File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp |
Warning: | line 767, column 29 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// | ||||||||||||||
2 | // | ||||||||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||||||
6 | // | ||||||||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||||||||
8 | // | ||||||||||||||
9 | // This pass performs various transformations related to eliminating memcpy | ||||||||||||||
10 | // calls, or transforming sets of stores into memset's. | ||||||||||||||
11 | // | ||||||||||||||
12 | //===----------------------------------------------------------------------===// | ||||||||||||||
13 | |||||||||||||||
14 | #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" | ||||||||||||||
15 | #include "llvm/ADT/DenseSet.h" | ||||||||||||||
16 | #include "llvm/ADT/None.h" | ||||||||||||||
17 | #include "llvm/ADT/STLExtras.h" | ||||||||||||||
18 | #include "llvm/ADT/SmallVector.h" | ||||||||||||||
19 | #include "llvm/ADT/Statistic.h" | ||||||||||||||
20 | #include "llvm/ADT/iterator_range.h" | ||||||||||||||
21 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||||||||||
22 | #include "llvm/Analysis/AssumptionCache.h" | ||||||||||||||
23 | #include "llvm/Analysis/GlobalsModRef.h" | ||||||||||||||
24 | #include "llvm/Analysis/Loads.h" | ||||||||||||||
25 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | ||||||||||||||
26 | #include "llvm/Analysis/MemoryLocation.h" | ||||||||||||||
27 | #include "llvm/Analysis/MemorySSA.h" | ||||||||||||||
28 | #include "llvm/Analysis/MemorySSAUpdater.h" | ||||||||||||||
29 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||||||||
30 | #include "llvm/Analysis/ValueTracking.h" | ||||||||||||||
31 | #include "llvm/IR/Argument.h" | ||||||||||||||
32 | #include "llvm/IR/BasicBlock.h" | ||||||||||||||
33 | #include "llvm/IR/Constants.h" | ||||||||||||||
34 | #include "llvm/IR/DataLayout.h" | ||||||||||||||
35 | #include "llvm/IR/DerivedTypes.h" | ||||||||||||||
36 | #include "llvm/IR/Dominators.h" | ||||||||||||||
37 | #include "llvm/IR/Function.h" | ||||||||||||||
38 | #include "llvm/IR/GetElementPtrTypeIterator.h" | ||||||||||||||
39 | #include "llvm/IR/GlobalVariable.h" | ||||||||||||||
40 | #include "llvm/IR/IRBuilder.h" | ||||||||||||||
41 | #include "llvm/IR/InstrTypes.h" | ||||||||||||||
42 | #include "llvm/IR/Instruction.h" | ||||||||||||||
43 | #include "llvm/IR/Instructions.h" | ||||||||||||||
44 | #include "llvm/IR/IntrinsicInst.h" | ||||||||||||||
45 | #include "llvm/IR/Intrinsics.h" | ||||||||||||||
46 | #include "llvm/IR/LLVMContext.h" | ||||||||||||||
47 | #include "llvm/IR/Module.h" | ||||||||||||||
48 | #include "llvm/IR/Operator.h" | ||||||||||||||
49 | #include "llvm/IR/PassManager.h" | ||||||||||||||
50 | #include "llvm/IR/Type.h" | ||||||||||||||
51 | #include "llvm/IR/User.h" | ||||||||||||||
52 | #include "llvm/IR/Value.h" | ||||||||||||||
53 | #include "llvm/InitializePasses.h" | ||||||||||||||
54 | #include "llvm/Pass.h" | ||||||||||||||
55 | #include "llvm/Support/Casting.h" | ||||||||||||||
56 | #include "llvm/Support/Debug.h" | ||||||||||||||
57 | #include "llvm/Support/MathExtras.h" | ||||||||||||||
58 | #include "llvm/Support/raw_ostream.h" | ||||||||||||||
59 | #include "llvm/Transforms/Scalar.h" | ||||||||||||||
60 | #include "llvm/Transforms/Utils/Local.h" | ||||||||||||||
61 | #include <algorithm> | ||||||||||||||
62 | #include <cassert> | ||||||||||||||
63 | #include <cstdint> | ||||||||||||||
64 | #include <utility> | ||||||||||||||
65 | |||||||||||||||
66 | using namespace llvm; | ||||||||||||||
67 | |||||||||||||||
68 | #define DEBUG_TYPE"memcpyopt" "memcpyopt" | ||||||||||||||
69 | |||||||||||||||
70 | static cl::opt<bool> | ||||||||||||||
71 | EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden, | ||||||||||||||
72 | cl::desc("Use MemorySSA-backed MemCpyOpt.")); | ||||||||||||||
73 | |||||||||||||||
74 | STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted")static llvm::Statistic NumMemCpyInstr = {"memcpyopt", "NumMemCpyInstr" , "Number of memcpy instructions deleted"}; | ||||||||||||||
75 | STATISTIC(NumMemSetInfer, "Number of memsets inferred")static llvm::Statistic NumMemSetInfer = {"memcpyopt", "NumMemSetInfer" , "Number of memsets inferred"}; | ||||||||||||||
76 | STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy")static llvm::Statistic NumMoveToCpy = {"memcpyopt", "NumMoveToCpy" , "Number of memmoves converted to memcpy"}; | ||||||||||||||
77 | STATISTIC(NumCpyToSet, "Number of memcpys converted to memset")static llvm::Statistic NumCpyToSet = {"memcpyopt", "NumCpyToSet" , "Number of memcpys converted to memset"}; | ||||||||||||||
78 | STATISTIC(NumCallSlot, "Number of call slot optimizations performed")static llvm::Statistic NumCallSlot = {"memcpyopt", "NumCallSlot" , "Number of call slot optimizations performed"}; | ||||||||||||||
79 | |||||||||||||||
80 | namespace { | ||||||||||||||
81 | |||||||||||||||
82 | /// Represents a range of memset'd bytes with the ByteVal value. | ||||||||||||||
83 | /// This allows us to analyze stores like: | ||||||||||||||
84 | /// store 0 -> P+1 | ||||||||||||||
85 | /// store 0 -> P+0 | ||||||||||||||
86 | /// store 0 -> P+3 | ||||||||||||||
87 | /// store 0 -> P+2 | ||||||||||||||
88 | /// which sometimes happens with stores to arrays of structs etc. When we see | ||||||||||||||
89 | /// the first store, we make a range [1, 2). The second store extends the range | ||||||||||||||
90 | /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the | ||||||||||||||
91 | /// two ranges into [0, 3) which is memset'able. | ||||||||||||||
92 | struct MemsetRange { | ||||||||||||||
93 | // Start/End - A semi range that describes the span that this range covers. | ||||||||||||||
94 | // The range is closed at the start and open at the end: [Start, End). | ||||||||||||||
95 | int64_t Start, End; | ||||||||||||||
96 | |||||||||||||||
97 | /// StartPtr - The getelementptr instruction that points to the start of the | ||||||||||||||
98 | /// range. | ||||||||||||||
99 | Value *StartPtr; | ||||||||||||||
100 | |||||||||||||||
101 | /// Alignment - The known alignment of the first store. | ||||||||||||||
102 | unsigned Alignment; | ||||||||||||||
103 | |||||||||||||||
104 | /// TheStores - The actual stores that make up this range. | ||||||||||||||
105 | SmallVector<Instruction*, 16> TheStores; | ||||||||||||||
106 | |||||||||||||||
107 | bool isProfitableToUseMemset(const DataLayout &DL) const; | ||||||||||||||
108 | }; | ||||||||||||||
109 | |||||||||||||||
110 | } // end anonymous namespace | ||||||||||||||
111 | |||||||||||||||
112 | bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { | ||||||||||||||
113 | // If we found more than 4 stores to merge or 16 bytes, use memset. | ||||||||||||||
114 | if (TheStores.size() >= 4 || End-Start >= 16) return true; | ||||||||||||||
115 | |||||||||||||||
116 | // If there is nothing to merge, don't do anything. | ||||||||||||||
117 | if (TheStores.size() < 2) return false; | ||||||||||||||
118 | |||||||||||||||
119 | // If any of the stores are a memset, then it is always good to extend the | ||||||||||||||
120 | // memset. | ||||||||||||||
121 | for (Instruction *SI : TheStores) | ||||||||||||||
122 | if (!isa<StoreInst>(SI)) | ||||||||||||||
123 | return true; | ||||||||||||||
124 | |||||||||||||||
125 | // Assume that the code generator is capable of merging pairs of stores | ||||||||||||||
126 | // together if it wants to. | ||||||||||||||
127 | if (TheStores.size() == 2) return false; | ||||||||||||||
128 | |||||||||||||||
129 | // If we have fewer than 8 stores, it can still be worthwhile to do this. | ||||||||||||||
130 | // For example, merging 4 i8 stores into an i32 store is useful almost always. | ||||||||||||||
131 | // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the | ||||||||||||||
132 | // memset will be split into 2 32-bit stores anyway) and doing so can | ||||||||||||||
133 | // pessimize the llvm optimizer. | ||||||||||||||
134 | // | ||||||||||||||
135 | // Since we don't have perfect knowledge here, make some assumptions: assume | ||||||||||||||
136 | // the maximum GPR width is the same size as the largest legal integer | ||||||||||||||
137 | // size. If so, check to see whether we will end up actually reducing the | ||||||||||||||
138 | // number of stores used. | ||||||||||||||
139 | unsigned Bytes = unsigned(End-Start); | ||||||||||||||
140 | unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; | ||||||||||||||
141 | if (MaxIntSize == 0) | ||||||||||||||
142 | MaxIntSize = 1; | ||||||||||||||
143 | unsigned NumPointerStores = Bytes / MaxIntSize; | ||||||||||||||
144 | |||||||||||||||
145 | // Assume the remaining bytes if any are done a byte at a time. | ||||||||||||||
146 | unsigned NumByteStores = Bytes % MaxIntSize; | ||||||||||||||
147 | |||||||||||||||
148 | // If we will reduce the # stores (according to this heuristic), do the | ||||||||||||||
149 | // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 | ||||||||||||||
150 | // etc. | ||||||||||||||
151 | return TheStores.size() > NumPointerStores+NumByteStores; | ||||||||||||||
152 | } | ||||||||||||||
153 | |||||||||||||||
154 | namespace { | ||||||||||||||
155 | |||||||||||||||
156 | class MemsetRanges { | ||||||||||||||
157 | using range_iterator = SmallVectorImpl<MemsetRange>::iterator; | ||||||||||||||
158 | |||||||||||||||
159 | /// A sorted list of the memset ranges. | ||||||||||||||
160 | SmallVector<MemsetRange, 8> Ranges; | ||||||||||||||
161 | |||||||||||||||
162 | const DataLayout &DL; | ||||||||||||||
163 | |||||||||||||||
164 | public: | ||||||||||||||
165 | MemsetRanges(const DataLayout &DL) : DL(DL) {} | ||||||||||||||
166 | |||||||||||||||
167 | using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; | ||||||||||||||
168 | |||||||||||||||
169 | const_iterator begin() const { return Ranges.begin(); } | ||||||||||||||
170 | const_iterator end() const { return Ranges.end(); } | ||||||||||||||
171 | bool empty() const { return Ranges.empty(); } | ||||||||||||||
172 | |||||||||||||||
173 | void addInst(int64_t OffsetFromFirst, Instruction *Inst) { | ||||||||||||||
174 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | ||||||||||||||
175 | addStore(OffsetFromFirst, SI); | ||||||||||||||
176 | else | ||||||||||||||
177 | addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); | ||||||||||||||
178 | } | ||||||||||||||
179 | |||||||||||||||
180 | void addStore(int64_t OffsetFromFirst, StoreInst *SI) { | ||||||||||||||
181 | TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); | ||||||||||||||
182 | assert(!StoreSize.isScalable() && "Can't track scalable-typed stores")((void)0); | ||||||||||||||
183 | addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), | ||||||||||||||
184 | SI->getAlign().value(), SI); | ||||||||||||||
185 | } | ||||||||||||||
186 | |||||||||||||||
187 | void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { | ||||||||||||||
188 | int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | ||||||||||||||
