processed a global-module-fragment declaration that begins | |||
2901 | /// the definition of the global module fragment of the current module unit. | |||
2902 | /// \param ModuleLoc The location of the 'module' keyword. | |||
2903 | DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc); | |||
2904 | ||||
2905 | /// The parser has processed a private-module-fragment declaration that begins | |||
2906 | /// the definition of the private module fragment of the current module unit. | |||
2907 | /// \param ModuleLoc The location of the 'module' keyword. | |||
2908 | /// \param PrivateLoc The location of the 'private' keyword. | |||
2909 | DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, | |||
2910 | SourceLocation PrivateLoc); | |||
2911 | ||||
2912 | /// The parser has processed a module import declaration. | |||
2913 | /// | |||
2914 | /// \param StartLoc The location of the first token in the declaration. This | |||
2915 | /// could be the location of an '@', 'export', or 'import'. | |||
2916 | /// \param ExportLoc The location of the 'export' keyword, if any. | |||
2917 | /// \param ImportLoc The location of the 'import' keyword. | |||
2918 | /// \param Path The module access path. | |||
2919 | DeclResult ActOnModuleImport(SourceLocation StartLoc, | |||
2920 | SourceLocation ExportLoc, | |||
2921 | SourceLocation ImportLoc, ModuleIdPath Path); | |||
2922 | DeclResult ActOnModuleImport(SourceLocation StartLoc, | |||
2923 | SourceLocation ExportLoc, | |||
2924 | SourceLocation ImportLoc, Module *M, | |||
2925 | ModuleIdPath Path = {}); | |||
2926 | ||||
2927 | /// The parser has processed a module import translated from a | |||
2928 | /// #include or similar preprocessing directive. | |||
2929 | void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod); | |||
2930 | void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod); | |||
2931 | ||||
2932 | /// The parsed has entered a submodule. | |||
2933 | void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod); | |||
2934 | /// The parser has left a submodule. | |||
2935 | void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod); | |||
2936 | ||||
2937 | /// Create an implicit import of the given module at the given | |||
2938 | /// source location, for error recovery, if possible. | |||
2939 | /// | |||
2940 | /// This routine is typically used when an entity found by name lookup | |||
2941 | /// is actually hidden within a module that we know about but the user | |||
2942 | /// has forgotten to import. | |||
2943 | void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, | |||
2944 | Module *Mod); | |||
2945 | ||||
2946 | /// Kinds of missing import. Note, the values of these enumerators correspond | |||
2947 | /// to %select values in diagnostics. | |||
2948 | enum class MissingImportKind { | |||
2949 | Declaration, | |||
2950 | Definition, | |||
2951 | DefaultArgument, | |||
2952 | ExplicitSpecialization, | |||
2953 | PartialSpecialization | |||
2954 | }; | |||
2955 | ||||
2956 | /// Diagnose that the specified declaration needs to be visible but | |||
2957 | /// isn't, and suggest a module import that would resolve the problem. | |||
2958 | void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, | |||
2959 | MissingImportKind MIK, bool Recover = true); | |||
2960 | void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, | |||
2961 | SourceLocation DeclLoc, ArrayRef<Module *> Modules, | |||
2962 | MissingImportKind MIK, bool Recover); | |||
2963 | ||||
2964 | Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, | |||
2965 | SourceLocation LBraceLoc); | |||
2966 | Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl, | |||
2967 | SourceLocation RBraceLoc); | |||
2968 | ||||
2969 | /// We've found a use of a templated declaration that would trigger an | |||
2970 | /// implicit instantiation. Check that any relevant explicit specializations | |||
2971 | /// and partial specializations are visible, and diagnose if not. | |||
2972 | void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); | |||
2973 | ||||
2974 | /// Retrieve a suitable printing policy for diagnostics. | |||
2975 | PrintingPolicy getPrintingPolicy() const { | |||
2976 | return getPrintingPolicy(Context, PP); | |||
2977 | } | |||
2978 | ||||
2979 | /// Retrieve a suitable printing policy for diagnostics. | |||
2980 | static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx, | |||
2981 | const Preprocessor &PP); | |||
2982 | ||||
2983 | /// Scope actions. | |||
2984 | void ActOnPopScope(SourceLocation Loc, Scope *S); | |||
2985 | void ActOnTranslationUnitScope(Scope *S); | |||
2986 | ||||
2987 | Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | |||
2988 | RecordDecl *&AnonRecord); | |||
2989 | Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, | |||
2990 | MultiTemplateParamsArg TemplateParams, | |||
2991 | bool IsExplicitInstantiation, | |||
2992 | RecordDecl *&AnonRecord); | |||
2993 | ||||
2994 | Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | |||
2995 | AccessSpecifier AS, | |||
2996 | RecordDecl *Record, | |||
2997 | const PrintingPolicy &Policy); | |||
2998 | ||||
2999 | Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, | |||
3000 | RecordDecl *Record); | |||
3001 | ||||
3002 | /// Common ways to introduce type names without a tag for use in diagnostics. | |||
3003 | /// Keep in sync with err_tag_reference_non_tag. | |||
3004 | enum NonTagKind { | |||
3005 | NTK_NonStruct, | |||
3006 | NTK_NonClass, | |||
3007 | NTK_NonUnion, | |||
3008 | NTK_NonEnum, | |||
3009 | NTK_Typedef, | |||
3010 | NTK_TypeAlias, | |||
3011 | NTK_Template, | |||
3012 | NTK_TypeAliasTemplate, | |||
3013 | NTK_TemplateTemplateArgument, | |||
3014 | }; | |||
3015 | ||||
3016 | /// Given a non-tag type declaration, returns an enum useful for indicating | |||
3017 | /// what kind of non-tag type this is. | |||
3018 | NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK); | |||
3019 | ||||
3020 | bool isAcceptableTagRedeclaration(const TagDecl *Previous, | |||
3021 | TagTypeKind NewTag, bool isDefinition, | |||
3022 | SourceLocation NewTagLoc, | |||
3023 | const IdentifierInfo *Name); | |||
3024 | ||||
3025 | enum TagUseKind { | |||
3026 | TUK_Reference, // Reference to a tag: 'struct foo *X;' | |||
3027 | TUK_Declaration, // Fwd decl of a tag: 'struct foo;' | |||
3028 | TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;' | |||
3029 | TUK_Friend // Friend declaration: 'friend struct foo;' | |||
3030 | }; | |||
3031 | ||||
3032 | Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | |||
3033 | SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, | |||
3034 | SourceLocation NameLoc, const ParsedAttributesView &Attr, | |||
3035 | AccessSpecifier AS, SourceLocation ModulePrivateLoc, | |||
3036 | MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, | |||
3037 | bool &IsDependent, SourceLocation ScopedEnumKWLoc, | |||
3038 | bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, | |||
3039 | bool IsTypeSpecifier, bool IsTemplateParamOrArg, | |||
3040 | SkipBodyInfo *SkipBody = nullptr); | |||
3041 | ||||
3042 | Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, | |||
3043 | unsigned TagSpec, SourceLocation TagLoc, | |||
3044 | CXXScopeSpec &SS, IdentifierInfo *Name, | |||
3045 | SourceLocation NameLoc, | |||
3046 | const ParsedAttributesView &Attr, | |||
3047 | MultiTemplateParamsArg TempParamLists); | |||
3048 | ||||
3049 | TypeResult ActOnDependentTag(Scope *S, | |||
3050 | unsigned TagSpec, | |||
3051 | TagUseKind TUK, | |||
3052 | const CXXScopeSpec &SS, | |||
3053 | IdentifierInfo *Name, | |||
3054 | SourceLocation TagLoc, | |||
3055 | SourceLocation NameLoc); | |||
3056 | ||||
3057 | void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, | |||
3058 | IdentifierInfo *ClassName, | |||
3059 | SmallVectorImpl<Decl *> &Decls); | |||
3060 | Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, | |||
3061 | Declarator &D, Expr *BitfieldWidth); | |||
3062 | ||||
3063 | FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, | |||
3064 | Declarator &D, Expr *BitfieldWidth, | |||
3065 | InClassInitStyle InitStyle, | |||
3066 | AccessSpecifier AS); | |||
3067 | MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD, | |||
3068 | SourceLocation DeclStart, Declarator &D, | |||
3069 | Expr *BitfieldWidth, | |||
3070 | InClassInitStyle InitStyle, | |||
3071 | AccessSpecifier AS, | |||
3072 | const ParsedAttr &MSPropertyAttr); | |||
3073 | ||||
3074 | FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, | |||
3075 | TypeSourceInfo *TInfo, | |||
3076 | RecordDecl *Record, SourceLocation Loc, | |||
3077 | bool Mutable, Expr *BitfieldWidth, | |||
3078 | InClassInitStyle InitStyle, | |||
3079 | SourceLocation TSSL, | |||
3080 | AccessSpecifier AS, NamedDecl *PrevDecl, | |||
3081 | Declarator *D = nullptr); | |||
3082 | ||||
3083 | bool CheckNontrivialField(FieldDecl *FD); | |||
3084 | void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM); | |||
3085 | ||||
3086 | enum TrivialABIHandling { | |||
3087 | /// The triviality of a method unaffected by "trivial_abi". | |||
3088 | TAH_IgnoreTrivialABI, | |||
3089 | ||||
3090 | /// The triviality of a method affected by "trivial_abi". | |||
3091 | TAH_ConsiderTrivialABI | |||
3092 | }; | |||
3093 | ||||
3094 | bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, | |||
3095 | TrivialABIHandling TAH = TAH_IgnoreTrivialABI, | |||
3096 | bool Diagnose = false); | |||
3097 | ||||
3098 | /// For a defaulted function, the kind of defaulted function that it is. | |||
3099 | class DefaultedFunctionKind { | |||
3100 | CXXSpecialMember SpecialMember : 8; | |||
3101 | DefaultedComparisonKind Comparison : 8; | |||
3102 | ||||
3103 | public: | |||
3104 | DefaultedFunctionKind() | |||
3105 | : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) { | |||
3106 | } | |||
3107 | DefaultedFunctionKind(CXXSpecialMember CSM) | |||
3108 | : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {} | |||
3109 | DefaultedFunctionKind(DefaultedComparisonKind Comp) | |||
3110 | : SpecialMember(CXXInvalid), Comparison(Comp) {} | |||
3111 | ||||
3112 | bool isSpecialMember() const { return SpecialMember != CXXInvalid; } | |||
3113 | bool isComparison() const { | |||
3114 | return Comparison != DefaultedComparisonKind::None; | |||
3115 | } | |||
3116 | ||||
3117 | explicit operator bool() const { | |||
3118 | return isSpecialMember() || isComparison(); | |||
3119 | } | |||
3120 | ||||
3121 | CXXSpecialMember asSpecialMember() const { return SpecialMember; } | |||
3122 | DefaultedComparisonKind asComparison() const { return Comparison; } | |||
3123 | ||||
3124 | /// Get the index of this function kind for use in diagnostics. | |||
3125 | unsigned getDiagnosticIndex() const { | |||
3126 | static_assert(CXXInvalid > CXXDestructor, | |||
3127 | "invalid should have highest index"); | |||
3128 | static_assert((unsigned)DefaultedComparisonKind::None == 0, | |||
3129 | "none should be equal to zero"); | |||
3130 | return SpecialMember + (unsigned)Comparison; | |||
3131 | } | |||
3132 | }; | |||
3133 | ||||
3134 | DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD); | |||
3135 | ||||
3136 | CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) { | |||
3137 | return getDefaultedFunctionKind(MD).asSpecialMember(); | |||
3138 | } | |||
3139 | DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) { | |||
3140 | return getDefaultedFunctionKind(FD).asComparison(); | |||
3141 | } | |||
3142 | ||||
3143 | void ActOnLastBitfield(SourceLocation DeclStart, | |||
3144 | SmallVectorImpl<Decl *> &AllIvarDecls); | |||
3145 | Decl *ActOnIvar(Scope *S, SourceLocation DeclStart, | |||
3146 | Declarator &D, Expr *BitfieldWidth, | |||
3147 | tok::ObjCKeywordKind visibility); | |||
3148 | ||||
3149 | // This is used for both record definitions and ObjC interface declarations. | |||
3150 | void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, | |||
3151 | ArrayRef<Decl *> Fields, SourceLocation LBrac, | |||
3152 | SourceLocation RBrac, const ParsedAttributesView &AttrList); | |||
3153 | ||||
3154 | /// ActOnTagStartDefinition - Invoked when we have entered the | |||
3155 | /// scope of a tag's definition (e.g., for an enumeration, class, | |||
3156 | /// struct, or union). | |||
3157 | void ActOnTagStartDefinition(Scope *S, Decl *TagDecl); | |||
3158 | ||||
3159 | /// Perform ODR-like check for C/ObjC when merging tag types from modules. | |||
3160 | /// Differently from C++, actually parse the body and reject / error out | |||
3161 | /// in case of a structural mismatch. | |||
3162 | bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, | |||
3163 | SkipBodyInfo &SkipBody); | |||
3164 | ||||
3165 | typedef void *SkippedDefinitionContext; | |||
3166 | ||||
3167 | /// Invoked when we enter a tag definition that we're skipping. | |||
3168 | SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD); | |||
3169 | ||||
3170 | Decl *ActOnObjCContainerStartDefinition(Decl *IDecl); | |||
3171 | ||||
3172 | /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a | |||
3173 | /// C++ record definition's base-specifiers clause and are starting its | |||
3174 | /// member declarations. | |||
3175 | void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, | |||
3176 | SourceLocation FinalLoc, | |||
3177 | bool IsFinalSpelledSealed, | |||
3178 | bool IsAbstract, | |||
3179 | SourceLocation LBraceLoc); | |||
3180 | ||||
3181 | /// ActOnTagFinishDefinition - Invoked once we have finished parsing | |||
3182 | /// the definition of a tag (enumeration, class, struct, or union). | |||
3183 | void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, | |||
3184 | SourceRange BraceRange); | |||
3185 | ||||
3186 | void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context); | |||
3187 | ||||
3188 | void ActOnObjCContainerFinishDefinition(); | |||
3189 | ||||
3190 | /// Invoked when we must temporarily exit the objective-c container | |||
3191 | /// scope for parsing/looking-up C constructs. | |||
3192 | /// | |||
3193 | /// Must be followed by a call to \see ActOnObjCReenterContainerContext | |||
3194 | void ActOnObjCTemporaryExitContainerContext(DeclContext *DC); | |||
3195 | void ActOnObjCReenterContainerContext(DeclContext *DC); | |||
3196 | ||||
3197 | /// ActOnTagDefinitionError - Invoked when there was an unrecoverable | |||
3198 | /// error parsing the definition of a tag. | |||
3199 | void ActOnTagDefinitionError(Scope *S, Decl *TagDecl); | |||
3200 | ||||
3201 | EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, | |||
3202 | EnumConstantDecl *LastEnumConst, | |||
3203 | SourceLocation IdLoc, | |||
3204 | IdentifierInfo *Id, | |||
3205 | Expr *val); | |||
3206 | bool CheckEnumUnderlyingType(TypeSourceInfo *TI); | |||
3207 | bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, | |||
3208 | QualType EnumUnderlyingTy, bool IsFixed, | |||
3209 | const EnumDecl *Prev); | |||
3210 | ||||
3211 | /// Determine whether the body of an anonymous enumeration should be skipped. | |||
3212 | /// \param II The name of the first enumerator. | |||
3213 | SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, | |||
3214 | SourceLocation IILoc); | |||
3215 | ||||
3216 | Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, | |||
3217 | SourceLocation IdLoc, IdentifierInfo *Id, | |||
3218 | const ParsedAttributesView &Attrs, | |||
3219 | SourceLocation EqualLoc, Expr *Val); | |||
3220 | void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, | |||
3221 | Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S, | |||
3222 | const ParsedAttributesView &Attr); | |||
3223 | ||||
3224 | /// Set the current declaration context until it gets popped. | |||
3225 | void PushDeclContext(Scope *S, DeclContext *DC); | |||
3226 | void PopDeclContext(); | |||
3227 | ||||
3228 | /// EnterDeclaratorContext - Used when we must lookup names in the context | |||
3229 | /// of a declarator's nested name specifier. | |||
3230 | void EnterDeclaratorContext(Scope *S, DeclContext *DC); | |||
3231 | void ExitDeclaratorContext(Scope *S); | |||
3232 | ||||
3233 | /// Enter a template parameter scope, after it's been associated with a particular | |||
3234 | /// DeclContext. Causes lookup within the scope to chain through enclosing contexts | |||
3235 | /// in the correct order. | |||
3236 | void EnterTemplatedContext(Scope *S, DeclContext *DC); | |||
3237 | ||||
3238 | /// Push the parameters of D, which must be a function, into scope. | |||
3239 | void ActOnReenterFunctionContext(Scope* S, Decl* D); | |||
3240 | void ActOnExitFunctionContext(); | |||
3241 | ||||
3242 | DeclContext *getFunctionLevelDeclContext(); | |||
3243 | ||||
3244 | /// getCurFunctionDecl - If inside of a function body, this returns a pointer | |||
3245 | /// to the function decl for the function being parsed. If we're currently | |||
3246 | /// in a 'block', this returns the containing context. | |||
3247 | FunctionDecl *getCurFunctionDecl(); | |||
3248 | ||||
3249 | /// getCurMethodDecl - If inside of a method body, this returns a pointer to | |||
3250 | /// the method decl for the method being parsed. If we're currently | |||
3251 | /// in a 'block', this returns the containing context. | |||
3252 | ObjCMethodDecl *getCurMethodDecl(); | |||
3253 | ||||
3254 | /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method | |||
3255 | /// or C function we're in, otherwise return null. If we're currently | |||
3256 | /// in a 'block', this returns the containing context. | |||
3257 | NamedDecl *getCurFunctionOrMethodDecl(); | |||
3258 | ||||
3259 | /// Add this decl to the scope shadowed decl chains. | |||
3260 | void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); | |||
3261 | ||||
3262 | /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true | |||
3263 | /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns | |||
3264 | /// true if 'D' belongs to the given declaration context. | |||
3265 | /// | |||
3266 | /// \param AllowInlineNamespace If \c true, allow the declaration to be in the | |||
3267 | /// enclosing namespace set of the context, rather than contained | |||
3268 | /// directly within it. | |||
3269 | bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr, | |||
3270 | bool AllowInlineNamespace = false); | |||
3271 | ||||
3272 | /// Finds the scope corresponding to the given decl context, if it | |||
3273 | /// happens to be an enclosing scope. Otherwise return NULL. | |||
3274 | static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC); | |||
3275 | ||||
3276 | /// Subroutines of ActOnDeclarator(). | |||
3277 | TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | |||
3278 | TypeSourceInfo *TInfo); | |||
3279 | bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New); | |||
3280 | ||||
3281 | /// Describes the kind of merge to perform for availability | |||
3282 | /// attributes (including "deprecated", "unavailable", and "availability"). | |||
3283 | enum AvailabilityMergeKind { | |||
3284 | /// Don't merge availability attributes at all. | |||
3285 | AMK_None, | |||
3286 | /// Merge availability attributes for a redeclaration, which requires | |||
3287 | /// an exact match. | |||
3288 | AMK_Redeclaration, | |||
3289 | /// Merge availability attributes for an override, which requires | |||
3290 | /// an exact match or a weakening of constraints. | |||
3291 | AMK_Override, | |||
3292 | /// Merge availability attributes for an implementation of | |||
3293 | /// a protocol requirement. | |||
3294 | AMK_ProtocolImplementation, | |||
3295 | /// Merge availability attributes for an implementation of | |||
3296 | /// an optional protocol requirement. | |||
3297 | AMK_OptionalProtocolImplementation | |||
3298 | }; | |||
3299 | ||||
3300 | /// Describes the kind of priority given to an availability attribute. | |||
3301 | /// | |||
3302 | /// The sum of priorities deteremines the final priority of the attribute. | |||
3303 | /// The final priority determines how the attribute will be merged. | |||
3304 | /// An attribute with a lower priority will always remove higher priority | |||
3305 | /// attributes for the specified platform when it is being applied. An | |||
3306 | /// attribute with a higher priority will not be applied if the declaration | |||
3307 | /// already has an availability attribute with a lower priority for the | |||
3308 | /// specified platform. The final prirority values are not expected to match | |||
3309 | /// the values in this enumeration, but instead should be treated as a plain | |||
3310 | /// integer value. This enumeration just names the priority weights that are | |||
3311 | /// used to calculate that final vaue. | |||
3312 | enum AvailabilityPriority : int { | |||
3313 | /// The availability attribute was specified explicitly next to the | |||
3314 | /// declaration. | |||
3315 | AP_Explicit = 0, | |||
3316 | ||||
3317 | /// The availability attribute was applied using '#pragma clang attribute'. | |||
3318 | AP_PragmaClangAttribute = 1, | |||
3319 | ||||
3320 | /// The availability attribute for a specific platform was inferred from | |||
3321 | /// an availability attribute for another platform. | |||
3322 | AP_InferredFromOtherPlatform = 2 | |||
3323 | }; | |||
3324 | ||||
3325 | /// Attribute merging methods. Return true if a new attribute was added. | |||
3326 | AvailabilityAttr * | |||
3327 | mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, | |||
3328 | IdentifierInfo *Platform, bool Implicit, | |||
3329 | VersionTuple Introduced, VersionTuple Deprecated, | |||
3330 | VersionTuple Obsoleted, bool IsUnavailable, | |||
3331 | StringRef Message, bool IsStrict, StringRef Replacement, | |||
3332 | AvailabilityMergeKind AMK, int Priority); | |||
3333 | TypeVisibilityAttr * | |||
3334 | mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3335 | TypeVisibilityAttr::VisibilityType Vis); | |||
3336 | VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3337 | VisibilityAttr::VisibilityType Vis); | |||
3338 | UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3339 | StringRef UuidAsWritten, MSGuidDecl *GuidDecl); | |||
3340 | DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI); | |||
3341 | DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI); | |||
3342 | MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D, | |||
3343 | const AttributeCommonInfo &CI, | |||
3344 | bool BestCase, | |||
3345 | MSInheritanceModel Model); | |||
3346 | FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3347 | IdentifierInfo *Format, int FormatIdx, | |||
3348 | int FirstArg); | |||
3349 | SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3350 | StringRef Name); | |||
3351 | CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, | |||
3352 | StringRef Name); | |||
3353 | AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D, | |||
3354 | const AttributeCommonInfo &CI, | |||
3355 | const IdentifierInfo *Ident); | |||
3356 | MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI); | |||
3357 | SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, | |||
3358 | StringRef Name); | |||
3359 | OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D, | |||
3360 | const AttributeCommonInfo &CI); | |||
3361 | InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL); | |||
3362 | InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, | |||
3363 | const InternalLinkageAttr &AL); | |||
3364 | WebAssemblyImportNameAttr *mergeImportNameAttr( | |||
3365 | Decl *D, const WebAssemblyImportNameAttr &AL); | |||
3366 | WebAssemblyImportModuleAttr *mergeImportModuleAttr( | |||
3367 | Decl *D, const WebAssemblyImportModuleAttr &AL); | |||
3368 | EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL); | |||
3369 | EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D, | |||
3370 | const EnforceTCBLeafAttr &AL); | |||
3371 | ||||
3372 | void mergeDeclAttributes(NamedDecl *New, Decl *Old, | |||
3373 | AvailabilityMergeKind AMK = AMK_Redeclaration); | |||
3374 | void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, | |||
3375 | LookupResult &OldDecls); | |||
3376 | bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S, | |||
3377 | bool MergeTypeWithOld); | |||
3378 | bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, | |||
3379 | Scope *S, bool MergeTypeWithOld); | |||
3380 | void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old); | |||
3381 | void MergeVarDecl(VarDecl *New, LookupResult &Previous); | |||
3382 | void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld); | |||
3383 | void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old); | |||
3384 | bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn); | |||
3385 | void notePreviousDefinition(const NamedDecl *Old, SourceLocation New); | |||
3386 | bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S); | |||
3387 | ||||
3388 | // AssignmentAction - This is used by all the assignment diagnostic functions | |||
3389 | // to represent what is actually causing the operation | |||
3390 | enum AssignmentAction { | |||
3391 | AA_Assigning, | |||
3392 | AA_Passing, | |||
3393 | AA_Returning, | |||
3394 | AA_Converting, | |||
3395 | AA_Initializing, | |||
3396 | AA_Sending, | |||
3397 | AA_Casting, | |||
3398 | AA_Passing_CFAudited | |||
3399 | }; | |||
3400 | ||||
3401 | /// C++ Overloading. | |||
3402 | enum OverloadKind { | |||
3403 | /// This is a legitimate overload: the existing declarations are | |||
3404 | /// functions or function templates with different signatures. | |||
3405 | Ovl_Overload, | |||
3406 | ||||
3407 | /// This is not an overload because the signature exactly matches | |||
3408 | /// an existing declaration. | |||
3409 | Ovl_Match, | |||
3410 | ||||
3411 | /// This is not an overload because the lookup results contain a | |||
3412 | /// non-function. | |||
3413 | Ovl_NonFunction | |||
3414 | }; | |||
3415 | OverloadKind CheckOverload(Scope *S, | |||
3416 | FunctionDecl *New, | |||
3417 | const LookupResult &OldDecls, | |||
3418 | NamedDecl *&OldDecl, | |||
3419 | bool IsForUsingDecl); | |||
3420 | bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl, | |||
3421 | bool ConsiderCudaAttrs = true, | |||
3422 | bool ConsiderRequiresClauses = true); | |||
3423 | ||||
3424 | enum class AllowedExplicit { | |||
3425 | /// Allow no explicit functions to be used. | |||
3426 | None, | |||
3427 | /// Allow explicit conversion functions but not explicit constructors. | |||
3428 | Conversions, | |||
3429 | /// Allow both explicit conversion functions and explicit constructors. | |||
3430 | All | |||
3431 | }; | |||
3432 | ||||
3433 | ImplicitConversionSequence | |||
3434 | TryImplicitConversion(Expr *From, QualType ToType, | |||
3435 | bool SuppressUserConversions, | |||
3436 | AllowedExplicit AllowExplicit, | |||
3437 | bool InOverloadResolution, | |||
3438 | bool CStyle, | |||
3439 | bool AllowObjCWritebackConversion); | |||
3440 | ||||
3441 | bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); | |||
3442 | bool IsFloatingPointPromotion(QualType FromType, QualType ToType); | |||
3443 | bool IsComplexPromotion(QualType FromType, QualType ToType); | |||
3444 | bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | |||
3445 | bool InOverloadResolution, | |||
3446 | QualType& ConvertedType, bool &IncompatibleObjC); | |||
3447 | bool isObjCPointerConversion(QualType FromType, QualType ToType, | |||
3448 | QualType& ConvertedType, bool &IncompatibleObjC); | |||
3449 | bool isObjCWritebackConversion(QualType FromType, QualType ToType, | |||
3450 | QualType &ConvertedType); | |||
3451 | bool IsBlockPointerConversion(QualType FromType, QualType ToType, | |||
3452 | QualType& ConvertedType); | |||
3453 | bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | |||
3454 | const FunctionProtoType *NewType, | |||
3455 | unsigned *ArgPos = nullptr); | |||
3456 | void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | |||
3457 | QualType FromType, QualType ToType); | |||
3458 | ||||
3459 | void maybeExtendBlockObject(ExprResult &E); | |||
3460 | CastKind PrepareCastToObjCObjectPointer(ExprResult &E); | |||
3461 | bool CheckPointerConversion(Expr *From, QualType ToType, | |||
3462 | CastKind &Kind, | |||
3463 | CXXCastPath& BasePath, | |||
3464 | bool IgnoreBaseAccess, | |||
3465 | bool Diagnose = true); | |||
3466 | bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, | |||
3467 | bool InOverloadResolution, | |||
3468 | QualType &ConvertedType); | |||
3469 | bool CheckMemberPointerConversion(Expr *From, QualType ToType, | |||
3470 | CastKind &Kind, | |||
3471 | CXXCastPath &BasePath, | |||
3472 | bool IgnoreBaseAccess); | |||
3473 | bool IsQualificationConversion(QualType FromType, QualType ToType, | |||
3474 | bool CStyle, bool &ObjCLifetimeConversion); | |||
3475 | bool IsFunctionConversion(QualType FromType, QualType ToType, | |||
3476 | QualType &ResultTy); | |||
3477 | bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); | |||
3478 | bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg); | |||
3479 | ||||
3480 | bool CanPerformAggregateInitializationForOverloadResolution( | |||
3481 | const InitializedEntity &Entity, InitListExpr *From); | |||
3482 | ||||
3483 | bool IsStringInit(Expr *Init, const ArrayType *AT); | |||
3484 | ||||
3485 | bool CanPerformCopyInitialization(const InitializedEntity &Entity, | |||
3486 | ExprResult Init); | |||
3487 | ExprResult PerformCopyInitialization(const InitializedEntity &Entity, | |||
3488 | SourceLocation EqualLoc, | |||
3489 | ExprResult Init, | |||
3490 | bool TopLevelOfInitList = false, | |||
3491 | bool AllowExplicit = false); | |||
3492 | ExprResult PerformObjectArgumentInitialization(Expr *From, | |||
3493 | NestedNameSpecifier *Qualifier, | |||
3494 | NamedDecl *FoundDecl, | |||
3495 | CXXMethodDecl *Method); | |||
3496 | ||||
3497 | /// Check that the lifetime of the initializer (and its subobjects) is | |||
3498 | /// sufficient for initializing the entity, and perform lifetime extension | |||
3499 | /// (when permitted) if not. | |||
3500 | void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init); | |||
3501 | ||||
3502 | ExprResult PerformContextuallyConvertToBool(Expr *From); | |||
3503 | ExprResult PerformContextuallyConvertToObjCPointer(Expr *From); | |||
3504 | ||||
3505 | /// Contexts in which a converted constant expression is required. | |||
3506 | enum CCEKind { | |||
3507 | CCEK_CaseValue, ///< Expression in a case label. | |||
3508 | CCEK_Enumerator, ///< Enumerator value with fixed underlying type. | |||
3509 | CCEK_TemplateArg, ///< Value of a non-type template parameter. | |||
3510 | CCEK_ArrayBound, ///< Array bound in array declarator or new-expression. | |||
3511 | CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier. | |||
3512 | }; | |||
3513 | ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, | |||
3514 | llvm::APSInt &Value, CCEKind CCE); | |||
3515 | ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, | |||
3516 | APValue &Value, CCEKind CCE, | |||
3517 | NamedDecl *Dest = nullptr); | |||
3518 | ||||
3519 | /// Abstract base class used to perform a contextual implicit | |||
3520 | /// conversion from an expression to any type passing a filter. | |||
3521 | class ContextualImplicitConverter { | |||
3522 | public: | |||
3523 | bool Suppress; | |||
3524 | bool SuppressConversion; | |||
3525 | ||||
3526 | ContextualImplicitConverter(bool Suppress = false, | |||
3527 | bool SuppressConversion = false) | |||
3528 | : Suppress(Suppress), SuppressConversion(SuppressConversion) {} | |||
3529 | ||||
3530 | /// Determine whether the specified type is a valid destination type | |||
3531 | /// for this conversion. | |||
3532 | virtual bool match(QualType T) = 0; | |||
3533 | ||||
3534 | /// Emits a diagnostic complaining that the expression does not have | |||
3535 | /// integral or enumeration type. | |||
3536 | virtual SemaDiagnosticBuilder | |||
3537 | diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0; | |||
3538 | ||||
3539 | /// Emits a diagnostic when the expression has incomplete class type. | |||
3540 | virtual SemaDiagnosticBuilder | |||
3541 | diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0; | |||
3542 | ||||
3543 | /// Emits a diagnostic when the only matching conversion function | |||
3544 | /// is explicit. | |||
3545 | virtual SemaDiagnosticBuilder diagnoseExplicitConv( | |||
3546 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; | |||
3547 | ||||
3548 | /// Emits a note for the explicit conversion function. | |||
3549 | virtual SemaDiagnosticBuilder | |||
3550 | noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; | |||
3551 | ||||
3552 | /// Emits a diagnostic when there are multiple possible conversion | |||
3553 | /// functions. | |||
3554 | virtual SemaDiagnosticBuilder | |||
3555 | diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0; | |||
3556 | ||||
3557 | /// Emits a note for one of the candidate conversions. | |||
3558 | virtual SemaDiagnosticBuilder | |||
3559 | noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; | |||
3560 | ||||
3561 | /// Emits a diagnostic when we picked a conversion function | |||
3562 | /// (for cases when we are not allowed to pick a conversion function). | |||
3563 | virtual SemaDiagnosticBuilder diagnoseConversion( | |||
3564 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; | |||
3565 | ||||
3566 | virtual ~ContextualImplicitConverter() {} | |||
3567 | }; | |||
3568 | ||||
3569 | class ICEConvertDiagnoser : public ContextualImplicitConverter { | |||
3570 | bool AllowScopedEnumerations; | |||
3571 | ||||
3572 | public: | |||
3573 | ICEConvertDiagnoser(bool AllowScopedEnumerations, | |||
3574 | bool Suppress, bool SuppressConversion) | |||
3575 | : ContextualImplicitConverter(Suppress, SuppressConversion), | |||
3576 | AllowScopedEnumerations(AllowScopedEnumerations) {} | |||
3577 | ||||
3578 | /// Match an integral or (possibly scoped) enumeration type. | |||
3579 | bool match(QualType T) override; | |||
3580 | ||||
3581 | SemaDiagnosticBuilder | |||
3582 | diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override { | |||
3583 | return diagnoseNotInt(S, Loc, T); | |||
3584 | } | |||
3585 | ||||
3586 | /// Emits a diagnostic complaining that the expression does not have | |||
3587 | /// integral or enumeration type. | |||
3588 | virtual SemaDiagnosticBuilder | |||
3589 | diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0; | |||
3590 | }; | |||
3591 | ||||
3592 | /// Perform a contextual implicit conversion. | |||
3593 | ExprResult PerformContextualImplicitConversion( | |||
3594 | SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter); | |||
3595 | ||||
3596 | ||||
3597 | enum ObjCSubscriptKind { | |||
3598 | OS_Array, | |||
3599 | OS_Dictionary, | |||
3600 | OS_Error | |||
3601 | }; | |||
3602 | ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE); | |||
3603 | ||||
3604 | // Note that LK_String is intentionally after the other literals, as | |||
3605 | // this is used for diagnostics logic. | |||
3606 | enum ObjCLiteralKind { | |||
3607 | LK_Array, | |||
3608 | LK_Dictionary, | |||
3609 | LK_Numeric, | |||
3610 | LK_Boxed, | |||
3611 | LK_String, | |||
3612 | LK_Block, | |||
3613 | LK_None | |||
3614 | }; | |||
3615 | ObjCLiteralKind CheckLiteralKind(Expr *FromE); | |||
3616 | ||||
3617 | ExprResult PerformObjectMemberConversion(Expr *From, | |||
3618 | NestedNameSpecifier *Qualifier, | |||
3619 | NamedDecl *FoundDecl, | |||
3620 | NamedDecl *Member); | |||
3621 | ||||
3622 | // Members have to be NamespaceDecl* or TranslationUnitDecl*. | |||
3623 | // TODO: make this is a typesafe union. | |||
3624 | typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet; | |||
3625 | typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet; | |||
3626 | ||||
3627 | using ADLCallKind = CallExpr::ADLCallKind; | |||
3628 | ||||
3629 | void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, | |||
3630 | ArrayRef<Expr *> Args, | |||
3631 | OverloadCandidateSet &CandidateSet, | |||
3632 | bool SuppressUserConversions = false, | |||
3633 | bool PartialOverloading = false, | |||
3634 | bool AllowExplicit = true, | |||
3635 | bool AllowExplicitConversion = false, | |||
3636 | ADLCallKind IsADLCandidate = ADLCallKind::NotADL, | |||
3637 | ConversionSequenceList EarlyConversions = None, | |||
3638 | OverloadCandidateParamOrder PO = {}); | |||
3639 | void AddFunctionCandidates(const UnresolvedSetImpl &Functions, | |||
3640 | ArrayRef<Expr *> Args, | |||
3641 | OverloadCandidateSet &CandidateSet, | |||
3642 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, | |||
3643 | bool SuppressUserConversions = false, | |||
3644 | bool PartialOverloading = false, | |||
3645 | bool FirstArgumentIsBase = false); | |||
3646 | void AddMethodCandidate(DeclAccessPair FoundDecl, | |||
3647 | QualType ObjectType, | |||
3648 | Expr::Classification ObjectClassification, | |||
3649 | ArrayRef<Expr *> Args, | |||
3650 | OverloadCandidateSet& CandidateSet, | |||
3651 | bool SuppressUserConversion = false, | |||
3652 | OverloadCandidateParamOrder PO = {}); | |||
3653 | void AddMethodCandidate(CXXMethodDecl *Method, | |||
3654 | DeclAccessPair FoundDecl, | |||
3655 | CXXRecordDecl *ActingContext, QualType ObjectType, | |||
3656 | Expr::Classification ObjectClassification, | |||
3657 | ArrayRef<Expr *> Args, | |||
3658 | OverloadCandidateSet& CandidateSet, | |||
3659 | bool SuppressUserConversions = false, | |||
3660 | bool PartialOverloading = false, | |||
3661 | ConversionSequenceList EarlyConversions = None, | |||
3662 | OverloadCandidateParamOrder PO = {}); | |||
3663 | void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, | |||
3664 | DeclAccessPair FoundDecl, | |||
3665 | CXXRecordDecl *ActingContext, | |||
3666 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
3667 | QualType ObjectType, | |||
3668 | Expr::Classification ObjectClassification, | |||
3669 | ArrayRef<Expr *> Args, | |||
3670 | OverloadCandidateSet& CandidateSet, | |||
3671 | bool SuppressUserConversions = false, | |||
3672 | bool PartialOverloading = false, | |||
3673 | OverloadCandidateParamOrder PO = {}); | |||
3674 | void AddTemplateOverloadCandidate( | |||
3675 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | |||
3676 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | |||
3677 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, | |||
3678 | bool PartialOverloading = false, bool AllowExplicit = true, | |||
3679 | ADLCallKind IsADLCandidate = ADLCallKind::NotADL, | |||
3680 | OverloadCandidateParamOrder PO = {}); | |||
3681 | bool CheckNonDependentConversions( | |||
3682 | FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, | |||
3683 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, | |||
3684 | ConversionSequenceList &Conversions, bool SuppressUserConversions, | |||
3685 | CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(), | |||
3686 | Expr::Classification ObjectClassification = {}, | |||
3687 | OverloadCandidateParamOrder PO = {}); | |||
3688 | void AddConversionCandidate( | |||
3689 | CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, | |||
3690 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, | |||
3691 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | |||
3692 | bool AllowExplicit, bool AllowResultConversion = true); | |||
3693 | void AddTemplateConversionCandidate( | |||
3694 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, | |||
3695 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, | |||
3696 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, | |||
3697 | bool AllowExplicit, bool AllowResultConversion = true); | |||
3698 | void AddSurrogateCandidate(CXXConversionDecl *Conversion, | |||
3699 | DeclAccessPair FoundDecl, | |||
3700 | CXXRecordDecl *ActingContext, | |||
3701 | const FunctionProtoType *Proto, | |||
3702 | Expr *Object, ArrayRef<Expr *> Args, | |||
3703 | OverloadCandidateSet& CandidateSet); | |||
3704 | void AddNonMemberOperatorCandidates( | |||
3705 | const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args, | |||
3706 | OverloadCandidateSet &CandidateSet, | |||
3707 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); | |||
3708 | void AddMemberOperatorCandidates(OverloadedOperatorKind Op, | |||
3709 | SourceLocation OpLoc, ArrayRef<Expr *> Args, | |||
3710 | OverloadCandidateSet &CandidateSet, | |||
3711 | OverloadCandidateParamOrder PO = {}); | |||
3712 | void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, | |||
3713 | OverloadCandidateSet& CandidateSet, | |||
3714 | bool IsAssignmentOperator = false, | |||
3715 | unsigned NumContextualBoolArguments = 0); | |||
3716 | void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, | |||
3717 | SourceLocation OpLoc, ArrayRef<Expr *> Args, | |||
3718 | OverloadCandidateSet& CandidateSet); | |||
3719 | void AddArgumentDependentLookupCandidates(DeclarationName Name, | |||
3720 | SourceLocation Loc, | |||
3721 | ArrayRef<Expr *> Args, | |||
3722 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
3723 | OverloadCandidateSet& CandidateSet, | |||
3724 | bool PartialOverloading = false); | |||
3725 | ||||
3726 | // Emit as a 'note' the specific overload candidate | |||
3727 | void NoteOverloadCandidate( | |||
3728 | NamedDecl *Found, FunctionDecl *Fn, | |||
3729 | OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(), | |||
3730 | QualType DestType = QualType(), bool TakingAddress = false); | |||
3731 | ||||
3732 | // Emit as a series of 'note's all template and non-templates identified by | |||
3733 | // the expression Expr | |||
3734 | void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(), | |||
3735 | bool TakingAddress = false); | |||
3736 | ||||
3737 | /// Check the enable_if expressions on the given function. Returns the first | |||
3738 | /// failing attribute, or NULL if they were all successful. | |||
3739 | EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc, | |||
3740 | ArrayRef<Expr *> Args, | |||
3741 | bool MissingImplicitThis = false); | |||
3742 | ||||
3743 | /// Find the failed Boolean condition within a given Boolean | |||
3744 | /// constant expression, and describe it with a string. | |||
3745 | std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond); | |||
3746 | ||||
3747 | /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any | |||
3748 | /// non-ArgDependent DiagnoseIfAttrs. | |||
3749 | /// | |||
3750 | /// Argument-dependent diagnose_if attributes should be checked each time a | |||
3751 | /// function is used as a direct callee of a function call. | |||
3752 | /// | |||
3753 | /// Returns true if any errors were emitted. | |||
3754 | bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, | |||
3755 | const Expr *ThisArg, | |||
3756 | ArrayRef<const Expr *> Args, | |||
3757 | SourceLocation Loc); | |||
3758 | ||||
3759 | /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any | |||
3760 | /// ArgDependent DiagnoseIfAttrs. | |||
3761 | /// | |||
3762 | /// Argument-independent diagnose_if attributes should be checked on every use | |||
3763 | /// of a function. | |||
3764 | /// | |||
3765 | /// Returns true if any errors were emitted. | |||
3766 | bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, | |||
3767 | SourceLocation Loc); | |||
3768 | ||||
3769 | /// Returns whether the given function's address can be taken or not, | |||
3770 | /// optionally emitting a diagnostic if the address can't be taken. | |||
3771 | /// | |||
3772 | /// Returns false if taking the address of the function is illegal. | |||
3773 | bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, | |||
3774 | bool Complain = false, | |||
3775 | SourceLocation Loc = SourceLocation()); | |||
3776 | ||||
3777 | // [PossiblyAFunctionType] --> [Return] | |||
3778 | // NonFunctionType --> NonFunctionType | |||
3779 | // R (A) --> R(A) | |||
3780 | // R (*)(A) --> R (A) | |||
3781 | // R (&)(A) --> R (A) | |||
3782 | // R (S::*)(A) --> R (A) | |||
3783 | QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType); | |||
3784 | ||||
3785 | FunctionDecl * | |||
3786 | ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, | |||
3787 | QualType TargetType, | |||
3788 | bool Complain, | |||
3789 | DeclAccessPair &Found, | |||
3790 | bool *pHadMultipleCandidates = nullptr); | |||
3791 | ||||
3792 | FunctionDecl * | |||
3793 | resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult); | |||
3794 | ||||
3795 | bool resolveAndFixAddressOfSingleOverloadCandidate( | |||
3796 | ExprResult &SrcExpr, bool DoFunctionPointerConversion = false); | |||
3797 | ||||
3798 | FunctionDecl * | |||
3799 | ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, | |||
3800 | bool Complain = false, | |||
3801 | DeclAccessPair *Found = nullptr); | |||
3802 | ||||
3803 | bool ResolveAndFixSingleFunctionTemplateSpecialization( | |||
3804 | ExprResult &SrcExpr, | |||
3805 | bool DoFunctionPointerConverion = false, | |||
3806 | bool Complain = false, | |||
3807 | SourceRange OpRangeForComplaining = SourceRange(), | |||
3808 | QualType DestTypeForComplaining = QualType(), | |||
3809 | unsigned DiagIDForComplaining = 0); | |||
3810 | ||||
3811 | ||||
3812 | Expr *FixOverloadedFunctionReference(Expr *E, | |||
3813 | DeclAccessPair FoundDecl, | |||
3814 | FunctionDecl *Fn); | |||
3815 | ExprResult FixOverloadedFunctionReference(ExprResult, | |||
3816 | DeclAccessPair FoundDecl, | |||
3817 | FunctionDecl *Fn); | |||
3818 | ||||
3819 | void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, | |||
3820 | ArrayRef<Expr *> Args, | |||
3821 | OverloadCandidateSet &CandidateSet, | |||
3822 | bool PartialOverloading = false); | |||
3823 | void AddOverloadedCallCandidates( | |||
3824 | LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
3825 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet); | |||
3826 | ||||
3827 | // An enum used to represent the different possible results of building a | |||
3828 | // range-based for loop. | |||
3829 | enum ForRangeStatus { | |||
3830 | FRS_Success, | |||
3831 | FRS_NoViableFunction, | |||
3832 | FRS_DiagnosticIssued | |||
3833 | }; | |||
3834 | ||||
3835 | ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, | |||
3836 | SourceLocation RangeLoc, | |||
3837 | const DeclarationNameInfo &NameInfo, | |||
3838 | LookupResult &MemberLookup, | |||
3839 | OverloadCandidateSet *CandidateSet, | |||
3840 | Expr *Range, ExprResult *CallExpr); | |||
3841 | ||||
3842 | ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn, | |||
3843 | UnresolvedLookupExpr *ULE, | |||
3844 | SourceLocation LParenLoc, | |||
3845 | MultiExprArg Args, | |||
3846 | SourceLocation RParenLoc, | |||
3847 | Expr *ExecConfig, | |||
3848 | bool AllowTypoCorrection=true, | |||
3849 | bool CalleesAddressIsTaken=false); | |||
3850 | ||||
3851 | bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, | |||
3852 | MultiExprArg Args, SourceLocation RParenLoc, | |||
3853 | OverloadCandidateSet *CandidateSet, | |||
3854 | ExprResult *Result); | |||
3855 | ||||
3856 | ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, | |||
3857 | NestedNameSpecifierLoc NNSLoc, | |||
3858 | DeclarationNameInfo DNI, | |||
3859 | const UnresolvedSetImpl &Fns, | |||
3860 | bool PerformADL = true); | |||
3861 | ||||
3862 | ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, | |||
3863 | UnaryOperatorKind Opc, | |||
3864 | const UnresolvedSetImpl &Fns, | |||
3865 | Expr *input, bool RequiresADL = true); | |||
3866 | ||||
3867 | void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, | |||
3868 | OverloadedOperatorKind Op, | |||
3869 | const UnresolvedSetImpl &Fns, | |||
3870 | ArrayRef<Expr *> Args, bool RequiresADL = true); | |||
3871 | ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, | |||
3872 | BinaryOperatorKind Opc, | |||
3873 | const UnresolvedSetImpl &Fns, | |||
3874 | Expr *LHS, Expr *RHS, | |||
3875 | bool RequiresADL = true, | |||
3876 | bool AllowRewrittenCandidates = true, | |||
3877 | FunctionDecl *DefaultedFn = nullptr); | |||
3878 | ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc, | |||
3879 | const UnresolvedSetImpl &Fns, | |||
3880 | Expr *LHS, Expr *RHS, | |||
3881 | FunctionDecl *DefaultedFn); | |||
3882 | ||||
3883 | ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, | |||
3884 | SourceLocation RLoc, | |||
3885 | Expr *Base,Expr *Idx); | |||
3886 | ||||
3887 | ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, | |||
3888 | SourceLocation LParenLoc, | |||
3889 | MultiExprArg Args, | |||
3890 | SourceLocation RParenLoc, | |||
3891 | bool AllowRecovery = false); | |||
3892 | ExprResult | |||
3893 | BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, | |||
3894 | MultiExprArg Args, | |||
3895 | SourceLocation RParenLoc); | |||
3896 | ||||
3897 | ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, | |||
3898 | SourceLocation OpLoc, | |||
3899 | bool *NoArrowOperatorFound = nullptr); | |||
3900 | ||||
3901 | /// CheckCallReturnType - Checks that a call expression's return type is | |||
3902 | /// complete. Returns true on failure. The location passed in is the location | |||
3903 | /// that best represents the call. | |||
3904 | bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, | |||
3905 | CallExpr *CE, FunctionDecl *FD); | |||
3906 | ||||
3907 | /// Helpers for dealing with blocks and functions. | |||
3908 | bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, | |||
3909 | bool CheckParameterNames); | |||
3910 | void CheckCXXDefaultArguments(FunctionDecl *FD); | |||
3911 | void CheckExtraCXXDefaultArguments(Declarator &D); | |||
3912 | Scope *getNonFieldDeclScope(Scope *S); | |||
3913 | ||||
3914 | /// \name Name lookup | |||
3915 | /// | |||
3916 | /// These routines provide name lookup that is used during semantic | |||
3917 | /// analysis to resolve the various kinds of names (identifiers, | |||
3918 | /// overloaded operator names, constructor names, etc.) into zero or | |||
3919 | /// more declarations within a particular scope. The major entry | |||
3920 | /// points are LookupName, which performs unqualified name lookup, | |||
3921 | /// and LookupQualifiedName, which performs qualified name lookup. | |||
3922 | /// | |||
3923 | /// All name lookup is performed based on some specific criteria, | |||
3924 | /// which specify what names will be visible to name lookup and how | |||
3925 | /// far name lookup should work. These criteria are important both | |||
3926 | /// for capturing language semantics (certain lookups will ignore | |||
3927 | /// certain names, for example) and for performance, since name | |||
3928 | /// lookup is often a bottleneck in the compilation of C++. Name | |||
3929 | /// lookup criteria is specified via the LookupCriteria enumeration. | |||
3930 | /// | |||
3931 | /// The results of name lookup can vary based on the kind of name | |||
3932 | /// lookup performed, the current language, and the translation | |||
3933 | /// unit. In C, for example, name lookup will either return nothing | |||
3934 | /// (no entity found) or a single declaration. In C++, name lookup | |||
3935 | /// can additionally refer to a set of overloaded functions or | |||
3936 | /// result in an ambiguity. All of the possible results of name | |||
3937 | /// lookup are captured by the LookupResult class, which provides | |||
3938 | /// the ability to distinguish among them. | |||
3939 | //@{ | |||
3940 | ||||
3941 | /// Describes the kind of name lookup to perform. | |||
3942 | enum LookupNameKind { | |||
3943 | /// Ordinary name lookup, which finds ordinary names (functions, | |||
3944 | /// variables, typedefs, etc.) in C and most kinds of names | |||
3945 | /// (functions, variables, members, types, etc.) in C++. | |||
3946 | LookupOrdinaryName = 0, | |||
3947 | /// Tag name lookup, which finds the names of enums, classes, | |||
3948 | /// structs, and unions. | |||
3949 | LookupTagName, | |||
3950 | /// Label name lookup. | |||
3951 | LookupLabel, | |||
3952 | /// Member name lookup, which finds the names of | |||
3953 | /// class/struct/union members. | |||
3954 | LookupMemberName, | |||
3955 | /// Look up of an operator name (e.g., operator+) for use with | |||
3956 | /// operator overloading. This lookup is similar to ordinary name | |||
3957 | /// lookup, but will ignore any declarations that are class members. | |||
3958 | LookupOperatorName, | |||
3959 | /// Look up a name following ~ in a destructor name. This is an ordinary | |||
3960 | /// lookup, but prefers tags to typedefs. | |||
3961 | LookupDestructorName, | |||
3962 | /// Look up of a name that precedes the '::' scope resolution | |||
3963 | /// operator in C++. This lookup completely ignores operator, object, | |||
3964 | /// function, and enumerator names (C++ [basic.lookup.qual]p1). | |||
3965 | LookupNestedNameSpecifierName, | |||
3966 | /// Look up a namespace name within a C++ using directive or | |||
3967 | /// namespace alias definition, ignoring non-namespace names (C++ | |||
3968 | /// [basic.lookup.udir]p1). | |||
3969 | LookupNamespaceName, | |||
3970 | /// Look up all declarations in a scope with the given name, | |||
3971 | /// including resolved using declarations. This is appropriate | |||
3972 | /// for checking redeclarations for a using declaration. | |||
3973 | LookupUsingDeclName, | |||
3974 | /// Look up an ordinary name that is going to be redeclared as a | |||
3975 | /// name with linkage. This lookup ignores any declarations that | |||
3976 | /// are outside of the current scope unless they have linkage. See | |||
3977 | /// C99 6.2.2p4-5 and C++ [basic.link]p6. | |||
3978 | LookupRedeclarationWithLinkage, | |||
3979 | /// Look up a friend of a local class. This lookup does not look | |||
3980 | /// outside the innermost non-class scope. See C++11 [class.friend]p11. | |||
3981 | LookupLocalFriendName, | |||
3982 | /// Look up the name of an Objective-C protocol. | |||
3983 | LookupObjCProtocolName, | |||
3984 | /// Look up implicit 'self' parameter of an objective-c method. | |||
3985 | LookupObjCImplicitSelfParam, | |||
3986 | /// Look up the name of an OpenMP user-defined reduction operation. | |||
3987 | LookupOMPReductionName, | |||
3988 | /// Look up the name of an OpenMP user-defined mapper. | |||
3989 | LookupOMPMapperName, | |||
3990 | /// Look up any declaration with any name. | |||
3991 | LookupAnyName | |||
3992 | }; | |||
3993 | ||||
3994 | /// Specifies whether (or how) name lookup is being performed for a | |||
3995 | /// redeclaration (vs. a reference). | |||
3996 | enum RedeclarationKind { | |||
3997 | /// The lookup is a reference to this name that is not for the | |||
3998 | /// purpose of redeclaring the name. | |||
3999 | NotForRedeclaration = 0, | |||
4000 | /// The lookup results will be used for redeclaration of a name, | |||
4001 | /// if an entity by that name already exists and is visible. | |||
4002 | ForVisibleRedeclaration, | |||
4003 | /// The lookup results will be used for redeclaration of a name | |||
4004 | /// with external linkage; non-visible lookup results with external linkage | |||
4005 | /// may also be found. | |||
4006 | ForExternalRedeclaration | |||
4007 | }; | |||
4008 | ||||
4009 | RedeclarationKind forRedeclarationInCurContext() { | |||
4010 | // A declaration with an owning module for linkage can never link against | |||
4011 | // anything that is not visible. We don't need to check linkage here; if | |||
4012 | // the context has internal linkage, redeclaration lookup won't find things | |||
4013 | // from other TUs, and we can't safely compute linkage yet in general. | |||
4014 | if (cast<Decl>(CurContext) | |||
4015 | ->getOwningModuleForLinkage(/*IgnoreLinkage*/true)) | |||
4016 | return ForVisibleRedeclaration; | |||
4017 | return ForExternalRedeclaration; | |||
4018 | } | |||
4019 | ||||
4020 | /// The possible outcomes of name lookup for a literal operator. | |||
4021 | enum LiteralOperatorLookupResult { | |||
4022 | /// The lookup resulted in an error. | |||
4023 | LOLR_Error, | |||
4024 | /// The lookup found no match but no diagnostic was issued. | |||
4025 | LOLR_ErrorNoDiagnostic, | |||
4026 | /// The lookup found a single 'cooked' literal operator, which | |||
4027 | /// expects a normal literal to be built and passed to it. | |||
4028 | LOLR_Cooked, | |||
4029 | /// The lookup found a single 'raw' literal operator, which expects | |||
4030 | /// a string literal containing the spelling of the literal token. | |||
4031 | LOLR_Raw, | |||
4032 | /// The lookup found an overload set of literal operator templates, | |||
4033 | /// which expect the characters of the spelling of the literal token to be | |||
4034 | /// passed as a non-type template argument pack. | |||
4035 | LOLR_Template, | |||
4036 | /// The lookup found an overload set of literal operator templates, | |||
4037 | /// which expect the character type and characters of the spelling of the | |||
4038 | /// string literal token to be passed as template arguments. | |||
4039 | LOLR_StringTemplatePack, | |||
4040 | }; | |||
4041 | ||||
4042 | SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, | |||
4043 | CXXSpecialMember SM, | |||
4044 | bool ConstArg, | |||
4045 | bool VolatileArg, | |||
4046 | bool RValueThis, | |||
4047 | bool ConstThis, | |||
4048 | bool VolatileThis); | |||
4049 | ||||
4050 | typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator; | |||
4051 | typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)> | |||
4052 | TypoRecoveryCallback; | |||
4053 | ||||
4054 | private: | |||
4055 | bool CppLookupName(LookupResult &R, Scope *S); | |||
4056 | ||||
4057 | struct TypoExprState { | |||
4058 | std::unique_ptr<TypoCorrectionConsumer> Consumer; | |||
4059 | TypoDiagnosticGenerator DiagHandler; | |||
4060 | TypoRecoveryCallback RecoveryHandler; | |||
4061 | TypoExprState(); | |||
4062 | TypoExprState(TypoExprState &&other) noexcept; | |||
4063 | TypoExprState &operator=(TypoExprState &&other) noexcept; | |||
4064 | }; | |||
4065 | ||||
4066 | /// The set of unhandled TypoExprs and their associated state. | |||
4067 | llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos; | |||
4068 | ||||
4069 | /// Creates a new TypoExpr AST node. | |||
4070 | TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, | |||
4071 | TypoDiagnosticGenerator TDG, | |||
4072 | TypoRecoveryCallback TRC, SourceLocation TypoLoc); | |||
4073 | ||||
4074 | // The set of known/encountered (unique, canonicalized) NamespaceDecls. | |||
4075 | // | |||
4076 | // The boolean value will be true to indicate that the namespace was loaded | |||
4077 | // from an AST/PCH file, or false otherwise. | |||
4078 | llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces; | |||
4079 | ||||
4080 | /// Whether we have already loaded known namespaces from an extenal | |||
4081 | /// source. | |||
4082 | bool LoadedExternalKnownNamespaces; | |||
4083 | ||||
4084 | /// Helper for CorrectTypo and CorrectTypoDelayed used to create and | |||
4085 | /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction | |||
4086 | /// should be skipped entirely. | |||
4087 | std::unique_ptr<TypoCorrectionConsumer> | |||
4088 | makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo, | |||
4089 | Sema::LookupNameKind LookupKind, Scope *S, | |||
4090 | CXXScopeSpec *SS, | |||
4091 | CorrectionCandidateCallback &CCC, | |||
4092 | DeclContext *MemberContext, bool EnteringContext, | |||
4093 | const ObjCObjectPointerType *OPT, | |||
4094 | bool ErrorRecovery); | |||
4095 | ||||
4096 | public: | |||
4097 | const TypoExprState &getTypoExprState(TypoExpr *TE) const; | |||
4098 | ||||
4099 | /// Clears the state of the given TypoExpr. | |||
4100 | void clearDelayedTypo(TypoExpr *TE); | |||
4101 | ||||
4102 | /// Look up a name, looking for a single declaration. Return | |||
4103 | /// null if the results were absent, ambiguous, or overloaded. | |||
4104 | /// | |||
4105 | /// It is preferable to use the elaborated form and explicitly handle | |||
4106 | /// ambiguity and overloaded. | |||
4107 | NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, | |||
4108 | SourceLocation Loc, | |||
4109 | LookupNameKind NameKind, | |||
4110 | RedeclarationKind Redecl | |||
4111 | = NotForRedeclaration); | |||
4112 | bool LookupBuiltin(LookupResult &R); | |||
4113 | void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID); | |||
4114 | bool LookupName(LookupResult &R, Scope *S, | |||
4115 | bool AllowBuiltinCreation = false); | |||
4116 | bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | |||
4117 | bool InUnqualifiedLookup = false); | |||
4118 | bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | |||
4119 | CXXScopeSpec &SS); | |||
4120 | bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, | |||
4121 | bool AllowBuiltinCreation = false, | |||
4122 | bool EnteringContext = false); | |||
4123 | ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, | |||
4124 | RedeclarationKind Redecl | |||
4125 | = NotForRedeclaration); | |||
4126 | bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class); | |||
4127 | ||||
4128 | void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | |||
4129 | UnresolvedSetImpl &Functions); | |||
4130 | ||||
4131 | LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, | |||
4132 | SourceLocation GnuLabelLoc = SourceLocation()); | |||
4133 | ||||
4134 | DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class); | |||
4135 | CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class); | |||
4136 | CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class, | |||
4137 | unsigned Quals); | |||
4138 | CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, | |||
4139 | bool RValueThis, unsigned ThisQuals); | |||
4140 | CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class, | |||
4141 | unsigned Quals); | |||
4142 | CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, | |||
4143 | bool RValueThis, unsigned ThisQuals); | |||
4144 | CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class); | |||
4145 | ||||
4146 | bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id, | |||
4147 | bool IsUDSuffix); | |||
4148 | LiteralOperatorLookupResult | |||
4149 | LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys, | |||
4150 | bool AllowRaw, bool AllowTemplate, | |||
4151 | bool AllowStringTemplate, bool DiagnoseMissing, | |||
4152 | StringLiteral *StringLit = nullptr); | |||
4153 | bool isKnownName(StringRef name); | |||
4154 | ||||
4155 | /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs. | |||
4156 | enum class FunctionEmissionStatus { | |||
4157 | Emitted, | |||
4158 | CUDADiscarded, // Discarded due to CUDA/HIP hostness | |||
4159 | OMPDiscarded, // Discarded due to OpenMP hostness | |||
4160 | TemplateDiscarded, // Discarded due to uninstantiated templates | |||
