Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Sema/Sema.h
Warning:line 2191, column 12
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaOverload.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/CXXInheritance.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DependenceFlags.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/Optional.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include <algorithm>
38#include <cstdlib>
39
40using namespace clang;
41using namespace sema;
42
43using AllowedExplicit = Sema::AllowedExplicit;
44
45static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47 return P->hasAttr<PassObjectSizeAttr>();
48 });
49}
50
51/// A convenience routine for creating a decayed reference to a function.
52static ExprResult
53CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54 const Expr *Base, bool HadMultipleCandidates,
55 SourceLocation Loc = SourceLocation(),
56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58 return ExprError();
59 // If FoundDecl is different from Fn (such as if one is a template
60 // and the other a specialization), make sure DiagnoseUseOfDecl is
61 // called on both.
62 // FIXME: This would be more comprehensively addressed by modifying
63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64 // being used.
65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66 return ExprError();
67 DeclRefExpr *DRE = new (S.Context)
68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69 if (HadMultipleCandidates)
70 DRE->setHadMultipleCandidates(true);
71
72 S.MarkDeclRefReferenced(DRE, Base);
73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75 S.ResolveExceptionSpec(Loc, FPT);
76 DRE->setType(Fn->getType());
77 }
78 }
79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80 CK_FunctionToPointerDecay);
81}
82
83static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84 bool InOverloadResolution,
85 StandardConversionSequence &SCS,
86 bool CStyle,
87 bool AllowObjCWritebackConversion);
88
89static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90 QualType &ToType,
91 bool InOverloadResolution,
92 StandardConversionSequence &SCS,
93 bool CStyle);
94static OverloadingResult
95IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96 UserDefinedConversionSequence& User,
97 OverloadCandidateSet& Conversions,
98 AllowedExplicit AllowExplicit,
99 bool AllowObjCConversionOnExplicit);
100
101static ImplicitConversionSequence::CompareKind
102CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103 const StandardConversionSequence& SCS1,
104 const StandardConversionSequence& SCS2);
105
106static ImplicitConversionSequence::CompareKind
107CompareQualificationConversions(Sema &S,
108 const StandardConversionSequence& SCS1,
109 const StandardConversionSequence& SCS2);
110
111static ImplicitConversionSequence::CompareKind
112CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113 const StandardConversionSequence& SCS1,
114 const StandardConversionSequence& SCS2);
115
116/// GetConversionRank - Retrieve the implicit conversion rank
117/// corresponding to the given implicit conversion kind.
118ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119 static const ImplicitConversionRank
120 Rank[(int)ICK_Num_Conversion_Kinds] = {
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Promotion,
128 ICR_Promotion,
129 ICR_Promotion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_OCL_Scalar_Widening,
142 ICR_Complex_Real_Conversion,
143 ICR_Conversion,
144 ICR_Conversion,
145 ICR_Writeback_Conversion,
146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147 // it was omitted by the patch that added
148 // ICK_Zero_Event_Conversion
149 ICR_C_Conversion,
150 ICR_C_Conversion_Extension
151 };
152 return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159 "No conversion",
160 "Lvalue-to-rvalue",
161 "Array-to-pointer",
162 "Function-to-pointer",
163 "Function pointer conversion",
164 "Qualification",
165 "Integral promotion",
166 "Floating point promotion",
167 "Complex promotion",
168 "Integral conversion",
169 "Floating conversion",
170 "Complex conversion",
171 "Floating-integral conversion",
172 "Pointer conversion",
173 "Pointer-to-member conversion",
174 "Boolean conversion",
175 "Compatible-types conversion",
176 "Derived-to-base conversion",
177 "Vector conversion",
178 "SVE Vector conversion",
179 "Vector splat",
180 "Complex-real conversion",
181 "Block Pointer conversion",
182 "Transparent Union Conversion",
183 "Writeback conversion",
184 "OpenCL Zero Event Conversion",
185 "C specific type conversion",
186 "Incompatible pointer conversion"
187 };
188 return Name[Kind];
189}
190
191/// StandardConversionSequence - Set the standard conversion
192/// sequence to the identity conversion.
193void StandardConversionSequence::setAsIdentityConversion() {
194 First = ICK_Identity;
195 Second = ICK_Identity;
196 Third = ICK_Identity;
197 DeprecatedStringLiteralToCharPtr = false;
198 QualificationIncludesObjCLifetime = false;
199 ReferenceBinding = false;
200 DirectBinding = false;
201 IsLvalueReference = true;
202 BindsToFunctionLvalue = false;
203 BindsToRvalue = false;
204 BindsImplicitObjectArgumentWithoutRefQualifier = false;
205 ObjCLifetimeConversionBinding = false;
206 CopyConstructor = nullptr;
207}
208
209/// getRank - Retrieve the rank of this standard conversion sequence
210/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211/// implicit conversions.
212ImplicitConversionRank StandardConversionSequence::getRank() const {
213 ImplicitConversionRank Rank = ICR_Exact_Match;
214 if (GetConversionRank(First) > Rank)
215 Rank = GetConversionRank(First);
216 if (GetConversionRank(Second) > Rank)
217 Rank = GetConversionRank(Second);
218 if (GetConversionRank(Third) > Rank)
219 Rank = GetConversionRank(Third);
220 return Rank;
221}
222
223/// isPointerConversionToBool - Determines whether this conversion is
224/// a conversion of a pointer or pointer-to-member to bool. This is
225/// used as part of the ranking of standard conversion sequences
226/// (C++ 13.3.3.2p4).
227bool StandardConversionSequence::isPointerConversionToBool() const {
228 // Note that FromType has not necessarily been transformed by the
229 // array-to-pointer or function-to-pointer implicit conversions, so
230 // check for their presence as well as checking whether FromType is
231 // a pointer.
232 if (getToType(1)->isBooleanType() &&
233 (getFromType()->isPointerType() ||
234 getFromType()->isMemberPointerType() ||
235 getFromType()->isObjCObjectPointerType() ||
236 getFromType()->isBlockPointerType() ||
237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238 return true;
239
240 return false;
241}
242
243/// isPointerConversionToVoidPointer - Determines whether this
244/// conversion is a conversion of a pointer to a void pointer. This is
245/// used as part of the ranking of standard conversion sequences (C++
246/// 13.3.3.2p4).
247bool
248StandardConversionSequence::
249isPointerConversionToVoidPointer(ASTContext& Context) const {
250 QualType FromType = getFromType();
251 QualType ToType = getToType(1);
252
253 // Note that FromType has not necessarily been transformed by the
254 // array-to-pointer implicit conversion, so check for its presence
255 // and redo the conversion to get a pointer.
256 if (First == ICK_Array_To_Pointer)
257 FromType = Context.getArrayDecayedType(FromType);
258
259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261 return ToPtrType->getPointeeType()->isVoidType();
262
263 return false;
264}
265
266/// Skip any implicit casts which could be either part of a narrowing conversion
267/// or after one in an implicit conversion.
268static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269 const Expr *Converted) {
270 // We can have cleanups wrapping the converted expression; these need to be
271 // preserved so that destructors run if necessary.
272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273 Expr *Inner =
274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276 EWC->getObjects());
277 }
278
279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280 switch (ICE->getCastKind()) {
281 case CK_NoOp:
282 case CK_IntegralCast:
283 case CK_IntegralToBoolean:
284 case CK_IntegralToFloating:
285 case CK_BooleanToSignedIntegral:
286 case CK_FloatingToIntegral:
287 case CK_FloatingToBoolean:
288 case CK_FloatingCast:
289 Converted = ICE->getSubExpr();
290 continue;
291
292 default:
293 return Converted;
294 }
295 }
296
297 return Converted;
298}
299
300/// Check if this standard conversion sequence represents a narrowing
301/// conversion, according to C++11 [dcl.init.list]p7.
302///
303/// \param Ctx The AST context.
304/// \param Converted The result of applying this standard conversion sequence.
305/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
306/// value of the expression prior to the narrowing conversion.
307/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
308/// type of the expression prior to the narrowing conversion.
309/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310/// from floating point types to integral types should be ignored.
311NarrowingKind StandardConversionSequence::getNarrowingKind(
312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((void)0);
315
316 // C++11 [dcl.init.list]p7:
317 // A narrowing conversion is an implicit conversion ...
318 QualType FromType = getToType(0);
319 QualType ToType = getToType(1);
320
321 // A conversion to an enumeration type is narrowing if the conversion to
322 // the underlying type is narrowing. This only arises for expressions of
323 // the form 'Enum{init}'.
324 if (auto *ET = ToType->getAs<EnumType>())
325 ToType = ET->getDecl()->getIntegerType();
326
327 switch (Second) {
328 // 'bool' is an integral type; dispatch to the right place to handle it.
329 case ICK_Boolean_Conversion:
330 if (FromType->isRealFloatingType())
331 goto FloatingIntegralConversion;
332 if (FromType->isIntegralOrUnscopedEnumerationType())
333 goto IntegralConversion;
334 // -- from a pointer type or pointer-to-member type to bool, or
335 return NK_Type_Narrowing;
336
337 // -- from a floating-point type to an integer type, or
338 //
339 // -- from an integer type or unscoped enumeration type to a floating-point
340 // type, except where the source is a constant expression and the actual
341 // value after conversion will fit into the target type and will produce
342 // the original value when converted back to the original type, or
343 case ICK_Floating_Integral:
344 FloatingIntegralConversion:
345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346 return NK_Type_Narrowing;
347 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348 ToType->isRealFloatingType()) {
349 if (IgnoreFloatToIntegralConversion)
350 return NK_Not_Narrowing;
351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352 assert(Initializer && "Unknown conversion expression")((void)0);
353
354 // If it's value-dependent, we can't tell whether it's narrowing.
355 if (Initializer->isValueDependent())
356 return NK_Dependent_Narrowing;
357
358 if (Optional<llvm::APSInt> IntConstantValue =
359 Initializer->getIntegerConstantExpr(Ctx)) {
360 // Convert the integer to the floating type.
361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363 llvm::APFloat::rmNearestTiesToEven);
364 // And back.
365 llvm::APSInt ConvertedValue = *IntConstantValue;
366 bool ignored;
367 Result.convertToInteger(ConvertedValue,
368 llvm::APFloat::rmTowardZero, &ignored);
369 // If the resulting value is different, this was a narrowing conversion.
370 if (*IntConstantValue != ConvertedValue) {
371 ConstantValue = APValue(*IntConstantValue);
372 ConstantType = Initializer->getType();
373 return NK_Constant_Narrowing;
374 }
375 } else {
376 // Variables are always narrowings.
377 return NK_Variable_Narrowing;
378 }
379 }
380 return NK_Not_Narrowing;
381
382 // -- from long double to double or float, or from double to float, except
383 // where the source is a constant expression and the actual value after
384 // conversion is within the range of values that can be represented (even
385 // if it cannot be represented exactly), or
386 case ICK_Floating_Conversion:
387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389 // FromType is larger than ToType.
390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391
392 // If it's value-dependent, we can't tell whether it's narrowing.
393 if (Initializer->isValueDependent())
394 return NK_Dependent_Narrowing;
395
396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397 // Constant!
398 assert(ConstantValue.isFloat())((void)0);
399 llvm::APFloat FloatVal = ConstantValue.getFloat();
400 // Convert the source value into the target type.
401 bool ignored;
402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403 Ctx.getFloatTypeSemantics(ToType),
404 llvm::APFloat::rmNearestTiesToEven, &ignored);
405 // If there was no overflow, the source value is within the range of
406 // values that can be represented.
407 if (ConvertStatus & llvm::APFloat::opOverflow) {
408 ConstantType = Initializer->getType();
409 return NK_Constant_Narrowing;
410 }
411 } else {
412 return NK_Variable_Narrowing;
413 }
414 }
415 return NK_Not_Narrowing;
416
417 // -- from an integer type or unscoped enumeration type to an integer type
418 // that cannot represent all the values of the original type, except where
419 // the source is a constant expression and the actual value after
420 // conversion will fit into the target type and will produce the original
421 // value when converted back to the original type.
422 case ICK_Integral_Conversion:
423 IntegralConversion: {
424 assert(FromType->isIntegralOrUnscopedEnumerationType())((void)0);
425 assert(ToType->isIntegralOrUnscopedEnumerationType())((void)0);
426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427 const unsigned FromWidth = Ctx.getIntWidth(FromType);
428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429 const unsigned ToWidth = Ctx.getIntWidth(ToType);
430
431 if (FromWidth > ToWidth ||
432 (FromWidth == ToWidth && FromSigned != ToSigned) ||
433 (FromSigned && !ToSigned)) {
434 // Not all values of FromType can be represented in ToType.
435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436
437 // If it's value-dependent, we can't tell whether it's narrowing.
438 if (Initializer->isValueDependent())
439 return NK_Dependent_Narrowing;
440
441 Optional<llvm::APSInt> OptInitializerValue;
442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443 // Such conversions on variables are always narrowing.
444 return NK_Variable_Narrowing;
445 }
446 llvm::APSInt &InitializerValue = *OptInitializerValue;
447 bool Narrowing = false;
448 if (FromWidth < ToWidth) {
449 // Negative -> unsigned is narrowing. Otherwise, more bits is never
450 // narrowing.
451 if (InitializerValue.isSigned() && InitializerValue.isNegative())
452 Narrowing = true;
453 } else {
454 // Add a bit to the InitializerValue so we don't have to worry about
455 // signed vs. unsigned comparisons.
456 InitializerValue = InitializerValue.extend(
457 InitializerValue.getBitWidth() + 1);
458 // Convert the initializer to and from the target width and signed-ness.
459 llvm::APSInt ConvertedValue = InitializerValue;
460 ConvertedValue = ConvertedValue.trunc(ToWidth);
461 ConvertedValue.setIsSigned(ToSigned);
462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463 ConvertedValue.setIsSigned(InitializerValue.isSigned());
464 // If the result is different, this was a narrowing conversion.
465 if (ConvertedValue != InitializerValue)
466 Narrowing = true;
467 }
468 if (Narrowing) {
469 ConstantType = Initializer->getType();
470 ConstantValue = APValue(InitializerValue);
471 return NK_Constant_Narrowing;
472 }
473 }
474 return NK_Not_Narrowing;
475 }
476
477 default:
478 // Other kinds of conversions are not narrowings.
479 return NK_Not_Narrowing;
480 }
481}
482
483/// dump - Print this standard conversion sequence to standard
484/// error. Useful for debugging overloading issues.
485LLVM_DUMP_METHOD__attribute__((noinline)) void StandardConversionSequence::dump() const {
486 raw_ostream &OS = llvm::errs();
487 bool PrintedSomething = false;
488 if (First != ICK_Identity) {
489 OS << GetImplicitConversionName(First);
490 PrintedSomething = true;
491 }
492
493 if (Second != ICK_Identity) {
494 if (PrintedSomething) {
495 OS << " -> ";
496 }
497 OS << GetImplicitConversionName(Second);
498
499 if (CopyConstructor) {
500 OS << " (by copy constructor)";
501 } else if (DirectBinding) {
502 OS << " (direct reference binding)";
503 } else if (ReferenceBinding) {
504 OS << " (reference binding)";
505 }
506 PrintedSomething = true;
507 }
508
509 if (Third != ICK_Identity) {
510 if (PrintedSomething) {
511 OS << " -> ";
512 }
513 OS << GetImplicitConversionName(Third);
514 PrintedSomething = true;
515 }
516
517 if (!PrintedSomething) {
518 OS << "No conversions required";
519 }
520}
521
522/// dump - Print this user-defined conversion sequence to standard
523/// error. Useful for debugging overloading issues.
524void UserDefinedConversionSequence::dump() const {
525 raw_ostream &OS = llvm::errs();
526 if (Before.First || Before.Second || Before.Third) {
527 Before.dump();
528 OS << " -> ";
529 }
530 if (ConversionFunction)
531 OS << '\'' << *ConversionFunction << '\'';
532 else
533 OS << "aggregate initialization";
534 if (After.First || After.Second || After.Third) {
535 OS << " -> ";
536 After.dump();
537 }
538}
539
540/// dump - Print this implicit conversion sequence to standard
541/// error. Useful for debugging overloading issues.
542void ImplicitConversionSequence::dump() const {
543 raw_ostream &OS = llvm::errs();
544 if (isStdInitializerListElement())
545 OS << "Worst std::initializer_list element conversion: ";
546 switch (ConversionKind) {
547 case StandardConversion:
548 OS << "Standard conversion: ";
549 Standard.dump();
550 break;
551 case UserDefinedConversion:
552 OS << "User-defined conversion: ";
553 UserDefined.dump();
554 break;
555 case EllipsisConversion:
556 OS << "Ellipsis conversion";
557 break;
558 case AmbiguousConversion:
559 OS << "Ambiguous conversion";
560 break;
561 case BadConversion:
562 OS << "Bad conversion";
563 break;
564 }
565
566 OS << "\n";
567}
568
569void AmbiguousConversionSequence::construct() {
570 new (&conversions()) ConversionSet();
571}
572
573void AmbiguousConversionSequence::destruct() {
574 conversions().~ConversionSet();
575}
576
577void
578AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579 FromTypePtr = O.FromTypePtr;
580 ToTypePtr = O.ToTypePtr;
581 new (&conversions()) ConversionSet(O.conversions());
582}
583
584namespace {
585 // Structure used by DeductionFailureInfo to store
586 // template argument information.
587 struct DFIArguments {
588 TemplateArgument FirstArg;
589 TemplateArgument SecondArg;
590 };
591 // Structure used by DeductionFailureInfo to store
592 // template parameter and template argument information.
593 struct DFIParamWithArguments : DFIArguments {
594 TemplateParameter Param;
595 };
596 // Structure used by DeductionFailureInfo to store template argument
597 // information and the index of the problematic call argument.
598 struct DFIDeducedMismatchArgs : DFIArguments {
599 TemplateArgumentList *TemplateArgs;
600 unsigned CallArgIndex;
601 };
602 // Structure used by DeductionFailureInfo to store information about
603 // unsatisfied constraints.
604 struct CNSInfo {
605 TemplateArgumentList *TemplateArgs;
606 ConstraintSatisfaction Satisfaction;
607 };
608}
609
610/// Convert from Sema's representation of template deduction information
611/// to the form used in overload-candidate information.
612DeductionFailureInfo
613clang::MakeDeductionFailureInfo(ASTContext &Context,
614 Sema::TemplateDeductionResult TDK,
615 TemplateDeductionInfo &Info) {
616 DeductionFailureInfo Result;
617 Result.Result = static_cast<unsigned>(TDK);
618 Result.HasDiagnostic = false;
619 switch (TDK) {
620 case Sema::TDK_Invalid:
621 case Sema::TDK_InstantiationDepth:
622 case Sema::TDK_TooManyArguments:
623 case Sema::TDK_TooFewArguments:
624 case Sema::TDK_MiscellaneousDeductionFailure:
625 case Sema::TDK_CUDATargetMismatch:
626 Result.Data = nullptr;
627 break;
628
629 case Sema::TDK_Incomplete:
630 case Sema::TDK_InvalidExplicitArguments:
631 Result.Data = Info.Param.getOpaqueValue();
632 break;
633
634 case Sema::TDK_DeducedMismatch:
635 case Sema::TDK_DeducedMismatchNested: {
636 // FIXME: Should allocate from normal heap so that we can free this later.
637 auto *Saved = new (Context) DFIDeducedMismatchArgs;
638 Saved->FirstArg = Info.FirstArg;
639 Saved->SecondArg = Info.SecondArg;
640 Saved->TemplateArgs = Info.take();
641 Saved->CallArgIndex = Info.CallArgIndex;
642 Result.Data = Saved;
643 break;
644 }
645
646 case Sema::TDK_NonDeducedMismatch: {
647 // FIXME: Should allocate from normal heap so that we can free this later.
648 DFIArguments *Saved = new (Context) DFIArguments;
649 Saved->FirstArg = Info.FirstArg;
650 Saved->SecondArg = Info.SecondArg;
651 Result.Data = Saved;
652 break;
653 }
654
655 case Sema::TDK_IncompletePack:
656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657 case Sema::TDK_Inconsistent:
658 case Sema::TDK_Underqualified: {
659 // FIXME: Should allocate from normal heap so that we can free this later.
660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661 Saved->Param = Info.Param;
662 Saved->FirstArg = Info.FirstArg;
663 Saved->SecondArg = Info.SecondArg;
664 Result.Data = Saved;
665 break;
666 }
667
668 case Sema::TDK_SubstitutionFailure:
669 Result.Data = Info.take();
670 if (Info.hasSFINAEDiagnostic()) {
671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672 SourceLocation(), PartialDiagnostic::NullDiagnostic());
673 Info.takeSFINAEDiagnostic(*Diag);
674 Result.HasDiagnostic = true;
675 }
676 break;
677
678 case Sema::TDK_ConstraintsNotSatisfied: {
679 CNSInfo *Saved = new (Context) CNSInfo;
680 Saved->TemplateArgs = Info.take();
681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682 Result.Data = Saved;
683 break;
684 }
685
686 case Sema::TDK_Success:
687 case Sema::TDK_NonDependentConversionFailure:
688 llvm_unreachable("not a deduction failure")__builtin_unreachable();
689 }
690
691 return Result;
692}
693
694void DeductionFailureInfo::Destroy() {
695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696 case Sema::TDK_Success:
697 case Sema::TDK_Invalid:
698 case Sema::TDK_InstantiationDepth:
699 case Sema::TDK_Incomplete:
700 case Sema::TDK_TooManyArguments:
701 case Sema::TDK_TooFewArguments:
702 case Sema::TDK_InvalidExplicitArguments:
703 case Sema::TDK_CUDATargetMismatch:
704 case Sema::TDK_NonDependentConversionFailure:
705 break;
706
707 case Sema::TDK_IncompletePack:
708 case Sema::TDK_Inconsistent:
709 case Sema::TDK_Underqualified:
710 case Sema::TDK_DeducedMismatch:
711 case Sema::TDK_DeducedMismatchNested:
712 case Sema::TDK_NonDeducedMismatch:
713 // FIXME: Destroy the data?
714 Data = nullptr;
715 break;
716
717 case Sema::TDK_SubstitutionFailure:
718 // FIXME: Destroy the template argument list?
719 Data = nullptr;
720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721 Diag->~PartialDiagnosticAt();
722 HasDiagnostic = false;
723 }
724 break;
725
726 case Sema::TDK_ConstraintsNotSatisfied:
727 // FIXME: Destroy the template argument list?
728 Data = nullptr;
729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730 Diag->~PartialDiagnosticAt();
731 HasDiagnostic = false;
732 }
733 break;
734
735 // Unhandled
736 case Sema::TDK_MiscellaneousDeductionFailure:
737 break;
738 }
739}
740
741PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742 if (HasDiagnostic)
743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744 return nullptr;
745}
746
747TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749 case Sema::TDK_Success:
750 case Sema::TDK_Invalid:
751 case Sema::TDK_InstantiationDepth:
752 case Sema::TDK_TooManyArguments:
753 case Sema::TDK_TooFewArguments:
754 case Sema::TDK_SubstitutionFailure:
755 case Sema::TDK_DeducedMismatch:
756 case Sema::TDK_DeducedMismatchNested:
757 case Sema::TDK_NonDeducedMismatch:
758 case Sema::TDK_CUDATargetMismatch:
759 case Sema::TDK_NonDependentConversionFailure:
760 case Sema::TDK_ConstraintsNotSatisfied:
761 return TemplateParameter();
762
763 case Sema::TDK_Incomplete:
764 case Sema::TDK_InvalidExplicitArguments:
765 return TemplateParameter::getFromOpaqueValue(Data);
766
767 case Sema::TDK_IncompletePack:
768 case Sema::TDK_Inconsistent:
769 case Sema::TDK_Underqualified:
770 return static_cast<DFIParamWithArguments*>(Data)->Param;
771
772 // Unhandled
773 case Sema::TDK_MiscellaneousDeductionFailure:
774 break;
775 }
776
777 return TemplateParameter();
778}
779
780TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782 case Sema::TDK_Success:
783 case Sema::TDK_Invalid:
784 case Sema::TDK_InstantiationDepth:
785 case Sema::TDK_TooManyArguments:
786 case Sema::TDK_TooFewArguments:
787 case Sema::TDK_Incomplete:
788 case Sema::TDK_IncompletePack:
789 case Sema::TDK_InvalidExplicitArguments:
790 case Sema::TDK_Inconsistent:
791 case Sema::TDK_Underqualified:
792 case Sema::TDK_NonDeducedMismatch:
793 case Sema::TDK_CUDATargetMismatch:
794 case Sema::TDK_NonDependentConversionFailure:
795 return nullptr;
796
797 case Sema::TDK_DeducedMismatch:
798 case Sema::TDK_DeducedMismatchNested:
799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800
801 case Sema::TDK_SubstitutionFailure:
802 return static_cast<TemplateArgumentList*>(Data);
803
804 case Sema::TDK_ConstraintsNotSatisfied:
805 return static_cast<CNSInfo*>(Data)->TemplateArgs;
806
807 // Unhandled
808 case Sema::TDK_MiscellaneousDeductionFailure:
809 break;
810 }
811
812 return nullptr;
813}
814
815const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817 case Sema::TDK_Success:
818 case Sema::TDK_Invalid:
819 case Sema::TDK_InstantiationDepth:
820 case Sema::TDK_Incomplete:
821 case Sema::TDK_TooManyArguments:
822 case Sema::TDK_TooFewArguments:
823 case Sema::TDK_InvalidExplicitArguments:
824 case Sema::TDK_SubstitutionFailure:
825 case Sema::TDK_CUDATargetMismatch:
826 case Sema::TDK_NonDependentConversionFailure:
827 case Sema::TDK_ConstraintsNotSatisfied:
828 return nullptr;
829
830 case Sema::TDK_IncompletePack:
831 case Sema::TDK_Inconsistent:
832 case Sema::TDK_Underqualified:
833 case Sema::TDK_DeducedMismatch:
834 case Sema::TDK_DeducedMismatchNested:
835 case Sema::TDK_NonDeducedMismatch:
836 return &static_cast<DFIArguments*>(Data)->FirstArg;
837
838 // Unhandled
839 case Sema::TDK_MiscellaneousDeductionFailure:
840 break;
841 }
842
843 return nullptr;
844}
845
846const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848 case Sema::TDK_Success:
849 case Sema::TDK_Invalid:
850 case Sema::TDK_InstantiationDepth:
851 case Sema::TDK_Incomplete:
852 case Sema::TDK_IncompletePack:
853 case Sema::TDK_TooManyArguments:
854 case Sema::TDK_TooFewArguments:
855 case Sema::TDK_InvalidExplicitArguments:
856 case Sema::TDK_SubstitutionFailure:
857 case Sema::TDK_CUDATargetMismatch:
858 case Sema::TDK_NonDependentConversionFailure:
859 case Sema::TDK_ConstraintsNotSatisfied:
860 return nullptr;
861
862 case Sema::TDK_Inconsistent:
863 case Sema::TDK_Underqualified:
864 case Sema::TDK_DeducedMismatch:
865 case Sema::TDK_DeducedMismatchNested:
866 case Sema::TDK_NonDeducedMismatch:
867 return &static_cast<DFIArguments*>(Data)->SecondArg;
868
869 // Unhandled
870 case Sema::TDK_MiscellaneousDeductionFailure:
871 break;
872 }
873
874 return nullptr;
875}
876
877llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879 case Sema::TDK_DeducedMismatch:
880 case Sema::TDK_DeducedMismatchNested:
881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882
883 default:
884 return llvm::None;
885 }
886}
887
888bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889 OverloadedOperatorKind Op) {
890 if (!AllowRewrittenCandidates)
891 return false;
892 return Op == OO_EqualEqual || Op == OO_Spaceship;
893}
894
895bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896 ASTContext &Ctx, const FunctionDecl *FD) {
897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898 return false;
899 // Don't bother adding a reversed candidate that can never be a better
900 // match than the non-reversed version.
901 return FD->getNumParams() != 2 ||
902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903 FD->getParamDecl(1)->getType()) ||
904 FD->hasAttr<EnableIfAttr>();
905}
906
907void OverloadCandidateSet::destroyCandidates() {
908 for (iterator i = begin(), e = end(); i != e; ++i) {
909 for (auto &C : i->Conversions)
910 C.~ImplicitConversionSequence();
911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912 i->DeductionFailure.Destroy();
913 }
914}
915
916void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917 destroyCandidates();
918 SlabAllocator.Reset();
919 NumInlineBytesUsed = 0;
920 Candidates.clear();
921 Functions.clear();
922 Kind = CSK;
923}
924
925namespace {
926 class UnbridgedCastsSet {
927 struct Entry {
928 Expr **Addr;
929 Expr *Saved;
930 };
931 SmallVector<Entry, 2> Entries;
932
933 public:
934 void save(Sema &S, Expr *&E) {
935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((void)0);
936 Entry entry = { &E, E };
937 Entries.push_back(entry);
938 E = S.stripARCUnbridgedCast(E);
939 }
940
941 void restore() {
942 for (SmallVectorImpl<Entry>::iterator
943 i = Entries.begin(), e = Entries.end(); i != e; ++i)
944 *i->Addr = i->Saved;
945 }
946 };
947}
948
949/// checkPlaceholderForOverload - Do any interesting placeholder-like
950/// preprocessing on the given expression.
951///
952/// \param unbridgedCasts a collection to which to add unbridged casts;
953/// without this, they will be immediately diagnosed as errors
954///
955/// Return true on unrecoverable error.
956static bool
957checkPlaceholderForOverload(Sema &S, Expr *&E,
958 UnbridgedCastsSet *unbridgedCasts = nullptr) {
959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
960 // We can't handle overloaded expressions here because overload
961 // resolution might reasonably tweak them.
962 if (placeholder->getKind() == BuiltinType::Overload) return false;
963
964 // If the context potentially accepts unbridged ARC casts, strip
965 // the unbridged cast and add it to the collection for later restoration.
966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967 unbridgedCasts) {
968 unbridgedCasts->save(S, E);
969 return false;
970 }
971
972 // Go ahead and check everything else.
973 ExprResult result = S.CheckPlaceholderExpr(E);
974 if (result.isInvalid())
975 return true;
976
977 E = result.get();
978 return false;
979 }
980
981 // Nothing to do.
982 return false;
983}
984
985/// checkArgPlaceholdersForOverload - Check a set of call operands for
986/// placeholders.
987static bool checkArgPlaceholdersForOverload(Sema &S,
988 MultiExprArg Args,
989 UnbridgedCastsSet &unbridged) {
990 for (unsigned i = 0, e = Args.size(); i != e; ++i)
991 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992 return true;
993
994 return false;
995}
996
997/// Determine whether the given New declaration is an overload of the
998/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999/// New and Old cannot be overloaded, e.g., if New has the same signature as
1000/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001/// functions (or function templates) at all. When it does return Ovl_Match or
1002/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004/// declaration.
1005///
1006/// Example: Given the following input:
1007///
1008/// void f(int, float); // #1
1009/// void f(int, int); // #2
1010/// int f(int, int); // #3
1011///
1012/// When we process #1, there is no previous declaration of "f", so IsOverload
1013/// will not be used.
1014///
1015/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016/// the parameter types, we see that #1 and #2 are overloaded (since they have
1017/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018/// unchanged.
1019///
1020/// When we process #3, Old is an overload set containing #1 and #2. We compare
1021/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023/// functions are not part of the signature), IsOverload returns Ovl_Match and
1024/// MatchedDecl will be set to point to the FunctionDecl for #2.
1025///
1026/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027/// by a using declaration. The rules for whether to hide shadow declarations
1028/// ignore some properties which otherwise figure into a function template's
1029/// signature.
1030Sema::OverloadKind
1031Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032 NamedDecl *&Match, bool NewIsUsingDecl) {
1033 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034 I != E; ++I) {
1035 NamedDecl *OldD = *I;
1036
1037 bool OldIsUsingDecl = false;
1038 if (isa<UsingShadowDecl>(OldD)) {
1039 OldIsUsingDecl = true;
1040
1041 // We can always introduce two using declarations into the same
1042 // context, even if they have identical signatures.
1043 if (NewIsUsingDecl) continue;
1044
1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046 }
1047
1048 // A using-declaration does not conflict with another declaration
1049 // if one of them is hidden.
1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051 continue;
1052
1053 // If either declaration was introduced by a using declaration,
1054 // we'll need to use slightly different rules for matching.
1055 // Essentially, these rules are the normal rules, except that
1056 // function templates hide function templates with different
1057 // return types or template parameter lists.
1058 bool UseMemberUsingDeclRules =
1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060 !New->getFriendObjectKind();
1061
1062 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066 continue;
1067 }
1068
1069 if (!isa<FunctionTemplateDecl>(OldD) &&
1070 !shouldLinkPossiblyHiddenDecl(*I, New))
1071 continue;
1072
1073 Match = *I;
1074 return Ovl_Match;
1075 }
1076
1077 // Builtins that have custom typechecking or have a reference should
1078 // not be overloadable or redeclarable.
1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080 Match = *I;
1081 return Ovl_NonFunction;
1082 }
1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084 // We can overload with these, which can show up when doing
1085 // redeclaration checks for UsingDecls.
1086 assert(Old.getLookupKind() == LookupUsingDeclName)((void)0);
1087 } else if (isa<TagDecl>(OldD)) {
1088 // We can always overload with tags by hiding them.
1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090 // Optimistically assume that an unresolved using decl will
1091 // overload; if it doesn't, we'll have to diagnose during
1092 // template instantiation.
1093 //
1094 // Exception: if the scope is dependent and this is not a class
1095 // member, the using declaration can only introduce an enumerator.
1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097 Match = *I;
1098 return Ovl_NonFunction;
1099 }
1100 } else {
1101 // (C++ 13p1):
1102 // Only function declarations can be overloaded; object and type
1103 // declarations cannot be overloaded.
1104 Match = *I;
1105 return Ovl_NonFunction;
1106 }
1107 }
1108
1109 // C++ [temp.friend]p1:
1110 // For a friend function declaration that is not a template declaration:
1111 // -- if the name of the friend is a qualified or unqualified template-id,
1112 // [...], otherwise
1113 // -- if the name of the friend is a qualified-id and a matching
1114 // non-template function is found in the specified class or namespace,
1115 // the friend declaration refers to that function, otherwise,
1116 // -- if the name of the friend is a qualified-id and a matching function
1117 // template is found in the specified class or namespace, the friend
1118 // declaration refers to the deduced specialization of that function
1119 // template, otherwise
1120 // -- the name shall be an unqualified-id [...]
1121 // If we get here for a qualified friend declaration, we've just reached the
1122 // third bullet. If the type of the friend is dependent, skip this lookup
1123 // until instantiation.
1124 if (New->getFriendObjectKind() && New->getQualifier() &&
1125 !New->getDescribedFunctionTemplate() &&
1126 !New->getDependentSpecializationInfo() &&
1127 !New->getType()->isDependentType()) {
1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129 TemplateSpecResult.addAllDecls(Old);
1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131 /*QualifiedFriend*/true)) {
1132 New->setInvalidDecl();
1133 return Ovl_Overload;
1134 }
1135
1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137 return Ovl_Match;
1138 }
1139
1140 return Ovl_Overload;
1141}
1142
1143bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145 bool ConsiderRequiresClauses) {
1146 // C++ [basic.start.main]p2: This function shall not be overloaded.
1147 if (New->isMain())
1148 return false;
1149
1150 // MSVCRT user defined entry points cannot be overloaded.
1151 if (New->isMSVCRTEntryPoint())
1152 return false;
1153
1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156
1157 // C++ [temp.fct]p2:
1158 // A function template can be overloaded with other function templates
1159 // and with normal (non-template) functions.
1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161 return true;
1162
1163 // Is the function New an overload of the function Old?
1164 QualType OldQType = Context.getCanonicalType(Old->getType());
1165 QualType NewQType = Context.getCanonicalType(New->getType());
1166
1167 // Compare the signatures (C++ 1.3.10) of the two functions to
1168 // determine whether they are overloads. If we find any mismatch
1169 // in the signature, they are overloads.
1170
1171 // If either of these functions is a K&R-style function (no
1172 // prototype), then we consider them to have matching signatures.
1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175 return false;
1176
1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179
1180 // The signature of a function includes the types of its
1181 // parameters (C++ 1.3.10), which includes the presence or absence
1182 // of the ellipsis; see C++ DR 357).
1183 if (OldQType != NewQType &&
1184 (OldType->getNumParams() != NewType->getNumParams() ||
1185 OldType->isVariadic() != NewType->isVariadic() ||
1186 !FunctionParamTypesAreEqual(OldType, NewType)))
1187 return true;
1188
1189 // C++ [temp.over.link]p4:
1190 // The signature of a function template consists of its function
1191 // signature, its return type and its template parameter list. The names
1192 // of the template parameters are significant only for establishing the
1193 // relationship between the template parameters and the rest of the
1194 // signature.
1195 //
1196 // We check the return type and template parameter lists for function
1197 // templates first; the remaining checks follow.
1198 //
1199 // However, we don't consider either of these when deciding whether
1200 // a member introduced by a shadow declaration is hidden.
1201 if (!UseMemberUsingDeclRules && NewTemplate &&
1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203 OldTemplate->getTemplateParameters(),
1204 false, TPL_TemplateMatch) ||
1205 !Context.hasSameType(Old->getDeclaredReturnType(),
1206 New->getDeclaredReturnType())))
1207 return true;
1208
1209 // If the function is a class member, its signature includes the
1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211 //
1212 // As part of this, also check whether one of the member functions
1213 // is static, in which case they are not overloads (C++
1214 // 13.1p2). While not part of the definition of the signature,
1215 // this check is important to determine whether these functions
1216 // can be overloaded.
1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219 if (OldMethod && NewMethod &&
1220 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222 if (!UseMemberUsingDeclRules &&
1223 (OldMethod->getRefQualifier() == RQ_None ||
1224 NewMethod->getRefQualifier() == RQ_None)) {
1225 // C++0x [over.load]p2:
1226 // - Member function declarations with the same name and the same
1227 // parameter-type-list as well as member function template
1228 // declarations with the same name, the same parameter-type-list, and
1229 // the same template parameter lists cannot be overloaded if any of
1230 // them, but not all, have a ref-qualifier (8.3.5).
1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234 }
1235 return true;
1236 }
1237
1238 // We may not have applied the implicit const for a constexpr member
1239 // function yet (because we haven't yet resolved whether this is a static
1240 // or non-static member function). Add it now, on the assumption that this
1241 // is a redeclaration of OldMethod.
1242 auto OldQuals = OldMethod->getMethodQualifiers();
1243 auto NewQuals = NewMethod->getMethodQualifiers();
1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245 !isa<CXXConstructorDecl>(NewMethod))
1246 NewQuals.addConst();
1247 // We do not allow overloading based off of '__restrict'.
1248 OldQuals.removeRestrict();
1249 NewQuals.removeRestrict();
1250 if (OldQuals != NewQuals)
1251 return true;
1252 }
1253
1254 // Though pass_object_size is placed on parameters and takes an argument, we
1255 // consider it to be a function-level modifier for the sake of function
1256 // identity. Either the function has one or more parameters with
1257 // pass_object_size or it doesn't.
1258 if (functionHasPassObjectSizeParams(New) !=
1259 functionHasPassObjectSizeParams(Old))
1260 return true;
1261
1262 // enable_if attributes are an order-sensitive part of the signature.
1263 for (specific_attr_iterator<EnableIfAttr>
1264 NewI = New->specific_attr_begin<EnableIfAttr>(),
1265 NewE = New->specific_attr_end<EnableIfAttr>(),
1266 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267 OldE = Old->specific_attr_end<EnableIfAttr>();
1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269 if (NewI == NewE || OldI == OldE)
1270 return true;
1271 llvm::FoldingSetNodeID NewID, OldID;
1272 NewI->getCond()->Profile(NewID, Context, true);
1273 OldI->getCond()->Profile(OldID, Context, true);
1274 if (NewID != OldID)
1275 return true;
1276 }
1277
1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279 // Don't allow overloading of destructors. (In theory we could, but it
1280 // would be a giant change to clang.)
1281 if (!isa<CXXDestructorDecl>(New)) {
1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283 OldTarget = IdentifyCUDATarget(Old);
1284 if (NewTarget != CFT_InvalidTarget) {
1285 assert((OldTarget != CFT_InvalidTarget) &&((void)0)
1286 "Unexpected invalid target.")((void)0);
1287
1288 // Allow overloading of functions with same signature and different CUDA
1289 // target attributes.
1290 if (NewTarget != OldTarget)
1291 return true;
1292 }
1293 }
1294 }
1295
1296 if (ConsiderRequiresClauses) {
1297 Expr *NewRC = New->getTrailingRequiresClause(),
1298 *OldRC = Old->getTrailingRequiresClause();
1299 if ((NewRC != nullptr) != (OldRC != nullptr))
1300 // RC are most certainly different - these are overloads.
1301 return true;
1302
1303 if (NewRC) {
1304 llvm::FoldingSetNodeID NewID, OldID;
1305 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307 if (NewID != OldID)
1308 // RCs are not equivalent - these are overloads.
1309 return true;
1310 }
1311 }
1312
1313 // The signatures match; this is not an overload.
1314 return false;
1315}
1316
1317/// Tries a user-defined conversion from From to ToType.
1318///
1319/// Produces an implicit conversion sequence for when a standard conversion
1320/// is not an option. See TryImplicitConversion for more information.
1321static ImplicitConversionSequence
1322TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323 bool SuppressUserConversions,
1324 AllowedExplicit AllowExplicit,
1325 bool InOverloadResolution,
1326 bool CStyle,
1327 bool AllowObjCWritebackConversion,
1328 bool AllowObjCConversionOnExplicit) {
1329 ImplicitConversionSequence ICS;
1330
1331 if (SuppressUserConversions) {
1332 // We're not in the case above, so there is no conversion that
1333 // we can perform.
1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335 return ICS;
1336 }
1337
1338 // Attempt user-defined conversion.
1339 OverloadCandidateSet Conversions(From->getExprLoc(),
1340 OverloadCandidateSet::CSK_Normal);
1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342 Conversions, AllowExplicit,
1343 AllowObjCConversionOnExplicit)) {
1344 case OR_Success:
1345 case OR_Deleted:
1346 ICS.setUserDefined();
1347 // C++ [over.ics.user]p4:
1348 // A conversion of an expression of class type to the same class
1349 // type is given Exact Match rank, and a conversion of an
1350 // expression of class type to a base class of that type is
1351 // given Conversion rank, in spite of the fact that a copy
1352 // constructor (i.e., a user-defined conversion function) is
1353 // called for those cases.
1354 if (CXXConstructorDecl *Constructor
1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356 QualType FromCanon
1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358 QualType ToCanon
1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360 if (Constructor->isCopyConstructor() &&
1361 (FromCanon == ToCanon ||
1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363 // Turn this into a "standard" conversion sequence, so that it
1364 // gets ranked with standard conversion sequences.
1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366 ICS.setStandard();
1367 ICS.Standard.setAsIdentityConversion();
1368 ICS.Standard.setFromType(From->getType());
1369 ICS.Standard.setAllToTypes(ToType);
1370 ICS.Standard.CopyConstructor = Constructor;
1371 ICS.Standard.FoundCopyConstructor = Found;
1372 if (ToCanon != FromCanon)
1373 ICS.Standard.Second = ICK_Derived_To_Base;
1374 }
1375 }
1376 break;
1377
1378 case OR_Ambiguous:
1379 ICS.setAmbiguous();
1380 ICS.Ambiguous.setFromType(From->getType());
1381 ICS.Ambiguous.setToType(ToType);
1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383 Cand != Conversions.end(); ++Cand)
1384 if (Cand->Best)
1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386 break;
1387
1388 // Fall through.
1389 case OR_No_Viable_Function:
1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391 break;
1392 }
1393
1394 return ICS;
1395}
1396
1397/// TryImplicitConversion - Attempt to perform an implicit conversion
1398/// from the given expression (Expr) to the given type (ToType). This
1399/// function returns an implicit conversion sequence that can be used
1400/// to perform the initialization. Given
1401///
1402/// void f(float f);
1403/// void g(int i) { f(i); }
1404///
1405/// this routine would produce an implicit conversion sequence to
1406/// describe the initialization of f from i, which will be a standard
1407/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409//
1410/// Note that this routine only determines how the conversion can be
1411/// performed; it does not actually perform the conversion. As such,
1412/// it will not produce any diagnostics if no conversion is available,
1413/// but will instead return an implicit conversion sequence of kind
1414/// "BadConversion".
1415///
1416/// If @p SuppressUserConversions, then user-defined conversions are
1417/// not permitted.
1418/// If @p AllowExplicit, then explicit user-defined conversions are
1419/// permitted.
1420///
1421/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422/// writeback conversion, which allows __autoreleasing id* parameters to
1423/// be initialized with __strong id* or __weak id* arguments.
1424static ImplicitConversionSequence
1425TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426 bool SuppressUserConversions,
1427 AllowedExplicit AllowExplicit,
1428 bool InOverloadResolution,
1429 bool CStyle,
1430 bool AllowObjCWritebackConversion,
1431 bool AllowObjCConversionOnExplicit) {
1432 ImplicitConversionSequence ICS;
1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435 ICS.setStandard();
1436 return ICS;
1437 }
1438
1439 if (!S.getLangOpts().CPlusPlus) {
1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441 return ICS;
1442 }
1443
1444 // C++ [over.ics.user]p4:
1445 // A conversion of an expression of class type to the same class
1446 // type is given Exact Match rank, and a conversion of an
1447 // expression of class type to a base class of that type is
1448 // given Conversion rank, in spite of the fact that a copy/move
1449 // constructor (i.e., a user-defined conversion function) is
1450 // called for those cases.
1451 QualType FromType = From->getType();
1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455 ICS.setStandard();
1456 ICS.Standard.setAsIdentityConversion();
1457 ICS.Standard.setFromType(FromType);
1458 ICS.Standard.setAllToTypes(ToType);
1459
1460 // We don't actually check at this point whether there is a valid
1461 // copy/move constructor, since overloading just assumes that it
1462 // exists. When we actually perform initialization, we'll find the
1463 // appropriate constructor to copy the returned object, if needed.
1464 ICS.Standard.CopyConstructor = nullptr;
1465
1466 // Determine whether this is considered a derived-to-base conversion.
1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468 ICS.Standard.Second = ICK_Derived_To_Base;
1469
1470 return ICS;
1471 }
1472
1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474 AllowExplicit, InOverloadResolution, CStyle,
1475 AllowObjCWritebackConversion,
1476 AllowObjCConversionOnExplicit);
1477}
1478
1479ImplicitConversionSequence
1480Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481 bool SuppressUserConversions,
1482 AllowedExplicit AllowExplicit,
1483 bool InOverloadResolution,
1484 bool CStyle,
1485 bool AllowObjCWritebackConversion) {
1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487 AllowExplicit, InOverloadResolution, CStyle,
1488 AllowObjCWritebackConversion,
1489 /*AllowObjCConversionOnExplicit=*/false);
1490}
1491
1492/// PerformImplicitConversion - Perform an implicit conversion of the
1493/// expression From to the type ToType. Returns the
1494/// converted expression. Flavor is the kind of conversion we're
1495/// performing, used in the error message. If @p AllowExplicit,
1496/// explicit user-defined conversions are permitted.
1497ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498 AssignmentAction Action,
1499 bool AllowExplicit) {
1500 if (checkPlaceholderForOverload(*this, From))
1501 return ExprError();
1502
1503 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504 bool AllowObjCWritebackConversion
1505 = getLangOpts().ObjCAutoRefCount &&
1506 (Action == AA_Passing || Action == AA_Sending);
1507 if (getLangOpts().ObjC)
1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509 From->getType(), From);
1510 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511 *this, From, ToType,
1512 /*SuppressUserConversions=*/false,
1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514 /*InOverloadResolution=*/false,
1515 /*CStyle=*/false, AllowObjCWritebackConversion,
1516 /*AllowObjCConversionOnExplicit=*/false);
1517 return PerformImplicitConversion(From, ToType, ICS, Action);
1518}
1519
1520/// Determine whether the conversion from FromType to ToType is a valid
1521/// conversion that strips "noexcept" or "noreturn" off the nested function
1522/// type.
1523bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524 QualType &ResultTy) {
1525 if (Context.hasSameUnqualifiedType(FromType, ToType))
1526 return false;
1527
1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529 // or F(t noexcept) -> F(t)
1530 // where F adds one of the following at most once:
1531 // - a pointer
1532 // - a member pointer
1533 // - a block pointer
1534 // Changes here need matching changes in FindCompositePointerType.
1535 CanQualType CanTo = Context.getCanonicalType(ToType);
1536 CanQualType CanFrom = Context.getCanonicalType(FromType);
1537 Type::TypeClass TyClass = CanTo->getTypeClass();
1538 if (TyClass != CanFrom->getTypeClass()) return false;
1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540 if (TyClass == Type::Pointer) {
1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543 } else if (TyClass == Type::BlockPointer) {
1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546 } else if (TyClass == Type::MemberPointer) {
1547 auto ToMPT = CanTo.castAs<MemberPointerType>();
1548 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549 // A function pointer conversion cannot change the class of the function.
1550 if (ToMPT->getClass() != FromMPT->getClass())
1551 return false;
1552 CanTo = ToMPT->getPointeeType();
1553 CanFrom = FromMPT->getPointeeType();
1554 } else {
1555 return false;
1556 }
1557
1558 TyClass = CanTo->getTypeClass();
1559 if (TyClass != CanFrom->getTypeClass()) return false;
1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561 return false;
1562 }
1563
1564 const auto *FromFn = cast<FunctionType>(CanFrom);
1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566
1567 const auto *ToFn = cast<FunctionType>(CanTo);
1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569
1570 bool Changed = false;
1571
1572 // Drop 'noreturn' if not present in target type.
1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575 Changed = true;
1576 }
1577
1578 // Drop 'noexcept' if not present in target type.
1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582 FromFn = cast<FunctionType>(
1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584 EST_None)
1585 .getTypePtr());
1586 Changed = true;
1587 }
1588
1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590 // only if the ExtParameterInfo lists of the two function prototypes can be
1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593 bool CanUseToFPT, CanUseFromFPT;
1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595 CanUseFromFPT, NewParamInfos) &&
1596 CanUseToFPT && !CanUseFromFPT) {
1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598 ExtInfo.ExtParameterInfos =
1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601 FromFPT->getParamTypes(), ExtInfo);
1602 FromFn = QT->getAs<FunctionType>();
1603 Changed = true;
1604 }
1605 }
1606
1607 if (!Changed)
1608 return false;
1609
1610 assert(QualType(FromFn, 0).isCanonical())((void)0);
1611 if (QualType(FromFn, 0) != CanTo) return false;
1612
1613 ResultTy = ToType;
1614 return true;
1615}
1616
1617/// Determine whether the conversion from FromType to ToType is a valid
1618/// vector conversion.
1619///
1620/// \param ICK Will be set to the vector conversion kind, if this is a vector
1621/// conversion.
1622static bool IsVectorConversion(Sema &S, QualType FromType,
1623 QualType ToType, ImplicitConversionKind &ICK) {
1624 // We need at least one of these types to be a vector type to have a vector
1625 // conversion.
1626 if (!ToType->isVectorType() && !FromType->isVectorType())
1627 return false;
1628
1629 // Identical types require no conversions.
1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631 return false;
1632
1633 // There are no conversions between extended vector types, only identity.
1634 if (ToType->isExtVectorType()) {
1635 // There are no conversions between extended vector types other than the
1636 // identity conversion.
1637 if (FromType->isExtVectorType())
1638 return false;
1639
1640 // Vector splat from any arithmetic type to a vector.
1641 if (FromType->isArithmeticType()) {
1642 ICK = ICK_Vector_Splat;
1643 return true;
1644 }
1645 }
1646
1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650 ICK = ICK_SVE_Vector_Conversion;
1651 return true;
1652 }
1653
1654 // We can perform the conversion between vector types in the following cases:
1655 // 1)vector types are equivalent AltiVec and GCC vector types
1656 // 2)lax vector conversions are permitted and the vector types are of the
1657 // same size
1658 // 3)the destination type does not have the ARM MVE strict-polymorphism
1659 // attribute, which inhibits lax vector conversion for overload resolution
1660 // only
1661 if (ToType->isVectorType() && FromType->isVectorType()) {
1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663 (S.isLaxVectorConversion(FromType, ToType) &&
1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665 ICK = ICK_Vector_Conversion;
1666 return true;
1667 }
1668 }
1669
1670 return false;
1671}
1672
1673static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674 bool InOverloadResolution,
1675 StandardConversionSequence &SCS,
1676 bool CStyle);
1677
1678/// IsStandardConversion - Determines whether there is a standard
1679/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680/// expression From to the type ToType. Standard conversion sequences
1681/// only consider non-class types; for conversions that involve class
1682/// types, use TryImplicitConversion. If a conversion exists, SCS will
1683/// contain the standard conversion sequence required to perform this
1684/// conversion and this routine will return true. Otherwise, this
1685/// routine will return false and the value of SCS is unspecified.
1686static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687 bool InOverloadResolution,
1688 StandardConversionSequence &SCS,
1689 bool CStyle,
1690 bool AllowObjCWritebackConversion) {
1691 QualType FromType = From->getType();
1692
1693 // Standard conversions (C++ [conv])
1694 SCS.setAsIdentityConversion();
1695 SCS.IncompatibleObjC = false;
1696 SCS.setFromType(FromType);
1697 SCS.CopyConstructor = nullptr;
1698
1699 // There are no standard conversions for class types in C++, so
1700 // abort early. When overloading in C, however, we do permit them.
1701 if (S.getLangOpts().CPlusPlus &&
1702 (FromType->isRecordType() || ToType->isRecordType()))
1703 return false;
1704
1705 // The first conversion can be an lvalue-to-rvalue conversion,
1706 // array-to-pointer conversion, or function-to-pointer conversion
1707 // (C++ 4p1).
1708
1709 if (FromType == S.Context.OverloadTy) {
1710 DeclAccessPair AccessPair;
1711 if (FunctionDecl *Fn
1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713 AccessPair)) {
1714 // We were able to resolve the address of the overloaded function,
1715 // so we can convert to the type of that function.
1716 FromType = Fn->getType();
1717 SCS.setFromType(FromType);
1718
1719 // we can sometimes resolve &foo<int> regardless of ToType, so check
1720 // if the type matches (identity) or we are converting to bool
1721 if (!S.Context.hasSameUnqualifiedType(
1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723 QualType resultTy;
1724 // if the function type matches except for [[noreturn]], it's ok
1725 if (!S.IsFunctionConversion(FromType,
1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727 // otherwise, only a boolean conversion is standard
1728 if (!ToType->isBooleanType())
1729 return false;
1730 }
1731
1732 // Check if the "from" expression is taking the address of an overloaded
1733 // function and recompute the FromType accordingly. Take advantage of the
1734 // fact that non-static member functions *must* have such an address-of
1735 // expression.
1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737 if (Method && !Method->isStatic()) {
1738 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((void)0)
1739 "Non-unary operator on non-static member address")((void)0);
1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((void)0)
1741 == UO_AddrOf &&((void)0)
1742 "Non-address-of operator on non-static member address")((void)0);
1743 const Type *ClassType
1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((void)0)
1748 UO_AddrOf &&((void)0)
1749 "Non-address-of operator for overloaded function expression")((void)0);
1750 FromType = S.Context.getPointerType(FromType);
1751 }
1752
1753 // Check that we've computed the proper type after overload resolution.
1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755 // be calling it from within an NDEBUG block.
1756 assert(S.Context.hasSameType(((void)0)
1757 FromType,((void)0)
1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((void)0);
1759 } else {
1760 return false;
1761 }
1762 }
1763 // Lvalue-to-rvalue conversion (C++11 4.1):
1764 // A glvalue (3.10) of a non-function, non-array type T can
1765 // be converted to a prvalue.
1766 bool argIsLValue = From->isGLValue();
1767 if (argIsLValue &&
1768 !FromType->isFunctionType() && !FromType->isArrayType() &&
1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770 SCS.First = ICK_Lvalue_To_Rvalue;
1771
1772 // C11 6.3.2.1p2:
1773 // ... if the lvalue has atomic type, the value has the non-atomic version
1774 // of the type of the lvalue ...
1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776 FromType = Atomic->getValueType();
1777
1778 // If T is a non-class type, the type of the rvalue is the
1779 // cv-unqualified version of T. Otherwise, the type of the rvalue
1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781 // just strip the qualifiers because they don't matter.
1782 FromType = FromType.getUnqualifiedType();
1783 } else if (FromType->isArrayType()) {
1784 // Array-to-pointer conversion (C++ 4.2)
1785 SCS.First = ICK_Array_To_Pointer;
1786
1787 // An lvalue or rvalue of type "array of N T" or "array of unknown
1788 // bound of T" can be converted to an rvalue of type "pointer to
1789 // T" (C++ 4.2p1).
1790 FromType = S.Context.getArrayDecayedType(FromType);
1791
1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793 // This conversion is deprecated in C++03 (D.4)
1794 SCS.DeprecatedStringLiteralToCharPtr = true;
1795
1796 // For the purpose of ranking in overload resolution
1797 // (13.3.3.1.1), this conversion is considered an
1798 // array-to-pointer conversion followed by a qualification
1799 // conversion (4.4). (C++ 4.2p2)
1800 SCS.Second = ICK_Identity;
1801 SCS.Third = ICK_Qualification;
1802 SCS.QualificationIncludesObjCLifetime = false;
1803 SCS.setAllToTypes(FromType);
1804 return true;
1805 }
1806 } else if (FromType->isFunctionType() && argIsLValue) {
1807 // Function-to-pointer conversion (C++ 4.3).
1808 SCS.First = ICK_Function_To_Pointer;
1809
1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812 if (!S.checkAddressOfFunctionIsAvailable(FD))
1813 return false;
1814
1815 // An lvalue of function type T can be converted to an rvalue of
1816 // type "pointer to T." The result is a pointer to the
1817 // function. (C++ 4.3p1).
1818 FromType = S.Context.getPointerType(FromType);
1819 } else {
1820 // We don't require any conversions for the first step.
1821 SCS.First = ICK_Identity;
1822 }
1823 SCS.setToType(0, FromType);
1824
1825 // The second conversion can be an integral promotion, floating
1826 // point promotion, integral conversion, floating point conversion,
1827 // floating-integral conversion, pointer conversion,
1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829 // For overloading in C, this can also be a "compatible-type"
1830 // conversion.
1831 bool IncompatibleObjC = false;
1832 ImplicitConversionKind SecondICK = ICK_Identity;
1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834 // The unqualified versions of the types are the same: there's no
1835 // conversion to do.
1836 SCS.Second = ICK_Identity;
1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838 // Integral promotion (C++ 4.5).
1839 SCS.Second = ICK_Integral_Promotion;
1840 FromType = ToType.getUnqualifiedType();
1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842 // Floating point promotion (C++ 4.6).
1843 SCS.Second = ICK_Floating_Promotion;
1844 FromType = ToType.getUnqualifiedType();
1845 } else if (S.IsComplexPromotion(FromType, ToType)) {
1846 // Complex promotion (Clang extension)
1847 SCS.Second = ICK_Complex_Promotion;
1848 FromType = ToType.getUnqualifiedType();
1849 } else if (ToType->isBooleanType() &&
1850 (FromType->isArithmeticType() ||
1851 FromType->isAnyPointerType() ||
1852 FromType->isBlockPointerType() ||
1853 FromType->isMemberPointerType())) {
1854 // Boolean conversions (C++ 4.12).
1855 SCS.Second = ICK_Boolean_Conversion;
1856 FromType = S.Context.BoolTy;
1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858 ToType->isIntegralType(S.Context)) {
1859 // Integral conversions (C++ 4.7).
1860 SCS.Second = ICK_Integral_Conversion;
1861 FromType = ToType.getUnqualifiedType();
1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863 // Complex conversions (C99 6.3.1.6)
1864 SCS.Second = ICK_Complex_Conversion;
1865 FromType = ToType.getUnqualifiedType();
1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868 // Complex-real conversions (C99 6.3.1.7)
1869 SCS.Second = ICK_Complex_Real;
1870 FromType = ToType.getUnqualifiedType();
1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872 // FIXME: disable conversions between long double and __float128 if
1873 // their representation is different until there is back end support
1874 // We of course allow this conversion if long double is really double.
1875
1876 // Conversions between bfloat and other floats are not permitted.
1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878 return false;
1879 if (&S.Context.getFloatTypeSemantics(FromType) !=
1880 &S.Context.getFloatTypeSemantics(ToType)) {
1881 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1882 ToType == S.Context.LongDoubleTy) ||
1883 (FromType == S.Context.LongDoubleTy &&
1884 ToType == S.Context.Float128Ty));
1885 if (Float128AndLongDouble &&
1886 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1887 &llvm::APFloat::PPCDoubleDouble()))
1888 return false;
1889 }
1890 // Floating point conversions (C++ 4.8).
1891 SCS.Second = ICK_Floating_Conversion;
1892 FromType = ToType.getUnqualifiedType();
1893 } else if ((FromType->isRealFloatingType() &&
1894 ToType->isIntegralType(S.Context)) ||
1895 (FromType->isIntegralOrUnscopedEnumerationType() &&
1896 ToType->isRealFloatingType())) {
1897 // Conversions between bfloat and int are not permitted.
1898 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1899 return false;
1900
1901 // Floating-integral conversions (C++ 4.9).
1902 SCS.Second = ICK_Floating_Integral;
1903 FromType = ToType.getUnqualifiedType();
1904 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905 SCS.Second = ICK_Block_Pointer_Conversion;
1906 } else if (AllowObjCWritebackConversion &&
1907 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908 SCS.Second = ICK_Writeback_Conversion;
1909 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910 FromType, IncompatibleObjC)) {
1911 // Pointer conversions (C++ 4.10).
1912 SCS.Second = ICK_Pointer_Conversion;
1913 SCS.IncompatibleObjC = IncompatibleObjC;
1914 FromType = FromType.getUnqualifiedType();
1915 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916 InOverloadResolution, FromType)) {
1917 // Pointer to member conversions (4.11).
1918 SCS.Second = ICK_Pointer_Member;
1919 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1920 SCS.Second = SecondICK;
1921 FromType = ToType.getUnqualifiedType();
1922 } else if (!S.getLangOpts().CPlusPlus &&
1923 S.Context.typesAreCompatible(ToType, FromType)) {
1924 // Compatible conversions (Clang extension for C function overloading)
1925 SCS.Second = ICK_Compatible_Conversion;
1926 FromType = ToType.getUnqualifiedType();
1927 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1928 InOverloadResolution,
1929 SCS, CStyle)) {
1930 SCS.Second = ICK_TransparentUnionConversion;
1931 FromType = ToType;
1932 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1933 CStyle)) {
1934 // tryAtomicConversion has updated the standard conversion sequence
1935 // appropriately.
1936 return true;
1937 } else if (ToType->isEventT() &&
1938 From->isIntegerConstantExpr(S.getASTContext()) &&
1939 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1940 SCS.Second = ICK_Zero_Event_Conversion;
1941 FromType = ToType;
1942 } else if (ToType->isQueueT() &&
1943 From->isIntegerConstantExpr(S.getASTContext()) &&
1944 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1945 SCS.Second = ICK_Zero_Queue_Conversion;
1946 FromType = ToType;
1947 } else if (ToType->isSamplerT() &&
1948 From->isIntegerConstantExpr(S.getASTContext())) {
1949 SCS.Second = ICK_Compatible_Conversion;
1950 FromType = ToType;
1951 } else {
1952 // No second conversion required.
1953 SCS.Second = ICK_Identity;
1954 }
1955 SCS.setToType(1, FromType);
1956
1957 // The third conversion can be a function pointer conversion or a
1958 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1959 bool ObjCLifetimeConversion;
1960 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1961 // Function pointer conversions (removing 'noexcept') including removal of
1962 // 'noreturn' (Clang extension).
1963 SCS.Third = ICK_Function_Conversion;
1964 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1965 ObjCLifetimeConversion)) {
1966 SCS.Third = ICK_Qualification;
1967 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1968 FromType = ToType;
1969 } else {
1970 // No conversion required
1971 SCS.Third = ICK_Identity;
1972 }
1973
1974 // C++ [over.best.ics]p6:
1975 // [...] Any difference in top-level cv-qualification is
1976 // subsumed by the initialization itself and does not constitute
1977 // a conversion. [...]
1978 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1979 QualType CanonTo = S.Context.getCanonicalType(ToType);
1980 if (CanonFrom.getLocalUnqualifiedType()
1981 == CanonTo.getLocalUnqualifiedType() &&
1982 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1983 FromType = ToType;
1984 CanonFrom = CanonTo;
1985 }
1986
1987 SCS.setToType(2, FromType);
1988
1989 if (CanonFrom == CanonTo)
1990 return true;
1991
1992 // If we have not converted the argument type to the parameter type,
1993 // this is a bad conversion sequence, unless we're resolving an overload in C.
1994 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1995 return false;
1996
1997 ExprResult ER = ExprResult{From};
1998 Sema::AssignConvertType Conv =
1999 S.CheckSingleAssignmentConstraints(ToType, ER,
2000 /*Diagnose=*/false,
2001 /*DiagnoseCFAudited=*/false,
2002 /*ConvertRHS=*/false);
2003 ImplicitConversionKind SecondConv;
2004 switch (Conv) {
2005 case Sema::Compatible:
2006 SecondConv = ICK_C_Only_Conversion;
2007 break;
2008 // For our purposes, discarding qualifiers is just as bad as using an
2009 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2010 // qualifiers, as well.
2011 case Sema::CompatiblePointerDiscardsQualifiers:
2012 case Sema::IncompatiblePointer:
2013 case Sema::IncompatiblePointerSign:
2014 SecondConv = ICK_Incompatible_Pointer_Conversion;
2015 break;
2016 default:
2017 return false;
2018 }
2019
2020 // First can only be an lvalue conversion, so we pretend that this was the
2021 // second conversion. First should already be valid from earlier in the
2022 // function.
2023 SCS.Second = SecondConv;
2024 SCS.setToType(1, ToType);
2025
2026 // Third is Identity, because Second should rank us worse than any other
2027 // conversion. This could also be ICK_Qualification, but it's simpler to just
2028 // lump everything in with the second conversion, and we don't gain anything
2029 // from making this ICK_Qualification.
2030 SCS.Third = ICK_Identity;
2031 SCS.setToType(2, ToType);
2032 return true;
2033}
2034
2035static bool
2036IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2037 QualType &ToType,
2038 bool InOverloadResolution,
2039 StandardConversionSequence &SCS,
2040 bool CStyle) {
2041
2042 const RecordType *UT = ToType->getAsUnionType();
2043 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2044 return false;
2045 // The field to initialize within the transparent union.
2046 RecordDecl *UD = UT->getDecl();
2047 // It's compatible if the expression matches any of the fields.
2048 for (const auto *it : UD->fields()) {
2049 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2050 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2051 ToType = it->getType();
2052 return true;
2053 }
2054 }
2055 return false;
2056}
2057
2058/// IsIntegralPromotion - Determines whether the conversion from the
2059/// expression From (whose potentially-adjusted type is FromType) to
2060/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2061/// sets PromotedType to the promoted type.
2062bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2063 const BuiltinType *To = ToType->getAs<BuiltinType>();
2064 // All integers are built-in.
2065 if (!To) {
2066 return false;
2067 }
2068
2069 // An rvalue of type char, signed char, unsigned char, short int, or
2070 // unsigned short int can be converted to an rvalue of type int if
2071 // int can represent all the values of the source type; otherwise,
2072 // the source rvalue can be converted to an rvalue of type unsigned
2073 // int (C++ 4.5p1).
2074 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2075 !FromType->isEnumeralType()) {
2076 if (// We can promote any signed, promotable integer type to an int
2077 (FromType->isSignedIntegerType() ||
2078 // We can promote any unsigned integer type whose size is
2079 // less than int to an int.
2080 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2081 return To->getKind() == BuiltinType::Int;
2082 }
2083
2084 return To->getKind() == BuiltinType::UInt;
2085 }
2086
2087 // C++11 [conv.prom]p3:
2088 // A prvalue of an unscoped enumeration type whose underlying type is not
2089 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2090 // following types that can represent all the values of the enumeration
2091 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2092 // unsigned int, long int, unsigned long int, long long int, or unsigned
2093 // long long int. If none of the types in that list can represent all the
2094 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2095 // type can be converted to an rvalue a prvalue of the extended integer type
2096 // with lowest integer conversion rank (4.13) greater than the rank of long
2097 // long in which all the values of the enumeration can be represented. If
2098 // there are two such extended types, the signed one is chosen.
2099 // C++11 [conv.prom]p4:
2100 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2101 // can be converted to a prvalue of its underlying type. Moreover, if
2102 // integral promotion can be applied to its underlying type, a prvalue of an
2103 // unscoped enumeration type whose underlying type is fixed can also be
2104 // converted to a prvalue of the promoted underlying type.
2105 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2106 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2107 // provided for a scoped enumeration.
2108 if (FromEnumType->getDecl()->isScoped())
2109 return false;
2110
2111 // We can perform an integral promotion to the underlying type of the enum,
2112 // even if that's not the promoted type. Note that the check for promoting
2113 // the underlying type is based on the type alone, and does not consider
2114 // the bitfield-ness of the actual source expression.
2115 if (FromEnumType->getDecl()->isFixed()) {
2116 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2117 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2118 IsIntegralPromotion(nullptr, Underlying, ToType);
2119 }
2120
2121 // We have already pre-calculated the promotion type, so this is trivial.
2122 if (ToType->isIntegerType() &&
2123 isCompleteType(From->getBeginLoc(), FromType))
2124 return Context.hasSameUnqualifiedType(
2125 ToType, FromEnumType->getDecl()->getPromotionType());
2126
2127 // C++ [conv.prom]p5:
2128 // If the bit-field has an enumerated type, it is treated as any other
2129 // value of that type for promotion purposes.
2130 //
2131 // ... so do not fall through into the bit-field checks below in C++.
2132 if (getLangOpts().CPlusPlus)
2133 return false;
2134 }
2135
2136 // C++0x [conv.prom]p2:
2137 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2138 // to an rvalue a prvalue of the first of the following types that can
2139 // represent all the values of its underlying type: int, unsigned int,
2140 // long int, unsigned long int, long long int, or unsigned long long int.
2141 // If none of the types in that list can represent all the values of its
2142 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2143 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2144 // type.
2145 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2146 ToType->isIntegerType()) {
2147 // Determine whether the type we're converting from is signed or
2148 // unsigned.
2149 bool FromIsSigned = FromType->isSignedIntegerType();
2150 uint64_t FromSize = Context.getTypeSize(FromType);
2151
2152 // The types we'll try to promote to, in the appropriate
2153 // order. Try each of these types.
2154 QualType PromoteTypes[6] = {
2155 Context.IntTy, Context.UnsignedIntTy,
2156 Context.LongTy, Context.UnsignedLongTy ,
2157 Context.LongLongTy, Context.UnsignedLongLongTy
2158 };
2159 for (int Idx = 0; Idx < 6; ++Idx) {
2160 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2161 if (FromSize < ToSize ||
2162 (FromSize == ToSize &&
2163 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2164 // We found the type that we can promote to. If this is the
2165 // type we wanted, we have a promotion. Otherwise, no
2166 // promotion.
2167 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2168 }
2169 }
2170 }
2171
2172 // An rvalue for an integral bit-field (9.6) can be converted to an
2173 // rvalue of type int if int can represent all the values of the
2174 // bit-field; otherwise, it can be converted to unsigned int if
2175 // unsigned int can represent all the values of the bit-field. If
2176 // the bit-field is larger yet, no integral promotion applies to
2177 // it. If the bit-field has an enumerated type, it is treated as any
2178 // other value of that type for promotion purposes (C++ 4.5p3).
2179 // FIXME: We should delay checking of bit-fields until we actually perform the
2180 // conversion.
2181 //
2182 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2183 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2184 // bit-fields and those whose underlying type is larger than int) for GCC
2185 // compatibility.
2186 if (From) {
2187 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2188 Optional<llvm::APSInt> BitWidth;
2189 if (FromType->isIntegralType(Context) &&
2190 (BitWidth =
2191 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2192 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2193 ToSize = Context.getTypeSize(ToType);
2194
2195 // Are we promoting to an int from a bitfield that fits in an int?
2196 if (*BitWidth < ToSize ||
2197 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2198 return To->getKind() == BuiltinType::Int;
2199 }
2200
2201 // Are we promoting to an unsigned int from an unsigned bitfield
2202 // that fits into an unsigned int?
2203 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2204 return To->getKind() == BuiltinType::UInt;
2205 }
2206
2207 return false;
2208 }
2209 }
2210 }
2211
2212 // An rvalue of type bool can be converted to an rvalue of type int,
2213 // with false becoming zero and true becoming one (C++ 4.5p4).
2214 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2215 return true;
2216 }
2217
2218 return false;
2219}
2220
2221/// IsFloatingPointPromotion - Determines whether the conversion from
2222/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2223/// returns true and sets PromotedType to the promoted type.
2224bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2225 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2226 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2227 /// An rvalue of type float can be converted to an rvalue of type
2228 /// double. (C++ 4.6p1).
2229 if (FromBuiltin->getKind() == BuiltinType::Float &&
2230 ToBuiltin->getKind() == BuiltinType::Double)
2231 return true;
2232
2233 // C99 6.3.1.5p1:
2234 // When a float is promoted to double or long double, or a
2235 // double is promoted to long double [...].
2236 if (!getLangOpts().CPlusPlus &&
2237 (FromBuiltin->getKind() == BuiltinType::Float ||
2238 FromBuiltin->getKind() == BuiltinType::Double) &&
2239 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2240 ToBuiltin->getKind() == BuiltinType::Float128))
2241 return true;
2242
2243 // Half can be promoted to float.
2244 if (!getLangOpts().NativeHalfType &&
2245 FromBuiltin->getKind() == BuiltinType::Half &&
2246 ToBuiltin->getKind() == BuiltinType::Float)
2247 return true;
2248 }
2249
2250 return false;
2251}
2252
2253/// Determine if a conversion is a complex promotion.
2254///
2255/// A complex promotion is defined as a complex -> complex conversion
2256/// where the conversion between the underlying real types is a
2257/// floating-point or integral promotion.
2258bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2259 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2260 if (!FromComplex)
2261 return false;
2262
2263 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2264 if (!ToComplex)
2265 return false;
2266
2267 return IsFloatingPointPromotion(FromComplex->getElementType(),
2268 ToComplex->getElementType()) ||
2269 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2270 ToComplex->getElementType());
2271}
2272
2273/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2274/// the pointer type FromPtr to a pointer to type ToPointee, with the
2275/// same type qualifiers as FromPtr has on its pointee type. ToType,
2276/// if non-empty, will be a pointer to ToType that may or may not have
2277/// the right set of qualifiers on its pointee.
2278///
2279static QualType
2280BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2281 QualType ToPointee, QualType ToType,
2282 ASTContext &Context,
2283 bool StripObjCLifetime = false) {
2284 assert((FromPtr->getTypeClass() == Type::Pointer ||((void)0)
2285 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&((void)0)
2286 "Invalid similarly-qualified pointer type")((void)0);
2287
2288 /// Conversions to 'id' subsume cv-qualifier conversions.
2289 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2290 return ToType.getUnqualifiedType();
2291
2292 QualType CanonFromPointee
2293 = Context.getCanonicalType(FromPtr->getPointeeType());
2294 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2295 Qualifiers Quals = CanonFromPointee.getQualifiers();
2296
2297 if (StripObjCLifetime)
2298 Quals.removeObjCLifetime();
2299
2300 // Exact qualifier match -> return the pointer type we're converting to.
2301 if (CanonToPointee.getLocalQualifiers() == Quals) {
2302 // ToType is exactly what we need. Return it.
2303 if (!ToType.isNull())
2304 return ToType.getUnqualifiedType();
2305
2306 // Build a pointer to ToPointee. It has the right qualifiers
2307 // already.
2308 if (isa<ObjCObjectPointerType>(ToType))
2309 return Context.getObjCObjectPointerType(ToPointee);
2310 return Context.getPointerType(ToPointee);
2311 }
2312
2313 // Just build a canonical type that has the right qualifiers.
2314 QualType QualifiedCanonToPointee
2315 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2316
2317 if (isa<ObjCObjectPointerType>(ToType))
2318 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2319 return Context.getPointerType(QualifiedCanonToPointee);
2320}
2321
2322static bool isNullPointerConstantForConversion(Expr *Expr,
2323 bool InOverloadResolution,
2324 ASTContext &Context) {
2325 // Handle value-dependent integral null pointer constants correctly.
2326 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2327 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2328 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2329 return !InOverloadResolution;
2330
2331 return Expr->isNullPointerConstant(Context,
2332 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2333 : Expr::NPC_ValueDependentIsNull);
2334}
2335
2336/// IsPointerConversion - Determines whether the conversion of the
2337/// expression From, which has the (possibly adjusted) type FromType,
2338/// can be converted to the type ToType via a pointer conversion (C++
2339/// 4.10). If so, returns true and places the converted type (that
2340/// might differ from ToType in its cv-qualifiers at some level) into
2341/// ConvertedType.
2342///
2343/// This routine also supports conversions to and from block pointers
2344/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2345/// pointers to interfaces. FIXME: Once we've determined the
2346/// appropriate overloading rules for Objective-C, we may want to
2347/// split the Objective-C checks into a different routine; however,
2348/// GCC seems to consider all of these conversions to be pointer
2349/// conversions, so for now they live here. IncompatibleObjC will be
2350/// set if the conversion is an allowed Objective-C conversion that
2351/// should result in a warning.
2352bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2353 bool InOverloadResolution,
2354 QualType& ConvertedType,
2355 bool &IncompatibleObjC) {
2356 IncompatibleObjC = false;
2357 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2358 IncompatibleObjC))
2359 return true;
2360
2361 // Conversion from a null pointer constant to any Objective-C pointer type.
2362 if (ToType->isObjCObjectPointerType() &&
2363 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364 ConvertedType = ToType;
2365 return true;
2366 }
2367
2368 // Blocks: Block pointers can be converted to void*.
2369 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2370 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2371 ConvertedType = ToType;
2372 return true;
2373 }
2374 // Blocks: A null pointer constant can be converted to a block
2375 // pointer type.
2376 if (ToType->isBlockPointerType() &&
2377 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2378 ConvertedType = ToType;
2379 return true;
2380 }
2381
2382 // If the left-hand-side is nullptr_t, the right side can be a null
2383 // pointer constant.
2384 if (ToType->isNullPtrType() &&
2385 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2386 ConvertedType = ToType;
2387 return true;
2388 }
2389
2390 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2391 if (!ToTypePtr)
2392 return false;
2393
2394 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2395 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2396 ConvertedType = ToType;
2397 return true;
2398 }
2399
2400 // Beyond this point, both types need to be pointers
2401 // , including objective-c pointers.
2402 QualType ToPointeeType = ToTypePtr->getPointeeType();
2403 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2404 !getLangOpts().ObjCAutoRefCount) {
2405 ConvertedType = BuildSimilarlyQualifiedPointerType(
2406 FromType->getAs<ObjCObjectPointerType>(),
2407 ToPointeeType,
2408 ToType, Context);
2409 return true;
2410 }
2411 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2412 if (!FromTypePtr)
2413 return false;
2414
2415 QualType FromPointeeType = FromTypePtr->getPointeeType();
2416
2417 // If the unqualified pointee types are the same, this can't be a
2418 // pointer conversion, so don't do all of the work below.
2419 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2420 return false;
2421
2422 // An rvalue of type "pointer to cv T," where T is an object type,
2423 // can be converted to an rvalue of type "pointer to cv void" (C++
2424 // 4.10p2).
2425 if (FromPointeeType->isIncompleteOrObjectType() &&
2426 ToPointeeType->isVoidType()) {
2427 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2428 ToPointeeType,
2429 ToType, Context,
2430 /*StripObjCLifetime=*/true);
2431 return true;
2432 }
2433
2434 // MSVC allows implicit function to void* type conversion.
2435 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2436 ToPointeeType->isVoidType()) {
2437 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2438 ToPointeeType,
2439 ToType, Context);
2440 return true;
2441 }
2442
2443 // When we're overloading in C, we allow a special kind of pointer
2444 // conversion for compatible-but-not-identical pointee types.
2445 if (!getLangOpts().CPlusPlus &&
2446 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2447 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2448 ToPointeeType,
2449 ToType, Context);
2450 return true;
2451 }
2452
2453 // C++ [conv.ptr]p3:
2454 //
2455 // An rvalue of type "pointer to cv D," where D is a class type,
2456 // can be converted to an rvalue of type "pointer to cv B," where
2457 // B is a base class (clause 10) of D. If B is an inaccessible
2458 // (clause 11) or ambiguous (10.2) base class of D, a program that
2459 // necessitates this conversion is ill-formed. The result of the
2460 // conversion is a pointer to the base class sub-object of the
2461 // derived class object. The null pointer value is converted to
2462 // the null pointer value of the destination type.
2463 //
2464 // Note that we do not check for ambiguity or inaccessibility
2465 // here. That is handled by CheckPointerConversion.
2466 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2467 ToPointeeType->isRecordType() &&
2468 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2469 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2470 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2471 ToPointeeType,
2472 ToType, Context);
2473 return true;
2474 }
2475
2476 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2477 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2478 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2479 ToPointeeType,
2480 ToType, Context);
2481 return true;
2482 }
2483
2484 return false;
2485}
2486
2487/// Adopt the given qualifiers for the given type.
2488static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2489 Qualifiers TQs = T.getQualifiers();
2490
2491 // Check whether qualifiers already match.
2492 if (TQs == Qs)
2493 return T;
2494
2495 if (Qs.compatiblyIncludes(TQs))
2496 return Context.getQualifiedType(T, Qs);
2497
2498 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2499}
2500
2501/// isObjCPointerConversion - Determines whether this is an
2502/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2503/// with the same arguments and return values.
2504bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2505 QualType& ConvertedType,
2506 bool &IncompatibleObjC) {
2507 if (!getLangOpts().ObjC)
2508 return false;
2509
2510 // The set of qualifiers on the type we're converting from.
2511 Qualifiers FromQualifiers = FromType.getQualifiers();
2512
2513 // First, we handle all conversions on ObjC object pointer types.
2514 const ObjCObjectPointerType* ToObjCPtr =
2515 ToType->getAs<ObjCObjectPointerType>();
2516 const ObjCObjectPointerType *FromObjCPtr =
2517 FromType->getAs<ObjCObjectPointerType>();
2518
2519 if (ToObjCPtr && FromObjCPtr) {
2520 // If the pointee types are the same (ignoring qualifications),
2521 // then this is not a pointer conversion.
2522 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2523 FromObjCPtr->getPointeeType()))
2524 return false;
2525
2526 // Conversion between Objective-C pointers.
2527 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2528 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2529 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2530 if (getLangOpts().CPlusPlus && LHS && RHS &&
2531 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2532 FromObjCPtr->getPointeeType()))
2533 return false;
2534 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2535 ToObjCPtr->getPointeeType(),
2536 ToType, Context);
2537 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2538 return true;
2539 }
2540
2541 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2542 // Okay: this is some kind of implicit downcast of Objective-C
2543 // interfaces, which is permitted. However, we're going to
2544 // complain about it.
2545 IncompatibleObjC = true;
2546 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2547 ToObjCPtr->getPointeeType(),
2548 ToType, Context);
2549 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2550 return true;
2551 }
2552 }
2553 // Beyond this point, both types need to be C pointers or block pointers.
2554 QualType ToPointeeType;
2555 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2556 ToPointeeType = ToCPtr->getPointeeType();
2557 else if (const BlockPointerType *ToBlockPtr =
2558 ToType->getAs<BlockPointerType>()) {
2559 // Objective C++: We're able to convert from a pointer to any object
2560 // to a block pointer type.
2561 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2562 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2563 return true;
2564 }
2565 ToPointeeType = ToBlockPtr->getPointeeType();
2566 }
2567 else if (FromType->getAs<BlockPointerType>() &&
2568 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2569 // Objective C++: We're able to convert from a block pointer type to a
2570 // pointer to any object.
2571 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2572 return true;
2573 }
2574 else
2575 return false;
2576
2577 QualType FromPointeeType;
2578 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2579 FromPointeeType = FromCPtr->getPointeeType();
2580 else if (const BlockPointerType *FromBlockPtr =
2581 FromType->getAs<BlockPointerType>())
2582 FromPointeeType = FromBlockPtr->getPointeeType();
2583 else
2584 return false;
2585
2586 // If we have pointers to pointers, recursively check whether this
2587 // is an Objective-C conversion.
2588 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2589 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2590 IncompatibleObjC)) {
2591 // We always complain about this conversion.
2592 IncompatibleObjC = true;
2593 ConvertedType = Context.getPointerType(ConvertedType);
2594 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2595 return true;
2596 }
2597 // Allow conversion of pointee being objective-c pointer to another one;
2598 // as in I* to id.
2599 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2600 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2601 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2602 IncompatibleObjC)) {
2603
2604 ConvertedType = Context.getPointerType(ConvertedType);
2605 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2606 return true;
2607 }
2608
2609 // If we have pointers to functions or blocks, check whether the only
2610 // differences in the argument and result types are in Objective-C
2611 // pointer conversions. If so, we permit the conversion (but
2612 // complain about it).
2613 const FunctionProtoType *FromFunctionType
2614 = FromPointeeType->getAs<FunctionProtoType>();
2615 const FunctionProtoType *ToFunctionType
2616 = ToPointeeType->getAs<FunctionProtoType>();
2617 if (FromFunctionType && ToFunctionType) {
2618 // If the function types are exactly the same, this isn't an
2619 // Objective-C pointer conversion.
2620 if (Context.getCanonicalType(FromPointeeType)
2621 == Context.getCanonicalType(ToPointeeType))
2622 return false;
2623
2624 // Perform the quick checks that will tell us whether these
2625 // function types are obviously different.
2626 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2627 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2628 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2629 return false;
2630
2631 bool HasObjCConversion = false;
2632 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2633 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2634 // Okay, the types match exactly. Nothing to do.
2635 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2636 ToFunctionType->getReturnType(),
2637 ConvertedType, IncompatibleObjC)) {
2638 // Okay, we have an Objective-C pointer conversion.
2639 HasObjCConversion = true;
2640 } else {
2641 // Function types are too different. Abort.
2642 return false;
2643 }
2644
2645 // Check argument types.
2646 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2647 ArgIdx != NumArgs; ++ArgIdx) {
2648 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2649 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2650 if (Context.getCanonicalType(FromArgType)
2651 == Context.getCanonicalType(ToArgType)) {
2652 // Okay, the types match exactly. Nothing to do.
2653 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2654 ConvertedType, IncompatibleObjC)) {
2655 // Okay, we have an Objective-C pointer conversion.
2656 HasObjCConversion = true;
2657 } else {
2658 // Argument types are too different. Abort.
2659 return false;
2660 }
2661 }
2662
2663 if (HasObjCConversion) {
2664 // We had an Objective-C conversion. Allow this pointer
2665 // conversion, but complain about it.
2666 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2667 IncompatibleObjC = true;
2668 return true;
2669 }
2670 }
2671
2672 return false;
2673}
2674
2675/// Determine whether this is an Objective-C writeback conversion,
2676/// used for parameter passing when performing automatic reference counting.
2677///
2678/// \param FromType The type we're converting form.
2679///
2680/// \param ToType The type we're converting to.
2681///
2682/// \param ConvertedType The type that will be produced after applying
2683/// this conversion.
2684bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2685 QualType &ConvertedType) {
2686 if (!getLangOpts().ObjCAutoRefCount ||
2687 Context.hasSameUnqualifiedType(FromType, ToType))
2688 return false;
2689
2690 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2691 QualType ToPointee;
2692 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2693 ToPointee = ToPointer->getPointeeType();
2694 else
2695 return false;
2696
2697 Qualifiers ToQuals = ToPointee.getQualifiers();
2698 if (!ToPointee->isObjCLifetimeType() ||
2699 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2700 !ToQuals.withoutObjCLifetime().empty())
2701 return false;
2702
2703 // Argument must be a pointer to __strong to __weak.
2704 QualType FromPointee;
2705 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2706 FromPointee = FromPointer->getPointeeType();
2707 else
2708 return false;
2709
2710 Qualifiers FromQuals = FromPointee.getQualifiers();
2711 if (!FromPointee->isObjCLifetimeType() ||
2712 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2713 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2714 return false;
2715
2716 // Make sure that we have compatible qualifiers.
2717 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2718 if (!ToQuals.compatiblyIncludes(FromQuals))
2719 return false;
2720
2721 // Remove qualifiers from the pointee type we're converting from; they
2722 // aren't used in the compatibility check belong, and we'll be adding back
2723 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2724 FromPointee = FromPointee.getUnqualifiedType();
2725
2726 // The unqualified form of the pointee types must be compatible.
2727 ToPointee = ToPointee.getUnqualifiedType();
2728 bool IncompatibleObjC;
2729 if (Context.typesAreCompatible(FromPointee, ToPointee))
2730 FromPointee = ToPointee;
2731 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2732 IncompatibleObjC))
2733 return false;
2734
2735 /// Construct the type we're converting to, which is a pointer to
2736 /// __autoreleasing pointee.
2737 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2738 ConvertedType = Context.getPointerType(FromPointee);
2739 return true;
2740}
2741
2742bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2743 QualType& ConvertedType) {
2744 QualType ToPointeeType;
2745 if (const BlockPointerType *ToBlockPtr =
2746 ToType->getAs<BlockPointerType>())
2747 ToPointeeType = ToBlockPtr->getPointeeType();
2748 else
2749 return false;
2750
2751 QualType FromPointeeType;
2752 if (const BlockPointerType *FromBlockPtr =
2753 FromType->getAs<BlockPointerType>())
2754 FromPointeeType = FromBlockPtr->getPointeeType();
2755 else
2756 return false;
2757 // We have pointer to blocks, check whether the only
2758 // differences in the argument and result types are in Objective-C
2759 // pointer conversions. If so, we permit the conversion.
2760
2761 const FunctionProtoType *FromFunctionType
2762 = FromPointeeType->getAs<FunctionProtoType>();
2763 const FunctionProtoType *ToFunctionType
2764 = ToPointeeType->getAs<FunctionProtoType>();
2765
2766 if (!FromFunctionType || !ToFunctionType)
2767 return false;
2768
2769 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2770 return true;
2771
2772 // Perform the quick checks that will tell us whether these
2773 // function types are obviously different.
2774 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2775 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2776 return false;
2777
2778 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2779 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2780 if (FromEInfo != ToEInfo)
2781 return false;
2782
2783 bool IncompatibleObjC = false;
2784 if (Context.hasSameType(FromFunctionType->getReturnType(),
2785 ToFunctionType->getReturnType())) {
2786 // Okay, the types match exactly. Nothing to do.
2787 } else {
2788 QualType RHS = FromFunctionType->getReturnType();
2789 QualType LHS = ToFunctionType->getReturnType();
2790 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2791 !RHS.hasQualifiers() && LHS.hasQualifiers())
2792 LHS = LHS.getUnqualifiedType();
2793
2794 if (Context.hasSameType(RHS,LHS)) {
2795 // OK exact match.
2796 } else if (isObjCPointerConversion(RHS, LHS,
2797 ConvertedType, IncompatibleObjC)) {
2798 if (IncompatibleObjC)
2799 return false;
2800 // Okay, we have an Objective-C pointer conversion.
2801 }
2802 else
2803 return false;
2804 }
2805
2806 // Check argument types.
2807 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2808 ArgIdx != NumArgs; ++ArgIdx) {
2809 IncompatibleObjC = false;
2810 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2811 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2812 if (Context.hasSameType(FromArgType, ToArgType)) {
2813 // Okay, the types match exactly. Nothing to do.
2814 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2815 ConvertedType, IncompatibleObjC)) {
2816 if (IncompatibleObjC)
2817 return false;
2818 // Okay, we have an Objective-C pointer conversion.
2819 } else
2820 // Argument types are too different. Abort.
2821 return false;
2822 }
2823
2824 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2825 bool CanUseToFPT, CanUseFromFPT;
2826 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2827 CanUseToFPT, CanUseFromFPT,
2828 NewParamInfos))
2829 return false;
2830
2831 ConvertedType = ToType;
2832 return true;
2833}
2834
2835enum {
2836 ft_default,
2837 ft_different_class,
2838 ft_parameter_arity,
2839 ft_parameter_mismatch,
2840 ft_return_type,
2841 ft_qualifer_mismatch,
2842 ft_noexcept
2843};
2844
2845/// Attempts to get the FunctionProtoType from a Type. Handles
2846/// MemberFunctionPointers properly.
2847static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2848 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2849 return FPT;
2850
2851 if (auto *MPT = FromType->getAs<MemberPointerType>())
2852 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2853
2854 return nullptr;
2855}
2856
2857/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2858/// function types. Catches different number of parameter, mismatch in
2859/// parameter types, and different return types.
2860void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2861 QualType FromType, QualType ToType) {
2862 // If either type is not valid, include no extra info.
2863 if (FromType.isNull() || ToType.isNull()) {
2864 PDiag << ft_default;
2865 return;
2866 }
2867
2868 // Get the function type from the pointers.
2869 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2870 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2871 *ToMember = ToType->castAs<MemberPointerType>();
2872 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2873 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2874 << QualType(FromMember->getClass(), 0);
2875 return;
2876 }
2877 FromType = FromMember->getPointeeType();
2878 ToType = ToMember->getPointeeType();
2879 }
2880
2881 if (FromType->isPointerType())
2882 FromType = FromType->getPointeeType();
2883 if (ToType->isPointerType())
2884 ToType = ToType->getPointeeType();
2885
2886 // Remove references.
2887 FromType = FromType.getNonReferenceType();
2888 ToType = ToType.getNonReferenceType();
2889
2890 // Don't print extra info for non-specialized template functions.
2891 if (FromType->isInstantiationDependentType() &&
2892 !FromType->getAs<TemplateSpecializationType>()) {
2893 PDiag << ft_default;
2894 return;
2895 }
2896
2897 // No extra info for same types.
2898 if (Context.hasSameType(FromType, ToType)) {
2899 PDiag << ft_default;
2900 return;
2901 }
2902
2903 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2904 *ToFunction = tryGetFunctionProtoType(ToType);
2905
2906 // Both types need to be function types.
2907 if (!FromFunction || !ToFunction) {
2908 PDiag << ft_default;
2909 return;
2910 }
2911
2912 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2913 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2914 << FromFunction->getNumParams();
2915 return;
2916 }
2917
2918 // Handle different parameter types.
2919 unsigned ArgPos;
2920 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2921 PDiag << ft_parameter_mismatch << ArgPos + 1
2922 << ToFunction->getParamType(ArgPos)
2923 << FromFunction->getParamType(ArgPos);
2924 return;
2925 }
2926
2927 // Handle different return type.
2928 if (!Context.hasSameType(FromFunction->getReturnType(),
2929 ToFunction->getReturnType())) {
2930 PDiag << ft_return_type << ToFunction->getReturnType()
2931 << FromFunction->getReturnType();
2932 return;
2933 }
2934
2935 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2936 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2937 << FromFunction->getMethodQuals();
2938 return;
2939 }
2940
2941 // Handle exception specification differences on canonical type (in C++17
2942 // onwards).
2943 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2944 ->isNothrow() !=
2945 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2946 ->isNothrow()) {
2947 PDiag << ft_noexcept;
2948 return;
2949 }
2950
2951 // Unable to find a difference, so add no extra info.
2952 PDiag << ft_default;
2953}
2954
2955/// FunctionParamTypesAreEqual - This routine checks two function proto types
2956/// for equality of their argument types. Caller has already checked that
2957/// they have same number of arguments. If the parameters are different,
2958/// ArgPos will have the parameter index of the first different parameter.
2959bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2960 const FunctionProtoType *NewType,
2961 unsigned *ArgPos) {
2962 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2963 N = NewType->param_type_begin(),
2964 E = OldType->param_type_end();
2965 O && (O != E); ++O, ++N) {
2966 // Ignore address spaces in pointee type. This is to disallow overloading
2967 // on __ptr32/__ptr64 address spaces.
2968 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2969 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2970
2971 if (!Context.hasSameType(Old, New)) {
2972 if (ArgPos)
2973 *ArgPos = O - OldType->param_type_begin();
2974 return false;
2975 }
2976 }
2977 return true;
2978}
2979
2980/// CheckPointerConversion - Check the pointer conversion from the
2981/// expression From to the type ToType. This routine checks for
2982/// ambiguous or inaccessible derived-to-base pointer
2983/// conversions for which IsPointerConversion has already returned
2984/// true. It returns true and produces a diagnostic if there was an
2985/// error, or returns false otherwise.
2986bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2987 CastKind &Kind,
2988 CXXCastPath& BasePath,
2989 bool IgnoreBaseAccess,
2990 bool Diagnose) {
2991 QualType FromType = From->getType();
2992 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2993
2994 Kind = CK_BitCast;
2995
2996 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2997 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2998 Expr::NPCK_ZeroExpression) {
2999 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3000 DiagRuntimeBehavior(From->getExprLoc(), From,
3001 PDiag(diag::warn_impcast_bool_to_null_pointer)
3002 << ToType << From->getSourceRange());
3003 else if (!isUnevaluatedContext())
3004 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3005 << ToType << From->getSourceRange();
3006 }
3007 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3008 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3009 QualType FromPointeeType = FromPtrType->getPointeeType(),
3010 ToPointeeType = ToPtrType->getPointeeType();
3011
3012 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3013 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3014 // We must have a derived-to-base conversion. Check an
3015 // ambiguous or inaccessible conversion.
3016 unsigned InaccessibleID = 0;
3017 unsigned AmbiguousID = 0;
3018 if (Diagnose) {
3019 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3020 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3021 }
3022 if (CheckDerivedToBaseConversion(
3023 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3024 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3025 &BasePath, IgnoreBaseAccess))
3026 return true;
3027
3028 // The conversion was successful.
3029 Kind = CK_DerivedToBase;
3030 }
3031
3032 if (Diagnose && !IsCStyleOrFunctionalCast &&
3033 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3034 assert(getLangOpts().MSVCCompat &&((void)0)
3035 "this should only be possible with MSVCCompat!")((void)0);
3036 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3037 << From->getSourceRange();
3038 }
3039 }
3040 } else if (const ObjCObjectPointerType *ToPtrType =
3041 ToType->getAs<ObjCObjectPointerType>()) {
3042 if (const ObjCObjectPointerType *FromPtrType =
3043 FromType->getAs<ObjCObjectPointerType>()) {
3044 // Objective-C++ conversions are always okay.
3045 // FIXME: We should have a different class of conversions for the
3046 // Objective-C++ implicit conversions.
3047 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3048 return false;
3049 } else if (FromType->isBlockPointerType()) {
3050 Kind = CK_BlockPointerToObjCPointerCast;
3051 } else {
3052 Kind = CK_CPointerToObjCPointerCast;
3053 }
3054 } else if (ToType->isBlockPointerType()) {
3055 if (!FromType->isBlockPointerType())
3056 Kind = CK_AnyPointerToBlockPointerCast;
3057 }
3058
3059 // We shouldn't fall into this case unless it's valid for other
3060 // reasons.
3061 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3062 Kind = CK_NullToPointer;
3063
3064 return false;
3065}
3066
3067/// IsMemberPointerConversion - Determines whether the conversion of the
3068/// expression From, which has the (possibly adjusted) type FromType, can be
3069/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3070/// If so, returns true and places the converted type (that might differ from
3071/// ToType in its cv-qualifiers at some level) into ConvertedType.
3072bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3073 QualType ToType,
3074 bool InOverloadResolution,
3075 QualType &ConvertedType) {
3076 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3077 if (!ToTypePtr)
3078 return false;
3079
3080 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3081 if (From->isNullPointerConstant(Context,
3082 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3083 : Expr::NPC_ValueDependentIsNull)) {
3084 ConvertedType = ToType;
3085 return true;
3086 }
3087
3088 // Otherwise, both types have to be member pointers.
3089 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3090 if (!FromTypePtr)
3091 return false;
3092
3093 // A pointer to member of B can be converted to a pointer to member of D,
3094 // where D is derived from B (C++ 4.11p2).
3095 QualType FromClass(FromTypePtr->getClass(), 0);
3096 QualType ToClass(ToTypePtr->getClass(), 0);
3097
3098 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3099 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3100 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3101 ToClass.getTypePtr());
3102 return true;
3103 }
3104
3105 return false;
3106}
3107
3108/// CheckMemberPointerConversion - Check the member pointer conversion from the
3109/// expression From to the type ToType. This routine checks for ambiguous or
3110/// virtual or inaccessible base-to-derived member pointer conversions
3111/// for which IsMemberPointerConversion has already returned true. It returns
3112/// true and produces a diagnostic if there was an error, or returns false
3113/// otherwise.
3114bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3115 CastKind &Kind,
3116 CXXCastPath &BasePath,
3117 bool IgnoreBaseAccess) {
3118 QualType FromType = From->getType();
3119 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3120 if (!FromPtrType) {
3121 // This must be a null pointer to member pointer conversion
3122 assert(From->isNullPointerConstant(Context,((void)0)
3123 Expr::NPC_ValueDependentIsNull) &&((void)0)
3124 "Expr must be null pointer constant!")((void)0);
3125 Kind = CK_NullToMemberPointer;
3126 return false;
3127 }
3128
3129 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3130 assert(ToPtrType && "No member pointer cast has a target type "((void)0)
3131 "that is not a member pointer.")((void)0);
3132
3133 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3134 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3135
3136 // FIXME: What about dependent types?
3137 assert(FromClass->isRecordType() && "Pointer into non-class.")((void)0);
3138 assert(ToClass->isRecordType() && "Pointer into non-class.")((void)0);
3139
3140 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3141 /*DetectVirtual=*/true);
3142 bool DerivationOkay =
3143 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3144 assert(DerivationOkay &&((void)0)
3145 "Should not have been called if derivation isn't OK.")((void)0);
3146 (void)DerivationOkay;
3147
3148 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3149 getUnqualifiedType())) {
3150 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3151 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3152 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3153 return true;
3154 }
3155
3156 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3157 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3158 << FromClass << ToClass << QualType(VBase, 0)
3159 << From->getSourceRange();
3160 return true;
3161 }
3162
3163 if (!IgnoreBaseAccess)
3164 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3165 Paths.front(),
3166 diag::err_downcast_from_inaccessible_base);
3167
3168 // Must be a base to derived member conversion.
3169 BuildBasePathArray(Paths, BasePath);
3170 Kind = CK_BaseToDerivedMemberPointer;
3171 return false;
3172}
3173
3174/// Determine whether the lifetime conversion between the two given
3175/// qualifiers sets is nontrivial.
3176static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3177 Qualifiers ToQuals) {
3178 // Converting anything to const __unsafe_unretained is trivial.
3179 if (ToQuals.hasConst() &&
3180 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3181 return false;
3182
3183 return true;
3184}
3185
3186/// Perform a single iteration of the loop for checking if a qualification
3187/// conversion is valid.
3188///
3189/// Specifically, check whether any change between the qualifiers of \p
3190/// FromType and \p ToType is permissible, given knowledge about whether every
3191/// outer layer is const-qualified.
3192static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3193 bool CStyle, bool IsTopLevel,
3194 bool &PreviousToQualsIncludeConst,
3195 bool &ObjCLifetimeConversion) {
3196 Qualifiers FromQuals = FromType.getQualifiers();
3197 Qualifiers ToQuals = ToType.getQualifiers();
3198
3199 // Ignore __unaligned qualifier if this type is void.
3200 if (ToType.getUnqualifiedType()->isVoidType())
3201 FromQuals.removeUnaligned();
3202
3203 // Objective-C ARC:
3204 // Check Objective-C lifetime conversions.
3205 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3206 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3207 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3208 ObjCLifetimeConversion = true;
3209 FromQuals.removeObjCLifetime();
3210 ToQuals.removeObjCLifetime();
3211 } else {
3212 // Qualification conversions cannot cast between different
3213 // Objective-C lifetime qualifiers.
3214 return false;
3215 }
3216 }
3217
3218 // Allow addition/removal of GC attributes but not changing GC attributes.
3219 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3220 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3221 FromQuals.removeObjCGCAttr();
3222 ToQuals.removeObjCGCAttr();
3223 }
3224
3225 // -- for every j > 0, if const is in cv 1,j then const is in cv
3226 // 2,j, and similarly for volatile.
3227 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3228 return false;
3229
3230 // If address spaces mismatch:
3231 // - in top level it is only valid to convert to addr space that is a
3232 // superset in all cases apart from C-style casts where we allow
3233 // conversions between overlapping address spaces.
3234 // - in non-top levels it is not a valid conversion.
3235 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3236 (!IsTopLevel ||
3237 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3238 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3239 return false;
3240
3241 // -- if the cv 1,j and cv 2,j are different, then const is in
3242 // every cv for 0 < k < j.
3243 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3244 !PreviousToQualsIncludeConst)
3245 return false;
3246
3247 // Keep track of whether all prior cv-qualifiers in the "to" type
3248 // include const.
3249 PreviousToQualsIncludeConst =
3250 PreviousToQualsIncludeConst && ToQuals.hasConst();
3251 return true;
3252}
3253
3254/// IsQualificationConversion - Determines whether the conversion from
3255/// an rvalue of type FromType to ToType is a qualification conversion
3256/// (C++ 4.4).
3257///
3258/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3259/// when the qualification conversion involves a change in the Objective-C
3260/// object lifetime.
3261bool
3262Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3263 bool CStyle, bool &ObjCLifetimeConversion) {
3264 FromType = Context.getCanonicalType(FromType);
3265 ToType = Context.getCanonicalType(ToType);
3266 ObjCLifetimeConversion = false;
3267
3268 // If FromType and ToType are the same type, this is not a
3269 // qualification conversion.
3270 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3271 return false;
3272
3273 // (C++ 4.4p4):
3274 // A conversion can add cv-qualifiers at levels other than the first
3275 // in multi-level pointers, subject to the following rules: [...]
3276 bool PreviousToQualsIncludeConst = true;
3277 bool UnwrappedAnyPointer = false;
3278 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3279 if (!isQualificationConversionStep(
3280 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3281 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3282 return false;
3283 UnwrappedAnyPointer = true;
3284 }
3285
3286 // We are left with FromType and ToType being the pointee types
3287 // after unwrapping the original FromType and ToType the same number
3288 // of times. If we unwrapped any pointers, and if FromType and
3289 // ToType have the same unqualified type (since we checked
3290 // qualifiers above), then this is a qualification conversion.
3291 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3292}
3293
3294/// - Determine whether this is a conversion from a scalar type to an
3295/// atomic type.
3296///
3297/// If successful, updates \c SCS's second and third steps in the conversion
3298/// sequence to finish the conversion.
3299static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3300 bool InOverloadResolution,
3301 StandardConversionSequence &SCS,
3302 bool CStyle) {
3303 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3304 if (!ToAtomic)
3305 return false;
3306
3307 StandardConversionSequence InnerSCS;
3308 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3309 InOverloadResolution, InnerSCS,
3310 CStyle, /*AllowObjCWritebackConversion=*/false))
3311 return false;
3312
3313 SCS.Second = InnerSCS.Second;
3314 SCS.setToType(1, InnerSCS.getToType(1));
3315 SCS.Third = InnerSCS.Third;
3316 SCS.QualificationIncludesObjCLifetime
3317 = InnerSCS.QualificationIncludesObjCLifetime;
3318 SCS.setToType(2, InnerSCS.getToType(2));
3319 return true;
3320}
3321
3322static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3323 CXXConstructorDecl *Constructor,
3324 QualType Type) {
3325 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3326 if (CtorType->getNumParams() > 0) {
3327 QualType FirstArg = CtorType->getParamType(0);
3328 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3329 return true;
3330 }
3331 return false;
3332}
3333
3334static OverloadingResult
3335IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3336 CXXRecordDecl *To,
3337 UserDefinedConversionSequence &User,
3338 OverloadCandidateSet &CandidateSet,
3339 bool AllowExplicit) {
3340 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3341 for (auto *D : S.LookupConstructors(To)) {
3342 auto Info = getConstructorInfo(D);
3343 if (!Info)
3344 continue;
3345
3346 bool Usable = !Info.Constructor->isInvalidDecl() &&
3347 S.isInitListConstructor(Info.Constructor);
3348 if (Usable) {
3349 bool SuppressUserConversions = false;
3350 if (Info.ConstructorTmpl)
3351 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3352 /*ExplicitArgs*/ nullptr, From,
3353 CandidateSet, SuppressUserConversions,
3354 /*PartialOverloading*/ false,
3355 AllowExplicit);
3356 else
3357 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3358 CandidateSet, SuppressUserConversions,
3359 /*PartialOverloading*/ false, AllowExplicit);
3360 }
3361 }
3362
3363 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3364
3365 OverloadCandidateSet::iterator Best;
3366 switch (auto Result =
3367 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3368 case OR_Deleted:
3369 case OR_Success: {
3370 // Record the standard conversion we used and the conversion function.
3371 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3372 QualType ThisType = Constructor->getThisType();
3373 // Initializer lists don't have conversions as such.
3374 User.Before.setAsIdentityConversion();
3375 User.HadMultipleCandidates = HadMultipleCandidates;
3376 User.ConversionFunction = Constructor;
3377 User.FoundConversionFunction = Best->FoundDecl;
3378 User.After.setAsIdentityConversion();
3379 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3380 User.After.setAllToTypes(ToType);
3381 return Result;
3382 }
3383
3384 case OR_No_Viable_Function:
3385 return OR_No_Viable_Function;
3386 case OR_Ambiguous:
3387 return OR_Ambiguous;
3388 }
3389
3390 llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable();
3391}
3392
3393/// Determines whether there is a user-defined conversion sequence
3394/// (C++ [over.ics.user]) that converts expression From to the type
3395/// ToType. If such a conversion exists, User will contain the
3396/// user-defined conversion sequence that performs such a conversion
3397/// and this routine will return true. Otherwise, this routine returns
3398/// false and User is unspecified.
3399///
3400/// \param AllowExplicit true if the conversion should consider C++0x
3401/// "explicit" conversion functions as well as non-explicit conversion
3402/// functions (C++0x [class.conv.fct]p2).
3403///
3404/// \param AllowObjCConversionOnExplicit true if the conversion should
3405/// allow an extra Objective-C pointer conversion on uses of explicit
3406/// constructors. Requires \c AllowExplicit to also be set.
3407static OverloadingResult
3408IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3409 UserDefinedConversionSequence &User,
3410 OverloadCandidateSet &CandidateSet,
3411 AllowedExplicit AllowExplicit,
3412 bool AllowObjCConversionOnExplicit) {
3413 assert(AllowExplicit != AllowedExplicit::None ||((void)0)
3414 !AllowObjCConversionOnExplicit)((void)0);
3415 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3416
3417 // Whether we will only visit constructors.
3418 bool ConstructorsOnly = false;
3419
3420 // If the type we are conversion to is a class type, enumerate its
3421 // constructors.
3422 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3423 // C++ [over.match.ctor]p1:
3424 // When objects of class type are direct-initialized (8.5), or
3425 // copy-initialized from an expression of the same or a
3426 // derived class type (8.5), overload resolution selects the
3427 // constructor. [...] For copy-initialization, the candidate
3428 // functions are all the converting constructors (12.3.1) of
3429 // that class. The argument list is the expression-list within
3430 // the parentheses of the initializer.
3431 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3432 (From->getType()->getAs<RecordType>() &&
3433 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3434 ConstructorsOnly = true;
3435
3436 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3437 // We're not going to find any constructors.
3438 } else if (CXXRecordDecl *ToRecordDecl
3439 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3440
3441 Expr **Args = &From;
3442 unsigned NumArgs = 1;
3443 bool ListInitializing = false;
3444 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3445 // But first, see if there is an init-list-constructor that will work.
3446 OverloadingResult Result = IsInitializerListConstructorConversion(
3447 S, From, ToType, ToRecordDecl, User, CandidateSet,
3448 AllowExplicit == AllowedExplicit::All);
3449 if (Result != OR_No_Viable_Function)
3450 return Result;
3451 // Never mind.
3452 CandidateSet.clear(
3453 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3454
3455 // If we're list-initializing, we pass the individual elements as
3456 // arguments, not the entire list.
3457 Args = InitList->getInits();
3458 NumArgs = InitList->getNumInits();
3459 ListInitializing = true;
3460 }
3461
3462 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3463 auto Info = getConstructorInfo(D);
3464 if (!Info)
3465 continue;
3466
3467 bool Usable = !Info.Constructor->isInvalidDecl();
3468 if (!ListInitializing)
3469 Usable = Usable && Info.Constructor->isConvertingConstructor(
3470 /*AllowExplicit*/ true);
3471 if (Usable) {
3472 bool SuppressUserConversions = !ConstructorsOnly;
3473 // C++20 [over.best.ics.general]/4.5:
3474 // if the target is the first parameter of a constructor [of class
3475 // X] and the constructor [...] is a candidate by [...] the second
3476 // phase of [over.match.list] when the initializer list has exactly
3477 // one element that is itself an initializer list, [...] and the
3478 // conversion is to X or reference to cv X, user-defined conversion
3479 // sequences are not cnosidered.
3480 if (SuppressUserConversions && ListInitializing) {
3481 SuppressUserConversions =
3482 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3483 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3484 ToType);
3485 }
3486 if (Info.ConstructorTmpl)
3487 S.AddTemplateOverloadCandidate(
3488 Info.ConstructorTmpl, Info.FoundDecl,
3489 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3490 CandidateSet, SuppressUserConversions,
3491 /*PartialOverloading*/ false,
3492 AllowExplicit == AllowedExplicit::All);
3493 else
3494 // Allow one user-defined conversion when user specifies a
3495 // From->ToType conversion via an static cast (c-style, etc).