189 | addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); | ||||||||||||||
190 | } | ||||||||||||||
191 | |||||||||||||||
192 | void addRange(int64_t Start, int64_t Size, Value *Ptr, | ||||||||||||||
193 | unsigned Alignment, Instruction *Inst); | ||||||||||||||
194 | }; | ||||||||||||||
195 | |||||||||||||||
196 | } // end anonymous namespace | ||||||||||||||
197 | |||||||||||||||
198 | /// Add a new store to the MemsetRanges data structure. This adds a | ||||||||||||||
199 | /// new range for the specified store at the specified offset, merging into | ||||||||||||||
200 | /// existing ranges as appropriate. | ||||||||||||||
201 | void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, | ||||||||||||||
202 | unsigned Alignment, Instruction *Inst) { | ||||||||||||||
203 | int64_t End = Start+Size; | ||||||||||||||
204 | |||||||||||||||
205 | range_iterator I = partition_point( | ||||||||||||||
206 | Ranges, [=](const MemsetRange &O) { return O.End < Start; }); | ||||||||||||||
207 | |||||||||||||||
208 | // We now know that I == E, in which case we didn't find anything to merge | ||||||||||||||
209 | // with, or that Start <= I->End. If End < I->Start or I == E, then we need | ||||||||||||||
210 | // to insert a new range. Handle this now. | ||||||||||||||
211 | if (I == Ranges.end() || End < I->Start) { | ||||||||||||||
212 | MemsetRange &R = *Ranges.insert(I, MemsetRange()); | ||||||||||||||
213 | R.Start = Start; | ||||||||||||||
214 | R.End = End; | ||||||||||||||
215 | R.StartPtr = Ptr; | ||||||||||||||
216 | R.Alignment = Alignment; | ||||||||||||||
217 | R.TheStores.push_back(Inst); | ||||||||||||||
218 | return; | ||||||||||||||
219 | } | ||||||||||||||
220 | |||||||||||||||
221 | // This store overlaps with I, add it. | ||||||||||||||
222 | I->TheStores.push_back(Inst); | ||||||||||||||
223 | |||||||||||||||
224 | // At this point, we may have an interval that completely contains our store. | ||||||||||||||
225 | // If so, just add it to the interval and return. | ||||||||||||||
226 | if (I->Start <= Start && I->End >= End) | ||||||||||||||
227 | return; | ||||||||||||||
228 | |||||||||||||||
229 | // Now we know that Start <= I->End and End >= I->Start so the range overlaps | ||||||||||||||
230 | // but is not entirely contained within the range. | ||||||||||||||
231 | |||||||||||||||
232 | // See if the range extends the start of the range. In this case, it couldn't | ||||||||||||||
233 | // possibly cause it to join the prior range, because otherwise we would have | ||||||||||||||
234 | // stopped on *it*. | ||||||||||||||
235 | if (Start < I->Start) { | ||||||||||||||
236 | I->Start = Start; | ||||||||||||||
237 | I->StartPtr = Ptr; | ||||||||||||||
238 | I->Alignment = Alignment; | ||||||||||||||
239 | } | ||||||||||||||
240 | |||||||||||||||
241 | // Now we know that Start <= I->End and Start >= I->Start (so the startpoint | ||||||||||||||
242 | // is in or right at the end of I), and that End >= I->Start. Extend I out to | ||||||||||||||
243 | // End. | ||||||||||||||
244 | if (End > I->End) { | ||||||||||||||
245 | I->End = End; | ||||||||||||||
246 | range_iterator NextI = I; | ||||||||||||||
247 | while (++NextI != Ranges.end() && End >= NextI->Start) { | ||||||||||||||
248 | // Merge the range in. | ||||||||||||||
249 | I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); | ||||||||||||||
250 | if (NextI->End > I->End) | ||||||||||||||
251 | I->End = NextI->End; | ||||||||||||||
252 | Ranges.erase(NextI); | ||||||||||||||
253 | NextI = I; | ||||||||||||||
254 | } | ||||||||||||||
255 | } | ||||||||||||||
256 | } | ||||||||||||||
257 | |||||||||||||||
258 | //===----------------------------------------------------------------------===// | ||||||||||||||
259 | // MemCpyOptLegacyPass Pass | ||||||||||||||
260 | //===----------------------------------------------------------------------===// | ||||||||||||||
261 | |||||||||||||||
262 | namespace { | ||||||||||||||
263 | |||||||||||||||
264 | class MemCpyOptLegacyPass : public FunctionPass { | ||||||||||||||
265 | MemCpyOptPass Impl; | ||||||||||||||
266 | |||||||||||||||
267 | public: | ||||||||||||||
268 | static char ID; // Pass identification, replacement for typeid | ||||||||||||||
269 | |||||||||||||||
270 | MemCpyOptLegacyPass() : FunctionPass(ID) { | ||||||||||||||
271 | initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||||||||||||
272 | } | ||||||||||||||
273 | |||||||||||||||
274 | bool runOnFunction(Function &F) override; | ||||||||||||||
275 | |||||||||||||||
276 | private: | ||||||||||||||
277 | // This transformation requires dominator postdominator info | ||||||||||||||
278 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||||||||
279 | AU.setPreservesCFG(); | ||||||||||||||
280 | AU.addRequired<AssumptionCacheTracker>(); | ||||||||||||||
281 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||||||||||
282 | AU.addPreserved<DominatorTreeWrapperPass>(); | ||||||||||||||
283 | AU.addPreserved<GlobalsAAWrapperPass>(); | ||||||||||||||
284 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||||||||||
285 | if (!EnableMemorySSA) | ||||||||||||||
286 | AU.addRequired<MemoryDependenceWrapperPass>(); | ||||||||||||||
287 | AU.addPreserved<MemoryDependenceWrapperPass>(); | ||||||||||||||
288 | AU.addRequired<AAResultsWrapperPass>(); | ||||||||||||||
289 | AU.addPreserved<AAResultsWrapperPass>(); | ||||||||||||||
290 | if (EnableMemorySSA) | ||||||||||||||
291 | AU.addRequired<MemorySSAWrapperPass>(); | ||||||||||||||
292 | AU.addPreserved<MemorySSAWrapperPass>(); | ||||||||||||||
293 | } | ||||||||||||||
294 | }; | ||||||||||||||
295 | |||||||||||||||
296 | } // end anonymous namespace | ||||||||||||||
297 | |||||||||||||||
298 | char MemCpyOptLegacyPass::ID = 0; | ||||||||||||||
299 | |||||||||||||||
300 | /// The public interface to this file... | ||||||||||||||
301 | FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } | ||||||||||||||
302 | |||||||||||||||
303 | INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||||||||
304 | false, false)static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||||||||
305 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||||||||||
306 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | ||||||||||||||
307 | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)initializeMemoryDependenceWrapperPassPass(Registry); | ||||||||||||||
308 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||||||||||
309 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); | ||||||||||||||
310 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry); | ||||||||||||||
311 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry); | ||||||||||||||
312 | INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt" , &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <MemCpyOptLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag ; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag , initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry)); } | ||||||||||||||
313 | false, false)PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt" , &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <MemCpyOptLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag ; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag , initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry)); } | ||||||||||||||
314 | |||||||||||||||
315 | // Check that V is either not accessible by the caller, or unwinding cannot | ||||||||||||||
316 | // occur between Start and End. | ||||||||||||||
317 | static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, | ||||||||||||||
318 | Instruction *End) { | ||||||||||||||
319 | assert(Start->getParent() == End->getParent() && "Must be in same block")((void)0); | ||||||||||||||
320 | if (!Start->getFunction()->doesNotThrow() && | ||||||||||||||
321 | !isa<AllocaInst>(getUnderlyingObject(V))) { | ||||||||||||||
322 | for (const Instruction &I : | ||||||||||||||
323 | make_range(Start->getIterator(), End->getIterator())) { | ||||||||||||||
324 | if (I.mayThrow()) | ||||||||||||||
325 | return true; | ||||||||||||||
326 | } | ||||||||||||||
327 | } | ||||||||||||||
328 | return false; | ||||||||||||||
329 | } | ||||||||||||||
330 | |||||||||||||||
331 | void MemCpyOptPass::eraseInstruction(Instruction *I) { | ||||||||||||||
332 | if (MSSAU) | ||||||||||||||
333 | MSSAU->removeMemoryAccess(I); | ||||||||||||||
334 | if (MD) | ||||||||||||||
335 | MD->removeInstruction(I); | ||||||||||||||
336 | I->eraseFromParent(); | ||||||||||||||
337 | } | ||||||||||||||
338 | |||||||||||||||
339 | // Check for mod or ref of Loc between Start and End, excluding both boundaries. | ||||||||||||||
340 | // Start and End must be in the same block | ||||||||||||||
341 | static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, | ||||||||||||||
342 | const MemoryUseOrDef *Start, | ||||||||||||||
343 | const MemoryUseOrDef *End) { | ||||||||||||||
344 | assert(Start->getBlock() == End->getBlock() && "Only local supported")((void)0); | ||||||||||||||
345 | for (const MemoryAccess &MA : | ||||||||||||||
346 | make_range(++Start->getIterator(), End->getIterator())) { | ||||||||||||||
347 | if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), | ||||||||||||||
348 | Loc))) | ||||||||||||||
349 | return true; | ||||||||||||||
350 | } | ||||||||||||||
351 | return false; | ||||||||||||||
352 | } | ||||||||||||||
353 | |||||||||||||||
354 | // Check for mod of Loc between Start and End, excluding both boundaries. | ||||||||||||||
355 | // Start and End can be in different blocks. | ||||||||||||||
356 | static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, | ||||||||||||||
357 | const MemoryUseOrDef *Start, | ||||||||||||||
358 | const MemoryUseOrDef *End) { | ||||||||||||||
359 | // TODO: Only walk until we hit Start. | ||||||||||||||
360 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
361 | End->getDefiningAccess(), Loc); | ||||||||||||||
362 | return !MSSA->dominates(Clobber, Start); | ||||||||||||||
363 | } | ||||||||||||||
364 | |||||||||||||||
365 | /// When scanning forward over instructions, we look for some other patterns to | ||||||||||||||
366 | /// fold away. In particular, this looks for stores to neighboring locations of | ||||||||||||||
367 | /// memory. If it sees enough consecutive ones, it attempts to merge them | ||||||||||||||
368 | /// together into a memcpy/memset. | ||||||||||||||
369 | Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, | ||||||||||||||
370 | Value *StartPtr, | ||||||||||||||
371 | Value *ByteVal) { | ||||||||||||||
372 | const DataLayout &DL = StartInst->getModule()->getDataLayout(); | ||||||||||||||
373 | |||||||||||||||
374 | // We can't track scalable types | ||||||||||||||
375 | if (StoreInst *SI = dyn_cast<StoreInst>(StartInst)) | ||||||||||||||
376 | if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) | ||||||||||||||
377 | return nullptr; | ||||||||||||||
378 | |||||||||||||||
379 | // Okay, so we now have a single store that can be splatable. Scan to find | ||||||||||||||