4161 | Unknown, | |||
4162 | }; | |||
4163 | FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl, | |||
4164 | bool Final = false); | |||
4165 | ||||
4166 | // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check. | |||
4167 | bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee); | |||
4168 | ||||
4169 | void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, | |||
4170 | ArrayRef<Expr *> Args, ADLResult &Functions); | |||
4171 | ||||
4172 | void LookupVisibleDecls(Scope *S, LookupNameKind Kind, | |||
4173 | VisibleDeclConsumer &Consumer, | |||
4174 | bool IncludeGlobalScope = true, | |||
4175 | bool LoadExternal = true); | |||
4176 | void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | |||
4177 | VisibleDeclConsumer &Consumer, | |||
4178 | bool IncludeGlobalScope = true, | |||
4179 | bool IncludeDependentBases = false, | |||
4180 | bool LoadExternal = true); | |||
4181 | ||||
4182 | enum CorrectTypoKind { | |||
4183 | CTK_NonError, // CorrectTypo used in a non error recovery situation. | |||
4184 | CTK_ErrorRecovery // CorrectTypo used in normal error recovery. | |||
4185 | }; | |||
4186 | ||||
4187 | TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, | |||
4188 | Sema::LookupNameKind LookupKind, | |||
4189 | Scope *S, CXXScopeSpec *SS, | |||
4190 | CorrectionCandidateCallback &CCC, | |||
4191 | CorrectTypoKind Mode, | |||
4192 | DeclContext *MemberContext = nullptr, | |||
4193 | bool EnteringContext = false, | |||
4194 | const ObjCObjectPointerType *OPT = nullptr, | |||
4195 | bool RecordFailure = true); | |||
4196 | ||||
4197 | TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo, | |||
4198 | Sema::LookupNameKind LookupKind, Scope *S, | |||
4199 | CXXScopeSpec *SS, | |||
4200 | CorrectionCandidateCallback &CCC, | |||
4201 | TypoDiagnosticGenerator TDG, | |||
4202 | TypoRecoveryCallback TRC, CorrectTypoKind Mode, | |||
4203 | DeclContext *MemberContext = nullptr, | |||
4204 | bool EnteringContext = false, | |||
4205 | const ObjCObjectPointerType *OPT = nullptr); | |||
4206 | ||||
4207 | /// Process any TypoExprs in the given Expr and its children, | |||
4208 | /// generating diagnostics as appropriate and returning a new Expr if there | |||
4209 | /// were typos that were all successfully corrected and ExprError if one or | |||
4210 | /// more typos could not be corrected. | |||
4211 | /// | |||
4212 | /// \param E The Expr to check for TypoExprs. | |||
4213 | /// | |||
4214 | /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its | |||
4215 | /// initializer. | |||
4216 | /// | |||
4217 | /// \param RecoverUncorrectedTypos If true, when typo correction fails, it | |||
4218 | /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs. | |||
4219 | /// | |||
4220 | /// \param Filter A function applied to a newly rebuilt Expr to determine if | |||
4221 | /// it is an acceptable/usable result from a single combination of typo | |||
4222 | /// corrections. As long as the filter returns ExprError, different | |||
4223 | /// combinations of corrections will be tried until all are exhausted. | |||
4224 | ExprResult CorrectDelayedTyposInExpr( | |||
4225 | Expr *E, VarDecl *InitDecl = nullptr, | |||
4226 | bool RecoverUncorrectedTypos = false, | |||
4227 | llvm::function_ref<ExprResult(Expr *)> Filter = | |||
4228 | [](Expr *E) -> ExprResult { return E; }); | |||
4229 | ||||
4230 | ExprResult CorrectDelayedTyposInExpr( | |||
4231 | ExprResult ER, VarDecl *InitDecl = nullptr, | |||
4232 | bool RecoverUncorrectedTypos = false, | |||
4233 | llvm::function_ref<ExprResult(Expr *)> Filter = | |||
4234 | [](Expr *E) -> ExprResult { return E; }) { | |||
4235 | return ER.isInvalid() | |||
4236 | ? ER | |||
4237 | : CorrectDelayedTyposInExpr(ER.get(), InitDecl, | |||
4238 | RecoverUncorrectedTypos, Filter); | |||
4239 | } | |||
4240 | ||||
4241 | void diagnoseTypo(const TypoCorrection &Correction, | |||
4242 | const PartialDiagnostic &TypoDiag, | |||
4243 | bool ErrorRecovery = true); | |||
4244 | ||||
4245 | void diagnoseTypo(const TypoCorrection &Correction, | |||
4246 | const PartialDiagnostic &TypoDiag, | |||
4247 | const PartialDiagnostic &PrevNote, | |||
4248 | bool ErrorRecovery = true); | |||
4249 | ||||
4250 | void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F); | |||
4251 | ||||
4252 | void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, | |||
4253 | ArrayRef<Expr *> Args, | |||
4254 | AssociatedNamespaceSet &AssociatedNamespaces, | |||
4255 | AssociatedClassSet &AssociatedClasses); | |||
4256 | ||||
4257 | void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, | |||
4258 | bool ConsiderLinkage, bool AllowInlineNamespace); | |||
4259 | ||||
4260 | bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old); | |||
4261 | ||||
4262 | void DiagnoseAmbiguousLookup(LookupResult &Result); | |||
4263 | //@} | |||
4264 | ||||
4265 | /// Attempts to produce a RecoveryExpr after some AST node cannot be created. | |||
4266 | ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, | |||
4267 | ArrayRef<Expr *> SubExprs, | |||
4268 | QualType T = QualType()); | |||
4269 | ||||
4270 | ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id, | |||
4271 | SourceLocation IdLoc, | |||
4272 | bool TypoCorrection = false); | |||
4273 | FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID, | |||
4274 | SourceLocation Loc); | |||
4275 | NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, | |||
4276 | Scope *S, bool ForRedeclaration, | |||
4277 | SourceLocation Loc); | |||
4278 | NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, | |||
4279 | Scope *S); | |||
4280 | void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( | |||
4281 | FunctionDecl *FD); | |||
4282 | void AddKnownFunctionAttributes(FunctionDecl *FD); | |||
4283 | ||||
4284 | // More parsing and symbol table subroutines. | |||
4285 | ||||
4286 | void ProcessPragmaWeak(Scope *S, Decl *D); | |||
4287 | // Decl attributes - this routine is the top level dispatcher. | |||
4288 | void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD); | |||
4289 | // Helper for delayed processing of attributes. | |||
4290 | void ProcessDeclAttributeDelayed(Decl *D, | |||
4291 | const ParsedAttributesView &AttrList); | |||
4292 | void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL, | |||
4293 | bool IncludeCXX11Attributes = true); | |||
4294 | bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, | |||
4295 | const ParsedAttributesView &AttrList); | |||
4296 | ||||
4297 | void checkUnusedDeclAttributes(Declarator &D); | |||
4298 | ||||
4299 | /// Handles semantic checking for features that are common to all attributes, | |||
4300 | /// such as checking whether a parameter was properly specified, or the | |||
4301 | /// correct number of arguments were passed, etc. Returns true if the | |||
4302 | /// attribute has been diagnosed. | |||
4303 | bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A); | |||
4304 | bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A); | |||
4305 | ||||
4306 | /// Determine if type T is a valid subject for a nonnull and similar | |||
4307 | /// attributes. By default, we look through references (the behavior used by | |||
4308 | /// nonnull), but if the second parameter is true, then we treat a reference | |||
4309 | /// type as valid. | |||
4310 | bool isValidPointerAttrType(QualType T, bool RefOkay = false); | |||
4311 | ||||
4312 | bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value); | |||
4313 | bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, | |||
4314 | const FunctionDecl *FD = nullptr); | |||
4315 | bool CheckAttrTarget(const ParsedAttr &CurrAttr); | |||
4316 | bool CheckAttrNoArgs(const ParsedAttr &CurrAttr); | |||
4317 | bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum, | |||
4318 | StringRef &Str, | |||
4319 | SourceLocation *ArgLocation = nullptr); | |||
4320 | llvm::Error isValidSectionSpecifier(StringRef Str); | |||
4321 | bool checkSectionName(SourceLocation LiteralLoc, StringRef Str); | |||
4322 | bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str); | |||
4323 | bool checkMSInheritanceAttrOnDefinition( | |||
4324 | CXXRecordDecl *RD, SourceRange Range, bool BestCase, | |||
4325 | MSInheritanceModel SemanticSpelling); | |||
4326 | ||||
4327 | void CheckAlignasUnderalignment(Decl *D); | |||
4328 | ||||
4329 | /// Adjust the calling convention of a method to be the ABI default if it | |||
4330 | /// wasn't specified explicitly. This handles method types formed from | |||
4331 | /// function type typedefs and typename template arguments. | |||
4332 | void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, | |||
4333 | SourceLocation Loc); | |||
4334 | ||||
4335 | // Check if there is an explicit attribute, but only look through parens. | |||
4336 | // The intent is to look for an attribute on the current declarator, but not | |||
4337 | // one that came from a typedef. | |||
4338 | bool hasExplicitCallingConv(QualType T); | |||
4339 | ||||
4340 | /// Get the outermost AttributedType node that sets a calling convention. | |||
4341 | /// Valid types should not have multiple attributes with different CCs. | |||
4342 | const AttributedType *getCallingConvAttributedType(QualType T) const; | |||
4343 | ||||
4344 | /// Process the attributes before creating an attributed statement. Returns | |||
4345 | /// the semantic attributes that have been processed. | |||
4346 | void ProcessStmtAttributes(Stmt *Stmt, | |||
4347 | const ParsedAttributesWithRange &InAttrs, | |||
4348 | SmallVectorImpl<const Attr *> &OutAttrs); | |||
4349 | ||||
4350 | void WarnConflictingTypedMethods(ObjCMethodDecl *Method, | |||
4351 | ObjCMethodDecl *MethodDecl, | |||
4352 | bool IsProtocolMethodDecl); | |||
4353 | ||||
4354 | void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, | |||
4355 | ObjCMethodDecl *Overridden, | |||
4356 | bool IsProtocolMethodDecl); | |||
4357 | ||||
4358 | /// WarnExactTypedMethods - This routine issues a warning if method | |||
4359 | /// implementation declaration matches exactly that of its declaration. | |||
4360 | void WarnExactTypedMethods(ObjCMethodDecl *Method, | |||
4361 | ObjCMethodDecl *MethodDecl, | |||
4362 | bool IsProtocolMethodDecl); | |||
4363 | ||||
4364 | typedef llvm::SmallPtrSet<Selector, 8> SelectorSet; | |||
4365 | ||||
4366 | /// CheckImplementationIvars - This routine checks if the instance variables | |||
4367 | /// listed in the implelementation match those listed in the interface. | |||
4368 | void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, | |||
4369 | ObjCIvarDecl **Fields, unsigned nIvars, | |||
4370 | SourceLocation Loc); | |||
4371 | ||||
4372 | /// ImplMethodsVsClassMethods - This is main routine to warn if any method | |||
4373 | /// remains unimplemented in the class or category \@implementation. | |||
4374 | void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, | |||
4375 | ObjCContainerDecl* IDecl, | |||
4376 | bool IncompleteImpl = false); | |||
4377 | ||||
4378 | /// DiagnoseUnimplementedProperties - This routine warns on those properties | |||
4379 | /// which must be implemented by this implementation. | |||
4380 | void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl, | |||
4381 | ObjCContainerDecl *CDecl, | |||
4382 | bool SynthesizeProperties); | |||
4383 | ||||
4384 | /// Diagnose any null-resettable synthesized setters. | |||
4385 | void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl); | |||
4386 | ||||
4387 | /// DefaultSynthesizeProperties - This routine default synthesizes all | |||
4388 | /// properties which must be synthesized in the class's \@implementation. | |||
4389 | void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl, | |||
4390 | ObjCInterfaceDecl *IDecl, | |||
4391 | SourceLocation AtEnd); | |||
4392 | void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd); | |||
4393 | ||||
4394 | /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is | |||
4395 | /// an ivar synthesized for 'Method' and 'Method' is a property accessor | |||
4396 | /// declared in class 'IFace'. | |||
4397 | bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace, | |||
4398 | ObjCMethodDecl *Method, ObjCIvarDecl *IV); | |||
4399 | ||||
4400 | /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which | |||
4401 | /// backs the property is not used in the property's accessor. | |||
4402 | void DiagnoseUnusedBackingIvarInAccessor(Scope *S, | |||
4403 | const ObjCImplementationDecl *ImplD); | |||
4404 | ||||
4405 | /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and | |||
4406 | /// it property has a backing ivar, returns this ivar; otherwise, returns NULL. | |||
4407 | /// It also returns ivar's property on success. | |||
4408 | ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, | |||
4409 | const ObjCPropertyDecl *&PDecl) const; | |||
4410 | ||||
4411 | /// Called by ActOnProperty to handle \@property declarations in | |||
4412 | /// class extensions. | |||
4413 | ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S, | |||
4414 | SourceLocation AtLoc, | |||
4415 | SourceLocation LParenLoc, | |||
4416 | FieldDeclarator &FD, | |||
4417 | Selector GetterSel, | |||
4418 | SourceLocation GetterNameLoc, | |||
4419 | Selector SetterSel, | |||
4420 | SourceLocation SetterNameLoc, | |||
4421 | const bool isReadWrite, | |||
4422 | unsigned &Attributes, | |||
4423 | const unsigned AttributesAsWritten, | |||
4424 | QualType T, | |||
4425 | TypeSourceInfo *TSI, | |||
4426 | tok::ObjCKeywordKind MethodImplKind); | |||
4427 | ||||
4428 | /// Called by ActOnProperty and HandlePropertyInClassExtension to | |||
4429 | /// handle creating the ObjcPropertyDecl for a category or \@interface. | |||
4430 | ObjCPropertyDecl *CreatePropertyDecl(Scope *S, | |||
4431 | ObjCContainerDecl *CDecl, | |||
4432 | SourceLocation AtLoc, | |||
4433 | SourceLocation LParenLoc, | |||
4434 | FieldDeclarator &FD, | |||
4435 | Selector GetterSel, | |||
4436 | SourceLocation GetterNameLoc, | |||
4437 | Selector SetterSel, | |||
4438 | SourceLocation SetterNameLoc, | |||
4439 | const bool isReadWrite, | |||
4440 | const unsigned Attributes, | |||
4441 | const unsigned AttributesAsWritten, | |||
4442 | QualType T, | |||
4443 | TypeSourceInfo *TSI, | |||
4444 | tok::ObjCKeywordKind MethodImplKind, | |||
4445 | DeclContext *lexicalDC = nullptr); | |||
4446 | ||||
4447 | /// AtomicPropertySetterGetterRules - This routine enforces the rule (via | |||
4448 | /// warning) when atomic property has one but not the other user-declared | |||
4449 | /// setter or getter. | |||
4450 | void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, | |||
4451 | ObjCInterfaceDecl* IDecl); | |||
4452 | ||||
4453 | void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D); | |||
4454 | ||||
4455 | void DiagnoseMissingDesignatedInitOverrides( | |||
4456 | const ObjCImplementationDecl *ImplD, | |||
4457 | const ObjCInterfaceDecl *IFD); | |||
4458 | ||||
4459 | void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID); | |||
4460 | ||||
4461 | enum MethodMatchStrategy { | |||
4462 | MMS_loose, | |||
4463 | MMS_strict | |||
4464 | }; | |||
4465 | ||||
4466 | /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns | |||
4467 | /// true, or false, accordingly. | |||
4468 | bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, | |||
4469 | const ObjCMethodDecl *PrevMethod, | |||
4470 | MethodMatchStrategy strategy = MMS_strict); | |||
4471 | ||||
4472 | /// MatchAllMethodDeclarations - Check methods declaraed in interface or | |||
4473 | /// or protocol against those declared in their implementations. | |||
4474 | void MatchAllMethodDeclarations(const SelectorSet &InsMap, | |||
4475 | const SelectorSet &ClsMap, | |||
4476 | SelectorSet &InsMapSeen, | |||
4477 | SelectorSet &ClsMapSeen, | |||
4478 | ObjCImplDecl* IMPDecl, | |||
4479 | ObjCContainerDecl* IDecl, | |||
4480 | bool &IncompleteImpl, | |||
4481 | bool ImmediateClass, | |||
4482 | bool WarnCategoryMethodImpl=false); | |||
4483 | ||||
4484 | /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in | |||
4485 | /// category matches with those implemented in its primary class and | |||
4486 | /// warns each time an exact match is found. | |||
4487 | void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP); | |||
4488 | ||||
4489 | /// Add the given method to the list of globally-known methods. | |||
4490 | void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method); | |||
4491 | ||||
4492 | /// Returns default addr space for method qualifiers. | |||
4493 | LangAS getDefaultCXXMethodAddrSpace() const; | |||
4494 | ||||
4495 | private: | |||
4496 | /// AddMethodToGlobalPool - Add an instance or factory method to the global | |||
4497 | /// pool. See descriptoin of AddInstanceMethodToGlobalPool. | |||
4498 | void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance); | |||
4499 | ||||
4500 | /// LookupMethodInGlobalPool - Returns the instance or factory method and | |||
4501 | /// optionally warns if there are multiple signatures. | |||
4502 | ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R, | |||
4503 | bool receiverIdOrClass, | |||
4504 | bool instance); | |||
4505 | ||||
4506 | public: | |||
4507 | /// - Returns instance or factory methods in global method pool for | |||
4508 | /// given selector. It checks the desired kind first, if none is found, and | |||
4509 | /// parameter checkTheOther is set, it then checks the other kind. If no such | |||
4510 | /// method or only one method is found, function returns false; otherwise, it | |||
4511 | /// returns true. | |||
4512 | bool | |||
4513 | CollectMultipleMethodsInGlobalPool(Selector Sel, | |||
4514 | SmallVectorImpl<ObjCMethodDecl*>& Methods, | |||
4515 | bool InstanceFirst, bool CheckTheOther, | |||
4516 | const ObjCObjectType *TypeBound = nullptr); | |||
4517 | ||||
4518 | bool | |||
4519 | AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, | |||
4520 | SourceRange R, bool receiverIdOrClass, | |||
4521 | SmallVectorImpl<ObjCMethodDecl*>& Methods); | |||
4522 | ||||
4523 | void | |||
4524 | DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, | |||
4525 | Selector Sel, SourceRange R, | |||
4526 | bool receiverIdOrClass); | |||
4527 | ||||
4528 | private: | |||
4529 | /// - Returns a selector which best matches given argument list or | |||
4530 | /// nullptr if none could be found | |||
4531 | ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args, | |||
4532 | bool IsInstance, | |||
4533 | SmallVectorImpl<ObjCMethodDecl*>& Methods); | |||
4534 | ||||
4535 | ||||
4536 | /// Record the typo correction failure and return an empty correction. | |||
4537 | TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc, | |||
4538 | bool RecordFailure = true) { | |||
4539 | if (RecordFailure) | |||
4540 | TypoCorrectionFailures[Typo].insert(TypoLoc); | |||
4541 | return TypoCorrection(); | |||
4542 | } | |||
4543 | ||||
4544 | public: | |||
4545 | /// AddInstanceMethodToGlobalPool - All instance methods in a translation | |||
4546 | /// unit are added to a global pool. This allows us to efficiently associate | |||
4547 | /// a selector with a method declaraation for purposes of typechecking | |||
4548 | /// messages sent to "id" (where the class of the object is unknown). | |||
4549 | void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { | |||
4550 | AddMethodToGlobalPool(Method, impl, /*instance*/true); | |||
4551 | } | |||
4552 | ||||
4553 | /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. | |||
4554 | void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { | |||
4555 | AddMethodToGlobalPool(Method, impl, /*instance*/false); | |||
4556 | } | |||
4557 | ||||
4558 | /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global | |||
4559 | /// pool. | |||
4560 | void AddAnyMethodToGlobalPool(Decl *D); | |||
4561 | ||||
4562 | /// LookupInstanceMethodInGlobalPool - Returns the method and warns if | |||
4563 | /// there are multiple signatures. | |||
4564 | ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, | |||
4565 | bool receiverIdOrClass=false) { | |||
4566 | return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, | |||
4567 | /*instance*/true); | |||
4568 | } | |||
4569 | ||||
4570 | /// LookupFactoryMethodInGlobalPool - Returns the method and warns if | |||
4571 | /// there are multiple signatures. | |||
4572 | ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R, | |||
4573 | bool receiverIdOrClass=false) { | |||
4574 | return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, | |||
4575 | /*instance*/false); | |||
4576 | } | |||
4577 | ||||
4578 | const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel, | |||
4579 | QualType ObjectType=QualType()); | |||
4580 | /// LookupImplementedMethodInGlobalPool - Returns the method which has an | |||
4581 | /// implementation. | |||
4582 | ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel); | |||
4583 | ||||
4584 | /// CollectIvarsToConstructOrDestruct - Collect those ivars which require | |||
4585 | /// initialization. | |||
4586 | void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, | |||
4587 | SmallVectorImpl<ObjCIvarDecl*> &Ivars); | |||
4588 | ||||
4589 | //===--------------------------------------------------------------------===// | |||
4590 | // Statement Parsing Callbacks: SemaStmt.cpp. | |||
4591 | public: | |||
4592 | class FullExprArg { | |||
4593 | public: | |||
4594 | FullExprArg() : E(nullptr) { } | |||
4595 | FullExprArg(Sema &actions) : E(nullptr) { } | |||
4596 | ||||
4597 | ExprResult release() { | |||
4598 | return E; | |||
4599 | } | |||
4600 | ||||
4601 | Expr *get() const { return E; } | |||
4602 | ||||
4603 | Expr *operator->() { | |||
4604 | return E; | |||
4605 | } | |||
4606 | ||||
4607 | private: | |||
4608 | // FIXME: No need to make the entire Sema class a friend when it's just | |||
4609 | // Sema::MakeFullExpr that needs access to the constructor below. | |||
4610 | friend class Sema; | |||
4611 | ||||
4612 | explicit FullExprArg(Expr *expr) : E(expr) {} | |||
4613 | ||||
4614 | Expr *E; | |||
4615 | }; | |||
4616 | ||||
4617 | FullExprArg MakeFullExpr(Expr *Arg) { | |||
4618 | return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation()); | |||
4619 | } | |||
4620 | FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) { | |||
4621 | return FullExprArg( | |||
4622 | ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get()); | |||
4623 | } | |||
4624 | FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) { | |||
4625 | ExprResult FE = | |||
4626 | ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(), | |||
4627 | /*DiscardedValue*/ true); | |||
4628 | return FullExprArg(FE.get()); | |||
4629 | } | |||
4630 | ||||
4631 | StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true); | |||
4632 | StmtResult ActOnExprStmtError(); | |||
4633 | ||||
4634 | StmtResult ActOnNullStmt(SourceLocation SemiLoc, | |||
4635 | bool HasLeadingEmptyMacro = false); | |||
4636 | ||||
4637 | void ActOnStartOfCompoundStmt(bool IsStmtExpr); | |||
4638 | void ActOnAfterCompoundStatementLeadingPragmas(); | |||
4639 | void ActOnFinishOfCompoundStmt(); | |||
4640 | StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, | |||
4641 | ArrayRef<Stmt *> Elts, bool isStmtExpr); | |||
4642 | ||||
4643 | /// A RAII object to enter scope of a compound statement. | |||
4644 | class CompoundScopeRAII { | |||
4645 | public: | |||
4646 | CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) { | |||
4647 | S.ActOnStartOfCompoundStmt(IsStmtExpr); | |||
4648 | } | |||
4649 | ||||
4650 | ~CompoundScopeRAII() { | |||
4651 | S.ActOnFinishOfCompoundStmt(); | |||
4652 | } | |||
4653 | ||||
4654 | private: | |||
4655 | Sema &S; | |||
4656 | }; | |||
4657 | ||||
4658 | /// An RAII helper that pops function a function scope on exit. | |||
4659 | struct FunctionScopeRAII { | |||
4660 | Sema &S; | |||
4661 | bool Active; | |||
4662 | FunctionScopeRAII(Sema &S) : S(S), Active(true) {} | |||
4663 | ~FunctionScopeRAII() { | |||
4664 | if (Active) | |||
4665 | S.PopFunctionScopeInfo(); | |||
4666 | } | |||
4667 | void disable() { Active = false; } | |||
4668 | }; | |||
4669 | ||||
4670 | StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, | |||
4671 | SourceLocation StartLoc, | |||
4672 | SourceLocation EndLoc); | |||
4673 | void ActOnForEachDeclStmt(DeclGroupPtrTy Decl); | |||
4674 | StmtResult ActOnForEachLValueExpr(Expr *E); | |||
4675 | ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val); | |||
4676 | StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, | |||
4677 | SourceLocation DotDotDotLoc, ExprResult RHS, | |||
4678 | SourceLocation ColonLoc); | |||
4679 | void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt); | |||
4680 | ||||
4681 | StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, | |||
4682 | SourceLocation ColonLoc, | |||
4683 | Stmt *SubStmt, Scope *CurScope); | |||
4684 | StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, | |||
4685 | SourceLocation ColonLoc, Stmt *SubStmt); | |||
4686 | ||||
4687 | StmtResult BuildAttributedStmt(SourceLocation AttrsLoc, | |||
4688 | ArrayRef<const Attr *> Attrs, Stmt *SubStmt); | |||
4689 | StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList, | |||
4690 | Stmt *SubStmt); | |||
4691 | ||||
4692 | class ConditionResult; | |||
4693 | StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, | |||
4694 | SourceLocation LParenLoc, Stmt *InitStmt, | |||
4695 | ConditionResult Cond, SourceLocation RParenLoc, | |||
4696 | Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); | |||
4697 | StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, | |||
4698 | SourceLocation LParenLoc, Stmt *InitStmt, | |||
4699 | ConditionResult Cond, SourceLocation RParenLoc, | |||
4700 | Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); | |||
4701 | StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, | |||
4702 | SourceLocation LParenLoc, Stmt *InitStmt, | |||
4703 | ConditionResult Cond, | |||
4704 | SourceLocation RParenLoc); | |||
4705 | StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, | |||
4706 | Stmt *Switch, Stmt *Body); | |||
4707 | StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc, | |||
4708 | ConditionResult Cond, SourceLocation RParenLoc, | |||
4709 | Stmt *Body); | |||
4710 | StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, | |||
4711 | SourceLocation WhileLoc, SourceLocation CondLParen, | |||
4712 | Expr *Cond, SourceLocation CondRParen); | |||
4713 | ||||
4714 | StmtResult ActOnForStmt(SourceLocation ForLoc, | |||
4715 | SourceLocation LParenLoc, | |||
4716 | Stmt *First, | |||
4717 | ConditionResult Second, | |||
4718 | FullExprArg Third, | |||
4719 | SourceLocation RParenLoc, | |||
4720 | Stmt *Body); | |||
4721 | ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, | |||
4722 | Expr *collection); | |||
4723 | StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, | |||
4724 | Stmt *First, Expr *collection, | |||
4725 | SourceLocation RParenLoc); | |||
4726 | StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body); | |||
4727 | ||||
4728 | enum BuildForRangeKind { | |||
4729 | /// Initial building of a for-range statement. | |||
4730 | BFRK_Build, | |||
4731 | /// Instantiation or recovery rebuild of a for-range statement. Don't | |||
4732 | /// attempt any typo-correction. | |||
4733 | BFRK_Rebuild, | |||
4734 | /// Determining whether a for-range statement could be built. Avoid any | |||
4735 | /// unnecessary or irreversible actions. | |||
4736 | BFRK_Check | |||
4737 | }; | |||
4738 | ||||
4739 | StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, | |||
4740 | SourceLocation CoawaitLoc, | |||
4741 | Stmt *InitStmt, | |||
4742 | Stmt *LoopVar, | |||
4743 | SourceLocation ColonLoc, Expr *Collection, | |||
4744 | SourceLocation RParenLoc, | |||
4745 | BuildForRangeKind Kind); | |||
4746 | StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, | |||
4747 | SourceLocation CoawaitLoc, | |||
4748 | Stmt *InitStmt, | |||
4749 | SourceLocation ColonLoc, | |||
4750 | Stmt *RangeDecl, Stmt *Begin, Stmt *End, | |||
4751 | Expr *Cond, Expr *Inc, | |||
4752 | Stmt *LoopVarDecl, | |||
4753 | SourceLocation RParenLoc, | |||
4754 | BuildForRangeKind Kind); | |||
4755 | StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body); | |||
4756 | ||||
4757 | StmtResult ActOnGotoStmt(SourceLocation GotoLoc, | |||
4758 | SourceLocation LabelLoc, | |||
4759 | LabelDecl *TheDecl); | |||
4760 | StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, | |||
4761 | SourceLocation StarLoc, | |||
4762 | Expr *DestExp); | |||
4763 | StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); | |||
4764 | StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope); | |||
4765 | ||||
4766 | void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, | |||
4767 | CapturedRegionKind Kind, unsigned NumParams); | |||
4768 | typedef std::pair<StringRef, QualType> CapturedParamNameType; | |||
4769 | void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, | |||
4770 | CapturedRegionKind Kind, | |||
4771 | ArrayRef<CapturedParamNameType> Params, | |||
4772 | unsigned OpenMPCaptureLevel = 0); | |||
4773 | StmtResult ActOnCapturedRegionEnd(Stmt *S); | |||
4774 | void ActOnCapturedRegionError(); | |||
4775 | RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD, | |||
4776 | SourceLocation Loc, | |||
4777 | unsigned NumParams); | |||
4778 | ||||
4779 | struct NamedReturnInfo { | |||
4780 | const VarDecl *Candidate; | |||
4781 | ||||
4782 | enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable }; | |||
4783 | Status S; | |||
4784 | ||||
4785 | bool isMoveEligible() const { return S != None; }; | |||
4786 | bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; } | |||
4787 | }; | |||
4788 | enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn }; | |||
4789 | NamedReturnInfo getNamedReturnInfo( | |||
4790 | Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal); | |||
4791 | NamedReturnInfo getNamedReturnInfo(const VarDecl *VD); | |||
4792 | const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info, | |||
4793 | QualType ReturnType); | |||
4794 | ||||
4795 | ExprResult | |||
4796 | PerformMoveOrCopyInitialization(const InitializedEntity &Entity, | |||
4797 | const NamedReturnInfo &NRInfo, Expr *Value, | |||
4798 | bool SupressSimplerImplicitMoves = false); | |||
4799 | ||||
4800 | StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, | |||
4801 | Scope *CurScope); | |||
4802 | StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); | |||
4803 | StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, | |||
4804 | NamedReturnInfo &NRInfo, | |||
4805 | bool SupressSimplerImplicitMoves); | |||
4806 | ||||
4807 | StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, | |||
4808 | bool IsVolatile, unsigned NumOutputs, | |||
4809 | unsigned NumInputs, IdentifierInfo **Names, | |||
4810 | MultiExprArg Constraints, MultiExprArg Exprs, | |||
4811 | Expr *AsmString, MultiExprArg Clobbers, | |||
4812 | unsigned NumLabels, | |||
4813 | SourceLocation RParenLoc); | |||
4814 | ||||
4815 | void FillInlineAsmIdentifierInfo(Expr *Res, | |||
4816 | llvm::InlineAsmIdentifierInfo &Info); | |||
4817 | ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS, | |||
4818 | SourceLocation TemplateKWLoc, | |||
4819 | UnqualifiedId &Id, | |||
4820 | bool IsUnevaluatedContext); | |||
4821 | bool LookupInlineAsmField(StringRef Base, StringRef Member, | |||
4822 | unsigned &Offset, SourceLocation AsmLoc); | |||
4823 | ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member, | |||
4824 | SourceLocation AsmLoc); | |||
4825 | StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, | |||
4826 | ArrayRef<Token> AsmToks, | |||
4827 | StringRef AsmString, | |||
4828 | unsigned NumOutputs, unsigned NumInputs, | |||
4829 | ArrayRef<StringRef> Constraints, | |||
4830 | ArrayRef<StringRef> Clobbers, | |||
4831 | ArrayRef<Expr*> Exprs, | |||
4832 | SourceLocation EndLoc); | |||
4833 | LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName, | |||
4834 | SourceLocation Location, | |||
4835 | bool AlwaysCreate); | |||
4836 | ||||
4837 | VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, | |||
4838 | SourceLocation StartLoc, | |||
4839 | SourceLocation IdLoc, IdentifierInfo *Id, | |||
4840 | bool Invalid = false); | |||
4841 | ||||
4842 | Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D); | |||
4843 | ||||
4844 | StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, | |||
4845 | Decl *Parm, Stmt *Body); | |||
4846 | ||||
4847 | StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body); | |||
4848 | ||||
4849 | StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, | |||
4850 | MultiStmtArg Catch, Stmt *Finally); | |||
4851 | ||||
4852 | StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw); | |||
4853 | StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, | |||
4854 | Scope *CurScope); | |||
4855 | ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, | |||
4856 | Expr *operand); | |||
4857 | StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, | |||
4858 | Expr *SynchExpr, | |||
4859 | Stmt *SynchBody); | |||
4860 | ||||
4861 | StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body); | |||
4862 | ||||
4863 | VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, | |||
4864 | SourceLocation StartLoc, | |||
4865 | SourceLocation IdLoc, | |||
4866 | IdentifierInfo *Id); | |||
4867 | ||||
4868 | Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D); | |||
4869 | ||||
4870 | StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, | |||
4871 | Decl *ExDecl, Stmt *HandlerBlock); | |||
4872 | StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, | |||
4873 | ArrayRef<Stmt *> Handlers); | |||
4874 | ||||
4875 | StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ? | |||
4876 | SourceLocation TryLoc, Stmt *TryBlock, | |||
4877 | Stmt *Handler); | |||
4878 | StmtResult ActOnSEHExceptBlock(SourceLocation Loc, | |||
4879 | Expr *FilterExpr, | |||
4880 | Stmt *Block); | |||
4881 | void ActOnStartSEHFinallyBlock(); | |||
4882 | void ActOnAbortSEHFinallyBlock(); | |||
4883 | StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block); | |||
4884 | StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope); | |||
4885 | ||||
4886 | void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); | |||
4887 | ||||
4888 | bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const; | |||
4889 | ||||
4890 | /// If it's a file scoped decl that must warn if not used, keep track | |||
4891 | /// of it. | |||
4892 | void MarkUnusedFileScopedDecl(const DeclaratorDecl *D); | |||
4893 | ||||
4894 | /// DiagnoseUnusedExprResult - If the statement passed in is an expression | |||
4895 | /// whose result is unused, warn. | |||
4896 | void DiagnoseUnusedExprResult(const Stmt *S); | |||
4897 | void DiagnoseUnusedNestedTypedefs(const RecordDecl *D); | |||
4898 | void DiagnoseUnusedDecl(const NamedDecl *ND); | |||
4899 | ||||
4900 | /// If VD is set but not otherwise used, diagnose, for a parameter or a | |||
4901 | /// variable. | |||
4902 | void DiagnoseUnusedButSetDecl(const VarDecl *VD); | |||
4903 | ||||
4904 | /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null | |||
4905 | /// statement as a \p Body, and it is located on the same line. | |||
4906 | /// | |||
4907 | /// This helps prevent bugs due to typos, such as: | |||
4908 | /// if (condition); | |||
4909 | /// do_stuff(); | |||
4910 | void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, | |||
4911 | const Stmt *Body, | |||
4912 | unsigned DiagID); | |||
4913 | ||||
4914 | /// Warn if a for/while loop statement \p S, which is followed by | |||
4915 | /// \p PossibleBody, has a suspicious null statement as a body. | |||
4916 | void DiagnoseEmptyLoopBody(const Stmt *S, | |||
4917 | const Stmt *PossibleBody); | |||
4918 | ||||
4919 | /// Warn if a value is moved to itself. | |||
4920 | void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, | |||
4921 | SourceLocation OpLoc); | |||
4922 | ||||
4923 | /// Warn if we're implicitly casting from a _Nullable pointer type to a | |||
4924 | /// _Nonnull one. | |||
4925 | void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType, | |||
4926 | SourceLocation Loc); | |||
4927 | ||||
4928 | /// Warn when implicitly casting 0 to nullptr. | |||
4929 | void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E); | |||
4930 | ||||
4931 | ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) { | |||
4932 | return DelayedDiagnostics.push(pool); | |||
4933 | } | |||
4934 | void PopParsingDeclaration(ParsingDeclState state, Decl *decl); | |||
4935 | ||||
4936 | typedef ProcessingContextState ParsingClassState; | |||
4937 | ParsingClassState PushParsingClass() { | |||
4938 | ParsingClassDepth++; | |||
4939 | return DelayedDiagnostics.pushUndelayed(); | |||
4940 | } | |||
4941 | void PopParsingClass(ParsingClassState state) { | |||
4942 | ParsingClassDepth--; | |||
4943 | DelayedDiagnostics.popUndelayed(state); | |||
4944 | } | |||
4945 | ||||
4946 | void redelayDiagnostics(sema::DelayedDiagnosticPool &pool); | |||
4947 | ||||
4948 | void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | |||
4949 | const ObjCInterfaceDecl *UnknownObjCClass, | |||
4950 | bool ObjCPropertyAccess, | |||
4951 | bool AvoidPartialAvailabilityChecks = false, | |||
4952 | ObjCInterfaceDecl *ClassReceiver = nullptr); | |||
4953 | ||||
4954 | bool makeUnavailableInSystemHeader(SourceLocation loc, | |||
4955 | UnavailableAttr::ImplicitReason reason); | |||
4956 | ||||
4957 | /// Issue any -Wunguarded-availability warnings in \c FD | |||
4958 | void DiagnoseUnguardedAvailabilityViolations(Decl *FD); | |||
4959 | ||||
4960 | void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); | |||
4961 | ||||
4962 | //===--------------------------------------------------------------------===// | |||
4963 | // Expression Parsing Callbacks: SemaExpr.cpp. | |||
4964 | ||||
4965 | bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid); | |||
4966 | bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | |||
4967 | const ObjCInterfaceDecl *UnknownObjCClass = nullptr, | |||
4968 | bool ObjCPropertyAccess = false, | |||
4969 | bool AvoidPartialAvailabilityChecks = false, | |||
4970 | ObjCInterfaceDecl *ClassReciever = nullptr); | |||
4971 | void NoteDeletedFunction(FunctionDecl *FD); | |||
4972 | void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD); | |||
4973 | bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, | |||
4974 | ObjCMethodDecl *Getter, | |||
4975 | SourceLocation Loc); | |||
4976 | void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | |||
4977 | ArrayRef<Expr *> Args); | |||
4978 | ||||
4979 | void PushExpressionEvaluationContext( | |||
4980 | ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, | |||
4981 | ExpressionEvaluationContextRecord::ExpressionKind Type = | |||
4982 | ExpressionEvaluationContextRecord::EK_Other); | |||
4983 | enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl }; | |||
4984 | void PushExpressionEvaluationContext( | |||
4985 | ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, | |||
4986 | ExpressionEvaluationContextRecord::ExpressionKind Type = | |||
4987 | ExpressionEvaluationContextRecord::EK_Other); | |||
4988 | void PopExpressionEvaluationContext(); | |||
4989 | ||||
4990 | void DiscardCleanupsInEvaluationContext(); | |||
4991 | ||||
4992 | ExprResult TransformToPotentiallyEvaluated(Expr *E); | |||
4993 | ExprResult HandleExprEvaluationContextForTypeof(Expr *E); | |||
4994 | ||||
4995 | ExprResult CheckUnevaluatedOperand(Expr *E); | |||
4996 | void CheckUnusedVolatileAssignment(Expr *E); | |||
4997 | ||||
4998 | ExprResult ActOnConstantExpression(ExprResult Res); | |||
4999 | ||||
5000 | // Functions for marking a declaration referenced. These functions also | |||
5001 | // contain the relevant logic for marking if a reference to a function or | |||
5002 | // variable is an odr-use (in the C++11 sense). There are separate variants | |||
5003 | // for expressions referring to a decl; these exist because odr-use marking | |||
5004 | // needs to be delayed for some constant variables when we build one of the | |||
5005 | // named expressions. | |||
5006 | // | |||
5007 | // MightBeOdrUse indicates whether the use could possibly be an odr-use, and | |||
5008 | // should usually be true. This only needs to be set to false if the lack of | |||
5009 | // odr-use cannot be determined from the current context (for instance, | |||
5010 | // because the name denotes a virtual function and was written without an | |||
5011 | // explicit nested-name-specifier). | |||
5012 | void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse); | |||
5013 | void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, | |||
5014 | bool MightBeOdrUse = true); | |||
5015 | void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var); | |||
5016 | void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr); | |||
5017 | void MarkMemberReferenced(MemberExpr *E); | |||
5018 | void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E); | |||
5019 | void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc, | |||
5020 | unsigned CapturingScopeIndex); | |||
5021 | ||||
5022 | ExprResult CheckLValueToRValueConversionOperand(Expr *E); | |||
5023 | void CleanupVarDeclMarking(); | |||
5024 | ||||
5025 | enum TryCaptureKind { | |||
5026 | TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef | |||
5027 | }; | |||
5028 | ||||
5029 | /// Try to capture the given variable. | |||
5030 | /// | |||
5031 | /// \param Var The variable to capture. | |||
5032 | /// | |||
5033 | /// \param Loc The location at which the capture occurs. | |||
5034 | /// | |||
5035 | /// \param Kind The kind of capture, which may be implicit (for either a | |||
5036 | /// block or a lambda), or explicit by-value or by-reference (for a lambda). | |||
5037 | /// | |||
5038 | /// \param EllipsisLoc The location of the ellipsis, if one is provided in | |||
5039 | /// an explicit lambda capture. | |||
5040 | /// | |||
5041 | /// \param BuildAndDiagnose Whether we are actually supposed to add the | |||
5042 | /// captures or diagnose errors. If false, this routine merely check whether | |||
5043 | /// the capture can occur without performing the capture itself or complaining | |||
5044 | /// if the variable cannot be captured. | |||
5045 | /// | |||
5046 | /// \param CaptureType Will be set to the type of the field used to capture | |||
5047 | /// this variable in the innermost block or lambda. Only valid when the | |||
5048 | /// variable can be captured. | |||
5049 | /// | |||
5050 | /// \param DeclRefType Will be set to the type of a reference to the capture | |||
5051 | /// from within the current scope. Only valid when the variable can be | |||
5052 | /// captured. | |||
5053 | /// | |||
5054 | /// \param FunctionScopeIndexToStopAt If non-null, it points to the index | |||
5055 | /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. | |||
5056 | /// This is useful when enclosing lambdas must speculatively capture | |||
5057 | /// variables that may or may not be used in certain specializations of | |||
5058 | /// a nested generic lambda. | |||
5059 | /// | |||
5060 | /// \returns true if an error occurred (i.e., the variable cannot be | |||
5061 | /// captured) and false if the capture succeeded. | |||
5062 | bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, | |||
5063 | SourceLocation EllipsisLoc, bool BuildAndDiagnose, | |||
5064 | QualType &CaptureType, | |||
5065 | QualType &DeclRefType, | |||
5066 | const unsigned *const FunctionScopeIndexToStopAt); | |||
5067 | ||||
5068 | /// Try to capture the given variable. | |||
5069 | bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, | |||
5070 | TryCaptureKind Kind = TryCapture_Implicit, | |||
5071 | SourceLocation EllipsisLoc = SourceLocation()); | |||
5072 | ||||
5073 | /// Checks if the variable must be captured. | |||
5074 | bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc); | |||
5075 | ||||
5076 | /// Given a variable, determine the type that a reference to that | |||
5077 | /// variable will have in the given scope. | |||
5078 | QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc); | |||
5079 | ||||
5080 | /// Mark all of the declarations referenced within a particular AST node as | |||
5081 | /// referenced. Used when template instantiation instantiates a non-dependent | |||
5082 | /// type -- entities referenced by the type are now referenced. | |||
5083 | void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T); | |||
5084 | void MarkDeclarationsReferencedInExpr(Expr *E, | |||
5085 | bool SkipLocalVariables = false); | |||
5086 | ||||
5087 | /// Try to recover by turning the given expression into a | |||
5088 | /// call. Returns true if recovery was attempted or an error was | |||
5089 | /// emitted; this may also leave the ExprResult invalid. | |||
5090 | bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, | |||
5091 | bool ForceComplain = false, | |||
5092 | bool (*IsPlausibleResult)(QualType) = nullptr); | |||
5093 | ||||
5094 | /// Figure out if an expression could be turned into a call. | |||
5095 | bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, | |||
5096 | UnresolvedSetImpl &NonTemplateOverloads); | |||
5097 | ||||
5098 | /// Try to convert an expression \p E to type \p Ty. Returns the result of the | |||
5099 | /// conversion. | |||
5100 | ExprResult tryConvertExprToType(Expr *E, QualType Ty); | |||
5101 | ||||
5102 | /// Conditionally issue a diagnostic based on the current | |||
5103 | /// evaluation context. | |||
5104 | /// | |||
5105 | /// \param Statement If Statement is non-null, delay reporting the | |||
5106 | /// diagnostic until the function body is parsed, and then do a basic | |||
5107 | /// reachability analysis to determine if the statement is reachable. | |||
5108 | /// If it is unreachable, the diagnostic will not be emitted. | |||
5109 | bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, | |||
5110 | const PartialDiagnostic &PD); | |||
5111 | /// Similar, but diagnostic is only produced if all the specified statements | |||
5112 | /// are reachable. | |||
5113 | bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts, | |||
5114 | const PartialDiagnostic &PD); | |||
5115 | ||||
5116 | // Primary Expressions. | |||
5117 | SourceRange getExprRange(Expr *E) const; | |||
5118 | ||||
5119 | ExprResult ActOnIdExpression( | |||
5120 | Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | |||
5121 | UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, | |||
5122 | CorrectionCandidateCallback *CCC = nullptr, | |||
5123 | bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr); | |||
5124 | ||||
5125 | void DecomposeUnqualifiedId(const UnqualifiedId &Id, | |||
5126 | TemplateArgumentListInfo &Buffer, | |||
5127 | DeclarationNameInfo &NameInfo, | |||
5128 | const TemplateArgumentListInfo *&TemplateArgs); | |||
5129 | ||||
5130 | bool DiagnoseDependentMemberLookup(LookupResult &R); | |||
5131 | ||||
5132 | bool | |||
5133 | DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, | |||
5134 | CorrectionCandidateCallback &CCC, | |||
5135 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, | |||
5136 | ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr); | |||
5137 | ||||
5138 | DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, | |||
5139 | IdentifierInfo *II); | |||
5140 | ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV); | |||
5141 | ||||
5142 | ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S, | |||
5143 | IdentifierInfo *II, | |||
5144 | bool AllowBuiltinCreation=false); | |||
5145 | ||||
5146 | ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS, | |||
5147 | SourceLocation TemplateKWLoc, | |||
5148 | const DeclarationNameInfo &NameInfo, | |||
5149 | bool isAddressOfOperand, | |||
5150 | const TemplateArgumentListInfo *TemplateArgs); | |||
5151 | ||||
5152 | /// If \p D cannot be odr-used in the current expression evaluation context, | |||
5153 | /// return a reason explaining why. Otherwise, return NOUR_None. | |||
5154 | NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D); | |||
5155 | ||||
5156 | DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
5157 | SourceLocation Loc, | |||
5158 | const CXXScopeSpec *SS = nullptr); | |||
5159 | DeclRefExpr * | |||
5160 | BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
5161 | const DeclarationNameInfo &NameInfo, | |||
5162 | const CXXScopeSpec *SS = nullptr, | |||
5163 | NamedDecl *FoundD = nullptr, | |||
5164 | SourceLocation TemplateKWLoc = SourceLocation(), | |||
5165 | const TemplateArgumentListInfo *TemplateArgs = nullptr); | |||
5166 | DeclRefExpr * | |||
5167 | BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
5168 | const DeclarationNameInfo &NameInfo, | |||
5169 | NestedNameSpecifierLoc NNS, | |||
5170 | NamedDecl *FoundD = nullptr, | |||
5171 | SourceLocation TemplateKWLoc = SourceLocation(), | |||
5172 | const TemplateArgumentListInfo *TemplateArgs = nullptr); | |||
5173 | ||||
5174 | ExprResult | |||
5175 | BuildAnonymousStructUnionMemberReference( | |||
5176 | const CXXScopeSpec &SS, | |||
5177 | SourceLocation nameLoc, | |||
5178 | IndirectFieldDecl *indirectField, | |||
5179 | DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none), | |||
5180 | Expr *baseObjectExpr = nullptr, | |||
5181 | SourceLocation opLoc = SourceLocation()); | |||
5182 | ||||
5183 | ExprResult BuildPossibleImplicitMemberExpr( | |||
5184 | const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, | |||
5185 | const TemplateArgumentListInfo *TemplateArgs, const Scope *S, | |||
5186 | UnresolvedLookupExpr *AsULE = nullptr); | |||
5187 | ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS, | |||
5188 | SourceLocation TemplateKWLoc, | |||
5189 | LookupResult &R, | |||
5190 | const TemplateArgumentListInfo *TemplateArgs, | |||
5191 | bool IsDefiniteInstance, | |||
5192 | const Scope *S); | |||
5193 | bool UseArgumentDependentLookup(const CXXScopeSpec &SS, | |||
5194 | const LookupResult &R, | |||
5195 | bool HasTrailingLParen); | |||
5196 | ||||
5197 | ExprResult | |||
5198 | BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, | |||
5199 | const DeclarationNameInfo &NameInfo, | |||
5200 | bool IsAddressOfOperand, const Scope *S, | |||
5201 | TypeSourceInfo **RecoveryTSI = nullptr); | |||
5202 | ||||
5203 | ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS, | |||
5204 | SourceLocation TemplateKWLoc, | |||
5205 | const DeclarationNameInfo &NameInfo, | |||
5206 | const TemplateArgumentListInfo *TemplateArgs); | |||
5207 | ||||
5208 | ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, | |||
5209 | LookupResult &R, | |||
5210 | bool NeedsADL, | |||
5211 | bool AcceptInvalidDecl = false); | |||
5212 | ExprResult BuildDeclarationNameExpr( | |||
5213 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, | |||
5214 | NamedDecl *FoundD = nullptr, | |||
5215 | const TemplateArgumentListInfo *TemplateArgs = nullptr, | |||
5216 | bool AcceptInvalidDecl = false); | |||
5217 | ||||
5218 | ExprResult BuildLiteralOperatorCall(LookupResult &R, | |||
5219 | DeclarationNameInfo &SuffixInfo, | |||
5220 | ArrayRef<Expr *> Args, | |||
5221 | SourceLocation LitEndLoc, | |||
5222 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); | |||
5223 | ||||
5224 | ExprResult BuildPredefinedExpr(SourceLocation Loc, | |||
5225 | PredefinedExpr::IdentKind IK); | |||
5226 | ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); | |||
5227 | ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val); | |||
5228 | ||||
5229 | ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, | |||
5230 | SourceLocation LParen, | |||
5231 | SourceLocation RParen, | |||
5232 | TypeSourceInfo *TSI); | |||
5233 | ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, | |||
5234 | SourceLocation LParen, | |||
5235 | SourceLocation RParen, | |||
5236 | ParsedType ParsedTy); | |||
5237 | ||||
5238 | bool CheckLoopHintExpr(Expr *E, SourceLocation Loc); | |||
5239 | ||||
5240 | ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr); | |||
5241 | ExprResult ActOnCharacterConstant(const Token &Tok, | |||
5242 | Scope *UDLScope = nullptr); | |||
5243 | ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E); | |||
5244 | ExprResult ActOnParenListExpr(SourceLocation L, | |||
5245 | SourceLocation R, | |||
5246 | MultiExprArg Val); | |||
5247 | ||||
5248 | /// ActOnStringLiteral - The specified tokens were lexed as pasted string | |||
5249 | /// fragments (e.g. "foo" "bar" L"baz"). | |||
5250 | ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks, | |||
5251 | Scope *UDLScope = nullptr); | |||
5252 | ||||
5253 | ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc, | |||
5254 | SourceLocation DefaultLoc, | |||
5255 | SourceLocation RParenLoc, | |||
5256 | Expr *ControllingExpr, | |||
5257 | ArrayRef<ParsedType> ArgTypes, | |||
5258 | ArrayRef<Expr *> ArgExprs); | |||
5259 | ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc, | |||
5260 | SourceLocation DefaultLoc, | |||
5261 | SourceLocation RParenLoc, | |||
5262 | Expr *ControllingExpr, | |||
5263 | ArrayRef<TypeSourceInfo *> Types, | |||
5264 | ArrayRef<Expr *> Exprs); | |||
5265 | ||||
5266 | // Binary/Unary Operators. 'Tok' is the token for the operator. | |||
5267 | ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, | |||
5268 | Expr *InputExpr); | |||
5269 | ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, | |||
5270 | UnaryOperatorKind Opc, Expr *Input); | |||
5271 | ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, | |||
5272 | tok::TokenKind Op, Expr *Input); | |||
5273 | ||||
5274 | bool isQualifiedMemberAccess(Expr *E); | |||
5275 | QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc); | |||
5276 | ||||
5277 | ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, | |||
5278 | SourceLocation OpLoc, | |||
5279 | UnaryExprOrTypeTrait ExprKind, | |||
5280 | SourceRange R); | |||
5281 | ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, | |||
5282 | UnaryExprOrTypeTrait ExprKind); | |||
5283 | ExprResult | |||
5284 | ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, | |||
5285 | UnaryExprOrTypeTrait ExprKind, | |||
5286 | bool IsType, void *TyOrEx, | |||
5287 | SourceRange ArgRange); | |||
5288 | ||||
5289 | ExprResult CheckPlaceholderExpr(Expr *E); | |||
5290 | bool CheckVecStepExpr(Expr *E); | |||
5291 | ||||
5292 | bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind); | |||
5293 | bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, | |||
5294 | SourceRange ExprRange, | |||
5295 | UnaryExprOrTypeTrait ExprKind); | |||
5296 | ExprResult ActOnSizeofParameterPackExpr(Scope *S, | |||
5297 | SourceLocation OpLoc, | |||
5298 | IdentifierInfo &Name, | |||
5299 | SourceLocation NameLoc, | |||
5300 | SourceLocation RParenLoc); | |||
5301 | ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | |||
5302 | tok::TokenKind Kind, Expr *Input); | |||
5303 | ||||
5304 | ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, | |||
5305 | Expr *Idx, SourceLocation RLoc); | |||
5306 | ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, | |||
5307 | Expr *Idx, SourceLocation RLoc); | |||
5308 | ||||
5309 | ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, | |||
5310 | Expr *ColumnIdx, | |||
5311 | SourceLocation RBLoc); | |||
5312 | ||||
5313 | ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, | |||
5314 | Expr *LowerBound, | |||
5315 | SourceLocation ColonLocFirst, | |||
5316 | SourceLocation ColonLocSecond, | |||
5317 | Expr *Length, Expr *Stride, | |||
5318 | SourceLocation RBLoc); | |||
5319 | ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, | |||
5320 | SourceLocation RParenLoc, | |||
5321 | ArrayRef<Expr *> Dims, | |||
5322 | ArrayRef<SourceRange> Brackets); | |||
5323 | ||||
5324 | /// Data structure for iterator expression. | |||
5325 | struct OMPIteratorData { | |||
5326 | IdentifierInfo *DeclIdent = nullptr; | |||
5327 | SourceLocation DeclIdentLoc; | |||
5328 | ParsedType Type; | |||
5329 | OMPIteratorExpr::IteratorRange Range; | |||
5330 | SourceLocation AssignLoc; | |||
5331 | SourceLocation ColonLoc; | |||
5332 | SourceLocation SecColonLoc; | |||
5333 | }; | |||
5334 | ||||
5335 | ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, | |||
5336 | SourceLocation LLoc, SourceLocation RLoc, | |||
5337 | ArrayRef<OMPIteratorData> Data); | |||
5338 | ||||
5339 | // This struct is for use by ActOnMemberAccess to allow | |||
5340 | // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after | |||
5341 | // changing the access operator from a '.' to a '->' (to see if that is the | |||
5342 | // change needed to fix an error about an unknown member, e.g. when the class | |||
5343 | // defines a custom operator->). | |||
5344 | struct ActOnMemberAccessExtraArgs { | |||
5345 | Scope *S; | |||
5346 | UnqualifiedId &Id; | |||
5347 | Decl *ObjCImpDecl; | |||
5348 | }; | |||
5349 | ||||
5350 | ExprResult BuildMemberReferenceExpr( | |||
5351 | Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, | |||
5352 | CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | |||
5353 | NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, | |||
5354 | const TemplateArgumentListInfo *TemplateArgs, | |||
5355 | const Scope *S, | |||
5356 | ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); | |||
5357 | ||||
5358 | ExprResult | |||
5359 | BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, | |||
5360 | bool IsArrow, const CXXScopeSpec &SS, | |||
5361 | SourceLocation TemplateKWLoc, | |||
5362 | NamedDecl *FirstQualifierInScope, LookupResult &R, | |||
5363 | const TemplateArgumentListInfo *TemplateArgs, | |||
5364 | const Scope *S, | |||
5365 | bool SuppressQualifierCheck = false, | |||
5366 | ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); | |||
5367 | ||||
5368 | ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, | |||
5369 | SourceLocation OpLoc, | |||
5370 | const CXXScopeSpec &SS, FieldDecl *Field, | |||
5371 | DeclAccessPair FoundDecl, | |||
5372 | const DeclarationNameInfo &MemberNameInfo); | |||
5373 | ||||
5374 | ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow); | |||
5375 | ||||
5376 | bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, | |||
5377 | const CXXScopeSpec &SS, | |||
5378 | const LookupResult &R); | |||
5379 | ||||
5380 | ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType, | |||
5381 | bool IsArrow, SourceLocation OpLoc, | |||
5382 | const CXXScopeSpec &SS, | |||
5383 | SourceLocation TemplateKWLoc, | |||
5384 | NamedDecl *FirstQualifierInScope, | |||
5385 | const DeclarationNameInfo &NameInfo, | |||
5386 | const TemplateArgumentListInfo *TemplateArgs); | |||
5387 | ||||
5388 | ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, | |||
5389 | SourceLocation OpLoc, | |||
5390 | tok::TokenKind OpKind, | |||
5391 | CXXScopeSpec &SS, | |||
5392 | SourceLocation TemplateKWLoc, | |||
5393 | UnqualifiedId &Member, | |||
5394 | Decl *ObjCImpDecl); | |||
5395 | ||||
5396 | MemberExpr * | |||
5397 | BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, | |||
5398 | const CXXScopeSpec *SS, SourceLocation TemplateKWLoc, | |||
5399 | ValueDecl *Member, DeclAccessPair FoundDecl, | |||
5400 | bool HadMultipleCandidates, | |||
5401 | const DeclarationNameInfo &MemberNameInfo, QualType Ty, | |||
5402 | ExprValueKind VK, ExprObjectKind OK, | |||
5403 | const TemplateArgumentListInfo *TemplateArgs = nullptr); | |||
5404 | MemberExpr * | |||
5405 | BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, | |||
5406 | NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc, | |||
5407 | ValueDecl *Member, DeclAccessPair FoundDecl, | |||
5408 | bool HadMultipleCandidates, | |||
5409 | const DeclarationNameInfo &MemberNameInfo, QualType Ty, | |||
5410 | ExprValueKind VK, ExprObjectKind OK, | |||
5411 | const TemplateArgumentListInfo *TemplateArgs = nullptr); | |||
5412 | ||||
5413 | void ActOnDefaultCtorInitializers(Decl *CDtorDecl); | |||
5414 | bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | |||
5415 | FunctionDecl *FDecl, | |||
5416 | const FunctionProtoType *Proto, | |||
5417 | ArrayRef<Expr *> Args, | |||
5418 | SourceLocation RParenLoc, | |||
5419 | bool ExecConfig = false); | |||
5420 | void CheckStaticArrayArgument(SourceLocation CallLoc, | |||
5421 | ParmVarDecl *Param, | |||
5422 | const Expr *ArgExpr); | |||
5423 | ||||
5424 | /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. | |||
5425 | /// This provides the location of the left/right parens and a list of comma | |||
5426 | /// locations. | |||
5427 | ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, | |||
5428 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | |||
5429 | Expr *ExecConfig = nullptr); | |||
5430 | ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, | |||
5431 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | |||
5432 | Expr *ExecConfig = nullptr, | |||
5433 | bool IsExecConfig = false, | |||
5434 | bool AllowRecovery = false); | |||
5435 | Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, | |||
5436 | MultiExprArg CallArgs); | |||
5437 | enum class AtomicArgumentOrder { API, AST }; | |||
5438 | ExprResult | |||
5439 | BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, | |||
5440 | SourceLocation RParenLoc, MultiExprArg Args, | |||
5441 | AtomicExpr::AtomicOp Op, | |||
5442 | AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API); | |||
5443 | ExprResult | |||
5444 | BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, | |||
5445 | ArrayRef<Expr *> Arg, SourceLocation RParenLoc, | |||
5446 | Expr *Config = nullptr, bool IsExecConfig = false, | |||
5447 | ADLCallKind UsesADL = ADLCallKind::NotADL); | |||
5448 | ||||
5449 | ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, | |||
5450 | MultiExprArg ExecConfig, | |||
5451 | SourceLocation GGGLoc); | |||
5452 | ||||
5453 | ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, | |||
5454 | Declarator &D, ParsedType &Ty, | |||
5455 | SourceLocation RParenLoc, Expr *CastExpr); | |||
5456 | ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, | |||
5457 | TypeSourceInfo *Ty, | |||
5458 | SourceLocation RParenLoc, | |||
5459 | Expr *Op); | |||
5460 | CastKind PrepareScalarCast(ExprResult &src, QualType destType); | |||
5461 | ||||
5462 | /// Build an altivec or OpenCL literal. | |||
5463 | ExprResult BuildVectorLiteral(SourceLocation LParenLoc, | |||
5464 | SourceLocation RParenLoc, Expr *E, | |||
5465 | TypeSourceInfo *TInfo); | |||
5466 | ||||
5467 | ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME); | |||
5468 | ||||
5469 | ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, | |||