3496 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3497 llvm::makeArrayRef(Args, NumArgs),
3498 CandidateSet, SuppressUserConversions,
3499 /*PartialOverloading*/ false,
3500 AllowExplicit == AllowedExplicit::All);
3501 }
3502 }
3503 }
3504 }
3505
3506 // Enumerate conversion functions, if we're allowed to.
3507 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3508 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3509 // No conversion functions from incomplete types.
3510 } else if (const RecordType *FromRecordType =
3511 From->getType()->getAs<RecordType>()) {
3512 if (CXXRecordDecl *FromRecordDecl
3513 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3514 // Add all of the conversion functions as candidates.
3515 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3516 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3517 DeclAccessPair FoundDecl = I.getPair();
3518 NamedDecl *D = FoundDecl.getDecl();
3519 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3520 if (isa<UsingShadowDecl>(D))
3521 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3522
3523 CXXConversionDecl *Conv;
3524 FunctionTemplateDecl *ConvTemplate;
3525 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3527 else
3528 Conv = cast<CXXConversionDecl>(D);
3529
3530 if (ConvTemplate)
3531 S.AddTemplateConversionCandidate(
3532 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3533 CandidateSet, AllowObjCConversionOnExplicit,
3534 AllowExplicit != AllowedExplicit::None);
3535 else
3536 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3537 CandidateSet, AllowObjCConversionOnExplicit,
3538 AllowExplicit != AllowedExplicit::None);
3539 }
3540 }
3541 }
3542
3543 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3544
3545 OverloadCandidateSet::iterator Best;
3546 switch (auto Result =
3547 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3548 case OR_Success:
3549 case OR_Deleted:
3550 // Record the standard conversion we used and the conversion function.
3551 if (CXXConstructorDecl *Constructor
3552 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3553 // C++ [over.ics.user]p1:
3554 // If the user-defined conversion is specified by a
3555 // constructor (12.3.1), the initial standard conversion
3556 // sequence converts the source type to the type required by
3557 // the argument of the constructor.
3558 //
3559 QualType ThisType = Constructor->getThisType();
3560 if (isa<InitListExpr>(From)) {
3561 // Initializer lists don't have conversions as such.
3562 User.Before.setAsIdentityConversion();
3563 } else {
3564 if (Best->Conversions[0].isEllipsis())
3565 User.EllipsisConversion = true;
3566 else {
3567 User.Before = Best->Conversions[0].Standard;
3568 User.EllipsisConversion = false;
3569 }
3570 }
3571 User.HadMultipleCandidates = HadMultipleCandidates;
3572 User.ConversionFunction = Constructor;
3573 User.FoundConversionFunction = Best->FoundDecl;
3574 User.After.setAsIdentityConversion();
3575 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3576 User.After.setAllToTypes(ToType);
3577 return Result;
3578 }
3579 if (CXXConversionDecl *Conversion
3580 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3581 // C++ [over.ics.user]p1:
3582 //
3583 // [...] If the user-defined conversion is specified by a
3584 // conversion function (12.3.2), the initial standard
3585 // conversion sequence converts the source type to the
3586 // implicit object parameter of the conversion function.
3587 User.Before = Best->Conversions[0].Standard;
3588 User.HadMultipleCandidates = HadMultipleCandidates;
3589 User.ConversionFunction = Conversion;
3590 User.FoundConversionFunction = Best->FoundDecl;
3591 User.EllipsisConversion = false;
3592
3593 // C++ [over.ics.user]p2:
3594 // The second standard conversion sequence converts the
3595 // result of the user-defined conversion to the target type
3596 // for the sequence. Since an implicit conversion sequence
3597 // is an initialization, the special rules for
3598 // initialization by user-defined conversion apply when
3599 // selecting the best user-defined conversion for a
3600 // user-defined conversion sequence (see 13.3.3 and
3601 // 13.3.3.1).
3602 User.After = Best->FinalConversion;
3603 return Result;
3604 }
3605 llvm_unreachable("Not a constructor or conversion function?")__builtin_unreachable();
3606
3607 case OR_No_Viable_Function:
3608 return OR_No_Viable_Function;
3609
3610 case OR_Ambiguous:
3611 return OR_Ambiguous;
3612 }
3613
3614 llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable();
3615}
3616
3617bool
3618Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3619 ImplicitConversionSequence ICS;
3620 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3621 OverloadCandidateSet::CSK_Normal);
3622 OverloadingResult OvResult =
3623 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3624 CandidateSet, AllowedExplicit::None, false);
3625
3626 if (!(OvResult == OR_Ambiguous ||
3627 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3628 return false;
3629
3630 auto Cands = CandidateSet.CompleteCandidates(
3631 *this,
3632 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3633 From);
3634 if (OvResult == OR_Ambiguous)
3635 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3636 << From->getType() << ToType << From->getSourceRange();
3637 else { // OR_No_Viable_Function && !CandidateSet.empty()
3638 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3639 diag::err_typecheck_nonviable_condition_incomplete,
3640 From->getType(), From->getSourceRange()))
3641 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3642 << false << From->getType() << From->getSourceRange() << ToType;
3643 }
3644
3645 CandidateSet.NoteCandidates(
3646 *this, From, Cands);
3647 return true;
3648}
3649
3650// Helper for compareConversionFunctions that gets the FunctionType that the
3651// conversion-operator return value 'points' to, or nullptr.
3652static const FunctionType *
3653getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3654 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3655 const PointerType *RetPtrTy =
3656 ConvFuncTy->getReturnType()->getAs<PointerType>();
3657
3658 if (!RetPtrTy)
3659 return nullptr;
3660
3661 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3662}
3663
3664/// Compare the user-defined conversion functions or constructors
3665/// of two user-defined conversion sequences to determine whether any ordering
3666/// is possible.
3667static ImplicitConversionSequence::CompareKind
3668compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3669 FunctionDecl *Function2) {
3670 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3671 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3672 if (!Conv1 || !Conv2)
3673 return ImplicitConversionSequence::Indistinguishable;
3674
3675 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3676 return ImplicitConversionSequence::Indistinguishable;
3677
3678 // Objective-C++:
3679 // If both conversion functions are implicitly-declared conversions from
3680 // a lambda closure type to a function pointer and a block pointer,
3681 // respectively, always prefer the conversion to a function pointer,
3682 // because the function pointer is more lightweight and is more likely
3683 // to keep code working.
3684 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3685 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3686 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3687 if (Block1 != Block2)
3688 return Block1 ? ImplicitConversionSequence::Worse
3689 : ImplicitConversionSequence::Better;
3690 }
3691
3692 // In order to support multiple calling conventions for the lambda conversion
3693 // operator (such as when the free and member function calling convention is
3694 // different), prefer the 'free' mechanism, followed by the calling-convention
3695 // of operator(). The latter is in place to support the MSVC-like solution of
3696 // defining ALL of the possible conversions in regards to calling-convention.
3697 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3698 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3699
3700 if (Conv1FuncRet && Conv2FuncRet &&
3701 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3702 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3703 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3704
3705 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3706 const FunctionProtoType *CallOpProto =
3707 CallOp->getType()->getAs<FunctionProtoType>();
3708
3709 CallingConv CallOpCC =
3710 CallOp->getType()->castAs<FunctionType>()->getCallConv();
3711 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3712 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3713 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3714 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3715
3716 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3717 for (CallingConv CC : PrefOrder) {
3718 if (Conv1CC == CC)
3719 return ImplicitConversionSequence::Better;
3720 if (Conv2CC == CC)
3721 return ImplicitConversionSequence::Worse;
3722 }
3723 }
3724
3725 return ImplicitConversionSequence::Indistinguishable;
3726}
3727
3728static bool hasDeprecatedStringLiteralToCharPtrConversion(
3729 const ImplicitConversionSequence &ICS) {
3730 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3731 (ICS.isUserDefined() &&
3732 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3733}
3734
3735/// CompareImplicitConversionSequences - Compare two implicit
3736/// conversion sequences to determine whether one is better than the
3737/// other or if they are indistinguishable (C++ 13.3.3.2).
3738static ImplicitConversionSequence::CompareKind
3739CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3740 const ImplicitConversionSequence& ICS1,
3741 const ImplicitConversionSequence& ICS2)
3742{
3743 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3744 // conversion sequences (as defined in 13.3.3.1)
3745 // -- a standard conversion sequence (13.3.3.1.1) is a better
3746 // conversion sequence than a user-defined conversion sequence or
3747 // an ellipsis conversion sequence, and
3748 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3749 // conversion sequence than an ellipsis conversion sequence
3750 // (13.3.3.1.3).
3751 //
3752 // C++0x [over.best.ics]p10:
3753 // For the purpose of ranking implicit conversion sequences as
3754 // described in 13.3.3.2, the ambiguous conversion sequence is
3755 // treated as a user-defined sequence that is indistinguishable
3756 // from any other user-defined conversion sequence.
3757
3758 // String literal to 'char *' conversion has been deprecated in C++03. It has
3759 // been removed from C++11. We still accept this conversion, if it happens at
3760 // the best viable function. Otherwise, this conversion is considered worse
3761 // than ellipsis conversion. Consider this as an extension; this is not in the
3762 // standard. For example:
3763 //
3764 // int &f(...); // #1
3765 // void f(char*); // #2
3766 // void g() { int &r = f("foo"); }
3767 //
3768 // In C++03, we pick #2 as the best viable function.
3769 // In C++11, we pick #1 as the best viable function, because ellipsis
3770 // conversion is better than string-literal to char* conversion (since there
3771 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3772 // convert arguments, #2 would be the best viable function in C++11.
3773 // If the best viable function has this conversion, a warning will be issued
3774 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3775
3776 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3777 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3778 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3779 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3780 ? ImplicitConversionSequence::Worse
3781 : ImplicitConversionSequence::Better;
3782
3783 if (ICS1.getKindRank() < ICS2.getKindRank())
3784 return ImplicitConversionSequence::Better;
3785 if (ICS2.getKindRank() < ICS1.getKindRank())
3786 return ImplicitConversionSequence::Worse;
3787
3788 // The following checks require both conversion sequences to be of
3789 // the same kind.
3790 if (ICS1.getKind() != ICS2.getKind())
3791 return ImplicitConversionSequence::Indistinguishable;
3792
3793 ImplicitConversionSequence::CompareKind Result =
3794 ImplicitConversionSequence::Indistinguishable;
3795
3796 // Two implicit conversion sequences of the same form are
3797 // indistinguishable conversion sequences unless one of the
3798 // following rules apply: (C++ 13.3.3.2p3):
3799
3800 // List-initialization sequence L1 is a better conversion sequence than
3801 // list-initialization sequence L2 if:
3802 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3803 // if not that,
3804 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3805 // and N1 is smaller than N2.,
3806 // even if one of the other rules in this paragraph would otherwise apply.
3807 if (!ICS1.isBad()) {
3808 if (ICS1.isStdInitializerListElement() &&
3809 !ICS2.isStdInitializerListElement())
3810 return ImplicitConversionSequence::Better;
3811 if (!ICS1.isStdInitializerListElement() &&
3812 ICS2.isStdInitializerListElement())
3813 return ImplicitConversionSequence::Worse;
3814 }
3815
3816 if (ICS1.isStandard())
3817 // Standard conversion sequence S1 is a better conversion sequence than
3818 // standard conversion sequence S2 if [...]
3819 Result = CompareStandardConversionSequences(S, Loc,
3820 ICS1.Standard, ICS2.Standard);
3821 else if (ICS1.isUserDefined()) {
3822 // User-defined conversion sequence U1 is a better conversion
3823 // sequence than another user-defined conversion sequence U2 if
3824 // they contain the same user-defined conversion function or
3825 // constructor and if the second standard conversion sequence of
3826 // U1 is better than the second standard conversion sequence of
3827 // U2 (C++ 13.3.3.2p3).
3828 if (ICS1.UserDefined.ConversionFunction ==
3829 ICS2.UserDefined.ConversionFunction)
3830 Result = CompareStandardConversionSequences(S, Loc,
3831 ICS1.UserDefined.After,
3832 ICS2.UserDefined.After);
3833 else
3834 Result = compareConversionFunctions(S,
3835 ICS1.UserDefined.ConversionFunction,
3836 ICS2.UserDefined.ConversionFunction);
3837 }
3838
3839 return Result;
3840}
3841
3842// Per 13.3.3.2p3, compare the given standard conversion sequences to
3843// determine if one is a proper subset of the other.
3844static ImplicitConversionSequence::CompareKind
3845compareStandardConversionSubsets(ASTContext &Context,
3846 const StandardConversionSequence& SCS1,
3847 const StandardConversionSequence& SCS2) {
3848 ImplicitConversionSequence::CompareKind Result
3849 = ImplicitConversionSequence::Indistinguishable;
3850
3851 // the identity conversion sequence is considered to be a subsequence of
3852 // any non-identity conversion sequence
3853 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3854 return ImplicitConversionSequence::Better;
3855 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3856 return ImplicitConversionSequence::Worse;
3857
3858 if (SCS1.Second != SCS2.Second) {
3859 if (SCS1.Second == ICK_Identity)
3860 Result = ImplicitConversionSequence::Better;
3861 else if (SCS2.Second == ICK_Identity)
3862 Result = ImplicitConversionSequence::Worse;
3863 else
3864 return ImplicitConversionSequence::Indistinguishable;
3865 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3866 return ImplicitConversionSequence::Indistinguishable;
3867
3868 if (SCS1.Third == SCS2.Third) {
3869 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3870 : ImplicitConversionSequence::Indistinguishable;
3871 }
3872
3873 if (SCS1.Third == ICK_Identity)
3874 return Result == ImplicitConversionSequence::Worse
3875 ? ImplicitConversionSequence::Indistinguishable
3876 : ImplicitConversionSequence::Better;
3877
3878 if (SCS2.Third == ICK_Identity)
3879 return Result == ImplicitConversionSequence::Better
3880 ? ImplicitConversionSequence::Indistinguishable
3881 : ImplicitConversionSequence::Worse;
3882
3883 return ImplicitConversionSequence::Indistinguishable;
3884}
3885
3886/// Determine whether one of the given reference bindings is better
3887/// than the other based on what kind of bindings they are.
3888static bool
3889isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3890 const StandardConversionSequence &SCS2) {
3891 // C++0x [over.ics.rank]p3b4:
3892 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3893 // implicit object parameter of a non-static member function declared
3894 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3895 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3896 // lvalue reference to a function lvalue and S2 binds an rvalue
3897 // reference*.
3898 //
3899 // FIXME: Rvalue references. We're going rogue with the above edits,
3900 // because the semantics in the current C++0x working paper (N3225 at the
3901 // time of this writing) break the standard definition of std::forward
3902 // and std::reference_wrapper when dealing with references to functions.
3903 // Proposed wording changes submitted to CWG for consideration.
3904 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3905 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3906 return false;
3907
3908 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3909 SCS2.IsLvalueReference) ||
3910 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3911 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3912}
3913
3914enum class FixedEnumPromotion {
3915 None,
3916 ToUnderlyingType,
3917 ToPromotedUnderlyingType
3918};
3919
3920/// Returns kind of fixed enum promotion the \a SCS uses.
3921static FixedEnumPromotion
3922getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3923
3924 if (SCS.Second != ICK_Integral_Promotion)
3925 return FixedEnumPromotion::None;
3926
3927 QualType FromType = SCS.getFromType();
3928 if (!FromType->isEnumeralType())
3929 return FixedEnumPromotion::None;
3930
3931 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3932 if (!Enum->isFixed())
3933 return FixedEnumPromotion::None;
3934
3935 QualType UnderlyingType = Enum->getIntegerType();
3936 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3937 return FixedEnumPromotion::ToUnderlyingType;
3938
3939 return FixedEnumPromotion::ToPromotedUnderlyingType;
3940}
3941
3942/// CompareStandardConversionSequences - Compare two standard
3943/// conversion sequences to determine whether one is better than the
3944/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3945static ImplicitConversionSequence::CompareKind
3946CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3947 const StandardConversionSequence& SCS1,
3948 const StandardConversionSequence& SCS2)
3949{
3950 // Standard conversion sequence S1 is a better conversion sequence
3951 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3952
3953 // -- S1 is a proper subsequence of S2 (comparing the conversion
3954 // sequences in the canonical form defined by 13.3.3.1.1,
3955 // excluding any Lvalue Transformation; the identity conversion
3956 // sequence is considered to be a subsequence of any
3957 // non-identity conversion sequence) or, if not that,
3958 if (ImplicitConversionSequence::CompareKind CK
3959 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3960 return CK;
3961
3962 // -- the rank of S1 is better than the rank of S2 (by the rules
3963 // defined below), or, if not that,
3964 ImplicitConversionRank Rank1 = SCS1.getRank();
3965 ImplicitConversionRank Rank2 = SCS2.getRank();
3966 if (Rank1 < Rank2)
3967 return ImplicitConversionSequence::Better;
3968 else if (Rank2 < Rank1)
3969 return ImplicitConversionSequence::Worse;
3970
3971 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3972 // are indistinguishable unless one of the following rules
3973 // applies:
3974
3975 // A conversion that is not a conversion of a pointer, or
3976 // pointer to member, to bool is better than another conversion
3977 // that is such a conversion.
3978 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3979 return SCS2.isPointerConversionToBool()
3980 ? ImplicitConversionSequence::Better
3981 : ImplicitConversionSequence::Worse;
3982
3983 // C++14 [over.ics.rank]p4b2:
3984 // This is retroactively applied to C++11 by CWG 1601.
3985 //
3986 // A conversion that promotes an enumeration whose underlying type is fixed
3987 // to its underlying type is better than one that promotes to the promoted
3988 // underlying type, if the two are different.
3989 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3990 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3991 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3992 FEP1 != FEP2)
3993 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3994 ? ImplicitConversionSequence::Better
3995 : ImplicitConversionSequence::Worse;
3996
3997 // C++ [over.ics.rank]p4b2:
3998 //
3999 // If class B is derived directly or indirectly from class A,
4000 // conversion of B* to A* is better than conversion of B* to
4001 // void*, and conversion of A* to void* is better than conversion
4002 // of B* to void*.
4003 bool SCS1ConvertsToVoid
4004 = SCS1.isPointerConversionToVoidPointer(S.Context);
4005 bool SCS2ConvertsToVoid
4006 = SCS2.isPointerConversionToVoidPointer(S.Context);
4007 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4008 // Exactly one of the conversion sequences is a conversion to
4009 // a void pointer; it's the worse conversion.
4010 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4011 : ImplicitConversionSequence::Worse;
4012 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4013 // Neither conversion sequence converts to a void pointer; compare
4014 // their derived-to-base conversions.
4015 if (ImplicitConversionSequence::CompareKind DerivedCK
4016 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4017 return DerivedCK;
4018 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4019 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4020 // Both conversion sequences are conversions to void
4021 // pointers. Compare the source types to determine if there's an
4022 // inheritance relationship in their sources.
4023 QualType FromType1 = SCS1.getFromType();
4024 QualType FromType2 = SCS2.getFromType();
4025
4026 // Adjust the types we're converting from via the array-to-pointer
4027 // conversion, if we need to.
4028 if (SCS1.First == ICK_Array_To_Pointer)
4029 FromType1 = S.Context.getArrayDecayedType(FromType1);
4030 if (SCS2.First == ICK_Array_To_Pointer)
4031 FromType2 = S.Context.getArrayDecayedType(FromType2);
4032
4033 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4034 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4035
4036 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4037 return ImplicitConversionSequence::Better;
4038 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4039 return ImplicitConversionSequence::Worse;
4040
4041 // Objective-C++: If one interface is more specific than the
4042 // other, it is the better one.
4043 const ObjCObjectPointerType* FromObjCPtr1
4044 = FromType1->getAs<ObjCObjectPointerType>();
4045 const ObjCObjectPointerType* FromObjCPtr2
4046 = FromType2->getAs<ObjCObjectPointerType>();
4047 if (FromObjCPtr1 && FromObjCPtr2) {
4048 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4049 FromObjCPtr2);
4050 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4051 FromObjCPtr1);
4052 if (AssignLeft != AssignRight) {
4053 return AssignLeft? ImplicitConversionSequence::Better
4054 : ImplicitConversionSequence::Worse;
4055 }
4056 }
4057 }
4058
4059 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4060 // Check for a better reference binding based on the kind of bindings.
4061 if (isBetterReferenceBindingKind(SCS1, SCS2))
4062 return ImplicitConversionSequence::Better;
4063 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4064 return ImplicitConversionSequence::Worse;
4065 }
4066
4067 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4068 // bullet 3).
4069 if (ImplicitConversionSequence::CompareKind QualCK
4070 = CompareQualificationConversions(S, SCS1, SCS2))
4071 return QualCK;
4072
4073 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4074 // C++ [over.ics.rank]p3b4:
4075 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4076 // which the references refer are the same type except for
4077 // top-level cv-qualifiers, and the type to which the reference
4078 // initialized by S2 refers is more cv-qualified than the type
4079 // to which the reference initialized by S1 refers.
4080 QualType T1 = SCS1.getToType(2);
4081 QualType T2 = SCS2.getToType(2);
4082 T1 = S.Context.getCanonicalType(T1);
4083 T2 = S.Context.getCanonicalType(T2);
4084 Qualifiers T1Quals, T2Quals;
4085 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4086 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4087 if (UnqualT1 == UnqualT2) {
4088 // Objective-C++ ARC: If the references refer to objects with different
4089 // lifetimes, prefer bindings that don't change lifetime.
4090 if (SCS1.ObjCLifetimeConversionBinding !=
4091 SCS2.ObjCLifetimeConversionBinding) {
4092 return SCS1.ObjCLifetimeConversionBinding
4093 ? ImplicitConversionSequence::Worse
4094 : ImplicitConversionSequence::Better;
4095 }
4096
4097 // If the type is an array type, promote the element qualifiers to the
4098 // type for comparison.
4099 if (isa<ArrayType>(T1) && T1Quals)
4100 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4101 if (isa<ArrayType>(T2) && T2Quals)
4102 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4103 if (T2.isMoreQualifiedThan(T1))
4104 return ImplicitConversionSequence::Better;
4105 if (T1.isMoreQualifiedThan(T2))
4106 return ImplicitConversionSequence::Worse;
4107 }
4108 }
4109
4110 // In Microsoft mode (below 19.28), prefer an integral conversion to a
4111 // floating-to-integral conversion if the integral conversion
4112 // is between types of the same size.
4113 // For example:
4114 // void f(float);
4115 // void f(int);
4116 // int main {
4117 // long a;
4118 // f(a);
4119 // }
4120 // Here, MSVC will call f(int) instead of generating a compile error
4121 // as clang will do in standard mode.
4122 if (S.getLangOpts().MSVCCompat &&
4123 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4124 SCS1.Second == ICK_Integral_Conversion &&
4125 SCS2.Second == ICK_Floating_Integral &&
4126 S.Context.getTypeSize(SCS1.getFromType()) ==
4127 S.Context.getTypeSize(SCS1.getToType(2)))
4128 return ImplicitConversionSequence::Better;
4129
4130 // Prefer a compatible vector conversion over a lax vector conversion
4131 // For example:
4132 //
4133 // typedef float __v4sf __attribute__((__vector_size__(16)));
4134 // void f(vector float);
4135 // void f(vector signed int);
4136 // int main() {
4137 // __v4sf a;
4138 // f(a);
4139 // }
4140 // Here, we'd like to choose f(vector float) and not
4141 // report an ambiguous call error
4142 if (SCS1.Second == ICK_Vector_Conversion &&
4143 SCS2.Second == ICK_Vector_Conversion) {
4144 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4145 SCS1.getFromType(), SCS1.getToType(2));
4146 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4147 SCS2.getFromType(), SCS2.getToType(2));
4148
4149 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4150 return SCS1IsCompatibleVectorConversion
4151 ? ImplicitConversionSequence::Better
4152 : ImplicitConversionSequence::Worse;
4153 }
4154
4155 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4156 SCS2.Second == ICK_SVE_Vector_Conversion) {
4157 bool SCS1IsCompatibleSVEVectorConversion =
4158 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4159 bool SCS2IsCompatibleSVEVectorConversion =
4160 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4161
4162 if (SCS1IsCompatibleSVEVectorConversion !=
4163 SCS2IsCompatibleSVEVectorConversion)
4164 return SCS1IsCompatibleSVEVectorConversion
4165 ? ImplicitConversionSequence::Better
4166 : ImplicitConversionSequence::Worse;
4167 }
4168
4169 return ImplicitConversionSequence::Indistinguishable;
4170}
4171
4172/// CompareQualificationConversions - Compares two standard conversion
4173/// sequences to determine whether they can be ranked based on their
4174/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4175static ImplicitConversionSequence::CompareKind
4176CompareQualificationConversions(Sema &S,
4177 const StandardConversionSequence& SCS1,
4178 const StandardConversionSequence& SCS2) {
4179 // C++ 13.3.3.2p3:
4180 // -- S1 and S2 differ only in their qualification conversion and
4181 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4182 // cv-qualification signature of type T1 is a proper subset of
4183 // the cv-qualification signature of type T2, and S1 is not the
4184 // deprecated string literal array-to-pointer conversion (4.2).
4185 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4186 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4187 return ImplicitConversionSequence::Indistinguishable;
4188
4189 // FIXME: the example in the standard doesn't use a qualification
4190 // conversion (!)
4191 QualType T1 = SCS1.getToType(2);
4192 QualType T2 = SCS2.getToType(2);
4193 T1 = S.Context.getCanonicalType(T1);
4194 T2 = S.Context.getCanonicalType(T2);
4195 assert(!T1->isReferenceType() && !T2->isReferenceType())((void)0);
4196 Qualifiers T1Quals, T2Quals;
4197 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4198 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4199
4200 // If the types are the same, we won't learn anything by unwrapping
4201 // them.
4202 if (UnqualT1 == UnqualT2)
4203 return ImplicitConversionSequence::Indistinguishable;
4204
4205 ImplicitConversionSequence::CompareKind Result
4206 = ImplicitConversionSequence::Indistinguishable;
4207
4208 // Objective-C++ ARC:
4209 // Prefer qualification conversions not involving a change in lifetime
4210 // to qualification conversions that do not change lifetime.
4211 if (SCS1.QualificationIncludesObjCLifetime !=
4212 SCS2.QualificationIncludesObjCLifetime) {
4213 Result = SCS1.QualificationIncludesObjCLifetime
4214 ? ImplicitConversionSequence::Worse
4215 : ImplicitConversionSequence::Better;
4216 }
4217
4218 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4219 // Within each iteration of the loop, we check the qualifiers to
4220 // determine if this still looks like a qualification
4221 // conversion. Then, if all is well, we unwrap one more level of
4222 // pointers or pointers-to-members and do it all again
4223 // until there are no more pointers or pointers-to-members left
4224 // to unwrap. This essentially mimics what
4225 // IsQualificationConversion does, but here we're checking for a
4226 // strict subset of qualifiers.
4227 if (T1.getQualifiers().withoutObjCLifetime() ==
4228 T2.getQualifiers().withoutObjCLifetime())
4229 // The qualifiers are the same, so this doesn't tell us anything
4230 // about how the sequences rank.
4231 // ObjC ownership quals are omitted above as they interfere with
4232 // the ARC overload rule.
4233 ;
4234 else if (T2.isMoreQualifiedThan(T1)) {
4235 // T1 has fewer qualifiers, so it could be the better sequence.
4236 if (Result == ImplicitConversionSequence::Worse)
4237 // Neither has qualifiers that are a subset of the other's
4238 // qualifiers.
4239 return ImplicitConversionSequence::Indistinguishable;
4240
4241 Result = ImplicitConversionSequence::Better;
4242 } else if (T1.isMoreQualifiedThan(T2)) {
4243 // T2 has fewer qualifiers, so it could be the better sequence.
4244 if (Result == ImplicitConversionSequence::Better)
4245 // Neither has qualifiers that are a subset of the other's
4246 // qualifiers.
4247 return ImplicitConversionSequence::Indistinguishable;
4248
4249 Result = ImplicitConversionSequence::Worse;
4250 } else {
4251 // Qualifiers are disjoint.
4252 return ImplicitConversionSequence::Indistinguishable;
4253 }
4254
4255 // If the types after this point are equivalent, we're done.
4256 if (S.Context.hasSameUnqualifiedType(T1, T2))
4257 break;
4258 }
4259
4260 // Check that the winning standard conversion sequence isn't using
4261 // the deprecated string literal array to pointer conversion.
4262 switch (Result) {
4263 case ImplicitConversionSequence::Better:
4264 if (SCS1.DeprecatedStringLiteralToCharPtr)
4265 Result = ImplicitConversionSequence::Indistinguishable;
4266 break;
4267
4268 case ImplicitConversionSequence::Indistinguishable:
4269 break;
4270
4271 case ImplicitConversionSequence::Worse:
4272 if (SCS2.DeprecatedStringLiteralToCharPtr)
4273 Result = ImplicitConversionSequence::Indistinguishable;
4274 break;
4275 }
4276
4277 return Result;
4278}
4279
4280/// CompareDerivedToBaseConversions - Compares two standard conversion
4281/// sequences to determine whether they can be ranked based on their
4282/// various kinds of derived-to-base conversions (C++
4283/// [over.ics.rank]p4b3). As part of these checks, we also look at
4284/// conversions between Objective-C interface types.
4285static ImplicitConversionSequence::CompareKind
4286CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4287 const StandardConversionSequence& SCS1,
4288 const StandardConversionSequence& SCS2) {
4289 QualType FromType1 = SCS1.getFromType();
4290 QualType ToType1 = SCS1.getToType(1);
4291 QualType FromType2 = SCS2.getFromType();
4292 QualType ToType2 = SCS2.getToType(1);
4293
4294 // Adjust the types we're converting from via the array-to-pointer
4295 // conversion, if we need to.
4296 if (SCS1.First == ICK_Array_To_Pointer)
4297 FromType1 = S.Context.getArrayDecayedType(FromType1);
4298 if (SCS2.First == ICK_Array_To_Pointer)
4299 FromType2 = S.Context.getArrayDecayedType(FromType2);
4300
4301 // Canonicalize all of the types.
4302 FromType1 = S.Context.getCanonicalType(FromType1);
4303 ToType1 = S.Context.getCanonicalType(ToType1);
4304 FromType2 = S.Context.getCanonicalType(FromType2);
4305 ToType2 = S.Context.getCanonicalType(ToType2);
4306
4307 // C++ [over.ics.rank]p4b3:
4308 //
4309 // If class B is derived directly or indirectly from class A and
4310 // class C is derived directly or indirectly from B,
4311 //
4312 // Compare based on pointer conversions.
4313 if (SCS1.Second == ICK_Pointer_Conversion &&
4314 SCS2.Second == ICK_Pointer_Conversion &&
4315 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4316 FromType1->isPointerType() && FromType2->isPointerType() &&
4317 ToType1->isPointerType() && ToType2->isPointerType()) {
4318 QualType FromPointee1 =
4319 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4320 QualType ToPointee1 =
4321 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4322 QualType FromPointee2 =
4323 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4324 QualType ToPointee2 =
4325 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4326
4327 // -- conversion of C* to B* is better than conversion of C* to A*,
4328 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4329 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4330 return ImplicitConversionSequence::Better;
4331 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4332 return ImplicitConversionSequence::Worse;
4333 }
4334
4335 // -- conversion of B* to A* is better than conversion of C* to A*,
4336 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4337 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4338 return ImplicitConversionSequence::Better;
4339 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4340 return ImplicitConversionSequence::Worse;
4341 }
4342 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4343 SCS2.Second == ICK_Pointer_Conversion) {
4344 const ObjCObjectPointerType *FromPtr1
4345 = FromType1->getAs<ObjCObjectPointerType>();
4346 const ObjCObjectPointerType *FromPtr2
4347 = FromType2->getAs<ObjCObjectPointerType>();
4348 const ObjCObjectPointerType *ToPtr1
4349 = ToType1->getAs<ObjCObjectPointerType>();
4350 const ObjCObjectPointerType *ToPtr2
4351 = ToType2->getAs<ObjCObjectPointerType>();
4352
4353 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4354 // Apply the same conversion ranking rules for Objective-C pointer types
4355 // that we do for C++ pointers to class types. However, we employ the
4356 // Objective-C pseudo-subtyping relationship used for assignment of
4357 // Objective-C pointer types.
4358 bool FromAssignLeft
4359 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4360 bool FromAssignRight
4361 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4362 bool ToAssignLeft
4363 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4364 bool ToAssignRight
4365 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4366
4367 // A conversion to an a non-id object pointer type or qualified 'id'
4368 // type is better than a conversion to 'id'.
4369 if (ToPtr1->isObjCIdType() &&
4370 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4371 return ImplicitConversionSequence::Worse;
4372 if (ToPtr2->isObjCIdType() &&
4373 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4374 return ImplicitConversionSequence::Better;
4375
4376 // A conversion to a non-id object pointer type is better than a
4377 // conversion to a qualified 'id' type
4378 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4379 return ImplicitConversionSequence::Worse;
4380 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4381 return ImplicitConversionSequence::Better;
4382
4383 // A conversion to an a non-Class object pointer type or qualified 'Class'
4384 // type is better than a conversion to 'Class'.
4385 if (ToPtr1->isObjCClassType() &&
4386 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4387 return ImplicitConversionSequence::Worse;
4388 if (ToPtr2->isObjCClassType() &&
4389 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4390 return ImplicitConversionSequence::Better;
4391
4392 // A conversion to a non-Class object pointer type is better than a
4393 // conversion to a qualified 'Class' type.
4394 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4395 return ImplicitConversionSequence::Worse;
4396 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4397 return ImplicitConversionSequence::Better;
4398
4399 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4400 if (S.Context.hasSameType(FromType1, FromType2) &&
4401 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4402 (ToAssignLeft != ToAssignRight)) {
4403 if (FromPtr1->isSpecialized()) {
4404 // "conversion of B<A> * to B * is better than conversion of B * to
4405 // C *.
4406 bool IsFirstSame =
4407 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4408 bool IsSecondSame =
4409 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4410 if (IsFirstSame) {
4411 if (!IsSecondSame)
4412 return ImplicitConversionSequence::Better;
4413 } else if (IsSecondSame)
4414 return ImplicitConversionSequence::Worse;
4415 }
4416 return ToAssignLeft? ImplicitConversionSequence::Worse
4417 : ImplicitConversionSequence::Better;
4418 }
4419
4420 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4421 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4422 (FromAssignLeft != FromAssignRight))
4423 return FromAssignLeft? ImplicitConversionSequence::Better
4424 : ImplicitConversionSequence::Worse;
4425 }
4426 }
4427
4428 // Ranking of member-pointer types.
4429 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4430 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4431 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4432 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4433 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4434 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4435 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4436 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4437 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4438 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4439 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4440 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4441 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4442 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4443 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4444 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4445 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4446 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4447 return ImplicitConversionSequence::Worse;
4448 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4449 return ImplicitConversionSequence::Better;
4450 }
4451 // conversion of B::* to C::* is better than conversion of A::* to C::*
4452 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4453 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4454 return ImplicitConversionSequence::Better;
4455 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4456 return ImplicitConversionSequence::Worse;
4457 }
4458 }
4459
4460 if (SCS1.Second == ICK_Derived_To_Base) {
4461 // -- conversion of C to B is better than conversion of C to A,
4462 // -- binding of an expression of type C to a reference of type
4463 // B& is better than binding an expression of type C to a
4464 // reference of type A&,
4465 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4466 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4467 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4468 return ImplicitConversionSequence::Better;
4469 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4470 return ImplicitConversionSequence::Worse;
4471 }
4472
4473 // -- conversion of B to A is better than conversion of C to A.
4474 // -- binding of an expression of type B to a reference of type
4475 // A& is better than binding an expression of type C to a
4476 // reference of type A&,
4477 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4478 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4479 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4480 return ImplicitConversionSequence::Better;
4481 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4482 return ImplicitConversionSequence::Worse;
4483 }
4484 }
4485
4486 return ImplicitConversionSequence::Indistinguishable;
4487}
4488
4489/// Determine whether the given type is valid, e.g., it is not an invalid
4490/// C++ class.
4491static bool isTypeValid(QualType T) {
4492 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4493 return !Record->isInvalidDecl();
4494
4495 return true;
4496}
4497
4498static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4499 if (!T.getQualifiers().hasUnaligned())
4500 return T;
4501
4502 Qualifiers Q;
4503 T = Ctx.getUnqualifiedArrayType(T, Q);
4504 Q.removeUnaligned();
4505 return Ctx.getQualifiedType(T, Q);
4506}
4507
4508/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4509/// determine whether they are reference-compatible,
4510/// reference-related, or incompatible, for use in C++ initialization by
4511/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4512/// type, and the first type (T1) is the pointee type of the reference
4513/// type being initialized.
4514Sema::ReferenceCompareResult
4515Sema::CompareReferenceRelationship(SourceLocation Loc,
4516 QualType OrigT1, QualType OrigT2,
4517 ReferenceConversions *ConvOut) {
4518 assert(!OrigT1->isReferenceType() &&((void)0)
4519 "T1 must be the pointee type of the reference type")((void)0);
4520 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((void)0);
4521
4522 QualType T1 = Context.getCanonicalType(OrigT1);
4523 QualType T2 = Context.getCanonicalType(OrigT2);
4524 Qualifiers T1Quals, T2Quals;
4525 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4526 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4527
4528 ReferenceConversions ConvTmp;
4529 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4530 Conv = ReferenceConversions();
4531
4532 // C++2a [dcl.init.ref]p4:
4533 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4534 // reference-related to "cv2 T2" if T1 is similar to T2, or
4535 // T1 is a base class of T2.
4536 // "cv1 T1" is reference-compatible with "cv2 T2" if
4537 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4538 // "pointer to cv1 T1" via a standard conversion sequence.
4539
4540 // Check for standard conversions we can apply to pointers: derived-to-base
4541 // conversions, ObjC pointer conversions, and function pointer conversions.
4542 // (Qualification conversions are checked last.)
4543 QualType ConvertedT2;
4544 if (UnqualT1 == UnqualT2) {
4545 // Nothing to do.
4546 } else if (isCompleteType(Loc, OrigT2) &&
4547 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4548 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4549 Conv |= ReferenceConversions::DerivedToBase;
4550 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4551 UnqualT2->isObjCObjectOrInterfaceType() &&
4552 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4553 Conv |= ReferenceConversions::ObjC;
4554 else if (UnqualT2->isFunctionType() &&
4555 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4556 Conv |= ReferenceConversions::Function;
4557 // No need to check qualifiers; function types don't have them.
4558 return Ref_Compatible;
4559 }
4560 bool ConvertedReferent = Conv != 0;
4561
4562 // We can have a qualification conversion. Compute whether the types are
4563 // similar at the same time.
4564 bool PreviousToQualsIncludeConst = true;
4565 bool TopLevel = true;
4566 do {
4567 if (T1 == T2)
4568 break;
4569
4570 // We will need a qualification conversion.
4571 Conv |= ReferenceConversions::Qualification;
4572
4573 // Track whether we performed a qualification conversion anywhere other
4574 // than the top level. This matters for ranking reference bindings in
4575 // overload resolution.
4576 if (!TopLevel)
4577 Conv |= ReferenceConversions::NestedQualification;
4578
4579 // MS compiler ignores __unaligned qualifier for references; do the same.
4580 T1 = withoutUnaligned(Context, T1);
4581 T2 = withoutUnaligned(Context, T2);
4582
4583 // If we find a qualifier mismatch, the types are not reference-compatible,
4584 // but are still be reference-related if they're similar.
4585 bool ObjCLifetimeConversion = false;
4586 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4587 PreviousToQualsIncludeConst,
4588 ObjCLifetimeConversion))
4589 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4590 ? Ref_Related
4591 : Ref_Incompatible;
4592
4593 // FIXME: Should we track this for any level other than the first?
4594 if (ObjCLifetimeConversion)
4595 Conv |= ReferenceConversions::ObjCLifetime;
4596
4597 TopLevel = false;
4598 } while (Context.UnwrapSimilarTypes(T1, T2));
4599
4600 // At this point, if the types are reference-related, we must either have the
4601 // same inner type (ignoring qualifiers), or must have already worked out how
4602 // to convert the referent.
4603 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4604 ? Ref_Compatible
4605 : Ref_Incompatible;
4606}
4607
4608/// Look for a user-defined conversion to a value reference-compatible
4609/// with DeclType. Return true if something definite is found.
4610static bool
4611FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4612 QualType DeclType, SourceLocation DeclLoc,
4613 Expr *Init, QualType T2, bool AllowRvalues,
4614 bool AllowExplicit) {
4615 assert(T2->isRecordType() && "Can only find conversions of record types.")((void)0);
4616 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4617
4618 OverloadCandidateSet CandidateSet(
4619 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4620 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4621 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4622 NamedDecl *D = *I;
4623 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4624 if (isa<UsingShadowDecl>(D))
4625 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4626
4627 FunctionTemplateDecl *ConvTemplate
4628 = dyn_cast<FunctionTemplateDecl>(D);
4629 CXXConversionDecl *Conv;
4630 if (ConvTemplate)
4631 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4632 else
4633 Conv = cast<CXXConversionDecl>(D);
4634
4635 if (AllowRvalues) {
4636 // If we are initializing an rvalue reference, don't permit conversion
4637 // functions that return lvalues.
4638 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4639 const ReferenceType *RefType
4640 = Conv->getConversionType()->getAs<LValueReferenceType>();
4641 if (RefType && !RefType->getPointeeType()->isFunctionType())
4642 continue;
4643 }
4644
4645 if (!ConvTemplate &&
4646 S.CompareReferenceRelationship(
4647 DeclLoc,
4648 Conv->getConversionType()
4649 .getNonReferenceType()
4650 .getUnqualifiedType(),
4651 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4652 Sema::Ref_Incompatible)
4653 continue;
4654 } else {
4655 // If the conversion function doesn't return a reference type,
4656 // it can't be considered for this conversion. An rvalue reference
4657 // is only acceptable if its referencee is a function type.
4658
4659 const ReferenceType *RefType =
4660 Conv->getConversionType()->getAs<ReferenceType>();
4661 if (!RefType ||
4662 (!RefType->isLValueReferenceType() &&
4663 !RefType->getPointeeType()->isFunctionType()))
4664 continue;
4665 }
4666
4667 if (ConvTemplate)
4668 S.AddTemplateConversionCandidate(
4669 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4670 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4671 else
4672 S.AddConversionCandidate(
4673 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4674 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4675 }
4676
4677 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4678
4679 OverloadCandidateSet::iterator Best;
4680 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4681 case OR_Success:
4682 // C++ [over.ics.ref]p1:
4683 //
4684 // [...] If the parameter binds directly to the result of
4685 // applying a conversion function to the argument
4686 // expression, the implicit conversion sequence is a
4687 // user-defined conversion sequence (13.3.3.1.2), with the
4688 // second standard conversion sequence either an identity
4689 // conversion or, if the conversion function returns an
4690 // entity of a type that is a derived class of the parameter
4691 // type, a derived-to-base Conversion.
4692 if (!Best->FinalConversion.DirectBinding)
4693 return false;
4694
4695 ICS.setUserDefined();
4696 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4697 ICS.UserDefined.After = Best->FinalConversion;
4698 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4699 ICS.UserDefined.ConversionFunction = Best->Function;
4700 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4701 ICS.UserDefined.EllipsisConversion = false;
4702 assert(ICS.UserDefined.After.ReferenceBinding &&((void)0)
4703 ICS.UserDefined.After.DirectBinding &&((void)0)
4704 "Expected a direct reference binding!")((void)0);
4705 return true;
4706
4707 case OR_Ambiguous:
4708 ICS.setAmbiguous();
4709 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4710 Cand != CandidateSet.end(); ++Cand)
4711 if (Cand->Best)
4712 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4713 return true;
4714
4715 case OR_No_Viable_Function:
4716 case OR_Deleted:
4717 // There was no suitable conversion, or we found a deleted
4718 // conversion; continue with other checks.
4719 return false;
4720 }
4721
4722 llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable();
4723}
4724
4725/// Compute an implicit conversion sequence for reference
4726/// initialization.
4727static ImplicitConversionSequence
4728TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4729 SourceLocation DeclLoc,
4730 bool SuppressUserConversions,
4731 bool AllowExplicit) {
4732 assert(DeclType->isReferenceType() && "Reference init needs a reference")((void)0);
4733
4734 // Most paths end in a failed conversion.
4735 ImplicitConversionSequence ICS;
4736 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4737
4738 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4739 QualType T2 = Init->getType();
4740
4741 // If the initializer is the address of an overloaded function, try
4742 // to resolve the overloaded function. If all goes well, T2 is the
4743 // type of the resulting function.
4744 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4745 DeclAccessPair Found;
4746 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4747 false, Found))
4748 T2 = Fn->getType();
4749 }
4750
4751 // Compute some basic properties of the types and the initializer.
4752 bool isRValRef = DeclType->isRValueReferenceType();
4753 Expr::Classification InitCategory = Init->Classify(S.Context);
4754
4755 Sema::ReferenceConversions RefConv;
4756 Sema::ReferenceCompareResult RefRelationship =
4757 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4758
4759 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4760 ICS.setStandard();
4761 ICS.Standard.First = ICK_Identity;
4762 // FIXME: A reference binding can be a function conversion too. We should
4763 // consider that when ordering reference-to-function bindings.
4764 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4765 ? ICK_Derived_To_Base
4766 : (RefConv & Sema::ReferenceConversions::ObjC)
4767 ? ICK_Compatible_Conversion
4768 : ICK_Identity;
4769 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4770 // a reference binding that performs a non-top-level qualification
4771 // conversion as a qualification conversion, not as an identity conversion.
4772 ICS.Standard.Third = (RefConv &
4773 Sema::ReferenceConversions::NestedQualification)
4774 ? ICK_Qualification
4775 : ICK_Identity;
4776 ICS.Standard.setFromType(T2);
4777 ICS.Standard.setToType(0, T2);
4778 ICS.Standard.setToType(1, T1);
4779 ICS.Standard.setToType(2, T1);
4780 ICS.Standard.ReferenceBinding = true;
4781 ICS.Standard.DirectBinding = BindsDirectly;
4782 ICS.Standard.IsLvalueReference = !isRValRef;
4783 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4784 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4785 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4786 ICS.Standard.ObjCLifetimeConversionBinding =
4787 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4788 ICS.Standard.CopyConstructor = nullptr;
4789 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4790 };
4791
4792 // C++0x [dcl.init.ref]p5:
4793 // A reference to type "cv1 T1" is initialized by an expression
4794 // of type "cv2 T2" as follows:
4795
4796 // -- If reference is an lvalue reference and the initializer expression
4797 if (!isRValRef) {
4798 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4799 // reference-compatible with "cv2 T2," or
4800 //
4801 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4802 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4803 // C++ [over.ics.ref]p1:
4804 // When a parameter of reference type binds directly (8.5.3)
4805 // to an argument expression, the implicit conversion sequence
4806 // is the identity conversion, unless the argument expression
4807 // has a type that is a derived class of the parameter type,
4808 // in which case the implicit conversion sequence is a
4809 // derived-to-base Conversion (13.3.3.1).
4810 SetAsReferenceBinding(/*BindsDirectly=*/true);
4811
4812 // Nothing more to do: the inaccessibility/ambiguity check for
4813 // derived-to-base conversions is suppressed when we're
4814 // computing the implicit conversion sequence (C++
4815 // [over.best.ics]p2).
4816 return ICS;
4817 }
4818
4819 // -- has a class type (i.e., T2 is a class type), where T1 is
4820 // not reference-related to T2, and can be implicitly
4821 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4822 // is reference-compatible with "cv3 T3" 92) (this
4823 // conversion is selected by enumerating the applicable
4824 // conversion functions (13.3.1.6) and choosing the best
4825 // one through overload resolution (13.3)),
4826 if (!SuppressUserConversions && T2->isRecordType() &&
4827 S.isCompleteType(DeclLoc, T2) &&
4828 RefRelationship == Sema::Ref_Incompatible) {
4829 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4830 Init, T2, /*AllowRvalues=*/false,
4831 AllowExplicit))
4832 return ICS;
4833 }
4834 }
4835
4836 // -- Otherwise, the reference shall be an lvalue reference to a
4837 // non-volatile const type (i.e., cv1 shall be const), or the reference
4838 // shall be an rvalue reference.
4839 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4840 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4841 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4842 return ICS;
4843 }
4844
4845 // -- If the initializer expression
4846 //
4847 // -- is an xvalue, class prvalue, array prvalue or function
4848 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4849 if (RefRelationship == Sema::Ref_Compatible &&
4850 (InitCategory.isXValue() ||
4851 (InitCategory.isPRValue() &&
4852 (T2->isRecordType() || T2->isArrayType())) ||
4853 (InitCategory.isLValue() && T2->isFunctionType()))) {
4854 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4855 // binding unless we're binding to a class prvalue.
4856 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4857 // allow the use of rvalue references in C++98/03 for the benefit of
4858 // standard library implementors; therefore, we need the xvalue check here.
4859 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4860 !(InitCategory.isPRValue() || T2->isRecordType()));
4861 return ICS;
4862 }
4863
4864 // -- has a class type (i.e., T2 is a class type), where T1 is not
4865 // reference-related to T2, and can be implicitly converted to
4866 // an xvalue, class prvalue, or function lvalue of type
4867 // "cv3 T3", where "cv1 T1" is reference-compatible with
4868 // "cv3 T3",
4869 //
4870 // then the reference is bound to the value of the initializer
4871 // expression in the first case and to the result of the conversion
4872 // in the second case (or, in either case, to an appropriate base
4873 // class subobject).
4874 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4875 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4876 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4877 Init, T2, /*AllowRvalues=*/true,
4878 AllowExplicit)) {
4879 // In the second case, if the reference is an rvalue reference
4880 // and the second standard conversion sequence of the
4881 // user-defined conversion sequence includes an lvalue-to-rvalue
4882 // conversion, the program is ill-formed.
4883 if (ICS.isUserDefined() && isRValRef &&
4884 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4885 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4886
4887 return ICS;
4888 }
4889
4890 // A temporary of function type cannot be created; don't even try.
4891 if (T1->isFunctionType())
4892 return ICS;
4893
4894 // -- Otherwise, a temporary of type "cv1 T1" is created and
4895 // initialized from the initializer expression using the
4896 // rules for a non-reference copy initialization (8.5). The
4897 // reference is then bound to the temporary. If T1 is
4898 // reference-related to T2, cv1 must be the same
4899 // cv-qualification as, or greater cv-qualification than,
4900 // cv2; otherwise, the program is ill-formed.
4901 if (RefRelationship == Sema::Ref_Related) {
4902 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4903 // we would be reference-compatible or reference-compatible with
4904 // added qualification. But that wasn't the case, so the reference
4905 // initialization fails.
4906 //
4907 // Note that we only want to check address spaces and cvr-qualifiers here.
4908 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4909 Qualifiers T1Quals = T1.getQualifiers();
4910 Qualifiers T2Quals = T2.getQualifiers();
4911 T1Quals.removeObjCGCAttr();
4912 T1Quals.removeObjCLifetime();
4913 T2Quals.removeObjCGCAttr();
4914 T2Quals.removeObjCLifetime();
4915 // MS compiler ignores __unaligned qualifier for references; do the same.
4916 T1Quals.removeUnaligned();
4917 T2Quals.removeUnaligned();
4918 if (!T1Quals.compatiblyIncludes(T2Quals))
4919 return ICS;
4920 }
4921
4922 // If at least one of the types is a class type, the types are not
4923 // related, and we aren't allowed any user conversions, the
4924 // reference binding fails. This case is important for breaking
4925 // recursion, since TryImplicitConversion below will attempt to
4926 // create a temporary through the use of a copy constructor.
4927 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4928 (T1->isRecordType() || T2->isRecordType()))
4929 return ICS;
4930
4931 // If T1 is reference-related to T2 and the reference is an rvalue
4932 // reference, the initializer expression shall not be an lvalue.
4933 if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4934 Init->Classify(S.Context).isLValue()) {
4935 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4936 return ICS;
4937 }
4938
4939 // C++ [over.ics.ref]p2:
4940 // When a parameter of reference type is not bound directly to
4941 // an argument expression, the conversion sequence is the one
4942 // required to convert the argument expression to the
4943 // underlying type of the reference according to
4944 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4945 // to copy-initializing a temporary of the underlying type with
4946 // the argument expression. Any difference in top-level
4947 // cv-qualification is subsumed by the initialization itself
4948 // and does not constitute a conversion.
4949 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4950 AllowedExplicit::None,
4951 /*InOverloadResolution=*/false,
4952 /*CStyle=*/false,
4953 /*AllowObjCWritebackConversion=*/false,
4954 /*AllowObjCConversionOnExplicit=*/false);
4955
4956 // Of course, that's still a reference binding.
4957 if (ICS.isStandard()) {
4958 ICS.Standard.ReferenceBinding = true;
4959 ICS.Standard.IsLvalueReference = !isRValRef;
4960 ICS.Standard.BindsToFunctionLvalue = false;
4961 ICS.Standard.BindsToRvalue = true;
4962 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4963 ICS.Standard.ObjCLifetimeConversionBinding = false;
4964 } else if (ICS.isUserDefined()) {
4965 const ReferenceType *LValRefType =
4966 ICS.UserDefined.ConversionFunction->getReturnType()
4967 ->getAs<LValueReferenceType>();
4968
4969 // C++ [over.ics.ref]p3:
4970 // Except for an implicit object parameter, for which see 13.3.1, a
4971 // standard conversion sequence cannot be formed if it requires [...]
4972 // binding an rvalue reference to an lvalue other than a function
4973 // lvalue.
4974 // Note that the function case is not possible here.
4975 if (isRValRef && LValRefType) {
4976 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4977 return ICS;
4978 }
4979
4980 ICS.UserDefined.After.ReferenceBinding = true;
4981 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4982 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4983 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4984 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4985 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4986 }
4987
4988 return ICS;
4989}
4990
4991static ImplicitConversionSequence
4992TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4993 bool SuppressUserConversions,
4994 bool InOverloadResolution,
4995 bool AllowObjCWritebackConversion,
4996 bool AllowExplicit = false);
4997
4998/// TryListConversion - Try to copy-initialize a value of type ToType from the
4999/// initializer list From.
5000static ImplicitConversionSequence
5001TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5002 bool SuppressUserConversions,
5003 bool InOverloadResolution,
5004 bool AllowObjCWritebackConversion) {
5005 // C++11 [over.ics.list]p1:
5006 // When an argument is an initializer list, it is not an expression and
5007 // special rules apply for converting it to a parameter type.
5008
5009 ImplicitConversionSequence Result;
5010 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5011
5012 // We need a complete type for what follows. Incomplete types can never be
5013 // initialized from init lists.
5014 if (!S.isCompleteType(From->getBeginLoc(), ToType))
5015 return Result;
5016
5017 // Per DR1467:
5018 // If the parameter type is a class X and the initializer list has a single
5019 // element of type cv U, where U is X or a class derived from X, the
5020 // implicit conversion sequence is the one required to convert the element
5021 // to the parameter type.
5022 //
5023 // Otherwise, if the parameter type is a character array [... ]
5024 // and the initializer list has a single element that is an
5025 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5026 // implicit conversion sequence is the identity conversion.
5027 if (From->getNumInits() == 1) {
5028 if (ToType->isRecordType()) {
5029 QualType InitType = From->getInit(0)->getType();
5030 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5031 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5032 return TryCopyInitialization(S, From->getInit(0), ToType,
5033 SuppressUserConversions,
5034 InOverloadResolution,
5035 AllowObjCWritebackConversion);
5036 }
5037
5038 if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5039 if (S.IsStringInit(From->getInit(0), AT)) {
5040 InitializedEntity Entity =
5041 InitializedEntity::InitializeParameter(S.Context, ToType,
5042 /*Consumed=*/false);
5043 if (S.CanPerformCopyInitialization(Entity, From)) {
5044 Result.setStandard();
5045 Result.Standard.setAsIdentityConversion();
5046 Result.Standard.setFromType(ToType);
5047 Result.Standard.setAllToTypes(ToType);
5048 return Result;
5049 }
5050 }
5051 }
5052 }
5053
5054 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5055 // C++11 [over.ics.list]p2:
5056 // If the parameter type is std::initializer_list<X> or "array of X" and
5057 // all the elements can be implicitly converted to X, the implicit
5058 // conversion sequence is the worst conversion necessary to convert an
5059 // element of the list to X.
5060 //
5061 // C++14 [over.ics.list]p3:
5062 // Otherwise, if the parameter type is "array of N X", if the initializer
5063 // list has exactly N elements or if it has fewer than N elements and X is
5064 // default-constructible, and if all the elements of the initializer list
5065 // can be implicitly converted to X, the implicit conversion sequence is
5066 // the worst conversion necessary to convert an element of the list to X.
5067 //
5068 // FIXME: We're missing a lot of these checks.
5069 bool toStdInitializerList = false;
5070 QualType X;
5071 if (ToType->isArrayType())
5072 X = S.Context.getAsArrayType(ToType)->getElementType();
5073 else
5074 toStdInitializerList = S.isStdInitializerList(ToType, &X);
5075 if (!X.isNull()) {
5076 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5077 Expr *Init = From->getInit(i);
5078 ImplicitConversionSequence ICS =
5079 TryCopyInitialization(S, Init, X, SuppressUserConversions,
5080 InOverloadResolution,
5081 AllowObjCWritebackConversion);
5082 // If a single element isn't convertible, fail.
5083 if (ICS.isBad()) {
5084 Result = ICS;
5085 break;
5086 }
5087 // Otherwise, look for the worst conversion.
5088 if (Result.isBad() || CompareImplicitConversionSequences(
5089 S, From->getBeginLoc(), ICS, Result) ==
5090 ImplicitConversionSequence::Worse)
5091 Result = ICS;
5092 }
5093
5094 // For an empty list, we won't have computed any conversion sequence.
5095 // Introduce the identity conversion sequence.
5096 if (From->getNumInits() == 0) {
5097 Result.setStandard();
5098 Result.Standard.setAsIdentityConversion();
5099 Result.Standard.setFromType(ToType);
5100 Result.Standard.setAllToTypes(ToType);
5101 }
5102
5103 Result.setStdInitializerListElement(toStdInitializerList);
5104 return Result;
5105 }
5106
5107 // C++14 [over.ics.list]p4:
5108 // C++11 [over.ics.list]p3:
5109 // Otherwise, if the parameter is a non-aggregate class X and overload
5110 // resolution chooses a single best constructor [...] the implicit
5111 // conversion sequence is a user-defined conversion sequence. If multiple
5112 // constructors are viable but none is better than the others, the
5113 // implicit conversion sequence is a user-defined conversion sequence.
5114 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5115 // This function can deal with initializer lists.
5116 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5117 AllowedExplicit::None,
5118 InOverloadResolution, /*CStyle=*/false,
5119 AllowObjCWritebackConversion,
5120 /*AllowObjCConversionOnExplicit=*/false);
5121 }
5122
5123 // C++14 [over.ics.list]p5:
5124 // C++11 [over.ics.list]p4:
5125 // Otherwise, if the parameter has an aggregate type which can be
5126 // initialized from the initializer list [...] the implicit conversion
5127 // sequence is a user-defined conversion sequence.
5128 if (ToType->isAggregateType()) {
5129 // Type is an aggregate, argument is an init list. At this point it comes
5130 // down to checking whether the initialization works.
5131 // FIXME: Find out whether this parameter is consumed or not.
5132 InitializedEntity Entity =
5133 InitializedEntity::InitializeParameter(S.Context, ToType,
5134 /*Consumed=*/false);
5135 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5136 From)) {
5137 Result.setUserDefined();
5138 Result.UserDefined.Before.setAsIdentityConversion();
5139 // Initializer lists don't have a type.
5140 Result.UserDefined.Before.setFromType(QualType());
5141 Result.UserDefined.Before.setAllToTypes(QualType());
5142
5143 Result.UserDefined.After.setAsIdentityConversion();
5144 Result.UserDefined.After.setFromType(ToType);
5145 Result.UserDefined.After.setAllToTypes(ToType);
5146 Result.UserDefined.ConversionFunction = nullptr;
5147 }
5148 return Result;
5149 }
5150
5151 // C++14 [over.ics.list]p6:
5152 // C++11 [over.ics.list]p5:
5153 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5154 if (ToType->isReferenceType()) {
5155 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5156 // mention initializer lists in any way. So we go by what list-
5157 // initialization would do and try to extrapolate from that.
5158
5159 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5160
5161 // If the initializer list has a single element that is reference-related
5162 // to the parameter type, we initialize the reference from that.
5163 if (From->getNumInits() == 1) {
5164 Expr *Init = From->getInit(0);
5165
5166 QualType T2 = Init->getType();
5167
5168 // If the initializer is the address of an overloaded function, try
5169 // to resolve the overloaded function. If all goes well, T2 is the
5170 // type of the resulting function.
5171 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5172 DeclAccessPair Found;
5173 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5174 Init, ToType, false, Found))
5175 T2 = Fn->getType();
5176 }
5177
5178 // Compute some basic properties of the types and the initializer.
5179 Sema::ReferenceCompareResult RefRelationship =
5180 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5181
5182 if (RefRelationship >= Sema::Ref_Related) {
5183 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5184 SuppressUserConversions,
5185 /*AllowExplicit=*/false);
5186 }
5187 }
5188
5189 // Otherwise, we bind the reference to a temporary created from the
5190 // initializer list.
5191 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5192 InOverloadResolution,
5193 AllowObjCWritebackConversion);
5194 if (Result.isFailure())
5195 return Result;
5196 assert(!Result.isEllipsis() &&((void)0)
5197 "Sub-initialization cannot result in ellipsis conversion.")((void)0);
5198
5199 // Can we even bind to a temporary?
5200 if (ToType->isRValueReferenceType() ||
5201 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5202 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5203 Result.UserDefined.After;
5204 SCS.ReferenceBinding = true;
5205 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5206 SCS.BindsToRvalue = true;
5207 SCS.BindsToFunctionLvalue = false;
5208 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5209 SCS.ObjCLifetimeConversionBinding = false;
5210 } else
5211 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5212 From, ToType);
5213 return Result;
5214 }
5215
5216 // C++14 [over.ics.list]p7:
5217 // C++11 [over.ics.list]p6:
5218 // Otherwise, if the parameter type is not a class:
5219 if (!ToType->isRecordType()) {
5220 // - if the initializer list has one element that is not itself an
5221 // initializer list, the implicit conversion sequence is the one
5222 // required to convert the element to the parameter type.
5223 unsigned NumInits = From->getNumInits();
5224 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5225 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5226 SuppressUserConversions,
5227 InOverloadResolution,
5228 AllowObjCWritebackConversion);
5229 // - if the initializer list has no elements, the implicit conversion
5230 // sequence is the identity conversion.
5231 else if (NumInits == 0) {
5232 Result.setStandard();
5233 Result.Standard.setAsIdentityConversion();
5234 Result.Standard.setFromType(ToType);
5235 Result.Standard.setAllToTypes(ToType);
5236 }
5237 return Result;
5238 }
5239
5240 // C++14 [over.ics.list]p8:
5241 // C++11 [over.ics.list]p7:
5242 // In all cases other than those enumerated above, no conversion is possible
5243 return Result;
5244}
5245
5246/// TryCopyInitialization - Try to copy-initialize a value of type
5247/// ToType from the expression From. Return the implicit conversion
5248/// sequence required to pass this argument, which may be a bad
5249/// conversion sequence (meaning that the argument cannot be passed to
5250/// a parameter of this type). If @p SuppressUserConversions, then we
5251/// do not permit any user-defined conversion sequences.
5252static ImplicitConversionSequence
5253TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5254 bool SuppressUserConversions,
5255 bool InOverloadResolution,
5256 bool AllowObjCWritebackConversion,
5257 bool AllowExplicit) {
5258 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5259 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5260 InOverloadResolution,AllowObjCWritebackConversion);
5261
5262 if (ToType->isReferenceType())
5263 return TryReferenceInit(S, From, ToType,
5264 /*FIXME:*/ From->getBeginLoc(),
5265 SuppressUserConversions, AllowExplicit);
5266
5267 return TryImplicitConversion(S, From, ToType,
5268 SuppressUserConversions,
5269 AllowedExplicit::None,
5270 InOverloadResolution,
5271 /*CStyle=*/false,
5272 AllowObjCWritebackConversion,
5273 /*AllowObjCConversionOnExplicit=*/false);
5274}
5275
5276static bool TryCopyInitialization(const CanQualType FromQTy,
5277 const CanQualType ToQTy,
5278 Sema &S,
5279 SourceLocation Loc,
5280 ExprValueKind FromVK) {
5281 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5282 ImplicitConversionSequence ICS =
5283 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5284
5285 return !ICS.isBad();
5286}
5287
5288/// TryObjectArgumentInitialization - Try to initialize the object
5289/// parameter of the given member function (@c Method) from the
5290/// expression @p From.
5291static ImplicitConversionSequence
5292TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5293 Expr::Classification FromClassification,
5294 CXXMethodDecl *Method,
5295 CXXRecordDecl *ActingContext) {
5296 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5297 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5298 // const volatile object.
5299 Qualifiers Quals = Method->getMethodQualifiers();
5300 if (isa<CXXDestructorDecl>(Method)) {
5301 Quals.addConst();
5302 Quals.addVolatile();
5303 }
5304
5305 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5306
5307 // Set up the conversion sequence as a "bad" conversion, to allow us
5308 // to exit early.
5309 ImplicitConversionSequence ICS;
5310
5311 // We need to have an object of class type.
5312 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5313 FromType = PT->getPointeeType();
5314
5315 // When we had a pointer, it's implicitly dereferenced, so we
5316 // better have an lvalue.
5317 assert(FromClassification.isLValue())((void)0);
5318 }
5319
5320 assert(FromType->isRecordType())((void)0);
5321
5322 // C++0x [over.match.funcs]p4:
5323 // For non-static member functions, the type of the implicit object
5324 // parameter is
5325 //
5326 // - "lvalue reference to cv X" for functions declared without a
5327 // ref-qualifier or with the & ref-qualifier
5328 // - "rvalue reference to cv X" for functions declared with the &&
5329 // ref-qualifier
5330 //
5331 // where X is the class of which the function is a member and cv is the
5332 // cv-qualification on the member function declaration.
5333 //
5334 // However, when finding an implicit conversion sequence for the argument, we
5335 // are not allowed to perform user-defined conversions
5336 // (C++ [over.match.funcs]p5). We perform a simplified version of
5337 // reference binding here, that allows class rvalues to bind to
5338 // non-constant references.
5339
5340 // First check the qualifiers.
5341 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5342 if (ImplicitParamType.getCVRQualifiers()
5343 != FromTypeCanon.getLocalCVRQualifiers() &&
5344 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5345 ICS.setBad(BadConversionSequence::bad_qualifiers,
5346 FromType, ImplicitParamType);
5347 return ICS;
5348 }
5349
5350 if (FromTypeCanon.hasAddressSpace()) {
5351 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5352 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5353 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5354 ICS.setBad(BadConversionSequence::bad_qualifiers,
5355 FromType, ImplicitParamType);
5356 return ICS;
5357 }
5358 }
5359
5360 // Check that we have either the same type or a derived type. It
5361 // affects the conversion rank.
5362 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5363 ImplicitConversionKind SecondKind;
5364 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5365 SecondKind = ICK_Identity;
5366 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5367 SecondKind = ICK_Derived_To_Base;
5368 else {
5369 ICS.setBad(BadConversionSequence::unrelated_class,
5370 FromType, ImplicitParamType);
5371 return ICS;
5372 }
5373
5374 // Check the ref-qualifier.
5375 switch (Method->getRefQualifier()) {
5376 case RQ_None:
5377 // Do nothing; we don't care about lvalueness or rvalueness.
5378 break;
5379
5380 case RQ_LValue:
5381 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5382 // non-const lvalue reference cannot bind to an rvalue
5383 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5384 ImplicitParamType);
5385 return ICS;
5386 }
5387 break;
5388
5389 case RQ_RValue:
5390 if (!FromClassification.isRValue()) {
5391 // rvalue reference cannot bind to an lvalue
5392 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5393 ImplicitParamType);
5394 return ICS;
5395 }
5396 break;
5397 }
5398
5399 // Success. Mark this as a reference binding.
5400 ICS.setStandard();
5401 ICS.Standard.setAsIdentityConversion();
5402 ICS.Standard.Second = SecondKind;
5403 ICS.Standard.setFromType(FromType);
5404 ICS.Standard.setAllToTypes(ImplicitParamType);
5405 ICS.Standard.ReferenceBinding = true;
5406 ICS.Standard.DirectBinding = true;
5407 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5408 ICS.Standard.BindsToFunctionLvalue = false;
5409 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5410 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5411 = (Method->getRefQualifier() == RQ_None);
5412 return ICS;
5413}
5414
5415/// PerformObjectArgumentInitialization - Perform initialization of
5416/// the implicit object parameter for the given Method with the given
5417/// expression.
5418ExprResult
5419Sema::PerformObjectArgumentInitialization(Expr *From,
5420 NestedNameSpecifier *Qualifier,
5421 NamedDecl *FoundDecl,
5422 CXXMethodDecl *Method) {
5423 QualType FromRecordType, DestType;
5424 QualType ImplicitParamRecordType =
5425 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5426
5427 Expr::Classification FromClassification;
5428 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5429 FromRecordType = PT->getPointeeType();
5430 DestType = Method->getThisType();
5431 FromClassification = Expr::Classification::makeSimpleLValue();
5432 } else {
5433 FromRecordType = From->getType();
5434 DestType = ImplicitParamRecordType;
5435 FromClassification = From->Classify(Context);
5436
5437 // When performing member access on a prvalue, materialize a temporary.
5438 if (From->isPRValue()) {
5439 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5440 Method->getRefQualifier() !=
5441 RefQualifierKind::RQ_RValue);
5442 }
5443 }
5444
5445 // Note that we always use the true parent context when performing
5446 // the actual argument initialization.
5447 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5448 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5449 Method->getParent());
5450 if (ICS.isBad()) {
5451 switch (ICS.Bad.Kind) {
5452 case BadConversionSequence::bad_qualifiers: {
5453 Qualifiers FromQs = FromRecordType.getQualifiers();
5454 Qualifiers ToQs = DestType.getQualifiers();
5455 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5456 if (CVR) {
5457 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5458 << Method->getDeclName() << FromRecordType << (CVR - 1)
5459 << From->getSourceRange();
5460 Diag(Method->getLocation(), diag::note_previous_decl)
5461 << Method->getDeclName();
5462 return ExprError();
5463 }
5464 break;
5465 }
5466
5467 case BadConversionSequence::lvalue_ref_to_rvalue:
5468 case BadConversionSequence::rvalue_ref_to_lvalue: {
5469 bool IsRValueQualified =
5470 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5471 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5472 << Method->getDeclName() << FromClassification.isRValue()
5473 << IsRValueQualified;
5474 Diag(Method->getLocation(), diag::note_previous_decl)
5475 << Method->getDeclName();
5476 return ExprError();
5477 }
5478
5479 case BadConversionSequence::no_conversion:
5480 case BadConversionSequence::unrelated_class:
5481 break;
5482 }
5483
5484 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5485 << ImplicitParamRecordType << FromRecordType
5486 << From->getSourceRange();
5487 }
5488
5489 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5490 ExprResult FromRes =
5491 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5492 if (FromRes.isInvalid())
5493 return ExprError();
5494 From = FromRes.get();
5495 }
5496
5497 if (!Context.hasSameType(From->getType(), DestType)) {
5498 CastKind CK;
5499 QualType PteeTy = DestType->getPointeeType();
5500 LangAS DestAS =
5501 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5502 if (FromRecordType.getAddressSpace() != DestAS)
5503 CK = CK_AddressSpaceConversion;
5504 else
5505 CK = CK_NoOp;
5506 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5507 }
5508 return From;
5509}
5510
5511/// TryContextuallyConvertToBool - Attempt to contextually convert the
5512/// expression From to bool (C++0x [conv]p3).
5513static ImplicitConversionSequence
5514TryContextuallyConvertToBool(Sema &S, Expr *From) {
5515 // C++ [dcl.init]/17.8:
5516 // - Otherwise, if the initialization is direct-initialization, the source
5517 // type is std::nullptr_t, and the destination type is bool, the initial
5518 // value of the object being initialized is false.
5519 if (From->getType()->isNullPtrType())
5520 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5521 S.Context.BoolTy,
5522 From->isGLValue());
5523
5524 // All other direct-initialization of bool is equivalent to an implicit
5525 // conversion to bool in which explicit conversions are permitted.
5526 return TryImplicitConversion(S, From, S.Context.BoolTy,
5527 /*SuppressUserConversions=*/false,
5528 AllowedExplicit::Conversions,
5529 /*InOverloadResolution=*/false,
5530 /*CStyle=*/false,
5531 /*AllowObjCWritebackConversion=*/false,
5532 /*AllowObjCConversionOnExplicit=*/false);
5533}
5534
5535/// PerformContextuallyConvertToBool - Perform a contextual conversion
5536/// of the expression From to bool (C++0x [conv]p3).
5537ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5538 if (checkPlaceholderForOverload(*this, From))
5539 return ExprError();
5540
5541 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5542 if (!ICS.isBad())
5543 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5544
5545 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5546 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5547 << From->getType() << From->getSourceRange();
5548 return ExprError();
5549}
5550
5551/// Check that the specified conversion is permitted in a converted constant
5552/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5553/// is acceptable.
5554static bool CheckConvertedConstantConversions(Sema &S,
5555 StandardConversionSequence &SCS) {
5556 // Since we know that the target type is an integral or unscoped enumeration
5557 // type, most conversion kinds are impossible. All possible First and Third
5558 // conversions are fine.
5559 switch (SCS.Second) {
5560 case ICK_Identity:
5561 case ICK_Integral_Promotion:
5562 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5563 case ICK_Zero_Queue_Conversion:
5564 return true;
5565
5566 case ICK_Boolean_Conversion:
5567 // Conversion from an integral or unscoped enumeration type to bool is
5568 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5569 // conversion, so we allow it in a converted constant expression.
5570 //
5571 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5572 // a lot of popular code. We should at least add a warning for this
5573 // (non-conforming) extension.
5574 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5575 SCS.getToType(2)->isBooleanType();
5576
5577 case ICK_Pointer_Conversion:
5578 case ICK_Pointer_Member:
5579 // C++1z: null pointer conversions and null member pointer conversions are
5580 // only permitted if the source type is std::nullptr_t.
5581 return SCS.getFromType()->isNullPtrType();
5582
5583 case ICK_Floating_Promotion:
5584 case ICK_Complex_Promotion:
5585 case ICK_Floating_Conversion:
5586 case ICK_Complex_Conversion:
5587 case ICK_Floating_Integral:
5588 case ICK_Compatible_Conversion:
5589 case ICK_Derived_To_Base:
5590 case ICK_Vector_Conversion:
5591 case ICK_SVE_Vector_Conversion:
5592 case ICK_Vector_Splat:
5593 case ICK_Complex_Real:
5594 case ICK_Block_Pointer_Conversion:
5595 case ICK_TransparentUnionConversion:
5596 case ICK_Writeback_Conversion:
5597 case ICK_Zero_Event_Conversion:
5598 case ICK_C_Only_Conversion:
5599 case ICK_Incompatible_Pointer_Conversion:
5600 return false;
5601
5602 case ICK_Lvalue_To_Rvalue:
5603 case ICK_Array_To_Pointer:
5604 case ICK_Function_To_Pointer:
5605 llvm_unreachable("found a first conversion kind in Second")__builtin_unreachable();
5606
5607 case ICK_Function_Conversion:
5608 case ICK_Qualification:
5609 llvm_unreachable("found a third conversion kind in Second")__builtin_unreachable();
5610
5611 case ICK_Num_Conversion_Kinds:
5612 break;
5613 }
5614
5615 llvm_unreachable("unknown conversion kind")__builtin_unreachable();
5616}
5617
5618/// CheckConvertedConstantExpression - Check that the expression From is a
5619/// converted constant expression of type T, perform the conversion and produce
5620/// the converted expression, per C++11 [expr.const]p3.
5621static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5622 QualType T, APValue &Value,
5623 Sema::CCEKind CCE,
5624 bool RequireInt,
5625 NamedDecl *Dest) {
5626 assert(S.getLangOpts().CPlusPlus11 &&((void)0)
5627 "converted constant expression outside C++11")((void)0);
5628
5629 if (checkPlaceholderForOverload(S, From))
5630 return ExprError();
5631
5632 // C++1z [expr.const]p3:
5633 // A converted constant expression of type T is an expression,
5634 // implicitly converted to type T, where the converted
5635 // expression is a constant expression and the implicit conversion
5636 // sequence contains only [... list of conversions ...].
5637 ImplicitConversionSequence ICS =
5638 CCE == Sema::CCEK_ExplicitBool
5639 ? TryContextuallyConvertToBool(S, From)
5640 : TryCopyInitialization(S, From, T,
5641 /*SuppressUserConversions=*/false,
5642 /*InOverloadResolution=*/false,
5643 /*AllowObjCWritebackConversion=*/false,
5644 /*AllowExplicit=*/false);
5645 StandardConversionSequence *SCS = nullptr;
5646 switch (ICS.getKind()) {
5647 case ImplicitConversionSequence::StandardConversion:
5648 SCS = &ICS.Standard;
5649 break;
5650 case ImplicitConversionSequence::UserDefinedConversion:
5651 if (T->isRecordType())
5652 SCS = &ICS.UserDefined.Before;
5653 else
5654 SCS = &ICS.UserDefined.After;
5655 break;
5656 case ImplicitConversionSequence::AmbiguousConversion:
5657 case ImplicitConversionSequence::BadConversion:
5658 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5659 return S.Diag(From->getBeginLoc(),
5660 diag::err_typecheck_converted_constant_expression)
5661 << From->getType() << From->getSourceRange() << T;
5662 return ExprError();
5663
5664 case ImplicitConversionSequence::EllipsisConversion:
5665 llvm_unreachable("ellipsis conversion in converted constant expression")__builtin_unreachable();
5666 }
5667
5668 // Check that we would only use permitted conversions.
5669 if (!CheckConvertedConstantConversions(S, *SCS)) {
5670 return S.Diag(From->getBeginLoc(),
5671 diag::err_typecheck_converted_constant_expression_disallowed)
5672 << From->getType() << From->getSourceRange() << T;
5673 }
5674 // [...] and where the reference binding (if any) binds directly.
5675 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5676 return S.Diag(From->getBeginLoc(),
5677 diag::err_typecheck_converted_constant_expression_indirect)
5678 << From->getType() << From->getSourceRange() << T;
5679 }
5680
5681 // Usually we can simply apply the ImplicitConversionSequence we formed
5682 // earlier, but that's not guaranteed to work when initializing an object of
5683 // class type.
5684 ExprResult Result;
5685 if (T->isRecordType()) {
5686 assert(CCE == Sema::CCEK_TemplateArg &&((void)0)
5687 "unexpected class type converted constant expr")((void)0);
5688 Result = S.PerformCopyInitialization(
5689 InitializedEntity::InitializeTemplateParameter(
5690 T, cast<NonTypeTemplateParmDecl>(Dest)),
5691 SourceLocation(), From);
5692 } else {
5693 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5694 }
5695 if (Result.isInvalid())
5696 return Result;
5697
5698 // C++2a [intro.execution]p5:
5699 // A full-expression is [...] a constant-expression [...]
5700 Result =
5701 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5702 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5703 if (Result.isInvalid())
5704 return Result;
5705
5706 // Check for a narrowing implicit conversion.
5707 bool ReturnPreNarrowingValue = false;
5708 APValue PreNarrowingValue;
5709 QualType PreNarrowingType;
5710 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5711 PreNarrowingType)) {
5712 case NK_Dependent_Narrowing:
5713 // Implicit conversion to a narrower type, but the expression is
5714 // value-dependent so we can't tell whether it's actually narrowing.
5715 case NK_Variable_Narrowing:
5716 // Implicit conversion to a narrower type, and the value is not a constant
5717 // expression. We'll diagnose this in a moment.
5718 case NK_Not_Narrowing:
5719 break;
5720
5721 case NK_Constant_Narrowing:
5722 if (CCE == Sema::CCEK_ArrayBound &&
5723 PreNarrowingType->isIntegralOrEnumerationType() &&
5724 PreNarrowingValue.isInt()) {
5725 // Don't diagnose array bound narrowing here; we produce more precise
5726 // errors by allowing the un-narrowed value through.
5727 ReturnPreNarrowingValue = true;
5728 break;
5729 }
5730 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5731 << CCE << /*Constant*/ 1
5732 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5733 break;
5734
5735 case NK_Type_Narrowing:
5736 // FIXME: It would be better to diagnose that the expression is not a
5737 // constant expression.
5738 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5739 << CCE << /*Constant*/ 0 << From->getType() << T;
5740 break;
5741 }
5742
5743 if (Result.get()->isValueDependent()) {
5744 Value = APValue();
5745 return Result;
5746 }
5747
5748 // Check the expression is a constant expression.
5749 SmallVector<PartialDiagnosticAt, 8> Notes;
5750 Expr::EvalResult Eval;
5751 Eval.Diag = &Notes;
5752
5753 ConstantExprKind Kind;
5754 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5755 Kind = ConstantExprKind::ClassTemplateArgument;
5756 else if (CCE == Sema::CCEK_TemplateArg)
5757 Kind = ConstantExprKind::NonClassTemplateArgument;
5758 else
5759 Kind = ConstantExprKind::Normal;
5760
5761 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5762 (RequireInt && !Eval.Val.isInt())) {
5763 // The expression can't be folded, so we can't keep it at this position in
5764 // the AST.
5765 Result = ExprError();
5766 } else {
5767 Value = Eval.Val;
5768
5769 if (Notes.empty()) {
5770 // It's a constant expression.
5771 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5772 if (ReturnPreNarrowingValue)
5773 Value = std::move(PreNarrowingValue);
5774 return E;
5775 }
5776 }
5777
5778 // It's not a constant expression. Produce an appropriate diagnostic.
5779 if (Notes.size() == 1 &&
5780 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5781 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5782 } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5783 diag::note_constexpr_invalid_template_arg) {
5784 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5785 for (unsigned I = 0; I < Notes.size(); ++I)
5786 S.Diag(Notes[I].first, Notes[I].second);
5787 } else {
5788 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5789 << CCE << From->getSourceRange();
5790 for (unsigned I = 0; I < Notes.size(); ++I)
5791 S.Diag(Notes[I].first, Notes[I].second);
5792 }
5793 return ExprError();
5794}
5795
5796ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5797 APValue &Value, CCEKind CCE,
5798 NamedDecl *Dest) {
5799 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5800 Dest);
5801}
5802
5803ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5804 llvm::APSInt &Value,
5805 CCEKind CCE) {
5806 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((void)0);
5807
5808 APValue V;
5809 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5810 /*Dest=*/nullptr);
5811 if (!R.isInvalid() && !R.get()->isValueDependent())
5812 Value = V.getInt();
5813 return R;
5814}
5815
5816
5817/// dropPointerConversions - If the given standard conversion sequence
5818/// involves any pointer conversions, remove them. This may change
5819/// the result type of the conversion sequence.
5820static void dropPointerConversion(StandardConversionSequence &SCS) {
5821 if (SCS.Second == ICK_Pointer_Conversion) {
5822 SCS.Second = ICK_Identity;
5823 SCS.Third = ICK_Identity;
5824 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5825 }
5826}
5827
5828/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5829/// convert the expression From to an Objective-C pointer type.
5830static ImplicitConversionSequence
5831TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5832 // Do an implicit conversion to 'id'.
5833 QualType Ty = S.Context.getObjCIdType();
5834 ImplicitConversionSequence ICS
5835 = TryImplicitConversion(S, From, Ty,
5836 // FIXME: Are these flags correct?
5837 /*SuppressUserConversions=*/false,
5838 AllowedExplicit::Conversions,
5839 /*InOverloadResolution=*/false,
5840 /*CStyle=*/false,
5841 /*AllowObjCWritebackConversion=*/false,
5842 /*AllowObjCConversionOnExplicit=*/true);
5843
5844 // Strip off any final conversions to 'id'.
5845 switch (ICS.getKind()) {
5846 case ImplicitConversionSequence::BadConversion:
5847 case ImplicitConversionSequence::AmbiguousConversion:
5848 case ImplicitConversionSequence::EllipsisConversion:
5849 break;
5850
5851 case ImplicitConversionSequence::UserDefinedConversion:
5852 dropPointerConversion(ICS.UserDefined.After);
5853 break;
5854
5855 case ImplicitConversionSequence::StandardConversion:
5856 dropPointerConversion(ICS.Standard);
5857 break;
5858 }
5859
5860 return ICS;
5861}
5862
5863/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5864/// conversion of the expression From to an Objective-C pointer type.
5865/// Returns a valid but null ExprResult if no conversion sequence exists.
5866ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5867 if (checkPlaceholderForOverload(*this, From))
5868 return ExprError();
5869
5870 QualType Ty = Context.getObjCIdType();
5871 ImplicitConversionSequence ICS =
5872 TryContextuallyConvertToObjCPointer(*this, From);
5873 if (!ICS.isBad())
5874 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5875 return ExprResult();
5876}
5877
5878/// Determine whether the provided type is an integral type, or an enumeration
5879/// type of a permitted flavor.
5880bool Sema::ICEConvertDiagnoser::match(QualType T) {
5881 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5882 : T->isIntegralOrUnscopedEnumerationType();
5883}
5884
5885static ExprResult
5886diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5887 Sema::ContextualImplicitConverter &Converter,
5888 QualType T, UnresolvedSetImpl &ViableConversions) {
5889
5890 if (Converter.Suppress)
5891 return ExprError();
5892
5893 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5894 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5895 CXXConversionDecl *Conv =
5896 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5897 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5898 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5899 }
5900 return From;
5901}
5902
5903static bool
5904diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5905 Sema::ContextualImplicitConverter &Converter,
5906 QualType T, bool HadMultipleCandidates,
5907 UnresolvedSetImpl &ExplicitConversions) {
5908 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5909 DeclAccessPair Found = ExplicitConversions[0];
5910 CXXConversionDecl *Conversion =
5911 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5912
5913 // The user probably meant to invoke the given explicit
5914 // conversion; use it.
5915 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5916 std::string TypeStr;
5917 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5918
5919 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5920 << FixItHint::CreateInsertion(From->getBeginLoc(),
5921 "static_cast<" + TypeStr + ">(")
5922 << FixItHint::CreateInsertion(
5923 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5924 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5925
5926 // If we aren't in a SFINAE context, build a call to the
5927 // explicit conversion function.
5928 if (SemaRef.isSFINAEContext())
5929 return true;
5930
5931 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5932 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5933 HadMultipleCandidates);
5934 if (Result.isInvalid())
5935 return true;
5936 // Record usage of conversion in an implicit cast.
5937 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5938 CK_UserDefinedConversion, Result.get(),
5939 nullptr, Result.get()->getValueKind(),
5940 SemaRef.CurFPFeatureOverrides());
5941 }
5942 return false;
5943}
5944
5945static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5946 Sema::ContextualImplicitConverter &Converter,
5947 QualType T, bool HadMultipleCandidates,
5948 DeclAccessPair &Found) {
5949 CXXConversionDecl *Conversion =
5950 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5951 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5952
5953 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5954 if (!Converter.SuppressConversion) {
5955 if (SemaRef.isSFINAEContext())
5956 return true;
5957
5958 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5959 << From->getSourceRange();
5960 }
5961
5962 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5963 HadMultipleCandidates);
5964 if (Result.isInvalid())
5965 return true;
5966 // Record usage of conversion in an implicit cast.
5967 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5968 CK_UserDefinedConversion, Result.get(),
5969 nullptr, Result.get()->getValueKind(),
5970 SemaRef.CurFPFeatureOverrides());
5971 return false;
5972}
5973
5974static ExprResult finishContextualImplicitConversion(
5975 Sema &SemaRef, SourceLocation Loc, Expr *From,
5976 Sema::ContextualImplicitConverter &Converter) {
5977 if (!Converter.match(From->getType()) && !Converter.Suppress)
5978 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5979 << From->getSourceRange();
5980
5981 return SemaRef.DefaultLvalueConversion(From);
5982}
5983
5984static void
5985collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5986 UnresolvedSetImpl &ViableConversions,
5987 OverloadCandidateSet &CandidateSet) {
5988 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5989 DeclAccessPair FoundDecl = ViableConversions[I];
5990 NamedDecl *D = FoundDecl.getDecl();
5991 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5992 if (isa<UsingShadowDecl>(D))
5993 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5994
5995 CXXConversionDecl *Conv;
5996 FunctionTemplateDecl *ConvTemplate;
5997 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5998 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5999 else
6000 Conv = cast<CXXConversionDecl>(D);
6001
6002 if (ConvTemplate)
6003 SemaRef.AddTemplateConversionCandidate(
6004 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6005 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6006 else
6007 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6008 ToType, CandidateSet,
6009 /*AllowObjCConversionOnExplicit=*/false,
6010 /*AllowExplicit*/ true);
6011 }
6012}
6013
6014/// Attempt to convert the given expression to a type which is accepted
6015/// by the given converter.
6016///
6017/// This routine will attempt to convert an expression of class type to a
6018/// type accepted by the specified converter. In C++11 and before, the class
6019/// must have a single non-explicit conversion function converting to a matching
6020/// type. In C++1y, there can be multiple such conversion functions, but only
6021/// one target type.
6022///
6023/// \param Loc The source location of the construct that requires the
6024/// conversion.
6025///
6026/// \param From The expression we're converting from.
6027///
6028/// \param Converter Used to control and diagnose the conversion process.
6029///
6030/// \returns The expression, converted to an integral or enumeration type if
6031/// successful.
6032ExprResult Sema::PerformContextualImplicitConversion(
6033 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6034 // We can't perform any more checking for type-dependent expressions.
6035 if (From->isTypeDependent())
6036 return From;
6037
6038 // Process placeholders immediately.
6039 if (From->hasPlaceholderType()) {
6040 ExprResult result = CheckPlaceholderExpr(From);
6041 if (result.isInvalid())
6042 return result;
6043 From = result.get();
6044 }
6045
6046 // If the expression already has a matching type, we're golden.
6047 QualType T = From->getType();
6048 if (Converter.match(T))
6049 return DefaultLvalueConversion(From);
6050
6051 // FIXME: Check for missing '()' if T is a function type?
6052
6053 // We can only perform contextual implicit conversions on objects of class
6054 // type.
6055 const RecordType *RecordTy = T->getAs<RecordType>();
6056 if (!RecordTy || !getLangOpts().CPlusPlus) {
6057 if (!Converter.Suppress)
6058 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6059 return From;
6060 }
6061
6062 // We must have a complete class type.
6063 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6064 ContextualImplicitConverter &Converter;
6065 Expr *From;
6066
6067 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6068 : Converter(Converter), From(From) {}
6069
6070 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6071 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6072 }
6073 } IncompleteDiagnoser(Converter, From);
6074
6075 if (Converter.Suppress ? !isCompleteType(Loc, T)
6076 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6077 return From;
6078
6079 // Look for a conversion to an integral or enumeration type.
6080 UnresolvedSet<4>
6081 ViableConversions; // These are *potentially* viable in C++1y.
6082 UnresolvedSet<4> ExplicitConversions;
6083 const auto &Conversions =
6084 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6085
6086 bool HadMultipleCandidates =
6087 (std::distance(Conversions.begin(), Conversions.end()) > 1);
6088
6089 // To check that there is only one target type, in C++1y:
6090 QualType ToType;
6091 bool HasUniqueTargetType = true;
6092
6093 // Collect explicit or viable (potentially in C++1y) conversions.
6094 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6095 NamedDecl *D = (*I)->getUnderlyingDecl();
6096 CXXConversionDecl *Conversion;
6097 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6098 if (ConvTemplate) {
6099 if (getLangOpts().CPlusPlus14)
6100 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6101 else
6102 continue; // C++11 does not consider conversion operator templates(?).
6103 } else
6104 Conversion = cast<CXXConversionDecl>(D);
6105
6106 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&((void)0)
6107 "Conversion operator templates are considered potentially "((void)0)
6108 "viable in C++1y")((void)0);
6109
6110 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6111 if (Converter.match(CurToType) || ConvTemplate) {
6112
6113 if (Conversion->isExplicit()) {
6114 // FIXME: For C++1y, do we need this restriction?
6115 // cf. diagnoseNoViableConversion()
6116 if (!ConvTemplate)
6117 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6118 } else {
6119 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6120 if (ToType.isNull())
6121 ToType = CurToType.getUnqualifiedType();
6122 else if (HasUniqueTargetType &&
6123 (CurToType.getUnqualifiedType() != ToType))
6124 HasUniqueTargetType = false;
6125 }
6126 ViableConversions.addDecl(I.getDecl(), I.getAccess());
6127 }
6128 }
6129 }
6130
6131 if (getLangOpts().CPlusPlus14) {
6132 // C++1y [conv]p6:
6133 // ... An expression e of class type E appearing in such a context
6134 // is said to be contextually implicitly converted to a specified
6135 // type T and is well-formed if and only if e can be implicitly
6136 // converted to a type T that is determined as follows: E is searched
6137 // for conversion functions whose return type is cv T or reference to
6138 // cv T such that T is allowed by the context. There shall be
6139 // exactly one such T.
6140
6141 // If no unique T is found:
6142 if (ToType.isNull()) {
6143 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6144 HadMultipleCandidates,
6145 ExplicitConversions))
6146 return ExprError();
6147 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6148 }
6149
6150 // If more than one unique Ts are found:
6151 if (!HasUniqueTargetType)
6152 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6153 ViableConversions);
6154
6155 // If one unique T is found:
6156 // First, build a candidate set from the previously recorded
6157 // potentially viable conversions.
6158 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6159 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6160 CandidateSet);
6161
6162 // Then, perform overload resolution over the candidate set.
6163 OverloadCandidateSet::iterator Best;
6164 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6165 case OR_Success: {
6166 // Apply this conversion.
6167 DeclAccessPair Found =
6168 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6169 if (recordConversion(*this, Loc, From, Converter, T,
6170 HadMultipleCandidates, Found))
6171 return ExprError();
6172 break;
6173 }
6174 case OR_Ambiguous:
6175 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6176 ViableConversions);
6177 case OR_No_Viable_Function:
6178 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6179 HadMultipleCandidates,
6180 ExplicitConversions))
6181 return ExprError();
6182 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6183 case OR_Deleted:
6184 // We'll complain below about a non-integral condition type.
6185 break;
6186 }
6187 } else {
6188 switch (ViableConversions.size()) {
6189 case 0: {
6190 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6191 HadMultipleCandidates,
6192 ExplicitConversions))
6193 return ExprError();
6194
6195 // We'll complain below about a non-integral condition type.
6196 break;
6197 }
6198 case 1: {
6199 // Apply this conversion.
6200 DeclAccessPair Found = ViableConversions[0];
6201 if (recordConversion(*this, Loc, From, Converter, T,
6202 HadMultipleCandidates, Found))
6203 return ExprError();
6204 break;
6205 }
6206 default:
6207 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6208 ViableConversions);
6209 }
6210 }
6211
6212 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6213}
6214
6215/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6216/// an acceptable non-member overloaded operator for a call whose
6217/// arguments have types T1 (and, if non-empty, T2). This routine
6218/// implements the check in C++ [over.match.oper]p3b2 concerning
6219/// enumeration types.
6220static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6221 FunctionDecl *Fn,
6222 ArrayRef<Expr *> Args) {
6223 QualType T1 = Args[0]->getType();
6224 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6225
6226 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6227 return true;
6228
6229 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6230 return true;
6231
6232 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6233 if (Proto->getNumParams() < 1)
6234 return false;
6235
6236 if (T1->isEnumeralType()) {
6237 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6238 if (Context.hasSameUnqualifiedType(T1, ArgType))
6239 return true;
6240 }
6241
6242 if (Proto->getNumParams() < 2)
6243 return false;
6244
6245 if (!T2.isNull() && T2->isEnumeralType()) {
6246 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6247 if (Context.hasSameUnqualifiedType(T2, ArgType))
6248 return true;
6249 }
6250
6251 return false;
6252}
6253
6254/// AddOverloadCandidate - Adds the given function to the set of
6255/// candidate functions, using the given function call arguments. If
6256/// @p SuppressUserConversions, then don't allow user-defined
6257/// conversions via constructors or conversion operators.
6258///
6259/// \param PartialOverloading true if we are performing "partial" overloading
6260/// based on an incomplete set of function arguments. This feature is used by
6261/// code completion.
6262void Sema::AddOverloadCandidate(
6263 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6264 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6265 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6266 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6267 OverloadCandidateParamOrder PO) {
6268 const FunctionProtoType *Proto
6269 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6270 assert(Proto && "Functions without a prototype cannot be overloaded")((void)0);
6271 assert(!Function->getDescribedFunctionTemplate() &&((void)0)
6272 "Use AddTemplateOverloadCandidate for function templates")((void)0);
6273
6274 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6275 if (!isa<CXXConstructorDecl>(Method)) {
6276 // If we get here, it's because we're calling a member function
6277 // that is named without a member access expression (e.g.,
6278 // "this->f") that was either written explicitly or created
6279 // implicitly. This can happen with a qualified call to a member
6280 // function, e.g., X::f(). We use an empty type for the implied
6281 // object argument (C++ [over.call.func]p3), and the acting context
6282 // is irrelevant.
6283 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6284 Expr::Classification::makeSimpleLValue(), Args,
6285 CandidateSet, SuppressUserConversions,
6286 PartialOverloading, EarlyConversions, PO);
6287 return;
6288 }
6289 // We treat a constructor like a non-member function, since its object
6290 // argument doesn't participate in overload resolution.
6291 }
6292
6293 if (!CandidateSet.isNewCandidate(Function, PO))
6294 return;
6295
6296 // C++11 [class.copy]p11: [DR1402]
6297 // A defaulted move constructor that is defined as deleted is ignored by
6298 // overload resolution.
6299 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6300 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6301 Constructor->isMoveConstructor())
6302 return;
6303
6304 // Overload resolution is always an unevaluated context.
6305 EnterExpressionEvaluationContext Unevaluated(
6306 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6307
6308 // C++ [over.match.oper]p3:
6309 // if no operand has a class type, only those non-member functions in the
6310 // lookup set that have a first parameter of type T1 or "reference to
6311 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6312 // is a right operand) a second parameter of type T2 or "reference to
6313 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6314 // candidate functions.
6315 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6316 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6317 return;
6318
6319 // Add this candidate
6320 OverloadCandidate &Candidate =
6321 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6322 Candidate.FoundDecl = FoundDecl;
6323 Candidate.Function = Function;
6324 Candidate.Viable = true;
6325 Candidate.RewriteKind =
6326 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6327 Candidate.IsSurrogate = false;
6328 Candidate.IsADLCandidate = IsADLCandidate;
6329 Candidate.IgnoreObjectArgument = false;
6330 Candidate.ExplicitCallArguments = Args.size();
6331
6332 // Explicit functions are not actually candidates at all if we're not
6333 // allowing them in this context, but keep them around so we can point
6334 // to them in diagnostics.
6335 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6336 Candidate.Viable = false;
6337 Candidate.FailureKind = ovl_fail_explicit;
6338 return;
6339 }
6340
6341 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6342 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6343 Candidate.Viable = false;
6344 Candidate.FailureKind = ovl_non_default_multiversion_function;
6345 return;
6346 }
6347
6348 if (Constructor) {
6349 // C++ [class.copy]p3:
6350 // A member function template is never instantiated to perform the copy
6351 // of a class object to an object of its class type.
6352 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6353 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6354 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6355 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6356 ClassType))) {
6357 Candidate.Viable = false;
6358 Candidate.FailureKind = ovl_fail_illegal_constructor;
6359 return;
6360 }
6361
6362 // C++ [over.match.funcs]p8: (proposed DR resolution)
6363 // A constructor inherited from class type C that has a first parameter
6364 // of type "reference to P" (including such a constructor instantiated
6365 // from a template) is excluded from the set of candidate functions when
6366 // constructing an object of type cv D if the argument list has exactly
6367 // one argument and D is reference-related to P and P is reference-related
6368 // to C.
6369 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6370 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6371 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6372 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6373 QualType C = Context.getRecordType(Constructor->getParent());
6374 QualType D = Context.getRecordType(Shadow->getParent());
6375 SourceLocation Loc = Args.front()->getExprLoc();
6376 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6377 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6378 Candidate.Viable = false;
6379 Candidate.FailureKind = ovl_fail_inhctor_slice;
6380 return;
6381 }
6382 }
6383
6384 // Check that the constructor is capable of constructing an object in the
6385 // destination address space.
6386 if (!Qualifiers::isAddressSpaceSupersetOf(
6387 Constructor->getMethodQualifiers().getAddressSpace(),
6388 CandidateSet.getDestAS())) {
6389 Candidate.Viable = false;
6390 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6391 }
6392 }
6393
6394 unsigned NumParams = Proto->getNumParams();
6395
6396 // (C++ 13.3.2p2): A candidate function having fewer than m
6397 // parameters is viable only if it has an ellipsis in its parameter
6398 // list (8.3.5).
6399 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6400 !Proto->isVariadic()) {
6401 Candidate.Viable = false;
6402 Candidate.FailureKind = ovl_fail_too_many_arguments;
6403 return;
6404 }
6405
6406 // (C++ 13.3.2p2): A candidate function having more than m parameters
6407 // is viable only if the (m+1)st parameter has a default argument
6408 // (8.3.6). For the purposes of overload resolution, the
6409 // parameter list is truncated on the right, so that there are
6410 // exactly m parameters.
6411 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6412 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6413 // Not enough arguments.
6414 Candidate.Viable = false;
6415 Candidate.FailureKind = ovl_fail_too_few_arguments;
6416 return;
6417 }
6418
6419 // (CUDA B.1): Check for invalid calls between targets.
6420 if (getLangOpts().CUDA)
6421 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6422 // Skip the check for callers that are implicit members, because in this
6423 // case we may not yet know what the member's target is; the target is
6424 // inferred for the member automatically, based on the bases and fields of
6425 // the class.
6426 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6427 Candidate.Viable = false;
6428 Candidate.FailureKind = ovl_fail_bad_target;
6429 return;
6430 }
6431
6432 if (Function->getTrailingRequiresClause()) {
6433 ConstraintSatisfaction Satisfaction;
6434 if (CheckFunctionConstraints(Function, Satisfaction) ||
6435 !Satisfaction.IsSatisfied) {
6436 Candidate.Viable = false;
6437 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6438 return;
6439 }
6440 }
6441
6442 // Determine the implicit conversion sequences for each of the
6443 // arguments.
6444 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6445 unsigned ConvIdx =
6446 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6447 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6448 // We already formed a conversion sequence for this parameter during
6449 // template argument deduction.
6450 } else if (ArgIdx < NumParams) {
6451 // (C++ 13.3.2p3): for F to be a viable function, there shall
6452 // exist for each argument an implicit conversion sequence
6453 // (13.3.3.1) that converts that argument to the corresponding
6454 // parameter of F.
6455 QualType ParamType = Proto->getParamType(ArgIdx);
6456 Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6457 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6458 /*InOverloadResolution=*/true,
6459 /*AllowObjCWritebackConversion=*/
6460 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6461 if (Candidate.Conversions[ConvIdx].isBad()) {
6462 Candidate.Viable = false;
6463 Candidate.FailureKind = ovl_fail_bad_conversion;
6464 return;
6465 }
6466 } else {
6467 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6468 // argument for which there is no corresponding parameter is
6469 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6470 Candidate.Conversions[ConvIdx].setEllipsis();
6471 }
6472 }
6473
6474 if (EnableIfAttr *FailedAttr =
6475 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6476 Candidate.Viable = false;
6477 Candidate.FailureKind = ovl_fail_enable_if;
6478 Candidate.DeductionFailure.Data = FailedAttr;
6479 return;
6480 }
6481}
6482
6483ObjCMethodDecl *
6484Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6485 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6486 if (Methods.size() <= 1)
6487 return nullptr;
6488
6489 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6490 bool Match = true;
6491 ObjCMethodDecl *Method = Methods[b];
6492 unsigned NumNamedArgs = Sel.getNumArgs();
6493 // Method might have more arguments than selector indicates. This is due
6494 // to addition of c-style arguments in method.
6495 if (Method->param_size() > NumNamedArgs)
6496 NumNamedArgs = Method->param_size();
6497 if (Args.size() < NumNamedArgs)
6498 continue;
6499
6500 for (unsigned i = 0; i < NumNamedArgs; i++) {
6501 // We can't do any type-checking on a type-dependent argument.
6502 if (Args[i]->isTypeDependent()) {
6503 Match = false;
6504 break;
6505 }
6506
6507 ParmVarDecl *param = Method->parameters()[i];
6508 Expr *argExpr = Args[i];
6509 assert(argExpr && "SelectBestMethod(): missing expression")((void)0);
6510
6511 // Strip the unbridged-cast placeholder expression off unless it's
6512 // a consumed argument.
6513 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6514 !param->hasAttr<CFConsumedAttr>())
6515 argExpr = stripARCUnbridgedCast(argExpr);
6516
6517 // If the parameter is __unknown_anytype, move on to the next method.
6518 if (param->getType() == Context.UnknownAnyTy) {
6519 Match = false;
6520 break;
6521 }
6522
6523 ImplicitConversionSequence ConversionState
6524 = TryCopyInitialization(*this, argExpr, param->getType(),
6525 /*SuppressUserConversions*/false,
6526 /*InOverloadResolution=*/true,
6527 /*AllowObjCWritebackConversion=*/
6528 getLangOpts().ObjCAutoRefCount,
6529 /*AllowExplicit*/false);
6530 // This function looks for a reasonably-exact match, so we consider
6531 // incompatible pointer conversions to be a failure here.
6532 if (ConversionState.isBad() ||
6533 (ConversionState.isStandard() &&
6534 ConversionState.Standard.Second ==
6535 ICK_Incompatible_Pointer_Conversion)) {
6536 Match = false;
6537 break;
6538 }
6539 }
6540 // Promote additional arguments to variadic methods.
6541 if (Match && Method->isVariadic()) {
6542 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6543 if (Args[i]->isTypeDependent()) {
6544 Match = false;
6545 break;
6546 }
6547 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6548 nullptr);
6549 if (Arg.isInvalid()) {
6550 Match = false;
6551 break;
6552 }
6553 }
6554 } else {
6555 // Check for extra arguments to non-variadic methods.
6556 if (Args.size() != NumNamedArgs)
6557 Match = false;
6558 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6559 // Special case when selectors have no argument. In this case, select
6560 // one with the most general result type of 'id'.
6561 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6562 QualType ReturnT = Methods[b]->getReturnType();
6563 if (ReturnT->isObjCIdType())
6564 return Methods[b];
6565 }
6566 }
6567 }
6568
6569 if (Match)
6570 return Method;
6571 }
6572 return nullptr;
6573}
6574
6575static bool convertArgsForAvailabilityChecks(
6576 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6577 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6578 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6579 if (ThisArg) {
6580 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6581 assert(!isa<CXXConstructorDecl>(Method) &&((void)0)
6582 "Shouldn't have `this` for ctors!")((void)0);
6583 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((void)0);
6584 ExprResult R = S.PerformObjectArgumentInitialization(
6585 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6586 if (R.isInvalid())
6587 return false;
6588 ConvertedThis = R.get();
6589 } else {
6590 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6591 (void)MD;
6592 assert((MissingImplicitThis || MD->isStatic() ||((void)0)
6593 isa<CXXConstructorDecl>(MD)) &&((void)0)
6594 "Expected `this` for non-ctor instance methods")((void)0);
6595 }
6596 ConvertedThis = nullptr;
6597 }
6598
6599 // Ignore any variadic arguments. Converting them is pointless, since the
6600 // user can't refer to them in the function condition.
6601 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6602
6603 // Convert the arguments.
6604 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6605 ExprResult R;
6606 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6607 S.Context, Function->getParamDecl(I)),
6608 SourceLocation(), Args[I]);
6609
6610 if (R.isInvalid())
6611 return false;
6612
6613 ConvertedArgs.push_back(R.get());
6614 }
6615
6616 if (Trap.hasErrorOccurred())
6617 return false;
6618
6619 // Push default arguments if needed.
6620 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6621 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6622 ParmVarDecl *P = Function->getParamDecl(i);
6623 if (!P->hasDefaultArg())
6624 return false;
6625 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6626 if (R.isInvalid())
6627 return false;
6628 ConvertedArgs.push_back(R.get());
6629 }
6630
6631 if (Trap.hasErrorOccurred())
6632 return false;
6633 }
6634 return true;
6635}
6636
6637EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6638 SourceLocation CallLoc,
6639 ArrayRef<Expr *> Args,
6640 bool MissingImplicitThis) {
6641 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6642 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6643 return nullptr;
6644
6645 SFINAETrap Trap(*this);
6646 SmallVector<Expr *, 16> ConvertedArgs;
6647 // FIXME: We should look into making enable_if late-parsed.
6648 Expr *DiscardedThis;
6649 if (!convertArgsForAvailabilityChecks(
6650 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6651 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6652 return *EnableIfAttrs.begin();
6653
6654 for (auto *EIA : EnableIfAttrs) {
6655 APValue Result;
6656 // FIXME: This doesn't consider value-dependent cases, because doing so is
6657 // very difficult. Ideally, we should handle them more gracefully.
6658 if (EIA->getCond()->isValueDependent() ||
6659 !EIA->getCond()->EvaluateWithSubstitution(
6660 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6661 return EIA;
6662
6663 if (!Result.isInt() || !Result.getInt().getBoolValue())
6664 return EIA;
6665 }
6666 return nullptr;
6667}
6668
6669template <typename CheckFn>
6670static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6671 bool ArgDependent, SourceLocation Loc,
6672 CheckFn &&IsSuccessful) {
6673 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6674 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6675 if (ArgDependent == DIA->getArgDependent())
6676 Attrs.push_back(DIA);
6677 }
6678
6679 // Common case: No diagnose_if attributes, so we can quit early.
6680 if (Attrs.empty())
6681 return false;
6682
6683 auto WarningBegin = std::stable_partition(
6684 Attrs.begin(), Attrs.end(),
6685 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6686
6687 // Note that diagnose_if attributes are late-parsed, so they appear in the
6688 // correct order (unlike enable_if attributes).
6689 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6690 IsSuccessful);
6691 if (ErrAttr != WarningBegin) {
6692 const DiagnoseIfAttr *DIA = *ErrAttr;
6693 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6694 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6695 << DIA->getParent() << DIA->getCond()->getSourceRange();
6696 return true;
6697 }
6698
6699 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6700 if (IsSuccessful(DIA)) {
6701 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6702 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6703 << DIA->getParent() << DIA->getCond()->getSourceRange();
6704 }
6705
6706 return false;
6707}
6708
6709bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6710 const Expr *ThisArg,
6711 ArrayRef<const Expr *> Args,
6712 SourceLocation Loc) {
6713 return diagnoseDiagnoseIfAttrsWith(
6714 *this, Function, /*ArgDependent=*/true, Loc,
6715 [&](const DiagnoseIfAttr *DIA) {
6716 APValue Result;
6717 // It's sane to use the same Args for any redecl of this function, since
6718 // EvaluateWithSubstitution only cares about the position of each
6719 // argument in the arg list, not the ParmVarDecl* it maps to.
6720 if (!DIA->getCond()->EvaluateWithSubstitution(
6721 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6722 return false;
6723 return Result.isInt() && Result.getInt().getBoolValue();
6724 });
6725}
6726
6727bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6728 SourceLocation Loc) {
6729 return diagnoseDiagnoseIfAttrsWith(
6730 *this, ND, /*ArgDependent=*/false, Loc,
6731 [&](const DiagnoseIfAttr *DIA) {
6732 bool Result;
6733 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6734 Result;
6735 });
6736}
6737
6738/// Add all of the function declarations in the given function set to
6739/// the overload candidate set.
6740void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6741 ArrayRef<Expr *> Args,
6742 OverloadCandidateSet &CandidateSet,
6743 TemplateArgumentListInfo *ExplicitTemplateArgs,
6744 bool SuppressUserConversions,
6745 bool PartialOverloading,
6746 bool FirstArgumentIsBase) {
6747 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6748 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6749 ArrayRef<Expr *> FunctionArgs = Args;
6750
6751 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6752 FunctionDecl *FD =
6753 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6754
6755 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6756 QualType ObjectType;
6757 Expr::Classification ObjectClassification;
6758 if (Args.size() > 0) {
6759 if (Expr *E = Args[0]) {
6760 // Use the explicit base to restrict the lookup:
6761 ObjectType = E->getType();
6762 // Pointers in the object arguments are implicitly dereferenced, so we
6763 // always classify them as l-values.
6764 if (!ObjectType.isNull() && ObjectType->isPointerType())
6765 ObjectClassification = Expr::Classification::makeSimpleLValue();
6766 else
6767 ObjectClassification = E->Classify(Context);
6768 } // .. else there is an implicit base.
6769 FunctionArgs = Args.slice(1);
6770 }
6771 if (FunTmpl) {
6772 AddMethodTemplateCandidate(
6773 FunTmpl, F.getPair(),
6774 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6775 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6776 FunctionArgs, CandidateSet, SuppressUserConversions,
6777 PartialOverloading);
6778 } else {
6779 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6780 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6781 ObjectClassification, FunctionArgs, CandidateSet,
6782 SuppressUserConversions, PartialOverloading);
6783 }
6784 } else {
6785 // This branch handles both standalone functions and static methods.
6786
6787 // Slice the first argument (which is the base) when we access
6788 // static method as non-static.