380 | // all subsequent stores of the same value to offset from the same pointer. | ||||||||||||||
381 | // Join these together into ranges, so we can decide whether contiguous blocks | ||||||||||||||
382 | // are stored. | ||||||||||||||
383 | MemsetRanges Ranges(DL); | ||||||||||||||
384 | |||||||||||||||
385 | BasicBlock::iterator BI(StartInst); | ||||||||||||||
386 | |||||||||||||||
387 | // Keeps track of the last memory use or def before the insertion point for | ||||||||||||||
388 | // the new memset. The new MemoryDef for the inserted memsets will be inserted | ||||||||||||||
389 | // after MemInsertPoint. It points to either LastMemDef or to the last user | ||||||||||||||
390 | // before the insertion point of the memset, if there are any such users. | ||||||||||||||
391 | MemoryUseOrDef *MemInsertPoint = nullptr; | ||||||||||||||
392 | // Keeps track of the last MemoryDef between StartInst and the insertion point | ||||||||||||||
393 | // for the new memset. This will become the defining access of the inserted | ||||||||||||||
394 | // memsets. | ||||||||||||||
395 | MemoryDef *LastMemDef = nullptr; | ||||||||||||||
396 | for (++BI; !BI->isTerminator(); ++BI) { | ||||||||||||||
397 | if (MSSAU) { | ||||||||||||||
398 | auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( | ||||||||||||||
399 | MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); | ||||||||||||||
400 | if (CurrentAcc) { | ||||||||||||||
401 | MemInsertPoint = CurrentAcc; | ||||||||||||||
402 | if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) | ||||||||||||||
403 | LastMemDef = CurrentDef; | ||||||||||||||
404 | } | ||||||||||||||
405 | } | ||||||||||||||
406 | |||||||||||||||
407 | // Calls that only access inaccessible memory do not block merging | ||||||||||||||
408 | // accessible stores. | ||||||||||||||
409 | if (auto *CB = dyn_cast<CallBase>(BI)) { | ||||||||||||||
410 | if (CB->onlyAccessesInaccessibleMemory()) | ||||||||||||||
411 | continue; | ||||||||||||||
412 | } | ||||||||||||||
413 | |||||||||||||||
414 | if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { | ||||||||||||||
415 | // If the instruction is readnone, ignore it, otherwise bail out. We | ||||||||||||||
416 | // don't even allow readonly here because we don't want something like: | ||||||||||||||
417 | // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). | ||||||||||||||
418 | if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) | ||||||||||||||
419 | break; | ||||||||||||||
420 | continue; | ||||||||||||||
421 | } | ||||||||||||||
422 | |||||||||||||||
423 | if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { | ||||||||||||||
424 | // If this is a store, see if we can merge it in. | ||||||||||||||
425 | if (!NextStore->isSimple()) break; | ||||||||||||||
426 | |||||||||||||||
427 | Value *StoredVal = NextStore->getValueOperand(); | ||||||||||||||
428 | |||||||||||||||
429 | // Don't convert stores of non-integral pointer types to memsets (which | ||||||||||||||
430 | // stores integers). | ||||||||||||||
431 | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | ||||||||||||||
432 | break; | ||||||||||||||
433 | |||||||||||||||
434 | // We can't track ranges involving scalable types. | ||||||||||||||
435 | if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) | ||||||||||||||
436 | break; | ||||||||||||||
437 | |||||||||||||||
438 | // Check to see if this stored value is of the same byte-splattable value. | ||||||||||||||
439 | Value *StoredByte = isBytewiseValue(StoredVal, DL); | ||||||||||||||
440 | if (isa<UndefValue>(ByteVal) && StoredByte) | ||||||||||||||
441 | ByteVal = StoredByte; | ||||||||||||||
442 | if (ByteVal != StoredByte) | ||||||||||||||
443 | break; | ||||||||||||||
444 | |||||||||||||||
445 | // Check to see if this store is to a constant offset from the start ptr. | ||||||||||||||
446 | Optional<int64_t> Offset = | ||||||||||||||
447 | isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); | ||||||||||||||
448 | if (!Offset) | ||||||||||||||
449 | break; | ||||||||||||||
450 | |||||||||||||||
451 | Ranges.addStore(*Offset, NextStore); | ||||||||||||||
452 | } else { | ||||||||||||||
453 | MemSetInst *MSI = cast<MemSetInst>(BI); | ||||||||||||||
454 | |||||||||||||||
455 | if (MSI->isVolatile() || ByteVal != MSI->getValue() || | ||||||||||||||
456 | !isa<ConstantInt>(MSI->getLength())) | ||||||||||||||
457 | break; | ||||||||||||||
458 | |||||||||||||||
459 | // Check to see if this store is to a constant offset from the start ptr. | ||||||||||||||
460 | Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); | ||||||||||||||
461 | if (!Offset) | ||||||||||||||
462 | break; | ||||||||||||||
463 | |||||||||||||||
464 | Ranges.addMemSet(*Offset, MSI); | ||||||||||||||
465 | } | ||||||||||||||
466 | } | ||||||||||||||
467 | |||||||||||||||
468 | // If we have no ranges, then we just had a single store with nothing that | ||||||||||||||
469 | // could be merged in. This is a very common case of course. | ||||||||||||||
470 | if (Ranges.empty()) | ||||||||||||||
471 | return nullptr; | ||||||||||||||
472 | |||||||||||||||
473 | // If we had at least one store that could be merged in, add the starting | ||||||||||||||
474 | // store as well. We try to avoid this unless there is at least something | ||||||||||||||
475 | // interesting as a small compile-time optimization. | ||||||||||||||
476 | Ranges.addInst(0, StartInst); | ||||||||||||||
477 | |||||||||||||||
478 | // If we create any memsets, we put it right before the first instruction that | ||||||||||||||
479 | // isn't part of the memset block. This ensure that the memset is dominated | ||||||||||||||
480 | // by any addressing instruction needed by the start of the block. | ||||||||||||||
481 | IRBuilder<> Builder(&*BI); | ||||||||||||||
482 | |||||||||||||||
483 | // Now that we have full information about ranges, loop over the ranges and | ||||||||||||||
484 | // emit memset's for anything big enough to be worthwhile. | ||||||||||||||
485 | Instruction *AMemSet = nullptr; | ||||||||||||||
486 | for (const MemsetRange &Range : Ranges) { | ||||||||||||||
487 | if (Range.TheStores.size() == 1) continue; | ||||||||||||||
488 | |||||||||||||||
489 | // If it is profitable to lower this range to memset, do so now. | ||||||||||||||
490 | if (!Range.isProfitableToUseMemset(DL)) | ||||||||||||||
491 | continue; | ||||||||||||||
492 | |||||||||||||||
493 | // Otherwise, we do want to transform this! Create a new memset. | ||||||||||||||
494 | // Get the starting pointer of the block. | ||||||||||||||
495 | StartPtr = Range.StartPtr; | ||||||||||||||
496 | |||||||||||||||
497 | AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, | ||||||||||||||
498 | MaybeAlign(Range.Alignment)); | ||||||||||||||
499 | LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SIdo { } while (false) | ||||||||||||||
500 | : Range.TheStores) dbgs()do { } while (false) | ||||||||||||||
501 | << *SI << '\n';do { } while (false) | ||||||||||||||
502 | dbgs() << "With: " << *AMemSet << '\n')do { } while (false); | ||||||||||||||
503 | if (!Range.TheStores.empty()) | ||||||||||||||
504 | AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); | ||||||||||||||
505 | |||||||||||||||
506 | if (MSSAU) { | ||||||||||||||
507 | assert(LastMemDef && MemInsertPoint &&((void)0) | ||||||||||||||
508 | "Both LastMemDef and MemInsertPoint need to be set")((void)0); | ||||||||||||||
509 | auto *NewDef = | ||||||||||||||
510 | cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI | ||||||||||||||
511 | ? MSSAU->createMemoryAccessBefore( | ||||||||||||||
512 | AMemSet, LastMemDef, MemInsertPoint) | ||||||||||||||
513 | : MSSAU->createMemoryAccessAfter( | ||||||||||||||
514 | AMemSet, LastMemDef, MemInsertPoint)); | ||||||||||||||
515 | MSSAU->insertDef(NewDef, /*RenameUses=*/true); | ||||||||||||||
516 | LastMemDef = NewDef; | ||||||||||||||
517 | MemInsertPoint = NewDef; | ||||||||||||||
518 | } | ||||||||||||||
519 | |||||||||||||||
520 | // Zap all the stores. | ||||||||||||||
521 | for (Instruction *SI : Range.TheStores) | ||||||||||||||
522 | eraseInstruction(SI); | ||||||||||||||
523 | |||||||||||||||
524 | ++NumMemSetInfer; | ||||||||||||||
525 | } | ||||||||||||||
526 | |||||||||||||||
527 | return AMemSet; | ||||||||||||||
528 | } | ||||||||||||||
529 | |||||||||||||||
530 | // This method try to lift a store instruction before position P. | ||||||||||||||
531 | // It will lift the store and its argument + that anything that | ||||||||||||||
532 | // may alias with these. | ||||||||||||||
533 | // The method returns true if it was successful. | ||||||||||||||
534 | bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { | ||||||||||||||
535 | // If the store alias this position, early bail out. | ||||||||||||||
536 | MemoryLocation StoreLoc = MemoryLocation::get(SI); | ||||||||||||||
537 | if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) | ||||||||||||||
538 | return false; | ||||||||||||||
539 | |||||||||||||||
540 | // Keep track of the arguments of all instruction we plan to lift | ||||||||||||||
541 | // so we can make sure to lift them as well if appropriate. | ||||||||||||||
542 | DenseSet<Instruction*> Args; | ||||||||||||||
543 | if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) | ||||||||||||||
544 | if (Ptr->getParent() == SI->getParent()) | ||||||||||||||
545 | Args.insert(Ptr); | ||||||||||||||
546 | |||||||||||||||
547 | // Instruction to lift before P. | ||||||||||||||
548 | SmallVector<Instruction *, 8> ToLift{SI}; | ||||||||||||||
549 | |||||||||||||||
550 | // Memory locations of lifted instructions. | ||||||||||||||
551 | SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; | ||||||||||||||
552 | |||||||||||||||
553 | // Lifted calls. | ||||||||||||||
554 | SmallVector<const CallBase *, 8> Calls; | ||||||||||||||
555 | |||||||||||||||
556 | const MemoryLocation LoadLoc = MemoryLocation::get(LI); | ||||||||||||||
557 | |||||||||||||||
558 | for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { | ||||||||||||||
559 | auto *C = &*I; | ||||||||||||||
560 | |||||||||||||||
561 | // Make sure hoisting does not perform a store that was not guaranteed to | ||||||||||||||
562 | // happen. | ||||||||||||||
563 | if (!isGuaranteedToTransferExecutionToSuccessor(C)) | ||||||||||||||
564 | return false; | ||||||||||||||
565 | |||||||||||||||
566 | bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); | ||||||||||||||
567 | |||||||||||||||
568 | bool NeedLift = false; | ||||||||||||||
569 | if (Args.erase(C)) | ||||||||||||||
570 | NeedLift = true; | ||||||||||||||
571 | else if (MayAlias) { | ||||||||||||||
572 | NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { | ||||||||||||||
573 | return isModOrRefSet(AA->getModRefInfo(C, ML)); | ||||||||||||||
574 | }); | ||||||||||||||
575 | |||||||||||||||
576 | if (!NeedLift) | ||||||||||||||
577 | NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { | ||||||||||||||
578 | return isModOrRefSet(AA->getModRefInfo(C, Call)); | ||||||||||||||
579 | }); | ||||||||||||||