5470 | ParsedType Ty, | |||
5471 | SourceLocation RParenLoc, | |||
5472 | Expr *InitExpr); | |||
5473 | ||||
5474 | ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc, | |||
5475 | TypeSourceInfo *TInfo, | |||
5476 | SourceLocation RParenLoc, | |||
5477 | Expr *LiteralExpr); | |||
5478 | ||||
5479 | ExprResult ActOnInitList(SourceLocation LBraceLoc, | |||
5480 | MultiExprArg InitArgList, | |||
5481 | SourceLocation RBraceLoc); | |||
5482 | ||||
5483 | ExprResult BuildInitList(SourceLocation LBraceLoc, | |||
5484 | MultiExprArg InitArgList, | |||
5485 | SourceLocation RBraceLoc); | |||
5486 | ||||
5487 | ExprResult ActOnDesignatedInitializer(Designation &Desig, | |||
5488 | SourceLocation EqualOrColonLoc, | |||
5489 | bool GNUSyntax, | |||
5490 | ExprResult Init); | |||
5491 | ||||
5492 | private: | |||
5493 | static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind); | |||
5494 | ||||
5495 | public: | |||
5496 | ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, | |||
5497 | tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr); | |||
5498 | ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, | |||
5499 | BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); | |||
5500 | ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, | |||
5501 | Expr *LHSExpr, Expr *RHSExpr); | |||
5502 | void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, | |||
5503 | UnresolvedSetImpl &Functions); | |||
5504 | ||||
5505 | void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc); | |||
5506 | ||||
5507 | /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null | |||
5508 | /// in the case of a the GNU conditional expr extension. | |||
5509 | ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, | |||
5510 | SourceLocation ColonLoc, | |||
5511 | Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr); | |||
5512 | ||||
5513 | /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". | |||
5514 | ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, | |||
5515 | LabelDecl *TheDecl); | |||
5516 | ||||
5517 | void ActOnStartStmtExpr(); | |||
5518 | ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, | |||
5519 | SourceLocation RPLoc); | |||
5520 | ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, | |||
5521 | SourceLocation RPLoc, unsigned TemplateDepth); | |||
5522 | // Handle the final expression in a statement expression. | |||
5523 | ExprResult ActOnStmtExprResult(ExprResult E); | |||
5524 | void ActOnStmtExprError(); | |||
5525 | ||||
5526 | // __builtin_offsetof(type, identifier(.identifier|[expr])*) | |||
5527 | struct OffsetOfComponent { | |||
5528 | SourceLocation LocStart, LocEnd; | |||
5529 | bool isBrackets; // true if [expr], false if .ident | |||
5530 | union { | |||
5531 | IdentifierInfo *IdentInfo; | |||
5532 | Expr *E; | |||
5533 | } U; | |||
5534 | }; | |||
5535 | ||||
5536 | /// __builtin_offsetof(type, a.b[123][456].c) | |||
5537 | ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, | |||
5538 | TypeSourceInfo *TInfo, | |||
5539 | ArrayRef<OffsetOfComponent> Components, | |||
5540 | SourceLocation RParenLoc); | |||
5541 | ExprResult ActOnBuiltinOffsetOf(Scope *S, | |||
5542 | SourceLocation BuiltinLoc, | |||
5543 | SourceLocation TypeLoc, | |||
5544 | ParsedType ParsedArgTy, | |||
5545 | ArrayRef<OffsetOfComponent> Components, | |||
5546 | SourceLocation RParenLoc); | |||
5547 | ||||
5548 | // __builtin_choose_expr(constExpr, expr1, expr2) | |||
5549 | ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, | |||
5550 | Expr *CondExpr, Expr *LHSExpr, | |||
5551 | Expr *RHSExpr, SourceLocation RPLoc); | |||
5552 | ||||
5553 | // __builtin_va_arg(expr, type) | |||
5554 | ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, | |||
5555 | SourceLocation RPLoc); | |||
5556 | ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, | |||
5557 | TypeSourceInfo *TInfo, SourceLocation RPLoc); | |||
5558 | ||||
5559 | // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(), | |||
5560 | // __builtin_COLUMN() | |||
5561 | ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, | |||
5562 | SourceLocation BuiltinLoc, | |||
5563 | SourceLocation RPLoc); | |||
5564 | ||||
5565 | // Build a potentially resolved SourceLocExpr. | |||
5566 | ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, | |||
5567 | SourceLocation BuiltinLoc, SourceLocation RPLoc, | |||
5568 | DeclContext *ParentContext); | |||
5569 | ||||
5570 | // __null | |||
5571 | ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); | |||
5572 | ||||
5573 | bool CheckCaseExpression(Expr *E); | |||
5574 | ||||
5575 | /// Describes the result of an "if-exists" condition check. | |||
5576 | enum IfExistsResult { | |||
5577 | /// The symbol exists. | |||
5578 | IER_Exists, | |||
5579 | ||||
5580 | /// The symbol does not exist. | |||
5581 | IER_DoesNotExist, | |||
5582 | ||||
5583 | /// The name is a dependent name, so the results will differ | |||
5584 | /// from one instantiation to the next. | |||
5585 | IER_Dependent, | |||
5586 | ||||
5587 | /// An error occurred. | |||
5588 | IER_Error | |||
5589 | }; | |||
5590 | ||||
5591 | IfExistsResult | |||
5592 | CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, | |||
5593 | const DeclarationNameInfo &TargetNameInfo); | |||
5594 | ||||
5595 | IfExistsResult | |||
5596 | CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, | |||
5597 | bool IsIfExists, CXXScopeSpec &SS, | |||
5598 | UnqualifiedId &Name); | |||
5599 | ||||
5600 | StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, | |||
5601 | bool IsIfExists, | |||
5602 | NestedNameSpecifierLoc QualifierLoc, | |||
5603 | DeclarationNameInfo NameInfo, | |||
5604 | Stmt *Nested); | |||
5605 | StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, | |||
5606 | bool IsIfExists, | |||
5607 | CXXScopeSpec &SS, UnqualifiedId &Name, | |||
5608 | Stmt *Nested); | |||
5609 | ||||
5610 | //===------------------------- "Block" Extension ------------------------===// | |||
5611 | ||||
5612 | /// ActOnBlockStart - This callback is invoked when a block literal is | |||
5613 | /// started. | |||
5614 | void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); | |||
5615 | ||||
5616 | /// ActOnBlockArguments - This callback allows processing of block arguments. | |||
5617 | /// If there are no arguments, this is still invoked. | |||
5618 | void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, | |||
5619 | Scope *CurScope); | |||
5620 | ||||
5621 | /// ActOnBlockError - If there is an error parsing a block, this callback | |||
5622 | /// is invoked to pop the information about the block from the action impl. | |||
5623 | void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); | |||
5624 | ||||
5625 | /// ActOnBlockStmtExpr - This is called when the body of a block statement | |||
5626 | /// literal was successfully completed. ^(int x){...} | |||
5627 | ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, | |||
5628 | Scope *CurScope); | |||
5629 | ||||
5630 | //===---------------------------- Clang Extensions ----------------------===// | |||
5631 | ||||
5632 | /// __builtin_convertvector(...) | |||
5633 | ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, | |||
5634 | SourceLocation BuiltinLoc, | |||
5635 | SourceLocation RParenLoc); | |||
5636 | ||||
5637 | //===---------------------------- OpenCL Features -----------------------===// | |||
5638 | ||||
5639 | /// __builtin_astype(...) | |||
5640 | ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, | |||
5641 | SourceLocation BuiltinLoc, | |||
5642 | SourceLocation RParenLoc); | |||
5643 | ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy, | |||
5644 | SourceLocation BuiltinLoc, | |||
5645 | SourceLocation RParenLoc); | |||
5646 | ||||
5647 | //===---------------------------- C++ Features --------------------------===// | |||
5648 | ||||
5649 | // Act on C++ namespaces | |||
5650 | Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc, | |||
5651 | SourceLocation NamespaceLoc, | |||
5652 | SourceLocation IdentLoc, IdentifierInfo *Ident, | |||
5653 | SourceLocation LBrace, | |||
5654 | const ParsedAttributesView &AttrList, | |||
5655 | UsingDirectiveDecl *&UsingDecl); | |||
5656 | void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace); | |||
5657 | ||||
5658 | NamespaceDecl *getStdNamespace() const; | |||
5659 | NamespaceDecl *getOrCreateStdNamespace(); | |||
5660 | ||||
5661 | NamespaceDecl *lookupStdExperimentalNamespace(); | |||
5662 | ||||
5663 | CXXRecordDecl *getStdBadAlloc() const; | |||
5664 | EnumDecl *getStdAlignValT() const; | |||
5665 | ||||
5666 | private: | |||
5667 | // A cache representing if we've fully checked the various comparison category | |||
5668 | // types stored in ASTContext. The bit-index corresponds to the integer value | |||
5669 | // of a ComparisonCategoryType enumerator. | |||
5670 | llvm::SmallBitVector FullyCheckedComparisonCategories; | |||
5671 | ||||
5672 | ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, | |||
5673 | CXXScopeSpec &SS, | |||
5674 | ParsedType TemplateTypeTy, | |||
5675 | IdentifierInfo *MemberOrBase); | |||
5676 | ||||
5677 | public: | |||
5678 | enum class ComparisonCategoryUsage { | |||
5679 | /// The '<=>' operator was used in an expression and a builtin operator | |||
5680 | /// was selected. | |||
5681 | OperatorInExpression, | |||
5682 | /// A defaulted 'operator<=>' needed the comparison category. This | |||
5683 | /// typically only applies to 'std::strong_ordering', due to the implicit | |||
5684 | /// fallback return value. | |||
5685 | DefaultedOperator, | |||
5686 | }; | |||
5687 | ||||
5688 | /// Lookup the specified comparison category types in the standard | |||
5689 | /// library, an check the VarDecls possibly returned by the operator<=> | |||
5690 | /// builtins for that type. | |||
5691 | /// | |||
5692 | /// \return The type of the comparison category type corresponding to the | |||
5693 | /// specified Kind, or a null type if an error occurs | |||
5694 | QualType CheckComparisonCategoryType(ComparisonCategoryType Kind, | |||
5695 | SourceLocation Loc, | |||
5696 | ComparisonCategoryUsage Usage); | |||
5697 | ||||
5698 | /// Tests whether Ty is an instance of std::initializer_list and, if | |||
5699 | /// it is and Element is not NULL, assigns the element type to Element. | |||
5700 | bool isStdInitializerList(QualType Ty, QualType *Element); | |||
5701 | ||||
5702 | /// Looks for the std::initializer_list template and instantiates it | |||
5703 | /// with Element, or emits an error if it's not found. | |||
5704 | /// | |||
5705 | /// \returns The instantiated template, or null on error. | |||
5706 | QualType BuildStdInitializerList(QualType Element, SourceLocation Loc); | |||
5707 | ||||
5708 | /// Determine whether Ctor is an initializer-list constructor, as | |||
5709 | /// defined in [dcl.init.list]p2. | |||
5710 | bool isInitListConstructor(const FunctionDecl *Ctor); | |||
5711 | ||||
5712 | Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, | |||
5713 | SourceLocation NamespcLoc, CXXScopeSpec &SS, | |||
5714 | SourceLocation IdentLoc, | |||
5715 | IdentifierInfo *NamespcName, | |||
5716 | const ParsedAttributesView &AttrList); | |||
5717 | ||||
5718 | void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); | |||
5719 | ||||
5720 | Decl *ActOnNamespaceAliasDef(Scope *CurScope, | |||
5721 | SourceLocation NamespaceLoc, | |||
5722 | SourceLocation AliasLoc, | |||
5723 | IdentifierInfo *Alias, | |||
5724 | CXXScopeSpec &SS, | |||
5725 | SourceLocation IdentLoc, | |||
5726 | IdentifierInfo *Ident); | |||
5727 | ||||
5728 | void FilterUsingLookup(Scope *S, LookupResult &lookup); | |||
5729 | void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow); | |||
5730 | bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target, | |||
5731 | const LookupResult &PreviousDecls, | |||
5732 | UsingShadowDecl *&PrevShadow); | |||
5733 | UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, | |||
5734 | NamedDecl *Target, | |||
5735 | UsingShadowDecl *PrevDecl); | |||
5736 | ||||
5737 | bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | |||
5738 | bool HasTypenameKeyword, | |||
5739 | const CXXScopeSpec &SS, | |||
5740 | SourceLocation NameLoc, | |||
5741 | const LookupResult &Previous); | |||
5742 | bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, | |||
5743 | const CXXScopeSpec &SS, | |||
5744 | const DeclarationNameInfo &NameInfo, | |||
5745 | SourceLocation NameLoc, | |||
5746 | const LookupResult *R = nullptr, | |||
5747 | const UsingDecl *UD = nullptr); | |||
5748 | ||||
5749 | NamedDecl *BuildUsingDeclaration( | |||
5750 | Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, | |||
5751 | bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, | |||
5752 | DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, | |||
5753 | const ParsedAttributesView &AttrList, bool IsInstantiation, | |||
5754 | bool IsUsingIfExists); | |||
5755 | NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, | |||
5756 | SourceLocation UsingLoc, | |||
5757 | SourceLocation EnumLoc, | |||
5758 | SourceLocation NameLoc, EnumDecl *ED); | |||
5759 | NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom, | |||
5760 | ArrayRef<NamedDecl *> Expansions); | |||
5761 | ||||
5762 | bool CheckInheritingConstructorUsingDecl(UsingDecl *UD); | |||
5763 | ||||
5764 | /// Given a derived-class using shadow declaration for a constructor and the | |||
5765 | /// correspnding base class constructor, find or create the implicit | |||
5766 | /// synthesized derived class constructor to use for this initialization. | |||
5767 | CXXConstructorDecl * | |||
5768 | findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor, | |||
5769 | ConstructorUsingShadowDecl *DerivedShadow); | |||
5770 | ||||
5771 | Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, | |||
5772 | SourceLocation UsingLoc, | |||
5773 | SourceLocation TypenameLoc, CXXScopeSpec &SS, | |||
5774 | UnqualifiedId &Name, SourceLocation EllipsisLoc, | |||
5775 | const ParsedAttributesView &AttrList); | |||
5776 | Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS, | |||
5777 | SourceLocation UsingLoc, | |||
5778 | SourceLocation EnumLoc, const DeclSpec &); | |||
5779 | Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS, | |||
5780 | MultiTemplateParamsArg TemplateParams, | |||
5781 | SourceLocation UsingLoc, UnqualifiedId &Name, | |||
5782 | const ParsedAttributesView &AttrList, | |||
5783 | TypeResult Type, Decl *DeclFromDeclSpec); | |||
5784 | ||||
5785 | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | |||
5786 | /// including handling of its default argument expressions. | |||
5787 | /// | |||
5788 | /// \param ConstructKind - a CXXConstructExpr::ConstructionKind | |||
5789 | ExprResult | |||
5790 | BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
5791 | NamedDecl *FoundDecl, | |||
5792 | CXXConstructorDecl *Constructor, MultiExprArg Exprs, | |||
5793 | bool HadMultipleCandidates, bool IsListInitialization, | |||
5794 | bool IsStdInitListInitialization, | |||
5795 | bool RequiresZeroInit, unsigned ConstructKind, | |||
5796 | SourceRange ParenRange); | |||
5797 | ||||
5798 | /// Build a CXXConstructExpr whose constructor has already been resolved if | |||
5799 | /// it denotes an inherited constructor. | |||
5800 | ExprResult | |||
5801 | BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
5802 | CXXConstructorDecl *Constructor, bool Elidable, | |||
5803 | MultiExprArg Exprs, | |||
5804 | bool HadMultipleCandidates, bool IsListInitialization, | |||
5805 | bool IsStdInitListInitialization, | |||
5806 | bool RequiresZeroInit, unsigned ConstructKind, | |||
5807 | SourceRange ParenRange); | |||
5808 | ||||
5809 | // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if | |||
5810 | // the constructor can be elidable? | |||
5811 | ExprResult | |||
5812 | BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | |||
5813 | NamedDecl *FoundDecl, | |||
5814 | CXXConstructorDecl *Constructor, bool Elidable, | |||
5815 | MultiExprArg Exprs, bool HadMultipleCandidates, | |||
5816 | bool IsListInitialization, | |||
5817 | bool IsStdInitListInitialization, bool RequiresZeroInit, | |||
5818 | unsigned ConstructKind, SourceRange ParenRange); | |||
5819 | ||||
5820 | ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field); | |||
5821 | ||||
5822 | ||||
5823 | /// Instantiate or parse a C++ default argument expression as necessary. | |||
5824 | /// Return true on error. | |||
5825 | bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, | |||
5826 | ParmVarDecl *Param); | |||
5827 | ||||
5828 | /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating | |||
5829 | /// the default expr if needed. | |||
5830 | ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, | |||
5831 | FunctionDecl *FD, | |||
5832 | ParmVarDecl *Param); | |||
5833 | ||||
5834 | /// FinalizeVarWithDestructor - Prepare for calling destructor on the | |||
5835 | /// constructed variable. | |||
5836 | void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType); | |||
5837 | ||||
5838 | /// Helper class that collects exception specifications for | |||
5839 | /// implicitly-declared special member functions. | |||
5840 | class ImplicitExceptionSpecification { | |||
5841 | // Pointer to allow copying | |||
5842 | Sema *Self; | |||
5843 | // We order exception specifications thus: | |||
5844 | // noexcept is the most restrictive, but is only used in C++11. | |||
5845 | // throw() comes next. | |||
5846 | // Then a throw(collected exceptions) | |||
5847 | // Finally no specification, which is expressed as noexcept(false). | |||
5848 | // throw(...) is used instead if any called function uses it. | |||
5849 | ExceptionSpecificationType ComputedEST; | |||
5850 | llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen; | |||
5851 | SmallVector<QualType, 4> Exceptions; | |||
5852 | ||||
5853 | void ClearExceptions() { | |||
5854 | ExceptionsSeen.clear(); | |||
5855 | Exceptions.clear(); | |||
5856 | } | |||
5857 | ||||
5858 | public: | |||
5859 | explicit ImplicitExceptionSpecification(Sema &Self) | |||
5860 | : Self(&Self), ComputedEST(EST_BasicNoexcept) { | |||
5861 | if (!Self.getLangOpts().CPlusPlus11) | |||
5862 | ComputedEST = EST_DynamicNone; | |||
5863 | } | |||
5864 | ||||
5865 | /// Get the computed exception specification type. | |||
5866 | ExceptionSpecificationType getExceptionSpecType() const { | |||
5867 | assert(!isComputedNoexcept(ComputedEST) &&((void)0) | |||
5868 | "noexcept(expr) should not be a possible result")((void)0); | |||
5869 | return ComputedEST; | |||
5870 | } | |||
5871 | ||||
5872 | /// The number of exceptions in the exception specification. | |||
5873 | unsigned size() const { return Exceptions.size(); } | |||
5874 | ||||
5875 | /// The set of exceptions in the exception specification. | |||
5876 | const QualType *data() const { return Exceptions.data(); } | |||
5877 | ||||
5878 | /// Integrate another called method into the collected data. | |||
5879 | void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method); | |||
5880 | ||||
5881 | /// Integrate an invoked expression into the collected data. | |||
5882 | void CalledExpr(Expr *E) { CalledStmt(E); } | |||
5883 | ||||
5884 | /// Integrate an invoked statement into the collected data. | |||
5885 | void CalledStmt(Stmt *S); | |||
5886 | ||||
5887 | /// Overwrite an EPI's exception specification with this | |||
5888 | /// computed exception specification. | |||
5889 | FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const { | |||
5890 | FunctionProtoType::ExceptionSpecInfo ESI; | |||
5891 | ESI.Type = getExceptionSpecType(); | |||
5892 | if (ESI.Type == EST_Dynamic) { | |||
5893 | ESI.Exceptions = Exceptions; | |||
5894 | } else if (ESI.Type == EST_None) { | |||
5895 | /// C++11 [except.spec]p14: | |||
5896 | /// The exception-specification is noexcept(false) if the set of | |||
5897 | /// potential exceptions of the special member function contains "any" | |||
5898 | ESI.Type = EST_NoexceptFalse; | |||
5899 | ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(), | |||
5900 | tok::kw_false).get(); | |||
5901 | } | |||
5902 | return ESI; | |||
5903 | } | |||
5904 | }; | |||
5905 | ||||
5906 | /// Evaluate the implicit exception specification for a defaulted | |||
5907 | /// special member function. | |||
5908 | void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD); | |||
5909 | ||||
5910 | /// Check the given noexcept-specifier, convert its expression, and compute | |||
5911 | /// the appropriate ExceptionSpecificationType. | |||
5912 | ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr, | |||
5913 | ExceptionSpecificationType &EST); | |||
5914 | ||||
5915 | /// Check the given exception-specification and update the | |||
5916 | /// exception specification information with the results. | |||
5917 | void checkExceptionSpecification(bool IsTopLevel, | |||
5918 | ExceptionSpecificationType EST, | |||
5919 | ArrayRef<ParsedType> DynamicExceptions, | |||
5920 | ArrayRef<SourceRange> DynamicExceptionRanges, | |||
5921 | Expr *NoexceptExpr, | |||
5922 | SmallVectorImpl<QualType> &Exceptions, | |||
5923 | FunctionProtoType::ExceptionSpecInfo &ESI); | |||
5924 | ||||
5925 | /// Determine if we're in a case where we need to (incorrectly) eagerly | |||
5926 | /// parse an exception specification to work around a libstdc++ bug. | |||
5927 | bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D); | |||
5928 | ||||
5929 | /// Add an exception-specification to the given member function | |||
5930 | /// (or member function template). The exception-specification was parsed | |||
5931 | /// after the method itself was declared. | |||
5932 | void actOnDelayedExceptionSpecification(Decl *Method, | |||
5933 | ExceptionSpecificationType EST, | |||
5934 | SourceRange SpecificationRange, | |||
5935 | ArrayRef<ParsedType> DynamicExceptions, | |||
5936 | ArrayRef<SourceRange> DynamicExceptionRanges, | |||
5937 | Expr *NoexceptExpr); | |||
5938 | ||||
5939 | class InheritedConstructorInfo; | |||
5940 | ||||
5941 | /// Determine if a special member function should have a deleted | |||
5942 | /// definition when it is defaulted. | |||
5943 | bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, | |||
5944 | InheritedConstructorInfo *ICI = nullptr, | |||
5945 | bool Diagnose = false); | |||
5946 | ||||
5947 | /// Produce notes explaining why a defaulted function was defined as deleted. | |||
5948 | void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD); | |||
5949 | ||||
5950 | /// Declare the implicit default constructor for the given class. | |||
5951 | /// | |||
5952 | /// \param ClassDecl The class declaration into which the implicit | |||
5953 | /// default constructor will be added. | |||
5954 | /// | |||
5955 | /// \returns The implicitly-declared default constructor. | |||
5956 | CXXConstructorDecl *DeclareImplicitDefaultConstructor( | |||
5957 | CXXRecordDecl *ClassDecl); | |||
5958 | ||||
5959 | /// DefineImplicitDefaultConstructor - Checks for feasibility of | |||
5960 | /// defining this constructor as the default constructor. | |||
5961 | void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | |||
5962 | CXXConstructorDecl *Constructor); | |||
5963 | ||||
5964 | /// Declare the implicit destructor for the given class. | |||
5965 | /// | |||
5966 | /// \param ClassDecl The class declaration into which the implicit | |||
5967 | /// destructor will be added. | |||
5968 | /// | |||
5969 | /// \returns The implicitly-declared destructor. | |||
5970 | CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl); | |||
5971 | ||||
5972 | /// DefineImplicitDestructor - Checks for feasibility of | |||
5973 | /// defining this destructor as the default destructor. | |||
5974 | void DefineImplicitDestructor(SourceLocation CurrentLocation, | |||
5975 | CXXDestructorDecl *Destructor); | |||
5976 | ||||
5977 | /// Build an exception spec for destructors that don't have one. | |||
5978 | /// | |||
5979 | /// C++11 says that user-defined destructors with no exception spec get one | |||
5980 | /// that looks as if the destructor was implicitly declared. | |||
5981 | void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor); | |||
5982 | ||||
5983 | /// Define the specified inheriting constructor. | |||
5984 | void DefineInheritingConstructor(SourceLocation UseLoc, | |||
5985 | CXXConstructorDecl *Constructor); | |||
5986 | ||||
5987 | /// Declare the implicit copy constructor for the given class. | |||
5988 | /// | |||
5989 | /// \param ClassDecl The class declaration into which the implicit | |||
5990 | /// copy constructor will be added. | |||
5991 | /// | |||
5992 | /// \returns The implicitly-declared copy constructor. | |||
5993 | CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl); | |||
5994 | ||||
5995 | /// DefineImplicitCopyConstructor - Checks for feasibility of | |||
5996 | /// defining this constructor as the copy constructor. | |||
5997 | void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | |||
5998 | CXXConstructorDecl *Constructor); | |||
5999 | ||||
6000 | /// Declare the implicit move constructor for the given class. | |||
6001 | /// | |||
6002 | /// \param ClassDecl The Class declaration into which the implicit | |||
6003 | /// move constructor will be added. | |||
6004 | /// | |||
6005 | /// \returns The implicitly-declared move constructor, or NULL if it wasn't | |||
6006 | /// declared. | |||
6007 | CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl); | |||
6008 | ||||
6009 | /// DefineImplicitMoveConstructor - Checks for feasibility of | |||
6010 | /// defining this constructor as the move constructor. | |||
6011 | void DefineImplicitMoveConstructor(SourceLocation CurrentLocation, | |||
6012 | CXXConstructorDecl *Constructor); | |||
6013 | ||||
6014 | /// Declare the implicit copy assignment operator for the given class. | |||
6015 | /// | |||
6016 | /// \param ClassDecl The class declaration into which the implicit | |||
6017 | /// copy assignment operator will be added. | |||
6018 | /// | |||
6019 | /// \returns The implicitly-declared copy assignment operator. | |||
6020 | CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl); | |||
6021 | ||||
6022 | /// Defines an implicitly-declared copy assignment operator. | |||
6023 | void DefineImplicitCopyAssignment(SourceLocation CurrentLocation, | |||
6024 | CXXMethodDecl *MethodDecl); | |||
6025 | ||||
6026 | /// Declare the implicit move assignment operator for the given class. | |||
6027 | /// | |||
6028 | /// \param ClassDecl The Class declaration into which the implicit | |||
6029 | /// move assignment operator will be added. | |||
6030 | /// | |||
6031 | /// \returns The implicitly-declared move assignment operator, or NULL if it | |||
6032 | /// wasn't declared. | |||
6033 | CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl); | |||
6034 | ||||
6035 | /// Defines an implicitly-declared move assignment operator. | |||
6036 | void DefineImplicitMoveAssignment(SourceLocation CurrentLocation, | |||
6037 | CXXMethodDecl *MethodDecl); | |||
6038 | ||||
6039 | /// Force the declaration of any implicitly-declared members of this | |||
6040 | /// class. | |||
6041 | void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class); | |||
6042 | ||||
6043 | /// Check a completed declaration of an implicit special member. | |||
6044 | void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD); | |||
6045 | ||||
6046 | /// Determine whether the given function is an implicitly-deleted | |||
6047 | /// special member function. | |||
6048 | bool isImplicitlyDeleted(FunctionDecl *FD); | |||
6049 | ||||
6050 | /// Check whether 'this' shows up in the type of a static member | |||
6051 | /// function after the (naturally empty) cv-qualifier-seq would be. | |||
6052 | /// | |||
6053 | /// \returns true if an error occurred. | |||
6054 | bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method); | |||
6055 | ||||
6056 | /// Whether this' shows up in the exception specification of a static | |||
6057 | /// member function. | |||
6058 | bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method); | |||
6059 | ||||
6060 | /// Check whether 'this' shows up in the attributes of the given | |||
6061 | /// static member function. | |||
6062 | /// | |||
6063 | /// \returns true if an error occurred. | |||
6064 | bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method); | |||
6065 | ||||
6066 | /// MaybeBindToTemporary - If the passed in expression has a record type with | |||
6067 | /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise | |||
6068 | /// it simply returns the passed in expression. | |||
6069 | ExprResult MaybeBindToTemporary(Expr *E); | |||
6070 | ||||
6071 | /// Wrap the expression in a ConstantExpr if it is a potential immediate | |||
6072 | /// invocation. | |||
6073 | ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl); | |||
6074 | ||||
6075 | bool CompleteConstructorCall(CXXConstructorDecl *Constructor, | |||
6076 | QualType DeclInitType, MultiExprArg ArgsPtr, | |||
6077 | SourceLocation Loc, | |||
6078 | SmallVectorImpl<Expr *> &ConvertedArgs, | |||
6079 | bool AllowExplicit = false, | |||
6080 | bool IsListInitialization = false); | |||
6081 | ||||
6082 | ParsedType getInheritingConstructorName(CXXScopeSpec &SS, | |||
6083 | SourceLocation NameLoc, | |||
6084 | IdentifierInfo &Name); | |||
6085 | ||||
6086 | ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc, | |||
6087 | Scope *S, CXXScopeSpec &SS, | |||
6088 | bool EnteringContext); | |||
6089 | ParsedType getDestructorName(SourceLocation TildeLoc, | |||
6090 | IdentifierInfo &II, SourceLocation NameLoc, | |||
6091 | Scope *S, CXXScopeSpec &SS, | |||
6092 | ParsedType ObjectType, | |||
6093 | bool EnteringContext); | |||
6094 | ||||
6095 | ParsedType getDestructorTypeForDecltype(const DeclSpec &DS, | |||
6096 | ParsedType ObjectType); | |||
6097 | ||||
6098 | // Checks that reinterpret casts don't have undefined behavior. | |||
6099 | void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, | |||
6100 | bool IsDereference, SourceRange Range); | |||
6101 | ||||
6102 | // Checks that the vector type should be initialized from a scalar | |||
6103 | // by splatting the value rather than populating a single element. | |||
6104 | // This is the case for AltiVecVector types as well as with | |||
6105 | // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified. | |||
6106 | bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy); | |||
6107 | ||||
6108 | /// ActOnCXXNamedCast - Parse | |||
6109 | /// {dynamic,static,reinterpret,const,addrspace}_cast's. | |||
6110 | ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, | |||
6111 | tok::TokenKind Kind, | |||
6112 | SourceLocation LAngleBracketLoc, | |||
6113 | Declarator &D, | |||
6114 | SourceLocation RAngleBracketLoc, | |||
6115 | SourceLocation LParenLoc, | |||
6116 | Expr *E, | |||
6117 | SourceLocation RParenLoc); | |||
6118 | ||||
6119 | ExprResult BuildCXXNamedCast(SourceLocation OpLoc, | |||
6120 | tok::TokenKind Kind, | |||
6121 | TypeSourceInfo *Ty, | |||
6122 | Expr *E, | |||
6123 | SourceRange AngleBrackets, | |||
6124 | SourceRange Parens); | |||
6125 | ||||
6126 | ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl, | |||
6127 | ExprResult Operand, | |||
6128 | SourceLocation RParenLoc); | |||
6129 | ||||
6130 | ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI, | |||
6131 | Expr *Operand, SourceLocation RParenLoc); | |||
6132 | ||||
6133 | ExprResult BuildCXXTypeId(QualType TypeInfoType, | |||
6134 | SourceLocation TypeidLoc, | |||
6135 | TypeSourceInfo *Operand, | |||
6136 | SourceLocation RParenLoc); | |||
6137 | ExprResult BuildCXXTypeId(QualType TypeInfoType, | |||
6138 | SourceLocation TypeidLoc, | |||
6139 | Expr *Operand, | |||
6140 | SourceLocation RParenLoc); | |||
6141 | ||||
6142 | /// ActOnCXXTypeid - Parse typeid( something ). | |||
6143 | ExprResult ActOnCXXTypeid(SourceLocation OpLoc, | |||
6144 | SourceLocation LParenLoc, bool isType, | |||
6145 | void *TyOrExpr, | |||
6146 | SourceLocation RParenLoc); | |||
6147 | ||||
6148 | ExprResult BuildCXXUuidof(QualType TypeInfoType, | |||
6149 | SourceLocation TypeidLoc, | |||
6150 | TypeSourceInfo *Operand, | |||
6151 | SourceLocation RParenLoc); | |||
6152 | ExprResult BuildCXXUuidof(QualType TypeInfoType, | |||
6153 | SourceLocation TypeidLoc, | |||
6154 | Expr *Operand, | |||
6155 | SourceLocation RParenLoc); | |||
6156 | ||||
6157 | /// ActOnCXXUuidof - Parse __uuidof( something ). | |||
6158 | ExprResult ActOnCXXUuidof(SourceLocation OpLoc, | |||
6159 | SourceLocation LParenLoc, bool isType, | |||
6160 | void *TyOrExpr, | |||
6161 | SourceLocation RParenLoc); | |||
6162 | ||||
6163 | /// Handle a C++1z fold-expression: ( expr op ... op expr ). | |||
6164 | ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS, | |||
6165 | tok::TokenKind Operator, | |||
6166 | SourceLocation EllipsisLoc, Expr *RHS, | |||
6167 | SourceLocation RParenLoc); | |||
6168 | ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee, | |||
6169 | SourceLocation LParenLoc, Expr *LHS, | |||
6170 | BinaryOperatorKind Operator, | |||
6171 | SourceLocation EllipsisLoc, Expr *RHS, | |||
6172 | SourceLocation RParenLoc, | |||
6173 | Optional<unsigned> NumExpansions); | |||
6174 | ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, | |||
6175 | BinaryOperatorKind Operator); | |||
6176 | ||||
6177 | //// ActOnCXXThis - Parse 'this' pointer. | |||
6178 | ExprResult ActOnCXXThis(SourceLocation loc); | |||
6179 | ||||
6180 | /// Build a CXXThisExpr and mark it referenced in the current context. | |||
6181 | Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit); | |||
6182 | void MarkThisReferenced(CXXThisExpr *This); | |||
6183 | ||||
6184 | /// Try to retrieve the type of the 'this' pointer. | |||
6185 | /// | |||
6186 | /// \returns The type of 'this', if possible. Otherwise, returns a NULL type. | |||
6187 | QualType getCurrentThisType(); | |||
6188 | ||||
6189 | /// When non-NULL, the C++ 'this' expression is allowed despite the | |||
6190 | /// current context not being a non-static member function. In such cases, | |||
6191 | /// this provides the type used for 'this'. | |||
6192 | QualType CXXThisTypeOverride; | |||
6193 | ||||
6194 | /// RAII object used to temporarily allow the C++ 'this' expression | |||
6195 | /// to be used, with the given qualifiers on the current class type. | |||
6196 | class CXXThisScopeRAII { | |||
6197 | Sema &S; | |||
6198 | QualType OldCXXThisTypeOverride; | |||
6199 | bool Enabled; | |||
6200 | ||||
6201 | public: | |||
6202 | /// Introduce a new scope where 'this' may be allowed (when enabled), | |||
6203 | /// using the given declaration (which is either a class template or a | |||
6204 | /// class) along with the given qualifiers. | |||
6205 | /// along with the qualifiers placed on '*this'. | |||
6206 | CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals, | |||
6207 | bool Enabled = true); | |||
6208 | ||||
6209 | ~CXXThisScopeRAII(); | |||
6210 | }; | |||
6211 | ||||
6212 | /// Make sure the value of 'this' is actually available in the current | |||
6213 | /// context, if it is a potentially evaluated context. | |||
6214 | /// | |||
6215 | /// \param Loc The location at which the capture of 'this' occurs. | |||
6216 | /// | |||
6217 | /// \param Explicit Whether 'this' is explicitly captured in a lambda | |||
6218 | /// capture list. | |||
6219 | /// | |||
6220 | /// \param FunctionScopeIndexToStopAt If non-null, it points to the index | |||
6221 | /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. | |||
6222 | /// This is useful when enclosing lambdas must speculatively capture | |||
6223 | /// 'this' that may or may not be used in certain specializations of | |||
6224 | /// a nested generic lambda (depending on whether the name resolves to | |||
6225 | /// a non-static member function or a static function). | |||
6226 | /// \return returns 'true' if failed, 'false' if success. | |||
6227 | bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false, | |||
6228 | bool BuildAndDiagnose = true, | |||
6229 | const unsigned *const FunctionScopeIndexToStopAt = nullptr, | |||
6230 | bool ByCopy = false); | |||
6231 | ||||
6232 | /// Determine whether the given type is the type of *this that is used | |||
6233 | /// outside of the body of a member function for a type that is currently | |||
6234 | /// being defined. | |||
6235 | bool isThisOutsideMemberFunctionBody(QualType BaseType); | |||
6236 | ||||
6237 | /// ActOnCXXBoolLiteral - Parse {true,false} literals. | |||
6238 | ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); | |||
6239 | ||||
6240 | ||||
6241 | /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. | |||
6242 | ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); | |||
6243 | ||||
6244 | ExprResult | |||
6245 | ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs, | |||
6246 | SourceLocation AtLoc, SourceLocation RParen); | |||
6247 | ||||
6248 | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. | |||
6249 | ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); | |||
6250 | ||||
6251 | //// ActOnCXXThrow - Parse throw expressions. | |||
6252 | ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr); | |||
6253 | ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, | |||
6254 | bool IsThrownVarInScope); | |||
6255 | bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E); | |||
6256 | ||||
6257 | /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. | |||
6258 | /// Can be interpreted either as function-style casting ("int(x)") | |||
6259 | /// or class type construction ("ClassType(x,y,z)") | |||
6260 | /// or creation of a value-initialized type ("int()"). | |||
6261 | ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, | |||
6262 | SourceLocation LParenOrBraceLoc, | |||
6263 | MultiExprArg Exprs, | |||
6264 | SourceLocation RParenOrBraceLoc, | |||
6265 | bool ListInitialization); | |||
6266 | ||||
6267 | ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type, | |||
6268 | SourceLocation LParenLoc, | |||
6269 | MultiExprArg Exprs, | |||
6270 | SourceLocation RParenLoc, | |||
6271 | bool ListInitialization); | |||
6272 | ||||
6273 | /// ActOnCXXNew - Parsed a C++ 'new' expression. | |||
6274 | ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, | |||
6275 | SourceLocation PlacementLParen, | |||
6276 | MultiExprArg PlacementArgs, | |||
6277 | SourceLocation PlacementRParen, | |||
6278 | SourceRange TypeIdParens, Declarator &D, | |||
6279 | Expr *Initializer); | |||
6280 | ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal, | |||
6281 | SourceLocation PlacementLParen, | |||
6282 | MultiExprArg PlacementArgs, | |||
6283 | SourceLocation PlacementRParen, | |||
6284 | SourceRange TypeIdParens, | |||
6285 | QualType AllocType, | |||
6286 | TypeSourceInfo *AllocTypeInfo, | |||
6287 | Optional<Expr *> ArraySize, | |||
6288 | SourceRange DirectInitRange, | |||
6289 | Expr *Initializer); | |||
6290 | ||||
6291 | /// Determine whether \p FD is an aligned allocation or deallocation | |||
6292 | /// function that is unavailable. | |||
6293 | bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const; | |||
6294 | ||||
6295 | /// Produce diagnostics if \p FD is an aligned allocation or deallocation | |||
6296 | /// function that is unavailable. | |||
6297 | void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, | |||
6298 | SourceLocation Loc); | |||
6299 | ||||
6300 | bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, | |||
6301 | SourceRange R); | |||
6302 | ||||
6303 | /// The scope in which to find allocation functions. | |||
6304 | enum AllocationFunctionScope { | |||
6305 | /// Only look for allocation functions in the global scope. | |||
6306 | AFS_Global, | |||
6307 | /// Only look for allocation functions in the scope of the | |||
6308 | /// allocated class. | |||
6309 | AFS_Class, | |||
6310 | /// Look for allocation functions in both the global scope | |||
6311 | /// and in the scope of the allocated class. | |||
6312 | AFS_Both | |||
6313 | }; | |||
6314 | ||||
6315 | /// Finds the overloads of operator new and delete that are appropriate | |||
6316 | /// for the allocation. | |||
6317 | bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, | |||
6318 | AllocationFunctionScope NewScope, | |||
6319 | AllocationFunctionScope DeleteScope, | |||
6320 | QualType AllocType, bool IsArray, | |||
6321 | bool &PassAlignment, MultiExprArg PlaceArgs, | |||
6322 | FunctionDecl *&OperatorNew, | |||
6323 | FunctionDecl *&OperatorDelete, | |||
6324 | bool Diagnose = true); | |||
6325 | void DeclareGlobalNewDelete(); | |||
6326 | void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, | |||
6327 | ArrayRef<QualType> Params); | |||
6328 | ||||
6329 | bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, | |||
6330 | DeclarationName Name, FunctionDecl* &Operator, | |||
6331 | bool Diagnose = true); | |||
6332 | FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc, | |||
6333 | bool CanProvideSize, | |||
6334 | bool Overaligned, | |||
6335 | DeclarationName Name); | |||
6336 | FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc, | |||
6337 | CXXRecordDecl *RD); | |||
6338 | ||||
6339 | /// ActOnCXXDelete - Parsed a C++ 'delete' expression | |||
6340 | ExprResult ActOnCXXDelete(SourceLocation StartLoc, | |||
6341 | bool UseGlobal, bool ArrayForm, | |||
6342 | Expr *Operand); | |||
6343 | void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, | |||
6344 | bool IsDelete, bool CallCanBeVirtual, | |||
6345 | bool WarnOnNonAbstractTypes, | |||
6346 | SourceLocation DtorLoc); | |||
6347 | ||||
6348 | ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen, | |||
6349 | Expr *Operand, SourceLocation RParen); | |||
6350 | ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, | |||
6351 | SourceLocation RParen); | |||
6352 | ||||
6353 | /// Parsed one of the type trait support pseudo-functions. | |||
6354 | ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | |||
6355 | ArrayRef<ParsedType> Args, | |||
6356 | SourceLocation RParenLoc); | |||
6357 | ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, | |||
6358 | ArrayRef<TypeSourceInfo *> Args, | |||
6359 | SourceLocation RParenLoc); | |||
6360 | ||||
6361 | /// ActOnArrayTypeTrait - Parsed one of the binary type trait support | |||
6362 | /// pseudo-functions. | |||
6363 | ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, | |||
6364 | SourceLocation KWLoc, | |||
6365 | ParsedType LhsTy, | |||
6366 | Expr *DimExpr, | |||
6367 | SourceLocation RParen); | |||
6368 | ||||
6369 | ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, | |||
6370 | SourceLocation KWLoc, | |||
6371 | TypeSourceInfo *TSInfo, | |||
6372 | Expr *DimExpr, | |||
6373 | SourceLocation RParen); | |||
6374 | ||||
6375 | /// ActOnExpressionTrait - Parsed one of the unary type trait support | |||
6376 | /// pseudo-functions. | |||
6377 | ExprResult ActOnExpressionTrait(ExpressionTrait OET, | |||
6378 | SourceLocation KWLoc, | |||
6379 | Expr *Queried, | |||
6380 | SourceLocation RParen); | |||
6381 | ||||
6382 | ExprResult BuildExpressionTrait(ExpressionTrait OET, | |||
6383 | SourceLocation KWLoc, | |||
6384 | Expr *Queried, | |||
6385 | SourceLocation RParen); | |||
6386 | ||||
6387 | ExprResult ActOnStartCXXMemberReference(Scope *S, | |||
6388 | Expr *Base, | |||
6389 | SourceLocation OpLoc, | |||
6390 | tok::TokenKind OpKind, | |||
6391 | ParsedType &ObjectType, | |||
6392 | bool &MayBePseudoDestructor); | |||
6393 | ||||
6394 | ExprResult BuildPseudoDestructorExpr(Expr *Base, | |||
6395 | SourceLocation OpLoc, | |||
6396 | tok::TokenKind OpKind, | |||
6397 | const CXXScopeSpec &SS, | |||
6398 | TypeSourceInfo *ScopeType, | |||
6399 | SourceLocation CCLoc, | |||
6400 | SourceLocation TildeLoc, | |||
6401 | PseudoDestructorTypeStorage DestroyedType); | |||
6402 | ||||
6403 | ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | |||
6404 | SourceLocation OpLoc, | |||
6405 | tok::TokenKind OpKind, | |||
6406 | CXXScopeSpec &SS, | |||
6407 | UnqualifiedId &FirstTypeName, | |||
6408 | SourceLocation CCLoc, | |||
6409 | SourceLocation TildeLoc, | |||
6410 | UnqualifiedId &SecondTypeName); | |||
6411 | ||||
6412 | ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, | |||
6413 | SourceLocation OpLoc, | |||
6414 | tok::TokenKind OpKind, | |||
6415 | SourceLocation TildeLoc, | |||
6416 | const DeclSpec& DS); | |||
6417 | ||||
6418 | /// MaybeCreateExprWithCleanups - If the current full-expression | |||
6419 | /// requires any cleanups, surround it with a ExprWithCleanups node. | |||
6420 | /// Otherwise, just returns the passed-in expression. | |||
6421 | Expr *MaybeCreateExprWithCleanups(Expr *SubExpr); | |||
6422 | Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt); | |||
6423 | ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr); | |||
6424 | ||||
6425 | MaterializeTemporaryExpr * | |||
6426 | CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, | |||
6427 | bool BoundToLvalueReference); | |||
6428 | ||||
6429 | ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) { | |||
6430 | return ActOnFinishFullExpr( | |||
6431 | Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue); | |||
6432 | } | |||
6433 | ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC, | |||
6434 | bool DiscardedValue, bool IsConstexpr = false); | |||
6435 | StmtResult ActOnFinishFullStmt(Stmt *Stmt); | |||
6436 | ||||
6437 | // Marks SS invalid if it represents an incomplete type. | |||
6438 | bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC); | |||
6439 | // Complete an enum decl, maybe without a scope spec. | |||
6440 | bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L, | |||
6441 | CXXScopeSpec *SS = nullptr); | |||
6442 | ||||
6443 | DeclContext *computeDeclContext(QualType T); | |||
6444 | DeclContext *computeDeclContext(const CXXScopeSpec &SS, | |||
6445 | bool EnteringContext = false); | |||
6446 | bool isDependentScopeSpecifier(const CXXScopeSpec &SS); | |||
6447 | CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); | |||
6448 | ||||
6449 | /// The parser has parsed a global nested-name-specifier '::'. | |||
6450 | /// | |||
6451 | /// \param CCLoc The location of the '::'. | |||
6452 | /// | |||
6453 | /// \param SS The nested-name-specifier, which will be updated in-place | |||
6454 | /// to reflect the parsed nested-name-specifier. | |||
6455 | /// | |||
6456 | /// \returns true if an error occurred, false otherwise. | |||
6457 | bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS); | |||
6458 | ||||
6459 | /// The parser has parsed a '__super' nested-name-specifier. | |||
6460 | /// | |||
6461 | /// \param SuperLoc The location of the '__super' keyword. | |||
6462 | /// | |||
6463 | /// \param ColonColonLoc The location of the '::'. | |||
6464 | /// | |||
6465 | /// \param SS The nested-name-specifier, which will be updated in-place | |||
6466 | /// to reflect the parsed nested-name-specifier. | |||
6467 | /// | |||
6468 | /// \returns true if an error occurred, false otherwise. | |||
6469 | bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc, | |||
6470 | SourceLocation ColonColonLoc, CXXScopeSpec &SS); | |||
6471 | ||||
6472 | bool isAcceptableNestedNameSpecifier(const NamedDecl *SD, | |||
6473 | bool *CanCorrect = nullptr); | |||
6474 | NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); | |||
6475 | ||||
6476 | /// Keeps information about an identifier in a nested-name-spec. | |||
6477 | /// | |||
6478 | struct NestedNameSpecInfo { | |||
6479 | /// The type of the object, if we're parsing nested-name-specifier in | |||
6480 | /// a member access expression. | |||
6481 | ParsedType ObjectType; | |||
6482 | ||||
6483 | /// The identifier preceding the '::'. | |||
6484 | IdentifierInfo *Identifier; | |||
6485 | ||||
6486 | /// The location of the identifier. | |||
6487 | SourceLocation IdentifierLoc; | |||
6488 | ||||
6489 | /// The location of the '::'. | |||
6490 | SourceLocation CCLoc; | |||
6491 | ||||
6492 | /// Creates info object for the most typical case. | |||
6493 | NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, | |||
6494 | SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType()) | |||
6495 | : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc), | |||
6496 | CCLoc(ColonColonLoc) { | |||
6497 | } | |||
6498 | ||||
6499 | NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, | |||
6500 | SourceLocation ColonColonLoc, QualType ObjectType) | |||
6501 | : ObjectType(ParsedType::make(ObjectType)), Identifier(II), | |||
6502 | IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { | |||
6503 | } | |||
6504 | }; | |||
6505 | ||||
6506 | bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, | |||
6507 | NestedNameSpecInfo &IdInfo); | |||
6508 | ||||
6509 | bool BuildCXXNestedNameSpecifier(Scope *S, | |||
6510 | NestedNameSpecInfo &IdInfo, | |||
6511 | bool EnteringContext, | |||
6512 | CXXScopeSpec &SS, | |||
6513 | NamedDecl *ScopeLookupResult, | |||
6514 | bool ErrorRecoveryLookup, | |||
6515 | bool *IsCorrectedToColon = nullptr, | |||
6516 | bool OnlyNamespace = false); | |||
6517 | ||||
6518 | /// The parser has parsed a nested-name-specifier 'identifier::'. | |||
6519 | /// | |||
6520 | /// \param S The scope in which this nested-name-specifier occurs. | |||
6521 | /// | |||
6522 | /// \param IdInfo Parser information about an identifier in the | |||
6523 | /// nested-name-spec. | |||
6524 | /// | |||
6525 | /// \param EnteringContext Whether we're entering the context nominated by | |||
6526 | /// this nested-name-specifier. | |||
6527 | /// | |||
6528 | /// \param SS The nested-name-specifier, which is both an input | |||
6529 | /// parameter (the nested-name-specifier before this type) and an | |||
6530 | /// output parameter (containing the full nested-name-specifier, | |||
6531 | /// including this new type). | |||
6532 | /// | |||
6533 | /// \param ErrorRecoveryLookup If true, then this method is called to improve | |||
6534 | /// error recovery. In this case do not emit error message. | |||
6535 | /// | |||
6536 | /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':' | |||
6537 | /// are allowed. The bool value pointed by this parameter is set to 'true' | |||
6538 | /// if the identifier is treated as if it was followed by ':', not '::'. | |||
6539 | /// | |||
6540 | /// \param OnlyNamespace If true, only considers namespaces in lookup. | |||
6541 | /// | |||
6542 | /// \returns true if an error occurred, false otherwise. | |||
6543 | bool ActOnCXXNestedNameSpecifier(Scope *S, | |||
6544 | NestedNameSpecInfo &IdInfo, | |||
6545 | bool EnteringContext, | |||
6546 | CXXScopeSpec &SS, | |||
6547 | bool ErrorRecoveryLookup = false, | |||
6548 | bool *IsCorrectedToColon = nullptr, | |||
6549 | bool OnlyNamespace = false); | |||
6550 | ||||
6551 | ExprResult ActOnDecltypeExpression(Expr *E); | |||
6552 | ||||
6553 | bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, | |||
6554 | const DeclSpec &DS, | |||
6555 | SourceLocation ColonColonLoc); | |||
6556 | ||||
6557 | bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, | |||
6558 | NestedNameSpecInfo &IdInfo, | |||
6559 | bool EnteringContext); | |||
6560 | ||||
6561 | /// The parser has parsed a nested-name-specifier | |||
6562 | /// 'template[opt] template-name < template-args >::'. | |||
6563 | /// | |||
6564 | /// \param S The scope in which this nested-name-specifier occurs. | |||
6565 | /// | |||
6566 | /// \param SS The nested-name-specifier, which is both an input | |||
6567 | /// parameter (the nested-name-specifier before this type) and an | |||
6568 | /// output parameter (containing the full nested-name-specifier, | |||
6569 | /// including this new type). | |||
6570 | /// | |||
6571 | /// \param TemplateKWLoc the location of the 'template' keyword, if any. | |||
6572 | /// \param TemplateName the template name. | |||
6573 | /// \param TemplateNameLoc The location of the template name. | |||
6574 | /// \param LAngleLoc The location of the opening angle bracket ('<'). | |||
6575 | /// \param TemplateArgs The template arguments. | |||
6576 | /// \param RAngleLoc The location of the closing angle bracket ('>'). | |||
6577 | /// \param CCLoc The location of the '::'. | |||
6578 | /// | |||
6579 | /// \param EnteringContext Whether we're entering the context of the | |||
6580 | /// nested-name-specifier. | |||
6581 | /// | |||
6582 | /// | |||
6583 | /// \returns true if an error occurred, false otherwise. | |||
6584 | bool ActOnCXXNestedNameSpecifier(Scope *S, | |||
6585 | CXXScopeSpec &SS, | |||
6586 | SourceLocation TemplateKWLoc, | |||
6587 | TemplateTy TemplateName, | |||
6588 | SourceLocation TemplateNameLoc, | |||
6589 | SourceLocation LAngleLoc, | |||
6590 | ASTTemplateArgsPtr TemplateArgs, | |||
6591 | SourceLocation RAngleLoc, | |||
6592 | SourceLocation CCLoc, | |||
6593 | bool EnteringContext); | |||
6594 | ||||
6595 | /// Given a C++ nested-name-specifier, produce an annotation value | |||
6596 | /// that the parser can use later to reconstruct the given | |||
6597 | /// nested-name-specifier. | |||
6598 | /// | |||
6599 | /// \param SS A nested-name-specifier. | |||
6600 | /// | |||
6601 | /// \returns A pointer containing all of the information in the | |||
6602 | /// nested-name-specifier \p SS. | |||
6603 | void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS); | |||
6604 | ||||
6605 | /// Given an annotation pointer for a nested-name-specifier, restore | |||
6606 | /// the nested-name-specifier structure. | |||
6607 | /// | |||
6608 | /// \param Annotation The annotation pointer, produced by | |||
6609 | /// \c SaveNestedNameSpecifierAnnotation(). | |||
6610 | /// | |||
6611 | /// \param AnnotationRange The source range corresponding to the annotation. | |||
6612 | /// | |||
6613 | /// \param SS The nested-name-specifier that will be updated with the contents | |||
6614 | /// of the annotation pointer. | |||
6615 | void RestoreNestedNameSpecifierAnnotation(void *Annotation, | |||
6616 | SourceRange AnnotationRange, | |||
6617 | CXXScopeSpec &SS); | |||
6618 | ||||
6619 | bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); | |||
6620 | ||||
6621 | /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global | |||
6622 | /// scope or nested-name-specifier) is parsed, part of a declarator-id. | |||
6623 | /// After this method is called, according to [C++ 3.4.3p3], names should be | |||
6624 | /// looked up in the declarator-id's scope, until the declarator is parsed and | |||
6625 | /// ActOnCXXExitDeclaratorScope is called. | |||
6626 | /// The 'SS' should be a non-empty valid CXXScopeSpec. | |||
6627 | bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS); | |||
6628 | ||||
6629 | /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously | |||
6630 | /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same | |||
6631 | /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. | |||
6632 | /// Used to indicate that names should revert to being looked up in the | |||
6633 | /// defining scope. | |||
6634 | void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); | |||
6635 | ||||
6636 | /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an | |||
6637 | /// initializer for the declaration 'Dcl'. | |||
6638 | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | |||
6639 | /// static data member of class X, names should be looked up in the scope of | |||
6640 | /// class X. | |||
6641 | void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl); | |||
6642 | ||||
6643 | /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an | |||
6644 | /// initializer for the declaration 'Dcl'. | |||
6645 | void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl); | |||
6646 | ||||
6647 | /// Create a new lambda closure type. | |||
6648 | CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange, | |||
6649 | TypeSourceInfo *Info, | |||
6650 | bool KnownDependent, | |||
6651 | LambdaCaptureDefault CaptureDefault); | |||
6652 | ||||
6653 | /// Start the definition of a lambda expression. | |||
6654 | CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class, | |||
6655 | SourceRange IntroducerRange, | |||
6656 | TypeSourceInfo *MethodType, | |||
6657 | SourceLocation EndLoc, | |||
6658 | ArrayRef<ParmVarDecl *> Params, | |||
6659 | ConstexprSpecKind ConstexprKind, | |||
6660 | Expr *TrailingRequiresClause); | |||
6661 | ||||
6662 | /// Number lambda for linkage purposes if necessary. | |||
6663 | void handleLambdaNumbering( | |||
6664 | CXXRecordDecl *Class, CXXMethodDecl *Method, | |||
6665 | Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None); | |||
6666 | ||||
6667 | /// Endow the lambda scope info with the relevant properties. | |||
6668 | void buildLambdaScope(sema::LambdaScopeInfo *LSI, | |||
6669 | CXXMethodDecl *CallOperator, | |||
6670 | SourceRange IntroducerRange, | |||
6671 | LambdaCaptureDefault CaptureDefault, | |||
6672 | SourceLocation CaptureDefaultLoc, | |||
6673 | bool ExplicitParams, | |||
6674 | bool ExplicitResultType, | |||
6675 | bool Mutable); | |||
6676 | ||||
6677 | /// Perform initialization analysis of the init-capture and perform | |||
6678 | /// any implicit conversions such as an lvalue-to-rvalue conversion if | |||
6679 | /// not being used to initialize a reference. | |||
6680 | ParsedType actOnLambdaInitCaptureInitialization( | |||
6681 | SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, | |||
6682 | IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) { | |||
6683 | return ParsedType::make(buildLambdaInitCaptureInitialization( | |||
6684 | Loc, ByRef, EllipsisLoc, None, Id, | |||
6685 | InitKind != LambdaCaptureInitKind::CopyInit, Init)); | |||
6686 | } | |||
6687 | QualType buildLambdaInitCaptureInitialization( | |||
6688 | SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, | |||
6689 | Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit, | |||
6690 | Expr *&Init); | |||
6691 | ||||
6692 | /// Create a dummy variable within the declcontext of the lambda's | |||
6693 | /// call operator, for name lookup purposes for a lambda init capture. | |||
6694 | /// | |||
6695 | /// CodeGen handles emission of lambda captures, ignoring these dummy | |||
6696 | /// variables appropriately. | |||
6697 | VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc, | |||
6698 | QualType InitCaptureType, | |||
6699 | SourceLocation EllipsisLoc, | |||
6700 | IdentifierInfo *Id, | |||
6701 | unsigned InitStyle, Expr *Init); | |||
6702 | ||||
6703 | /// Add an init-capture to a lambda scope. | |||
6704 | void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var); | |||
6705 | ||||
6706 | /// Note that we have finished the explicit captures for the | |||
6707 | /// given lambda. | |||
6708 | void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI); | |||
6709 | ||||
6710 | /// \brief This is called after parsing the explicit template parameter list | |||
6711 | /// on a lambda (if it exists) in C++2a. | |||
6712 | void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, | |||
6713 | ArrayRef<NamedDecl *> TParams, | |||
6714 | SourceLocation RAngleLoc, | |||
6715 | ExprResult RequiresClause); | |||
6716 | ||||
6717 | /// Introduce the lambda parameters into scope. | |||
6718 | void addLambdaParameters( | |||
6719 | ArrayRef<LambdaIntroducer::LambdaCapture> Captures, | |||
6720 | CXXMethodDecl *CallOperator, Scope *CurScope); | |||
6721 | ||||
6722 | /// Deduce a block or lambda's return type based on the return | |||
6723 | /// statements present in the body. | |||
6724 | void deduceClosureReturnType(sema::CapturingScopeInfo &CSI); | |||
6725 | ||||
6726 | /// ActOnStartOfLambdaDefinition - This is called just before we start | |||
6727 | /// parsing the body of a lambda; it analyzes the explicit captures and | |||
6728 | /// arguments, and sets up various data-structures for the body of the | |||
6729 | /// lambda. | |||
6730 | void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, | |||
6731 | Declarator &ParamInfo, Scope *CurScope); | |||
6732 | ||||
6733 | /// ActOnLambdaError - If there is an error parsing a lambda, this callback | |||
6734 | /// is invoked to pop the information about the lambda. | |||
6735 | void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, | |||
6736 | bool IsInstantiation = false); | |||
6737 | ||||
6738 | /// ActOnLambdaExpr - This is called when the body of a lambda expression | |||
6739 | /// was successfully completed. | |||
6740 | ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, | |||
6741 | Scope *CurScope); | |||
6742 | ||||
6743 | /// Does copying/destroying the captured variable have side effects? | |||
6744 | bool CaptureHasSideEffects(const sema::Capture &From); | |||
6745 | ||||
6746 | /// Diagnose if an explicit lambda capture is unused. Returns true if a | |||
6747 | /// diagnostic is emitted. | |||
6748 | bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, | |||
6749 | const sema::Capture &From); | |||
6750 | ||||
6751 | /// Build a FieldDecl suitable to hold the given capture. | |||
6752 | FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture); | |||
6753 | ||||
6754 | /// Initialize the given capture with a suitable expression. | |||
6755 | ExprResult BuildCaptureInit(const sema::Capture &Capture, | |||
6756 | SourceLocation ImplicitCaptureLoc, | |||
6757 | bool IsOpenMPMapping = false); | |||
6758 | ||||
6759 | /// Complete a lambda-expression having processed and attached the | |||
6760 | /// lambda body. | |||
6761 | ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, | |||
6762 | sema::LambdaScopeInfo *LSI); | |||
6763 | ||||
6764 | /// Get the return type to use for a lambda's conversion function(s) to | |||
6765 | /// function pointer type, given the type of the call operator. | |||
6766 | QualType | |||
6767 | getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType, | |||
6768 | CallingConv CC); | |||
6769 | ||||
6770 | /// Define the "body" of the conversion from a lambda object to a | |||
6771 | /// function pointer. | |||
6772 | /// | |||
6773 | /// This routine doesn't actually define a sensible body; rather, it fills | |||
6774 | /// in the initialization expression needed to copy the lambda object into | |||
6775 | /// the block, and IR generation actually generates the real body of the | |||
6776 | /// block pointer conversion. | |||
6777 | void DefineImplicitLambdaToFunctionPointerConversion( | |||
6778 | SourceLocation CurrentLoc, CXXConversionDecl *Conv); | |||
6779 | ||||
6780 | /// Define the "body" of the conversion from a lambda object to a | |||
6781 | /// block pointer. | |||