6789 if (Args.size() > 0 &&
6790 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6791 !isa<CXXConstructorDecl>(FD)))) {
6792 assert(cast<CXXMethodDecl>(FD)->isStatic())((void)0);
6793 FunctionArgs = Args.slice(1);
6794 }
6795 if (FunTmpl) {
6796 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6797 ExplicitTemplateArgs, FunctionArgs,
6798 CandidateSet, SuppressUserConversions,
6799 PartialOverloading);
6800 } else {
6801 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6802 SuppressUserConversions, PartialOverloading);
6803 }
6804 }
6805 }
6806}
6807
6808/// AddMethodCandidate - Adds a named decl (which is some kind of
6809/// method) as a method candidate to the given overload set.
6810void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6811 Expr::Classification ObjectClassification,
6812 ArrayRef<Expr *> Args,
6813 OverloadCandidateSet &CandidateSet,
6814 bool SuppressUserConversions,
6815 OverloadCandidateParamOrder PO) {
6816 NamedDecl *Decl = FoundDecl.getDecl();
6817 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6818
6819 if (isa<UsingShadowDecl>(Decl))
6820 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6821
6822 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6823 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((void)0)
6824 "Expected a member function template")((void)0);
6825 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6826 /*ExplicitArgs*/ nullptr, ObjectType,
6827 ObjectClassification, Args, CandidateSet,
6828 SuppressUserConversions, false, PO);
6829 } else {
6830 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6831 ObjectType, ObjectClassification, Args, CandidateSet,
6832 SuppressUserConversions, false, None, PO);
6833 }
6834}
6835
6836/// AddMethodCandidate - Adds the given C++ member function to the set
6837/// of candidate functions, using the given function call arguments
6838/// and the object argument (@c Object). For example, in a call
6839/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6840/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6841/// allow user-defined conversions via constructors or conversion
6842/// operators.
6843void
6844Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6845 CXXRecordDecl *ActingContext, QualType ObjectType,
6846 Expr::Classification ObjectClassification,
6847 ArrayRef<Expr *> Args,
6848 OverloadCandidateSet &CandidateSet,
6849 bool SuppressUserConversions,
6850 bool PartialOverloading,
6851 ConversionSequenceList EarlyConversions,
6852 OverloadCandidateParamOrder PO) {
6853 const FunctionProtoType *Proto
6854 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6855 assert(Proto && "Methods without a prototype cannot be overloaded")((void)0);
6856 assert(!isa<CXXConstructorDecl>(Method) &&((void)0)
6857 "Use AddOverloadCandidate for constructors")((void)0);
6858
6859 if (!CandidateSet.isNewCandidate(Method, PO))
6860 return;
6861
6862 // C++11 [class.copy]p23: [DR1402]
6863 // A defaulted move assignment operator that is defined as deleted is
6864 // ignored by overload resolution.
6865 if (Method->isDefaulted() && Method->isDeleted() &&
6866 Method->isMoveAssignmentOperator())
6867 return;
6868
6869 // Overload resolution is always an unevaluated context.
6870 EnterExpressionEvaluationContext Unevaluated(
6871 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6872
6873 // Add this candidate
6874 OverloadCandidate &Candidate =
6875 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6876 Candidate.FoundDecl = FoundDecl;
6877 Candidate.Function = Method;
6878 Candidate.RewriteKind =
6879 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6880 Candidate.IsSurrogate = false;
6881 Candidate.IgnoreObjectArgument = false;
6882 Candidate.ExplicitCallArguments = Args.size();
6883
6884 unsigned NumParams = Proto->getNumParams();
6885
6886 // (C++ 13.3.2p2): A candidate function having fewer than m
6887 // parameters is viable only if it has an ellipsis in its parameter
6888 // list (8.3.5).
6889 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6890 !Proto->isVariadic()) {
6891 Candidate.Viable = false;
6892 Candidate.FailureKind = ovl_fail_too_many_arguments;
6893 return;
6894 }
6895
6896 // (C++ 13.3.2p2): A candidate function having more than m parameters
6897 // is viable only if the (m+1)st parameter has a default argument
6898 // (8.3.6). For the purposes of overload resolution, the
6899 // parameter list is truncated on the right, so that there are
6900 // exactly m parameters.
6901 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6902 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6903 // Not enough arguments.
6904 Candidate.Viable = false;
6905 Candidate.FailureKind = ovl_fail_too_few_arguments;
6906 return;
6907 }
6908
6909 Candidate.Viable = true;
6910
6911 if (Method->isStatic() || ObjectType.isNull())
6912 // The implicit object argument is ignored.
6913 Candidate.IgnoreObjectArgument = true;
6914 else {
6915 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6916 // Determine the implicit conversion sequence for the object
6917 // parameter.
6918 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6919 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6920 Method, ActingContext);
6921 if (Candidate.Conversions[ConvIdx].isBad()) {
6922 Candidate.Viable = false;
6923 Candidate.FailureKind = ovl_fail_bad_conversion;
6924 return;
6925 }
6926 }
6927
6928 // (CUDA B.1): Check for invalid calls between targets.
6929 if (getLangOpts().CUDA)
6930 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6931 if (!IsAllowedCUDACall(Caller, Method)) {
6932 Candidate.Viable = false;
6933 Candidate.FailureKind = ovl_fail_bad_target;
6934 return;
6935 }
6936
6937 if (Method->getTrailingRequiresClause()) {
6938 ConstraintSatisfaction Satisfaction;
6939 if (CheckFunctionConstraints(Method, Satisfaction) ||
6940 !Satisfaction.IsSatisfied) {
6941 Candidate.Viable = false;
6942 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6943 return;
6944 }
6945 }
6946
6947 // Determine the implicit conversion sequences for each of the
6948 // arguments.
6949 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6950 unsigned ConvIdx =
6951 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6952 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6953 // We already formed a conversion sequence for this parameter during
6954 // template argument deduction.
6955 } else if (ArgIdx < NumParams) {
6956 // (C++ 13.3.2p3): for F to be a viable function, there shall
6957 // exist for each argument an implicit conversion sequence
6958 // (13.3.3.1) that converts that argument to the corresponding
6959 // parameter of F.
6960 QualType ParamType = Proto->getParamType(ArgIdx);
6961 Candidate.Conversions[ConvIdx]
6962 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6963 SuppressUserConversions,
6964 /*InOverloadResolution=*/true,
6965 /*AllowObjCWritebackConversion=*/
6966 getLangOpts().ObjCAutoRefCount);
6967 if (Candidate.Conversions[ConvIdx].isBad()) {
6968 Candidate.Viable = false;
6969 Candidate.FailureKind = ovl_fail_bad_conversion;
6970 return;
6971 }
6972 } else {
6973 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6974 // argument for which there is no corresponding parameter is
6975 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6976 Candidate.Conversions[ConvIdx].setEllipsis();
6977 }
6978 }
6979
6980 if (EnableIfAttr *FailedAttr =
6981 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
6982 Candidate.Viable = false;
6983 Candidate.FailureKind = ovl_fail_enable_if;
6984 Candidate.DeductionFailure.Data = FailedAttr;
6985 return;
6986 }
6987
6988 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6989 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6990 Candidate.Viable = false;
6991 Candidate.FailureKind = ovl_non_default_multiversion_function;
6992 }
6993}
6994
6995/// Add a C++ member function template as a candidate to the candidate
6996/// set, using template argument deduction to produce an appropriate member
6997/// function template specialization.
6998void Sema::AddMethodTemplateCandidate(
6999 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7000 CXXRecordDecl *ActingContext,
7001 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7002 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7003 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7004 bool PartialOverloading, OverloadCandidateParamOrder PO) {
7005 if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7006 return;
7007
7008 // C++ [over.match.funcs]p7:
7009 // In each case where a candidate is a function template, candidate
7010 // function template specializations are generated using template argument
7011 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7012 // candidate functions in the usual way.113) A given name can refer to one
7013 // or more function templates and also to a set of overloaded non-template
7014 // functions. In such a case, the candidate functions generated from each
7015 // function template are combined with the set of non-template candidate
7016 // functions.
7017 TemplateDeductionInfo Info(CandidateSet.getLocation());
7018 FunctionDecl *Specialization = nullptr;
7019 ConversionSequenceList Conversions;
7020 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7021 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7022 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7023 return CheckNonDependentConversions(
7024 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7025 SuppressUserConversions, ActingContext, ObjectType,
7026 ObjectClassification, PO);
7027 })) {
7028 OverloadCandidate &Candidate =
7029 CandidateSet.addCandidate(Conversions.size(), Conversions);
7030 Candidate.FoundDecl = FoundDecl;
7031 Candidate.Function = MethodTmpl->getTemplatedDecl();
7032 Candidate.Viable = false;
7033 Candidate.RewriteKind =
7034 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7035 Candidate.IsSurrogate = false;
7036 Candidate.IgnoreObjectArgument =
7037 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7038 ObjectType.isNull();
7039 Candidate.ExplicitCallArguments = Args.size();
7040 if (Result == TDK_NonDependentConversionFailure)
7041 Candidate.FailureKind = ovl_fail_bad_conversion;
7042 else {
7043 Candidate.FailureKind = ovl_fail_bad_deduction;
7044 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7045 Info);
7046 }
7047 return;
7048 }
7049
7050 // Add the function template specialization produced by template argument
7051 // deduction as a candidate.
7052 assert(Specialization && "Missing member function template specialization?")((void)0);
7053 assert(isa<CXXMethodDecl>(Specialization) &&((void)0)
7054 "Specialization is not a member function?")((void)0);
7055 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7056 ActingContext, ObjectType, ObjectClassification, Args,
7057 CandidateSet, SuppressUserConversions, PartialOverloading,
7058 Conversions, PO);
7059}
7060
7061/// Determine whether a given function template has a simple explicit specifier
7062/// or a non-value-dependent explicit-specification that evaluates to true.
7063static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7064 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7065}
7066
7067/// Add a C++ function template specialization as a candidate
7068/// in the candidate set, using template argument deduction to produce
7069/// an appropriate function template specialization.
7070void Sema::AddTemplateOverloadCandidate(
7071 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7072 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7073 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7074 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7075 OverloadCandidateParamOrder PO) {
7076 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7077 return;
7078
7079 // If the function template has a non-dependent explicit specification,
7080 // exclude it now if appropriate; we are not permitted to perform deduction
7081 // and substitution in this case.
7082 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7083 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7084 Candidate.FoundDecl = FoundDecl;
7085 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7086 Candidate.Viable = false;
7087 Candidate.FailureKind = ovl_fail_explicit;
7088 return;
7089 }
7090
7091 // C++ [over.match.funcs]p7:
7092 // In each case where a candidate is a function template, candidate
7093 // function template specializations are generated using template argument
7094 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7095 // candidate functions in the usual way.113) A given name can refer to one
7096 // or more function templates and also to a set of overloaded non-template
7097 // functions. In such a case, the candidate functions generated from each
7098 // function template are combined with the set of non-template candidate
7099 // functions.
7100 TemplateDeductionInfo Info(CandidateSet.getLocation());
7101 FunctionDecl *Specialization = nullptr;
7102 ConversionSequenceList Conversions;
7103 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7104 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7105 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7106 return CheckNonDependentConversions(
7107 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7108 SuppressUserConversions, nullptr, QualType(), {}, PO);
7109 })) {
7110 OverloadCandidate &Candidate =
7111 CandidateSet.addCandidate(Conversions.size(), Conversions);
7112 Candidate.FoundDecl = FoundDecl;
7113 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7114 Candidate.Viable = false;
7115 Candidate.RewriteKind =
7116 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7117 Candidate.IsSurrogate = false;
7118 Candidate.IsADLCandidate = IsADLCandidate;
7119 // Ignore the object argument if there is one, since we don't have an object
7120 // type.
7121 Candidate.IgnoreObjectArgument =
7122 isa<CXXMethodDecl>(Candidate.Function) &&
7123 !isa<CXXConstructorDecl>(Candidate.Function);
7124 Candidate.ExplicitCallArguments = Args.size();
7125 if (Result == TDK_NonDependentConversionFailure)
7126 Candidate.FailureKind = ovl_fail_bad_conversion;
7127 else {
7128 Candidate.FailureKind = ovl_fail_bad_deduction;
7129 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7130 Info);
7131 }
7132 return;
7133 }
7134
7135 // Add the function template specialization produced by template argument
7136 // deduction as a candidate.
7137 assert(Specialization && "Missing function template specialization?")((void)0);
7138 AddOverloadCandidate(
7139 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7140 PartialOverloading, AllowExplicit,
7141 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7142}
7143
7144/// Check that implicit conversion sequences can be formed for each argument
7145/// whose corresponding parameter has a non-dependent type, per DR1391's
7146/// [temp.deduct.call]p10.
7147bool Sema::CheckNonDependentConversions(
7148 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7149 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7150 ConversionSequenceList &Conversions, bool SuppressUserConversions,
7151 CXXRecordDecl *ActingContext, QualType ObjectType,
7152 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7153 // FIXME: The cases in which we allow explicit conversions for constructor
7154 // arguments never consider calling a constructor template. It's not clear
7155 // that is correct.
7156 const bool AllowExplicit = false;
7157
7158 auto *FD = FunctionTemplate->getTemplatedDecl();
7159 auto *Method = dyn_cast<CXXMethodDecl>(FD);
7160 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7161 unsigned ThisConversions = HasThisConversion ? 1 : 0;
7162
7163 Conversions =
7164 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7165
7166 // Overload resolution is always an unevaluated context.
7167 EnterExpressionEvaluationContext Unevaluated(
7168 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7169
7170 // For a method call, check the 'this' conversion here too. DR1391 doesn't
7171 // require that, but this check should never result in a hard error, and
7172 // overload resolution is permitted to sidestep instantiations.
7173 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7174 !ObjectType.isNull()) {
7175 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7176 Conversions[ConvIdx] = TryObjectArgumentInitialization(
7177 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7178 Method, ActingContext);
7179 if (Conversions[ConvIdx].isBad())
7180 return true;
7181 }
7182
7183 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7184 ++I) {
7185 QualType ParamType = ParamTypes[I];
7186 if (!ParamType->isDependentType()) {
7187 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7188 ? 0
7189 : (ThisConversions + I);
7190 Conversions[ConvIdx]
7191 = TryCopyInitialization(*this, Args[I], ParamType,
7192 SuppressUserConversions,
7193 /*InOverloadResolution=*/true,
7194 /*AllowObjCWritebackConversion=*/
7195 getLangOpts().ObjCAutoRefCount,
7196 AllowExplicit);
7197 if (Conversions[ConvIdx].isBad())
7198 return true;
7199 }
7200 }
7201
7202 return false;
7203}
7204
7205/// Determine whether this is an allowable conversion from the result
7206/// of an explicit conversion operator to the expected type, per C++
7207/// [over.match.conv]p1 and [over.match.ref]p1.
7208///
7209/// \param ConvType The return type of the conversion function.
7210///
7211/// \param ToType The type we are converting to.
7212///
7213/// \param AllowObjCPointerConversion Allow a conversion from one
7214/// Objective-C pointer to another.
7215///
7216/// \returns true if the conversion is allowable, false otherwise.
7217static bool isAllowableExplicitConversion(Sema &S,
7218 QualType ConvType, QualType ToType,
7219 bool AllowObjCPointerConversion) {
7220 QualType ToNonRefType = ToType.getNonReferenceType();
7221
7222 // Easy case: the types are the same.
7223 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7224 return true;
7225
7226 // Allow qualification conversions.
7227 bool ObjCLifetimeConversion;
7228 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7229 ObjCLifetimeConversion))
7230 return true;
7231
7232 // If we're not allowed to consider Objective-C pointer conversions,
7233 // we're done.
7234 if (!AllowObjCPointerConversion)
7235 return false;
7236
7237 // Is this an Objective-C pointer conversion?
7238 bool IncompatibleObjC = false;
7239 QualType ConvertedType;
7240 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7241 IncompatibleObjC);
7242}
7243
7244/// AddConversionCandidate - Add a C++ conversion function as a
7245/// candidate in the candidate set (C++ [over.match.conv],
7246/// C++ [over.match.copy]). From is the expression we're converting from,
7247/// and ToType is the type that we're eventually trying to convert to
7248/// (which may or may not be the same type as the type that the
7249/// conversion function produces).
7250void Sema::AddConversionCandidate(
7251 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7252 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7253 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7254 bool AllowExplicit, bool AllowResultConversion) {
7255 assert(!Conversion->getDescribedFunctionTemplate() &&((void)0)
7256 "Conversion function templates use AddTemplateConversionCandidate")((void)0);
7257 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7258 if (!CandidateSet.isNewCandidate(Conversion))
7259 return;
7260
7261 // If the conversion function has an undeduced return type, trigger its
7262 // deduction now.
7263 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7264 if (DeduceReturnType(Conversion, From->getExprLoc()))
7265 return;
7266 ConvType = Conversion->getConversionType().getNonReferenceType();
7267 }
7268
7269 // If we don't allow any conversion of the result type, ignore conversion
7270 // functions that don't convert to exactly (possibly cv-qualified) T.
7271 if (!AllowResultConversion &&
7272 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7273 return;
7274
7275 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7276 // operator is only a candidate if its return type is the target type or
7277 // can be converted to the target type with a qualification conversion.
7278 //
7279 // FIXME: Include such functions in the candidate list and explain why we
7280 // can't select them.
7281 if (Conversion->isExplicit() &&
7282 !isAllowableExplicitConversion(*this, ConvType, ToType,
7283 AllowObjCConversionOnExplicit))
7284 return;
7285
7286 // Overload resolution is always an unevaluated context.
7287 EnterExpressionEvaluationContext Unevaluated(
7288 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7289
7290 // Add this candidate
7291 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7292 Candidate.FoundDecl = FoundDecl;
7293 Candidate.Function = Conversion;
7294 Candidate.IsSurrogate = false;
7295 Candidate.IgnoreObjectArgument = false;
7296 Candidate.FinalConversion.setAsIdentityConversion();
7297 Candidate.FinalConversion.setFromType(ConvType);
7298 Candidate.FinalConversion.setAllToTypes(ToType);
7299 Candidate.Viable = true;
7300 Candidate.ExplicitCallArguments = 1;
7301
7302 // Explicit functions are not actually candidates at all if we're not
7303 // allowing them in this context, but keep them around so we can point
7304 // to them in diagnostics.
7305 if (!AllowExplicit && Conversion->isExplicit()) {
7306 Candidate.Viable = false;
7307 Candidate.FailureKind = ovl_fail_explicit;
7308 return;
7309 }
7310
7311 // C++ [over.match.funcs]p4:
7312 // For conversion functions, the function is considered to be a member of
7313 // the class of the implicit implied object argument for the purpose of
7314 // defining the type of the implicit object parameter.
7315 //
7316 // Determine the implicit conversion sequence for the implicit
7317 // object parameter.
7318 QualType ImplicitParamType = From->getType();
7319 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7320 ImplicitParamType = FromPtrType->getPointeeType();
7321 CXXRecordDecl *ConversionContext
7322 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7323
7324 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7325 *this, CandidateSet.getLocation(), From->getType(),
7326 From->Classify(Context), Conversion, ConversionContext);
7327
7328 if (Candidate.Conversions[0].isBad()) {
7329 Candidate.Viable = false;
7330 Candidate.FailureKind = ovl_fail_bad_conversion;
7331 return;
7332 }
7333
7334 if (Conversion->getTrailingRequiresClause()) {
7335 ConstraintSatisfaction Satisfaction;
7336 if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7337 !Satisfaction.IsSatisfied) {
7338 Candidate.Viable = false;
7339 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7340 return;
7341 }
7342 }
7343
7344 // We won't go through a user-defined type conversion function to convert a
7345 // derived to base as such conversions are given Conversion Rank. They only
7346 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7347 QualType FromCanon
7348 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7349 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7350 if (FromCanon == ToCanon ||
7351 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7352 Candidate.Viable = false;
7353 Candidate.FailureKind = ovl_fail_trivial_conversion;
7354 return;
7355 }
7356
7357 // To determine what the conversion from the result of calling the
7358 // conversion function to the type we're eventually trying to
7359 // convert to (ToType), we need to synthesize a call to the
7360 // conversion function and attempt copy initialization from it. This
7361 // makes sure that we get the right semantics with respect to
7362 // lvalues/rvalues and the type. Fortunately, we can allocate this
7363 // call on the stack and we don't need its arguments to be
7364 // well-formed.
7365 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7366 VK_LValue, From->getBeginLoc());
7367 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7368 Context.getPointerType(Conversion->getType()),
7369 CK_FunctionToPointerDecay, &ConversionRef,
7370 VK_PRValue, FPOptionsOverride());
7371
7372 QualType ConversionType = Conversion->getConversionType();
7373 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7374 Candidate.Viable = false;
7375 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7376 return;
7377 }
7378
7379 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7380
7381 // Note that it is safe to allocate CallExpr on the stack here because
7382 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7383 // allocator).
7384 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7385
7386 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7387 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7388 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7389
7390 ImplicitConversionSequence ICS =
7391 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7392 /*SuppressUserConversions=*/true,
7393 /*InOverloadResolution=*/false,
7394 /*AllowObjCWritebackConversion=*/false);
7395
7396 switch (ICS.getKind()) {
7397 case ImplicitConversionSequence::StandardConversion:
7398 Candidate.FinalConversion = ICS.Standard;
7399
7400 // C++ [over.ics.user]p3:
7401 // If the user-defined conversion is specified by a specialization of a
7402 // conversion function template, the second standard conversion sequence
7403 // shall have exact match rank.
7404 if (Conversion->getPrimaryTemplate() &&
7405 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7406 Candidate.Viable = false;
7407 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7408 return;
7409 }
7410
7411 // C++0x [dcl.init.ref]p5:
7412 // In the second case, if the reference is an rvalue reference and
7413 // the second standard conversion sequence of the user-defined
7414 // conversion sequence includes an lvalue-to-rvalue conversion, the
7415 // program is ill-formed.
7416 if (ToType->isRValueReferenceType() &&
7417 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7418 Candidate.Viable = false;
7419 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7420 return;
7421 }
7422 break;
7423
7424 case ImplicitConversionSequence::BadConversion:
7425 Candidate.Viable = false;
7426 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7427 return;
7428
7429 default:
7430 llvm_unreachable(__builtin_unreachable()
7431 "Can only end up with a standard conversion sequence or failure")__builtin_unreachable();
7432 }
7433
7434 if (EnableIfAttr *FailedAttr =
7435 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7436 Candidate.Viable = false;
7437 Candidate.FailureKind = ovl_fail_enable_if;
7438 Candidate.DeductionFailure.Data = FailedAttr;
7439 return;
7440 }
7441
7442 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7443 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7444 Candidate.Viable = false;
7445 Candidate.FailureKind = ovl_non_default_multiversion_function;
7446 }
7447}
7448
7449/// Adds a conversion function template specialization
7450/// candidate to the overload set, using template argument deduction
7451/// to deduce the template arguments of the conversion function
7452/// template from the type that we are converting to (C++
7453/// [temp.deduct.conv]).
7454void Sema::AddTemplateConversionCandidate(
7455 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7456 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7457 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7458 bool AllowExplicit, bool AllowResultConversion) {
7459 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((void)0)
7460 "Only conversion function templates permitted here")((void)0);
7461
7462 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7463 return;
7464
7465 // If the function template has a non-dependent explicit specification,
7466 // exclude it now if appropriate; we are not permitted to perform deduction
7467 // and substitution in this case.
7468 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7469 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7470 Candidate.FoundDecl = FoundDecl;
7471 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7472 Candidate.Viable = false;
7473 Candidate.FailureKind = ovl_fail_explicit;
7474 return;
7475 }
7476
7477 TemplateDeductionInfo Info(CandidateSet.getLocation());
7478 CXXConversionDecl *Specialization = nullptr;
7479 if (TemplateDeductionResult Result
7480 = DeduceTemplateArguments(FunctionTemplate, ToType,
7481 Specialization, Info)) {
7482 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7483 Candidate.FoundDecl = FoundDecl;
7484 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7485 Candidate.Viable = false;
7486 Candidate.FailureKind = ovl_fail_bad_deduction;
7487 Candidate.IsSurrogate = false;
7488 Candidate.IgnoreObjectArgument = false;
7489 Candidate.ExplicitCallArguments = 1;
7490 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7491 Info);
7492 return;
7493 }
7494
7495 // Add the conversion function template specialization produced by
7496 // template argument deduction as a candidate.
7497 assert(Specialization && "Missing function template specialization?")((void)0);
7498 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7499 CandidateSet, AllowObjCConversionOnExplicit,
7500 AllowExplicit, AllowResultConversion);
7501}
7502
7503/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7504/// converts the given @c Object to a function pointer via the
7505/// conversion function @c Conversion, and then attempts to call it
7506/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7507/// the type of function that we'll eventually be calling.
7508void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7509 DeclAccessPair FoundDecl,
7510 CXXRecordDecl *ActingContext,
7511 const FunctionProtoType *Proto,
7512 Expr *Object,
7513 ArrayRef<Expr *> Args,
7514 OverloadCandidateSet& CandidateSet) {
7515 if (!CandidateSet.isNewCandidate(Conversion))
7516 return;
7517
7518 // Overload resolution is always an unevaluated context.
7519 EnterExpressionEvaluationContext Unevaluated(
7520 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7521
7522 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7523 Candidate.FoundDecl = FoundDecl;
7524 Candidate.Function = nullptr;
7525 Candidate.Surrogate = Conversion;
7526 Candidate.Viable = true;
7527 Candidate.IsSurrogate = true;
7528 Candidate.IgnoreObjectArgument = false;
7529 Candidate.ExplicitCallArguments = Args.size();
7530
7531 // Determine the implicit conversion sequence for the implicit
7532 // object parameter.
7533 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7534 *this, CandidateSet.getLocation(), Object->getType(),
7535 Object->Classify(Context), Conversion, ActingContext);
7536 if (ObjectInit.isBad()) {
7537 Candidate.Viable = false;
7538 Candidate.FailureKind = ovl_fail_bad_conversion;
7539 Candidate.Conversions[0] = ObjectInit;
7540 return;
7541 }
7542
7543 // The first conversion is actually a user-defined conversion whose
7544 // first conversion is ObjectInit's standard conversion (which is
7545 // effectively a reference binding). Record it as such.
7546 Candidate.Conversions[0].setUserDefined();
7547 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7548 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7549 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7550 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7551 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7552 Candidate.Conversions[0].UserDefined.After
7553 = Candidate.Conversions[0].UserDefined.Before;
7554 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7555
7556 // Find the
7557 unsigned NumParams = Proto->getNumParams();
7558
7559 // (C++ 13.3.2p2): A candidate function having fewer than m
7560 // parameters is viable only if it has an ellipsis in its parameter
7561 // list (8.3.5).
7562 if (Args.size() > NumParams && !Proto->isVariadic()) {
7563 Candidate.Viable = false;
7564 Candidate.FailureKind = ovl_fail_too_many_arguments;
7565 return;
7566 }
7567
7568 // Function types don't have any default arguments, so just check if
7569 // we have enough arguments.
7570 if (Args.size() < NumParams) {
7571 // Not enough arguments.
7572 Candidate.Viable = false;
7573 Candidate.FailureKind = ovl_fail_too_few_arguments;
7574 return;
7575 }
7576
7577 // Determine the implicit conversion sequences for each of the
7578 // arguments.
7579 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7580 if (ArgIdx < NumParams) {
7581 // (C++ 13.3.2p3): for F to be a viable function, there shall
7582 // exist for each argument an implicit conversion sequence
7583 // (13.3.3.1) that converts that argument to the corresponding
7584 // parameter of F.
7585 QualType ParamType = Proto->getParamType(ArgIdx);
7586 Candidate.Conversions[ArgIdx + 1]
7587 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7588 /*SuppressUserConversions=*/false,
7589 /*InOverloadResolution=*/false,
7590 /*AllowObjCWritebackConversion=*/
7591 getLangOpts().ObjCAutoRefCount);
7592 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7593 Candidate.Viable = false;
7594 Candidate.FailureKind = ovl_fail_bad_conversion;
7595 return;
7596 }
7597 } else {
7598 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7599 // argument for which there is no corresponding parameter is
7600 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7601 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7602 }
7603 }
7604
7605 if (EnableIfAttr *FailedAttr =
7606 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7607 Candidate.Viable = false;
7608 Candidate.FailureKind = ovl_fail_enable_if;
7609 Candidate.DeductionFailure.Data = FailedAttr;
7610 return;
7611 }
7612}
7613
7614/// Add all of the non-member operator function declarations in the given
7615/// function set to the overload candidate set.
7616void Sema::AddNonMemberOperatorCandidates(
7617 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7618 OverloadCandidateSet &CandidateSet,
7619 TemplateArgumentListInfo *ExplicitTemplateArgs) {
7620 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7621 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7622 ArrayRef<Expr *> FunctionArgs = Args;
7623
7624 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7625 FunctionDecl *FD =
7626 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7627
7628 // Don't consider rewritten functions if we're not rewriting.
7629 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7630 continue;
7631
7632 assert(!isa<CXXMethodDecl>(FD) &&((void)0)
7633 "unqualified operator lookup found a member function")((void)0);
7634
7635 if (FunTmpl) {
7636 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7637 FunctionArgs, CandidateSet);
7638 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7639 AddTemplateOverloadCandidate(
7640 FunTmpl, F.getPair(), ExplicitTemplateArgs,
7641 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7642 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7643 } else {
7644 if (ExplicitTemplateArgs)
7645 continue;
7646 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7647 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7648 AddOverloadCandidate(FD, F.getPair(),
7649 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7650 false, false, true, false, ADLCallKind::NotADL,
7651 None, OverloadCandidateParamOrder::Reversed);
7652 }
7653 }
7654}
7655
7656/// Add overload candidates for overloaded operators that are
7657/// member functions.
7658///
7659/// Add the overloaded operator candidates that are member functions
7660/// for the operator Op that was used in an operator expression such
7661/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7662/// CandidateSet will store the added overload candidates. (C++
7663/// [over.match.oper]).
7664void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7665 SourceLocation OpLoc,
7666 ArrayRef<Expr *> Args,
7667 OverloadCandidateSet &CandidateSet,
7668 OverloadCandidateParamOrder PO) {
7669 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7670
7671 // C++ [over.match.oper]p3:
7672 // For a unary operator @ with an operand of a type whose
7673 // cv-unqualified version is T1, and for a binary operator @ with
7674 // a left operand of a type whose cv-unqualified version is T1 and
7675 // a right operand of a type whose cv-unqualified version is T2,
7676 // three sets of candidate functions, designated member
7677 // candidates, non-member candidates and built-in candidates, are
7678 // constructed as follows:
7679 QualType T1 = Args[0]->getType();
7680
7681 // -- If T1 is a complete class type or a class currently being
7682 // defined, the set of member candidates is the result of the
7683 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7684 // the set of member candidates is empty.
7685 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7686 // Complete the type if it can be completed.
7687 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7688 return;
7689 // If the type is neither complete nor being defined, bail out now.
7690 if (!T1Rec->getDecl()->getDefinition())
7691 return;
7692
7693 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7694 LookupQualifiedName(Operators, T1Rec->getDecl());
7695 Operators.suppressDiagnostics();
7696
7697 for (LookupResult::iterator Oper = Operators.begin(),
7698 OperEnd = Operators.end();
7699 Oper != OperEnd;
7700 ++Oper)
7701 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7702 Args[0]->Classify(Context), Args.slice(1),
7703 CandidateSet, /*SuppressUserConversion=*/false, PO);
7704 }
7705}
7706
7707/// AddBuiltinCandidate - Add a candidate for a built-in
7708/// operator. ResultTy and ParamTys are the result and parameter types
7709/// of the built-in candidate, respectively. Args and NumArgs are the
7710/// arguments being passed to the candidate. IsAssignmentOperator
7711/// should be true when this built-in candidate is an assignment
7712/// operator. NumContextualBoolArguments is the number of arguments
7713/// (at the beginning of the argument list) that will be contextually
7714/// converted to bool.
7715void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7716 OverloadCandidateSet& CandidateSet,
7717 bool IsAssignmentOperator,
7718 unsigned NumContextualBoolArguments) {
7719 // Overload resolution is always an unevaluated context.
7720 EnterExpressionEvaluationContext Unevaluated(
7721 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7722
7723 // Add this candidate
7724 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7725 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7726 Candidate.Function = nullptr;
7727 Candidate.IsSurrogate = false;
7728 Candidate.IgnoreObjectArgument = false;
7729 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7730
7731 // Determine the implicit conversion sequences for each of the
7732 // arguments.
7733 Candidate.Viable = true;
7734 Candidate.ExplicitCallArguments = Args.size();
7735 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7736 // C++ [over.match.oper]p4:
7737 // For the built-in assignment operators, conversions of the
7738 // left operand are restricted as follows:
7739 // -- no temporaries are introduced to hold the left operand, and
7740 // -- no user-defined conversions are applied to the left
7741 // operand to achieve a type match with the left-most
7742 // parameter of a built-in candidate.
7743 //
7744 // We block these conversions by turning off user-defined
7745 // conversions, since that is the only way that initialization of
7746 // a reference to a non-class type can occur from something that
7747 // is not of the same type.
7748 if (ArgIdx < NumContextualBoolArguments) {
7749 assert(ParamTys[ArgIdx] == Context.BoolTy &&((void)0)
7750 "Contextual conversion to bool requires bool type")((void)0);
7751 Candidate.Conversions[ArgIdx]
7752 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7753 } else {
7754 Candidate.Conversions[ArgIdx]
7755 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7756 ArgIdx == 0 && IsAssignmentOperator,
7757 /*InOverloadResolution=*/false,
7758 /*AllowObjCWritebackConversion=*/
7759 getLangOpts().ObjCAutoRefCount);
7760 }
7761 if (Candidate.Conversions[ArgIdx].isBad()) {
7762 Candidate.Viable = false;
7763 Candidate.FailureKind = ovl_fail_bad_conversion;
7764 break;
7765 }
7766 }
7767}
7768
7769namespace {
7770
7771/// BuiltinCandidateTypeSet - A set of types that will be used for the
7772/// candidate operator functions for built-in operators (C++
7773/// [over.built]). The types are separated into pointer types and
7774/// enumeration types.
7775class BuiltinCandidateTypeSet {
7776 /// TypeSet - A set of types.
7777 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7778 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7779
7780 /// PointerTypes - The set of pointer types that will be used in the
7781 /// built-in candidates.
7782 TypeSet PointerTypes;
7783
7784 /// MemberPointerTypes - The set of member pointer types that will be
7785 /// used in the built-in candidates.
7786 TypeSet MemberPointerTypes;
7787
7788 /// EnumerationTypes - The set of enumeration types that will be
7789 /// used in the built-in candidates.
7790 TypeSet EnumerationTypes;
7791
7792 /// The set of vector types that will be used in the built-in
7793 /// candidates.
7794 TypeSet VectorTypes;
7795
7796 /// The set of matrix types that will be used in the built-in
7797 /// candidates.
7798 TypeSet MatrixTypes;
7799
7800 /// A flag indicating non-record types are viable candidates
7801 bool HasNonRecordTypes;
7802
7803 /// A flag indicating whether either arithmetic or enumeration types
7804 /// were present in the candidate set.
7805 bool HasArithmeticOrEnumeralTypes;
7806
7807 /// A flag indicating whether the nullptr type was present in the
7808 /// candidate set.
7809 bool HasNullPtrType;
7810
7811 /// Sema - The semantic analysis instance where we are building the
7812 /// candidate type set.
7813 Sema &SemaRef;
7814
7815 /// Context - The AST context in which we will build the type sets.
7816 ASTContext &Context;
7817
7818 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7819 const Qualifiers &VisibleQuals);
7820 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7821
7822public:
7823 /// iterator - Iterates through the types that are part of the set.
7824 typedef TypeSet::iterator iterator;
7825
7826 BuiltinCandidateTypeSet(Sema &SemaRef)
7827 : HasNonRecordTypes(false),
7828 HasArithmeticOrEnumeralTypes(false),
7829 HasNullPtrType(false),
7830 SemaRef(SemaRef),
7831 Context(SemaRef.Context) { }
7832
7833 void AddTypesConvertedFrom(QualType Ty,
7834 SourceLocation Loc,
7835 bool AllowUserConversions,
7836 bool AllowExplicitConversions,
7837 const Qualifiers &VisibleTypeConversionsQuals);
7838
7839 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
7840 llvm::iterator_range<iterator> member_pointer_types() {
7841 return MemberPointerTypes;
7842 }
7843 llvm::iterator_range<iterator> enumeration_types() {
7844 return EnumerationTypes;
7845 }
7846 llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
7847 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7848
7849 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
7850 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7851 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7852 bool hasNullPtrType() const { return HasNullPtrType; }
7853};
7854
7855} // end anonymous namespace
7856
7857/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7858/// the set of pointer types along with any more-qualified variants of
7859/// that type. For example, if @p Ty is "int const *", this routine
7860/// will add "int const *", "int const volatile *", "int const
7861/// restrict *", and "int const volatile restrict *" to the set of
7862/// pointer types. Returns true if the add of @p Ty itself succeeded,
7863/// false otherwise.
7864///
7865/// FIXME: what to do about extended qualifiers?
7866bool
7867BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7868 const Qualifiers &VisibleQuals) {
7869
7870 // Insert this type.
7871 if (!PointerTypes.insert(Ty))
7872 return false;
7873
7874 QualType PointeeTy;
7875 const PointerType *PointerTy = Ty->getAs<PointerType>();
7876 bool buildObjCPtr = false;
7877 if (!PointerTy) {
7878 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7879 PointeeTy = PTy->getPointeeType();
7880 buildObjCPtr = true;
7881 } else {
7882 PointeeTy = PointerTy->getPointeeType();
7883 }
7884
7885 // Don't add qualified variants of arrays. For one, they're not allowed
7886 // (the qualifier would sink to the element type), and for another, the
7887 // only overload situation where it matters is subscript or pointer +- int,
7888 // and those shouldn't have qualifier variants anyway.
7889 if (PointeeTy->isArrayType())
7890 return true;
7891
7892 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7893 bool hasVolatile = VisibleQuals.hasVolatile();
7894 bool hasRestrict = VisibleQuals.hasRestrict();
7895
7896 // Iterate through all strict supersets of BaseCVR.
7897 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7898 if ((CVR | BaseCVR) != CVR) continue;
7899 // Skip over volatile if no volatile found anywhere in the types.
7900 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7901
7902 // Skip over restrict if no restrict found anywhere in the types, or if
7903 // the type cannot be restrict-qualified.
7904 if ((CVR & Qualifiers::Restrict) &&
7905 (!hasRestrict ||
7906 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7907 continue;
7908
7909 // Build qualified pointee type.
7910 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7911
7912 // Build qualified pointer type.
7913 QualType QPointerTy;
7914 if (!buildObjCPtr)
7915 QPointerTy = Context.getPointerType(QPointeeTy);
7916 else
7917 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7918
7919 // Insert qualified pointer type.
7920 PointerTypes.insert(QPointerTy);
7921 }
7922
7923 return true;
7924}
7925
7926/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7927/// to the set of pointer types along with any more-qualified variants of
7928/// that type. For example, if @p Ty is "int const *", this routine
7929/// will add "int const *", "int const volatile *", "int const
7930/// restrict *", and "int const volatile restrict *" to the set of
7931/// pointer types. Returns true if the add of @p Ty itself succeeded,
7932/// false otherwise.
7933///
7934/// FIXME: what to do about extended qualifiers?
7935bool
7936BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7937 QualType Ty) {
7938 // Insert this type.
7939 if (!MemberPointerTypes.insert(Ty))
7940 return false;
7941
7942 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7943 assert(PointerTy && "type was not a member pointer type!")((void)0);
7944
7945 QualType PointeeTy = PointerTy->getPointeeType();
7946 // Don't add qualified variants of arrays. For one, they're not allowed
7947 // (the qualifier would sink to the element type), and for another, the
7948 // only overload situation where it matters is subscript or pointer +- int,
7949 // and those shouldn't have qualifier variants anyway.
7950 if (PointeeTy->isArrayType())
7951 return true;
7952 const Type *ClassTy = PointerTy->getClass();
7953
7954 // Iterate through all strict supersets of the pointee type's CVR
7955 // qualifiers.
7956 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7957 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7958 if ((CVR | BaseCVR) != CVR) continue;
7959
7960 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7961 MemberPointerTypes.insert(
7962 Context.getMemberPointerType(QPointeeTy, ClassTy));
7963 }
7964
7965 return true;
7966}
7967
7968/// AddTypesConvertedFrom - Add each of the types to which the type @p
7969/// Ty can be implicit converted to the given set of @p Types. We're
7970/// primarily interested in pointer types and enumeration types. We also
7971/// take member pointer types, for the conditional operator.
7972/// AllowUserConversions is true if we should look at the conversion
7973/// functions of a class type, and AllowExplicitConversions if we
7974/// should also include the explicit conversion functions of a class
7975/// type.
7976void
7977BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7978 SourceLocation Loc,
7979 bool AllowUserConversions,
7980 bool AllowExplicitConversions,
7981 const Qualifiers &VisibleQuals) {
7982 // Only deal with canonical types.
7983 Ty = Context.getCanonicalType(Ty);
7984
7985 // Look through reference types; they aren't part of the type of an
7986 // expression for the purposes of conversions.
7987 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7988 Ty = RefTy->getPointeeType();
7989
7990 // If we're dealing with an array type, decay to the pointer.
7991 if (Ty->isArrayType())
7992 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7993
7994 // Otherwise, we don't care about qualifiers on the type.
7995 Ty = Ty.getLocalUnqualifiedType();
7996
7997 // Flag if we ever add a non-record type.
7998 const RecordType *TyRec = Ty->getAs<RecordType>();
7999 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8000
8001 // Flag if we encounter an arithmetic type.
8002 HasArithmeticOrEnumeralTypes =
8003 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8004
8005 if (Ty->isObjCIdType() || Ty->isObjCClassType())
8006 PointerTypes.insert(Ty);
8007 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8008 // Insert our type, and its more-qualified variants, into the set
8009 // of types.
8010 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8011 return;
8012 } else if (Ty->isMemberPointerType()) {
8013 // Member pointers are far easier, since the pointee can't be converted.
8014 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8015 return;
8016 } else if (Ty->isEnumeralType()) {
8017 HasArithmeticOrEnumeralTypes = true;
8018 EnumerationTypes.insert(Ty);
8019 } else if (Ty->isVectorType()) {
8020 // We treat vector types as arithmetic types in many contexts as an
8021 // extension.
8022 HasArithmeticOrEnumeralTypes = true;
8023 VectorTypes.insert(Ty);
8024 } else if (Ty->isMatrixType()) {
8025 // Similar to vector types, we treat vector types as arithmetic types in
8026 // many contexts as an extension.
8027 HasArithmeticOrEnumeralTypes = true;
8028 MatrixTypes.insert(Ty);
8029 } else if (Ty->isNullPtrType()) {
8030 HasNullPtrType = true;
8031 } else if (AllowUserConversions && TyRec) {
8032 // No conversion functions in incomplete types.
8033 if (!SemaRef.isCompleteType(Loc, Ty))
8034 return;
8035
8036 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8037 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8038 if (isa<UsingShadowDecl>(D))
8039 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8040
8041 // Skip conversion function templates; they don't tell us anything
8042 // about which builtin types we can convert to.
8043 if (isa<FunctionTemplateDecl>(D))
8044 continue;
8045
8046 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8047 if (AllowExplicitConversions || !Conv->isExplicit()) {
8048 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8049 VisibleQuals);
8050 }
8051 }
8052 }
8053}
8054/// Helper function for adjusting address spaces for the pointer or reference
8055/// operands of builtin operators depending on the argument.
8056static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8057 Expr *Arg) {
8058 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8059}
8060
8061/// Helper function for AddBuiltinOperatorCandidates() that adds
8062/// the volatile- and non-volatile-qualified assignment operators for the
8063/// given type to the candidate set.
8064static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8065 QualType T,
8066 ArrayRef<Expr *> Args,
8067 OverloadCandidateSet &CandidateSet) {
8068 QualType ParamTypes[2];
8069
8070 // T& operator=(T&, T)
8071 ParamTypes[0] = S.Context.getLValueReferenceType(
8072 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8073 ParamTypes[1] = T;
8074 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8075 /*IsAssignmentOperator=*/true);
8076
8077 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8078 // volatile T& operator=(volatile T&, T)
8079 ParamTypes[0] = S.Context.getLValueReferenceType(
8080 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8081 Args[0]));
8082 ParamTypes[1] = T;
8083 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8084 /*IsAssignmentOperator=*/true);
8085 }
8086}
8087
8088/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8089/// if any, found in visible type conversion functions found in ArgExpr's type.
8090static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8091 Qualifiers VRQuals;
8092 const RecordType *TyRec;
8093 if (const MemberPointerType *RHSMPType =
8094 ArgExpr->getType()->getAs<MemberPointerType>())
8095 TyRec = RHSMPType->getClass()->getAs<RecordType>();
8096 else
8097 TyRec = ArgExpr->getType()->getAs<RecordType>();
8098 if (!TyRec) {
8099 // Just to be safe, assume the worst case.
8100 VRQuals.addVolatile();
8101 VRQuals.addRestrict();
8102 return VRQuals;
8103 }
8104
8105 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8106 if (!ClassDecl->hasDefinition())
8107 return VRQuals;
8108
8109 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8110 if (isa<UsingShadowDecl>(D))
8111 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8112 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8113 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8114 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8115 CanTy = ResTypeRef->getPointeeType();
8116 // Need to go down the pointer/mempointer chain and add qualifiers
8117 // as see them.
8118 bool done = false;
8119 while (!done) {
8120 if (CanTy.isRestrictQualified())
8121 VRQuals.addRestrict();
8122 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8123 CanTy = ResTypePtr->getPointeeType();
8124 else if (const MemberPointerType *ResTypeMPtr =
8125 CanTy->getAs<MemberPointerType>())
8126 CanTy = ResTypeMPtr->getPointeeType();
8127 else
8128 done = true;
8129 if (CanTy.isVolatileQualified())
8130 VRQuals.addVolatile();
8131 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8132 return VRQuals;
8133 }
8134 }
8135 }
8136 return VRQuals;
8137}
8138
8139namespace {
8140
8141/// Helper class to manage the addition of builtin operator overload
8142/// candidates. It provides shared state and utility methods used throughout
8143/// the process, as well as a helper method to add each group of builtin
8144/// operator overloads from the standard to a candidate set.
8145class BuiltinOperatorOverloadBuilder {
8146 // Common instance state available to all overload candidate addition methods.
8147 Sema &S;
8148 ArrayRef<Expr *> Args;
8149 Qualifiers VisibleTypeConversionsQuals;
8150 bool HasArithmeticOrEnumeralCandidateType;
8151 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8152 OverloadCandidateSet &CandidateSet;
8153
8154 static constexpr int ArithmeticTypesCap = 24;
8155 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8156
8157 // Define some indices used to iterate over the arithmetic types in
8158 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
8159 // types are that preserved by promotion (C++ [over.built]p2).
8160 unsigned FirstIntegralType,
8161 LastIntegralType;
8162 unsigned FirstPromotedIntegralType,
8163 LastPromotedIntegralType;
8164 unsigned FirstPromotedArithmeticType,
8165 LastPromotedArithmeticType;
8166 unsigned NumArithmeticTypes;
8167
8168 void InitArithmeticTypes() {
8169 // Start of promoted types.
8170 FirstPromotedArithmeticType = 0;
8171 ArithmeticTypes.push_back(S.Context.FloatTy);
8172 ArithmeticTypes.push_back(S.Context.DoubleTy);
8173 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8174 if (S.Context.getTargetInfo().hasFloat128Type())
8175 ArithmeticTypes.push_back(S.Context.Float128Ty);
8176
8177 // Start of integral types.
8178 FirstIntegralType = ArithmeticTypes.size();
8179 FirstPromotedIntegralType = ArithmeticTypes.size();
8180 ArithmeticTypes.push_back(S.Context.IntTy);
8181 ArithmeticTypes.push_back(S.Context.LongTy);
8182 ArithmeticTypes.push_back(S.Context.LongLongTy);
8183 if (S.Context.getTargetInfo().hasInt128Type() ||
8184 (S.Context.getAuxTargetInfo() &&
8185 S.Context.getAuxTargetInfo()->hasInt128Type()))
8186 ArithmeticTypes.push_back(S.Context.Int128Ty);
8187 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8188 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8189 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8190 if (S.Context.getTargetInfo().hasInt128Type() ||
8191 (S.Context.getAuxTargetInfo() &&
8192 S.Context.getAuxTargetInfo()->hasInt128Type()))
8193 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8194 LastPromotedIntegralType = ArithmeticTypes.size();
8195 LastPromotedArithmeticType = ArithmeticTypes.size();
8196 // End of promoted types.
8197
8198 ArithmeticTypes.push_back(S.Context.BoolTy);
8199 ArithmeticTypes.push_back(S.Context.CharTy);
8200 ArithmeticTypes.push_back(S.Context.WCharTy);
8201 if (S.Context.getLangOpts().Char8)
8202 ArithmeticTypes.push_back(S.Context.Char8Ty);
8203 ArithmeticTypes.push_back(S.Context.Char16Ty);
8204 ArithmeticTypes.push_back(S.Context.Char32Ty);
8205 ArithmeticTypes.push_back(S.Context.SignedCharTy);
8206 ArithmeticTypes.push_back(S.Context.ShortTy);
8207 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8208 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8209 LastIntegralType = ArithmeticTypes.size();
8210 NumArithmeticTypes = ArithmeticTypes.size();
8211 // End of integral types.
8212 // FIXME: What about complex? What about half?
8213
8214 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((void)0)
8215 "Enough inline storage for all arithmetic types.")((void)0);
8216 }
8217
8218 /// Helper method to factor out the common pattern of adding overloads
8219 /// for '++' and '--' builtin operators.
8220 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8221 bool HasVolatile,
8222 bool HasRestrict) {
8223 QualType ParamTypes[2] = {
8224 S.Context.getLValueReferenceType(CandidateTy),
8225 S.Context.IntTy
8226 };
8227
8228 // Non-volatile version.
8229 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8230
8231 // Use a heuristic to reduce number of builtin candidates in the set:
8232 // add volatile version only if there are conversions to a volatile type.
8233 if (HasVolatile) {
8234 ParamTypes[0] =
8235 S.Context.getLValueReferenceType(
8236 S.Context.getVolatileType(CandidateTy));
8237 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8238 }
8239
8240 // Add restrict version only if there are conversions to a restrict type
8241 // and our candidate type is a non-restrict-qualified pointer.
8242 if (HasRestrict && CandidateTy->isAnyPointerType() &&
8243 !CandidateTy.isRestrictQualified()) {
8244 ParamTypes[0]
8245 = S.Context.getLValueReferenceType(
8246 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8247 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8248
8249 if (HasVolatile) {
8250 ParamTypes[0]
8251 = S.Context.getLValueReferenceType(
8252 S.Context.getCVRQualifiedType(CandidateTy,
8253 (Qualifiers::Volatile |
8254 Qualifiers::Restrict)));
8255 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8256 }
8257 }
8258
8259 }
8260
8261 /// Helper to add an overload candidate for a binary builtin with types \p L
8262 /// and \p R.
8263 void AddCandidate(QualType L, QualType R) {
8264 QualType LandR[2] = {L, R};
8265 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8266 }
8267
8268public:
8269 BuiltinOperatorOverloadBuilder(
8270 Sema &S, ArrayRef<Expr *> Args,
8271 Qualifiers VisibleTypeConversionsQuals,
8272 bool HasArithmeticOrEnumeralCandidateType,
8273 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8274 OverloadCandidateSet &CandidateSet)
8275 : S(S), Args(Args),
8276 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8277 HasArithmeticOrEnumeralCandidateType(
8278 HasArithmeticOrEnumeralCandidateType),
8279 CandidateTypes(CandidateTypes),
8280 CandidateSet(CandidateSet) {
8281
8282 InitArithmeticTypes();
8283 }
8284
8285 // Increment is deprecated for bool since C++17.
8286 //
8287 // C++ [over.built]p3:
8288 //
8289 // For every pair (T, VQ), where T is an arithmetic type other
8290 // than bool, and VQ is either volatile or empty, there exist
8291 // candidate operator functions of the form
8292 //
8293 // VQ T& operator++(VQ T&);
8294 // T operator++(VQ T&, int);
8295 //
8296 // C++ [over.built]p4:
8297 //
8298 // For every pair (T, VQ), where T is an arithmetic type other
8299 // than bool, and VQ is either volatile or empty, there exist
8300 // candidate operator functions of the form
8301 //
8302 // VQ T& operator--(VQ T&);
8303 // T operator--(VQ T&, int);
8304 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8305 if (!HasArithmeticOrEnumeralCandidateType)
8306 return;
8307
8308 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8309 const auto TypeOfT = ArithmeticTypes[Arith];
8310 if (TypeOfT == S.Context.BoolTy) {
8311 if (Op == OO_MinusMinus)
8312 continue;
8313 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8314 continue;
8315 }
8316 addPlusPlusMinusMinusStyleOverloads(
8317 TypeOfT,
8318 VisibleTypeConversionsQuals.hasVolatile(),
8319 VisibleTypeConversionsQuals.hasRestrict());
8320 }
8321 }
8322
8323 // C++ [over.built]p5:
8324 //
8325 // For every pair (T, VQ), where T is a cv-qualified or
8326 // cv-unqualified object type, and VQ is either volatile or
8327 // empty, there exist candidate operator functions of the form
8328 //
8329 // T*VQ& operator++(T*VQ&);
8330 // T*VQ& operator--(T*VQ&);
8331 // T* operator++(T*VQ&, int);
8332 // T* operator--(T*VQ&, int);
8333 void addPlusPlusMinusMinusPointerOverloads() {
8334 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8335 // Skip pointer types that aren't pointers to object types.
8336 if (!PtrTy->getPointeeType()->isObjectType())
8337 continue;
8338
8339 addPlusPlusMinusMinusStyleOverloads(
8340 PtrTy,
8341 (!PtrTy.isVolatileQualified() &&
8342 VisibleTypeConversionsQuals.hasVolatile()),
8343 (!PtrTy.isRestrictQualified() &&
8344 VisibleTypeConversionsQuals.hasRestrict()));
8345 }
8346 }
8347
8348 // C++ [over.built]p6:
8349 // For every cv-qualified or cv-unqualified object type T, there
8350 // exist candidate operator functions of the form
8351 //
8352 // T& operator*(T*);
8353 //
8354 // C++ [over.built]p7:
8355 // For every function type T that does not have cv-qualifiers or a
8356 // ref-qualifier, there exist candidate operator functions of the form
8357 // T& operator*(T*);
8358 void addUnaryStarPointerOverloads() {
8359 for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8360 QualType PointeeTy = ParamTy->getPointeeType();
8361 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8362 continue;
8363
8364 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8365 if (Proto->getMethodQuals() || Proto->getRefQualifier())
8366 continue;
8367
8368 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8369 }
8370 }
8371
8372 // C++ [over.built]p9:
8373 // For every promoted arithmetic type T, there exist candidate
8374 // operator functions of the form
8375 //
8376 // T operator+(T);
8377 // T operator-(T);
8378 void addUnaryPlusOrMinusArithmeticOverloads() {
8379 if (!HasArithmeticOrEnumeralCandidateType)
8380 return;
8381
8382 for (unsigned Arith = FirstPromotedArithmeticType;
8383 Arith < LastPromotedArithmeticType; ++Arith) {
8384 QualType ArithTy = ArithmeticTypes[Arith];
8385 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8386 }
8387
8388 // Extension: We also add these operators for vector types.
8389 for (QualType VecTy : CandidateTypes[0].vector_types())
8390 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8391 }
8392
8393 // C++ [over.built]p8:
8394 // For every type T, there exist candidate operator functions of
8395 // the form
8396 //
8397 // T* operator+(T*);
8398 void addUnaryPlusPointerOverloads() {
8399 for (QualType ParamTy : CandidateTypes[0].pointer_types())
8400 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8401 }
8402
8403 // C++ [over.built]p10:
8404 // For every promoted integral type T, there exist candidate
8405 // operator functions of the form
8406 //
8407 // T operator~(T);
8408 void addUnaryTildePromotedIntegralOverloads() {
8409 if (!HasArithmeticOrEnumeralCandidateType)
8410 return;
8411
8412 for (unsigned Int = FirstPromotedIntegralType;
8413 Int < LastPromotedIntegralType; ++Int) {
8414 QualType IntTy = ArithmeticTypes[Int];
8415 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8416 }
8417
8418 // Extension: We also add this operator for vector types.
8419 for (QualType VecTy : CandidateTypes[0].vector_types())
8420 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8421 }
8422
8423 // C++ [over.match.oper]p16:
8424 // For every pointer to member type T or type std::nullptr_t, there
8425 // exist candidate operator functions of the form
8426 //
8427 // bool operator==(T,T);
8428 // bool operator!=(T,T);
8429 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8430 /// Set of (canonical) types that we've already handled.
8431 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8432
8433 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8434 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8435 // Don't add the same builtin candidate twice.
8436 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8437 continue;
8438
8439 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8440 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8441 }
8442
8443 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8444 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8445 if (AddedTypes.insert(NullPtrTy).second) {
8446 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8447 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8448 }
8449 }
8450 }
8451 }
8452
8453 // C++ [over.built]p15:
8454 //
8455 // For every T, where T is an enumeration type or a pointer type,
8456 // there exist candidate operator functions of the form
8457 //
8458 // bool operator<(T, T);
8459 // bool operator>(T, T);
8460 // bool operator<=(T, T);
8461 // bool operator>=(T, T);
8462 // bool operator==(T, T);
8463 // bool operator!=(T, T);
8464 // R operator<=>(T, T)
8465 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8466 // C++ [over.match.oper]p3:
8467 // [...]the built-in candidates include all of the candidate operator
8468 // functions defined in 13.6 that, compared to the given operator, [...]
8469 // do not have the same parameter-type-list as any non-template non-member
8470 // candidate.
8471 //
8472 // Note that in practice, this only affects enumeration types because there
8473 // aren't any built-in candidates of record type, and a user-defined operator
8474 // must have an operand of record or enumeration type. Also, the only other
8475 // overloaded operator with enumeration arguments, operator=,
8476 // cannot be overloaded for enumeration types, so this is the only place
8477 // where we must suppress candidates like this.
8478 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8479 UserDefinedBinaryOperators;
8480
8481 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8482 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8483 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8484 CEnd = CandidateSet.end();
8485 C != CEnd; ++C) {
8486 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8487 continue;
8488
8489 if (C->Function->isFunctionTemplateSpecialization())
8490 continue;
8491
8492 // We interpret "same parameter-type-list" as applying to the
8493 // "synthesized candidate, with the order of the two parameters
8494 // reversed", not to the original function.
8495 bool Reversed = C->isReversed();
8496 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8497 ->getType()
8498 .getUnqualifiedType();
8499 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8500 ->getType()
8501 .getUnqualifiedType();
8502
8503 // Skip if either parameter isn't of enumeral type.
8504 if (!FirstParamType->isEnumeralType() ||
8505 !SecondParamType->isEnumeralType())
8506 continue;
8507
8508 // Add this operator to the set of known user-defined operators.
8509 UserDefinedBinaryOperators.insert(
8510 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8511 S.Context.getCanonicalType(SecondParamType)));
8512 }
8513 }
8514 }
8515
8516 /// Set of (canonical) types that we've already handled.
8517 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8518
8519 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8520 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8521 // Don't add the same builtin candidate twice.
8522 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8523 continue;
8524 if (IsSpaceship && PtrTy->isFunctionPointerType())
8525 continue;
8526
8527 QualType ParamTypes[2] = {PtrTy, PtrTy};
8528 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8529 }
8530 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8531 CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8532
8533 // Don't add the same builtin candidate twice, or if a user defined
8534 // candidate exists.
8535 if (!AddedTypes.insert(CanonType).second ||
8536 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8537 CanonType)))
8538 continue;
8539 QualType ParamTypes[2] = {EnumTy, EnumTy};
8540 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8541 }
8542 }
8543 }
8544
8545 // C++ [over.built]p13:
8546 //
8547 // For every cv-qualified or cv-unqualified object type T
8548 // there exist candidate operator functions of the form
8549 //
8550 // T* operator+(T*, ptrdiff_t);
8551 // T& operator[](T*, ptrdiff_t); [BELOW]
8552 // T* operator-(T*, ptrdiff_t);
8553 // T* operator+(ptrdiff_t, T*);
8554 // T& operator[](ptrdiff_t, T*); [BELOW]
8555 //
8556 // C++ [over.built]p14:
8557 //
8558 // For every T, where T is a pointer to object type, there
8559 // exist candidate operator functions of the form
8560 //
8561 // ptrdiff_t operator-(T, T);
8562 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8563 /// Set of (canonical) types that we've already handled.
8564 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8565
8566 for (int Arg = 0; Arg < 2; ++Arg) {
8567 QualType AsymmetricParamTypes[2] = {
8568 S.Context.getPointerDiffType(),
8569 S.Context.getPointerDiffType(),
8570 };
8571 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8572 QualType PointeeTy = PtrTy->getPointeeType();
8573 if (!PointeeTy->isObjectType())
8574 continue;
8575
8576 AsymmetricParamTypes[Arg] = PtrTy;
8577 if (Arg == 0 || Op == OO_Plus) {
8578 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8579 // T* operator+(ptrdiff_t, T*);
8580 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8581 }
8582 if (Op == OO_Minus) {
8583 // ptrdiff_t operator-(T, T);
8584 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8585 continue;
8586
8587 QualType ParamTypes[2] = {PtrTy, PtrTy};
8588 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8589 }
8590 }
8591 }
8592 }
8593
8594 // C++ [over.built]p12:
8595 //
8596 // For every pair of promoted arithmetic types L and R, there
8597 // exist candidate operator functions of the form
8598 //
8599 // LR operator*(L, R);
8600 // LR operator/(L, R);
8601 // LR operator+(L, R);
8602 // LR operator-(L, R);
8603 // bool operator<(L, R);
8604 // bool operator>(L, R);
8605 // bool operator<=(L, R);
8606 // bool operator>=(L, R);
8607 // bool operator==(L, R);
8608 // bool operator!=(L, R);
8609 //
8610 // where LR is the result of the usual arithmetic conversions
8611 // between types L and R.
8612 //
8613 // C++ [over.built]p24:
8614 //
8615 // For every pair of promoted arithmetic types L and R, there exist
8616 // candidate operator functions of the form
8617 //
8618 // LR operator?(bool, L, R);
8619 //
8620 // where LR is the result of the usual arithmetic conversions
8621 // between types L and R.
8622 // Our candidates ignore the first parameter.
8623 void addGenericBinaryArithmeticOverloads() {
8624 if (!HasArithmeticOrEnumeralCandidateType)
8625 return;
8626
8627 for (unsigned Left = FirstPromotedArithmeticType;
8628 Left < LastPromotedArithmeticType; ++Left) {
8629 for (unsigned Right = FirstPromotedArithmeticType;
8630 Right < LastPromotedArithmeticType; ++Right) {
8631 QualType LandR[2] = { ArithmeticTypes[Left],
8632 ArithmeticTypes[Right] };
8633 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8634 }
8635 }
8636
8637 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8638 // conditional operator for vector types.
8639 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8640 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8641 QualType LandR[2] = {Vec1Ty, Vec2Ty};
8642 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8643 }
8644 }
8645
8646 /// Add binary operator overloads for each candidate matrix type M1, M2:
8647 /// * (M1, M1) -> M1
8648 /// * (M1, M1.getElementType()) -> M1
8649 /// * (M2.getElementType(), M2) -> M2
8650 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
8651 void addMatrixBinaryArithmeticOverloads() {
8652 if (!HasArithmeticOrEnumeralCandidateType)
8653 return;
8654
8655 for (QualType M1 : CandidateTypes[0].matrix_types()) {
8656 AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8657 AddCandidate(M1, M1);
8658 }
8659
8660 for (QualType M2 : CandidateTypes[1].matrix_types()) {
8661 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8662 if (!CandidateTypes[0].containsMatrixType(M2))
8663 AddCandidate(M2, M2);
8664 }
8665 }
8666
8667 // C++2a [over.built]p14:
8668 //
8669 // For every integral type T there exists a candidate operator function
8670 // of the form
8671 //
8672 // std::strong_ordering operator<=>(T, T)
8673 //
8674 // C++2a [over.built]p15:
8675 //
8676 // For every pair of floating-point types L and R, there exists a candidate
8677 // operator function of the form
8678 //
8679 // std::partial_ordering operator<=>(L, R);
8680 //
8681 // FIXME: The current specification for integral types doesn't play nice with
8682 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8683 // comparisons. Under the current spec this can lead to ambiguity during
8684 // overload resolution. For example:
8685 //
8686 // enum A : int {a};
8687 // auto x = (a <=> (long)42);
8688 //
8689 // error: call is ambiguous for arguments 'A' and 'long'.
8690 // note: candidate operator<=>(int, int)
8691 // note: candidate operator<=>(long, long)
8692 //
8693 // To avoid this error, this function deviates from the specification and adds
8694 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8695 // arithmetic types (the same as the generic relational overloads).
8696 //
8697 // For now this function acts as a placeholder.
8698 void addThreeWayArithmeticOverloads() {
8699 addGenericBinaryArithmeticOverloads();
8700 }
8701
8702 // C++ [over.built]p17:
8703 //
8704 // For every pair of promoted integral types L and R, there
8705 // exist candidate operator functions of the form
8706 //
8707 // LR operator%(L, R);
8708 // LR operator&(L, R);
8709 // LR operator^(L, R);
8710 // LR operator|(L, R);
8711 // L operator<<(L, R);
8712 // L operator>>(L, R);
8713 //
8714 // where LR is the result of the usual arithmetic conversions
8715 // between types L and R.
8716 void addBinaryBitwiseArithmeticOverloads() {
8717 if (!HasArithmeticOrEnumeralCandidateType)
8718 return;
8719
8720 for (unsigned Left = FirstPromotedIntegralType;
8721 Left < LastPromotedIntegralType; ++Left) {
8722 for (unsigned Right = FirstPromotedIntegralType;
8723 Right < LastPromotedIntegralType; ++Right) {
8724 QualType LandR[2] = { ArithmeticTypes[Left],
8725 ArithmeticTypes[Right] };
8726 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8727 }
8728 }
8729 }
8730
8731 // C++ [over.built]p20:
8732 //
8733 // For every pair (T, VQ), where T is an enumeration or
8734 // pointer to member type and VQ is either volatile or
8735 // empty, there exist candidate operator functions of the form
8736 //
8737 // VQ T& operator=(VQ T&, T);
8738 void addAssignmentMemberPointerOrEnumeralOverloads() {
8739 /// Set of (canonical) types that we've already handled.
8740 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8741
8742 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8743 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8744 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8745 continue;
8746
8747 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8748 }
8749
8750 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8751 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8752 continue;
8753
8754 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8755 }
8756 }
8757 }
8758
8759 // C++ [over.built]p19:
8760 //
8761 // For every pair (T, VQ), where T is any type and VQ is either
8762 // volatile or empty, there exist candidate operator functions
8763 // of the form
8764 //
8765 // T*VQ& operator=(T*VQ&, T*);
8766 //
8767 // C++ [over.built]p21:
8768 //
8769 // For every pair (T, VQ), where T is a cv-qualified or
8770 // cv-unqualified object type and VQ is either volatile or
8771 // empty, there exist candidate operator functions of the form
8772 //
8773 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8774 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8775 void addAssignmentPointerOverloads(bool isEqualOp) {
8776 /// Set of (canonical) types that we've already handled.
8777 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8778
8779 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8780 // If this is operator=, keep track of the builtin candidates we added.
8781 if (isEqualOp)
8782 AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8783 else if (!PtrTy->getPointeeType()->isObjectType())
8784 continue;
8785
8786 // non-volatile version
8787 QualType ParamTypes[2] = {
8788 S.Context.getLValueReferenceType(PtrTy),
8789 isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8790 };
8791 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8792 /*IsAssignmentOperator=*/ isEqualOp);
8793
8794 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8795 VisibleTypeConversionsQuals.hasVolatile();
8796 if (NeedVolatile) {
8797 // volatile version
8798 ParamTypes[0] =
8799 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8800 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8801 /*IsAssignmentOperator=*/isEqualOp);
8802 }
8803
8804 if (!PtrTy.isRestrictQualified() &&
8805 VisibleTypeConversionsQuals.hasRestrict()) {
8806 // restrict version
8807 ParamTypes[0] =
8808 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8809 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8810 /*IsAssignmentOperator=*/isEqualOp);
8811
8812 if (NeedVolatile) {
8813 // volatile restrict version
8814 ParamTypes[0] =
8815 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8816 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8817 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8818 /*IsAssignmentOperator=*/isEqualOp);
8819 }
8820 }
8821 }
8822
8823 if (isEqualOp) {
8824 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8825 // Make sure we don't add the same candidate twice.
8826 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8827 continue;
8828
8829 QualType ParamTypes[2] = {
8830 S.Context.getLValueReferenceType(PtrTy),
8831 PtrTy,
8832 };
8833
8834 // non-volatile version
8835 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8836 /*IsAssignmentOperator=*/true);
8837
8838 bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8839 VisibleTypeConversionsQuals.hasVolatile();
8840 if (NeedVolatile) {
8841 // volatile version
8842 ParamTypes[0] = S.Context.getLValueReferenceType(
8843 S.Context.getVolatileType(PtrTy));
8844 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8845 /*IsAssignmentOperator=*/true);
8846 }
8847
8848 if (!PtrTy.isRestrictQualified() &&
8849 VisibleTypeConversionsQuals.hasRestrict()) {
8850 // restrict version
8851 ParamTypes[0] = S.Context.getLValueReferenceType(
8852 S.Context.getRestrictType(PtrTy));
8853 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8854 /*IsAssignmentOperator=*/true);
8855
8856 if (NeedVolatile) {
8857 // volatile restrict version
8858 ParamTypes[0] =
8859 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8860 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8861 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8862 /*IsAssignmentOperator=*/true);
8863 }
8864 }
8865 }
8866 }
8867 }
8868
8869 // C++ [over.built]p18:
8870 //
8871 // For every triple (L, VQ, R), where L is an arithmetic type,
8872 // VQ is either volatile or empty, and R is a promoted
8873 // arithmetic type, there exist candidate operator functions of
8874 // the form
8875 //
8876 // VQ L& operator=(VQ L&, R);
8877 // VQ L& operator*=(VQ L&, R);
8878 // VQ L& operator/=(VQ L&, R);
8879 // VQ L& operator+=(VQ L&, R);
8880 // VQ L& operator-=(VQ L&, R);
8881 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8882 if (!HasArithmeticOrEnumeralCandidateType)
8883 return;
8884
8885 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8886 for (unsigned Right = FirstPromotedArithmeticType;
8887 Right < LastPromotedArithmeticType; ++Right) {
8888 QualType ParamTypes[2];
8889 ParamTypes[1] = ArithmeticTypes[Right];
8890 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8891 S, ArithmeticTypes[Left], Args[0]);
8892 // Add this built-in operator as a candidate (VQ is empty).
8893 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8894 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8895 /*IsAssignmentOperator=*/isEqualOp);
8896
8897 // Add this built-in operator as a candidate (VQ is 'volatile').
8898 if (VisibleTypeConversionsQuals.hasVolatile()) {
8899 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8900 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8901 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8902 /*IsAssignmentOperator=*/isEqualOp);
8903 }
8904 }
8905 }
8906
8907 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8908 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8909 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8910 QualType ParamTypes[2];
8911 ParamTypes[1] = Vec2Ty;
8912 // Add this built-in operator as a candidate (VQ is empty).
8913 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8914 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8915 /*IsAssignmentOperator=*/isEqualOp);
8916
8917 // Add this built-in operator as a candidate (VQ is 'volatile').
8918 if (VisibleTypeConversionsQuals.hasVolatile()) {
8919 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8920 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8921 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8922 /*IsAssignmentOperator=*/isEqualOp);
8923 }
8924 }
8925 }
8926
8927 // C++ [over.built]p22:
8928 //
8929 // For every triple (L, VQ, R), where L is an integral type, VQ
8930 // is either volatile or empty, and R is a promoted integral
8931 // type, there exist candidate operator functions of the form
8932 //
8933 // VQ L& operator%=(VQ L&, R);
8934 // VQ L& operator<<=(VQ L&, R);
8935 // VQ L& operator>>=(VQ L&, R);
8936 // VQ L& operator&=(VQ L&, R);
8937 // VQ L& operator^=(VQ L&, R);
8938 // VQ L& operator|=(VQ L&, R);
8939 void addAssignmentIntegralOverloads() {
8940 if (!HasArithmeticOrEnumeralCandidateType)
8941 return;
8942
8943 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8944 for (unsigned Right = FirstPromotedIntegralType;
8945 Right < LastPromotedIntegralType; ++Right) {
8946 QualType ParamTypes[2];
8947 ParamTypes[1] = ArithmeticTypes[Right];
8948 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8949 S, ArithmeticTypes[Left], Args[0]);
8950 // Add this built-in operator as a candidate (VQ is empty).
8951 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8952 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8953 if (VisibleTypeConversionsQuals.hasVolatile()) {
8954 // Add this built-in operator as a candidate (VQ is 'volatile').
8955 ParamTypes[0] = LeftBaseTy;
8956 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8957 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8958 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8959 }
8960 }
8961 }
8962 }
8963
8964 // C++ [over.operator]p23:
8965 //
8966 // There also exist candidate operator functions of the form
8967 //
8968 // bool operator!(bool);
8969 // bool operator&&(bool, bool);
8970 // bool operator||(bool, bool);
8971 void addExclaimOverload() {
8972 QualType ParamTy = S.Context.BoolTy;
8973 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8974 /*IsAssignmentOperator=*/false,
8975 /*NumContextualBoolArguments=*/1);
8976 }
8977 void addAmpAmpOrPipePipeOverload() {
8978 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8979 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8980 /*IsAssignmentOperator=*/false,
8981 /*NumContextualBoolArguments=*/2);
8982 }
8983
8984 // C++ [over.built]p13:
8985 //
8986 // For every cv-qualified or cv-unqualified object type T there
8987 // exist candidate operator functions of the form
8988 //
8989 // T* operator+(T*, ptrdiff_t); [ABOVE]
8990 // T& operator[](T*, ptrdiff_t);
8991 // T* operator-(T*, ptrdiff_t); [ABOVE]
8992 // T* operator+(ptrdiff_t, T*); [ABOVE]
8993 // T& operator[](ptrdiff_t, T*);
8994 void addSubscriptOverloads() {
8995 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8996 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
8997 QualType PointeeType = PtrTy->getPointeeType();
8998 if (!PointeeType->isObjectType())
8999 continue;
9000
9001 // T& operator[](T*, ptrdiff_t)
9002 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9003 }
9004
9005 for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9006 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9007 QualType PointeeType = PtrTy->getPointeeType();
9008 if (!PointeeType->isObjectType())
9009 continue;
9010
9011 // T& operator[](ptrdiff_t, T*)
9012 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9013 }
9014 }
9015
9016 // C++ [over.built]p11:
9017 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9018 // C1 is the same type as C2 or is a derived class of C2, T is an object
9019 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9020 // there exist candidate operator functions of the form
9021 //
9022 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9023 //
9024 // where CV12 is the union of CV1 and CV2.
9025 void addArrowStarOverloads() {
9026 for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9027 QualType C1Ty = PtrTy;
9028 QualType C1;
9029 QualifierCollector Q1;
9030 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9031 if (!isa<RecordType>(C1))
9032 continue;
9033 // heuristic to reduce number of builtin candidates in the set.
9034 // Add volatile/restrict version only if there are conversions to a
9035 // volatile/restrict type.
9036 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9037 continue;
9038 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9039 continue;
9040 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9041 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9042 QualType C2 = QualType(mptr->getClass(), 0);
9043 C2 = C2.getUnqualifiedType();
9044 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9045 break;
9046 QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9047 // build CV12 T&
9048 QualType T = mptr->getPointeeType();
9049 if (!VisibleTypeConversionsQuals.hasVolatile() &&
9050 T.isVolatileQualified())
9051 continue;
9052 if (!VisibleTypeConversionsQuals.hasRestrict() &&
9053 T.isRestrictQualified())
9054 continue;
9055 T = Q1.apply(S.Context, T);
9056 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9057 }
9058 }
9059 }
9060
9061 // Note that we don't consider the first argument, since it has been
9062 // contextually converted to bool long ago. The candidates below are
9063 // therefore added as binary.
9064 //
9065 // C++ [over.built]p25:
9066 // For every type T, where T is a pointer, pointer-to-member, or scoped
9067 // enumeration type, there exist candidate operator functions of the form
9068 //
9069 // T operator?(bool, T, T);
9070 //
9071 void addConditionalOperatorOverloads() {
9072 /// Set of (canonical) types that we've already handled.
9073 llvm::SmallPtrSet<QualType, 8> AddedTypes;
9074
9075 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9076 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9077 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9078 continue;
9079
9080 QualType ParamTypes[2] = {PtrTy, PtrTy};
9081 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9082 }
9083
9084 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9085 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9086 continue;
9087
9088 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9089 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9090 }
9091
9092 if (S.getLangOpts().CPlusPlus11) {
9093 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9094 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9095 continue;
9096
9097 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9098 continue;
9099
9100 QualType ParamTypes[2] = {EnumTy, EnumTy};
9101 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9102 }
9103 }
9104 }
9105 }
9106};
9107
9108} // end anonymous namespace
9109
9110/// AddBuiltinOperatorCandidates - Add the appropriate built-in
9111/// operator overloads to the candidate set (C++ [over.built]), based
9112/// on the operator @p Op and the arguments given. For example, if the
9113/// operator is a binary '+', this routine might add "int
9114/// operator+(int, int)" to cover integer addition.
9115void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9116 SourceLocation OpLoc,
9117 ArrayRef<Expr *> Args,
9118 OverloadCandidateSet &CandidateSet) {
9119 // Find all of the types that the arguments can convert to, but only
9120 // if the operator we're looking at has built-in operator candidates
9121 // that make use of these types. Also record whether we encounter non-record
9122 // candidate types or either arithmetic or enumeral candidate types.
9123 Qualifiers VisibleTypeConversionsQuals;
9124 VisibleTypeConversionsQuals.addConst();
9125 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9126 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9127
9128 bool HasNonRecordCandidateType = false;
9129 bool HasArithmeticOrEnumeralCandidateType = false;
9130 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9131 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9132 CandidateTypes.emplace_back(*this);
9133 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9134 OpLoc,
9135 true,
9136 (Op == OO_Exclaim ||
9137 Op == OO_AmpAmp ||
9138 Op == OO_PipePipe),
9139 VisibleTypeConversionsQuals);
9140 HasNonRecordCandidateType = HasNonRecordCandidateType ||
9141 CandidateTypes[ArgIdx].hasNonRecordTypes();
9142 HasArithmeticOrEnumeralCandidateType =
9143 HasArithmeticOrEnumeralCandidateType ||
9144 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9145 }
9146
9147 // Exit early when no non-record types have been added to the candidate set
9148 // for any of the arguments to the operator.
9149 //
9150 // We can't exit early for !, ||, or &&, since there we have always have
9151 // 'bool' overloads.
9152 if (!HasNonRecordCandidateType &&
9153 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9154 return;
9155
9156 // Setup an object to manage the common state for building overloads.
9157 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9158 VisibleTypeConversionsQuals,
9159 HasArithmeticOrEnumeralCandidateType,
9160 CandidateTypes, CandidateSet);
9161
9162 // Dispatch over the operation to add in only those overloads which apply.
9163 switch (Op) {
9164 case OO_None:
9165 case NUM_OVERLOADED_OPERATORS:
9166 llvm_unreachable("Expected an overloaded operator")__builtin_unreachable();
9167
9168 case OO_New:
9169 case OO_Delete:
9170 case OO_Array_New:
9171 case OO_Array_Delete:
9172 case OO_Call:
9173 llvm_unreachable(__builtin_unreachable()
9174 "Special operators don't use AddBuiltinOperatorCandidates")__builtin_unreachable();
9175
9176 case OO_Comma:
9177 case OO_Arrow:
9178 case OO_Coawait:
9179 // C++ [over.match.oper]p3:
9180 // -- For the operator ',', the unary operator '&', the
9181 // operator '->', or the operator 'co_await', the
9182 // built-in candidates set is empty.
9183 break;
9184
9185 case OO_Plus: // '+' is either unary or binary
9186 if (Args.size() == 1)
9187 OpBuilder.addUnaryPlusPointerOverloads();
9188 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9189
9190 case OO_Minus: // '-' is either unary or binary
9191 if (Args.size() == 1) {
9192 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9193 } else {
9194 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9195 OpBuilder.addGenericBinaryArithmeticOverloads();
9196 OpBuilder.addMatrixBinaryArithmeticOverloads();
9197 }
9198 break;
9199
9200 case OO_Star: // '*' is either unary or binary
9201 if (Args.size() == 1)
9202 OpBuilder.addUnaryStarPointerOverloads();
9203 else {
9204 OpBuilder.addGenericBinaryArithmeticOverloads();
9205 OpBuilder.addMatrixBinaryArithmeticOverloads();
9206 }
9207 break;
9208
9209 case OO_Slash:
9210 OpBuilder.addGenericBinaryArithmeticOverloads();
9211 break;
9212
9213 case OO_PlusPlus:
9214 case OO_MinusMinus:
9215 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9216 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9217 break;
9218
9219 case OO_EqualEqual:
9220 case OO_ExclaimEqual:
9221 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9222 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9223 OpBuilder.addGenericBinaryArithmeticOverloads();
9224 break;
9225
9226 case OO_Less:
9227 case OO_Greater:
9228 case OO_LessEqual:
9229 case OO_GreaterEqual:
9230 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9231 OpBuilder.addGenericBinaryArithmeticOverloads();
9232 break;
9233
9234 case OO_Spaceship:
9235 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9236 OpBuilder.addThreeWayArithmeticOverloads();
9237 break;
9238
9239 case OO_Percent:
9240 case OO_Caret:
9241 case OO_Pipe:
9242 case OO_LessLess:
9243 case OO_GreaterGreater:
9244 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9245 break;
9246
9247 case OO_Amp: // '&' is either unary or binary
9248 if (Args.size() == 1)
9249 // C++ [over.match.oper]p3:
9250 // -- For the operator ',', the unary operator '&', or the
9251 // operator '->', the built-in candidates set is empty.
9252 break;
9253
9254 OpBuilder.addBinaryBitwiseArithmeticOverloads();
9255 break;
9256
9257 case OO_Tilde:
9258 OpBuilder.addUnaryTildePromotedIntegralOverloads();
9259 break;
9260
9261 case OO_Equal:
9262 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9263 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9264
9265 case OO_PlusEqual:
9266 case OO_MinusEqual:
9267 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9268 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9269
9270 case OO_StarEqual:
9271 case OO_SlashEqual:
9272 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9273 break;
9274
9275 case OO_PercentEqual:
9276 case OO_LessLessEqual:
9277 case OO_GreaterGreaterEqual:
9278 case OO_AmpEqual:
9279 case OO_CaretEqual:
9280 case OO_PipeEqual:
9281 OpBuilder.addAssignmentIntegralOverloads();
9282 break;
9283
9284 case OO_Exclaim:
9285 OpBuilder.addExclaimOverload();
9286 break;
9287
9288 case OO_AmpAmp:
9289 case OO_PipePipe:
9290 OpBuilder.addAmpAmpOrPipePipeOverload();
9291 break;
9292
9293 case OO_Subscript:
9294 OpBuilder.addSubscriptOverloads();
9295 break;
9296
9297 case OO_ArrowStar:
9298 OpBuilder.addArrowStarOverloads();
9299 break;
9300
9301 case OO_Conditional:
9302 OpBuilder.addConditionalOperatorOverloads();
9303 OpBuilder.addGenericBinaryArithmeticOverloads();
9304 break;
9305 }
9306}
9307
9308/// Add function candidates found via argument-dependent lookup
9309/// to the set of overloading candidates.
9310///
9311/// This routine performs argument-dependent name lookup based on the
9312/// given function name (which may also be an operator name) and adds
9313/// all of the overload candidates found by ADL to the overload
9314/// candidate set (C++ [basic.lookup.argdep]).
9315void
9316Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9317 SourceLocation Loc,
9318 ArrayRef<Expr *> Args,
9319 TemplateArgumentListInfo *ExplicitTemplateArgs,
9320 OverloadCandidateSet& CandidateSet,
9321 bool PartialOverloading) {
9322 ADLResult Fns;
9323
9324 // FIXME: This approach for uniquing ADL results (and removing
9325 // redundant candidates from the set) relies on pointer-equality,
9326 // which means we need to key off the canonical decl. However,
9327 // always going back to the canonical decl might not get us the
9328 // right set of default arguments. What default arguments are
9329 // we supposed to consider on ADL candidates, anyway?
9330
9331 // FIXME: Pass in the explicit template arguments?
9332 ArgumentDependentLookup(Name, Loc, Args, Fns);
9333
9334 // Erase all of the candidates we already knew about.
9335 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9336 CandEnd = CandidateSet.end();
9337 Cand != CandEnd; ++Cand)
9338 if (Cand->Function) {
9339 Fns.erase(Cand->Function);
9340 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9341 Fns.erase(FunTmpl);
9342 }
9343
9344 // For each of the ADL candidates we found, add it to the overload
9345 // set.
9346 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9347 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9348
9349 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9350 if (ExplicitTemplateArgs)
9351 continue;
9352
9353 AddOverloadCandidate(
9354 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9355 PartialOverloading, /*AllowExplicit=*/true,
9356 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
9357 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9358 AddOverloadCandidate(
9359 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9360 /*SuppressUserConversions=*/false, PartialOverloading,
9361 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
9362 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9363 }
9364 } else {
9365 auto *FTD = cast<FunctionTemplateDecl>(*I);
9366 AddTemplateOverloadCandidate(
9367 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9368 /*SuppressUserConversions=*/false, PartialOverloading,
9369 /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9370 if (CandidateSet.getRewriteInfo().shouldAddReversed(
9371 Context, FTD->getTemplatedDecl())) {
9372 AddTemplateOverloadCandidate(
9373 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9374 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9375 /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9376 OverloadCandidateParamOrder::Reversed);
9377 }
9378 }
9379 }
9380}
9381
9382namespace {
9383enum class Comparison { Equal, Better, Worse };
9384}
9385
9386/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9387/// overload resolution.
9388///
9389/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9390/// Cand1's first N enable_if attributes have precisely the same conditions as
9391/// Cand2's first N enable_if attributes (where N = the number of enable_if
9392/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9393///
9394/// Note that you can have a pair of candidates such that Cand1's enable_if
9395/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9396/// worse than Cand1's.
9397static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9398 const FunctionDecl *Cand2) {
9399 // Common case: One (or both) decls don't have enable_if attrs.
9400 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9401 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9402 if (!Cand1Attr || !Cand2Attr) {
9403 if (Cand1Attr == Cand2Attr)
9404 return Comparison::Equal;
9405 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9406 }
9407
9408 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9409 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9410
9411 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9412 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9413 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9414 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9415
9416 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9417 // has fewer enable_if attributes than Cand2, and vice versa.
9418 if (!Cand1A)
9419 return Comparison::Worse;
9420 if (!Cand2A)
9421 return Comparison::Better;
9422
9423 Cand1ID.clear();
9424 Cand2ID.clear();
9425
9426 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9427 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9428 if (Cand1ID != Cand2ID)
9429 return Comparison::Worse;
9430 }
9431
9432 return Comparison::Equal;
9433}
9434
9435static Comparison
9436isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9437 const OverloadCandidate &Cand2) {
9438 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9439 !Cand2.Function->isMultiVersion())
9440 return Comparison::Equal;
9441
9442 // If both are invalid, they are equal. If one of them is invalid, the other
9443 // is better.
9444 if (Cand1.Function->isInvalidDecl()) {
9445 if (Cand2.Function->isInvalidDecl())
9446 return Comparison::Equal;
9447 return Comparison::Worse;
9448 }
9449 if (Cand2.Function->isInvalidDecl())
9450 return Comparison::Better;
9451
9452 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9453 // cpu_dispatch, else arbitrarily based on the identifiers.
9454 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9455 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9456 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9457 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9458
9459 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9460 return Comparison::Equal;
9461
9462 if (Cand1CPUDisp && !Cand2CPUDisp)
9463 return Comparison::Better;
9464 if (Cand2CPUDisp && !Cand1CPUDisp)
9465 return Comparison::Worse;
9466
9467 if (Cand1CPUSpec && Cand2CPUSpec) {
9468 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9469 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9470 ? Comparison::Better
9471 : Comparison::Worse;
9472
9473 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9474 FirstDiff = std::mismatch(
9475 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9476 Cand2CPUSpec->cpus_begin(),
9477 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9478 return LHS->getName() == RHS->getName();
9479 });
9480
9481 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((void)0)
9482 "Two different cpu-specific versions should not have the same "((void)0)
9483 "identifier list, otherwise they'd be the same decl!")((void)0);
9484 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9485 ? Comparison::Better
9486 : Comparison::Worse;
9487 }
9488 llvm_unreachable("No way to get here unless both had cpu_dispatch")__builtin_unreachable();
9489}
9490
9491/// Compute the type of the implicit object parameter for the given function,
9492/// if any. Returns None if there is no implicit object parameter, and a null
9493/// QualType if there is a 'matches anything' implicit object parameter.
9494static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9495 const FunctionDecl *F) {
9496 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9497 return llvm::None;
9498
9499 auto *M = cast<CXXMethodDecl>(F);
9500 // Static member functions' object parameters match all types.
9501 if (M->isStatic())
9502 return QualType();
9503
9504 QualType T = M->getThisObjectType();
9505 if (M->getRefQualifier() == RQ_RValue)
9506 return Context.getRValueReferenceType(T);
9507 return Context.getLValueReferenceType(T);
9508}
9509
9510static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9511 const FunctionDecl *F2, unsigned NumParams) {
9512 if (declaresSameEntity(F1, F2))
9513 return true;
9514
9515 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9516 if (First) {
9517 if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9518 return *T;
9519 }
9520 assert(I < F->getNumParams())((void)0);
9521 return F->getParamDecl(I++)->getType();
9522 };
9523
9524 unsigned I1 = 0, I2 = 0;
9525 for (unsigned I = 0; I != NumParams; ++I) {
9526 QualType T1 = NextParam(F1, I1, I == 0);
9527 QualType T2 = NextParam(F2, I2, I == 0);
9528 if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2))
9529 return false;
9530 }
9531 return true;
9532}
9533
9534/// isBetterOverloadCandidate - Determines whether the first overload
9535/// candidate is a better candidate than the second (C++ 13.3.3p1).
9536bool clang::isBetterOverloadCandidate(
9537 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9538 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9539 // Define viable functions to be better candidates than non-viable
9540 // functions.
9541 if (!Cand2.Viable)
9542 return Cand1.Viable;
9543 else if (!Cand1.Viable)
9544 return false;
9545
9546 // [CUDA] A function with 'never' preference is marked not viable, therefore
9547 // is never shown up here. The worst preference shown up here is 'wrong side',
9548 // e.g. an H function called by a HD function in device compilation. This is
9549 // valid AST as long as the HD function is not emitted, e.g. it is an inline
9550 // function which is called only by an H function. A deferred diagnostic will
9551 // be triggered if it is emitted. However a wrong-sided function is still
9552 // a viable candidate here.
9553 //
9554 // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9555 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9556 // can be emitted, Cand1 is not better than Cand2. This rule should have
9557 // precedence over other rules.
9558 //
9559 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9560 // other rules should be used to determine which is better. This is because
9561 // host/device based overloading resolution is mostly for determining
9562 // viability of a function. If two functions are both viable, other factors
9563 // should take precedence in preference, e.g. the standard-defined preferences
9564 // like argument conversion ranks or enable_if partial-ordering. The
9565 // preference for pass-object-size parameters is probably most similar to a
9566 // type-based-overloading decision and so should take priority.
9567 //
9568 // If other rules cannot determine which is better, CUDA preference will be
9569 // used again to determine which is better.
9570 //
9571 // TODO: Currently IdentifyCUDAPreference does not return correct values
9572 // for functions called in global variable initializers due to missing
9573 // correct context about device/host. Therefore we can only enforce this
9574 // rule when there is a caller. We should enforce this rule for functions
9575 // in global variable initializers once proper context is added.
9576 //
9577 // TODO: We can only enable the hostness based overloading resolution when
9578 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9579 // overloading resolution diagnostics.
9580 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9581 S.getLangOpts().GPUExcludeWrongSideOverloads) {
9582 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
9583 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9584 bool IsCand1ImplicitHD =
9585 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9586 bool IsCand2ImplicitHD =
9587 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9588 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9589 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9590 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never)((void)0);
9591 // The implicit HD function may be a function in a system header which
9592 // is forced by pragma. In device compilation, if we prefer HD candidates
9593 // over wrong-sided candidates, overloading resolution may change, which
9594 // may result in non-deferrable diagnostics. As a workaround, we let
9595 // implicit HD candidates take equal preference as wrong-sided candidates.
9596 // This will preserve the overloading resolution.
9597 // TODO: We still need special handling of implicit HD functions since
9598 // they may incur other diagnostics to be deferred. We should make all
9599 // host/device related diagnostics deferrable and remove special handling
9600 // of implicit HD functions.
9601 auto EmitThreshold =
9602 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9603 (IsCand1ImplicitHD || IsCand2ImplicitHD))
9604 ? Sema::CFP_Never
9605 : Sema::CFP_WrongSide;
9606 auto Cand1Emittable = P1 > EmitThreshold;
9607 auto Cand2Emittable = P2 > EmitThreshold;
9608 if (Cand1Emittable && !Cand2Emittable)
9609 return true;
9610 if (!Cand1Emittable && Cand2Emittable)
9611 return false;
9612 }
9613 }
9614
9615 // C++ [over.match.best]p1:
9616 //
9617 // -- if F is a static member function, ICS1(F) is defined such
9618 // that ICS1(F) is neither better nor worse than ICS1(G) for
9619 // any function G, and, symmetrically, ICS1(G) is neither
9620 // better nor worse than ICS1(F).
9621 unsigned StartArg = 0;
9622 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9623 StartArg = 1;
9624
9625 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9626 // We don't allow incompatible pointer conversions in C++.
9627 if (!S.getLangOpts().CPlusPlus)
9628 return ICS.isStandard() &&
9629 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9630
9631 // The only ill-formed conversion we allow in C++ is the string literal to
9632 // char* conversion, which is only considered ill-formed after C++11.
9633 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9634 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9635 };
9636
9637 // Define functions that don't require ill-formed conversions for a given
9638 // argument to be better candidates than functions that do.
9639 unsigned NumArgs = Cand1.Conversions.size();
9640 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((void)0);
9641 bool HasBetterConversion = false;
9642 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9643 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9644 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9645 if (Cand1Bad != Cand2Bad) {
9646 if (Cand1Bad)
9647 return false;
9648 HasBetterConversion = true;
9649 }
9650 }
9651
9652 if (HasBetterConversion)
9653 return true;
9654
9655 // C++ [over.match.best]p1:
9656 // A viable function F1 is defined to be a better function than another
9657 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9658 // conversion sequence than ICSi(F2), and then...
9659 bool HasWorseConversion = false;
9660 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9661 switch (CompareImplicitConversionSequences(S, Loc,
9662 Cand1.Conversions[ArgIdx],
9663 Cand2.Conversions[ArgIdx])) {
9664 case ImplicitConversionSequence::Better:
9665 // Cand1 has a better conversion sequence.
9666 HasBetterConversion = true;
9667 break;
9668
9669 case ImplicitConversionSequence::Worse:
9670 if (Cand1.Function && Cand2.Function &&
9671 Cand1.isReversed() != Cand2.isReversed() &&
9672 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9673 NumArgs)) {
9674 // Work around large-scale breakage caused by considering reversed
9675 // forms of operator== in C++20:
9676 //
9677 // When comparing a function against a reversed function with the same
9678 // parameter types, if we have a better conversion for one argument and
9679 // a worse conversion for the other, the implicit conversion sequences
9680 // are treated as being equally good.
9681 //
9682 // This prevents a comparison function from being considered ambiguous
9683 // with a reversed form that is written in the same way.
9684 //
9685 // We diagnose this as an extension from CreateOverloadedBinOp.
9686 HasWorseConversion = true;
9687 break;
9688 }
9689
9690 // Cand1 can't be better than Cand2.
9691 return false;
9692
9693 case ImplicitConversionSequence::Indistinguishable:
9694 // Do nothing.
9695 break;
9696 }
9697 }
9698
9699 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9700 // ICSj(F2), or, if not that,
9701 if (HasBetterConversion && !HasWorseConversion)
9702 return true;
9703
9704 // -- the context is an initialization by user-defined conversion
9705 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9706 // from the return type of F1 to the destination type (i.e.,
9707 // the type of the entity being initialized) is a better
9708 // conversion sequence than the standard conversion sequence
9709 // from the return type of F2 to the destination type.
9710 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9711 Cand1.Function && Cand2.Function &&
9712 isa<CXXConversionDecl>(Cand1.Function) &&
9713 isa<CXXConversionDecl>(Cand2.Function)) {
9714 // First check whether we prefer one of the conversion functions over the
9715 // other. This only distinguishes the results in non-standard, extension
9716 // cases such as the conversion from a lambda closure type to a function
9717 // pointer or block.
9718 ImplicitConversionSequence::CompareKind Result =
9719 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9720 if (Result == ImplicitConversionSequence::Indistinguishable)
9721 Result = CompareStandardConversionSequences(S, Loc,
9722 Cand1.FinalConversion,
9723 Cand2.FinalConversion);
9724
9725 if (Result != ImplicitConversionSequence::Indistinguishable)
9726 return Result == ImplicitConversionSequence::Better;
9727
9728 // FIXME: Compare kind of reference binding if conversion functions
9729 // convert to a reference type used in direct reference binding, per
9730 // C++14 [over.match.best]p1 section 2 bullet 3.
9731 }
9732
9733 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9734 // as combined with the resolution to CWG issue 243.
9735 //
9736 // When the context is initialization by constructor ([over.match.ctor] or
9737 // either phase of [over.match.list]), a constructor is preferred over
9738 // a conversion function.
9739 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9740 Cand1.Function && Cand2.Function &&
9741 isa<CXXConstructorDecl>(Cand1.Function) !=
9742 isa<CXXConstructorDecl>(Cand2.Function))
9743 return isa<CXXConstructorDecl>(Cand1.Function);
9744
9745 // -- F1 is a non-template function and F2 is a function template
9746 // specialization, or, if not that,
9747 bool Cand1IsSpecialization = Cand1.Function &&
9748 Cand1.Function->getPrimaryTemplate();
9749 bool Cand2IsSpecialization = Cand2.Function &&
9750 Cand2.Function->getPrimaryTemplate();
9751 if (Cand1IsSpecialization != Cand2IsSpecialization)
9752 return Cand2IsSpecialization;
9753
9754 // -- F1 and F2 are function template specializations, and the function
9755 // template for F1 is more specialized than the template for F2
9756 // according to the partial ordering rules described in 14.5.5.2, or,
9757 // if not that,
9758 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9759 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9760 Cand1.Function->getPrimaryTemplate(),
9761 Cand2.Function->getPrimaryTemplate(), Loc,
9762 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9763 : TPOC_Call,
9764 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9765 Cand1.isReversed() ^ Cand2.isReversed()))
9766 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9767 }
9768
9769 // -— F1 and F2 are non-template functions with the same
9770 // parameter-type-lists, and F1 is more constrained than F2 [...],
9771 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9772 !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9773 Cand2.Function->hasPrototype()) {
9774 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9775 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9776 if (PT1->getNumParams() == PT2->getNumParams() &&
9777 PT1->isVariadic() == PT2->isVariadic() &&
9778 S.FunctionParamTypesAreEqual(PT1, PT2)) {
9779 Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9780 Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9781 if (RC1 && RC2) {
9782 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9783 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9784 {RC2}, AtLeastAsConstrained1) ||
9785 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9786 {RC1}, AtLeastAsConstrained2))
9787 return false;
9788 if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9789 return AtLeastAsConstrained1;
9790 } else if (RC1 || RC2) {
9791 return RC1 != nullptr;
9792 }
9793 }
9794 }
9795
9796 // -- F1 is a constructor for a class D, F2 is a constructor for a base
9797 // class B of D, and for all arguments the corresponding parameters of
9798 // F1 and F2 have the same type.
9799 // FIXME: Implement the "all parameters have the same type" check.
9800 bool Cand1IsInherited =
9801 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9802 bool Cand2IsInherited =
9803 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9804 if (Cand1IsInherited != Cand2IsInherited)
9805 return Cand2IsInherited;
9806 else if (Cand1IsInherited) {
9807 assert(Cand2IsInherited)((void)0);
9808 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9809 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9810 if (Cand1Class->isDerivedFrom(Cand2Class))
9811 return true;
9812 if (Cand2Class->isDerivedFrom(Cand1Class))
9813 return false;
9814 // Inherited from sibling base classes: still ambiguous.
9815 }
9816
9817 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9818 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9819 // with reversed order of parameters and F1 is not
9820 //
9821 // We rank reversed + different operator as worse than just reversed, but
9822 // that comparison can never happen, because we only consider reversing for
9823 // the maximally-rewritten operator (== or <=>).
9824 if (Cand1.RewriteKind != Cand2.RewriteKind)
9825 return Cand1.RewriteKind < Cand2.RewriteKind;
9826
9827 // Check C++17 tie-breakers for deduction guides.
9828 {
9829 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9830 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9831 if (Guide1 && Guide2) {
9832 // -- F1 is generated from a deduction-guide and F2 is not
9833 if (Guide1->isImplicit() != Guide2->isImplicit())
9834 return Guide2->isImplicit();
9835
9836 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9837 if (Guide1->isCopyDeductionCandidate())
9838 return true;
9839 }
9840 }
9841
9842 // Check for enable_if value-based overload resolution.
9843 if (Cand1.Function && Cand2.Function) {
9844 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9845 if (Cmp != Comparison::Equal)
9846 return Cmp == Comparison::Better;
9847 }
9848
9849 bool HasPS1 = Cand1.Function != nullptr &&
9850 functionHasPassObjectSizeParams(Cand1.Function);
9851 bool HasPS2 = Cand2.Function != nullptr &&
9852 functionHasPassObjectSizeParams(Cand2.Function);
9853 if (HasPS1 != HasPS2 && HasPS1)
9854 return true;
9855
9856 auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
9857 if (MV == Comparison::Better)
9858 return true;
9859 if (MV == Comparison::Worse)
9860 return false;
9861
9862 // If other rules cannot determine which is better, CUDA preference is used
9863 // to determine which is better.
9864 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9865 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9866 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9867 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9868 }
9869
9870 // General member function overloading is handled above, so this only handles
9871 // constructors with address spaces.
9872 // This only handles address spaces since C++ has no other
9873 // qualifier that can be used with constructors.
9874 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
9875 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
9876 if (CD1 && CD2) {
9877 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
9878 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
9879 if (AS1 != AS2) {
9880 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9881 return true;
9882 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9883 return false;
9884 }
9885 }
9886
9887 return false;
9888}
9889
9890/// Determine whether two declarations are "equivalent" for the purposes of
9891/// name lookup and overload resolution. This applies when the same internal/no
9892/// linkage entity is defined by two modules (probably by textually including
9893/// the same header). In such a case, we don't consider the declarations to
9894/// declare the same entity, but we also don't want lookups with both
9895/// declarations visible to be ambiguous in some cases (this happens when using
9896/// a modularized libstdc++).
9897bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9898 const NamedDecl *B) {
9899 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9900 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9901 if (!VA || !VB)
9902 return false;
9903
9904 // The declarations must be declaring the same name as an internal linkage
9905 // entity in different modules.
9906 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9907 VB->getDeclContext()->getRedeclContext()) ||
9908 getOwningModule(VA) == getOwningModule(VB) ||
9909 VA->isExternallyVisible() || VB->isExternallyVisible())
9910 return false;
9911
9912 // Check that the declarations appear to be equivalent.
9913 //
9914 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9915 // For constants and functions, we should check the initializer or body is
9916 // the same. For non-constant variables, we shouldn't allow it at all.
9917 if (Context.hasSameType(VA->getType(), VB->getType()))
9918 return true;
9919
9920 // Enum constants within unnamed enumerations will have different types, but
9921 // may still be similar enough to be interchangeable for our purposes.
9922 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9923 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9924 // Only handle anonymous enums. If the enumerations were named and
9925 // equivalent, they would have been merged to the same type.
9926 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9927 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9928 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9929 !Context.hasSameType(EnumA->getIntegerType(),
9930 EnumB->getIntegerType()))
9931 return false;
9932 // Allow this only if the value is the same for both enumerators.
9933 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9934 }
9935 }
9936
9937 // Nothing else is sufficiently similar.
9938 return false;
9939}
9940
9941void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9942 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9943 assert(D && "Unknown declaration")((void)0);
9944 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9945
9946 Module *M = getOwningModule(D);
32
Passing null pointer value via 1st parameter 'Entity'
33
Calling 'Sema::getOwningModule'
9947 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9948 << !M << (M ? M->getFullModuleName() : "");
9949
9950 for (auto *E : Equiv) {
9951 Module *M = getOwningModule(E);
9952 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9953 << !M << (M ? M->getFullModuleName() : "");
9954 }
9955}
9956
9957/// Computes the best viable function (C++ 13.3.3)
9958/// within an overload candidate set.
9959///
9960/// \param Loc The location of the function name (or operator symbol) for
9961/// which overload resolution occurs.
9962///
9963/// \param Best If overload resolution was successful or found a deleted
9964/// function, \p Best points to the candidate function found.
9965///
9966/// \returns The result of overload resolution.
9967OverloadingResult
9968OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9969 iterator &Best) {
9970 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9971 std::transform(begin(), end(), std::back_inserter(Candidates),
9972 [](OverloadCandidate &Cand) { return &Cand; });
9973
9974 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9975 // are accepted by both clang and NVCC. However, during a particular
9976 // compilation mode only one call variant is viable. We need to
9977 // exclude non-viable overload candidates from consideration based
9978 // only on their host/device attributes. Specifically, if one
9979 // candidate call is WrongSide and the other is SameSide, we ignore
9980 // the WrongSide candidate.
9981 // We only need to remove wrong-sided candidates here if
9982 // -fgpu-exclude-wrong-side-overloads is off. When
9983 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
9984 // uniformly in isBetterOverloadCandidate.
9985 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
16
Assuming field 'CUDA' is 0
9986 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9987 bool ContainsSameSideCandidate =
9988 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9989 // Check viable function only.
9990 return Cand->Viable && Cand->Function &&
9991 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9992 Sema::CFP_SameSide;
9993 });
9994 if (ContainsSameSideCandidate) {
9995 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9996 // Check viable function only to avoid unnecessary data copying/moving.
9997 return Cand->Viable && Cand->Function &&
9998 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9999 Sema::CFP_WrongSide;
10000 };
10001 llvm::erase_if(Candidates, IsWrongSideCandidate);
10002 }
10003 }
10004
10005 // Find the best viable function.
10006 Best = end();
10007 for (auto *Cand : Candidates) {
17
Assuming '__begin1' is equal to '__end1'
10008 Cand->Best = false;
10009 if (Cand->Viable)
10010 if (Best == end() ||
10011 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10012 Best = Cand;
10013 }
10014
10015 // If we didn't find any viable functions, abort.
10016 if (Best == end())
18
Assuming the condition is false
19
Taking false branch
10017 return OR_No_Viable_Function;
10018
10019 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10020
10021 llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10022 PendingBest.push_back(&*Best);
20
Value assigned to field 'Function'
10023 Best->Best = true;
10024
10025 // Make sure that this function is better than every other viable
10026 // function. If not, we have an ambiguity.
10027 while (!PendingBest.empty()) {
21
Loop condition is false. Execution continues on line 10045
10028 auto *Curr = PendingBest.pop_back_val();
10029 for (auto *Cand : Candidates) {
10030 if (Cand->Viable && !Cand->Best &&
10031 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10032 PendingBest.push_back(Cand);
10033 Cand->Best = true;
10034
10035 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10036 Curr->Function))
10037 EquivalentCands.push_back(Cand->Function);
10038 else
10039 Best = end();
10040 }
10041 }
10042 }
10043
10044 // If we found more than one best candidate, this is ambiguous.
10045 if (Best == end())
22
Assuming the condition is false
23
Taking false branch
10046 return OR_Ambiguous;
10047
10048 // Best is the best viable function.
10049 if (Best->Function && Best->Function->isDeleted())
24
Assuming field 'Function' is null
10050 return OR_Deleted;
10051
10052 if (!EquivalentCands.empty())
25
Calling 'SmallVectorBase::empty'
28
Returning from 'SmallVectorBase::empty'
29
Taking true branch
10053 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
30
Passing null pointer value via 2nd parameter 'D'
31
Calling 'Sema::diagnoseEquivalentInternalLinkageDeclarations'
10054 EquivalentCands);
10055
10056 return OR_Success;
10057}
10058
10059namespace {
10060
10061enum OverloadCandidateKind {
10062 oc_function,
10063 oc_method,
10064 oc_reversed_binary_operator,
10065 oc_constructor,
10066 oc_implicit_default_constructor,
10067 oc_implicit_copy_constructor,
10068 oc_implicit_move_constructor,
10069 oc_implicit_copy_assignment,
10070 oc_implicit_move_assignment,
10071 oc_implicit_equality_comparison,
10072 oc_inherited_constructor
10073};
10074
10075enum OverloadCandidateSelect {
10076 ocs_non_template,
10077 ocs_template,
10078 ocs_described_template,
10079};
10080
10081static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
10082ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10083 OverloadCandidateRewriteKind CRK,
10084 std::string &Description) {
10085
10086 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10087 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10088 isTemplate = true;
10089 Description = S.getTemplateArgumentBindingsText(
10090 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10091 }
10092
10093 OverloadCandidateSelect Select = [&]() {
10094 if (!Description.empty())
10095 return ocs_described_template;
10096 return isTemplate ? ocs_template : ocs_non_template;
10097 }();
10098
10099 OverloadCandidateKind Kind = [&]() {
10100 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10101 return oc_implicit_equality_comparison;
10102
10103 if (CRK & CRK_Reversed)
10104 return oc_reversed_binary_operator;
10105
10106 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10107 if (!Ctor->isImplicit()) {
10108 if (isa<ConstructorUsingShadowDecl>(Found))
10109 return oc_inherited_constructor;
10110 else
10111 return oc_constructor;
10112 }
10113
10114 if (Ctor->isDefaultConstructor())
10115 return oc_implicit_default_constructor;
10116
10117 if (Ctor->isMoveConstructor())
10118 return oc_implicit_move_constructor;
10119
10120 assert(Ctor->isCopyConstructor() &&((void)0)
10121 "unexpected sort of implicit constructor")((void)0);
10122 return oc_implicit_copy_constructor;
10123 }
10124
10125 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10126 // This actually gets spelled 'candidate function' for now, but
10127 // it doesn't hurt to split it out.
10128 if (!Meth->isImplicit())
10129 return oc_method;
10130
10131 if (Meth->isMoveAssignmentOperator())
10132 return oc_implicit_move_assignment;
10133
10134 if (Meth->isCopyAssignmentOperator())
10135 return oc_implicit_copy_assignment;
10136
10137 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((void)0);
10138 return oc_method;
10139 }
10140
10141 return oc_function;
10142 }();
10143
10144 return std::make_pair(Kind, Select);
10145}
10146
10147void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10148 // FIXME: It'd be nice to only emit a note once per using-decl per overload
10149 // set.
10150 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10151 S.Diag(FoundDecl->getLocation(),
10152 diag::note_ovl_candidate_inherited_constructor)
10153 << Shadow->getNominatedBaseClass();
10154}
10155
10156} // end anonymous namespace
10157
10158static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10159 const FunctionDecl *FD) {
10160 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10161 bool AlwaysTrue;
10162 if (EnableIf->getCond()->isValueDependent() ||
10163 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10164 return false;
10165 if (!AlwaysTrue)
10166 return false;
10167 }
10168 return true;
10169}
10170
10171/// Returns true if we can take the address of the function.
10172///
10173/// \param Complain - If true, we'll emit a diagnostic
10174/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10175/// we in overload resolution?
10176/// \param Loc - The location of the statement we're complaining about. Ignored
10177/// if we're not complaining, or if we're in overload resolution.
10178static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10179 bool Complain,
10180 bool InOverloadResolution,
10181 SourceLocation Loc) {
10182 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10183 if (Complain) {
10184 if (InOverloadResolution)
10185 S.Diag(FD->getBeginLoc(),
10186 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10187 else
10188 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10189 }
10190 return false;
10191 }
10192
10193 if (FD->getTrailingRequiresClause()) {
10194 ConstraintSatisfaction Satisfaction;
10195 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10196 return false;
10197 if (!Satisfaction.IsSatisfied) {
10198 if (Complain) {
10199 if (InOverloadResolution)
10200 S.Diag(FD->getBeginLoc(),
10201 diag::note_ovl_candidate_unsatisfied_constraints);
10202 else
10203 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10204 << FD;
10205 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10206 }
10207 return false;
10208 }
10209 }
10210
10211 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10212 return P->hasAttr<PassObjectSizeAttr>();
10213 });
10214 if (I == FD->param_end())
10215 return true;
10216
10217 if (Complain) {
10218 // Add one to ParamNo because it's user-facing
10219 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10220 if (InOverloadResolution)
10221 S.Diag(FD->getLocation(),
10222 diag::note_ovl_candidate_has_pass_object_size_params)
10223 << ParamNo;
10224 else
10225 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10226 << FD << ParamNo;
10227 }
10228 return false;
10229}
10230
10231static bool checkAddressOfCandidateIsAvailable(Sema &S,
10232 const FunctionDecl *FD) {
10233 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10234 /*InOverloadResolution=*/true,
10235 /*Loc=*/SourceLocation());
10236}
10237
10238bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10239 bool Complain,
10240 SourceLocation Loc) {
10241 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10242 /*InOverloadResolution=*/false,
10243 Loc);
10244}
10245
10246// Don't print candidates other than the one that matches the calling
10247// convention of the call operator, since that is guaranteed to exist.