580 | } | ||||||||||||||
581 | |||||||||||||||
582 | if (!NeedLift) | ||||||||||||||
583 | continue; | ||||||||||||||
584 | |||||||||||||||
585 | if (MayAlias) { | ||||||||||||||
586 | // Since LI is implicitly moved downwards past the lifted instructions, | ||||||||||||||
587 | // none of them may modify its source. | ||||||||||||||
588 | if (isModSet(AA->getModRefInfo(C, LoadLoc))) | ||||||||||||||
589 | return false; | ||||||||||||||
590 | else if (const auto *Call = dyn_cast<CallBase>(C)) { | ||||||||||||||
591 | // If we can't lift this before P, it's game over. | ||||||||||||||
592 | if (isModOrRefSet(AA->getModRefInfo(P, Call))) | ||||||||||||||
593 | return false; | ||||||||||||||
594 | |||||||||||||||
595 | Calls.push_back(Call); | ||||||||||||||
596 | } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { | ||||||||||||||
597 | // If we can't lift this before P, it's game over. | ||||||||||||||
598 | auto ML = MemoryLocation::get(C); | ||||||||||||||
599 | if (isModOrRefSet(AA->getModRefInfo(P, ML))) | ||||||||||||||
600 | return false; | ||||||||||||||
601 | |||||||||||||||
602 | MemLocs.push_back(ML); | ||||||||||||||
603 | } else | ||||||||||||||
604 | // We don't know how to lift this instruction. | ||||||||||||||
605 | return false; | ||||||||||||||
606 | } | ||||||||||||||
607 | |||||||||||||||
608 | ToLift.push_back(C); | ||||||||||||||
609 | for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) | ||||||||||||||
610 | if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { | ||||||||||||||
611 | if (A->getParent() == SI->getParent()) { | ||||||||||||||
612 | // Cannot hoist user of P above P | ||||||||||||||
613 | if(A == P) return false; | ||||||||||||||
614 | Args.insert(A); | ||||||||||||||
615 | } | ||||||||||||||
616 | } | ||||||||||||||
617 | } | ||||||||||||||
618 | |||||||||||||||
619 | // Find MSSA insertion point. Normally P will always have a corresponding | ||||||||||||||
620 | // memory access before which we can insert. However, with non-standard AA | ||||||||||||||
621 | // pipelines, there may be a mismatch between AA and MSSA, in which case we | ||||||||||||||
622 | // will scan for a memory access before P. In either case, we know for sure | ||||||||||||||
623 | // that at least the load will have a memory access. | ||||||||||||||
624 | // TODO: Simplify this once P will be determined by MSSA, in which case the | ||||||||||||||
625 | // discrepancy can no longer occur. | ||||||||||||||
626 | MemoryUseOrDef *MemInsertPoint = nullptr; | ||||||||||||||
627 | if (MSSAU) { | ||||||||||||||
628 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { | ||||||||||||||
629 | MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); | ||||||||||||||
630 | } else { | ||||||||||||||
631 | const Instruction *ConstP = P; | ||||||||||||||
632 | for (const Instruction &I : make_range(++ConstP->getReverseIterator(), | ||||||||||||||
633 | ++LI->getReverseIterator())) { | ||||||||||||||
634 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { | ||||||||||||||
635 | MemInsertPoint = MA; | ||||||||||||||
636 | break; | ||||||||||||||
637 | } | ||||||||||||||
638 | } | ||||||||||||||
639 | } | ||||||||||||||
640 | } | ||||||||||||||
641 | |||||||||||||||
642 | // We made it, we need to lift. | ||||||||||||||
643 | for (auto *I : llvm::reverse(ToLift)) { | ||||||||||||||
644 | LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n")do { } while (false); | ||||||||||||||
645 | I->moveBefore(P); | ||||||||||||||
646 | if (MSSAU) { | ||||||||||||||
647 | assert(MemInsertPoint && "Must have found insert point")((void)0); | ||||||||||||||
648 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { | ||||||||||||||
649 | MSSAU->moveAfter(MA, MemInsertPoint); | ||||||||||||||
650 | MemInsertPoint = MA; | ||||||||||||||
651 | } | ||||||||||||||
652 | } | ||||||||||||||
653 | } | ||||||||||||||
654 | |||||||||||||||
655 | return true; | ||||||||||||||
656 | } | ||||||||||||||
657 | |||||||||||||||
658 | bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { | ||||||||||||||
659 | if (!SI->isSimple()) return false; | ||||||||||||||
660 | |||||||||||||||
661 | // Avoid merging nontemporal stores since the resulting | ||||||||||||||
662 | // memcpy/memset would not be able to preserve the nontemporal hint. | ||||||||||||||
663 | // In theory we could teach how to propagate the !nontemporal metadata to | ||||||||||||||
664 | // memset calls. However, that change would force the backend to | ||||||||||||||
665 | // conservatively expand !nontemporal memset calls back to sequences of | ||||||||||||||
666 | // store instructions (effectively undoing the merging). | ||||||||||||||
667 | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | ||||||||||||||
668 | return false; | ||||||||||||||
669 | |||||||||||||||
670 | const DataLayout &DL = SI->getModule()->getDataLayout(); | ||||||||||||||
671 | |||||||||||||||
672 | Value *StoredVal = SI->getValueOperand(); | ||||||||||||||
673 | |||||||||||||||
674 | // Not all the transforms below are correct for non-integral pointers, bail | ||||||||||||||
675 | // until we've audited the individual pieces. | ||||||||||||||
676 | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | ||||||||||||||
677 | return false; | ||||||||||||||
678 | |||||||||||||||
679 | // Load to store forwarding can be interpreted as memcpy. | ||||||||||||||
680 | if (LoadInst *LI
| ||||||||||||||
681 | if (LI->isSimple() && LI->hasOneUse() && | ||||||||||||||
682 | LI->getParent() == SI->getParent()) { | ||||||||||||||
683 | |||||||||||||||
684 | auto *T = LI->getType(); | ||||||||||||||
685 | if (T->isAggregateType()) { | ||||||||||||||
686 | MemoryLocation LoadLoc = MemoryLocation::get(LI); | ||||||||||||||
687 | |||||||||||||||
688 | // We use alias analysis to check if an instruction may store to | ||||||||||||||
689 | // the memory we load from in between the load and the store. If | ||||||||||||||
690 | // such an instruction is found, we try to promote there instead | ||||||||||||||
691 | // of at the store position. | ||||||||||||||
692 | // TODO: Can use MSSA for this. | ||||||||||||||
693 | Instruction *P = SI; | ||||||||||||||
694 | for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { | ||||||||||||||
695 | if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { | ||||||||||||||
696 | P = &I; | ||||||||||||||
697 | break; | ||||||||||||||
698 | } | ||||||||||||||
699 | } | ||||||||||||||
700 | |||||||||||||||
701 | // We found an instruction that may write to the loaded memory. | ||||||||||||||
702 | // We can try to promote at this position instead of the store | ||||||||||||||
703 | // position if nothing aliases the store memory after this and the store | ||||||||||||||
704 | // destination is not in the range. | ||||||||||||||
705 | if (P && P != SI) { | ||||||||||||||
706 | if (!moveUp(SI, P, LI)) | ||||||||||||||
707 | P = nullptr; | ||||||||||||||
708 | } | ||||||||||||||
709 | |||||||||||||||
710 | // If a valid insertion position is found, then we can promote | ||||||||||||||
711 | // the load/store pair to a memcpy. | ||||||||||||||
712 | if (P) { | ||||||||||||||
713 | // If we load from memory that may alias the memory we store to, | ||||||||||||||
714 | // memmove must be used to preserve semantic. If not, memcpy can | ||||||||||||||
715 | // be used. | ||||||||||||||
716 | bool UseMemMove = false; | ||||||||||||||
717 | if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc)) | ||||||||||||||
718 | UseMemMove = true; | ||||||||||||||
719 | |||||||||||||||
720 | uint64_t Size = DL.getTypeStoreSize(T); | ||||||||||||||
721 | |||||||||||||||
722 | IRBuilder<> Builder(P); | ||||||||||||||
723 | Instruction *M; | ||||||||||||||
724 | if (UseMemMove) | ||||||||||||||
725 | M = Builder.CreateMemMove( | ||||||||||||||
726 | SI->getPointerOperand(), SI->getAlign(), | ||||||||||||||
727 | LI->getPointerOperand(), LI->getAlign(), Size); | ||||||||||||||
728 | else | ||||||||||||||
729 | M = Builder.CreateMemCpy( | ||||||||||||||
730 | SI->getPointerOperand(), SI->getAlign(), | ||||||||||||||
731 | LI->getPointerOperand(), LI->getAlign(), Size); | ||||||||||||||
732 | |||||||||||||||
733 | LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "do { } while (false) | ||||||||||||||
734 | << *M << "\n")do { } while (false); | ||||||||||||||
735 | |||||||||||||||
736 | if (MSSAU) { | ||||||||||||||
737 | auto *LastDef = | ||||||||||||||
738 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); | ||||||||||||||
739 | auto *NewAccess = | ||||||||||||||
740 | MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); | ||||||||||||||
741 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
742 | } | ||||||||||||||
743 | |||||||||||||||
744 | eraseInstruction(SI); | ||||||||||||||
745 | eraseInstruction(LI); | ||||||||||||||
746 | ++NumMemCpyInstr; | ||||||||||||||
747 | |||||||||||||||
748 | // Make sure we do not invalidate the iterator. | ||||||||||||||
749 | BBI = M->getIterator(); | ||||||||||||||
750 | return true; | ||||||||||||||
751 | } | ||||||||||||||
752 | } | ||||||||||||||
753 | |||||||||||||||
754 | // Detect cases where we're performing call slot forwarding, but | ||||||||||||||
755 | // happen to be using a load-store pair to implement it, rather than | ||||||||||||||
756 | // a memcpy. | ||||||||||||||
757 | CallInst *C = nullptr; | ||||||||||||||
758 | if (EnableMemorySSA) { | ||||||||||||||
759 | if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( | ||||||||||||||
760 | MSSA->getWalker()->getClobberingMemoryAccess(LI))) { | ||||||||||||||
761 | // The load most post-dom the call. Limit to the same block for now. | ||||||||||||||
762 | // TODO: Support non-local call-slot optimization? | ||||||||||||||
763 | if (LoadClobber->getBlock() == SI->getParent()) | ||||||||||||||
764 | C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); | ||||||||||||||
765 | } | ||||||||||||||
766 | } else { | ||||||||||||||
767 | MemDepResult ldep = MD->getDependency(LI); | ||||||||||||||
| |||||||||||||||
768 | if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) | ||||||||||||||
769 | C = dyn_cast<CallInst>(ldep.getInst()); | ||||||||||||||
770 | } | ||||||||||||||
771 | |||||||||||||||
772 | if (C) { | ||||||||||||||
773 | // Check that nothing touches the dest of the "copy" between | ||||||||||||||
774 | // the call and the store. | ||||||||||||||
775 | MemoryLocation StoreLoc = MemoryLocation::get(SI); | ||||||||||||||
776 | if (EnableMemorySSA) { | ||||||||||||||
777 | if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), | ||||||||||||||
778 | MSSA->getMemoryAccess(SI))) | ||||||||||||||
779 | C = nullptr; | ||||||||||||||
780 | } else { | ||||||||||||||
781 | for (BasicBlock::iterator I = --SI->getIterator(), | ||||||||||||||
782 | E = C->getIterator(); | ||||||||||||||
783 | I != E; --I) { | ||||||||||||||
784 | if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) { | ||||||||||||||
785 | C = nullptr; | ||||||||||||||
786 | break; | ||||||||||||||
787 | } | ||||||||||||||
788 | } | ||||||||||||||
789 | } | ||||||||||||||