6782 | /// | |||
6783 | /// This routine doesn't actually define a sensible body; rather, it fills | |||
6784 | /// in the initialization expression needed to copy the lambda object into | |||
6785 | /// the block, and IR generation actually generates the real body of the | |||
6786 | /// block pointer conversion. | |||
6787 | void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc, | |||
6788 | CXXConversionDecl *Conv); | |||
6789 | ||||
6790 | ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, | |||
6791 | SourceLocation ConvLocation, | |||
6792 | CXXConversionDecl *Conv, | |||
6793 | Expr *Src); | |||
6794 | ||||
6795 | /// Check whether the given expression is a valid constraint expression. | |||
6796 | /// A diagnostic is emitted if it is not, false is returned, and | |||
6797 | /// PossibleNonPrimary will be set to true if the failure might be due to a | |||
6798 | /// non-primary expression being used as an atomic constraint. | |||
6799 | bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(), | |||
6800 | bool *PossibleNonPrimary = nullptr, | |||
6801 | bool IsTrailingRequiresClause = false); | |||
6802 | ||||
6803 | private: | |||
6804 | /// Caches pairs of template-like decls whose associated constraints were | |||
6805 | /// checked for subsumption and whether or not the first's constraints did in | |||
6806 | /// fact subsume the second's. | |||
6807 | llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache; | |||
6808 | /// Caches the normalized associated constraints of declarations (concepts or | |||
6809 | /// constrained declarations). If an error occurred while normalizing the | |||
6810 | /// associated constraints of the template or concept, nullptr will be cached | |||
6811 | /// here. | |||
6812 | llvm::DenseMap<NamedDecl *, NormalizedConstraint *> | |||
6813 | NormalizationCache; | |||
6814 | ||||
6815 | llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &> | |||
6816 | SatisfactionCache; | |||
6817 | ||||
6818 | public: | |||
6819 | const NormalizedConstraint * | |||
6820 | getNormalizedAssociatedConstraints( | |||
6821 | NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints); | |||
6822 | ||||
6823 | /// \brief Check whether the given declaration's associated constraints are | |||
6824 | /// at least as constrained than another declaration's according to the | |||
6825 | /// partial ordering of constraints. | |||
6826 | /// | |||
6827 | /// \param Result If no error occurred, receives the result of true if D1 is | |||
6828 | /// at least constrained than D2, and false otherwise. | |||
6829 | /// | |||
6830 | /// \returns true if an error occurred, false otherwise. | |||
6831 | bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1, | |||
6832 | NamedDecl *D2, ArrayRef<const Expr *> AC2, | |||
6833 | bool &Result); | |||
6834 | ||||
6835 | /// If D1 was not at least as constrained as D2, but would've been if a pair | |||
6836 | /// of atomic constraints involved had been declared in a concept and not | |||
6837 | /// repeated in two separate places in code. | |||
6838 | /// \returns true if such a diagnostic was emitted, false otherwise. | |||
6839 | bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, | |||
6840 | ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2); | |||
6841 | ||||
6842 | /// \brief Check whether the given list of constraint expressions are | |||
6843 | /// satisfied (as if in a 'conjunction') given template arguments. | |||
6844 | /// \param Template the template-like entity that triggered the constraints | |||
6845 | /// check (either a concept or a constrained entity). | |||
6846 | /// \param ConstraintExprs a list of constraint expressions, treated as if | |||
6847 | /// they were 'AND'ed together. | |||
6848 | /// \param TemplateArgs the list of template arguments to substitute into the | |||
6849 | /// constraint expression. | |||
6850 | /// \param TemplateIDRange The source range of the template id that | |||
6851 | /// caused the constraints check. | |||
6852 | /// \param Satisfaction if true is returned, will contain details of the | |||
6853 | /// satisfaction, with enough information to diagnose an unsatisfied | |||
6854 | /// expression. | |||
6855 | /// \returns true if an error occurred and satisfaction could not be checked, | |||
6856 | /// false otherwise. | |||
6857 | bool CheckConstraintSatisfaction( | |||
6858 | const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs, | |||
6859 | ArrayRef<TemplateArgument> TemplateArgs, | |||
6860 | SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction); | |||
6861 | ||||
6862 | /// \brief Check whether the given non-dependent constraint expression is | |||
6863 | /// satisfied. Returns false and updates Satisfaction with the satisfaction | |||
6864 | /// verdict if successful, emits a diagnostic and returns true if an error | |||
6865 | /// occured and satisfaction could not be determined. | |||
6866 | /// | |||
6867 | /// \returns true if an error occurred, false otherwise. | |||
6868 | bool CheckConstraintSatisfaction(const Expr *ConstraintExpr, | |||
6869 | ConstraintSatisfaction &Satisfaction); | |||
6870 | ||||
6871 | /// Check whether the given function decl's trailing requires clause is | |||
6872 | /// satisfied, if any. Returns false and updates Satisfaction with the | |||
6873 | /// satisfaction verdict if successful, emits a diagnostic and returns true if | |||
6874 | /// an error occured and satisfaction could not be determined. | |||
6875 | /// | |||
6876 | /// \returns true if an error occurred, false otherwise. | |||
6877 | bool CheckFunctionConstraints(const FunctionDecl *FD, | |||
6878 | ConstraintSatisfaction &Satisfaction, | |||
6879 | SourceLocation UsageLoc = SourceLocation()); | |||
6880 | ||||
6881 | ||||
6882 | /// \brief Ensure that the given template arguments satisfy the constraints | |||
6883 | /// associated with the given template, emitting a diagnostic if they do not. | |||
6884 | /// | |||
6885 | /// \param Template The template to which the template arguments are being | |||
6886 | /// provided. | |||
6887 | /// | |||
6888 | /// \param TemplateArgs The converted, canonicalized template arguments. | |||
6889 | /// | |||
6890 | /// \param TemplateIDRange The source range of the template id that | |||
6891 | /// caused the constraints check. | |||
6892 | /// | |||
6893 | /// \returns true if the constrains are not satisfied or could not be checked | |||
6894 | /// for satisfaction, false if the constraints are satisfied. | |||
6895 | bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template, | |||
6896 | ArrayRef<TemplateArgument> TemplateArgs, | |||
6897 | SourceRange TemplateIDRange); | |||
6898 | ||||
6899 | /// \brief Emit diagnostics explaining why a constraint expression was deemed | |||
6900 | /// unsatisfied. | |||
6901 | /// \param First whether this is the first time an unsatisfied constraint is | |||
6902 | /// diagnosed for this error. | |||
6903 | void | |||
6904 | DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, | |||
6905 | bool First = true); | |||
6906 | ||||
6907 | /// \brief Emit diagnostics explaining why a constraint expression was deemed | |||
6908 | /// unsatisfied. | |||
6909 | void | |||
6910 | DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction, | |||
6911 | bool First = true); | |||
6912 | ||||
6913 | // ParseObjCStringLiteral - Parse Objective-C string literals. | |||
6914 | ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, | |||
6915 | ArrayRef<Expr *> Strings); | |||
6916 | ||||
6917 | ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S); | |||
6918 | ||||
6919 | /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the | |||
6920 | /// numeric literal expression. Type of the expression will be "NSNumber *" | |||
6921 | /// or "id" if NSNumber is unavailable. | |||
6922 | ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number); | |||
6923 | ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, | |||
6924 | bool Value); | |||
6925 | ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements); | |||
6926 | ||||
6927 | /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the | |||
6928 | /// '@' prefixed parenthesized expression. The type of the expression will | |||
6929 | /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type | |||
6930 | /// of ValueType, which is allowed to be a built-in numeric type, "char *", | |||
6931 | /// "const char *" or C structure with attribute 'objc_boxable'. | |||
6932 | ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr); | |||
6933 | ||||
6934 | ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, | |||
6935 | Expr *IndexExpr, | |||
6936 | ObjCMethodDecl *getterMethod, | |||
6937 | ObjCMethodDecl *setterMethod); | |||
6938 | ||||
6939 | ExprResult BuildObjCDictionaryLiteral(SourceRange SR, | |||
6940 | MutableArrayRef<ObjCDictionaryElement> Elements); | |||
6941 | ||||
6942 | ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc, | |||
6943 | TypeSourceInfo *EncodedTypeInfo, | |||
6944 | SourceLocation RParenLoc); | |||
6945 | ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, | |||
6946 | CXXConversionDecl *Method, | |||
6947 | bool HadMultipleCandidates); | |||
6948 | ||||
6949 | ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, | |||
6950 | SourceLocation EncodeLoc, | |||
6951 | SourceLocation LParenLoc, | |||
6952 | ParsedType Ty, | |||
6953 | SourceLocation RParenLoc); | |||
6954 | ||||
6955 | /// ParseObjCSelectorExpression - Build selector expression for \@selector | |||
6956 | ExprResult ParseObjCSelectorExpression(Selector Sel, | |||
6957 | SourceLocation AtLoc, | |||
6958 | SourceLocation SelLoc, | |||
6959 | SourceLocation LParenLoc, | |||
6960 | SourceLocation RParenLoc, | |||
6961 | bool WarnMultipleSelectors); | |||
6962 | ||||
6963 | /// ParseObjCProtocolExpression - Build protocol expression for \@protocol | |||
6964 | ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, | |||
6965 | SourceLocation AtLoc, | |||
6966 | SourceLocation ProtoLoc, | |||
6967 | SourceLocation LParenLoc, | |||
6968 | SourceLocation ProtoIdLoc, | |||
6969 | SourceLocation RParenLoc); | |||
6970 | ||||
6971 | //===--------------------------------------------------------------------===// | |||
6972 | // C++ Declarations | |||
6973 | // | |||
6974 | Decl *ActOnStartLinkageSpecification(Scope *S, | |||
6975 | SourceLocation ExternLoc, | |||
6976 | Expr *LangStr, | |||
6977 | SourceLocation LBraceLoc); | |||
6978 | Decl *ActOnFinishLinkageSpecification(Scope *S, | |||
6979 | Decl *LinkageSpec, | |||
6980 | SourceLocation RBraceLoc); | |||
6981 | ||||
6982 | ||||
6983 | //===--------------------------------------------------------------------===// | |||
6984 | // C++ Classes | |||
6985 | // | |||
6986 | CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS); | |||
6987 | bool isCurrentClassName(const IdentifierInfo &II, Scope *S, | |||
6988 | const CXXScopeSpec *SS = nullptr); | |||
6989 | bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS); | |||
6990 | ||||
6991 | bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, | |||
6992 | SourceLocation ColonLoc, | |||
6993 | const ParsedAttributesView &Attrs); | |||
6994 | ||||
6995 | NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, | |||
6996 | Declarator &D, | |||
6997 | MultiTemplateParamsArg TemplateParameterLists, | |||
6998 | Expr *BitfieldWidth, const VirtSpecifiers &VS, | |||
6999 | InClassInitStyle InitStyle); | |||
7000 | ||||
7001 | void ActOnStartCXXInClassMemberInitializer(); | |||
7002 | void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl, | |||
7003 | SourceLocation EqualLoc, | |||
7004 | Expr *Init); | |||
7005 | ||||
7006 | MemInitResult ActOnMemInitializer(Decl *ConstructorD, | |||
7007 | Scope *S, | |||
7008 | CXXScopeSpec &SS, | |||
7009 | IdentifierInfo *MemberOrBase, | |||
7010 | ParsedType TemplateTypeTy, | |||
7011 | const DeclSpec &DS, | |||
7012 | SourceLocation IdLoc, | |||
7013 | SourceLocation LParenLoc, | |||
7014 | ArrayRef<Expr *> Args, | |||
7015 | SourceLocation RParenLoc, | |||
7016 | SourceLocation EllipsisLoc); | |||
7017 | ||||
7018 | MemInitResult ActOnMemInitializer(Decl *ConstructorD, | |||
7019 | Scope *S, | |||
7020 | CXXScopeSpec &SS, | |||
7021 | IdentifierInfo *MemberOrBase, | |||
7022 | ParsedType TemplateTypeTy, | |||
7023 | const DeclSpec &DS, | |||
7024 | SourceLocation IdLoc, | |||
7025 | Expr *InitList, | |||
7026 | SourceLocation EllipsisLoc); | |||
7027 | ||||
7028 | MemInitResult BuildMemInitializer(Decl *ConstructorD, | |||
7029 | Scope *S, | |||
7030 | CXXScopeSpec &SS, | |||
7031 | IdentifierInfo *MemberOrBase, | |||
7032 | ParsedType TemplateTypeTy, | |||
7033 | const DeclSpec &DS, | |||
7034 | SourceLocation IdLoc, | |||
7035 | Expr *Init, | |||
7036 | SourceLocation EllipsisLoc); | |||
7037 | ||||
7038 | MemInitResult BuildMemberInitializer(ValueDecl *Member, | |||
7039 | Expr *Init, | |||
7040 | SourceLocation IdLoc); | |||
7041 | ||||
7042 | MemInitResult BuildBaseInitializer(QualType BaseType, | |||
7043 | TypeSourceInfo *BaseTInfo, | |||
7044 | Expr *Init, | |||
7045 | CXXRecordDecl *ClassDecl, | |||
7046 | SourceLocation EllipsisLoc); | |||
7047 | ||||
7048 | MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, | |||
7049 | Expr *Init, | |||
7050 | CXXRecordDecl *ClassDecl); | |||
7051 | ||||
7052 | bool SetDelegatingInitializer(CXXConstructorDecl *Constructor, | |||
7053 | CXXCtorInitializer *Initializer); | |||
7054 | ||||
7055 | bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, | |||
7056 | ArrayRef<CXXCtorInitializer *> Initializers = None); | |||
7057 | ||||
7058 | void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation); | |||
7059 | ||||
7060 | ||||
7061 | /// MarkBaseAndMemberDestructorsReferenced - Given a record decl, | |||
7062 | /// mark all the non-trivial destructors of its members and bases as | |||
7063 | /// referenced. | |||
7064 | void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc, | |||
7065 | CXXRecordDecl *Record); | |||
7066 | ||||
7067 | /// Mark destructors of virtual bases of this class referenced. In the Itanium | |||
7068 | /// C++ ABI, this is done when emitting a destructor for any non-abstract | |||
7069 | /// class. In the Microsoft C++ ABI, this is done any time a class's | |||
7070 | /// destructor is referenced. | |||
7071 | void MarkVirtualBaseDestructorsReferenced( | |||
7072 | SourceLocation Location, CXXRecordDecl *ClassDecl, | |||
7073 | llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr); | |||
7074 | ||||
7075 | /// Do semantic checks to allow the complete destructor variant to be emitted | |||
7076 | /// when the destructor is defined in another translation unit. In the Itanium | |||
7077 | /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they | |||
7078 | /// can be emitted in separate TUs. To emit the complete variant, run a subset | |||
7079 | /// of the checks performed when emitting a regular destructor. | |||
7080 | void CheckCompleteDestructorVariant(SourceLocation CurrentLocation, | |||
7081 | CXXDestructorDecl *Dtor); | |||
7082 | ||||
7083 | /// The list of classes whose vtables have been used within | |||
7084 | /// this translation unit, and the source locations at which the | |||
7085 | /// first use occurred. | |||
7086 | typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse; | |||
7087 | ||||
7088 | /// The list of vtables that are required but have not yet been | |||
7089 | /// materialized. | |||
7090 | SmallVector<VTableUse, 16> VTableUses; | |||
7091 | ||||
7092 | /// The set of classes whose vtables have been used within | |||
7093 | /// this translation unit, and a bit that will be true if the vtable is | |||
7094 | /// required to be emitted (otherwise, it should be emitted only if needed | |||
7095 | /// by code generation). | |||
7096 | llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed; | |||
7097 | ||||
7098 | /// Load any externally-stored vtable uses. | |||
7099 | void LoadExternalVTableUses(); | |||
7100 | ||||
7101 | /// Note that the vtable for the given class was used at the | |||
7102 | /// given location. | |||
7103 | void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, | |||
7104 | bool DefinitionRequired = false); | |||
7105 | ||||
7106 | /// Mark the exception specifications of all virtual member functions | |||
7107 | /// in the given class as needed. | |||
7108 | void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, | |||
7109 | const CXXRecordDecl *RD); | |||
7110 | ||||
7111 | /// MarkVirtualMembersReferenced - Will mark all members of the given | |||
7112 | /// CXXRecordDecl referenced. | |||
7113 | void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD, | |||
7114 | bool ConstexprOnly = false); | |||
7115 | ||||
7116 | /// Define all of the vtables that have been used in this | |||
7117 | /// translation unit and reference any virtual members used by those | |||
7118 | /// vtables. | |||
7119 | /// | |||
7120 | /// \returns true if any work was done, false otherwise. | |||
7121 | bool DefineUsedVTables(); | |||
7122 | ||||
7123 | void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); | |||
7124 | ||||
7125 | void ActOnMemInitializers(Decl *ConstructorDecl, | |||
7126 | SourceLocation ColonLoc, | |||
7127 | ArrayRef<CXXCtorInitializer*> MemInits, | |||
7128 | bool AnyErrors); | |||
7129 | ||||
7130 | /// Check class-level dllimport/dllexport attribute. The caller must | |||
7131 | /// ensure that referenceDLLExportedClassMethods is called some point later | |||
7132 | /// when all outer classes of Class are complete. | |||
7133 | void checkClassLevelDLLAttribute(CXXRecordDecl *Class); | |||
7134 | void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class); | |||
7135 | ||||
7136 | void referenceDLLExportedClassMethods(); | |||
7137 | ||||
7138 | void propagateDLLAttrToBaseClassTemplate( | |||
7139 | CXXRecordDecl *Class, Attr *ClassAttr, | |||
7140 | ClassTemplateSpecializationDecl *BaseTemplateSpec, | |||
7141 | SourceLocation BaseLoc); | |||
7142 | ||||
7143 | /// Add gsl::Pointer attribute to std::container::iterator | |||
7144 | /// \param ND The declaration that introduces the name | |||
7145 | /// std::container::iterator. \param UnderlyingRecord The record named by ND. | |||
7146 | void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord); | |||
7147 | ||||
7148 | /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types. | |||
7149 | void inferGslOwnerPointerAttribute(CXXRecordDecl *Record); | |||
7150 | ||||
7151 | /// Add [[gsl::Pointer]] attributes for std:: types. | |||
7152 | void inferGslPointerAttribute(TypedefNameDecl *TD); | |||
7153 | ||||
7154 | void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record); | |||
7155 | ||||
7156 | /// Check that the C++ class annoated with "trivial_abi" satisfies all the | |||
7157 | /// conditions that are needed for the attribute to have an effect. | |||
7158 | void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD); | |||
7159 | ||||
7160 | void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc, | |||
7161 | Decl *TagDecl, SourceLocation LBrac, | |||
7162 | SourceLocation RBrac, | |||
7163 | const ParsedAttributesView &AttrList); | |||
7164 | void ActOnFinishCXXMemberDecls(); | |||
7165 | void ActOnFinishCXXNonNestedClass(); | |||
7166 | ||||
7167 | void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param); | |||
7168 | unsigned ActOnReenterTemplateScope(Decl *Template, | |||
7169 | llvm::function_ref<Scope *()> EnterScope); | |||
7170 | void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record); | |||
7171 | void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method); | |||
7172 | void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param); | |||
7173 | void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record); | |||
7174 | void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method); | |||
7175 | void ActOnFinishDelayedMemberInitializers(Decl *Record); | |||
7176 | void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, | |||
7177 | CachedTokens &Toks); | |||
7178 | void UnmarkAsLateParsedTemplate(FunctionDecl *FD); | |||
7179 | bool IsInsideALocalClassWithinATemplateFunction(); | |||
7180 | ||||
7181 | Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, | |||
7182 | Expr *AssertExpr, | |||
7183 | Expr *AssertMessageExpr, | |||
7184 | SourceLocation RParenLoc); | |||
7185 | Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, | |||
7186 | Expr *AssertExpr, | |||
7187 | StringLiteral *AssertMessageExpr, | |||
7188 | SourceLocation RParenLoc, | |||
7189 | bool Failed); | |||
7190 | ||||
7191 | FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart, | |||
7192 | SourceLocation FriendLoc, | |||
7193 | TypeSourceInfo *TSInfo); | |||
7194 | Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | |||
7195 | MultiTemplateParamsArg TemplateParams); | |||
7196 | NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D, | |||
7197 | MultiTemplateParamsArg TemplateParams); | |||
7198 | ||||
7199 | QualType CheckConstructorDeclarator(Declarator &D, QualType R, | |||
7200 | StorageClass& SC); | |||
7201 | void CheckConstructor(CXXConstructorDecl *Constructor); | |||
7202 | QualType CheckDestructorDeclarator(Declarator &D, QualType R, | |||
7203 | StorageClass& SC); | |||
7204 | bool CheckDestructor(CXXDestructorDecl *Destructor); | |||
7205 | void CheckConversionDeclarator(Declarator &D, QualType &R, | |||
7206 | StorageClass& SC); | |||
7207 | Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion); | |||
7208 | void CheckDeductionGuideDeclarator(Declarator &D, QualType &R, | |||
7209 | StorageClass &SC); | |||
7210 | void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD); | |||
7211 | ||||
7212 | void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD); | |||
7213 | ||||
7214 | bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, | |||
7215 | CXXSpecialMember CSM); | |||
7216 | void CheckDelayedMemberExceptionSpecs(); | |||
7217 | ||||
7218 | bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD, | |||
7219 | DefaultedComparisonKind DCK); | |||
7220 | void DeclareImplicitEqualityComparison(CXXRecordDecl *RD, | |||
7221 | FunctionDecl *Spaceship); | |||
7222 | void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD, | |||
7223 | DefaultedComparisonKind DCK); | |||
7224 | ||||
7225 | //===--------------------------------------------------------------------===// | |||
7226 | // C++ Derived Classes | |||
7227 | // | |||
7228 | ||||
7229 | /// ActOnBaseSpecifier - Parsed a base specifier | |||
7230 | CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, | |||
7231 | SourceRange SpecifierRange, | |||
7232 | bool Virtual, AccessSpecifier Access, | |||
7233 | TypeSourceInfo *TInfo, | |||
7234 | SourceLocation EllipsisLoc); | |||
7235 | ||||
7236 | BaseResult ActOnBaseSpecifier(Decl *classdecl, | |||
7237 | SourceRange SpecifierRange, | |||
7238 | ParsedAttributes &Attrs, | |||
7239 | bool Virtual, AccessSpecifier Access, | |||
7240 | ParsedType basetype, | |||
7241 | SourceLocation BaseLoc, | |||
7242 | SourceLocation EllipsisLoc); | |||
7243 | ||||
7244 | bool AttachBaseSpecifiers(CXXRecordDecl *Class, | |||
7245 | MutableArrayRef<CXXBaseSpecifier *> Bases); | |||
7246 | void ActOnBaseSpecifiers(Decl *ClassDecl, | |||
7247 | MutableArrayRef<CXXBaseSpecifier *> Bases); | |||
7248 | ||||
7249 | bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base); | |||
7250 | bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, | |||
7251 | CXXBasePaths &Paths); | |||
7252 | ||||
7253 | // FIXME: I don't like this name. | |||
7254 | void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath); | |||
7255 | ||||
7256 | bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
7257 | SourceLocation Loc, SourceRange Range, | |||
7258 | CXXCastPath *BasePath = nullptr, | |||
7259 | bool IgnoreAccess = false); | |||
7260 | bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, | |||
7261 | unsigned InaccessibleBaseID, | |||
7262 | unsigned AmbiguousBaseConvID, | |||
7263 | SourceLocation Loc, SourceRange Range, | |||
7264 | DeclarationName Name, | |||
7265 | CXXCastPath *BasePath, | |||
7266 | bool IgnoreAccess = false); | |||
7267 | ||||
7268 | std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); | |||
7269 | ||||
7270 | bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New, | |||
7271 | const CXXMethodDecl *Old); | |||
7272 | ||||
7273 | /// CheckOverridingFunctionReturnType - Checks whether the return types are | |||
7274 | /// covariant, according to C++ [class.virtual]p5. | |||
7275 | bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | |||
7276 | const CXXMethodDecl *Old); | |||
7277 | ||||
7278 | /// CheckOverridingFunctionExceptionSpec - Checks whether the exception | |||
7279 | /// spec is a subset of base spec. | |||
7280 | bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, | |||
7281 | const CXXMethodDecl *Old); | |||
7282 | ||||
7283 | bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange); | |||
7284 | ||||
7285 | /// CheckOverrideControl - Check C++11 override control semantics. | |||
7286 | void CheckOverrideControl(NamedDecl *D); | |||
7287 | ||||
7288 | /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was | |||
7289 | /// not used in the declaration of an overriding method. | |||
7290 | void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent); | |||
7291 | ||||
7292 | /// CheckForFunctionMarkedFinal - Checks whether a virtual member function | |||
7293 | /// overrides a virtual member function marked 'final', according to | |||
7294 | /// C++11 [class.virtual]p4. | |||
7295 | bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, | |||
7296 | const CXXMethodDecl *Old); | |||
7297 | ||||
7298 | ||||
7299 | //===--------------------------------------------------------------------===// | |||
7300 | // C++ Access Control | |||
7301 | // | |||
7302 | ||||
7303 | enum AccessResult { | |||
7304 | AR_accessible, | |||
7305 | AR_inaccessible, | |||
7306 | AR_dependent, | |||
7307 | AR_delayed | |||
7308 | }; | |||
7309 | ||||
7310 | bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, | |||
7311 | NamedDecl *PrevMemberDecl, | |||
7312 | AccessSpecifier LexicalAS); | |||
7313 | ||||
7314 | AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, | |||
7315 | DeclAccessPair FoundDecl); | |||
7316 | AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, | |||
7317 | DeclAccessPair FoundDecl); | |||
7318 | AccessResult CheckAllocationAccess(SourceLocation OperatorLoc, | |||
7319 | SourceRange PlacementRange, | |||
7320 | CXXRecordDecl *NamingClass, | |||
7321 | DeclAccessPair FoundDecl, | |||
7322 | bool Diagnose = true); | |||
7323 | AccessResult CheckConstructorAccess(SourceLocation Loc, | |||
7324 | CXXConstructorDecl *D, | |||
7325 | DeclAccessPair FoundDecl, | |||
7326 | const InitializedEntity &Entity, | |||
7327 | bool IsCopyBindingRefToTemp = false); | |||
7328 | AccessResult CheckConstructorAccess(SourceLocation Loc, | |||
7329 | CXXConstructorDecl *D, | |||
7330 | DeclAccessPair FoundDecl, | |||
7331 | const InitializedEntity &Entity, | |||
7332 | const PartialDiagnostic &PDiag); | |||
7333 | AccessResult CheckDestructorAccess(SourceLocation Loc, | |||
7334 | CXXDestructorDecl *Dtor, | |||
7335 | const PartialDiagnostic &PDiag, | |||
7336 | QualType objectType = QualType()); | |||
7337 | AccessResult CheckFriendAccess(NamedDecl *D); | |||
7338 | AccessResult CheckMemberAccess(SourceLocation UseLoc, | |||
7339 | CXXRecordDecl *NamingClass, | |||
7340 | DeclAccessPair Found); | |||
7341 | AccessResult | |||
7342 | CheckStructuredBindingMemberAccess(SourceLocation UseLoc, | |||
7343 | CXXRecordDecl *DecomposedClass, | |||
7344 | DeclAccessPair Field); | |||
7345 | AccessResult CheckMemberOperatorAccess(SourceLocation Loc, | |||
7346 | Expr *ObjectExpr, | |||
7347 | Expr *ArgExpr, | |||
7348 | DeclAccessPair FoundDecl); | |||
7349 | AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr, | |||
7350 | DeclAccessPair FoundDecl); | |||
7351 | AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, | |||
7352 | QualType Base, QualType Derived, | |||
7353 | const CXXBasePath &Path, | |||
7354 | unsigned DiagID, | |||
7355 | bool ForceCheck = false, | |||
7356 | bool ForceUnprivileged = false); | |||
7357 | void CheckLookupAccess(const LookupResult &R); | |||
7358 | bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass, | |||
7359 | QualType BaseType); | |||
7360 | bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, | |||
7361 | DeclAccessPair Found, QualType ObjectType, | |||
7362 | SourceLocation Loc, | |||
7363 | const PartialDiagnostic &Diag); | |||
7364 | bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, | |||
7365 | DeclAccessPair Found, | |||
7366 | QualType ObjectType) { | |||
7367 | return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType, | |||
7368 | SourceLocation(), PDiag()); | |||
7369 | } | |||
7370 | ||||
7371 | void HandleDependentAccessCheck(const DependentDiagnostic &DD, | |||
7372 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
7373 | void PerformDependentDiagnostics(const DeclContext *Pattern, | |||
7374 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
7375 | ||||
7376 | void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); | |||
7377 | ||||
7378 | /// When true, access checking violations are treated as SFINAE | |||
7379 | /// failures rather than hard errors. | |||
7380 | bool AccessCheckingSFINAE; | |||
7381 | ||||
7382 | enum AbstractDiagSelID { | |||
7383 | AbstractNone = -1, | |||
7384 | AbstractReturnType, | |||
7385 | AbstractParamType, | |||
7386 | AbstractVariableType, | |||
7387 | AbstractFieldType, | |||
7388 | AbstractIvarType, | |||
7389 | AbstractSynthesizedIvarType, | |||
7390 | AbstractArrayType | |||
7391 | }; | |||
7392 | ||||
7393 | bool isAbstractType(SourceLocation Loc, QualType T); | |||
7394 | bool RequireNonAbstractType(SourceLocation Loc, QualType T, | |||
7395 | TypeDiagnoser &Diagnoser); | |||
7396 | template <typename... Ts> | |||
7397 | bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, | |||
7398 | const Ts &...Args) { | |||
7399 | BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...); | |||
7400 | return RequireNonAbstractType(Loc, T, Diagnoser); | |||
7401 | } | |||
7402 | ||||
7403 | void DiagnoseAbstractType(const CXXRecordDecl *RD); | |||
7404 | ||||
7405 | //===--------------------------------------------------------------------===// | |||
7406 | // C++ Overloaded Operators [C++ 13.5] | |||
7407 | // | |||
7408 | ||||
7409 | bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); | |||
7410 | ||||
7411 | bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl); | |||
7412 | ||||
7413 | //===--------------------------------------------------------------------===// | |||
7414 | // C++ Templates [C++ 14] | |||
7415 | // | |||
7416 | void FilterAcceptableTemplateNames(LookupResult &R, | |||
7417 | bool AllowFunctionTemplates = true, | |||
7418 | bool AllowDependent = true); | |||
7419 | bool hasAnyAcceptableTemplateNames(LookupResult &R, | |||
7420 | bool AllowFunctionTemplates = true, | |||
7421 | bool AllowDependent = true, | |||
7422 | bool AllowNonTemplateFunctions = false); | |||
7423 | /// Try to interpret the lookup result D as a template-name. | |||
7424 | /// | |||
7425 | /// \param D A declaration found by name lookup. | |||
7426 | /// \param AllowFunctionTemplates Whether function templates should be | |||
7427 | /// considered valid results. | |||
7428 | /// \param AllowDependent Whether unresolved using declarations (that might | |||
7429 | /// name templates) should be considered valid results. | |||
7430 | static NamedDecl *getAsTemplateNameDecl(NamedDecl *D, | |||
7431 | bool AllowFunctionTemplates = true, | |||
7432 | bool AllowDependent = true); | |||
7433 | ||||
7434 | enum TemplateNameIsRequiredTag { TemplateNameIsRequired }; | |||
7435 | /// Whether and why a template name is required in this lookup. | |||
7436 | class RequiredTemplateKind { | |||
7437 | public: | |||
7438 | /// Template name is required if TemplateKWLoc is valid. | |||
7439 | RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation()) | |||
7440 | : TemplateKW(TemplateKWLoc) {} | |||
7441 | /// Template name is unconditionally required. | |||
7442 | RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {} | |||
7443 | ||||
7444 | SourceLocation getTemplateKeywordLoc() const { | |||
7445 | return TemplateKW.getValueOr(SourceLocation()); | |||
7446 | } | |||
7447 | bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); } | |||
7448 | bool isRequired() const { return TemplateKW != SourceLocation(); } | |||
7449 | explicit operator bool() const { return isRequired(); } | |||
7450 | ||||
7451 | private: | |||
7452 | llvm::Optional<SourceLocation> TemplateKW; | |||
7453 | }; | |||
7454 | ||||
7455 | enum class AssumedTemplateKind { | |||
7456 | /// This is not assumed to be a template name. | |||
7457 | None, | |||
7458 | /// This is assumed to be a template name because lookup found nothing. | |||
7459 | FoundNothing, | |||
7460 | /// This is assumed to be a template name because lookup found one or more | |||
7461 | /// functions (but no function templates). | |||
7462 | FoundFunctions, | |||
7463 | }; | |||
7464 | bool LookupTemplateName( | |||
7465 | LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType, | |||
7466 | bool EnteringContext, bool &MemberOfUnknownSpecialization, | |||
7467 | RequiredTemplateKind RequiredTemplate = SourceLocation(), | |||
7468 | AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true); | |||
7469 | ||||
7470 | TemplateNameKind isTemplateName(Scope *S, | |||
7471 | CXXScopeSpec &SS, | |||
7472 | bool hasTemplateKeyword, | |||
7473 | const UnqualifiedId &Name, | |||
7474 | ParsedType ObjectType, | |||
7475 | bool EnteringContext, | |||
7476 | TemplateTy &Template, | |||
7477 | bool &MemberOfUnknownSpecialization, | |||
7478 | bool Disambiguation = false); | |||
7479 | ||||
7480 | /// Try to resolve an undeclared template name as a type template. | |||
7481 | /// | |||
7482 | /// Sets II to the identifier corresponding to the template name, and updates | |||
7483 | /// Name to a corresponding (typo-corrected) type template name and TNK to | |||
7484 | /// the corresponding kind, if possible. | |||
7485 | void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name, | |||
7486 | TemplateNameKind &TNK, | |||
7487 | SourceLocation NameLoc, | |||
7488 | IdentifierInfo *&II); | |||
7489 | ||||
7490 | bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, | |||
7491 | SourceLocation NameLoc, | |||
7492 | bool Diagnose = true); | |||
7493 | ||||
7494 | /// Determine whether a particular identifier might be the name in a C++1z | |||
7495 | /// deduction-guide declaration. | |||
7496 | bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, | |||
7497 | SourceLocation NameLoc, | |||
7498 | ParsedTemplateTy *Template = nullptr); | |||
7499 | ||||
7500 | bool DiagnoseUnknownTemplateName(const IdentifierInfo &II, | |||
7501 | SourceLocation IILoc, | |||
7502 | Scope *S, | |||
7503 | const CXXScopeSpec *SS, | |||
7504 | TemplateTy &SuggestedTemplate, | |||
7505 | TemplateNameKind &SuggestedKind); | |||
7506 | ||||
7507 | bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, | |||
7508 | NamedDecl *Instantiation, | |||
7509 | bool InstantiatedFromMember, | |||
7510 | const NamedDecl *Pattern, | |||
7511 | const NamedDecl *PatternDef, | |||
7512 | TemplateSpecializationKind TSK, | |||
7513 | bool Complain = true); | |||
7514 | ||||
7515 | void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); | |||
7516 | TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl); | |||
7517 | ||||
7518 | NamedDecl *ActOnTypeParameter(Scope *S, bool Typename, | |||
7519 | SourceLocation EllipsisLoc, | |||
7520 | SourceLocation KeyLoc, | |||
7521 | IdentifierInfo *ParamName, | |||
7522 | SourceLocation ParamNameLoc, | |||
7523 | unsigned Depth, unsigned Position, | |||
7524 | SourceLocation EqualLoc, | |||
7525 | ParsedType DefaultArg, bool HasTypeConstraint); | |||
7526 | ||||
7527 | bool ActOnTypeConstraint(const CXXScopeSpec &SS, | |||
7528 | TemplateIdAnnotation *TypeConstraint, | |||
7529 | TemplateTypeParmDecl *ConstrainedParameter, | |||
7530 | SourceLocation EllipsisLoc); | |||
7531 | bool BuildTypeConstraint(const CXXScopeSpec &SS, | |||
7532 | TemplateIdAnnotation *TypeConstraint, | |||
7533 | TemplateTypeParmDecl *ConstrainedParameter, | |||
7534 | SourceLocation EllipsisLoc, | |||
7535 | bool AllowUnexpandedPack); | |||
7536 | ||||
7537 | bool AttachTypeConstraint(NestedNameSpecifierLoc NS, | |||
7538 | DeclarationNameInfo NameInfo, | |||
7539 | ConceptDecl *NamedConcept, | |||
7540 | const TemplateArgumentListInfo *TemplateArgs, | |||
7541 | TemplateTypeParmDecl *ConstrainedParameter, | |||
7542 | SourceLocation EllipsisLoc); | |||
7543 | ||||
7544 | bool AttachTypeConstraint(AutoTypeLoc TL, | |||
7545 | NonTypeTemplateParmDecl *ConstrainedParameter, | |||
7546 | SourceLocation EllipsisLoc); | |||
7547 | ||||
7548 | bool RequireStructuralType(QualType T, SourceLocation Loc); | |||
7549 | ||||
7550 | QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, | |||
7551 | SourceLocation Loc); | |||
7552 | QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); | |||
7553 | ||||
7554 | NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, | |||
7555 | unsigned Depth, | |||
7556 | unsigned Position, | |||
7557 | SourceLocation EqualLoc, | |||
7558 | Expr *DefaultArg); | |||
7559 | NamedDecl *ActOnTemplateTemplateParameter(Scope *S, | |||
7560 | SourceLocation TmpLoc, | |||
7561 | TemplateParameterList *Params, | |||
7562 | SourceLocation EllipsisLoc, | |||
7563 | IdentifierInfo *ParamName, | |||
7564 | SourceLocation ParamNameLoc, | |||
7565 | unsigned Depth, | |||
7566 | unsigned Position, | |||
7567 | SourceLocation EqualLoc, | |||
7568 | ParsedTemplateArgument DefaultArg); | |||
7569 | ||||
7570 | TemplateParameterList * | |||
7571 | ActOnTemplateParameterList(unsigned Depth, | |||
7572 | SourceLocation ExportLoc, | |||
7573 | SourceLocation TemplateLoc, | |||
7574 | SourceLocation LAngleLoc, | |||
7575 | ArrayRef<NamedDecl *> Params, | |||
7576 | SourceLocation RAngleLoc, | |||
7577 | Expr *RequiresClause); | |||
7578 | ||||
7579 | /// The context in which we are checking a template parameter list. | |||
7580 | enum TemplateParamListContext { | |||
7581 | TPC_ClassTemplate, | |||
7582 | TPC_VarTemplate, | |||
7583 | TPC_FunctionTemplate, | |||
7584 | TPC_ClassTemplateMember, | |||
7585 | TPC_FriendClassTemplate, | |||
7586 | TPC_FriendFunctionTemplate, | |||
7587 | TPC_FriendFunctionTemplateDefinition, | |||
7588 | TPC_TypeAliasTemplate | |||
7589 | }; | |||
7590 | ||||
7591 | bool CheckTemplateParameterList(TemplateParameterList *NewParams, | |||
7592 | TemplateParameterList *OldParams, | |||
7593 | TemplateParamListContext TPC, | |||
7594 | SkipBodyInfo *SkipBody = nullptr); | |||
7595 | TemplateParameterList *MatchTemplateParametersToScopeSpecifier( | |||
7596 | SourceLocation DeclStartLoc, SourceLocation DeclLoc, | |||
7597 | const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId, | |||
7598 | ArrayRef<TemplateParameterList *> ParamLists, | |||
7599 | bool IsFriend, bool &IsMemberSpecialization, bool &Invalid, | |||
7600 | bool SuppressDiagnostic = false); | |||
7601 | ||||
7602 | DeclResult CheckClassTemplate( | |||
7603 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, | |||
7604 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, | |||
7605 | const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, | |||
7606 | AccessSpecifier AS, SourceLocation ModulePrivateLoc, | |||
7607 | SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, | |||
7608 | TemplateParameterList **OuterTemplateParamLists, | |||
7609 | SkipBodyInfo *SkipBody = nullptr); | |||
7610 | ||||
7611 | TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, | |||
7612 | QualType NTTPType, | |||
7613 | SourceLocation Loc); | |||
7614 | ||||
7615 | /// Get a template argument mapping the given template parameter to itself, | |||
7616 | /// e.g. for X in \c template<int X>, this would return an expression template | |||
7617 | /// argument referencing X. | |||
7618 | TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, | |||
7619 | SourceLocation Location); | |||
7620 | ||||
7621 | void translateTemplateArguments(const ASTTemplateArgsPtr &In, | |||
7622 | TemplateArgumentListInfo &Out); | |||
7623 | ||||
7624 | ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType); | |||
7625 | ||||
7626 | void NoteAllFoundTemplates(TemplateName Name); | |||
7627 | ||||
7628 | QualType CheckTemplateIdType(TemplateName Template, | |||
7629 | SourceLocation TemplateLoc, | |||
7630 | TemplateArgumentListInfo &TemplateArgs); | |||
7631 | ||||
7632 | TypeResult | |||
7633 | ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | |||
7634 | TemplateTy Template, IdentifierInfo *TemplateII, | |||
7635 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, | |||
7636 | ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, | |||
7637 | bool IsCtorOrDtorName = false, bool IsClassName = false); | |||
7638 | ||||
7639 | /// Parsed an elaborated-type-specifier that refers to a template-id, | |||
7640 | /// such as \c class T::template apply<U>. | |||
7641 | TypeResult ActOnTagTemplateIdType(TagUseKind TUK, | |||
7642 | TypeSpecifierType TagSpec, | |||
7643 | SourceLocation TagLoc, | |||
7644 | CXXScopeSpec &SS, | |||
7645 | SourceLocation TemplateKWLoc, | |||
7646 | TemplateTy TemplateD, | |||
7647 | SourceLocation TemplateLoc, | |||
7648 | SourceLocation LAngleLoc, | |||
7649 | ASTTemplateArgsPtr TemplateArgsIn, | |||
7650 | SourceLocation RAngleLoc); | |||
7651 | ||||
7652 | DeclResult ActOnVarTemplateSpecialization( | |||
7653 | Scope *S, Declarator &D, TypeSourceInfo *DI, | |||
7654 | SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, | |||
7655 | StorageClass SC, bool IsPartialSpecialization); | |||
7656 | ||||
7657 | /// Get the specialization of the given variable template corresponding to | |||
7658 | /// the specified argument list, or a null-but-valid result if the arguments | |||
7659 | /// are dependent. | |||
7660 | DeclResult CheckVarTemplateId(VarTemplateDecl *Template, | |||
7661 | SourceLocation TemplateLoc, | |||
7662 | SourceLocation TemplateNameLoc, | |||
7663 | const TemplateArgumentListInfo &TemplateArgs); | |||
7664 | ||||
7665 | /// Form a reference to the specialization of the given variable template | |||
7666 | /// corresponding to the specified argument list, or a null-but-valid result | |||
7667 | /// if the arguments are dependent. | |||
7668 | ExprResult CheckVarTemplateId(const CXXScopeSpec &SS, | |||
7669 | const DeclarationNameInfo &NameInfo, | |||
7670 | VarTemplateDecl *Template, | |||
7671 | SourceLocation TemplateLoc, | |||
7672 | const TemplateArgumentListInfo *TemplateArgs); | |||
7673 | ||||
7674 | ExprResult | |||
7675 | CheckConceptTemplateId(const CXXScopeSpec &SS, | |||
7676 | SourceLocation TemplateKWLoc, | |||
7677 | const DeclarationNameInfo &ConceptNameInfo, | |||
7678 | NamedDecl *FoundDecl, ConceptDecl *NamedConcept, | |||
7679 | const TemplateArgumentListInfo *TemplateArgs); | |||
7680 | ||||
7681 | void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc); | |||
7682 | ||||
7683 | ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS, | |||
7684 | SourceLocation TemplateKWLoc, | |||
7685 | LookupResult &R, | |||
7686 | bool RequiresADL, | |||
7687 | const TemplateArgumentListInfo *TemplateArgs); | |||
7688 | ||||
7689 | ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, | |||
7690 | SourceLocation TemplateKWLoc, | |||
7691 | const DeclarationNameInfo &NameInfo, | |||
7692 | const TemplateArgumentListInfo *TemplateArgs); | |||
7693 | ||||
7694 | TemplateNameKind ActOnTemplateName( | |||
7695 | Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, | |||
7696 | const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, | |||
7697 | TemplateTy &Template, bool AllowInjectedClassName = false); | |||
7698 | ||||
7699 | DeclResult ActOnClassTemplateSpecialization( | |||
7700 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, | |||
7701 | SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, | |||
7702 | TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, | |||
7703 | MultiTemplateParamsArg TemplateParameterLists, | |||
7704 | SkipBodyInfo *SkipBody = nullptr); | |||
7705 | ||||
7706 | bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc, | |||
7707 | TemplateDecl *PrimaryTemplate, | |||
7708 | unsigned NumExplicitArgs, | |||
7709 | ArrayRef<TemplateArgument> Args); | |||
7710 | void CheckTemplatePartialSpecialization( | |||
7711 | ClassTemplatePartialSpecializationDecl *Partial); | |||
7712 | void CheckTemplatePartialSpecialization( | |||
7713 | VarTemplatePartialSpecializationDecl *Partial); | |||
7714 | ||||
7715 | Decl *ActOnTemplateDeclarator(Scope *S, | |||
7716 | MultiTemplateParamsArg TemplateParameterLists, | |||
7717 | Declarator &D); | |||
7718 | ||||
7719 | bool | |||
7720 | CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, | |||
7721 | TemplateSpecializationKind NewTSK, | |||
7722 | NamedDecl *PrevDecl, | |||
7723 | TemplateSpecializationKind PrevTSK, | |||
7724 | SourceLocation PrevPtOfInstantiation, | |||
7725 | bool &SuppressNew); | |||
7726 | ||||
7727 | bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, | |||
7728 | const TemplateArgumentListInfo &ExplicitTemplateArgs, | |||
7729 | LookupResult &Previous); | |||
7730 | ||||
7731 | bool CheckFunctionTemplateSpecialization( | |||
7732 | FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
7733 | LookupResult &Previous, bool QualifiedFriend = false); | |||
7734 | bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); | |||
7735 | void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous); | |||
7736 | ||||
7737 | DeclResult ActOnExplicitInstantiation( | |||
7738 | Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, | |||
7739 | unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, | |||
7740 | TemplateTy Template, SourceLocation TemplateNameLoc, | |||
7741 | SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, | |||
7742 | SourceLocation RAngleLoc, const ParsedAttributesView &Attr); | |||
7743 | ||||
7744 | DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, | |||
7745 | SourceLocation TemplateLoc, | |||
7746 | unsigned TagSpec, SourceLocation KWLoc, | |||
7747 | CXXScopeSpec &SS, IdentifierInfo *Name, | |||
7748 | SourceLocation NameLoc, | |||
7749 | const ParsedAttributesView &Attr); | |||
7750 | ||||
7751 | DeclResult ActOnExplicitInstantiation(Scope *S, | |||
7752 | SourceLocation ExternLoc, | |||
7753 | SourceLocation TemplateLoc, | |||
7754 | Declarator &D); | |||
7755 | ||||
7756 | TemplateArgumentLoc | |||
7757 | SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, | |||
7758 | SourceLocation TemplateLoc, | |||
7759 | SourceLocation RAngleLoc, | |||
7760 | Decl *Param, | |||
7761 | SmallVectorImpl<TemplateArgument> | |||
7762 | &Converted, | |||
7763 | bool &HasDefaultArg); | |||
7764 | ||||
7765 | /// Specifies the context in which a particular template | |||
7766 | /// argument is being checked. | |||
7767 | enum CheckTemplateArgumentKind { | |||
7768 | /// The template argument was specified in the code or was | |||
7769 | /// instantiated with some deduced template arguments. | |||
7770 | CTAK_Specified, | |||
7771 | ||||
7772 | /// The template argument was deduced via template argument | |||
7773 | /// deduction. | |||
7774 | CTAK_Deduced, | |||
7775 | ||||
7776 | /// The template argument was deduced from an array bound | |||
7777 | /// via template argument deduction. | |||
7778 | CTAK_DeducedFromArrayBound | |||
7779 | }; | |||
7780 | ||||
7781 | bool CheckTemplateArgument(NamedDecl *Param, | |||
7782 | TemplateArgumentLoc &Arg, | |||
7783 | NamedDecl *Template, | |||
7784 | SourceLocation TemplateLoc, | |||
7785 | SourceLocation RAngleLoc, | |||
7786 | unsigned ArgumentPackIndex, | |||
7787 | SmallVectorImpl<TemplateArgument> &Converted, | |||
7788 | CheckTemplateArgumentKind CTAK = CTAK_Specified); | |||
7789 | ||||
7790 | /// Check that the given template arguments can be be provided to | |||
7791 | /// the given template, converting the arguments along the way. | |||
7792 | /// | |||
7793 | /// \param Template The template to which the template arguments are being | |||
7794 | /// provided. | |||
7795 | /// | |||
7796 | /// \param TemplateLoc The location of the template name in the source. | |||
7797 | /// | |||
7798 | /// \param TemplateArgs The list of template arguments. If the template is | |||
7799 | /// a template template parameter, this function may extend the set of | |||
7800 | /// template arguments to also include substituted, defaulted template | |||
7801 | /// arguments. | |||
7802 | /// | |||
7803 | /// \param PartialTemplateArgs True if the list of template arguments is | |||
7804 | /// intentionally partial, e.g., because we're checking just the initial | |||
7805 | /// set of template arguments. | |||
7806 | /// | |||
7807 | /// \param Converted Will receive the converted, canonicalized template | |||
7808 | /// arguments. | |||
7809 | /// | |||
7810 | /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to | |||
7811 | /// contain the converted forms of the template arguments as written. | |||
7812 | /// Otherwise, \p TemplateArgs will not be modified. | |||
7813 | /// | |||
7814 | /// \param ConstraintsNotSatisfied If provided, and an error occured, will | |||
7815 | /// receive true if the cause for the error is the associated constraints of | |||
7816 | /// the template not being satisfied by the template arguments. | |||
7817 | /// | |||
7818 | /// \returns true if an error occurred, false otherwise. | |||
7819 | bool CheckTemplateArgumentList(TemplateDecl *Template, | |||
7820 | SourceLocation TemplateLoc, | |||
7821 | TemplateArgumentListInfo &TemplateArgs, | |||
7822 | bool PartialTemplateArgs, | |||
7823 | SmallVectorImpl<TemplateArgument> &Converted, | |||
7824 | bool UpdateArgsWithConversions = true, | |||
7825 | bool *ConstraintsNotSatisfied = nullptr); | |||
7826 | ||||
7827 | bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, | |||
7828 | TemplateArgumentLoc &Arg, | |||
7829 | SmallVectorImpl<TemplateArgument> &Converted); | |||
7830 | ||||
7831 | bool CheckTemplateArgument(TypeSourceInfo *Arg); | |||
7832 | ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param, | |||
7833 | QualType InstantiatedParamType, Expr *Arg, | |||
7834 | TemplateArgument &Converted, | |||
7835 | CheckTemplateArgumentKind CTAK = CTAK_Specified); | |||
7836 | bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, | |||
7837 | TemplateParameterList *Params, | |||
7838 | TemplateArgumentLoc &Arg); | |||
7839 | ||||
7840 | ExprResult | |||
7841 | BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, | |||
7842 | QualType ParamType, | |||
7843 | SourceLocation Loc); | |||
7844 | ExprResult | |||
7845 | BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, | |||
7846 | SourceLocation Loc); | |||
7847 | ||||
7848 | /// Enumeration describing how template parameter lists are compared | |||
7849 | /// for equality. | |||
7850 | enum TemplateParameterListEqualKind { | |||
7851 | /// We are matching the template parameter lists of two templates | |||
7852 | /// that might be redeclarations. | |||
7853 | /// | |||
7854 | /// \code | |||
7855 | /// template<typename T> struct X; | |||
7856 | /// template<typename T> struct X; | |||
7857 | /// \endcode | |||
7858 | TPL_TemplateMatch, | |||
7859 | ||||
7860 | /// We are matching the template parameter lists of two template | |||
7861 | /// template parameters as part of matching the template parameter lists | |||
7862 | /// of two templates that might be redeclarations. | |||
7863 | /// | |||
7864 | /// \code | |||
7865 | /// template<template<int I> class TT> struct X; | |||
7866 | /// template<template<int Value> class Other> struct X; | |||
7867 | /// \endcode | |||
7868 | TPL_TemplateTemplateParmMatch, | |||
7869 | ||||
7870 | /// We are matching the template parameter lists of a template | |||
7871 | /// template argument against the template parameter lists of a template | |||
7872 | /// template parameter. | |||
7873 | /// | |||
7874 | /// \code | |||
7875 | /// template<template<int Value> class Metafun> struct X; | |||
7876 | /// template<int Value> struct integer_c; | |||
7877 | /// X<integer_c> xic; | |||
7878 | /// \endcode | |||
7879 | TPL_TemplateTemplateArgumentMatch | |||
7880 | }; | |||
7881 | ||||
7882 | bool TemplateParameterListsAreEqual(TemplateParameterList *New, | |||
7883 | TemplateParameterList *Old, | |||
7884 | bool Complain, | |||
7885 | TemplateParameterListEqualKind Kind, | |||
7886 | SourceLocation TemplateArgLoc | |||
7887 | = SourceLocation()); | |||
7888 | ||||
7889 | bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); | |||
7890 | ||||
7891 | /// Called when the parser has parsed a C++ typename | |||
7892 | /// specifier, e.g., "typename T::type". | |||
7893 | /// | |||
7894 | /// \param S The scope in which this typename type occurs. | |||
7895 | /// \param TypenameLoc the location of the 'typename' keyword | |||
7896 | /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). | |||
7897 | /// \param II the identifier we're retrieving (e.g., 'type' in the example). | |||
7898 | /// \param IdLoc the location of the identifier. | |||
7899 | TypeResult | |||
7900 | ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, | |||
7901 | const CXXScopeSpec &SS, const IdentifierInfo &II, | |||
7902 | SourceLocation IdLoc); | |||
7903 | ||||
7904 | /// Called when the parser has parsed a C++ typename | |||
7905 | /// specifier that ends in a template-id, e.g., | |||
7906 | /// "typename MetaFun::template apply<T1, T2>". | |||
7907 | /// | |||
7908 | /// \param S The scope in which this typename type occurs. | |||
7909 | /// \param TypenameLoc the location of the 'typename' keyword | |||
7910 | /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). | |||
7911 | /// \param TemplateLoc the location of the 'template' keyword, if any. | |||
7912 | /// \param TemplateName The template name. | |||
7913 | /// \param TemplateII The identifier used to name the template. | |||
7914 | /// \param TemplateIILoc The location of the template name. | |||
7915 | /// \param LAngleLoc The location of the opening angle bracket ('<'). | |||
7916 | /// \param TemplateArgs The template arguments. | |||
7917 | /// \param RAngleLoc The location of the closing angle bracket ('>'). | |||
7918 | TypeResult | |||
7919 | ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, | |||
7920 | const CXXScopeSpec &SS, | |||
7921 | SourceLocation TemplateLoc, | |||
7922 | TemplateTy TemplateName, | |||
7923 | IdentifierInfo *TemplateII, | |||
7924 | SourceLocation TemplateIILoc, | |||
7925 | SourceLocation LAngleLoc, | |||
7926 | ASTTemplateArgsPtr TemplateArgs, | |||
7927 | SourceLocation RAngleLoc); | |||
7928 | ||||
7929 | QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, | |||
7930 | SourceLocation KeywordLoc, | |||
7931 | NestedNameSpecifierLoc QualifierLoc, | |||
7932 | const IdentifierInfo &II, | |||
7933 | SourceLocation IILoc, | |||
7934 | TypeSourceInfo **TSI, | |||
7935 | bool DeducedTSTContext); | |||
7936 | ||||
7937 | QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, | |||
7938 | SourceLocation KeywordLoc, | |||
7939 | NestedNameSpecifierLoc QualifierLoc, | |||
7940 | const IdentifierInfo &II, | |||
7941 | SourceLocation IILoc, | |||
7942 | bool DeducedTSTContext = true); | |||
7943 | ||||
7944 | ||||
7945 | TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, | |||
7946 | SourceLocation Loc, | |||
7947 | DeclarationName Name); | |||
7948 | bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS); | |||
7949 | ||||
7950 | ExprResult RebuildExprInCurrentInstantiation(Expr *E); | |||
7951 | bool RebuildTemplateParamsInCurrentInstantiation( | |||
7952 | TemplateParameterList *Params); | |||
7953 | ||||
7954 | std::string | |||
7955 | getTemplateArgumentBindingsText(const TemplateParameterList *Params, | |||
7956 | const TemplateArgumentList &Args); | |||
7957 | ||||
7958 | std::string | |||
7959 | getTemplateArgumentBindingsText(const TemplateParameterList *Params, | |||
7960 | const TemplateArgument *Args, | |||
7961 | unsigned NumArgs); | |||
7962 | ||||
7963 | //===--------------------------------------------------------------------===// | |||
7964 | // C++ Concepts | |||
7965 | //===--------------------------------------------------------------------===// | |||
7966 | Decl *ActOnConceptDefinition( | |||
7967 | Scope *S, MultiTemplateParamsArg TemplateParameterLists, | |||
7968 | IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr); | |||
7969 | ||||
7970 | RequiresExprBodyDecl * | |||
7971 | ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, | |||
7972 | ArrayRef<ParmVarDecl *> LocalParameters, | |||
7973 | Scope *BodyScope); | |||
7974 | void ActOnFinishRequiresExpr(); | |||
7975 | concepts::Requirement *ActOnSimpleRequirement(Expr *E); | |||
7976 | concepts::Requirement *ActOnTypeRequirement( | |||
7977 | SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc, | |||
7978 | IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId); | |||
7979 | concepts::Requirement *ActOnCompoundRequirement(Expr *E, | |||
7980 | SourceLocation NoexceptLoc); | |||
7981 | concepts::Requirement * | |||
7982 | ActOnCompoundRequirement( | |||
7983 | Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, | |||
7984 | TemplateIdAnnotation *TypeConstraint, unsigned Depth); | |||
7985 | concepts::Requirement *ActOnNestedRequirement(Expr *Constraint); | |||
7986 | concepts::ExprRequirement * | |||
7987 | BuildExprRequirement( | |||
7988 | Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc, | |||
7989 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); | |||
7990 | concepts::ExprRequirement * | |||
7991 | BuildExprRequirement( | |||
7992 | concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag, | |||
7993 | bool IsSatisfied, SourceLocation NoexceptLoc, | |||
7994 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); | |||
7995 | concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type); | |||
7996 | concepts::TypeRequirement * | |||
7997 | BuildTypeRequirement( | |||
7998 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag); | |||
7999 | concepts::NestedRequirement *BuildNestedRequirement(Expr *E); | |||
8000 | concepts::NestedRequirement * | |||
8001 | BuildNestedRequirement( | |||
8002 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag); | |||
8003 | ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc, | |||
8004 | RequiresExprBodyDecl *Body, | |||
8005 | ArrayRef<ParmVarDecl *> LocalParameters, | |||
8006 | ArrayRef<concepts::Requirement *> Requirements, | |||
8007 | SourceLocation ClosingBraceLoc); | |||
8008 | ||||
8009 | //===--------------------------------------------------------------------===// | |||
8010 | // C++ Variadic Templates (C++0x [temp.variadic]) | |||
8011 | //===--------------------------------------------------------------------===// | |||
8012 | ||||
8013 | /// Determine whether an unexpanded parameter pack might be permitted in this | |||
8014 | /// location. Useful for error recovery. | |||
8015 | bool isUnexpandedParameterPackPermitted(); | |||
8016 | ||||
8017 | /// The context in which an unexpanded parameter pack is | |||
8018 | /// being diagnosed. | |||
8019 | /// | |||
8020 | /// Note that the values of this enumeration line up with the first | |||
8021 | /// argument to the \c err_unexpanded_parameter_pack diagnostic. | |||
8022 | enum UnexpandedParameterPackContext { | |||
8023 | /// An arbitrary expression. | |||
8024 | UPPC_Expression = 0, | |||
8025 | ||||
8026 | /// The base type of a class type. | |||
8027 | UPPC_BaseType, | |||
8028 | ||||
8029 | /// The type of an arbitrary declaration. | |||
8030 | UPPC_DeclarationType, | |||
8031 | ||||
8032 | /// The type of a data member. | |||
8033 | UPPC_DataMemberType, | |||
8034 | ||||
8035 | /// The size of a bit-field. | |||
8036 | UPPC_BitFieldWidth, | |||
8037 | ||||
8038 | /// The expression in a static assertion. | |||
8039 | UPPC_StaticAssertExpression, | |||
8040 | ||||
8041 | /// The fixed underlying type of an enumeration. | |||
8042 | UPPC_FixedUnderlyingType, | |||
8043 | ||||
8044 | /// The enumerator value. | |||
8045 | UPPC_EnumeratorValue, | |||
8046 | ||||
8047 | /// A using declaration. | |||
8048 | UPPC_UsingDeclaration, | |||
8049 | ||||
8050 | /// A friend declaration. | |||
8051 | UPPC_FriendDeclaration, | |||
8052 | ||||
8053 | /// A declaration qualifier. | |||
8054 | UPPC_DeclarationQualifier, | |||
8055 | ||||
8056 | /// An initializer. | |||
8057 | UPPC_Initializer, | |||
8058 | ||||
8059 | /// A default argument. | |||
8060 | UPPC_DefaultArgument, | |||
8061 | ||||
8062 | /// The type of a non-type template parameter. | |||
8063 | UPPC_NonTypeTemplateParameterType, | |||
8064 | ||||
8065 | /// The type of an exception. | |||
8066 | UPPC_ExceptionType, | |||
8067 | ||||
8068 | /// Partial specialization. | |||
8069 | UPPC_PartialSpecialization, | |||
8070 | ||||
8071 | /// Microsoft __if_exists. | |||
8072 | UPPC_IfExists, | |||
8073 | ||||
8074 | /// Microsoft __if_not_exists. | |||
8075 | UPPC_IfNotExists, | |||
8076 | ||||
8077 | /// Lambda expression. | |||
8078 | UPPC_Lambda, | |||
8079 | ||||
8080 | /// Block expression. | |||
8081 | UPPC_Block, | |||
8082 | ||||
8083 | /// A type constraint. | |||
8084 | UPPC_TypeConstraint, | |||
8085 | ||||
8086 | // A requirement in a requires-expression. | |||
8087 | UPPC_Requirement, | |||
8088 | ||||
8089 | // A requires-clause. | |||
8090 | UPPC_RequiresClause, | |||
8091 | }; | |||
8092 | ||||
8093 | /// Diagnose unexpanded parameter packs. | |||
8094 | /// | |||
8095 | /// \param Loc The location at which we should emit the diagnostic. | |||
8096 | /// | |||
8097 | /// \param UPPC The context in which we are diagnosing unexpanded | |||
8098 | /// parameter packs. | |||
8099 | /// | |||
8100 | /// \param Unexpanded the set of unexpanded parameter packs. | |||
8101 | /// | |||
8102 | /// \returns true if an error occurred, false otherwise. | |||
8103 | bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc, | |||
8104 | UnexpandedParameterPackContext UPPC, | |||
8105 | ArrayRef<UnexpandedParameterPack> Unexpanded); | |||
8106 | ||||
8107 | /// If the given type contains an unexpanded parameter pack, | |||