10248static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10249 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10250
10251 if (!ConvD)
10252 return false;
10253 const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10254 if (!RD->isLambda())
10255 return false;
10256
10257 CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10258 CallingConv CallOpCC =
10259 CallOp->getType()->castAs<FunctionType>()->getCallConv();
10260 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10261 CallingConv ConvToCC =
10262 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10263
10264 return ConvToCC != CallOpCC;
10265}
10266
10267// Notes the location of an overload candidate.
10268void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10269 OverloadCandidateRewriteKind RewriteKind,
10270 QualType DestType, bool TakingAddress) {
10271 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10272 return;
10273 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10274 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10275 return;
10276 if (shouldSkipNotingLambdaConversionDecl(Fn))
10277 return;
10278
10279 std::string FnDesc;
10280 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10281 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10282 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10283 << (unsigned)KSPair.first << (unsigned)KSPair.second
10284 << Fn << FnDesc;
10285
10286 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10287 Diag(Fn->getLocation(), PD);
10288 MaybeEmitInheritedConstructorNote(*this, Found);
10289}
10290
10291static void
10292MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10293 // Perhaps the ambiguity was caused by two atomic constraints that are
10294 // 'identical' but not equivalent:
10295 //
10296 // void foo() requires (sizeof(T) > 4) { } // #1
10297 // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10298 //
10299 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10300 // #2 to subsume #1, but these constraint are not considered equivalent
10301 // according to the subsumption rules because they are not the same
10302 // source-level construct. This behavior is quite confusing and we should try
10303 // to help the user figure out what happened.
10304
10305 SmallVector<const Expr *, 3> FirstAC, SecondAC;
10306 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10307 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10308 if (!I->Function)
10309 continue;
10310 SmallVector<const Expr *, 3> AC;
10311 if (auto *Template = I->Function->getPrimaryTemplate())
10312 Template->getAssociatedConstraints(AC);
10313 else
10314 I->Function->getAssociatedConstraints(AC);
10315 if (AC.empty())
10316 continue;
10317 if (FirstCand == nullptr) {
10318 FirstCand = I->Function;
10319 FirstAC = AC;
10320 } else if (SecondCand == nullptr) {
10321 SecondCand = I->Function;
10322 SecondAC = AC;
10323 } else {
10324 // We have more than one pair of constrained functions - this check is
10325 // expensive and we'd rather not try to diagnose it.
10326 return;
10327 }
10328 }
10329 if (!SecondCand)
10330 return;
10331 // The diagnostic can only happen if there are associated constraints on
10332 // both sides (there needs to be some identical atomic constraint).
10333 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10334 SecondCand, SecondAC))
10335 // Just show the user one diagnostic, they'll probably figure it out
10336 // from here.
10337 return;
10338}
10339
10340// Notes the location of all overload candidates designated through
10341// OverloadedExpr
10342void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10343 bool TakingAddress) {
10344 assert(OverloadedExpr->getType() == Context.OverloadTy)((void)0);
10345
10346 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10347 OverloadExpr *OvlExpr = Ovl.Expression;
10348
10349 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10350 IEnd = OvlExpr->decls_end();
10351 I != IEnd; ++I) {
10352 if (FunctionTemplateDecl *FunTmpl =
10353 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10354 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10355 TakingAddress);
10356 } else if (FunctionDecl *Fun
10357 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10358 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10359 }
10360 }
10361}
10362
10363/// Diagnoses an ambiguous conversion. The partial diagnostic is the
10364/// "lead" diagnostic; it will be given two arguments, the source and
10365/// target types of the conversion.
10366void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10367 Sema &S,
10368 SourceLocation CaretLoc,
10369 const PartialDiagnostic &PDiag) const {
10370 S.Diag(CaretLoc, PDiag)
10371 << Ambiguous.getFromType() << Ambiguous.getToType();
10372 unsigned CandsShown = 0;
10373 AmbiguousConversionSequence::const_iterator I, E;
10374 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10375 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10376 break;
10377 ++CandsShown;
10378 S.NoteOverloadCandidate(I->first, I->second);
10379 }
10380 S.Diags.overloadCandidatesShown(CandsShown);
10381 if (I != E)
10382 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10383}
10384
10385static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10386 unsigned I, bool TakingCandidateAddress) {
10387 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10388 assert(Conv.isBad())((void)0);
10389 assert(Cand->Function && "for now, candidate must be a function")((void)0);
10390 FunctionDecl *Fn = Cand->Function;
10391
10392 // There's a conversion slot for the object argument if this is a
10393 // non-constructor method. Note that 'I' corresponds the
10394 // conversion-slot index.
10395 bool isObjectArgument = false;
10396 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10397 if (I == 0)
10398 isObjectArgument = true;
10399 else
10400 I--;
10401 }
10402
10403 std::string FnDesc;
10404 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10405 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10406 FnDesc);
10407
10408 Expr *FromExpr = Conv.Bad.FromExpr;
10409 QualType FromTy = Conv.Bad.getFromType();
10410 QualType ToTy = Conv.Bad.getToType();
10411
10412 if (FromTy == S.Context.OverloadTy) {
10413 assert(FromExpr && "overload set argument came from implicit argument?")((void)0);
10414 Expr *E = FromExpr->IgnoreParens();
10415 if (isa<UnaryOperator>(E))
10416 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10417 DeclarationName Name = cast<OverloadExpr>(E)->getName();
10418
10419 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10420 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10421 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10422 << Name << I + 1;
10423 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10424 return;
10425 }
10426
10427 // Do some hand-waving analysis to see if the non-viability is due
10428 // to a qualifier mismatch.
10429 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10430 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10431 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10432 CToTy = RT->getPointeeType();
10433 else {
10434 // TODO: detect and diagnose the full richness of const mismatches.
10435 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10436 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10437 CFromTy = FromPT->getPointeeType();
10438 CToTy = ToPT->getPointeeType();
10439 }
10440 }
10441
10442 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10443 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10444 Qualifiers FromQs = CFromTy.getQualifiers();
10445 Qualifiers ToQs = CToTy.getQualifiers();
10446
10447 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10448 if (isObjectArgument)
10449 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10450 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10451 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10452 << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10453 else
10454 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10455 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10456 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10457 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10458 << ToTy->isReferenceType() << I + 1;
10459 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10460 return;
10461 }
10462
10463 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10464 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10465 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10466 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10467 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10468 << (unsigned)isObjectArgument << I + 1;
10469 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10470 return;
10471 }
10472
10473 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10474 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10475 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10476 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10477 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10478 << (unsigned)isObjectArgument << I + 1;
10479 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10480 return;
10481 }
10482
10483 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10484 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10485 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10486 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10487 << FromQs.hasUnaligned() << I + 1;
10488 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10489 return;
10490 }
10491
10492 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10493 assert(CVR && "expected qualifiers mismatch")((void)0);
10494
10495 if (isObjectArgument) {
10496 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10497 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10498 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10499 << (CVR - 1);
10500 } else {
10501 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10502 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10503 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10504 << (CVR - 1) << I + 1;
10505 }
10506 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10507 return;
10508 }
10509
10510 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10511 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10512 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10513 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10514 << (unsigned)isObjectArgument << I + 1
10515 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10516 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10517 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10518 return;
10519 }
10520
10521 // Special diagnostic for failure to convert an initializer list, since
10522 // telling the user that it has type void is not useful.
10523 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10524 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10525 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10526 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10527 << ToTy << (unsigned)isObjectArgument << I + 1;
10528 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10529 return;
10530 }
10531
10532 // Diagnose references or pointers to incomplete types differently,
10533 // since it's far from impossible that the incompleteness triggered
10534 // the failure.
10535 QualType TempFromTy = FromTy.getNonReferenceType();
10536 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10537 TempFromTy = PTy->getPointeeType();
10538 if (TempFromTy->isIncompleteType()) {
10539 // Emit the generic diagnostic and, optionally, add the hints to it.
10540 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10541 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10542 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10543 << ToTy << (unsigned)isObjectArgument << I + 1
10544 << (unsigned)(Cand->Fix.Kind);
10545
10546 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10547 return;
10548 }
10549
10550 // Diagnose base -> derived pointer conversions.
10551 unsigned BaseToDerivedConversion = 0;
10552 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10553 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10554 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10555 FromPtrTy->getPointeeType()) &&
10556 !FromPtrTy->getPointeeType()->isIncompleteType() &&
10557 !ToPtrTy->getPointeeType()->isIncompleteType() &&
10558 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10559 FromPtrTy->getPointeeType()))
10560 BaseToDerivedConversion = 1;
10561 }
10562 } else if (const ObjCObjectPointerType *FromPtrTy
10563 = FromTy->getAs<ObjCObjectPointerType>()) {
10564 if (const ObjCObjectPointerType *ToPtrTy
10565 = ToTy->getAs<ObjCObjectPointerType>())
10566 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10567 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10568 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10569 FromPtrTy->getPointeeType()) &&
10570 FromIface->isSuperClassOf(ToIface))
10571 BaseToDerivedConversion = 2;
10572 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10573 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10574 !FromTy->isIncompleteType() &&
10575 !ToRefTy->getPointeeType()->isIncompleteType() &&
10576 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10577 BaseToDerivedConversion = 3;
10578 }
10579 }
10580
10581 if (BaseToDerivedConversion) {
10582 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10583 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10584 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10585 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10586 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10587 return;
10588 }
10589
10590 if (isa<ObjCObjectPointerType>(CFromTy) &&
10591 isa<PointerType>(CToTy)) {
10592 Qualifiers FromQs = CFromTy.getQualifiers();
10593 Qualifiers ToQs = CToTy.getQualifiers();
10594 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10595 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10596 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10597 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10598 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10599 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10600 return;
10601 }
10602 }
10603
10604 if (TakingCandidateAddress &&
10605 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10606 return;
10607
10608 // Emit the generic diagnostic and, optionally, add the hints to it.
10609 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10610 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10611 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10612 << ToTy << (unsigned)isObjectArgument << I + 1
10613 << (unsigned)(Cand->Fix.Kind);
10614
10615 // If we can fix the conversion, suggest the FixIts.
10616 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10617 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10618 FDiag << *HI;
10619 S.Diag(Fn->getLocation(), FDiag);
10620
10621 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10622}
10623
10624/// Additional arity mismatch diagnosis specific to a function overload
10625/// candidates. This is not covered by the more general DiagnoseArityMismatch()
10626/// over a candidate in any candidate set.
10627static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10628 unsigned NumArgs) {
10629 FunctionDecl *Fn = Cand->Function;
10630 unsigned MinParams = Fn->getMinRequiredArguments();
10631
10632 // With invalid overloaded operators, it's possible that we think we
10633 // have an arity mismatch when in fact it looks like we have the
10634 // right number of arguments, because only overloaded operators have
10635 // the weird behavior of overloading member and non-member functions.
10636 // Just don't report anything.
10637 if (Fn->isInvalidDecl() &&
10638 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10639 return true;
10640
10641 if (NumArgs < MinParams) {
10642 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||((void)0)
10643 (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0)
10644 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))((void)0);
10645 } else {
10646 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||((void)0)
10647 (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0)
10648 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))((void)0);
10649 }
10650
10651 return false;
10652}
10653
10654/// General arity mismatch diagnosis over a candidate in a candidate set.
10655static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10656 unsigned NumFormalArgs) {
10657 assert(isa<FunctionDecl>(D) &&((void)0)
10658 "The templated declaration should at least be a function"((void)0)
10659 " when diagnosing bad template argument deduction due to too many"((void)0)
10660 " or too few arguments")((void)0);
10661
10662 FunctionDecl *Fn = cast<FunctionDecl>(D);
10663
10664 // TODO: treat calls to a missing default constructor as a special case
10665 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10666 unsigned MinParams = Fn->getMinRequiredArguments();
10667
10668 // at least / at most / exactly
10669 unsigned mode, modeCount;
10670 if (NumFormalArgs < MinParams) {
10671 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10672 FnTy->isTemplateVariadic())
10673 mode = 0; // "at least"
10674 else
10675 mode = 2; // "exactly"
10676 modeCount = MinParams;
10677 } else {
10678 if (MinParams != FnTy->getNumParams())
10679 mode = 1; // "at most"
10680 else
10681 mode = 2; // "exactly"
10682 modeCount = FnTy->getNumParams();
10683 }
10684
10685 std::string Description;
10686 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10687 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10688
10689 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10690 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10691 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10692 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10693 else
10694 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10695 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10696 << Description << mode << modeCount << NumFormalArgs;
10697
10698 MaybeEmitInheritedConstructorNote(S, Found);
10699}
10700
10701/// Arity mismatch diagnosis specific to a function overload candidate.
10702static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10703 unsigned NumFormalArgs) {
10704 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10705 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10706}
10707
10708static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10709 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10710 return TD;
10711 llvm_unreachable("Unsupported: Getting the described template declaration"__builtin_unreachable()
10712 " for bad deduction diagnosis")__builtin_unreachable();
10713}
10714
10715/// Diagnose a failed template-argument deduction.
10716static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10717 DeductionFailureInfo &DeductionFailure,
10718 unsigned NumArgs,
10719 bool TakingCandidateAddress) {
10720 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10721 NamedDecl *ParamD;
10722 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10723 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10724 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10725 switch (DeductionFailure.Result) {
10726 case Sema::TDK_Success:
10727 llvm_unreachable("TDK_success while diagnosing bad deduction")__builtin_unreachable();
10728
10729 case Sema::TDK_Incomplete: {
10730 assert(ParamD && "no parameter found for incomplete deduction result")((void)0);
10731 S.Diag(Templated->getLocation(),
10732 diag::note_ovl_candidate_incomplete_deduction)
10733 << ParamD->getDeclName();
10734 MaybeEmitInheritedConstructorNote(S, Found);
10735 return;
10736 }
10737
10738 case Sema::TDK_IncompletePack: {
10739 assert(ParamD && "no parameter found for incomplete deduction result")((void)0);
10740 S.Diag(Templated->getLocation(),
10741 diag::note_ovl_candidate_incomplete_deduction_pack)
10742 << ParamD->getDeclName()
10743 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10744 << *DeductionFailure.getFirstArg();
10745 MaybeEmitInheritedConstructorNote(S, Found);
10746 return;
10747 }
10748
10749 case Sema::TDK_Underqualified: {
10750 assert(ParamD && "no parameter found for bad qualifiers deduction result")((void)0);
10751 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10752
10753 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10754
10755 // Param will have been canonicalized, but it should just be a
10756 // qualified version of ParamD, so move the qualifiers to that.
10757 QualifierCollector Qs;
10758 Qs.strip(Param);
10759 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10760 assert(S.Context.hasSameType(Param, NonCanonParam))((void)0);
10761
10762 // Arg has also been canonicalized, but there's nothing we can do
10763 // about that. It also doesn't matter as much, because it won't
10764 // have any template parameters in it (because deduction isn't
10765 // done on dependent types).
10766 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10767
10768 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10769 << ParamD->getDeclName() << Arg << NonCanonParam;
10770 MaybeEmitInheritedConstructorNote(S, Found);
10771 return;
10772 }
10773
10774 case Sema::TDK_Inconsistent: {
10775 assert(ParamD && "no parameter found for inconsistent deduction result")((void)0);
10776 int which = 0;
10777 if (isa<TemplateTypeParmDecl>(ParamD))
10778 which = 0;
10779 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10780 // Deduction might have failed because we deduced arguments of two
10781 // different types for a non-type template parameter.
10782 // FIXME: Use a different TDK value for this.
10783 QualType T1 =
10784 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10785 QualType T2 =
10786 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10787 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10788 S.Diag(Templated->getLocation(),
10789 diag::note_ovl_candidate_inconsistent_deduction_types)
10790 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10791 << *DeductionFailure.getSecondArg() << T2;
10792 MaybeEmitInheritedConstructorNote(S, Found);
10793 return;
10794 }
10795
10796 which = 1;
10797 } else {
10798 which = 2;
10799 }
10800
10801 // Tweak the diagnostic if the problem is that we deduced packs of
10802 // different arities. We'll print the actual packs anyway in case that
10803 // includes additional useful information.
10804 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10805 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10806 DeductionFailure.getFirstArg()->pack_size() !=
10807 DeductionFailure.getSecondArg()->pack_size()) {
10808 which = 3;
10809 }
10810
10811 S.Diag(Templated->getLocation(),
10812 diag::note_ovl_candidate_inconsistent_deduction)
10813 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10814 << *DeductionFailure.getSecondArg();
10815 MaybeEmitInheritedConstructorNote(S, Found);
10816 return;
10817 }
10818
10819 case Sema::TDK_InvalidExplicitArguments:
10820 assert(ParamD && "no parameter found for invalid explicit arguments")((void)0);
10821 if (ParamD->getDeclName())
10822 S.Diag(Templated->getLocation(),
10823 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10824 << ParamD->getDeclName();
10825 else {
10826 int index = 0;
10827 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10828 index = TTP->getIndex();
10829 else if (NonTypeTemplateParmDecl *NTTP
10830 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10831 index = NTTP->getIndex();
10832 else
10833 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10834 S.Diag(Templated->getLocation(),
10835 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10836 << (index + 1);
10837 }
10838 MaybeEmitInheritedConstructorNote(S, Found);
10839 return;
10840
10841 case Sema::TDK_ConstraintsNotSatisfied: {
10842 // Format the template argument list into the argument string.
10843 SmallString<128> TemplateArgString;
10844 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10845 TemplateArgString = " ";
10846 TemplateArgString += S.getTemplateArgumentBindingsText(
10847 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10848 if (TemplateArgString.size() == 1)
10849 TemplateArgString.clear();
10850 S.Diag(Templated->getLocation(),
10851 diag::note_ovl_candidate_unsatisfied_constraints)
10852 << TemplateArgString;
10853
10854 S.DiagnoseUnsatisfiedConstraint(
10855 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10856 return;
10857 }
10858 case Sema::TDK_TooManyArguments:
10859 case Sema::TDK_TooFewArguments:
10860 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10861 return;
10862
10863 case Sema::TDK_InstantiationDepth:
10864 S.Diag(Templated->getLocation(),
10865 diag::note_ovl_candidate_instantiation_depth);
10866 MaybeEmitInheritedConstructorNote(S, Found);
10867 return;
10868
10869 case Sema::TDK_SubstitutionFailure: {
10870 // Format the template argument list into the argument string.
10871 SmallString<128> TemplateArgString;
10872 if (TemplateArgumentList *Args =
10873 DeductionFailure.getTemplateArgumentList()) {
10874 TemplateArgString = " ";
10875 TemplateArgString += S.getTemplateArgumentBindingsText(
10876 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10877 if (TemplateArgString.size() == 1)
10878 TemplateArgString.clear();
10879 }
10880
10881 // If this candidate was disabled by enable_if, say so.
10882 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10883 if (PDiag && PDiag->second.getDiagID() ==
10884 diag::err_typename_nested_not_found_enable_if) {
10885 // FIXME: Use the source range of the condition, and the fully-qualified
10886 // name of the enable_if template. These are both present in PDiag.
10887 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10888 << "'enable_if'" << TemplateArgString;
10889 return;
10890 }
10891
10892 // We found a specific requirement that disabled the enable_if.
10893 if (PDiag && PDiag->second.getDiagID() ==
10894 diag::err_typename_nested_not_found_requirement) {
10895 S.Diag(Templated->getLocation(),
10896 diag::note_ovl_candidate_disabled_by_requirement)
10897 << PDiag->second.getStringArg(0) << TemplateArgString;
10898 return;
10899 }
10900
10901 // Format the SFINAE diagnostic into the argument string.
10902 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10903 // formatted message in another diagnostic.
10904 SmallString<128> SFINAEArgString;
10905 SourceRange R;
10906 if (PDiag) {
10907 SFINAEArgString = ": ";
10908 R = SourceRange(PDiag->first, PDiag->first);
10909 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10910 }
10911
10912 S.Diag(Templated->getLocation(),
10913 diag::note_ovl_candidate_substitution_failure)
10914 << TemplateArgString << SFINAEArgString << R;
10915 MaybeEmitInheritedConstructorNote(S, Found);
10916 return;
10917 }
10918
10919 case Sema::TDK_DeducedMismatch:
10920 case Sema::TDK_DeducedMismatchNested: {
10921 // Format the template argument list into the argument string.
10922 SmallString<128> TemplateArgString;
10923 if (TemplateArgumentList *Args =
10924 DeductionFailure.getTemplateArgumentList()) {
10925 TemplateArgString = " ";
10926 TemplateArgString += S.getTemplateArgumentBindingsText(
10927 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10928 if (TemplateArgString.size() == 1)
10929 TemplateArgString.clear();
10930 }
10931
10932 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10933 << (*DeductionFailure.getCallArgIndex() + 1)
10934 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10935 << TemplateArgString
10936 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10937 break;
10938 }
10939
10940 case Sema::TDK_NonDeducedMismatch: {
10941 // FIXME: Provide a source location to indicate what we couldn't match.
10942 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10943 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10944 if (FirstTA.getKind() == TemplateArgument::Template &&
10945 SecondTA.getKind() == TemplateArgument::Template) {
10946 TemplateName FirstTN = FirstTA.getAsTemplate();
10947 TemplateName SecondTN = SecondTA.getAsTemplate();
10948 if (FirstTN.getKind() == TemplateName::Template &&
10949 SecondTN.getKind() == TemplateName::Template) {
10950 if (FirstTN.getAsTemplateDecl()->getName() ==
10951 SecondTN.getAsTemplateDecl()->getName()) {
10952 // FIXME: This fixes a bad diagnostic where both templates are named
10953 // the same. This particular case is a bit difficult since:
10954 // 1) It is passed as a string to the diagnostic printer.
10955 // 2) The diagnostic printer only attempts to find a better
10956 // name for types, not decls.
10957 // Ideally, this should folded into the diagnostic printer.
10958 S.Diag(Templated->getLocation(),
10959 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10960 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10961 return;
10962 }
10963 }
10964 }
10965
10966 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10967 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10968 return;
10969
10970 // FIXME: For generic lambda parameters, check if the function is a lambda
10971 // call operator, and if so, emit a prettier and more informative
10972 // diagnostic that mentions 'auto' and lambda in addition to
10973 // (or instead of?) the canonical template type parameters.
10974 S.Diag(Templated->getLocation(),
10975 diag::note_ovl_candidate_non_deduced_mismatch)
10976 << FirstTA << SecondTA;
10977 return;
10978 }
10979 // TODO: diagnose these individually, then kill off
10980 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10981 case Sema::TDK_MiscellaneousDeductionFailure:
10982 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10983 MaybeEmitInheritedConstructorNote(S, Found);
10984 return;
10985 case Sema::TDK_CUDATargetMismatch:
10986 S.Diag(Templated->getLocation(),
10987 diag::note_cuda_ovl_candidate_target_mismatch);
10988 return;
10989 }
10990}
10991
10992/// Diagnose a failed template-argument deduction, for function calls.
10993static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10994 unsigned NumArgs,
10995 bool TakingCandidateAddress) {
10996 unsigned TDK = Cand->DeductionFailure.Result;
10997 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10998 if (CheckArityMismatch(S, Cand, NumArgs))
10999 return;
11000 }
11001 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11002 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11003}
11004
11005/// CUDA: diagnose an invalid call across targets.
11006static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11007 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
11008 FunctionDecl *Callee = Cand->Function;
11009
11010 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11011 CalleeTarget = S.IdentifyCUDATarget(Callee);
11012
11013 std::string FnDesc;
11014 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11015 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11016 Cand->getRewriteKind(), FnDesc);
11017
11018 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11019 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11020 << FnDesc /* Ignored */
11021 << CalleeTarget << CallerTarget;
11022
11023 // This could be an implicit constructor for which we could not infer the
11024 // target due to a collsion. Diagnose that case.
11025 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11026 if (Meth != nullptr && Meth->isImplicit()) {
11027 CXXRecordDecl *ParentClass = Meth->getParent();
11028 Sema::CXXSpecialMember CSM;
11029
11030 switch (FnKindPair.first) {
11031 default:
11032 return;
11033 case oc_implicit_default_constructor:
11034 CSM = Sema::CXXDefaultConstructor;
11035 break;
11036 case oc_implicit_copy_constructor:
11037 CSM = Sema::CXXCopyConstructor;
11038 break;
11039 case oc_implicit_move_constructor:
11040 CSM = Sema::CXXMoveConstructor;
11041 break;
11042 case oc_implicit_copy_assignment:
11043 CSM = Sema::CXXCopyAssignment;
11044 break;
11045 case oc_implicit_move_assignment:
11046 CSM = Sema::CXXMoveAssignment;
11047 break;
11048 };
11049
11050 bool ConstRHS = false;
11051 if (Meth->getNumParams()) {
11052 if (const ReferenceType *RT =
11053 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11054 ConstRHS = RT->getPointeeType().isConstQualified();
11055 }
11056 }
11057
11058 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11059 /* ConstRHS */ ConstRHS,
11060 /* Diagnose */ true);
11061 }
11062}
11063
11064static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11065 FunctionDecl *Callee = Cand->Function;
11066 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11067
11068 S.Diag(Callee->getLocation(),
11069 diag::note_ovl_candidate_disabled_by_function_cond_attr)
11070 << Attr->getCond()->getSourceRange() << Attr->getMessage();
11071}
11072
11073static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11074 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11075 assert(ES.isExplicit() && "not an explicit candidate")((void)0);
11076
11077 unsigned Kind;
11078 switch (Cand->Function->getDeclKind()) {
11079 case Decl::Kind::CXXConstructor:
11080 Kind = 0;
11081 break;
11082 case Decl::Kind::CXXConversion:
11083 Kind = 1;
11084 break;
11085 case Decl::Kind::CXXDeductionGuide:
11086 Kind = Cand->Function->isImplicit() ? 0 : 2;
11087 break;
11088 default:
11089 llvm_unreachable("invalid Decl")__builtin_unreachable();
11090 }
11091
11092 // Note the location of the first (in-class) declaration; a redeclaration
11093 // (particularly an out-of-class definition) will typically lack the
11094 // 'explicit' specifier.
11095 // FIXME: This is probably a good thing to do for all 'candidate' notes.
11096 FunctionDecl *First = Cand->Function->getFirstDecl();
11097 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11098 First = Pattern->getFirstDecl();
11099
11100 S.Diag(First->getLocation(),
11101 diag::note_ovl_candidate_explicit)
11102 << Kind << (ES.getExpr() ? 1 : 0)
11103 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11104}
11105
11106/// Generates a 'note' diagnostic for an overload candidate. We've
11107/// already generated a primary error at the call site.
11108///
11109/// It really does need to be a single diagnostic with its caret
11110/// pointed at the candidate declaration. Yes, this creates some
11111/// major challenges of technical writing. Yes, this makes pointing
11112/// out problems with specific arguments quite awkward. It's still
11113/// better than generating twenty screens of text for every failed
11114/// overload.
11115///
11116/// It would be great to be able to express per-candidate problems
11117/// more richly for those diagnostic clients that cared, but we'd
11118/// still have to be just as careful with the default diagnostics.
11119/// \param CtorDestAS Addr space of object being constructed (for ctor
11120/// candidates only).
11121static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11122 unsigned NumArgs,
11123 bool TakingCandidateAddress,
11124 LangAS CtorDestAS = LangAS::Default) {
11125 FunctionDecl *Fn = Cand->Function;
11126 if (shouldSkipNotingLambdaConversionDecl(Fn))
11127 return;
11128
11129 // Note deleted candidates, but only if they're viable.
11130 if (Cand->Viable) {
11131 if (Fn->isDeleted()) {
11132 std::string FnDesc;
11133 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11134 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11135 Cand->getRewriteKind(), FnDesc);
11136
11137 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11138 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11139 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11140 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11141 return;
11142 }
11143
11144 // We don't really have anything else to say about viable candidates.
11145 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11146 return;
11147 }
11148
11149 switch (Cand->FailureKind) {
11150 case ovl_fail_too_many_arguments:
11151 case ovl_fail_too_few_arguments:
11152 return DiagnoseArityMismatch(S, Cand, NumArgs);
11153
11154 case ovl_fail_bad_deduction:
11155 return DiagnoseBadDeduction(S, Cand, NumArgs,
11156 TakingCandidateAddress);
11157
11158 case ovl_fail_illegal_constructor: {
11159 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11160 << (Fn->getPrimaryTemplate() ? 1 : 0);
11161 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11162 return;
11163 }
11164
11165 case ovl_fail_object_addrspace_mismatch: {
11166 Qualifiers QualsForPrinting;
11167 QualsForPrinting.setAddressSpace(CtorDestAS);
11168 S.Diag(Fn->getLocation(),
11169 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11170 << QualsForPrinting;
11171 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11172 return;
11173 }
11174
11175 case ovl_fail_trivial_conversion:
11176 case ovl_fail_bad_final_conversion:
11177 case ovl_fail_final_conversion_not_exact:
11178 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11179
11180 case ovl_fail_bad_conversion: {
11181 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11182 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11183 if (Cand->Conversions[I].isBad())
11184 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11185
11186 // FIXME: this currently happens when we're called from SemaInit
11187 // when user-conversion overload fails. Figure out how to handle
11188 // those conditions and diagnose them well.
11189 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11190 }
11191
11192 case ovl_fail_bad_target:
11193 return DiagnoseBadTarget(S, Cand);
11194
11195 case ovl_fail_enable_if:
11196 return DiagnoseFailedEnableIfAttr(S, Cand);
11197
11198 case ovl_fail_explicit:
11199 return DiagnoseFailedExplicitSpec(S, Cand);
11200
11201 case ovl_fail_inhctor_slice:
11202 // It's generally not interesting to note copy/move constructors here.
11203 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11204 return;
11205 S.Diag(Fn->getLocation(),
11206 diag::note_ovl_candidate_inherited_constructor_slice)
11207 << (Fn->getPrimaryTemplate() ? 1 : 0)
11208 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11209 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11210 return;
11211
11212 case ovl_fail_addr_not_available: {
11213 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11214 (void)Available;
11215 assert(!Available)((void)0);
11216 break;
11217 }
11218 case ovl_non_default_multiversion_function:
11219 // Do nothing, these should simply be ignored.
11220 break;
11221
11222 case ovl_fail_constraints_not_satisfied: {
11223 std::string FnDesc;
11224 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11225 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11226 Cand->getRewriteKind(), FnDesc);
11227
11228 S.Diag(Fn->getLocation(),
11229 diag::note_ovl_candidate_constraints_not_satisfied)
11230 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11231 << FnDesc /* Ignored */;
11232 ConstraintSatisfaction Satisfaction;
11233 if (S.CheckFunctionConstraints(Fn, Satisfaction))
11234 break;
11235 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11236 }
11237 }
11238}
11239
11240static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11241 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11242 return;
11243
11244 // Desugar the type of the surrogate down to a function type,
11245 // retaining as many typedefs as possible while still showing
11246 // the function type (and, therefore, its parameter types).
11247 QualType FnType = Cand->Surrogate->getConversionType();
11248 bool isLValueReference = false;
11249 bool isRValueReference = false;
11250 bool isPointer = false;
11251 if (const LValueReferenceType *FnTypeRef =
11252 FnType->getAs<LValueReferenceType>()) {
11253 FnType = FnTypeRef->getPointeeType();
11254 isLValueReference = true;
11255 } else if (const RValueReferenceType *FnTypeRef =
11256 FnType->getAs<RValueReferenceType>()) {
11257 FnType = FnTypeRef->getPointeeType();
11258 isRValueReference = true;
11259 }
11260 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11261 FnType = FnTypePtr->getPointeeType();
11262 isPointer = true;
11263 }
11264 // Desugar down to a function type.
11265 FnType = QualType(FnType->getAs<FunctionType>(), 0);
11266 // Reconstruct the pointer/reference as appropriate.
11267 if (isPointer) FnType = S.Context.getPointerType(FnType);
11268 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11269 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11270
11271 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11272 << FnType;
11273}
11274
11275static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11276 SourceLocation OpLoc,
11277 OverloadCandidate *Cand) {
11278 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((void)0);
11279 std::string TypeStr("operator");
11280 TypeStr += Opc;
11281 TypeStr += "(";
11282 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11283 if (Cand->Conversions.size() == 1) {
11284 TypeStr += ")";
11285 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11286 } else {
11287 TypeStr += ", ";
11288 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11289 TypeStr += ")";
11290 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11291 }
11292}
11293
11294static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11295 OverloadCandidate *Cand) {
11296 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11297 if (ICS.isBad()) break; // all meaningless after first invalid
11298 if (!ICS.isAmbiguous()) continue;
11299
11300 ICS.DiagnoseAmbiguousConversion(
11301 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11302 }
11303}
11304
11305static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11306 if (Cand->Function)
11307 return Cand->Function->getLocation();
11308 if (Cand->IsSurrogate)
11309 return Cand->Surrogate->getLocation();
11310 return SourceLocation();
11311}
11312
11313static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11314 switch ((Sema::TemplateDeductionResult)DFI.Result) {
11315 case Sema::TDK_Success:
11316 case Sema::TDK_NonDependentConversionFailure:
11317 llvm_unreachable("non-deduction failure while diagnosing bad deduction")__builtin_unreachable();
11318
11319 case Sema::TDK_Invalid:
11320 case Sema::TDK_Incomplete:
11321 case Sema::TDK_IncompletePack:
11322 return 1;
11323
11324 case Sema::TDK_Underqualified:
11325 case Sema::TDK_Inconsistent:
11326 return 2;
11327
11328 case Sema::TDK_SubstitutionFailure:
11329 case Sema::TDK_DeducedMismatch:
11330 case Sema::TDK_ConstraintsNotSatisfied:
11331 case Sema::TDK_DeducedMismatchNested:
11332 case Sema::TDK_NonDeducedMismatch:
11333 case Sema::TDK_MiscellaneousDeductionFailure:
11334 case Sema::TDK_CUDATargetMismatch:
11335 return 3;
11336
11337 case Sema::TDK_InstantiationDepth:
11338 return 4;
11339
11340 case Sema::TDK_InvalidExplicitArguments:
11341 return 5;
11342
11343 case Sema::TDK_TooManyArguments:
11344 case Sema::TDK_TooFewArguments:
11345 return 6;
11346 }
11347 llvm_unreachable("Unhandled deduction result")__builtin_unreachable();
11348}
11349
11350namespace {
11351struct CompareOverloadCandidatesForDisplay {
11352 Sema &S;
11353 SourceLocation Loc;
11354 size_t NumArgs;
11355 OverloadCandidateSet::CandidateSetKind CSK;
11356
11357 CompareOverloadCandidatesForDisplay(
11358 Sema &S, SourceLocation Loc, size_t NArgs,
11359 OverloadCandidateSet::CandidateSetKind CSK)
11360 : S(S), NumArgs(NArgs), CSK(CSK) {}
11361
11362 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11363 // If there are too many or too few arguments, that's the high-order bit we
11364 // want to sort by, even if the immediate failure kind was something else.
11365 if (C->FailureKind == ovl_fail_too_many_arguments ||
11366 C->FailureKind == ovl_fail_too_few_arguments)
11367 return static_cast<OverloadFailureKind>(C->FailureKind);
11368
11369 if (C->Function) {
11370 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11371 return ovl_fail_too_many_arguments;
11372 if (NumArgs < C->Function->getMinRequiredArguments())
11373 return ovl_fail_too_few_arguments;
11374 }
11375
11376 return static_cast<OverloadFailureKind>(C->FailureKind);
11377 }
11378
11379 bool operator()(const OverloadCandidate *L,
11380 const OverloadCandidate *R) {
11381 // Fast-path this check.
11382 if (L == R) return false;
11383
11384 // Order first by viability.
11385 if (L->Viable) {
11386 if (!R->Viable) return true;
11387
11388 // TODO: introduce a tri-valued comparison for overload
11389 // candidates. Would be more worthwhile if we had a sort
11390 // that could exploit it.
11391 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11392 return true;
11393 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11394 return false;
11395 } else if (R->Viable)
11396 return false;
11397
11398 assert(L->Viable == R->Viable)((void)0);
11399
11400 // Criteria by which we can sort non-viable candidates:
11401 if (!L->Viable) {
11402 OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11403 OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11404
11405 // 1. Arity mismatches come after other candidates.
11406 if (LFailureKind == ovl_fail_too_many_arguments ||
11407 LFailureKind == ovl_fail_too_few_arguments) {
11408 if (RFailureKind == ovl_fail_too_many_arguments ||
11409 RFailureKind == ovl_fail_too_few_arguments) {
11410 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11411 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11412 if (LDist == RDist) {
11413 if (LFailureKind == RFailureKind)
11414 // Sort non-surrogates before surrogates.
11415 return !L->IsSurrogate && R->IsSurrogate;
11416 // Sort candidates requiring fewer parameters than there were
11417 // arguments given after candidates requiring more parameters
11418 // than there were arguments given.
11419 return LFailureKind == ovl_fail_too_many_arguments;
11420 }
11421 return LDist < RDist;
11422 }
11423 return false;
11424 }
11425 if (RFailureKind == ovl_fail_too_many_arguments ||
11426 RFailureKind == ovl_fail_too_few_arguments)
11427 return true;
11428
11429 // 2. Bad conversions come first and are ordered by the number
11430 // of bad conversions and quality of good conversions.
11431 if (LFailureKind == ovl_fail_bad_conversion) {
11432 if (RFailureKind != ovl_fail_bad_conversion)
11433 return true;
11434
11435 // The conversion that can be fixed with a smaller number of changes,
11436 // comes first.
11437 unsigned numLFixes = L->Fix.NumConversionsFixed;
11438 unsigned numRFixes = R->Fix.NumConversionsFixed;
11439 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
11440 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
11441 if (numLFixes != numRFixes) {
11442 return numLFixes < numRFixes;
11443 }
11444
11445 // If there's any ordering between the defined conversions...
11446 // FIXME: this might not be transitive.
11447 assert(L->Conversions.size() == R->Conversions.size())((void)0);
11448
11449 int leftBetter = 0;
11450 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11451 for (unsigned E = L->Conversions.size(); I != E; ++I) {
11452 switch (CompareImplicitConversionSequences(S, Loc,
11453 L->Conversions[I],
11454 R->Conversions[I])) {
11455 case ImplicitConversionSequence::Better:
11456 leftBetter++;
11457 break;
11458
11459 case ImplicitConversionSequence::Worse:
11460 leftBetter--;
11461 break;
11462
11463 case ImplicitConversionSequence::Indistinguishable:
11464 break;
11465 }
11466 }
11467 if (leftBetter > 0) return true;
11468 if (leftBetter < 0) return false;
11469
11470 } else if (RFailureKind == ovl_fail_bad_conversion)
11471 return false;
11472
11473 if (LFailureKind == ovl_fail_bad_deduction) {
11474 if (RFailureKind != ovl_fail_bad_deduction)
11475 return true;
11476
11477 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11478 return RankDeductionFailure(L->DeductionFailure)
11479 < RankDeductionFailure(R->DeductionFailure);
11480 } else if (RFailureKind == ovl_fail_bad_deduction)
11481 return false;
11482
11483 // TODO: others?
11484 }
11485
11486 // Sort everything else by location.
11487 SourceLocation LLoc = GetLocationForCandidate(L);
11488 SourceLocation RLoc = GetLocationForCandidate(R);
11489
11490 // Put candidates without locations (e.g. builtins) at the end.
11491 if (LLoc.isInvalid()) return false;
11492 if (RLoc.isInvalid()) return true;
11493
11494 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11495 }
11496};
11497}
11498
11499/// CompleteNonViableCandidate - Normally, overload resolution only
11500/// computes up to the first bad conversion. Produces the FixIt set if
11501/// possible.
11502static void
11503CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11504 ArrayRef<Expr *> Args,
11505 OverloadCandidateSet::CandidateSetKind CSK) {
11506 assert(!Cand->Viable)((void)0);
11507
11508 // Don't do anything on failures other than bad conversion.
11509 if (Cand->FailureKind != ovl_fail_bad_conversion)
11510 return;
11511
11512 // We only want the FixIts if all the arguments can be corrected.
11513 bool Unfixable = false;
11514 // Use a implicit copy initialization to check conversion fixes.
11515 Cand->Fix.setConversionChecker(TryCopyInitialization);
11516
11517 // Attempt to fix the bad conversion.
11518 unsigned ConvCount = Cand->Conversions.size();
11519 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11520 ++ConvIdx) {
11521 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((void)0);
11522 if (Cand->Conversions[ConvIdx].isInitialized() &&
11523 Cand->Conversions[ConvIdx].isBad()) {
11524 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11525 break;
11526 }
11527 }
11528
11529 // FIXME: this should probably be preserved from the overload
11530 // operation somehow.
11531 bool SuppressUserConversions = false;
11532
11533 unsigned ConvIdx = 0;
11534 unsigned ArgIdx = 0;
11535 ArrayRef<QualType> ParamTypes;
11536 bool Reversed = Cand->isReversed();
11537
11538 if (Cand->IsSurrogate) {
11539 QualType ConvType
11540 = Cand->Surrogate->getConversionType().getNonReferenceType();
11541 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11542 ConvType = ConvPtrType->getPointeeType();
11543 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11544 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11545 ConvIdx = 1;
11546 } else if (Cand->Function) {
11547 ParamTypes =
11548 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11549 if (isa<CXXMethodDecl>(Cand->Function) &&
11550 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11551 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11552 ConvIdx = 1;
11553 if (CSK == OverloadCandidateSet::CSK_Operator &&
11554 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11555 // Argument 0 is 'this', which doesn't have a corresponding parameter.
11556 ArgIdx = 1;
11557 }
11558 } else {
11559 // Builtin operator.
11560 assert(ConvCount <= 3)((void)0);
11561 ParamTypes = Cand->BuiltinParamTypes;
11562 }
11563
11564 // Fill in the rest of the conversions.
11565 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11566 ConvIdx != ConvCount;
11567 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11568 assert(ArgIdx < Args.size() && "no argument for this arg conversion")((void)0);
11569 if (Cand->Conversions[ConvIdx].isInitialized()) {
11570 // We've already checked this conversion.
11571 } else if (ParamIdx < ParamTypes.size()) {
11572 if (ParamTypes[ParamIdx]->isDependentType())
11573 Cand->Conversions[ConvIdx].setAsIdentityConversion(
11574 Args[ArgIdx]->getType());
11575 else {
11576 Cand->Conversions[ConvIdx] =
11577 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11578 SuppressUserConversions,
11579 /*InOverloadResolution=*/true,
11580 /*AllowObjCWritebackConversion=*/
11581 S.getLangOpts().ObjCAutoRefCount);
11582 // Store the FixIt in the candidate if it exists.
11583 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11584 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11585 }
11586 } else
11587 Cand->Conversions[ConvIdx].setEllipsis();
11588 }
11589}
11590
11591SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11592 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11593 SourceLocation OpLoc,
11594 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11595 // Sort the candidates by viability and position. Sorting directly would
11596 // be prohibitive, so we make a set of pointers and sort those.
11597 SmallVector<OverloadCandidate*, 32> Cands;
11598 if (OCD == OCD_AllCandidates) Cands.reserve(size());
11599 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11600 if (!Filter(*Cand))
11601 continue;
11602 switch (OCD) {
11603 case OCD_AllCandidates:
11604 if (!Cand->Viable) {
11605 if (!Cand->Function && !Cand->IsSurrogate) {
11606 // This a non-viable builtin candidate. We do not, in general,
11607 // want to list every possible builtin candidate.
11608 continue;
11609 }
11610 CompleteNonViableCandidate(S, Cand, Args, Kind);
11611 }
11612 break;
11613
11614 case OCD_ViableCandidates:
11615 if (!Cand->Viable)
11616 continue;
11617 break;
11618
11619 case OCD_AmbiguousCandidates:
11620 if (!Cand->Best)
11621 continue;
11622 break;
11623 }
11624
11625 Cands.push_back(Cand);
11626 }
11627
11628 llvm::stable_sort(
11629 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11630
11631 return Cands;
11632}
11633
11634bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11635 SourceLocation OpLoc) {
11636 bool DeferHint = false;
11637 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11638 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11639 // host device candidates.
11640 auto WrongSidedCands =
11641 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11642 return (Cand.Viable == false &&
11643 Cand.FailureKind == ovl_fail_bad_target) ||
11644 (Cand.Function &&
11645 Cand.Function->template hasAttr<CUDAHostAttr>() &&
11646 Cand.Function->template hasAttr<CUDADeviceAttr>());
11647 });
11648 DeferHint = !WrongSidedCands.empty();
11649 }
11650 return DeferHint;
11651}
11652
11653/// When overload resolution fails, prints diagnostic messages containing the
11654/// candidates in the candidate set.
11655void OverloadCandidateSet::NoteCandidates(
11656 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11657 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11658 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11659
11660 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11661
11662 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11663
11664 NoteCandidates(S, Args, Cands, Opc, OpLoc);
11665
11666 if (OCD == OCD_AmbiguousCandidates)
11667 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11668}
11669
11670void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11671 ArrayRef<OverloadCandidate *> Cands,
11672 StringRef Opc, SourceLocation OpLoc) {
11673 bool ReportedAmbiguousConversions = false;
11674
11675 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11676 unsigned CandsShown = 0;
11677 auto I = Cands.begin(), E = Cands.end();
11678 for (; I != E; ++I) {
11679 OverloadCandidate *Cand = *I;
11680
11681 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11682 ShowOverloads == Ovl_Best) {
11683 break;
11684 }
11685 ++CandsShown;
11686
11687 if (Cand->Function)
11688 NoteFunctionCandidate(S, Cand, Args.size(),
11689 /*TakingCandidateAddress=*/false, DestAS);
11690 else if (Cand->IsSurrogate)
11691 NoteSurrogateCandidate(S, Cand);
11692 else {
11693 assert(Cand->Viable &&((void)0)
11694 "Non-viable built-in candidates are not added to Cands.")((void)0);
11695 // Generally we only see ambiguities including viable builtin
11696 // operators if overload resolution got screwed up by an
11697 // ambiguous user-defined conversion.
11698 //
11699 // FIXME: It's quite possible for different conversions to see
11700 // different ambiguities, though.
11701 if (!ReportedAmbiguousConversions) {
11702 NoteAmbiguousUserConversions(S, OpLoc, Cand);
11703 ReportedAmbiguousConversions = true;
11704 }
11705
11706 // If this is a viable builtin, print it.
11707 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11708 }
11709 }
11710
11711 // Inform S.Diags that we've shown an overload set with N elements. This may
11712 // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11713 S.Diags.overloadCandidatesShown(CandsShown);
11714
11715 if (I != E)
11716 S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11717 shouldDeferDiags(S, Args, OpLoc))
11718 << int(E - I);
11719}
11720
11721static SourceLocation
11722GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11723 return Cand->Specialization ? Cand->Specialization->getLocation()
11724 : SourceLocation();
11725}
11726
11727namespace {
11728struct CompareTemplateSpecCandidatesForDisplay {
11729 Sema &S;
11730 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11731
11732 bool operator()(const TemplateSpecCandidate *L,
11733 const TemplateSpecCandidate *R) {
11734 // Fast-path this check.
11735 if (L == R)
11736 return false;
11737
11738 // Assuming that both candidates are not matches...
11739
11740 // Sort by the ranking of deduction failures.
11741 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11742 return RankDeductionFailure(L->DeductionFailure) <
11743 RankDeductionFailure(R->DeductionFailure);
11744
11745 // Sort everything else by location.
11746 SourceLocation LLoc = GetLocationForCandidate(L);
11747 SourceLocation RLoc = GetLocationForCandidate(R);
11748
11749 // Put candidates without locations (e.g. builtins) at the end.
11750 if (LLoc.isInvalid())
11751 return false;
11752 if (RLoc.isInvalid())
11753 return true;
11754
11755 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11756 }
11757};
11758}
11759
11760/// Diagnose a template argument deduction failure.
11761/// We are treating these failures as overload failures due to bad
11762/// deductions.
11763void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11764 bool ForTakingAddress) {
11765 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11766 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11767}
11768
11769void TemplateSpecCandidateSet::destroyCandidates() {
11770 for (iterator i = begin(), e = end(); i != e; ++i) {
11771 i->DeductionFailure.Destroy();
11772 }
11773}
11774
11775void TemplateSpecCandidateSet::clear() {
11776 destroyCandidates();
11777 Candidates.clear();
11778}
11779
11780/// NoteCandidates - When no template specialization match is found, prints
11781/// diagnostic messages containing the non-matching specializations that form
11782/// the candidate set.
11783/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11784/// OCD == OCD_AllCandidates and Cand->Viable == false.
11785void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11786 // Sort the candidates by position (assuming no candidate is a match).
11787 // Sorting directly would be prohibitive, so we make a set of pointers
11788 // and sort those.
11789 SmallVector<TemplateSpecCandidate *, 32> Cands;
11790 Cands.reserve(size());
11791 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11792 if (Cand->Specialization)
11793 Cands.push_back(Cand);
11794 // Otherwise, this is a non-matching builtin candidate. We do not,
11795 // in general, want to list every possible builtin candidate.
11796 }
11797
11798 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11799
11800 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11801 // for generalization purposes (?).
11802 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11803
11804 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11805 unsigned CandsShown = 0;
11806 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11807 TemplateSpecCandidate *Cand = *I;
11808
11809 // Set an arbitrary limit on the number of candidates we'll spam
11810 // the user with. FIXME: This limit should depend on details of the
11811 // candidate list.
11812 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11813 break;
11814 ++CandsShown;
11815
11816 assert(Cand->Specialization &&((void)0)
11817 "Non-matching built-in candidates are not added to Cands.")((void)0);
11818 Cand->NoteDeductionFailure(S, ForTakingAddress);
11819 }
11820
11821 if (I != E)
11822 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11823}
11824
11825// [PossiblyAFunctionType] --> [Return]
11826// NonFunctionType --> NonFunctionType
11827// R (A) --> R(A)
11828// R (*)(A) --> R (A)
11829// R (&)(A) --> R (A)
11830// R (S::*)(A) --> R (A)
11831QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11832 QualType Ret = PossiblyAFunctionType;
11833 if (const PointerType *ToTypePtr =
11834 PossiblyAFunctionType->getAs<PointerType>())
11835 Ret = ToTypePtr->getPointeeType();
11836 else if (const ReferenceType *ToTypeRef =
11837 PossiblyAFunctionType->getAs<ReferenceType>())
11838 Ret = ToTypeRef->getPointeeType();
11839 else if (const MemberPointerType *MemTypePtr =
11840 PossiblyAFunctionType->getAs<MemberPointerType>())
11841 Ret = MemTypePtr->getPointeeType();
11842 Ret =
11843 Context.getCanonicalType(Ret).getUnqualifiedType();
11844 return Ret;
11845}
11846
11847static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11848 bool Complain = true) {
11849 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11850 S.DeduceReturnType(FD, Loc, Complain))
11851 return true;
11852
11853 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11854 if (S.getLangOpts().CPlusPlus17 &&
11855 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11856 !S.ResolveExceptionSpec(Loc, FPT))
11857 return true;
11858
11859 return false;
11860}
11861
11862namespace {
11863// A helper class to help with address of function resolution
11864// - allows us to avoid passing around all those ugly parameters
11865class AddressOfFunctionResolver {
11866 Sema& S;
11867 Expr* SourceExpr;
11868 const QualType& TargetType;
11869 QualType TargetFunctionType; // Extracted function type from target type
11870
11871 bool Complain;
11872 //DeclAccessPair& ResultFunctionAccessPair;
11873 ASTContext& Context;
11874
11875 bool TargetTypeIsNonStaticMemberFunction;
11876 bool FoundNonTemplateFunction;
11877 bool StaticMemberFunctionFromBoundPointer;
11878 bool HasComplained;
11879
11880 OverloadExpr::FindResult OvlExprInfo;
11881 OverloadExpr *OvlExpr;
11882 TemplateArgumentListInfo OvlExplicitTemplateArgs;
11883 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11884 TemplateSpecCandidateSet FailedCandidates;
11885
11886public:
11887 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11888 const QualType &TargetType, bool Complain)
11889 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11890 Complain(Complain), Context(S.getASTContext()),
11891 TargetTypeIsNonStaticMemberFunction(
11892 !!TargetType->getAs<MemberPointerType>()),
11893 FoundNonTemplateFunction(false),
11894 StaticMemberFunctionFromBoundPointer(false),
11895 HasComplained(false),
11896 OvlExprInfo(OverloadExpr::find(SourceExpr)),
11897 OvlExpr(OvlExprInfo.Expression),
11898 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11899 ExtractUnqualifiedFunctionTypeFromTargetType();
11900
11901 if (TargetFunctionType->isFunctionType()) {
11902 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11903 if (!UME->isImplicitAccess() &&
11904 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11905 StaticMemberFunctionFromBoundPointer = true;
11906 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11907 DeclAccessPair dap;
11908 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11909 OvlExpr, false, &dap)) {
11910 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11911 if (!Method->isStatic()) {
11912 // If the target type is a non-function type and the function found
11913 // is a non-static member function, pretend as if that was the
11914 // target, it's the only possible type to end up with.
11915 TargetTypeIsNonStaticMemberFunction = true;
11916
11917 // And skip adding the function if its not in the proper form.
11918 // We'll diagnose this due to an empty set of functions.
11919 if (!OvlExprInfo.HasFormOfMemberPointer)
11920 return;
11921 }
11922
11923 Matches.push_back(std::make_pair(dap, Fn));
11924 }
11925 return;
11926 }
11927
11928 if (OvlExpr->hasExplicitTemplateArgs())
11929 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11930
11931 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11932 // C++ [over.over]p4:
11933 // If more than one function is selected, [...]
11934 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11935 if (FoundNonTemplateFunction)
11936 EliminateAllTemplateMatches();
11937 else
11938 EliminateAllExceptMostSpecializedTemplate();
11939 }
11940 }
11941
11942 if (S.getLangOpts().CUDA && Matches.size() > 1)
11943 EliminateSuboptimalCudaMatches();
11944 }
11945
11946 bool hasComplained() const { return HasComplained; }
11947
11948private:
11949 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11950 QualType Discard;
11951 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11952 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11953 }
11954
11955 /// \return true if A is considered a better overload candidate for the
11956 /// desired type than B.
11957 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11958 // If A doesn't have exactly the correct type, we don't want to classify it
11959 // as "better" than anything else. This way, the user is required to
11960 // disambiguate for us if there are multiple candidates and no exact match.
11961 return candidateHasExactlyCorrectType(A) &&
11962 (!candidateHasExactlyCorrectType(B) ||
11963 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11964 }
11965
11966 /// \return true if we were able to eliminate all but one overload candidate,
11967 /// false otherwise.
11968 bool eliminiateSuboptimalOverloadCandidates() {
11969 // Same algorithm as overload resolution -- one pass to pick the "best",
11970 // another pass to be sure that nothing is better than the best.
11971 auto Best = Matches.begin();
11972 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11973 if (isBetterCandidate(I->second, Best->second))
11974 Best = I;
11975
11976 const FunctionDecl *BestFn = Best->second;
11977 auto IsBestOrInferiorToBest = [this, BestFn](
11978 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11979 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11980 };
11981
11982 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11983 // option, so we can potentially give the user a better error
11984 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11985 return false;
11986 Matches[0] = *Best;
11987 Matches.resize(1);
11988 return true;
11989 }
11990
11991 bool isTargetTypeAFunction() const {
11992 return TargetFunctionType->isFunctionType();
11993 }
11994
11995 // [ToType] [Return]
11996
11997 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11998 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11999 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
12000 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12001 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12002 }
12003
12004 // return true if any matching specializations were found
12005 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12006 const DeclAccessPair& CurAccessFunPair) {
12007 if (CXXMethodDecl *Method
12008 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12009 // Skip non-static function templates when converting to pointer, and
12010 // static when converting to member pointer.
12011 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12012 return false;
12013 }
12014 else if (TargetTypeIsNonStaticMemberFunction)
12015 return false;
12016
12017 // C++ [over.over]p2:
12018 // If the name is a function template, template argument deduction is
12019 // done (14.8.2.2), and if the argument deduction succeeds, the
12020 // resulting template argument list is used to generate a single
12021 // function template specialization, which is added to the set of
12022 // overloaded functions considered.
12023 FunctionDecl *Specialization = nullptr;
12024 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12025 if (Sema::TemplateDeductionResult Result
12026 = S.DeduceTemplateArguments(FunctionTemplate,
12027 &OvlExplicitTemplateArgs,
12028 TargetFunctionType, Specialization,
12029 Info, /*IsAddressOfFunction*/true)) {
12030 // Make a note of the failed deduction for diagnostics.
12031 FailedCandidates.addCandidate()
12032 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12033 MakeDeductionFailureInfo(Context, Result, Info));
12034 return false;
12035 }
12036
12037 // Template argument deduction ensures that we have an exact match or
12038 // compatible pointer-to-function arguments that would be adjusted by ICS.
12039 // This function template specicalization works.
12040 assert(S.isSameOrCompatibleFunctionType(((void)0)
12041 Context.getCanonicalType(Specialization->getType()),((void)0)
12042 Context.getCanonicalType(TargetFunctionType)))((void)0);
12043
12044 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12045 return false;
12046
12047 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12048 return true;
12049 }
12050
12051 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12052 const DeclAccessPair& CurAccessFunPair) {
12053 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12054 // Skip non-static functions when converting to pointer, and static
12055 // when converting to member pointer.
12056 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12057 return false;
12058 }
12059 else if (TargetTypeIsNonStaticMemberFunction)
12060 return false;
12061
12062 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12063 if (S.getLangOpts().CUDA)
12064 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12065 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12066 return false;
12067 if (FunDecl->isMultiVersion()) {
12068 const auto *TA = FunDecl->getAttr<TargetAttr>();
12069 if (TA && !TA->isDefaultVersion())
12070 return false;
12071 }
12072
12073 // If any candidate has a placeholder return type, trigger its deduction
12074 // now.
12075 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12076 Complain)) {
12077 HasComplained |= Complain;
12078 return false;
12079 }
12080
12081 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12082 return false;
12083
12084 // If we're in C, we need to support types that aren't exactly identical.
12085 if (!S.getLangOpts().CPlusPlus ||
12086 candidateHasExactlyCorrectType(FunDecl)) {
12087 Matches.push_back(std::make_pair(
12088 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12089 FoundNonTemplateFunction = true;
12090 return true;
12091 }
12092 }
12093
12094 return false;
12095 }
12096
12097 bool FindAllFunctionsThatMatchTargetTypeExactly() {
12098 bool Ret = false;
12099
12100 // If the overload expression doesn't have the form of a pointer to
12101 // member, don't try to convert it to a pointer-to-member type.
12102 if (IsInvalidFormOfPointerToMemberFunction())
12103 return false;
12104
12105 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12106 E = OvlExpr->decls_end();
12107 I != E; ++I) {
12108 // Look through any using declarations to find the underlying function.
12109 NamedDecl *Fn = (*I)->getUnderlyingDecl();
12110
12111 // C++ [over.over]p3:
12112 // Non-member functions and static member functions match
12113 // targets of type "pointer-to-function" or "reference-to-function."
12114 // Nonstatic member functions match targets of
12115 // type "pointer-to-member-function."
12116 // Note that according to DR 247, the containing class does not matter.
12117 if (FunctionTemplateDecl *FunctionTemplate
12118 = dyn_cast<FunctionTemplateDecl>(Fn)) {
12119 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12120 Ret = true;
12121 }
12122 // If we have explicit template arguments supplied, skip non-templates.
12123 else if (!OvlExpr->hasExplicitTemplateArgs() &&
12124 AddMatchingNonTemplateFunction(Fn, I.getPair()))
12125 Ret = true;
12126 }
12127 assert(Ret || Matches.empty())((void)0);
12128 return Ret;
12129 }
12130
12131 void EliminateAllExceptMostSpecializedTemplate() {
12132 // [...] and any given function template specialization F1 is
12133 // eliminated if the set contains a second function template
12134 // specialization whose function template is more specialized
12135 // than the function template of F1 according to the partial
12136 // ordering rules of 14.5.5.2.
12137
12138 // The algorithm specified above is quadratic. We instead use a
12139 // two-pass algorithm (similar to the one used to identify the
12140 // best viable function in an overload set) that identifies the
12141 // best function template (if it exists).
12142
12143 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12144 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12145 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12146
12147 // TODO: It looks like FailedCandidates does not serve much purpose
12148 // here, since the no_viable diagnostic has index 0.
12149 UnresolvedSetIterator Result = S.getMostSpecialized(
12150 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12151 SourceExpr->getBeginLoc(), S.PDiag(),
12152 S.PDiag(diag::err_addr_ovl_ambiguous)
12153 << Matches[0].second->getDeclName(),
12154 S.PDiag(diag::note_ovl_candidate)
12155 << (unsigned)oc_function << (unsigned)ocs_described_template,
12156 Complain, TargetFunctionType);
12157
12158 if (Result != MatchesCopy.end()) {
12159 // Make it the first and only element
12160 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12161 Matches[0].second = cast<FunctionDecl>(*Result);
12162 Matches.resize(1);
12163 } else
12164 HasComplained |= Complain;
12165 }
12166
12167 void EliminateAllTemplateMatches() {
12168 // [...] any function template specializations in the set are
12169 // eliminated if the set also contains a non-template function, [...]
12170 for (unsigned I = 0, N = Matches.size(); I != N; ) {
12171 if (Matches[I].second->getPrimaryTemplate() == nullptr)
12172 ++I;
12173 else {
12174 Matches[I] = Matches[--N];
12175 Matches.resize(N);
12176 }
12177 }
12178 }
12179
12180 void EliminateSuboptimalCudaMatches() {
12181 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12182 }
12183
12184public:
12185 void ComplainNoMatchesFound() const {
12186 assert(Matches.empty())((void)0);
12187 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12188 << OvlExpr->getName() << TargetFunctionType
12189 << OvlExpr->getSourceRange();
12190 if (FailedCandidates.empty())
12191 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12192 /*TakingAddress=*/true);
12193 else {
12194 // We have some deduction failure messages. Use them to diagnose
12195 // the function templates, and diagnose the non-template candidates
12196 // normally.
12197 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12198 IEnd = OvlExpr->decls_end();
12199 I != IEnd; ++I)
12200 if (FunctionDecl *Fun =
12201 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12202 if (!functionHasPassObjectSizeParams(Fun))
12203 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12204 /*TakingAddress=*/true);
12205 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12206 }
12207 }
12208
12209 bool IsInvalidFormOfPointerToMemberFunction() const {
12210 return TargetTypeIsNonStaticMemberFunction &&
12211 !OvlExprInfo.HasFormOfMemberPointer;
12212 }
12213
12214 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12215 // TODO: Should we condition this on whether any functions might
12216 // have matched, or is it more appropriate to do that in callers?
12217 // TODO: a fixit wouldn't hurt.
12218 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12219 << TargetType << OvlExpr->getSourceRange();
12220 }
12221
12222 bool IsStaticMemberFunctionFromBoundPointer() const {
12223 return StaticMemberFunctionFromBoundPointer;
12224 }
12225
12226 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12227 S.Diag(OvlExpr->getBeginLoc(),
12228 diag::err_invalid_form_pointer_member_function)
12229 << OvlExpr->getSourceRange();
12230 }
12231
12232 void ComplainOfInvalidConversion() const {
12233 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12234 << OvlExpr->getName() << TargetType;
12235 }
12236
12237 void ComplainMultipleMatchesFound() const {
12238 assert(Matches.size() > 1)((void)0);
12239 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12240 << OvlExpr->getName() << OvlExpr->getSourceRange();
12241 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12242 /*TakingAddress=*/true);
12243 }
12244
12245 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12246
12247 int getNumMatches() const { return Matches.size(); }
12248
12249 FunctionDecl* getMatchingFunctionDecl() const {
12250 if (Matches.size() != 1) return nullptr;
12251 return Matches[0].second;
12252 }
12253
12254 const DeclAccessPair* getMatchingFunctionAccessPair() const {
12255 if (Matches.size() != 1) return nullptr;
12256 return &Matches[0].first;
12257 }
12258};
12259}
12260
12261/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12262/// an overloaded function (C++ [over.over]), where @p From is an
12263/// expression with overloaded function type and @p ToType is the type
12264/// we're trying to resolve to. For example:
12265///
12266/// @code
12267/// int f(double);
12268/// int f(int);
12269///
12270/// int (*pfd)(double) = f; // selects f(double)
12271/// @endcode
12272///
12273/// This routine returns the resulting FunctionDecl if it could be
12274/// resolved, and NULL otherwise. When @p Complain is true, this
12275/// routine will emit diagnostics if there is an error.
12276FunctionDecl *
12277Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12278 QualType TargetType,
12279 bool Complain,
12280 DeclAccessPair &FoundResult,
12281 bool *pHadMultipleCandidates) {
12282 assert(AddressOfExpr->getType() == Context.OverloadTy)((void)0);
12283
12284 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12285 Complain);
12286 int NumMatches = Resolver.getNumMatches();
12287 FunctionDecl *Fn = nullptr;
12288 bool ShouldComplain = Complain && !Resolver.hasComplained();
12289 if (NumMatches == 0 && ShouldComplain) {
12290 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12291 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12292 else
12293 Resolver.ComplainNoMatchesFound();
12294 }
12295 else if (NumMatches > 1 && ShouldComplain)
12296 Resolver.ComplainMultipleMatchesFound();
12297 else if (NumMatches == 1) {
12298 Fn = Resolver.getMatchingFunctionDecl();
12299 assert(Fn)((void)0);
12300 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12301 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12302 FoundResult = *Resolver.getMatchingFunctionAccessPair();
12303 if (Complain) {
12304 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12305 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12306 else
12307 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12308 }
12309 }
12310
12311 if (pHadMultipleCandidates)
12312 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12313 return Fn;
12314}
12315
12316/// Given an expression that refers to an overloaded function, try to
12317/// resolve that function to a single function that can have its address taken.
12318/// This will modify `Pair` iff it returns non-null.
12319///
12320/// This routine can only succeed if from all of the candidates in the overload
12321/// set for SrcExpr that can have their addresses taken, there is one candidate
12322/// that is more constrained than the rest.
12323FunctionDecl *
12324Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12325 OverloadExpr::FindResult R = OverloadExpr::find(E);
12326 OverloadExpr *Ovl = R.Expression;
12327 bool IsResultAmbiguous = false;
12328 FunctionDecl *Result = nullptr;
12329 DeclAccessPair DAP;
12330 SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12331
12332 auto CheckMoreConstrained =
12333 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12334 SmallVector<const Expr *, 1> AC1, AC2;
12335 FD1->getAssociatedConstraints(AC1);
12336 FD2->getAssociatedConstraints(AC2);
12337 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12338 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12339 return None;
12340 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12341 return None;
12342 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12343 return None;
12344 return AtLeastAsConstrained1;
12345 };
12346
12347 // Don't use the AddressOfResolver because we're specifically looking for
12348 // cases where we have one overload candidate that lacks
12349 // enable_if/pass_object_size/...
12350 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12351 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12352 if (!FD)
12353 return nullptr;
12354
12355 if (!checkAddressOfFunctionIsAvailable(FD))
12356 continue;
12357
12358 // We have more than one result - see if it is more constrained than the
12359 // previous one.
12360 if (Result) {
12361 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12362 Result);
12363 if (!MoreConstrainedThanPrevious) {
12364 IsResultAmbiguous = true;
12365 AmbiguousDecls.push_back(FD);
12366 continue;
12367 }
12368 if (!*MoreConstrainedThanPrevious)
12369 continue;
12370 // FD is more constrained - replace Result with it.
12371 }
12372 IsResultAmbiguous = false;
12373 DAP = I.getPair();
12374 Result = FD;
12375 }
12376
12377 if (IsResultAmbiguous)
12378 return nullptr;
12379
12380 if (Result) {
12381 SmallVector<const Expr *, 1> ResultAC;
12382 // We skipped over some ambiguous declarations which might be ambiguous with
12383 // the selected result.
12384 for (FunctionDecl *Skipped : AmbiguousDecls)
12385 if (!CheckMoreConstrained(Skipped, Result).hasValue())
12386 return nullptr;
12387 Pair = DAP;
12388 }
12389 return Result;
12390}
12391
12392/// Given an overloaded function, tries to turn it into a non-overloaded
12393/// function reference using resolveAddressOfSingleOverloadCandidate. This
12394/// will perform access checks, diagnose the use of the resultant decl, and, if
12395/// requested, potentially perform a function-to-pointer decay.
12396///
12397/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12398/// Otherwise, returns true. This may emit diagnostics and return true.
12399bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12400 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12401 Expr *E = SrcExpr.get();
12402 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((void)0);
12403
12404 DeclAccessPair DAP;
12405 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12406 if (!Found || Found->isCPUDispatchMultiVersion() ||
12407 Found->isCPUSpecificMultiVersion())
12408 return false;
12409
12410 // Emitting multiple diagnostics for a function that is both inaccessible and
12411 // unavailable is consistent with our behavior elsewhere. So, always check
12412 // for both.
12413 DiagnoseUseOfDecl(Found, E->getExprLoc());
12414 CheckAddressOfMemberAccess(E, DAP);
12415 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12416 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12417 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12418 else
12419 SrcExpr = Fixed;
12420 return true;
12421}
12422
12423/// Given an expression that refers to an overloaded function, try to
12424/// resolve that overloaded function expression down to a single function.
12425///
12426/// This routine can only resolve template-ids that refer to a single function
12427/// template, where that template-id refers to a single template whose template
12428/// arguments are either provided by the template-id or have defaults,
12429/// as described in C++0x [temp.arg.explicit]p3.
12430///
12431/// If no template-ids are found, no diagnostics are emitted and NULL is
12432/// returned.
12433FunctionDecl *
12434Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12435 bool Complain,
12436 DeclAccessPair *FoundResult) {
12437 // C++ [over.over]p1:
12438 // [...] [Note: any redundant set of parentheses surrounding the
12439 // overloaded function name is ignored (5.1). ]
12440 // C++ [over.over]p1:
12441 // [...] The overloaded function name can be preceded by the &
12442 // operator.
12443
12444 // If we didn't actually find any template-ids, we're done.
12445 if (!ovl->hasExplicitTemplateArgs())
12446 return nullptr;
12447
12448 TemplateArgumentListInfo ExplicitTemplateArgs;
12449 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12450 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12451
12452 // Look through all of the overloaded functions, searching for one
12453 // whose type matches exactly.
12454 FunctionDecl *Matched = nullptr;
12455 for (UnresolvedSetIterator I = ovl->decls_begin(),
12456 E = ovl->decls_end(); I != E; ++I) {
12457 // C++0x [temp.arg.explicit]p3:
12458 // [...] In contexts where deduction is done and fails, or in contexts
12459 // where deduction is not done, if a template argument list is
12460 // specified and it, along with any default template arguments,
12461 // identifies a single function template specialization, then the
12462 // template-id is an lvalue for the function template specialization.
12463 FunctionTemplateDecl *FunctionTemplate
12464 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12465
12466 // C++ [over.over]p2:
12467 // If the name is a function template, template argument deduction is
12468 // done (14.8.2.2), and if the argument deduction succeeds, the
12469 // resulting template argument list is used to generate a single
12470 // function template specialization, which is added to the set of
12471 // overloaded functions considered.
12472 FunctionDecl *Specialization = nullptr;
12473 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12474 if (TemplateDeductionResult Result
12475 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12476 Specialization, Info,
12477 /*IsAddressOfFunction*/true)) {
12478 // Make a note of the failed deduction for diagnostics.
12479 // TODO: Actually use the failed-deduction info?
12480 FailedCandidates.addCandidate()
12481 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12482 MakeDeductionFailureInfo(Context, Result, Info));
12483 continue;
12484 }
12485
12486 assert(Specialization && "no specialization and no error?")((void)0);
12487
12488 // Multiple matches; we can't resolve to a single declaration.
12489 if (Matched) {
12490 if (Complain) {
12491 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12492 << ovl->getName();
12493 NoteAllOverloadCandidates(ovl);
12494 }
12495 return nullptr;
12496 }
12497
12498 Matched = Specialization;
12499 if (FoundResult) *FoundResult = I.getPair();
12500 }
12501
12502 if (Matched &&
12503 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12504 return nullptr;
12505
12506 return Matched;
12507}
12508
12509// Resolve and fix an overloaded expression that can be resolved
12510// because it identifies a single function template specialization.
12511//
12512// Last three arguments should only be supplied if Complain = true
12513//
12514// Return true if it was logically possible to so resolve the
12515// expression, regardless of whether or not it succeeded. Always
12516// returns true if 'complain' is set.
12517bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12518 ExprResult &SrcExpr, bool doFunctionPointerConverion,
12519 bool complain, SourceRange OpRangeForComplaining,
12520 QualType DestTypeForComplaining,
12521 unsigned DiagIDForComplaining) {
12522 assert(SrcExpr.get()->getType() == Context.OverloadTy)((void)0);
12523
12524 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12525
12526 DeclAccessPair found;
12527 ExprResult SingleFunctionExpression;
12528 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12529 ovl.Expression, /*complain*/ false, &found)) {
12530 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12531 SrcExpr = ExprError();
12532 return true;
12533 }
12534
12535 // It is only correct to resolve to an instance method if we're
12536 // resolving a form that's permitted to be a pointer to member.
12537 // Otherwise we'll end up making a bound member expression, which
12538 // is illegal in all the contexts we resolve like this.
12539 if (!ovl.HasFormOfMemberPointer &&
12540 isa<CXXMethodDecl>(fn) &&
12541 cast<CXXMethodDecl>(fn)->isInstance()) {
12542 if (!complain) return false;
12543
12544 Diag(ovl.Expression->getExprLoc(),
12545 diag::err_bound_member_function)
12546 << 0 << ovl.Expression->getSourceRange();
12547
12548 // TODO: I believe we only end up here if there's a mix of
12549 // static and non-static candidates (otherwise the expression
12550 // would have 'bound member' type, not 'overload' type).
12551 // Ideally we would note which candidate was chosen and why
12552 // the static candidates were rejected.
12553 SrcExpr = ExprError();
12554 return true;
12555 }
12556
12557 // Fix the expression to refer to 'fn'.
12558 SingleFunctionExpression =
12559 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12560
12561 // If desired, do function-to-pointer decay.
12562 if (doFunctionPointerConverion) {
12563 SingleFunctionExpression =
12564 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12565 if (SingleFunctionExpression.isInvalid()) {
12566 SrcExpr = ExprError();
12567 return true;
12568 }
12569 }
12570 }
12571
12572 if (!SingleFunctionExpression.isUsable()) {
12573 if (complain) {
12574 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12575 << ovl.Expression->getName()
12576 << DestTypeForComplaining
12577 << OpRangeForComplaining
12578 << ovl.Expression->getQualifierLoc().getSourceRange();
12579 NoteAllOverloadCandidates(SrcExpr.get());
12580
12581 SrcExpr = ExprError();
12582 return true;
12583 }
12584
12585 return false;
12586 }
12587
12588 SrcExpr = SingleFunctionExpression;
12589 return true;
12590}
12591
12592/// Add a single candidate to the overload set.
12593static void AddOverloadedCallCandidate(Sema &S,
12594 DeclAccessPair FoundDecl,
12595 TemplateArgumentListInfo *ExplicitTemplateArgs,
12596 ArrayRef<Expr *> Args,
12597 OverloadCandidateSet &CandidateSet,
12598 bool PartialOverloading,
12599 bool KnownValid) {
12600 NamedDecl *Callee = FoundDecl.getDecl();
12601 if (isa<UsingShadowDecl>(Callee))
12602 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12603
12604 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12605 if (ExplicitTemplateArgs) {
12606 assert(!KnownValid && "Explicit template arguments?")((void)0);
12607 return;
12608 }
12609 // Prevent ill-formed function decls to be added as overload candidates.
12610 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12611 return;
12612
12613 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12614 /*SuppressUserConversions=*/false,
12615 PartialOverloading);
12616 return;
12617 }
12618
12619 if (FunctionTemplateDecl *FuncTemplate
12620 = dyn_cast<FunctionTemplateDecl>(Callee)) {
12621 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12622 ExplicitTemplateArgs, Args, CandidateSet,
12623 /*SuppressUserConversions=*/false,
12624 PartialOverloading);
12625 return;
12626 }
12627
12628 assert(!KnownValid && "unhandled case in overloaded call candidate")((void)0);
12629}
12630
12631/// Add the overload candidates named by callee and/or found by argument
12632/// dependent lookup to the given overload set.
12633void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12634 ArrayRef<Expr *> Args,
12635 OverloadCandidateSet &CandidateSet,
12636 bool PartialOverloading) {
12637
12638#ifndef NDEBUG1
12639 // Verify that ArgumentDependentLookup is consistent with the rules
12640 // in C++0x [basic.lookup.argdep]p3:
12641 //
12642 // Let X be the lookup set produced by unqualified lookup (3.4.1)
12643 // and let Y be the lookup set produced by argument dependent
12644 // lookup (defined as follows). If X contains
12645 //
12646 // -- a declaration of a class member, or
12647 //
12648 // -- a block-scope function declaration that is not a
12649 // using-declaration, or
12650 //
12651 // -- a declaration that is neither a function or a function
12652 // template
12653 //
12654 // then Y is empty.
12655
12656 if (ULE->requiresADL()) {
12657 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12658 E = ULE->decls_end(); I != E; ++I) {
12659 assert(!(*I)->getDeclContext()->isRecord())((void)0);
12660 assert(isa<UsingShadowDecl>(*I) ||((void)0)
12661 !(*I)->getDeclContext()->isFunctionOrMethod())((void)0);
12662 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())((void)0);
12663 }
12664 }
12665#endif
12666
12667 // It would be nice to avoid this copy.
12668 TemplateArgumentListInfo TABuffer;
12669 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12670 if (ULE->hasExplicitTemplateArgs()) {
12671 ULE->copyTemplateArgumentsInto(TABuffer);
12672 ExplicitTemplateArgs = &TABuffer;
12673 }
12674
12675 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12676 E = ULE->decls_end(); I != E; ++I)
12677 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12678 CandidateSet, PartialOverloading,
12679 /*KnownValid*/ true);
12680
12681 if (ULE->requiresADL())
12682 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12683 Args, ExplicitTemplateArgs,
12684 CandidateSet, PartialOverloading);
12685}
12686
12687/// Add the call candidates from the given set of lookup results to the given
12688/// overload set. Non-function lookup results are ignored.
12689void Sema::AddOverloadedCallCandidates(
12690 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12691 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12692 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12693 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12694 CandidateSet, false, /*KnownValid*/ false);
12695}
12696
12697/// Determine whether a declaration with the specified name could be moved into
12698/// a different namespace.
12699static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12700 switch (Name.getCXXOverloadedOperator()) {
12701 case OO_New: case OO_Array_New:
12702 case OO_Delete: case OO_Array_Delete:
12703 return false;
12704
12705 default:
12706 return true;
12707 }
12708}
12709
12710/// Attempt to recover from an ill-formed use of a non-dependent name in a
12711/// template, where the non-dependent name was declared after the template
12712/// was defined. This is common in code written for a compilers which do not
12713/// correctly implement two-stage name lookup.
12714///
12715/// Returns true if a viable candidate was found and a diagnostic was issued.
12716static bool DiagnoseTwoPhaseLookup(
12717 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12718 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12719 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12720 CXXRecordDecl **FoundInClass = nullptr) {
12721 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12722 return false;
12723
12724 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12725 if (DC->isTransparentContext())
12726 continue;
12727
12728 SemaRef.LookupQualifiedName(R, DC);
12729
12730 if (!R.empty()) {
12731 R.suppressDiagnostics();
12732
12733 OverloadCandidateSet Candidates(FnLoc, CSK);
12734 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12735 Candidates);
12736
12737 OverloadCandidateSet::iterator Best;
12738 OverloadingResult OR =
12739 Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12740
12741 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12742 // We either found non-function declarations or a best viable function
12743 // at class scope. A class-scope lookup result disables ADL. Don't
12744 // look past this, but let the caller know that we found something that
12745 // either is, or might be, usable in this class.
12746 if (FoundInClass) {
12747 *FoundInClass = RD;
12748 if (OR == OR_Success) {
12749 R.clear();
12750 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12751 R.resolveKind();
12752 }
12753 }
12754 return false;
12755 }
12756
12757 if (OR != OR_Success) {
12758 // There wasn't a unique best function or function template.
12759 return false;
12760 }
12761
12762 // Find the namespaces where ADL would have looked, and suggest
12763 // declaring the function there instead.
12764 Sema::AssociatedNamespaceSet AssociatedNamespaces;
12765 Sema::AssociatedClassSet AssociatedClasses;
12766 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12767 AssociatedNamespaces,
12768 AssociatedClasses);
12769 Sema::AssociatedNamespaceSet SuggestedNamespaces;
12770 if (canBeDeclaredInNamespace(R.getLookupName())) {
12771 DeclContext *Std = SemaRef.getStdNamespace();
12772 for (Sema::AssociatedNamespaceSet::iterator
12773 it = AssociatedNamespaces.begin(),
12774 end = AssociatedNamespaces.end(); it != end; ++it) {
12775 // Never suggest declaring a function within namespace 'std'.
12776 if (Std && Std->Encloses(*it))
12777 continue;
12778
12779 // Never suggest declaring a function within a namespace with a
12780 // reserved name, like __gnu_cxx.
12781 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12782 if (NS &&
12783 NS->getQualifiedNameAsString().find("__") != std::string::npos)
12784 continue;
12785
12786 SuggestedNamespaces.insert(*it);
12787 }
12788 }
12789
12790 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12791 << R.getLookupName();
12792 if (SuggestedNamespaces.empty()) {
12793 SemaRef.Diag(Best->Function->getLocation(),
12794 diag::note_not_found_by_two_phase_lookup)
12795 << R.getLookupName() << 0;
12796 } else if (SuggestedNamespaces.size() == 1) {
12797 SemaRef.Diag(Best->Function->getLocation(),
12798 diag::note_not_found_by_two_phase_lookup)
12799 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12800 } else {
12801 // FIXME: It would be useful to list the associated namespaces here,
12802 // but the diagnostics infrastructure doesn't provide a way to produce
12803 // a localized representation of a list of items.
12804 SemaRef.Diag(Best->Function->getLocation(),
12805 diag::note_not_found_by_two_phase_lookup)
12806 << R.getLookupName() << 2;
12807 }
12808
12809 // Try to recover by calling this function.
12810 return true;
12811 }
12812
12813 R.clear();
12814 }
12815
12816 return false;
12817}
12818
12819/// Attempt to recover from ill-formed use of a non-dependent operator in a
12820/// template, where the non-dependent operator was declared after the template
12821/// was defined.
12822///
12823/// Returns true if a viable candidate was found and a diagnostic was issued.
12824static bool
12825DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12826 SourceLocation OpLoc,
12827 ArrayRef<Expr *> Args) {
12828 DeclarationName OpName =
12829 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12830 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12831 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12832 OverloadCandidateSet::CSK_Operator,
12833 /*ExplicitTemplateArgs=*/nullptr, Args);
12834}
12835
12836namespace {
12837class BuildRecoveryCallExprRAII {
12838 Sema &SemaRef;
12839public:
12840 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12841 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((void)0);
12842 SemaRef.IsBuildingRecoveryCallExpr = true;
12843 }
12844
12845 ~BuildRecoveryCallExprRAII() {
12846 SemaRef.IsBuildingRecoveryCallExpr = false;
12847 }
12848};
12849
12850}
12851
12852/// Attempts to recover from a call where no functions were found.
12853///
12854/// This function will do one of three things:
12855/// * Diagnose, recover, and return a recovery expression.
12856/// * Diagnose, fail to recover, and return ExprError().
12857/// * Do not diagnose, do not recover, and return ExprResult(). The caller is
12858/// expected to diagnose as appropriate.
12859static ExprResult
12860BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12861 UnresolvedLookupExpr *ULE,
12862 SourceLocation LParenLoc,
12863 MutableArrayRef<Expr *> Args,
12864 SourceLocation RParenLoc,
12865 bool EmptyLookup, bool AllowTypoCorrection) {
12866 // Do not try to recover if it is already building a recovery call.
12867 // This stops infinite loops for template instantiations like
12868 //
12869 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12870 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12871 if (SemaRef.IsBuildingRecoveryCallExpr)
12872 return ExprResult();
12873 BuildRecoveryCallExprRAII RCE(SemaRef);
12874
12875 CXXScopeSpec SS;
12876 SS.Adopt(ULE->getQualifierLoc());
12877 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12878
12879 TemplateArgumentListInfo TABuffer;
12880 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12881 if (ULE->hasExplicitTemplateArgs()) {
12882 ULE->copyTemplateArgumentsInto(TABuffer);
12883 ExplicitTemplateArgs = &TABuffer;
12884 }
12885
12886 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12887 Sema::LookupOrdinaryName);
12888 CXXRecordDecl *FoundInClass = nullptr;
12889 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
12890 OverloadCandidateSet::CSK_Normal,
12891 ExplicitTemplateArgs, Args, &FoundInClass)) {
12892 // OK, diagnosed a two-phase lookup issue.
12893 } else if (EmptyLookup) {
12894 // Try to recover from an empty lookup with typo correction.
12895 R.clear();
12896 NoTypoCorrectionCCC NoTypoValidator{};
12897 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12898 ExplicitTemplateArgs != nullptr,
12899 dyn_cast<MemberExpr>(Fn));
12900 CorrectionCandidateCallback &Validator =
12901 AllowTypoCorrection
12902 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12903 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12904 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12905 Args))
12906 return ExprError();
12907 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
12908 // We found a usable declaration of the name in a dependent base of some
12909 // enclosing class.
12910 // FIXME: We should also explain why the candidates found by name lookup
12911 // were not viable.
12912 if (SemaRef.DiagnoseDependentMemberLookup(R))
12913 return ExprError();
12914 } else {
12915 // We had viable candidates and couldn't recover; let the caller diagnose
12916 // this.
12917 return ExprResult();
12918 }
12919
12920 // If we get here, we should have issued a diagnostic and formed a recovery
12921 // lookup result.
12922 assert(!R.empty() && "lookup results empty despite recovery")((void)0);
12923
12924 // If recovery created an ambiguity, just bail out.
12925 if (R.isAmbiguous()) {
12926 R.suppressDiagnostics();
12927 return ExprError();
12928 }
12929
12930 // Build an implicit member call if appropriate. Just drop the
12931 // casts and such from the call, we don't really care.
12932 ExprResult NewFn = ExprError();
12933 if ((*R.begin())->isCXXClassMember())
12934 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12935 ExplicitTemplateArgs, S);
12936 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12937 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12938 ExplicitTemplateArgs);
12939 else
12940 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12941
12942 if (NewFn.isInvalid())
12943 return ExprError();
12944
12945 // This shouldn't cause an infinite loop because we're giving it
12946 // an expression with viable lookup results, which should never
12947 // end up here.
12948 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12949 MultiExprArg(Args.data(), Args.size()),
12950 RParenLoc);
12951}
12952
12953/// Constructs and populates an OverloadedCandidateSet from
12954/// the given function.
12955/// \returns true when an the ExprResult output parameter has been set.
12956bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12957 UnresolvedLookupExpr *ULE,
12958 MultiExprArg Args,
12959 SourceLocation RParenLoc,
12960 OverloadCandidateSet *CandidateSet,
12961 ExprResult *Result) {
12962#ifndef NDEBUG1
12963 if (ULE->requiresADL()) {
12964 // To do ADL, we must have found an unqualified name.
12965 assert(!ULE->getQualifier() && "qualified name with ADL")((void)0);
12966
12967 // We don't perform ADL for implicit declarations of builtins.
12968 // Verify that this was correctly set up.
12969 FunctionDecl *F;
12970 if (ULE->decls_begin() != ULE->decls_end() &&
12971 ULE->decls_begin() + 1 == ULE->decls_end() &&
12972 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12973 F->getBuiltinID() && F->isImplicit())
12974 llvm_unreachable("performing ADL for builtin")__builtin_unreachable();
12975
12976 // We don't perform ADL in C.
12977 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((void)0);
12978 }
12979#endif
12980
12981 UnbridgedCastsSet UnbridgedCasts;
12982 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
7
Taking false branch
12983 *Result = ExprError();
12984 return true;
12985 }
12986
12987 // Add the functions denoted by the callee to the set of candidate
12988 // functions, including those from argument-dependent lookup.
12989 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12990
12991 if (getLangOpts().MSVCCompat &&
8
Assuming field 'MSVCCompat' is not equal to 0
13
Taking true branch
12992 CurContext->isDependentContext() && !isSFINAEContext() &&
9
Assuming the condition is true
10
Assuming the condition is true
12993 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
11
Assuming field 'CurContext' is not a 'FunctionDecl'
12
Assuming field 'CurContext' is a 'CXXRecordDecl'
12994
12995 OverloadCandidateSet::iterator Best;
12996 if (CandidateSet->empty() ||
14
Assuming the condition is false
12997 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
15
Calling 'OverloadCandidateSet::BestViableFunction'
12998 OR_No_Viable_Function) {
12999 // In Microsoft mode, if we are inside a template class member function
13000 // then create a type dependent CallExpr. The goal is to postpone name
13001 // lookup to instantiation time to be able to search into type dependent
13002 // base classes.
13003 CallExpr *CE =
13004 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13005 RParenLoc, CurFPFeatureOverrides());
13006 CE->markDependentForPostponedNameLookup();
13007 *Result = CE;
13008 return true;
13009 }
13010 }
13011
13012 if (CandidateSet->empty())
13013 return false;
13014
13015 UnbridgedCasts.restore();
13016 return false;
13017}
13018
13019// Guess at what the return type for an unresolvable overload should be.
13020static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13021 OverloadCandidateSet::iterator *Best) {
13022 llvm::Optional<QualType> Result;
13023 // Adjust Type after seeing a candidate.
13024 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13025 if (!Candidate.Function)
13026 return;
13027 if (Candidate.Function->isInvalidDecl())
13028 return;
13029 QualType T = Candidate.Function->getReturnType();
13030 if (T.isNull())
13031 return;
13032 if (!Result)
13033 Result = T;
13034 else if (Result != T)
13035 Result = QualType();
13036 };
13037
13038 // Look for an unambiguous type from a progressively larger subset.
13039 // e.g. if types disagree, but all *viable* overloads return int, choose int.
13040 //
13041 // First, consider only the best candidate.
13042 if (Best && *Best != CS.end())
13043 ConsiderCandidate(**Best);
13044 // Next, consider only viable candidates.
13045 if (!Result)
13046 for (const auto &C : CS)
13047 if (C.Viable)
13048 ConsiderCandidate(C);
13049 // Finally, consider all candidates.
13050 if (!Result)
13051 for (const auto &C : CS)
13052 ConsiderCandidate(C);
13053
13054 if (!Result)
13055 return QualType();
13056 auto Value = Result.getValue();
13057 if (Value.isNull() || Value->isUndeducedType())
13058 return QualType();
13059 return Value;
13060}
13061
13062/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13063/// the completed call expression. If overload resolution fails, emits
13064/// diagnostics and returns ExprError()
13065static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13066 UnresolvedLookupExpr *ULE,
13067 SourceLocation LParenLoc,
13068 MultiExprArg Args,
13069 SourceLocation RParenLoc,
13070 Expr *ExecConfig,
13071 OverloadCandidateSet *CandidateSet,
13072 OverloadCandidateSet::iterator *Best,
13073 OverloadingResult OverloadResult,
13074 bool AllowTypoCorrection) {
13075 switch (OverloadResult) {
13076 case OR_Success: {
13077 FunctionDecl *FDecl = (*Best)->Function;
13078 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13079 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13080 return ExprError();
13081 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13082 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13083 ExecConfig, /*IsExecConfig=*/false,
13084 (*Best)->IsADLCandidate);
13085 }
13086
13087 case OR_No_Viable_Function: {
13088 // Try to recover by looking for viable functions which the user might
13089 // have meant to call.
13090 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13091 Args, RParenLoc,
13092 CandidateSet->empty(),
13093 AllowTypoCorrection);
13094 if (Recovery.isInvalid() || Recovery.isUsable())
13095 return Recovery;
13096
13097 // If the user passes in a function that we can't take the address of, we
13098 // generally end up emitting really bad error messages. Here, we attempt to
13099 // emit better ones.
13100 for (const Expr *Arg : Args) {
13101 if (!Arg->getType()->isFunctionType())
13102 continue;
13103 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13104 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13105 if (FD &&
13106 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13107 Arg->getExprLoc()))
13108 return ExprError();
13109 }
13110 }
13111
13112 CandidateSet->NoteCandidates(
13113 PartialDiagnosticAt(
13114 Fn->getBeginLoc(),
13115 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13116 << ULE->getName() << Fn->getSourceRange()),
13117 SemaRef, OCD_AllCandidates, Args);
13118 break;
13119 }
13120
13121 case OR_Ambiguous:
13122 CandidateSet->NoteCandidates(
13123 PartialDiagnosticAt(Fn->getBeginLoc(),
13124 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13125 << ULE->getName() << Fn->getSourceRange()),
13126 SemaRef, OCD_AmbiguousCandidates, Args);
13127 break;
13128
13129 case OR_Deleted: {
13130 CandidateSet->NoteCandidates(
13131 PartialDiagnosticAt(Fn->getBeginLoc(),
13132 SemaRef.PDiag(diag::err_ovl_deleted_call)
13133 << ULE->getName() << Fn->getSourceRange()),
13134 SemaRef, OCD_AllCandidates, Args);
13135
13136 // We emitted an error for the unavailable/deleted function call but keep
13137 // the call in the AST.
13138 FunctionDecl *FDecl = (*Best)->Function;
13139 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13140 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13141 ExecConfig, /*IsExecConfig=*/false,
13142 (*Best)->IsADLCandidate);
13143 }
13144 }
13145
13146 // Overload resolution failed, try to recover.
13147 SmallVector<Expr *, 8> SubExprs = {Fn};
13148 SubExprs.append(Args.begin(), Args.end());
13149 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13150 chooseRecoveryType(*CandidateSet, Best));
13151}
13152
13153static void markUnaddressableCandidatesUnviable(Sema &S,
13154 OverloadCandidateSet &CS) {
13155 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13156 if (I->Viable &&
13157 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13158 I->Viable = false;
13159 I->FailureKind = ovl_fail_addr_not_available;
13160 }
13161 }
13162}
13163
13164/// BuildOverloadedCallExpr - Given the call expression that calls Fn
13165/// (which eventually refers to the declaration Func) and the call
13166/// arguments Args/NumArgs, attempt to resolve the function call down
13167/// to a specific function. If overload resolution succeeds, returns
13168/// the call expression produced by overload resolution.
13169/// Otherwise, emits diagnostics and returns ExprError.
13170ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13171 UnresolvedLookupExpr *ULE,
13172 SourceLocation LParenLoc,
13173 MultiExprArg Args,
13174 SourceLocation RParenLoc,
13175 Expr *ExecConfig,
13176 bool AllowTypoCorrection,
13177 bool CalleesAddressIsTaken) {
13178 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13179 OverloadCandidateSet::CSK_Normal);
13180 ExprResult result;
13181
13182 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13183 &result))
13184 return result;
13185
13186 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13187 // functions that aren't addressible are considered unviable.
13188 if (CalleesAddressIsTaken)
13189 markUnaddressableCandidatesUnviable(*this, CandidateSet);
13190
13191 OverloadCandidateSet::iterator Best;
13192 OverloadingResult OverloadResult =
13193 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13194
13195 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13196 ExecConfig, &CandidateSet, &Best,
13197 OverloadResult, AllowTypoCorrection);
13198}
13199
13200static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13201 return Functions.size() > 1 ||
13202 (Functions.size() == 1 &&
13203 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13204}
13205
13206ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13207 NestedNameSpecifierLoc NNSLoc,
13208 DeclarationNameInfo DNI,
13209 const UnresolvedSetImpl &Fns,
13210 bool PerformADL) {
13211 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13212 PerformADL, IsOverloaded(Fns),
13213 Fns.begin(), Fns.end());
13214}
13215
13216/// Create a unary operation that may resolve to an overloaded
13217/// operator.
13218///
13219/// \param OpLoc The location of the operator itself (e.g., '*').
13220///
13221/// \param Opc The UnaryOperatorKind that describes this operator.
13222///
13223/// \param Fns The set of non-member functions that will be
13224/// considered by overload resolution. The caller needs to build this
13225/// set based on the context using, e.g.,
13226/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13227/// set should not contain any member functions; those will be added
13228/// by CreateOverloadedUnaryOp().
13229///
13230/// \param Input The input argument.
13231ExprResult
13232Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13233 const UnresolvedSetImpl &Fns,
13234 Expr *Input, bool PerformADL) {
13235 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13236 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((void)0);
13237 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13238 // TODO: provide better source location info.
13239 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13240
13241 if (checkPlaceholderForOverload(*this, Input))
13242 return ExprError();
13243
13244 Expr *Args[2] = { Input, nullptr };
13245 unsigned NumArgs = 1;
13246
13247 // For post-increment and post-decrement, add the implicit '0' as
13248 // the second argument, so that we know this is a post-increment or
13249 // post-decrement.
13250 if (Opc == UO_PostInc || Opc == UO_PostDec) {
13251 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13252 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13253 SourceLocation());
13254 NumArgs = 2;
13255 }
13256
13257 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13258
13259 if (Input->isTypeDependent()) {
13260 if (Fns.empty())
13261 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13262 VK_PRValue, OK_Ordinary, OpLoc, false,
13263 CurFPFeatureOverrides());
13264
13265 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13266 ExprResult Fn = CreateUnresolvedLookupExpr(
13267 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13268 if (Fn.isInvalid())
13269 return ExprError();
13270 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13271 Context.DependentTy, VK_PRValue, OpLoc,
13272 CurFPFeatureOverrides());
13273 }
13274
13275 // Build an empty overload set.
13276 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13277
13278 // Add the candidates from the given function set.
13279 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13280
13281 // Add operator candidates that are member functions.
13282 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13283
13284 // Add candidates from ADL.
13285 if (PerformADL) {
13286 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13287 /*ExplicitTemplateArgs*/nullptr,
13288 CandidateSet);
13289 }
13290
13291 // Add builtin operator candidates.
13292 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13293
13294 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13295
13296 // Perform overload resolution.
13297 OverloadCandidateSet::iterator Best;
13298 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13299 case OR_Success: {
13300 // We found a built-in operator or an overloaded operator.
13301 FunctionDecl *FnDecl = Best->Function;
13302
13303 if (FnDecl) {
13304 Expr *Base = nullptr;
13305 // We matched an overloaded operator. Build a call to that
13306 // operator.
13307
13308 // Convert the arguments.
13309 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13310 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13311
13312 ExprResult InputRes =
13313 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13314 Best->FoundDecl, Method);
13315 if (InputRes.isInvalid())
13316 return ExprError();
13317 Base = Input = InputRes.get();
13318 } else {
13319 // Convert the arguments.
13320 ExprResult InputInit
13321 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13322 Context,
13323 FnDecl->getParamDecl(0)),
13324 SourceLocation(),
13325 Input);
13326 if (InputInit.isInvalid())
13327 return ExprError();
13328 Input = InputInit.get();
13329 }
13330
13331 // Build the actual expression node.
13332 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13333 Base, HadMultipleCandidates,
13334 OpLoc);
13335 if (FnExpr.isInvalid())
13336 return ExprError();
13337
13338 // Determine the result type.
13339 QualType ResultTy = FnDecl->getReturnType();
13340 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13341 ResultTy = ResultTy.getNonLValueExprType(Context);
13342
13343 Args[0] = Input;
13344 CallExpr *TheCall = CXXOperatorCallExpr::Create(
13345 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13346 CurFPFeatureOverrides(), Best->IsADLCandidate);
13347
13348 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13349 return ExprError();
13350
13351 if (CheckFunctionCall(FnDecl, TheCall,
13352 FnDecl->getType()->castAs<FunctionProtoType>()))
13353 return ExprError();
13354 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13355 } else {
13356 // We matched a built-in operator. Convert the arguments, then
13357 // break out so that we will build the appropriate built-in
13358 // operator node.
13359 ExprResult InputRes = PerformImplicitConversion(
13360 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13361 CCK_ForBuiltinOverloadedOp);
13362 if (InputRes.isInvalid())
13363 return ExprError();
13364 Input = InputRes.get();
13365 break;
13366 }
13367 }
13368
13369 case OR_No_Viable_Function:
13370 // This is an erroneous use of an operator which can be overloaded by
13371 // a non-member function. Check for non-member operators which were
13372 // defined too late to be candidates.
13373 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13374 // FIXME: Recover by calling the found function.
13375 return ExprError();
13376
13377 // No viable function; fall through to handling this as a
13378 // built-in operator, which will produce an error message for us.
13379 break;
13380
13381 case OR_Ambiguous:
13382 CandidateSet.NoteCandidates(
13383 PartialDiagnosticAt(OpLoc,
13384 PDiag(diag::err_ovl_ambiguous_oper_unary)
13385 << UnaryOperator::getOpcodeStr(Opc)
13386 << Input->getType() << Input->getSourceRange()),
13387 *this, OCD_AmbiguousCandidates, ArgsArray,
13388 UnaryOperator::getOpcodeStr(Opc), OpLoc);
13389 return ExprError();
13390
13391 case OR_Deleted:
13392 CandidateSet.NoteCandidates(
13393 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13394 << UnaryOperator::getOpcodeStr(Opc)
13395 << Input->getSourceRange()),
13396 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13397 OpLoc);
13398 return ExprError();
13399 }
13400
13401 // Either we found no viable overloaded operator or we matched a
13402 // built-in operator. In either case, fall through to trying to
13403 // build a built-in operation.
13404 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13405}
13406
13407/// Perform lookup for an overloaded binary operator.
13408void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13409 OverloadedOperatorKind Op,
13410 const UnresolvedSetImpl &Fns,
13411 ArrayRef<Expr *> Args, bool PerformADL) {
13412 SourceLocation OpLoc = CandidateSet.getLocation();
13413
13414 OverloadedOperatorKind ExtraOp =
13415 CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13416 ? getRewrittenOverloadedOperator(Op)
13417 : OO_None;
13418
13419 // Add the candidates from the given function set. This also adds the
13420 // rewritten candidates using these functions if necessary.
13421 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13422
13423 // Add operator candidates that are member functions.
13424 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13425 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13426 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13427 OverloadCandidateParamOrder::Reversed);
13428
13429 // In C++20, also add any rewritten member candidates.
13430 if (ExtraOp) {
13431 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13432 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13433 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13434 CandidateSet,
13435 OverloadCandidateParamOrder::Reversed);
13436 }
13437
13438 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13439 // performed for an assignment operator (nor for operator[] nor operator->,
13440 // which don't get here).
13441 if (Op != OO_Equal && PerformADL) {
13442 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13443 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13444 /*ExplicitTemplateArgs*/ nullptr,
13445 CandidateSet);
13446 if (ExtraOp) {
13447 DeclarationName ExtraOpName =
13448 Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13449 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13450 /*ExplicitTemplateArgs*/ nullptr,
13451 CandidateSet);
13452 }
13453 }
13454
13455 // Add builtin operator candidates.
13456 //
13457 // FIXME: We don't add any rewritten candidates here. This is strictly
13458 // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13459 // resulting in our selecting a rewritten builtin candidate. For example:
13460 //
13461 // enum class E { e };
13462 // bool operator!=(E, E) requires false;
13463 // bool k = E::e != E::e;
13464 //
13465 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13466 // it seems unreasonable to consider rewritten builtin candidates. A core
13467 // issue has been filed proposing to removed this requirement.
13468 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13469}
13470
13471/// Create a binary operation that may resolve to an overloaded
13472/// operator.
13473///
13474/// \param OpLoc The location of the operator itself (e.g., '+').
13475///
13476/// \param Opc The BinaryOperatorKind that describes this operator.
13477///
13478/// \param Fns The set of non-member functions that will be
13479/// considered by overload resolution. The caller needs to build this
13480/// set based on the context using, e.g.,
13481/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13482/// set should not contain any member functions; those will be added
13483/// by CreateOverloadedBinOp().
13484///
13485/// \param LHS Left-hand argument.
13486/// \param RHS Right-hand argument.
13487/// \param PerformADL Whether to consider operator candidates found by ADL.
13488/// \param AllowRewrittenCandidates Whether to consider candidates found by
13489/// C++20 operator rewrites.
13490/// \param DefaultedFn If we are synthesizing a defaulted operator function,
13491/// the function in question. Such a function is never a candidate in
13492/// our overload resolution. This also enables synthesizing a three-way
13493/// comparison from < and == as described in C++20 [class.spaceship]p1.
13494ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13495 BinaryOperatorKind Opc,
13496 const UnresolvedSetImpl &Fns, Expr *LHS,
13497 Expr *RHS, bool PerformADL,
13498 bool AllowRewrittenCandidates,
13499 FunctionDecl *DefaultedFn) {
13500 Expr *Args[2] = { LHS, RHS };
13501 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13502
13503 if (!getLangOpts().CPlusPlus20)
13504 AllowRewrittenCandidates = false;
13505
13506 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13507
13508 // If either side is type-dependent, create an appropriate dependent
13509 // expression.
13510 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13511 if (Fns.empty()) {
13512 // If there are no functions to store, just build a dependent
13513 // BinaryOperator or CompoundAssignment.
13514 if (BinaryOperator::isCompoundAssignmentOp(Opc))
13515 return CompoundAssignOperator::Create(
13516 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13517 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13518 Context.DependentTy);
13519 return BinaryOperator::Create(
13520 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13521 OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13522 }
13523
13524 // FIXME: save results of ADL from here?
13525 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13526 // TODO: provide better source location info in DNLoc component.
13527 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13528 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13529 ExprResult Fn = CreateUnresolvedLookupExpr(
13530 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13531 if (Fn.isInvalid())
13532 return ExprError();
13533 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13534 Context.DependentTy, VK_PRValue, OpLoc,
13535 CurFPFeatureOverrides());
13536 }
13537
13538 // Always do placeholder-like conversions on the RHS.
13539 if (checkPlaceholderForOverload(*this, Args[1]))
13540 return ExprError();
13541
13542 // Do placeholder-like conversion on the LHS; note that we should
13543 // not get here with a PseudoObject LHS.
13544 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((void)0);
13545 if (checkPlaceholderForOverload(*this, Args[0]))
13546 return ExprError();
13547
13548 // If this is the assignment operator, we only perform overload resolution
13549 // if the left-hand side is a class or enumeration type. This is actually
13550 // a hack. The standard requires that we do overload resolution between the
13551 // various built-in candidates, but as DR507 points out, this can lead to
13552 // problems. So we do it this way, which pretty much follows what GCC does.
13553 // Note that we go the traditional code path for compound assignment forms.
13554 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13555 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13556
13557 // If this is the .* operator, which is not overloadable, just
13558 // create a built-in binary operator.
13559 if (Opc == BO_PtrMemD)
13560 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13561
13562 // Build the overload set.
13563 OverloadCandidateSet CandidateSet(
13564 OpLoc, OverloadCandidateSet::CSK_Operator,
13565 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13566 if (DefaultedFn)
13567 CandidateSet.exclude(DefaultedFn);
13568 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13569
13570 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13571
13572 // Perform overload resolution.
13573 OverloadCandidateSet::iterator Best;
13574 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13575 case OR_Success: {
13576 // We found a built-in operator or an overloaded operator.
13577 FunctionDecl *FnDecl = Best->Function;
13578
13579 bool IsReversed = Best->isReversed();
13580 if (IsReversed)
13581 std::swap(Args[0], Args[1]);
13582
13583 if (FnDecl) {
13584 Expr *Base = nullptr;
13585 // We matched an overloaded operator. Build a call to that
13586 // operator.
13587
13588 OverloadedOperatorKind ChosenOp =
13589 FnDecl->getDeclName().getCXXOverloadedOperator();
13590
13591 // C++2a [over.match.oper]p9:
13592 // If a rewritten operator== candidate is selected by overload
13593 // resolution for an operator@, its return type shall be cv bool
13594 if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13595 !FnDecl->getReturnType()->isBooleanType()) {
13596 bool IsExtension =
13597 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13598 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13599 : diag::err_ovl_rewrite_equalequal_not_bool)
13600 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13601 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13602 Diag(FnDecl->getLocation(), diag::note_declared_at);
13603 if (!IsExtension)
13604 return ExprError();
13605 }
13606
13607 if (AllowRewrittenCandidates && !IsReversed &&
13608 CandidateSet.getRewriteInfo().isReversible()) {
13609 // We could have reversed this operator, but didn't. Check if some
13610 // reversed form was a viable candidate, and if so, if it had a
13611 // better conversion for either parameter. If so, this call is
13612 // formally ambiguous, and allowing it is an extension.
13613 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13614 for (OverloadCandidate &Cand : CandidateSet) {
13615 if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13616 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13617 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13618 if (CompareImplicitConversionSequences(
13619 *this, OpLoc, Cand.Conversions[ArgIdx],
13620 Best->Conversions[ArgIdx]) ==
13621 ImplicitConversionSequence::Better) {
13622 AmbiguousWith.push_back(Cand.Function);
13623 break;
13624 }
13625 }
13626 }
13627 }
13628
13629 if (!AmbiguousWith.empty()) {
13630 bool AmbiguousWithSelf =
13631 AmbiguousWith.size() == 1 &&
13632 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13633 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13634 << BinaryOperator::getOpcodeStr(Opc)
13635 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13636 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13637 if (AmbiguousWithSelf) {
13638 Diag(FnDecl->getLocation(),
13639 diag::note_ovl_ambiguous_oper_binary_reversed_self);
13640 } else {
13641 Diag(FnDecl->getLocation(),
13642 diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13643 for (auto *F : AmbiguousWith)
13644 Diag(F->getLocation(),
13645 diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13646 }
13647 }
13648 }
13649
13650 // Convert the arguments.
13651 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13652 // Best->Access is only meaningful for class members.
13653 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13654
13655 ExprResult Arg1 =
13656 PerformCopyInitialization(
13657 InitializedEntity::InitializeParameter(Context,
13658 FnDecl->getParamDecl(0)),
13659 SourceLocation(), Args[1]);
13660 if (Arg1.isInvalid())
13661 return ExprError();
13662
13663 ExprResult Arg0 =
13664 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13665 Best->FoundDecl, Method);
13666 if (Arg0.isInvalid())
13667 return ExprError();
13668 Base = Args[0] = Arg0.getAs<Expr>();
13669 Args[1] = RHS = Arg1.getAs<Expr>();
13670 } else {
13671 // Convert the arguments.
13672 ExprResult Arg0 = PerformCopyInitialization(
13673 InitializedEntity::InitializeParameter(Context,
13674 FnDecl->getParamDecl(0)),
13675 SourceLocation(), Args[0]);
13676 if (Arg0.isInvalid())
13677 return ExprError();
13678
13679 ExprResult Arg1 =
13680 PerformCopyInitialization(
13681 InitializedEntity::InitializeParameter(Context,
13682 FnDecl->getParamDecl(1)),
13683 SourceLocation(), Args[1]);
13684 if (Arg1.isInvalid())
13685 return ExprError();
13686 Args[0] = LHS = Arg0.getAs<Expr>();
13687 Args[1] = RHS = Arg1.getAs<Expr>();
13688 }
13689
13690 // Build the actual expression node.
13691 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13692 Best->FoundDecl, Base,
13693 HadMultipleCandidates, OpLoc);
13694 if (FnExpr.isInvalid())
13695 return ExprError();
13696
13697 // Determine the result type.
13698 QualType ResultTy = FnDecl->getReturnType();
13699 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13700 ResultTy = ResultTy.getNonLValueExprType(Context);
13701
13702 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13703 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13704 CurFPFeatureOverrides(), Best->IsADLCandidate);
13705
13706 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13707 FnDecl))
13708 return ExprError();
13709
13710 ArrayRef<const Expr *> ArgsArray(Args, 2);
13711 const Expr *ImplicitThis = nullptr;
13712 // Cut off the implicit 'this'.
13713 if (isa<CXXMethodDecl>(FnDecl)) {
13714 ImplicitThis = ArgsArray[0];
13715 ArgsArray = ArgsArray.slice(1);
13716 }
13717
13718 // Check for a self move.
13719 if (Op == OO_Equal)
13720 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13721
13722 if (ImplicitThis) {
13723 QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13724 QualType ThisTypeFromDecl = Context.getPointerType(
13725 cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13726
13727 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13728 ThisTypeFromDecl);
13729 }
13730
13731 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13732 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13733 VariadicDoesNotApply);
13734
13735 ExprResult R = MaybeBindToTemporary(TheCall);
13736 if (R.isInvalid())
13737 return ExprError();
13738
13739 R = CheckForImmediateInvocation(R, FnDecl);
13740 if (R.isInvalid())
13741 return ExprError();
13742
13743 // For a rewritten candidate, we've already reversed the arguments
13744 // if needed. Perform the rest of the rewrite now.
13745 if ((Best->RewriteKind & CRK_DifferentOperator) ||
13746 (Op == OO_Spaceship && IsReversed)) {
13747 if (Op == OO_ExclaimEqual) {
13748 assert(ChosenOp == OO_EqualEqual && "unexpected operator name")((void)0);
13749 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13750 } else {
13751 assert(ChosenOp == OO_Spaceship && "unexpected operator name")((void)0);
13752 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13753 Expr *ZeroLiteral =
13754 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13755
13756 Sema::CodeSynthesisContext Ctx;
13757 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13758 Ctx.Entity = FnDecl;
13759 pushCodeSynthesisContext(Ctx);
13760
13761 R = CreateOverloadedBinOp(
13762 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13763 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13764 /*AllowRewrittenCandidates=*/false);
13765
13766 popCodeSynthesisContext();
13767 }
13768 if (R.isInvalid())
13769 return ExprError();
13770 } else {
13771 assert(ChosenOp == Op && "unexpected operator name")((void)0);
13772 }
13773
13774 // Make a note in the AST if we did any rewriting.