790 | } | ||||||||||||||
791 | |||||||||||||||
792 | if (C) { | ||||||||||||||
793 | bool changed = performCallSlotOptzn( | ||||||||||||||
794 | LI, SI, SI->getPointerOperand()->stripPointerCasts(), | ||||||||||||||
795 | LI->getPointerOperand()->stripPointerCasts(), | ||||||||||||||
796 | DL.getTypeStoreSize(SI->getOperand(0)->getType()), | ||||||||||||||
797 | commonAlignment(SI->getAlign(), LI->getAlign()), C); | ||||||||||||||
798 | if (changed) { | ||||||||||||||
799 | eraseInstruction(SI); | ||||||||||||||
800 | eraseInstruction(LI); | ||||||||||||||
801 | ++NumMemCpyInstr; | ||||||||||||||
802 | return true; | ||||||||||||||
803 | } | ||||||||||||||
804 | } | ||||||||||||||
805 | } | ||||||||||||||
806 | } | ||||||||||||||
807 | |||||||||||||||
808 | // There are two cases that are interesting for this code to handle: memcpy | ||||||||||||||
809 | // and memset. Right now we only handle memset. | ||||||||||||||
810 | |||||||||||||||
811 | // Ensure that the value being stored is something that can be memset'able a | ||||||||||||||
812 | // byte at a time like "0" or "-1" or any width, as well as things like | ||||||||||||||
813 | // 0xA0A0A0A0 and 0.0. | ||||||||||||||
814 | auto *V = SI->getOperand(0); | ||||||||||||||
815 | if (Value *ByteVal = isBytewiseValue(V, DL)) { | ||||||||||||||
816 | if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), | ||||||||||||||
817 | ByteVal)) { | ||||||||||||||
818 | BBI = I->getIterator(); // Don't invalidate iterator. | ||||||||||||||
819 | return true; | ||||||||||||||
820 | } | ||||||||||||||
821 | |||||||||||||||
822 | // If we have an aggregate, we try to promote it to memset regardless | ||||||||||||||
823 | // of opportunity for merging as it can expose optimization opportunities | ||||||||||||||
824 | // in subsequent passes. | ||||||||||||||
825 | auto *T = V->getType(); | ||||||||||||||
826 | if (T->isAggregateType()) { | ||||||||||||||
827 | uint64_t Size = DL.getTypeStoreSize(T); | ||||||||||||||
828 | IRBuilder<> Builder(SI); | ||||||||||||||
829 | auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, | ||||||||||||||
830 | SI->getAlign()); | ||||||||||||||
831 | |||||||||||||||
832 | LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n")do { } while (false); | ||||||||||||||
833 | |||||||||||||||
834 | if (MSSAU) { | ||||||||||||||
835 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)))((void)0); | ||||||||||||||
836 | auto *LastDef = | ||||||||||||||
837 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); | ||||||||||||||
838 | auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); | ||||||||||||||
839 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
840 | } | ||||||||||||||
841 | |||||||||||||||
842 | eraseInstruction(SI); | ||||||||||||||
843 | NumMemSetInfer++; | ||||||||||||||
844 | |||||||||||||||
845 | // Make sure we do not invalidate the iterator. | ||||||||||||||
846 | BBI = M->getIterator(); | ||||||||||||||
847 | return true; | ||||||||||||||
848 | } | ||||||||||||||
849 | } | ||||||||||||||
850 | |||||||||||||||
851 | return false; | ||||||||||||||
852 | } | ||||||||||||||
853 | |||||||||||||||
854 | bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { | ||||||||||||||
855 | // See if there is another memset or store neighboring this memset which | ||||||||||||||
856 | // allows us to widen out the memset to do a single larger store. | ||||||||||||||
857 | if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) | ||||||||||||||
858 | if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), | ||||||||||||||
859 | MSI->getValue())) { | ||||||||||||||
860 | BBI = I->getIterator(); // Don't invalidate iterator. | ||||||||||||||
861 | return true; | ||||||||||||||
862 | } | ||||||||||||||
863 | return false; | ||||||||||||||
864 | } | ||||||||||||||
865 | |||||||||||||||
866 | /// Takes a memcpy and a call that it depends on, | ||||||||||||||
867 | /// and checks for the possibility of a call slot optimization by having | ||||||||||||||
868 | /// the call write its result directly into the destination of the memcpy. | ||||||||||||||
869 | bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, | ||||||||||||||
870 | Instruction *cpyStore, Value *cpyDest, | ||||||||||||||
871 | Value *cpySrc, TypeSize cpySize, | ||||||||||||||
872 | Align cpyAlign, CallInst *C) { | ||||||||||||||
873 | // The general transformation to keep in mind is | ||||||||||||||
874 | // | ||||||||||||||
875 | // call @func(..., src, ...) | ||||||||||||||
876 | // memcpy(dest, src, ...) | ||||||||||||||
877 | // | ||||||||||||||
878 | // -> | ||||||||||||||
879 | // | ||||||||||||||
880 | // memcpy(dest, src, ...) | ||||||||||||||
881 | // call @func(..., dest, ...) | ||||||||||||||
882 | // | ||||||||||||||
883 | // Since moving the memcpy is technically awkward, we additionally check that | ||||||||||||||
884 | // src only holds uninitialized values at the moment of the call, meaning that | ||||||||||||||
885 | // the memcpy can be discarded rather than moved. | ||||||||||||||
886 | |||||||||||||||
887 | // We can't optimize scalable types. | ||||||||||||||
888 | if (cpySize.isScalable()) | ||||||||||||||
889 | return false; | ||||||||||||||
890 | |||||||||||||||
891 | // Lifetime marks shouldn't be operated on. | ||||||||||||||
892 | if (Function *F = C->getCalledFunction()) | ||||||||||||||
893 | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) | ||||||||||||||
894 | return false; | ||||||||||||||
895 | |||||||||||||||
896 | // Require that src be an alloca. This simplifies the reasoning considerably. | ||||||||||||||
897 | AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); | ||||||||||||||
898 | if (!srcAlloca) | ||||||||||||||
899 | return false; | ||||||||||||||
900 | |||||||||||||||
901 | ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); | ||||||||||||||
902 | if (!srcArraySize) | ||||||||||||||
903 | return false; | ||||||||||||||
904 | |||||||||||||||
905 | const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); | ||||||||||||||
906 | uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * | ||||||||||||||
907 | srcArraySize->getZExtValue(); | ||||||||||||||
908 | |||||||||||||||
909 | if (cpySize < srcSize) | ||||||||||||||
910 | return false; | ||||||||||||||
911 | |||||||||||||||
912 | // Check that accessing the first srcSize bytes of dest will not cause a | ||||||||||||||
913 | // trap. Otherwise the transform is invalid since it might cause a trap | ||||||||||||||
914 | // to occur earlier than it otherwise would. | ||||||||||||||
915 | if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), | ||||||||||||||
916 | DL, C, DT)) | ||||||||||||||
917 | return false; | ||||||||||||||
918 | |||||||||||||||
919 | // Make sure that nothing can observe cpyDest being written early. There are | ||||||||||||||
920 | // a number of cases to consider: | ||||||||||||||
921 | // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of | ||||||||||||||
922 | // the transform. | ||||||||||||||
923 | // 2. C itself may not access cpyDest (prior to the transform). This is | ||||||||||||||
924 | // checked further below. | ||||||||||||||
925 | // 3. If cpyDest is accessible to the caller of this function (potentially | ||||||||||||||
926 | // captured and not based on an alloca), we need to ensure that we cannot | ||||||||||||||
927 | // unwind between C and cpyStore. This is checked here. | ||||||||||||||
928 | // 4. If cpyDest is potentially captured, there may be accesses to it from | ||||||||||||||
929 | // another thread. In this case, we need to check that cpyStore is | ||||||||||||||
930 | // guaranteed to be executed if C is. As it is a non-atomic access, it | ||||||||||||||
931 | // renders accesses from other threads undefined. | ||||||||||||||
932 | // TODO: This is currently not checked. | ||||||||||||||
933 | if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) | ||||||||||||||
934 | return false; | ||||||||||||||
935 | |||||||||||||||
936 | // Check that dest points to memory that is at least as aligned as src. | ||||||||||||||
937 | Align srcAlign = srcAlloca->getAlign(); | ||||||||||||||
938 | bool isDestSufficientlyAligned = srcAlign <= cpyAlign; | ||||||||||||||
939 | // If dest is not aligned enough and we can't increase its alignment then | ||||||||||||||
940 | // bail out. | ||||||||||||||
941 | if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) | ||||||||||||||
942 | return false; | ||||||||||||||
943 | |||||||||||||||
944 | // Check that src is not accessed except via the call and the memcpy. This | ||||||||||||||
945 | // guarantees that it holds only undefined values when passed in (so the final | ||||||||||||||
946 | // memcpy can be dropped), that it is not read or written between the call and | ||||||||||||||
947 | // the memcpy, and that writing beyond the end of it is undefined. | ||||||||||||||
948 | SmallVector<User *, 8> srcUseList(srcAlloca->users()); | ||||||||||||||
949 | while (!srcUseList.empty()) { | ||||||||||||||
950 | User *U = srcUseList.pop_back_val(); | ||||||||||||||
951 | |||||||||||||||
952 | if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { | ||||||||||||||
953 | append_range(srcUseList, U->users()); | ||||||||||||||
954 | continue; | ||||||||||||||
955 | } | ||||||||||||||
956 | if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { | ||||||||||||||
957 | if (!G->hasAllZeroIndices()) | ||||||||||||||
958 | return false; | ||||||||||||||
959 | |||||||||||||||
960 | append_range(srcUseList, U->users()); | ||||||||||||||
961 | continue; | ||||||||||||||
962 | } | ||||||||||||||
963 | if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) | ||||||||||||||
964 | if (IT->isLifetimeStartOrEnd()) | ||||||||||||||
965 | continue; | ||||||||||||||
966 | |||||||||||||||
967 | if (U != C && U != cpyLoad) | ||||||||||||||
968 | return false; | ||||||||||||||
969 | } | ||||||||||||||
970 | |||||||||||||||
971 | // Check that src isn't captured by the called function since the | ||||||||||||||
972 | // transformation can cause aliasing issues in that case. | ||||||||||||||
973 | for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) | ||||||||||||||
974 | if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) | ||||||||||||||
975 | return false; | ||||||||||||||
976 | |||||||||||||||
977 | // Since we're changing the parameter to the callsite, we need to make sure | ||||||||||||||
978 | // that what would be the new parameter dominates the callsite. | ||||||||||||||
979 | if (!DT->dominates(cpyDest, C)) { | ||||||||||||||
980 | // Support moving a constant index GEP before the call. | ||||||||||||||
981 | auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); | ||||||||||||||
982 | if (GEP && GEP->hasAllConstantIndices() && | ||||||||||||||
983 | DT->dominates(GEP->getPointerOperand(), C)) | ||||||||||||||
984 | GEP->moveBefore(C); | ||||||||||||||
985 | else | ||||||||||||||
986 | return false; | ||||||||||||||
987 | } | ||||||||||||||
988 | |||||||||||||||
989 | // In addition to knowing that the call does not access src in some | ||||||||||||||