8108 | /// diagnose the error. | |||
8109 | /// | |||
8110 | /// \param Loc The source location where a diagnostc should be emitted. | |||
8111 | /// | |||
8112 | /// \param T The type that is being checked for unexpanded parameter | |||
8113 | /// packs. | |||
8114 | /// | |||
8115 | /// \returns true if an error occurred, false otherwise. | |||
8116 | bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, | |||
8117 | UnexpandedParameterPackContext UPPC); | |||
8118 | ||||
8119 | /// If the given expression contains an unexpanded parameter | |||
8120 | /// pack, diagnose the error. | |||
8121 | /// | |||
8122 | /// \param E The expression that is being checked for unexpanded | |||
8123 | /// parameter packs. | |||
8124 | /// | |||
8125 | /// \returns true if an error occurred, false otherwise. | |||
8126 | bool DiagnoseUnexpandedParameterPack(Expr *E, | |||
8127 | UnexpandedParameterPackContext UPPC = UPPC_Expression); | |||
8128 | ||||
8129 | /// If the given requirees-expression contains an unexpanded reference to one | |||
8130 | /// of its own parameter packs, diagnose the error. | |||
8131 | /// | |||
8132 | /// \param RE The requiress-expression that is being checked for unexpanded | |||
8133 | /// parameter packs. | |||
8134 | /// | |||
8135 | /// \returns true if an error occurred, false otherwise. | |||
8136 | bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE); | |||
8137 | ||||
8138 | /// If the given nested-name-specifier contains an unexpanded | |||
8139 | /// parameter pack, diagnose the error. | |||
8140 | /// | |||
8141 | /// \param SS The nested-name-specifier that is being checked for | |||
8142 | /// unexpanded parameter packs. | |||
8143 | /// | |||
8144 | /// \returns true if an error occurred, false otherwise. | |||
8145 | bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS, | |||
8146 | UnexpandedParameterPackContext UPPC); | |||
8147 | ||||
8148 | /// If the given name contains an unexpanded parameter pack, | |||
8149 | /// diagnose the error. | |||
8150 | /// | |||
8151 | /// \param NameInfo The name (with source location information) that | |||
8152 | /// is being checked for unexpanded parameter packs. | |||
8153 | /// | |||
8154 | /// \returns true if an error occurred, false otherwise. | |||
8155 | bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo, | |||
8156 | UnexpandedParameterPackContext UPPC); | |||
8157 | ||||
8158 | /// If the given template name contains an unexpanded parameter pack, | |||
8159 | /// diagnose the error. | |||
8160 | /// | |||
8161 | /// \param Loc The location of the template name. | |||
8162 | /// | |||
8163 | /// \param Template The template name that is being checked for unexpanded | |||
8164 | /// parameter packs. | |||
8165 | /// | |||
8166 | /// \returns true if an error occurred, false otherwise. | |||
8167 | bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, | |||
8168 | TemplateName Template, | |||
8169 | UnexpandedParameterPackContext UPPC); | |||
8170 | ||||
8171 | /// If the given template argument contains an unexpanded parameter | |||
8172 | /// pack, diagnose the error. | |||
8173 | /// | |||
8174 | /// \param Arg The template argument that is being checked for unexpanded | |||
8175 | /// parameter packs. | |||
8176 | /// | |||
8177 | /// \returns true if an error occurred, false otherwise. | |||
8178 | bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg, | |||
8179 | UnexpandedParameterPackContext UPPC); | |||
8180 | ||||
8181 | /// Collect the set of unexpanded parameter packs within the given | |||
8182 | /// template argument. | |||
8183 | /// | |||
8184 | /// \param Arg The template argument that will be traversed to find | |||
8185 | /// unexpanded parameter packs. | |||
8186 | void collectUnexpandedParameterPacks(TemplateArgument Arg, | |||
8187 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8188 | ||||
8189 | /// Collect the set of unexpanded parameter packs within the given | |||
8190 | /// template argument. | |||
8191 | /// | |||
8192 | /// \param Arg The template argument that will be traversed to find | |||
8193 | /// unexpanded parameter packs. | |||
8194 | void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg, | |||
8195 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8196 | ||||
8197 | /// Collect the set of unexpanded parameter packs within the given | |||
8198 | /// type. | |||
8199 | /// | |||
8200 | /// \param T The type that will be traversed to find | |||
8201 | /// unexpanded parameter packs. | |||
8202 | void collectUnexpandedParameterPacks(QualType T, | |||
8203 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8204 | ||||
8205 | /// Collect the set of unexpanded parameter packs within the given | |||
8206 | /// type. | |||
8207 | /// | |||
8208 | /// \param TL The type that will be traversed to find | |||
8209 | /// unexpanded parameter packs. | |||
8210 | void collectUnexpandedParameterPacks(TypeLoc TL, | |||
8211 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8212 | ||||
8213 | /// Collect the set of unexpanded parameter packs within the given | |||
8214 | /// nested-name-specifier. | |||
8215 | /// | |||
8216 | /// \param NNS The nested-name-specifier that will be traversed to find | |||
8217 | /// unexpanded parameter packs. | |||
8218 | void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS, | |||
8219 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8220 | ||||
8221 | /// Collect the set of unexpanded parameter packs within the given | |||
8222 | /// name. | |||
8223 | /// | |||
8224 | /// \param NameInfo The name that will be traversed to find | |||
8225 | /// unexpanded parameter packs. | |||
8226 | void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo, | |||
8227 | SmallVectorImpl<UnexpandedParameterPack> &Unexpanded); | |||
8228 | ||||
8229 | /// Invoked when parsing a template argument followed by an | |||
8230 | /// ellipsis, which creates a pack expansion. | |||
8231 | /// | |||
8232 | /// \param Arg The template argument preceding the ellipsis, which | |||
8233 | /// may already be invalid. | |||
8234 | /// | |||
8235 | /// \param EllipsisLoc The location of the ellipsis. | |||
8236 | ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, | |||
8237 | SourceLocation EllipsisLoc); | |||
8238 | ||||
8239 | /// Invoked when parsing a type followed by an ellipsis, which | |||
8240 | /// creates a pack expansion. | |||
8241 | /// | |||
8242 | /// \param Type The type preceding the ellipsis, which will become | |||
8243 | /// the pattern of the pack expansion. | |||
8244 | /// | |||
8245 | /// \param EllipsisLoc The location of the ellipsis. | |||
8246 | TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc); | |||
8247 | ||||
8248 | /// Construct a pack expansion type from the pattern of the pack | |||
8249 | /// expansion. | |||
8250 | TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern, | |||
8251 | SourceLocation EllipsisLoc, | |||
8252 | Optional<unsigned> NumExpansions); | |||
8253 | ||||
8254 | /// Construct a pack expansion type from the pattern of the pack | |||
8255 | /// expansion. | |||
8256 | QualType CheckPackExpansion(QualType Pattern, | |||
8257 | SourceRange PatternRange, | |||
8258 | SourceLocation EllipsisLoc, | |||
8259 | Optional<unsigned> NumExpansions); | |||
8260 | ||||
8261 | /// Invoked when parsing an expression followed by an ellipsis, which | |||
8262 | /// creates a pack expansion. | |||
8263 | /// | |||
8264 | /// \param Pattern The expression preceding the ellipsis, which will become | |||
8265 | /// the pattern of the pack expansion. | |||
8266 | /// | |||
8267 | /// \param EllipsisLoc The location of the ellipsis. | |||
8268 | ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc); | |||
8269 | ||||
8270 | /// Invoked when parsing an expression followed by an ellipsis, which | |||
8271 | /// creates a pack expansion. | |||
8272 | /// | |||
8273 | /// \param Pattern The expression preceding the ellipsis, which will become | |||
8274 | /// the pattern of the pack expansion. | |||
8275 | /// | |||
8276 | /// \param EllipsisLoc The location of the ellipsis. | |||
8277 | ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, | |||
8278 | Optional<unsigned> NumExpansions); | |||
8279 | ||||
8280 | /// Determine whether we could expand a pack expansion with the | |||
8281 | /// given set of parameter packs into separate arguments by repeatedly | |||
8282 | /// transforming the pattern. | |||
8283 | /// | |||
8284 | /// \param EllipsisLoc The location of the ellipsis that identifies the | |||
8285 | /// pack expansion. | |||
8286 | /// | |||
8287 | /// \param PatternRange The source range that covers the entire pattern of | |||
8288 | /// the pack expansion. | |||
8289 | /// | |||
8290 | /// \param Unexpanded The set of unexpanded parameter packs within the | |||
8291 | /// pattern. | |||
8292 | /// | |||
8293 | /// \param ShouldExpand Will be set to \c true if the transformer should | |||
8294 | /// expand the corresponding pack expansions into separate arguments. When | |||
8295 | /// set, \c NumExpansions must also be set. | |||
8296 | /// | |||
8297 | /// \param RetainExpansion Whether the caller should add an unexpanded | |||
8298 | /// pack expansion after all of the expanded arguments. This is used | |||
8299 | /// when extending explicitly-specified template argument packs per | |||
8300 | /// C++0x [temp.arg.explicit]p9. | |||
8301 | /// | |||
8302 | /// \param NumExpansions The number of separate arguments that will be in | |||
8303 | /// the expanded form of the corresponding pack expansion. This is both an | |||
8304 | /// input and an output parameter, which can be set by the caller if the | |||
8305 | /// number of expansions is known a priori (e.g., due to a prior substitution) | |||
8306 | /// and will be set by the callee when the number of expansions is known. | |||
8307 | /// The callee must set this value when \c ShouldExpand is \c true; it may | |||
8308 | /// set this value in other cases. | |||
8309 | /// | |||
8310 | /// \returns true if an error occurred (e.g., because the parameter packs | |||
8311 | /// are to be instantiated with arguments of different lengths), false | |||
8312 | /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) | |||
8313 | /// must be set. | |||
8314 | bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, | |||
8315 | SourceRange PatternRange, | |||
8316 | ArrayRef<UnexpandedParameterPack> Unexpanded, | |||
8317 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
8318 | bool &ShouldExpand, | |||
8319 | bool &RetainExpansion, | |||
8320 | Optional<unsigned> &NumExpansions); | |||
8321 | ||||
8322 | /// Determine the number of arguments in the given pack expansion | |||
8323 | /// type. | |||
8324 | /// | |||
8325 | /// This routine assumes that the number of arguments in the expansion is | |||
8326 | /// consistent across all of the unexpanded parameter packs in its pattern. | |||
8327 | /// | |||
8328 | /// Returns an empty Optional if the type can't be expanded. | |||
8329 | Optional<unsigned> getNumArgumentsInExpansion(QualType T, | |||
8330 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
8331 | ||||
8332 | /// Determine whether the given declarator contains any unexpanded | |||
8333 | /// parameter packs. | |||
8334 | /// | |||
8335 | /// This routine is used by the parser to disambiguate function declarators | |||
8336 | /// with an ellipsis prior to the ')', e.g., | |||
8337 | /// | |||
8338 | /// \code | |||
8339 | /// void f(T...); | |||
8340 | /// \endcode | |||
8341 | /// | |||
8342 | /// To determine whether we have an (unnamed) function parameter pack or | |||
8343 | /// a variadic function. | |||
8344 | /// | |||
8345 | /// \returns true if the declarator contains any unexpanded parameter packs, | |||
8346 | /// false otherwise. | |||
8347 | bool containsUnexpandedParameterPacks(Declarator &D); | |||
8348 | ||||
8349 | /// Returns the pattern of the pack expansion for a template argument. | |||
8350 | /// | |||
8351 | /// \param OrigLoc The template argument to expand. | |||
8352 | /// | |||
8353 | /// \param Ellipsis Will be set to the location of the ellipsis. | |||
8354 | /// | |||
8355 | /// \param NumExpansions Will be set to the number of expansions that will | |||
8356 | /// be generated from this pack expansion, if known a priori. | |||
8357 | TemplateArgumentLoc getTemplateArgumentPackExpansionPattern( | |||
8358 | TemplateArgumentLoc OrigLoc, | |||
8359 | SourceLocation &Ellipsis, | |||
8360 | Optional<unsigned> &NumExpansions) const; | |||
8361 | ||||
8362 | /// Given a template argument that contains an unexpanded parameter pack, but | |||
8363 | /// which has already been substituted, attempt to determine the number of | |||
8364 | /// elements that will be produced once this argument is fully-expanded. | |||
8365 | /// | |||
8366 | /// This is intended for use when transforming 'sizeof...(Arg)' in order to | |||
8367 | /// avoid actually expanding the pack where possible. | |||
8368 | Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg); | |||
8369 | ||||
8370 | //===--------------------------------------------------------------------===// | |||
8371 | // C++ Template Argument Deduction (C++ [temp.deduct]) | |||
8372 | //===--------------------------------------------------------------------===// | |||
8373 | ||||
8374 | /// Adjust the type \p ArgFunctionType to match the calling convention, | |||
8375 | /// noreturn, and optionally the exception specification of \p FunctionType. | |||
8376 | /// Deduction often wants to ignore these properties when matching function | |||
8377 | /// types. | |||
8378 | QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, | |||
8379 | bool AdjustExceptionSpec = false); | |||
8380 | ||||
8381 | /// Describes the result of template argument deduction. | |||
8382 | /// | |||
8383 | /// The TemplateDeductionResult enumeration describes the result of | |||
8384 | /// template argument deduction, as returned from | |||
8385 | /// DeduceTemplateArguments(). The separate TemplateDeductionInfo | |||
8386 | /// structure provides additional information about the results of | |||
8387 | /// template argument deduction, e.g., the deduced template argument | |||
8388 | /// list (if successful) or the specific template parameters or | |||
8389 | /// deduced arguments that were involved in the failure. | |||
8390 | enum TemplateDeductionResult { | |||
8391 | /// Template argument deduction was successful. | |||
8392 | TDK_Success = 0, | |||
8393 | /// The declaration was invalid; do nothing. | |||
8394 | TDK_Invalid, | |||
8395 | /// Template argument deduction exceeded the maximum template | |||
8396 | /// instantiation depth (which has already been diagnosed). | |||
8397 | TDK_InstantiationDepth, | |||
8398 | /// Template argument deduction did not deduce a value | |||
8399 | /// for every template parameter. | |||
8400 | TDK_Incomplete, | |||
8401 | /// Template argument deduction did not deduce a value for every | |||
8402 | /// expansion of an expanded template parameter pack. | |||
8403 | TDK_IncompletePack, | |||
8404 | /// Template argument deduction produced inconsistent | |||
8405 | /// deduced values for the given template parameter. | |||
8406 | TDK_Inconsistent, | |||
8407 | /// Template argument deduction failed due to inconsistent | |||
8408 | /// cv-qualifiers on a template parameter type that would | |||
8409 | /// otherwise be deduced, e.g., we tried to deduce T in "const T" | |||
8410 | /// but were given a non-const "X". | |||
8411 | TDK_Underqualified, | |||
8412 | /// Substitution of the deduced template argument values | |||
8413 | /// resulted in an error. | |||
8414 | TDK_SubstitutionFailure, | |||
8415 | /// After substituting deduced template arguments, a dependent | |||
8416 | /// parameter type did not match the corresponding argument. | |||
8417 | TDK_DeducedMismatch, | |||
8418 | /// After substituting deduced template arguments, an element of | |||
8419 | /// a dependent parameter type did not match the corresponding element | |||
8420 | /// of the corresponding argument (when deducing from an initializer list). | |||
8421 | TDK_DeducedMismatchNested, | |||
8422 | /// A non-depnedent component of the parameter did not match the | |||
8423 | /// corresponding component of the argument. | |||
8424 | TDK_NonDeducedMismatch, | |||
8425 | /// When performing template argument deduction for a function | |||
8426 | /// template, there were too many call arguments. | |||
8427 | TDK_TooManyArguments, | |||
8428 | /// When performing template argument deduction for a function | |||
8429 | /// template, there were too few call arguments. | |||
8430 | TDK_TooFewArguments, | |||
8431 | /// The explicitly-specified template arguments were not valid | |||
8432 | /// template arguments for the given template. | |||
8433 | TDK_InvalidExplicitArguments, | |||
8434 | /// Checking non-dependent argument conversions failed. | |||
8435 | TDK_NonDependentConversionFailure, | |||
8436 | /// The deduced arguments did not satisfy the constraints associated | |||
8437 | /// with the template. | |||
8438 | TDK_ConstraintsNotSatisfied, | |||
8439 | /// Deduction failed; that's all we know. | |||
8440 | TDK_MiscellaneousDeductionFailure, | |||
8441 | /// CUDA Target attributes do not match. | |||
8442 | TDK_CUDATargetMismatch | |||
8443 | }; | |||
8444 | ||||
8445 | TemplateDeductionResult | |||
8446 | DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, | |||
8447 | const TemplateArgumentList &TemplateArgs, | |||
8448 | sema::TemplateDeductionInfo &Info); | |||
8449 | ||||
8450 | TemplateDeductionResult | |||
8451 | DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, | |||
8452 | const TemplateArgumentList &TemplateArgs, | |||
8453 | sema::TemplateDeductionInfo &Info); | |||
8454 | ||||
8455 | TemplateDeductionResult SubstituteExplicitTemplateArguments( | |||
8456 | FunctionTemplateDecl *FunctionTemplate, | |||
8457 | TemplateArgumentListInfo &ExplicitTemplateArgs, | |||
8458 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, | |||
8459 | SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, | |||
8460 | sema::TemplateDeductionInfo &Info); | |||
8461 | ||||
8462 | /// brief A function argument from which we performed template argument | |||
8463 | // deduction for a call. | |||
8464 | struct OriginalCallArg { | |||
8465 | OriginalCallArg(QualType OriginalParamType, bool DecomposedParam, | |||
8466 | unsigned ArgIdx, QualType OriginalArgType) | |||
8467 | : OriginalParamType(OriginalParamType), | |||
8468 | DecomposedParam(DecomposedParam), ArgIdx(ArgIdx), | |||
8469 | OriginalArgType(OriginalArgType) {} | |||
8470 | ||||
8471 | QualType OriginalParamType; | |||
8472 | bool DecomposedParam; | |||
8473 | unsigned ArgIdx; | |||
8474 | QualType OriginalArgType; | |||
8475 | }; | |||
8476 | ||||
8477 | TemplateDeductionResult FinishTemplateArgumentDeduction( | |||
8478 | FunctionTemplateDecl *FunctionTemplate, | |||
8479 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, | |||
8480 | unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, | |||
8481 | sema::TemplateDeductionInfo &Info, | |||
8482 | SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr, | |||
8483 | bool PartialOverloading = false, | |||
8484 | llvm::function_ref<bool()> CheckNonDependent = []{ return false; }); | |||
8485 | ||||
8486 | TemplateDeductionResult DeduceTemplateArguments( | |||
8487 | FunctionTemplateDecl *FunctionTemplate, | |||
8488 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, | |||
8489 | FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, | |||
8490 | bool PartialOverloading, | |||
8491 | llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent); | |||
8492 | ||||
8493 | TemplateDeductionResult | |||
8494 | DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, | |||
8495 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
8496 | QualType ArgFunctionType, | |||
8497 | FunctionDecl *&Specialization, | |||
8498 | sema::TemplateDeductionInfo &Info, | |||
8499 | bool IsAddressOfFunction = false); | |||
8500 | ||||
8501 | TemplateDeductionResult | |||
8502 | DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, | |||
8503 | QualType ToType, | |||
8504 | CXXConversionDecl *&Specialization, | |||
8505 | sema::TemplateDeductionInfo &Info); | |||
8506 | ||||
8507 | TemplateDeductionResult | |||
8508 | DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, | |||
8509 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
8510 | FunctionDecl *&Specialization, | |||
8511 | sema::TemplateDeductionInfo &Info, | |||
8512 | bool IsAddressOfFunction = false); | |||
8513 | ||||
8514 | /// Substitute Replacement for \p auto in \p TypeWithAuto | |||
8515 | QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement); | |||
8516 | /// Substitute Replacement for auto in TypeWithAuto | |||
8517 | TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, | |||
8518 | QualType Replacement); | |||
8519 | /// Completely replace the \c auto in \p TypeWithAuto by | |||
8520 | /// \p Replacement. This does not retain any \c auto type sugar. | |||
8521 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement); | |||
8522 | TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, | |||
8523 | QualType Replacement); | |||
8524 | ||||
8525 | /// Result type of DeduceAutoType. | |||
8526 | enum DeduceAutoResult { | |||
8527 | DAR_Succeeded, | |||
8528 | DAR_Failed, | |||
8529 | DAR_FailedAlreadyDiagnosed | |||
8530 | }; | |||
8531 | ||||
8532 | DeduceAutoResult | |||
8533 | DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, | |||
8534 | Optional<unsigned> DependentDeductionDepth = None, | |||
8535 | bool IgnoreConstraints = false); | |||
8536 | DeduceAutoResult | |||
8537 | DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result, | |||
8538 | Optional<unsigned> DependentDeductionDepth = None, | |||
8539 | bool IgnoreConstraints = false); | |||
8540 | void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); | |||
8541 | bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, | |||
8542 | bool Diagnose = true); | |||
8543 | ||||
8544 | /// Declare implicit deduction guides for a class template if we've | |||
8545 | /// not already done so. | |||
8546 | void DeclareImplicitDeductionGuides(TemplateDecl *Template, | |||
8547 | SourceLocation Loc); | |||
8548 | ||||
8549 | QualType DeduceTemplateSpecializationFromInitializer( | |||
8550 | TypeSourceInfo *TInfo, const InitializedEntity &Entity, | |||
8551 | const InitializationKind &Kind, MultiExprArg Init); | |||
8552 | ||||
8553 | QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name, | |||
8554 | QualType Type, TypeSourceInfo *TSI, | |||
8555 | SourceRange Range, bool DirectInit, | |||
8556 | Expr *Init); | |||
8557 | ||||
8558 | TypeLoc getReturnTypeLoc(FunctionDecl *FD) const; | |||
8559 | ||||
8560 | bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, | |||
8561 | SourceLocation ReturnLoc, | |||
8562 | Expr *&RetExpr, AutoType *AT); | |||
8563 | ||||
8564 | FunctionTemplateDecl *getMoreSpecializedTemplate( | |||
8565 | FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, | |||
8566 | TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, | |||
8567 | unsigned NumCallArguments2, bool Reversed = false); | |||
8568 | UnresolvedSetIterator | |||
8569 | getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, | |||
8570 | TemplateSpecCandidateSet &FailedCandidates, | |||
8571 | SourceLocation Loc, | |||
8572 | const PartialDiagnostic &NoneDiag, | |||
8573 | const PartialDiagnostic &AmbigDiag, | |||
8574 | const PartialDiagnostic &CandidateDiag, | |||
8575 | bool Complain = true, QualType TargetType = QualType()); | |||
8576 | ||||
8577 | ClassTemplatePartialSpecializationDecl * | |||
8578 | getMoreSpecializedPartialSpecialization( | |||
8579 | ClassTemplatePartialSpecializationDecl *PS1, | |||
8580 | ClassTemplatePartialSpecializationDecl *PS2, | |||
8581 | SourceLocation Loc); | |||
8582 | ||||
8583 | bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, | |||
8584 | sema::TemplateDeductionInfo &Info); | |||
8585 | ||||
8586 | VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization( | |||
8587 | VarTemplatePartialSpecializationDecl *PS1, | |||
8588 | VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); | |||
8589 | ||||
8590 | bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T, | |||
8591 | sema::TemplateDeductionInfo &Info); | |||
8592 | ||||
8593 | bool isTemplateTemplateParameterAtLeastAsSpecializedAs( | |||
8594 | TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc); | |||
8595 | ||||
8596 | void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, | |||
8597 | unsigned Depth, llvm::SmallBitVector &Used); | |||
8598 | ||||
8599 | void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, | |||
8600 | bool OnlyDeduced, | |||
8601 | unsigned Depth, | |||
8602 | llvm::SmallBitVector &Used); | |||
8603 | void MarkDeducedTemplateParameters( | |||
8604 | const FunctionTemplateDecl *FunctionTemplate, | |||
8605 | llvm::SmallBitVector &Deduced) { | |||
8606 | return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced); | |||
8607 | } | |||
8608 | static void MarkDeducedTemplateParameters(ASTContext &Ctx, | |||
8609 | const FunctionTemplateDecl *FunctionTemplate, | |||
8610 | llvm::SmallBitVector &Deduced); | |||
8611 | ||||
8612 | //===--------------------------------------------------------------------===// | |||
8613 | // C++ Template Instantiation | |||
8614 | // | |||
8615 | ||||
8616 | MultiLevelTemplateArgumentList | |||
8617 | getTemplateInstantiationArgs(NamedDecl *D, | |||
8618 | const TemplateArgumentList *Innermost = nullptr, | |||
8619 | bool RelativeToPrimary = false, | |||
8620 | const FunctionDecl *Pattern = nullptr); | |||
8621 | ||||
8622 | /// A context in which code is being synthesized (where a source location | |||
8623 | /// alone is not sufficient to identify the context). This covers template | |||
8624 | /// instantiation and various forms of implicitly-generated functions. | |||
8625 | struct CodeSynthesisContext { | |||
8626 | /// The kind of template instantiation we are performing | |||
8627 | enum SynthesisKind { | |||
8628 | /// We are instantiating a template declaration. The entity is | |||
8629 | /// the declaration we're instantiating (e.g., a CXXRecordDecl). | |||
8630 | TemplateInstantiation, | |||
8631 | ||||
8632 | /// We are instantiating a default argument for a template | |||
8633 | /// parameter. The Entity is the template parameter whose argument is | |||
8634 | /// being instantiated, the Template is the template, and the | |||
8635 | /// TemplateArgs/NumTemplateArguments provide the template arguments as | |||
8636 | /// specified. | |||
8637 | DefaultTemplateArgumentInstantiation, | |||
8638 | ||||
8639 | /// We are instantiating a default argument for a function. | |||
8640 | /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs | |||
8641 | /// provides the template arguments as specified. | |||
8642 | DefaultFunctionArgumentInstantiation, | |||
8643 | ||||
8644 | /// We are substituting explicit template arguments provided for | |||
8645 | /// a function template. The entity is a FunctionTemplateDecl. | |||
8646 | ExplicitTemplateArgumentSubstitution, | |||
8647 | ||||
8648 | /// We are substituting template argument determined as part of | |||
8649 | /// template argument deduction for either a class template | |||
8650 | /// partial specialization or a function template. The | |||
8651 | /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or | |||
8652 | /// a TemplateDecl. | |||
8653 | DeducedTemplateArgumentSubstitution, | |||
8654 | ||||
8655 | /// We are substituting prior template arguments into a new | |||
8656 | /// template parameter. The template parameter itself is either a | |||
8657 | /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. | |||
8658 | PriorTemplateArgumentSubstitution, | |||
8659 | ||||
8660 | /// We are checking the validity of a default template argument that | |||
8661 | /// has been used when naming a template-id. | |||
8662 | DefaultTemplateArgumentChecking, | |||
8663 | ||||
8664 | /// We are computing the exception specification for a defaulted special | |||
8665 | /// member function. | |||
8666 | ExceptionSpecEvaluation, | |||
8667 | ||||
8668 | /// We are instantiating the exception specification for a function | |||
8669 | /// template which was deferred until it was needed. | |||
8670 | ExceptionSpecInstantiation, | |||
8671 | ||||
8672 | /// We are instantiating a requirement of a requires expression. | |||
8673 | RequirementInstantiation, | |||
8674 | ||||
8675 | /// We are checking the satisfaction of a nested requirement of a requires | |||
8676 | /// expression. | |||
8677 | NestedRequirementConstraintsCheck, | |||
8678 | ||||
8679 | /// We are declaring an implicit special member function. | |||
8680 | DeclaringSpecialMember, | |||
8681 | ||||
8682 | /// We are declaring an implicit 'operator==' for a defaulted | |||
8683 | /// 'operator<=>'. | |||
8684 | DeclaringImplicitEqualityComparison, | |||
8685 | ||||
8686 | /// We are defining a synthesized function (such as a defaulted special | |||
8687 | /// member). | |||
8688 | DefiningSynthesizedFunction, | |||
8689 | ||||
8690 | // We are checking the constraints associated with a constrained entity or | |||
8691 | // the constraint expression of a concept. This includes the checks that | |||
8692 | // atomic constraints have the type 'bool' and that they can be constant | |||
8693 | // evaluated. | |||
8694 | ConstraintsCheck, | |||
8695 | ||||
8696 | // We are substituting template arguments into a constraint expression. | |||
8697 | ConstraintSubstitution, | |||
8698 | ||||
8699 | // We are normalizing a constraint expression. | |||
8700 | ConstraintNormalization, | |||
8701 | ||||
8702 | // We are substituting into the parameter mapping of an atomic constraint | |||
8703 | // during normalization. | |||
8704 | ParameterMappingSubstitution, | |||
8705 | ||||
8706 | /// We are rewriting a comparison operator in terms of an operator<=>. | |||
8707 | RewritingOperatorAsSpaceship, | |||
8708 | ||||
8709 | /// We are initializing a structured binding. | |||
8710 | InitializingStructuredBinding, | |||
8711 | ||||
8712 | /// We are marking a class as __dllexport. | |||
8713 | MarkingClassDllexported, | |||
8714 | ||||
8715 | /// Added for Template instantiation observation. | |||
8716 | /// Memoization means we are _not_ instantiating a template because | |||
8717 | /// it is already instantiated (but we entered a context where we | |||
8718 | /// would have had to if it was not already instantiated). | |||
8719 | Memoization | |||
8720 | } Kind; | |||
8721 | ||||
8722 | /// Was the enclosing context a non-instantiation SFINAE context? | |||
8723 | bool SavedInNonInstantiationSFINAEContext; | |||
8724 | ||||
8725 | /// The point of instantiation or synthesis within the source code. | |||
8726 | SourceLocation PointOfInstantiation; | |||
8727 | ||||
8728 | /// The entity that is being synthesized. | |||
8729 | Decl *Entity; | |||
8730 | ||||
8731 | /// The template (or partial specialization) in which we are | |||
8732 | /// performing the instantiation, for substitutions of prior template | |||
8733 | /// arguments. | |||
8734 | NamedDecl *Template; | |||
8735 | ||||
8736 | /// The list of template arguments we are substituting, if they | |||
8737 | /// are not part of the entity. | |||
8738 | const TemplateArgument *TemplateArgs; | |||
8739 | ||||
8740 | // FIXME: Wrap this union around more members, or perhaps store the | |||
8741 | // kind-specific members in the RAII object owning the context. | |||
8742 | union { | |||
8743 | /// The number of template arguments in TemplateArgs. | |||
8744 | unsigned NumTemplateArgs; | |||
8745 | ||||
8746 | /// The special member being declared or defined. | |||
8747 | CXXSpecialMember SpecialMember; | |||
8748 | }; | |||
8749 | ||||
8750 | ArrayRef<TemplateArgument> template_arguments() const { | |||
8751 | assert(Kind != DeclaringSpecialMember)((void)0); | |||
8752 | return {TemplateArgs, NumTemplateArgs}; | |||
8753 | } | |||
8754 | ||||
8755 | /// The template deduction info object associated with the | |||
8756 | /// substitution or checking of explicit or deduced template arguments. | |||
8757 | sema::TemplateDeductionInfo *DeductionInfo; | |||
8758 | ||||
8759 | /// The source range that covers the construct that cause | |||
8760 | /// the instantiation, e.g., the template-id that causes a class | |||
8761 | /// template instantiation. | |||
8762 | SourceRange InstantiationRange; | |||
8763 | ||||
8764 | CodeSynthesisContext() | |||
8765 | : Kind(TemplateInstantiation), | |||
8766 | SavedInNonInstantiationSFINAEContext(false), Entity(nullptr), | |||
8767 | Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0), | |||
8768 | DeductionInfo(nullptr) {} | |||
8769 | ||||
8770 | /// Determines whether this template is an actual instantiation | |||
8771 | /// that should be counted toward the maximum instantiation depth. | |||
8772 | bool isInstantiationRecord() const; | |||
8773 | }; | |||
8774 | ||||
8775 | /// List of active code synthesis contexts. | |||
8776 | /// | |||
8777 | /// This vector is treated as a stack. As synthesis of one entity requires | |||
8778 | /// synthesis of another, additional contexts are pushed onto the stack. | |||
8779 | SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts; | |||
8780 | ||||
8781 | /// Specializations whose definitions are currently being instantiated. | |||
8782 | llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations; | |||
8783 | ||||
8784 | /// Non-dependent types used in templates that have already been instantiated | |||
8785 | /// by some template instantiation. | |||
8786 | llvm::DenseSet<QualType> InstantiatedNonDependentTypes; | |||
8787 | ||||
8788 | /// Extra modules inspected when performing a lookup during a template | |||
8789 | /// instantiation. Computed lazily. | |||
8790 | SmallVector<Module*, 16> CodeSynthesisContextLookupModules; | |||
8791 | ||||
8792 | /// Cache of additional modules that should be used for name lookup | |||
8793 | /// within the current template instantiation. Computed lazily; use | |||
8794 | /// getLookupModules() to get a complete set. | |||
8795 | llvm::DenseSet<Module*> LookupModulesCache; | |||
8796 | ||||
8797 | /// Get the set of additional modules that should be checked during | |||
8798 | /// name lookup. A module and its imports become visible when instanting a | |||
8799 | /// template defined within it. | |||
8800 | llvm::DenseSet<Module*> &getLookupModules(); | |||
8801 | ||||
8802 | /// Map from the most recent declaration of a namespace to the most | |||
8803 | /// recent visible declaration of that namespace. | |||
8804 | llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache; | |||
8805 | ||||
8806 | /// Whether we are in a SFINAE context that is not associated with | |||
8807 | /// template instantiation. | |||
8808 | /// | |||
8809 | /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside | |||
8810 | /// of a template instantiation or template argument deduction. | |||
8811 | bool InNonInstantiationSFINAEContext; | |||
8812 | ||||
8813 | /// The number of \p CodeSynthesisContexts that are not template | |||
8814 | /// instantiations and, therefore, should not be counted as part of the | |||
8815 | /// instantiation depth. | |||
8816 | /// | |||
8817 | /// When the instantiation depth reaches the user-configurable limit | |||
8818 | /// \p LangOptions::InstantiationDepth we will abort instantiation. | |||
8819 | // FIXME: Should we have a similar limit for other forms of synthesis? | |||
8820 | unsigned NonInstantiationEntries; | |||
8821 | ||||
8822 | /// The depth of the context stack at the point when the most recent | |||
8823 | /// error or warning was produced. | |||
8824 | /// | |||
8825 | /// This value is used to suppress printing of redundant context stacks | |||
8826 | /// when there are multiple errors or warnings in the same instantiation. | |||
8827 | // FIXME: Does this belong in Sema? It's tough to implement it anywhere else. | |||
8828 | unsigned LastEmittedCodeSynthesisContextDepth = 0; | |||
8829 | ||||
8830 | /// The template instantiation callbacks to trace or track | |||
8831 | /// instantiations (objects can be chained). | |||
8832 | /// | |||
8833 | /// This callbacks is used to print, trace or track template | |||
8834 | /// instantiations as they are being constructed. | |||
8835 | std::vector<std::unique_ptr<TemplateInstantiationCallback>> | |||
8836 | TemplateInstCallbacks; | |||
8837 | ||||
8838 | /// The current index into pack expansion arguments that will be | |||
8839 | /// used for substitution of parameter packs. | |||
8840 | /// | |||
8841 | /// The pack expansion index will be -1 to indicate that parameter packs | |||
8842 | /// should be instantiated as themselves. Otherwise, the index specifies | |||
8843 | /// which argument within the parameter pack will be used for substitution. | |||
8844 | int ArgumentPackSubstitutionIndex; | |||
8845 | ||||
8846 | /// RAII object used to change the argument pack substitution index | |||
8847 | /// within a \c Sema object. | |||
8848 | /// | |||
8849 | /// See \c ArgumentPackSubstitutionIndex for more information. | |||
8850 | class ArgumentPackSubstitutionIndexRAII { | |||
8851 | Sema &Self; | |||
8852 | int OldSubstitutionIndex; | |||
8853 | ||||
8854 | public: | |||
8855 | ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex) | |||
8856 | : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) { | |||
8857 | Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex; | |||
8858 | } | |||
8859 | ||||
8860 | ~ArgumentPackSubstitutionIndexRAII() { | |||
8861 | Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex; | |||
8862 | } | |||
8863 | }; | |||
8864 | ||||
8865 | friend class ArgumentPackSubstitutionRAII; | |||
8866 | ||||
8867 | /// For each declaration that involved template argument deduction, the | |||
8868 | /// set of diagnostics that were suppressed during that template argument | |||
8869 | /// deduction. | |||
8870 | /// | |||
8871 | /// FIXME: Serialize this structure to the AST file. | |||
8872 | typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> > | |||
8873 | SuppressedDiagnosticsMap; | |||
8874 | SuppressedDiagnosticsMap SuppressedDiagnostics; | |||
8875 | ||||
8876 | /// A stack object to be created when performing template | |||
8877 | /// instantiation. | |||
8878 | /// | |||
8879 | /// Construction of an object of type \c InstantiatingTemplate | |||
8880 | /// pushes the current instantiation onto the stack of active | |||
8881 | /// instantiations. If the size of this stack exceeds the maximum | |||
8882 | /// number of recursive template instantiations, construction | |||
8883 | /// produces an error and evaluates true. | |||
8884 | /// | |||
8885 | /// Destruction of this object will pop the named instantiation off | |||
8886 | /// the stack. | |||
8887 | struct InstantiatingTemplate { | |||
8888 | /// Note that we are instantiating a class template, | |||
8889 | /// function template, variable template, alias template, | |||
8890 | /// or a member thereof. | |||
8891 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8892 | Decl *Entity, | |||
8893 | SourceRange InstantiationRange = SourceRange()); | |||
8894 | ||||
8895 | struct ExceptionSpecification {}; | |||
8896 | /// Note that we are instantiating an exception specification | |||
8897 | /// of a function template. | |||
8898 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8899 | FunctionDecl *Entity, ExceptionSpecification, | |||
8900 | SourceRange InstantiationRange = SourceRange()); | |||
8901 | ||||
8902 | /// Note that we are instantiating a default argument in a | |||
8903 | /// template-id. | |||
8904 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8905 | TemplateParameter Param, TemplateDecl *Template, | |||
8906 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8907 | SourceRange InstantiationRange = SourceRange()); | |||
8908 | ||||
8909 | /// Note that we are substituting either explicitly-specified or | |||
8910 | /// deduced template arguments during function template argument deduction. | |||
8911 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8912 | FunctionTemplateDecl *FunctionTemplate, | |||
8913 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8914 | CodeSynthesisContext::SynthesisKind Kind, | |||
8915 | sema::TemplateDeductionInfo &DeductionInfo, | |||
8916 | SourceRange InstantiationRange = SourceRange()); | |||
8917 | ||||
8918 | /// Note that we are instantiating as part of template | |||
8919 | /// argument deduction for a class template declaration. | |||
8920 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8921 | TemplateDecl *Template, | |||
8922 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8923 | sema::TemplateDeductionInfo &DeductionInfo, | |||
8924 | SourceRange InstantiationRange = SourceRange()); | |||
8925 | ||||
8926 | /// Note that we are instantiating as part of template | |||
8927 | /// argument deduction for a class template partial | |||
8928 | /// specialization. | |||
8929 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8930 | ClassTemplatePartialSpecializationDecl *PartialSpec, | |||
8931 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8932 | sema::TemplateDeductionInfo &DeductionInfo, | |||
8933 | SourceRange InstantiationRange = SourceRange()); | |||
8934 | ||||
8935 | /// Note that we are instantiating as part of template | |||
8936 | /// argument deduction for a variable template partial | |||
8937 | /// specialization. | |||
8938 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8939 | VarTemplatePartialSpecializationDecl *PartialSpec, | |||
8940 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8941 | sema::TemplateDeductionInfo &DeductionInfo, | |||
8942 | SourceRange InstantiationRange = SourceRange()); | |||
8943 | ||||
8944 | /// Note that we are instantiating a default argument for a function | |||
8945 | /// parameter. | |||
8946 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8947 | ParmVarDecl *Param, | |||
8948 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8949 | SourceRange InstantiationRange = SourceRange()); | |||
8950 | ||||
8951 | /// Note that we are substituting prior template arguments into a | |||
8952 | /// non-type parameter. | |||
8953 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8954 | NamedDecl *Template, | |||
8955 | NonTypeTemplateParmDecl *Param, | |||
8956 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8957 | SourceRange InstantiationRange); | |||
8958 | ||||
8959 | /// Note that we are substituting prior template arguments into a | |||
8960 | /// template template parameter. | |||
8961 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8962 | NamedDecl *Template, | |||
8963 | TemplateTemplateParmDecl *Param, | |||
8964 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8965 | SourceRange InstantiationRange); | |||
8966 | ||||
8967 | /// Note that we are checking the default template argument | |||
8968 | /// against the template parameter for a given template-id. | |||
8969 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8970 | TemplateDecl *Template, | |||
8971 | NamedDecl *Param, | |||
8972 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8973 | SourceRange InstantiationRange); | |||
8974 | ||||
8975 | struct ConstraintsCheck {}; | |||
8976 | /// \brief Note that we are checking the constraints associated with some | |||
8977 | /// constrained entity (a concept declaration or a template with associated | |||
8978 | /// constraints). | |||
8979 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8980 | ConstraintsCheck, NamedDecl *Template, | |||
8981 | ArrayRef<TemplateArgument> TemplateArgs, | |||
8982 | SourceRange InstantiationRange); | |||
8983 | ||||
8984 | struct ConstraintSubstitution {}; | |||
8985 | /// \brief Note that we are checking a constraint expression associated | |||
8986 | /// with a template declaration or as part of the satisfaction check of a | |||
8987 | /// concept. | |||
8988 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8989 | ConstraintSubstitution, NamedDecl *Template, | |||
8990 | sema::TemplateDeductionInfo &DeductionInfo, | |||
8991 | SourceRange InstantiationRange); | |||
8992 | ||||
8993 | struct ConstraintNormalization {}; | |||
8994 | /// \brief Note that we are normalizing a constraint expression. | |||
8995 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
8996 | ConstraintNormalization, NamedDecl *Template, | |||
8997 | SourceRange InstantiationRange); | |||
8998 | ||||
8999 | struct ParameterMappingSubstitution {}; | |||
9000 | /// \brief Note that we are subtituting into the parameter mapping of an | |||
9001 | /// atomic constraint during constraint normalization. | |||
9002 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
9003 | ParameterMappingSubstitution, NamedDecl *Template, | |||
9004 | SourceRange InstantiationRange); | |||
9005 | ||||
9006 | /// \brief Note that we are substituting template arguments into a part of | |||
9007 | /// a requirement of a requires expression. | |||
9008 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
9009 | concepts::Requirement *Req, | |||
9010 | sema::TemplateDeductionInfo &DeductionInfo, | |||
9011 | SourceRange InstantiationRange = SourceRange()); | |||
9012 | ||||
9013 | /// \brief Note that we are checking the satisfaction of the constraint | |||
9014 | /// expression inside of a nested requirement. | |||
9015 | InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, | |||
9016 | concepts::NestedRequirement *Req, ConstraintsCheck, | |||
9017 | SourceRange InstantiationRange = SourceRange()); | |||
9018 | ||||
9019 | /// Note that we have finished instantiating this template. | |||
9020 | void Clear(); | |||
9021 | ||||
9022 | ~InstantiatingTemplate() { Clear(); } | |||
9023 | ||||
9024 | /// Determines whether we have exceeded the maximum | |||
9025 | /// recursive template instantiations. | |||
9026 | bool isInvalid() const { return Invalid; } | |||
9027 | ||||
9028 | /// Determine whether we are already instantiating this | |||
9029 | /// specialization in some surrounding active instantiation. | |||
9030 | bool isAlreadyInstantiating() const { return AlreadyInstantiating; } | |||
9031 | ||||
9032 | private: | |||
9033 | Sema &SemaRef; | |||
9034 | bool Invalid; | |||
9035 | bool AlreadyInstantiating; | |||
9036 | bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, | |||
9037 | SourceRange InstantiationRange); | |||
9038 | ||||
9039 | InstantiatingTemplate( | |||
9040 | Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind, | |||
9041 | SourceLocation PointOfInstantiation, SourceRange InstantiationRange, | |||
9042 | Decl *Entity, NamedDecl *Template = nullptr, | |||
9043 | ArrayRef<TemplateArgument> TemplateArgs = None, | |||
9044 | sema::TemplateDeductionInfo *DeductionInfo = nullptr); | |||
9045 | ||||
9046 | InstantiatingTemplate(const InstantiatingTemplate&) = delete; | |||
9047 | ||||
9048 | InstantiatingTemplate& | |||
9049 | operator=(const InstantiatingTemplate&) = delete; | |||
9050 | }; | |||
9051 | ||||
9052 | void pushCodeSynthesisContext(CodeSynthesisContext Ctx); | |||
9053 | void popCodeSynthesisContext(); | |||
9054 | ||||
9055 | /// Determine whether we are currently performing template instantiation. | |||
9056 | bool inTemplateInstantiation() const { | |||
9057 | return CodeSynthesisContexts.size() > NonInstantiationEntries; | |||
9058 | } | |||
9059 | ||||
9060 | void PrintContextStack() { | |||
9061 | if (!CodeSynthesisContexts.empty() && | |||
9062 | CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) { | |||
9063 | PrintInstantiationStack(); | |||
9064 | LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size(); | |||
9065 | } | |||
9066 | if (PragmaAttributeCurrentTargetDecl) | |||
9067 | PrintPragmaAttributeInstantiationPoint(); | |||
9068 | } | |||
9069 | void PrintInstantiationStack(); | |||
9070 | ||||
9071 | void PrintPragmaAttributeInstantiationPoint(); | |||
9072 | ||||
9073 | /// Determines whether we are currently in a context where | |||
9074 | /// template argument substitution failures are not considered | |||
9075 | /// errors. | |||
9076 | /// | |||
9077 | /// \returns An empty \c Optional if we're not in a SFINAE context. | |||
9078 | /// Otherwise, contains a pointer that, if non-NULL, contains the nearest | |||
9079 | /// template-deduction context object, which can be used to capture | |||
9080 | /// diagnostics that will be suppressed. | |||
9081 | Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const; | |||
9082 | ||||
9083 | /// Determines whether we are currently in a context that | |||
9084 | /// is not evaluated as per C++ [expr] p5. | |||
9085 | bool isUnevaluatedContext() const { | |||
9086 | assert(!ExprEvalContexts.empty() &&((void)0) | |||
9087 | "Must be in an expression evaluation context")((void)0); | |||
9088 | return ExprEvalContexts.back().isUnevaluated(); | |||
9089 | } | |||
9090 | ||||
9091 | /// RAII class used to determine whether SFINAE has | |||
9092 | /// trapped any errors that occur during template argument | |||
9093 | /// deduction. | |||
9094 | class SFINAETrap { | |||
9095 | Sema &SemaRef; | |||
9096 | unsigned PrevSFINAEErrors; | |||
9097 | bool PrevInNonInstantiationSFINAEContext; | |||
9098 | bool PrevAccessCheckingSFINAE; | |||
9099 | bool PrevLastDiagnosticIgnored; | |||
9100 | ||||
9101 | public: | |||
9102 | explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false) | |||
9103 | : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors), | |||
9104 | PrevInNonInstantiationSFINAEContext( | |||
9105 | SemaRef.InNonInstantiationSFINAEContext), | |||
9106 | PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE), | |||
9107 | PrevLastDiagnosticIgnored( | |||
9108 | SemaRef.getDiagnostics().isLastDiagnosticIgnored()) | |||
9109 | { | |||
9110 | if (!SemaRef.isSFINAEContext()) | |||
9111 | SemaRef.InNonInstantiationSFINAEContext = true; | |||
9112 | SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE; | |||
9113 | } | |||
9114 | ||||
9115 | ~SFINAETrap() { | |||
9116 | SemaRef.NumSFINAEErrors = PrevSFINAEErrors; | |||
9117 | SemaRef.InNonInstantiationSFINAEContext | |||
9118 | = PrevInNonInstantiationSFINAEContext; | |||
9119 | SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE; | |||
9120 | SemaRef.getDiagnostics().setLastDiagnosticIgnored( | |||
9121 | PrevLastDiagnosticIgnored); | |||
9122 | } | |||
9123 | ||||
9124 | /// Determine whether any SFINAE errors have been trapped. | |||
9125 | bool hasErrorOccurred() const { | |||
9126 | return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; | |||
9127 | } | |||
9128 | }; | |||
9129 | ||||
9130 | /// RAII class used to indicate that we are performing provisional | |||
9131 | /// semantic analysis to determine the validity of a construct, so | |||
9132 | /// typo-correction and diagnostics in the immediate context (not within | |||
9133 | /// implicitly-instantiated templates) should be suppressed. | |||
9134 | class TentativeAnalysisScope { | |||
9135 | Sema &SemaRef; | |||
9136 | // FIXME: Using a SFINAETrap for this is a hack. | |||
9137 | SFINAETrap Trap; | |||
9138 | bool PrevDisableTypoCorrection; | |||
9139 | public: | |||
9140 | explicit TentativeAnalysisScope(Sema &SemaRef) | |||
9141 | : SemaRef(SemaRef), Trap(SemaRef, true), | |||
9142 | PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) { | |||
9143 | SemaRef.DisableTypoCorrection = true; | |||
9144 | } | |||
9145 | ~TentativeAnalysisScope() { | |||
9146 | SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection; | |||
9147 | } | |||
9148 | }; | |||
9149 | ||||
9150 | /// The current instantiation scope used to store local | |||
9151 | /// variables. | |||
9152 | LocalInstantiationScope *CurrentInstantiationScope; | |||
9153 | ||||
9154 | /// Tracks whether we are in a context where typo correction is | |||
9155 | /// disabled. | |||
9156 | bool DisableTypoCorrection; | |||
9157 | ||||
9158 | /// The number of typos corrected by CorrectTypo. | |||
9159 | unsigned TyposCorrected; | |||
9160 | ||||
9161 | typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet; | |||
9162 | typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations; | |||
9163 | ||||
9164 | /// A cache containing identifiers for which typo correction failed and | |||
9165 | /// their locations, so that repeated attempts to correct an identifier in a | |||
9166 | /// given location are ignored if typo correction already failed for it. | |||
9167 | IdentifierSourceLocations TypoCorrectionFailures; | |||
9168 | ||||
9169 | /// Worker object for performing CFG-based warnings. | |||
9170 | sema::AnalysisBasedWarnings AnalysisWarnings; | |||
9171 | threadSafety::BeforeSet *ThreadSafetyDeclCache; | |||
9172 | ||||
9173 | /// An entity for which implicit template instantiation is required. | |||
9174 | /// | |||
9175 | /// The source location associated with the declaration is the first place in | |||
9176 | /// the source code where the declaration was "used". It is not necessarily | |||
9177 | /// the point of instantiation (which will be either before or after the | |||
9178 | /// namespace-scope declaration that triggered this implicit instantiation), | |||
9179 | /// However, it is the location that diagnostics should generally refer to, | |||
9180 | /// because users will need to know what code triggered the instantiation. | |||
9181 | typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation; | |||
9182 | ||||
9183 | /// The queue of implicit template instantiations that are required | |||
9184 | /// but have not yet been performed. | |||
9185 | std::deque<PendingImplicitInstantiation> PendingInstantiations; | |||
9186 | ||||
9187 | /// Queue of implicit template instantiations that cannot be performed | |||
9188 | /// eagerly. | |||
9189 | SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations; | |||
9190 | ||||
9191 | class GlobalEagerInstantiationScope { | |||
9192 | public: | |||
9193 | GlobalEagerInstantiationScope(Sema &S, bool Enabled) | |||
9194 | : S(S), Enabled(Enabled) { | |||
9195 | if (!Enabled) return; | |||
9196 | ||||
9197 | SavedPendingInstantiations.swap(S.PendingInstantiations); | |||
9198 | SavedVTableUses.swap(S.VTableUses); | |||
9199 | } | |||
9200 | ||||
9201 | void perform() { | |||
9202 | if (Enabled) { | |||
9203 | S.DefineUsedVTables(); | |||
9204 | S.PerformPendingInstantiations(); | |||
9205 | } | |||
9206 | } | |||
9207 | ||||
9208 | ~GlobalEagerInstantiationScope() { | |||
9209 | if (!Enabled) return; | |||
9210 | ||||
9211 | // Restore the set of pending vtables. | |||
9212 | assert(S.VTableUses.empty() &&((void)0) | |||
9213 | "VTableUses should be empty before it is discarded.")((void)0); | |||
9214 | S.VTableUses.swap(SavedVTableUses); | |||
9215 | ||||
9216 | // Restore the set of pending implicit instantiations. | |||
9217 | if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) { | |||
9218 | assert(S.PendingInstantiations.empty() &&((void)0) | |||
9219 | "PendingInstantiations should be empty before it is discarded.")((void)0); | |||
9220 | S.PendingInstantiations.swap(SavedPendingInstantiations); | |||
9221 | } else { | |||
9222 | // Template instantiations in the PCH may be delayed until the TU. | |||
9223 | S.PendingInstantiations.swap(SavedPendingInstantiations); | |||
9224 | S.PendingInstantiations.insert(S.PendingInstantiations.end(), | |||
9225 | SavedPendingInstantiations.begin(), | |||
9226 | SavedPendingInstantiations.end()); | |||
9227 | } | |||
9228 | } | |||
9229 | ||||
9230 | private: | |||
9231 | Sema &S; | |||
9232 | SmallVector<VTableUse, 16> SavedVTableUses; | |||
9233 | std::deque<PendingImplicitInstantiation> SavedPendingInstantiations; | |||
9234 | bool Enabled; | |||
9235 | }; | |||
9236 | ||||
9237 | /// The queue of implicit template instantiations that are required | |||
9238 | /// and must be performed within the current local scope. | |||
9239 | /// | |||
9240 | /// This queue is only used for member functions of local classes in | |||
9241 | /// templates, which must be instantiated in the same scope as their | |||
9242 | /// enclosing function, so that they can reference function-local | |||
9243 | /// types, static variables, enumerators, etc. | |||
9244 | std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations; | |||
9245 | ||||
9246 | class LocalEagerInstantiationScope { | |||
9247 | public: | |||
9248 | LocalEagerInstantiationScope(Sema &S) : S(S) { | |||
9249 | SavedPendingLocalImplicitInstantiations.swap( | |||
9250 | S.PendingLocalImplicitInstantiations); | |||
9251 | } | |||
9252 | ||||
9253 | void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); } | |||
9254 | ||||
9255 | ~LocalEagerInstantiationScope() { | |||
9256 | assert(S.PendingLocalImplicitInstantiations.empty() &&((void)0) | |||
9257 | "there shouldn't be any pending local implicit instantiations")((void)0); | |||
9258 | SavedPendingLocalImplicitInstantiations.swap( | |||
9259 | S.PendingLocalImplicitInstantiations); | |||
9260 | } | |||
9261 | ||||
9262 | private: | |||
9263 | Sema &S; | |||
9264 | std::deque<PendingImplicitInstantiation> | |||
9265 | SavedPendingLocalImplicitInstantiations; | |||
9266 | }; | |||
9267 | ||||
9268 | /// A helper class for building up ExtParameterInfos. | |||
9269 | class ExtParameterInfoBuilder { | |||
9270 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos; | |||
9271 | bool HasInteresting = false; | |||
9272 | ||||
9273 | public: | |||
9274 | /// Set the ExtParameterInfo for the parameter at the given index, | |||
9275 | /// | |||
9276 | void set(unsigned index, FunctionProtoType::ExtParameterInfo info) { | |||
9277 | assert(Infos.size() <= index)((void)0); | |||
9278 | Infos.resize(index); | |||
9279 | Infos.push_back(info); | |||
9280 | ||||
9281 | if (!HasInteresting) | |||
9282 | HasInteresting = (info != FunctionProtoType::ExtParameterInfo()); | |||
9283 | } | |||
9284 | ||||
9285 | /// Return a pointer (suitable for setting in an ExtProtoInfo) to the | |||
9286 | /// ExtParameterInfo array we've built up. | |||
9287 | const FunctionProtoType::ExtParameterInfo * | |||
9288 | getPointerOrNull(unsigned numParams) { | |||
9289 | if (!HasInteresting) return nullptr; | |||
9290 | Infos.resize(numParams); | |||
9291 | return Infos.data(); | |||
9292 | } | |||
9293 | }; | |||
9294 | ||||
9295 | void PerformPendingInstantiations(bool LocalOnly = false); | |||
9296 | ||||
9297 | TypeSourceInfo *SubstType(TypeSourceInfo *T, | |||
9298 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9299 | SourceLocation Loc, DeclarationName Entity, | |||
9300 | bool AllowDeducedTST = false); | |||
9301 | ||||
9302 | QualType SubstType(QualType T, | |||
9303 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9304 | SourceLocation Loc, DeclarationName Entity); | |||
9305 | ||||
9306 | TypeSourceInfo *SubstType(TypeLoc TL, | |||
9307 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9308 | SourceLocation Loc, DeclarationName Entity); | |||
9309 | ||||
9310 | TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T, | |||
9311 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9312 | SourceLocation Loc, | |||
9313 | DeclarationName Entity, | |||
9314 | CXXRecordDecl *ThisContext, | |||
9315 | Qualifiers ThisTypeQuals); | |||
9316 | void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto, | |||
9317 | const MultiLevelTemplateArgumentList &Args); | |||
9318 | bool SubstExceptionSpec(SourceLocation Loc, | |||
9319 | FunctionProtoType::ExceptionSpecInfo &ESI, | |||
9320 | SmallVectorImpl<QualType> &ExceptionStorage, | |||
9321 | const MultiLevelTemplateArgumentList &Args); | |||
9322 | ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D, | |||
9323 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9324 | int indexAdjustment, | |||
9325 | Optional<unsigned> NumExpansions, | |||
9326 | bool ExpectParameterPack); | |||
9327 | bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, | |||
9328 | const FunctionProtoType::ExtParameterInfo *ExtParamInfos, | |||
9329 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9330 | SmallVectorImpl<QualType> &ParamTypes, | |||
9331 | SmallVectorImpl<ParmVarDecl *> *OutParams, | |||
9332 | ExtParameterInfoBuilder &ParamInfos); | |||
9333 | ExprResult SubstExpr(Expr *E, | |||
9334 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9335 | ||||
9336 | /// Substitute the given template arguments into a list of | |||
9337 | /// expressions, expanding pack expansions if required. | |||
9338 | /// | |||
9339 | /// \param Exprs The list of expressions to substitute into. | |||
9340 | /// | |||
9341 | /// \param IsCall Whether this is some form of call, in which case | |||
9342 | /// default arguments will be dropped. | |||
9343 | /// | |||
9344 | /// \param TemplateArgs The set of template arguments to substitute. | |||
9345 | /// | |||
9346 | /// \param Outputs Will receive all of the substituted arguments. | |||
9347 | /// | |||
9348 | /// \returns true if an error occurred, false otherwise. | |||
9349 | bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall, | |||
9350 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9351 | SmallVectorImpl<Expr *> &Outputs); | |||
9352 | ||||
9353 | StmtResult SubstStmt(Stmt *S, | |||
9354 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9355 | ||||
9356 | TemplateParameterList * | |||
9357 | SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, | |||
9358 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9359 | ||||
9360 | bool | |||
9361 | SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args, | |||
9362 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9363 | TemplateArgumentListInfo &Outputs); | |||
9364 | ||||
9365 | ||||
9366 | Decl *SubstDecl(Decl *D, DeclContext *Owner, | |||
9367 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9368 | ||||
9369 | /// Substitute the name and return type of a defaulted 'operator<=>' to form | |||
9370 | /// an implicit 'operator=='. | |||
9371 | FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, | |||
9372 | FunctionDecl *Spaceship); | |||
9373 | ||||
9374 | ExprResult SubstInitializer(Expr *E, | |||
9375 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9376 | bool CXXDirectInit); | |||
9377 | ||||
9378 | bool | |||
9379 | SubstBaseSpecifiers(CXXRecordDecl *Instantiation, | |||
9380 | CXXRecordDecl *Pattern, | |||