13775 if (Best->RewriteKind != CRK_None)
13776 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13777
13778 return R;
13779 } else {
13780 // We matched a built-in operator. Convert the arguments, then
13781 // break out so that we will build the appropriate built-in
13782 // operator node.
13783 ExprResult ArgsRes0 = PerformImplicitConversion(
13784 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13785 AA_Passing, CCK_ForBuiltinOverloadedOp);
13786 if (ArgsRes0.isInvalid())
13787 return ExprError();
13788 Args[0] = ArgsRes0.get();
13789
13790 ExprResult ArgsRes1 = PerformImplicitConversion(
13791 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13792 AA_Passing, CCK_ForBuiltinOverloadedOp);
13793 if (ArgsRes1.isInvalid())
13794 return ExprError();
13795 Args[1] = ArgsRes1.get();
13796 break;
13797 }
13798 }
13799
13800 case OR_No_Viable_Function: {
13801 // C++ [over.match.oper]p9:
13802 // If the operator is the operator , [...] and there are no
13803 // viable functions, then the operator is assumed to be the
13804 // built-in operator and interpreted according to clause 5.
13805 if (Opc == BO_Comma)
13806 break;
13807
13808 // When defaulting an 'operator<=>', we can try to synthesize a three-way
13809 // compare result using '==' and '<'.
13810 if (DefaultedFn && Opc == BO_Cmp) {
13811 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13812 Args[1], DefaultedFn);
13813 if (E.isInvalid() || E.isUsable())
13814 return E;
13815 }
13816
13817 // For class as left operand for assignment or compound assignment
13818 // operator do not fall through to handling in built-in, but report that
13819 // no overloaded assignment operator found
13820 ExprResult Result = ExprError();
13821 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13822 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13823 Args, OpLoc);
13824 DeferDiagsRAII DDR(*this,
13825 CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
13826 if (Args[0]->getType()->isRecordType() &&
13827 Opc >= BO_Assign && Opc <= BO_OrAssign) {
13828 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13829 << BinaryOperator::getOpcodeStr(Opc)
13830 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13831 if (Args[0]->getType()->isIncompleteType()) {
13832 Diag(OpLoc, diag::note_assign_lhs_incomplete)
13833 << Args[0]->getType()
13834 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13835 }
13836 } else {
13837 // This is an erroneous use of an operator which can be overloaded by
13838 // a non-member function. Check for non-member operators which were
13839 // defined too late to be candidates.
13840 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13841 // FIXME: Recover by calling the found function.
13842 return ExprError();
13843
13844 // No viable function; try to create a built-in operation, which will
13845 // produce an error. Then, show the non-viable candidates.
13846 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13847 }
13848 assert(Result.isInvalid() &&((void)0)
13849 "C++ binary operator overloading is missing candidates!")((void)0);
13850 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13851 return Result;
13852 }
13853
13854 case OR_Ambiguous:
13855 CandidateSet.NoteCandidates(
13856 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13857 << BinaryOperator::getOpcodeStr(Opc)
13858 << Args[0]->getType()
13859 << Args[1]->getType()
13860 << Args[0]->getSourceRange()
13861 << Args[1]->getSourceRange()),
13862 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13863 OpLoc);
13864 return ExprError();
13865
13866 case OR_Deleted:
13867 if (isImplicitlyDeleted(Best->Function)) {
13868 FunctionDecl *DeletedFD = Best->Function;
13869 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13870 if (DFK.isSpecialMember()) {
13871 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13872 << Args[0]->getType() << DFK.asSpecialMember();
13873 } else {
13874 assert(DFK.isComparison())((void)0);
13875 Diag(OpLoc, diag::err_ovl_deleted_comparison)
13876 << Args[0]->getType() << DeletedFD;
13877 }
13878
13879 // The user probably meant to call this special member. Just
13880 // explain why it's deleted.
13881 NoteDeletedFunction(DeletedFD);
13882 return ExprError();
13883 }
13884 CandidateSet.NoteCandidates(
13885 PartialDiagnosticAt(
13886 OpLoc, PDiag(diag::err_ovl_deleted_oper)
13887 << getOperatorSpelling(Best->Function->getDeclName()
13888 .getCXXOverloadedOperator())
13889 << Args[0]->getSourceRange()
13890 << Args[1]->getSourceRange()),
13891 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13892 OpLoc);
13893 return ExprError();
13894 }
13895
13896 // We matched a built-in operator; build it.
13897 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13898}
13899
13900ExprResult Sema::BuildSynthesizedThreeWayComparison(
13901 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13902 FunctionDecl *DefaultedFn) {
13903 const ComparisonCategoryInfo *Info =
13904 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13905 // If we're not producing a known comparison category type, we can't
13906 // synthesize a three-way comparison. Let the caller diagnose this.
13907 if (!Info)
13908 return ExprResult((Expr*)nullptr);
13909
13910 // If we ever want to perform this synthesis more generally, we will need to
13911 // apply the temporary materialization conversion to the operands.
13912 assert(LHS->isGLValue() && RHS->isGLValue() &&((void)0)
13913 "cannot use prvalue expressions more than once")((void)0);
13914 Expr *OrigLHS = LHS;
13915 Expr *OrigRHS = RHS;
13916
13917 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13918 // each of them multiple times below.
13919 LHS = new (Context)
13920 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13921 LHS->getObjectKind(), LHS);
13922 RHS = new (Context)
13923 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13924 RHS->getObjectKind(), RHS);
13925
13926 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13927 DefaultedFn);
13928 if (Eq.isInvalid())
13929 return ExprError();
13930
13931 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13932 true, DefaultedFn);
13933 if (Less.isInvalid())
13934 return ExprError();
13935
13936 ExprResult Greater;
13937 if (Info->isPartial()) {
13938 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
13939 DefaultedFn);
13940 if (Greater.isInvalid())
13941 return ExprError();
13942 }
13943
13944 // Form the list of comparisons we're going to perform.
13945 struct Comparison {
13946 ExprResult Cmp;
13947 ComparisonCategoryResult Result;
13948 } Comparisons[4] =
13949 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
13950 : ComparisonCategoryResult::Equivalent},
13951 {Less, ComparisonCategoryResult::Less},
13952 {Greater, ComparisonCategoryResult::Greater},
13953 {ExprResult(), ComparisonCategoryResult::Unordered},
13954 };
13955
13956 int I = Info->isPartial() ? 3 : 2;
13957
13958 // Combine the comparisons with suitable conditional expressions.
13959 ExprResult Result;
13960 for (; I >= 0; --I) {
13961 // Build a reference to the comparison category constant.
13962 auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
13963 // FIXME: Missing a constant for a comparison category. Diagnose this?
13964 if (!VI)
13965 return ExprResult((Expr*)nullptr);
13966 ExprResult ThisResult =
13967 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
13968 if (ThisResult.isInvalid())
13969 return ExprError();
13970
13971 // Build a conditional unless this is the final case.
13972 if (Result.get()) {
13973 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
13974 ThisResult.get(), Result.get());
13975 if (Result.isInvalid())
13976 return ExprError();
13977 } else {
13978 Result = ThisResult;
13979 }
13980 }
13981
13982 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
13983 // bind the OpaqueValueExprs before they're (repeatedly) used.
13984 Expr *SyntacticForm = BinaryOperator::Create(
13985 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
13986 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
13987 CurFPFeatureOverrides());
13988 Expr *SemanticForm[] = {LHS, RHS, Result.get()};
13989 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
13990}
13991
13992ExprResult
13993Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13994 SourceLocation RLoc,
13995 Expr *Base, Expr *Idx) {
13996 Expr *Args[2] = { Base, Idx };
13997 DeclarationName OpName =
13998 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13999
14000 // If either side is type-dependent, create an appropriate dependent
14001 // expression.
14002 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
14003
14004 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14005 // CHECKME: no 'operator' keyword?
14006 DeclarationNameInfo OpNameInfo(OpName, LLoc);
14007 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14008 ExprResult Fn = CreateUnresolvedLookupExpr(
14009 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14010 if (Fn.isInvalid())
14011 return ExprError();
14012 // Can't add any actual overloads yet
14013
14014 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14015 Context.DependentTy, VK_PRValue, RLoc,
14016 CurFPFeatureOverrides());
14017 }
14018
14019 // Handle placeholders on both operands.
14020 if (checkPlaceholderForOverload(*this, Args[0]))
14021 return ExprError();
14022 if (checkPlaceholderForOverload(*this, Args[1]))
14023 return ExprError();
14024
14025 // Build an empty overload set.
14026 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14027
14028 // Subscript can only be overloaded as a member function.
14029
14030 // Add operator candidates that are member functions.
14031 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14032
14033 // Add builtin operator candidates.
14034 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14035
14036 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14037
14038 // Perform overload resolution.
14039 OverloadCandidateSet::iterator Best;
14040 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14041 case OR_Success: {
14042 // We found a built-in operator or an overloaded operator.
14043 FunctionDecl *FnDecl = Best->Function;
14044
14045 if (FnDecl) {
14046 // We matched an overloaded operator. Build a call to that
14047 // operator.
14048
14049 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
14050
14051 // Convert the arguments.
14052 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14053 ExprResult Arg0 =
14054 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14055 Best->FoundDecl, Method);
14056 if (Arg0.isInvalid())
14057 return ExprError();
14058 Args[0] = Arg0.get();
14059
14060 // Convert the arguments.
14061 ExprResult InputInit
14062 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14063 Context,
14064 FnDecl->getParamDecl(0)),
14065 SourceLocation(),
14066 Args[1]);
14067 if (InputInit.isInvalid())
14068 return ExprError();
14069
14070 Args[1] = InputInit.getAs<Expr>();
14071
14072 // Build the actual expression node.
14073 DeclarationNameInfo OpLocInfo(OpName, LLoc);
14074 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14075 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14076 Best->FoundDecl,
14077 Base,
14078 HadMultipleCandidates,
14079 OpLocInfo.getLoc(),
14080 OpLocInfo.getInfo());
14081 if (FnExpr.isInvalid())
14082 return ExprError();
14083
14084 // Determine the result type
14085 QualType ResultTy = FnDecl->getReturnType();
14086 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14087 ResultTy = ResultTy.getNonLValueExprType(Context);
14088
14089 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14090 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14091 CurFPFeatureOverrides());
14092 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14093 return ExprError();
14094
14095 if (CheckFunctionCall(Method, TheCall,
14096 Method->getType()->castAs<FunctionProtoType>()))
14097 return ExprError();
14098
14099 return MaybeBindToTemporary(TheCall);
14100 } else {
14101 // We matched a built-in operator. Convert the arguments, then
14102 // break out so that we will build the appropriate built-in
14103 // operator node.
14104 ExprResult ArgsRes0 = PerformImplicitConversion(
14105 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14106 AA_Passing, CCK_ForBuiltinOverloadedOp);
14107 if (ArgsRes0.isInvalid())
14108 return ExprError();
14109 Args[0] = ArgsRes0.get();
14110
14111 ExprResult ArgsRes1 = PerformImplicitConversion(
14112 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14113 AA_Passing, CCK_ForBuiltinOverloadedOp);
14114 if (ArgsRes1.isInvalid())
14115 return ExprError();
14116 Args[1] = ArgsRes1.get();
14117
14118 break;
14119 }
14120 }
14121
14122 case OR_No_Viable_Function: {
14123 PartialDiagnostic PD = CandidateSet.empty()
14124 ? (PDiag(diag::err_ovl_no_oper)
14125 << Args[0]->getType() << /*subscript*/ 0
14126 << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14127 : (PDiag(diag::err_ovl_no_viable_subscript)
14128 << Args[0]->getType() << Args[0]->getSourceRange()
14129 << Args[1]->getSourceRange());
14130 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14131 OCD_AllCandidates, Args, "[]", LLoc);
14132 return ExprError();
14133 }
14134
14135 case OR_Ambiguous:
14136 CandidateSet.NoteCandidates(
14137 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14138 << "[]" << Args[0]->getType()
14139 << Args[1]->getType()
14140 << Args[0]->getSourceRange()
14141 << Args[1]->getSourceRange()),
14142 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14143 return ExprError();
14144
14145 case OR_Deleted:
14146 CandidateSet.NoteCandidates(
14147 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14148 << "[]" << Args[0]->getSourceRange()
14149 << Args[1]->getSourceRange()),
14150 *this, OCD_AllCandidates, Args, "[]", LLoc);
14151 return ExprError();
14152 }
14153
14154 // We matched a built-in operator; build it.
14155 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14156}
14157
14158/// BuildCallToMemberFunction - Build a call to a member
14159/// function. MemExpr is the expression that refers to the member
14160/// function (and includes the object parameter), Args/NumArgs are the
14161/// arguments to the function call (not including the object
14162/// parameter). The caller needs to validate that the member
14163/// expression refers to a non-static member function or an overloaded
14164/// member function.
14165ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14166 SourceLocation LParenLoc,
14167 MultiExprArg Args,
14168 SourceLocation RParenLoc,
14169 bool AllowRecovery) {
14170 assert(MemExprE->getType() == Context.BoundMemberTy ||((void)0)
14171 MemExprE->getType() == Context.OverloadTy)((void)0);
14172
14173 // Dig out the member expression. This holds both the object
14174 // argument and the member function we're referring to.
14175 Expr *NakedMemExpr = MemExprE->IgnoreParens();
14176
14177 // Determine whether this is a call to a pointer-to-member function.
14178 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14179 assert(op->getType() == Context.BoundMemberTy)((void)0);
14180 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((void)0);
14181
14182 QualType fnType =
14183 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14184
14185 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14186 QualType resultType = proto->getCallResultType(Context);
14187 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14188
14189 // Check that the object type isn't more qualified than the
14190 // member function we're calling.
14191 Qualifiers funcQuals = proto->getMethodQuals();
14192
14193 QualType objectType = op->getLHS()->getType();
14194 if (op->getOpcode() == BO_PtrMemI)
14195 objectType = objectType->castAs<PointerType>()->getPointeeType();
14196 Qualifiers objectQuals = objectType.getQualifiers();
14197
14198 Qualifiers difference = objectQuals - funcQuals;
14199 difference.removeObjCGCAttr();
14200 difference.removeAddressSpace();
14201 if (difference) {
14202 std::string qualsString = difference.getAsString();
14203 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14204 << fnType.getUnqualifiedType()
14205 << qualsString
14206 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14207 }
14208
14209 CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14210 Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14211 CurFPFeatureOverrides(), proto->getNumParams());
14212
14213 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14214 call, nullptr))
14215 return ExprError();
14216
14217 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14218 return ExprError();
14219
14220 if (CheckOtherCall(call, proto))
14221 return ExprError();
14222
14223 return MaybeBindToTemporary(call);
14224 }
14225
14226 // We only try to build a recovery expr at this level if we can preserve
14227 // the return type, otherwise we return ExprError() and let the caller
14228 // recover.
14229 auto BuildRecoveryExpr = [&](QualType Type) {
14230 if (!AllowRecovery)
14231 return ExprError();
14232 std::vector<Expr *> SubExprs = {MemExprE};
14233 llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
14234 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14235 Type);
14236 };
14237 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14238 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14239 RParenLoc, CurFPFeatureOverrides());
14240
14241 UnbridgedCastsSet UnbridgedCasts;
14242 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14243 return ExprError();
14244
14245 MemberExpr *MemExpr;
14246 CXXMethodDecl *Method = nullptr;
14247 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14248 NestedNameSpecifier *Qualifier = nullptr;
14249 if (isa<MemberExpr>(NakedMemExpr)) {
14250 MemExpr = cast<MemberExpr>(NakedMemExpr);
14251 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14252 FoundDecl = MemExpr->getFoundDecl();
14253 Qualifier = MemExpr->getQualifier();
14254 UnbridgedCasts.restore();
14255 } else {
14256 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14257 Qualifier = UnresExpr->getQualifier();
14258
14259 QualType ObjectType = UnresExpr->getBaseType();
14260 Expr::Classification ObjectClassification
14261 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14262 : UnresExpr->getBase()->Classify(Context);
14263
14264 // Add overload candidates
14265 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14266 OverloadCandidateSet::CSK_Normal);
14267
14268 // FIXME: avoid copy.
14269 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14270 if (UnresExpr->hasExplicitTemplateArgs()) {
14271 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14272 TemplateArgs = &TemplateArgsBuffer;
14273 }
14274
14275 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14276 E = UnresExpr->decls_end(); I != E; ++I) {
14277
14278 NamedDecl *Func = *I;
14279 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14280 if (isa<UsingShadowDecl>(Func))
14281 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14282
14283
14284 // Microsoft supports direct constructor calls.
14285 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14286 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14287 CandidateSet,
14288 /*SuppressUserConversions*/ false);
14289 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14290 // If explicit template arguments were provided, we can't call a
14291 // non-template member function.
14292 if (TemplateArgs)
14293 continue;
14294
14295 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14296 ObjectClassification, Args, CandidateSet,
14297 /*SuppressUserConversions=*/false);
14298 } else {
14299 AddMethodTemplateCandidate(
14300 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14301 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14302 /*SuppressUserConversions=*/false);
14303 }
14304 }
14305
14306 DeclarationName DeclName = UnresExpr->getMemberName();
14307
14308 UnbridgedCasts.restore();
14309
14310 OverloadCandidateSet::iterator Best;
14311 bool Succeeded = false;
14312 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14313 Best)) {
14314 case OR_Success:
14315 Method = cast<CXXMethodDecl>(Best->Function);
14316 FoundDecl = Best->FoundDecl;
14317 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14318 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14319 break;
14320 // If FoundDecl is different from Method (such as if one is a template
14321 // and the other a specialization), make sure DiagnoseUseOfDecl is
14322 // called on both.
14323 // FIXME: This would be more comprehensively addressed by modifying
14324 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14325 // being used.
14326 if (Method != FoundDecl.getDecl() &&
14327 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14328 break;
14329 Succeeded = true;
14330 break;
14331
14332 case OR_No_Viable_Function:
14333 CandidateSet.NoteCandidates(
14334 PartialDiagnosticAt(
14335 UnresExpr->getMemberLoc(),
14336 PDiag(diag::err_ovl_no_viable_member_function_in_call)
14337 << DeclName << MemExprE->getSourceRange()),
14338 *this, OCD_AllCandidates, Args);
14339 break;
14340 case OR_Ambiguous:
14341 CandidateSet.NoteCandidates(
14342 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14343 PDiag(diag::err_ovl_ambiguous_member_call)
14344 << DeclName << MemExprE->getSourceRange()),
14345 *this, OCD_AmbiguousCandidates, Args);
14346 break;
14347 case OR_Deleted:
14348 CandidateSet.NoteCandidates(
14349 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14350 PDiag(diag::err_ovl_deleted_member_call)
14351 << DeclName << MemExprE->getSourceRange()),
14352 *this, OCD_AllCandidates, Args);
14353 break;
14354 }
14355 // Overload resolution fails, try to recover.
14356 if (!Succeeded)
14357 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14358
14359 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14360
14361 // If overload resolution picked a static member, build a
14362 // non-member call based on that function.
14363 if (Method->isStatic()) {
14364 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
14365 RParenLoc);
14366 }
14367
14368 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14369 }
14370
14371 QualType ResultType = Method->getReturnType();
14372 ExprValueKind VK = Expr::getValueKindForType(ResultType);
14373 ResultType = ResultType.getNonLValueExprType(Context);
14374
14375 assert(Method && "Member call to something that isn't a method?")((void)0);
14376 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14377 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14378 Context, MemExprE, Args, ResultType, VK, RParenLoc,
14379 CurFPFeatureOverrides(), Proto->getNumParams());
14380
14381 // Check for a valid return type.
14382 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14383 TheCall, Method))
14384 return BuildRecoveryExpr(ResultType);
14385
14386 // Convert the object argument (for a non-static member function call).
14387 // We only need to do this if there was actually an overload; otherwise
14388 // it was done at lookup.
14389 if (!Method->isStatic()) {
14390 ExprResult ObjectArg =
14391 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14392 FoundDecl, Method);
14393 if (ObjectArg.isInvalid())
14394 return ExprError();
14395 MemExpr->setBase(ObjectArg.get());
14396 }
14397
14398 // Convert the rest of the arguments
14399 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14400 RParenLoc))
14401 return BuildRecoveryExpr(ResultType);
14402
14403 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14404
14405 if (CheckFunctionCall(Method, TheCall, Proto))
14406 return ExprError();
14407
14408 // In the case the method to call was not selected by the overloading
14409 // resolution process, we still need to handle the enable_if attribute. Do
14410 // that here, so it will not hide previous -- and more relevant -- errors.
14411 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14412 if (const EnableIfAttr *Attr =
14413 CheckEnableIf(Method, LParenLoc, Args, true)) {
14414 Diag(MemE->getMemberLoc(),
14415 diag::err_ovl_no_viable_member_function_in_call)
14416 << Method << Method->getSourceRange();
14417 Diag(Method->getLocation(),
14418 diag::note_ovl_candidate_disabled_by_function_cond_attr)
14419 << Attr->getCond()->getSourceRange() << Attr->getMessage();
14420 return ExprError();
14421 }
14422 }
14423
14424 if ((isa<CXXConstructorDecl>(CurContext) ||
14425 isa<CXXDestructorDecl>(CurContext)) &&
14426 TheCall->getMethodDecl()->isPure()) {
14427 const CXXMethodDecl *MD = TheCall->getMethodDecl();
14428
14429 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14430 MemExpr->performsVirtualDispatch(getLangOpts())) {
14431 Diag(MemExpr->getBeginLoc(),
14432 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14433 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14434 << MD->getParent();
14435
14436 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14437 if (getLangOpts().AppleKext)
14438 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14439 << MD->getParent() << MD->getDeclName();
14440 }
14441 }
14442
14443 if (CXXDestructorDecl *DD =
14444 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14445 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14446 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14447 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14448 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14449 MemExpr->getMemberLoc());
14450 }
14451
14452 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14453 TheCall->getMethodDecl());
14454}
14455
14456/// BuildCallToObjectOfClassType - Build a call to an object of class
14457/// type (C++ [over.call.object]), which can end up invoking an
14458/// overloaded function call operator (@c operator()) or performing a
14459/// user-defined conversion on the object argument.
14460ExprResult
14461Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14462 SourceLocation LParenLoc,
14463 MultiExprArg Args,
14464 SourceLocation RParenLoc) {
14465 if (checkPlaceholderForOverload(*this, Obj))
14466 return ExprError();
14467 ExprResult Object = Obj;
14468
14469 UnbridgedCastsSet UnbridgedCasts;
14470 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14471 return ExprError();
14472
14473 assert(Object.get()->getType()->isRecordType() &&((void)0)
14474 "Requires object type argument")((void)0);
14475
14476 // C++ [over.call.object]p1:
14477 // If the primary-expression E in the function call syntax
14478 // evaluates to a class object of type "cv T", then the set of
14479 // candidate functions includes at least the function call
14480 // operators of T. The function call operators of T are obtained by
14481 // ordinary lookup of the name operator() in the context of
14482 // (E).operator().
14483 OverloadCandidateSet CandidateSet(LParenLoc,
14484 OverloadCandidateSet::CSK_Operator);
14485 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14486
14487 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14488 diag::err_incomplete_object_call, Object.get()))
14489 return true;
14490
14491 const auto *Record = Object.get()->getType()->castAs<RecordType>();
14492 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14493 LookupQualifiedName(R, Record->getDecl());
14494 R.suppressDiagnostics();
14495
14496 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14497 Oper != OperEnd; ++Oper) {
14498 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14499 Object.get()->Classify(Context), Args, CandidateSet,
14500 /*SuppressUserConversion=*/false);
14501 }
14502
14503 // C++ [over.call.object]p2:
14504 // In addition, for each (non-explicit in C++0x) conversion function
14505 // declared in T of the form
14506 //
14507 // operator conversion-type-id () cv-qualifier;
14508 //
14509 // where cv-qualifier is the same cv-qualification as, or a
14510 // greater cv-qualification than, cv, and where conversion-type-id
14511 // denotes the type "pointer to function of (P1,...,Pn) returning
14512 // R", or the type "reference to pointer to function of
14513 // (P1,...,Pn) returning R", or the type "reference to function
14514 // of (P1,...,Pn) returning R", a surrogate call function [...]
14515 // is also considered as a candidate function. Similarly,
14516 // surrogate call functions are added to the set of candidate
14517 // functions for each conversion function declared in an
14518 // accessible base class provided the function is not hidden
14519 // within T by another intervening declaration.
14520 const auto &Conversions =
14521 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14522 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14523 NamedDecl *D = *I;
14524 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14525 if (isa<UsingShadowDecl>(D))
14526 D = cast<UsingShadowDecl>(D)->getTargetDecl();
14527
14528 // Skip over templated conversion functions; they aren't
14529 // surrogates.
14530 if (isa<FunctionTemplateDecl>(D))
14531 continue;
14532
14533 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14534 if (!Conv->isExplicit()) {
14535 // Strip the reference type (if any) and then the pointer type (if
14536 // any) to get down to what might be a function type.
14537 QualType ConvType = Conv->getConversionType().getNonReferenceType();
14538 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14539 ConvType = ConvPtrType->getPointeeType();
14540
14541 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14542 {
14543 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14544 Object.get(), Args, CandidateSet);
14545 }
14546 }
14547 }
14548
14549 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14550
14551 // Perform overload resolution.
14552 OverloadCandidateSet::iterator Best;
14553 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14554 Best)) {
14555 case OR_Success:
14556 // Overload resolution succeeded; we'll build the appropriate call
14557 // below.
14558 break;
14559
14560 case OR_No_Viable_Function: {
14561 PartialDiagnostic PD =
14562 CandidateSet.empty()
14563 ? (PDiag(diag::err_ovl_no_oper)
14564 << Object.get()->getType() << /*call*/ 1
14565 << Object.get()->getSourceRange())
14566 : (PDiag(diag::err_ovl_no_viable_object_call)
14567 << Object.get()->getType() << Object.get()->getSourceRange());
14568 CandidateSet.NoteCandidates(
14569 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14570 OCD_AllCandidates, Args);
14571 break;
14572 }
14573 case OR_Ambiguous:
14574 CandidateSet.NoteCandidates(
14575 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14576 PDiag(diag::err_ovl_ambiguous_object_call)
14577 << Object.get()->getType()
14578 << Object.get()->getSourceRange()),
14579 *this, OCD_AmbiguousCandidates, Args);
14580 break;
14581
14582 case OR_Deleted:
14583 CandidateSet.NoteCandidates(
14584 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14585 PDiag(diag::err_ovl_deleted_object_call)
14586 << Object.get()->getType()
14587 << Object.get()->getSourceRange()),
14588 *this, OCD_AllCandidates, Args);
14589 break;
14590 }
14591
14592 if (Best == CandidateSet.end())
14593 return true;
14594
14595 UnbridgedCasts.restore();
14596
14597 if (Best->Function == nullptr) {
14598 // Since there is no function declaration, this is one of the
14599 // surrogate candidates. Dig out the conversion function.
14600 CXXConversionDecl *Conv
14601 = cast<CXXConversionDecl>(
14602 Best->Conversions[0].UserDefined.ConversionFunction);
14603
14604 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14605 Best->FoundDecl);
14606 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14607 return ExprError();
14608 assert(Conv == Best->FoundDecl.getDecl() &&((void)0)
14609 "Found Decl & conversion-to-functionptr should be same, right?!")((void)0);
14610 // We selected one of the surrogate functions that converts the
14611 // object parameter to a function pointer. Perform the conversion
14612 // on the object argument, then let BuildCallExpr finish the job.
14613
14614 // Create an implicit member expr to refer to the conversion operator.
14615 // and then call it.
14616 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14617 Conv, HadMultipleCandidates);
14618 if (Call.isInvalid())
14619 return ExprError();
14620 // Record usage of conversion in an implicit cast.
14621 Call = ImplicitCastExpr::Create(
14622 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14623 nullptr, VK_PRValue, CurFPFeatureOverrides());
14624
14625 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14626 }
14627
14628 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14629
14630 // We found an overloaded operator(). Build a CXXOperatorCallExpr
14631 // that calls this method, using Object for the implicit object
14632 // parameter and passing along the remaining arguments.
14633 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14634
14635 // An error diagnostic has already been printed when parsing the declaration.
14636 if (Method->isInvalidDecl())
14637 return ExprError();
14638
14639 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14640 unsigned NumParams = Proto->getNumParams();
14641
14642 DeclarationNameInfo OpLocInfo(
14643 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14644 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14645 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14646 Obj, HadMultipleCandidates,
14647 OpLocInfo.getLoc(),
14648 OpLocInfo.getInfo());
14649 if (NewFn.isInvalid())
14650 return true;
14651
14652 // The number of argument slots to allocate in the call. If we have default
14653 // arguments we need to allocate space for them as well. We additionally
14654 // need one more slot for the object parameter.
14655 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14656
14657 // Build the full argument list for the method call (the implicit object
14658 // parameter is placed at the beginning of the list).
14659 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14660
14661 bool IsError = false;
14662
14663 // Initialize the implicit object parameter.
14664 ExprResult ObjRes =
14665 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14666 Best->FoundDecl, Method);
14667 if (ObjRes.isInvalid())
14668 IsError = true;
14669 else
14670 Object = ObjRes;
14671 MethodArgs[0] = Object.get();
14672
14673 // Check the argument types.
14674 for (unsigned i = 0; i != NumParams; i++) {
14675 Expr *Arg;
14676 if (i < Args.size()) {
14677 Arg = Args[i];
14678
14679 // Pass the argument.
14680
14681 ExprResult InputInit
14682 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14683 Context,
14684 Method->getParamDecl(i)),
14685 SourceLocation(), Arg);
14686
14687 IsError |= InputInit.isInvalid();
14688 Arg = InputInit.getAs<Expr>();
14689 } else {
14690 ExprResult DefArg
14691 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14692 if (DefArg.isInvalid()) {
14693 IsError = true;
14694 break;
14695 }
14696
14697 Arg = DefArg.getAs<Expr>();
14698 }
14699
14700 MethodArgs[i + 1] = Arg;
14701 }
14702
14703 // If this is a variadic call, handle args passed through "...".
14704 if (Proto->isVariadic()) {
14705 // Promote the arguments (C99 6.5.2.2p7).
14706 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14707 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14708 nullptr);
14709 IsError |= Arg.isInvalid();
14710 MethodArgs[i + 1] = Arg.get();
14711 }
14712 }
14713
14714 if (IsError)
14715 return true;
14716
14717 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14718
14719 // Once we've built TheCall, all of the expressions are properly owned.
14720 QualType ResultTy = Method->getReturnType();
14721 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14722 ResultTy = ResultTy.getNonLValueExprType(Context);
14723
14724 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14725 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14726 CurFPFeatureOverrides());
14727
14728 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14729 return true;
14730
14731 if (CheckFunctionCall(Method, TheCall, Proto))
14732 return true;
14733
14734 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14735}
14736
14737/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14738/// (if one exists), where @c Base is an expression of class type and
14739/// @c Member is the name of the member we're trying to find.
14740ExprResult
14741Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14742 bool *NoArrowOperatorFound) {
14743 assert(Base->getType()->isRecordType() &&((void)0)
14744 "left-hand side must have class type")((void)0);
14745
14746 if (checkPlaceholderForOverload(*this, Base))
14747 return ExprError();
14748
14749 SourceLocation Loc = Base->getExprLoc();
14750
14751 // C++ [over.ref]p1:
14752 //
14753 // [...] An expression x->m is interpreted as (x.operator->())->m
14754 // for a class object x of type T if T::operator->() exists and if
14755 // the operator is selected as the best match function by the
14756 // overload resolution mechanism (13.3).
14757 DeclarationName OpName =
14758 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14759 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14760
14761 if (RequireCompleteType(Loc, Base->getType(),
14762 diag::err_typecheck_incomplete_tag, Base))
14763 return ExprError();
14764
14765 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14766 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14767 R.suppressDiagnostics();
14768
14769 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14770 Oper != OperEnd; ++Oper) {
14771 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14772 None, CandidateSet, /*SuppressUserConversion=*/false);
14773 }
14774
14775 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14776
14777 // Perform overload resolution.
14778 OverloadCandidateSet::iterator Best;
14779 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14780 case OR_Success:
14781 // Overload resolution succeeded; we'll build the call below.
14782 break;
14783
14784 case OR_No_Viable_Function: {
14785 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14786 if (CandidateSet.empty()) {
14787 QualType BaseType = Base->getType();
14788 if (NoArrowOperatorFound) {
14789 // Report this specific error to the caller instead of emitting a
14790 // diagnostic, as requested.
14791 *NoArrowOperatorFound = true;
14792 return ExprError();
14793 }
14794 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14795 << BaseType << Base->getSourceRange();
14796 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14797 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14798 << FixItHint::CreateReplacement(OpLoc, ".");
14799 }
14800 } else
14801 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14802 << "operator->" << Base->getSourceRange();
14803 CandidateSet.NoteCandidates(*this, Base, Cands);
14804 return ExprError();
14805 }
14806 case OR_Ambiguous:
14807 CandidateSet.NoteCandidates(
14808 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14809 << "->" << Base->getType()
14810 << Base->getSourceRange()),
14811 *this, OCD_AmbiguousCandidates, Base);
14812 return ExprError();
14813
14814 case OR_Deleted:
14815 CandidateSet.NoteCandidates(
14816 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14817 << "->" << Base->getSourceRange()),
14818 *this, OCD_AllCandidates, Base);
14819 return ExprError();
14820 }
14821
14822 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14823
14824 // Convert the object parameter.
14825 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14826 ExprResult BaseResult =
14827 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14828 Best->FoundDecl, Method);
14829 if (BaseResult.isInvalid())
14830 return ExprError();
14831 Base = BaseResult.get();
14832
14833 // Build the operator call.
14834 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14835 Base, HadMultipleCandidates, OpLoc);
14836 if (FnExpr.isInvalid())
14837 return ExprError();
14838
14839 QualType ResultTy = Method->getReturnType();
14840 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14841 ResultTy = ResultTy.getNonLValueExprType(Context);
14842 CXXOperatorCallExpr *TheCall =
14843 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14844 ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14845
14846 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14847 return ExprError();
14848
14849 if (CheckFunctionCall(Method, TheCall,
14850 Method->getType()->castAs<FunctionProtoType>()))
14851 return ExprError();
14852
14853 return MaybeBindToTemporary(TheCall);
14854}
14855
14856/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14857/// a literal operator described by the provided lookup results.
14858ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14859 DeclarationNameInfo &SuffixInfo,
14860 ArrayRef<Expr*> Args,
14861 SourceLocation LitEndLoc,
14862 TemplateArgumentListInfo *TemplateArgs) {
14863 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14864
14865 OverloadCandidateSet CandidateSet(UDSuffixLoc,
14866 OverloadCandidateSet::CSK_Normal);
14867 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14868 TemplateArgs);
14869
14870 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14871
14872 // Perform overload resolution. This will usually be trivial, but might need
14873 // to perform substitutions for a literal operator template.
14874 OverloadCandidateSet::iterator Best;
14875 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14876 case OR_Success:
14877 case OR_Deleted:
14878 break;
14879
14880 case OR_No_Viable_Function:
14881 CandidateSet.NoteCandidates(
14882 PartialDiagnosticAt(UDSuffixLoc,
14883 PDiag(diag::err_ovl_no_viable_function_in_call)
14884 << R.getLookupName()),
14885 *this, OCD_AllCandidates, Args);
14886 return ExprError();
14887
14888 case OR_Ambiguous:
14889 CandidateSet.NoteCandidates(
14890 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14891 << R.getLookupName()),
14892 *this, OCD_AmbiguousCandidates, Args);
14893 return ExprError();
14894 }
14895
14896 FunctionDecl *FD = Best->Function;
14897 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14898 nullptr, HadMultipleCandidates,
14899 SuffixInfo.getLoc(),
14900 SuffixInfo.getInfo());
14901 if (Fn.isInvalid())
14902 return true;
14903
14904 // Check the argument types. This should almost always be a no-op, except
14905 // that array-to-pointer decay is applied to string literals.
14906 Expr *ConvArgs[2];
14907 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14908 ExprResult InputInit = PerformCopyInitialization(
14909 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14910 SourceLocation(), Args[ArgIdx]);
14911 if (InputInit.isInvalid())
14912 return true;
14913 ConvArgs[ArgIdx] = InputInit.get();
14914 }
14915
14916 QualType ResultTy = FD->getReturnType();
14917 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14918 ResultTy = ResultTy.getNonLValueExprType(Context);
14919
14920 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14921 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14922 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14923
14924 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14925 return ExprError();
14926
14927 if (CheckFunctionCall(FD, UDL, nullptr))
14928 return ExprError();
14929
14930 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
14931}
14932
14933/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14934/// given LookupResult is non-empty, it is assumed to describe a member which
14935/// will be invoked. Otherwise, the function will be found via argument
14936/// dependent lookup.
14937/// CallExpr is set to a valid expression and FRS_Success returned on success,
14938/// otherwise CallExpr is set to ExprError() and some non-success value
14939/// is returned.
14940Sema::ForRangeStatus
14941Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14942 SourceLocation RangeLoc,
14943 const DeclarationNameInfo &NameInfo,
14944 LookupResult &MemberLookup,
14945 OverloadCandidateSet *CandidateSet,
14946 Expr *Range, ExprResult *CallExpr) {
14947 Scope *S = nullptr;
14948
14949 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14950 if (!MemberLookup.empty()) {
1
Assuming the condition is false
2
Taking false branch
14951 ExprResult MemberRef =
14952 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14953 /*IsPtr=*/false, CXXScopeSpec(),
14954 /*TemplateKWLoc=*/SourceLocation(),
14955 /*FirstQualifierInScope=*/nullptr,
14956 MemberLookup,
14957 /*TemplateArgs=*/nullptr, S);
14958 if (MemberRef.isInvalid()) {
14959 *CallExpr = ExprError();
14960 return FRS_DiagnosticIssued;
14961 }
14962 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14963 if (CallExpr->isInvalid()) {
14964 *CallExpr = ExprError();
14965 return FRS_DiagnosticIssued;
14966 }
14967 } else {
14968 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
14969 NestedNameSpecifierLoc(),
14970 NameInfo, UnresolvedSet<0>());
14971 if (FnR.isInvalid())
3
Assuming the condition is false
4
Taking false branch
14972 return FRS_DiagnosticIssued;
14973 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
5
The object is a 'UnresolvedLookupExpr'
14974
14975 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
6
Calling 'Sema::buildOverloadedCallSet'
14976 CandidateSet, CallExpr);
14977 if (CandidateSet->empty() || CandidateSetError) {
14978 *CallExpr = ExprError();
14979 return FRS_NoViableFunction;
14980 }
14981 OverloadCandidateSet::iterator Best;
14982 OverloadingResult OverloadResult =
14983 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
14984
14985 if (OverloadResult == OR_No_Viable_Function) {
14986 *CallExpr = ExprError();
14987 return FRS_NoViableFunction;
14988 }
14989 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14990 Loc, nullptr, CandidateSet, &Best,
14991 OverloadResult,
14992 /*AllowTypoCorrection=*/false);
14993 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14994 *CallExpr = ExprError();
14995 return FRS_DiagnosticIssued;
14996 }
14997 }
14998 return FRS_Success;
14999}
15000
15001
15002/// FixOverloadedFunctionReference - E is an expression that refers to
15003/// a C++ overloaded function (possibly with some parentheses and
15004/// perhaps a '&' around it). We have resolved the overloaded function
15005/// to the function declaration Fn, so patch up the expression E to
15006/// refer (possibly indirectly) to Fn. Returns the new expr.
15007Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15008 FunctionDecl *Fn) {
15009 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15010 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15011 Found, Fn);
15012 if (SubExpr == PE->getSubExpr())
15013 return PE;
15014
15015 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15016 }
15017
15018 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15019 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15020 Found, Fn);
15021 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((void)0)
15022 SubExpr->getType()) &&((void)0)
15023 "Implicit cast type cannot be determined from overload")((void)0);
15024 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((void)0);
15025 if (SubExpr == ICE->getSubExpr())
15026 return ICE;
15027
15028 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15029 SubExpr, nullptr, ICE->getValueKind(),
15030 CurFPFeatureOverrides());
15031 }
15032
15033 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15034 if (!GSE->isResultDependent()) {
15035 Expr *SubExpr =
15036 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15037 if (SubExpr == GSE->getResultExpr())
15038 return GSE;
15039
15040 // Replace the resulting type information before rebuilding the generic
15041 // selection expression.
15042 ArrayRef<Expr *> A = GSE->getAssocExprs();
15043 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15044 unsigned ResultIdx = GSE->getResultIndex();
15045 AssocExprs[ResultIdx] = SubExpr;
15046
15047 return GenericSelectionExpr::Create(
15048 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15049 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15050 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15051 ResultIdx);
15052 }
15053 // Rather than fall through to the unreachable, return the original generic
15054 // selection expression.
15055 return GSE;
15056 }
15057
15058 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15059 assert(UnOp->getOpcode() == UO_AddrOf &&((void)0)
15060 "Can only take the address of an overloaded function")((void)0);
15061 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15062 if (Method->isStatic()) {
15063 // Do nothing: static member functions aren't any different
15064 // from non-member functions.
15065 } else {
15066 // Fix the subexpression, which really has to be an
15067 // UnresolvedLookupExpr holding an overloaded member function
15068 // or template.
15069 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15070 Found, Fn);
15071 if (SubExpr == UnOp->getSubExpr())
15072 return UnOp;
15073
15074 assert(isa<DeclRefExpr>(SubExpr)((void)0)
15075 && "fixed to something other than a decl ref")((void)0);
15076 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((void)0)
15077 && "fixed to a member ref with no nested name qualifier")((void)0);
15078
15079 // We have taken the address of a pointer to member
15080 // function. Perform the computation here so that we get the
15081 // appropriate pointer to member type.
15082 QualType ClassType
15083 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15084 QualType MemPtrType
15085 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15086 // Under the MS ABI, lock down the inheritance model now.
15087 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15088 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15089
15090 return UnaryOperator::Create(
15091 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15092 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15093 }
15094 }
15095 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15096 Found, Fn);
15097 if (SubExpr == UnOp->getSubExpr())
15098 return UnOp;
15099
15100 return UnaryOperator::Create(
15101 Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()),
15102 VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false,
15103 CurFPFeatureOverrides());
15104 }
15105
15106 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15107 // FIXME: avoid copy.
15108 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15109 if (ULE->hasExplicitTemplateArgs()) {
15110 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15111 TemplateArgs = &TemplateArgsBuffer;
15112 }
15113
15114 DeclRefExpr *DRE =
15115 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15116 ULE->getQualifierLoc(), Found.getDecl(),
15117 ULE->getTemplateKeywordLoc(), TemplateArgs);
15118 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15119 return DRE;
15120 }
15121
15122 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15123 // FIXME: avoid copy.
15124 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15125 if (MemExpr->hasExplicitTemplateArgs()) {
15126 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15127 TemplateArgs = &TemplateArgsBuffer;
15128 }
15129
15130 Expr *Base;
15131
15132 // If we're filling in a static method where we used to have an
15133 // implicit member access, rewrite to a simple decl ref.
15134 if (MemExpr->isImplicitAccess()) {
15135 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15136 DeclRefExpr *DRE = BuildDeclRefExpr(
15137 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15138 MemExpr->getQualifierLoc(), Found.getDecl(),
15139 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15140 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15141 return DRE;
15142 } else {
15143 SourceLocation Loc = MemExpr->getMemberLoc();
15144 if (MemExpr->getQualifier())
15145 Loc = MemExpr->getQualifierLoc().getBeginLoc();
15146 Base =
15147 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15148 }
15149 } else
15150 Base = MemExpr->getBase();
15151
15152 ExprValueKind valueKind;
15153 QualType type;
15154 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15155 valueKind = VK_LValue;
15156 type = Fn->getType();
15157 } else {
15158 valueKind = VK_PRValue;
15159 type = Context.BoundMemberTy;
15160 }
15161
15162 return BuildMemberExpr(
15163 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15164 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15165 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15166 type, valueKind, OK_Ordinary, TemplateArgs);
15167 }
15168
15169 llvm_unreachable("Invalid reference to overloaded function")__builtin_unreachable();
15170}
15171
15172ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15173 DeclAccessPair Found,
15174 FunctionDecl *Fn) {
15175 return FixOverloadedFunctionReference(E.get(), Found, Fn);
15176}

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MemAlloc.h"
20#include "llvm/Support/type_traits.h"
21#include <algorithm>
22#include <cassert>
23#include <cstddef>
24#include <cstdlib>
25#include <cstring>
26#include <functional>
27#include <initializer_list>
28#include <iterator>
29#include <limits>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the stuff common to all SmallVectors.
38///
39/// The template parameter specifies the type which should be used to hold the
40/// Size and Capacity of the SmallVector, so it can be adjusted.
41/// Using 32 bit size is desirable to shrink the size of the SmallVector.
42/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
43/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
44/// buffering bitcode output - which can exceed 4GB.
45template <class Size_T> class SmallVectorBase {
46protected:
47 void *BeginX;
48 Size_T Size = 0, Capacity;
49
50 /// The maximum value of the Size_T used.
51 static constexpr size_t SizeTypeMax() {
52 return std::numeric_limits<Size_T>::max();
53 }
54
55 SmallVectorBase() = delete;
56 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
57 : BeginX(FirstEl), Capacity(TotalCapacity) {}
58
59 /// This is a helper for \a grow() that's out of line to reduce code
60 /// duplication. This function will report a fatal error if it can't grow at
61 /// least to \p MinSize.
62 void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);
63
64 /// This is an implementation of the grow() method which only works
65 /// on POD-like data types and is out of line to reduce code duplication.
66 /// This function will report a fatal error if it cannot increase capacity.
67 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
68
69public:
70 size_t size() const { return Size; }
71 size_t capacity() const { return Capacity; }
72
73 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
26
Assuming field 'Size' is not equal to 0
27
Returning zero, which participates in a condition later
74
75 /// Set the array size to \p N, which the current array must have enough
76 /// capacity for.
77 ///
78 /// This does not construct or destroy any elements in the vector.
79 ///
80 /// Clients can use this in conjunction with capacity() to write past the end
81 /// of the buffer when they know that more elements are available, and only
82 /// update the size later. This avoids the cost of value initializing elements
83 /// which will only be overwritten.
84 void set_size(size_t N) {
85 assert(N <= capacity())((void)0);
86 Size = N;
87 }
88};
89
90template <class T>
91using SmallVectorSizeType =
92 typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
93 uint32_t>::type;
94
95/// Figure out the offset of the first element.
96template <class T, typename = void> struct SmallVectorAlignmentAndSize {
97 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
98 SmallVectorBase<SmallVectorSizeType<T>>)];
99 alignas(T) char FirstEl[sizeof(T)];
100};
101
102/// This is the part of SmallVectorTemplateBase which does not depend on whether
103/// the type T is a POD. The extra dummy template argument is used by ArrayRef
104/// to avoid unnecessarily requiring T to be complete.
105template <typename T, typename = void>
106class SmallVectorTemplateCommon
107 : public SmallVectorBase<SmallVectorSizeType<T>> {
108 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
109
110 /// Find the address of the first element. For this pointer math to be valid
111 /// with small-size of 0 for T with lots of alignment, it's important that
112 /// SmallVectorStorage is properly-aligned even for small-size of 0.
113 void *getFirstEl() const {
114 return const_cast<void *>(reinterpret_cast<const void *>(
115 reinterpret_cast<const char *>(this) +
116 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
117 }
118 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
119
120protected:
121 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
122
123 void grow_pod(size_t MinSize, size_t TSize) {
124 Base::grow_pod(getFirstEl(), MinSize, TSize);
125 }
126
127 /// Return true if this is a smallvector which has not had dynamic
128 /// memory allocated for it.
129 bool isSmall() const { return this->BeginX == getFirstEl(); }
130
131 /// Put this vector in a state of being small.
132 void resetToSmall() {
133 this->BeginX = getFirstEl();
134 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
135 }
136
137 /// Return true if V is an internal reference to the given range.
138 bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
139 // Use std::less to avoid UB.
140 std::less<> LessThan;
141 return !LessThan(V, First) && LessThan(V, Last);
142 }
143
144 /// Return true if V is an internal reference to this vector.
145 bool isReferenceToStorage(const void *V) const {
146 return isReferenceToRange(V, this->begin(), this->end());
147 }
148
149 /// Return true if First and Last form a valid (possibly empty) range in this
150 /// vector's storage.
151 bool isRangeInStorage(const void *First, const void *Last) const {
152 // Use std::less to avoid UB.
153 std::less<> LessThan;
154 return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
155 !LessThan(this->end(), Last);
156 }
157
158 /// Return true unless Elt will be invalidated by resizing the vector to
159 /// NewSize.
160 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
161 // Past the end.
162 if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true))
163 return true;
164
165 // Return false if Elt will be destroyed by shrinking.
166 if (NewSize <= this->size())
167 return Elt < this->begin() + NewSize;
168
169 // Return false if we need to grow.
170 return NewSize <= this->capacity();
171 }
172
173 /// Check whether Elt will be invalidated by resizing the vector to NewSize.
174 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
175 assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0)
176 "Attempting to reference an element of the vector in an operation "((void)0)
177 "that invalidates it")((void)0);
178 }
179
180 /// Check whether Elt will be invalidated by increasing the size of the
181 /// vector by N.
182 void assertSafeToAdd(const void *Elt, size_t N = 1) {
183 this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
184 }
185
186 /// Check whether any part of the range will be invalidated by clearing.
187 void assertSafeToReferenceAfterClear(const T *From, const T *To) {
188 if (From == To)
189 return;
190 this->assertSafeToReferenceAfterResize(From, 0);
191 this->assertSafeToReferenceAfterResize(To - 1, 0);
192 }
193 template <
194 class ItTy,
195 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
196 bool> = false>
197 void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
198
199 /// Check whether any part of the range will be invalidated by growing.
200 void assertSafeToAddRange(const T *From, const T *To) {
201 if (From == To)
202 return;
203 this->assertSafeToAdd(From, To - From);
204 this->assertSafeToAdd(To - 1, To - From);
205 }
206 template <
207 class ItTy,
208 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
209 bool> = false>
210 void assertSafeToAddRange(ItTy, ItTy) {}
211
212 /// Reserve enough space to add one element, and return the updated element
213 /// pointer in case it was a reference to the storage.
214 template <class U>
215 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
216 size_t N) {
217 size_t NewSize = This->size() + N;
218 if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true
)
)
219 return &Elt;
220
221 bool ReferencesStorage = false;
222 int64_t Index = -1;
223 if (!U::TakesParamByValue) {
224 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt
)), false)
) {
225 ReferencesStorage = true;
226 Index = &Elt - This->begin();
227 }
228 }
229 This->grow(NewSize);
230 return ReferencesStorage ? This->begin() + Index : &Elt;
231 }
232
233public:
234 using size_type = size_t;
235 using difference_type = ptrdiff_t;
236 using value_type = T;
237 using iterator = T *;
238 using const_iterator = const T *;
239
240 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
241 using reverse_iterator = std::reverse_iterator<iterator>;
242
243 using reference = T &;
244 using const_reference = const T &;
245 using pointer = T *;
246 using const_pointer = const T *;
247
248 using Base::capacity;
249 using Base::empty;
250 using Base::size;
251
252 // forward iterator creation methods.
253 iterator begin() { return (iterator)this->BeginX; }
254 const_iterator begin() const { return (const_iterator)this->BeginX; }
255 iterator end() { return begin() + size(); }
256 const_iterator end() const { return begin() + size(); }
257
258 // reverse iterator creation methods.
259 reverse_iterator rbegin() { return reverse_iterator(end()); }
260 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
261 reverse_iterator rend() { return reverse_iterator(begin()); }
262 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
263
264 size_type size_in_bytes() const { return size() * sizeof(T); }
265 size_type max_size() const {
266 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
267 }
268
269 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
270
271 /// Return a pointer to the vector's buffer, even if empty().
272 pointer data() { return pointer(begin()); }
273 /// Return a pointer to the vector's buffer, even if empty().
274 const_pointer data() const { return const_pointer(begin()); }
275
276 reference operator[](size_type idx) {
277 assert(idx < size())((void)0);
278 return begin()[idx];
279 }
280 const_reference operator[](size_type idx) const {
281 assert(idx < size())((void)0);
282 return begin()[idx];
283 }
284
285 reference front() {
286 assert(!empty())((void)0);
287 return begin()[0];
288 }
289 const_reference front() const {
290 assert(!empty())((void)0);
291 return begin()[0];
292 }
293
294 reference back() {
295 assert(!empty())((void)0);
296 return end()[-1];
297 }
298 const_reference back() const {
299 assert(!empty())((void)0);
300 return end()[-1];
301 }
302};
303
304/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
305/// method implementations that are designed to work with non-trivial T's.
306///
307/// We approximate is_trivially_copyable with trivial move/copy construction and
308/// trivial destruction. While the standard doesn't specify that you're allowed
309/// copy these types with memcpy, there is no way for the type to observe this.
310/// This catches the important case of std::pair<POD, POD>, which is not
311/// trivially assignable.
312template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
313 (is_trivially_move_constructible<T>::value) &&
314 std::is_trivially_destructible<T>::value>
315class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
316 friend class SmallVectorTemplateCommon<T>;
317
318protected:
319 static constexpr bool TakesParamByValue = false;
320 using ValueParamT = const T &;
321
322 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
323
324 static void destroy_range(T *S, T *E) {
325 while (S != E) {
326 --E;
327 E->~T();
328 }
329 }
330
331 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
332 /// constructing elements as needed.
333 template<typename It1, typename It2>
334 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
335 std::uninitialized_copy(std::make_move_iterator(I),
336 std::make_move_iterator(E), Dest);
337 }
338
339 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
340 /// constructing elements as needed.
341 template<typename It1, typename It2>
342 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
343 std::uninitialized_copy(I, E, Dest);
344 }
345
346 /// Grow the allocated memory (without initializing new elements), doubling
347 /// the size of the allocated memory. Guarantees space for at least one more
348 /// element, or MinSize more elements if specified.
349 void grow(size_t MinSize = 0);
350
351 /// Create a new allocation big enough for \p MinSize and pass back its size
352 /// in \p NewCapacity. This is the first section of \a grow().
353 T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
354 return static_cast<T *>(
355 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
356 MinSize, sizeof(T), NewCapacity));
357 }
358
359 /// Move existing elements over to the new allocation \p NewElts, the middle
360 /// section of \a grow().
361 void moveElementsForGrow(T *NewElts);
362
363 /// Transfer ownership of the allocation, finishing up \a grow().
364 void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
365
366 /// Reserve enough space to add one element, and return the updated element
367 /// pointer in case it was a reference to the storage.
368 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
369 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
370 }
371
372 /// Reserve enough space to add one element, and return the updated element
373 /// pointer in case it was a reference to the storage.
374 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
375 return const_cast<T *>(
376 this->reserveForParamAndGetAddressImpl(this, Elt, N));
377 }
378
379 static T &&forward_value_param(T &&V) { return std::move(V); }
380 static const T &forward_value_param(const T &V) { return V; }
381
382 void growAndAssign(size_t NumElts, const T &Elt) {
383 // Grow manually in case Elt is an internal reference.
384 size_t NewCapacity;
385 T *NewElts = mallocForGrow(NumElts, NewCapacity);
386 std::uninitialized_fill_n(NewElts, NumElts, Elt);
387 this->destroy_range(this->begin(), this->end());
388 takeAllocationForGrow(NewElts, NewCapacity);
389 this->set_size(NumElts);
390 }
391
392 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
393 // Grow manually in case one of Args is an internal reference.
394 size_t NewCapacity;
395 T *NewElts = mallocForGrow(0, NewCapacity);
396 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
397 moveElementsForGrow(NewElts);
398 takeAllocationForGrow(NewElts, NewCapacity);
399 this->set_size(this->size() + 1);
400 return this->back();
401 }
402
403public:
404 void push_back(const T &Elt) {
405 const T *EltPtr = reserveForParamAndGetAddress(Elt);
406 ::new ((void *)this->end()) T(*EltPtr);
407 this->set_size(this->size() + 1);
408 }
409
410 void push_back(T &&Elt) {
411 T *EltPtr = reserveForParamAndGetAddress(Elt);
412 ::new ((void *)this->end()) T(::std::move(*EltPtr));
413 this->set_size(this->size() + 1);
414 }
415
416 void pop_back() {
417 this->set_size(this->size() - 1);
418 this->end()->~T();
419 }
420};
421
422// Define this out-of-line to dissuade the C++ compiler from inlining it.
423template <typename T, bool TriviallyCopyable>
424void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
425 size_t NewCapacity;
426 T *NewElts = mallocForGrow(MinSize, NewCapacity);
427 moveElementsForGrow(NewElts);
428 takeAllocationForGrow(NewElts, NewCapacity);
429}
430
431// Define this out-of-line to dissuade the C++ compiler from inlining it.
432template <typename T, bool TriviallyCopyable>
433void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
434 T *NewElts) {
435 // Move the elements over.
436 this->uninitialized_move(this->begin(), this->end(), NewElts);
437
438 // Destroy the original elements.
439 destroy_range(this->begin(), this->end());
440}
441
442// Define this out-of-line to dissuade the C++ compiler from inlining it.
443template <typename T, bool TriviallyCopyable>
444void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
445 T *NewElts, size_t NewCapacity) {
446 // If this wasn't grown from the inline copy, deallocate the old space.
447 if (!this->isSmall())
448 free(this->begin());
449
450 this->BeginX = NewElts;
451 this->Capacity = NewCapacity;
452}
453
454/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
455/// method implementations that are designed to work with trivially copyable
456/// T's. This allows using memcpy in place of copy/move construction and
457/// skipping destruction.
458template <typename T>
459class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
460 friend class SmallVectorTemplateCommon<T>;
461
462protected:
463 /// True if it's cheap enough to take parameters by value. Doing so avoids
464 /// overhead related to mitigations for reference invalidation.
465 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
466
467 /// Either const T& or T, depending on whether it's cheap enough to take
468 /// parameters by value.
469 using ValueParamT =
470 typename std::conditional<TakesParamByValue, T, const T &>::type;
471
472 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
473
474 // No need to do a destroy loop for POD's.
475 static void destroy_range(T *, T *) {}
476
477 /// Move the range [I, E) onto the uninitialized memory
478 /// starting with "Dest", constructing elements into it as needed.
479 template<typename It1, typename It2>
480 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
481 // Just do a copy.
482 uninitialized_copy(I, E, Dest);
483 }
484
485 /// Copy the range [I, E) onto the uninitialized memory
486 /// starting with "Dest", constructing elements into it as needed.
487 template<typename It1, typename It2>
488 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
489 // Arbitrary iterator types; just use the basic implementation.
490 std::uninitialized_copy(I, E, Dest);
491 }
492
493 /// Copy the range [I, E) onto the uninitialized memory
494 /// starting with "Dest", constructing elements into it as needed.
495 template <typename T1, typename T2>
496 static void uninitialized_copy(
497 T1 *I, T1 *E, T2 *Dest,
498 std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
499 T2>::value> * = nullptr) {
500 // Use memcpy for PODs iterated by pointers (which includes SmallVector
501 // iterators): std::uninitialized_copy optimizes to memmove, but we can
502 // use memcpy here. Note that I and E are iterators and thus might be
503 // invalid for memcpy if they are equal.
504 if (I != E)
505 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
506 }
507
508 /// Double the size of the allocated memory, guaranteeing space for at
509 /// least one more element or MinSize if specified.
510 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
511
512 /// Reserve enough space to add one element, and return the updated element
513 /// pointer in case it was a reference to the storage.
514 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
515 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
516 }
517
518 /// Reserve enough space to add one element, and return the updated element
519 /// pointer in case it was a reference to the storage.
520 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
521 return const_cast<T *>(
522 this->reserveForParamAndGetAddressImpl(this, Elt, N));
523 }
524
525 /// Copy \p V or return a reference, depending on \a ValueParamT.
526 static ValueParamT forward_value_param(ValueParamT V) { return V; }
527
528 void growAndAssign(size_t NumElts, T Elt) {
529 // Elt has been copied in case it's an internal reference, side-stepping
530 // reference invalidation problems without losing the realloc optimization.
531 this->set_size(0);
532 this->grow(NumElts);
533 std::uninitialized_fill_n(this->begin(), NumElts, Elt);
534 this->set_size(NumElts);
535 }
536
537 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
538 // Use push_back with a copy in case Args has an internal reference,
539 // side-stepping reference invalidation problems without losing the realloc
540 // optimization.
541 push_back(T(std::forward<ArgTypes>(Args)...));
542 return this->back();
543 }
544
545public:
546 void push_back(ValueParamT Elt) {
547 const T *EltPtr = reserveForParamAndGetAddress(Elt);
548 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
549 this->set_size(this->size() + 1);
550 }
551
552 void pop_back() { this->set_size(this->size() - 1); }
553};
554
555/// This class consists of common code factored out of the SmallVector class to
556/// reduce code duplication based on the SmallVector 'N' template parameter.
557template <typename T>
558class SmallVectorImpl : public SmallVectorTemplateBase<T> {
559 using SuperClass = SmallVectorTemplateBase<T>;
560
561public:
562 using iterator = typename SuperClass::iterator;
563 using const_iterator = typename SuperClass::const_iterator;
564 using reference = typename SuperClass::reference;
565 using size_type = typename SuperClass::size_type;
566
567protected:
568 using SmallVectorTemplateBase<T>::TakesParamByValue;
569 using ValueParamT = typename SuperClass::ValueParamT;
570
571 // Default ctor - Initialize to empty.
572 explicit SmallVectorImpl(unsigned N)
573 : SmallVectorTemplateBase<T>(N) {}
574
575public:
576 SmallVectorImpl(const SmallVectorImpl &) = delete;
577
578 ~SmallVectorImpl() {
579 // Subclass has already destructed this vector's elements.
580 // If this wasn't grown from the inline copy, deallocate the old space.
581 if (!this->isSmall())
582 free(this->begin());
583 }
584
585 void clear() {
586 this->destroy_range(this->begin(), this->end());
587 this->Size = 0;
588 }
589
590private:
591 template <bool ForOverwrite> void resizeImpl(size_type N) {
592 if (N < this->size()) {
593 this->pop_back_n(this->size() - N);
594 } else if (N > this->size()) {
595 this->reserve(N);
596 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
597 if (ForOverwrite)
598 new (&*I) T;
599 else
600 new (&*I) T();
601 this->set_size(N);
602 }
603 }
604
605public:
606 void resize(size_type N) { resizeImpl<false>(N); }
607
608 /// Like resize, but \ref T is POD, the new values won't be initialized.
609 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
610
611 void resize(size_type N, ValueParamT NV) {
612 if (N == this->size())
613 return;
614
615 if (N < this->size()) {
616 this->pop_back_n(this->size() - N);
617 return;
618 }
619
620 // N > this->size(). Defer to append.
621 this->append(N - this->size(), NV);
622 }
623
624 void reserve(size_type N) {
625 if (this->capacity() < N)
626 this->grow(N);
627 }
628
629 void pop_back_n(size_type NumItems) {
630 assert(this->size() >= NumItems)((void)0);
631 this->destroy_range(this->end() - NumItems, this->end());
632 this->set_size(this->size() - NumItems);
633 }
634
635 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
636 T Result = ::std::move(this->back());
637 this->pop_back();
638 return Result;
639 }
640
641 void swap(SmallVectorImpl &RHS);
642
643 /// Add the specified range to the end of the SmallVector.
644 template <typename in_iter,
645 typename = std::enable_if_t<std::is_convertible<
646 typename std::iterator_traits<in_iter>::iterator_category,
647 std::input_iterator_tag>::value>>
648 void append(in_iter in_start, in_iter in_end) {
649 this->assertSafeToAddRange(in_start, in_end);
650 size_type NumInputs = std::distance(in_start, in_end);
651 this->reserve(this->size() + NumInputs);
652 this->uninitialized_copy(in_start, in_end, this->end());
653 this->set_size(this->size() + NumInputs);
654 }
655
656 /// Append \p NumInputs copies of \p Elt to the end.
657 void append(size_type NumInputs, ValueParamT Elt) {
658 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
659 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
660 this->set_size(this->size() + NumInputs);
661 }
662
663 void append(std::initializer_list<T> IL) {
664 append(IL.begin(), IL.end());
665 }
666
667 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
668
669 void assign(size_type NumElts, ValueParamT Elt) {
670 // Note that Elt could be an internal reference.
671 if (NumElts > this->capacity()) {
672 this->growAndAssign(NumElts, Elt);
673 return;
674 }
675
676 // Assign over existing elements.
677 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
678 if (NumElts > this->size())
679 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
680 else if (NumElts < this->size())
681 this->destroy_range(this->begin() + NumElts, this->end());
682 this->set_size(NumElts);
683 }
684
685 // FIXME: Consider assigning over existing elements, rather than clearing &
686 // re-initializing them - for all assign(...) variants.
687
688 template <typename in_iter,
689 typename = std::enable_if_t<std::is_convertible<
690 typename std::iterator_traits<in_iter>::iterator_category,
691 std::input_iterator_tag>::value>>
692 void assign(in_iter in_start, in_iter in_end) {
693 this->assertSafeToReferenceAfterClear(in_start, in_end);
694 clear();
695 append(in_start, in_end);
696 }
697
698 void assign(std::initializer_list<T> IL) {
699 clear();
700 append(IL);
701 }
702
703 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
704
705 iterator erase(const_iterator CI) {
706 // Just cast away constness because this is a non-const member function.
707 iterator I = const_cast<iterator>(CI);
708
709 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0);
710
711 iterator N = I;
712 // Shift all elts down one.
713 std::move(I+1, this->end(), I);
714 // Drop the last elt.
715 this->pop_back();
716 return(N);
717 }
718
719 iterator erase(const_iterator CS, const_iterator CE) {
720 // Just cast away constness because this is a non-const member function.
721 iterator S = const_cast<iterator>(CS);
722 iterator E = const_cast<iterator>(CE);
723
724 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0);
725
726 iterator N = S;
727 // Shift all elts down.
728 iterator I = std::move(E, this->end(), S);
729 // Drop the last elts.
730 this->destroy_range(I, this->end());
731 this->set_size(I - this->begin());
732 return(N);
733 }
734
735private:
736 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
737 // Callers ensure that ArgType is derived from T.
738 static_assert(
739 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
740 T>::value,
741 "ArgType must be derived from T!");
742
743 if (I == this->end()) { // Important special case for empty vector.
744 this->push_back(::std::forward<ArgType>(Elt));
745 return this->end()-1;
746 }
747
748 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
749
750 // Grow if necessary.
751 size_t Index = I - this->begin();
752 std::remove_reference_t<ArgType> *EltPtr =
753 this->reserveForParamAndGetAddress(Elt);
754 I = this->begin() + Index;
755
756 ::new ((void*) this->end()) T(::std::move(this->back()));
757 // Push everything else over.
758 std::move_backward(I, this->end()-1, this->end());
759 this->set_size(this->size() + 1);
760
761 // If we just moved the element we're inserting, be sure to update
762 // the reference (never happens if TakesParamByValue).
763 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
764 "ArgType must be 'T' when taking by value!");
765 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
766 ++EltPtr;
767
768 *I = ::std::forward<ArgType>(*EltPtr);
769 return I;
770 }
771
772public:
773 iterator insert(iterator I, T &&Elt) {
774 return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
775 }
776
777 iterator insert(iterator I, const T &Elt) {
778 return insert_one_impl(I, this->forward_value_param(Elt));
779 }
780
781 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
782 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
783 size_t InsertElt = I - this->begin();
784
785 if (I == this->end()) { // Important special case for empty vector.
786 append(NumToInsert, Elt);
787 return this->begin()+InsertElt;
788 }
789
790 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
791
792 // Ensure there is enough space, and get the (maybe updated) address of
793 // Elt.
794 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
795
796 // Uninvalidate the iterator.
797 I = this->begin()+InsertElt;
798
799 // If there are more elements between the insertion point and the end of the
800 // range than there are being inserted, we can use a simple approach to
801 // insertion. Since we already reserved space, we know that this won't
802 // reallocate the vector.
803 if (size_t(this->end()-I) >= NumToInsert) {
804 T *OldEnd = this->end();
805 append(std::move_iterator<iterator>(this->end() - NumToInsert),
806 std::move_iterator<iterator>(this->end()));
807
808 // Copy the existing elements that get replaced.
809 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
810
811 // If we just moved the element we're inserting, be sure to update
812 // the reference (never happens if TakesParamByValue).
813 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
814 EltPtr += NumToInsert;
815
816 std::fill_n(I, NumToInsert, *EltPtr);
817 return I;
818 }
819
820 // Otherwise, we're inserting more elements than exist already, and we're
821 // not inserting at the end.
822
823 // Move over the elements that we're about to overwrite.
824 T *OldEnd = this->end();
825 this->set_size(this->size() + NumToInsert);
826 size_t NumOverwritten = OldEnd-I;
827 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
828
829 // If we just moved the element we're inserting, be sure to update
830 // the reference (never happens if TakesParamByValue).
831 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
832 EltPtr += NumToInsert;
833
834 // Replace the overwritten part.
835 std::fill_n(I, NumOverwritten, *EltPtr);
836
837 // Insert the non-overwritten middle part.
838 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
839 return I;
840 }
841
842 template <typename ItTy,
843 typename = std::enable_if_t<std::is_convertible<
844 typename std::iterator_traits<ItTy>::iterator_category,
845 std::input_iterator_tag>::value>>
846 iterator insert(iterator I, ItTy From, ItTy To) {
847 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
848 size_t InsertElt = I - this->begin();
849
850 if (I == this->end()) { // Important special case for empty vector.
851 append(From, To);
852 return this->begin()+InsertElt;
853 }
854
855 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0);
856
857 // Check that the reserve that follows doesn't invalidate the iterators.
858 this->assertSafeToAddRange(From, To);
859
860 size_t NumToInsert = std::distance(From, To);
861
862 // Ensure there is enough space.
863 reserve(this->size() + NumToInsert);
864
865 // Uninvalidate the iterator.
866 I = this->begin()+InsertElt;
867
868 // If there are more elements between the insertion point and the end of the
869 // range than there are being inserted, we can use a simple approach to
870 // insertion. Since we already reserved space, we know that this won't
871 // reallocate the vector.
872 if (size_t(this->end()-I) >= NumToInsert) {
873 T *OldEnd = this->end();
874 append(std::move_iterator<iterator>(this->end() - NumToInsert),
875 std::move_iterator<iterator>(this->end()));
876
877 // Copy the existing elements that get replaced.
878 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
879
880 std::copy(From, To, I);
881 return I;
882 }
883
884 // Otherwise, we're inserting more elements than exist already, and we're
885 // not inserting at the end.
886
887 // Move over the elements that we're about to overwrite.
888 T *OldEnd = this->end();
889 this->set_size(this->size() + NumToInsert);
890 size_t NumOverwritten = OldEnd-I;
891 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
892
893 // Replace the overwritten part.
894 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
895 *J = *From;
896 ++J; ++From;
897 }
898
899 // Insert the non-overwritten middle part.
900 this->uninitialized_copy(From, To, OldEnd);
901 return I;
902 }
903
904 void insert(iterator I, std::initializer_list<T> IL) {
905 insert(I, IL.begin(), IL.end());
906 }
907
908 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
909 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
910 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
911
912 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
913 this->set_size(this->size() + 1);
914 return this->back();
915 }
916
917 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
918
919 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
920
921 bool operator==(const SmallVectorImpl &RHS) const {
922 if (this->size() != RHS.size()) return false;
923 return std::equal(this->begin(), this->end(), RHS.begin());
924 }
925 bool operator!=(const SmallVectorImpl &RHS) const {
926 return !(*this == RHS);
927 }
928
929 bool operator<(const SmallVectorImpl &RHS) const {
930 return std::lexicographical_compare(this->begin(), this->end(),
931 RHS.begin(), RHS.end());
932 }
933};
934
935template <typename T>
936void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
937 if (this == &RHS) return;
938
939 // We can only avoid copying elements if neither vector is small.
940 if (!this->isSmall() && !RHS.isSmall()) {
941 std::swap(this->BeginX, RHS.BeginX);
942 std::swap(this->Size, RHS.Size);
943 std::swap(this->Capacity, RHS.Capacity);
944 return;
945 }
946 this->reserve(RHS.size());
947 RHS.reserve(this->size());
948
949 // Swap the shared elements.
950 size_t NumShared = this->size();
951 if (NumShared > RHS.size()) NumShared = RHS.size();
952 for (size_type i = 0; i != NumShared; ++i)
953 std::swap((*this)[i], RHS[i]);
954
955 // Copy over the extra elts.
956 if (this->size() > RHS.size()) {
957 size_t EltDiff = this->size() - RHS.size();
958 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
959 RHS.set_size(RHS.size() + EltDiff);
960 this->destroy_range(this->begin()+NumShared, this->end());
961 this->set_size(NumShared);
962 } else if (RHS.size() > this->size()) {
963 size_t EltDiff = RHS.size() - this->size();
964 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
965 this->set_size(this->size() + EltDiff);
966 this->destroy_range(RHS.begin()+NumShared, RHS.end());
967 RHS.set_size(NumShared);
968 }
969}
970
971template <typename T>
972SmallVectorImpl<T> &SmallVectorImpl<T>::
973 operator=(const SmallVectorImpl<T> &RHS) {
974 // Avoid self-assignment.
975 if (this == &RHS) return *this;
976
977 // If we already have sufficient space, assign the common elements, then
978 // destroy any excess.
979 size_t RHSSize = RHS.size();
980 size_t CurSize = this->size();
981 if (CurSize >= RHSSize) {
982 // Assign common elements.
983 iterator NewEnd;
984 if (RHSSize)
985 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
986 else
987 NewEnd = this->begin();
988
989 // Destroy excess elements.
990 this->destroy_range(NewEnd, this->end());
991
992 // Trim.
993 this->set_size(RHSSize);
994 return *this;
995 }
996
997 // If we have to grow to have enough elements, destroy the current elements.
998 // This allows us to avoid copying them during the grow.
999 // FIXME: don't do this if they're efficiently moveable.
1000 if (this->capacity() < RHSSize) {
1001 // Destroy current elements.
1002 this->clear();
1003 CurSize = 0;
1004 this->grow(RHSSize);
1005 } else if (CurSize) {
1006 // Otherwise, use assignment for the already-constructed elements.
1007 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1008 }
1009
1010 // Copy construct the new elements in place.
1011 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1012 this->begin()+CurSize);
1013
1014 // Set end.
1015 this->set_size(RHSSize);
1016 return *this;
1017}
1018
1019template <typename T>
1020SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1021 // Avoid self-assignment.
1022 if (this == &RHS) return *this;
1023
1024 // If the RHS isn't small, clear this vector and then steal its buffer.
1025 if (!RHS.isSmall()) {
1026 this->destroy_range(this->begin(), this->end());
1027 if (!this->isSmall()) free(this->begin());
1028 this->BeginX = RHS.BeginX;
1029 this->Size = RHS.Size;
1030 this->Capacity = RHS.Capacity;
1031 RHS.resetToSmall();
1032 return *this;
1033 }
1034
1035 // If we already have sufficient space, assign the common elements, then
1036 // destroy any excess.
1037 size_t RHSSize = RHS.size();
1038 size_t CurSize = this->size();
1039 if (CurSize >= RHSSize) {
1040 // Assign common elements.
1041 iterator NewEnd = this->begin();
1042 if (RHSSize)
1043 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1044
1045 // Destroy excess elements and trim the bounds.
1046 this->destroy_range(NewEnd, this->end());
1047 this->set_size(RHSSize);
1048
1049 // Clear the RHS.
1050 RHS.clear();
1051
1052 return *this;
1053 }
1054
1055 // If we have to grow to have enough elements, destroy the current elements.
1056 // This allows us to avoid copying them during the grow.
1057 // FIXME: this may not actually make any sense if we can efficiently move
1058 // elements.
1059 if (this->capacity() < RHSSize) {
1060 // Destroy current elements.
1061 this->clear();
1062 CurSize = 0;
1063 this->grow(RHSSize);
1064 } else if (CurSize) {
1065 // Otherwise, use assignment for the already-constructed elements.
1066 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1067 }
1068
1069 // Move-construct the new elements in place.
1070 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1071 this->begin()+CurSize);
1072
1073 // Set end.
1074 this->set_size(RHSSize);
1075
1076 RHS.clear();
1077 return *this;
1078}
1079
1080/// Storage for the SmallVector elements. This is specialized for the N=0 case
1081/// to avoid allocating unnecessary storage.
1082template <typename T, unsigned N>
1083struct SmallVectorStorage {
1084 alignas(T) char InlineElts[N * sizeof(T)];
1085};
1086
1087/// We need the storage to be properly aligned even for small-size of 0 so that
1088/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1089/// well-defined.
1090template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1091
1092/// Forward declaration of SmallVector so that
1093/// calculateSmallVectorDefaultInlinedElements can reference
1094/// `sizeof(SmallVector<T, 0>)`.
1095template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector;
1096
1097/// Helper class for calculating the default number of inline elements for
1098/// `SmallVector<T>`.
1099///
1100/// This should be migrated to a constexpr function when our minimum
1101/// compiler support is enough for multi-statement constexpr functions.
1102template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1103 // Parameter controlling the default number of inlined elements
1104 // for `SmallVector<T>`.
1105 //
1106 // The default number of inlined elements ensures that
1107 // 1. There is at least one inlined element.
1108 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1109 // it contradicts 1.
1110 static constexpr size_t kPreferredSmallVectorSizeof = 64;
1111
1112 // static_assert that sizeof(T) is not "too big".
1113 //
1114 // Because our policy guarantees at least one inlined element, it is possible
1115 // for an arbitrarily large inlined element to allocate an arbitrarily large
1116 // amount of inline storage. We generally consider it an antipattern for a
1117 // SmallVector to allocate an excessive amount of inline storage, so we want
1118 // to call attention to these cases and make sure that users are making an
1119 // intentional decision if they request a lot of inline storage.
1120 //
1121 // We want this assertion to trigger in pathological cases, but otherwise
1122 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1123 // larger than kPreferredSmallVectorSizeof (otherwise,
1124 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1125 // pattern seems useful in practice).
1126 //
1127 // One wrinkle is that this assertion is in theory non-portable, since
1128 // sizeof(T) is in general platform-dependent. However, we don't expect this
1129 // to be much of an issue, because most LLVM development happens on 64-bit
1130 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1131 // 32-bit hosts, dodging the issue. The reverse situation, where development
1132 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1133 // 64-bit host, is expected to be very rare.
1134 static_assert(
1135 sizeof(T) <= 256,
1136 "You are trying to use a default number of inlined elements for "
1137 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1138 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1139 "sure you really want that much inline storage.");
1140
1141 // Discount the size of the header itself when calculating the maximum inline
1142 // bytes.
1143 static constexpr size_t PreferredInlineBytes =
1144 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1145 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1146 static constexpr size_t value =
1147 NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1148};
1149
1150/// This is a 'vector' (really, a variable-sized array), optimized
1151/// for the case when the array is small. It contains some number of elements
1152/// in-place, which allows it to avoid heap allocation when the actual number of
1153/// elements is below that threshold. This allows normal "small" cases to be
1154/// fast without losing generality for large inputs.
1155///
1156/// \note
1157/// In the absence of a well-motivated choice for the number of inlined
1158/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1159/// omitting the \p N). This will choose a default number of inlined elements
1160/// reasonable for allocation on the stack (for example, trying to keep \c
1161/// sizeof(SmallVector<T>) around 64 bytes).
1162///
1163/// \warning This does not attempt to be exception safe.
1164///
1165/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1166template <typename T,
1167 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1168class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>,
1169 SmallVectorStorage<T, N> {
1170public:
1171 SmallVector() : SmallVectorImpl<T>(N) {}
1172
1173 ~SmallVector() {
1174 // Destroy the constructed elements in the vector.
1175 this->destroy_range(this->begin(), this->end());
1176 }
1177
1178 explicit SmallVector(size_t Size, const T &Value = T())
1179 : SmallVectorImpl<T>(N) {
1180 this->assign(Size, Value);
1181 }
1182
1183 template <typename ItTy,
1184 typename = std::enable_if_t<std::is_convertible<
1185 typename std::iterator_traits<ItTy>::iterator_category,
1186 std::input_iterator_tag>::value>>
1187 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1188 this->append(S, E);
1189 }
1190
1191 template <typename RangeTy>
1192 explicit SmallVector(const iterator_range<RangeTy> &R)
1193 : SmallVectorImpl<T>(N) {
1194 this->append(R.begin(), R.end());
1195 }
1196
1197 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1198 this->assign(IL);
1199 }
1200
1201 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1202 if (!RHS.empty())
1203 SmallVectorImpl<T>::operator=(RHS);
1204 }
1205
1206 SmallVector &operator=(const SmallVector &RHS) {
1207 SmallVectorImpl<T>::operator=(RHS);
1208 return *this;
1209 }
1210
1211 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1212 if (!RHS.empty())
1213 SmallVectorImpl<T>::operator=(::std::move(RHS));
1214 }
1215
1216 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1217 if (!RHS.empty())
1218 SmallVectorImpl<T>::operator=(::std::move(RHS));
1219 }
1220
1221 SmallVector &operator=(SmallVector &&RHS) {
1222 SmallVectorImpl<T>::operator=(::std::move(RHS));
1223 return *this;
1224 }
1225
1226 SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1227 SmallVectorImpl<T>::operator=(::std::move(RHS));
1228 return *this;
1229 }
1230
1231 SmallVector &operator=(std::initializer_list<T> IL) {
1232 this->assign(IL);
1233 return *this;
1234 }
1235};
1236
1237template <typename T, unsigned N>
1238inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1239 return X.capacity_in_bytes();
1240}
1241
1242/// Given a range of type R, iterate the entire range and return a
1243/// SmallVector with elements of the vector. This is useful, for example,
1244/// when you want to iterate a range and then sort the results.
1245template <unsigned Size, typename R>
1246SmallVector<typename std::remove_const<typename std::remove_reference<
1247 decltype(*std::begin(std::declval<R &>()))>::type>::type,
1248 Size>
1249to_vector(R &&Range) {
1250 return {std::begin(Range), std::end(Range)};
1251}
1252
1253} // end namespace llvm
1254
1255namespace std {
1256
1257 /// Implement std::swap in terms of SmallVector swap.
1258 template<typename T>
1259 inline void
1260 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1261 LHS.swap(RHS);
1262 }
1263
1264 /// Implement std::swap in terms of SmallVector swap.
1265 template<typename T, unsigned N>
1266 inline void
1267 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1268 LHS.swap(RHS);
1269 }
1270
1271} // end namespace std
1272
1273#endif // LLVM_ADT_SMALLVECTOR_H

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&((void)0)
380 "should not have found a non-externally-declarable previous decl")((void)0);
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 29;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")((void)0);
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&((void)0)
655 "Can only push / pop #pragma stack sentinels!")((void)0);
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)((void)0);
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")((void)0);
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))((void)0);
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)((void)0);
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures) {
1506 OldOverrides = S.FpPragmaStack.CurrentValue;
1507 }
1508 ~FPFeaturesStateRAII() {
1509 S.CurFPFeatures = OldFPFeaturesState;
1510 S.FpPragmaStack.CurrentValue = OldOverrides;
1511 }
1512 FPOptionsOverride getOverrides() { return OldOverrides; }
1513
1514 private:
1515 Sema& S;
1516 FPOptions OldFPFeaturesState;
1517 FPOptionsOverride OldOverrides;
1518 };
1519
1520 void addImplicitTypedef(StringRef Name, QualType T);
1521
1522 bool WarnedStackExhausted = false;
1523
1524 /// Increment when we find a reference; decrement when we find an ignored
1525 /// assignment. Ultimately the value is 0 if every reference is an ignored
1526 /// assignment.
1527 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1528
1529 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1530
1531public:
1532 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1533 TranslationUnitKind TUKind = TU_Complete,
1534 CodeCompleteConsumer *CompletionConsumer = nullptr);
1535 ~Sema();
1536
1537 /// Perform initialization that occurs after the parser has been
1538 /// initialized but before it parses anything.
1539 void Initialize();
1540
1541 /// This virtual key function only exists to limit the emission of debug info
1542 /// describing the Sema class. GCC and Clang only emit debug info for a class
1543 /// with a vtable when the vtable is emitted. Sema is final and not
1544 /// polymorphic, but the debug info size savings are so significant that it is
1545 /// worth adding a vtable just to take advantage of this optimization.
1546 virtual void anchor();
1547
1548 const LangOptions &getLangOpts() const { return LangOpts; }
1549 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1550 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1551
1552 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1553 SourceManager &getSourceManager() const { return SourceMgr; }
1554 Preprocessor &getPreprocessor() const { return PP; }
1555 ASTContext &getASTContext() const { return Context; }
1556 ASTConsumer &getASTConsumer() const { return Consumer; }
1557 ASTMutationListener *getASTMutationListener() const;
1558 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1559 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1560 StringRef Platform);
1561
1562 ///Registers an external source. If an external source already exists,
1563 /// creates a multiplex external source and appends to it.
1564 ///
1565 ///\param[in] E - A non-null external sema source.
1566 ///
1567 void addExternalSource(ExternalSemaSource *E);
1568
1569 void PrintStats() const;
1570
1571 /// Warn that the stack is nearly exhausted.
1572 void warnStackExhausted(SourceLocation Loc);
1573
1574 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1575 /// guaranteed). Produces a warning if we're low on stack space and allocates
1576 /// more in that case. Use this in code that may recurse deeply (for example,
1577 /// in template instantiation) to avoid stack overflow.
1578 void runWithSufficientStackSpace(SourceLocation Loc,
1579 llvm::function_ref<void()> Fn);
1580
1581 /// Helper class that creates diagnostics with optional
1582 /// template instantiation stacks.
1583 ///
1584 /// This class provides a wrapper around the basic DiagnosticBuilder
1585 /// class that emits diagnostics. ImmediateDiagBuilder is
1586 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1587 /// does) and, if the diagnostic comes from inside a template
1588 /// instantiation, printing the template instantiation stack as
1589 /// well.
1590 class ImmediateDiagBuilder : public DiagnosticBuilder {
1591 Sema &SemaRef;
1592 unsigned DiagID;
1593
1594 public:
1595 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1596 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1597 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1598 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1599
1600 // This is a cunning lie. DiagnosticBuilder actually performs move
1601 // construction in its copy constructor (but due to varied uses, it's not
1602 // possible to conveniently express this as actual move construction). So
1603 // the default copy ctor here is fine, because the base class disables the
1604 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1605 // in that case anwyay.
1606 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1607
1608 ~ImmediateDiagBuilder() {
1609 // If we aren't active, there is nothing to do.
1610 if (!isActive()) return;
1611
1612 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1613 // builder itself so it won't emit the diagnostic in its own destructor.
1614 //
1615 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1616 // do its own needless checks to see if the diagnostic needs to be
1617 // emitted. However, because we take care to ensure that the builder
1618 // objects never escape, a sufficiently smart compiler will be able to
1619 // eliminate that code.
1620 Clear();
1621
1622 // Dispatch to Sema to emit the diagnostic.
1623 SemaRef.EmitCurrentDiagnostic(DiagID);
1624 }
1625
1626 /// Teach operator<< to produce an object of the correct type.
1627 template <typename T>
1628 friend const ImmediateDiagBuilder &
1629 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1630 const DiagnosticBuilder &BaseDiag = Diag;
1631 BaseDiag << Value;
1632 return Diag;
1633 }
1634
1635 // It is necessary to limit this to rvalue reference to avoid calling this
1636 // function with a bitfield lvalue argument since non-const reference to
1637 // bitfield is not allowed.
1638 template <typename T, typename = typename std::enable_if<
1639 !std::is_lvalue_reference<T>::value>::type>
1640 const ImmediateDiagBuilder &operator<<(T &&V) const {
1641 const DiagnosticBuilder &BaseDiag = *this;
1642 BaseDiag << std::move(V);
1643 return *this;
1644 }
1645 };
1646
1647 /// A generic diagnostic builder for errors which may or may not be deferred.
1648 ///
1649 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1650 /// which are not allowed to appear inside __device__ functions and are
1651 /// allowed to appear in __host__ __device__ functions only if the host+device
1652 /// function is never codegen'ed.
1653 ///
1654 /// To handle this, we use the notion of "deferred diagnostics", where we
1655 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1656 ///
1657 /// This class lets you emit either a regular diagnostic, a deferred
1658 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1659 /// its constructor, thus simplifying the process of creating these "maybe
1660 /// deferred" diagnostics.
1661 class SemaDiagnosticBuilder {
1662 public:
1663 enum Kind {
1664 /// Emit no diagnostics.
1665 K_Nop,
1666 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1667 K_Immediate,
1668 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1669 /// emit a call stack showing how this function can be reached by an a
1670 /// priori known-emitted function.
1671 K_ImmediateWithCallStack,
1672 /// Create a deferred diagnostic, which is emitted only if the function
1673 /// it's attached to is codegen'ed. Also emit a call stack as with
1674 /// K_ImmediateWithCallStack.
1675 K_Deferred
1676 };
1677
1678 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1679 FunctionDecl *Fn, Sema &S);
1680 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1681 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1682 ~SemaDiagnosticBuilder();
1683
1684 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1685
1686 /// Convertible to bool: True if we immediately emitted an error, false if
1687 /// we didn't emit an error or we created a deferred error.
1688 ///
1689 /// Example usage:
1690 ///
1691 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1692 /// return ExprError();
1693 ///
1694 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1695 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1696 operator bool() const { return isImmediate(); }
1697
1698 template <typename T>
1699 friend const SemaDiagnosticBuilder &
1700 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1701 if (Diag.ImmediateDiag.hasValue())
1702 *Diag.ImmediateDiag << Value;
1703 else if (Diag.PartialDiagId.hasValue())
1704 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1705 << Value;
1706 return Diag;
1707 }
1708
1709 // It is necessary to limit this to rvalue reference to avoid calling this
1710 // function with a bitfield lvalue argument since non-const reference to
1711 // bitfield is not allowed.
1712 template <typename T, typename = typename std::enable_if<
1713 !std::is_lvalue_reference<T>::value>::type>
1714 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1715 if (ImmediateDiag.hasValue())
1716 *ImmediateDiag << std::move(V);
1717 else if (PartialDiagId.hasValue())
1718 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1719 return *this;
1720 }
1721
1722 friend const SemaDiagnosticBuilder &
1723 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1724 if (Diag.ImmediateDiag.hasValue())
1725 PD.Emit(*Diag.ImmediateDiag);
1726 else if (Diag.PartialDiagId.hasValue())
1727 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1728 return Diag;
1729 }
1730
1731 void AddFixItHint(const FixItHint &Hint) const {
1732 if (ImmediateDiag.hasValue())
1733 ImmediateDiag->AddFixItHint(Hint);
1734 else if (PartialDiagId.hasValue())
1735 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1736 }
1737
1738 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1739 return ExprError();
1740 }
1741 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1742 return StmtError();
1743 }
1744 operator ExprResult() const { return ExprError(); }
1745 operator StmtResult() const { return StmtError(); }
1746 operator TypeResult() const { return TypeError(); }
1747 operator DeclResult() const { return DeclResult(true); }
1748 operator MemInitResult() const { return MemInitResult(true); }
1749
1750 private:
1751 Sema &S;
1752 SourceLocation Loc;
1753 unsigned DiagID;
1754 FunctionDecl *Fn;
1755 bool ShowCallStack;
1756
1757 // Invariant: At most one of these Optionals has a value.
1758 // FIXME: Switch these to a Variant once that exists.
1759 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1760 llvm::Optional<unsigned> PartialDiagId;
1761 };
1762
1763 /// Is the last error level diagnostic immediate. This is used to determined
1764 /// whether the next info diagnostic should be immediate.
1765 bool IsLastErrorImmediate = true;
1766
1767 /// Emit a diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1769 bool DeferHint = false);
1770
1771 /// Emit a partial diagnostic.
1772 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1773 bool DeferHint = false);
1774
1775 /// Build a partial diagnostic.
1776 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1777
1778 /// Whether deferrable diagnostics should be deferred.
1779 bool DeferDiags = false;
1780
1781 /// RAII class to control scope of DeferDiags.
1782 class DeferDiagsRAII {
1783 Sema &S;
1784 bool SavedDeferDiags = false;
1785
1786 public:
1787 DeferDiagsRAII(Sema &S, bool DeferDiags)
1788 : S(S), SavedDeferDiags(S.DeferDiags) {
1789 S.DeferDiags = DeferDiags;
1790 }
1791 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1792 };
1793
1794 /// Whether uncompilable error has occurred. This includes error happens
1795 /// in deferred diagnostics.
1796 bool hasUncompilableErrorOccurred() const;
1797
1798 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1799
1800 /// Get a string to suggest for zero-initialization of a type.
1801 std::string
1802 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1803 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1804
1805 /// Calls \c Lexer::getLocForEndOfToken()
1806 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1807
1808 /// Retrieve the module loader associated with the preprocessor.
1809 ModuleLoader &getModuleLoader() const;
1810
1811 /// Invent a new identifier for parameters of abbreviated templates.
1812 IdentifierInfo *
1813 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1814 unsigned Index);
1815
1816 void emitAndClearUnusedLocalTypedefWarnings();
1817
1818 private:
1819 /// Function or variable declarations to be checked for whether the deferred
1820 /// diagnostics should be emitted.
1821 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1822
1823 public:
1824 // Emit all deferred diagnostics.
1825 void emitDeferredDiags();
1826
1827 enum TUFragmentKind {
1828 /// The global module fragment, between 'module;' and a module-declaration.
1829 Global,
1830 /// A normal translation unit fragment. For a non-module unit, this is the
1831 /// entire translation unit. Otherwise, it runs from the module-declaration
1832 /// to the private-module-fragment (if any) or the end of the TU (if not).
1833 Normal,
1834 /// The private module fragment, between 'module :private;' and the end of
1835 /// the translation unit.
1836 Private
1837 };
1838
1839 void ActOnStartOfTranslationUnit();
1840 void ActOnEndOfTranslationUnit();
1841 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1842
1843 void CheckDelegatingCtorCycles();
1844
1845 Scope *getScopeForContext(DeclContext *Ctx);
1846
1847 void PushFunctionScope();
1848 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1849 sema::LambdaScopeInfo *PushLambdaScope();
1850
1851 /// This is used to inform Sema what the current TemplateParameterDepth
1852 /// is during Parsing. Currently it is used to pass on the depth
1853 /// when parsing generic lambda 'auto' parameters.
1854 void RecordParsingTemplateParameterDepth(unsigned Depth);
1855
1856 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1857 RecordDecl *RD, CapturedRegionKind K,
1858 unsigned OpenMPCaptureLevel = 0);
1859
1860 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1861 /// time after they've been popped.
1862 class PoppedFunctionScopeDeleter {
1863 Sema *Self;
1864
1865 public:
1866 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1867 void operator()(sema::FunctionScopeInfo *Scope) const;
1868 };
1869
1870 using PoppedFunctionScopePtr =
1871 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1872
1873 PoppedFunctionScopePtr
1874 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1875 const Decl *D = nullptr,
1876 QualType BlockType = QualType());
1877
1878 sema::FunctionScopeInfo *getCurFunction() const {
1879 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1880 }
1881
1882 sema::FunctionScopeInfo *getEnclosingFunction() const;
1883
1884 void setFunctionHasBranchIntoScope();
1885 void setFunctionHasBranchProtectedScope();
1886 void setFunctionHasIndirectGoto();
1887 void setFunctionHasMustTail();
1888
1889 void PushCompoundScope(bool IsStmtExpr);
1890 void PopCompoundScope();
1891
1892 sema::CompoundScopeInfo &getCurCompoundScope() const;
1893
1894 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1895
1896 /// Retrieve the current block, if any.
1897 sema::BlockScopeInfo *getCurBlock();
1898
1899 /// Get the innermost lambda enclosing the current location, if any. This
1900 /// looks through intervening non-lambda scopes such as local functions and
1901 /// blocks.
1902 sema::LambdaScopeInfo *getEnclosingLambda() const;
1903
1904 /// Retrieve the current lambda scope info, if any.
1905 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1906 /// lambda scope info ignoring all inner capturing scopes that are not
1907 /// lambda scopes.
1908 sema::LambdaScopeInfo *
1909 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1910
1911 /// Retrieve the current generic lambda info, if any.
1912 sema::LambdaScopeInfo *getCurGenericLambda();
1913
1914 /// Retrieve the current captured region, if any.
1915 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1916
1917 /// Retrieve the current function, if any, that should be analyzed for
1918 /// potential availability violations.
1919 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1920
1921 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1922 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1923
1924 /// Called before parsing a function declarator belonging to a function
1925 /// declaration.
1926 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1927 unsigned TemplateParameterDepth);
1928
1929 /// Called after parsing a function declarator belonging to a function
1930 /// declaration.
1931 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1932
1933 void ActOnComment(SourceRange Comment);
1934
1935 //===--------------------------------------------------------------------===//
1936 // Type Analysis / Processing: SemaType.cpp.
1937 //
1938
1939 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1940 const DeclSpec *DS = nullptr);
1941 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1942 const DeclSpec *DS = nullptr);
1943 QualType BuildPointerType(QualType T,
1944 SourceLocation Loc, DeclarationName Entity);
1945 QualType BuildReferenceType(QualType T, bool LValueRef,
1946 SourceLocation Loc, DeclarationName Entity);
1947 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1948 Expr *ArraySize, unsigned Quals,
1949 SourceRange Brackets, DeclarationName Entity);
1950 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1951 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1952 SourceLocation AttrLoc);
1953 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1954 SourceLocation AttrLoc);
1955
1956 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 /// Same as above, but constructs the AddressSpace index if not provided.
1960 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1961 SourceLocation AttrLoc);
1962
1963 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1964
1965 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1966
1967 /// Build a function type.
1968 ///
1969 /// This routine checks the function type according to C++ rules and
1970 /// under the assumption that the result type and parameter types have
1971 /// just been instantiated from a template. It therefore duplicates
1972 /// some of the behavior of GetTypeForDeclarator, but in a much
1973 /// simpler form that is only suitable for this narrow use case.
1974 ///
1975 /// \param T The return type of the function.
1976 ///
1977 /// \param ParamTypes The parameter types of the function. This array
1978 /// will be modified to account for adjustments to the types of the
1979 /// function parameters.
1980 ///
1981 /// \param Loc The location of the entity whose type involves this
1982 /// function type or, if there is no such entity, the location of the
1983 /// type that will have function type.
1984 ///
1985 /// \param Entity The name of the entity that involves the function
1986 /// type, if known.
1987 ///
1988 /// \param EPI Extra information about the function type. Usually this will
1989 /// be taken from an existing function with the same prototype.
1990 ///
1991 /// \returns A suitable function type, if there are no errors. The
1992 /// unqualified type will always be a FunctionProtoType.
1993 /// Otherwise, returns a NULL type.
1994 QualType BuildFunctionType(QualType T,
1995 MutableArrayRef<QualType> ParamTypes,
1996 SourceLocation Loc, DeclarationName Entity,
1997 const FunctionProtoType::ExtProtoInfo &EPI);
1998
1999 QualType BuildMemberPointerType(QualType T, QualType Class,
2000 SourceLocation Loc,
2001 DeclarationName Entity);
2002 QualType BuildBlockPointerType(QualType T,
2003 SourceLocation Loc, DeclarationName Entity);
2004 QualType BuildParenType(QualType T);
2005 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2006 QualType BuildReadPipeType(QualType T,
2007 SourceLocation Loc);
2008 QualType BuildWritePipeType(QualType T,
2009 SourceLocation Loc);
2010 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2011
2012 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2013 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2014
2015 /// Package the given type and TSI into a ParsedType.
2016 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2017 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2018 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2019 static QualType GetTypeFromParser(ParsedType Ty,
2020 TypeSourceInfo **TInfo = nullptr);
2021 CanThrowResult canThrow(const Stmt *E);
2022 /// Determine whether the callee of a particular function call can throw.
2023 /// E, D and Loc are all optional.
2024 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2025 SourceLocation Loc = SourceLocation());
2026 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2027 const FunctionProtoType *FPT);
2028 void UpdateExceptionSpec(FunctionDecl *FD,
2029 const FunctionProtoType::ExceptionSpecInfo &ESI);
2030 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2031 bool CheckDistantExceptionSpec(QualType T);
2032 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2033 bool CheckEquivalentExceptionSpec(
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool CheckEquivalentExceptionSpec(
2037 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2038 const FunctionProtoType *Old, SourceLocation OldLoc,
2039 const FunctionProtoType *New, SourceLocation NewLoc);
2040 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2041 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2042 const PartialDiagnostic &NestedDiagID,
2043 const PartialDiagnostic &NoteID,
2044 const PartialDiagnostic &NoThrowDiagID,
2045 const FunctionProtoType *Superset,
2046 SourceLocation SuperLoc,
2047 const FunctionProtoType *Subset,
2048 SourceLocation SubLoc);
2049 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2050 const PartialDiagnostic &NoteID,
2051 const FunctionProtoType *Target,
2052 SourceLocation TargetLoc,
2053 const FunctionProtoType *Source,
2054 SourceLocation SourceLoc);
2055
2056 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2057
2058 /// The parser has parsed the context-sensitive type 'instancetype'
2059 /// in an Objective-C message declaration. Return the appropriate type.
2060 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2061
2062 /// Abstract class used to diagnose incomplete types.
2063 struct TypeDiagnoser {
2064 TypeDiagnoser() {}
2065
2066 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2067 virtual ~TypeDiagnoser() {}
2068 };
2069
2070 static int getPrintable(int I) { return I; }
2071 static unsigned getPrintable(unsigned I) { return I; }
2072 static bool getPrintable(bool B) { return B; }
2073 static const char * getPrintable(const char *S) { return S; }
2074 static StringRef getPrintable(StringRef S) { return S; }
2075 static const std::string &getPrintable(const std::string &S) { return S; }
2076 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2077 return II;
2078 }
2079 static DeclarationName getPrintable(DeclarationName N) { return N; }
2080 static QualType getPrintable(QualType T) { return T; }
2081 static SourceRange getPrintable(SourceRange R) { return R; }
2082 static SourceRange getPrintable(SourceLocation L) { return L; }
2083 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2084 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2085
2086 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2087 protected:
2088 unsigned DiagID;
2089 std::tuple<const Ts &...> Args;
2090
2091 template <std::size_t... Is>
2092 void emit(const SemaDiagnosticBuilder &DB,
2093 std::index_sequence<Is...>) const {
2094 // Apply all tuple elements to the builder in order.
2095 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2096 (void)Dummy;
2097 }
2098
2099 public:
2100 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2101 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2102 assert(DiagID != 0 && "no diagnostic for type diagnoser")((void)0);
2103 }
2104
2105 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2106 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2107 emit(DB, std::index_sequence_for<Ts...>());
2108 DB << T;
2109 }
2110 };
2111
2112 /// Do a check to make sure \p Name looks like a legal argument for the
2113 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2114 /// is invalid for the given declaration.
2115 ///
2116 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2117 ///
2118 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2119 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2120 const ParsedAttr &AL, bool IsAsync);
2121
2122 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2123 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2124 /// For example, a diagnostic with no other parameters would generally have
2125 /// the form "...%select{incomplete|sizeless}0 type %1...".
2126 template <typename... Ts>
2127 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2128 public:
2129 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2130 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2131
2132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2133 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2134 this->emit(DB, std::index_sequence_for<Ts...>());
2135 DB << T->isSizelessType() << T;
2136 }
2137 };
2138
2139 enum class CompleteTypeKind {
2140 /// Apply the normal rules for complete types. In particular,
2141 /// treat all sizeless types as incomplete.
2142 Normal,
2143
2144 /// Relax the normal rules for complete types so that they include
2145 /// sizeless built-in types.
2146 AcceptSizeless,
2147
2148 // FIXME: Eventually we should flip the default to Normal and opt in
2149 // to AcceptSizeless rather than opt out of it.
2150 Default = AcceptSizeless
2151 };
2152
2153private:
2154 /// Methods for marking which expressions involve dereferencing a pointer
2155 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2156 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2157 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2158 /// `*p`, but need to check that `address of` is called on it. This requires
2159 /// keeping a container of all pending expressions and checking if the address
2160 /// of them are eventually taken.
2161 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2162 void CheckAddressOfNoDeref(const Expr *E);
2163 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2164
2165 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2166 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2167
2168 struct ModuleScope {
2169 SourceLocation BeginLoc;
2170 clang::Module *Module = nullptr;
2171 bool ModuleInterface = false;
2172 bool ImplicitGlobalModuleFragment = false;
2173 VisibleModuleSet OuterVisibleModules;
2174 };
2175 /// The modules we're currently parsing.
2176 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2177
2178 /// Namespace definitions that we will export when they finish.
2179 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2180
2181 /// Get the module whose scope we are currently within.
2182 Module *getCurrentModule() const {
2183 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2184 }
2185
2186 VisibleModuleSet VisibleModules;
2187
2188public:
2189 /// Get the module owning an entity.
2190 Module *getOwningModule(const Decl *Entity) {
2191 return Entity->getOwningModule();
34
Called C++ object pointer is null
2192 }
2193
2194 /// Make a merged definition of an existing hidden definition \p ND
2195 /// visible at the specified location.
2196 void makeMergedDefinitionVisible(NamedDecl *ND);
2197
2198 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2199
2200 // When loading a non-modular PCH files, this is used to restore module
2201 // visibility.
2202 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2203 VisibleModules.setVisible(Mod, ImportLoc);
2204 }
2205
2206 /// Determine whether a declaration is visible to name lookup.
2207 bool isVisible(const NamedDecl *D) {
2208 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2209 }
2210
2211 /// Determine whether any declaration of an entity is visible.
2212 bool
2213 hasVisibleDeclaration(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2215 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2216 }
2217 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2218 llvm::SmallVectorImpl<Module *> *Modules);
2219
2220 bool hasVisibleMergedDefinition(NamedDecl *Def);
2221 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2222
2223 /// Determine if \p D and \p Suggested have a structurally compatible
2224 /// layout as described in C11 6.2.7/1.
2225 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2226
2227 /// Determine if \p D has a visible definition. If not, suggest a declaration
2228 /// that should be made visible to expose the definition.
2229 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2230 bool OnlyNeedComplete = false);
2231 bool hasVisibleDefinition(const NamedDecl *D) {
2232 NamedDecl *Hidden;
2233 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2234 }
2235
2236 /// Determine if the template parameter \p D has a visible default argument.
2237 bool
2238 hasVisibleDefaultArgument(const NamedDecl *D,
2239 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2240
2241 /// Determine if there is a visible declaration of \p D that is an explicit
2242 /// specialization declaration for a specialization of a template. (For a
2243 /// member specialization, use hasVisibleMemberSpecialization.)
2244 bool hasVisibleExplicitSpecialization(
2245 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2246
2247 /// Determine if there is a visible declaration of \p D that is a member
2248 /// specialization declaration (as opposed to an instantiated declaration).
2249 bool hasVisibleMemberSpecialization(
2250 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2251
2252 /// Determine if \p A and \p B are equivalent internal linkage declarations
2253 /// from different modules, and thus an ambiguity error can be downgraded to
2254 /// an extension warning.
2255 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2256 const NamedDecl *B);
2257 void diagnoseEquivalentInternalLinkageDeclarations(
2258 SourceLocation Loc, const NamedDecl *D,
2259 ArrayRef<const NamedDecl *> Equiv);
2260
2261 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2262
2263 bool isCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2265 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2266 }
2267 bool RequireCompleteType(SourceLocation Loc, QualType T,
2268 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2269 bool RequireCompleteType(SourceLocation Loc, QualType T,
2270 CompleteTypeKind Kind, unsigned DiagID);
2271
2272 bool RequireCompleteType(SourceLocation Loc, QualType T,
2273 TypeDiagnoser &Diagnoser) {
2274 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2275 }
2276 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2277 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2278 }
2279
2280 template <typename... Ts>
2281 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2282 const Ts &...Args) {
2283 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2284 return RequireCompleteType(Loc, T, Diagnoser);
2285 }
2286
2287 template <typename... Ts>
2288 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2289 const Ts &... Args) {
2290 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2291 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2292 }
2293
2294 /// Get the type of expression E, triggering instantiation to complete the
2295 /// type if necessary -- that is, if the expression refers to a templated
2296 /// static data member of incomplete array type.
2297 ///
2298 /// May still return an incomplete type if instantiation was not possible or
2299 /// if the type is incomplete for a different reason. Use
2300 /// RequireCompleteExprType instead if a diagnostic is expected for an
2301 /// incomplete expression type.
2302 QualType getCompletedType(Expr *E);
2303
2304 void completeExprArrayBound(Expr *E);
2305 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2306 TypeDiagnoser &Diagnoser);
2307 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2308
2309 template <typename... Ts>
2310 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2311 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2312 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2313 }
2314
2315 template <typename... Ts>
2316 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2317 const Ts &... Args) {
2318 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2319 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2320 }
2321
2322 bool RequireLiteralType(SourceLocation Loc, QualType T,
2323 TypeDiagnoser &Diagnoser);
2324 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2325
2326 template <typename... Ts>
2327 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2328 const Ts &...Args) {
2329 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2330 return RequireLiteralType(Loc, T, Diagnoser);
2331 }
2332
2333 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2334 const CXXScopeSpec &SS, QualType T,
2335 TagDecl *OwnedTagDecl = nullptr);
2336
2337 QualType getDecltypeForParenthesizedExpr(Expr *E);
2338 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2339 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2340 /// context, such as when building a type for decltype(auto).
2341 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2342 bool AsUnevaluated = true);
2343 QualType BuildUnaryTransformType(QualType BaseType,
2344 UnaryTransformType::UTTKind UKind,
2345 SourceLocation Loc);
2346
2347 //===--------------------------------------------------------------------===//
2348 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2349 //
2350
2351 struct SkipBodyInfo {
2352 SkipBodyInfo()
2353 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2354 New(nullptr) {}
2355 bool ShouldSkip;
2356 bool CheckSameAsPrevious;
2357 NamedDecl *Previous;
2358 NamedDecl *New;
2359 };
2360
2361 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2362
2363 void DiagnoseUseOfUnimplementedSelectors();
2364
2365 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2366
2367 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2368 Scope *S, CXXScopeSpec *SS = nullptr,
2369 bool isClassName = false, bool HasTrailingDot = false,
2370 ParsedType ObjectType = nullptr,
2371 bool IsCtorOrDtorName = false,
2372 bool WantNontrivialTypeSourceInfo = false,
2373 bool IsClassTemplateDeductionContext = true,
2374 IdentifierInfo **CorrectedII = nullptr);
2375 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2376 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2377 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2378 SourceLocation IILoc,
2379 Scope *S,
2380 CXXScopeSpec *SS,
2381 ParsedType &SuggestedType,
2382 bool IsTemplateName = false);
2383
2384 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2385 /// type name has failed in a dependent context. In these situations, we
2386 /// automatically form a DependentTypeName that will retry lookup in a related
2387 /// scope during instantiation.
2388 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2389 SourceLocation NameLoc,
2390 bool IsTemplateTypeArg);
2391
2392 /// Describes the result of the name lookup and resolution performed
2393 /// by \c ClassifyName().
2394 enum NameClassificationKind {
2395 /// This name is not a type or template in this context, but might be
2396 /// something else.
2397 NC_Unknown,
2398 /// Classification failed; an error has been produced.
2399 NC_Error,
2400 /// The name has been typo-corrected to a keyword.
2401 NC_Keyword,
2402 /// The name was classified as a type.
2403 NC_Type,
2404 /// The name was classified as a specific non-type, non-template
2405 /// declaration. ActOnNameClassifiedAsNonType should be called to
2406 /// convert the declaration to an expression.
2407 NC_NonType,
2408 /// The name was classified as an ADL-only function name.
2409 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2410 /// result to an expression.
2411 NC_UndeclaredNonType,
2412 /// The name denotes a member of a dependent type that could not be
2413 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2414 /// convert the result to an expression.
2415 NC_DependentNonType,
2416 /// The name was classified as an overload set, and an expression
2417 /// representing that overload set has been formed.
2418 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2419 /// expression referencing the overload set.
2420 NC_OverloadSet,
2421 /// The name was classified as a template whose specializations are types.
2422 NC_TypeTemplate,
2423 /// The name was classified as a variable template name.
2424 NC_VarTemplate,
2425 /// The name was classified as a function template name.
2426 NC_FunctionTemplate,
2427 /// The name was classified as an ADL-only function template name.
2428 NC_UndeclaredTemplate,
2429 /// The name was classified as a concept name.