990 | // unexpected manner, for example via a global, which we deduce from | ||||||||||||||
991 | // the use analysis, we also need to know that it does not sneakily | ||||||||||||||
992 | // access dest. We rely on AA to figure this out for us. | ||||||||||||||
993 | ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); | ||||||||||||||
994 | // If necessary, perform additional analysis. | ||||||||||||||
995 | if (isModOrRefSet(MR)) | ||||||||||||||
996 | MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); | ||||||||||||||
997 | if (isModOrRefSet(MR)) | ||||||||||||||
998 | return false; | ||||||||||||||
999 | |||||||||||||||
1000 | // We can't create address space casts here because we don't know if they're | ||||||||||||||
1001 | // safe for the target. | ||||||||||||||
1002 | if (cpySrc->getType()->getPointerAddressSpace() != | ||||||||||||||
1003 | cpyDest->getType()->getPointerAddressSpace()) | ||||||||||||||
1004 | return false; | ||||||||||||||
1005 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | ||||||||||||||
1006 | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && | ||||||||||||||
1007 | cpySrc->getType()->getPointerAddressSpace() != | ||||||||||||||
1008 | C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) | ||||||||||||||
1009 | return false; | ||||||||||||||
1010 | |||||||||||||||
1011 | // All the checks have passed, so do the transformation. | ||||||||||||||
1012 | bool changedArgument = false; | ||||||||||||||
1013 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | ||||||||||||||
1014 | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { | ||||||||||||||
1015 | Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest | ||||||||||||||
1016 | : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), | ||||||||||||||
1017 | cpyDest->getName(), C); | ||||||||||||||
1018 | changedArgument = true; | ||||||||||||||
1019 | if (C->getArgOperand(ArgI)->getType() == Dest->getType()) | ||||||||||||||
1020 | C->setArgOperand(ArgI, Dest); | ||||||||||||||
1021 | else | ||||||||||||||
1022 | C->setArgOperand(ArgI, CastInst::CreatePointerCast( | ||||||||||||||
1023 | Dest, C->getArgOperand(ArgI)->getType(), | ||||||||||||||
1024 | Dest->getName(), C)); | ||||||||||||||
1025 | } | ||||||||||||||
1026 | |||||||||||||||
1027 | if (!changedArgument) | ||||||||||||||
1028 | return false; | ||||||||||||||
1029 | |||||||||||||||
1030 | // If the destination wasn't sufficiently aligned then increase its alignment. | ||||||||||||||
1031 | if (!isDestSufficientlyAligned) { | ||||||||||||||
1032 | assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!")((void)0); | ||||||||||||||
1033 | cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); | ||||||||||||||
1034 | } | ||||||||||||||
1035 | |||||||||||||||
1036 | // Drop any cached information about the call, because we may have changed | ||||||||||||||
1037 | // its dependence information by changing its parameter. | ||||||||||||||
1038 | if (MD) | ||||||||||||||
1039 | MD->removeInstruction(C); | ||||||||||||||
1040 | |||||||||||||||
1041 | // Update AA metadata | ||||||||||||||
1042 | // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be | ||||||||||||||
1043 | // handled here, but combineMetadata doesn't support them yet | ||||||||||||||
1044 | unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, | ||||||||||||||
1045 | LLVMContext::MD_noalias, | ||||||||||||||
1046 | LLVMContext::MD_invariant_group, | ||||||||||||||
1047 | LLVMContext::MD_access_group}; | ||||||||||||||
1048 | combineMetadata(C, cpyLoad, KnownIDs, true); | ||||||||||||||
1049 | |||||||||||||||
1050 | ++NumCallSlot; | ||||||||||||||
1051 | return true; | ||||||||||||||
1052 | } | ||||||||||||||
1053 | |||||||||||||||
1054 | /// We've found that the (upward scanning) memory dependence of memcpy 'M' is | ||||||||||||||
1055 | /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. | ||||||||||||||
1056 | bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, | ||||||||||||||
1057 | MemCpyInst *MDep) { | ||||||||||||||
1058 | // We can only transforms memcpy's where the dest of one is the source of the | ||||||||||||||
1059 | // other. | ||||||||||||||
1060 | if (M->getSource() != MDep->getDest() || MDep->isVolatile()) | ||||||||||||||
1061 | return false; | ||||||||||||||
1062 | |||||||||||||||
1063 | // If dep instruction is reading from our current input, then it is a noop | ||||||||||||||
1064 | // transfer and substituting the input won't change this instruction. Just | ||||||||||||||
1065 | // ignore the input and let someone else zap MDep. This handles cases like: | ||||||||||||||
1066 | // memcpy(a <- a) | ||||||||||||||
1067 | // memcpy(b <- a) | ||||||||||||||
1068 | if (M->getSource() == MDep->getSource()) | ||||||||||||||
1069 | return false; | ||||||||||||||
1070 | |||||||||||||||
1071 | // Second, the length of the memcpy's must be the same, or the preceding one | ||||||||||||||
1072 | // must be larger than the following one. | ||||||||||||||
1073 | if (MDep->getLength() != M->getLength()) { | ||||||||||||||
1074 | ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); | ||||||||||||||
1075 | ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); | ||||||||||||||
1076 | if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) | ||||||||||||||
1077 | return false; | ||||||||||||||
1078 | } | ||||||||||||||
1079 | |||||||||||||||
1080 | // Verify that the copied-from memory doesn't change in between the two | ||||||||||||||
1081 | // transfers. For example, in: | ||||||||||||||
1082 | // memcpy(a <- b) | ||||||||||||||
1083 | // *b = 42; | ||||||||||||||
1084 | // memcpy(c <- a) | ||||||||||||||
1085 | // It would be invalid to transform the second memcpy into memcpy(c <- b). | ||||||||||||||
1086 | // | ||||||||||||||
1087 | // TODO: If the code between M and MDep is transparent to the destination "c", | ||||||||||||||
1088 | // then we could still perform the xform by moving M up to the first memcpy. | ||||||||||||||
1089 | if (EnableMemorySSA) { | ||||||||||||||
1090 | // TODO: It would be sufficient to check the MDep source up to the memcpy | ||||||||||||||
1091 | // size of M, rather than MDep. | ||||||||||||||
1092 | if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), | ||||||||||||||
1093 | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) | ||||||||||||||
1094 | return false; | ||||||||||||||
1095 | } else { | ||||||||||||||
1096 | // NOTE: This is conservative, it will stop on any read from the source loc, | ||||||||||||||
1097 | // not just the defining memcpy. | ||||||||||||||
1098 | MemDepResult SourceDep = | ||||||||||||||
1099 | MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, | ||||||||||||||
1100 | M->getIterator(), M->getParent()); | ||||||||||||||
1101 | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | ||||||||||||||
1102 | return false; | ||||||||||||||
1103 | } | ||||||||||||||
1104 | |||||||||||||||
1105 | // If the dest of the second might alias the source of the first, then the | ||||||||||||||
1106 | // source and dest might overlap. We still want to eliminate the intermediate | ||||||||||||||
1107 | // value, but we have to generate a memmove instead of memcpy. | ||||||||||||||
1108 | bool UseMemMove = false; | ||||||||||||||
1109 | if (!AA->isNoAlias(MemoryLocation::getForDest(M), | ||||||||||||||
1110 | MemoryLocation::getForSource(MDep))) | ||||||||||||||
1111 | UseMemMove = true; | ||||||||||||||
1112 | |||||||||||||||
1113 | // If all checks passed, then we can transform M. | ||||||||||||||
1114 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"do { } while (false) | ||||||||||||||
1115 | << *MDep << '\n' << *M << '\n')do { } while (false); | ||||||||||||||
1116 | |||||||||||||||
1117 | // TODO: Is this worth it if we're creating a less aligned memcpy? For | ||||||||||||||
1118 | // example we could be moving from movaps -> movq on x86. | ||||||||||||||
1119 | IRBuilder<> Builder(M); | ||||||||||||||
1120 | Instruction *NewM; | ||||||||||||||
1121 | if (UseMemMove) | ||||||||||||||
1122 | NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), | ||||||||||||||
1123 | MDep->getRawSource(), MDep->getSourceAlign(), | ||||||||||||||
1124 | M->getLength(), M->isVolatile()); | ||||||||||||||
1125 | else if (isa<MemCpyInlineInst>(M)) { | ||||||||||||||
1126 | // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is | ||||||||||||||
1127 | // never allowed since that would allow the latter to be lowered as a call | ||||||||||||||
1128 | // to an external function. | ||||||||||||||
1129 | NewM = Builder.CreateMemCpyInline( | ||||||||||||||
1130 | M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), | ||||||||||||||
1131 | MDep->getSourceAlign(), M->getLength(), M->isVolatile()); | ||||||||||||||
1132 | } else | ||||||||||||||
1133 | NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), | ||||||||||||||
1134 | MDep->getRawSource(), MDep->getSourceAlign(), | ||||||||||||||
1135 | M->getLength(), M->isVolatile()); | ||||||||||||||
1136 | |||||||||||||||
1137 | if (MSSAU) { | ||||||||||||||
1138 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)))((void)0); | ||||||||||||||
1139 | auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | ||||||||||||||
1140 | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
1141 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
1142 | } | ||||||||||||||
1143 | |||||||||||||||
1144 | // Remove the instruction we're replacing. | ||||||||||||||
1145 | eraseInstruction(M); | ||||||||||||||
1146 | ++NumMemCpyInstr; | ||||||||||||||
1147 | return true; | ||||||||||||||
1148 | } | ||||||||||||||
1149 | |||||||||||||||
1150 | /// We've found that the (upward scanning) memory dependence of \p MemCpy is | ||||||||||||||
1151 | /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that | ||||||||||||||
1152 | /// weren't copied over by \p MemCpy. | ||||||||||||||
1153 | /// | ||||||||||||||
1154 | /// In other words, transform: | ||||||||||||||
1155 | /// \code | ||||||||||||||
1156 | /// memset(dst, c, dst_size); | ||||||||||||||
1157 | /// memcpy(dst, src, src_size); | ||||||||||||||
1158 | /// \endcode | ||||||||||||||
1159 | /// into: | ||||||||||||||
1160 | /// \code | ||||||||||||||
1161 | /// memcpy(dst, src, src_size); | ||||||||||||||
1162 | /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); | ||||||||||||||
1163 | /// \endcode | ||||||||||||||
1164 | bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, | ||||||||||||||
1165 | MemSetInst *MemSet) { | ||||||||||||||
1166 | // We can only transform memset/memcpy with the same destination. | ||||||||||||||
1167 | if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) | ||||||||||||||
1168 | return false; | ||||||||||||||
1169 | |||||||||||||||
1170 | // Check that src and dst of the memcpy aren't the same. While memcpy | ||||||||||||||
1171 | // operands cannot partially overlap, exact equality is allowed. | ||||||||||||||
1172 | if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(), | ||||||||||||||