9381 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9382 | ||||
9383 | bool | |||
9384 | InstantiateClass(SourceLocation PointOfInstantiation, | |||
9385 | CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, | |||
9386 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9387 | TemplateSpecializationKind TSK, | |||
9388 | bool Complain = true); | |||
9389 | ||||
9390 | bool InstantiateEnum(SourceLocation PointOfInstantiation, | |||
9391 | EnumDecl *Instantiation, EnumDecl *Pattern, | |||
9392 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9393 | TemplateSpecializationKind TSK); | |||
9394 | ||||
9395 | bool InstantiateInClassInitializer( | |||
9396 | SourceLocation PointOfInstantiation, FieldDecl *Instantiation, | |||
9397 | FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9398 | ||||
9399 | struct LateInstantiatedAttribute { | |||
9400 | const Attr *TmplAttr; | |||
9401 | LocalInstantiationScope *Scope; | |||
9402 | Decl *NewDecl; | |||
9403 | ||||
9404 | LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S, | |||
9405 | Decl *D) | |||
9406 | : TmplAttr(A), Scope(S), NewDecl(D) | |||
9407 | { } | |||
9408 | }; | |||
9409 | typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec; | |||
9410 | ||||
9411 | void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9412 | const Decl *Pattern, Decl *Inst, | |||
9413 | LateInstantiatedAttrVec *LateAttrs = nullptr, | |||
9414 | LocalInstantiationScope *OuterMostScope = nullptr); | |||
9415 | ||||
9416 | void | |||
9417 | InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9418 | const Decl *Pattern, Decl *Inst, | |||
9419 | LateInstantiatedAttrVec *LateAttrs = nullptr, | |||
9420 | LocalInstantiationScope *OuterMostScope = nullptr); | |||
9421 | ||||
9422 | void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor); | |||
9423 | ||||
9424 | bool usesPartialOrExplicitSpecialization( | |||
9425 | SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec); | |||
9426 | ||||
9427 | bool | |||
9428 | InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, | |||
9429 | ClassTemplateSpecializationDecl *ClassTemplateSpec, | |||
9430 | TemplateSpecializationKind TSK, | |||
9431 | bool Complain = true); | |||
9432 | ||||
9433 | void InstantiateClassMembers(SourceLocation PointOfInstantiation, | |||
9434 | CXXRecordDecl *Instantiation, | |||
9435 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9436 | TemplateSpecializationKind TSK); | |||
9437 | ||||
9438 | void InstantiateClassTemplateSpecializationMembers( | |||
9439 | SourceLocation PointOfInstantiation, | |||
9440 | ClassTemplateSpecializationDecl *ClassTemplateSpec, | |||
9441 | TemplateSpecializationKind TSK); | |||
9442 | ||||
9443 | NestedNameSpecifierLoc | |||
9444 | SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, | |||
9445 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9446 | ||||
9447 | DeclarationNameInfo | |||
9448 | SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, | |||
9449 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9450 | TemplateName | |||
9451 | SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name, | |||
9452 | SourceLocation Loc, | |||
9453 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9454 | bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs, | |||
9455 | TemplateArgumentListInfo &Result, | |||
9456 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9457 | ||||
9458 | bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, | |||
9459 | ParmVarDecl *Param); | |||
9460 | void InstantiateExceptionSpec(SourceLocation PointOfInstantiation, | |||
9461 | FunctionDecl *Function); | |||
9462 | bool CheckInstantiatedFunctionTemplateConstraints( | |||
9463 | SourceLocation PointOfInstantiation, FunctionDecl *Decl, | |||
9464 | ArrayRef<TemplateArgument> TemplateArgs, | |||
9465 | ConstraintSatisfaction &Satisfaction); | |||
9466 | FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, | |||
9467 | const TemplateArgumentList *Args, | |||
9468 | SourceLocation Loc); | |||
9469 | void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, | |||
9470 | FunctionDecl *Function, | |||
9471 | bool Recursive = false, | |||
9472 | bool DefinitionRequired = false, | |||
9473 | bool AtEndOfTU = false); | |||
9474 | VarTemplateSpecializationDecl *BuildVarTemplateInstantiation( | |||
9475 | VarTemplateDecl *VarTemplate, VarDecl *FromVar, | |||
9476 | const TemplateArgumentList &TemplateArgList, | |||
9477 | const TemplateArgumentListInfo &TemplateArgsInfo, | |||
9478 | SmallVectorImpl<TemplateArgument> &Converted, | |||
9479 | SourceLocation PointOfInstantiation, | |||
9480 | LateInstantiatedAttrVec *LateAttrs = nullptr, | |||
9481 | LocalInstantiationScope *StartingScope = nullptr); | |||
9482 | VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl( | |||
9483 | VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, | |||
9484 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9485 | void | |||
9486 | BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar, | |||
9487 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9488 | LateInstantiatedAttrVec *LateAttrs, | |||
9489 | DeclContext *Owner, | |||
9490 | LocalInstantiationScope *StartingScope, | |||
9491 | bool InstantiatingVarTemplate = false, | |||
9492 | VarTemplateSpecializationDecl *PrevVTSD = nullptr); | |||
9493 | ||||
9494 | void InstantiateVariableInitializer( | |||
9495 | VarDecl *Var, VarDecl *OldVar, | |||
9496 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9497 | void InstantiateVariableDefinition(SourceLocation PointOfInstantiation, | |||
9498 | VarDecl *Var, bool Recursive = false, | |||
9499 | bool DefinitionRequired = false, | |||
9500 | bool AtEndOfTU = false); | |||
9501 | ||||
9502 | void InstantiateMemInitializers(CXXConstructorDecl *New, | |||
9503 | const CXXConstructorDecl *Tmpl, | |||
9504 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9505 | ||||
9506 | NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, | |||
9507 | const MultiLevelTemplateArgumentList &TemplateArgs, | |||
9508 | bool FindingInstantiatedContext = false); | |||
9509 | DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC, | |||
9510 | const MultiLevelTemplateArgumentList &TemplateArgs); | |||
9511 | ||||
9512 | // Objective-C declarations. | |||
9513 | enum ObjCContainerKind { | |||
9514 | OCK_None = -1, | |||
9515 | OCK_Interface = 0, | |||
9516 | OCK_Protocol, | |||
9517 | OCK_Category, | |||
9518 | OCK_ClassExtension, | |||
9519 | OCK_Implementation, | |||
9520 | OCK_CategoryImplementation | |||
9521 | }; | |||
9522 | ObjCContainerKind getObjCContainerKind() const; | |||
9523 | ||||
9524 | DeclResult actOnObjCTypeParam(Scope *S, | |||
9525 | ObjCTypeParamVariance variance, | |||
9526 | SourceLocation varianceLoc, | |||
9527 | unsigned index, | |||
9528 | IdentifierInfo *paramName, | |||
9529 | SourceLocation paramLoc, | |||
9530 | SourceLocation colonLoc, | |||
9531 | ParsedType typeBound); | |||
9532 | ||||
9533 | ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, | |||
9534 | ArrayRef<Decl *> typeParams, | |||
9535 | SourceLocation rAngleLoc); | |||
9536 | void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList); | |||
9537 | ||||
9538 | Decl *ActOnStartClassInterface( | |||
9539 | Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, | |||
9540 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, | |||
9541 | IdentifierInfo *SuperName, SourceLocation SuperLoc, | |||
9542 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, | |||
9543 | Decl *const *ProtoRefs, unsigned NumProtoRefs, | |||
9544 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, | |||
9545 | const ParsedAttributesView &AttrList); | |||
9546 | ||||
9547 | void ActOnSuperClassOfClassInterface(Scope *S, | |||
9548 | SourceLocation AtInterfaceLoc, | |||
9549 | ObjCInterfaceDecl *IDecl, | |||
9550 | IdentifierInfo *ClassName, | |||
9551 | SourceLocation ClassLoc, | |||
9552 | IdentifierInfo *SuperName, | |||
9553 | SourceLocation SuperLoc, | |||
9554 | ArrayRef<ParsedType> SuperTypeArgs, | |||
9555 | SourceRange SuperTypeArgsRange); | |||
9556 | ||||
9557 | void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, | |||
9558 | SmallVectorImpl<SourceLocation> &ProtocolLocs, | |||
9559 | IdentifierInfo *SuperName, | |||
9560 | SourceLocation SuperLoc); | |||
9561 | ||||
9562 | Decl *ActOnCompatibilityAlias( | |||
9563 | SourceLocation AtCompatibilityAliasLoc, | |||
9564 | IdentifierInfo *AliasName, SourceLocation AliasLocation, | |||
9565 | IdentifierInfo *ClassName, SourceLocation ClassLocation); | |||
9566 | ||||
9567 | bool CheckForwardProtocolDeclarationForCircularDependency( | |||
9568 | IdentifierInfo *PName, | |||
9569 | SourceLocation &PLoc, SourceLocation PrevLoc, | |||
9570 | const ObjCList<ObjCProtocolDecl> &PList); | |||
9571 | ||||
9572 | Decl *ActOnStartProtocolInterface( | |||
9573 | SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, | |||
9574 | SourceLocation ProtocolLoc, Decl *const *ProtoRefNames, | |||
9575 | unsigned NumProtoRefs, const SourceLocation *ProtoLocs, | |||
9576 | SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); | |||
9577 | ||||
9578 | Decl *ActOnStartCategoryInterface( | |||
9579 | SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, | |||
9580 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, | |||
9581 | IdentifierInfo *CategoryName, SourceLocation CategoryLoc, | |||
9582 | Decl *const *ProtoRefs, unsigned NumProtoRefs, | |||
9583 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, | |||
9584 | const ParsedAttributesView &AttrList); | |||
9585 | ||||
9586 | Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc, | |||
9587 | IdentifierInfo *ClassName, | |||
9588 | SourceLocation ClassLoc, | |||
9589 | IdentifierInfo *SuperClassname, | |||
9590 | SourceLocation SuperClassLoc, | |||
9591 | const ParsedAttributesView &AttrList); | |||
9592 | ||||
9593 | Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc, | |||
9594 | IdentifierInfo *ClassName, | |||
9595 | SourceLocation ClassLoc, | |||
9596 | IdentifierInfo *CatName, | |||
9597 | SourceLocation CatLoc, | |||
9598 | const ParsedAttributesView &AttrList); | |||
9599 | ||||
9600 | DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, | |||
9601 | ArrayRef<Decl *> Decls); | |||
9602 | ||||
9603 | DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, | |||
9604 | IdentifierInfo **IdentList, | |||
9605 | SourceLocation *IdentLocs, | |||
9606 | ArrayRef<ObjCTypeParamList *> TypeParamLists, | |||
9607 | unsigned NumElts); | |||
9608 | ||||
9609 | DeclGroupPtrTy | |||
9610 | ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, | |||
9611 | ArrayRef<IdentifierLocPair> IdentList, | |||
9612 | const ParsedAttributesView &attrList); | |||
9613 | ||||
9614 | void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, | |||
9615 | ArrayRef<IdentifierLocPair> ProtocolId, | |||
9616 | SmallVectorImpl<Decl *> &Protocols); | |||
9617 | ||||
9618 | void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, | |||
9619 | SourceLocation ProtocolLoc, | |||
9620 | IdentifierInfo *TypeArgId, | |||
9621 | SourceLocation TypeArgLoc, | |||
9622 | bool SelectProtocolFirst = false); | |||
9623 | ||||
9624 | /// Given a list of identifiers (and their locations), resolve the | |||
9625 | /// names to either Objective-C protocol qualifiers or type | |||
9626 | /// arguments, as appropriate. | |||
9627 | void actOnObjCTypeArgsOrProtocolQualifiers( | |||
9628 | Scope *S, | |||
9629 | ParsedType baseType, | |||
9630 | SourceLocation lAngleLoc, | |||
9631 | ArrayRef<IdentifierInfo *> identifiers, | |||
9632 | ArrayRef<SourceLocation> identifierLocs, | |||
9633 | SourceLocation rAngleLoc, | |||
9634 | SourceLocation &typeArgsLAngleLoc, | |||
9635 | SmallVectorImpl<ParsedType> &typeArgs, | |||
9636 | SourceLocation &typeArgsRAngleLoc, | |||
9637 | SourceLocation &protocolLAngleLoc, | |||
9638 | SmallVectorImpl<Decl *> &protocols, | |||
9639 | SourceLocation &protocolRAngleLoc, | |||
9640 | bool warnOnIncompleteProtocols); | |||
9641 | ||||
9642 | /// Build a an Objective-C protocol-qualified 'id' type where no | |||
9643 | /// base type was specified. | |||
9644 | TypeResult actOnObjCProtocolQualifierType( | |||
9645 | SourceLocation lAngleLoc, | |||
9646 | ArrayRef<Decl *> protocols, | |||
9647 | ArrayRef<SourceLocation> protocolLocs, | |||
9648 | SourceLocation rAngleLoc); | |||
9649 | ||||
9650 | /// Build a specialized and/or protocol-qualified Objective-C type. | |||
9651 | TypeResult actOnObjCTypeArgsAndProtocolQualifiers( | |||
9652 | Scope *S, | |||
9653 | SourceLocation Loc, | |||
9654 | ParsedType BaseType, | |||
9655 | SourceLocation TypeArgsLAngleLoc, | |||
9656 | ArrayRef<ParsedType> TypeArgs, | |||
9657 | SourceLocation TypeArgsRAngleLoc, | |||
9658 | SourceLocation ProtocolLAngleLoc, | |||
9659 | ArrayRef<Decl *> Protocols, | |||
9660 | ArrayRef<SourceLocation> ProtocolLocs, | |||
9661 | SourceLocation ProtocolRAngleLoc); | |||
9662 | ||||
9663 | /// Build an Objective-C type parameter type. | |||
9664 | QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, | |||
9665 | SourceLocation ProtocolLAngleLoc, | |||
9666 | ArrayRef<ObjCProtocolDecl *> Protocols, | |||
9667 | ArrayRef<SourceLocation> ProtocolLocs, | |||
9668 | SourceLocation ProtocolRAngleLoc, | |||
9669 | bool FailOnError = false); | |||
9670 | ||||
9671 | /// Build an Objective-C object pointer type. | |||
9672 | QualType BuildObjCObjectType(QualType BaseType, | |||
9673 | SourceLocation Loc, | |||
9674 | SourceLocation TypeArgsLAngleLoc, | |||
9675 | ArrayRef<TypeSourceInfo *> TypeArgs, | |||
9676 | SourceLocation TypeArgsRAngleLoc, | |||
9677 | SourceLocation ProtocolLAngleLoc, | |||
9678 | ArrayRef<ObjCProtocolDecl *> Protocols, | |||
9679 | ArrayRef<SourceLocation> ProtocolLocs, | |||
9680 | SourceLocation ProtocolRAngleLoc, | |||
9681 | bool FailOnError = false); | |||
9682 | ||||
9683 | /// Ensure attributes are consistent with type. | |||
9684 | /// \param [in, out] Attributes The attributes to check; they will | |||
9685 | /// be modified to be consistent with \p PropertyTy. | |||
9686 | void CheckObjCPropertyAttributes(Decl *PropertyPtrTy, | |||
9687 | SourceLocation Loc, | |||
9688 | unsigned &Attributes, | |||
9689 | bool propertyInPrimaryClass); | |||
9690 | ||||
9691 | /// Process the specified property declaration and create decls for the | |||
9692 | /// setters and getters as needed. | |||
9693 | /// \param property The property declaration being processed | |||
9694 | void ProcessPropertyDecl(ObjCPropertyDecl *property); | |||
9695 | ||||
9696 | ||||
9697 | void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, | |||
9698 | ObjCPropertyDecl *SuperProperty, | |||
9699 | const IdentifierInfo *Name, | |||
9700 | bool OverridingProtocolProperty); | |||
9701 | ||||
9702 | void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, | |||
9703 | ObjCInterfaceDecl *ID); | |||
9704 | ||||
9705 | Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd, | |||
9706 | ArrayRef<Decl *> allMethods = None, | |||
9707 | ArrayRef<DeclGroupPtrTy> allTUVars = None); | |||
9708 | ||||
9709 | Decl *ActOnProperty(Scope *S, SourceLocation AtLoc, | |||
9710 | SourceLocation LParenLoc, | |||
9711 | FieldDeclarator &FD, ObjCDeclSpec &ODS, | |||
9712 | Selector GetterSel, Selector SetterSel, | |||
9713 | tok::ObjCKeywordKind MethodImplKind, | |||
9714 | DeclContext *lexicalDC = nullptr); | |||
9715 | ||||
9716 | Decl *ActOnPropertyImplDecl(Scope *S, | |||
9717 | SourceLocation AtLoc, | |||
9718 | SourceLocation PropertyLoc, | |||
9719 | bool ImplKind, | |||
9720 | IdentifierInfo *PropertyId, | |||
9721 | IdentifierInfo *PropertyIvar, | |||
9722 | SourceLocation PropertyIvarLoc, | |||
9723 | ObjCPropertyQueryKind QueryKind); | |||
9724 | ||||
9725 | enum ObjCSpecialMethodKind { | |||
9726 | OSMK_None, | |||
9727 | OSMK_Alloc, | |||
9728 | OSMK_New, | |||
9729 | OSMK_Copy, | |||
9730 | OSMK_RetainingInit, | |||
9731 | OSMK_NonRetainingInit | |||
9732 | }; | |||
9733 | ||||
9734 | struct ObjCArgInfo { | |||
9735 | IdentifierInfo *Name; | |||
9736 | SourceLocation NameLoc; | |||
9737 | // The Type is null if no type was specified, and the DeclSpec is invalid | |||
9738 | // in this case. | |||
9739 | ParsedType Type; | |||
9740 | ObjCDeclSpec DeclSpec; | |||
9741 | ||||
9742 | /// ArgAttrs - Attribute list for this argument. | |||
9743 | ParsedAttributesView ArgAttrs; | |||
9744 | }; | |||
9745 | ||||
9746 | Decl *ActOnMethodDeclaration( | |||
9747 | Scope *S, | |||
9748 | SourceLocation BeginLoc, // location of the + or -. | |||
9749 | SourceLocation EndLoc, // location of the ; or {. | |||
9750 | tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, | |||
9751 | ArrayRef<SourceLocation> SelectorLocs, Selector Sel, | |||
9752 | // optional arguments. The number of types/arguments is obtained | |||
9753 | // from the Sel.getNumArgs(). | |||
9754 | ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, | |||
9755 | unsigned CNumArgs, // c-style args | |||
9756 | const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind, | |||
9757 | bool isVariadic, bool MethodDefinition); | |||
9758 | ||||
9759 | ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel, | |||
9760 | const ObjCObjectPointerType *OPT, | |||
9761 | bool IsInstance); | |||
9762 | ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty, | |||
9763 | bool IsInstance); | |||
9764 | ||||
9765 | bool CheckARCMethodDecl(ObjCMethodDecl *method); | |||
9766 | bool inferObjCARCLifetime(ValueDecl *decl); | |||
9767 | ||||
9768 | void deduceOpenCLAddressSpace(ValueDecl *decl); | |||
9769 | ||||
9770 | ExprResult | |||
9771 | HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, | |||
9772 | Expr *BaseExpr, | |||
9773 | SourceLocation OpLoc, | |||
9774 | DeclarationName MemberName, | |||
9775 | SourceLocation MemberLoc, | |||
9776 | SourceLocation SuperLoc, QualType SuperType, | |||
9777 | bool Super); | |||
9778 | ||||
9779 | ExprResult | |||
9780 | ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, | |||
9781 | IdentifierInfo &propertyName, | |||
9782 | SourceLocation receiverNameLoc, | |||
9783 | SourceLocation propertyNameLoc); | |||
9784 | ||||
9785 | ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc); | |||
9786 | ||||
9787 | /// Describes the kind of message expression indicated by a message | |||
9788 | /// send that starts with an identifier. | |||
9789 | enum ObjCMessageKind { | |||
9790 | /// The message is sent to 'super'. | |||
9791 | ObjCSuperMessage, | |||
9792 | /// The message is an instance message. | |||
9793 | ObjCInstanceMessage, | |||
9794 | /// The message is a class message, and the identifier is a type | |||
9795 | /// name. | |||
9796 | ObjCClassMessage | |||
9797 | }; | |||
9798 | ||||
9799 | ObjCMessageKind getObjCMessageKind(Scope *S, | |||
9800 | IdentifierInfo *Name, | |||
9801 | SourceLocation NameLoc, | |||
9802 | bool IsSuper, | |||
9803 | bool HasTrailingDot, | |||
9804 | ParsedType &ReceiverType); | |||
9805 | ||||
9806 | ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, | |||
9807 | Selector Sel, | |||
9808 | SourceLocation LBracLoc, | |||
9809 | ArrayRef<SourceLocation> SelectorLocs, | |||
9810 | SourceLocation RBracLoc, | |||
9811 | MultiExprArg Args); | |||
9812 | ||||
9813 | ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, | |||
9814 | QualType ReceiverType, | |||
9815 | SourceLocation SuperLoc, | |||
9816 | Selector Sel, | |||
9817 | ObjCMethodDecl *Method, | |||
9818 | SourceLocation LBracLoc, | |||
9819 | ArrayRef<SourceLocation> SelectorLocs, | |||
9820 | SourceLocation RBracLoc, | |||
9821 | MultiExprArg Args, | |||
9822 | bool isImplicit = false); | |||
9823 | ||||
9824 | ExprResult BuildClassMessageImplicit(QualType ReceiverType, | |||
9825 | bool isSuperReceiver, | |||
9826 | SourceLocation Loc, | |||
9827 | Selector Sel, | |||
9828 | ObjCMethodDecl *Method, | |||
9829 | MultiExprArg Args); | |||
9830 | ||||
9831 | ExprResult ActOnClassMessage(Scope *S, | |||
9832 | ParsedType Receiver, | |||
9833 | Selector Sel, | |||
9834 | SourceLocation LBracLoc, | |||
9835 | ArrayRef<SourceLocation> SelectorLocs, | |||
9836 | SourceLocation RBracLoc, | |||
9837 | MultiExprArg Args); | |||
9838 | ||||
9839 | ExprResult BuildInstanceMessage(Expr *Receiver, | |||
9840 | QualType ReceiverType, | |||
9841 | SourceLocation SuperLoc, | |||
9842 | Selector Sel, | |||
9843 | ObjCMethodDecl *Method, | |||
9844 | SourceLocation LBracLoc, | |||
9845 | ArrayRef<SourceLocation> SelectorLocs, | |||
9846 | SourceLocation RBracLoc, | |||
9847 | MultiExprArg Args, | |||
9848 | bool isImplicit = false); | |||
9849 | ||||
9850 | ExprResult BuildInstanceMessageImplicit(Expr *Receiver, | |||
9851 | QualType ReceiverType, | |||
9852 | SourceLocation Loc, | |||
9853 | Selector Sel, | |||
9854 | ObjCMethodDecl *Method, | |||
9855 | MultiExprArg Args); | |||
9856 | ||||
9857 | ExprResult ActOnInstanceMessage(Scope *S, | |||
9858 | Expr *Receiver, | |||
9859 | Selector Sel, | |||
9860 | SourceLocation LBracLoc, | |||
9861 | ArrayRef<SourceLocation> SelectorLocs, | |||
9862 | SourceLocation RBracLoc, | |||
9863 | MultiExprArg Args); | |||
9864 | ||||
9865 | ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc, | |||
9866 | ObjCBridgeCastKind Kind, | |||
9867 | SourceLocation BridgeKeywordLoc, | |||
9868 | TypeSourceInfo *TSInfo, | |||
9869 | Expr *SubExpr); | |||
9870 | ||||
9871 | ExprResult ActOnObjCBridgedCast(Scope *S, | |||
9872 | SourceLocation LParenLoc, | |||
9873 | ObjCBridgeCastKind Kind, | |||
9874 | SourceLocation BridgeKeywordLoc, | |||
9875 | ParsedType Type, | |||
9876 | SourceLocation RParenLoc, | |||
9877 | Expr *SubExpr); | |||
9878 | ||||
9879 | void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr); | |||
9880 | ||||
9881 | void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr); | |||
9882 | ||||
9883 | bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, | |||
9884 | CastKind &Kind); | |||
9885 | ||||
9886 | bool checkObjCBridgeRelatedComponents(SourceLocation Loc, | |||
9887 | QualType DestType, QualType SrcType, | |||
9888 | ObjCInterfaceDecl *&RelatedClass, | |||
9889 | ObjCMethodDecl *&ClassMethod, | |||
9890 | ObjCMethodDecl *&InstanceMethod, | |||
9891 | TypedefNameDecl *&TDNDecl, | |||
9892 | bool CfToNs, bool Diagnose = true); | |||
9893 | ||||
9894 | bool CheckObjCBridgeRelatedConversions(SourceLocation Loc, | |||
9895 | QualType DestType, QualType SrcType, | |||
9896 | Expr *&SrcExpr, bool Diagnose = true); | |||
9897 | ||||
9898 | bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr, | |||
9899 | bool Diagnose = true); | |||
9900 | ||||
9901 | bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall); | |||
9902 | ||||
9903 | /// Check whether the given new method is a valid override of the | |||
9904 | /// given overridden method, and set any properties that should be inherited. | |||
9905 | void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, | |||
9906 | const ObjCMethodDecl *Overridden); | |||
9907 | ||||
9908 | /// Describes the compatibility of a result type with its method. | |||
9909 | enum ResultTypeCompatibilityKind { | |||
9910 | RTC_Compatible, | |||
9911 | RTC_Incompatible, | |||
9912 | RTC_Unknown | |||
9913 | }; | |||
9914 | ||||
9915 | void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, | |||
9916 | ObjCMethodDecl *overridden); | |||
9917 | ||||
9918 | void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, | |||
9919 | ObjCInterfaceDecl *CurrentClass, | |||
9920 | ResultTypeCompatibilityKind RTC); | |||
9921 | ||||
9922 | enum PragmaOptionsAlignKind { | |||
9923 | POAK_Native, // #pragma options align=native | |||
9924 | POAK_Natural, // #pragma options align=natural | |||
9925 | POAK_Packed, // #pragma options align=packed | |||
9926 | POAK_Power, // #pragma options align=power | |||
9927 | POAK_Mac68k, // #pragma options align=mac68k | |||
9928 | POAK_Reset // #pragma options align=reset | |||
9929 | }; | |||
9930 | ||||
9931 | /// ActOnPragmaClangSection - Called on well formed \#pragma clang section | |||
9932 | void ActOnPragmaClangSection(SourceLocation PragmaLoc, | |||
9933 | PragmaClangSectionAction Action, | |||
9934 | PragmaClangSectionKind SecKind, StringRef SecName); | |||
9935 | ||||
9936 | /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align. | |||
9937 | void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind, | |||
9938 | SourceLocation PragmaLoc); | |||
9939 | ||||
9940 | /// ActOnPragmaPack - Called on well formed \#pragma pack(...). | |||
9941 | void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action, | |||
9942 | StringRef SlotLabel, Expr *Alignment); | |||
9943 | ||||
9944 | enum class PragmaAlignPackDiagnoseKind { | |||
9945 | NonDefaultStateAtInclude, | |||
9946 | ChangedStateAtExit | |||
9947 | }; | |||
9948 | ||||
9949 | void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind, | |||
9950 | SourceLocation IncludeLoc); | |||
9951 | void DiagnoseUnterminatedPragmaAlignPack(); | |||
9952 | ||||
9953 | /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off]. | |||
9954 | void ActOnPragmaMSStruct(PragmaMSStructKind Kind); | |||
9955 | ||||
9956 | /// ActOnPragmaMSComment - Called on well formed | |||
9957 | /// \#pragma comment(kind, "arg"). | |||
9958 | void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind, | |||
9959 | StringRef Arg); | |||
9960 | ||||
9961 | /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma | |||
9962 | /// pointers_to_members(representation method[, general purpose | |||
9963 | /// representation]). | |||
9964 | void ActOnPragmaMSPointersToMembers( | |||
9965 | LangOptions::PragmaMSPointersToMembersKind Kind, | |||
9966 | SourceLocation PragmaLoc); | |||
9967 | ||||
9968 | /// Called on well formed \#pragma vtordisp(). | |||
9969 | void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action, | |||
9970 | SourceLocation PragmaLoc, | |||
9971 | MSVtorDispMode Value); | |||
9972 | ||||
9973 | enum PragmaSectionKind { | |||
9974 | PSK_DataSeg, | |||
9975 | PSK_BSSSeg, | |||
9976 | PSK_ConstSeg, | |||
9977 | PSK_CodeSeg, | |||
9978 | }; | |||
9979 | ||||
9980 | bool UnifySection(StringRef SectionName, int SectionFlags, | |||
9981 | NamedDecl *TheDecl); | |||
9982 | bool UnifySection(StringRef SectionName, | |||
9983 | int SectionFlags, | |||
9984 | SourceLocation PragmaSectionLocation); | |||
9985 | ||||
9986 | /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg. | |||
9987 | void ActOnPragmaMSSeg(SourceLocation PragmaLocation, | |||
9988 | PragmaMsStackAction Action, | |||
9989 | llvm::StringRef StackSlotLabel, | |||
9990 | StringLiteral *SegmentName, | |||
9991 | llvm::StringRef PragmaName); | |||
9992 | ||||
9993 | /// Called on well formed \#pragma section(). | |||
9994 | void ActOnPragmaMSSection(SourceLocation PragmaLocation, | |||
9995 | int SectionFlags, StringLiteral *SegmentName); | |||
9996 | ||||
9997 | /// Called on well-formed \#pragma init_seg(). | |||
9998 | void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation, | |||
9999 | StringLiteral *SegmentName); | |||
10000 | ||||
10001 | /// Called on #pragma clang __debug dump II | |||
10002 | void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II); | |||
10003 | ||||
10004 | /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch | |||
10005 | void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name, | |||
10006 | StringRef Value); | |||
10007 | ||||
10008 | /// Are precise floating point semantics currently enabled? | |||
10009 | bool isPreciseFPEnabled() { | |||
10010 | return !CurFPFeatures.getAllowFPReassociate() && | |||
10011 | !CurFPFeatures.getNoSignedZero() && | |||
10012 | !CurFPFeatures.getAllowReciprocal() && | |||
10013 | !CurFPFeatures.getAllowApproxFunc(); | |||
10014 | } | |||
10015 | ||||
10016 | /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control | |||
10017 | void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action, | |||
10018 | PragmaFloatControlKind Value); | |||
10019 | ||||
10020 | /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'. | |||
10021 | void ActOnPragmaUnused(const Token &Identifier, | |||
10022 | Scope *curScope, | |||
10023 | SourceLocation PragmaLoc); | |||
10024 | ||||
10025 | /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... . | |||
10026 | void ActOnPragmaVisibility(const IdentifierInfo* VisType, | |||
10027 | SourceLocation PragmaLoc); | |||
10028 | ||||
10029 | NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, | |||
10030 | SourceLocation Loc); | |||
10031 | void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W); | |||
10032 | ||||
10033 | /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident. | |||
10034 | void ActOnPragmaWeakID(IdentifierInfo* WeakName, | |||
10035 | SourceLocation PragmaLoc, | |||
10036 | SourceLocation WeakNameLoc); | |||
10037 | ||||
10038 | /// ActOnPragmaRedefineExtname - Called on well formed | |||
10039 | /// \#pragma redefine_extname oldname newname. | |||
10040 | void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName, | |||
10041 | IdentifierInfo* AliasName, | |||
10042 | SourceLocation PragmaLoc, | |||
10043 | SourceLocation WeakNameLoc, | |||
10044 | SourceLocation AliasNameLoc); | |||
10045 | ||||
10046 | /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident. | |||
10047 | void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, | |||
10048 | IdentifierInfo* AliasName, | |||
10049 | SourceLocation PragmaLoc, | |||
10050 | SourceLocation WeakNameLoc, | |||
10051 | SourceLocation AliasNameLoc); | |||
10052 | ||||
10053 | /// ActOnPragmaFPContract - Called on well formed | |||
10054 | /// \#pragma {STDC,OPENCL} FP_CONTRACT and | |||
10055 | /// \#pragma clang fp contract | |||
10056 | void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC); | |||
10057 | ||||
10058 | /// Called on well formed | |||
10059 | /// \#pragma clang fp reassociate | |||
10060 | void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled); | |||
10061 | ||||
10062 | /// ActOnPragmaFenvAccess - Called on well formed | |||
10063 | /// \#pragma STDC FENV_ACCESS | |||
10064 | void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled); | |||
10065 | ||||
10066 | /// Called on well formed '\#pragma clang fp' that has option 'exceptions'. | |||
10067 | void ActOnPragmaFPExceptions(SourceLocation Loc, | |||
10068 | LangOptions::FPExceptionModeKind); | |||
10069 | ||||
10070 | /// Called to set constant rounding mode for floating point operations. | |||
10071 | void setRoundingMode(SourceLocation Loc, llvm::RoundingMode); | |||
10072 | ||||
10073 | /// Called to set exception behavior for floating point operations. | |||
10074 | void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind); | |||
10075 | ||||
10076 | /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to | |||
10077 | /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'. | |||
10078 | void AddAlignmentAttributesForRecord(RecordDecl *RD); | |||
10079 | ||||
10080 | /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record. | |||
10081 | void AddMsStructLayoutForRecord(RecordDecl *RD); | |||
10082 | ||||
10083 | /// PushNamespaceVisibilityAttr - Note that we've entered a | |||
10084 | /// namespace with a visibility attribute. | |||
10085 | void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr, | |||
10086 | SourceLocation Loc); | |||
10087 | ||||
10088 | /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used, | |||
10089 | /// add an appropriate visibility attribute. | |||
10090 | void AddPushedVisibilityAttribute(Decl *RD); | |||
10091 | ||||
10092 | /// PopPragmaVisibility - Pop the top element of the visibility stack; used | |||
10093 | /// for '\#pragma GCC visibility' and visibility attributes on namespaces. | |||
10094 | void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc); | |||
10095 | ||||
10096 | /// FreeVisContext - Deallocate and null out VisContext. | |||
10097 | void FreeVisContext(); | |||
10098 | ||||
10099 | /// AddCFAuditedAttribute - Check whether we're currently within | |||
10100 | /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding | |||
10101 | /// the appropriate attribute. | |||
10102 | void AddCFAuditedAttribute(Decl *D); | |||
10103 | ||||
10104 | void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute, | |||
10105 | SourceLocation PragmaLoc, | |||
10106 | attr::ParsedSubjectMatchRuleSet Rules); | |||
10107 | void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc, | |||
10108 | const IdentifierInfo *Namespace); | |||
10109 | ||||
10110 | /// Called on well-formed '\#pragma clang attribute pop'. | |||
10111 | void ActOnPragmaAttributePop(SourceLocation PragmaLoc, | |||
10112 | const IdentifierInfo *Namespace); | |||
10113 | ||||
10114 | /// Adds the attributes that have been specified using the | |||
10115 | /// '\#pragma clang attribute push' directives to the given declaration. | |||
10116 | void AddPragmaAttributes(Scope *S, Decl *D); | |||
10117 | ||||
10118 | void DiagnoseUnterminatedPragmaAttribute(); | |||
10119 | ||||
10120 | /// Called on well formed \#pragma clang optimize. | |||
10121 | void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc); | |||
10122 | ||||
10123 | /// Get the location for the currently active "\#pragma clang optimize | |||
10124 | /// off". If this location is invalid, then the state of the pragma is "on". | |||
10125 | SourceLocation getOptimizeOffPragmaLocation() const { | |||
10126 | return OptimizeOffPragmaLocation; | |||
10127 | } | |||
10128 | ||||
10129 | /// Only called on function definitions; if there is a pragma in scope | |||
10130 | /// with the effect of a range-based optnone, consider marking the function | |||
10131 | /// with attribute optnone. | |||
10132 | void AddRangeBasedOptnone(FunctionDecl *FD); | |||
10133 | ||||
10134 | /// Adds the 'optnone' attribute to the function declaration if there | |||
10135 | /// are no conflicts; Loc represents the location causing the 'optnone' | |||
10136 | /// attribute to be added (usually because of a pragma). | |||
10137 | void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc); | |||
10138 | ||||
10139 | /// AddAlignedAttr - Adds an aligned attribute to a particular declaration. | |||
10140 | void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, | |||
10141 | bool IsPackExpansion); | |||
10142 | void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T, | |||
10143 | bool IsPackExpansion); | |||
10144 | ||||
10145 | /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular | |||
10146 | /// declaration. | |||
10147 | void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, | |||
10148 | Expr *OE); | |||
10149 | ||||
10150 | /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular | |||
10151 | /// declaration. | |||
10152 | void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10153 | Expr *ParamExpr); | |||
10154 | ||||
10155 | /// AddAlignValueAttr - Adds an align_value attribute to a particular | |||
10156 | /// declaration. | |||
10157 | void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E); | |||
10158 | ||||
10159 | /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D. | |||
10160 | void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10161 | StringRef Annot, MutableArrayRef<Expr *> Args); | |||
10162 | ||||
10163 | /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular | |||
10164 | /// declaration. | |||
10165 | void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10166 | Expr *MaxThreads, Expr *MinBlocks); | |||
10167 | ||||
10168 | /// AddModeAttr - Adds a mode attribute to a particular declaration. | |||
10169 | void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, | |||
10170 | bool InInstantiation = false); | |||
10171 | ||||
10172 | void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10173 | ParameterABI ABI); | |||
10174 | ||||
10175 | enum class RetainOwnershipKind {NS, CF, OS}; | |||
10176 | void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10177 | RetainOwnershipKind K, bool IsTemplateInstantiation); | |||
10178 | ||||
10179 | /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size | |||
10180 | /// attribute to a particular declaration. | |||
10181 | void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10182 | Expr *Min, Expr *Max); | |||
10183 | ||||
10184 | /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a | |||
10185 | /// particular declaration. | |||
10186 | void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, | |||
10187 | Expr *Min, Expr *Max); | |||
10188 | ||||
10189 | bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type); | |||
10190 | ||||
10191 | //===--------------------------------------------------------------------===// | |||
10192 | // C++ Coroutines TS | |||
10193 | // | |||
10194 | bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc, | |||
10195 | StringRef Keyword); | |||
10196 | ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E); | |||
10197 | ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E); | |||
10198 | StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E); | |||
10199 | ||||
10200 | ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, | |||
10201 | bool IsImplicit = false); | |||
10202 | ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, | |||
10203 | UnresolvedLookupExpr* Lookup); | |||
10204 | ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E); | |||
10205 | StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E, | |||
10206 | bool IsImplicit = false); | |||
10207 | StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs); | |||
10208 | bool buildCoroutineParameterMoves(SourceLocation Loc); | |||
10209 | VarDecl *buildCoroutinePromise(SourceLocation Loc); | |||
10210 | void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body); | |||
10211 | ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc, | |||
10212 | SourceLocation FuncLoc); | |||
10213 | /// Check that the expression co_await promise.final_suspend() shall not be | |||
10214 | /// potentially-throwing. | |||
10215 | bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend); | |||
10216 | ||||
10217 | //===--------------------------------------------------------------------===// | |||
10218 | // OpenMP directives and clauses. | |||
10219 | // | |||
10220 | private: | |||
10221 | void *VarDataSharingAttributesStack; | |||
10222 | ||||
10223 | struct DeclareTargetContextInfo { | |||
10224 | struct MapInfo { | |||
10225 | OMPDeclareTargetDeclAttr::MapTypeTy MT; | |||
10226 | SourceLocation Loc; | |||
10227 | }; | |||
10228 | /// Explicitly listed variables and functions in a 'to' or 'link' clause. | |||
10229 | llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped; | |||
10230 | ||||
10231 | /// The 'device_type' as parsed from the clause. | |||
10232 | OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any; | |||
10233 | ||||
10234 | /// The directive kind, `begin declare target` or `declare target`. | |||
10235 | OpenMPDirectiveKind Kind; | |||
10236 | ||||
10237 | /// The directive location. | |||
10238 | SourceLocation Loc; | |||
10239 | ||||
10240 | DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc) | |||
10241 | : Kind(Kind), Loc(Loc) {} | |||
10242 | }; | |||
10243 | ||||
10244 | /// Number of nested '#pragma omp declare target' directives. | |||
10245 | SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting; | |||
10246 | ||||
10247 | /// Initialization of data-sharing attributes stack. | |||
10248 | void InitDataSharingAttributesStack(); | |||
10249 | void DestroyDataSharingAttributesStack(); | |||
10250 | ExprResult | |||
10251 | VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind, | |||
10252 | bool StrictlyPositive = true, | |||
10253 | bool SuppressExprDiags = false); | |||
10254 | /// Returns OpenMP nesting level for current directive. | |||
10255 | unsigned getOpenMPNestingLevel() const; | |||
10256 | ||||
10257 | /// Adjusts the function scopes index for the target-based regions. | |||
10258 | void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex, | |||
10259 | unsigned Level) const; | |||
10260 | ||||
10261 | /// Returns the number of scopes associated with the construct on the given | |||
10262 | /// OpenMP level. | |||
10263 | int getNumberOfConstructScopes(unsigned Level) const; | |||
10264 | ||||
10265 | /// Push new OpenMP function region for non-capturing function. | |||
10266 | void pushOpenMPFunctionRegion(); | |||
10267 | ||||
10268 | /// Pop OpenMP function region for non-capturing function. | |||
10269 | void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI); | |||
10270 | ||||
10271 | /// Analyzes and checks a loop nest for use by a loop transformation. | |||
10272 | /// | |||
10273 | /// \param Kind The loop transformation directive kind. | |||
10274 | /// \param NumLoops How many nested loops the directive is expecting. | |||
10275 | /// \param AStmt Associated statement of the transformation directive. | |||
10276 | /// \param LoopHelpers [out] The loop analysis result. | |||
10277 | /// \param Body [out] The body code nested in \p NumLoops loop. | |||
10278 | /// \param OriginalInits [out] Collection of statements and declarations that | |||
10279 | /// must have been executed/declared before entering the | |||
10280 | /// loop. | |||
10281 | /// | |||
10282 | /// \return Whether there was any error. | |||
10283 | bool checkTransformableLoopNest( | |||
10284 | OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops, | |||
10285 | SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers, | |||
10286 | Stmt *&Body, | |||
10287 | SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>> | |||
10288 | &OriginalInits); | |||
10289 | ||||
10290 | /// Helper to keep information about the current `omp begin/end declare | |||
10291 | /// variant` nesting. | |||
10292 | struct OMPDeclareVariantScope { | |||
10293 | /// The associated OpenMP context selector. | |||
10294 | OMPTraitInfo *TI; | |||
10295 | ||||
10296 | /// The associated OpenMP context selector mangling. | |||
10297 | std::string NameSuffix; | |||
10298 | ||||
10299 | OMPDeclareVariantScope(OMPTraitInfo &TI); | |||
10300 | }; | |||
10301 | ||||
10302 | /// Return the OMPTraitInfo for the surrounding scope, if any. | |||
10303 | OMPTraitInfo *getOMPTraitInfoForSurroundingScope() { | |||
10304 | return OMPDeclareVariantScopes.empty() ? nullptr | |||
10305 | : OMPDeclareVariantScopes.back().TI; | |||
10306 | } | |||
10307 | ||||
10308 | /// The current `omp begin/end declare variant` scopes. | |||
10309 | SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes; | |||
10310 | ||||
10311 | /// The current `omp begin/end assumes` scopes. | |||
10312 | SmallVector<AssumptionAttr *, 4> OMPAssumeScoped; | |||
10313 | ||||
10314 | /// All `omp assumes` we encountered so far. | |||
10315 | SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal; | |||
10316 | ||||
10317 | public: | |||
10318 | /// The declarator \p D defines a function in the scope \p S which is nested | |||
10319 | /// in an `omp begin/end declare variant` scope. In this method we create a | |||
10320 | /// declaration for \p D and rename \p D according to the OpenMP context | |||
10321 | /// selector of the surrounding scope. Return all base functions in \p Bases. | |||
10322 | void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( | |||
10323 | Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, | |||
10324 | SmallVectorImpl<FunctionDecl *> &Bases); | |||
10325 | ||||
10326 | /// Register \p D as specialization of all base functions in \p Bases in the | |||
10327 | /// current `omp begin/end declare variant` scope. | |||
10328 | void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope( | |||
10329 | Decl *D, SmallVectorImpl<FunctionDecl *> &Bases); | |||
10330 | ||||
10331 | /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`. | |||
10332 | void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D); | |||
10333 | ||||
10334 | /// Can we exit an OpenMP declare variant scope at the moment. | |||
10335 | bool isInOpenMPDeclareVariantScope() const { | |||
10336 | return !OMPDeclareVariantScopes.empty(); | |||
10337 | } | |||
10338 | ||||
10339 | /// Given the potential call expression \p Call, determine if there is a | |||
10340 | /// specialization via the OpenMP declare variant mechanism available. If | |||
10341 | /// there is, return the specialized call expression, otherwise return the | |||
10342 | /// original \p Call. | |||
10343 | ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope, | |||
10344 | SourceLocation LParenLoc, MultiExprArg ArgExprs, | |||
10345 | SourceLocation RParenLoc, Expr *ExecConfig); | |||
10346 | ||||
10347 | /// Handle a `omp begin declare variant`. | |||
10348 | void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI); | |||
10349 | ||||
10350 | /// Handle a `omp end declare variant`. | |||
10351 | void ActOnOpenMPEndDeclareVariant(); | |||
10352 | ||||
10353 | /// Checks if the variant/multiversion functions are compatible. | |||
10354 | bool areMultiversionVariantFunctionsCompatible( | |||
10355 | const FunctionDecl *OldFD, const FunctionDecl *NewFD, | |||
10356 | const PartialDiagnostic &NoProtoDiagID, | |||
10357 | const PartialDiagnosticAt &NoteCausedDiagIDAt, | |||
10358 | const PartialDiagnosticAt &NoSupportDiagIDAt, | |||
10359 | const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, | |||
10360 | bool ConstexprSupported, bool CLinkageMayDiffer); | |||
10361 | ||||
10362 | /// Function tries to capture lambda's captured variables in the OpenMP region | |||
10363 | /// before the original lambda is captured. | |||
10364 | void tryCaptureOpenMPLambdas(ValueDecl *V); | |||
10365 | ||||
10366 | /// Return true if the provided declaration \a VD should be captured by | |||
10367 | /// reference. | |||
10368 | /// \param Level Relative level of nested OpenMP construct for that the check | |||
10369 | /// is performed. | |||
10370 | /// \param OpenMPCaptureLevel Capture level within an OpenMP construct. | |||
10371 | bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level, | |||
10372 | unsigned OpenMPCaptureLevel) const; | |||
10373 | ||||
10374 | /// Check if the specified variable is used in one of the private | |||
10375 | /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP | |||
10376 | /// constructs. | |||
10377 | VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false, | |||
10378 | unsigned StopAt = 0); | |||
10379 | ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK, | |||
10380 | ExprObjectKind OK, SourceLocation Loc); | |||
10381 | ||||
10382 | /// If the current region is a loop-based region, mark the start of the loop | |||
10383 | /// construct. | |||
10384 | void startOpenMPLoop(); | |||
10385 | ||||
10386 | /// If the current region is a range loop-based region, mark the start of the | |||
10387 | /// loop construct. | |||
10388 | void startOpenMPCXXRangeFor(); | |||
10389 | ||||
10390 | /// Check if the specified variable is used in 'private' clause. | |||
10391 | /// \param Level Relative level of nested OpenMP construct for that the check | |||
10392 | /// is performed. | |||
10393 | OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level, | |||
10394 | unsigned CapLevel) const; | |||
10395 | ||||
10396 | /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.) | |||
10397 | /// for \p FD based on DSA for the provided corresponding captured declaration | |||
10398 | /// \p D. | |||
10399 | void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level); | |||
10400 | ||||
10401 | /// Check if the specified variable is captured by 'target' directive. | |||
10402 | /// \param Level Relative level of nested OpenMP construct for that the check | |||
10403 | /// is performed. | |||
10404 | bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level, | |||
10405 | unsigned CaptureLevel) const; | |||
10406 | ||||
10407 | /// Check if the specified global variable must be captured by outer capture | |||
10408 | /// regions. | |||
10409 | /// \param Level Relative level of nested OpenMP construct for that | |||
10410 | /// the check is performed. | |||
10411 | bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level, | |||
10412 | unsigned CaptureLevel) const; | |||
10413 | ||||
10414 | ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc, | |||
10415 | Expr *Op); | |||
10416 | /// Called on start of new data sharing attribute block. | |||
10417 | void StartOpenMPDSABlock(OpenMPDirectiveKind K, | |||
10418 | const DeclarationNameInfo &DirName, Scope *CurScope, | |||
10419 | SourceLocation Loc); | |||
10420 | /// Start analysis of clauses. | |||
10421 | void StartOpenMPClause(OpenMPClauseKind K); | |||
10422 | /// End analysis of clauses. | |||
10423 | void EndOpenMPClause(); | |||
10424 | /// Called on end of data sharing attribute block. | |||
10425 | void EndOpenMPDSABlock(Stmt *CurDirective); | |||
10426 | ||||
10427 | /// Check if the current region is an OpenMP loop region and if it is, | |||
10428 | /// mark loop control variable, used in \p Init for loop initialization, as | |||
10429 | /// private by default. | |||
10430 | /// \param Init First part of the for loop. | |||
10431 | void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init); | |||
10432 | ||||
10433 | // OpenMP directives and clauses. | |||
10434 | /// Called on correct id-expression from the '#pragma omp | |||
10435 | /// threadprivate'. | |||
10436 | ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec, | |||
10437 | const DeclarationNameInfo &Id, | |||
10438 | OpenMPDirectiveKind Kind); | |||
10439 | /// Called on well-formed '#pragma omp threadprivate'. | |||
10440 | DeclGroupPtrTy ActOnOpenMPThreadprivateDirective( | |||
10441 | SourceLocation Loc, | |||
10442 | ArrayRef<Expr *> VarList); | |||
10443 | /// Builds a new OpenMPThreadPrivateDecl and checks its correctness. | |||
10444 | OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc, | |||
10445 | ArrayRef<Expr *> VarList); | |||
10446 | /// Called on well-formed '#pragma omp allocate'. | |||
10447 | DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc, | |||
10448 | ArrayRef<Expr *> VarList, | |||
10449 | ArrayRef<OMPClause *> Clauses, | |||
10450 | DeclContext *Owner = nullptr); | |||
10451 | ||||
10452 | /// Called on well-formed '#pragma omp [begin] assume[s]'. | |||
10453 | void ActOnOpenMPAssumesDirective(SourceLocation Loc, | |||
10454 | OpenMPDirectiveKind DKind, | |||
10455 | ArrayRef<StringRef> Assumptions, | |||
10456 | bool SkippedClauses); | |||
10457 | ||||
10458 | /// Check if there is an active global `omp begin assumes` directive. | |||
10459 | bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); } | |||
10460 | ||||
10461 | /// Check if there is an active global `omp assumes` directive. | |||
10462 | bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); } | |||
10463 | ||||
10464 | /// Called on well-formed '#pragma omp end assumes'. | |||
10465 | void ActOnOpenMPEndAssumesDirective(); | |||
10466 | ||||
10467 | /// Called on well-formed '#pragma omp requires'. | |||
10468 | DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc, | |||
10469 | ArrayRef<OMPClause *> ClauseList); | |||
10470 | /// Check restrictions on Requires directive | |||
10471 | OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc, | |||
10472 | ArrayRef<OMPClause *> Clauses); | |||
10473 | /// Check if the specified type is allowed to be used in 'omp declare | |||
10474 | /// reduction' construct. | |||
10475 | QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc, | |||
10476 | TypeResult ParsedType); | |||
10477 | /// Called on start of '#pragma omp declare reduction'. | |||
10478 | DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart( | |||
10479 | Scope *S, DeclContext *DC, DeclarationName Name, | |||
10480 | ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes, | |||
10481 | AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); | |||
10482 | /// Initialize declare reduction construct initializer. | |||
10483 | void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D); | |||
10484 | /// Finish current declare reduction construct initializer. | |||
10485 | void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner); | |||
10486 | /// Initialize declare reduction construct initializer. | |||
10487 | /// \return omp_priv variable. | |||
10488 | VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D); | |||
10489 | /// Finish current declare reduction construct initializer. | |||
10490 | void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer, | |||
10491 | VarDecl *OmpPrivParm); | |||
10492 | /// Called at the end of '#pragma omp declare reduction'. | |||
10493 | DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd( | |||
10494 | Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid); | |||
10495 | ||||
10496 | /// Check variable declaration in 'omp declare mapper' construct. | |||
10497 | TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D); | |||
10498 | /// Check if the specified type is allowed to be used in 'omp declare | |||
10499 | /// mapper' construct. | |||
10500 | QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc, | |||
10501 | TypeResult ParsedType); | |||
10502 | /// Called on start of '#pragma omp declare mapper'. | |||
10503 | DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective( | |||
10504 | Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType, | |||
10505 | SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS, | |||
10506 | Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses, | |||
10507 | Decl *PrevDeclInScope = nullptr); | |||
10508 | /// Build the mapper variable of '#pragma omp declare mapper'. | |||
10509 | ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S, | |||
10510 | QualType MapperType, | |||
10511 | SourceLocation StartLoc, | |||
10512 | DeclarationName VN); | |||
10513 | bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const; | |||
10514 | const ValueDecl *getOpenMPDeclareMapperVarName() const; | |||
10515 | ||||
10516 | /// Called on the start of target region i.e. '#pragma omp declare target'. | |||
10517 | bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI); | |||
10518 | ||||
10519 | /// Called at the end of target region i.e. '#pragma omp end declare target'. | |||
10520 | const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective(); | |||
10521 | ||||
10522 | /// Called once a target context is completed, that can be when a | |||
10523 | /// '#pragma omp end declare target' was encountered or when a | |||
10524 | /// '#pragma omp declare target' without declaration-definition-seq was | |||
10525 | /// encountered. | |||
10526 | void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI); | |||
10527 | ||||
10528 | /// Searches for the provided declaration name for OpenMP declare target | |||
10529 | /// directive. | |||
10530 | NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope, | |||
10531 | CXXScopeSpec &ScopeSpec, | |||
10532 | const DeclarationNameInfo &Id); | |||
10533 | ||||
10534 | /// Called on correct id-expression from the '#pragma omp declare target'. | |||
10535 | void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc, | |||
10536 | OMPDeclareTargetDeclAttr::MapTypeTy MT, | |||
10537 | OMPDeclareTargetDeclAttr::DevTypeTy DT); | |||
10538 | ||||
10539 | /// Check declaration inside target region. | |||
10540 | void | |||
10541 | checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D, | |||
10542 | SourceLocation IdLoc = SourceLocation()); | |||
10543 | /// Finishes analysis of the deferred functions calls that may be declared as | |||
10544 | /// host/nohost during device/host compilation. | |||
10545 | void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller, | |||
10546 | const FunctionDecl *Callee, | |||
10547 | SourceLocation Loc); | |||
10548 | /// Return true inside OpenMP declare target region. | |||
10549 | bool isInOpenMPDeclareTargetContext() const { | |||
10550 | return !DeclareTargetNesting.empty(); | |||
10551 | } | |||
10552 | /// Return true inside OpenMP target region. | |||
10553 | bool isInOpenMPTargetExecutionDirective() const; | |||
10554 | ||||
10555 | /// Return the number of captured regions created for an OpenMP directive. | |||
10556 | static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind); | |||
10557 | ||||
10558 | /// Initialization of captured region for OpenMP region. | |||
10559 | void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope); | |||
10560 | ||||
10561 | /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to | |||
10562 | /// an OpenMP loop directive. | |||
10563 | StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt); | |||
10564 | ||||
10565 | /// End of OpenMP region. | |||
10566 | /// | |||
10567 | /// \param S Statement associated with the current OpenMP region. | |||
10568 | /// \param Clauses List of clauses for the current OpenMP region. | |||
10569 | /// | |||
10570 | /// \returns Statement for finished OpenMP region. | |||
10571 | StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses); | |||
10572 | StmtResult ActOnOpenMPExecutableDirective( | |||
10573 | OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName, | |||
10574 | OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses, | |||
10575 | Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); | |||
10576 | /// Called on well-formed '\#pragma omp parallel' after parsing | |||
10577 | /// of the associated statement. | |||
10578 | StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses, | |||
10579 | Stmt *AStmt, | |||
10580 | SourceLocation StartLoc, | |||
10581 | SourceLocation EndLoc); | |||
10582 | using VarsWithInheritedDSAType = | |||
10583 | llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>; | |||
10584 | /// Called on well-formed '\#pragma omp simd' after parsing | |||
10585 | /// of the associated statement. | |||
10586 | StmtResult | |||
10587 | ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10588 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10589 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10590 | /// Called on well-formed '#pragma omp tile' after parsing of its clauses and | |||
10591 | /// the associated statement. | |||
10592 | StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses, | |||
10593 | Stmt *AStmt, SourceLocation StartLoc, | |||
10594 | SourceLocation EndLoc); | |||
10595 | /// Called on well-formed '#pragma omp unroll' after parsing of its clauses | |||
10596 | /// and the associated statement. | |||
10597 | StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses, | |||
10598 | Stmt *AStmt, SourceLocation StartLoc, | |||
10599 | SourceLocation EndLoc); | |||
10600 | /// Called on well-formed '\#pragma omp for' after parsing | |||
10601 | /// of the associated statement. | |||
10602 | StmtResult | |||
10603 | ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10604 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10605 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10606 | /// Called on well-formed '\#pragma omp for simd' after parsing | |||
10607 | /// of the associated statement. | |||
10608 | StmtResult | |||
10609 | ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10610 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10611 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10612 | /// Called on well-formed '\#pragma omp sections' after parsing | |||
10613 | /// of the associated statement. | |||
10614 | StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses, | |||
10615 | Stmt *AStmt, SourceLocation StartLoc, | |||
10616 | SourceLocation EndLoc); | |||
10617 | /// Called on well-formed '\#pragma omp section' after parsing of the | |||
10618 | /// associated statement. | |||
10619 | StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc, | |||
10620 | SourceLocation EndLoc); | |||
10621 | /// Called on well-formed '\#pragma omp single' after parsing of the | |||
10622 | /// associated statement. | |||
10623 | StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses, | |||
10624 | Stmt *AStmt, SourceLocation StartLoc, | |||
10625 | SourceLocation EndLoc); | |||
10626 | /// Called on well-formed '\#pragma omp master' after parsing of the | |||
10627 | /// associated statement. | |||
10628 | StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc, | |||
10629 | SourceLocation EndLoc); | |||
10630 | /// Called on well-formed '\#pragma omp critical' after parsing of the | |||
10631 | /// associated statement. | |||
10632 | StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName, | |||
10633 | ArrayRef<OMPClause *> Clauses, | |||
10634 | Stmt *AStmt, SourceLocation StartLoc, | |||
10635 | SourceLocation EndLoc); | |||
10636 | /// Called on well-formed '\#pragma omp parallel for' after parsing | |||
10637 | /// of the associated statement. | |||
10638 | StmtResult ActOnOpenMPParallelForDirective( | |||
10639 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10640 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10641 | /// Called on well-formed '\#pragma omp parallel for simd' after | |||
10642 | /// parsing of the associated statement. | |||
10643 | StmtResult ActOnOpenMPParallelForSimdDirective( | |||
10644 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10645 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10646 | /// Called on well-formed '\#pragma omp parallel master' after | |||
10647 | /// parsing of the associated statement. | |||
10648 | StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses, | |||
10649 | Stmt *AStmt, | |||
10650 | SourceLocation StartLoc, | |||
10651 | SourceLocation EndLoc); | |||
10652 | /// Called on well-formed '\#pragma omp parallel sections' after | |||
10653 | /// parsing of the associated statement. | |||
10654 | StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses, | |||
10655 | Stmt *AStmt, | |||
10656 | SourceLocation StartLoc, | |||
10657 | SourceLocation EndLoc); | |||
10658 | /// Called on well-formed '\#pragma omp task' after parsing of the | |||
10659 | /// associated statement. | |||
10660 | StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses, | |||
10661 | Stmt *AStmt, SourceLocation StartLoc, | |||
10662 | SourceLocation EndLoc); | |||
10663 | /// Called on well-formed '\#pragma omp taskyield'. | |||
10664 | StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc, | |||
10665 | SourceLocation EndLoc); | |||
10666 | /// Called on well-formed '\#pragma omp barrier'. | |||
10667 | StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc, | |||
10668 | SourceLocation EndLoc); | |||