2430 NC_Concept,
2431 };
2432
2433 class NameClassification {
2434 NameClassificationKind Kind;
2435 union {
2436 ExprResult Expr;
2437 NamedDecl *NonTypeDecl;
2438 TemplateName Template;
2439 ParsedType Type;
2440 };
2441
2442 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2443
2444 public:
2445 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2446
2447 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2448
2449 static NameClassification Error() {
2450 return NameClassification(NC_Error);
2451 }
2452
2453 static NameClassification Unknown() {
2454 return NameClassification(NC_Unknown);
2455 }
2456
2457 static NameClassification OverloadSet(ExprResult E) {
2458 NameClassification Result(NC_OverloadSet);
2459 Result.Expr = E;
2460 return Result;
2461 }
2462
2463 static NameClassification NonType(NamedDecl *D) {
2464 NameClassification Result(NC_NonType);
2465 Result.NonTypeDecl = D;
2466 return Result;
2467 }
2468
2469 static NameClassification UndeclaredNonType() {
2470 return NameClassification(NC_UndeclaredNonType);
2471 }
2472
2473 static NameClassification DependentNonType() {
2474 return NameClassification(NC_DependentNonType);
2475 }
2476
2477 static NameClassification TypeTemplate(TemplateName Name) {
2478 NameClassification Result(NC_TypeTemplate);
2479 Result.Template = Name;
2480 return Result;
2481 }
2482
2483 static NameClassification VarTemplate(TemplateName Name) {
2484 NameClassification Result(NC_VarTemplate);
2485 Result.Template = Name;
2486 return Result;
2487 }
2488
2489 static NameClassification FunctionTemplate(TemplateName Name) {
2490 NameClassification Result(NC_FunctionTemplate);
2491 Result.Template = Name;
2492 return Result;
2493 }
2494
2495 static NameClassification Concept(TemplateName Name) {
2496 NameClassification Result(NC_Concept);
2497 Result.Template = Name;
2498 return Result;
2499 }
2500
2501 static NameClassification UndeclaredTemplate(TemplateName Name) {
2502 NameClassification Result(NC_UndeclaredTemplate);
2503 Result.Template = Name;
2504 return Result;
2505 }
2506
2507 NameClassificationKind getKind() const { return Kind; }
2508
2509 ExprResult getExpression() const {
2510 assert(Kind == NC_OverloadSet)((void)0);
2511 return Expr;
2512 }
2513
2514 ParsedType getType() const {
2515 assert(Kind == NC_Type)((void)0);
2516 return Type;
2517 }
2518
2519 NamedDecl *getNonTypeDecl() const {
2520 assert(Kind == NC_NonType)((void)0);
2521 return NonTypeDecl;
2522 }
2523
2524 TemplateName getTemplateName() const {
2525 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||((void)0)
2526 Kind == NC_VarTemplate || Kind == NC_Concept ||((void)0)
2527 Kind == NC_UndeclaredTemplate)((void)0);
2528 return Template;
2529 }
2530
2531 TemplateNameKind getTemplateNameKind() const {
2532 switch (Kind) {
2533 case NC_TypeTemplate:
2534 return TNK_Type_template;
2535 case NC_FunctionTemplate:
2536 return TNK_Function_template;
2537 case NC_VarTemplate:
2538 return TNK_Var_template;
2539 case NC_Concept:
2540 return TNK_Concept_template;
2541 case NC_UndeclaredTemplate:
2542 return TNK_Undeclared_template;
2543 default:
2544 llvm_unreachable("unsupported name classification.")__builtin_unreachable();
2545 }
2546 }
2547 };
2548
2549 /// Perform name lookup on the given name, classifying it based on
2550 /// the results of name lookup and the following token.
2551 ///
2552 /// This routine is used by the parser to resolve identifiers and help direct
2553 /// parsing. When the identifier cannot be found, this routine will attempt
2554 /// to correct the typo and classify based on the resulting name.
2555 ///
2556 /// \param S The scope in which we're performing name lookup.
2557 ///
2558 /// \param SS The nested-name-specifier that precedes the name.
2559 ///
2560 /// \param Name The identifier. If typo correction finds an alternative name,
2561 /// this pointer parameter will be updated accordingly.
2562 ///
2563 /// \param NameLoc The location of the identifier.
2564 ///
2565 /// \param NextToken The token following the identifier. Used to help
2566 /// disambiguate the name.
2567 ///
2568 /// \param CCC The correction callback, if typo correction is desired.
2569 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2570 IdentifierInfo *&Name, SourceLocation NameLoc,
2571 const Token &NextToken,
2572 CorrectionCandidateCallback *CCC = nullptr);
2573
2574 /// Act on the result of classifying a name as an undeclared (ADL-only)
2575 /// non-type declaration.
2576 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2577 SourceLocation NameLoc);
2578 /// Act on the result of classifying a name as an undeclared member of a
2579 /// dependent base class.
2580 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2581 IdentifierInfo *Name,
2582 SourceLocation NameLoc,
2583 bool IsAddressOfOperand);
2584 /// Act on the result of classifying a name as a specific non-type
2585 /// declaration.
2586 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2587 NamedDecl *Found,
2588 SourceLocation NameLoc,
2589 const Token &NextToken);
2590 /// Act on the result of classifying a name as an overload set.
2591 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2592
2593 /// Describes the detailed kind of a template name. Used in diagnostics.
2594 enum class TemplateNameKindForDiagnostics {
2595 ClassTemplate,
2596 FunctionTemplate,
2597 VarTemplate,
2598 AliasTemplate,
2599 TemplateTemplateParam,
2600 Concept,
2601 DependentTemplate
2602 };
2603 TemplateNameKindForDiagnostics
2604 getTemplateNameKindForDiagnostics(TemplateName Name);
2605
2606 /// Determine whether it's plausible that E was intended to be a
2607 /// template-name.
2608 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2609 if (!getLangOpts().CPlusPlus || E.isInvalid())
2610 return false;
2611 Dependent = false;
2612 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2613 return !DRE->hasExplicitTemplateArgs();
2614 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2615 return !ME->hasExplicitTemplateArgs();
2616 Dependent = true;
2617 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2618 return !DSDRE->hasExplicitTemplateArgs();
2619 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2620 return !DSME->hasExplicitTemplateArgs();
2621 // Any additional cases recognized here should also be handled by
2622 // diagnoseExprIntendedAsTemplateName.
2623 return false;
2624 }
2625 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2626 SourceLocation Less,
2627 SourceLocation Greater);
2628
2629 void warnOnReservedIdentifier(const NamedDecl *D);
2630
2631 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2632
2633 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2634 MultiTemplateParamsArg TemplateParameterLists);
2635 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2636 QualType &T, SourceLocation Loc,
2637 unsigned FailedFoldDiagID);
2638 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2639 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2640 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2641 DeclarationName Name, SourceLocation Loc,
2642 bool IsTemplateId);
2643 void
2644 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2645 SourceLocation FallbackLoc,
2646 SourceLocation ConstQualLoc = SourceLocation(),
2647 SourceLocation VolatileQualLoc = SourceLocation(),
2648 SourceLocation RestrictQualLoc = SourceLocation(),
2649 SourceLocation AtomicQualLoc = SourceLocation(),
2650 SourceLocation UnalignedQualLoc = SourceLocation());
2651
2652 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2653 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2654 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2655 const LookupResult &R);
2656 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2657 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2658 const LookupResult &R);
2659 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2660 const LookupResult &R);
2661 void CheckShadow(Scope *S, VarDecl *D);
2662
2663 /// Warn if 'E', which is an expression that is about to be modified, refers
2664 /// to a shadowing declaration.
2665 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2666
2667 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2668
2669private:
2670 /// Map of current shadowing declarations to shadowed declarations. Warn if
2671 /// it looks like the user is trying to modify the shadowing declaration.
2672 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2673
2674public:
2675 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2676 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2677 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2678 TypedefNameDecl *NewTD);
2679 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2680 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous);
2683 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2684 LookupResult &Previous, bool &Redeclaration);
2685 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2686 TypeSourceInfo *TInfo,
2687 LookupResult &Previous,
2688 MultiTemplateParamsArg TemplateParamLists,
2689 bool &AddToScope,
2690 ArrayRef<BindingDecl *> Bindings = None);
2691 NamedDecl *
2692 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2693 MultiTemplateParamsArg TemplateParamLists);
2694 // Returns true if the variable declaration is a redeclaration
2695 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2696 void CheckVariableDeclarationType(VarDecl *NewVD);
2697 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2698 Expr *Init);
2699 void CheckCompleteVariableDeclaration(VarDecl *VD);
2700 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2701 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2702
2703 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2704 TypeSourceInfo *TInfo,
2705 LookupResult &Previous,
2706 MultiTemplateParamsArg TemplateParamLists,
2707 bool &AddToScope);
2708 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2709
2710 enum class CheckConstexprKind {
2711 /// Diagnose issues that are non-constant or that are extensions.
2712 Diagnose,
2713 /// Identify whether this function satisfies the formal rules for constexpr
2714 /// functions in the current lanugage mode (with no extensions).
2715 CheckValid
2716 };
2717
2718 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2719 CheckConstexprKind Kind);
2720
2721 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2722 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2723 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2724 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2725 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2726 // Returns true if the function declaration is a redeclaration
2727 bool CheckFunctionDeclaration(Scope *S,
2728 FunctionDecl *NewFD, LookupResult &Previous,
2729 bool IsMemberSpecialization);
2730 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2731 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2732 QualType NewT, QualType OldT);
2733 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2734 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2735 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2736 bool IsDefinition);
2737 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2738 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2739 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2740 SourceLocation Loc,
2741 QualType T);
2742 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2743 SourceLocation NameLoc, IdentifierInfo *Name,
2744 QualType T, TypeSourceInfo *TSInfo,
2745 StorageClass SC);
2746 void ActOnParamDefaultArgument(Decl *param,
2747 SourceLocation EqualLoc,
2748 Expr *defarg);
2749 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2750 SourceLocation ArgLoc);
2751 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2752 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2753 SourceLocation EqualLoc);
2754 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2755 SourceLocation EqualLoc);
2756
2757 // Contexts where using non-trivial C union types can be disallowed. This is
2758 // passed to err_non_trivial_c_union_in_invalid_context.
2759 enum NonTrivialCUnionContext {
2760 // Function parameter.
2761 NTCUC_FunctionParam,
2762 // Function return.
2763 NTCUC_FunctionReturn,
2764 // Default-initialized object.
2765 NTCUC_DefaultInitializedObject,
2766 // Variable with automatic storage duration.
2767 NTCUC_AutoVar,
2768 // Initializer expression that might copy from another object.
2769 NTCUC_CopyInit,
2770 // Assignment.
2771 NTCUC_Assignment,
2772 // Compound literal.
2773 NTCUC_CompoundLiteral,
2774 // Block capture.
2775 NTCUC_BlockCapture,
2776 // lvalue-to-rvalue conversion of volatile type.
2777 NTCUC_LValueToRValueVolatile,
2778 };
2779
2780 /// Emit diagnostics if the initializer or any of its explicit or
2781 /// implicitly-generated subexpressions require copying or
2782 /// default-initializing a type that is or contains a C union type that is
2783 /// non-trivial to copy or default-initialize.
2784 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2785
2786 // These flags are passed to checkNonTrivialCUnion.
2787 enum NonTrivialCUnionKind {
2788 NTCUK_Init = 0x1,
2789 NTCUK_Destruct = 0x2,
2790 NTCUK_Copy = 0x4,
2791 };
2792
2793 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2794 /// a non-trivial C union is used in an invalid context.
2795 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2796 NonTrivialCUnionContext UseContext,
2797 unsigned NonTrivialKind);
2798
2799 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2800 void ActOnUninitializedDecl(Decl *dcl);
2801 void ActOnInitializerError(Decl *Dcl);
2802
2803 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2804 void ActOnCXXForRangeDecl(Decl *D);
2805 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2806 IdentifierInfo *Ident,
2807 ParsedAttributes &Attrs,
2808 SourceLocation AttrEnd);
2809 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2810 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2811 void CheckStaticLocalForDllExport(VarDecl *VD);
2812 void FinalizeDeclaration(Decl *D);
2813 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2814 ArrayRef<Decl *> Group);
2815 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2816
2817 /// Should be called on all declarations that might have attached
2818 /// documentation comments.
2819 void ActOnDocumentableDecl(Decl *D);
2820 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2821
2822 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2823 SourceLocation LocAfterDecls);
2824 void CheckForFunctionRedefinition(
2825 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2828 MultiTemplateParamsArg TemplateParamLists,
2829 SkipBodyInfo *SkipBody = nullptr);
2830 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2831 SkipBodyInfo *SkipBody = nullptr);
2832 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2833 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2834 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2835 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2836 bool isObjCMethodDecl(Decl *D) {
2837 return D && isa<ObjCMethodDecl>(D);
2838 }
2839
2840 /// Determine whether we can delay parsing the body of a function or
2841 /// function template until it is used, assuming we don't care about emitting
2842 /// code for that function.
2843 ///
2844 /// This will be \c false if we may need the body of the function in the
2845 /// middle of parsing an expression (where it's impractical to switch to
2846 /// parsing a different function), for instance, if it's constexpr in C++11
2847 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2848 bool canDelayFunctionBody(const Declarator &D);
2849
2850 /// Determine whether we can skip parsing the body of a function
2851 /// definition, assuming we don't care about analyzing its body or emitting
2852 /// code for that function.
2853 ///
2854 /// This will be \c false only if we may need the body of the function in
2855 /// order to parse the rest of the program (for instance, if it is
2856 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2857 bool canSkipFunctionBody(Decl *D);
2858
2859 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2860 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2861 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2862 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2863 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2864
2865 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2866 /// attribute for which parsing is delayed.
2867 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2868
2869 /// Diagnose any unused parameters in the given sequence of
2870 /// ParmVarDecl pointers.
2871 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2872
2873 /// Diagnose whether the size of parameters or return value of a
2874 /// function or obj-c method definition is pass-by-value and larger than a
2875 /// specified threshold.
2876 void
2877 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2878 QualType ReturnTy, NamedDecl *D);
2879
2880 void DiagnoseInvalidJumps(Stmt *Body);
2881 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2882 SourceLocation AsmLoc,
2883 SourceLocation RParenLoc);
2884
2885 /// Handle a C++11 empty-declaration and attribute-declaration.
2886 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2887 SourceLocation SemiLoc);
2888
2889 enum class ModuleDeclKind {
2890 Interface, ///< 'export module X;'
2891 Implementation, ///< 'module X;'
2892 };
2893
2894 /// The parser has processed a module-declaration that begins the definition
2895 /// of a module interface or implementation.
2896 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2897 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2898 ModuleIdPath Path, bool IsFirstDecl);
2899
2900 /// The parser has processed a global-module-fragment declaration that begins
2901 /// the definition of the global module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2904
2905 /// The parser has processed a private-module-fragment declaration that begins
2906 /// the definition of the private module fragment of the current module unit.
2907 /// \param ModuleLoc The location of the 'module' keyword.
2908 /// \param PrivateLoc The location of the 'private' keyword.
2909 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2910 SourceLocation PrivateLoc);
2911
2912 /// The parser has processed a module import declaration.
2913 ///
2914 /// \param StartLoc The location of the first token in the declaration. This
2915 /// could be the location of an '@', 'export', or 'import'.
2916 /// \param ExportLoc The location of the 'export' keyword, if any.
2917 /// \param ImportLoc The location of the 'import' keyword.
2918 /// \param Path The module access path.
2919 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2920 SourceLocation ExportLoc,
2921 SourceLocation ImportLoc, ModuleIdPath Path);
2922 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2923 SourceLocation ExportLoc,
2924 SourceLocation ImportLoc, Module *M,
2925 ModuleIdPath Path = {});
2926
2927 /// The parser has processed a module import translated from a
2928 /// #include or similar preprocessing directive.
2929 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2930 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// The parsed has entered a submodule.
2933 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2934 /// The parser has left a submodule.
2935 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2936
2937 /// Create an implicit import of the given module at the given
2938 /// source location, for error recovery, if possible.
2939 ///
2940 /// This routine is typically used when an entity found by name lookup
2941 /// is actually hidden within a module that we know about but the user
2942 /// has forgotten to import.
2943 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2944 Module *Mod);
2945
2946 /// Kinds of missing import. Note, the values of these enumerators correspond
2947 /// to %select values in diagnostics.
2948 enum class MissingImportKind {
2949 Declaration,
2950 Definition,
2951 DefaultArgument,
2952 ExplicitSpecialization,
2953 PartialSpecialization
2954 };
2955
2956 /// Diagnose that the specified declaration needs to be visible but
2957 /// isn't, and suggest a module import that would resolve the problem.
2958 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2959 MissingImportKind MIK, bool Recover = true);
2960 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2961 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2962 MissingImportKind MIK, bool Recover);
2963
2964 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2965 SourceLocation LBraceLoc);
2966 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2967 SourceLocation RBraceLoc);
2968
2969 /// We've found a use of a templated declaration that would trigger an
2970 /// implicit instantiation. Check that any relevant explicit specializations
2971 /// and partial specializations are visible, and diagnose if not.
2972 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 PrintingPolicy getPrintingPolicy() const {
2976 return getPrintingPolicy(Context, PP);
2977 }
2978
2979 /// Retrieve a suitable printing policy for diagnostics.
2980 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2981 const Preprocessor &PP);
2982
2983 /// Scope actions.
2984 void ActOnPopScope(SourceLocation Loc, Scope *S);
2985 void ActOnTranslationUnitScope(Scope *S);
2986
2987 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2988 RecordDecl *&AnonRecord);
2989 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2990 MultiTemplateParamsArg TemplateParams,
2991 bool IsExplicitInstantiation,
2992 RecordDecl *&AnonRecord);
2993
2994 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2995 AccessSpecifier AS,
2996 RecordDecl *Record,
2997 const PrintingPolicy &Policy);
2998
2999 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3000 RecordDecl *Record);
3001
3002 /// Common ways to introduce type names without a tag for use in diagnostics.
3003 /// Keep in sync with err_tag_reference_non_tag.
3004 enum NonTagKind {
3005 NTK_NonStruct,
3006 NTK_NonClass,
3007 NTK_NonUnion,
3008 NTK_NonEnum,
3009 NTK_Typedef,
3010 NTK_TypeAlias,
3011 NTK_Template,
3012 NTK_TypeAliasTemplate,
3013 NTK_TemplateTemplateArgument,
3014 };
3015
3016 /// Given a non-tag type declaration, returns an enum useful for indicating
3017 /// what kind of non-tag type this is.
3018 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3019
3020 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3021 TagTypeKind NewTag, bool isDefinition,
3022 SourceLocation NewTagLoc,
3023 const IdentifierInfo *Name);
3024
3025 enum TagUseKind {
3026 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3027 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3028 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3029 TUK_Friend // Friend declaration: 'friend struct foo;'
3030 };
3031
3032 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3033 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3034 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3035 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3036 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3037 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3038 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3039 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3040 SkipBodyInfo *SkipBody = nullptr);
3041
3042 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3043 unsigned TagSpec, SourceLocation TagLoc,
3044 CXXScopeSpec &SS, IdentifierInfo *Name,
3045 SourceLocation NameLoc,
3046 const ParsedAttributesView &Attr,
3047 MultiTemplateParamsArg TempParamLists);
3048
3049 TypeResult ActOnDependentTag(Scope *S,
3050 unsigned TagSpec,
3051 TagUseKind TUK,
3052 const CXXScopeSpec &SS,
3053 IdentifierInfo *Name,
3054 SourceLocation TagLoc,
3055 SourceLocation NameLoc);
3056
3057 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3058 IdentifierInfo *ClassName,
3059 SmallVectorImpl<Decl *> &Decls);
3060 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3061 Declarator &D, Expr *BitfieldWidth);
3062
3063 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3064 Declarator &D, Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS);
3067 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3068 SourceLocation DeclStart, Declarator &D,
3069 Expr *BitfieldWidth,
3070 InClassInitStyle InitStyle,
3071 AccessSpecifier AS,
3072 const ParsedAttr &MSPropertyAttr);
3073
3074 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3075 TypeSourceInfo *TInfo,
3076 RecordDecl *Record, SourceLocation Loc,
3077 bool Mutable, Expr *BitfieldWidth,
3078 InClassInitStyle InitStyle,
3079 SourceLocation TSSL,
3080 AccessSpecifier AS, NamedDecl *PrevDecl,
3081 Declarator *D = nullptr);
3082
3083 bool CheckNontrivialField(FieldDecl *FD);
3084 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3085
3086 enum TrivialABIHandling {
3087 /// The triviality of a method unaffected by "trivial_abi".
3088 TAH_IgnoreTrivialABI,
3089
3090 /// The triviality of a method affected by "trivial_abi".
3091 TAH_ConsiderTrivialABI
3092 };
3093
3094 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3095 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3096 bool Diagnose = false);
3097
3098 /// For a defaulted function, the kind of defaulted function that it is.
3099 class DefaultedFunctionKind {
3100 CXXSpecialMember SpecialMember : 8;
3101 DefaultedComparisonKind Comparison : 8;
3102
3103 public:
3104 DefaultedFunctionKind()
3105 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3106 }
3107 DefaultedFunctionKind(CXXSpecialMember CSM)
3108 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3109 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3110 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3111
3112 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3113 bool isComparison() const {
3114 return Comparison != DefaultedComparisonKind::None;
3115 }
3116
3117 explicit operator bool() const {
3118 return isSpecialMember() || isComparison();
3119 }
3120
3121 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3122 DefaultedComparisonKind asComparison() const { return Comparison; }
3123
3124 /// Get the index of this function kind for use in diagnostics.
3125 unsigned getDiagnosticIndex() const {
3126 static_assert(CXXInvalid > CXXDestructor,
3127 "invalid should have highest index");
3128 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3129 "none should be equal to zero");
3130 return SpecialMember + (unsigned)Comparison;
3131 }
3132 };
3133
3134 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3135
3136 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3137 return getDefaultedFunctionKind(MD).asSpecialMember();
3138 }
3139 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3140 return getDefaultedFunctionKind(FD).asComparison();
3141 }
3142
3143 void ActOnLastBitfield(SourceLocation DeclStart,
3144 SmallVectorImpl<Decl *> &AllIvarDecls);
3145 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3146 Declarator &D, Expr *BitfieldWidth,
3147 tok::ObjCKeywordKind visibility);
3148
3149 // This is used for both record definitions and ObjC interface declarations.
3150 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3151 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3152 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3153
3154 /// ActOnTagStartDefinition - Invoked when we have entered the
3155 /// scope of a tag's definition (e.g., for an enumeration, class,
3156 /// struct, or union).
3157 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3158
3159 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3160 /// Differently from C++, actually parse the body and reject / error out
3161 /// in case of a structural mismatch.
3162 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3163 SkipBodyInfo &SkipBody);
3164
3165 typedef void *SkippedDefinitionContext;
3166
3167 /// Invoked when we enter a tag definition that we're skipping.
3168 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3169
3170 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3171
3172 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3173 /// C++ record definition's base-specifiers clause and are starting its
3174 /// member declarations.
3175 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3176 SourceLocation FinalLoc,
3177 bool IsFinalSpelledSealed,
3178 bool IsAbstract,
3179 SourceLocation LBraceLoc);
3180
3181 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3182 /// the definition of a tag (enumeration, class, struct, or union).
3183 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3184 SourceRange BraceRange);
3185
3186 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3187
3188 void ActOnObjCContainerFinishDefinition();
3189
3190 /// Invoked when we must temporarily exit the objective-c container
3191 /// scope for parsing/looking-up C constructs.
3192 ///
3193 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3194 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3195 void ActOnObjCReenterContainerContext(DeclContext *DC);
3196
3197 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3198 /// error parsing the definition of a tag.
3199 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3200
3201 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3202 EnumConstantDecl *LastEnumConst,
3203 SourceLocation IdLoc,
3204 IdentifierInfo *Id,
3205 Expr *val);
3206 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3207 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3208 QualType EnumUnderlyingTy, bool IsFixed,
3209 const EnumDecl *Prev);
3210
3211 /// Determine whether the body of an anonymous enumeration should be skipped.
3212 /// \param II The name of the first enumerator.
3213 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3214 SourceLocation IILoc);
3215
3216 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3217 SourceLocation IdLoc, IdentifierInfo *Id,
3218 const ParsedAttributesView &Attrs,
3219 SourceLocation EqualLoc, Expr *Val);
3220 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3221 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3222 const ParsedAttributesView &Attr);
3223
3224 /// Set the current declaration context until it gets popped.
3225 void PushDeclContext(Scope *S, DeclContext *DC);
3226 void PopDeclContext();
3227
3228 /// EnterDeclaratorContext - Used when we must lookup names in the context
3229 /// of a declarator's nested name specifier.
3230 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3231 void ExitDeclaratorContext(Scope *S);
3232
3233 /// Enter a template parameter scope, after it's been associated with a particular
3234 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3235 /// in the correct order.
3236 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3237
3238 /// Push the parameters of D, which must be a function, into scope.
3239 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3240 void ActOnExitFunctionContext();
3241
3242 DeclContext *getFunctionLevelDeclContext();
3243
3244 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3245 /// to the function decl for the function being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 FunctionDecl *getCurFunctionDecl();
3248
3249 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3250 /// the method decl for the method being parsed. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 ObjCMethodDecl *getCurMethodDecl();
3253
3254 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3255 /// or C function we're in, otherwise return null. If we're currently
3256 /// in a 'block', this returns the containing context.
3257 NamedDecl *getCurFunctionOrMethodDecl();
3258
3259 /// Add this decl to the scope shadowed decl chains.
3260 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3261
3262 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3263 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3264 /// true if 'D' belongs to the given declaration context.
3265 ///
3266 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3267 /// enclosing namespace set of the context, rather than contained
3268 /// directly within it.
3269 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3270 bool AllowInlineNamespace = false);
3271
3272 /// Finds the scope corresponding to the given decl context, if it
3273 /// happens to be an enclosing scope. Otherwise return NULL.
3274 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3275
3276 /// Subroutines of ActOnDeclarator().
3277 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3278 TypeSourceInfo *TInfo);
3279 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3280
3281 /// Describes the kind of merge to perform for availability
3282 /// attributes (including "deprecated", "unavailable", and "availability").
3283 enum AvailabilityMergeKind {
3284 /// Don't merge availability attributes at all.
3285 AMK_None,
3286 /// Merge availability attributes for a redeclaration, which requires
3287 /// an exact match.
3288 AMK_Redeclaration,
3289 /// Merge availability attributes for an override, which requires
3290 /// an exact match or a weakening of constraints.
3291 AMK_Override,
3292 /// Merge availability attributes for an implementation of
3293 /// a protocol requirement.
3294 AMK_ProtocolImplementation,
3295 /// Merge availability attributes for an implementation of
3296 /// an optional protocol requirement.
3297 AMK_OptionalProtocolImplementation
3298 };
3299
3300 /// Describes the kind of priority given to an availability attribute.
3301 ///
3302 /// The sum of priorities deteremines the final priority of the attribute.
3303 /// The final priority determines how the attribute will be merged.
3304 /// An attribute with a lower priority will always remove higher priority
3305 /// attributes for the specified platform when it is being applied. An
3306 /// attribute with a higher priority will not be applied if the declaration
3307 /// already has an availability attribute with a lower priority for the
3308 /// specified platform. The final prirority values are not expected to match
3309 /// the values in this enumeration, but instead should be treated as a plain
3310 /// integer value. This enumeration just names the priority weights that are
3311 /// used to calculate that final vaue.
3312 enum AvailabilityPriority : int {
3313 /// The availability attribute was specified explicitly next to the
3314 /// declaration.
3315 AP_Explicit = 0,
3316
3317 /// The availability attribute was applied using '#pragma clang attribute'.
3318 AP_PragmaClangAttribute = 1,
3319
3320 /// The availability attribute for a specific platform was inferred from
3321 /// an availability attribute for another platform.
3322 AP_InferredFromOtherPlatform = 2
3323 };
3324
3325 /// Attribute merging methods. Return true if a new attribute was added.
3326 AvailabilityAttr *
3327 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3328 IdentifierInfo *Platform, bool Implicit,
3329 VersionTuple Introduced, VersionTuple Deprecated,
3330 VersionTuple Obsoleted, bool IsUnavailable,
3331 StringRef Message, bool IsStrict, StringRef Replacement,
3332 AvailabilityMergeKind AMK, int Priority);
3333 TypeVisibilityAttr *
3334 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3335 TypeVisibilityAttr::VisibilityType Vis);
3336 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3337 VisibilityAttr::VisibilityType Vis);
3338 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3339 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3340 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3341 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3342 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3343 const AttributeCommonInfo &CI,
3344 bool BestCase,
3345 MSInheritanceModel Model);
3346 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3347 IdentifierInfo *Format, int FormatIdx,
3348 int FirstArg);
3349 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3350 StringRef Name);
3351 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3352 StringRef Name);
3353 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3354 const AttributeCommonInfo &CI,
3355 const IdentifierInfo *Ident);
3356 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3357 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3358 StringRef Name);
3359 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3360 const AttributeCommonInfo &CI);
3361 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3362 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3363 const InternalLinkageAttr &AL);
3364 WebAssemblyImportNameAttr *mergeImportNameAttr(
3365 Decl *D, const WebAssemblyImportNameAttr &AL);
3366 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3367 Decl *D, const WebAssemblyImportModuleAttr &AL);
3368 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3369 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3370 const EnforceTCBLeafAttr &AL);
3371
3372 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3373 AvailabilityMergeKind AMK = AMK_Redeclaration);
3374 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3375 LookupResult &OldDecls);
3376 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3377 bool MergeTypeWithOld);
3378 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3379 Scope *S, bool MergeTypeWithOld);
3380 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3381 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3382 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3383 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3384 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3385 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3386 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3387
3388 // AssignmentAction - This is used by all the assignment diagnostic functions
3389 // to represent what is actually causing the operation
3390 enum AssignmentAction {
3391 AA_Assigning,
3392 AA_Passing,
3393 AA_Returning,
3394 AA_Converting,
3395 AA_Initializing,
3396 AA_Sending,
3397 AA_Casting,
3398 AA_Passing_CFAudited
3399 };
3400
3401 /// C++ Overloading.
3402 enum OverloadKind {
3403 /// This is a legitimate overload: the existing declarations are
3404 /// functions or function templates with different signatures.
3405 Ovl_Overload,
3406
3407 /// This is not an overload because the signature exactly matches
3408 /// an existing declaration.
3409 Ovl_Match,
3410
3411 /// This is not an overload because the lookup results contain a
3412 /// non-function.
3413 Ovl_NonFunction
3414 };
3415 OverloadKind CheckOverload(Scope *S,
3416 FunctionDecl *New,
3417 const LookupResult &OldDecls,
3418 NamedDecl *&OldDecl,
3419 bool IsForUsingDecl);
3420 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3421 bool ConsiderCudaAttrs = true,
3422 bool ConsiderRequiresClauses = true);
3423
3424 enum class AllowedExplicit {
3425 /// Allow no explicit functions to be used.
3426 None,
3427 /// Allow explicit conversion functions but not explicit constructors.
3428 Conversions,
3429 /// Allow both explicit conversion functions and explicit constructors.
3430 All
3431 };
3432
3433 ImplicitConversionSequence
3434 TryImplicitConversion(Expr *From, QualType ToType,
3435 bool SuppressUserConversions,
3436 AllowedExplicit AllowExplicit,
3437 bool InOverloadResolution,
3438 bool CStyle,
3439 bool AllowObjCWritebackConversion);
3440
3441 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3442 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3443 bool IsComplexPromotion(QualType FromType, QualType ToType);
3444 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3445 bool InOverloadResolution,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3448 QualType& ConvertedType, bool &IncompatibleObjC);
3449 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3450 QualType &ConvertedType);
3451 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3452 QualType& ConvertedType);
3453 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3454 const FunctionProtoType *NewType,
3455 unsigned *ArgPos = nullptr);
3456 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3457 QualType FromType, QualType ToType);
3458
3459 void maybeExtendBlockObject(ExprResult &E);
3460 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3461 bool CheckPointerConversion(Expr *From, QualType ToType,
3462 CastKind &Kind,
3463 CXXCastPath& BasePath,
3464 bool IgnoreBaseAccess,
3465 bool Diagnose = true);
3466 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3467 bool InOverloadResolution,
3468 QualType &ConvertedType);
3469 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3470 CastKind &Kind,
3471 CXXCastPath &BasePath,
3472 bool IgnoreBaseAccess);
3473 bool IsQualificationConversion(QualType FromType, QualType ToType,
3474 bool CStyle, bool &ObjCLifetimeConversion);
3475 bool IsFunctionConversion(QualType FromType, QualType ToType,
3476 QualType &ResultTy);
3477 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3478 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3479
3480 bool CanPerformAggregateInitializationForOverloadResolution(
3481 const InitializedEntity &Entity, InitListExpr *From);
3482
3483 bool IsStringInit(Expr *Init, const ArrayType *AT);
3484
3485 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3486 ExprResult Init);
3487 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3488 SourceLocation EqualLoc,
3489 ExprResult Init,
3490 bool TopLevelOfInitList = false,
3491 bool AllowExplicit = false);
3492 ExprResult PerformObjectArgumentInitialization(Expr *From,
3493 NestedNameSpecifier *Qualifier,
3494 NamedDecl *FoundDecl,
3495 CXXMethodDecl *Method);
3496
3497 /// Check that the lifetime of the initializer (and its subobjects) is
3498 /// sufficient for initializing the entity, and perform lifetime extension
3499 /// (when permitted) if not.
3500 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3501
3502 ExprResult PerformContextuallyConvertToBool(Expr *From);
3503 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3504
3505 /// Contexts in which a converted constant expression is required.
3506 enum CCEKind {
3507 CCEK_CaseValue, ///< Expression in a case label.
3508 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3509 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3510 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3511 CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier.
3512 };
3513 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3514 llvm::APSInt &Value, CCEKind CCE);
3515 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3516 APValue &Value, CCEKind CCE,
3517 NamedDecl *Dest = nullptr);
3518
3519 /// Abstract base class used to perform a contextual implicit
3520 /// conversion from an expression to any type passing a filter.
3521 class ContextualImplicitConverter {
3522 public:
3523 bool Suppress;
3524 bool SuppressConversion;
3525
3526 ContextualImplicitConverter(bool Suppress = false,
3527 bool SuppressConversion = false)
3528 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3529
3530 /// Determine whether the specified type is a valid destination type
3531 /// for this conversion.
3532 virtual bool match(QualType T) = 0;
3533
3534 /// Emits a diagnostic complaining that the expression does not have
3535 /// integral or enumeration type.
3536 virtual SemaDiagnosticBuilder
3537 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3538
3539 /// Emits a diagnostic when the expression has incomplete class type.
3540 virtual SemaDiagnosticBuilder
3541 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3542
3543 /// Emits a diagnostic when the only matching conversion function
3544 /// is explicit.
3545 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3546 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3547
3548 /// Emits a note for the explicit conversion function.
3549 virtual SemaDiagnosticBuilder
3550 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3551
3552 /// Emits a diagnostic when there are multiple possible conversion
3553 /// functions.
3554 virtual SemaDiagnosticBuilder
3555 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3556
3557 /// Emits a note for one of the candidate conversions.
3558 virtual SemaDiagnosticBuilder
3559 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3560
3561 /// Emits a diagnostic when we picked a conversion function
3562 /// (for cases when we are not allowed to pick a conversion function).
3563 virtual SemaDiagnosticBuilder diagnoseConversion(
3564 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3565
3566 virtual ~ContextualImplicitConverter() {}
3567 };
3568
3569 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3570 bool AllowScopedEnumerations;
3571
3572 public:
3573 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3574 bool Suppress, bool SuppressConversion)
3575 : ContextualImplicitConverter(Suppress, SuppressConversion),
3576 AllowScopedEnumerations(AllowScopedEnumerations) {}
3577
3578 /// Match an integral or (possibly scoped) enumeration type.
3579 bool match(QualType T) override;
3580
3581 SemaDiagnosticBuilder
3582 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3583 return diagnoseNotInt(S, Loc, T);
3584 }
3585
3586 /// Emits a diagnostic complaining that the expression does not have
3587 /// integral or enumeration type.
3588 virtual SemaDiagnosticBuilder
3589 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3590 };
3591
3592 /// Perform a contextual implicit conversion.
3593 ExprResult PerformContextualImplicitConversion(
3594 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3595
3596
3597 enum ObjCSubscriptKind {
3598 OS_Array,
3599 OS_Dictionary,
3600 OS_Error
3601 };
3602 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3603
3604 // Note that LK_String is intentionally after the other literals, as
3605 // this is used for diagnostics logic.
3606 enum ObjCLiteralKind {
3607 LK_Array,
3608 LK_Dictionary,
3609 LK_Numeric,
3610 LK_Boxed,
3611 LK_String,
3612 LK_Block,
3613 LK_None
3614 };
3615 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3616
3617 ExprResult PerformObjectMemberConversion(Expr *From,
3618 NestedNameSpecifier *Qualifier,
3619 NamedDecl *FoundDecl,
3620 NamedDecl *Member);
3621
3622 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3623 // TODO: make this is a typesafe union.
3624 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3625 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3626
3627 using ADLCallKind = CallExpr::ADLCallKind;
3628
3629 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3630 ArrayRef<Expr *> Args,
3631 OverloadCandidateSet &CandidateSet,
3632 bool SuppressUserConversions = false,
3633 bool PartialOverloading = false,
3634 bool AllowExplicit = true,
3635 bool AllowExplicitConversion = false,
3636 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3637 ConversionSequenceList EarlyConversions = None,
3638 OverloadCandidateParamOrder PO = {});
3639 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3640 ArrayRef<Expr *> Args,
3641 OverloadCandidateSet &CandidateSet,
3642 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3643 bool SuppressUserConversions = false,
3644 bool PartialOverloading = false,
3645 bool FirstArgumentIsBase = false);
3646 void AddMethodCandidate(DeclAccessPair FoundDecl,
3647 QualType ObjectType,
3648 Expr::Classification ObjectClassification,
3649 ArrayRef<Expr *> Args,
3650 OverloadCandidateSet& CandidateSet,
3651 bool SuppressUserConversion = false,
3652 OverloadCandidateParamOrder PO = {});
3653 void AddMethodCandidate(CXXMethodDecl *Method,
3654 DeclAccessPair FoundDecl,
3655 CXXRecordDecl *ActingContext, QualType ObjectType,
3656 Expr::Classification ObjectClassification,
3657 ArrayRef<Expr *> Args,
3658 OverloadCandidateSet& CandidateSet,
3659 bool SuppressUserConversions = false,
3660 bool PartialOverloading = false,
3661 ConversionSequenceList EarlyConversions = None,
3662 OverloadCandidateParamOrder PO = {});
3663 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3664 DeclAccessPair FoundDecl,
3665 CXXRecordDecl *ActingContext,
3666 TemplateArgumentListInfo *ExplicitTemplateArgs,
3667 QualType ObjectType,
3668 Expr::Classification ObjectClassification,
3669 ArrayRef<Expr *> Args,
3670 OverloadCandidateSet& CandidateSet,
3671 bool SuppressUserConversions = false,
3672 bool PartialOverloading = false,
3673 OverloadCandidateParamOrder PO = {});
3674 void AddTemplateOverloadCandidate(
3675 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3676 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3677 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3678 bool PartialOverloading = false, bool AllowExplicit = true,
3679 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3680 OverloadCandidateParamOrder PO = {});
3681 bool CheckNonDependentConversions(
3682 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3683 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3684 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3685 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3686 Expr::Classification ObjectClassification = {},
3687 OverloadCandidateParamOrder PO = {});
3688 void AddConversionCandidate(
3689 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3690 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3691 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3692 bool AllowExplicit, bool AllowResultConversion = true);
3693 void AddTemplateConversionCandidate(
3694 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3695 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3696 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3697 bool AllowExplicit, bool AllowResultConversion = true);
3698 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3699 DeclAccessPair FoundDecl,
3700 CXXRecordDecl *ActingContext,
3701 const FunctionProtoType *Proto,
3702 Expr *Object, ArrayRef<Expr *> Args,
3703 OverloadCandidateSet& CandidateSet);
3704 void AddNonMemberOperatorCandidates(
3705 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3706 OverloadCandidateSet &CandidateSet,
3707 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3708 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3709 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3710 OverloadCandidateSet &CandidateSet,
3711 OverloadCandidateParamOrder PO = {});
3712 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3713 OverloadCandidateSet& CandidateSet,
3714 bool IsAssignmentOperator = false,
3715 unsigned NumContextualBoolArguments = 0);
3716 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3717 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3718 OverloadCandidateSet& CandidateSet);
3719 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3720 SourceLocation Loc,
3721 ArrayRef<Expr *> Args,
3722 TemplateArgumentListInfo *ExplicitTemplateArgs,
3723 OverloadCandidateSet& CandidateSet,
3724 bool PartialOverloading = false);
3725
3726 // Emit as a 'note' the specific overload candidate
3727 void NoteOverloadCandidate(
3728 NamedDecl *Found, FunctionDecl *Fn,
3729 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3730 QualType DestType = QualType(), bool TakingAddress = false);
3731
3732 // Emit as a series of 'note's all template and non-templates identified by
3733 // the expression Expr
3734 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3735 bool TakingAddress = false);
3736
3737 /// Check the enable_if expressions on the given function. Returns the first
3738 /// failing attribute, or NULL if they were all successful.
3739 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3740 ArrayRef<Expr *> Args,
3741 bool MissingImplicitThis = false);
3742
3743 /// Find the failed Boolean condition within a given Boolean
3744 /// constant expression, and describe it with a string.
3745 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3746
3747 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3748 /// non-ArgDependent DiagnoseIfAttrs.
3749 ///
3750 /// Argument-dependent diagnose_if attributes should be checked each time a
3751 /// function is used as a direct callee of a function call.
3752 ///
3753 /// Returns true if any errors were emitted.
3754 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3755 const Expr *ThisArg,
3756 ArrayRef<const Expr *> Args,
3757 SourceLocation Loc);
3758
3759 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3760 /// ArgDependent DiagnoseIfAttrs.
3761 ///
3762 /// Argument-independent diagnose_if attributes should be checked on every use
3763 /// of a function.
3764 ///
3765 /// Returns true if any errors were emitted.
3766 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3767 SourceLocation Loc);
3768
3769 /// Returns whether the given function's address can be taken or not,
3770 /// optionally emitting a diagnostic if the address can't be taken.
3771 ///
3772 /// Returns false if taking the address of the function is illegal.
3773 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3774 bool Complain = false,
3775 SourceLocation Loc = SourceLocation());
3776
3777 // [PossiblyAFunctionType] --> [Return]
3778 // NonFunctionType --> NonFunctionType
3779 // R (A) --> R(A)
3780 // R (*)(A) --> R (A)
3781 // R (&)(A) --> R (A)
3782 // R (S::*)(A) --> R (A)
3783 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3784
3785 FunctionDecl *
3786 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3787 QualType TargetType,
3788 bool Complain,
3789 DeclAccessPair &Found,
3790 bool *pHadMultipleCandidates = nullptr);
3791
3792 FunctionDecl *
3793 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3794
3795 bool resolveAndFixAddressOfSingleOverloadCandidate(
3796 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3797
3798 FunctionDecl *
3799 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3800 bool Complain = false,
3801 DeclAccessPair *Found = nullptr);
3802
3803 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3804 ExprResult &SrcExpr,
3805 bool DoFunctionPointerConverion = false,
3806 bool Complain = false,
3807 SourceRange OpRangeForComplaining = SourceRange(),
3808 QualType DestTypeForComplaining = QualType(),
3809 unsigned DiagIDForComplaining = 0);
3810
3811
3812 Expr *FixOverloadedFunctionReference(Expr *E,
3813 DeclAccessPair FoundDecl,
3814 FunctionDecl *Fn);
3815 ExprResult FixOverloadedFunctionReference(ExprResult,
3816 DeclAccessPair FoundDecl,
3817 FunctionDecl *Fn);
3818
3819 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3820 ArrayRef<Expr *> Args,
3821 OverloadCandidateSet &CandidateSet,
3822 bool PartialOverloading = false);
3823 void AddOverloadedCallCandidates(
3824 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3825 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3826
3827 // An enum used to represent the different possible results of building a
3828 // range-based for loop.
3829 enum ForRangeStatus {
3830 FRS_Success,
3831 FRS_NoViableFunction,
3832 FRS_DiagnosticIssued
3833 };
3834
3835 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3836 SourceLocation RangeLoc,
3837 const DeclarationNameInfo &NameInfo,
3838 LookupResult &MemberLookup,
3839 OverloadCandidateSet *CandidateSet,
3840 Expr *Range, ExprResult *CallExpr);
3841
3842 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3843 UnresolvedLookupExpr *ULE,
3844 SourceLocation LParenLoc,
3845 MultiExprArg Args,
3846 SourceLocation RParenLoc,
3847 Expr *ExecConfig,
3848 bool AllowTypoCorrection=true,
3849 bool CalleesAddressIsTaken=false);
3850
3851 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3852 MultiExprArg Args, SourceLocation RParenLoc,
3853 OverloadCandidateSet *CandidateSet,
3854 ExprResult *Result);
3855
3856 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3857 NestedNameSpecifierLoc NNSLoc,
3858 DeclarationNameInfo DNI,
3859 const UnresolvedSetImpl &Fns,
3860 bool PerformADL = true);
3861
3862 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3863 UnaryOperatorKind Opc,
3864 const UnresolvedSetImpl &Fns,
3865 Expr *input, bool RequiresADL = true);
3866
3867 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3868 OverloadedOperatorKind Op,
3869 const UnresolvedSetImpl &Fns,
3870 ArrayRef<Expr *> Args, bool RequiresADL = true);
3871 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3872 BinaryOperatorKind Opc,
3873 const UnresolvedSetImpl &Fns,
3874 Expr *LHS, Expr *RHS,
3875 bool RequiresADL = true,
3876 bool AllowRewrittenCandidates = true,
3877 FunctionDecl *DefaultedFn = nullptr);
3878 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3879 const UnresolvedSetImpl &Fns,
3880 Expr *LHS, Expr *RHS,
3881 FunctionDecl *DefaultedFn);
3882
3883 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3884 SourceLocation RLoc,
3885 Expr *Base,Expr *Idx);
3886
3887 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3888 SourceLocation LParenLoc,
3889 MultiExprArg Args,
3890 SourceLocation RParenLoc,
3891 bool AllowRecovery = false);
3892 ExprResult
3893 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3894 MultiExprArg Args,
3895 SourceLocation RParenLoc);
3896
3897 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3898 SourceLocation OpLoc,
3899 bool *NoArrowOperatorFound = nullptr);
3900
3901 /// CheckCallReturnType - Checks that a call expression's return type is
3902 /// complete. Returns true on failure. The location passed in is the location
3903 /// that best represents the call.
3904 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3905 CallExpr *CE, FunctionDecl *FD);
3906
3907 /// Helpers for dealing with blocks and functions.
3908 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3909 bool CheckParameterNames);
3910 void CheckCXXDefaultArguments(FunctionDecl *FD);
3911 void CheckExtraCXXDefaultArguments(Declarator &D);
3912 Scope *getNonFieldDeclScope(Scope *S);
3913
3914 /// \name Name lookup
3915 ///
3916 /// These routines provide name lookup that is used during semantic
3917 /// analysis to resolve the various kinds of names (identifiers,
3918 /// overloaded operator names, constructor names, etc.) into zero or
3919 /// more declarations within a particular scope. The major entry
3920 /// points are LookupName, which performs unqualified name lookup,
3921 /// and LookupQualifiedName, which performs qualified name lookup.
3922 ///
3923 /// All name lookup is performed based on some specific criteria,
3924 /// which specify what names will be visible to name lookup and how
3925 /// far name lookup should work. These criteria are important both
3926 /// for capturing language semantics (certain lookups will ignore
3927 /// certain names, for example) and for performance, since name
3928 /// lookup is often a bottleneck in the compilation of C++. Name
3929 /// lookup criteria is specified via the LookupCriteria enumeration.
3930 ///
3931 /// The results of name lookup can vary based on the kind of name
3932 /// lookup performed, the current language, and the translation
3933 /// unit. In C, for example, name lookup will either return nothing
3934 /// (no entity found) or a single declaration. In C++, name lookup
3935 /// can additionally refer to a set of overloaded functions or
3936 /// result in an ambiguity. All of the possible results of name
3937 /// lookup are captured by the LookupResult class, which provides
3938 /// the ability to distinguish among them.
3939 //@{
3940
3941 /// Describes the kind of name lookup to perform.
3942 enum LookupNameKind {
3943 /// Ordinary name lookup, which finds ordinary names (functions,
3944 /// variables, typedefs, etc.) in C and most kinds of names
3945 /// (functions, variables, members, types, etc.) in C++.
3946 LookupOrdinaryName = 0,
3947 /// Tag name lookup, which finds the names of enums, classes,
3948 /// structs, and unions.
3949 LookupTagName,
3950 /// Label name lookup.
3951 LookupLabel,
3952 /// Member name lookup, which finds the names of
3953 /// class/struct/union members.
3954 LookupMemberName,
3955 /// Look up of an operator name (e.g., operator+) for use with
3956 /// operator overloading. This lookup is similar to ordinary name
3957 /// lookup, but will ignore any declarations that are class members.
3958 LookupOperatorName,
3959 /// Look up a name following ~ in a destructor name. This is an ordinary
3960 /// lookup, but prefers tags to typedefs.
3961 LookupDestructorName,
3962 /// Look up of a name that precedes the '::' scope resolution
3963 /// operator in C++. This lookup completely ignores operator, object,
3964 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3965 LookupNestedNameSpecifierName,
3966 /// Look up a namespace name within a C++ using directive or
3967 /// namespace alias definition, ignoring non-namespace names (C++
3968 /// [basic.lookup.udir]p1).
3969 LookupNamespaceName,
3970 /// Look up all declarations in a scope with the given name,
3971 /// including resolved using declarations. This is appropriate
3972 /// for checking redeclarations for a using declaration.
3973 LookupUsingDeclName,
3974 /// Look up an ordinary name that is going to be redeclared as a
3975 /// name with linkage. This lookup ignores any declarations that
3976 /// are outside of the current scope unless they have linkage. See
3977 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3978 LookupRedeclarationWithLinkage,
3979 /// Look up a friend of a local class. This lookup does not look
3980 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3981 LookupLocalFriendName,
3982 /// Look up the name of an Objective-C protocol.
3983 LookupObjCProtocolName,
3984 /// Look up implicit 'self' parameter of an objective-c method.
3985 LookupObjCImplicitSelfParam,
3986 /// Look up the name of an OpenMP user-defined reduction operation.
3987 LookupOMPReductionName,
3988 /// Look up the name of an OpenMP user-defined mapper.
3989 LookupOMPMapperName,
3990 /// Look up any declaration with any name.
3991 LookupAnyName
3992 };
3993
3994 /// Specifies whether (or how) name lookup is being performed for a
3995 /// redeclaration (vs. a reference).
3996 enum RedeclarationKind {
3997 /// The lookup is a reference to this name that is not for the
3998 /// purpose of redeclaring the name.
3999 NotForRedeclaration = 0,
4000 /// The lookup results will be used for redeclaration of a name,
4001 /// if an entity by that name already exists and is visible.
4002 ForVisibleRedeclaration,
4003 /// The lookup results will be used for redeclaration of a name
4004 /// with external linkage; non-visible lookup results with external linkage
4005 /// may also be found.
4006 ForExternalRedeclaration
4007 };
4008
4009 RedeclarationKind forRedeclarationInCurContext() {
4010 // A declaration with an owning module for linkage can never link against
4011 // anything that is not visible. We don't need to check linkage here; if
4012 // the context has internal linkage, redeclaration lookup won't find things
4013 // from other TUs, and we can't safely compute linkage yet in general.
4014 if (cast<Decl>(CurContext)
4015 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4016 return ForVisibleRedeclaration;
4017 return ForExternalRedeclaration;
4018 }
4019
4020 /// The possible outcomes of name lookup for a literal operator.
4021 enum LiteralOperatorLookupResult {
4022 /// The lookup resulted in an error.
4023 LOLR_Error,
4024 /// The lookup found no match but no diagnostic was issued.
4025 LOLR_ErrorNoDiagnostic,
4026 /// The lookup found a single 'cooked' literal operator, which
4027 /// expects a normal literal to be built and passed to it.
4028 LOLR_Cooked,
4029 /// The lookup found a single 'raw' literal operator, which expects
4030 /// a string literal containing the spelling of the literal token.
4031 LOLR_Raw,
4032 /// The lookup found an overload set of literal operator templates,
4033 /// which expect the characters of the spelling of the literal token to be
4034 /// passed as a non-type template argument pack.
4035 LOLR_Template,
4036 /// The lookup found an overload set of literal operator templates,
4037 /// which expect the character type and characters of the spelling of the
4038 /// string literal token to be passed as template arguments.
4039 LOLR_StringTemplatePack,
4040 };
4041
4042 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4043 CXXSpecialMember SM,
4044 bool ConstArg,
4045 bool VolatileArg,
4046 bool RValueThis,
4047 bool ConstThis,
4048 bool VolatileThis);
4049
4050 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4051 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4052 TypoRecoveryCallback;
4053
4054private:
4055 bool CppLookupName(LookupResult &R, Scope *S);
4056
4057 struct TypoExprState {
4058 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4059 TypoDiagnosticGenerator DiagHandler;
4060 TypoRecoveryCallback RecoveryHandler;
4061 TypoExprState();
4062 TypoExprState(TypoExprState &&other) noexcept;
4063 TypoExprState &operator=(TypoExprState &&other) noexcept;
4064 };
4065
4066 /// The set of unhandled TypoExprs and their associated state.
4067 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4068
4069 /// Creates a new TypoExpr AST node.
4070 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4071 TypoDiagnosticGenerator TDG,
4072 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4073
4074 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4075 //
4076 // The boolean value will be true to indicate that the namespace was loaded
4077 // from an AST/PCH file, or false otherwise.
4078 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4079
4080 /// Whether we have already loaded known namespaces from an extenal
4081 /// source.
4082 bool LoadedExternalKnownNamespaces;
4083
4084 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4085 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4086 /// should be skipped entirely.
4087 std::unique_ptr<TypoCorrectionConsumer>
4088 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4089 Sema::LookupNameKind LookupKind, Scope *S,
4090 CXXScopeSpec *SS,
4091 CorrectionCandidateCallback &CCC,
4092 DeclContext *MemberContext, bool EnteringContext,
4093 const ObjCObjectPointerType *OPT,
4094 bool ErrorRecovery);
4095
4096public:
4097 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4098
4099 /// Clears the state of the given TypoExpr.
4100 void clearDelayedTypo(TypoExpr *TE);
4101
4102 /// Look up a name, looking for a single declaration. Return
4103 /// null if the results were absent, ambiguous, or overloaded.
4104 ///
4105 /// It is preferable to use the elaborated form and explicitly handle
4106 /// ambiguity and overloaded.
4107 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4108 SourceLocation Loc,
4109 LookupNameKind NameKind,
4110 RedeclarationKind Redecl
4111 = NotForRedeclaration);
4112 bool LookupBuiltin(LookupResult &R);
4113 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4114 bool LookupName(LookupResult &R, Scope *S,
4115 bool AllowBuiltinCreation = false);
4116 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4117 bool InUnqualifiedLookup = false);
4118 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4119 CXXScopeSpec &SS);
4120 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4121 bool AllowBuiltinCreation = false,
4122 bool EnteringContext = false);
4123 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4124 RedeclarationKind Redecl
4125 = NotForRedeclaration);
4126 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4127
4128 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4129 UnresolvedSetImpl &Functions);
4130
4131 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4132 SourceLocation GnuLabelLoc = SourceLocation());
4133
4134 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4136 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4137 unsigned Quals);
4138 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4139 bool RValueThis, unsigned ThisQuals);
4140 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4141 unsigned Quals);
4142 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4143 bool RValueThis, unsigned ThisQuals);
4144 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4145
4146 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4147 bool IsUDSuffix);
4148 LiteralOperatorLookupResult
4149 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4150 bool AllowRaw, bool AllowTemplate,
4151 bool AllowStringTemplate, bool DiagnoseMissing,
4152 StringLiteral *StringLit = nullptr);
4153 bool isKnownName(StringRef name);
4154
4155 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4156 enum class FunctionEmissionStatus {
4157 Emitted,
4158 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4159 OMPDiscarded, // Discarded due to OpenMP hostness
4160 TemplateDiscarded, // Discarded due to uninstantiated templates
4161 Unknown,
4162 };
4163 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4164 bool Final = false);
4165
4166 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4167 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4168
4169 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4170 ArrayRef<Expr *> Args, ADLResult &Functions);
4171
4172 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4173 VisibleDeclConsumer &Consumer,
4174 bool IncludeGlobalScope = true,
4175 bool LoadExternal = true);
4176 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4177 VisibleDeclConsumer &Consumer,
4178 bool IncludeGlobalScope = true,
4179 bool IncludeDependentBases = false,
4180 bool LoadExternal = true);
4181
4182 enum CorrectTypoKind {
4183 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4184 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4185 };
4186
4187 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4188 Sema::LookupNameKind LookupKind,
4189 Scope *S, CXXScopeSpec *SS,
4190 CorrectionCandidateCallback &CCC,
4191 CorrectTypoKind Mode,
4192 DeclContext *MemberContext = nullptr,
4193 bool EnteringContext = false,
4194 const ObjCObjectPointerType *OPT = nullptr,
4195 bool RecordFailure = true);
4196
4197 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4198 Sema::LookupNameKind LookupKind, Scope *S,
4199 CXXScopeSpec *SS,
4200 CorrectionCandidateCallback &CCC,
4201 TypoDiagnosticGenerator TDG,
4202 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4203 DeclContext *MemberContext = nullptr,
4204 bool EnteringContext = false,
4205 const ObjCObjectPointerType *OPT = nullptr);
4206
4207 /// Process any TypoExprs in the given Expr and its children,
4208 /// generating diagnostics as appropriate and returning a new Expr if there
4209 /// were typos that were all successfully corrected and ExprError if one or
4210 /// more typos could not be corrected.
4211 ///
4212 /// \param E The Expr to check for TypoExprs.
4213 ///
4214 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4215 /// initializer.
4216 ///
4217 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4218 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4219 ///
4220 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4221 /// it is an acceptable/usable result from a single combination of typo
4222 /// corrections. As long as the filter returns ExprError, different
4223 /// combinations of corrections will be tried until all are exhausted.
4224 ExprResult CorrectDelayedTyposInExpr(
4225 Expr *E, VarDecl *InitDecl = nullptr,
4226 bool RecoverUncorrectedTypos = false,
4227 llvm::function_ref<ExprResult(Expr *)> Filter =
4228 [](Expr *E) -> ExprResult { return E; });
4229
4230 ExprResult CorrectDelayedTyposInExpr(
4231 ExprResult ER, VarDecl *InitDecl = nullptr,
4232 bool RecoverUncorrectedTypos = false,
4233 llvm::function_ref<ExprResult(Expr *)> Filter =
4234 [](Expr *E) -> ExprResult { return E; }) {
4235 return ER.isInvalid()
4236 ? ER
4237 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4238 RecoverUncorrectedTypos, Filter);
4239 }
4240
4241 void diagnoseTypo(const TypoCorrection &Correction,
4242 const PartialDiagnostic &TypoDiag,
4243 bool ErrorRecovery = true);
4244
4245 void diagnoseTypo(const TypoCorrection &Correction,
4246 const PartialDiagnostic &TypoDiag,
4247 const PartialDiagnostic &PrevNote,
4248 bool ErrorRecovery = true);
4249
4250 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4251
4252 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4253 ArrayRef<Expr *> Args,
4254 AssociatedNamespaceSet &AssociatedNamespaces,
4255 AssociatedClassSet &AssociatedClasses);
4256
4257 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4258 bool ConsiderLinkage, bool AllowInlineNamespace);
4259
4260 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4261
4262 void DiagnoseAmbiguousLookup(LookupResult &Result);
4263 //@}
4264
4265 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4266 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4267 ArrayRef<Expr *> SubExprs,
4268 QualType T = QualType());
4269
4270 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4271 SourceLocation IdLoc,
4272 bool TypoCorrection = false);
4273 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4274 SourceLocation Loc);
4275 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4276 Scope *S, bool ForRedeclaration,
4277 SourceLocation Loc);
4278 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4279 Scope *S);
4280 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4281 FunctionDecl *FD);
4282 void AddKnownFunctionAttributes(FunctionDecl *FD);
4283
4284 // More parsing and symbol table subroutines.
4285
4286 void ProcessPragmaWeak(Scope *S, Decl *D);
4287 // Decl attributes - this routine is the top level dispatcher.
4288 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4289 // Helper for delayed processing of attributes.
4290 void ProcessDeclAttributeDelayed(Decl *D,
4291 const ParsedAttributesView &AttrList);
4292 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4293 bool IncludeCXX11Attributes = true);
4294 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4295 const ParsedAttributesView &AttrList);
4296
4297 void checkUnusedDeclAttributes(Declarator &D);
4298
4299 /// Handles semantic checking for features that are common to all attributes,
4300 /// such as checking whether a parameter was properly specified, or the
4301 /// correct number of arguments were passed, etc. Returns true if the
4302 /// attribute has been diagnosed.
4303 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4304 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4305
4306 /// Determine if type T is a valid subject for a nonnull and similar
4307 /// attributes. By default, we look through references (the behavior used by
4308 /// nonnull), but if the second parameter is true, then we treat a reference
4309 /// type as valid.
4310 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4311
4312 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4313 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4314 const FunctionDecl *FD = nullptr);
4315 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4316 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4317 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4318 StringRef &Str,
4319 SourceLocation *ArgLocation = nullptr);
4320 llvm::Error isValidSectionSpecifier(StringRef Str);
4321 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4323 bool checkMSInheritanceAttrOnDefinition(
4324 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4325 MSInheritanceModel SemanticSpelling);
4326
4327 void CheckAlignasUnderalignment(Decl *D);
4328
4329 /// Adjust the calling convention of a method to be the ABI default if it
4330 /// wasn't specified explicitly. This handles method types formed from
4331 /// function type typedefs and typename template arguments.
4332 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4333 SourceLocation Loc);
4334
4335 // Check if there is an explicit attribute, but only look through parens.
4336 // The intent is to look for an attribute on the current declarator, but not
4337 // one that came from a typedef.
4338 bool hasExplicitCallingConv(QualType T);
4339
4340 /// Get the outermost AttributedType node that sets a calling convention.
4341 /// Valid types should not have multiple attributes with different CCs.
4342 const AttributedType *getCallingConvAttributedType(QualType T) const;
4343
4344 /// Process the attributes before creating an attributed statement. Returns
4345 /// the semantic attributes that have been processed.
4346 void ProcessStmtAttributes(Stmt *Stmt,
4347 const ParsedAttributesWithRange &InAttrs,
4348 SmallVectorImpl<const Attr *> &OutAttrs);
4349
4350 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4351 ObjCMethodDecl *MethodDecl,
4352 bool IsProtocolMethodDecl);
4353
4354 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4355 ObjCMethodDecl *Overridden,
4356 bool IsProtocolMethodDecl);
4357
4358 /// WarnExactTypedMethods - This routine issues a warning if method
4359 /// implementation declaration matches exactly that of its declaration.
4360 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4361 ObjCMethodDecl *MethodDecl,
4362 bool IsProtocolMethodDecl);
4363
4364 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4365
4366 /// CheckImplementationIvars - This routine checks if the instance variables
4367 /// listed in the implelementation match those listed in the interface.
4368 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4369 ObjCIvarDecl **Fields, unsigned nIvars,
4370 SourceLocation Loc);
4371
4372 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4373 /// remains unimplemented in the class or category \@implementation.
4374 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4375 ObjCContainerDecl* IDecl,
4376 bool IncompleteImpl = false);
4377
4378 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4379 /// which must be implemented by this implementation.
4380 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4381 ObjCContainerDecl *CDecl,
4382 bool SynthesizeProperties);
4383
4384 /// Diagnose any null-resettable synthesized setters.
4385 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4386
4387 /// DefaultSynthesizeProperties - This routine default synthesizes all
4388 /// properties which must be synthesized in the class's \@implementation.
4389 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4390 ObjCInterfaceDecl *IDecl,
4391 SourceLocation AtEnd);
4392 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4393
4394 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4395 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4396 /// declared in class 'IFace'.
4397 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4398 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4399
4400 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4401 /// backs the property is not used in the property's accessor.
4402 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4403 const ObjCImplementationDecl *ImplD);
4404
4405 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4406 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4407 /// It also returns ivar's property on success.
4408 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4409 const ObjCPropertyDecl *&PDecl) const;
4410
4411 /// Called by ActOnProperty to handle \@property declarations in
4412 /// class extensions.
4413 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4414 SourceLocation AtLoc,
4415 SourceLocation LParenLoc,
4416 FieldDeclarator &FD,
4417 Selector GetterSel,
4418 SourceLocation GetterNameLoc,
4419 Selector SetterSel,
4420 SourceLocation SetterNameLoc,
4421 const bool isReadWrite,
4422 unsigned &Attributes,
4423 const unsigned AttributesAsWritten,
4424 QualType T,
4425 TypeSourceInfo *TSI,
4426 tok::ObjCKeywordKind MethodImplKind);
4427
4428 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4429 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4430 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4431 ObjCContainerDecl *CDecl,
4432 SourceLocation AtLoc,
4433 SourceLocation LParenLoc,
4434 FieldDeclarator &FD,
4435 Selector GetterSel,
4436 SourceLocation GetterNameLoc,
4437 Selector SetterSel,
4438 SourceLocation SetterNameLoc,
4439 const bool isReadWrite,
4440 const unsigned Attributes,
4441 const unsigned AttributesAsWritten,
4442 QualType T,
4443 TypeSourceInfo *TSI,
4444 tok::ObjCKeywordKind MethodImplKind,
4445 DeclContext *lexicalDC = nullptr);
4446
4447 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4448 /// warning) when atomic property has one but not the other user-declared
4449 /// setter or getter.
4450 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4451 ObjCInterfaceDecl* IDecl);
4452
4453 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4454
4455 void DiagnoseMissingDesignatedInitOverrides(
4456 const ObjCImplementationDecl *ImplD,
4457 const ObjCInterfaceDecl *IFD);
4458
4459 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4460
4461 enum MethodMatchStrategy {
4462 MMS_loose,
4463 MMS_strict
4464 };
4465
4466 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4467 /// true, or false, accordingly.
4468 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4469 const ObjCMethodDecl *PrevMethod,
4470 MethodMatchStrategy strategy = MMS_strict);
4471
4472 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4473 /// or protocol against those declared in their implementations.
4474 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4475 const SelectorSet &ClsMap,
4476 SelectorSet &InsMapSeen,
4477 SelectorSet &ClsMapSeen,
4478 ObjCImplDecl* IMPDecl,
4479 ObjCContainerDecl* IDecl,
4480 bool &IncompleteImpl,
4481 bool ImmediateClass,
4482 bool WarnCategoryMethodImpl=false);
4483
4484 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4485 /// category matches with those implemented in its primary class and
4486 /// warns each time an exact match is found.
4487 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4488
4489 /// Add the given method to the list of globally-known methods.
4490 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4491
4492 /// Returns default addr space for method qualifiers.
4493 LangAS getDefaultCXXMethodAddrSpace() const;
4494
4495private:
4496 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4497 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4498 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4499
4500 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4501 /// optionally warns if there are multiple signatures.
4502 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4503 bool receiverIdOrClass,
4504 bool instance);
4505
4506public:
4507 /// - Returns instance or factory methods in global method pool for
4508 /// given selector. It checks the desired kind first, if none is found, and
4509 /// parameter checkTheOther is set, it then checks the other kind. If no such
4510 /// method or only one method is found, function returns false; otherwise, it
4511 /// returns true.
4512 bool
4513 CollectMultipleMethodsInGlobalPool(Selector Sel,
4514 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4515 bool InstanceFirst, bool CheckTheOther,
4516 const ObjCObjectType *TypeBound = nullptr);
4517
4518 bool
4519 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4520 SourceRange R, bool receiverIdOrClass,
4521 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4522
4523 void
4524 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4525 Selector Sel, SourceRange R,
4526 bool receiverIdOrClass);
4527
4528private:
4529 /// - Returns a selector which best matches given argument list or
4530 /// nullptr if none could be found
4531 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4532 bool IsInstance,
4533 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4534
4535
4536 /// Record the typo correction failure and return an empty correction.
4537 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4538 bool RecordFailure = true) {
4539 if (RecordFailure)
4540 TypoCorrectionFailures[Typo].insert(TypoLoc);
4541 return TypoCorrection();
4542 }
4543
4544public:
4545 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4546 /// unit are added to a global pool. This allows us to efficiently associate
4547 /// a selector with a method declaraation for purposes of typechecking
4548 /// messages sent to "id" (where the class of the object is unknown).
4549 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4550 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4551 }
4552
4553 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4554 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4555 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4556 }
4557
4558 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4559 /// pool.
4560 void AddAnyMethodToGlobalPool(Decl *D);
4561
4562 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4563 /// there are multiple signatures.
4564 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4565 bool receiverIdOrClass=false) {
4566 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4567 /*instance*/true);
4568 }
4569
4570 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4571 /// there are multiple signatures.
4572 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4573 bool receiverIdOrClass=false) {
4574 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4575 /*instance*/false);
4576 }
4577
4578 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4579 QualType ObjectType=QualType());
4580 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4581 /// implementation.
4582 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4583
4584 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4585 /// initialization.
4586 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4587 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4588
4589 //===--------------------------------------------------------------------===//
4590 // Statement Parsing Callbacks: SemaStmt.cpp.
4591public:
4592 class FullExprArg {
4593 public:
4594 FullExprArg() : E(nullptr) { }
4595 FullExprArg(Sema &actions) : E(nullptr) { }
4596
4597 ExprResult release() {
4598 return E;
4599 }
4600
4601 Expr *get() const { return E; }
4602
4603 Expr *operator->() {
4604 return E;
4605 }
4606
4607 private:
4608 // FIXME: No need to make the entire Sema class a friend when it's just
4609 // Sema::MakeFullExpr that needs access to the constructor below.
4610 friend class Sema;
4611
4612 explicit FullExprArg(Expr *expr) : E(expr) {}
4613
4614 Expr *E;
4615 };
4616
4617 FullExprArg MakeFullExpr(Expr *Arg) {
4618 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4619 }
4620 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4621 return FullExprArg(
4622 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4623 }
4624 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4625 ExprResult FE =
4626 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4627 /*DiscardedValue*/ true);
4628 return FullExprArg(FE.get());
4629 }
4630
4631 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4632 StmtResult ActOnExprStmtError();
4633
4634 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4635 bool HasLeadingEmptyMacro = false);
4636
4637 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4638 void ActOnAfterCompoundStatementLeadingPragmas();
4639 void ActOnFinishOfCompoundStmt();
4640 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4641 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4642
4643 /// A RAII object to enter scope of a compound statement.
4644 class CompoundScopeRAII {
4645 public:
4646 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4647 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4648 }
4649
4650 ~CompoundScopeRAII() {
4651 S.ActOnFinishOfCompoundStmt();
4652 }
4653
4654 private:
4655 Sema &S;
4656 };
4657
4658 /// An RAII helper that pops function a function scope on exit.
4659 struct FunctionScopeRAII {
4660 Sema &S;
4661 bool Active;
4662 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4663 ~FunctionScopeRAII() {
4664 if (Active)
4665 S.PopFunctionScopeInfo();
4666 }
4667 void disable() { Active = false; }
4668 };
4669
4670 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4671 SourceLocation StartLoc,
4672 SourceLocation EndLoc);
4673 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4674 StmtResult ActOnForEachLValueExpr(Expr *E);
4675 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4676 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4677 SourceLocation DotDotDotLoc, ExprResult RHS,
4678 SourceLocation ColonLoc);
4679 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4680
4681 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4682 SourceLocation ColonLoc,
4683 Stmt *SubStmt, Scope *CurScope);
4684 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4685 SourceLocation ColonLoc, Stmt *SubStmt);
4686
4687 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4688 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4689 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4690 Stmt *SubStmt);
4691
4692 class ConditionResult;
4693 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4694 SourceLocation LParenLoc, Stmt *InitStmt,
4695 ConditionResult Cond, SourceLocation RParenLoc,
4696 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4697 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4698 SourceLocation LParenLoc, Stmt *InitStmt,
4699 ConditionResult Cond, SourceLocation RParenLoc,
4700 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4701 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4702 SourceLocation LParenLoc, Stmt *InitStmt,
4703 ConditionResult Cond,
4704 SourceLocation RParenLoc);
4705 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4706 Stmt *Switch, Stmt *Body);
4707 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4708 ConditionResult Cond, SourceLocation RParenLoc,
4709 Stmt *Body);
4710 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4711 SourceLocation WhileLoc, SourceLocation CondLParen,
4712 Expr *Cond, SourceLocation CondRParen);
4713
4714 StmtResult ActOnForStmt(SourceLocation ForLoc,
4715 SourceLocation LParenLoc,
4716 Stmt *First,
4717 ConditionResult Second,
4718 FullExprArg Third,
4719 SourceLocation RParenLoc,
4720 Stmt *Body);
4721 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4722 Expr *collection);
4723 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4724 Stmt *First, Expr *collection,
4725 SourceLocation RParenLoc);
4726 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4727
4728 enum BuildForRangeKind {
4729 /// Initial building of a for-range statement.
4730 BFRK_Build,
4731 /// Instantiation or recovery rebuild of a for-range statement. Don't
4732 /// attempt any typo-correction.
4733 BFRK_Rebuild,
4734 /// Determining whether a for-range statement could be built. Avoid any
4735 /// unnecessary or irreversible actions.
4736 BFRK_Check
4737 };
4738
4739 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4740 SourceLocation CoawaitLoc,
4741 Stmt *InitStmt,
4742 Stmt *LoopVar,
4743 SourceLocation ColonLoc, Expr *Collection,
4744 SourceLocation RParenLoc,
4745 BuildForRangeKind Kind);
4746 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4747 SourceLocation CoawaitLoc,
4748 Stmt *InitStmt,
4749 SourceLocation ColonLoc,
4750 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4751 Expr *Cond, Expr *Inc,
4752 Stmt *LoopVarDecl,
4753 SourceLocation RParenLoc,
4754 BuildForRangeKind Kind);
4755 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4756
4757 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4758 SourceLocation LabelLoc,
4759 LabelDecl *TheDecl);
4760 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4761 SourceLocation StarLoc,
4762 Expr *DestExp);
4763 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4764 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4765
4766 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4767 CapturedRegionKind Kind, unsigned NumParams);
4768 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4769 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4770 CapturedRegionKind Kind,
4771 ArrayRef<CapturedParamNameType> Params,
4772 unsigned OpenMPCaptureLevel = 0);
4773 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4774 void ActOnCapturedRegionError();
4775 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4776 SourceLocation Loc,
4777 unsigned NumParams);
4778
4779 struct NamedReturnInfo {
4780 const VarDecl *Candidate;
4781
4782 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4783 Status S;
4784
4785 bool isMoveEligible() const { return S != None; };
4786 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4787 };
4788 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4789 NamedReturnInfo getNamedReturnInfo(
4790 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4791 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4792 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4793 QualType ReturnType);
4794
4795 ExprResult
4796 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4797 const NamedReturnInfo &NRInfo, Expr *Value,
4798 bool SupressSimplerImplicitMoves = false);
4799
4800 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4801 Scope *CurScope);
4802 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4803 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4804 NamedReturnInfo &NRInfo,
4805 bool SupressSimplerImplicitMoves);
4806
4807 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4808 bool IsVolatile, unsigned NumOutputs,
4809 unsigned NumInputs, IdentifierInfo **Names,
4810 MultiExprArg Constraints, MultiExprArg Exprs,
4811 Expr *AsmString, MultiExprArg Clobbers,
4812 unsigned NumLabels,
4813 SourceLocation RParenLoc);
4814
4815 void FillInlineAsmIdentifierInfo(Expr *Res,
4816 llvm::InlineAsmIdentifierInfo &Info);
4817 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4818 SourceLocation TemplateKWLoc,
4819 UnqualifiedId &Id,
4820 bool IsUnevaluatedContext);
4821 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4822 unsigned &Offset, SourceLocation AsmLoc);
4823 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4824 SourceLocation AsmLoc);
4825 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4826 ArrayRef<Token> AsmToks,
4827 StringRef AsmString,
4828 unsigned NumOutputs, unsigned NumInputs,
4829 ArrayRef<StringRef> Constraints,
4830 ArrayRef<StringRef> Clobbers,
4831 ArrayRef<Expr*> Exprs,
4832 SourceLocation EndLoc);
4833 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4834 SourceLocation Location,
4835 bool AlwaysCreate);
4836
4837 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4838 SourceLocation StartLoc,
4839 SourceLocation IdLoc, IdentifierInfo *Id,
4840 bool Invalid = false);
4841
4842 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4843
4844 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4845 Decl *Parm, Stmt *Body);
4846
4847 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4848
4849 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4850 MultiStmtArg Catch, Stmt *Finally);
4851
4852 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4853 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4854 Scope *CurScope);
4855 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4856 Expr *operand);
4857 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4858 Expr *SynchExpr,
4859 Stmt *SynchBody);
4860
4861 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4862
4863 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4864 SourceLocation StartLoc,
4865 SourceLocation IdLoc,
4866 IdentifierInfo *Id);
4867
4868 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4869
4870 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4871 Decl *ExDecl, Stmt *HandlerBlock);
4872 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4873 ArrayRef<Stmt *> Handlers);
4874
4875 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4876 SourceLocation TryLoc, Stmt *TryBlock,
4877 Stmt *Handler);
4878 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4879 Expr *FilterExpr,
4880 Stmt *Block);
4881 void ActOnStartSEHFinallyBlock();
4882 void ActOnAbortSEHFinallyBlock();
4883 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4884 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4885
4886 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4887
4888 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4889
4890 /// If it's a file scoped decl that must warn if not used, keep track
4891 /// of it.
4892 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4893
4894 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4895 /// whose result is unused, warn.
4896 void DiagnoseUnusedExprResult(const Stmt *S);
4897 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4898 void DiagnoseUnusedDecl(const NamedDecl *ND);
4899
4900 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4901 /// variable.
4902 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4903
4904 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4905 /// statement as a \p Body, and it is located on the same line.
4906 ///
4907 /// This helps prevent bugs due to typos, such as:
4908 /// if (condition);
4909 /// do_stuff();
4910 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4911 const Stmt *Body,
4912 unsigned DiagID);
4913
4914 /// Warn if a for/while loop statement \p S, which is followed by
4915 /// \p PossibleBody, has a suspicious null statement as a body.
4916 void DiagnoseEmptyLoopBody(const Stmt *S,
4917 const Stmt *PossibleBody);
4918
4919 /// Warn if a value is moved to itself.
4920 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4921 SourceLocation OpLoc);
4922
4923 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4924 /// _Nonnull one.
4925 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4926 SourceLocation Loc);
4927
4928 /// Warn when implicitly casting 0 to nullptr.
4929 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4930
4931 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4932 return DelayedDiagnostics.push(pool);
4933 }
4934 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4935
4936 typedef ProcessingContextState ParsingClassState;
4937 ParsingClassState PushParsingClass() {
4938 ParsingClassDepth++;
4939 return DelayedDiagnostics.pushUndelayed();
4940 }
4941 void PopParsingClass(ParsingClassState state) {
4942 ParsingClassDepth--;
4943 DelayedDiagnostics.popUndelayed(state);
4944 }
4945
4946 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4947
4948 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4949 const ObjCInterfaceDecl *UnknownObjCClass,
4950 bool ObjCPropertyAccess,
4951 bool AvoidPartialAvailabilityChecks = false,
4952 ObjCInterfaceDecl *ClassReceiver = nullptr);
4953
4954 bool makeUnavailableInSystemHeader(SourceLocation loc,
4955 UnavailableAttr::ImplicitReason reason);
4956
4957 /// Issue any -Wunguarded-availability warnings in \c FD
4958 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4959
4960 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4961
4962 //===--------------------------------------------------------------------===//
4963 // Expression Parsing Callbacks: SemaExpr.cpp.
4964
4965 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4966 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4967 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4968 bool ObjCPropertyAccess = false,
4969 bool AvoidPartialAvailabilityChecks = false,
4970 ObjCInterfaceDecl *ClassReciever = nullptr);
4971 void NoteDeletedFunction(FunctionDecl *FD);
4972 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4973 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4974 ObjCMethodDecl *Getter,
4975 SourceLocation Loc);
4976 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4977 ArrayRef<Expr *> Args);
4978
4979 void PushExpressionEvaluationContext(
4980 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4981 ExpressionEvaluationContextRecord::ExpressionKind Type =
4982 ExpressionEvaluationContextRecord::EK_Other);
4983 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4984 void PushExpressionEvaluationContext(
4985 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4986 ExpressionEvaluationContextRecord::ExpressionKind Type =
4987 ExpressionEvaluationContextRecord::EK_Other);
4988 void PopExpressionEvaluationContext();
4989
4990 void DiscardCleanupsInEvaluationContext();
4991
4992 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4993 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4994
4995 ExprResult CheckUnevaluatedOperand(Expr *E);
4996 void CheckUnusedVolatileAssignment(Expr *E);
4997
4998 ExprResult ActOnConstantExpression(ExprResult Res);
4999
5000 // Functions for marking a declaration referenced. These functions also
5001 // contain the relevant logic for marking if a reference to a function or
5002 // variable is an odr-use (in the C++11 sense). There are separate variants
5003 // for expressions referring to a decl; these exist because odr-use marking
5004 // needs to be delayed for some constant variables when we build one of the
5005 // named expressions.
5006 //
5007 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5008 // should usually be true. This only needs to be set to false if the lack of
5009 // odr-use cannot be determined from the current context (for instance,
5010 // because the name denotes a virtual function and was written without an
5011 // explicit nested-name-specifier).
5012 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5013 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5014 bool MightBeOdrUse = true);
5015 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5016 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5017 void MarkMemberReferenced(MemberExpr *E);
5018 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5019 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5020 unsigned CapturingScopeIndex);
5021
5022 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5023 void CleanupVarDeclMarking();
5024
5025 enum TryCaptureKind {
5026 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5027 };
5028
5029 /// Try to capture the given variable.
5030 ///
5031 /// \param Var The variable to capture.
5032 ///
5033 /// \param Loc The location at which the capture occurs.
5034 ///
5035 /// \param Kind The kind of capture, which may be implicit (for either a
5036 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5037 ///
5038 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5039 /// an explicit lambda capture.
5040 ///
5041 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5042 /// captures or diagnose errors. If false, this routine merely check whether
5043 /// the capture can occur without performing the capture itself or complaining
5044 /// if the variable cannot be captured.
5045 ///
5046 /// \param CaptureType Will be set to the type of the field used to capture
5047 /// this variable in the innermost block or lambda. Only valid when the
5048 /// variable can be captured.
5049 ///
5050 /// \param DeclRefType Will be set to the type of a reference to the capture
5051 /// from within the current scope. Only valid when the variable can be
5052 /// captured.
5053 ///
5054 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5055 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5056 /// This is useful when enclosing lambdas must speculatively capture
5057 /// variables that may or may not be used in certain specializations of
5058 /// a nested generic lambda.
5059 ///
5060 /// \returns true if an error occurred (i.e., the variable cannot be
5061 /// captured) and false if the capture succeeded.
5062 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5063 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5064 QualType &CaptureType,
5065 QualType &DeclRefType,
5066 const unsigned *const FunctionScopeIndexToStopAt);
5067
5068 /// Try to capture the given variable.
5069 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5070 TryCaptureKind Kind = TryCapture_Implicit,
5071 SourceLocation EllipsisLoc = SourceLocation());
5072
5073 /// Checks if the variable must be captured.
5074 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5075
5076 /// Given a variable, determine the type that a reference to that
5077 /// variable will have in the given scope.
5078 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5079
5080 /// Mark all of the declarations referenced within a particular AST node as
5081 /// referenced. Used when template instantiation instantiates a non-dependent
5082 /// type -- entities referenced by the type are now referenced.
5083 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5084 void MarkDeclarationsReferencedInExpr(Expr *E,
5085 bool SkipLocalVariables = false);
5086
5087 /// Try to recover by turning the given expression into a
5088 /// call. Returns true if recovery was attempted or an error was
5089 /// emitted; this may also leave the ExprResult invalid.
5090 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5091 bool ForceComplain = false,
5092 bool (*IsPlausibleResult)(QualType) = nullptr);
5093
5094 /// Figure out if an expression could be turned into a call.
5095 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5096 UnresolvedSetImpl &NonTemplateOverloads);
5097
5098 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5099 /// conversion.
5100 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5101
5102 /// Conditionally issue a diagnostic based on the current
5103 /// evaluation context.
5104 ///
5105 /// \param Statement If Statement is non-null, delay reporting the
5106 /// diagnostic until the function body is parsed, and then do a basic
5107 /// reachability analysis to determine if the statement is reachable.
5108 /// If it is unreachable, the diagnostic will not be emitted.
5109 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5110 const PartialDiagnostic &PD);
5111 /// Similar, but diagnostic is only produced if all the specified statements
5112 /// are reachable.
5113 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5114 const PartialDiagnostic &PD);
5115
5116 // Primary Expressions.
5117 SourceRange getExprRange(Expr *E) const;
5118
5119 ExprResult ActOnIdExpression(
5120 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5121 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5122 CorrectionCandidateCallback *CCC = nullptr,
5123 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5124
5125 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5126 TemplateArgumentListInfo &Buffer,
5127 DeclarationNameInfo &NameInfo,
5128 const TemplateArgumentListInfo *&TemplateArgs);
5129
5130 bool DiagnoseDependentMemberLookup(LookupResult &R);
5131
5132 bool
5133 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5134 CorrectionCandidateCallback &CCC,
5135 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5136 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5137
5138 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5139 IdentifierInfo *II);
5140 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5141
5142 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5143 IdentifierInfo *II,
5144 bool AllowBuiltinCreation=false);
5145
5146 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5147 SourceLocation TemplateKWLoc,
5148 const DeclarationNameInfo &NameInfo,
5149 bool isAddressOfOperand,
5150 const TemplateArgumentListInfo *TemplateArgs);
5151
5152 /// If \p D cannot be odr-used in the current expression evaluation context,
5153 /// return a reason explaining why. Otherwise, return NOUR_None.
5154 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5155
5156 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5157 SourceLocation Loc,
5158 const CXXScopeSpec *SS = nullptr);
5159 DeclRefExpr *
5160 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5161 const DeclarationNameInfo &NameInfo,
5162 const CXXScopeSpec *SS = nullptr,
5163 NamedDecl *FoundD = nullptr,
5164 SourceLocation TemplateKWLoc = SourceLocation(),
5165 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5166 DeclRefExpr *
5167 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5168 const DeclarationNameInfo &NameInfo,
5169 NestedNameSpecifierLoc NNS,
5170 NamedDecl *FoundD = nullptr,
5171 SourceLocation TemplateKWLoc = SourceLocation(),
5172 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5173
5174 ExprResult
5175 BuildAnonymousStructUnionMemberReference(
5176 const CXXScopeSpec &SS,
5177 SourceLocation nameLoc,
5178 IndirectFieldDecl *indirectField,
5179 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5180 Expr *baseObjectExpr = nullptr,
5181 SourceLocation opLoc = SourceLocation());
5182
5183 ExprResult BuildPossibleImplicitMemberExpr(
5184 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5185 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5186 UnresolvedLookupExpr *AsULE = nullptr);
5187 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5188 SourceLocation TemplateKWLoc,
5189 LookupResult &R,
5190 const TemplateArgumentListInfo *TemplateArgs,
5191 bool IsDefiniteInstance,
5192 const Scope *S);
5193 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5194 const LookupResult &R,
5195 bool HasTrailingLParen);
5196
5197 ExprResult
5198 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5199 const DeclarationNameInfo &NameInfo,
5200 bool IsAddressOfOperand, const Scope *S,
5201 TypeSourceInfo **RecoveryTSI = nullptr);
5202
5203 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5204 SourceLocation TemplateKWLoc,
5205 const DeclarationNameInfo &NameInfo,
5206 const TemplateArgumentListInfo *TemplateArgs);
5207
5208 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5209 LookupResult &R,
5210 bool NeedsADL,
5211 bool AcceptInvalidDecl = false);
5212 ExprResult BuildDeclarationNameExpr(
5213 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5214 NamedDecl *FoundD = nullptr,
5215 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5216 bool AcceptInvalidDecl = false);
5217
5218 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5219 DeclarationNameInfo &SuffixInfo,
5220 ArrayRef<Expr *> Args,
5221 SourceLocation LitEndLoc,
5222 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5223
5224 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5225 PredefinedExpr::IdentKind IK);
5226 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5227 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5228
5229 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5230 SourceLocation LParen,
5231 SourceLocation RParen,
5232 TypeSourceInfo *TSI);
5233 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5234 SourceLocation LParen,
5235 SourceLocation RParen,
5236 ParsedType ParsedTy);
5237
5238 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5239
5240 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5241 ExprResult ActOnCharacterConstant(const Token &Tok,
5242 Scope *UDLScope = nullptr);
5243 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5244 ExprResult ActOnParenListExpr(SourceLocation L,
5245 SourceLocation R,
5246 MultiExprArg Val);
5247
5248 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5249 /// fragments (e.g. "foo" "bar" L"baz").
5250 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5251 Scope *UDLScope = nullptr);
5252
5253 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5254 SourceLocation DefaultLoc,
5255 SourceLocation RParenLoc,
5256 Expr *ControllingExpr,
5257 ArrayRef<ParsedType> ArgTypes,
5258 ArrayRef<Expr *> ArgExprs);
5259 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5260 SourceLocation DefaultLoc,
5261 SourceLocation RParenLoc,
5262 Expr *ControllingExpr,
5263 ArrayRef<TypeSourceInfo *> Types,
5264 ArrayRef<Expr *> Exprs);
5265
5266 // Binary/Unary Operators. 'Tok' is the token for the operator.
5267 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5268 Expr *InputExpr);
5269 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5270 UnaryOperatorKind Opc, Expr *Input);
5271 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5272 tok::TokenKind Op, Expr *Input);
5273
5274 bool isQualifiedMemberAccess(Expr *E);
5275 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5276
5277 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5278 SourceLocation OpLoc,
5279 UnaryExprOrTypeTrait ExprKind,
5280 SourceRange R);
5281 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5282 UnaryExprOrTypeTrait ExprKind);
5283 ExprResult
5284 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5285 UnaryExprOrTypeTrait ExprKind,
5286 bool IsType, void *TyOrEx,
5287 SourceRange ArgRange);
5288
5289 ExprResult CheckPlaceholderExpr(Expr *E);
5290 bool CheckVecStepExpr(Expr *E);
5291
5292 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5293 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5294 SourceRange ExprRange,
5295 UnaryExprOrTypeTrait ExprKind);
5296 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5297 SourceLocation OpLoc,
5298 IdentifierInfo &Name,
5299 SourceLocation NameLoc,
5300 SourceLocation RParenLoc);
5301 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5302 tok::TokenKind Kind, Expr *Input);
5303
5304 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5305 Expr *Idx, SourceLocation RLoc);
5306 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5307 Expr *Idx, SourceLocation RLoc);
5308
5309 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5310 Expr *ColumnIdx,
5311 SourceLocation RBLoc);
5312
5313 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5314 Expr *LowerBound,
5315 SourceLocation ColonLocFirst,
5316 SourceLocation ColonLocSecond,
5317 Expr *Length, Expr *Stride,
5318 SourceLocation RBLoc);
5319 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5320 SourceLocation RParenLoc,
5321 ArrayRef<Expr *> Dims,
5322 ArrayRef<SourceRange> Brackets);
5323
5324 /// Data structure for iterator expression.
5325 struct OMPIteratorData {
5326 IdentifierInfo *DeclIdent = nullptr;
5327 SourceLocation DeclIdentLoc;
5328 ParsedType Type;
5329 OMPIteratorExpr::IteratorRange Range;
5330 SourceLocation AssignLoc;
5331 SourceLocation ColonLoc;
5332 SourceLocation SecColonLoc;
5333 };
5334
5335 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5336 SourceLocation LLoc, SourceLocation RLoc,
5337 ArrayRef<OMPIteratorData> Data);
5338
5339 // This struct is for use by ActOnMemberAccess to allow
5340 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5341 // changing the access operator from a '.' to a '->' (to see if that is the
5342 // change needed to fix an error about an unknown member, e.g. when the class
5343 // defines a custom operator->).
5344 struct ActOnMemberAccessExtraArgs {
5345 Scope *S;
5346 UnqualifiedId &Id;
5347 Decl *ObjCImpDecl;
5348 };
5349
5350 ExprResult BuildMemberReferenceExpr(
5351 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5352 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5353 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5354 const TemplateArgumentListInfo *TemplateArgs,
5355 const Scope *S,
5356 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5357
5358 ExprResult
5359 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5360 bool IsArrow, const CXXScopeSpec &SS,
5361 SourceLocation TemplateKWLoc,
5362 NamedDecl *FirstQualifierInScope, LookupResult &R,
5363 const TemplateArgumentListInfo *TemplateArgs,
5364 const Scope *S,
5365 bool SuppressQualifierCheck = false,
5366 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5367
5368 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5369 SourceLocation OpLoc,
5370 const CXXScopeSpec &SS, FieldDecl *Field,
5371 DeclAccessPair FoundDecl,
5372 const DeclarationNameInfo &MemberNameInfo);
5373
5374 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5375
5376 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5377 const CXXScopeSpec &SS,
5378 const LookupResult &R);
5379
5380 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5381 bool IsArrow, SourceLocation OpLoc,
5382 const CXXScopeSpec &SS,
5383 SourceLocation TemplateKWLoc,
5384 NamedDecl *FirstQualifierInScope,
5385 const DeclarationNameInfo &NameInfo,
5386 const TemplateArgumentListInfo *TemplateArgs);
5387
5388 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5389 SourceLocation OpLoc,
5390 tok::TokenKind OpKind,
5391 CXXScopeSpec &SS,
5392 SourceLocation TemplateKWLoc,
5393 UnqualifiedId &Member,
5394 Decl *ObjCImpDecl);
5395
5396 MemberExpr *
5397 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5398 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5399 ValueDecl *Member, DeclAccessPair FoundDecl,
5400 bool HadMultipleCandidates,
5401 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5402 ExprValueKind VK, ExprObjectKind OK,
5403 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5404 MemberExpr *
5405 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5406 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5407 ValueDecl *Member, DeclAccessPair FoundDecl,
5408 bool HadMultipleCandidates,
5409 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5410 ExprValueKind VK, ExprObjectKind OK,
5411 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5412
5413 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5414 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5415 FunctionDecl *FDecl,
5416 const FunctionProtoType *Proto,
5417 ArrayRef<Expr *> Args,
5418 SourceLocation RParenLoc,
5419 bool ExecConfig = false);
5420 void CheckStaticArrayArgument(SourceLocation CallLoc,
5421 ParmVarDecl *Param,
5422 const Expr *ArgExpr);
5423
5424 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5425 /// This provides the location of the left/right parens and a list of comma
5426 /// locations.
5427 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5428 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5429 Expr *ExecConfig = nullptr);
5430 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5431 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5432 Expr *ExecConfig = nullptr,
5433 bool IsExecConfig = false,
5434 bool AllowRecovery = false);
5435 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5436 MultiExprArg CallArgs);
5437 enum class AtomicArgumentOrder { API, AST };
5438 ExprResult
5439 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5440 SourceLocation RParenLoc, MultiExprArg Args,
5441 AtomicExpr::AtomicOp Op,
5442 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5443 ExprResult
5444 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5445 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5446 Expr *Config = nullptr, bool IsExecConfig = false,
5447 ADLCallKind UsesADL = ADLCallKind::NotADL);
5448
5449 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5450 MultiExprArg ExecConfig,
5451 SourceLocation GGGLoc);
5452
5453 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5454 Declarator &D, ParsedType &Ty,
5455 SourceLocation RParenLoc, Expr *CastExpr);
5456 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5457 TypeSourceInfo *Ty,
5458 SourceLocation RParenLoc,
5459 Expr *Op);
5460 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5461
5462 /// Build an altivec or OpenCL literal.
5463 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5464 SourceLocation RParenLoc, Expr *E,
5465 TypeSourceInfo *TInfo);
5466
5467 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5468
5469 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5470 ParsedType Ty,
5471 SourceLocation RParenLoc,
5472 Expr *InitExpr);
5473
5474 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5475 TypeSourceInfo *TInfo,
5476 SourceLocation RParenLoc,
5477 Expr *LiteralExpr);
5478
5479 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5480 MultiExprArg InitArgList,
5481 SourceLocation RBraceLoc);
5482
5483 ExprResult BuildInitList(SourceLocation LBraceLoc,
5484 MultiExprArg InitArgList,
5485 SourceLocation RBraceLoc);
5486
5487 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5488 SourceLocation EqualOrColonLoc,
5489 bool GNUSyntax,
5490 ExprResult Init);
5491
5492private:
5493 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5494
5495public:
5496 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5497 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5498 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5499 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5500 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5501 Expr *LHSExpr, Expr *RHSExpr);
5502 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5503 UnresolvedSetImpl &Functions);
5504
5505 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5506
5507 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5508 /// in the case of a the GNU conditional expr extension.
5509 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5510 SourceLocation ColonLoc,
5511 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5512
5513 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5514 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5515 LabelDecl *TheDecl);
5516
5517 void ActOnStartStmtExpr();
5518 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5519 SourceLocation RPLoc);
5520 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5521 SourceLocation RPLoc, unsigned TemplateDepth);
5522 // Handle the final expression in a statement expression.
5523 ExprResult ActOnStmtExprResult(ExprResult E);
5524 void ActOnStmtExprError();
5525
5526 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5527 struct OffsetOfComponent {
5528 SourceLocation LocStart, LocEnd;
5529 bool isBrackets; // true if [expr], false if .ident
5530 union {
5531 IdentifierInfo *IdentInfo;
5532 Expr *E;
5533 } U;
5534 };
5535
5536 /// __builtin_offsetof(type, a.b[123][456].c)
5537 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5538 TypeSourceInfo *TInfo,
5539 ArrayRef<OffsetOfComponent> Components,
5540 SourceLocation RParenLoc);
5541 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5542 SourceLocation BuiltinLoc,
5543 SourceLocation TypeLoc,
5544 ParsedType ParsedArgTy,
5545 ArrayRef<OffsetOfComponent> Components,
5546 SourceLocation RParenLoc);
5547
5548 // __builtin_choose_expr(constExpr, expr1, expr2)
5549 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5550 Expr *CondExpr, Expr *LHSExpr,
5551 Expr *RHSExpr, SourceLocation RPLoc);
5552
5553 // __builtin_va_arg(expr, type)
5554 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5555 SourceLocation RPLoc);
5556 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5557 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5558
5559 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5560 // __builtin_COLUMN()
5561 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5562 SourceLocation BuiltinLoc,
5563 SourceLocation RPLoc);
5564
5565 // Build a potentially resolved SourceLocExpr.
5566 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5567 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5568 DeclContext *ParentContext);
5569
5570 // __null
5571 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5572
5573 bool CheckCaseExpression(Expr *E);
5574
5575 /// Describes the result of an "if-exists" condition check.
5576 enum IfExistsResult {
5577 /// The symbol exists.
5578 IER_Exists,
5579
5580 /// The symbol does not exist.
5581 IER_DoesNotExist,
5582
5583 /// The name is a dependent name, so the results will differ
5584 /// from one instantiation to the next.
5585 IER_Dependent,
5586
5587 /// An error occurred.
5588 IER_Error
5589 };
5590
5591 IfExistsResult
5592 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5593 const DeclarationNameInfo &TargetNameInfo);
5594
5595 IfExistsResult
5596 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5597 bool IsIfExists, CXXScopeSpec &SS,
5598 UnqualifiedId &Name);
5599
5600 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5601 bool IsIfExists,
5602 NestedNameSpecifierLoc QualifierLoc,
5603 DeclarationNameInfo NameInfo,
5604 Stmt *Nested);
5605 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5606 bool IsIfExists,
5607 CXXScopeSpec &SS, UnqualifiedId &Name,
5608 Stmt *Nested);
5609
5610 //===------------------------- "Block" Extension ------------------------===//
5611
5612 /// ActOnBlockStart - This callback is invoked when a block literal is
5613 /// started.
5614 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5615
5616 /// ActOnBlockArguments - This callback allows processing of block arguments.
5617 /// If there are no arguments, this is still invoked.
5618 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5619 Scope *CurScope);
5620
5621 /// ActOnBlockError - If there is an error parsing a block, this callback
5622 /// is invoked to pop the information about the block from the action impl.
5623 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5624
5625 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5626 /// literal was successfully completed. ^(int x){...}
5627 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5628 Scope *CurScope);
5629
5630 //===---------------------------- Clang Extensions ----------------------===//
5631
5632 /// __builtin_convertvector(...)
5633 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5634 SourceLocation BuiltinLoc,
5635 SourceLocation RParenLoc);
5636
5637 //===---------------------------- OpenCL Features -----------------------===//
5638
5639 /// __builtin_astype(...)
5640 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5641 SourceLocation BuiltinLoc,
5642 SourceLocation RParenLoc);
5643 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5644 SourceLocation BuiltinLoc,
5645 SourceLocation RParenLoc);
5646
5647 //===---------------------------- C++ Features --------------------------===//
5648
5649 // Act on C++ namespaces
5650 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5651 SourceLocation NamespaceLoc,
5652 SourceLocation IdentLoc, IdentifierInfo *Ident,
5653 SourceLocation LBrace,
5654 const ParsedAttributesView &AttrList,
5655 UsingDirectiveDecl *&UsingDecl);
5656 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5657
5658 NamespaceDecl *getStdNamespace() const;
5659 NamespaceDecl *getOrCreateStdNamespace();
5660
5661 NamespaceDecl *lookupStdExperimentalNamespace();
5662
5663 CXXRecordDecl *getStdBadAlloc() const;
5664 EnumDecl *getStdAlignValT() const;
5665
5666private:
5667 // A cache representing if we've fully checked the various comparison category
5668 // types stored in ASTContext. The bit-index corresponds to the integer value
5669 // of a ComparisonCategoryType enumerator.
5670 llvm::SmallBitVector FullyCheckedComparisonCategories;
5671
5672 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5673 CXXScopeSpec &SS,
5674 ParsedType TemplateTypeTy,
5675 IdentifierInfo *MemberOrBase);
5676
5677public:
5678 enum class ComparisonCategoryUsage {
5679 /// The '<=>' operator was used in an expression and a builtin operator
5680 /// was selected.
5681 OperatorInExpression,
5682 /// A defaulted 'operator<=>' needed the comparison category. This
5683 /// typically only applies to 'std::strong_ordering', due to the implicit
5684 /// fallback return value.
5685 DefaultedOperator,
5686 };
5687
5688 /// Lookup the specified comparison category types in the standard
5689 /// library, an check the VarDecls possibly returned by the operator<=>
5690 /// builtins for that type.
5691 ///
5692 /// \return The type of the comparison category type corresponding to the
5693 /// specified Kind, or a null type if an error occurs
5694 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5695 SourceLocation Loc,
5696 ComparisonCategoryUsage Usage);
5697
5698 /// Tests whether Ty is an instance of std::initializer_list and, if
5699 /// it is and Element is not NULL, assigns the element type to Element.
5700 bool isStdInitializerList(QualType Ty, QualType *Element);
5701
5702 /// Looks for the std::initializer_list template and instantiates it
5703 /// with Element, or emits an error if it's not found.
5704 ///
5705 /// \returns The instantiated template, or null on error.
5706 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5707
5708 /// Determine whether Ctor is an initializer-list constructor, as
5709 /// defined in [dcl.init.list]p2.
5710 bool isInitListConstructor(const FunctionDecl *Ctor);
5711
5712 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5713 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5714 SourceLocation IdentLoc,
5715 IdentifierInfo *NamespcName,
5716 const ParsedAttributesView &AttrList);
5717
5718 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5719
5720 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5721 SourceLocation NamespaceLoc,
5722 SourceLocation AliasLoc,
5723 IdentifierInfo *Alias,
5724 CXXScopeSpec &SS,
5725 SourceLocation IdentLoc,
5726 IdentifierInfo *Ident);
5727
5728 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5729 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5730 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5731 const LookupResult &PreviousDecls,
5732 UsingShadowDecl *&PrevShadow);
5733 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5734 NamedDecl *Target,
5735 UsingShadowDecl *PrevDecl);
5736
5737 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5738 bool HasTypenameKeyword,
5739 const CXXScopeSpec &SS,
5740 SourceLocation NameLoc,
5741 const LookupResult &Previous);
5742 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5743 const CXXScopeSpec &SS,
5744 const DeclarationNameInfo &NameInfo,
5745 SourceLocation NameLoc,
5746 const LookupResult *R = nullptr,
5747 const UsingDecl *UD = nullptr);
5748
5749 NamedDecl *BuildUsingDeclaration(
5750 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5751 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5752 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5753 const ParsedAttributesView &AttrList, bool IsInstantiation,
5754 bool IsUsingIfExists);
5755 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5756 SourceLocation UsingLoc,
5757 SourceLocation EnumLoc,
5758 SourceLocation NameLoc, EnumDecl *ED);
5759 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5760 ArrayRef<NamedDecl *> Expansions);
5761
5762 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5763
5764 /// Given a derived-class using shadow declaration for a constructor and the
5765 /// correspnding base class constructor, find or create the implicit
5766 /// synthesized derived class constructor to use for this initialization.
5767 CXXConstructorDecl *
5768 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5769 ConstructorUsingShadowDecl *DerivedShadow);
5770
5771 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5772 SourceLocation UsingLoc,
5773 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5774 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5775 const ParsedAttributesView &AttrList);
5776 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5777 SourceLocation UsingLoc,
5778 SourceLocation EnumLoc, const DeclSpec &);
5779 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5780 MultiTemplateParamsArg TemplateParams,
5781 SourceLocation UsingLoc, UnqualifiedId &Name,
5782 const ParsedAttributesView &AttrList,
5783 TypeResult Type, Decl *DeclFromDeclSpec);
5784
5785 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5786 /// including handling of its default argument expressions.
5787 ///
5788 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5789 ExprResult
5790 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5791 NamedDecl *FoundDecl,
5792 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5793 bool HadMultipleCandidates, bool IsListInitialization,
5794 bool IsStdInitListInitialization,
5795 bool RequiresZeroInit, unsigned ConstructKind,
5796 SourceRange ParenRange);
5797
5798 /// Build a CXXConstructExpr whose constructor has already been resolved if
5799 /// it denotes an inherited constructor.
5800 ExprResult
5801 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5802 CXXConstructorDecl *Constructor, bool Elidable,
5803 MultiExprArg Exprs,
5804 bool HadMultipleCandidates, bool IsListInitialization,
5805 bool IsStdInitListInitialization,
5806 bool RequiresZeroInit, unsigned ConstructKind,
5807 SourceRange ParenRange);
5808
5809 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5810 // the constructor can be elidable?
5811 ExprResult
5812 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5813 NamedDecl *FoundDecl,
5814 CXXConstructorDecl *Constructor, bool Elidable,
5815 MultiExprArg Exprs, bool HadMultipleCandidates,
5816 bool IsListInitialization,
5817 bool IsStdInitListInitialization, bool RequiresZeroInit,
5818 unsigned ConstructKind, SourceRange ParenRange);
5819
5820 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5821
5822
5823 /// Instantiate or parse a C++ default argument expression as necessary.
5824 /// Return true on error.
5825 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5826 ParmVarDecl *Param);
5827
5828 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5829 /// the default expr if needed.
5830 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5831 FunctionDecl *FD,
5832 ParmVarDecl *Param);
5833
5834 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5835 /// constructed variable.
5836 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5837
5838 /// Helper class that collects exception specifications for
5839 /// implicitly-declared special member functions.
5840 class ImplicitExceptionSpecification {
5841 // Pointer to allow copying
5842 Sema *Self;
5843 // We order exception specifications thus:
5844 // noexcept is the most restrictive, but is only used in C++11.
5845 // throw() comes next.
5846 // Then a throw(collected exceptions)
5847 // Finally no specification, which is expressed as noexcept(false).
5848 // throw(...) is used instead if any called function uses it.
5849 ExceptionSpecificationType ComputedEST;
5850 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5851 SmallVector<QualType, 4> Exceptions;
5852
5853 void ClearExceptions() {
5854 ExceptionsSeen.clear();
5855 Exceptions.clear();
5856 }
5857
5858 public:
5859 explicit ImplicitExceptionSpecification(Sema &Self)
5860 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5861 if (!Self.getLangOpts().CPlusPlus11)
5862 ComputedEST = EST_DynamicNone;
5863 }
5864
5865 /// Get the computed exception specification type.
5866 ExceptionSpecificationType getExceptionSpecType() const {
5867 assert(!isComputedNoexcept(ComputedEST) &&((void)0)
5868 "noexcept(expr) should not be a possible result")((void)0);
5869 return ComputedEST;
5870 }
5871
5872 /// The number of exceptions in the exception specification.
5873 unsigned size() const { return Exceptions.size(); }
5874
5875 /// The set of exceptions in the exception specification.
5876 const QualType *data() const { return Exceptions.data(); }
5877
5878 /// Integrate another called method into the collected data.
5879 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5880
5881 /// Integrate an invoked expression into the collected data.
5882 void CalledExpr(Expr *E) { CalledStmt(E); }
5883
5884 /// Integrate an invoked statement into the collected data.
5885 void CalledStmt(Stmt *S);
5886
5887 /// Overwrite an EPI's exception specification with this
5888 /// computed exception specification.
5889 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5890 FunctionProtoType::ExceptionSpecInfo ESI;
5891 ESI.Type = getExceptionSpecType();
5892 if (ESI.Type == EST_Dynamic) {
5893 ESI.Exceptions = Exceptions;
5894 } else if (ESI.Type == EST_None) {
5895 /// C++11 [except.spec]p14:
5896 /// The exception-specification is noexcept(false) if the set of
5897 /// potential exceptions of the special member function contains "any"
5898 ESI.Type = EST_NoexceptFalse;
5899 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5900 tok::kw_false).get();
5901 }
5902 return ESI;
5903 }
5904 };
5905
5906 /// Evaluate the implicit exception specification for a defaulted
5907 /// special member function.
5908 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5909
5910 /// Check the given noexcept-specifier, convert its expression, and compute
5911 /// the appropriate ExceptionSpecificationType.
5912 ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr,
5913 ExceptionSpecificationType &EST);
5914
5915 /// Check the given exception-specification and update the
5916 /// exception specification information with the results.
5917 void checkExceptionSpecification(bool IsTopLevel,
5918 ExceptionSpecificationType EST,
5919 ArrayRef<ParsedType> DynamicExceptions,
5920 ArrayRef<SourceRange> DynamicExceptionRanges,
5921 Expr *NoexceptExpr,
5922 SmallVectorImpl<QualType> &Exceptions,
5923 FunctionProtoType::ExceptionSpecInfo &ESI);
5924
5925 /// Determine if we're in a case where we need to (incorrectly) eagerly
5926 /// parse an exception specification to work around a libstdc++ bug.
5927 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5928
5929 /// Add an exception-specification to the given member function
5930 /// (or member function template). The exception-specification was parsed
5931 /// after the method itself was declared.
5932 void actOnDelayedExceptionSpecification(Decl *Method,
5933 ExceptionSpecificationType EST,
5934 SourceRange SpecificationRange,
5935 ArrayRef<ParsedType> DynamicExceptions,
5936 ArrayRef<SourceRange> DynamicExceptionRanges,
5937 Expr *NoexceptExpr);
5938
5939 class InheritedConstructorInfo;
5940
5941 /// Determine if a special member function should have a deleted
5942 /// definition when it is defaulted.
5943 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5944 InheritedConstructorInfo *ICI = nullptr,
5945 bool Diagnose = false);
5946
5947 /// Produce notes explaining why a defaulted function was defined as deleted.
5948 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5949
5950 /// Declare the implicit default constructor for the given class.
5951 ///
5952 /// \param ClassDecl The class declaration into which the implicit
5953 /// default constructor will be added.
5954 ///
5955 /// \returns The implicitly-declared default constructor.
5956 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5957 CXXRecordDecl *ClassDecl);
5958
5959 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5960 /// defining this constructor as the default constructor.
5961 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5962 CXXConstructorDecl *Constructor);
5963
5964 /// Declare the implicit destructor for the given class.
5965 ///
5966 /// \param ClassDecl The class declaration into which the implicit
5967 /// destructor will be added.
5968 ///
5969 /// \returns The implicitly-declared destructor.
5970 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5971
5972 /// DefineImplicitDestructor - Checks for feasibility of
5973 /// defining this destructor as the default destructor.
5974 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5975 CXXDestructorDecl *Destructor);
5976
5977 /// Build an exception spec for destructors that don't have one.
5978 ///
5979 /// C++11 says that user-defined destructors with no exception spec get one
5980 /// that looks as if the destructor was implicitly declared.
5981 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5982
5983 /// Define the specified inheriting constructor.
5984 void DefineInheritingConstructor(SourceLocation UseLoc,
5985 CXXConstructorDecl *Constructor);
5986
5987 /// Declare the implicit copy constructor for the given class.
5988 ///
5989 /// \param ClassDecl The class declaration into which the implicit
5990 /// copy constructor will be added.
5991 ///
5992 /// \returns The implicitly-declared copy constructor.
5993 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5994
5995 /// DefineImplicitCopyConstructor - Checks for feasibility of
5996 /// defining this constructor as the copy constructor.
5997 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5998 CXXConstructorDecl *Constructor);
5999
6000 /// Declare the implicit move constructor for the given class.
6001 ///
6002 /// \param ClassDecl The Class declaration into which the implicit
6003 /// move constructor will be added.
6004 ///
6005 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6006 /// declared.
6007 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6008
6009 /// DefineImplicitMoveConstructor - Checks for feasibility of
6010 /// defining this constructor as the move constructor.
6011 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6012 CXXConstructorDecl *Constructor);
6013
6014 /// Declare the implicit copy assignment operator for the given class.
6015 ///
6016 /// \param ClassDecl The class declaration into which the implicit
6017 /// copy assignment operator will be added.
6018 ///
6019 /// \returns The implicitly-declared copy assignment operator.
6020 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6021
6022 /// Defines an implicitly-declared copy assignment operator.
6023 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6024 CXXMethodDecl *MethodDecl);
6025
6026 /// Declare the implicit move assignment operator for the given class.
6027 ///
6028 /// \param ClassDecl The Class declaration into which the implicit
6029 /// move assignment operator will be added.
6030 ///
6031 /// \returns The implicitly-declared move assignment operator, or NULL if it
6032 /// wasn't declared.
6033 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6034
6035 /// Defines an implicitly-declared move assignment operator.
6036 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6037 CXXMethodDecl *MethodDecl);
6038
6039 /// Force the declaration of any implicitly-declared members of this
6040 /// class.