1173 | LocationSize::precise(1)), | ||||||||||||||
1174 | MemoryLocation(MemCpy->getDest(), | ||||||||||||||
1175 | LocationSize::precise(1)))) | ||||||||||||||
1176 | return false; | ||||||||||||||
1177 | |||||||||||||||
1178 | if (EnableMemorySSA) { | ||||||||||||||
1179 | // We know that dst up to src_size is not written. We now need to make sure | ||||||||||||||
1180 | // that dst up to dst_size is not accessed. (If we did not move the memset, | ||||||||||||||
1181 | // checking for reads would be sufficient.) | ||||||||||||||
1182 | if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), | ||||||||||||||
1183 | MSSA->getMemoryAccess(MemSet), | ||||||||||||||
1184 | MSSA->getMemoryAccess(MemCpy))) { | ||||||||||||||
1185 | return false; | ||||||||||||||
1186 | } | ||||||||||||||
1187 | } else { | ||||||||||||||
1188 | // We have already checked that dst up to src_size is not accessed. We | ||||||||||||||
1189 | // need to make sure that there are no accesses up to dst_size either. | ||||||||||||||
1190 | MemDepResult DstDepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
1191 | MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), | ||||||||||||||
1192 | MemCpy->getParent()); | ||||||||||||||
1193 | if (DstDepInfo.getInst() != MemSet) | ||||||||||||||
1194 | return false; | ||||||||||||||
1195 | } | ||||||||||||||
1196 | |||||||||||||||
1197 | // Use the same i8* dest as the memcpy, killing the memset dest if different. | ||||||||||||||
1198 | Value *Dest = MemCpy->getRawDest(); | ||||||||||||||
1199 | Value *DestSize = MemSet->getLength(); | ||||||||||||||
1200 | Value *SrcSize = MemCpy->getLength(); | ||||||||||||||
1201 | |||||||||||||||
1202 | if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) | ||||||||||||||
1203 | return false; | ||||||||||||||
1204 | |||||||||||||||
1205 | // If the sizes are the same, simply drop the memset instead of generating | ||||||||||||||
1206 | // a replacement with zero size. | ||||||||||||||
1207 | if (DestSize == SrcSize) { | ||||||||||||||
1208 | eraseInstruction(MemSet); | ||||||||||||||
1209 | return true; | ||||||||||||||
1210 | } | ||||||||||||||
1211 | |||||||||||||||
1212 | // By default, create an unaligned memset. | ||||||||||||||
1213 | unsigned Align = 1; | ||||||||||||||
1214 | // If Dest is aligned, and SrcSize is constant, use the minimum alignment | ||||||||||||||
1215 | // of the sum. | ||||||||||||||
1216 | const unsigned DestAlign = | ||||||||||||||
1217 | std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); | ||||||||||||||
1218 | if (DestAlign > 1) | ||||||||||||||
1219 | if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) | ||||||||||||||
1220 | Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); | ||||||||||||||
1221 | |||||||||||||||
1222 | IRBuilder<> Builder(MemCpy); | ||||||||||||||
1223 | |||||||||||||||
1224 | // If the sizes have different types, zext the smaller one. | ||||||||||||||
1225 | if (DestSize->getType() != SrcSize->getType()) { | ||||||||||||||
1226 | if (DestSize->getType()->getIntegerBitWidth() > | ||||||||||||||
1227 | SrcSize->getType()->getIntegerBitWidth()) | ||||||||||||||
1228 | SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); | ||||||||||||||
1229 | else | ||||||||||||||
1230 | DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); | ||||||||||||||
1231 | } | ||||||||||||||
1232 | |||||||||||||||
1233 | Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); | ||||||||||||||
1234 | Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); | ||||||||||||||
1235 | Value *MemsetLen = Builder.CreateSelect( | ||||||||||||||
1236 | Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); | ||||||||||||||
1237 | unsigned DestAS = Dest->getType()->getPointerAddressSpace(); | ||||||||||||||
1238 | Instruction *NewMemSet = Builder.CreateMemSet( | ||||||||||||||
1239 | Builder.CreateGEP(Builder.getInt8Ty(), | ||||||||||||||
1240 | Builder.CreatePointerCast(Dest, | ||||||||||||||
1241 | Builder.getInt8PtrTy(DestAS)), | ||||||||||||||
1242 | SrcSize), | ||||||||||||||
1243 | MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); | ||||||||||||||
1244 | |||||||||||||||
1245 | if (MSSAU) { | ||||||||||||||
1246 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&((void)0) | ||||||||||||||
1247 | "MemCpy must be a MemoryDef")((void)0); | ||||||||||||||
1248 | // The new memset is inserted after the memcpy, but it is known that its | ||||||||||||||
1249 | // defining access is the memset about to be removed which immediately | ||||||||||||||
1250 | // precedes the memcpy. | ||||||||||||||
1251 | auto *LastDef = | ||||||||||||||
1252 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | ||||||||||||||
1253 | auto *NewAccess = MSSAU->createMemoryAccessBefore( | ||||||||||||||
1254 | NewMemSet, LastDef->getDefiningAccess(), LastDef); | ||||||||||||||
1255 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
1256 | } | ||||||||||||||
1257 | |||||||||||||||
1258 | eraseInstruction(MemSet); | ||||||||||||||
1259 | return true; | ||||||||||||||
1260 | } | ||||||||||||||
1261 | |||||||||||||||
1262 | /// Determine whether the instruction has undefined content for the given Size, | ||||||||||||||
1263 | /// either because it was freshly alloca'd or started its lifetime. | ||||||||||||||
1264 | static bool hasUndefContents(Instruction *I, Value *Size) { | ||||||||||||||
1265 | if (isa<AllocaInst>(I)) | ||||||||||||||
1266 | return true; | ||||||||||||||
1267 | |||||||||||||||
1268 | if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { | ||||||||||||||
1269 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | ||||||||||||||
1270 | if (II->getIntrinsicID() == Intrinsic::lifetime_start) | ||||||||||||||
1271 | if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) | ||||||||||||||
1272 | if (LTSize->getZExtValue() >= CSize->getZExtValue()) | ||||||||||||||
1273 | return true; | ||||||||||||||
1274 | } | ||||||||||||||
1275 | |||||||||||||||
1276 | return false; | ||||||||||||||
1277 | } | ||||||||||||||
1278 | |||||||||||||||
1279 | static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, | ||||||||||||||
1280 | MemoryDef *Def, Value *Size) { | ||||||||||||||
1281 | if (MSSA->isLiveOnEntryDef(Def)) | ||||||||||||||
1282 | return isa<AllocaInst>(getUnderlyingObject(V)); | ||||||||||||||
1283 | |||||||||||||||
1284 | if (IntrinsicInst *II = | ||||||||||||||
1285 | dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { | ||||||||||||||
1286 | if (II->getIntrinsicID() == Intrinsic::lifetime_start) { | ||||||||||||||
1287 | ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); | ||||||||||||||
1288 | |||||||||||||||
1289 | if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { | ||||||||||||||
1290 | if (AA->isMustAlias(V, II->getArgOperand(1)) && | ||||||||||||||
1291 | LTSize->getZExtValue() >= CSize->getZExtValue()) | ||||||||||||||
1292 | return true; | ||||||||||||||
1293 | } | ||||||||||||||
1294 | |||||||||||||||
1295 | // If the lifetime.start covers a whole alloca (as it almost always | ||||||||||||||
1296 | // does) and we're querying a pointer based on that alloca, then we know | ||||||||||||||
1297 | // the memory is definitely undef, regardless of how exactly we alias. | ||||||||||||||
1298 | // The size also doesn't matter, as an out-of-bounds access would be UB. | ||||||||||||||
1299 | AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); | ||||||||||||||
1300 | if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { | ||||||||||||||
1301 | const DataLayout &DL = Alloca->getModule()->getDataLayout(); | ||||||||||||||
1302 | if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) | ||||||||||||||
1303 | if (*AllocaSize == LTSize->getValue() * 8) | ||||||||||||||
1304 | return true; | ||||||||||||||
1305 | } | ||||||||||||||
1306 | } | ||||||||||||||
1307 | } | ||||||||||||||
1308 | |||||||||||||||
1309 | return false; | ||||||||||||||
1310 | } | ||||||||||||||
1311 | |||||||||||||||
1312 | /// Transform memcpy to memset when its source was just memset. | ||||||||||||||
1313 | /// In other words, turn: | ||||||||||||||
1314 | /// \code | ||||||||||||||
1315 | /// memset(dst1, c, dst1_size); | ||||||||||||||
1316 | /// memcpy(dst2, dst1, dst2_size); | ||||||||||||||
1317 | /// \endcode | ||||||||||||||
1318 | /// into: | ||||||||||||||
1319 | /// \code | ||||||||||||||
1320 | /// memset(dst1, c, dst1_size); | ||||||||||||||
1321 | /// memset(dst2, c, dst2_size); | ||||||||||||||
1322 | /// \endcode | ||||||||||||||
1323 | /// When dst2_size <= dst1_size. | ||||||||||||||
1324 | bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, | ||||||||||||||
1325 | MemSetInst *MemSet) { | ||||||||||||||
1326 | // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and | ||||||||||||||
1327 | // memcpying from the same address. Otherwise it is hard to reason about. | ||||||||||||||
1328 | if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) | ||||||||||||||
1329 | return false; | ||||||||||||||
1330 | |||||||||||||||
1331 | Value *MemSetSize = MemSet->getLength(); | ||||||||||||||
1332 | Value *CopySize = MemCpy->getLength(); | ||||||||||||||
1333 | |||||||||||||||
1334 | if (MemSetSize != CopySize) { | ||||||||||||||
1335 | // Make sure the memcpy doesn't read any more than what the memset wrote. | ||||||||||||||
1336 | // Don't worry about sizes larger than i64. | ||||||||||||||
1337 | |||||||||||||||
1338 | // A known memset size is required. | ||||||||||||||
1339 | ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); | ||||||||||||||
1340 | if (!CMemSetSize) | ||||||||||||||
1341 | return false; | ||||||||||||||
1342 | |||||||||||||||
1343 | // A known memcpy size is also required. | ||||||||||||||
1344 | ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); | ||||||||||||||
1345 | if (!CCopySize) | ||||||||||||||
1346 | return false; | ||||||||||||||
1347 | if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { | ||||||||||||||
1348 | // If the memcpy is larger than the memset, but the memory was undef prior | ||||||||||||||
1349 | // to the memset, we can just ignore the tail. Technically we're only | ||||||||||||||
1350 | // interested in the bytes from MemSetSize..CopySize here, but as we can't | ||||||||||||||
1351 | // easily represent this location, we use the full 0..CopySize range. | ||||||||||||||
1352 | MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); | ||||||||||||||
1353 | bool CanReduceSize = false; | ||||||||||||||
1354 | if (EnableMemorySSA) { | ||||||||||||||
1355 | MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); | ||||||||||||||
1356 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
1357 | MemSetAccess->getDefiningAccess(), MemCpyLoc); | ||||||||||||||
1358 | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | ||||||||||||||
1359 | if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize)) | ||||||||||||||
1360 | CanReduceSize = true; | ||||||||||||||
1361 | } else { | ||||||||||||||
1362 | MemDepResult DepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
1363 | MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); | ||||||||||||||