10669 | /// Called on well-formed '\#pragma omp taskwait'. | |||
10670 | StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc, | |||
10671 | SourceLocation EndLoc); | |||
10672 | /// Called on well-formed '\#pragma omp taskgroup'. | |||
10673 | StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses, | |||
10674 | Stmt *AStmt, SourceLocation StartLoc, | |||
10675 | SourceLocation EndLoc); | |||
10676 | /// Called on well-formed '\#pragma omp flush'. | |||
10677 | StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses, | |||
10678 | SourceLocation StartLoc, | |||
10679 | SourceLocation EndLoc); | |||
10680 | /// Called on well-formed '\#pragma omp depobj'. | |||
10681 | StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses, | |||
10682 | SourceLocation StartLoc, | |||
10683 | SourceLocation EndLoc); | |||
10684 | /// Called on well-formed '\#pragma omp scan'. | |||
10685 | StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses, | |||
10686 | SourceLocation StartLoc, | |||
10687 | SourceLocation EndLoc); | |||
10688 | /// Called on well-formed '\#pragma omp ordered' after parsing of the | |||
10689 | /// associated statement. | |||
10690 | StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses, | |||
10691 | Stmt *AStmt, SourceLocation StartLoc, | |||
10692 | SourceLocation EndLoc); | |||
10693 | /// Called on well-formed '\#pragma omp atomic' after parsing of the | |||
10694 | /// associated statement. | |||
10695 | StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses, | |||
10696 | Stmt *AStmt, SourceLocation StartLoc, | |||
10697 | SourceLocation EndLoc); | |||
10698 | /// Called on well-formed '\#pragma omp target' after parsing of the | |||
10699 | /// associated statement. | |||
10700 | StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses, | |||
10701 | Stmt *AStmt, SourceLocation StartLoc, | |||
10702 | SourceLocation EndLoc); | |||
10703 | /// Called on well-formed '\#pragma omp target data' after parsing of | |||
10704 | /// the associated statement. | |||
10705 | StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses, | |||
10706 | Stmt *AStmt, SourceLocation StartLoc, | |||
10707 | SourceLocation EndLoc); | |||
10708 | /// Called on well-formed '\#pragma omp target enter data' after | |||
10709 | /// parsing of the associated statement. | |||
10710 | StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses, | |||
10711 | SourceLocation StartLoc, | |||
10712 | SourceLocation EndLoc, | |||
10713 | Stmt *AStmt); | |||
10714 | /// Called on well-formed '\#pragma omp target exit data' after | |||
10715 | /// parsing of the associated statement. | |||
10716 | StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses, | |||
10717 | SourceLocation StartLoc, | |||
10718 | SourceLocation EndLoc, | |||
10719 | Stmt *AStmt); | |||
10720 | /// Called on well-formed '\#pragma omp target parallel' after | |||
10721 | /// parsing of the associated statement. | |||
10722 | StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses, | |||
10723 | Stmt *AStmt, | |||
10724 | SourceLocation StartLoc, | |||
10725 | SourceLocation EndLoc); | |||
10726 | /// Called on well-formed '\#pragma omp target parallel for' after | |||
10727 | /// parsing of the associated statement. | |||
10728 | StmtResult ActOnOpenMPTargetParallelForDirective( | |||
10729 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10730 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10731 | /// Called on well-formed '\#pragma omp teams' after parsing of the | |||
10732 | /// associated statement. | |||
10733 | StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses, | |||
10734 | Stmt *AStmt, SourceLocation StartLoc, | |||
10735 | SourceLocation EndLoc); | |||
10736 | /// Called on well-formed '\#pragma omp cancellation point'. | |||
10737 | StmtResult | |||
10738 | ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc, | |||
10739 | SourceLocation EndLoc, | |||
10740 | OpenMPDirectiveKind CancelRegion); | |||
10741 | /// Called on well-formed '\#pragma omp cancel'. | |||
10742 | StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses, | |||
10743 | SourceLocation StartLoc, | |||
10744 | SourceLocation EndLoc, | |||
10745 | OpenMPDirectiveKind CancelRegion); | |||
10746 | /// Called on well-formed '\#pragma omp taskloop' after parsing of the | |||
10747 | /// associated statement. | |||
10748 | StmtResult | |||
10749 | ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10750 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10751 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10752 | /// Called on well-formed '\#pragma omp taskloop simd' after parsing of | |||
10753 | /// the associated statement. | |||
10754 | StmtResult ActOnOpenMPTaskLoopSimdDirective( | |||
10755 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10756 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10757 | /// Called on well-formed '\#pragma omp master taskloop' after parsing of the | |||
10758 | /// associated statement. | |||
10759 | StmtResult ActOnOpenMPMasterTaskLoopDirective( | |||
10760 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10761 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10762 | /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of | |||
10763 | /// the associated statement. | |||
10764 | StmtResult ActOnOpenMPMasterTaskLoopSimdDirective( | |||
10765 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10766 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10767 | /// Called on well-formed '\#pragma omp parallel master taskloop' after | |||
10768 | /// parsing of the associated statement. | |||
10769 | StmtResult ActOnOpenMPParallelMasterTaskLoopDirective( | |||
10770 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10771 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10772 | /// Called on well-formed '\#pragma omp parallel master taskloop simd' after | |||
10773 | /// parsing of the associated statement. | |||
10774 | StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective( | |||
10775 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10776 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10777 | /// Called on well-formed '\#pragma omp distribute' after parsing | |||
10778 | /// of the associated statement. | |||
10779 | StmtResult | |||
10780 | ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10781 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10782 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10783 | /// Called on well-formed '\#pragma omp target update'. | |||
10784 | StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses, | |||
10785 | SourceLocation StartLoc, | |||
10786 | SourceLocation EndLoc, | |||
10787 | Stmt *AStmt); | |||
10788 | /// Called on well-formed '\#pragma omp distribute parallel for' after | |||
10789 | /// parsing of the associated statement. | |||
10790 | StmtResult ActOnOpenMPDistributeParallelForDirective( | |||
10791 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10792 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10793 | /// Called on well-formed '\#pragma omp distribute parallel for simd' | |||
10794 | /// after parsing of the associated statement. | |||
10795 | StmtResult ActOnOpenMPDistributeParallelForSimdDirective( | |||
10796 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10797 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10798 | /// Called on well-formed '\#pragma omp distribute simd' after | |||
10799 | /// parsing of the associated statement. | |||
10800 | StmtResult ActOnOpenMPDistributeSimdDirective( | |||
10801 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10802 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10803 | /// Called on well-formed '\#pragma omp target parallel for simd' after | |||
10804 | /// parsing of the associated statement. | |||
10805 | StmtResult ActOnOpenMPTargetParallelForSimdDirective( | |||
10806 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10807 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10808 | /// Called on well-formed '\#pragma omp target simd' after parsing of | |||
10809 | /// the associated statement. | |||
10810 | StmtResult | |||
10811 | ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, | |||
10812 | SourceLocation StartLoc, SourceLocation EndLoc, | |||
10813 | VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10814 | /// Called on well-formed '\#pragma omp teams distribute' after parsing of | |||
10815 | /// the associated statement. | |||
10816 | StmtResult ActOnOpenMPTeamsDistributeDirective( | |||
10817 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10818 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10819 | /// Called on well-formed '\#pragma omp teams distribute simd' after parsing | |||
10820 | /// of the associated statement. | |||
10821 | StmtResult ActOnOpenMPTeamsDistributeSimdDirective( | |||
10822 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10823 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10824 | /// Called on well-formed '\#pragma omp teams distribute parallel for simd' | |||
10825 | /// after parsing of the associated statement. | |||
10826 | StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective( | |||
10827 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10828 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10829 | /// Called on well-formed '\#pragma omp teams distribute parallel for' | |||
10830 | /// after parsing of the associated statement. | |||
10831 | StmtResult ActOnOpenMPTeamsDistributeParallelForDirective( | |||
10832 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10833 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10834 | /// Called on well-formed '\#pragma omp target teams' after parsing of the | |||
10835 | /// associated statement. | |||
10836 | StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses, | |||
10837 | Stmt *AStmt, | |||
10838 | SourceLocation StartLoc, | |||
10839 | SourceLocation EndLoc); | |||
10840 | /// Called on well-formed '\#pragma omp target teams distribute' after parsing | |||
10841 | /// of the associated statement. | |||
10842 | StmtResult ActOnOpenMPTargetTeamsDistributeDirective( | |||
10843 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10844 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10845 | /// Called on well-formed '\#pragma omp target teams distribute parallel for' | |||
10846 | /// after parsing of the associated statement. | |||
10847 | StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective( | |||
10848 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10849 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10850 | /// Called on well-formed '\#pragma omp target teams distribute parallel for | |||
10851 | /// simd' after parsing of the associated statement. | |||
10852 | StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( | |||
10853 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10854 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10855 | /// Called on well-formed '\#pragma omp target teams distribute simd' after | |||
10856 | /// parsing of the associated statement. | |||
10857 | StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective( | |||
10858 | ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, | |||
10859 | SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); | |||
10860 | /// Called on well-formed '\#pragma omp interop'. | |||
10861 | StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses, | |||
10862 | SourceLocation StartLoc, | |||
10863 | SourceLocation EndLoc); | |||
10864 | /// Called on well-formed '\#pragma omp dispatch' after parsing of the | |||
10865 | // /associated statement. | |||
10866 | StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses, | |||
10867 | Stmt *AStmt, SourceLocation StartLoc, | |||
10868 | SourceLocation EndLoc); | |||
10869 | /// Called on well-formed '\#pragma omp masked' after parsing of the | |||
10870 | // /associated statement. | |||
10871 | StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses, | |||
10872 | Stmt *AStmt, SourceLocation StartLoc, | |||
10873 | SourceLocation EndLoc); | |||
10874 | ||||
10875 | /// Checks correctness of linear modifiers. | |||
10876 | bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind, | |||
10877 | SourceLocation LinLoc); | |||
10878 | /// Checks that the specified declaration matches requirements for the linear | |||
10879 | /// decls. | |||
10880 | bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc, | |||
10881 | OpenMPLinearClauseKind LinKind, QualType Type, | |||
10882 | bool IsDeclareSimd = false); | |||
10883 | ||||
10884 | /// Called on well-formed '\#pragma omp declare simd' after parsing of | |||
10885 | /// the associated method/function. | |||
10886 | DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective( | |||
10887 | DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, | |||
10888 | Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds, | |||
10889 | ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears, | |||
10890 | ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR); | |||
10891 | ||||
10892 | /// Checks '\#pragma omp declare variant' variant function and original | |||
10893 | /// functions after parsing of the associated method/function. | |||
10894 | /// \param DG Function declaration to which declare variant directive is | |||
10895 | /// applied to. | |||
10896 | /// \param VariantRef Expression that references the variant function, which | |||
10897 | /// must be used instead of the original one, specified in \p DG. | |||
10898 | /// \param TI The trait info object representing the match clause. | |||
10899 | /// \returns None, if the function/variant function are not compatible with | |||
10900 | /// the pragma, pair of original function/variant ref expression otherwise. | |||
10901 | Optional<std::pair<FunctionDecl *, Expr *>> | |||
10902 | checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef, | |||
10903 | OMPTraitInfo &TI, SourceRange SR); | |||
10904 | ||||
10905 | /// Called on well-formed '\#pragma omp declare variant' after parsing of | |||
10906 | /// the associated method/function. | |||
10907 | /// \param FD Function declaration to which declare variant directive is | |||
10908 | /// applied to. | |||
10909 | /// \param VariantRef Expression that references the variant function, which | |||
10910 | /// must be used instead of the original one, specified in \p DG. | |||
10911 | /// \param TI The context traits associated with the function variant. | |||
10912 | void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef, | |||
10913 | OMPTraitInfo &TI, SourceRange SR); | |||
10914 | ||||
10915 | OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, | |||
10916 | Expr *Expr, | |||
10917 | SourceLocation StartLoc, | |||
10918 | SourceLocation LParenLoc, | |||
10919 | SourceLocation EndLoc); | |||
10920 | /// Called on well-formed 'allocator' clause. | |||
10921 | OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator, | |||
10922 | SourceLocation StartLoc, | |||
10923 | SourceLocation LParenLoc, | |||
10924 | SourceLocation EndLoc); | |||
10925 | /// Called on well-formed 'if' clause. | |||
10926 | OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier, | |||
10927 | Expr *Condition, SourceLocation StartLoc, | |||
10928 | SourceLocation LParenLoc, | |||
10929 | SourceLocation NameModifierLoc, | |||
10930 | SourceLocation ColonLoc, | |||
10931 | SourceLocation EndLoc); | |||
10932 | /// Called on well-formed 'final' clause. | |||
10933 | OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc, | |||
10934 | SourceLocation LParenLoc, | |||
10935 | SourceLocation EndLoc); | |||
10936 | /// Called on well-formed 'num_threads' clause. | |||
10937 | OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads, | |||
10938 | SourceLocation StartLoc, | |||
10939 | SourceLocation LParenLoc, | |||
10940 | SourceLocation EndLoc); | |||
10941 | /// Called on well-formed 'safelen' clause. | |||
10942 | OMPClause *ActOnOpenMPSafelenClause(Expr *Length, | |||
10943 | SourceLocation StartLoc, | |||
10944 | SourceLocation LParenLoc, | |||
10945 | SourceLocation EndLoc); | |||
10946 | /// Called on well-formed 'simdlen' clause. | |||
10947 | OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc, | |||
10948 | SourceLocation LParenLoc, | |||
10949 | SourceLocation EndLoc); | |||
10950 | /// Called on well-form 'sizes' clause. | |||
10951 | OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs, | |||
10952 | SourceLocation StartLoc, | |||
10953 | SourceLocation LParenLoc, | |||
10954 | SourceLocation EndLoc); | |||
10955 | /// Called on well-form 'full' clauses. | |||
10956 | OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc, | |||
10957 | SourceLocation EndLoc); | |||
10958 | /// Called on well-form 'partial' clauses. | |||
10959 | OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc, | |||
10960 | SourceLocation LParenLoc, | |||
10961 | SourceLocation EndLoc); | |||
10962 | /// Called on well-formed 'collapse' clause. | |||
10963 | OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops, | |||
10964 | SourceLocation StartLoc, | |||
10965 | SourceLocation LParenLoc, | |||
10966 | SourceLocation EndLoc); | |||
10967 | /// Called on well-formed 'ordered' clause. | |||
10968 | OMPClause * | |||
10969 | ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc, | |||
10970 | SourceLocation LParenLoc = SourceLocation(), | |||
10971 | Expr *NumForLoops = nullptr); | |||
10972 | /// Called on well-formed 'grainsize' clause. | |||
10973 | OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc, | |||
10974 | SourceLocation LParenLoc, | |||
10975 | SourceLocation EndLoc); | |||
10976 | /// Called on well-formed 'num_tasks' clause. | |||
10977 | OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc, | |||
10978 | SourceLocation LParenLoc, | |||
10979 | SourceLocation EndLoc); | |||
10980 | /// Called on well-formed 'hint' clause. | |||
10981 | OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc, | |||
10982 | SourceLocation LParenLoc, | |||
10983 | SourceLocation EndLoc); | |||
10984 | /// Called on well-formed 'detach' clause. | |||
10985 | OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc, | |||
10986 | SourceLocation LParenLoc, | |||
10987 | SourceLocation EndLoc); | |||
10988 | ||||
10989 | OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind, | |||
10990 | unsigned Argument, | |||
10991 | SourceLocation ArgumentLoc, | |||
10992 | SourceLocation StartLoc, | |||
10993 | SourceLocation LParenLoc, | |||
10994 | SourceLocation EndLoc); | |||
10995 | /// Called on well-formed 'default' clause. | |||
10996 | OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind, | |||
10997 | SourceLocation KindLoc, | |||
10998 | SourceLocation StartLoc, | |||
10999 | SourceLocation LParenLoc, | |||
11000 | SourceLocation EndLoc); | |||
11001 | /// Called on well-formed 'proc_bind' clause. | |||
11002 | OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind, | |||
11003 | SourceLocation KindLoc, | |||
11004 | SourceLocation StartLoc, | |||
11005 | SourceLocation LParenLoc, | |||
11006 | SourceLocation EndLoc); | |||
11007 | /// Called on well-formed 'order' clause. | |||
11008 | OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind, | |||
11009 | SourceLocation KindLoc, | |||
11010 | SourceLocation StartLoc, | |||
11011 | SourceLocation LParenLoc, | |||
11012 | SourceLocation EndLoc); | |||
11013 | /// Called on well-formed 'update' clause. | |||
11014 | OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind, | |||
11015 | SourceLocation KindLoc, | |||
11016 | SourceLocation StartLoc, | |||
11017 | SourceLocation LParenLoc, | |||
11018 | SourceLocation EndLoc); | |||
11019 | ||||
11020 | OMPClause *ActOnOpenMPSingleExprWithArgClause( | |||
11021 | OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr, | |||
11022 | SourceLocation StartLoc, SourceLocation LParenLoc, | |||
11023 | ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc, | |||
11024 | SourceLocation EndLoc); | |||
11025 | /// Called on well-formed 'schedule' clause. | |||
11026 | OMPClause *ActOnOpenMPScheduleClause( | |||
11027 | OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, | |||
11028 | OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, | |||
11029 | SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, | |||
11030 | SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); | |||
11031 | ||||
11032 | OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc, | |||
11033 | SourceLocation EndLoc); | |||
11034 | /// Called on well-formed 'nowait' clause. | |||
11035 | OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc, | |||
11036 | SourceLocation EndLoc); | |||
11037 | /// Called on well-formed 'untied' clause. | |||
11038 | OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc, | |||
11039 | SourceLocation EndLoc); | |||
11040 | /// Called on well-formed 'mergeable' clause. | |||
11041 | OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc, | |||
11042 | SourceLocation EndLoc); | |||
11043 | /// Called on well-formed 'read' clause. | |||
11044 | OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc, | |||
11045 | SourceLocation EndLoc); | |||
11046 | /// Called on well-formed 'write' clause. | |||
11047 | OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc, | |||
11048 | SourceLocation EndLoc); | |||
11049 | /// Called on well-formed 'update' clause. | |||
11050 | OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc, | |||
11051 | SourceLocation EndLoc); | |||
11052 | /// Called on well-formed 'capture' clause. | |||
11053 | OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc, | |||
11054 | SourceLocation EndLoc); | |||
11055 | /// Called on well-formed 'seq_cst' clause. | |||
11056 | OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc, | |||
11057 | SourceLocation EndLoc); | |||
11058 | /// Called on well-formed 'acq_rel' clause. | |||
11059 | OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc, | |||
11060 | SourceLocation EndLoc); | |||
11061 | /// Called on well-formed 'acquire' clause. | |||
11062 | OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc, | |||
11063 | SourceLocation EndLoc); | |||
11064 | /// Called on well-formed 'release' clause. | |||
11065 | OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc, | |||
11066 | SourceLocation EndLoc); | |||
11067 | /// Called on well-formed 'relaxed' clause. | |||
11068 | OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc, | |||
11069 | SourceLocation EndLoc); | |||
11070 | ||||
11071 | /// Called on well-formed 'init' clause. | |||
11072 | OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs, | |||
11073 | bool IsTarget, bool IsTargetSync, | |||
11074 | SourceLocation StartLoc, | |||
11075 | SourceLocation LParenLoc, | |||
11076 | SourceLocation VarLoc, | |||
11077 | SourceLocation EndLoc); | |||
11078 | ||||
11079 | /// Called on well-formed 'use' clause. | |||
11080 | OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc, | |||
11081 | SourceLocation LParenLoc, | |||
11082 | SourceLocation VarLoc, SourceLocation EndLoc); | |||
11083 | ||||
11084 | /// Called on well-formed 'destroy' clause. | |||
11085 | OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc, | |||
11086 | SourceLocation LParenLoc, | |||
11087 | SourceLocation VarLoc, | |||
11088 | SourceLocation EndLoc); | |||
11089 | /// Called on well-formed 'novariants' clause. | |||
11090 | OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition, | |||
11091 | SourceLocation StartLoc, | |||
11092 | SourceLocation LParenLoc, | |||
11093 | SourceLocation EndLoc); | |||
11094 | /// Called on well-formed 'nocontext' clause. | |||
11095 | OMPClause *ActOnOpenMPNocontextClause(Expr *Condition, | |||
11096 | SourceLocation StartLoc, | |||
11097 | SourceLocation LParenLoc, | |||
11098 | SourceLocation EndLoc); | |||
11099 | /// Called on well-formed 'filter' clause. | |||
11100 | OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc, | |||
11101 | SourceLocation LParenLoc, | |||
11102 | SourceLocation EndLoc); | |||
11103 | /// Called on well-formed 'threads' clause. | |||
11104 | OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc, | |||
11105 | SourceLocation EndLoc); | |||
11106 | /// Called on well-formed 'simd' clause. | |||
11107 | OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc, | |||
11108 | SourceLocation EndLoc); | |||
11109 | /// Called on well-formed 'nogroup' clause. | |||
11110 | OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc, | |||
11111 | SourceLocation EndLoc); | |||
11112 | /// Called on well-formed 'unified_address' clause. | |||
11113 | OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc, | |||
11114 | SourceLocation EndLoc); | |||
11115 | ||||
11116 | /// Called on well-formed 'unified_address' clause. | |||
11117 | OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc, | |||
11118 | SourceLocation EndLoc); | |||
11119 | ||||
11120 | /// Called on well-formed 'reverse_offload' clause. | |||
11121 | OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc, | |||
11122 | SourceLocation EndLoc); | |||
11123 | ||||
11124 | /// Called on well-formed 'dynamic_allocators' clause. | |||
11125 | OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc, | |||
11126 | SourceLocation EndLoc); | |||
11127 | ||||
11128 | /// Called on well-formed 'atomic_default_mem_order' clause. | |||
11129 | OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause( | |||
11130 | OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc, | |||
11131 | SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); | |||
11132 | ||||
11133 | OMPClause *ActOnOpenMPVarListClause( | |||
11134 | OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr, | |||
11135 | const OMPVarListLocTy &Locs, SourceLocation ColonLoc, | |||
11136 | CXXScopeSpec &ReductionOrMapperIdScopeSpec, | |||
11137 | DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier, | |||
11138 | ArrayRef<OpenMPMapModifierKind> MapTypeModifiers, | |||
11139 | ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit, | |||
11140 | SourceLocation ExtraModifierLoc, | |||
11141 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
11142 | ArrayRef<SourceLocation> MotionModifiersLoc); | |||
11143 | /// Called on well-formed 'inclusive' clause. | |||
11144 | OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList, | |||
11145 | SourceLocation StartLoc, | |||
11146 | SourceLocation LParenLoc, | |||
11147 | SourceLocation EndLoc); | |||
11148 | /// Called on well-formed 'exclusive' clause. | |||
11149 | OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList, | |||
11150 | SourceLocation StartLoc, | |||
11151 | SourceLocation LParenLoc, | |||
11152 | SourceLocation EndLoc); | |||
11153 | /// Called on well-formed 'allocate' clause. | |||
11154 | OMPClause * | |||
11155 | ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList, | |||
11156 | SourceLocation StartLoc, SourceLocation ColonLoc, | |||
11157 | SourceLocation LParenLoc, SourceLocation EndLoc); | |||
11158 | /// Called on well-formed 'private' clause. | |||
11159 | OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList, | |||
11160 | SourceLocation StartLoc, | |||
11161 | SourceLocation LParenLoc, | |||
11162 | SourceLocation EndLoc); | |||
11163 | /// Called on well-formed 'firstprivate' clause. | |||
11164 | OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList, | |||
11165 | SourceLocation StartLoc, | |||
11166 | SourceLocation LParenLoc, | |||
11167 | SourceLocation EndLoc); | |||
11168 | /// Called on well-formed 'lastprivate' clause. | |||
11169 | OMPClause *ActOnOpenMPLastprivateClause( | |||
11170 | ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind, | |||
11171 | SourceLocation LPKindLoc, SourceLocation ColonLoc, | |||
11172 | SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); | |||
11173 | /// Called on well-formed 'shared' clause. | |||
11174 | OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList, | |||
11175 | SourceLocation StartLoc, | |||
11176 | SourceLocation LParenLoc, | |||
11177 | SourceLocation EndLoc); | |||
11178 | /// Called on well-formed 'reduction' clause. | |||
11179 | OMPClause *ActOnOpenMPReductionClause( | |||
11180 | ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier, | |||
11181 | SourceLocation StartLoc, SourceLocation LParenLoc, | |||
11182 | SourceLocation ModifierLoc, SourceLocation ColonLoc, | |||
11183 | SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, | |||
11184 | const DeclarationNameInfo &ReductionId, | |||
11185 | ArrayRef<Expr *> UnresolvedReductions = llvm::None); | |||
11186 | /// Called on well-formed 'task_reduction' clause. | |||
11187 | OMPClause *ActOnOpenMPTaskReductionClause( | |||
11188 | ArrayRef<Expr *> VarList, SourceLocation StartLoc, | |||
11189 | SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, | |||
11190 | CXXScopeSpec &ReductionIdScopeSpec, | |||
11191 | const DeclarationNameInfo &ReductionId, | |||
11192 | ArrayRef<Expr *> UnresolvedReductions = llvm::None); | |||
11193 | /// Called on well-formed 'in_reduction' clause. | |||
11194 | OMPClause *ActOnOpenMPInReductionClause( | |||
11195 | ArrayRef<Expr *> VarList, SourceLocation StartLoc, | |||
11196 | SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, | |||
11197 | CXXScopeSpec &ReductionIdScopeSpec, | |||
11198 | const DeclarationNameInfo &ReductionId, | |||
11199 | ArrayRef<Expr *> UnresolvedReductions = llvm::None); | |||
11200 | /// Called on well-formed 'linear' clause. | |||
11201 | OMPClause * | |||
11202 | ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step, | |||
11203 | SourceLocation StartLoc, SourceLocation LParenLoc, | |||
11204 | OpenMPLinearClauseKind LinKind, SourceLocation LinLoc, | |||
11205 | SourceLocation ColonLoc, SourceLocation EndLoc); | |||
11206 | /// Called on well-formed 'aligned' clause. | |||
11207 | OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList, | |||
11208 | Expr *Alignment, | |||
11209 | SourceLocation StartLoc, | |||
11210 | SourceLocation LParenLoc, | |||
11211 | SourceLocation ColonLoc, | |||
11212 | SourceLocation EndLoc); | |||
11213 | /// Called on well-formed 'copyin' clause. | |||
11214 | OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList, | |||
11215 | SourceLocation StartLoc, | |||
11216 | SourceLocation LParenLoc, | |||
11217 | SourceLocation EndLoc); | |||
11218 | /// Called on well-formed 'copyprivate' clause. | |||
11219 | OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList, | |||
11220 | SourceLocation StartLoc, | |||
11221 | SourceLocation LParenLoc, | |||
11222 | SourceLocation EndLoc); | |||
11223 | /// Called on well-formed 'flush' pseudo clause. | |||
11224 | OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList, | |||
11225 | SourceLocation StartLoc, | |||
11226 | SourceLocation LParenLoc, | |||
11227 | SourceLocation EndLoc); | |||
11228 | /// Called on well-formed 'depobj' pseudo clause. | |||
11229 | OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc, | |||
11230 | SourceLocation LParenLoc, | |||
11231 | SourceLocation EndLoc); | |||
11232 | /// Called on well-formed 'depend' clause. | |||
11233 | OMPClause * | |||
11234 | ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind, | |||
11235 | SourceLocation DepLoc, SourceLocation ColonLoc, | |||
11236 | ArrayRef<Expr *> VarList, SourceLocation StartLoc, | |||
11237 | SourceLocation LParenLoc, SourceLocation EndLoc); | |||
11238 | /// Called on well-formed 'device' clause. | |||
11239 | OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier, | |||
11240 | Expr *Device, SourceLocation StartLoc, | |||
11241 | SourceLocation LParenLoc, | |||
11242 | SourceLocation ModifierLoc, | |||
11243 | SourceLocation EndLoc); | |||
11244 | /// Called on well-formed 'map' clause. | |||
11245 | OMPClause * | |||
11246 | ActOnOpenMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers, | |||
11247 | ArrayRef<SourceLocation> MapTypeModifiersLoc, | |||
11248 | CXXScopeSpec &MapperIdScopeSpec, | |||
11249 | DeclarationNameInfo &MapperId, | |||
11250 | OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, | |||
11251 | SourceLocation MapLoc, SourceLocation ColonLoc, | |||
11252 | ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, | |||
11253 | ArrayRef<Expr *> UnresolvedMappers = llvm::None); | |||
11254 | /// Called on well-formed 'num_teams' clause. | |||
11255 | OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, | |||
11256 | SourceLocation LParenLoc, | |||
11257 | SourceLocation EndLoc); | |||
11258 | /// Called on well-formed 'thread_limit' clause. | |||
11259 | OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit, | |||
11260 | SourceLocation StartLoc, | |||
11261 | SourceLocation LParenLoc, | |||
11262 | SourceLocation EndLoc); | |||
11263 | /// Called on well-formed 'priority' clause. | |||
11264 | OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc, | |||
11265 | SourceLocation LParenLoc, | |||
11266 | SourceLocation EndLoc); | |||
11267 | /// Called on well-formed 'dist_schedule' clause. | |||
11268 | OMPClause *ActOnOpenMPDistScheduleClause( | |||
11269 | OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, | |||
11270 | SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, | |||
11271 | SourceLocation CommaLoc, SourceLocation EndLoc); | |||
11272 | /// Called on well-formed 'defaultmap' clause. | |||
11273 | OMPClause *ActOnOpenMPDefaultmapClause( | |||
11274 | OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind, | |||
11275 | SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc, | |||
11276 | SourceLocation KindLoc, SourceLocation EndLoc); | |||
11277 | /// Called on well-formed 'to' clause. | |||
11278 | OMPClause * | |||
11279 | ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
11280 | ArrayRef<SourceLocation> MotionModifiersLoc, | |||
11281 | CXXScopeSpec &MapperIdScopeSpec, | |||
11282 | DeclarationNameInfo &MapperId, SourceLocation ColonLoc, | |||
11283 | ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, | |||
11284 | ArrayRef<Expr *> UnresolvedMappers = llvm::None); | |||
11285 | /// Called on well-formed 'from' clause. | |||
11286 | OMPClause * | |||
11287 | ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
11288 | ArrayRef<SourceLocation> MotionModifiersLoc, | |||
11289 | CXXScopeSpec &MapperIdScopeSpec, | |||
11290 | DeclarationNameInfo &MapperId, SourceLocation ColonLoc, | |||
11291 | ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, | |||
11292 | ArrayRef<Expr *> UnresolvedMappers = llvm::None); | |||
11293 | /// Called on well-formed 'use_device_ptr' clause. | |||
11294 | OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList, | |||
11295 | const OMPVarListLocTy &Locs); | |||
11296 | /// Called on well-formed 'use_device_addr' clause. | |||
11297 | OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList, | |||
11298 | const OMPVarListLocTy &Locs); | |||
11299 | /// Called on well-formed 'is_device_ptr' clause. | |||
11300 | OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList, | |||
11301 | const OMPVarListLocTy &Locs); | |||
11302 | /// Called on well-formed 'nontemporal' clause. | |||
11303 | OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList, | |||
11304 | SourceLocation StartLoc, | |||
11305 | SourceLocation LParenLoc, | |||
11306 | SourceLocation EndLoc); | |||
11307 | ||||
11308 | /// Data for list of allocators. | |||
11309 | struct UsesAllocatorsData { | |||
11310 | /// Allocator. | |||
11311 | Expr *Allocator = nullptr; | |||
11312 | /// Allocator traits. | |||
11313 | Expr *AllocatorTraits = nullptr; | |||
11314 | /// Locations of '(' and ')' symbols. | |||
11315 | SourceLocation LParenLoc, RParenLoc; | |||
11316 | }; | |||
11317 | /// Called on well-formed 'uses_allocators' clause. | |||
11318 | OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc, | |||
11319 | SourceLocation LParenLoc, | |||
11320 | SourceLocation EndLoc, | |||
11321 | ArrayRef<UsesAllocatorsData> Data); | |||
11322 | /// Called on well-formed 'affinity' clause. | |||
11323 | OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc, | |||
11324 | SourceLocation LParenLoc, | |||
11325 | SourceLocation ColonLoc, | |||
11326 | SourceLocation EndLoc, Expr *Modifier, | |||
11327 | ArrayRef<Expr *> Locators); | |||
11328 | ||||
11329 | /// The kind of conversion being performed. | |||
11330 | enum CheckedConversionKind { | |||
11331 | /// An implicit conversion. | |||
11332 | CCK_ImplicitConversion, | |||
11333 | /// A C-style cast. | |||
11334 | CCK_CStyleCast, | |||
11335 | /// A functional-style cast. | |||
11336 | CCK_FunctionalCast, | |||
11337 | /// A cast other than a C-style cast. | |||
11338 | CCK_OtherCast, | |||
11339 | /// A conversion for an operand of a builtin overloaded operator. | |||
11340 | CCK_ForBuiltinOverloadedOp | |||
11341 | }; | |||
11342 | ||||
11343 | static bool isCast(CheckedConversionKind CCK) { | |||
11344 | return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast || | |||
11345 | CCK == CCK_OtherCast; | |||
11346 | } | |||
11347 | ||||
11348 | /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit | |||
11349 | /// cast. If there is already an implicit cast, merge into the existing one. | |||
11350 | /// If isLvalue, the result of the cast is an lvalue. | |||
11351 | ExprResult | |||
11352 | ImpCastExprToType(Expr *E, QualType Type, CastKind CK, | |||
11353 | ExprValueKind VK = VK_PRValue, | |||
11354 | const CXXCastPath *BasePath = nullptr, | |||
11355 | CheckedConversionKind CCK = CCK_ImplicitConversion); | |||
11356 | ||||
11357 | /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding | |||
11358 | /// to the conversion from scalar type ScalarTy to the Boolean type. | |||
11359 | static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy); | |||
11360 | ||||
11361 | /// IgnoredValueConversions - Given that an expression's result is | |||
11362 | /// syntactically ignored, perform any conversions that are | |||
11363 | /// required. | |||
11364 | ExprResult IgnoredValueConversions(Expr *E); | |||
11365 | ||||
11366 | // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts | |||
11367 | // functions and arrays to their respective pointers (C99 6.3.2.1). | |||
11368 | ExprResult UsualUnaryConversions(Expr *E); | |||
11369 | ||||
11370 | /// CallExprUnaryConversions - a special case of an unary conversion | |||
11371 | /// performed on a function designator of a call expression. | |||
11372 | ExprResult CallExprUnaryConversions(Expr *E); | |||
11373 | ||||
11374 | // DefaultFunctionArrayConversion - converts functions and arrays | |||
11375 | // to their respective pointers (C99 6.3.2.1). | |||
11376 | ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true); | |||
11377 | ||||
11378 | // DefaultFunctionArrayLvalueConversion - converts functions and | |||
11379 | // arrays to their respective pointers and performs the | |||
11380 | // lvalue-to-rvalue conversion. | |||
11381 | ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, | |||
11382 | bool Diagnose = true); | |||
11383 | ||||
11384 | // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on | |||
11385 | // the operand. This function is a no-op if the operand has a function type | |||
11386 | // or an array type. | |||
11387 | ExprResult DefaultLvalueConversion(Expr *E); | |||
11388 | ||||
11389 | // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | |||
11390 | // do not have a prototype. Integer promotions are performed on each | |||
11391 | // argument, and arguments that have type float are promoted to double. | |||
11392 | ExprResult DefaultArgumentPromotion(Expr *E); | |||
11393 | ||||
11394 | /// If \p E is a prvalue denoting an unmaterialized temporary, materialize | |||
11395 | /// it as an xvalue. In C++98, the result will still be a prvalue, because | |||
11396 | /// we don't have xvalues there. | |||
11397 | ExprResult TemporaryMaterializationConversion(Expr *E); | |||
11398 | ||||
11399 | // Used for emitting the right warning by DefaultVariadicArgumentPromotion | |||
11400 | enum VariadicCallType { | |||
11401 | VariadicFunction, | |||
11402 | VariadicBlock, | |||
11403 | VariadicMethod, | |||
11404 | VariadicConstructor, | |||
11405 | VariadicDoesNotApply | |||
11406 | }; | |||
11407 | ||||
11408 | VariadicCallType getVariadicCallType(FunctionDecl *FDecl, | |||
11409 | const FunctionProtoType *Proto, | |||
11410 | Expr *Fn); | |||
11411 | ||||
11412 | // Used for determining in which context a type is allowed to be passed to a | |||
11413 | // vararg function. | |||
11414 | enum VarArgKind { | |||
11415 | VAK_Valid, | |||
11416 | VAK_ValidInCXX11, | |||
11417 | VAK_Undefined, | |||
11418 | VAK_MSVCUndefined, | |||
11419 | VAK_Invalid | |||
11420 | }; | |||
11421 | ||||
11422 | // Determines which VarArgKind fits an expression. | |||
11423 | VarArgKind isValidVarArgType(const QualType &Ty); | |||
11424 | ||||
11425 | /// Check to see if the given expression is a valid argument to a variadic | |||
11426 | /// function, issuing a diagnostic if not. | |||
11427 | void checkVariadicArgument(const Expr *E, VariadicCallType CT); | |||
11428 | ||||
11429 | /// Check whether the given statement can have musttail applied to it, | |||
11430 | /// issuing a diagnostic and returning false if not. In the success case, | |||
11431 | /// the statement is rewritten to remove implicit nodes from the return | |||
11432 | /// value. | |||
11433 | bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA); | |||
11434 | ||||
11435 | private: | |||
11436 | /// Check whether the given statement can have musttail applied to it, | |||
11437 | /// issuing a diagnostic and returning false if not. | |||
11438 | bool checkMustTailAttr(const Stmt *St, const Attr &MTA); | |||
11439 | ||||
11440 | public: | |||
11441 | /// Check to see if a given expression could have '.c_str()' called on it. | |||
11442 | bool hasCStrMethod(const Expr *E); | |||
11443 | ||||
11444 | /// GatherArgumentsForCall - Collector argument expressions for various | |||
11445 | /// form of call prototypes. | |||
11446 | bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, | |||
11447 | const FunctionProtoType *Proto, | |||
11448 | unsigned FirstParam, ArrayRef<Expr *> Args, | |||
11449 | SmallVectorImpl<Expr *> &AllArgs, | |||
11450 | VariadicCallType CallType = VariadicDoesNotApply, | |||
11451 | bool AllowExplicit = false, | |||
11452 | bool IsListInitialization = false); | |||
11453 | ||||
11454 | // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | |||
11455 | // will create a runtime trap if the resulting type is not a POD type. | |||
11456 | ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, | |||
11457 | FunctionDecl *FDecl); | |||
11458 | ||||
11459 | /// Context in which we're performing a usual arithmetic conversion. | |||
11460 | enum ArithConvKind { | |||
11461 | /// An arithmetic operation. | |||
11462 | ACK_Arithmetic, | |||
11463 | /// A bitwise operation. | |||
11464 | ACK_BitwiseOp, | |||
11465 | /// A comparison. | |||
11466 | ACK_Comparison, | |||
11467 | /// A conditional (?:) operator. | |||
11468 | ACK_Conditional, | |||
11469 | /// A compound assignment expression. | |||
11470 | ACK_CompAssign, | |||
11471 | }; | |||
11472 | ||||
11473 | // UsualArithmeticConversions - performs the UsualUnaryConversions on it's | |||
11474 | // operands and then handles various conversions that are common to binary | |||
11475 | // operators (C99 6.3.1.8). If both operands aren't arithmetic, this | |||
11476 | // routine returns the first non-arithmetic type found. The client is | |||
11477 | // responsible for emitting appropriate error diagnostics. | |||
11478 | QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, | |||
11479 | SourceLocation Loc, ArithConvKind ACK); | |||
11480 | ||||
11481 | /// AssignConvertType - All of the 'assignment' semantic checks return this | |||
11482 | /// enum to indicate whether the assignment was allowed. These checks are | |||
11483 | /// done for simple assignments, as well as initialization, return from | |||
11484 | /// function, argument passing, etc. The query is phrased in terms of a | |||
11485 | /// source and destination type. | |||
11486 | enum AssignConvertType { | |||
11487 | /// Compatible - the types are compatible according to the standard. | |||
11488 | Compatible, | |||
11489 | ||||
11490 | /// PointerToInt - The assignment converts a pointer to an int, which we | |||
11491 | /// accept as an extension. | |||
11492 | PointerToInt, | |||
11493 | ||||
11494 | /// IntToPointer - The assignment converts an int to a pointer, which we | |||
11495 | /// accept as an extension. | |||
11496 | IntToPointer, | |||
11497 | ||||
11498 | /// FunctionVoidPointer - The assignment is between a function pointer and | |||
11499 | /// void*, which the standard doesn't allow, but we accept as an extension. | |||
11500 | FunctionVoidPointer, | |||
11501 | ||||
11502 | /// IncompatiblePointer - The assignment is between two pointers types that | |||
11503 | /// are not compatible, but we accept them as an extension. | |||
11504 | IncompatiblePointer, | |||
11505 | ||||
11506 | /// IncompatibleFunctionPointer - The assignment is between two function | |||
11507 | /// pointers types that are not compatible, but we accept them as an | |||
11508 | /// extension. | |||
11509 | IncompatibleFunctionPointer, | |||
11510 | ||||
11511 | /// IncompatiblePointerSign - The assignment is between two pointers types | |||
11512 | /// which point to integers which have a different sign, but are otherwise | |||
11513 | /// identical. This is a subset of the above, but broken out because it's by | |||
11514 | /// far the most common case of incompatible pointers. | |||
11515 | IncompatiblePointerSign, | |||
11516 | ||||
11517 | /// CompatiblePointerDiscardsQualifiers - The assignment discards | |||
11518 | /// c/v/r qualifiers, which we accept as an extension. | |||
11519 | CompatiblePointerDiscardsQualifiers, | |||
11520 | ||||
11521 | /// IncompatiblePointerDiscardsQualifiers - The assignment | |||
11522 | /// discards qualifiers that we don't permit to be discarded, | |||
11523 | /// like address spaces. | |||
11524 | IncompatiblePointerDiscardsQualifiers, | |||
11525 | ||||
11526 | /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment | |||
11527 | /// changes address spaces in nested pointer types which is not allowed. | |||
11528 | /// For instance, converting __private int ** to __generic int ** is | |||
11529 | /// illegal even though __private could be converted to __generic. | |||
11530 | IncompatibleNestedPointerAddressSpaceMismatch, | |||
11531 | ||||
11532 | /// IncompatibleNestedPointerQualifiers - The assignment is between two | |||
11533 | /// nested pointer types, and the qualifiers other than the first two | |||
11534 | /// levels differ e.g. char ** -> const char **, but we accept them as an | |||
11535 | /// extension. | |||
11536 | IncompatibleNestedPointerQualifiers, | |||
11537 | ||||
11538 | /// IncompatibleVectors - The assignment is between two vector types that | |||
11539 | /// have the same size, which we accept as an extension. | |||
11540 | IncompatibleVectors, | |||
11541 | ||||
11542 | /// IntToBlockPointer - The assignment converts an int to a block | |||
11543 | /// pointer. We disallow this. | |||
11544 | IntToBlockPointer, | |||
11545 | ||||
11546 | /// IncompatibleBlockPointer - The assignment is between two block | |||
11547 | /// pointers types that are not compatible. | |||
11548 | IncompatibleBlockPointer, | |||
11549 | ||||
11550 | /// IncompatibleObjCQualifiedId - The assignment is between a qualified | |||
11551 | /// id type and something else (that is incompatible with it). For example, | |||
11552 | /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol. | |||
11553 | IncompatibleObjCQualifiedId, | |||
11554 | ||||
11555 | /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an | |||
11556 | /// object with __weak qualifier. | |||
11557 | IncompatibleObjCWeakRef, | |||
11558 | ||||
11559 | /// Incompatible - We reject this conversion outright, it is invalid to | |||
11560 | /// represent it in the AST. | |||
11561 | Incompatible | |||
11562 | }; | |||
11563 | ||||
11564 | /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the | |||
11565 | /// assignment conversion type specified by ConvTy. This returns true if the | |||
11566 | /// conversion was invalid or false if the conversion was accepted. | |||
11567 | bool DiagnoseAssignmentResult(AssignConvertType ConvTy, | |||
11568 | SourceLocation Loc, | |||
11569 | QualType DstType, QualType SrcType, | |||
11570 | Expr *SrcExpr, AssignmentAction Action, | |||
11571 | bool *Complained = nullptr); | |||
11572 | ||||
11573 | /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag | |||
11574 | /// enum. If AllowMask is true, then we also allow the complement of a valid | |||
11575 | /// value, to be used as a mask. | |||
11576 | bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, | |||
11577 | bool AllowMask) const; | |||
11578 | ||||
11579 | /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant | |||
11580 | /// integer not in the range of enum values. | |||
11581 | void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, | |||
11582 | Expr *SrcExpr); | |||
11583 | ||||
11584 | /// CheckAssignmentConstraints - Perform type checking for assignment, | |||
11585 | /// argument passing, variable initialization, and function return values. | |||
11586 | /// C99 6.5.16. | |||
11587 | AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, | |||
11588 | QualType LHSType, | |||
11589 | QualType RHSType); | |||
11590 | ||||
11591 | /// Check assignment constraints and optionally prepare for a conversion of | |||
11592 | /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS | |||
11593 | /// is true. | |||
11594 | AssignConvertType CheckAssignmentConstraints(QualType LHSType, | |||
11595 | ExprResult &RHS, | |||
11596 | CastKind &Kind, | |||
11597 | bool ConvertRHS = true); | |||
11598 | ||||
11599 | /// Check assignment constraints for an assignment of RHS to LHSType. | |||
11600 | /// | |||
11601 | /// \param LHSType The destination type for the assignment. | |||
11602 | /// \param RHS The source expression for the assignment. | |||
11603 | /// \param Diagnose If \c true, diagnostics may be produced when checking | |||
11604 | /// for assignability. If a diagnostic is produced, \p RHS will be | |||
11605 | /// set to ExprError(). Note that this function may still return | |||
11606 | /// without producing a diagnostic, even for an invalid assignment. | |||
11607 | /// \param DiagnoseCFAudited If \c true, the target is a function parameter | |||
11608 | /// in an audited Core Foundation API and does not need to be checked | |||
11609 | /// for ARC retain issues. | |||
11610 | /// \param ConvertRHS If \c true, \p RHS will be updated to model the | |||
11611 | /// conversions necessary to perform the assignment. If \c false, | |||
11612 | /// \p Diagnose must also be \c false. | |||
11613 | AssignConvertType CheckSingleAssignmentConstraints( | |||
11614 | QualType LHSType, ExprResult &RHS, bool Diagnose = true, | |||
11615 | bool DiagnoseCFAudited = false, bool ConvertRHS = true); | |||
11616 | ||||
11617 | // If the lhs type is a transparent union, check whether we | |||
11618 | // can initialize the transparent union with the given expression. | |||
11619 | AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType, | |||
11620 | ExprResult &RHS); | |||
11621 | ||||
11622 | bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); | |||
11623 | ||||
11624 | bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); | |||
11625 | ||||
11626 | ExprResult PerformImplicitConversion(Expr *From, QualType ToType, | |||
11627 | AssignmentAction Action, | |||
11628 | bool AllowExplicit = false); | |||
11629 | ExprResult PerformImplicitConversion(Expr *From, QualType ToType, | |||
11630 | const ImplicitConversionSequence& ICS, | |||
11631 | AssignmentAction Action, | |||
11632 | CheckedConversionKind CCK | |||
11633 | = CCK_ImplicitConversion); | |||
11634 | ExprResult PerformImplicitConversion(Expr *From, QualType ToType, | |||
11635 | const StandardConversionSequence& SCS, | |||
11636 | AssignmentAction Action, | |||
11637 | CheckedConversionKind CCK); | |||
11638 | ||||
11639 | ExprResult PerformQualificationConversion( | |||
11640 | Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue, | |||
11641 | CheckedConversionKind CCK = CCK_ImplicitConversion); | |||
11642 | ||||
11643 | /// the following "Check" methods will return a valid/converted QualType | |||
11644 | /// or a null QualType (indicating an error diagnostic was issued). | |||
11645 | ||||
11646 | /// type checking binary operators (subroutines of CreateBuiltinBinOp). | |||
11647 | QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS, | |||
11648 | ExprResult &RHS); | |||
11649 | QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, | |||
11650 | ExprResult &RHS); | |||
11651 | QualType CheckPointerToMemberOperands( // C++ 5.5 | |||
11652 | ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, | |||
11653 | SourceLocation OpLoc, bool isIndirect); | |||
11654 | QualType CheckMultiplyDivideOperands( // C99 6.5.5 | |||
11655 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, | |||
11656 | bool IsDivide); | |||
11657 | QualType CheckRemainderOperands( // C99 6.5.5 | |||
11658 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11659 | bool IsCompAssign = false); | |||
11660 | QualType CheckAdditionOperands( // C99 6.5.6 | |||
11661 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11662 | BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr); | |||
11663 | QualType CheckSubtractionOperands( // C99 6.5.6 | |||
11664 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11665 | QualType* CompLHSTy = nullptr); | |||
11666 | QualType CheckShiftOperands( // C99 6.5.7 | |||
11667 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11668 | BinaryOperatorKind Opc, bool IsCompAssign = false); | |||
11669 | void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE); | |||
11670 | QualType CheckCompareOperands( // C99 6.5.8/9 | |||
11671 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11672 | BinaryOperatorKind Opc); | |||
11673 | QualType CheckBitwiseOperands( // C99 6.5.[10...12] | |||
11674 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11675 | BinaryOperatorKind Opc); | |||
11676 | QualType CheckLogicalOperands( // C99 6.5.[13,14] | |||
11677 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, | |||
11678 | BinaryOperatorKind Opc); | |||
11679 | // CheckAssignmentOperands is used for both simple and compound assignment. | |||
11680 | // For simple assignment, pass both expressions and a null converted type. | |||
11681 | // For compound assignment, pass both expressions and the converted type. | |||
11682 | QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] | |||
11683 | Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType); | |||
11684 | ||||
11685 | ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc, | |||
11686 | UnaryOperatorKind Opcode, Expr *Op); | |||
11687 | ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc, | |||
11688 | BinaryOperatorKind Opcode, | |||
11689 | Expr *LHS, Expr *RHS); | |||
11690 | ExprResult checkPseudoObjectRValue(Expr *E); | |||
11691 | Expr *recreateSyntacticForm(PseudoObjectExpr *E); | |||
11692 | ||||
11693 | QualType CheckConditionalOperands( // C99 6.5.15 | |||
11694 | ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, | |||
11695 | ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc); | |||
11696 | QualType CXXCheckConditionalOperands( // C++ 5.16 | |||
11697 | ExprResult &cond, ExprResult &lhs, ExprResult &rhs, | |||
11698 | ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc); | |||
11699 | QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, | |||
11700 | ExprResult &RHS, | |||
11701 | SourceLocation QuestionLoc); | |||
11702 | QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, | |||
11703 | bool ConvertArgs = true); | |||
11704 | QualType FindCompositePointerType(SourceLocation Loc, | |||
11705 | ExprResult &E1, ExprResult &E2, | |||
11706 | bool ConvertArgs = true) { | |||
11707 | Expr *E1Tmp = E1.get(), *E2Tmp = E2.get(); | |||
11708 | QualType Composite = | |||
11709 | FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs); | |||
11710 | E1 = E1Tmp; | |||
11711 | E2 = E2Tmp; | |||
11712 | return Composite; | |||
11713 | } | |||
11714 | ||||
11715 | QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, | |||
11716 | SourceLocation QuestionLoc); | |||
11717 | ||||
11718 | bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, | |||
11719 | SourceLocation QuestionLoc); | |||
11720 | ||||
11721 | void DiagnoseAlwaysNonNullPointer(Expr *E, | |||
11722 | Expr::NullPointerConstantKind NullType, | |||
11723 | bool IsEqual, SourceRange Range); | |||
11724 | ||||
11725 | /// type checking for vector binary operators. | |||
11726 | QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, | |||
11727 | SourceLocation Loc, bool IsCompAssign, | |||
11728 | bool AllowBothBool, bool AllowBoolConversion); | |||
11729 | QualType GetSignedVectorType(QualType V); | |||
11730 | QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, | |||
11731 | SourceLocation Loc, | |||
11732 | BinaryOperatorKind Opc); | |||
11733 | QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, | |||
11734 | SourceLocation Loc); | |||
11735 | ||||
11736 | /// Type checking for matrix binary operators. | |||
11737 | QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, | |||
11738 | SourceLocation Loc, | |||
11739 | bool IsCompAssign); | |||
11740 | QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, | |||
11741 | SourceLocation Loc, bool IsCompAssign); | |||
11742 | ||||
11743 | bool isValidSveBitcast(QualType srcType, QualType destType); | |||
11744 | ||||
11745 | bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy); | |||
11746 | ||||
11747 | bool areVectorTypesSameSize(QualType srcType, QualType destType); | |||
11748 | bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType); | |||
11749 | bool isLaxVectorConversion(QualType srcType, QualType destType); | |||
11750 | ||||
11751 | /// type checking declaration initializers (C99 6.7.8) | |||
11752 | bool CheckForConstantInitializer(Expr *e, QualType t); | |||
11753 | ||||
11754 | // type checking C++ declaration initializers (C++ [dcl.init]). | |||
11755 | ||||
11756 | /// ReferenceCompareResult - Expresses the result of comparing two | |||
11757 | /// types (cv1 T1 and cv2 T2) to determine their compatibility for the | |||
11758 | /// purposes of initialization by reference (C++ [dcl.init.ref]p4). | |||
11759 | enum ReferenceCompareResult { | |||
11760 | /// Ref_Incompatible - The two types are incompatible, so direct | |||
11761 | /// reference binding is not possible. | |||
11762 | Ref_Incompatible = 0, | |||
11763 | /// Ref_Related - The two types are reference-related, which means | |||
11764 | /// that their unqualified forms (T1 and T2) are either the same | |||
11765 | /// or T1 is a base class of T2. | |||
11766 | Ref_Related, | |||
11767 | /// Ref_Compatible - The two types are reference-compatible. | |||
11768 | Ref_Compatible | |||
11769 | }; | |||
11770 | ||||
11771 | // Fake up a scoped enumeration that still contextually converts to bool. | |||
11772 | struct ReferenceConversionsScope { | |||
11773 | /// The conversions that would be performed on an lvalue of type T2 when | |||
11774 | /// binding a reference of type T1 to it, as determined when evaluating | |||
11775 | /// whether T1 is reference-compatible with T2. | |||
11776 | enum ReferenceConversions { | |||
11777 | Qualification = 0x1, | |||
11778 | NestedQualification = 0x2, | |||
11779 | Function = 0x4, | |||
11780 | DerivedToBase = 0x8, | |||
11781 | ObjC = 0x10, | |||
11782 | ObjCLifetime = 0x20, | |||
11783 | ||||
11784 | LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime | |||
11785 | }; | |||
11786 | }; | |||
11787 | using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions; | |||
11788 | ||||
11789 | ReferenceCompareResult | |||
11790 | CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, | |||
11791 | ReferenceConversions *Conv = nullptr); | |||
11792 | ||||
11793 | ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, | |||
11794 | Expr *CastExpr, CastKind &CastKind, | |||
11795 | ExprValueKind &VK, CXXCastPath &Path); | |||
11796 | ||||
11797 | /// Force an expression with unknown-type to an expression of the | |||
11798 | /// given type. | |||
11799 | ExprResult forceUnknownAnyToType(Expr *E, QualType ToType); | |||
11800 | ||||
11801 | /// Type-check an expression that's being passed to an | |||
11802 | /// __unknown_anytype parameter. | |||
11803 | ExprResult checkUnknownAnyArg(SourceLocation callLoc, | |||
11804 | Expr *result, QualType ¶mType); | |||
11805 | ||||
11806 | // CheckMatrixCast - Check type constraints for matrix casts. | |||
11807 | // We allow casting between matrixes of the same dimensions i.e. when they | |||
11808 | // have the same number of rows and column. Returns true if the cast is | |||
11809 | // invalid. | |||
11810 | bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, | |||
11811 | CastKind &Kind); | |||
11812 | ||||
11813 | // CheckVectorCast - check type constraints for vectors. | |||
11814 | // Since vectors are an extension, there are no C standard reference for this. | |||
11815 | // We allow casting between vectors and integer datatypes of the same size. | |||
11816 | // returns true if the cast is invalid | |||
11817 | bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, | |||
11818 | CastKind &Kind); | |||
11819 | ||||
11820 | /// Prepare `SplattedExpr` for a vector splat operation, adding | |||
11821 | /// implicit casts if necessary. | |||
11822 | ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr); | |||
11823 | ||||
11824 | // CheckExtVectorCast - check type constraints for extended vectors. | |||
11825 | // Since vectors are an extension, there are no C standard reference for this. | |||
11826 | // We allow casting between vectors and integer datatypes of the same size, | |||
11827 | // or vectors and the element type of that vector. | |||
11828 | // returns the cast expr | |||
11829 | ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, | |||
11830 | CastKind &Kind); | |||
11831 | ||||
11832 | ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type, | |||
11833 | SourceLocation LParenLoc, | |||