6041 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6042
6043 /// Check a completed declaration of an implicit special member.
6044 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6045
6046 /// Determine whether the given function is an implicitly-deleted
6047 /// special member function.
6048 bool isImplicitlyDeleted(FunctionDecl *FD);
6049
6050 /// Check whether 'this' shows up in the type of a static member
6051 /// function after the (naturally empty) cv-qualifier-seq would be.
6052 ///
6053 /// \returns true if an error occurred.
6054 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6055
6056 /// Whether this' shows up in the exception specification of a static
6057 /// member function.
6058 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6059
6060 /// Check whether 'this' shows up in the attributes of the given
6061 /// static member function.
6062 ///
6063 /// \returns true if an error occurred.
6064 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6065
6066 /// MaybeBindToTemporary - If the passed in expression has a record type with
6067 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6068 /// it simply returns the passed in expression.
6069 ExprResult MaybeBindToTemporary(Expr *E);
6070
6071 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6072 /// invocation.
6073 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6074
6075 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6076 QualType DeclInitType, MultiExprArg ArgsPtr,
6077 SourceLocation Loc,
6078 SmallVectorImpl<Expr *> &ConvertedArgs,
6079 bool AllowExplicit = false,
6080 bool IsListInitialization = false);
6081
6082 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6083 SourceLocation NameLoc,
6084 IdentifierInfo &Name);
6085
6086 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6087 Scope *S, CXXScopeSpec &SS,
6088 bool EnteringContext);
6089 ParsedType getDestructorName(SourceLocation TildeLoc,
6090 IdentifierInfo &II, SourceLocation NameLoc,
6091 Scope *S, CXXScopeSpec &SS,
6092 ParsedType ObjectType,
6093 bool EnteringContext);
6094
6095 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6096 ParsedType ObjectType);
6097
6098 // Checks that reinterpret casts don't have undefined behavior.
6099 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6100 bool IsDereference, SourceRange Range);
6101
6102 // Checks that the vector type should be initialized from a scalar
6103 // by splatting the value rather than populating a single element.
6104 // This is the case for AltiVecVector types as well as with
6105 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6106 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6107
6108 /// ActOnCXXNamedCast - Parse
6109 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6110 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6111 tok::TokenKind Kind,
6112 SourceLocation LAngleBracketLoc,
6113 Declarator &D,
6114 SourceLocation RAngleBracketLoc,
6115 SourceLocation LParenLoc,
6116 Expr *E,
6117 SourceLocation RParenLoc);
6118
6119 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6120 tok::TokenKind Kind,
6121 TypeSourceInfo *Ty,
6122 Expr *E,
6123 SourceRange AngleBrackets,
6124 SourceRange Parens);
6125
6126 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6127 ExprResult Operand,
6128 SourceLocation RParenLoc);
6129
6130 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6131 Expr *Operand, SourceLocation RParenLoc);
6132
6133 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6134 SourceLocation TypeidLoc,
6135 TypeSourceInfo *Operand,
6136 SourceLocation RParenLoc);
6137 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6138 SourceLocation TypeidLoc,
6139 Expr *Operand,
6140 SourceLocation RParenLoc);
6141
6142 /// ActOnCXXTypeid - Parse typeid( something ).
6143 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6144 SourceLocation LParenLoc, bool isType,
6145 void *TyOrExpr,
6146 SourceLocation RParenLoc);
6147
6148 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6149 SourceLocation TypeidLoc,
6150 TypeSourceInfo *Operand,
6151 SourceLocation RParenLoc);
6152 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6153 SourceLocation TypeidLoc,
6154 Expr *Operand,
6155 SourceLocation RParenLoc);
6156
6157 /// ActOnCXXUuidof - Parse __uuidof( something ).
6158 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6159 SourceLocation LParenLoc, bool isType,
6160 void *TyOrExpr,
6161 SourceLocation RParenLoc);
6162
6163 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6164 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6165 tok::TokenKind Operator,
6166 SourceLocation EllipsisLoc, Expr *RHS,
6167 SourceLocation RParenLoc);
6168 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6169 SourceLocation LParenLoc, Expr *LHS,
6170 BinaryOperatorKind Operator,
6171 SourceLocation EllipsisLoc, Expr *RHS,
6172 SourceLocation RParenLoc,
6173 Optional<unsigned> NumExpansions);
6174 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6175 BinaryOperatorKind Operator);
6176
6177 //// ActOnCXXThis - Parse 'this' pointer.
6178 ExprResult ActOnCXXThis(SourceLocation loc);
6179
6180 /// Build a CXXThisExpr and mark it referenced in the current context.
6181 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6182 void MarkThisReferenced(CXXThisExpr *This);
6183
6184 /// Try to retrieve the type of the 'this' pointer.
6185 ///
6186 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6187 QualType getCurrentThisType();
6188
6189 /// When non-NULL, the C++ 'this' expression is allowed despite the
6190 /// current context not being a non-static member function. In such cases,
6191 /// this provides the type used for 'this'.
6192 QualType CXXThisTypeOverride;
6193
6194 /// RAII object used to temporarily allow the C++ 'this' expression
6195 /// to be used, with the given qualifiers on the current class type.
6196 class CXXThisScopeRAII {
6197 Sema &S;
6198 QualType OldCXXThisTypeOverride;
6199 bool Enabled;
6200
6201 public:
6202 /// Introduce a new scope where 'this' may be allowed (when enabled),
6203 /// using the given declaration (which is either a class template or a
6204 /// class) along with the given qualifiers.
6205 /// along with the qualifiers placed on '*this'.
6206 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6207 bool Enabled = true);
6208
6209 ~CXXThisScopeRAII();
6210 };
6211
6212 /// Make sure the value of 'this' is actually available in the current
6213 /// context, if it is a potentially evaluated context.
6214 ///
6215 /// \param Loc The location at which the capture of 'this' occurs.
6216 ///
6217 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6218 /// capture list.
6219 ///
6220 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6221 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6222 /// This is useful when enclosing lambdas must speculatively capture
6223 /// 'this' that may or may not be used in certain specializations of
6224 /// a nested generic lambda (depending on whether the name resolves to
6225 /// a non-static member function or a static function).
6226 /// \return returns 'true' if failed, 'false' if success.
6227 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6228 bool BuildAndDiagnose = true,
6229 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6230 bool ByCopy = false);
6231
6232 /// Determine whether the given type is the type of *this that is used
6233 /// outside of the body of a member function for a type that is currently
6234 /// being defined.
6235 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6236
6237 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6238 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6239
6240
6241 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6242 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6243
6244 ExprResult
6245 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6246 SourceLocation AtLoc, SourceLocation RParen);
6247
6248 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6249 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6250
6251 //// ActOnCXXThrow - Parse throw expressions.
6252 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6253 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6254 bool IsThrownVarInScope);
6255 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6256
6257 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6258 /// Can be interpreted either as function-style casting ("int(x)")
6259 /// or class type construction ("ClassType(x,y,z)")
6260 /// or creation of a value-initialized type ("int()").
6261 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6262 SourceLocation LParenOrBraceLoc,
6263 MultiExprArg Exprs,
6264 SourceLocation RParenOrBraceLoc,
6265 bool ListInitialization);
6266
6267 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6268 SourceLocation LParenLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenLoc,
6271 bool ListInitialization);
6272
6273 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6274 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6275 SourceLocation PlacementLParen,
6276 MultiExprArg PlacementArgs,
6277 SourceLocation PlacementRParen,
6278 SourceRange TypeIdParens, Declarator &D,
6279 Expr *Initializer);
6280 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens,
6285 QualType AllocType,
6286 TypeSourceInfo *AllocTypeInfo,
6287 Optional<Expr *> ArraySize,
6288 SourceRange DirectInitRange,
6289 Expr *Initializer);
6290
6291 /// Determine whether \p FD is an aligned allocation or deallocation
6292 /// function that is unavailable.
6293 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6294
6295 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6296 /// function that is unavailable.
6297 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6298 SourceLocation Loc);
6299
6300 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6301 SourceRange R);
6302
6303 /// The scope in which to find allocation functions.
6304 enum AllocationFunctionScope {
6305 /// Only look for allocation functions in the global scope.
6306 AFS_Global,
6307 /// Only look for allocation functions in the scope of the
6308 /// allocated class.
6309 AFS_Class,
6310 /// Look for allocation functions in both the global scope
6311 /// and in the scope of the allocated class.
6312 AFS_Both
6313 };
6314
6315 /// Finds the overloads of operator new and delete that are appropriate
6316 /// for the allocation.
6317 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6318 AllocationFunctionScope NewScope,
6319 AllocationFunctionScope DeleteScope,
6320 QualType AllocType, bool IsArray,
6321 bool &PassAlignment, MultiExprArg PlaceArgs,
6322 FunctionDecl *&OperatorNew,
6323 FunctionDecl *&OperatorDelete,
6324 bool Diagnose = true);
6325 void DeclareGlobalNewDelete();
6326 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6327 ArrayRef<QualType> Params);
6328
6329 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6330 DeclarationName Name, FunctionDecl* &Operator,
6331 bool Diagnose = true);
6332 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6333 bool CanProvideSize,
6334 bool Overaligned,
6335 DeclarationName Name);
6336 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6337 CXXRecordDecl *RD);
6338
6339 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6340 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6341 bool UseGlobal, bool ArrayForm,
6342 Expr *Operand);
6343 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6344 bool IsDelete, bool CallCanBeVirtual,
6345 bool WarnOnNonAbstractTypes,
6346 SourceLocation DtorLoc);
6347
6348 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6349 Expr *Operand, SourceLocation RParen);
6350 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6351 SourceLocation RParen);
6352
6353 /// Parsed one of the type trait support pseudo-functions.
6354 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6355 ArrayRef<ParsedType> Args,
6356 SourceLocation RParenLoc);
6357 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6358 ArrayRef<TypeSourceInfo *> Args,
6359 SourceLocation RParenLoc);
6360
6361 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6362 /// pseudo-functions.
6363 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6364 SourceLocation KWLoc,
6365 ParsedType LhsTy,
6366 Expr *DimExpr,
6367 SourceLocation RParen);
6368
6369 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 TypeSourceInfo *TSInfo,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6376 /// pseudo-functions.
6377 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6378 SourceLocation KWLoc,
6379 Expr *Queried,
6380 SourceLocation RParen);
6381
6382 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6383 SourceLocation KWLoc,
6384 Expr *Queried,
6385 SourceLocation RParen);
6386
6387 ExprResult ActOnStartCXXMemberReference(Scope *S,
6388 Expr *Base,
6389 SourceLocation OpLoc,
6390 tok::TokenKind OpKind,
6391 ParsedType &ObjectType,
6392 bool &MayBePseudoDestructor);
6393
6394 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 const CXXScopeSpec &SS,
6398 TypeSourceInfo *ScopeType,
6399 SourceLocation CCLoc,
6400 SourceLocation TildeLoc,
6401 PseudoDestructorTypeStorage DestroyedType);
6402
6403 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6404 SourceLocation OpLoc,
6405 tok::TokenKind OpKind,
6406 CXXScopeSpec &SS,
6407 UnqualifiedId &FirstTypeName,
6408 SourceLocation CCLoc,
6409 SourceLocation TildeLoc,
6410 UnqualifiedId &SecondTypeName);
6411
6412 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6413 SourceLocation OpLoc,
6414 tok::TokenKind OpKind,
6415 SourceLocation TildeLoc,
6416 const DeclSpec& DS);
6417
6418 /// MaybeCreateExprWithCleanups - If the current full-expression
6419 /// requires any cleanups, surround it with a ExprWithCleanups node.
6420 /// Otherwise, just returns the passed-in expression.
6421 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6422 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6423 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6424
6425 MaterializeTemporaryExpr *
6426 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6427 bool BoundToLvalueReference);
6428
6429 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6430 return ActOnFinishFullExpr(
6431 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6432 }
6433 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6434 bool DiscardedValue, bool IsConstexpr = false);
6435 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6436
6437 // Marks SS invalid if it represents an incomplete type.
6438 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6439 // Complete an enum decl, maybe without a scope spec.
6440 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6441 CXXScopeSpec *SS = nullptr);
6442
6443 DeclContext *computeDeclContext(QualType T);
6444 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6445 bool EnteringContext = false);
6446 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6447 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6448
6449 /// The parser has parsed a global nested-name-specifier '::'.
6450 ///
6451 /// \param CCLoc The location of the '::'.
6452 ///
6453 /// \param SS The nested-name-specifier, which will be updated in-place
6454 /// to reflect the parsed nested-name-specifier.
6455 ///
6456 /// \returns true if an error occurred, false otherwise.
6457 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6458
6459 /// The parser has parsed a '__super' nested-name-specifier.
6460 ///
6461 /// \param SuperLoc The location of the '__super' keyword.
6462 ///
6463 /// \param ColonColonLoc The location of the '::'.
6464 ///
6465 /// \param SS The nested-name-specifier, which will be updated in-place
6466 /// to reflect the parsed nested-name-specifier.
6467 ///
6468 /// \returns true if an error occurred, false otherwise.
6469 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6470 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6471
6472 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6473 bool *CanCorrect = nullptr);
6474 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6475
6476 /// Keeps information about an identifier in a nested-name-spec.
6477 ///
6478 struct NestedNameSpecInfo {
6479 /// The type of the object, if we're parsing nested-name-specifier in
6480 /// a member access expression.
6481 ParsedType ObjectType;
6482
6483 /// The identifier preceding the '::'.
6484 IdentifierInfo *Identifier;
6485
6486 /// The location of the identifier.
6487 SourceLocation IdentifierLoc;
6488
6489 /// The location of the '::'.
6490 SourceLocation CCLoc;
6491
6492 /// Creates info object for the most typical case.
6493 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6494 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6495 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6496 CCLoc(ColonColonLoc) {
6497 }
6498
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, QualType ObjectType)
6501 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6502 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6503 }
6504 };
6505
6506 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6507 NestedNameSpecInfo &IdInfo);
6508
6509 bool BuildCXXNestedNameSpecifier(Scope *S,
6510 NestedNameSpecInfo &IdInfo,
6511 bool EnteringContext,
6512 CXXScopeSpec &SS,
6513 NamedDecl *ScopeLookupResult,
6514 bool ErrorRecoveryLookup,
6515 bool *IsCorrectedToColon = nullptr,
6516 bool OnlyNamespace = false);
6517
6518 /// The parser has parsed a nested-name-specifier 'identifier::'.
6519 ///
6520 /// \param S The scope in which this nested-name-specifier occurs.
6521 ///
6522 /// \param IdInfo Parser information about an identifier in the
6523 /// nested-name-spec.
6524 ///
6525 /// \param EnteringContext Whether we're entering the context nominated by
6526 /// this nested-name-specifier.
6527 ///
6528 /// \param SS The nested-name-specifier, which is both an input
6529 /// parameter (the nested-name-specifier before this type) and an
6530 /// output parameter (containing the full nested-name-specifier,
6531 /// including this new type).
6532 ///
6533 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6534 /// error recovery. In this case do not emit error message.
6535 ///
6536 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6537 /// are allowed. The bool value pointed by this parameter is set to 'true'
6538 /// if the identifier is treated as if it was followed by ':', not '::'.
6539 ///
6540 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6541 ///
6542 /// \returns true if an error occurred, false otherwise.
6543 bool ActOnCXXNestedNameSpecifier(Scope *S,
6544 NestedNameSpecInfo &IdInfo,
6545 bool EnteringContext,
6546 CXXScopeSpec &SS,
6547 bool ErrorRecoveryLookup = false,
6548 bool *IsCorrectedToColon = nullptr,
6549 bool OnlyNamespace = false);
6550
6551 ExprResult ActOnDecltypeExpression(Expr *E);
6552
6553 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6554 const DeclSpec &DS,
6555 SourceLocation ColonColonLoc);
6556
6557 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6558 NestedNameSpecInfo &IdInfo,
6559 bool EnteringContext);
6560
6561 /// The parser has parsed a nested-name-specifier
6562 /// 'template[opt] template-name < template-args >::'.
6563 ///
6564 /// \param S The scope in which this nested-name-specifier occurs.
6565 ///
6566 /// \param SS The nested-name-specifier, which is both an input
6567 /// parameter (the nested-name-specifier before this type) and an
6568 /// output parameter (containing the full nested-name-specifier,
6569 /// including this new type).
6570 ///
6571 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6572 /// \param TemplateName the template name.
6573 /// \param TemplateNameLoc The location of the template name.
6574 /// \param LAngleLoc The location of the opening angle bracket ('<').
6575 /// \param TemplateArgs The template arguments.
6576 /// \param RAngleLoc The location of the closing angle bracket ('>').
6577 /// \param CCLoc The location of the '::'.
6578 ///
6579 /// \param EnteringContext Whether we're entering the context of the
6580 /// nested-name-specifier.
6581 ///
6582 ///
6583 /// \returns true if an error occurred, false otherwise.
6584 bool ActOnCXXNestedNameSpecifier(Scope *S,
6585 CXXScopeSpec &SS,
6586 SourceLocation TemplateKWLoc,
6587 TemplateTy TemplateName,
6588 SourceLocation TemplateNameLoc,
6589 SourceLocation LAngleLoc,
6590 ASTTemplateArgsPtr TemplateArgs,
6591 SourceLocation RAngleLoc,
6592 SourceLocation CCLoc,
6593 bool EnteringContext);
6594
6595 /// Given a C++ nested-name-specifier, produce an annotation value
6596 /// that the parser can use later to reconstruct the given
6597 /// nested-name-specifier.
6598 ///
6599 /// \param SS A nested-name-specifier.
6600 ///
6601 /// \returns A pointer containing all of the information in the
6602 /// nested-name-specifier \p SS.
6603 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6604
6605 /// Given an annotation pointer for a nested-name-specifier, restore
6606 /// the nested-name-specifier structure.
6607 ///
6608 /// \param Annotation The annotation pointer, produced by
6609 /// \c SaveNestedNameSpecifierAnnotation().
6610 ///
6611 /// \param AnnotationRange The source range corresponding to the annotation.
6612 ///
6613 /// \param SS The nested-name-specifier that will be updated with the contents
6614 /// of the annotation pointer.
6615 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6616 SourceRange AnnotationRange,
6617 CXXScopeSpec &SS);
6618
6619 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6620
6621 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6622 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6623 /// After this method is called, according to [C++ 3.4.3p3], names should be
6624 /// looked up in the declarator-id's scope, until the declarator is parsed and
6625 /// ActOnCXXExitDeclaratorScope is called.
6626 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6627 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6628
6629 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6630 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6631 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6632 /// Used to indicate that names should revert to being looked up in the
6633 /// defining scope.
6634 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6635
6636 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6637 /// initializer for the declaration 'Dcl'.
6638 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6639 /// static data member of class X, names should be looked up in the scope of
6640 /// class X.
6641 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6642
6643 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6644 /// initializer for the declaration 'Dcl'.
6645 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6646
6647 /// Create a new lambda closure type.
6648 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6649 TypeSourceInfo *Info,
6650 bool KnownDependent,
6651 LambdaCaptureDefault CaptureDefault);
6652
6653 /// Start the definition of a lambda expression.
6654 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6655 SourceRange IntroducerRange,
6656 TypeSourceInfo *MethodType,
6657 SourceLocation EndLoc,
6658 ArrayRef<ParmVarDecl *> Params,
6659 ConstexprSpecKind ConstexprKind,
6660 Expr *TrailingRequiresClause);
6661
6662 /// Number lambda for linkage purposes if necessary.
6663 void handleLambdaNumbering(
6664 CXXRecordDecl *Class, CXXMethodDecl *Method,
6665 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6666
6667 /// Endow the lambda scope info with the relevant properties.
6668 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6669 CXXMethodDecl *CallOperator,
6670 SourceRange IntroducerRange,
6671 LambdaCaptureDefault CaptureDefault,
6672 SourceLocation CaptureDefaultLoc,
6673 bool ExplicitParams,
6674 bool ExplicitResultType,
6675 bool Mutable);
6676
6677 /// Perform initialization analysis of the init-capture and perform
6678 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6679 /// not being used to initialize a reference.
6680 ParsedType actOnLambdaInitCaptureInitialization(
6681 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6682 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6683 return ParsedType::make(buildLambdaInitCaptureInitialization(
6684 Loc, ByRef, EllipsisLoc, None, Id,
6685 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6686 }
6687 QualType buildLambdaInitCaptureInitialization(
6688 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6689 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6690 Expr *&Init);
6691
6692 /// Create a dummy variable within the declcontext of the lambda's
6693 /// call operator, for name lookup purposes for a lambda init capture.
6694 ///
6695 /// CodeGen handles emission of lambda captures, ignoring these dummy
6696 /// variables appropriately.
6697 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6698 QualType InitCaptureType,
6699 SourceLocation EllipsisLoc,
6700 IdentifierInfo *Id,
6701 unsigned InitStyle, Expr *Init);
6702
6703 /// Add an init-capture to a lambda scope.
6704 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6705
6706 /// Note that we have finished the explicit captures for the
6707 /// given lambda.
6708 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6709
6710 /// \brief This is called after parsing the explicit template parameter list
6711 /// on a lambda (if it exists) in C++2a.
6712 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6713 ArrayRef<NamedDecl *> TParams,
6714 SourceLocation RAngleLoc,
6715 ExprResult RequiresClause);
6716
6717 /// Introduce the lambda parameters into scope.
6718 void addLambdaParameters(
6719 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6720 CXXMethodDecl *CallOperator, Scope *CurScope);
6721
6722 /// Deduce a block or lambda's return type based on the return
6723 /// statements present in the body.
6724 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6725
6726 /// ActOnStartOfLambdaDefinition - This is called just before we start
6727 /// parsing the body of a lambda; it analyzes the explicit captures and
6728 /// arguments, and sets up various data-structures for the body of the
6729 /// lambda.
6730 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6731 Declarator &ParamInfo, Scope *CurScope);
6732
6733 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6734 /// is invoked to pop the information about the lambda.
6735 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6736 bool IsInstantiation = false);
6737
6738 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6739 /// was successfully completed.
6740 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6741 Scope *CurScope);
6742
6743 /// Does copying/destroying the captured variable have side effects?
6744 bool CaptureHasSideEffects(const sema::Capture &From);
6745
6746 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6747 /// diagnostic is emitted.
6748 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6749 const sema::Capture &From);
6750
6751 /// Build a FieldDecl suitable to hold the given capture.
6752 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6753
6754 /// Initialize the given capture with a suitable expression.
6755 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6756 SourceLocation ImplicitCaptureLoc,
6757 bool IsOpenMPMapping = false);
6758
6759 /// Complete a lambda-expression having processed and attached the
6760 /// lambda body.
6761 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6762 sema::LambdaScopeInfo *LSI);
6763
6764 /// Get the return type to use for a lambda's conversion function(s) to
6765 /// function pointer type, given the type of the call operator.
6766 QualType
6767 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6768 CallingConv CC);
6769
6770 /// Define the "body" of the conversion from a lambda object to a
6771 /// function pointer.
6772 ///
6773 /// This routine doesn't actually define a sensible body; rather, it fills
6774 /// in the initialization expression needed to copy the lambda object into
6775 /// the block, and IR generation actually generates the real body of the
6776 /// block pointer conversion.
6777 void DefineImplicitLambdaToFunctionPointerConversion(
6778 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6779
6780 /// Define the "body" of the conversion from a lambda object to a
6781 /// block pointer.
6782 ///
6783 /// This routine doesn't actually define a sensible body; rather, it fills
6784 /// in the initialization expression needed to copy the lambda object into
6785 /// the block, and IR generation actually generates the real body of the
6786 /// block pointer conversion.
6787 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6788 CXXConversionDecl *Conv);
6789
6790 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6791 SourceLocation ConvLocation,
6792 CXXConversionDecl *Conv,
6793 Expr *Src);
6794
6795 /// Check whether the given expression is a valid constraint expression.
6796 /// A diagnostic is emitted if it is not, false is returned, and
6797 /// PossibleNonPrimary will be set to true if the failure might be due to a
6798 /// non-primary expression being used as an atomic constraint.
6799 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6800 bool *PossibleNonPrimary = nullptr,
6801 bool IsTrailingRequiresClause = false);
6802
6803private:
6804 /// Caches pairs of template-like decls whose associated constraints were
6805 /// checked for subsumption and whether or not the first's constraints did in
6806 /// fact subsume the second's.
6807 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6808 /// Caches the normalized associated constraints of declarations (concepts or
6809 /// constrained declarations). If an error occurred while normalizing the
6810 /// associated constraints of the template or concept, nullptr will be cached
6811 /// here.
6812 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6813 NormalizationCache;
6814
6815 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6816 SatisfactionCache;
6817
6818public:
6819 const NormalizedConstraint *
6820 getNormalizedAssociatedConstraints(
6821 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6822
6823 /// \brief Check whether the given declaration's associated constraints are
6824 /// at least as constrained than another declaration's according to the
6825 /// partial ordering of constraints.
6826 ///
6827 /// \param Result If no error occurred, receives the result of true if D1 is
6828 /// at least constrained than D2, and false otherwise.
6829 ///
6830 /// \returns true if an error occurred, false otherwise.
6831 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6832 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6833 bool &Result);
6834
6835 /// If D1 was not at least as constrained as D2, but would've been if a pair
6836 /// of atomic constraints involved had been declared in a concept and not
6837 /// repeated in two separate places in code.
6838 /// \returns true if such a diagnostic was emitted, false otherwise.
6839 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6840 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6841
6842 /// \brief Check whether the given list of constraint expressions are
6843 /// satisfied (as if in a 'conjunction') given template arguments.
6844 /// \param Template the template-like entity that triggered the constraints
6845 /// check (either a concept or a constrained entity).
6846 /// \param ConstraintExprs a list of constraint expressions, treated as if
6847 /// they were 'AND'ed together.
6848 /// \param TemplateArgs the list of template arguments to substitute into the
6849 /// constraint expression.
6850 /// \param TemplateIDRange The source range of the template id that
6851 /// caused the constraints check.
6852 /// \param Satisfaction if true is returned, will contain details of the
6853 /// satisfaction, with enough information to diagnose an unsatisfied
6854 /// expression.
6855 /// \returns true if an error occurred and satisfaction could not be checked,
6856 /// false otherwise.
6857 bool CheckConstraintSatisfaction(
6858 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6859 ArrayRef<TemplateArgument> TemplateArgs,
6860 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6861
6862 /// \brief Check whether the given non-dependent constraint expression is
6863 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6864 /// verdict if successful, emits a diagnostic and returns true if an error
6865 /// occured and satisfaction could not be determined.
6866 ///
6867 /// \returns true if an error occurred, false otherwise.
6868 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6869 ConstraintSatisfaction &Satisfaction);
6870
6871 /// Check whether the given function decl's trailing requires clause is
6872 /// satisfied, if any. Returns false and updates Satisfaction with the
6873 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6874 /// an error occured and satisfaction could not be determined.
6875 ///
6876 /// \returns true if an error occurred, false otherwise.
6877 bool CheckFunctionConstraints(const FunctionDecl *FD,
6878 ConstraintSatisfaction &Satisfaction,
6879 SourceLocation UsageLoc = SourceLocation());
6880
6881
6882 /// \brief Ensure that the given template arguments satisfy the constraints
6883 /// associated with the given template, emitting a diagnostic if they do not.
6884 ///
6885 /// \param Template The template to which the template arguments are being
6886 /// provided.
6887 ///
6888 /// \param TemplateArgs The converted, canonicalized template arguments.
6889 ///
6890 /// \param TemplateIDRange The source range of the template id that
6891 /// caused the constraints check.
6892 ///
6893 /// \returns true if the constrains are not satisfied or could not be checked
6894 /// for satisfaction, false if the constraints are satisfied.
6895 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6896 ArrayRef<TemplateArgument> TemplateArgs,
6897 SourceRange TemplateIDRange);
6898
6899 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6900 /// unsatisfied.
6901 /// \param First whether this is the first time an unsatisfied constraint is
6902 /// diagnosed for this error.
6903 void
6904 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6905 bool First = true);
6906
6907 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6908 /// unsatisfied.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 // ParseObjCStringLiteral - Parse Objective-C string literals.
6914 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6915 ArrayRef<Expr *> Strings);
6916
6917 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6918
6919 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6920 /// numeric literal expression. Type of the expression will be "NSNumber *"
6921 /// or "id" if NSNumber is unavailable.
6922 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6923 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6924 bool Value);
6925 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6926
6927 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6928 /// '@' prefixed parenthesized expression. The type of the expression will
6929 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6930 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6931 /// "const char *" or C structure with attribute 'objc_boxable'.
6932 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6933
6934 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6935 Expr *IndexExpr,
6936 ObjCMethodDecl *getterMethod,
6937 ObjCMethodDecl *setterMethod);
6938
6939 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6940 MutableArrayRef<ObjCDictionaryElement> Elements);
6941
6942 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6943 TypeSourceInfo *EncodedTypeInfo,
6944 SourceLocation RParenLoc);
6945 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6946 CXXConversionDecl *Method,
6947 bool HadMultipleCandidates);
6948
6949 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6950 SourceLocation EncodeLoc,
6951 SourceLocation LParenLoc,
6952 ParsedType Ty,
6953 SourceLocation RParenLoc);
6954
6955 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6956 ExprResult ParseObjCSelectorExpression(Selector Sel,
6957 SourceLocation AtLoc,
6958 SourceLocation SelLoc,
6959 SourceLocation LParenLoc,
6960 SourceLocation RParenLoc,
6961 bool WarnMultipleSelectors);
6962
6963 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6964 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6965 SourceLocation AtLoc,
6966 SourceLocation ProtoLoc,
6967 SourceLocation LParenLoc,
6968 SourceLocation ProtoIdLoc,
6969 SourceLocation RParenLoc);
6970
6971 //===--------------------------------------------------------------------===//
6972 // C++ Declarations
6973 //
6974 Decl *ActOnStartLinkageSpecification(Scope *S,
6975 SourceLocation ExternLoc,
6976 Expr *LangStr,
6977 SourceLocation LBraceLoc);
6978 Decl *ActOnFinishLinkageSpecification(Scope *S,
6979 Decl *LinkageSpec,
6980 SourceLocation RBraceLoc);
6981
6982
6983 //===--------------------------------------------------------------------===//
6984 // C++ Classes
6985 //
6986 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6987 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6988 const CXXScopeSpec *SS = nullptr);
6989 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6990
6991 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6992 SourceLocation ColonLoc,
6993 const ParsedAttributesView &Attrs);
6994
6995 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
6996 Declarator &D,
6997 MultiTemplateParamsArg TemplateParameterLists,
6998 Expr *BitfieldWidth, const VirtSpecifiers &VS,
6999 InClassInitStyle InitStyle);
7000
7001 void ActOnStartCXXInClassMemberInitializer();
7002 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7003 SourceLocation EqualLoc,
7004 Expr *Init);
7005
7006 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7007 Scope *S,
7008 CXXScopeSpec &SS,
7009 IdentifierInfo *MemberOrBase,
7010 ParsedType TemplateTypeTy,
7011 const DeclSpec &DS,
7012 SourceLocation IdLoc,
7013 SourceLocation LParenLoc,
7014 ArrayRef<Expr *> Args,
7015 SourceLocation RParenLoc,
7016 SourceLocation EllipsisLoc);
7017
7018 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7019 Scope *S,
7020 CXXScopeSpec &SS,
7021 IdentifierInfo *MemberOrBase,
7022 ParsedType TemplateTypeTy,
7023 const DeclSpec &DS,
7024 SourceLocation IdLoc,
7025 Expr *InitList,
7026 SourceLocation EllipsisLoc);
7027
7028 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7029 Scope *S,
7030 CXXScopeSpec &SS,
7031 IdentifierInfo *MemberOrBase,
7032 ParsedType TemplateTypeTy,
7033 const DeclSpec &DS,
7034 SourceLocation IdLoc,
7035 Expr *Init,
7036 SourceLocation EllipsisLoc);
7037
7038 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7039 Expr *Init,
7040 SourceLocation IdLoc);
7041
7042 MemInitResult BuildBaseInitializer(QualType BaseType,
7043 TypeSourceInfo *BaseTInfo,
7044 Expr *Init,
7045 CXXRecordDecl *ClassDecl,
7046 SourceLocation EllipsisLoc);
7047
7048 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7049 Expr *Init,
7050 CXXRecordDecl *ClassDecl);
7051
7052 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7053 CXXCtorInitializer *Initializer);
7054
7055 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7056 ArrayRef<CXXCtorInitializer *> Initializers = None);
7057
7058 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7059
7060
7061 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7062 /// mark all the non-trivial destructors of its members and bases as
7063 /// referenced.
7064 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7065 CXXRecordDecl *Record);
7066
7067 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7068 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7069 /// class. In the Microsoft C++ ABI, this is done any time a class's
7070 /// destructor is referenced.
7071 void MarkVirtualBaseDestructorsReferenced(
7072 SourceLocation Location, CXXRecordDecl *ClassDecl,
7073 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7074
7075 /// Do semantic checks to allow the complete destructor variant to be emitted
7076 /// when the destructor is defined in another translation unit. In the Itanium
7077 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7078 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7079 /// of the checks performed when emitting a regular destructor.
7080 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7081 CXXDestructorDecl *Dtor);
7082
7083 /// The list of classes whose vtables have been used within
7084 /// this translation unit, and the source locations at which the
7085 /// first use occurred.
7086 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7087
7088 /// The list of vtables that are required but have not yet been
7089 /// materialized.
7090 SmallVector<VTableUse, 16> VTableUses;
7091
7092 /// The set of classes whose vtables have been used within
7093 /// this translation unit, and a bit that will be true if the vtable is
7094 /// required to be emitted (otherwise, it should be emitted only if needed
7095 /// by code generation).
7096 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7097
7098 /// Load any externally-stored vtable uses.
7099 void LoadExternalVTableUses();
7100
7101 /// Note that the vtable for the given class was used at the
7102 /// given location.
7103 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7104 bool DefinitionRequired = false);
7105
7106 /// Mark the exception specifications of all virtual member functions
7107 /// in the given class as needed.
7108 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7109 const CXXRecordDecl *RD);
7110
7111 /// MarkVirtualMembersReferenced - Will mark all members of the given
7112 /// CXXRecordDecl referenced.
7113 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7114 bool ConstexprOnly = false);
7115
7116 /// Define all of the vtables that have been used in this
7117 /// translation unit and reference any virtual members used by those
7118 /// vtables.
7119 ///
7120 /// \returns true if any work was done, false otherwise.
7121 bool DefineUsedVTables();
7122
7123 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7124
7125 void ActOnMemInitializers(Decl *ConstructorDecl,
7126 SourceLocation ColonLoc,
7127 ArrayRef<CXXCtorInitializer*> MemInits,
7128 bool AnyErrors);
7129
7130 /// Check class-level dllimport/dllexport attribute. The caller must
7131 /// ensure that referenceDLLExportedClassMethods is called some point later
7132 /// when all outer classes of Class are complete.
7133 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7134 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7135
7136 void referenceDLLExportedClassMethods();
7137
7138 void propagateDLLAttrToBaseClassTemplate(
7139 CXXRecordDecl *Class, Attr *ClassAttr,
7140 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7141 SourceLocation BaseLoc);
7142
7143 /// Add gsl::Pointer attribute to std::container::iterator
7144 /// \param ND The declaration that introduces the name
7145 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7146 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7147
7148 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7149 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7150
7151 /// Add [[gsl::Pointer]] attributes for std:: types.
7152 void inferGslPointerAttribute(TypedefNameDecl *TD);
7153
7154 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7155
7156 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7157 /// conditions that are needed for the attribute to have an effect.
7158 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7159
7160 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7161 Decl *TagDecl, SourceLocation LBrac,
7162 SourceLocation RBrac,
7163 const ParsedAttributesView &AttrList);
7164 void ActOnFinishCXXMemberDecls();
7165 void ActOnFinishCXXNonNestedClass();
7166
7167 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7168 unsigned ActOnReenterTemplateScope(Decl *Template,
7169 llvm::function_ref<Scope *()> EnterScope);
7170 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7171 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7172 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7173 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7174 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7175 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7176 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7177 CachedTokens &Toks);
7178 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7179 bool IsInsideALocalClassWithinATemplateFunction();
7180
7181 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7182 Expr *AssertExpr,
7183 Expr *AssertMessageExpr,
7184 SourceLocation RParenLoc);
7185 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7186 Expr *AssertExpr,
7187 StringLiteral *AssertMessageExpr,
7188 SourceLocation RParenLoc,
7189 bool Failed);
7190
7191 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7192 SourceLocation FriendLoc,
7193 TypeSourceInfo *TSInfo);
7194 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7195 MultiTemplateParamsArg TemplateParams);
7196 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7197 MultiTemplateParamsArg TemplateParams);
7198
7199 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7200 StorageClass& SC);
7201 void CheckConstructor(CXXConstructorDecl *Constructor);
7202 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7203 StorageClass& SC);
7204 bool CheckDestructor(CXXDestructorDecl *Destructor);
7205 void CheckConversionDeclarator(Declarator &D, QualType &R,
7206 StorageClass& SC);
7207 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7208 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7209 StorageClass &SC);
7210 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7211
7212 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7213
7214 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7215 CXXSpecialMember CSM);
7216 void CheckDelayedMemberExceptionSpecs();
7217
7218 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7219 DefaultedComparisonKind DCK);
7220 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7221 FunctionDecl *Spaceship);
7222 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7223 DefaultedComparisonKind DCK);
7224
7225 //===--------------------------------------------------------------------===//
7226 // C++ Derived Classes
7227 //
7228
7229 /// ActOnBaseSpecifier - Parsed a base specifier
7230 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7231 SourceRange SpecifierRange,
7232 bool Virtual, AccessSpecifier Access,
7233 TypeSourceInfo *TInfo,
7234 SourceLocation EllipsisLoc);
7235
7236 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7237 SourceRange SpecifierRange,
7238 ParsedAttributes &Attrs,
7239 bool Virtual, AccessSpecifier Access,
7240 ParsedType basetype,
7241 SourceLocation BaseLoc,
7242 SourceLocation EllipsisLoc);
7243
7244 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7245 MutableArrayRef<CXXBaseSpecifier *> Bases);
7246 void ActOnBaseSpecifiers(Decl *ClassDecl,
7247 MutableArrayRef<CXXBaseSpecifier *> Bases);
7248
7249 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7250 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7251 CXXBasePaths &Paths);
7252
7253 // FIXME: I don't like this name.
7254 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7255
7256 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7257 SourceLocation Loc, SourceRange Range,
7258 CXXCastPath *BasePath = nullptr,
7259 bool IgnoreAccess = false);
7260 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7261 unsigned InaccessibleBaseID,
7262 unsigned AmbiguousBaseConvID,
7263 SourceLocation Loc, SourceRange Range,
7264 DeclarationName Name,
7265 CXXCastPath *BasePath,
7266 bool IgnoreAccess = false);
7267
7268 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7269
7270 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7271 const CXXMethodDecl *Old);
7272
7273 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7274 /// covariant, according to C++ [class.virtual]p5.
7275 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7276 const CXXMethodDecl *Old);
7277
7278 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7279 /// spec is a subset of base spec.
7280 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7281 const CXXMethodDecl *Old);
7282
7283 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7284
7285 /// CheckOverrideControl - Check C++11 override control semantics.
7286 void CheckOverrideControl(NamedDecl *D);
7287
7288 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7289 /// not used in the declaration of an overriding method.
7290 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7291
7292 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7293 /// overrides a virtual member function marked 'final', according to
7294 /// C++11 [class.virtual]p4.
7295 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7296 const CXXMethodDecl *Old);
7297
7298
7299 //===--------------------------------------------------------------------===//
7300 // C++ Access Control
7301 //
7302
7303 enum AccessResult {
7304 AR_accessible,
7305 AR_inaccessible,
7306 AR_dependent,
7307 AR_delayed
7308 };
7309
7310 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7311 NamedDecl *PrevMemberDecl,
7312 AccessSpecifier LexicalAS);
7313
7314 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7315 DeclAccessPair FoundDecl);
7316 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7317 DeclAccessPair FoundDecl);
7318 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7319 SourceRange PlacementRange,
7320 CXXRecordDecl *NamingClass,
7321 DeclAccessPair FoundDecl,
7322 bool Diagnose = true);
7323 AccessResult CheckConstructorAccess(SourceLocation Loc,
7324 CXXConstructorDecl *D,
7325 DeclAccessPair FoundDecl,
7326 const InitializedEntity &Entity,
7327 bool IsCopyBindingRefToTemp = false);
7328 AccessResult CheckConstructorAccess(SourceLocation Loc,
7329 CXXConstructorDecl *D,
7330 DeclAccessPair FoundDecl,
7331 const InitializedEntity &Entity,
7332 const PartialDiagnostic &PDiag);
7333 AccessResult CheckDestructorAccess(SourceLocation Loc,
7334 CXXDestructorDecl *Dtor,
7335 const PartialDiagnostic &PDiag,
7336 QualType objectType = QualType());
7337 AccessResult CheckFriendAccess(NamedDecl *D);
7338 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7339 CXXRecordDecl *NamingClass,
7340 DeclAccessPair Found);
7341 AccessResult
7342 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7343 CXXRecordDecl *DecomposedClass,
7344 DeclAccessPair Field);
7345 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7346 Expr *ObjectExpr,
7347 Expr *ArgExpr,
7348 DeclAccessPair FoundDecl);
7349 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7350 DeclAccessPair FoundDecl);
7351 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7352 QualType Base, QualType Derived,
7353 const CXXBasePath &Path,
7354 unsigned DiagID,
7355 bool ForceCheck = false,
7356 bool ForceUnprivileged = false);
7357 void CheckLookupAccess(const LookupResult &R);
7358 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7359 QualType BaseType);
7360 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7361 DeclAccessPair Found, QualType ObjectType,
7362 SourceLocation Loc,
7363 const PartialDiagnostic &Diag);
7364 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7365 DeclAccessPair Found,
7366 QualType ObjectType) {
7367 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7368 SourceLocation(), PDiag());
7369 }
7370
7371 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7372 const MultiLevelTemplateArgumentList &TemplateArgs);
7373 void PerformDependentDiagnostics(const DeclContext *Pattern,
7374 const MultiLevelTemplateArgumentList &TemplateArgs);
7375
7376 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7377
7378 /// When true, access checking violations are treated as SFINAE
7379 /// failures rather than hard errors.
7380 bool AccessCheckingSFINAE;
7381
7382 enum AbstractDiagSelID {
7383 AbstractNone = -1,
7384 AbstractReturnType,
7385 AbstractParamType,
7386 AbstractVariableType,
7387 AbstractFieldType,
7388 AbstractIvarType,
7389 AbstractSynthesizedIvarType,
7390 AbstractArrayType
7391 };
7392
7393 bool isAbstractType(SourceLocation Loc, QualType T);
7394 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7395 TypeDiagnoser &Diagnoser);
7396 template <typename... Ts>
7397 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7398 const Ts &...Args) {
7399 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7400 return RequireNonAbstractType(Loc, T, Diagnoser);
7401 }
7402
7403 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7404
7405 //===--------------------------------------------------------------------===//
7406 // C++ Overloaded Operators [C++ 13.5]
7407 //
7408
7409 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7410
7411 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7412
7413 //===--------------------------------------------------------------------===//
7414 // C++ Templates [C++ 14]
7415 //
7416 void FilterAcceptableTemplateNames(LookupResult &R,
7417 bool AllowFunctionTemplates = true,
7418 bool AllowDependent = true);
7419 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7420 bool AllowFunctionTemplates = true,
7421 bool AllowDependent = true,
7422 bool AllowNonTemplateFunctions = false);
7423 /// Try to interpret the lookup result D as a template-name.
7424 ///
7425 /// \param D A declaration found by name lookup.
7426 /// \param AllowFunctionTemplates Whether function templates should be
7427 /// considered valid results.
7428 /// \param AllowDependent Whether unresolved using declarations (that might
7429 /// name templates) should be considered valid results.
7430 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7431 bool AllowFunctionTemplates = true,
7432 bool AllowDependent = true);
7433
7434 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7435 /// Whether and why a template name is required in this lookup.
7436 class RequiredTemplateKind {
7437 public:
7438 /// Template name is required if TemplateKWLoc is valid.
7439 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7440 : TemplateKW(TemplateKWLoc) {}
7441 /// Template name is unconditionally required.
7442 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7443
7444 SourceLocation getTemplateKeywordLoc() const {
7445 return TemplateKW.getValueOr(SourceLocation());
7446 }
7447 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7448 bool isRequired() const { return TemplateKW != SourceLocation(); }
7449 explicit operator bool() const { return isRequired(); }
7450
7451 private:
7452 llvm::Optional<SourceLocation> TemplateKW;
7453 };
7454
7455 enum class AssumedTemplateKind {
7456 /// This is not assumed to be a template name.
7457 None,
7458 /// This is assumed to be a template name because lookup found nothing.
7459 FoundNothing,
7460 /// This is assumed to be a template name because lookup found one or more
7461 /// functions (but no function templates).
7462 FoundFunctions,
7463 };
7464 bool LookupTemplateName(
7465 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7466 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7467 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7468 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7469
7470 TemplateNameKind isTemplateName(Scope *S,
7471 CXXScopeSpec &SS,
7472 bool hasTemplateKeyword,
7473 const UnqualifiedId &Name,
7474 ParsedType ObjectType,
7475 bool EnteringContext,
7476 TemplateTy &Template,
7477 bool &MemberOfUnknownSpecialization,
7478 bool Disambiguation = false);
7479
7480 /// Try to resolve an undeclared template name as a type template.
7481 ///
7482 /// Sets II to the identifier corresponding to the template name, and updates
7483 /// Name to a corresponding (typo-corrected) type template name and TNK to
7484 /// the corresponding kind, if possible.
7485 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7486 TemplateNameKind &TNK,
7487 SourceLocation NameLoc,
7488 IdentifierInfo *&II);
7489
7490 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7491 SourceLocation NameLoc,
7492 bool Diagnose = true);
7493
7494 /// Determine whether a particular identifier might be the name in a C++1z
7495 /// deduction-guide declaration.
7496 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7497 SourceLocation NameLoc,
7498 ParsedTemplateTy *Template = nullptr);
7499
7500 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7501 SourceLocation IILoc,
7502 Scope *S,
7503 const CXXScopeSpec *SS,
7504 TemplateTy &SuggestedTemplate,
7505 TemplateNameKind &SuggestedKind);
7506
7507 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7508 NamedDecl *Instantiation,
7509 bool InstantiatedFromMember,
7510 const NamedDecl *Pattern,
7511 const NamedDecl *PatternDef,
7512 TemplateSpecializationKind TSK,
7513 bool Complain = true);
7514
7515 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7516 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7517
7518 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7519 SourceLocation EllipsisLoc,
7520 SourceLocation KeyLoc,
7521 IdentifierInfo *ParamName,
7522 SourceLocation ParamNameLoc,
7523 unsigned Depth, unsigned Position,
7524 SourceLocation EqualLoc,
7525 ParsedType DefaultArg, bool HasTypeConstraint);
7526
7527 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7528 TemplateIdAnnotation *TypeConstraint,
7529 TemplateTypeParmDecl *ConstrainedParameter,
7530 SourceLocation EllipsisLoc);
7531 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7532 TemplateIdAnnotation *TypeConstraint,
7533 TemplateTypeParmDecl *ConstrainedParameter,
7534 SourceLocation EllipsisLoc,
7535 bool AllowUnexpandedPack);
7536
7537 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7538 DeclarationNameInfo NameInfo,
7539 ConceptDecl *NamedConcept,
7540 const TemplateArgumentListInfo *TemplateArgs,
7541 TemplateTypeParmDecl *ConstrainedParameter,
7542 SourceLocation EllipsisLoc);
7543
7544 bool AttachTypeConstraint(AutoTypeLoc TL,
7545 NonTypeTemplateParmDecl *ConstrainedParameter,
7546 SourceLocation EllipsisLoc);
7547
7548 bool RequireStructuralType(QualType T, SourceLocation Loc);
7549
7550 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7551 SourceLocation Loc);
7552 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7553
7554 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7555 unsigned Depth,
7556 unsigned Position,
7557 SourceLocation EqualLoc,
7558 Expr *DefaultArg);
7559 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7560 SourceLocation TmpLoc,
7561 TemplateParameterList *Params,
7562 SourceLocation EllipsisLoc,
7563 IdentifierInfo *ParamName,
7564 SourceLocation ParamNameLoc,
7565 unsigned Depth,
7566 unsigned Position,
7567 SourceLocation EqualLoc,
7568 ParsedTemplateArgument DefaultArg);
7569
7570 TemplateParameterList *
7571 ActOnTemplateParameterList(unsigned Depth,
7572 SourceLocation ExportLoc,
7573 SourceLocation TemplateLoc,
7574 SourceLocation LAngleLoc,
7575 ArrayRef<NamedDecl *> Params,
7576 SourceLocation RAngleLoc,
7577 Expr *RequiresClause);
7578
7579 /// The context in which we are checking a template parameter list.
7580 enum TemplateParamListContext {
7581 TPC_ClassTemplate,
7582 TPC_VarTemplate,
7583 TPC_FunctionTemplate,
7584 TPC_ClassTemplateMember,
7585 TPC_FriendClassTemplate,
7586 TPC_FriendFunctionTemplate,
7587 TPC_FriendFunctionTemplateDefinition,
7588 TPC_TypeAliasTemplate
7589 };
7590
7591 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7592 TemplateParameterList *OldParams,
7593 TemplateParamListContext TPC,
7594 SkipBodyInfo *SkipBody = nullptr);
7595 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7596 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7597 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7598 ArrayRef<TemplateParameterList *> ParamLists,
7599 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7600 bool SuppressDiagnostic = false);
7601
7602 DeclResult CheckClassTemplate(
7603 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7604 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7605 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7606 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7607 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7608 TemplateParameterList **OuterTemplateParamLists,
7609 SkipBodyInfo *SkipBody = nullptr);
7610
7611 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7612 QualType NTTPType,
7613 SourceLocation Loc);
7614
7615 /// Get a template argument mapping the given template parameter to itself,
7616 /// e.g. for X in \c template<int X>, this would return an expression template
7617 /// argument referencing X.
7618 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7619 SourceLocation Location);
7620
7621 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7622 TemplateArgumentListInfo &Out);
7623
7624 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7625
7626 void NoteAllFoundTemplates(TemplateName Name);
7627
7628 QualType CheckTemplateIdType(TemplateName Template,
7629 SourceLocation TemplateLoc,
7630 TemplateArgumentListInfo &TemplateArgs);
7631
7632 TypeResult
7633 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7634 TemplateTy Template, IdentifierInfo *TemplateII,
7635 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7636 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7637 bool IsCtorOrDtorName = false, bool IsClassName = false);
7638
7639 /// Parsed an elaborated-type-specifier that refers to a template-id,
7640 /// such as \c class T::template apply<U>.
7641 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7642 TypeSpecifierType TagSpec,
7643 SourceLocation TagLoc,
7644 CXXScopeSpec &SS,
7645 SourceLocation TemplateKWLoc,
7646 TemplateTy TemplateD,
7647 SourceLocation TemplateLoc,
7648 SourceLocation LAngleLoc,
7649 ASTTemplateArgsPtr TemplateArgsIn,
7650 SourceLocation RAngleLoc);
7651
7652 DeclResult ActOnVarTemplateSpecialization(
7653 Scope *S, Declarator &D, TypeSourceInfo *DI,
7654 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7655 StorageClass SC, bool IsPartialSpecialization);
7656
7657 /// Get the specialization of the given variable template corresponding to
7658 /// the specified argument list, or a null-but-valid result if the arguments
7659 /// are dependent.
7660 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7661 SourceLocation TemplateLoc,
7662 SourceLocation TemplateNameLoc,
7663 const TemplateArgumentListInfo &TemplateArgs);
7664
7665 /// Form a reference to the specialization of the given variable template
7666 /// corresponding to the specified argument list, or a null-but-valid result
7667 /// if the arguments are dependent.
7668 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7669 const DeclarationNameInfo &NameInfo,
7670 VarTemplateDecl *Template,
7671 SourceLocation TemplateLoc,
7672 const TemplateArgumentListInfo *TemplateArgs);
7673
7674 ExprResult
7675 CheckConceptTemplateId(const CXXScopeSpec &SS,
7676 SourceLocation TemplateKWLoc,
7677 const DeclarationNameInfo &ConceptNameInfo,
7678 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7679 const TemplateArgumentListInfo *TemplateArgs);
7680
7681 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7682
7683 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7684 SourceLocation TemplateKWLoc,
7685 LookupResult &R,
7686 bool RequiresADL,
7687 const TemplateArgumentListInfo *TemplateArgs);
7688
7689 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 const DeclarationNameInfo &NameInfo,
7692 const TemplateArgumentListInfo *TemplateArgs);
7693
7694 TemplateNameKind ActOnTemplateName(
7695 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7696 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7697 TemplateTy &Template, bool AllowInjectedClassName = false);
7698
7699 DeclResult ActOnClassTemplateSpecialization(
7700 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7701 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7702 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7703 MultiTemplateParamsArg TemplateParameterLists,
7704 SkipBodyInfo *SkipBody = nullptr);
7705
7706 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7707 TemplateDecl *PrimaryTemplate,
7708 unsigned NumExplicitArgs,
7709 ArrayRef<TemplateArgument> Args);
7710 void CheckTemplatePartialSpecialization(
7711 ClassTemplatePartialSpecializationDecl *Partial);
7712 void CheckTemplatePartialSpecialization(
7713 VarTemplatePartialSpecializationDecl *Partial);
7714
7715 Decl *ActOnTemplateDeclarator(Scope *S,
7716 MultiTemplateParamsArg TemplateParameterLists,
7717 Declarator &D);
7718
7719 bool
7720 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7721 TemplateSpecializationKind NewTSK,
7722 NamedDecl *PrevDecl,
7723 TemplateSpecializationKind PrevTSK,
7724 SourceLocation PrevPtOfInstantiation,
7725 bool &SuppressNew);
7726
7727 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7728 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7729 LookupResult &Previous);
7730
7731 bool CheckFunctionTemplateSpecialization(
7732 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7733 LookupResult &Previous, bool QualifiedFriend = false);
7734 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7735 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7736
7737 DeclResult ActOnExplicitInstantiation(
7738 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7739 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7740 TemplateTy Template, SourceLocation TemplateNameLoc,
7741 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7742 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7743
7744 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7745 SourceLocation TemplateLoc,
7746 unsigned TagSpec, SourceLocation KWLoc,
7747 CXXScopeSpec &SS, IdentifierInfo *Name,
7748 SourceLocation NameLoc,
7749 const ParsedAttributesView &Attr);
7750
7751 DeclResult ActOnExplicitInstantiation(Scope *S,
7752 SourceLocation ExternLoc,
7753 SourceLocation TemplateLoc,
7754 Declarator &D);
7755
7756 TemplateArgumentLoc
7757 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7758 SourceLocation TemplateLoc,
7759 SourceLocation RAngleLoc,
7760 Decl *Param,
7761 SmallVectorImpl<TemplateArgument>
7762 &Converted,
7763 bool &HasDefaultArg);
7764
7765 /// Specifies the context in which a particular template
7766 /// argument is being checked.
7767 enum CheckTemplateArgumentKind {
7768 /// The template argument was specified in the code or was
7769 /// instantiated with some deduced template arguments.
7770 CTAK_Specified,
7771
7772 /// The template argument was deduced via template argument
7773 /// deduction.
7774 CTAK_Deduced,
7775
7776 /// The template argument was deduced from an array bound
7777 /// via template argument deduction.
7778 CTAK_DeducedFromArrayBound
7779 };
7780
7781 bool CheckTemplateArgument(NamedDecl *Param,
7782 TemplateArgumentLoc &Arg,
7783 NamedDecl *Template,
7784 SourceLocation TemplateLoc,
7785 SourceLocation RAngleLoc,
7786 unsigned ArgumentPackIndex,
7787 SmallVectorImpl<TemplateArgument> &Converted,
7788 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7789
7790 /// Check that the given template arguments can be be provided to
7791 /// the given template, converting the arguments along the way.
7792 ///
7793 /// \param Template The template to which the template arguments are being
7794 /// provided.
7795 ///
7796 /// \param TemplateLoc The location of the template name in the source.
7797 ///
7798 /// \param TemplateArgs The list of template arguments. If the template is
7799 /// a template template parameter, this function may extend the set of
7800 /// template arguments to also include substituted, defaulted template
7801 /// arguments.
7802 ///
7803 /// \param PartialTemplateArgs True if the list of template arguments is
7804 /// intentionally partial, e.g., because we're checking just the initial
7805 /// set of template arguments.
7806 ///
7807 /// \param Converted Will receive the converted, canonicalized template
7808 /// arguments.
7809 ///
7810 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7811 /// contain the converted forms of the template arguments as written.
7812 /// Otherwise, \p TemplateArgs will not be modified.
7813 ///
7814 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7815 /// receive true if the cause for the error is the associated constraints of
7816 /// the template not being satisfied by the template arguments.
7817 ///
7818 /// \returns true if an error occurred, false otherwise.
7819 bool CheckTemplateArgumentList(TemplateDecl *Template,
7820 SourceLocation TemplateLoc,
7821 TemplateArgumentListInfo &TemplateArgs,
7822 bool PartialTemplateArgs,
7823 SmallVectorImpl<TemplateArgument> &Converted,
7824 bool UpdateArgsWithConversions = true,
7825 bool *ConstraintsNotSatisfied = nullptr);
7826
7827 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7828 TemplateArgumentLoc &Arg,
7829 SmallVectorImpl<TemplateArgument> &Converted);
7830
7831 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7832 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7833 QualType InstantiatedParamType, Expr *Arg,
7834 TemplateArgument &Converted,
7835 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7836 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7837 TemplateParameterList *Params,
7838 TemplateArgumentLoc &Arg);
7839
7840 ExprResult
7841 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7842 QualType ParamType,
7843 SourceLocation Loc);
7844 ExprResult
7845 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7846 SourceLocation Loc);
7847
7848 /// Enumeration describing how template parameter lists are compared
7849 /// for equality.
7850 enum TemplateParameterListEqualKind {
7851 /// We are matching the template parameter lists of two templates
7852 /// that might be redeclarations.
7853 ///
7854 /// \code
7855 /// template<typename T> struct X;
7856 /// template<typename T> struct X;
7857 /// \endcode
7858 TPL_TemplateMatch,
7859
7860 /// We are matching the template parameter lists of two template
7861 /// template parameters as part of matching the template parameter lists
7862 /// of two templates that might be redeclarations.
7863 ///
7864 /// \code
7865 /// template<template<int I> class TT> struct X;
7866 /// template<template<int Value> class Other> struct X;
7867 /// \endcode
7868 TPL_TemplateTemplateParmMatch,
7869
7870 /// We are matching the template parameter lists of a template
7871 /// template argument against the template parameter lists of a template
7872 /// template parameter.
7873 ///
7874 /// \code
7875 /// template<template<int Value> class Metafun> struct X;
7876 /// template<int Value> struct integer_c;
7877 /// X<integer_c> xic;
7878 /// \endcode
7879 TPL_TemplateTemplateArgumentMatch
7880 };
7881
7882 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7883 TemplateParameterList *Old,
7884 bool Complain,
7885 TemplateParameterListEqualKind Kind,
7886 SourceLocation TemplateArgLoc
7887 = SourceLocation());
7888
7889 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7890
7891 /// Called when the parser has parsed a C++ typename
7892 /// specifier, e.g., "typename T::type".
7893 ///
7894 /// \param S The scope in which this typename type occurs.
7895 /// \param TypenameLoc the location of the 'typename' keyword
7896 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7897 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7898 /// \param IdLoc the location of the identifier.
7899 TypeResult
7900 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7901 const CXXScopeSpec &SS, const IdentifierInfo &II,
7902 SourceLocation IdLoc);
7903
7904 /// Called when the parser has parsed a C++ typename
7905 /// specifier that ends in a template-id, e.g.,
7906 /// "typename MetaFun::template apply<T1, T2>".
7907 ///
7908 /// \param S The scope in which this typename type occurs.
7909 /// \param TypenameLoc the location of the 'typename' keyword
7910 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7911 /// \param TemplateLoc the location of the 'template' keyword, if any.
7912 /// \param TemplateName The template name.
7913 /// \param TemplateII The identifier used to name the template.
7914 /// \param TemplateIILoc The location of the template name.
7915 /// \param LAngleLoc The location of the opening angle bracket ('<').
7916 /// \param TemplateArgs The template arguments.
7917 /// \param RAngleLoc The location of the closing angle bracket ('>').
7918 TypeResult
7919 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7920 const CXXScopeSpec &SS,
7921 SourceLocation TemplateLoc,
7922 TemplateTy TemplateName,
7923 IdentifierInfo *TemplateII,
7924 SourceLocation TemplateIILoc,
7925 SourceLocation LAngleLoc,
7926 ASTTemplateArgsPtr TemplateArgs,
7927 SourceLocation RAngleLoc);
7928
7929 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7930 SourceLocation KeywordLoc,
7931 NestedNameSpecifierLoc QualifierLoc,
7932 const IdentifierInfo &II,
7933 SourceLocation IILoc,
7934 TypeSourceInfo **TSI,
7935 bool DeducedTSTContext);
7936
7937 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7938 SourceLocation KeywordLoc,
7939 NestedNameSpecifierLoc QualifierLoc,
7940 const IdentifierInfo &II,
7941 SourceLocation IILoc,
7942 bool DeducedTSTContext = true);
7943
7944
7945 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7946 SourceLocation Loc,
7947 DeclarationName Name);
7948 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7949
7950 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7951 bool RebuildTemplateParamsInCurrentInstantiation(
7952 TemplateParameterList *Params);
7953
7954 std::string
7955 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7956 const TemplateArgumentList &Args);
7957
7958 std::string
7959 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7960 const TemplateArgument *Args,
7961 unsigned NumArgs);
7962
7963 //===--------------------------------------------------------------------===//
7964 // C++ Concepts
7965 //===--------------------------------------------------------------------===//
7966 Decl *ActOnConceptDefinition(
7967 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7968 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7969
7970 RequiresExprBodyDecl *
7971 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7972 ArrayRef<ParmVarDecl *> LocalParameters,
7973 Scope *BodyScope);
7974 void ActOnFinishRequiresExpr();
7975 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7976 concepts::Requirement *ActOnTypeRequirement(
7977 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7978 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7979 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7980 SourceLocation NoexceptLoc);
7981 concepts::Requirement *
7982 ActOnCompoundRequirement(
7983 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7984 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7985 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7986 concepts::ExprRequirement *
7987 BuildExprRequirement(
7988 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7989 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7990 concepts::ExprRequirement *
7991 BuildExprRequirement(
7992 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7993 bool IsSatisfied, SourceLocation NoexceptLoc,
7994 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7995 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
7996 concepts::TypeRequirement *
7997 BuildTypeRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
7999 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8000 concepts::NestedRequirement *
8001 BuildNestedRequirement(
8002 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8003 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8004 RequiresExprBodyDecl *Body,
8005 ArrayRef<ParmVarDecl *> LocalParameters,
8006 ArrayRef<concepts::Requirement *> Requirements,
8007 SourceLocation ClosingBraceLoc);
8008
8009 //===--------------------------------------------------------------------===//
8010 // C++ Variadic Templates (C++0x [temp.variadic])
8011 //===--------------------------------------------------------------------===//
8012
8013 /// Determine whether an unexpanded parameter pack might be permitted in this
8014 /// location. Useful for error recovery.
8015 bool isUnexpandedParameterPackPermitted();
8016
8017 /// The context in which an unexpanded parameter pack is
8018 /// being diagnosed.
8019 ///
8020 /// Note that the values of this enumeration line up with the first
8021 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8022 enum UnexpandedParameterPackContext {
8023 /// An arbitrary expression.
8024 UPPC_Expression = 0,
8025
8026 /// The base type of a class type.
8027 UPPC_BaseType,
8028
8029 /// The type of an arbitrary declaration.
8030 UPPC_DeclarationType,
8031
8032 /// The type of a data member.
8033 UPPC_DataMemberType,
8034
8035 /// The size of a bit-field.
8036 UPPC_BitFieldWidth,
8037
8038 /// The expression in a static assertion.
8039 UPPC_StaticAssertExpression,
8040
8041 /// The fixed underlying type of an enumeration.
8042 UPPC_FixedUnderlyingType,
8043
8044 /// The enumerator value.
8045 UPPC_EnumeratorValue,
8046
8047 /// A using declaration.
8048 UPPC_UsingDeclaration,
8049
8050 /// A friend declaration.
8051 UPPC_FriendDeclaration,
8052
8053 /// A declaration qualifier.
8054 UPPC_DeclarationQualifier,
8055
8056 /// An initializer.
8057 UPPC_Initializer,
8058
8059 /// A default argument.
8060 UPPC_DefaultArgument,
8061
8062 /// The type of a non-type template parameter.
8063 UPPC_NonTypeTemplateParameterType,
8064
8065 /// The type of an exception.
8066 UPPC_ExceptionType,
8067
8068 /// Partial specialization.
8069 UPPC_PartialSpecialization,
8070
8071 /// Microsoft __if_exists.
8072 UPPC_IfExists,
8073
8074 /// Microsoft __if_not_exists.
8075 UPPC_IfNotExists,
8076
8077 /// Lambda expression.
8078 UPPC_Lambda,
8079
8080 /// Block expression.
8081 UPPC_Block,
8082
8083 /// A type constraint.
8084 UPPC_TypeConstraint,
8085
8086 // A requirement in a requires-expression.
8087 UPPC_Requirement,
8088
8089 // A requires-clause.
8090 UPPC_RequiresClause,
8091 };
8092
8093 /// Diagnose unexpanded parameter packs.
8094 ///
8095 /// \param Loc The location at which we should emit the diagnostic.
8096 ///
8097 /// \param UPPC The context in which we are diagnosing unexpanded
8098 /// parameter packs.
8099 ///
8100 /// \param Unexpanded the set of unexpanded parameter packs.
8101 ///
8102 /// \returns true if an error occurred, false otherwise.
8103 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8104 UnexpandedParameterPackContext UPPC,
8105 ArrayRef<UnexpandedParameterPack> Unexpanded);
8106
8107 /// If the given type contains an unexpanded parameter pack,
8108 /// diagnose the error.
8109 ///
8110 /// \param Loc The source location where a diagnostc should be emitted.
8111 ///
8112 /// \param T The type that is being checked for unexpanded parameter
8113 /// packs.
8114 ///
8115 /// \returns true if an error occurred, false otherwise.
8116 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8117 UnexpandedParameterPackContext UPPC);
8118
8119 /// If the given expression contains an unexpanded parameter
8120 /// pack, diagnose the error.
8121 ///
8122 /// \param E The expression that is being checked for unexpanded
8123 /// parameter packs.
8124 ///
8125 /// \returns true if an error occurred, false otherwise.
8126 bool DiagnoseUnexpandedParameterPack(Expr *E,
8127 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8128
8129 /// If the given requirees-expression contains an unexpanded reference to one
8130 /// of its own parameter packs, diagnose the error.
8131 ///
8132 /// \param RE The requiress-expression that is being checked for unexpanded
8133 /// parameter packs.
8134 ///
8135 /// \returns true if an error occurred, false otherwise.
8136 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8137
8138 /// If the given nested-name-specifier contains an unexpanded
8139 /// parameter pack, diagnose the error.
8140 ///
8141 /// \param SS The nested-name-specifier that is being checked for
8142 /// unexpanded parameter packs.
8143 ///
8144 /// \returns true if an error occurred, false otherwise.
8145 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8146 UnexpandedParameterPackContext UPPC);
8147
8148 /// If the given name contains an unexpanded parameter pack,
8149 /// diagnose the error.
8150 ///
8151 /// \param NameInfo The name (with source location information) that
8152 /// is being checked for unexpanded parameter packs.
8153 ///
8154 /// \returns true if an error occurred, false otherwise.
8155 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8156 UnexpandedParameterPackContext UPPC);
8157
8158 /// If the given template name contains an unexpanded parameter pack,
8159 /// diagnose the error.
8160 ///
8161 /// \param Loc The location of the template name.
8162 ///
8163 /// \param Template The template name that is being checked for unexpanded
8164 /// parameter packs.
8165 ///
8166 /// \returns true if an error occurred, false otherwise.
8167 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8168 TemplateName Template,
8169 UnexpandedParameterPackContext UPPC);
8170
8171 /// If the given template argument contains an unexpanded parameter
8172 /// pack, diagnose the error.
8173 ///
8174 /// \param Arg The template argument that is being checked for unexpanded
8175 /// parameter packs.
8176 ///
8177 /// \returns true if an error occurred, false otherwise.
8178 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8179 UnexpandedParameterPackContext UPPC);
8180
8181 /// Collect the set of unexpanded parameter packs within the given
8182 /// template argument.
8183 ///
8184 /// \param Arg The template argument that will be traversed to find
8185 /// unexpanded parameter packs.
8186 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8187 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8188
8189 /// Collect the set of unexpanded parameter packs within the given
8190 /// template argument.
8191 ///
8192 /// \param Arg The template argument that will be traversed to find
8193 /// unexpanded parameter packs.
8194 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8195 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8196
8197 /// Collect the set of unexpanded parameter packs within the given
8198 /// type.
8199 ///
8200 /// \param T The type that will be traversed to find
8201 /// unexpanded parameter packs.
8202 void collectUnexpandedParameterPacks(QualType T,
8203 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8204
8205 /// Collect the set of unexpanded parameter packs within the given
8206 /// type.
8207 ///
8208 /// \param TL The type that will be traversed to find
8209 /// unexpanded parameter packs.
8210 void collectUnexpandedParameterPacks(TypeLoc TL,
8211 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8212
8213 /// Collect the set of unexpanded parameter packs within the given
8214 /// nested-name-specifier.
8215 ///
8216 /// \param NNS The nested-name-specifier that will be traversed to find
8217 /// unexpanded parameter packs.
8218 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8219 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8220
8221 /// Collect the set of unexpanded parameter packs within the given
8222 /// name.
8223 ///
8224 /// \param NameInfo The name that will be traversed to find
8225 /// unexpanded parameter packs.
8226 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8227 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8228
8229 /// Invoked when parsing a template argument followed by an
8230 /// ellipsis, which creates a pack expansion.
8231 ///
8232 /// \param Arg The template argument preceding the ellipsis, which
8233 /// may already be invalid.
8234 ///
8235 /// \param EllipsisLoc The location of the ellipsis.
8236 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8237 SourceLocation EllipsisLoc);
8238
8239 /// Invoked when parsing a type followed by an ellipsis, which
8240 /// creates a pack expansion.
8241 ///
8242 /// \param Type The type preceding the ellipsis, which will become
8243 /// the pattern of the pack expansion.
8244 ///
8245 /// \param EllipsisLoc The location of the ellipsis.
8246 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8247
8248 /// Construct a pack expansion type from the pattern of the pack
8249 /// expansion.
8250 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8251 SourceLocation EllipsisLoc,
8252 Optional<unsigned> NumExpansions);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 QualType CheckPackExpansion(QualType Pattern,
8257 SourceRange PatternRange,
8258 SourceLocation EllipsisLoc,
8259 Optional<unsigned> NumExpansions);
8260
8261 /// Invoked when parsing an expression followed by an ellipsis, which
8262 /// creates a pack expansion.
8263 ///
8264 /// \param Pattern The expression preceding the ellipsis, which will become
8265 /// the pattern of the pack expansion.
8266 ///
8267 /// \param EllipsisLoc The location of the ellipsis.
8268 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8269
8270 /// Invoked when parsing an expression followed by an ellipsis, which
8271 /// creates a pack expansion.
8272 ///
8273 /// \param Pattern The expression preceding the ellipsis, which will become
8274 /// the pattern of the pack expansion.
8275 ///
8276 /// \param EllipsisLoc The location of the ellipsis.
8277 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8278 Optional<unsigned> NumExpansions);
8279
8280 /// Determine whether we could expand a pack expansion with the
8281 /// given set of parameter packs into separate arguments by repeatedly
8282 /// transforming the pattern.
8283 ///
8284 /// \param EllipsisLoc The location of the ellipsis that identifies the
8285 /// pack expansion.
8286 ///
8287 /// \param PatternRange The source range that covers the entire pattern of
8288 /// the pack expansion.
8289 ///
8290 /// \param Unexpanded The set of unexpanded parameter packs within the
8291 /// pattern.
8292 ///
8293 /// \param ShouldExpand Will be set to \c true if the transformer should
8294 /// expand the corresponding pack expansions into separate arguments. When
8295 /// set, \c NumExpansions must also be set.
8296 ///
8297 /// \param RetainExpansion Whether the caller should add an unexpanded
8298 /// pack expansion after all of the expanded arguments. This is used
8299 /// when extending explicitly-specified template argument packs per
8300 /// C++0x [temp.arg.explicit]p9.
8301 ///
8302 /// \param NumExpansions The number of separate arguments that will be in
8303 /// the expanded form of the corresponding pack expansion. This is both an
8304 /// input and an output parameter, which can be set by the caller if the
8305 /// number of expansions is known a priori (e.g., due to a prior substitution)
8306 /// and will be set by the callee when the number of expansions is known.
8307 /// The callee must set this value when \c ShouldExpand is \c true; it may
8308 /// set this value in other cases.
8309 ///
8310 /// \returns true if an error occurred (e.g., because the parameter packs
8311 /// are to be instantiated with arguments of different lengths), false
8312 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8313 /// must be set.
8314 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8315 SourceRange PatternRange,
8316 ArrayRef<UnexpandedParameterPack> Unexpanded,
8317 const MultiLevelTemplateArgumentList &TemplateArgs,
8318 bool &ShouldExpand,
8319 bool &RetainExpansion,
8320 Optional<unsigned> &NumExpansions);
8321
8322 /// Determine the number of arguments in the given pack expansion
8323 /// type.
8324 ///
8325 /// This routine assumes that the number of arguments in the expansion is
8326 /// consistent across all of the unexpanded parameter packs in its pattern.
8327 ///
8328 /// Returns an empty Optional if the type can't be expanded.
8329 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8330 const MultiLevelTemplateArgumentList &TemplateArgs);
8331
8332 /// Determine whether the given declarator contains any unexpanded
8333 /// parameter packs.
8334 ///
8335 /// This routine is used by the parser to disambiguate function declarators
8336 /// with an ellipsis prior to the ')', e.g.,
8337 ///
8338 /// \code
8339 /// void f(T...);
8340 /// \endcode
8341 ///
8342 /// To determine whether we have an (unnamed) function parameter pack or
8343 /// a variadic function.
8344 ///
8345 /// \returns true if the declarator contains any unexpanded parameter packs,
8346 /// false otherwise.
8347 bool containsUnexpandedParameterPacks(Declarator &D);
8348
8349 /// Returns the pattern of the pack expansion for a template argument.
8350 ///
8351 /// \param OrigLoc The template argument to expand.
8352 ///
8353 /// \param Ellipsis Will be set to the location of the ellipsis.
8354 ///
8355 /// \param NumExpansions Will be set to the number of expansions that will
8356 /// be generated from this pack expansion, if known a priori.
8357 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8358 TemplateArgumentLoc OrigLoc,
8359 SourceLocation &Ellipsis,
8360 Optional<unsigned> &NumExpansions) const;
8361
8362 /// Given a template argument that contains an unexpanded parameter pack, but
8363 /// which has already been substituted, attempt to determine the number of
8364 /// elements that will be produced once this argument is fully-expanded.
8365 ///
8366 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8367 /// avoid actually expanding the pack where possible.
8368 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8369
8370 //===--------------------------------------------------------------------===//
8371 // C++ Template Argument Deduction (C++ [temp.deduct])
8372 //===--------------------------------------------------------------------===//
8373
8374 /// Adjust the type \p ArgFunctionType to match the calling convention,
8375 /// noreturn, and optionally the exception specification of \p FunctionType.
8376 /// Deduction often wants to ignore these properties when matching function
8377 /// types.
8378 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8379 bool AdjustExceptionSpec = false);
8380
8381 /// Describes the result of template argument deduction.
8382 ///
8383 /// The TemplateDeductionResult enumeration describes the result of
8384 /// template argument deduction, as returned from
8385 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8386 /// structure provides additional information about the results of
8387 /// template argument deduction, e.g., the deduced template argument
8388 /// list (if successful) or the specific template parameters or
8389 /// deduced arguments that were involved in the failure.
8390 enum TemplateDeductionResult {
8391 /// Template argument deduction was successful.
8392 TDK_Success = 0,
8393 /// The declaration was invalid; do nothing.
8394 TDK_Invalid,
8395 /// Template argument deduction exceeded the maximum template
8396 /// instantiation depth (which has already been diagnosed).
8397 TDK_InstantiationDepth,
8398 /// Template argument deduction did not deduce a value
8399 /// for every template parameter.
8400 TDK_Incomplete,
8401 /// Template argument deduction did not deduce a value for every
8402 /// expansion of an expanded template parameter pack.
8403 TDK_IncompletePack,
8404 /// Template argument deduction produced inconsistent
8405 /// deduced values for the given template parameter.
8406 TDK_Inconsistent,
8407 /// Template argument deduction failed due to inconsistent
8408 /// cv-qualifiers on a template parameter type that would
8409 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8410 /// but were given a non-const "X".
8411 TDK_Underqualified,
8412 /// Substitution of the deduced template argument values
8413 /// resulted in an error.
8414 TDK_SubstitutionFailure,
8415 /// After substituting deduced template arguments, a dependent
8416 /// parameter type did not match the corresponding argument.
8417 TDK_DeducedMismatch,
8418 /// After substituting deduced template arguments, an element of
8419 /// a dependent parameter type did not match the corresponding element
8420 /// of the corresponding argument (when deducing from an initializer list).
8421 TDK_DeducedMismatchNested,
8422 /// A non-depnedent component of the parameter did not match the
8423 /// corresponding component of the argument.
8424 TDK_NonDeducedMismatch,
8425 /// When performing template argument deduction for a function
8426 /// template, there were too many call arguments.
8427 TDK_TooManyArguments,
8428 /// When performing template argument deduction for a function
8429 /// template, there were too few call arguments.
8430 TDK_TooFewArguments,
8431 /// The explicitly-specified template arguments were not valid
8432 /// template arguments for the given template.
8433 TDK_InvalidExplicitArguments,
8434 /// Checking non-dependent argument conversions failed.
8435 TDK_NonDependentConversionFailure,
8436 /// The deduced arguments did not satisfy the constraints associated
8437 /// with the template.
8438 TDK_ConstraintsNotSatisfied,
8439 /// Deduction failed; that's all we know.
8440 TDK_MiscellaneousDeductionFailure,
8441 /// CUDA Target attributes do not match.
8442 TDK_CUDATargetMismatch
8443 };
8444
8445 TemplateDeductionResult
8446 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8447 const TemplateArgumentList &TemplateArgs,
8448 sema::TemplateDeductionInfo &Info);
8449
8450 TemplateDeductionResult
8451 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8452 const TemplateArgumentList &TemplateArgs,
8453 sema::TemplateDeductionInfo &Info);
8454
8455 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8456 FunctionTemplateDecl *FunctionTemplate,
8457 TemplateArgumentListInfo &ExplicitTemplateArgs,
8458 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8459 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8460 sema::TemplateDeductionInfo &Info);
8461
8462 /// brief A function argument from which we performed template argument
8463 // deduction for a call.
8464 struct OriginalCallArg {
8465 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8466 unsigned ArgIdx, QualType OriginalArgType)
8467 : OriginalParamType(OriginalParamType),
8468 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8469 OriginalArgType(OriginalArgType) {}
8470
8471 QualType OriginalParamType;
8472 bool DecomposedParam;
8473 unsigned ArgIdx;
8474 QualType OriginalArgType;
8475 };
8476
8477 TemplateDeductionResult FinishTemplateArgumentDeduction(
8478 FunctionTemplateDecl *FunctionTemplate,
8479 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8480 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8481 sema::TemplateDeductionInfo &Info,
8482 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8483 bool PartialOverloading = false,
8484 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8485
8486 TemplateDeductionResult DeduceTemplateArguments(
8487 FunctionTemplateDecl *FunctionTemplate,
8488 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8489 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8490 bool PartialOverloading,
8491 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8492
8493 TemplateDeductionResult
8494 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8495 TemplateArgumentListInfo *ExplicitTemplateArgs,
8496 QualType ArgFunctionType,
8497 FunctionDecl *&Specialization,
8498 sema::TemplateDeductionInfo &Info,
8499 bool IsAddressOfFunction = false);
8500
8501 TemplateDeductionResult
8502 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8503 QualType ToType,
8504 CXXConversionDecl *&Specialization,
8505 sema::TemplateDeductionInfo &Info);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 TemplateArgumentListInfo *ExplicitTemplateArgs,
8510 FunctionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info,
8512 bool IsAddressOfFunction = false);
8513
8514 /// Substitute Replacement for \p auto in \p TypeWithAuto
8515 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8516 /// Substitute Replacement for auto in TypeWithAuto
8517 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8518 QualType Replacement);
8519 /// Completely replace the \c auto in \p TypeWithAuto by
8520 /// \p Replacement. This does not retain any \c auto type sugar.
8521 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8522 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8523 QualType Replacement);
8524
8525 /// Result type of DeduceAutoType.
8526 enum DeduceAutoResult {
8527 DAR_Succeeded,
8528 DAR_Failed,
8529 DAR_FailedAlreadyDiagnosed
8530 };
8531
8532 DeduceAutoResult
8533 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8534 Optional<unsigned> DependentDeductionDepth = None,
8535 bool IgnoreConstraints = false);
8536 DeduceAutoResult
8537 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8538 Optional<unsigned> DependentDeductionDepth = None,
8539 bool IgnoreConstraints = false);
8540 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8541 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8542 bool Diagnose = true);
8543
8544 /// Declare implicit deduction guides for a class template if we've
8545 /// not already done so.
8546 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8547 SourceLocation Loc);
8548
8549 QualType DeduceTemplateSpecializationFromInitializer(
8550 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8551 const InitializationKind &Kind, MultiExprArg Init);
8552
8553 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8554 QualType Type, TypeSourceInfo *TSI,
8555 SourceRange Range, bool DirectInit,
8556 Expr *Init);
8557
8558 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8559
8560 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8561 SourceLocation ReturnLoc,
8562 Expr *&RetExpr, AutoType *AT);
8563
8564 FunctionTemplateDecl *getMoreSpecializedTemplate(
8565 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8566 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8567 unsigned NumCallArguments2, bool Reversed = false);
8568 UnresolvedSetIterator
8569 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8570 TemplateSpecCandidateSet &FailedCandidates,
8571 SourceLocation Loc,
8572 const PartialDiagnostic &NoneDiag,
8573 const PartialDiagnostic &AmbigDiag,
8574 const PartialDiagnostic &CandidateDiag,
8575 bool Complain = true, QualType TargetType = QualType());
8576
8577 ClassTemplatePartialSpecializationDecl *
8578 getMoreSpecializedPartialSpecialization(
8579 ClassTemplatePartialSpecializationDecl *PS1,
8580 ClassTemplatePartialSpecializationDecl *PS2,
8581 SourceLocation Loc);
8582
8583 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8584 sema::TemplateDeductionInfo &Info);
8585
8586 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8587 VarTemplatePartialSpecializationDecl *PS1,
8588 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8589
8590 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8591 sema::TemplateDeductionInfo &Info);
8592
8593 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8594 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8595
8596 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8597 unsigned Depth, llvm::SmallBitVector &Used);
8598
8599 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8600 bool OnlyDeduced,
8601 unsigned Depth,
8602 llvm::SmallBitVector &Used);
8603 void MarkDeducedTemplateParameters(
8604 const FunctionTemplateDecl *FunctionTemplate,
8605 llvm::SmallBitVector &Deduced) {
8606 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8607 }
8608 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8609 const FunctionTemplateDecl *FunctionTemplate,
8610 llvm::SmallBitVector &Deduced);
8611
8612 //===--------------------------------------------------------------------===//
8613 // C++ Template Instantiation
8614 //
8615
8616 MultiLevelTemplateArgumentList
8617 getTemplateInstantiationArgs(NamedDecl *D,
8618 const TemplateArgumentList *Innermost = nullptr,
8619 bool RelativeToPrimary = false,
8620 const FunctionDecl *Pattern = nullptr);
8621
8622 /// A context in which code is being synthesized (where a source location
8623 /// alone is not sufficient to identify the context). This covers template
8624 /// instantiation and various forms of implicitly-generated functions.
8625 struct CodeSynthesisContext {
8626 /// The kind of template instantiation we are performing
8627 enum SynthesisKind {
8628 /// We are instantiating a template declaration. The entity is
8629 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8630 TemplateInstantiation,
8631
8632 /// We are instantiating a default argument for a template
8633 /// parameter. The Entity is the template parameter whose argument is
8634 /// being instantiated, the Template is the template, and the
8635 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8636 /// specified.
8637 DefaultTemplateArgumentInstantiation,
8638
8639 /// We are instantiating a default argument for a function.
8640 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8641 /// provides the template arguments as specified.
8642 DefaultFunctionArgumentInstantiation,
8643
8644 /// We are substituting explicit template arguments provided for
8645 /// a function template. The entity is a FunctionTemplateDecl.
8646 ExplicitTemplateArgumentSubstitution,
8647
8648 /// We are substituting template argument determined as part of
8649 /// template argument deduction for either a class template
8650 /// partial specialization or a function template. The
8651 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8652 /// a TemplateDecl.
8653 DeducedTemplateArgumentSubstitution,
8654
8655 /// We are substituting prior template arguments into a new
8656 /// template parameter. The template parameter itself is either a
8657 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8658 PriorTemplateArgumentSubstitution,
8659
8660 /// We are checking the validity of a default template argument that
8661 /// has been used when naming a template-id.
8662 DefaultTemplateArgumentChecking,
8663
8664 /// We are computing the exception specification for a defaulted special
8665 /// member function.
8666 ExceptionSpecEvaluation,
8667
8668 /// We are instantiating the exception specification for a function
8669 /// template which was deferred until it was needed.
8670 ExceptionSpecInstantiation,
8671
8672 /// We are instantiating a requirement of a requires expression.
8673 RequirementInstantiation,
8674
8675 /// We are checking the satisfaction of a nested requirement of a requires
8676 /// expression.
8677 NestedRequirementConstraintsCheck,
8678
8679 /// We are declaring an implicit special member function.
8680 DeclaringSpecialMember,
8681
8682 /// We are declaring an implicit 'operator==' for a defaulted
8683 /// 'operator<=>'.
8684 DeclaringImplicitEqualityComparison,
8685
8686 /// We are defining a synthesized function (such as a defaulted special
8687 /// member).
8688 DefiningSynthesizedFunction,
8689
8690 // We are checking the constraints associated with a constrained entity or
8691 // the constraint expression of a concept. This includes the checks that
8692 // atomic constraints have the type 'bool' and that they can be constant
8693 // evaluated.
8694 ConstraintsCheck,
8695
8696 // We are substituting template arguments into a constraint expression.
8697 ConstraintSubstitution,
8698
8699 // We are normalizing a constraint expression.
8700 ConstraintNormalization,
8701
8702 // We are substituting into the parameter mapping of an atomic constraint
8703 // during normalization.
8704 ParameterMappingSubstitution,
8705
8706 /// We are rewriting a comparison operator in terms of an operator<=>.
8707 RewritingOperatorAsSpaceship,
8708
8709 /// We are initializing a structured binding.
8710 InitializingStructuredBinding,
8711
8712 /// We are marking a class as __dllexport.
8713 MarkingClassDllexported,
8714
8715 /// Added for Template instantiation observation.
8716 /// Memoization means we are _not_ instantiating a template because
8717 /// it is already instantiated (but we entered a context where we
8718 /// would have had to if it was not already instantiated).
8719 Memoization
8720 } Kind;
8721
8722 /// Was the enclosing context a non-instantiation SFINAE context?
8723 bool SavedInNonInstantiationSFINAEContext;
8724
8725 /// The point of instantiation or synthesis within the source code.
8726 SourceLocation PointOfInstantiation;
8727
8728 /// The entity that is being synthesized.
8729 Decl *Entity;
8730
8731 /// The template (or partial specialization) in which we are
8732 /// performing the instantiation, for substitutions of prior template
8733 /// arguments.
8734 NamedDecl *Template;
8735
8736 /// The list of template arguments we are substituting, if they
8737 /// are not part of the entity.
8738 const TemplateArgument *TemplateArgs;
8739
8740 // FIXME: Wrap this union around more members, or perhaps store the
8741 // kind-specific members in the RAII object owning the context.
8742 union {
8743 /// The number of template arguments in TemplateArgs.
8744 unsigned NumTemplateArgs;
8745
8746 /// The special member being declared or defined.
8747 CXXSpecialMember SpecialMember;
8748 };
8749
8750 ArrayRef<TemplateArgument> template_arguments() const {
8751 assert(Kind != DeclaringSpecialMember)((void)0);
8752 return {TemplateArgs, NumTemplateArgs};
8753 }
8754
8755 /// The template deduction info object associated with the
8756 /// substitution or checking of explicit or deduced template arguments.
8757 sema::TemplateDeductionInfo *DeductionInfo;
8758
8759 /// The source range that covers the construct that cause
8760 /// the instantiation, e.g., the template-id that causes a class
8761 /// template instantiation.
8762 SourceRange InstantiationRange;
8763
8764 CodeSynthesisContext()
8765 : Kind(TemplateInstantiation),
8766 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8767 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8768 DeductionInfo(nullptr) {}
8769
8770 /// Determines whether this template is an actual instantiation
8771 /// that should be counted toward the maximum instantiation depth.
8772 bool isInstantiationRecord() const;
8773 };
8774
8775 /// List of active code synthesis contexts.
8776 ///
8777 /// This vector is treated as a stack. As synthesis of one entity requires
8778 /// synthesis of another, additional contexts are pushed onto the stack.
8779 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8780
8781 /// Specializations whose definitions are currently being instantiated.
8782 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8783
8784 /// Non-dependent types used in templates that have already been instantiated
8785 /// by some template instantiation.
8786 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8787
8788 /// Extra modules inspected when performing a lookup during a template
8789 /// instantiation. Computed lazily.
8790 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8791
8792 /// Cache of additional modules that should be used for name lookup
8793 /// within the current template instantiation. Computed lazily; use
8794 /// getLookupModules() to get a complete set.
8795 llvm::DenseSet<Module*> LookupModulesCache;
8796
8797 /// Get the set of additional modules that should be checked during
8798 /// name lookup. A module and its imports become visible when instanting a
8799 /// template defined within it.
8800 llvm::DenseSet<Module*> &getLookupModules();
8801
8802 /// Map from the most recent declaration of a namespace to the most
8803 /// recent visible declaration of that namespace.
8804 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8805
8806 /// Whether we are in a SFINAE context that is not associated with
8807 /// template instantiation.
8808 ///
8809 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8810 /// of a template instantiation or template argument deduction.
8811 bool InNonInstantiationSFINAEContext;
8812
8813 /// The number of \p CodeSynthesisContexts that are not template
8814 /// instantiations and, therefore, should not be counted as part of the
8815 /// instantiation depth.
8816 ///
8817 /// When the instantiation depth reaches the user-configurable limit
8818 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8819 // FIXME: Should we have a similar limit for other forms of synthesis?
8820 unsigned NonInstantiationEntries;
8821
8822 /// The depth of the context stack at the point when the most recent
8823 /// error or warning was produced.
8824 ///
8825 /// This value is used to suppress printing of redundant context stacks
8826 /// when there are multiple errors or warnings in the same instantiation.
8827 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8828 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8829
8830 /// The template instantiation callbacks to trace or track
8831 /// instantiations (objects can be chained).
8832 ///
8833 /// This callbacks is used to print, trace or track template
8834 /// instantiations as they are being constructed.
8835 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8836 TemplateInstCallbacks;
8837
8838 /// The current index into pack expansion arguments that will be
8839 /// used for substitution of parameter packs.
8840 ///
8841 /// The pack expansion index will be -1 to indicate that parameter packs
8842 /// should be instantiated as themselves. Otherwise, the index specifies
8843 /// which argument within the parameter pack will be used for substitution.
8844 int ArgumentPackSubstitutionIndex;
8845
8846 /// RAII object used to change the argument pack substitution index
8847 /// within a \c Sema object.
8848 ///
8849 /// See \c ArgumentPackSubstitutionIndex for more information.
8850 class ArgumentPackSubstitutionIndexRAII {
8851 Sema &Self;
8852 int OldSubstitutionIndex;
8853
8854 public:
8855 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8856 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8857 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8858 }
8859
8860 ~ArgumentPackSubstitutionIndexRAII() {
8861 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8862 }
8863 };
8864
8865 friend class ArgumentPackSubstitutionRAII;
8866
8867 /// For each declaration that involved template argument deduction, the
8868 /// set of diagnostics that were suppressed during that template argument
8869 /// deduction.
8870 ///
8871 /// FIXME: Serialize this structure to the AST file.
8872 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8873 SuppressedDiagnosticsMap;
8874 SuppressedDiagnosticsMap SuppressedDiagnostics;
8875
8876 /// A stack object to be created when performing template
8877 /// instantiation.
8878 ///
8879 /// Construction of an object of type \c InstantiatingTemplate
8880 /// pushes the current instantiation onto the stack of active
8881 /// instantiations. If the size of this stack exceeds the maximum
8882 /// number of recursive template instantiations, construction
8883 /// produces an error and evaluates true.
8884 ///
8885 /// Destruction of this object will pop the named instantiation off
8886 /// the stack.
8887 struct InstantiatingTemplate {
8888 /// Note that we are instantiating a class template,
8889 /// function template, variable template, alias template,
8890 /// or a member thereof.
8891 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8892 Decl *Entity,
8893 SourceRange InstantiationRange = SourceRange());
8894
8895 struct ExceptionSpecification {};
8896 /// Note that we are instantiating an exception specification
8897 /// of a function template.
8898 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8899 FunctionDecl *Entity, ExceptionSpecification,
8900 SourceRange InstantiationRange = SourceRange());
8901
8902 /// Note that we are instantiating a default argument in a
8903 /// template-id.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 TemplateParameter Param, TemplateDecl *Template,
8906 ArrayRef<TemplateArgument> TemplateArgs,
8907 SourceRange InstantiationRange = SourceRange());
8908
8909 /// Note that we are substituting either explicitly-specified or
8910 /// deduced template arguments during function template argument deduction.
8911 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8912 FunctionTemplateDecl *FunctionTemplate,
8913 ArrayRef<TemplateArgument> TemplateArgs,
8914 CodeSynthesisContext::SynthesisKind Kind,
8915 sema::TemplateDeductionInfo &DeductionInfo,
8916 SourceRange InstantiationRange = SourceRange());
8917
8918 /// Note that we are instantiating as part of template
8919 /// argument deduction for a class template declaration.
8920 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8921 TemplateDecl *Template,
8922 ArrayRef<TemplateArgument> TemplateArgs,
8923 sema::TemplateDeductionInfo &DeductionInfo,
8924 SourceRange InstantiationRange = SourceRange());
8925
8926 /// Note that we are instantiating as part of template
8927 /// argument deduction for a class template partial
8928 /// specialization.
8929 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8930 ClassTemplatePartialSpecializationDecl *PartialSpec,
8931 ArrayRef<TemplateArgument> TemplateArgs,
8932 sema::TemplateDeductionInfo &DeductionInfo,
8933 SourceRange InstantiationRange = SourceRange());
8934
8935 /// Note that we are instantiating as part of template
8936 /// argument deduction for a variable template partial
8937 /// specialization.
8938 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8939 VarTemplatePartialSpecializationDecl *PartialSpec,
8940 ArrayRef<TemplateArgument> TemplateArgs,
8941 sema::TemplateDeductionInfo &DeductionInfo,
8942 SourceRange InstantiationRange = SourceRange());
8943
8944 /// Note that we are instantiating a default argument for a function
8945 /// parameter.
8946 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8947 ParmVarDecl *Param,
8948 ArrayRef<TemplateArgument> TemplateArgs,
8949 SourceRange InstantiationRange = SourceRange());
8950
8951 /// Note that we are substituting prior template arguments into a
8952 /// non-type parameter.
8953 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8954 NamedDecl *Template,
8955 NonTypeTemplateParmDecl *Param,
8956 ArrayRef<TemplateArgument> TemplateArgs,
8957 SourceRange InstantiationRange);
8958
8959 /// Note that we are substituting prior template arguments into a
8960 /// template template parameter.
8961 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8962 NamedDecl *Template,
8963 TemplateTemplateParmDecl *Param,
8964 ArrayRef<TemplateArgument> TemplateArgs,
8965 SourceRange InstantiationRange);
8966
8967 /// Note that we are checking the default template argument
8968 /// against the template parameter for a given template-id.
8969 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8970 TemplateDecl *Template,
8971 NamedDecl *Param,
8972 ArrayRef<TemplateArgument> TemplateArgs,
8973 SourceRange InstantiationRange);
8974
8975 struct ConstraintsCheck {};
8976 /// \brief Note that we are checking the constraints associated with some
8977 /// constrained entity (a concept declaration or a template with associated
8978 /// constraints).
8979 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8980 ConstraintsCheck, NamedDecl *Template,
8981 ArrayRef<TemplateArgument> TemplateArgs,
8982 SourceRange InstantiationRange);
8983
8984 struct ConstraintSubstitution {};
8985 /// \brief Note that we are checking a constraint expression associated
8986 /// with a template declaration or as part of the satisfaction check of a
8987 /// concept.
8988 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8989 ConstraintSubstitution, NamedDecl *Template,
8990 sema::TemplateDeductionInfo &DeductionInfo,
8991 SourceRange InstantiationRange);
8992
8993 struct ConstraintNormalization {};
8994 /// \brief Note that we are normalizing a constraint expression.
8995 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8996 ConstraintNormalization, NamedDecl *Template,
8997 SourceRange InstantiationRange);
8998
8999 struct ParameterMappingSubstitution {};
9000 /// \brief Note that we are subtituting into the parameter mapping of an
9001 /// atomic constraint during constraint normalization.
9002 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9003 ParameterMappingSubstitution, NamedDecl *Template,
9004 SourceRange InstantiationRange);
9005
9006 /// \brief Note that we are substituting template arguments into a part of
9007 /// a requirement of a requires expression.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 concepts::Requirement *Req,
9010 sema::TemplateDeductionInfo &DeductionInfo,
9011 SourceRange InstantiationRange = SourceRange());
9012
9013 /// \brief Note that we are checking the satisfaction of the constraint
9014 /// expression inside of a nested requirement.
9015 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9016 concepts::NestedRequirement *Req, ConstraintsCheck,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// Note that we have finished instantiating this template.
9020 void Clear();
9021
9022 ~InstantiatingTemplate() { Clear(); }
9023
9024 /// Determines whether we have exceeded the maximum
9025 /// recursive template instantiations.
9026 bool isInvalid() const { return Invalid; }
9027
9028 /// Determine whether we are already instantiating this
9029 /// specialization in some surrounding active instantiation.
9030 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9031
9032 private:
9033 Sema &SemaRef;
9034 bool Invalid;
9035 bool AlreadyInstantiating;
9036 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9037 SourceRange InstantiationRange);
9038
9039 InstantiatingTemplate(
9040 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9041 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9042 Decl *Entity, NamedDecl *Template = nullptr,
9043 ArrayRef<TemplateArgument> TemplateArgs = None,
9044 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9045
9046 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9047
9048 InstantiatingTemplate&
9049 operator=(const InstantiatingTemplate&) = delete;
9050 };
9051
9052 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9053 void popCodeSynthesisContext();
9054
9055 /// Determine whether we are currently performing template instantiation.
9056 bool inTemplateInstantiation() const {
9057 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9058 }
9059
9060 void PrintContextStack() {
9061 if (!CodeSynthesisContexts.empty() &&
9062 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9063 PrintInstantiationStack();
9064 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9065 }
9066 if (PragmaAttributeCurrentTargetDecl)
9067 PrintPragmaAttributeInstantiationPoint();
9068 }
9069 void PrintInstantiationStack();
9070
9071 void PrintPragmaAttributeInstantiationPoint();
9072
9073 /// Determines whether we are currently in a context where
9074 /// template argument substitution failures are not considered
9075 /// errors.
9076 ///
9077 /// \returns An empty \c Optional if we're not in a SFINAE context.
9078 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9079 /// template-deduction context object, which can be used to capture
9080 /// diagnostics that will be suppressed.
9081 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9082
9083 /// Determines whether we are currently in a context that
9084 /// is not evaluated as per C++ [expr] p5.
9085 bool isUnevaluatedContext() const {
9086 assert(!ExprEvalContexts.empty() &&((void)0)
9087 "Must be in an expression evaluation context")((void)0);
9088 return ExprEvalContexts.back().isUnevaluated();
9089 }
9090
9091 /// RAII class used to determine whether SFINAE has
9092 /// trapped any errors that occur during template argument
9093 /// deduction.
9094 class SFINAETrap {
9095 Sema &SemaRef;
9096 unsigned PrevSFINAEErrors;
9097 bool PrevInNonInstantiationSFINAEContext;
9098 bool PrevAccessCheckingSFINAE;
9099 bool PrevLastDiagnosticIgnored;
9100
9101 public:
9102 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9103 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9104 PrevInNonInstantiationSFINAEContext(
9105 SemaRef.InNonInstantiationSFINAEContext),
9106 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9107 PrevLastDiagnosticIgnored(
9108 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9109 {
9110 if (!SemaRef.isSFINAEContext())
9111 SemaRef.InNonInstantiationSFINAEContext = true;
9112 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9113 }
9114
9115 ~SFINAETrap() {
9116 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9117 SemaRef.InNonInstantiationSFINAEContext
9118 = PrevInNonInstantiationSFINAEContext;
9119 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9120 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9121 PrevLastDiagnosticIgnored);
9122 }
9123
9124 /// Determine whether any SFINAE errors have been trapped.
9125 bool hasErrorOccurred() const {
9126 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9127 }
9128 };
9129
9130 /// RAII class used to indicate that we are performing provisional
9131 /// semantic analysis to determine the validity of a construct, so
9132 /// typo-correction and diagnostics in the immediate context (not within
9133 /// implicitly-instantiated templates) should be suppressed.
9134 class TentativeAnalysisScope {
9135 Sema &SemaRef;
9136 // FIXME: Using a SFINAETrap for this is a hack.
9137 SFINAETrap Trap;
9138 bool PrevDisableTypoCorrection;
9139 public:
9140 explicit TentativeAnalysisScope(Sema &SemaRef)
9141 : SemaRef(SemaRef), Trap(SemaRef, true),
9142 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9143 SemaRef.DisableTypoCorrection = true;
9144 }
9145 ~TentativeAnalysisScope() {
9146 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9147 }
9148 };
9149
9150 /// The current instantiation scope used to store local
9151 /// variables.
9152 LocalInstantiationScope *CurrentInstantiationScope;
9153
9154 /// Tracks whether we are in a context where typo correction is
9155 /// disabled.
9156 bool DisableTypoCorrection;
9157
9158 /// The number of typos corrected by CorrectTypo.
9159 unsigned TyposCorrected;
9160
9161 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9162 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9163
9164 /// A cache containing identifiers for which typo correction failed and
9165 /// their locations, so that repeated attempts to correct an identifier in a
9166 /// given location are ignored if typo correction already failed for it.
9167 IdentifierSourceLocations TypoCorrectionFailures;
9168
9169 /// Worker object for performing CFG-based warnings.
9170 sema::AnalysisBasedWarnings AnalysisWarnings;
9171 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9172
9173 /// An entity for which implicit template instantiation is required.
9174 ///
9175 /// The source location associated with the declaration is the first place in
9176 /// the source code where the declaration was "used". It is not necessarily
9177 /// the point of instantiation (which will be either before or after the
9178 /// namespace-scope declaration that triggered this implicit instantiation),
9179 /// However, it is the location that diagnostics should generally refer to,
9180 /// because users will need to know what code triggered the instantiation.
9181 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9182
9183 /// The queue of implicit template instantiations that are required
9184 /// but have not yet been performed.
9185 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9186
9187 /// Queue of implicit template instantiations that cannot be performed
9188 /// eagerly.
9189 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9190
9191 class GlobalEagerInstantiationScope {
9192 public:
9193 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9194 : S(S), Enabled(Enabled) {
9195 if (!Enabled) return;
9196
9197 SavedPendingInstantiations.swap(S.PendingInstantiations);
9198 SavedVTableUses.swap(S.VTableUses);
9199 }
9200
9201 void perform() {
9202 if (Enabled) {
9203 S.DefineUsedVTables();
9204 S.PerformPendingInstantiations();
9205 }
9206 }
9207
9208 ~GlobalEagerInstantiationScope() {
9209 if (!Enabled) return;
9210
9211 // Restore the set of pending vtables.
9212 assert(S.VTableUses.empty() &&((void)0)
9213 "VTableUses should be empty before it is discarded.")((void)0);
9214 S.VTableUses.swap(SavedVTableUses);
9215
9216 // Restore the set of pending implicit instantiations.
9217 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9218 assert(S.PendingInstantiations.empty() &&((void)0)
9219 "PendingInstantiations should be empty before it is discarded.")((void)0);
9220 S.PendingInstantiations.swap(SavedPendingInstantiations);
9221 } else {
9222 // Template instantiations in the PCH may be delayed until the TU.
9223 S.PendingInstantiations.swap(SavedPendingInstantiations);
9224 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9225 SavedPendingInstantiations.begin(),
9226 SavedPendingInstantiations.end());
9227 }
9228 }
9229
9230 private:
9231 Sema &S;
9232 SmallVector<VTableUse, 16> SavedVTableUses;
9233 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9234 bool Enabled;
9235 };
9236
9237 /// The queue of implicit template instantiations that are required
9238 /// and must be performed within the current local scope.
9239 ///
9240 /// This queue is only used for member functions of local classes in
9241 /// templates, which must be instantiated in the same scope as their
9242 /// enclosing function, so that they can reference function-local
9243 /// types, static variables, enumerators, etc.
9244 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9245
9246 class LocalEagerInstantiationScope {
9247 public:
9248 LocalEagerInstantiationScope(Sema &S) : S(S) {
9249 SavedPendingLocalImplicitInstantiations.swap(
9250 S.PendingLocalImplicitInstantiations);
9251 }
9252
9253 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9254
9255 ~LocalEagerInstantiationScope() {
9256 assert(S.PendingLocalImplicitInstantiations.empty() &&((void)0)
9257 "there shouldn't be any pending local implicit instantiations")((void)0);
9258 SavedPendingLocalImplicitInstantiations.swap(
9259 S.PendingLocalImplicitInstantiations);
9260 }
9261
9262 private:
9263 Sema &S;
9264 std::deque<PendingImplicitInstantiation>
9265 SavedPendingLocalImplicitInstantiations;
9266 };
9267
9268 /// A helper class for building up ExtParameterInfos.
9269 class ExtParameterInfoBuilder {
9270 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9271 bool HasInteresting = false;
9272
9273 public:
9274 /// Set the ExtParameterInfo for the parameter at the given index,
9275 ///
9276 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9277 assert(Infos.size() <= index)((void)0);
9278 Infos.resize(index);
9279 Infos.push_back(info);
9280
9281 if (!HasInteresting)
9282 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9283 }
9284
9285 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9286 /// ExtParameterInfo array we've built up.
9287 const FunctionProtoType::ExtParameterInfo *
9288 getPointerOrNull(unsigned numParams) {
9289 if (!HasInteresting) return nullptr;
9290 Infos.resize(numParams);
9291 return Infos.data();
9292 }
9293 };
9294
9295 void PerformPendingInstantiations(bool LocalOnly = false);
9296
9297 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9298 const MultiLevelTemplateArgumentList &TemplateArgs,
9299 SourceLocation Loc, DeclarationName Entity,
9300 bool AllowDeducedTST = false);
9301
9302 QualType SubstType(QualType T,
9303 const MultiLevelTemplateArgumentList &TemplateArgs,
9304 SourceLocation Loc, DeclarationName Entity);
9305
9306 TypeSourceInfo *SubstType(TypeLoc TL,
9307 const MultiLevelTemplateArgumentList &TemplateArgs,
9308 SourceLocation Loc, DeclarationName Entity);
9309
9310 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9311 const MultiLevelTemplateArgumentList &TemplateArgs,
9312 SourceLocation Loc,
9313 DeclarationName Entity,
9314 CXXRecordDecl *ThisContext,
9315 Qualifiers ThisTypeQuals);
9316 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9317 const MultiLevelTemplateArgumentList &Args);
9318 bool SubstExceptionSpec(SourceLocation Loc,
9319 FunctionProtoType::ExceptionSpecInfo &ESI,
9320 SmallVectorImpl<QualType> &ExceptionStorage,
9321 const MultiLevelTemplateArgumentList &Args);
9322 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9323 const MultiLevelTemplateArgumentList &TemplateArgs,
9324 int indexAdjustment,
9325 Optional<unsigned> NumExpansions,
9326 bool ExpectParameterPack);
9327 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9328 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 SmallVectorImpl<QualType> &ParamTypes,
9331 SmallVectorImpl<ParmVarDecl *> *OutParams,
9332 ExtParameterInfoBuilder &ParamInfos);
9333 ExprResult SubstExpr(Expr *E,
9334 const MultiLevelTemplateArgumentList &TemplateArgs);
9335
9336 /// Substitute the given template arguments into a list of
9337 /// expressions, expanding pack expansions if required.
9338 ///
9339 /// \param Exprs The list of expressions to substitute into.
9340 ///
9341 /// \param IsCall Whether this is some form of call, in which case
9342 /// default arguments will be dropped.
9343 ///
9344 /// \param TemplateArgs The set of template arguments to substitute.
9345 ///
9346 /// \param Outputs Will receive all of the substituted arguments.
9347 ///
9348 /// \returns true if an error occurred, false otherwise.
9349 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9350 const MultiLevelTemplateArgumentList &TemplateArgs,
9351 SmallVectorImpl<Expr *> &Outputs);
9352
9353 StmtResult SubstStmt(Stmt *S,
9354 const MultiLevelTemplateArgumentList &TemplateArgs);
9355
9356 TemplateParameterList *
9357 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9358 const MultiLevelTemplateArgumentList &TemplateArgs);
9359
9360 bool
9361 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9362 const MultiLevelTemplateArgumentList &TemplateArgs,
9363 TemplateArgumentListInfo &Outputs);
9364
9365
9366 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9367 const MultiLevelTemplateArgumentList &TemplateArgs);
9368
9369 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9370 /// an implicit 'operator=='.
9371 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9372 FunctionDecl *Spaceship);
9373
9374 ExprResult SubstInitializer(Expr *E,
9375 const MultiLevelTemplateArgumentList &TemplateArgs,
9376 bool CXXDirectInit);
9377
9378 bool
9379 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9380 CXXRecordDecl *Pattern,
9381 const MultiLevelTemplateArgumentList &TemplateArgs);
9382
9383 bool
9384 InstantiateClass(SourceLocation PointOfInstantiation,
9385 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9386 const MultiLevelTemplateArgumentList &TemplateArgs,
9387 TemplateSpecializationKind TSK,
9388 bool Complain = true);
9389
9390 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9391 EnumDecl *Instantiation, EnumDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK);
9394
9395 bool InstantiateInClassInitializer(
9396 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9397 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9398
9399 struct LateInstantiatedAttribute {
9400 const Attr *TmplAttr;
9401 LocalInstantiationScope *Scope;
9402 Decl *NewDecl;
9403
9404 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9405 Decl *D)
9406 : TmplAttr(A), Scope(S), NewDecl(D)
9407 { }
9408 };
9409 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9410
9411 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9412 const Decl *Pattern, Decl *Inst,
9413 LateInstantiatedAttrVec *LateAttrs = nullptr,
9414 LocalInstantiationScope *OuterMostScope = nullptr);
9415
9416 void
9417 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9423
9424 bool usesPartialOrExplicitSpecialization(
9425 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9426
9427 bool
9428 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9429 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9430 TemplateSpecializationKind TSK,
9431 bool Complain = true);
9432
9433 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9434 CXXRecordDecl *Instantiation,
9435 const MultiLevelTemplateArgumentList &TemplateArgs,
9436 TemplateSpecializationKind TSK);
9437
9438 void InstantiateClassTemplateSpecializationMembers(
9439 SourceLocation PointOfInstantiation,
9440 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9441 TemplateSpecializationKind TSK);
9442
9443 NestedNameSpecifierLoc
9444 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9445 const MultiLevelTemplateArgumentList &TemplateArgs);
9446
9447 DeclarationNameInfo
9448 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9449 const MultiLevelTemplateArgumentList &TemplateArgs);
9450 TemplateName
9451 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9452 SourceLocation Loc,
9453 const MultiLevelTemplateArgumentList &TemplateArgs);
9454 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9455 TemplateArgumentListInfo &Result,
9456 const MultiLevelTemplateArgumentList &TemplateArgs);
9457
9458 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9459 ParmVarDecl *Param);
9460 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9461 FunctionDecl *Function);
9462 bool CheckInstantiatedFunctionTemplateConstraints(
9463 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9464 ArrayRef<TemplateArgument> TemplateArgs,
9465 ConstraintSatisfaction &Satisfaction);
9466 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9467 const TemplateArgumentList *Args,
9468 SourceLocation Loc);
9469 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9470 FunctionDecl *Function,
9471 bool Recursive = false,
9472 bool DefinitionRequired = false,
9473 bool AtEndOfTU = false);
9474 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9475 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9476 const TemplateArgumentList &TemplateArgList,
9477 const TemplateArgumentListInfo &TemplateArgsInfo,
9478 SmallVectorImpl<TemplateArgument> &Converted,
9479 SourceLocation PointOfInstantiation,
9480 LateInstantiatedAttrVec *LateAttrs = nullptr,
9481 LocalInstantiationScope *StartingScope = nullptr);
9482 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9483 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9484 const MultiLevelTemplateArgumentList &TemplateArgs);
9485 void
9486 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9487 const MultiLevelTemplateArgumentList &TemplateArgs,
9488 LateInstantiatedAttrVec *LateAttrs,
9489 DeclContext *Owner,
9490 LocalInstantiationScope *StartingScope,
9491 bool InstantiatingVarTemplate = false,
9492 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9493
9494 void InstantiateVariableInitializer(
9495 VarDecl *Var, VarDecl *OldVar,
9496 const MultiLevelTemplateArgumentList &TemplateArgs);
9497 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9498 VarDecl *Var, bool Recursive = false,
9499 bool DefinitionRequired = false,
9500 bool AtEndOfTU = false);
9501
9502 void InstantiateMemInitializers(CXXConstructorDecl *New,
9503 const CXXConstructorDecl *Tmpl,
9504 const MultiLevelTemplateArgumentList &TemplateArgs);
9505
9506 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9507 const MultiLevelTemplateArgumentList &TemplateArgs,
9508 bool FindingInstantiatedContext = false);
9509 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 // Objective-C declarations.