11834 | Expr *CastExpr, | |||
11835 | SourceLocation RParenLoc); | |||
11836 | ||||
11837 | enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error }; | |||
11838 | ||||
11839 | /// Checks for invalid conversions and casts between | |||
11840 | /// retainable pointers and other pointer kinds for ARC and Weak. | |||
11841 | ARCConversionResult CheckObjCConversion(SourceRange castRange, | |||
11842 | QualType castType, Expr *&op, | |||
11843 | CheckedConversionKind CCK, | |||
11844 | bool Diagnose = true, | |||
11845 | bool DiagnoseCFAudited = false, | |||
11846 | BinaryOperatorKind Opc = BO_PtrMemD | |||
11847 | ); | |||
11848 | ||||
11849 | Expr *stripARCUnbridgedCast(Expr *e); | |||
11850 | void diagnoseARCUnbridgedCast(Expr *e); | |||
11851 | ||||
11852 | bool CheckObjCARCUnavailableWeakConversion(QualType castType, | |||
11853 | QualType ExprType); | |||
11854 | ||||
11855 | /// checkRetainCycles - Check whether an Objective-C message send | |||
11856 | /// might create an obvious retain cycle. | |||
11857 | void checkRetainCycles(ObjCMessageExpr *msg); | |||
11858 | void checkRetainCycles(Expr *receiver, Expr *argument); | |||
11859 | void checkRetainCycles(VarDecl *Var, Expr *Init); | |||
11860 | ||||
11861 | /// checkUnsafeAssigns - Check whether +1 expr is being assigned | |||
11862 | /// to weak/__unsafe_unretained type. | |||
11863 | bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS); | |||
11864 | ||||
11865 | /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned | |||
11866 | /// to weak/__unsafe_unretained expression. | |||
11867 | void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS); | |||
11868 | ||||
11869 | /// CheckMessageArgumentTypes - Check types in an Obj-C message send. | |||
11870 | /// \param Method - May be null. | |||
11871 | /// \param [out] ReturnType - The return type of the send. | |||
11872 | /// \return true iff there were any incompatible types. | |||
11873 | bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType, | |||
11874 | MultiExprArg Args, Selector Sel, | |||
11875 | ArrayRef<SourceLocation> SelectorLocs, | |||
11876 | ObjCMethodDecl *Method, bool isClassMessage, | |||
11877 | bool isSuperMessage, SourceLocation lbrac, | |||
11878 | SourceLocation rbrac, SourceRange RecRange, | |||
11879 | QualType &ReturnType, ExprValueKind &VK); | |||
11880 | ||||
11881 | /// Determine the result of a message send expression based on | |||
11882 | /// the type of the receiver, the method expected to receive the message, | |||
11883 | /// and the form of the message send. | |||
11884 | QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType, | |||
11885 | ObjCMethodDecl *Method, bool isClassMessage, | |||
11886 | bool isSuperMessage); | |||
11887 | ||||
11888 | /// If the given expression involves a message send to a method | |||
11889 | /// with a related result type, emit a note describing what happened. | |||
11890 | void EmitRelatedResultTypeNote(const Expr *E); | |||
11891 | ||||
11892 | /// Given that we had incompatible pointer types in a return | |||
11893 | /// statement, check whether we're in a method with a related result | |||
11894 | /// type, and if so, emit a note describing what happened. | |||
11895 | void EmitRelatedResultTypeNoteForReturn(QualType destType); | |||
11896 | ||||
11897 | class ConditionResult { | |||
11898 | Decl *ConditionVar; | |||
11899 | FullExprArg Condition; | |||
11900 | bool Invalid; | |||
11901 | bool HasKnownValue; | |||
11902 | bool KnownValue; | |||
11903 | ||||
11904 | friend class Sema; | |||
11905 | ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition, | |||
11906 | bool IsConstexpr) | |||
11907 | : ConditionVar(ConditionVar), Condition(Condition), Invalid(false), | |||
11908 | HasKnownValue(IsConstexpr && Condition.get() && | |||
11909 | !Condition.get()->isValueDependent()), | |||
11910 | KnownValue(HasKnownValue && | |||
11911 | !!Condition.get()->EvaluateKnownConstInt(S.Context)) {} | |||
11912 | explicit ConditionResult(bool Invalid) | |||
11913 | : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid), | |||
11914 | HasKnownValue(false), KnownValue(false) {} | |||
11915 | ||||
11916 | public: | |||
11917 | ConditionResult() : ConditionResult(false) {} | |||
11918 | bool isInvalid() const { return Invalid; } | |||
11919 | std::pair<VarDecl *, Expr *> get() const { | |||
11920 | return std::make_pair(cast_or_null<VarDecl>(ConditionVar), | |||
11921 | Condition.get()); | |||
11922 | } | |||
11923 | llvm::Optional<bool> getKnownValue() const { | |||
11924 | if (!HasKnownValue) | |||
11925 | return None; | |||
11926 | return KnownValue; | |||
11927 | } | |||
11928 | }; | |||
11929 | static ConditionResult ConditionError() { return ConditionResult(true); } | |||
11930 | ||||
11931 | enum class ConditionKind { | |||
11932 | Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'. | |||
11933 | ConstexprIf, ///< A constant boolean condition from 'if constexpr'. | |||
11934 | Switch ///< An integral condition for a 'switch' statement. | |||
11935 | }; | |||
11936 | ||||
11937 | ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, | |||
11938 | Expr *SubExpr, ConditionKind CK); | |||
11939 | ||||
11940 | ConditionResult ActOnConditionVariable(Decl *ConditionVar, | |||
11941 | SourceLocation StmtLoc, | |||
11942 | ConditionKind CK); | |||
11943 | ||||
11944 | DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D); | |||
11945 | ||||
11946 | ExprResult CheckConditionVariable(VarDecl *ConditionVar, | |||
11947 | SourceLocation StmtLoc, | |||
11948 | ConditionKind CK); | |||
11949 | ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond); | |||
11950 | ||||
11951 | /// CheckBooleanCondition - Diagnose problems involving the use of | |||
11952 | /// the given expression as a boolean condition (e.g. in an if | |||
11953 | /// statement). Also performs the standard function and array | |||
11954 | /// decays, possibly changing the input variable. | |||
11955 | /// | |||
11956 | /// \param Loc - A location associated with the condition, e.g. the | |||
11957 | /// 'if' keyword. | |||
11958 | /// \return true iff there were any errors | |||
11959 | ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E, | |||
11960 | bool IsConstexpr = false); | |||
11961 | ||||
11962 | /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression | |||
11963 | /// found in an explicit(bool) specifier. | |||
11964 | ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E); | |||
11965 | ||||
11966 | /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier. | |||
11967 | /// Returns true if the explicit specifier is now resolved. | |||
11968 | bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec); | |||
11969 | ||||
11970 | /// DiagnoseAssignmentAsCondition - Given that an expression is | |||
11971 | /// being used as a boolean condition, warn if it's an assignment. | |||
11972 | void DiagnoseAssignmentAsCondition(Expr *E); | |||
11973 | ||||
11974 | /// Redundant parentheses over an equality comparison can indicate | |||
11975 | /// that the user intended an assignment used as condition. | |||
11976 | void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE); | |||
11977 | ||||
11978 | /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. | |||
11979 | ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false); | |||
11980 | ||||
11981 | /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have | |||
11982 | /// the specified width and sign. If an overflow occurs, detect it and emit | |||
11983 | /// the specified diagnostic. | |||
11984 | void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, | |||
11985 | unsigned NewWidth, bool NewSign, | |||
11986 | SourceLocation Loc, unsigned DiagID); | |||
11987 | ||||
11988 | /// Checks that the Objective-C declaration is declared in the global scope. | |||
11989 | /// Emits an error and marks the declaration as invalid if it's not declared | |||
11990 | /// in the global scope. | |||
11991 | bool CheckObjCDeclScope(Decl *D); | |||
11992 | ||||
11993 | /// Abstract base class used for diagnosing integer constant | |||
11994 | /// expression violations. | |||
11995 | class VerifyICEDiagnoser { | |||
11996 | public: | |||
11997 | bool Suppress; | |||
11998 | ||||
11999 | VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { } | |||
12000 | ||||
12001 | virtual SemaDiagnosticBuilder | |||
12002 | diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T); | |||
12003 | virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S, | |||
12004 | SourceLocation Loc) = 0; | |||
12005 | virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc); | |||
12006 | virtual ~VerifyICEDiagnoser() {} | |||
12007 | }; | |||
12008 | ||||
12009 | enum AllowFoldKind { | |||
12010 | NoFold, | |||
12011 | AllowFold, | |||
12012 | }; | |||
12013 | ||||
12014 | /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE, | |||
12015 | /// and reports the appropriate diagnostics. Returns false on success. | |||
12016 | /// Can optionally return the value of the expression. | |||
12017 | ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, | |||
12018 | VerifyICEDiagnoser &Diagnoser, | |||
12019 | AllowFoldKind CanFold = NoFold); | |||
12020 | ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, | |||
12021 | unsigned DiagID, | |||
12022 | AllowFoldKind CanFold = NoFold); | |||
12023 | ExprResult VerifyIntegerConstantExpression(Expr *E, | |||
12024 | llvm::APSInt *Result = nullptr, | |||
12025 | AllowFoldKind CanFold = NoFold); | |||
12026 | ExprResult VerifyIntegerConstantExpression(Expr *E, | |||
12027 | AllowFoldKind CanFold = NoFold) { | |||
12028 | return VerifyIntegerConstantExpression(E, nullptr, CanFold); | |||
12029 | } | |||
12030 | ||||
12031 | /// VerifyBitField - verifies that a bit field expression is an ICE and has | |||
12032 | /// the correct width, and that the field type is valid. | |||
12033 | /// Returns false on success. | |||
12034 | /// Can optionally return whether the bit-field is of width 0 | |||
12035 | ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, | |||
12036 | QualType FieldTy, bool IsMsStruct, | |||
12037 | Expr *BitWidth, bool *ZeroWidth = nullptr); | |||
12038 | ||||
12039 | private: | |||
12040 | unsigned ForceCUDAHostDeviceDepth = 0; | |||
12041 | ||||
12042 | public: | |||
12043 | /// Increments our count of the number of times we've seen a pragma forcing | |||
12044 | /// functions to be __host__ __device__. So long as this count is greater | |||
12045 | /// than zero, all functions encountered will be __host__ __device__. | |||
12046 | void PushForceCUDAHostDevice(); | |||
12047 | ||||
12048 | /// Decrements our count of the number of times we've seen a pragma forcing | |||
12049 | /// functions to be __host__ __device__. Returns false if the count is 0 | |||
12050 | /// before incrementing, so you can emit an error. | |||
12051 | bool PopForceCUDAHostDevice(); | |||
12052 | ||||
12053 | /// Diagnostics that are emitted only if we discover that the given function | |||
12054 | /// must be codegen'ed. Because handling these correctly adds overhead to | |||
12055 | /// compilation, this is currently only enabled for CUDA compilations. | |||
12056 | llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>, | |||
12057 | std::vector<PartialDiagnosticAt>> | |||
12058 | DeviceDeferredDiags; | |||
12059 | ||||
12060 | /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the | |||
12061 | /// key in a hashtable, both the FD and location are hashed. | |||
12062 | struct FunctionDeclAndLoc { | |||
12063 | CanonicalDeclPtr<FunctionDecl> FD; | |||
12064 | SourceLocation Loc; | |||
12065 | }; | |||
12066 | ||||
12067 | /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a | |||
12068 | /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the | |||
12069 | /// same deferred diag twice. | |||
12070 | llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags; | |||
12071 | ||||
12072 | /// An inverse call graph, mapping known-emitted functions to one of their | |||
12073 | /// known-emitted callers (plus the location of the call). | |||
12074 | /// | |||
12075 | /// Functions that we can tell a priori must be emitted aren't added to this | |||
12076 | /// map. | |||
12077 | llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>, | |||
12078 | /* Caller = */ FunctionDeclAndLoc> | |||
12079 | DeviceKnownEmittedFns; | |||
12080 | ||||
12081 | /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current | |||
12082 | /// context is "used as device code". | |||
12083 | /// | |||
12084 | /// - If CurContext is a __host__ function, does not emit any diagnostics | |||
12085 | /// unless \p EmitOnBothSides is true. | |||
12086 | /// - If CurContext is a __device__ or __global__ function, emits the | |||
12087 | /// diagnostics immediately. | |||
12088 | /// - If CurContext is a __host__ __device__ function and we are compiling for | |||
12089 | /// the device, creates a diagnostic which is emitted if and when we realize | |||
12090 | /// that the function will be codegen'ed. | |||
12091 | /// | |||
12092 | /// Example usage: | |||
12093 | /// | |||
12094 | /// // Variable-length arrays are not allowed in CUDA device code. | |||
12095 | /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget()) | |||
12096 | /// return ExprError(); | |||
12097 | /// // Otherwise, continue parsing as normal. | |||
12098 | SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc, | |||
12099 | unsigned DiagID); | |||
12100 | ||||
12101 | /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current | |||
12102 | /// context is "used as host code". | |||
12103 | /// | |||
12104 | /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched. | |||
12105 | SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID); | |||
12106 | ||||
12107 | /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current | |||
12108 | /// context is "used as device code". | |||
12109 | /// | |||
12110 | /// - If CurContext is a `declare target` function or it is known that the | |||
12111 | /// function is emitted for the device, emits the diagnostics immediately. | |||
12112 | /// - If CurContext is a non-`declare target` function and we are compiling | |||
12113 | /// for the device, creates a diagnostic which is emitted if and when we | |||
12114 | /// realize that the function will be codegen'ed. | |||
12115 | /// | |||
12116 | /// Example usage: | |||
12117 | /// | |||
12118 | /// // Variable-length arrays are not allowed in NVPTX device code. | |||
12119 | /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported)) | |||
12120 | /// return ExprError(); | |||
12121 | /// // Otherwise, continue parsing as normal. | |||
12122 | SemaDiagnosticBuilder | |||
12123 | diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD); | |||
12124 | ||||
12125 | /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current | |||
12126 | /// context is "used as host code". | |||
12127 | /// | |||
12128 | /// - If CurContext is a `declare target` function or it is known that the | |||
12129 | /// function is emitted for the host, emits the diagnostics immediately. | |||
12130 | /// - If CurContext is a non-host function, just ignore it. | |||
12131 | /// | |||
12132 | /// Example usage: | |||
12133 | /// | |||
12134 | /// // Variable-length arrays are not allowed in NVPTX device code. | |||
12135 | /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported)) | |||
12136 | /// return ExprError(); | |||
12137 | /// // Otherwise, continue parsing as normal. | |||
12138 | SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc, | |||
12139 | unsigned DiagID, FunctionDecl *FD); | |||
12140 | ||||
12141 | SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID, | |||
12142 | FunctionDecl *FD = nullptr); | |||
12143 | SemaDiagnosticBuilder targetDiag(SourceLocation Loc, | |||
12144 | const PartialDiagnostic &PD, | |||
12145 | FunctionDecl *FD = nullptr) { | |||
12146 | return targetDiag(Loc, PD.getDiagID(), FD) << PD; | |||
12147 | } | |||
12148 | ||||
12149 | /// Check if the expression is allowed to be used in expressions for the | |||
12150 | /// offloading devices. | |||
12151 | void checkDeviceDecl(ValueDecl *D, SourceLocation Loc); | |||
12152 | ||||
12153 | enum CUDAFunctionTarget { | |||
12154 | CFT_Device, | |||
12155 | CFT_Global, | |||
12156 | CFT_Host, | |||
12157 | CFT_HostDevice, | |||
12158 | CFT_InvalidTarget | |||
12159 | }; | |||
12160 | ||||
12161 | /// Determines whether the given function is a CUDA device/host/kernel/etc. | |||
12162 | /// function. | |||
12163 | /// | |||
12164 | /// Use this rather than examining the function's attributes yourself -- you | |||
12165 | /// will get it wrong. Returns CFT_Host if D is null. | |||
12166 | CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D, | |||
12167 | bool IgnoreImplicitHDAttr = false); | |||
12168 | CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs); | |||
12169 | ||||
12170 | enum CUDAVariableTarget { | |||
12171 | CVT_Device, /// Emitted on device side with a shadow variable on host side | |||
12172 | CVT_Host, /// Emitted on host side only | |||
12173 | CVT_Both, /// Emitted on both sides with different addresses | |||
12174 | CVT_Unified, /// Emitted as a unified address, e.g. managed variables | |||
12175 | }; | |||
12176 | /// Determines whether the given variable is emitted on host or device side. | |||
12177 | CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D); | |||
12178 | ||||
12179 | /// Gets the CUDA target for the current context. | |||
12180 | CUDAFunctionTarget CurrentCUDATarget() { | |||
12181 | return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext)); | |||
12182 | } | |||
12183 | ||||
12184 | static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D); | |||
12185 | ||||
12186 | // CUDA function call preference. Must be ordered numerically from | |||
12187 | // worst to best. | |||
12188 | enum CUDAFunctionPreference { | |||
12189 | CFP_Never, // Invalid caller/callee combination. | |||
12190 | CFP_WrongSide, // Calls from host-device to host or device | |||
12191 | // function that do not match current compilation | |||
12192 | // mode. | |||
12193 | CFP_HostDevice, // Any calls to host/device functions. | |||
12194 | CFP_SameSide, // Calls from host-device to host or device | |||
12195 | // function matching current compilation mode. | |||
12196 | CFP_Native, // host-to-host or device-to-device calls. | |||
12197 | }; | |||
12198 | ||||
12199 | /// Identifies relative preference of a given Caller/Callee | |||
12200 | /// combination, based on their host/device attributes. | |||
12201 | /// \param Caller function which needs address of \p Callee. | |||
12202 | /// nullptr in case of global context. | |||
12203 | /// \param Callee target function | |||
12204 | /// | |||
12205 | /// \returns preference value for particular Caller/Callee combination. | |||
12206 | CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller, | |||
12207 | const FunctionDecl *Callee); | |||
12208 | ||||
12209 | /// Determines whether Caller may invoke Callee, based on their CUDA | |||
12210 | /// host/device attributes. Returns false if the call is not allowed. | |||
12211 | /// | |||
12212 | /// Note: Will return true for CFP_WrongSide calls. These may appear in | |||
12213 | /// semantically correct CUDA programs, but only if they're never codegen'ed. | |||
12214 | bool IsAllowedCUDACall(const FunctionDecl *Caller, | |||
12215 | const FunctionDecl *Callee) { | |||
12216 | return IdentifyCUDAPreference(Caller, Callee) != CFP_Never; | |||
12217 | } | |||
12218 | ||||
12219 | /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD, | |||
12220 | /// depending on FD and the current compilation settings. | |||
12221 | void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD, | |||
12222 | const LookupResult &Previous); | |||
12223 | ||||
12224 | /// May add implicit CUDAConstantAttr attribute to VD, depending on VD | |||
12225 | /// and current compilation settings. | |||
12226 | void MaybeAddCUDAConstantAttr(VarDecl *VD); | |||
12227 | ||||
12228 | public: | |||
12229 | /// Check whether we're allowed to call Callee from the current context. | |||
12230 | /// | |||
12231 | /// - If the call is never allowed in a semantically-correct program | |||
12232 | /// (CFP_Never), emits an error and returns false. | |||
12233 | /// | |||
12234 | /// - If the call is allowed in semantically-correct programs, but only if | |||
12235 | /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to | |||
12236 | /// be emitted if and when the caller is codegen'ed, and returns true. | |||
12237 | /// | |||
12238 | /// Will only create deferred diagnostics for a given SourceLocation once, | |||
12239 | /// so you can safely call this multiple times without generating duplicate | |||
12240 | /// deferred errors. | |||
12241 | /// | |||
12242 | /// - Otherwise, returns true without emitting any diagnostics. | |||
12243 | bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee); | |||
12244 | ||||
12245 | void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture); | |||
12246 | ||||
12247 | /// Set __device__ or __host__ __device__ attributes on the given lambda | |||
12248 | /// operator() method. | |||
12249 | /// | |||
12250 | /// CUDA lambdas by default is host device function unless it has explicit | |||
12251 | /// host or device attribute. | |||
12252 | void CUDASetLambdaAttrs(CXXMethodDecl *Method); | |||
12253 | ||||
12254 | /// Finds a function in \p Matches with highest calling priority | |||
12255 | /// from \p Caller context and erases all functions with lower | |||
12256 | /// calling priority. | |||
12257 | void EraseUnwantedCUDAMatches( | |||
12258 | const FunctionDecl *Caller, | |||
12259 | SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches); | |||
12260 | ||||
12261 | /// Given a implicit special member, infer its CUDA target from the | |||
12262 | /// calls it needs to make to underlying base/field special members. | |||
12263 | /// \param ClassDecl the class for which the member is being created. | |||
12264 | /// \param CSM the kind of special member. | |||
12265 | /// \param MemberDecl the special member itself. | |||
12266 | /// \param ConstRHS true if this is a copy operation with a const object on | |||
12267 | /// its RHS. | |||
12268 | /// \param Diagnose true if this call should emit diagnostics. | |||
12269 | /// \return true if there was an error inferring. | |||
12270 | /// The result of this call is implicit CUDA target attribute(s) attached to | |||
12271 | /// the member declaration. | |||
12272 | bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, | |||
12273 | CXXSpecialMember CSM, | |||
12274 | CXXMethodDecl *MemberDecl, | |||
12275 | bool ConstRHS, | |||
12276 | bool Diagnose); | |||
12277 | ||||
12278 | /// \return true if \p CD can be considered empty according to CUDA | |||
12279 | /// (E.2.3.1 in CUDA 7.5 Programming guide). | |||
12280 | bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD); | |||
12281 | bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD); | |||
12282 | ||||
12283 | // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In | |||
12284 | // case of error emits appropriate diagnostic and invalidates \p Var. | |||
12285 | // | |||
12286 | // \details CUDA allows only empty constructors as initializers for global | |||
12287 | // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all | |||
12288 | // __shared__ variables whether they are local or not (they all are implicitly | |||
12289 | // static in CUDA). One exception is that CUDA allows constant initializers | |||
12290 | // for __constant__ and __device__ variables. | |||
12291 | void checkAllowedCUDAInitializer(VarDecl *VD); | |||
12292 | ||||
12293 | /// Check whether NewFD is a valid overload for CUDA. Emits | |||
12294 | /// diagnostics and invalidates NewFD if not. | |||
12295 | void checkCUDATargetOverload(FunctionDecl *NewFD, | |||
12296 | const LookupResult &Previous); | |||
12297 | /// Copies target attributes from the template TD to the function FD. | |||
12298 | void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD); | |||
12299 | ||||
12300 | /// Returns the name of the launch configuration function. This is the name | |||
12301 | /// of the function that will be called to configure kernel call, with the | |||
12302 | /// parameters specified via <<<>>>. | |||
12303 | std::string getCudaConfigureFuncName() const; | |||
12304 | ||||
12305 | /// \name Code completion | |||
12306 | //@{ | |||
12307 | /// Describes the context in which code completion occurs. | |||
12308 | enum ParserCompletionContext { | |||
12309 | /// Code completion occurs at top-level or namespace context. | |||
12310 | PCC_Namespace, | |||
12311 | /// Code completion occurs within a class, struct, or union. | |||
12312 | PCC_Class, | |||
12313 | /// Code completion occurs within an Objective-C interface, protocol, | |||
12314 | /// or category. | |||
12315 | PCC_ObjCInterface, | |||
12316 | /// Code completion occurs within an Objective-C implementation or | |||
12317 | /// category implementation | |||
12318 | PCC_ObjCImplementation, | |||
12319 | /// Code completion occurs within the list of instance variables | |||
12320 | /// in an Objective-C interface, protocol, category, or implementation. | |||
12321 | PCC_ObjCInstanceVariableList, | |||
12322 | /// Code completion occurs following one or more template | |||
12323 | /// headers. | |||
12324 | PCC_Template, | |||
12325 | /// Code completion occurs following one or more template | |||
12326 | /// headers within a class. | |||
12327 | PCC_MemberTemplate, | |||
12328 | /// Code completion occurs within an expression. | |||
12329 | PCC_Expression, | |||
12330 | /// Code completion occurs within a statement, which may | |||
12331 | /// also be an expression or a declaration. | |||
12332 | PCC_Statement, | |||
12333 | /// Code completion occurs at the beginning of the | |||
12334 | /// initialization statement (or expression) in a for loop. | |||
12335 | PCC_ForInit, | |||
12336 | /// Code completion occurs within the condition of an if, | |||
12337 | /// while, switch, or for statement. | |||
12338 | PCC_Condition, | |||
12339 | /// Code completion occurs within the body of a function on a | |||
12340 | /// recovery path, where we do not have a specific handle on our position | |||
12341 | /// in the grammar. | |||
12342 | PCC_RecoveryInFunction, | |||
12343 | /// Code completion occurs where only a type is permitted. | |||
12344 | PCC_Type, | |||
12345 | /// Code completion occurs in a parenthesized expression, which | |||
12346 | /// might also be a type cast. | |||
12347 | PCC_ParenthesizedExpression, | |||
12348 | /// Code completion occurs within a sequence of declaration | |||
12349 | /// specifiers within a function, method, or block. | |||
12350 | PCC_LocalDeclarationSpecifiers | |||
12351 | }; | |||
12352 | ||||
12353 | void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path); | |||
12354 | void CodeCompleteOrdinaryName(Scope *S, | |||
12355 | ParserCompletionContext CompletionContext); | |||
12356 | void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, | |||
12357 | bool AllowNonIdentifiers, | |||
12358 | bool AllowNestedNameSpecifiers); | |||
12359 | ||||
12360 | struct CodeCompleteExpressionData; | |||
12361 | void CodeCompleteExpression(Scope *S, | |||
12362 | const CodeCompleteExpressionData &Data); | |||
12363 | void CodeCompleteExpression(Scope *S, QualType PreferredType, | |||
12364 | bool IsParenthesized = false); | |||
12365 | void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase, | |||
12366 | SourceLocation OpLoc, bool IsArrow, | |||
12367 | bool IsBaseExprStatement, | |||
12368 | QualType PreferredType); | |||
12369 | void CodeCompletePostfixExpression(Scope *S, ExprResult LHS, | |||
12370 | QualType PreferredType); | |||
12371 | void CodeCompleteTag(Scope *S, unsigned TagSpec); | |||
12372 | void CodeCompleteTypeQualifiers(DeclSpec &DS); | |||
12373 | void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D, | |||
12374 | const VirtSpecifiers *VS = nullptr); | |||
12375 | void CodeCompleteBracketDeclarator(Scope *S); | |||
12376 | void CodeCompleteCase(Scope *S); | |||
12377 | /// Determines the preferred type of the current function argument, by | |||
12378 | /// examining the signatures of all possible overloads. | |||
12379 | /// Returns null if unknown or ambiguous, or if code completion is off. | |||
12380 | /// | |||
12381 | /// If the code completion point has been reached, also reports the function | |||
12382 | /// signatures that were considered. | |||
12383 | /// | |||
12384 | /// FIXME: rename to GuessCallArgumentType to reduce confusion. | |||
12385 | QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args, | |||
12386 | SourceLocation OpenParLoc); | |||
12387 | QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type, | |||
12388 | SourceLocation Loc, | |||
12389 | ArrayRef<Expr *> Args, | |||
12390 | SourceLocation OpenParLoc); | |||
12391 | QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl, | |||
12392 | CXXScopeSpec SS, | |||
12393 | ParsedType TemplateTypeTy, | |||
12394 | ArrayRef<Expr *> ArgExprs, | |||
12395 | IdentifierInfo *II, | |||
12396 | SourceLocation OpenParLoc); | |||
12397 | void CodeCompleteInitializer(Scope *S, Decl *D); | |||
12398 | /// Trigger code completion for a record of \p BaseType. \p InitExprs are | |||
12399 | /// expressions in the initializer list seen so far and \p D is the current | |||
12400 | /// Designation being parsed. | |||
12401 | void CodeCompleteDesignator(const QualType BaseType, | |||
12402 | llvm::ArrayRef<Expr *> InitExprs, | |||
12403 | const Designation &D); | |||
12404 | void CodeCompleteAfterIf(Scope *S, bool IsBracedThen); | |||
12405 | ||||
12406 | void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext, | |||
12407 | bool IsUsingDeclaration, QualType BaseType, | |||
12408 | QualType PreferredType); | |||
12409 | void CodeCompleteUsing(Scope *S); | |||
12410 | void CodeCompleteUsingDirective(Scope *S); | |||
12411 | void CodeCompleteNamespaceDecl(Scope *S); | |||
12412 | void CodeCompleteNamespaceAliasDecl(Scope *S); | |||
12413 | void CodeCompleteOperatorName(Scope *S); | |||
12414 | void CodeCompleteConstructorInitializer( | |||
12415 | Decl *Constructor, | |||
12416 | ArrayRef<CXXCtorInitializer *> Initializers); | |||
12417 | ||||
12418 | void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, | |||
12419 | bool AfterAmpersand); | |||
12420 | void CodeCompleteAfterFunctionEquals(Declarator &D); | |||
12421 | ||||
12422 | void CodeCompleteObjCAtDirective(Scope *S); | |||
12423 | void CodeCompleteObjCAtVisibility(Scope *S); | |||
12424 | void CodeCompleteObjCAtStatement(Scope *S); | |||
12425 | void CodeCompleteObjCAtExpression(Scope *S); | |||
12426 | void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); | |||
12427 | void CodeCompleteObjCPropertyGetter(Scope *S); | |||
12428 | void CodeCompleteObjCPropertySetter(Scope *S); | |||
12429 | void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, | |||
12430 | bool IsParameter); | |||
12431 | void CodeCompleteObjCMessageReceiver(Scope *S); | |||
12432 | void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, | |||
12433 | ArrayRef<IdentifierInfo *> SelIdents, | |||
12434 | bool AtArgumentExpression); | |||
12435 | void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, | |||
12436 | ArrayRef<IdentifierInfo *> SelIdents, | |||
12437 | bool AtArgumentExpression, | |||
12438 | bool IsSuper = false); | |||
12439 | void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, | |||
12440 | ArrayRef<IdentifierInfo *> SelIdents, | |||
12441 | bool AtArgumentExpression, | |||
12442 | ObjCInterfaceDecl *Super = nullptr); | |||
12443 | void CodeCompleteObjCForCollection(Scope *S, | |||
12444 | DeclGroupPtrTy IterationVar); | |||
12445 | void CodeCompleteObjCSelector(Scope *S, | |||
12446 | ArrayRef<IdentifierInfo *> SelIdents); | |||
12447 | void CodeCompleteObjCProtocolReferences( | |||
12448 | ArrayRef<IdentifierLocPair> Protocols); | |||
12449 | void CodeCompleteObjCProtocolDecl(Scope *S); | |||
12450 | void CodeCompleteObjCInterfaceDecl(Scope *S); | |||
12451 | void CodeCompleteObjCSuperclass(Scope *S, | |||
12452 | IdentifierInfo *ClassName, | |||
12453 | SourceLocation ClassNameLoc); | |||
12454 | void CodeCompleteObjCImplementationDecl(Scope *S); | |||
12455 | void CodeCompleteObjCInterfaceCategory(Scope *S, | |||
12456 | IdentifierInfo *ClassName, | |||
12457 | SourceLocation ClassNameLoc); | |||
12458 | void CodeCompleteObjCImplementationCategory(Scope *S, | |||
12459 | IdentifierInfo *ClassName, | |||
12460 | SourceLocation ClassNameLoc); | |||
12461 | void CodeCompleteObjCPropertyDefinition(Scope *S); | |||
12462 | void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, | |||
12463 | IdentifierInfo *PropertyName); | |||
12464 | void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod, | |||
12465 | ParsedType ReturnType); | |||
12466 | void CodeCompleteObjCMethodDeclSelector(Scope *S, | |||
12467 | bool IsInstanceMethod, | |||
12468 | bool AtParameterName, | |||
12469 | ParsedType ReturnType, | |||
12470 | ArrayRef<IdentifierInfo *> SelIdents); | |||
12471 | void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName, | |||
12472 | SourceLocation ClassNameLoc, | |||
12473 | bool IsBaseExprStatement); | |||
12474 | void CodeCompletePreprocessorDirective(bool InConditional); | |||
12475 | void CodeCompleteInPreprocessorConditionalExclusion(Scope *S); | |||
12476 | void CodeCompletePreprocessorMacroName(bool IsDefinition); | |||
12477 | void CodeCompletePreprocessorExpression(); | |||
12478 | void CodeCompletePreprocessorMacroArgument(Scope *S, | |||
12479 | IdentifierInfo *Macro, | |||
12480 | MacroInfo *MacroInfo, | |||
12481 | unsigned Argument); | |||
12482 | void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); | |||
12483 | void CodeCompleteNaturalLanguage(); | |||
12484 | void CodeCompleteAvailabilityPlatformName(); | |||
12485 | void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator, | |||
12486 | CodeCompletionTUInfo &CCTUInfo, | |||
12487 | SmallVectorImpl<CodeCompletionResult> &Results); | |||
12488 | //@} | |||
12489 | ||||
12490 | //===--------------------------------------------------------------------===// | |||
12491 | // Extra semantic analysis beyond the C type system | |||
12492 | ||||
12493 | public: | |||
12494 | SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, | |||
12495 | unsigned ByteNo) const; | |||
12496 | ||||
12497 | private: | |||
12498 | void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, | |||
12499 | const ArraySubscriptExpr *ASE=nullptr, | |||
12500 | bool AllowOnePastEnd=true, bool IndexNegated=false); | |||
12501 | void CheckArrayAccess(const Expr *E); | |||
12502 | // Used to grab the relevant information from a FormatAttr and a | |||
12503 | // FunctionDeclaration. | |||
12504 | struct FormatStringInfo { | |||
12505 | unsigned FormatIdx; | |||
12506 | unsigned FirstDataArg; | |||
12507 | bool HasVAListArg; | |||
12508 | }; | |||
12509 | ||||
12510 | static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, | |||
12511 | FormatStringInfo *FSI); | |||
12512 | bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, | |||
12513 | const FunctionProtoType *Proto); | |||
12514 | bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc, | |||
12515 | ArrayRef<const Expr *> Args); | |||
12516 | bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, | |||
12517 | const FunctionProtoType *Proto); | |||
12518 | bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto); | |||
12519 | void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, | |||
12520 | ArrayRef<const Expr *> Args, | |||
12521 | const FunctionProtoType *Proto, SourceLocation Loc); | |||
12522 | ||||
12523 | void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, | |||
12524 | StringRef ParamName, QualType ArgTy, QualType ParamTy); | |||
12525 | ||||
12526 | void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, | |||
12527 | const Expr *ThisArg, ArrayRef<const Expr *> Args, | |||
12528 | bool IsMemberFunction, SourceLocation Loc, SourceRange Range, | |||
12529 | VariadicCallType CallType); | |||
12530 | ||||
12531 | bool CheckObjCString(Expr *Arg); | |||
12532 | ExprResult CheckOSLogFormatStringArg(Expr *Arg); | |||
12533 | ||||
12534 | ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, | |||
12535 | unsigned BuiltinID, CallExpr *TheCall); | |||
12536 | ||||
12537 | bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12538 | CallExpr *TheCall); | |||
12539 | ||||
12540 | void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall); | |||
12541 | ||||
12542 | bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, | |||
12543 | unsigned MaxWidth); | |||
12544 | bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12545 | CallExpr *TheCall); | |||
12546 | bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12547 | bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12548 | bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12549 | CallExpr *TheCall); | |||
12550 | bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg, | |||
12551 | bool WantCDE); | |||
12552 | bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12553 | CallExpr *TheCall); | |||
12554 | ||||
12555 | bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12556 | CallExpr *TheCall); | |||
12557 | bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12558 | bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12559 | bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); | |||
12560 | bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12561 | CallExpr *TheCall); | |||
12562 | bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, | |||
12563 | CallExpr *TheCall); | |||
12564 | bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); | |||
12565 | bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12566 | bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall); | |||
12567 | bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall); | |||
12568 | bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall); | |||
12569 | bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, | |||
12570 | ArrayRef<int> ArgNums); | |||
12571 | bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums); | |||
12572 | bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, | |||
12573 | ArrayRef<int> ArgNums); | |||
12574 | bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12575 | CallExpr *TheCall); | |||
12576 | bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12577 | CallExpr *TheCall); | |||
12578 | bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12579 | bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum); | |||
12580 | bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, | |||
12581 | CallExpr *TheCall); | |||
12582 | ||||
12583 | bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall); | |||
12584 | bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call); | |||
12585 | bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); | |||
12586 | bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs); | |||
12587 | bool SemaBuiltinComplex(CallExpr *TheCall); | |||
12588 | bool SemaBuiltinVSX(CallExpr *TheCall); | |||
12589 | bool SemaBuiltinOSLogFormat(CallExpr *TheCall); | |||
12590 | bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum); | |||
12591 | ||||
12592 | public: | |||
12593 | // Used by C++ template instantiation. | |||
12594 | ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); | |||
12595 | ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, | |||
12596 | SourceLocation BuiltinLoc, | |||
12597 | SourceLocation RParenLoc); | |||
12598 | ||||
12599 | private: | |||
12600 | bool SemaBuiltinPrefetch(CallExpr *TheCall); | |||
12601 | bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall); | |||
12602 | bool SemaBuiltinArithmeticFence(CallExpr *TheCall); | |||
12603 | bool SemaBuiltinAssume(CallExpr *TheCall); | |||
12604 | bool SemaBuiltinAssumeAligned(CallExpr *TheCall); | |||
12605 | bool SemaBuiltinLongjmp(CallExpr *TheCall); | |||
12606 | bool SemaBuiltinSetjmp(CallExpr *TheCall); | |||
12607 | ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); | |||
12608 | ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult); | |||
12609 | ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, | |||
12610 | AtomicExpr::AtomicOp Op); | |||
12611 | ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, | |||
12612 | bool IsDelete); | |||
12613 | bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, | |||
12614 | llvm::APSInt &Result); | |||
12615 | bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, | |||
12616 | int High, bool RangeIsError = true); | |||
12617 | bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, | |||
12618 | unsigned Multiple); | |||
12619 | bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum); | |||
12620 | bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, | |||
12621 | unsigned ArgBits); | |||
12622 | bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, | |||
12623 | unsigned ArgBits); | |||
12624 | bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, | |||
12625 | int ArgNum, unsigned ExpectedFieldNum, | |||
12626 | bool AllowName); | |||
12627 | bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall); | |||
12628 | bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc); | |||
12629 | ||||
12630 | bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc); | |||
12631 | ||||
12632 | // Matrix builtin handling. | |||
12633 | ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall, | |||
12634 | ExprResult CallResult); | |||
12635 | ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, | |||
12636 | ExprResult CallResult); | |||
12637 | ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, | |||
12638 | ExprResult CallResult); | |||
12639 | ||||
12640 | public: | |||
12641 | enum FormatStringType { | |||
12642 | FST_Scanf, | |||
12643 | FST_Printf, | |||
12644 | FST_NSString, | |||
12645 | FST_Strftime, | |||
12646 | FST_Strfmon, | |||
12647 | FST_Kprintf, | |||
12648 | FST_FreeBSDKPrintf, | |||
12649 | FST_OSTrace, | |||
12650 | FST_OSLog, | |||
12651 | FST_Syslog, | |||
12652 | FST_Unknown | |||
12653 | }; | |||
12654 | static FormatStringType GetFormatStringType(const FormatAttr *Format); | |||
12655 | ||||
12656 | bool FormatStringHasSArg(const StringLiteral *FExpr); | |||
12657 | ||||
12658 | static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx); | |||
12659 | ||||
12660 | private: | |||
12661 | bool CheckFormatArguments(const FormatAttr *Format, | |||
12662 | ArrayRef<const Expr *> Args, | |||
12663 | bool IsCXXMember, | |||
12664 | VariadicCallType CallType, | |||
12665 | SourceLocation Loc, SourceRange Range, | |||
12666 | llvm::SmallBitVector &CheckedVarArgs); | |||
12667 | bool CheckFormatArguments(ArrayRef<const Expr *> Args, | |||
12668 | bool HasVAListArg, unsigned format_idx, | |||
12669 | unsigned firstDataArg, FormatStringType Type, | |||
12670 | VariadicCallType CallType, | |||
12671 | SourceLocation Loc, SourceRange range, | |||
12672 | llvm::SmallBitVector &CheckedVarArgs); | |||
12673 | ||||
12674 | void CheckAbsoluteValueFunction(const CallExpr *Call, | |||
12675 | const FunctionDecl *FDecl); | |||
12676 | ||||
12677 | void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl); | |||
12678 | ||||
12679 | void CheckMemaccessArguments(const CallExpr *Call, | |||
12680 | unsigned BId, | |||
12681 | IdentifierInfo *FnName); | |||
12682 | ||||
12683 | void CheckStrlcpycatArguments(const CallExpr *Call, | |||
12684 | IdentifierInfo *FnName); | |||
12685 | ||||
12686 | void CheckStrncatArguments(const CallExpr *Call, | |||
12687 | IdentifierInfo *FnName); | |||
12688 | ||||
12689 | void CheckFreeArguments(const CallExpr *E); | |||
12690 | ||||
12691 | void CheckReturnValExpr(Expr *RetValExp, QualType lhsType, | |||
12692 | SourceLocation ReturnLoc, | |||
12693 | bool isObjCMethod = false, | |||
12694 | const AttrVec *Attrs = nullptr, | |||
12695 | const FunctionDecl *FD = nullptr); | |||
12696 | ||||
12697 | public: | |||
12698 | void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS); | |||
12699 | ||||
12700 | private: | |||
12701 | void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation()); | |||
12702 | void CheckBoolLikeConversion(Expr *E, SourceLocation CC); | |||
12703 | void CheckForIntOverflow(Expr *E); | |||
12704 | void CheckUnsequencedOperations(const Expr *E); | |||
12705 | ||||
12706 | /// Perform semantic checks on a completed expression. This will either | |||
12707 | /// be a full-expression or a default argument expression. | |||
12708 | void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(), | |||
12709 | bool IsConstexpr = false); | |||
12710 | ||||
12711 | void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field, | |||
12712 | Expr *Init); | |||
12713 | ||||
12714 | /// Check if there is a field shadowing. | |||
12715 | void CheckShadowInheritedFields(const SourceLocation &Loc, | |||
12716 | DeclarationName FieldName, | |||
12717 | const CXXRecordDecl *RD, | |||
12718 | bool DeclIsField = true); | |||
12719 | ||||
12720 | /// Check if the given expression contains 'break' or 'continue' | |||
12721 | /// statement that produces control flow different from GCC. | |||
12722 | void CheckBreakContinueBinding(Expr *E); | |||
12723 | ||||
12724 | /// Check whether receiver is mutable ObjC container which | |||
12725 | /// attempts to add itself into the container | |||
12726 | void CheckObjCCircularContainer(ObjCMessageExpr *Message); | |||
12727 | ||||
12728 | void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee); | |||
12729 | ||||
12730 | void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE); | |||
12731 | void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, | |||
12732 | bool DeleteWasArrayForm); | |||
12733 | public: | |||
12734 | /// Register a magic integral constant to be used as a type tag. | |||
12735 | void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, | |||
12736 | uint64_t MagicValue, QualType Type, | |||
12737 | bool LayoutCompatible, bool MustBeNull); | |||
12738 | ||||
12739 | struct TypeTagData { | |||
12740 | TypeTagData() {} | |||
12741 | ||||
12742 | TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) : | |||
12743 | Type(Type), LayoutCompatible(LayoutCompatible), | |||
12744 | MustBeNull(MustBeNull) | |||
12745 | {} | |||
12746 | ||||
12747 | QualType Type; | |||
12748 | ||||
12749 | /// If true, \c Type should be compared with other expression's types for | |||
12750 | /// layout-compatibility. | |||
12751 | unsigned LayoutCompatible : 1; | |||
12752 | unsigned MustBeNull : 1; | |||
12753 | }; | |||
12754 | ||||
12755 | /// A pair of ArgumentKind identifier and magic value. This uniquely | |||
12756 | /// identifies the magic value. | |||
12757 | typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue; | |||
12758 | ||||
12759 | private: | |||
12760 | /// A map from magic value to type information. | |||
12761 | std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>> | |||
12762 | TypeTagForDatatypeMagicValues; | |||
12763 | ||||
12764 | /// Peform checks on a call of a function with argument_with_type_tag | |||
12765 | /// or pointer_with_type_tag attributes. | |||
12766 | void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, | |||
12767 | const ArrayRef<const Expr *> ExprArgs, | |||
12768 | SourceLocation CallSiteLoc); | |||
12769 | ||||
12770 | /// Check if we are taking the address of a packed field | |||
12771 | /// as this may be a problem if the pointer value is dereferenced. | |||
12772 | void CheckAddressOfPackedMember(Expr *rhs); | |||
12773 | ||||
12774 | /// The parser's current scope. | |||
12775 | /// | |||
12776 | /// The parser maintains this state here. | |||
12777 | Scope *CurScope; | |||
12778 | ||||
12779 | mutable IdentifierInfo *Ident_super; | |||
12780 | mutable IdentifierInfo *Ident___float128; | |||
12781 | ||||
12782 | /// Nullability type specifiers. | |||
12783 | IdentifierInfo *Ident__Nonnull = nullptr; | |||
12784 | IdentifierInfo *Ident__Nullable = nullptr; | |||
12785 | IdentifierInfo *Ident__Nullable_result = nullptr; | |||
12786 | IdentifierInfo *Ident__Null_unspecified = nullptr; | |||
12787 | ||||
12788 | IdentifierInfo *Ident_NSError = nullptr; | |||
12789 | ||||
12790 | /// The handler for the FileChanged preprocessor events. | |||
12791 | /// | |||
12792 | /// Used for diagnostics that implement custom semantic analysis for #include | |||
12793 | /// directives, like -Wpragma-pack. | |||
12794 | sema::SemaPPCallbacks *SemaPPCallbackHandler; | |||
12795 | ||||
12796 | protected: | |||
12797 | friend class Parser; | |||
12798 | friend class InitializationSequence; | |||
12799 | friend class ASTReader; | |||
12800 | friend class ASTDeclReader; | |||
12801 | friend class ASTWriter; | |||
12802 | ||||
12803 | public: | |||
12804 | /// Retrieve the keyword associated | |||
12805 | IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability); | |||
12806 | ||||
12807 | /// The struct behind the CFErrorRef pointer. | |||
12808 | RecordDecl *CFError = nullptr; | |||
12809 | bool isCFError(RecordDecl *D); | |||
12810 | ||||
12811 | /// Retrieve the identifier "NSError". | |||
12812 | IdentifierInfo *getNSErrorIdent(); | |||
12813 | ||||
12814 | /// Retrieve the parser's current scope. | |||
12815 | /// | |||
12816 | /// This routine must only be used when it is certain that semantic analysis | |||
12817 | /// and the parser are in precisely the same context, which is not the case | |||
12818 | /// when, e.g., we are performing any kind of template instantiation. | |||
12819 | /// Therefore, the only safe places to use this scope are in the parser | |||
12820 | /// itself and in routines directly invoked from the parser and *never* from | |||
12821 | /// template substitution or instantiation. | |||
12822 | Scope *getCurScope() const { return CurScope; } | |||
12823 | ||||
12824 | void incrementMSManglingNumber() const { | |||
12825 | return CurScope->incrementMSManglingNumber(); | |||
12826 | } | |||
12827 | ||||
12828 | IdentifierInfo *getSuperIdentifier() const; | |||
12829 | IdentifierInfo *getFloat128Identifier() const; | |||
12830 | ||||
12831 | Decl *getObjCDeclContext() const; | |||
12832 | ||||
12833 | DeclContext *getCurLexicalContext() const { | |||
12834 | return OriginalLexicalContext ? OriginalLexicalContext : CurContext; | |||
12835 | } | |||
12836 | ||||
12837 | const DeclContext *getCurObjCLexicalContext() const { | |||
12838 | const DeclContext *DC = getCurLexicalContext(); | |||
12839 | // A category implicitly has the attribute of the interface. | |||
12840 | if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC)) | |||
12841 | DC = CatD->getClassInterface(); | |||
12842 | return DC; | |||
12843 | } | |||
12844 | ||||
12845 | /// Determine the number of levels of enclosing template parameters. This is | |||
12846 | /// only usable while parsing. Note that this does not include dependent | |||
12847 | /// contexts in which no template parameters have yet been declared, such as | |||
12848 | /// in a terse function template or generic lambda before the first 'auto' is | |||
12849 | /// encountered. | |||
12850 | unsigned getTemplateDepth(Scope *S) const; | |||
12851 | ||||
12852 | /// To be used for checking whether the arguments being passed to | |||
12853 | /// function exceeds the number of parameters expected for it. | |||
12854 | static bool TooManyArguments(size_t NumParams, size_t NumArgs, | |||
12855 | bool PartialOverloading = false) { | |||
12856 | // We check whether we're just after a comma in code-completion. | |||
12857 | if (NumArgs > 0 && PartialOverloading) | |||
12858 | return NumArgs + 1 > NumParams; // If so, we view as an extra argument. | |||
12859 | return NumArgs > NumParams; | |||
12860 | } | |||
12861 | ||||
12862 | // Emitting members of dllexported classes is delayed until the class | |||
12863 | // (including field initializers) is fully parsed. | |||
12864 | SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses; | |||
12865 | SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions; | |||
12866 | ||||
12867 | private: | |||
12868 | int ParsingClassDepth = 0; | |||
12869 | ||||
12870 | class SavePendingParsedClassStateRAII { | |||
12871 | public: | |||
12872 | SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); } | |||
12873 | ||||
12874 | ~SavePendingParsedClassStateRAII() { | |||
12875 | assert(S.DelayedOverridingExceptionSpecChecks.empty() &&((void)0) | |||
12876 | "there shouldn't be any pending delayed exception spec checks")((void)0); | |||
12877 | assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&((void)0) | |||
12878 | "there shouldn't be any pending delayed exception spec checks")((void)0); | |||
12879 | swapSavedState(); | |||
12880 | } | |||
12881 | ||||
12882 | private: | |||
12883 | Sema &S; | |||
12884 | decltype(DelayedOverridingExceptionSpecChecks) | |||
12885 | SavedOverridingExceptionSpecChecks; | |||
12886 | decltype(DelayedEquivalentExceptionSpecChecks) | |||
12887 | SavedEquivalentExceptionSpecChecks; | |||
12888 | ||||
12889 | void swapSavedState() { | |||
12890 | SavedOverridingExceptionSpecChecks.swap( | |||
12891 | S.DelayedOverridingExceptionSpecChecks); | |||
12892 | SavedEquivalentExceptionSpecChecks.swap( | |||
12893 | S.DelayedEquivalentExceptionSpecChecks); | |||
12894 | } | |||
12895 | }; | |||
12896 | ||||
12897 | /// Helper class that collects misaligned member designations and | |||
12898 | /// their location info for delayed diagnostics. | |||
12899 | struct MisalignedMember { | |||
12900 | Expr *E; | |||
12901 | RecordDecl *RD; | |||
12902 | ValueDecl *MD; | |||
12903 | CharUnits Alignment; | |||
12904 | ||||
12905 | MisalignedMember() : E(), RD(), MD(), Alignment() {} | |||
12906 | MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD, | |||
12907 | CharUnits Alignment) | |||
12908 | : E(E), RD(RD), MD(MD), Alignment(Alignment) {} | |||
12909 | explicit MisalignedMember(Expr *E) | |||
12910 | : MisalignedMember(E, nullptr, nullptr, CharUnits()) {} | |||
12911 | ||||
12912 | bool operator==(const MisalignedMember &m) { return this->E == m.E; } | |||
12913 | }; | |||
12914 | /// Small set of gathered accesses to potentially misaligned members | |||
12915 | /// due to the packed attribute. | |||
12916 | SmallVector<MisalignedMember, 4> MisalignedMembers; | |||
12917 | ||||
12918 | /// Adds an expression to the set of gathered misaligned members. | |||
12919 | void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, | |||
12920 | CharUnits Alignment); | |||
12921 | ||||
12922 | public: | |||
12923 | /// Diagnoses the current set of gathered accesses. This typically | |||
12924 | /// happens at full expression level. The set is cleared after emitting the | |||
12925 | /// diagnostics. | |||
12926 | void DiagnoseMisalignedMembers(); | |||
12927 | ||||
12928 | /// This function checks if the expression is in the sef of potentially | |||
12929 | /// misaligned members and it is converted to some pointer type T with lower | |||
12930 | /// or equal alignment requirements. If so it removes it. This is used when | |||
12931 | /// we do not want to diagnose such misaligned access (e.g. in conversions to | |||
12932 | /// void*). | |||
12933 | void DiscardMisalignedMemberAddress(const Type *T, Expr *E); | |||
12934 | ||||
12935 | /// This function calls Action when it determines that E designates a | |||
12936 | /// misaligned member due to the packed attribute. This is used to emit | |||
12937 | /// local diagnostics like in reference binding. | |||
12938 | void RefersToMemberWithReducedAlignment( | |||
12939 | Expr *E, | |||
12940 | llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> | |||
12941 | Action); | |||
12942 | ||||
12943 | /// Describes the reason a calling convention specification was ignored, used | |||
12944 | /// for diagnostics. | |||
12945 | enum class CallingConventionIgnoredReason { | |||
12946 | ForThisTarget = 0, | |||
12947 | VariadicFunction, | |||
12948 | ConstructorDestructor, | |||
12949 | BuiltinFunction | |||
12950 | }; | |||
12951 | /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current | |||
12952 | /// context is "used as device code". | |||
12953 | /// | |||
12954 | /// - If CurLexicalContext is a kernel function or it is known that the | |||
12955 | /// function will be emitted for the device, emits the diagnostics | |||
12956 | /// immediately. | |||
12957 | /// - If CurLexicalContext is a function and we are compiling | |||
12958 | /// for the device, but we don't know that this function will be codegen'ed | |||
12959 | /// for devive yet, creates a diagnostic which is emitted if and when we | |||
12960 | /// realize that the function will be codegen'ed. | |||
12961 | /// | |||
12962 | /// Example usage: | |||
12963 | /// | |||
12964 | /// Diagnose __float128 type usage only from SYCL device code if the current | |||
12965 | /// target doesn't support it | |||
12966 | /// if (!S.Context.getTargetInfo().hasFloat128Type() && | |||
12967 | /// S.getLangOpts().SYCLIsDevice) | |||
12968 | /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128"; | |||
12969 | SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc, | |||
12970 | unsigned DiagID); | |||
12971 | ||||
12972 | /// Check whether we're allowed to call Callee from the current context. | |||
12973 | /// | |||
12974 | /// - If the call is never allowed in a semantically-correct program | |||
12975 | /// emits an error and returns false. | |||
12976 | /// | |||
12977 | /// - If the call is allowed in semantically-correct programs, but only if | |||
12978 | /// it's never codegen'ed, creates a deferred diagnostic to be emitted if | |||
12979 | /// and when the caller is codegen'ed, and returns true. | |||
12980 | /// | |||
12981 | /// - Otherwise, returns true without emitting any diagnostics. | |||
12982 | /// | |||
12983 | /// Adds Callee to DeviceCallGraph if we don't know if its caller will be | |||
12984 | /// codegen'ed yet. | |||
12985 | bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee); | |||
12986 | }; | |||
12987 | ||||
12988 | /// RAII object that enters a new expression evaluation context. | |||
12989 | class EnterExpressionEvaluationContext { | |||
12990 | Sema &Actions; | |||
12991 | bool Entered = true; | |||
12992 | ||||
12993 | public: | |||
12994 | EnterExpressionEvaluationContext( | |||
12995 | Sema &Actions, Sema::ExpressionEvaluationContext NewContext, | |||
12996 | Decl *LambdaContextDecl = nullptr, | |||
12997 | Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = | |||
12998 | Sema::ExpressionEvaluationContextRecord::EK_Other, | |||
12999 | bool ShouldEnter = true) | |||
13000 | : Actions(Actions), Entered(ShouldEnter) { | |||
13001 | if (Entered) | |||
13002 | Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl, | |||
13003 | ExprContext); | |||
13004 | } | |||
13005 | EnterExpressionEvaluationContext( | |||
13006 | Sema &Actions, Sema::ExpressionEvaluationContext NewContext, | |||
13007 | Sema::ReuseLambdaContextDecl_t, | |||
13008 | Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = | |||
13009 | Sema::ExpressionEvaluationContextRecord::EK_Other) | |||
13010 | : Actions(Actions) { | |||
13011 | Actions.PushExpressionEvaluationContext( | |||
13012 | NewContext, Sema::ReuseLambdaContextDecl, ExprContext); | |||
13013 | } | |||
13014 | ||||
13015 | enum InitListTag { InitList }; | |||
13016 | EnterExpressionEvaluationContext(Sema &Actions, InitListTag, | |||
13017 | bool ShouldEnter = true) | |||
13018 | : Actions(Actions), Entered(false) { | |||
13019 | // In C++11 onwards, narrowing checks are performed on the contents of | |||
13020 | // braced-init-lists, even when they occur within unevaluated operands. | |||
13021 | // Therefore we still need to instantiate constexpr functions used in such | |||
13022 | // a context. | |||
13023 | if (ShouldEnter && Actions.isUnevaluatedContext() && | |||
13024 | Actions.getLangOpts().CPlusPlus11) { | |||
13025 | Actions.PushExpressionEvaluationContext( | |||
13026 | Sema::ExpressionEvaluationContext::UnevaluatedList); | |||
13027 | Entered = true; | |||
13028 | } | |||
13029 | } | |||
13030 | ||||
13031 | ~EnterExpressionEvaluationContext() { | |||
13032 | if (Entered) | |||
13033 | Actions.PopExpressionEvaluationContext(); | |||
13034 | } | |||
13035 | }; | |||
13036 | ||||
13037 | DeductionFailureInfo | |||
13038 | MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, | |||
13039 | sema::TemplateDeductionInfo &Info); | |||
13040 | ||||
13041 | /// Contains a late templated function. | |||
13042 | /// Will be parsed at the end of the translation unit, used by Sema & Parser. | |||
13043 | struct LateParsedTemplate { | |||
13044 | CachedTokens Toks; | |||
13045 | /// The template function declaration to be late parsed. | |||
13046 | Decl *D; | |||
13047 | }; | |||
13048 | ||||
13049 | template <> | |||
13050 | void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation, | |||
13051 | PragmaMsStackAction Action, | |||
13052 | llvm::StringRef StackSlotLabel, | |||
13053 | AlignPackInfo Value); | |||
13054 | ||||
13055 | } // end namespace clang | |||
13056 | ||||
13057 | namespace llvm { | |||
13058 | // Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its | |||
13059 | // SourceLocation. | |||
13060 | template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> { | |||
13061 | using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc; | |||
13062 | using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>; | |||
13063 | ||||
13064 | static FunctionDeclAndLoc getEmptyKey() { | |||
13065 | return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()}; | |||
13066 | } | |||
13067 | ||||
13068 | static FunctionDeclAndLoc getTombstoneKey() { | |||
13069 | return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()}; | |||
13070 | } | |||
13071 | ||||
13072 | static unsigned getHashValue(const FunctionDeclAndLoc &FDL) { | |||
13073 | return hash_combine(FDBaseInfo::getHashValue(FDL.FD), | |||
13074 | FDL.Loc.getHashValue()); | |||
13075 | } | |||
13076 | ||||
13077 | static bool isEqual(const FunctionDeclAndLoc &LHS, | |||
13078 | const FunctionDeclAndLoc &RHS) { | |||
13079 | return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc; | |||
13080 | } | |||
13081 | }; | |||
13082 | } // namespace llvm | |||
13083 | ||||
13084 | #endif |