9513 enum ObjCContainerKind {
9514 OCK_None = -1,
9515 OCK_Interface = 0,
9516 OCK_Protocol,
9517 OCK_Category,
9518 OCK_ClassExtension,
9519 OCK_Implementation,
9520 OCK_CategoryImplementation
9521 };
9522 ObjCContainerKind getObjCContainerKind() const;
9523
9524 DeclResult actOnObjCTypeParam(Scope *S,
9525 ObjCTypeParamVariance variance,
9526 SourceLocation varianceLoc,
9527 unsigned index,
9528 IdentifierInfo *paramName,
9529 SourceLocation paramLoc,
9530 SourceLocation colonLoc,
9531 ParsedType typeBound);
9532
9533 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9534 ArrayRef<Decl *> typeParams,
9535 SourceLocation rAngleLoc);
9536 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9537
9538 Decl *ActOnStartClassInterface(
9539 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9540 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9541 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9542 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9543 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9544 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9545 const ParsedAttributesView &AttrList);
9546
9547 void ActOnSuperClassOfClassInterface(Scope *S,
9548 SourceLocation AtInterfaceLoc,
9549 ObjCInterfaceDecl *IDecl,
9550 IdentifierInfo *ClassName,
9551 SourceLocation ClassLoc,
9552 IdentifierInfo *SuperName,
9553 SourceLocation SuperLoc,
9554 ArrayRef<ParsedType> SuperTypeArgs,
9555 SourceRange SuperTypeArgsRange);
9556
9557 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9558 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9559 IdentifierInfo *SuperName,
9560 SourceLocation SuperLoc);
9561
9562 Decl *ActOnCompatibilityAlias(
9563 SourceLocation AtCompatibilityAliasLoc,
9564 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9565 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9566
9567 bool CheckForwardProtocolDeclarationForCircularDependency(
9568 IdentifierInfo *PName,
9569 SourceLocation &PLoc, SourceLocation PrevLoc,
9570 const ObjCList<ObjCProtocolDecl> &PList);
9571
9572 Decl *ActOnStartProtocolInterface(
9573 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9574 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9575 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9576 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9577
9578 Decl *ActOnStartCategoryInterface(
9579 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9580 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9581 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9582 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9583 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9584 const ParsedAttributesView &AttrList);
9585
9586 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9587 IdentifierInfo *ClassName,
9588 SourceLocation ClassLoc,
9589 IdentifierInfo *SuperClassname,
9590 SourceLocation SuperClassLoc,
9591 const ParsedAttributesView &AttrList);
9592
9593 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9594 IdentifierInfo *ClassName,
9595 SourceLocation ClassLoc,
9596 IdentifierInfo *CatName,
9597 SourceLocation CatLoc,
9598 const ParsedAttributesView &AttrList);
9599
9600 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9601 ArrayRef<Decl *> Decls);
9602
9603 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9604 IdentifierInfo **IdentList,
9605 SourceLocation *IdentLocs,
9606 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9607 unsigned NumElts);
9608
9609 DeclGroupPtrTy
9610 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9611 ArrayRef<IdentifierLocPair> IdentList,
9612 const ParsedAttributesView &attrList);
9613
9614 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9615 ArrayRef<IdentifierLocPair> ProtocolId,
9616 SmallVectorImpl<Decl *> &Protocols);
9617
9618 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9619 SourceLocation ProtocolLoc,
9620 IdentifierInfo *TypeArgId,
9621 SourceLocation TypeArgLoc,
9622 bool SelectProtocolFirst = false);
9623
9624 /// Given a list of identifiers (and their locations), resolve the
9625 /// names to either Objective-C protocol qualifiers or type
9626 /// arguments, as appropriate.
9627 void actOnObjCTypeArgsOrProtocolQualifiers(
9628 Scope *S,
9629 ParsedType baseType,
9630 SourceLocation lAngleLoc,
9631 ArrayRef<IdentifierInfo *> identifiers,
9632 ArrayRef<SourceLocation> identifierLocs,
9633 SourceLocation rAngleLoc,
9634 SourceLocation &typeArgsLAngleLoc,
9635 SmallVectorImpl<ParsedType> &typeArgs,
9636 SourceLocation &typeArgsRAngleLoc,
9637 SourceLocation &protocolLAngleLoc,
9638 SmallVectorImpl<Decl *> &protocols,
9639 SourceLocation &protocolRAngleLoc,
9640 bool warnOnIncompleteProtocols);
9641
9642 /// Build a an Objective-C protocol-qualified 'id' type where no
9643 /// base type was specified.
9644 TypeResult actOnObjCProtocolQualifierType(
9645 SourceLocation lAngleLoc,
9646 ArrayRef<Decl *> protocols,
9647 ArrayRef<SourceLocation> protocolLocs,
9648 SourceLocation rAngleLoc);
9649
9650 /// Build a specialized and/or protocol-qualified Objective-C type.
9651 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9652 Scope *S,
9653 SourceLocation Loc,
9654 ParsedType BaseType,
9655 SourceLocation TypeArgsLAngleLoc,
9656 ArrayRef<ParsedType> TypeArgs,
9657 SourceLocation TypeArgsRAngleLoc,
9658 SourceLocation ProtocolLAngleLoc,
9659 ArrayRef<Decl *> Protocols,
9660 ArrayRef<SourceLocation> ProtocolLocs,
9661 SourceLocation ProtocolRAngleLoc);
9662
9663 /// Build an Objective-C type parameter type.
9664 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9665 SourceLocation ProtocolLAngleLoc,
9666 ArrayRef<ObjCProtocolDecl *> Protocols,
9667 ArrayRef<SourceLocation> ProtocolLocs,
9668 SourceLocation ProtocolRAngleLoc,
9669 bool FailOnError = false);
9670
9671 /// Build an Objective-C object pointer type.
9672 QualType BuildObjCObjectType(QualType BaseType,
9673 SourceLocation Loc,
9674 SourceLocation TypeArgsLAngleLoc,
9675 ArrayRef<TypeSourceInfo *> TypeArgs,
9676 SourceLocation TypeArgsRAngleLoc,
9677 SourceLocation ProtocolLAngleLoc,
9678 ArrayRef<ObjCProtocolDecl *> Protocols,
9679 ArrayRef<SourceLocation> ProtocolLocs,
9680 SourceLocation ProtocolRAngleLoc,
9681 bool FailOnError = false);
9682
9683 /// Ensure attributes are consistent with type.
9684 /// \param [in, out] Attributes The attributes to check; they will
9685 /// be modified to be consistent with \p PropertyTy.
9686 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9687 SourceLocation Loc,
9688 unsigned &Attributes,
9689 bool propertyInPrimaryClass);
9690
9691 /// Process the specified property declaration and create decls for the
9692 /// setters and getters as needed.
9693 /// \param property The property declaration being processed
9694 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9695
9696
9697 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9698 ObjCPropertyDecl *SuperProperty,
9699 const IdentifierInfo *Name,
9700 bool OverridingProtocolProperty);
9701
9702 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9703 ObjCInterfaceDecl *ID);
9704
9705 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9706 ArrayRef<Decl *> allMethods = None,
9707 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9708
9709 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9710 SourceLocation LParenLoc,
9711 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9712 Selector GetterSel, Selector SetterSel,
9713 tok::ObjCKeywordKind MethodImplKind,
9714 DeclContext *lexicalDC = nullptr);
9715
9716 Decl *ActOnPropertyImplDecl(Scope *S,
9717 SourceLocation AtLoc,
9718 SourceLocation PropertyLoc,
9719 bool ImplKind,
9720 IdentifierInfo *PropertyId,
9721 IdentifierInfo *PropertyIvar,
9722 SourceLocation PropertyIvarLoc,
9723 ObjCPropertyQueryKind QueryKind);
9724
9725 enum ObjCSpecialMethodKind {
9726 OSMK_None,
9727 OSMK_Alloc,
9728 OSMK_New,
9729 OSMK_Copy,
9730 OSMK_RetainingInit,
9731 OSMK_NonRetainingInit
9732 };
9733
9734 struct ObjCArgInfo {
9735 IdentifierInfo *Name;
9736 SourceLocation NameLoc;
9737 // The Type is null if no type was specified, and the DeclSpec is invalid
9738 // in this case.
9739 ParsedType Type;
9740 ObjCDeclSpec DeclSpec;
9741
9742 /// ArgAttrs - Attribute list for this argument.
9743 ParsedAttributesView ArgAttrs;
9744 };
9745
9746 Decl *ActOnMethodDeclaration(
9747 Scope *S,
9748 SourceLocation BeginLoc, // location of the + or -.
9749 SourceLocation EndLoc, // location of the ; or {.
9750 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9751 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9752 // optional arguments. The number of types/arguments is obtained
9753 // from the Sel.getNumArgs().
9754 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9755 unsigned CNumArgs, // c-style args
9756 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9757 bool isVariadic, bool MethodDefinition);
9758
9759 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9760 const ObjCObjectPointerType *OPT,
9761 bool IsInstance);
9762 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9763 bool IsInstance);
9764
9765 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9766 bool inferObjCARCLifetime(ValueDecl *decl);
9767
9768 void deduceOpenCLAddressSpace(ValueDecl *decl);
9769
9770 ExprResult
9771 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9772 Expr *BaseExpr,
9773 SourceLocation OpLoc,
9774 DeclarationName MemberName,
9775 SourceLocation MemberLoc,
9776 SourceLocation SuperLoc, QualType SuperType,
9777 bool Super);
9778
9779 ExprResult
9780 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9781 IdentifierInfo &propertyName,
9782 SourceLocation receiverNameLoc,
9783 SourceLocation propertyNameLoc);
9784
9785 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9786
9787 /// Describes the kind of message expression indicated by a message
9788 /// send that starts with an identifier.
9789 enum ObjCMessageKind {
9790 /// The message is sent to 'super'.
9791 ObjCSuperMessage,
9792 /// The message is an instance message.
9793 ObjCInstanceMessage,
9794 /// The message is a class message, and the identifier is a type
9795 /// name.
9796 ObjCClassMessage
9797 };
9798
9799 ObjCMessageKind getObjCMessageKind(Scope *S,
9800 IdentifierInfo *Name,
9801 SourceLocation NameLoc,
9802 bool IsSuper,
9803 bool HasTrailingDot,
9804 ParsedType &ReceiverType);
9805
9806 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9807 Selector Sel,
9808 SourceLocation LBracLoc,
9809 ArrayRef<SourceLocation> SelectorLocs,
9810 SourceLocation RBracLoc,
9811 MultiExprArg Args);
9812
9813 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9814 QualType ReceiverType,
9815 SourceLocation SuperLoc,
9816 Selector Sel,
9817 ObjCMethodDecl *Method,
9818 SourceLocation LBracLoc,
9819 ArrayRef<SourceLocation> SelectorLocs,
9820 SourceLocation RBracLoc,
9821 MultiExprArg Args,
9822 bool isImplicit = false);
9823
9824 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9825 bool isSuperReceiver,
9826 SourceLocation Loc,
9827 Selector Sel,
9828 ObjCMethodDecl *Method,
9829 MultiExprArg Args);
9830
9831 ExprResult ActOnClassMessage(Scope *S,
9832 ParsedType Receiver,
9833 Selector Sel,
9834 SourceLocation LBracLoc,
9835 ArrayRef<SourceLocation> SelectorLocs,
9836 SourceLocation RBracLoc,
9837 MultiExprArg Args);
9838
9839 ExprResult BuildInstanceMessage(Expr *Receiver,
9840 QualType ReceiverType,
9841 SourceLocation SuperLoc,
9842 Selector Sel,
9843 ObjCMethodDecl *Method,
9844 SourceLocation LBracLoc,
9845 ArrayRef<SourceLocation> SelectorLocs,
9846 SourceLocation RBracLoc,
9847 MultiExprArg Args,
9848 bool isImplicit = false);
9849
9850 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9851 QualType ReceiverType,
9852 SourceLocation Loc,
9853 Selector Sel,
9854 ObjCMethodDecl *Method,
9855 MultiExprArg Args);
9856
9857 ExprResult ActOnInstanceMessage(Scope *S,
9858 Expr *Receiver,
9859 Selector Sel,
9860 SourceLocation LBracLoc,
9861 ArrayRef<SourceLocation> SelectorLocs,
9862 SourceLocation RBracLoc,
9863 MultiExprArg Args);
9864
9865 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9866 ObjCBridgeCastKind Kind,
9867 SourceLocation BridgeKeywordLoc,
9868 TypeSourceInfo *TSInfo,
9869 Expr *SubExpr);
9870
9871 ExprResult ActOnObjCBridgedCast(Scope *S,
9872 SourceLocation LParenLoc,
9873 ObjCBridgeCastKind Kind,
9874 SourceLocation BridgeKeywordLoc,
9875 ParsedType Type,
9876 SourceLocation RParenLoc,
9877 Expr *SubExpr);
9878
9879 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9880
9881 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9882
9883 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9884 CastKind &Kind);
9885
9886 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9887 QualType DestType, QualType SrcType,
9888 ObjCInterfaceDecl *&RelatedClass,
9889 ObjCMethodDecl *&ClassMethod,
9890 ObjCMethodDecl *&InstanceMethod,
9891 TypedefNameDecl *&TDNDecl,
9892 bool CfToNs, bool Diagnose = true);
9893
9894 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9895 QualType DestType, QualType SrcType,
9896 Expr *&SrcExpr, bool Diagnose = true);
9897
9898 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9899 bool Diagnose = true);
9900
9901 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9902
9903 /// Check whether the given new method is a valid override of the
9904 /// given overridden method, and set any properties that should be inherited.
9905 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9906 const ObjCMethodDecl *Overridden);
9907
9908 /// Describes the compatibility of a result type with its method.
9909 enum ResultTypeCompatibilityKind {
9910 RTC_Compatible,
9911 RTC_Incompatible,
9912 RTC_Unknown
9913 };
9914
9915 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9916 ObjCMethodDecl *overridden);
9917
9918 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9919 ObjCInterfaceDecl *CurrentClass,
9920 ResultTypeCompatibilityKind RTC);
9921
9922 enum PragmaOptionsAlignKind {
9923 POAK_Native, // #pragma options align=native
9924 POAK_Natural, // #pragma options align=natural
9925 POAK_Packed, // #pragma options align=packed
9926 POAK_Power, // #pragma options align=power
9927 POAK_Mac68k, // #pragma options align=mac68k
9928 POAK_Reset // #pragma options align=reset
9929 };
9930
9931 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9932 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9933 PragmaClangSectionAction Action,
9934 PragmaClangSectionKind SecKind, StringRef SecName);
9935
9936 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9937 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9938 SourceLocation PragmaLoc);
9939
9940 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9941 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9942 StringRef SlotLabel, Expr *Alignment);
9943
9944 enum class PragmaAlignPackDiagnoseKind {
9945 NonDefaultStateAtInclude,
9946 ChangedStateAtExit
9947 };
9948
9949 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9950 SourceLocation IncludeLoc);
9951 void DiagnoseUnterminatedPragmaAlignPack();
9952
9953 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9954 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9955
9956 /// ActOnPragmaMSComment - Called on well formed
9957 /// \#pragma comment(kind, "arg").
9958 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9959 StringRef Arg);
9960
9961 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9962 /// pointers_to_members(representation method[, general purpose
9963 /// representation]).
9964 void ActOnPragmaMSPointersToMembers(
9965 LangOptions::PragmaMSPointersToMembersKind Kind,
9966 SourceLocation PragmaLoc);
9967
9968 /// Called on well formed \#pragma vtordisp().
9969 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9970 SourceLocation PragmaLoc,
9971 MSVtorDispMode Value);
9972
9973 enum PragmaSectionKind {
9974 PSK_DataSeg,
9975 PSK_BSSSeg,
9976 PSK_ConstSeg,
9977 PSK_CodeSeg,
9978 };
9979
9980 bool UnifySection(StringRef SectionName, int SectionFlags,
9981 NamedDecl *TheDecl);
9982 bool UnifySection(StringRef SectionName,
9983 int SectionFlags,
9984 SourceLocation PragmaSectionLocation);
9985
9986 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9987 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9988 PragmaMsStackAction Action,
9989 llvm::StringRef StackSlotLabel,
9990 StringLiteral *SegmentName,
9991 llvm::StringRef PragmaName);
9992
9993 /// Called on well formed \#pragma section().
9994 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
9995 int SectionFlags, StringLiteral *SegmentName);
9996
9997 /// Called on well-formed \#pragma init_seg().
9998 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
9999 StringLiteral *SegmentName);
10000
10001 /// Called on #pragma clang __debug dump II
10002 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10003
10004 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10005 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10006 StringRef Value);
10007
10008 /// Are precise floating point semantics currently enabled?
10009 bool isPreciseFPEnabled() {
10010 return !CurFPFeatures.getAllowFPReassociate() &&
10011 !CurFPFeatures.getNoSignedZero() &&
10012 !CurFPFeatures.getAllowReciprocal() &&
10013 !CurFPFeatures.getAllowApproxFunc();
10014 }
10015
10016 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10017 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10018 PragmaFloatControlKind Value);
10019
10020 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10021 void ActOnPragmaUnused(const Token &Identifier,
10022 Scope *curScope,
10023 SourceLocation PragmaLoc);
10024
10025 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10026 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10027 SourceLocation PragmaLoc);
10028
10029 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10030 SourceLocation Loc);
10031 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10032
10033 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10034 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10035 SourceLocation PragmaLoc,
10036 SourceLocation WeakNameLoc);
10037
10038 /// ActOnPragmaRedefineExtname - Called on well formed
10039 /// \#pragma redefine_extname oldname newname.
10040 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10041 IdentifierInfo* AliasName,
10042 SourceLocation PragmaLoc,
10043 SourceLocation WeakNameLoc,
10044 SourceLocation AliasNameLoc);
10045
10046 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10047 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10048 IdentifierInfo* AliasName,
10049 SourceLocation PragmaLoc,
10050 SourceLocation WeakNameLoc,
10051 SourceLocation AliasNameLoc);
10052
10053 /// ActOnPragmaFPContract - Called on well formed
10054 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10055 /// \#pragma clang fp contract
10056 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10057
10058 /// Called on well formed
10059 /// \#pragma clang fp reassociate
10060 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10061
10062 /// ActOnPragmaFenvAccess - Called on well formed
10063 /// \#pragma STDC FENV_ACCESS
10064 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10065
10066 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10067 void ActOnPragmaFPExceptions(SourceLocation Loc,
10068 LangOptions::FPExceptionModeKind);
10069
10070 /// Called to set constant rounding mode for floating point operations.
10071 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10072
10073 /// Called to set exception behavior for floating point operations.
10074 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10075
10076 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10077 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10078 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10079
10080 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10081 void AddMsStructLayoutForRecord(RecordDecl *RD);
10082
10083 /// PushNamespaceVisibilityAttr - Note that we've entered a
10084 /// namespace with a visibility attribute.
10085 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10086 SourceLocation Loc);
10087
10088 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10089 /// add an appropriate visibility attribute.
10090 void AddPushedVisibilityAttribute(Decl *RD);
10091
10092 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10093 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10094 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10095
10096 /// FreeVisContext - Deallocate and null out VisContext.
10097 void FreeVisContext();
10098
10099 /// AddCFAuditedAttribute - Check whether we're currently within
10100 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10101 /// the appropriate attribute.
10102 void AddCFAuditedAttribute(Decl *D);
10103
10104 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10105 SourceLocation PragmaLoc,
10106 attr::ParsedSubjectMatchRuleSet Rules);
10107 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10108 const IdentifierInfo *Namespace);
10109
10110 /// Called on well-formed '\#pragma clang attribute pop'.
10111 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10112 const IdentifierInfo *Namespace);
10113
10114 /// Adds the attributes that have been specified using the
10115 /// '\#pragma clang attribute push' directives to the given declaration.
10116 void AddPragmaAttributes(Scope *S, Decl *D);
10117
10118 void DiagnoseUnterminatedPragmaAttribute();
10119
10120 /// Called on well formed \#pragma clang optimize.
10121 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10122
10123 /// Get the location for the currently active "\#pragma clang optimize
10124 /// off". If this location is invalid, then the state of the pragma is "on".
10125 SourceLocation getOptimizeOffPragmaLocation() const {
10126 return OptimizeOffPragmaLocation;
10127 }
10128
10129 /// Only called on function definitions; if there is a pragma in scope
10130 /// with the effect of a range-based optnone, consider marking the function
10131 /// with attribute optnone.
10132 void AddRangeBasedOptnone(FunctionDecl *FD);
10133
10134 /// Adds the 'optnone' attribute to the function declaration if there
10135 /// are no conflicts; Loc represents the location causing the 'optnone'
10136 /// attribute to be added (usually because of a pragma).
10137 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10138
10139 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10140 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10141 bool IsPackExpansion);
10142 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10143 bool IsPackExpansion);
10144
10145 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10146 /// declaration.
10147 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10148 Expr *OE);
10149
10150 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10151 /// declaration.
10152 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10153 Expr *ParamExpr);
10154
10155 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10156 /// declaration.
10157 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10158
10159 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10160 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10161 StringRef Annot, MutableArrayRef<Expr *> Args);
10162
10163 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10164 /// declaration.
10165 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10166 Expr *MaxThreads, Expr *MinBlocks);
10167
10168 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10169 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10170 bool InInstantiation = false);
10171
10172 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10173 ParameterABI ABI);
10174
10175 enum class RetainOwnershipKind {NS, CF, OS};
10176 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10177 RetainOwnershipKind K, bool IsTemplateInstantiation);
10178
10179 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10180 /// attribute to a particular declaration.
10181 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10182 Expr *Min, Expr *Max);
10183
10184 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10185 /// particular declaration.
10186 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10187 Expr *Min, Expr *Max);
10188
10189 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10190
10191 //===--------------------------------------------------------------------===//
10192 // C++ Coroutines TS
10193 //
10194 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10195 StringRef Keyword);
10196 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10197 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10198 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10199
10200 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10201 bool IsImplicit = false);
10202 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10203 UnresolvedLookupExpr* Lookup);
10204 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10205 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10206 bool IsImplicit = false);
10207 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10208 bool buildCoroutineParameterMoves(SourceLocation Loc);
10209 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10210 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10211 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10212 SourceLocation FuncLoc);
10213 /// Check that the expression co_await promise.final_suspend() shall not be
10214 /// potentially-throwing.
10215 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10216
10217 //===--------------------------------------------------------------------===//
10218 // OpenMP directives and clauses.
10219 //
10220private:
10221 void *VarDataSharingAttributesStack;
10222
10223 struct DeclareTargetContextInfo {
10224 struct MapInfo {
10225 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10226 SourceLocation Loc;
10227 };
10228 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10229 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10230
10231 /// The 'device_type' as parsed from the clause.
10232 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10233
10234 /// The directive kind, `begin declare target` or `declare target`.
10235 OpenMPDirectiveKind Kind;
10236
10237 /// The directive location.
10238 SourceLocation Loc;
10239
10240 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10241 : Kind(Kind), Loc(Loc) {}
10242 };
10243
10244 /// Number of nested '#pragma omp declare target' directives.
10245 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10246
10247 /// Initialization of data-sharing attributes stack.
10248 void InitDataSharingAttributesStack();
10249 void DestroyDataSharingAttributesStack();
10250 ExprResult
10251 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10252 bool StrictlyPositive = true,
10253 bool SuppressExprDiags = false);
10254 /// Returns OpenMP nesting level for current directive.
10255 unsigned getOpenMPNestingLevel() const;
10256
10257 /// Adjusts the function scopes index for the target-based regions.
10258 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10259 unsigned Level) const;
10260
10261 /// Returns the number of scopes associated with the construct on the given
10262 /// OpenMP level.
10263 int getNumberOfConstructScopes(unsigned Level) const;
10264
10265 /// Push new OpenMP function region for non-capturing function.
10266 void pushOpenMPFunctionRegion();
10267
10268 /// Pop OpenMP function region for non-capturing function.
10269 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10270
10271 /// Analyzes and checks a loop nest for use by a loop transformation.
10272 ///
10273 /// \param Kind The loop transformation directive kind.
10274 /// \param NumLoops How many nested loops the directive is expecting.
10275 /// \param AStmt Associated statement of the transformation directive.
10276 /// \param LoopHelpers [out] The loop analysis result.
10277 /// \param Body [out] The body code nested in \p NumLoops loop.
10278 /// \param OriginalInits [out] Collection of statements and declarations that
10279 /// must have been executed/declared before entering the
10280 /// loop.
10281 ///
10282 /// \return Whether there was any error.
10283 bool checkTransformableLoopNest(
10284 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10285 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10286 Stmt *&Body,
10287 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10288 &OriginalInits);
10289
10290 /// Helper to keep information about the current `omp begin/end declare
10291 /// variant` nesting.
10292 struct OMPDeclareVariantScope {
10293 /// The associated OpenMP context selector.
10294 OMPTraitInfo *TI;
10295
10296 /// The associated OpenMP context selector mangling.
10297 std::string NameSuffix;
10298
10299 OMPDeclareVariantScope(OMPTraitInfo &TI);
10300 };
10301
10302 /// Return the OMPTraitInfo for the surrounding scope, if any.
10303 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10304 return OMPDeclareVariantScopes.empty() ? nullptr
10305 : OMPDeclareVariantScopes.back().TI;
10306 }
10307
10308 /// The current `omp begin/end declare variant` scopes.
10309 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10310
10311 /// The current `omp begin/end assumes` scopes.
10312 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10313
10314 /// All `omp assumes` we encountered so far.
10315 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10316
10317public:
10318 /// The declarator \p D defines a function in the scope \p S which is nested
10319 /// in an `omp begin/end declare variant` scope. In this method we create a
10320 /// declaration for \p D and rename \p D according to the OpenMP context
10321 /// selector of the surrounding scope. Return all base functions in \p Bases.
10322 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10323 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10324 SmallVectorImpl<FunctionDecl *> &Bases);
10325
10326 /// Register \p D as specialization of all base functions in \p Bases in the
10327 /// current `omp begin/end declare variant` scope.
10328 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10330
10331 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10332 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10333
10334 /// Can we exit an OpenMP declare variant scope at the moment.
10335 bool isInOpenMPDeclareVariantScope() const {
10336 return !OMPDeclareVariantScopes.empty();
10337 }
10338
10339 /// Given the potential call expression \p Call, determine if there is a
10340 /// specialization via the OpenMP declare variant mechanism available. If
10341 /// there is, return the specialized call expression, otherwise return the
10342 /// original \p Call.
10343 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10344 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10345 SourceLocation RParenLoc, Expr *ExecConfig);
10346
10347 /// Handle a `omp begin declare variant`.
10348 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10349
10350 /// Handle a `omp end declare variant`.
10351 void ActOnOpenMPEndDeclareVariant();
10352
10353 /// Checks if the variant/multiversion functions are compatible.
10354 bool areMultiversionVariantFunctionsCompatible(
10355 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10356 const PartialDiagnostic &NoProtoDiagID,
10357 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10358 const PartialDiagnosticAt &NoSupportDiagIDAt,
10359 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10360 bool ConstexprSupported, bool CLinkageMayDiffer);
10361
10362 /// Function tries to capture lambda's captured variables in the OpenMP region
10363 /// before the original lambda is captured.
10364 void tryCaptureOpenMPLambdas(ValueDecl *V);
10365
10366 /// Return true if the provided declaration \a VD should be captured by
10367 /// reference.
10368 /// \param Level Relative level of nested OpenMP construct for that the check
10369 /// is performed.
10370 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10371 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10372 unsigned OpenMPCaptureLevel) const;
10373
10374 /// Check if the specified variable is used in one of the private
10375 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10376 /// constructs.
10377 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10378 unsigned StopAt = 0);
10379 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10380 ExprObjectKind OK, SourceLocation Loc);
10381
10382 /// If the current region is a loop-based region, mark the start of the loop
10383 /// construct.
10384 void startOpenMPLoop();
10385
10386 /// If the current region is a range loop-based region, mark the start of the
10387 /// loop construct.
10388 void startOpenMPCXXRangeFor();
10389
10390 /// Check if the specified variable is used in 'private' clause.
10391 /// \param Level Relative level of nested OpenMP construct for that the check
10392 /// is performed.
10393 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10394 unsigned CapLevel) const;
10395
10396 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10397 /// for \p FD based on DSA for the provided corresponding captured declaration
10398 /// \p D.
10399 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10400
10401 /// Check if the specified variable is captured by 'target' directive.
10402 /// \param Level Relative level of nested OpenMP construct for that the check
10403 /// is performed.
10404 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10405 unsigned CaptureLevel) const;
10406
10407 /// Check if the specified global variable must be captured by outer capture
10408 /// regions.
10409 /// \param Level Relative level of nested OpenMP construct for that
10410 /// the check is performed.
10411 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10412 unsigned CaptureLevel) const;
10413
10414 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10415 Expr *Op);
10416 /// Called on start of new data sharing attribute block.
10417 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10418 const DeclarationNameInfo &DirName, Scope *CurScope,
10419 SourceLocation Loc);
10420 /// Start analysis of clauses.
10421 void StartOpenMPClause(OpenMPClauseKind K);
10422 /// End analysis of clauses.
10423 void EndOpenMPClause();
10424 /// Called on end of data sharing attribute block.
10425 void EndOpenMPDSABlock(Stmt *CurDirective);
10426
10427 /// Check if the current region is an OpenMP loop region and if it is,
10428 /// mark loop control variable, used in \p Init for loop initialization, as
10429 /// private by default.
10430 /// \param Init First part of the for loop.
10431 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10432
10433 // OpenMP directives and clauses.
10434 /// Called on correct id-expression from the '#pragma omp
10435 /// threadprivate'.
10436 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10437 const DeclarationNameInfo &Id,
10438 OpenMPDirectiveKind Kind);
10439 /// Called on well-formed '#pragma omp threadprivate'.
10440 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10441 SourceLocation Loc,
10442 ArrayRef<Expr *> VarList);
10443 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10444 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10445 ArrayRef<Expr *> VarList);
10446 /// Called on well-formed '#pragma omp allocate'.
10447 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10448 ArrayRef<Expr *> VarList,
10449 ArrayRef<OMPClause *> Clauses,
10450 DeclContext *Owner = nullptr);
10451
10452 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10453 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10454 OpenMPDirectiveKind DKind,
10455 ArrayRef<StringRef> Assumptions,
10456 bool SkippedClauses);
10457
10458 /// Check if there is an active global `omp begin assumes` directive.
10459 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10460
10461 /// Check if there is an active global `omp assumes` directive.
10462 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10463
10464 /// Called on well-formed '#pragma omp end assumes'.
10465 void ActOnOpenMPEndAssumesDirective();
10466
10467 /// Called on well-formed '#pragma omp requires'.
10468 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10469 ArrayRef<OMPClause *> ClauseList);
10470 /// Check restrictions on Requires directive
10471 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10472 ArrayRef<OMPClause *> Clauses);
10473 /// Check if the specified type is allowed to be used in 'omp declare
10474 /// reduction' construct.
10475 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10476 TypeResult ParsedType);
10477 /// Called on start of '#pragma omp declare reduction'.
10478 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10479 Scope *S, DeclContext *DC, DeclarationName Name,
10480 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10481 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10482 /// Initialize declare reduction construct initializer.
10483 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10484 /// Finish current declare reduction construct initializer.
10485 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10486 /// Initialize declare reduction construct initializer.
10487 /// \return omp_priv variable.
10488 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10489 /// Finish current declare reduction construct initializer.
10490 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10491 VarDecl *OmpPrivParm);
10492 /// Called at the end of '#pragma omp declare reduction'.
10493 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10494 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10495
10496 /// Check variable declaration in 'omp declare mapper' construct.
10497 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10498 /// Check if the specified type is allowed to be used in 'omp declare
10499 /// mapper' construct.
10500 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10501 TypeResult ParsedType);
10502 /// Called on start of '#pragma omp declare mapper'.
10503 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10504 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10505 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10506 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10507 Decl *PrevDeclInScope = nullptr);
10508 /// Build the mapper variable of '#pragma omp declare mapper'.
10509 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10510 QualType MapperType,
10511 SourceLocation StartLoc,
10512 DeclarationName VN);
10513 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10514 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10515
10516 /// Called on the start of target region i.e. '#pragma omp declare target'.
10517 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10518
10519 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10520 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10521
10522 /// Called once a target context is completed, that can be when a
10523 /// '#pragma omp end declare target' was encountered or when a
10524 /// '#pragma omp declare target' without declaration-definition-seq was
10525 /// encountered.
10526 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10527
10528 /// Searches for the provided declaration name for OpenMP declare target
10529 /// directive.
10530 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10531 CXXScopeSpec &ScopeSpec,
10532 const DeclarationNameInfo &Id);
10533
10534 /// Called on correct id-expression from the '#pragma omp declare target'.
10535 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10536 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10537 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10538
10539 /// Check declaration inside target region.
10540 void
10541 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10542 SourceLocation IdLoc = SourceLocation());
10543 /// Finishes analysis of the deferred functions calls that may be declared as
10544 /// host/nohost during device/host compilation.
10545 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10546 const FunctionDecl *Callee,
10547 SourceLocation Loc);
10548 /// Return true inside OpenMP declare target region.
10549 bool isInOpenMPDeclareTargetContext() const {
10550 return !DeclareTargetNesting.empty();
10551 }
10552 /// Return true inside OpenMP target region.
10553 bool isInOpenMPTargetExecutionDirective() const;
10554
10555 /// Return the number of captured regions created for an OpenMP directive.
10556 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10557
10558 /// Initialization of captured region for OpenMP region.
10559 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10560
10561 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10562 /// an OpenMP loop directive.
10563 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10564
10565 /// End of OpenMP region.
10566 ///
10567 /// \param S Statement associated with the current OpenMP region.
10568 /// \param Clauses List of clauses for the current OpenMP region.
10569 ///
10570 /// \returns Statement for finished OpenMP region.
10571 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10572 StmtResult ActOnOpenMPExecutableDirective(
10573 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10574 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10575 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10576 /// Called on well-formed '\#pragma omp parallel' after parsing
10577 /// of the associated statement.
10578 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10579 Stmt *AStmt,
10580 SourceLocation StartLoc,
10581 SourceLocation EndLoc);
10582 using VarsWithInheritedDSAType =
10583 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10584 /// Called on well-formed '\#pragma omp simd' after parsing
10585 /// of the associated statement.
10586 StmtResult
10587 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10588 SourceLocation StartLoc, SourceLocation EndLoc,
10589 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10590 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10591 /// the associated statement.
10592 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10593 Stmt *AStmt, SourceLocation StartLoc,
10594 SourceLocation EndLoc);
10595 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10596 /// and the associated statement.
10597 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10598 Stmt *AStmt, SourceLocation StartLoc,
10599 SourceLocation EndLoc);
10600 /// Called on well-formed '\#pragma omp for' after parsing
10601 /// of the associated statement.
10602 StmtResult
10603 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10604 SourceLocation StartLoc, SourceLocation EndLoc,
10605 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10606 /// Called on well-formed '\#pragma omp for simd' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp sections' after parsing
10613 /// of the associated statement.
10614 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10615 Stmt *AStmt, SourceLocation StartLoc,
10616 SourceLocation EndLoc);
10617 /// Called on well-formed '\#pragma omp section' after parsing of the
10618 /// associated statement.
10619 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10620 SourceLocation EndLoc);
10621 /// Called on well-formed '\#pragma omp single' after parsing of the
10622 /// associated statement.
10623 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10624 Stmt *AStmt, SourceLocation StartLoc,
10625 SourceLocation EndLoc);
10626 /// Called on well-formed '\#pragma omp master' after parsing of the
10627 /// associated statement.
10628 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10629 SourceLocation EndLoc);
10630 /// Called on well-formed '\#pragma omp critical' after parsing of the
10631 /// associated statement.
10632 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10633 ArrayRef<OMPClause *> Clauses,
10634 Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp parallel for' after parsing
10637 /// of the associated statement.
10638 StmtResult ActOnOpenMPParallelForDirective(
10639 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10640 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10641 /// Called on well-formed '\#pragma omp parallel for simd' after
10642 /// parsing of the associated statement.
10643 StmtResult ActOnOpenMPParallelForSimdDirective(
10644 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10645 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10646 /// Called on well-formed '\#pragma omp parallel master' after
10647 /// parsing of the associated statement.
10648 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10649 Stmt *AStmt,
10650 SourceLocation StartLoc,
10651 SourceLocation EndLoc);
10652 /// Called on well-formed '\#pragma omp parallel sections' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp task' after parsing of the
10659 /// associated statement.
10660 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt, SourceLocation StartLoc,
10662 SourceLocation EndLoc);
10663 /// Called on well-formed '\#pragma omp taskyield'.
10664 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10665 SourceLocation EndLoc);
10666 /// Called on well-formed '\#pragma omp barrier'.
10667 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskwait'.
10670 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp taskgroup'.
10673 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10674 Stmt *AStmt, SourceLocation StartLoc,
10675 SourceLocation EndLoc);
10676 /// Called on well-formed '\#pragma omp flush'.
10677 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10678 SourceLocation StartLoc,
10679 SourceLocation EndLoc);
10680 /// Called on well-formed '\#pragma omp depobj'.
10681 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10682 SourceLocation StartLoc,
10683 SourceLocation EndLoc);
10684 /// Called on well-formed '\#pragma omp scan'.
10685 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10686 SourceLocation StartLoc,
10687 SourceLocation EndLoc);
10688 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10689 /// associated statement.
10690 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10691 Stmt *AStmt, SourceLocation StartLoc,
10692 SourceLocation EndLoc);
10693 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10694 /// associated statement.
10695 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10696 Stmt *AStmt, SourceLocation StartLoc,
10697 SourceLocation EndLoc);
10698 /// Called on well-formed '\#pragma omp target' after parsing of the
10699 /// associated statement.
10700 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10701 Stmt *AStmt, SourceLocation StartLoc,
10702 SourceLocation EndLoc);
10703 /// Called on well-formed '\#pragma omp target data' after parsing of
10704 /// the associated statement.
10705 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10706 Stmt *AStmt, SourceLocation StartLoc,
10707 SourceLocation EndLoc);
10708 /// Called on well-formed '\#pragma omp target enter data' after
10709 /// parsing of the associated statement.
10710 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10711 SourceLocation StartLoc,
10712 SourceLocation EndLoc,
10713 Stmt *AStmt);
10714 /// Called on well-formed '\#pragma omp target exit data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target parallel' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10723 Stmt *AStmt,
10724 SourceLocation StartLoc,
10725 SourceLocation EndLoc);
10726 /// Called on well-formed '\#pragma omp target parallel for' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelForDirective(
10729 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10730 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10731 /// Called on well-formed '\#pragma omp teams' after parsing of the
10732 /// associated statement.
10733 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10734 Stmt *AStmt, SourceLocation StartLoc,
10735 SourceLocation EndLoc);
10736 /// Called on well-formed '\#pragma omp cancellation point'.
10737 StmtResult
10738 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10739 SourceLocation EndLoc,
10740 OpenMPDirectiveKind CancelRegion);
10741 /// Called on well-formed '\#pragma omp cancel'.
10742 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10743 SourceLocation StartLoc,
10744 SourceLocation EndLoc,
10745 OpenMPDirectiveKind CancelRegion);
10746 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10747 /// associated statement.
10748 StmtResult
10749 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10750 SourceLocation StartLoc, SourceLocation EndLoc,
10751 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10752 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10753 /// the associated statement.
10754 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10755 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10756 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10757 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10758 /// associated statement.
10759 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10760 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10761 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10762 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10763 /// the associated statement.
10764 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10765 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10766 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10767 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10768 /// parsing of the associated statement.
10769 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10770 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10771 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10772 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10773 /// parsing of the associated statement.
10774 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10775 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10776 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10777 /// Called on well-formed '\#pragma omp distribute' after parsing
10778 /// of the associated statement.
10779 StmtResult
10780 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10781 SourceLocation StartLoc, SourceLocation EndLoc,
10782 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp target update'.
10784 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10785 SourceLocation StartLoc,
10786 SourceLocation EndLoc,
10787 Stmt *AStmt);
10788 /// Called on well-formed '\#pragma omp distribute parallel for' after
10789 /// parsing of the associated statement.
10790 StmtResult ActOnOpenMPDistributeParallelForDirective(
10791 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10792 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10793 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10794 /// after parsing of the associated statement.
10795 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10796 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10797 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10798 /// Called on well-formed '\#pragma omp distribute simd' after
10799 /// parsing of the associated statement.
10800 StmtResult ActOnOpenMPDistributeSimdDirective(
10801 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10802 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10803 /// Called on well-formed '\#pragma omp target parallel for simd' after
10804 /// parsing of the associated statement.
10805 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10806 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10807 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10808 /// Called on well-formed '\#pragma omp target simd' after parsing of
10809 /// the associated statement.
10810 StmtResult
10811 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10812 SourceLocation StartLoc, SourceLocation EndLoc,
10813 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10815 /// the associated statement.
10816 StmtResult ActOnOpenMPTeamsDistributeDirective(
10817 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10818 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10819 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10820 /// of the associated statement.
10821 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10822 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10823 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10824 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10825 /// after parsing of the associated statement.
10826 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10827 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10828 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10829 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10830 /// after parsing of the associated statement.
10831 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10832 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10833 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10834 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10835 /// associated statement.
10836 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10837 Stmt *AStmt,
10838 SourceLocation StartLoc,
10839 SourceLocation EndLoc);
10840 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10841 /// of the associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10843 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10844 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10845 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10846 /// after parsing of the associated statement.
10847 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10848 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10849 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10850 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10851 /// simd' after parsing of the associated statement.
10852 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10853 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10854 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10855 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10856 /// parsing of the associated statement.
10857 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10858 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10859 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10860 /// Called on well-formed '\#pragma omp interop'.
10861 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10862 SourceLocation StartLoc,
10863 SourceLocation EndLoc);
10864 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10865 // /associated statement.
10866 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10867 Stmt *AStmt, SourceLocation StartLoc,
10868 SourceLocation EndLoc);
10869 /// Called on well-formed '\#pragma omp masked' after parsing of the
10870 // /associated statement.
10871 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10872 Stmt *AStmt, SourceLocation StartLoc,
10873 SourceLocation EndLoc);
10874
10875 /// Checks correctness of linear modifiers.
10876 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10877 SourceLocation LinLoc);
10878 /// Checks that the specified declaration matches requirements for the linear
10879 /// decls.
10880 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10881 OpenMPLinearClauseKind LinKind, QualType Type,
10882 bool IsDeclareSimd = false);
10883
10884 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10885 /// the associated method/function.
10886 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10887 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10888 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10889 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10890 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10891
10892 /// Checks '\#pragma omp declare variant' variant function and original
10893 /// functions after parsing of the associated method/function.
10894 /// \param DG Function declaration to which declare variant directive is
10895 /// applied to.
10896 /// \param VariantRef Expression that references the variant function, which
10897 /// must be used instead of the original one, specified in \p DG.
10898 /// \param TI The trait info object representing the match clause.
10899 /// \returns None, if the function/variant function are not compatible with
10900 /// the pragma, pair of original function/variant ref expression otherwise.
10901 Optional<std::pair<FunctionDecl *, Expr *>>
10902 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10903 OMPTraitInfo &TI, SourceRange SR);
10904
10905 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10906 /// the associated method/function.
10907 /// \param FD Function declaration to which declare variant directive is
10908 /// applied to.
10909 /// \param VariantRef Expression that references the variant function, which
10910 /// must be used instead of the original one, specified in \p DG.
10911 /// \param TI The context traits associated with the function variant.
10912 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10913 OMPTraitInfo &TI, SourceRange SR);
10914
10915 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10916 Expr *Expr,
10917 SourceLocation StartLoc,
10918 SourceLocation LParenLoc,
10919 SourceLocation EndLoc);
10920 /// Called on well-formed 'allocator' clause.
10921 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10922 SourceLocation StartLoc,
10923 SourceLocation LParenLoc,
10924 SourceLocation EndLoc);
10925 /// Called on well-formed 'if' clause.
10926 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10927 Expr *Condition, SourceLocation StartLoc,
10928 SourceLocation LParenLoc,
10929 SourceLocation NameModifierLoc,
10930 SourceLocation ColonLoc,
10931 SourceLocation EndLoc);
10932 /// Called on well-formed 'final' clause.
10933 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation EndLoc);
10936 /// Called on well-formed 'num_threads' clause.
10937 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10938 SourceLocation StartLoc,
10939 SourceLocation LParenLoc,
10940 SourceLocation EndLoc);
10941 /// Called on well-formed 'safelen' clause.
10942 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10943 SourceLocation StartLoc,
10944 SourceLocation LParenLoc,
10945 SourceLocation EndLoc);
10946 /// Called on well-formed 'simdlen' clause.
10947 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10948 SourceLocation LParenLoc,
10949 SourceLocation EndLoc);
10950 /// Called on well-form 'sizes' clause.
10951 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10952 SourceLocation StartLoc,
10953 SourceLocation LParenLoc,
10954 SourceLocation EndLoc);
10955 /// Called on well-form 'full' clauses.
10956 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10957 SourceLocation EndLoc);
10958 /// Called on well-form 'partial' clauses.
10959 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10960 SourceLocation LParenLoc,
10961 SourceLocation EndLoc);
10962 /// Called on well-formed 'collapse' clause.
10963 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10964 SourceLocation StartLoc,
10965 SourceLocation LParenLoc,
10966 SourceLocation EndLoc);
10967 /// Called on well-formed 'ordered' clause.
10968 OMPClause *
10969 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10970 SourceLocation LParenLoc = SourceLocation(),
10971 Expr *NumForLoops = nullptr);
10972 /// Called on well-formed 'grainsize' clause.
10973 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10974 SourceLocation LParenLoc,
10975 SourceLocation EndLoc);
10976 /// Called on well-formed 'num_tasks' clause.
10977 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10978 SourceLocation LParenLoc,
10979 SourceLocation EndLoc);
10980 /// Called on well-formed 'hint' clause.
10981 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10982 SourceLocation LParenLoc,
10983 SourceLocation EndLoc);
10984 /// Called on well-formed 'detach' clause.
10985 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10986 SourceLocation LParenLoc,
10987 SourceLocation EndLoc);
10988
10989 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10990 unsigned Argument,
10991 SourceLocation ArgumentLoc,
10992 SourceLocation StartLoc,
10993 SourceLocation LParenLoc,
10994 SourceLocation EndLoc);
10995 /// Called on well-formed 'default' clause.
10996 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
10997 SourceLocation KindLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'proc_bind' clause.
11002 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'order' clause.
11008 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'update' clause.
11014 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019
11020 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11021 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11022 SourceLocation StartLoc, SourceLocation LParenLoc,
11023 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11024 SourceLocation EndLoc);
11025 /// Called on well-formed 'schedule' clause.
11026 OMPClause *ActOnOpenMPScheduleClause(
11027 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11028 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11029 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11030 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11031
11032 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11033 SourceLocation EndLoc);
11034 /// Called on well-formed 'nowait' clause.
11035 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11036 SourceLocation EndLoc);
11037 /// Called on well-formed 'untied' clause.
11038 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'mergeable' clause.
11041 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'read' clause.
11044 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'write' clause.
11047 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'update' clause.
11050 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'capture' clause.
11053 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'seq_cst' clause.
11056 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'acq_rel' clause.
11059 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'acquire' clause.
11062 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'release' clause.
11065 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'relaxed' clause.
11068 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070
11071 /// Called on well-formed 'init' clause.
11072 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11073 bool IsTarget, bool IsTargetSync,
11074 SourceLocation StartLoc,
11075 SourceLocation LParenLoc,
11076 SourceLocation VarLoc,
11077 SourceLocation EndLoc);
11078
11079 /// Called on well-formed 'use' clause.
11080 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc, SourceLocation EndLoc);
11083
11084 /// Called on well-formed 'destroy' clause.
11085 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11086 SourceLocation LParenLoc,
11087 SourceLocation VarLoc,
11088 SourceLocation EndLoc);
11089 /// Called on well-formed 'novariants' clause.
11090 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11091 SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation EndLoc);
11094 /// Called on well-formed 'nocontext' clause.
11095 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11096 SourceLocation StartLoc,
11097 SourceLocation LParenLoc,
11098 SourceLocation EndLoc);
11099 /// Called on well-formed 'filter' clause.
11100 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11101 SourceLocation LParenLoc,
11102 SourceLocation EndLoc);
11103 /// Called on well-formed 'threads' clause.
11104 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11105 SourceLocation EndLoc);
11106 /// Called on well-formed 'simd' clause.
11107 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'nogroup' clause.
11110 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'unified_address' clause.
11113 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115
11116 /// Called on well-formed 'unified_address' clause.
11117 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11118 SourceLocation EndLoc);
11119
11120 /// Called on well-formed 'reverse_offload' clause.
11121 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11122 SourceLocation EndLoc);
11123
11124 /// Called on well-formed 'dynamic_allocators' clause.
11125 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11126 SourceLocation EndLoc);
11127
11128 /// Called on well-formed 'atomic_default_mem_order' clause.
11129 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11130 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11131 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11132
11133 OMPClause *ActOnOpenMPVarListClause(
11134 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11135 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11136 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11137 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11138 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11139 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11140 SourceLocation ExtraModifierLoc,
11141 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11142 ArrayRef<SourceLocation> MotionModifiersLoc);
11143 /// Called on well-formed 'inclusive' clause.
11144 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11145 SourceLocation StartLoc,
11146 SourceLocation LParenLoc,
11147 SourceLocation EndLoc);
11148 /// Called on well-formed 'exclusive' clause.
11149 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11150 SourceLocation StartLoc,
11151 SourceLocation LParenLoc,
11152 SourceLocation EndLoc);
11153 /// Called on well-formed 'allocate' clause.
11154 OMPClause *
11155 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc, SourceLocation ColonLoc,
11157 SourceLocation LParenLoc, SourceLocation EndLoc);
11158 /// Called on well-formed 'private' clause.
11159 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11160 SourceLocation StartLoc,
11161 SourceLocation LParenLoc,
11162 SourceLocation EndLoc);
11163 /// Called on well-formed 'firstprivate' clause.
11164 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11165 SourceLocation StartLoc,
11166 SourceLocation LParenLoc,
11167 SourceLocation EndLoc);
11168 /// Called on well-formed 'lastprivate' clause.
11169 OMPClause *ActOnOpenMPLastprivateClause(
11170 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11171 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11172 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11173 /// Called on well-formed 'shared' clause.
11174 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11175 SourceLocation StartLoc,
11176 SourceLocation LParenLoc,
11177 SourceLocation EndLoc);
11178 /// Called on well-formed 'reduction' clause.
11179 OMPClause *ActOnOpenMPReductionClause(
11180 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11181 SourceLocation StartLoc, SourceLocation LParenLoc,
11182 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11183 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11184 const DeclarationNameInfo &ReductionId,
11185 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11186 /// Called on well-formed 'task_reduction' clause.
11187 OMPClause *ActOnOpenMPTaskReductionClause(
11188 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11189 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11190 CXXScopeSpec &ReductionIdScopeSpec,
11191 const DeclarationNameInfo &ReductionId,
11192 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11193 /// Called on well-formed 'in_reduction' clause.
11194 OMPClause *ActOnOpenMPInReductionClause(
11195 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11196 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11197 CXXScopeSpec &ReductionIdScopeSpec,
11198 const DeclarationNameInfo &ReductionId,
11199 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11200 /// Called on well-formed 'linear' clause.
11201 OMPClause *
11202 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11203 SourceLocation StartLoc, SourceLocation LParenLoc,
11204 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11205 SourceLocation ColonLoc, SourceLocation EndLoc);
11206 /// Called on well-formed 'aligned' clause.
11207 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11208 Expr *Alignment,
11209 SourceLocation StartLoc,
11210 SourceLocation LParenLoc,
11211 SourceLocation ColonLoc,
11212 SourceLocation EndLoc);
11213 /// Called on well-formed 'copyin' clause.
11214 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation EndLoc);
11218 /// Called on well-formed 'copyprivate' clause.
11219 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11220 SourceLocation StartLoc,
11221 SourceLocation LParenLoc,
11222 SourceLocation EndLoc);
11223 /// Called on well-formed 'flush' pseudo clause.
11224 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11225 SourceLocation StartLoc,
11226 SourceLocation LParenLoc,
11227 SourceLocation EndLoc);
11228 /// Called on well-formed 'depobj' pseudo clause.
11229 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11230 SourceLocation LParenLoc,
11231 SourceLocation EndLoc);
11232 /// Called on well-formed 'depend' clause.
11233 OMPClause *
11234 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11235 SourceLocation DepLoc, SourceLocation ColonLoc,
11236 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11237 SourceLocation LParenLoc, SourceLocation EndLoc);
11238 /// Called on well-formed 'device' clause.
11239 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11240 Expr *Device, SourceLocation StartLoc,
11241 SourceLocation LParenLoc,
11242 SourceLocation ModifierLoc,
11243 SourceLocation EndLoc);
11244 /// Called on well-formed 'map' clause.
11245 OMPClause *
11246 ActOnOpenMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11247 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11248 CXXScopeSpec &MapperIdScopeSpec,
11249 DeclarationNameInfo &MapperId,
11250 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11251 SourceLocation MapLoc, SourceLocation ColonLoc,
11252 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11253 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11254 /// Called on well-formed 'num_teams' clause.
11255 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11256 SourceLocation LParenLoc,
11257 SourceLocation EndLoc);
11258 /// Called on well-formed 'thread_limit' clause.
11259 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11260 SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'priority' clause.
11264 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11265 SourceLocation LParenLoc,
11266 SourceLocation EndLoc);
11267 /// Called on well-formed 'dist_schedule' clause.
11268 OMPClause *ActOnOpenMPDistScheduleClause(
11269 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11270 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11271 SourceLocation CommaLoc, SourceLocation EndLoc);
11272 /// Called on well-formed 'defaultmap' clause.
11273 OMPClause *ActOnOpenMPDefaultmapClause(
11274 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11276 SourceLocation KindLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'to' clause.
11278 OMPClause *
11279 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11280 ArrayRef<SourceLocation> MotionModifiersLoc,
11281 CXXScopeSpec &MapperIdScopeSpec,
11282 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11283 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11284 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11285 /// Called on well-formed 'from' clause.
11286 OMPClause *
11287 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11288 ArrayRef<SourceLocation> MotionModifiersLoc,
11289 CXXScopeSpec &MapperIdScopeSpec,
11290 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11291 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11292 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11293 /// Called on well-formed 'use_device_ptr' clause.
11294 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11295 const OMPVarListLocTy &Locs);
11296 /// Called on well-formed 'use_device_addr' clause.
11297 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11298 const OMPVarListLocTy &Locs);
11299 /// Called on well-formed 'is_device_ptr' clause.
11300 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11301 const OMPVarListLocTy &Locs);
11302 /// Called on well-formed 'nontemporal' clause.
11303 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11304 SourceLocation StartLoc,
11305 SourceLocation LParenLoc,
11306 SourceLocation EndLoc);
11307
11308 /// Data for list of allocators.
11309 struct UsesAllocatorsData {
11310 /// Allocator.
11311 Expr *Allocator = nullptr;
11312 /// Allocator traits.
11313 Expr *AllocatorTraits = nullptr;
11314 /// Locations of '(' and ')' symbols.
11315 SourceLocation LParenLoc, RParenLoc;
11316 };
11317 /// Called on well-formed 'uses_allocators' clause.
11318 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11319 SourceLocation LParenLoc,
11320 SourceLocation EndLoc,
11321 ArrayRef<UsesAllocatorsData> Data);
11322 /// Called on well-formed 'affinity' clause.
11323 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation ColonLoc,
11326 SourceLocation EndLoc, Expr *Modifier,
11327 ArrayRef<Expr *> Locators);
11328
11329 /// The kind of conversion being performed.
11330 enum CheckedConversionKind {
11331 /// An implicit conversion.
11332 CCK_ImplicitConversion,
11333 /// A C-style cast.
11334 CCK_CStyleCast,
11335 /// A functional-style cast.
11336 CCK_FunctionalCast,
11337 /// A cast other than a C-style cast.
11338 CCK_OtherCast,
11339 /// A conversion for an operand of a builtin overloaded operator.
11340 CCK_ForBuiltinOverloadedOp
11341 };
11342
11343 static bool isCast(CheckedConversionKind CCK) {
11344 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11345 CCK == CCK_OtherCast;
11346 }
11347
11348 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11349 /// cast. If there is already an implicit cast, merge into the existing one.
11350 /// If isLvalue, the result of the cast is an lvalue.
11351 ExprResult
11352 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11353 ExprValueKind VK = VK_PRValue,
11354 const CXXCastPath *BasePath = nullptr,
11355 CheckedConversionKind CCK = CCK_ImplicitConversion);
11356
11357 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11358 /// to the conversion from scalar type ScalarTy to the Boolean type.
11359 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11360
11361 /// IgnoredValueConversions - Given that an expression's result is
11362 /// syntactically ignored, perform any conversions that are
11363 /// required.
11364 ExprResult IgnoredValueConversions(Expr *E);
11365
11366 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11367 // functions and arrays to their respective pointers (C99 6.3.2.1).
11368 ExprResult UsualUnaryConversions(Expr *E);
11369
11370 /// CallExprUnaryConversions - a special case of an unary conversion
11371 /// performed on a function designator of a call expression.
11372 ExprResult CallExprUnaryConversions(Expr *E);
11373
11374 // DefaultFunctionArrayConversion - converts functions and arrays
11375 // to their respective pointers (C99 6.3.2.1).
11376 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11377
11378 // DefaultFunctionArrayLvalueConversion - converts functions and
11379 // arrays to their respective pointers and performs the
11380 // lvalue-to-rvalue conversion.
11381 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11382 bool Diagnose = true);
11383
11384 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11385 // the operand. This function is a no-op if the operand has a function type
11386 // or an array type.
11387 ExprResult DefaultLvalueConversion(Expr *E);
11388
11389 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11390 // do not have a prototype. Integer promotions are performed on each
11391 // argument, and arguments that have type float are promoted to double.
11392 ExprResult DefaultArgumentPromotion(Expr *E);
11393
11394 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11395 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11396 /// we don't have xvalues there.
11397 ExprResult TemporaryMaterializationConversion(Expr *E);
11398
11399 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11400 enum VariadicCallType {
11401 VariadicFunction,
11402 VariadicBlock,
11403 VariadicMethod,
11404 VariadicConstructor,
11405 VariadicDoesNotApply
11406 };
11407
11408 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11409 const FunctionProtoType *Proto,
11410 Expr *Fn);
11411
11412 // Used for determining in which context a type is allowed to be passed to a
11413 // vararg function.
11414 enum VarArgKind {
11415 VAK_Valid,
11416 VAK_ValidInCXX11,
11417 VAK_Undefined,
11418 VAK_MSVCUndefined,
11419 VAK_Invalid
11420 };
11421
11422 // Determines which VarArgKind fits an expression.
11423 VarArgKind isValidVarArgType(const QualType &Ty);
11424
11425 /// Check to see if the given expression is a valid argument to a variadic
11426 /// function, issuing a diagnostic if not.
11427 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11428
11429 /// Check whether the given statement can have musttail applied to it,
11430 /// issuing a diagnostic and returning false if not. In the success case,
11431 /// the statement is rewritten to remove implicit nodes from the return
11432 /// value.
11433 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11434
11435private:
11436 /// Check whether the given statement can have musttail applied to it,
11437 /// issuing a diagnostic and returning false if not.
11438 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11439
11440public:
11441 /// Check to see if a given expression could have '.c_str()' called on it.
11442 bool hasCStrMethod(const Expr *E);
11443
11444 /// GatherArgumentsForCall - Collector argument expressions for various
11445 /// form of call prototypes.
11446 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11447 const FunctionProtoType *Proto,
11448 unsigned FirstParam, ArrayRef<Expr *> Args,
11449 SmallVectorImpl<Expr *> &AllArgs,
11450 VariadicCallType CallType = VariadicDoesNotApply,
11451 bool AllowExplicit = false,
11452 bool IsListInitialization = false);
11453
11454 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11455 // will create a runtime trap if the resulting type is not a POD type.
11456 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11457 FunctionDecl *FDecl);
11458
11459 /// Context in which we're performing a usual arithmetic conversion.
11460 enum ArithConvKind {
11461 /// An arithmetic operation.
11462 ACK_Arithmetic,
11463 /// A bitwise operation.
11464 ACK_BitwiseOp,
11465 /// A comparison.
11466 ACK_Comparison,
11467 /// A conditional (?:) operator.
11468 ACK_Conditional,
11469 /// A compound assignment expression.
11470 ACK_CompAssign,
11471 };
11472
11473 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11474 // operands and then handles various conversions that are common to binary
11475 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11476 // routine returns the first non-arithmetic type found. The client is
11477 // responsible for emitting appropriate error diagnostics.
11478 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11479 SourceLocation Loc, ArithConvKind ACK);
11480
11481 /// AssignConvertType - All of the 'assignment' semantic checks return this
11482 /// enum to indicate whether the assignment was allowed. These checks are
11483 /// done for simple assignments, as well as initialization, return from
11484 /// function, argument passing, etc. The query is phrased in terms of a
11485 /// source and destination type.
11486 enum AssignConvertType {
11487 /// Compatible - the types are compatible according to the standard.
11488 Compatible,
11489
11490 /// PointerToInt - The assignment converts a pointer to an int, which we
11491 /// accept as an extension.
11492 PointerToInt,
11493
11494 /// IntToPointer - The assignment converts an int to a pointer, which we
11495 /// accept as an extension.
11496 IntToPointer,
11497
11498 /// FunctionVoidPointer - The assignment is between a function pointer and
11499 /// void*, which the standard doesn't allow, but we accept as an extension.
11500 FunctionVoidPointer,
11501
11502 /// IncompatiblePointer - The assignment is between two pointers types that
11503 /// are not compatible, but we accept them as an extension.
11504 IncompatiblePointer,
11505
11506 /// IncompatibleFunctionPointer - The assignment is between two function
11507 /// pointers types that are not compatible, but we accept them as an
11508 /// extension.
11509 IncompatibleFunctionPointer,
11510
11511 /// IncompatiblePointerSign - The assignment is between two pointers types
11512 /// which point to integers which have a different sign, but are otherwise
11513 /// identical. This is a subset of the above, but broken out because it's by
11514 /// far the most common case of incompatible pointers.
11515 IncompatiblePointerSign,
11516
11517 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11518 /// c/v/r qualifiers, which we accept as an extension.
11519 CompatiblePointerDiscardsQualifiers,
11520
11521 /// IncompatiblePointerDiscardsQualifiers - The assignment
11522 /// discards qualifiers that we don't permit to be discarded,
11523 /// like address spaces.
11524 IncompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11527 /// changes address spaces in nested pointer types which is not allowed.
11528 /// For instance, converting __private int ** to __generic int ** is
11529 /// illegal even though __private could be converted to __generic.
11530 IncompatibleNestedPointerAddressSpaceMismatch,
11531
11532 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11533 /// nested pointer types, and the qualifiers other than the first two
11534 /// levels differ e.g. char ** -> const char **, but we accept them as an
11535 /// extension.
11536 IncompatibleNestedPointerQualifiers,
11537
11538 /// IncompatibleVectors - The assignment is between two vector types that
11539 /// have the same size, which we accept as an extension.
11540 IncompatibleVectors,
11541
11542 /// IntToBlockPointer - The assignment converts an int to a block
11543 /// pointer. We disallow this.
11544 IntToBlockPointer,
11545
11546 /// IncompatibleBlockPointer - The assignment is between two block
11547 /// pointers types that are not compatible.
11548 IncompatibleBlockPointer,
11549
11550 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11551 /// id type and something else (that is incompatible with it). For example,
11552 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11553 IncompatibleObjCQualifiedId,
11554
11555 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11556 /// object with __weak qualifier.
11557 IncompatibleObjCWeakRef,
11558
11559 /// Incompatible - We reject this conversion outright, it is invalid to
11560 /// represent it in the AST.
11561 Incompatible
11562 };
11563
11564 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11565 /// assignment conversion type specified by ConvTy. This returns true if the
11566 /// conversion was invalid or false if the conversion was accepted.
11567 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11568 SourceLocation Loc,
11569 QualType DstType, QualType SrcType,
11570 Expr *SrcExpr, AssignmentAction Action,
11571 bool *Complained = nullptr);
11572
11573 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11574 /// enum. If AllowMask is true, then we also allow the complement of a valid
11575 /// value, to be used as a mask.
11576 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11577 bool AllowMask) const;
11578
11579 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11580 /// integer not in the range of enum values.
11581 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11582 Expr *SrcExpr);
11583
11584 /// CheckAssignmentConstraints - Perform type checking for assignment,
11585 /// argument passing, variable initialization, and function return values.
11586 /// C99 6.5.16.
11587 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11588 QualType LHSType,
11589 QualType RHSType);
11590
11591 /// Check assignment constraints and optionally prepare for a conversion of
11592 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11593 /// is true.
11594 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11595 ExprResult &RHS,
11596 CastKind &Kind,
11597 bool ConvertRHS = true);
11598
11599 /// Check assignment constraints for an assignment of RHS to LHSType.
11600 ///
11601 /// \param LHSType The destination type for the assignment.
11602 /// \param RHS The source expression for the assignment.
11603 /// \param Diagnose If \c true, diagnostics may be produced when checking
11604 /// for assignability. If a diagnostic is produced, \p RHS will be
11605 /// set to ExprError(). Note that this function may still return
11606 /// without producing a diagnostic, even for an invalid assignment.
11607 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11608 /// in an audited Core Foundation API and does not need to be checked
11609 /// for ARC retain issues.
11610 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11611 /// conversions necessary to perform the assignment. If \c false,
11612 /// \p Diagnose must also be \c false.
11613 AssignConvertType CheckSingleAssignmentConstraints(
11614 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11615 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11616
11617 // If the lhs type is a transparent union, check whether we
11618 // can initialize the transparent union with the given expression.
11619 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11620 ExprResult &RHS);
11621
11622 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11623
11624 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11625
11626 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11627 AssignmentAction Action,
11628 bool AllowExplicit = false);
11629 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11630 const ImplicitConversionSequence& ICS,
11631 AssignmentAction Action,
11632 CheckedConversionKind CCK
11633 = CCK_ImplicitConversion);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const StandardConversionSequence& SCS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK);
11638
11639 ExprResult PerformQualificationConversion(
11640 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11641 CheckedConversionKind CCK = CCK_ImplicitConversion);
11642
11643 /// the following "Check" methods will return a valid/converted QualType
11644 /// or a null QualType (indicating an error diagnostic was issued).
11645
11646 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11647 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11648 ExprResult &RHS);
11649 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11650 ExprResult &RHS);
11651 QualType CheckPointerToMemberOperands( // C++ 5.5
11652 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11653 SourceLocation OpLoc, bool isIndirect);
11654 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11655 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11656 bool IsDivide);
11657 QualType CheckRemainderOperands( // C99 6.5.5
11658 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11659 bool IsCompAssign = false);
11660 QualType CheckAdditionOperands( // C99 6.5.6
11661 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11662 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11663 QualType CheckSubtractionOperands( // C99 6.5.6
11664 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11665 QualType* CompLHSTy = nullptr);
11666 QualType CheckShiftOperands( // C99 6.5.7
11667 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11668 BinaryOperatorKind Opc, bool IsCompAssign = false);
11669 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11670 QualType CheckCompareOperands( // C99 6.5.8/9
11671 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11672 BinaryOperatorKind Opc);
11673 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11674 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11675 BinaryOperatorKind Opc);
11676 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11677 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11678 BinaryOperatorKind Opc);
11679 // CheckAssignmentOperands is used for both simple and compound assignment.
11680 // For simple assignment, pass both expressions and a null converted type.
11681 // For compound assignment, pass both expressions and the converted type.
11682 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11683 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11684
11685 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11686 UnaryOperatorKind Opcode, Expr *Op);
11687 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11688 BinaryOperatorKind Opcode,
11689 Expr *LHS, Expr *RHS);
11690 ExprResult checkPseudoObjectRValue(Expr *E);
11691 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11692
11693 QualType CheckConditionalOperands( // C99 6.5.15
11694 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11695 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11696 QualType CXXCheckConditionalOperands( // C++ 5.16
11697 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11698 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11699 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11700 ExprResult &RHS,
11701 SourceLocation QuestionLoc);
11702 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11703 bool ConvertArgs = true);
11704 QualType FindCompositePointerType(SourceLocation Loc,
11705 ExprResult &E1, ExprResult &E2,
11706 bool ConvertArgs = true) {
11707 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11708 QualType Composite =
11709 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11710 E1 = E1Tmp;
11711 E2 = E2Tmp;
11712 return Composite;
11713 }
11714
11715 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11716 SourceLocation QuestionLoc);
11717
11718 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11719 SourceLocation QuestionLoc);
11720
11721 void DiagnoseAlwaysNonNullPointer(Expr *E,
11722 Expr::NullPointerConstantKind NullType,
11723 bool IsEqual, SourceRange Range);
11724
11725 /// type checking for vector binary operators.
11726 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11727 SourceLocation Loc, bool IsCompAssign,
11728 bool AllowBothBool, bool AllowBoolConversion);
11729 QualType GetSignedVectorType(QualType V);
11730 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11731 SourceLocation Loc,
11732 BinaryOperatorKind Opc);
11733 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11734 SourceLocation Loc);
11735
11736 /// Type checking for matrix binary operators.
11737 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11738 SourceLocation Loc,
11739 bool IsCompAssign);
11740 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11741 SourceLocation Loc, bool IsCompAssign);
11742
11743 bool isValidSveBitcast(QualType srcType, QualType destType);
11744
11745 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11746
11747 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11748 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11749 bool isLaxVectorConversion(QualType srcType, QualType destType);
11750
11751 /// type checking declaration initializers (C99 6.7.8)
11752 bool CheckForConstantInitializer(Expr *e, QualType t);
11753
11754 // type checking C++ declaration initializers (C++ [dcl.init]).
11755
11756 /// ReferenceCompareResult - Expresses the result of comparing two
11757 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11758 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11759 enum ReferenceCompareResult {
11760 /// Ref_Incompatible - The two types are incompatible, so direct
11761 /// reference binding is not possible.
11762 Ref_Incompatible = 0,
11763 /// Ref_Related - The two types are reference-related, which means
11764 /// that their unqualified forms (T1 and T2) are either the same
11765 /// or T1 is a base class of T2.
11766 Ref_Related,
11767 /// Ref_Compatible - The two types are reference-compatible.
11768 Ref_Compatible
11769 };
11770
11771 // Fake up a scoped enumeration that still contextually converts to bool.
11772 struct ReferenceConversionsScope {
11773 /// The conversions that would be performed on an lvalue of type T2 when
11774 /// binding a reference of type T1 to it, as determined when evaluating
11775 /// whether T1 is reference-compatible with T2.
11776 enum ReferenceConversions {
11777 Qualification = 0x1,
11778 NestedQualification = 0x2,
11779 Function = 0x4,
11780 DerivedToBase = 0x8,
11781 ObjC = 0x10,
11782 ObjCLifetime = 0x20,
11783
11784 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11785 };
11786 };
11787 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11788
11789 ReferenceCompareResult
11790 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11791 ReferenceConversions *Conv = nullptr);
11792
11793 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11794 Expr *CastExpr, CastKind &CastKind,
11795 ExprValueKind &VK, CXXCastPath &Path);
11796
11797 /// Force an expression with unknown-type to an expression of the
11798 /// given type.
11799 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11800
11801 /// Type-check an expression that's being passed to an
11802 /// __unknown_anytype parameter.
11803 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11804 Expr *result, QualType &paramType);
11805
11806 // CheckMatrixCast - Check type constraints for matrix casts.
11807 // We allow casting between matrixes of the same dimensions i.e. when they
11808 // have the same number of rows and column. Returns true if the cast is
11809 // invalid.
11810 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11811 CastKind &Kind);
11812
11813 // CheckVectorCast - check type constraints for vectors.
11814 // Since vectors are an extension, there are no C standard reference for this.
11815 // We allow casting between vectors and integer datatypes of the same size.
11816 // returns true if the cast is invalid
11817 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11818 CastKind &Kind);
11819
11820 /// Prepare `SplattedExpr` for a vector splat operation, adding
11821 /// implicit casts if necessary.
11822 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11823
11824 // CheckExtVectorCast - check type constraints for extended vectors.
11825 // Since vectors are an extension, there are no C standard reference for this.
11826 // We allow casting between vectors and integer datatypes of the same size,
11827 // or vectors and the element type of that vector.
11828 // returns the cast expr
11829 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11830 CastKind &Kind);
11831
11832 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11833 SourceLocation LParenLoc,
11834 Expr *CastExpr,
11835 SourceLocation RParenLoc);
11836
11837 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11838
11839 /// Checks for invalid conversions and casts between
11840 /// retainable pointers and other pointer kinds for ARC and Weak.
11841 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11842 QualType castType, Expr *&op,
11843 CheckedConversionKind CCK,
11844 bool Diagnose = true,
11845 bool DiagnoseCFAudited = false,
11846 BinaryOperatorKind Opc = BO_PtrMemD
11847 );
11848
11849 Expr *stripARCUnbridgedCast(Expr *e);
11850 void diagnoseARCUnbridgedCast(Expr *e);
11851
11852 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11853 QualType ExprType);
11854
11855 /// checkRetainCycles - Check whether an Objective-C message send
11856 /// might create an obvious retain cycle.
11857 void checkRetainCycles(ObjCMessageExpr *msg);
11858 void checkRetainCycles(Expr *receiver, Expr *argument);
11859 void checkRetainCycles(VarDecl *Var, Expr *Init);
11860
11861 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11862 /// to weak/__unsafe_unretained type.
11863 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11864
11865 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11866 /// to weak/__unsafe_unretained expression.
11867 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11868
11869 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11870 /// \param Method - May be null.
11871 /// \param [out] ReturnType - The return type of the send.
11872 /// \return true iff there were any incompatible types.
11873 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11874 MultiExprArg Args, Selector Sel,
11875 ArrayRef<SourceLocation> SelectorLocs,
11876 ObjCMethodDecl *Method, bool isClassMessage,
11877 bool isSuperMessage, SourceLocation lbrac,
11878 SourceLocation rbrac, SourceRange RecRange,
11879 QualType &ReturnType, ExprValueKind &VK);
11880
11881 /// Determine the result of a message send expression based on
11882 /// the type of the receiver, the method expected to receive the message,
11883 /// and the form of the message send.
11884 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11885 ObjCMethodDecl *Method, bool isClassMessage,
11886 bool isSuperMessage);
11887
11888 /// If the given expression involves a message send to a method
11889 /// with a related result type, emit a note describing what happened.
11890 void EmitRelatedResultTypeNote(const Expr *E);
11891
11892 /// Given that we had incompatible pointer types in a return
11893 /// statement, check whether we're in a method with a related result
11894 /// type, and if so, emit a note describing what happened.
11895 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11896
11897 class ConditionResult {
11898 Decl *ConditionVar;
11899 FullExprArg Condition;
11900 bool Invalid;
11901 bool HasKnownValue;
11902 bool KnownValue;
11903
11904 friend class Sema;
11905 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11906 bool IsConstexpr)
11907 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11908 HasKnownValue(IsConstexpr && Condition.get() &&
11909 !Condition.get()->isValueDependent()),
11910 KnownValue(HasKnownValue &&
11911 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11912 explicit ConditionResult(bool Invalid)
11913 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11914 HasKnownValue(false), KnownValue(false) {}
11915
11916 public:
11917 ConditionResult() : ConditionResult(false) {}
11918 bool isInvalid() const { return Invalid; }
11919 std::pair<VarDecl *, Expr *> get() const {
11920 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11921 Condition.get());
11922 }
11923 llvm::Optional<bool> getKnownValue() const {
11924 if (!HasKnownValue)
11925 return None;
11926 return KnownValue;
11927 }
11928 };
11929 static ConditionResult ConditionError() { return ConditionResult(true); }
11930
11931 enum class ConditionKind {
11932 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11933 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11934 Switch ///< An integral condition for a 'switch' statement.
11935 };
11936
11937 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11938 Expr *SubExpr, ConditionKind CK);
11939
11940 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11941 SourceLocation StmtLoc,
11942 ConditionKind CK);
11943
11944 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11945
11946 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11947 SourceLocation StmtLoc,
11948 ConditionKind CK);
11949 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11950
11951 /// CheckBooleanCondition - Diagnose problems involving the use of
11952 /// the given expression as a boolean condition (e.g. in an if
11953 /// statement). Also performs the standard function and array
11954 /// decays, possibly changing the input variable.
11955 ///
11956 /// \param Loc - A location associated with the condition, e.g. the
11957 /// 'if' keyword.
11958 /// \return true iff there were any errors
11959 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11960 bool IsConstexpr = false);
11961
11962 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11963 /// found in an explicit(bool) specifier.
11964 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11965
11966 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11967 /// Returns true if the explicit specifier is now resolved.
11968 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11969
11970 /// DiagnoseAssignmentAsCondition - Given that an expression is
11971 /// being used as a boolean condition, warn if it's an assignment.
11972 void DiagnoseAssignmentAsCondition(Expr *E);
11973
11974 /// Redundant parentheses over an equality comparison can indicate
11975 /// that the user intended an assignment used as condition.
11976 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11977
11978 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11979 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11980
11981 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11982 /// the specified width and sign. If an overflow occurs, detect it and emit
11983 /// the specified diagnostic.
11984 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11985 unsigned NewWidth, bool NewSign,
11986 SourceLocation Loc, unsigned DiagID);
11987
11988 /// Checks that the Objective-C declaration is declared in the global scope.
11989 /// Emits an error and marks the declaration as invalid if it's not declared
11990 /// in the global scope.
11991 bool CheckObjCDeclScope(Decl *D);
11992
11993 /// Abstract base class used for diagnosing integer constant
11994 /// expression violations.
11995 class VerifyICEDiagnoser {
11996 public:
11997 bool Suppress;
11998
11999 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12000
12001 virtual SemaDiagnosticBuilder
12002 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12003 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12004 SourceLocation Loc) = 0;
12005 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12006 virtual ~VerifyICEDiagnoser() {}
12007 };
12008
12009 enum AllowFoldKind {
12010 NoFold,
12011 AllowFold,
12012 };
12013
12014 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12015 /// and reports the appropriate diagnostics. Returns false on success.
12016 /// Can optionally return the value of the expression.
12017 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12018 VerifyICEDiagnoser &Diagnoser,
12019 AllowFoldKind CanFold = NoFold);
12020 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12021 unsigned DiagID,
12022 AllowFoldKind CanFold = NoFold);
12023 ExprResult VerifyIntegerConstantExpression(Expr *E,
12024 llvm::APSInt *Result = nullptr,
12025 AllowFoldKind CanFold = NoFold);
12026 ExprResult VerifyIntegerConstantExpression(Expr *E,
12027 AllowFoldKind CanFold = NoFold) {
12028 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12029 }
12030
12031 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12032 /// the correct width, and that the field type is valid.
12033 /// Returns false on success.
12034 /// Can optionally return whether the bit-field is of width 0
12035 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12036 QualType FieldTy, bool IsMsStruct,
12037 Expr *BitWidth, bool *ZeroWidth = nullptr);
12038
12039private:
12040 unsigned ForceCUDAHostDeviceDepth = 0;
12041
12042public:
12043 /// Increments our count of the number of times we've seen a pragma forcing
12044 /// functions to be __host__ __device__. So long as this count is greater
12045 /// than zero, all functions encountered will be __host__ __device__.
12046 void PushForceCUDAHostDevice();
12047
12048 /// Decrements our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. Returns false if the count is 0
12050 /// before incrementing, so you can emit an error.
12051 bool PopForceCUDAHostDevice();
12052
12053 /// Diagnostics that are emitted only if we discover that the given function
12054 /// must be codegen'ed. Because handling these correctly adds overhead to
12055 /// compilation, this is currently only enabled for CUDA compilations.
12056 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12057 std::vector<PartialDiagnosticAt>>
12058 DeviceDeferredDiags;
12059
12060 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12061 /// key in a hashtable, both the FD and location are hashed.
12062 struct FunctionDeclAndLoc {
12063 CanonicalDeclPtr<FunctionDecl> FD;
12064 SourceLocation Loc;
12065 };
12066
12067 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12068 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12069 /// same deferred diag twice.
12070 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12071
12072 /// An inverse call graph, mapping known-emitted functions to one of their
12073 /// known-emitted callers (plus the location of the call).
12074 ///
12075 /// Functions that we can tell a priori must be emitted aren't added to this
12076 /// map.
12077 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12078 /* Caller = */ FunctionDeclAndLoc>
12079 DeviceKnownEmittedFns;
12080
12081 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12082 /// context is "used as device code".
12083 ///
12084 /// - If CurContext is a __host__ function, does not emit any diagnostics
12085 /// unless \p EmitOnBothSides is true.
12086 /// - If CurContext is a __device__ or __global__ function, emits the
12087 /// diagnostics immediately.
12088 /// - If CurContext is a __host__ __device__ function and we are compiling for
12089 /// the device, creates a diagnostic which is emitted if and when we realize
12090 /// that the function will be codegen'ed.
12091 ///
12092 /// Example usage:
12093 ///
12094 /// // Variable-length arrays are not allowed in CUDA device code.
12095 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12096 /// return ExprError();
12097 /// // Otherwise, continue parsing as normal.
12098 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12099 unsigned DiagID);
12100
12101 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12102 /// context is "used as host code".
12103 ///
12104 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12105 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12106
12107 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12108 /// context is "used as device code".
12109 ///
12110 /// - If CurContext is a `declare target` function or it is known that the
12111 /// function is emitted for the device, emits the diagnostics immediately.
12112 /// - If CurContext is a non-`declare target` function and we are compiling
12113 /// for the device, creates a diagnostic which is emitted if and when we
12114 /// realize that the function will be codegen'ed.
12115 ///
12116 /// Example usage:
12117 ///
12118 /// // Variable-length arrays are not allowed in NVPTX device code.
12119 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12120 /// return ExprError();
12121 /// // Otherwise, continue parsing as normal.
12122 SemaDiagnosticBuilder
12123 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12124
12125 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12126 /// context is "used as host code".
12127 ///
12128 /// - If CurContext is a `declare target` function or it is known that the
12129 /// function is emitted for the host, emits the diagnostics immediately.
12130 /// - If CurContext is a non-host function, just ignore it.
12131 ///
12132 /// Example usage:
12133 ///
12134 /// // Variable-length arrays are not allowed in NVPTX device code.
12135 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12136 /// return ExprError();
12137 /// // Otherwise, continue parsing as normal.
12138 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12139 unsigned DiagID, FunctionDecl *FD);
12140
12141 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12142 FunctionDecl *FD = nullptr);
12143 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12144 const PartialDiagnostic &PD,
12145 FunctionDecl *FD = nullptr) {
12146 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12147 }
12148
12149 /// Check if the expression is allowed to be used in expressions for the
12150 /// offloading devices.
12151 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12152
12153 enum CUDAFunctionTarget {
12154 CFT_Device,
12155 CFT_Global,
12156 CFT_Host,
12157 CFT_HostDevice,
12158 CFT_InvalidTarget
12159 };
12160
12161 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12162 /// function.
12163 ///
12164 /// Use this rather than examining the function's attributes yourself -- you
12165 /// will get it wrong. Returns CFT_Host if D is null.
12166 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12167 bool IgnoreImplicitHDAttr = false);
12168 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12169
12170 enum CUDAVariableTarget {
12171 CVT_Device, /// Emitted on device side with a shadow variable on host side
12172 CVT_Host, /// Emitted on host side only
12173 CVT_Both, /// Emitted on both sides with different addresses
12174 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12175 };
12176 /// Determines whether the given variable is emitted on host or device side.
12177 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12178
12179 /// Gets the CUDA target for the current context.
12180 CUDAFunctionTarget CurrentCUDATarget() {
12181 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12182 }
12183
12184 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12185
12186 // CUDA function call preference. Must be ordered numerically from
12187 // worst to best.
12188 enum CUDAFunctionPreference {
12189 CFP_Never, // Invalid caller/callee combination.
12190 CFP_WrongSide, // Calls from host-device to host or device
12191 // function that do not match current compilation
12192 // mode.
12193 CFP_HostDevice, // Any calls to host/device functions.
12194 CFP_SameSide, // Calls from host-device to host or device
12195 // function matching current compilation mode.
12196 CFP_Native, // host-to-host or device-to-device calls.
12197 };
12198
12199 /// Identifies relative preference of a given Caller/Callee
12200 /// combination, based on their host/device attributes.
12201 /// \param Caller function which needs address of \p Callee.
12202 /// nullptr in case of global context.
12203 /// \param Callee target function
12204 ///
12205 /// \returns preference value for particular Caller/Callee combination.
12206 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12207 const FunctionDecl *Callee);
12208
12209 /// Determines whether Caller may invoke Callee, based on their CUDA
12210 /// host/device attributes. Returns false if the call is not allowed.
12211 ///
12212 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12213 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12214 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12215 const FunctionDecl *Callee) {
12216 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12217 }
12218
12219 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12220 /// depending on FD and the current compilation settings.
12221 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12222 const LookupResult &Previous);
12223
12224 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12225 /// and current compilation settings.
12226 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12227
12228public:
12229 /// Check whether we're allowed to call Callee from the current context.
12230 ///
12231 /// - If the call is never allowed in a semantically-correct program
12232 /// (CFP_Never), emits an error and returns false.
12233 ///
12234 /// - If the call is allowed in semantically-correct programs, but only if
12235 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12236 /// be emitted if and when the caller is codegen'ed, and returns true.
12237 ///
12238 /// Will only create deferred diagnostics for a given SourceLocation once,
12239 /// so you can safely call this multiple times without generating duplicate
12240 /// deferred errors.
12241 ///
12242 /// - Otherwise, returns true without emitting any diagnostics.
12243 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12244
12245 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12246
12247 /// Set __device__ or __host__ __device__ attributes on the given lambda
12248 /// operator() method.
12249 ///
12250 /// CUDA lambdas by default is host device function unless it has explicit
12251 /// host or device attribute.
12252 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12253
12254 /// Finds a function in \p Matches with highest calling priority
12255 /// from \p Caller context and erases all functions with lower
12256 /// calling priority.
12257 void EraseUnwantedCUDAMatches(
12258 const FunctionDecl *Caller,
12259 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12260
12261 /// Given a implicit special member, infer its CUDA target from the
12262 /// calls it needs to make to underlying base/field special members.
12263 /// \param ClassDecl the class for which the member is being created.
12264 /// \param CSM the kind of special member.
12265 /// \param MemberDecl the special member itself.
12266 /// \param ConstRHS true if this is a copy operation with a const object on
12267 /// its RHS.
12268 /// \param Diagnose true if this call should emit diagnostics.
12269 /// \return true if there was an error inferring.
12270 /// The result of this call is implicit CUDA target attribute(s) attached to
12271 /// the member declaration.
12272 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12273 CXXSpecialMember CSM,
12274 CXXMethodDecl *MemberDecl,
12275 bool ConstRHS,
12276 bool Diagnose);
12277
12278 /// \return true if \p CD can be considered empty according to CUDA
12279 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12280 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12281 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12282
12283 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12284 // case of error emits appropriate diagnostic and invalidates \p Var.
12285 //
12286 // \details CUDA allows only empty constructors as initializers for global
12287 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12288 // __shared__ variables whether they are local or not (they all are implicitly
12289 // static in CUDA). One exception is that CUDA allows constant initializers
12290 // for __constant__ and __device__ variables.
12291 void checkAllowedCUDAInitializer(VarDecl *VD);
12292
12293 /// Check whether NewFD is a valid overload for CUDA. Emits
12294 /// diagnostics and invalidates NewFD if not.
12295 void checkCUDATargetOverload(FunctionDecl *NewFD,
12296 const LookupResult &Previous);
12297 /// Copies target attributes from the template TD to the function FD.
12298 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12299
12300 /// Returns the name of the launch configuration function. This is the name
12301 /// of the function that will be called to configure kernel call, with the
12302 /// parameters specified via <<<>>>.
12303 std::string getCudaConfigureFuncName() const;
12304
12305 /// \name Code completion
12306 //@{
12307 /// Describes the context in which code completion occurs.
12308 enum ParserCompletionContext {
12309 /// Code completion occurs at top-level or namespace context.
12310 PCC_Namespace,
12311 /// Code completion occurs within a class, struct, or union.
12312 PCC_Class,
12313 /// Code completion occurs within an Objective-C interface, protocol,
12314 /// or category.
12315 PCC_ObjCInterface,
12316 /// Code completion occurs within an Objective-C implementation or
12317 /// category implementation
12318 PCC_ObjCImplementation,
12319 /// Code completion occurs within the list of instance variables
12320 /// in an Objective-C interface, protocol, category, or implementation.
12321 PCC_ObjCInstanceVariableList,
12322 /// Code completion occurs following one or more template
12323 /// headers.
12324 PCC_Template,
12325 /// Code completion occurs following one or more template
12326 /// headers within a class.
12327 PCC_MemberTemplate,
12328 /// Code completion occurs within an expression.
12329 PCC_Expression,
12330 /// Code completion occurs within a statement, which may
12331 /// also be an expression or a declaration.
12332 PCC_Statement,
12333 /// Code completion occurs at the beginning of the
12334 /// initialization statement (or expression) in a for loop.
12335 PCC_ForInit,
12336 /// Code completion occurs within the condition of an if,
12337 /// while, switch, or for statement.
12338 PCC_Condition,
12339 /// Code completion occurs within the body of a function on a
12340 /// recovery path, where we do not have a specific handle on our position
12341 /// in the grammar.
12342 PCC_RecoveryInFunction,
12343 /// Code completion occurs where only a type is permitted.
12344 PCC_Type,
12345 /// Code completion occurs in a parenthesized expression, which
12346 /// might also be a type cast.
12347 PCC_ParenthesizedExpression,
12348 /// Code completion occurs within a sequence of declaration
12349 /// specifiers within a function, method, or block.
12350 PCC_LocalDeclarationSpecifiers
12351 };
12352
12353 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12354 void CodeCompleteOrdinaryName(Scope *S,
12355 ParserCompletionContext CompletionContext);
12356 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12357 bool AllowNonIdentifiers,
12358 bool AllowNestedNameSpecifiers);
12359
12360 struct CodeCompleteExpressionData;
12361 void CodeCompleteExpression(Scope *S,
12362 const CodeCompleteExpressionData &Data);
12363 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12364 bool IsParenthesized = false);
12365 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12366 SourceLocation OpLoc, bool IsArrow,
12367 bool IsBaseExprStatement,
12368 QualType PreferredType);
12369 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12370 QualType PreferredType);
12371 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12372 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12373 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12374 const VirtSpecifiers *VS = nullptr);
12375 void CodeCompleteBracketDeclarator(Scope *S);
12376 void CodeCompleteCase(Scope *S);
12377 /// Determines the preferred type of the current function argument, by
12378 /// examining the signatures of all possible overloads.
12379 /// Returns null if unknown or ambiguous, or if code completion is off.
12380 ///
12381 /// If the code completion point has been reached, also reports the function
12382 /// signatures that were considered.
12383 ///
12384 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12385 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12386 SourceLocation OpenParLoc);
12387 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12388 SourceLocation Loc,
12389 ArrayRef<Expr *> Args,
12390 SourceLocation OpenParLoc);
12391 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12392 CXXScopeSpec SS,
12393 ParsedType TemplateTypeTy,
12394 ArrayRef<Expr *> ArgExprs,
12395 IdentifierInfo *II,
12396 SourceLocation OpenParLoc);
12397 void CodeCompleteInitializer(Scope *S, Decl *D);
12398 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12399 /// expressions in the initializer list seen so far and \p D is the current
12400 /// Designation being parsed.
12401 void CodeCompleteDesignator(const QualType BaseType,
12402 llvm::ArrayRef<Expr *> InitExprs,
12403 const Designation &D);
12404 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12405
12406 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12407 bool IsUsingDeclaration, QualType BaseType,
12408 QualType PreferredType);
12409 void CodeCompleteUsing(Scope *S);
12410 void CodeCompleteUsingDirective(Scope *S);
12411 void CodeCompleteNamespaceDecl(Scope *S);
12412 void CodeCompleteNamespaceAliasDecl(Scope *S);
12413 void CodeCompleteOperatorName(Scope *S);
12414 void CodeCompleteConstructorInitializer(
12415 Decl *Constructor,
12416 ArrayRef<CXXCtorInitializer *> Initializers);
12417
12418 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12419 bool AfterAmpersand);
12420 void CodeCompleteAfterFunctionEquals(Declarator &D);
12421
12422 void CodeCompleteObjCAtDirective(Scope *S);
12423 void CodeCompleteObjCAtVisibility(Scope *S);
12424 void CodeCompleteObjCAtStatement(Scope *S);
12425 void CodeCompleteObjCAtExpression(Scope *S);
12426 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12427 void CodeCompleteObjCPropertyGetter(Scope *S);
12428 void CodeCompleteObjCPropertySetter(Scope *S);
12429 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12430 bool IsParameter);
12431 void CodeCompleteObjCMessageReceiver(Scope *S);
12432 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12433 ArrayRef<IdentifierInfo *> SelIdents,
12434 bool AtArgumentExpression);
12435 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12436 ArrayRef<IdentifierInfo *> SelIdents,
12437 bool AtArgumentExpression,
12438 bool IsSuper = false);
12439 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12440 ArrayRef<IdentifierInfo *> SelIdents,
12441 bool AtArgumentExpression,
12442 ObjCInterfaceDecl *Super = nullptr);
12443 void CodeCompleteObjCForCollection(Scope *S,
12444 DeclGroupPtrTy IterationVar);
12445 void CodeCompleteObjCSelector(Scope *S,
12446 ArrayRef<IdentifierInfo *> SelIdents);
12447 void CodeCompleteObjCProtocolReferences(
12448 ArrayRef<IdentifierLocPair> Protocols);
12449 void CodeCompleteObjCProtocolDecl(Scope *S);
12450 void CodeCompleteObjCInterfaceDecl(Scope *S);
12451 void CodeCompleteObjCSuperclass(Scope *S,
12452 IdentifierInfo *ClassName,
12453 SourceLocation ClassNameLoc);
12454 void CodeCompleteObjCImplementationDecl(Scope *S);
12455 void CodeCompleteObjCInterfaceCategory(Scope *S,
12456 IdentifierInfo *ClassName,
12457 SourceLocation ClassNameLoc);
12458 void CodeCompleteObjCImplementationCategory(Scope *S,
12459 IdentifierInfo *ClassName,
12460 SourceLocation ClassNameLoc);
12461 void CodeCompleteObjCPropertyDefinition(Scope *S);
12462 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12463 IdentifierInfo *PropertyName);
12464 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12465 ParsedType ReturnType);
12466 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12467 bool IsInstanceMethod,
12468 bool AtParameterName,
12469 ParsedType ReturnType,
12470 ArrayRef<IdentifierInfo *> SelIdents);
12471 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12472 SourceLocation ClassNameLoc,
12473 bool IsBaseExprStatement);
12474 void CodeCompletePreprocessorDirective(bool InConditional);
12475 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12476 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12477 void CodeCompletePreprocessorExpression();
12478 void CodeCompletePreprocessorMacroArgument(Scope *S,
12479 IdentifierInfo *Macro,
12480 MacroInfo *MacroInfo,
12481 unsigned Argument);
12482 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12483 void CodeCompleteNaturalLanguage();
12484 void CodeCompleteAvailabilityPlatformName();
12485 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12486 CodeCompletionTUInfo &CCTUInfo,
12487 SmallVectorImpl<CodeCompletionResult> &Results);
12488 //@}
12489
12490 //===--------------------------------------------------------------------===//
12491 // Extra semantic analysis beyond the C type system
12492
12493public:
12494 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12495 unsigned ByteNo) const;
12496
12497private:
12498 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12499 const ArraySubscriptExpr *ASE=nullptr,
12500 bool AllowOnePastEnd=true, bool IndexNegated=false);
12501 void CheckArrayAccess(const Expr *E);
12502 // Used to grab the relevant information from a FormatAttr and a
12503 // FunctionDeclaration.
12504 struct FormatStringInfo {
12505 unsigned FormatIdx;
12506 unsigned FirstDataArg;
12507 bool HasVAListArg;
12508 };
12509
12510 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12511 FormatStringInfo *FSI);
12512 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12513 const FunctionProtoType *Proto);
12514 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12515 ArrayRef<const Expr *> Args);
12516 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12517 const FunctionProtoType *Proto);
12518 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12519 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12520 ArrayRef<const Expr *> Args,
12521 const FunctionProtoType *Proto, SourceLocation Loc);
12522
12523 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12524 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12525
12526 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12527 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12528 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12529 VariadicCallType CallType);
12530
12531 bool CheckObjCString(Expr *Arg);
12532 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12533
12534 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12535 unsigned BuiltinID, CallExpr *TheCall);
12536
12537 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12538 CallExpr *TheCall);
12539
12540 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12541
12542 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12543 unsigned MaxWidth);
12544 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12545 CallExpr *TheCall);
12546 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12547 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12548 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12549 CallExpr *TheCall);
12550 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12551 bool WantCDE);
12552 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12553 CallExpr *TheCall);
12554
12555 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12556 CallExpr *TheCall);
12557 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12558 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12559 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12560 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12561 CallExpr *TheCall);
12562 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12565 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12566 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12567 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12568 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12569 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12570 ArrayRef<int> ArgNums);
12571 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12572 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12573 ArrayRef<int> ArgNums);
12574 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12580 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12581 CallExpr *TheCall);
12582
12583 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12584 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12585 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12586 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12587 bool SemaBuiltinComplex(CallExpr *TheCall);
12588 bool SemaBuiltinVSX(CallExpr *TheCall);
12589 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12590 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12591
12592public:
12593 // Used by C++ template instantiation.
12594 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12595 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12596 SourceLocation BuiltinLoc,
12597 SourceLocation RParenLoc);
12598
12599private:
12600 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12601 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12602 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12603 bool SemaBuiltinAssume(CallExpr *TheCall);
12604 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12605 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12606 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12607 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12608 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12609 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12610 AtomicExpr::AtomicOp Op);
12611 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12612 bool IsDelete);
12613 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12614 llvm::APSInt &Result);
12615 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12616 int High, bool RangeIsError = true);
12617 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12618 unsigned Multiple);
12619 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12620 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12621 unsigned ArgBits);
12622 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12623 unsigned ArgBits);
12624 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12625 int ArgNum, unsigned ExpectedFieldNum,
12626 bool AllowName);
12627 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12628 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12629
12630 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12631
12632 // Matrix builtin handling.
12633 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12634 ExprResult CallResult);
12635 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12636 ExprResult CallResult);
12637 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12638 ExprResult CallResult);
12639
12640public:
12641 enum FormatStringType {
12642 FST_Scanf,
12643 FST_Printf,
12644 FST_NSString,
12645 FST_Strftime,
12646 FST_Strfmon,
12647 FST_Kprintf,
12648 FST_FreeBSDKPrintf,
12649 FST_OSTrace,
12650 FST_OSLog,
12651 FST_Syslog,
12652 FST_Unknown
12653 };
12654 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12655
12656 bool FormatStringHasSArg(const StringLiteral *FExpr);
12657
12658 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12659
12660private:
12661 bool CheckFormatArguments(const FormatAttr *Format,
12662 ArrayRef<const Expr *> Args,
12663 bool IsCXXMember,
12664 VariadicCallType CallType,
12665 SourceLocation Loc, SourceRange Range,
12666 llvm::SmallBitVector &CheckedVarArgs);
12667 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12668 bool HasVAListArg, unsigned format_idx,
12669 unsigned firstDataArg, FormatStringType Type,
12670 VariadicCallType CallType,
12671 SourceLocation Loc, SourceRange range,
12672 llvm::SmallBitVector &CheckedVarArgs);
12673
12674 void CheckAbsoluteValueFunction(const CallExpr *Call,
12675 const FunctionDecl *FDecl);
12676
12677 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12678
12679 void CheckMemaccessArguments(const CallExpr *Call,
12680 unsigned BId,
12681 IdentifierInfo *FnName);
12682
12683 void CheckStrlcpycatArguments(const CallExpr *Call,
12684 IdentifierInfo *FnName);
12685
12686 void CheckStrncatArguments(const CallExpr *Call,
12687 IdentifierInfo *FnName);
12688
12689 void CheckFreeArguments(const CallExpr *E);
12690
12691 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12692 SourceLocation ReturnLoc,
12693 bool isObjCMethod = false,
12694 const AttrVec *Attrs = nullptr,
12695 const FunctionDecl *FD = nullptr);
12696
12697public:
12698 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12699
12700private:
12701 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12702 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12703 void CheckForIntOverflow(Expr *E);
12704 void CheckUnsequencedOperations(const Expr *E);
12705
12706 /// Perform semantic checks on a completed expression. This will either
12707 /// be a full-expression or a default argument expression.
12708 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12709 bool IsConstexpr = false);
12710
12711 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12712 Expr *Init);
12713
12714 /// Check if there is a field shadowing.
12715 void CheckShadowInheritedFields(const SourceLocation &Loc,
12716 DeclarationName FieldName,
12717 const CXXRecordDecl *RD,
12718 bool DeclIsField = true);
12719
12720 /// Check if the given expression contains 'break' or 'continue'
12721 /// statement that produces control flow different from GCC.
12722 void CheckBreakContinueBinding(Expr *E);
12723
12724 /// Check whether receiver is mutable ObjC container which
12725 /// attempts to add itself into the container
12726 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12727
12728 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12729
12730 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12731 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12732 bool DeleteWasArrayForm);
12733public:
12734 /// Register a magic integral constant to be used as a type tag.
12735 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12736 uint64_t MagicValue, QualType Type,
12737 bool LayoutCompatible, bool MustBeNull);
12738
12739 struct TypeTagData {
12740 TypeTagData() {}
12741
12742 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12743 Type(Type), LayoutCompatible(LayoutCompatible),
12744 MustBeNull(MustBeNull)
12745 {}
12746
12747 QualType Type;
12748
12749 /// If true, \c Type should be compared with other expression's types for
12750 /// layout-compatibility.
12751 unsigned LayoutCompatible : 1;
12752 unsigned MustBeNull : 1;
12753 };
12754
12755 /// A pair of ArgumentKind identifier and magic value. This uniquely
12756 /// identifies the magic value.
12757 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12758
12759private:
12760 /// A map from magic value to type information.
12761 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12762 TypeTagForDatatypeMagicValues;
12763
12764 /// Peform checks on a call of a function with argument_with_type_tag
12765 /// or pointer_with_type_tag attributes.
12766 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12767 const ArrayRef<const Expr *> ExprArgs,
12768 SourceLocation CallSiteLoc);
12769
12770 /// Check if we are taking the address of a packed field
12771 /// as this may be a problem if the pointer value is dereferenced.
12772 void CheckAddressOfPackedMember(Expr *rhs);
12773
12774 /// The parser's current scope.
12775 ///
12776 /// The parser maintains this state here.
12777 Scope *CurScope;
12778
12779 mutable IdentifierInfo *Ident_super;
12780 mutable IdentifierInfo *Ident___float128;
12781
12782 /// Nullability type specifiers.
12783 IdentifierInfo *Ident__Nonnull = nullptr;
12784 IdentifierInfo *Ident__Nullable = nullptr;
12785 IdentifierInfo *Ident__Nullable_result = nullptr;
12786 IdentifierInfo *Ident__Null_unspecified = nullptr;
12787
12788 IdentifierInfo *Ident_NSError = nullptr;
12789
12790 /// The handler for the FileChanged preprocessor events.
12791 ///
12792 /// Used for diagnostics that implement custom semantic analysis for #include
12793 /// directives, like -Wpragma-pack.
12794 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12795
12796protected:
12797 friend class Parser;
12798 friend class InitializationSequence;
12799 friend class ASTReader;
12800 friend class ASTDeclReader;
12801 friend class ASTWriter;
12802
12803public:
12804 /// Retrieve the keyword associated
12805 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12806
12807 /// The struct behind the CFErrorRef pointer.
12808 RecordDecl *CFError = nullptr;
12809 bool isCFError(RecordDecl *D);
12810
12811 /// Retrieve the identifier "NSError".
12812 IdentifierInfo *getNSErrorIdent();
12813
12814 /// Retrieve the parser's current scope.
12815 ///
12816 /// This routine must only be used when it is certain that semantic analysis
12817 /// and the parser are in precisely the same context, which is not the case
12818 /// when, e.g., we are performing any kind of template instantiation.
12819 /// Therefore, the only safe places to use this scope are in the parser
12820 /// itself and in routines directly invoked from the parser and *never* from
12821 /// template substitution or instantiation.
12822 Scope *getCurScope() const { return CurScope; }
12823
12824 void incrementMSManglingNumber() const {
12825 return CurScope->incrementMSManglingNumber();
12826 }
12827
12828 IdentifierInfo *getSuperIdentifier() const;
12829 IdentifierInfo *getFloat128Identifier() const;
12830
12831 Decl *getObjCDeclContext() const;
12832
12833 DeclContext *getCurLexicalContext() const {
12834 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12835 }
12836
12837 const DeclContext *getCurObjCLexicalContext() const {
12838 const DeclContext *DC = getCurLexicalContext();
12839 // A category implicitly has the attribute of the interface.
12840 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12841 DC = CatD->getClassInterface();
12842 return DC;
12843 }
12844
12845 /// Determine the number of levels of enclosing template parameters. This is
12846 /// only usable while parsing. Note that this does not include dependent
12847 /// contexts in which no template parameters have yet been declared, such as
12848 /// in a terse function template or generic lambda before the first 'auto' is
12849 /// encountered.
12850 unsigned getTemplateDepth(Scope *S) const;
12851
12852 /// To be used for checking whether the arguments being passed to
12853 /// function exceeds the number of parameters expected for it.
12854 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12855 bool PartialOverloading = false) {
12856 // We check whether we're just after a comma in code-completion.
12857 if (NumArgs > 0 && PartialOverloading)
12858 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12859 return NumArgs > NumParams;
12860 }
12861
12862 // Emitting members of dllexported classes is delayed until the class
12863 // (including field initializers) is fully parsed.
12864 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12865 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12866
12867private:
12868 int ParsingClassDepth = 0;
12869
12870 class SavePendingParsedClassStateRAII {
12871 public:
12872 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12873
12874 ~SavePendingParsedClassStateRAII() {
12875 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&((void)0)
12876 "there shouldn't be any pending delayed exception spec checks")((void)0);
12877 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&((void)0)
12878 "there shouldn't be any pending delayed exception spec checks")((void)0);
12879 swapSavedState();
12880 }
12881
12882 private:
12883 Sema &S;
12884 decltype(DelayedOverridingExceptionSpecChecks)
12885 SavedOverridingExceptionSpecChecks;
12886 decltype(DelayedEquivalentExceptionSpecChecks)
12887 SavedEquivalentExceptionSpecChecks;
12888
12889 void swapSavedState() {
12890 SavedOverridingExceptionSpecChecks.swap(
12891 S.DelayedOverridingExceptionSpecChecks);
12892 SavedEquivalentExceptionSpecChecks.swap(
12893 S.DelayedEquivalentExceptionSpecChecks);
12894 }
12895 };
12896
12897 /// Helper class that collects misaligned member designations and
12898 /// their location info for delayed diagnostics.
12899 struct MisalignedMember {
12900 Expr *E;
12901 RecordDecl *RD;
12902 ValueDecl *MD;
12903 CharUnits Alignment;
12904
12905 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12906 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12907 CharUnits Alignment)
12908 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12909 explicit MisalignedMember(Expr *E)
12910 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12911
12912 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12913 };
12914 /// Small set of gathered accesses to potentially misaligned members
12915 /// due to the packed attribute.
12916 SmallVector<MisalignedMember, 4> MisalignedMembers;
12917
12918 /// Adds an expression to the set of gathered misaligned members.
12919 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment);
12921
12922public:
12923 /// Diagnoses the current set of gathered accesses. This typically
12924 /// happens at full expression level. The set is cleared after emitting the
12925 /// diagnostics.
12926 void DiagnoseMisalignedMembers();
12927
12928 /// This function checks if the expression is in the sef of potentially
12929 /// misaligned members and it is converted to some pointer type T with lower
12930 /// or equal alignment requirements. If so it removes it. This is used when
12931 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12932 /// void*).
12933 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12934
12935 /// This function calls Action when it determines that E designates a
12936 /// misaligned member due to the packed attribute. This is used to emit
12937 /// local diagnostics like in reference binding.
12938 void RefersToMemberWithReducedAlignment(
12939 Expr *E,
12940 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12941 Action);
12942
12943 /// Describes the reason a calling convention specification was ignored, used
12944 /// for diagnostics.
12945 enum class CallingConventionIgnoredReason {
12946 ForThisTarget = 0,
12947 VariadicFunction,
12948 ConstructorDestructor,
12949 BuiltinFunction
12950 };
12951 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12952 /// context is "used as device code".
12953 ///
12954 /// - If CurLexicalContext is a kernel function or it is known that the
12955 /// function will be emitted for the device, emits the diagnostics
12956 /// immediately.
12957 /// - If CurLexicalContext is a function and we are compiling
12958 /// for the device, but we don't know that this function will be codegen'ed
12959 /// for devive yet, creates a diagnostic which is emitted if and when we
12960 /// realize that the function will be codegen'ed.
12961 ///
12962 /// Example usage:
12963 ///
12964 /// Diagnose __float128 type usage only from SYCL device code if the current
12965 /// target doesn't support it
12966 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12967 /// S.getLangOpts().SYCLIsDevice)
12968 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12969 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12970 unsigned DiagID);
12971
12972 /// Check whether we're allowed to call Callee from the current context.
12973 ///
12974 /// - If the call is never allowed in a semantically-correct program
12975 /// emits an error and returns false.
12976 ///
12977 /// - If the call is allowed in semantically-correct programs, but only if
12978 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12979 /// and when the caller is codegen'ed, and returns true.
12980 ///
12981 /// - Otherwise, returns true without emitting any diagnostics.
12982 ///
12983 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12984 /// codegen'ed yet.
12985 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12986};
12987
12988/// RAII object that enters a new expression evaluation context.
12989class EnterExpressionEvaluationContext {
12990 Sema &Actions;
12991 bool Entered = true;
12992
12993public:
12994 EnterExpressionEvaluationContext(
12995 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
12996 Decl *LambdaContextDecl = nullptr,
12997 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
12998 Sema::ExpressionEvaluationContextRecord::EK_Other,
12999 bool ShouldEnter = true)
13000 : Actions(Actions), Entered(ShouldEnter) {
13001 if (Entered)
13002 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13003 ExprContext);
13004 }
13005 EnterExpressionEvaluationContext(
13006 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13007 Sema::ReuseLambdaContextDecl_t,
13008 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13009 Sema::ExpressionEvaluationContextRecord::EK_Other)
13010 : Actions(Actions) {
13011 Actions.PushExpressionEvaluationContext(
13012 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13013 }
13014
13015 enum InitListTag { InitList };
13016 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13017 bool ShouldEnter = true)
13018 : Actions(Actions), Entered(false) {
13019 // In C++11 onwards, narrowing checks are performed on the contents of
13020 // braced-init-lists, even when they occur within unevaluated operands.
13021 // Therefore we still need to instantiate constexpr functions used in such
13022 // a context.
13023 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13024 Actions.getLangOpts().CPlusPlus11) {
13025 Actions.PushExpressionEvaluationContext(
13026 Sema::ExpressionEvaluationContext::UnevaluatedList);
13027 Entered = true;
13028 }
13029 }
13030
13031 ~EnterExpressionEvaluationContext() {
13032 if (Entered)
13033 Actions.PopExpressionEvaluationContext();
13034 }
13035};
13036
13037DeductionFailureInfo
13038MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13039 sema::TemplateDeductionInfo &Info);
13040
13041/// Contains a late templated function.
13042/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13043struct LateParsedTemplate {
13044 CachedTokens Toks;
13045 /// The template function declaration to be late parsed.
13046 Decl *D;
13047};
13048
13049template <>
13050void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13051 PragmaMsStackAction Action,
13052 llvm::StringRef StackSlotLabel,
13053 AlignPackInfo Value);
13054
13055} // end namespace clang
13056
13057namespace llvm {
13058// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13059// SourceLocation.
13060template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13061 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13062 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13063
13064 static FunctionDeclAndLoc getEmptyKey() {
13065 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13066 }
13067
13068 static FunctionDeclAndLoc getTombstoneKey() {
13069 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13070 }
13071
13072 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13073 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13074 FDL.Loc.getHashValue());
13075 }
13076
13077 static bool isEqual(const FunctionDeclAndLoc &LHS,
13078 const FunctionDeclAndLoc &RHS) {
13079 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13080 }
13081};
13082} // namespace llvm
13083
13084#endif