1364 | if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) | ||||||||||||||
1365 | CanReduceSize = true; | ||||||||||||||
1366 | } | ||||||||||||||
1367 | |||||||||||||||
1368 | if (!CanReduceSize) | ||||||||||||||
1369 | return false; | ||||||||||||||
1370 | CopySize = MemSetSize; | ||||||||||||||
1371 | } | ||||||||||||||
1372 | } | ||||||||||||||
1373 | |||||||||||||||
1374 | IRBuilder<> Builder(MemCpy); | ||||||||||||||
1375 | Instruction *NewM = | ||||||||||||||
1376 | Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), | ||||||||||||||
1377 | CopySize, MaybeAlign(MemCpy->getDestAlignment())); | ||||||||||||||
1378 | if (MSSAU) { | ||||||||||||||
1379 | auto *LastDef = | ||||||||||||||
1380 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | ||||||||||||||
1381 | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
1382 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
1383 | } | ||||||||||||||
1384 | |||||||||||||||
1385 | return true; | ||||||||||||||
1386 | } | ||||||||||||||
1387 | |||||||||||||||
1388 | /// Perform simplification of memcpy's. If we have memcpy A | ||||||||||||||
1389 | /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite | ||||||||||||||
1390 | /// B to be a memcpy from X to Z (or potentially a memmove, depending on | ||||||||||||||
1391 | /// circumstances). This allows later passes to remove the first memcpy | ||||||||||||||
1392 | /// altogether. | ||||||||||||||
1393 | bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { | ||||||||||||||
1394 | // We can only optimize non-volatile memcpy's. | ||||||||||||||
1395 | if (M->isVolatile()) return false; | ||||||||||||||
1396 | |||||||||||||||
1397 | // If the source and destination of the memcpy are the same, then zap it. | ||||||||||||||
1398 | if (M->getSource() == M->getDest()) { | ||||||||||||||
1399 | ++BBI; | ||||||||||||||
1400 | eraseInstruction(M); | ||||||||||||||
1401 | return true; | ||||||||||||||
1402 | } | ||||||||||||||
1403 | |||||||||||||||
1404 | // If copying from a constant, try to turn the memcpy into a memset. | ||||||||||||||
1405 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) | ||||||||||||||
1406 | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | ||||||||||||||
1407 | if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), | ||||||||||||||
1408 | M->getModule()->getDataLayout())) { | ||||||||||||||
1409 | IRBuilder<> Builder(M); | ||||||||||||||
1410 | Instruction *NewM = | ||||||||||||||
1411 | Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), | ||||||||||||||
1412 | MaybeAlign(M->getDestAlignment()), false); | ||||||||||||||
1413 | if (MSSAU) { | ||||||||||||||
1414 | auto *LastDef = | ||||||||||||||
1415 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | ||||||||||||||
1416 | auto *NewAccess = | ||||||||||||||
1417 | MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
1418 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
1419 | } | ||||||||||||||
1420 | |||||||||||||||
1421 | eraseInstruction(M); | ||||||||||||||
1422 | ++NumCpyToSet; | ||||||||||||||
1423 | return true; | ||||||||||||||
1424 | } | ||||||||||||||
1425 | |||||||||||||||
1426 | if (EnableMemorySSA) { | ||||||||||||||
1427 | MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); | ||||||||||||||
1428 | MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); | ||||||||||||||
1429 | MemoryLocation DestLoc = MemoryLocation::getForDest(M); | ||||||||||||||
1430 | const MemoryAccess *DestClobber = | ||||||||||||||
1431 | MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); | ||||||||||||||
1432 | |||||||||||||||
1433 | // Try to turn a partially redundant memset + memcpy into | ||||||||||||||
1434 | // memcpy + smaller memset. We don't need the memcpy size for this. | ||||||||||||||
1435 | // The memcpy most post-dom the memset, so limit this to the same basic | ||||||||||||||
1436 | // block. A non-local generalization is likely not worthwhile. | ||||||||||||||
1437 | if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) | ||||||||||||||
1438 | if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) | ||||||||||||||
1439 | if (DestClobber->getBlock() == M->getParent()) | ||||||||||||||
1440 | if (processMemSetMemCpyDependence(M, MDep)) | ||||||||||||||
1441 | return true; | ||||||||||||||
1442 | |||||||||||||||
1443 | MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
1444 | AnyClobber, MemoryLocation::getForSource(M)); | ||||||||||||||
1445 | |||||||||||||||
1446 | // There are four possible optimizations we can do for memcpy: | ||||||||||||||
1447 | // a) memcpy-memcpy xform which exposes redundance for DSE. | ||||||||||||||
1448 | // b) call-memcpy xform for return slot optimization. | ||||||||||||||
1449 | // c) memcpy from freshly alloca'd space or space that has just started | ||||||||||||||
1450 | // its lifetime copies undefined data, and we can therefore eliminate | ||||||||||||||
1451 | // the memcpy in favor of the data that was already at the destination. | ||||||||||||||
1452 | // d) memcpy from a just-memset'd source can be turned into memset. | ||||||||||||||
1453 | if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { | ||||||||||||||
1454 | if (Instruction *MI = MD->getMemoryInst()) { | ||||||||||||||
1455 | if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { | ||||||||||||||
1456 | if (auto *C = dyn_cast<CallInst>(MI)) { | ||||||||||||||
1457 | // The memcpy must post-dom the call. Limit to the same block for | ||||||||||||||
1458 | // now. Additionally, we need to ensure that there are no accesses | ||||||||||||||
1459 | // to dest between the call and the memcpy. Accesses to src will be | ||||||||||||||
1460 | // checked by performCallSlotOptzn(). | ||||||||||||||
1461 | // TODO: Support non-local call-slot optimization? | ||||||||||||||
1462 | if (C->getParent() == M->getParent() && | ||||||||||||||
1463 | !accessedBetween(*AA, DestLoc, MD, MA)) { | ||||||||||||||
1464 | // FIXME: Can we pass in either of dest/src alignment here instead | ||||||||||||||
1465 | // of conservatively taking the minimum? | ||||||||||||||
1466 | Align Alignment = std::min(M->getDestAlign().valueOrOne(), | ||||||||||||||
1467 | M->getSourceAlign().valueOrOne()); | ||||||||||||||
1468 | if (performCallSlotOptzn( | ||||||||||||||
1469 | M, M, M->getDest(), M->getSource(), | ||||||||||||||
1470 | TypeSize::getFixed(CopySize->getZExtValue()), Alignment, | ||||||||||||||
1471 | C)) { | ||||||||||||||
1472 | LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"do { } while (false) | ||||||||||||||
1473 | << " call: " << *C << "\n"do { } while (false) | ||||||||||||||
1474 | << " memcpy: " << *M << "\n")do { } while (false); | ||||||||||||||
1475 | eraseInstruction(M); | ||||||||||||||
1476 | ++NumMemCpyInstr; | ||||||||||||||
1477 | return true; | ||||||||||||||
1478 | } | ||||||||||||||
1479 | } | ||||||||||||||
1480 | } | ||||||||||||||
1481 | } | ||||||||||||||
1482 | if (auto *MDep = dyn_cast<MemCpyInst>(MI)) | ||||||||||||||
1483 | return processMemCpyMemCpyDependence(M, MDep); | ||||||||||||||
1484 | if (auto *MDep = dyn_cast<MemSetInst>(MI)) { | ||||||||||||||
1485 | if (performMemCpyToMemSetOptzn(M, MDep)) { | ||||||||||||||
1486 | LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n")do { } while (false); | ||||||||||||||
1487 | eraseInstruction(M); | ||||||||||||||
1488 | ++NumCpyToSet; | ||||||||||||||
1489 | return true; | ||||||||||||||
1490 | } | ||||||||||||||
1491 | } | ||||||||||||||
1492 | } | ||||||||||||||
1493 | |||||||||||||||
1494 | if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) { | ||||||||||||||
1495 | LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n")do { } while (false); | ||||||||||||||
1496 | eraseInstruction(M); | ||||||||||||||
1497 | ++NumMemCpyInstr; | ||||||||||||||
1498 | return true; | ||||||||||||||
1499 | } | ||||||||||||||
1500 | } | ||||||||||||||
1501 | } else { | ||||||||||||||
1502 | MemDepResult DepInfo = MD->getDependency(M); | ||||||||||||||
1503 | |||||||||||||||
1504 | // Try to turn a partially redundant memset + memcpy into | ||||||||||||||
1505 | // memcpy + smaller memset. We don't need the memcpy size for this. | ||||||||||||||
1506 | if (DepInfo.isClobber()) | ||||||||||||||
1507 | if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) | ||||||||||||||
1508 | if (processMemSetMemCpyDependence(M, MDep)) | ||||||||||||||
1509 | return true; | ||||||||||||||
1510 | |||||||||||||||
1511 | // There are four possible optimizations we can do for memcpy: | ||||||||||||||
1512 | // a) memcpy-memcpy xform which exposes redundance for DSE. | ||||||||||||||
1513 | // b) call-memcpy xform for return slot optimization. | ||||||||||||||
1514 | // c) memcpy from freshly alloca'd space or space that has just started | ||||||||||||||
1515 | // its lifetime copies undefined data, and we can therefore eliminate | ||||||||||||||
1516 | // the memcpy in favor of the data that was already at the destination. | ||||||||||||||
1517 | // d) memcpy from a just-memset'd source can be turned into memset. | ||||||||||||||
1518 | if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { | ||||||||||||||
1519 | if (DepInfo.isClobber()) { | ||||||||||||||
1520 | if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { | ||||||||||||||
1521 | // FIXME: Can we pass in either of dest/src alignment here instead | ||||||||||||||
1522 | // of conservatively taking the minimum? | ||||||||||||||
1523 | Align Alignment = std::min(M->getDestAlign().valueOrOne(), | ||||||||||||||
1524 | M->getSourceAlign().valueOrOne()); | ||||||||||||||
1525 | if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), | ||||||||||||||
1526 | TypeSize::getFixed(CopySize->getZExtValue()), | ||||||||||||||
1527 | Alignment, C)) { | ||||||||||||||
1528 | eraseInstruction(M); | ||||||||||||||
1529 | ++NumMemCpyInstr; | ||||||||||||||
1530 | return true; | ||||||||||||||
1531 | } | ||||||||||||||
1532 | } | ||||||||||||||
1533 | } | ||||||||||||||
1534 | } | ||||||||||||||
1535 | |||||||||||||||
1536 | MemoryLocation SrcLoc = MemoryLocation::getForSource(M); | ||||||||||||||
1537 | MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
1538 | SrcLoc, true, M->getIterator(), M->getParent()); | ||||||||||||||
1539 | |||||||||||||||
1540 | if (SrcDepInfo.isClobber()) { | ||||||||||||||
1541 | if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) | ||||||||||||||
1542 | return processMemCpyMemCpyDependence(M, MDep); | ||||||||||||||
1543 | } else if (SrcDepInfo.isDef()) { | ||||||||||||||
1544 | if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) { | ||||||||||||||
1545 | eraseInstruction(M); | ||||||||||||||
1546 | ++NumMemCpyInstr; | ||||||||||||||
1547 | return true; | ||||||||||||||
1548 | } | ||||||||||||||
1549 | } | ||||||||||||||
1550 | |||||||||||||||
1551 | if (SrcDepInfo.isClobber()) | ||||||||||||||
1552 | if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) | ||||||||||||||
1553 | if (performMemCpyToMemSetOptzn(M, MDep)) { | ||||||||||||||
1554 | eraseInstruction(M); | ||||||||||||||
1555 | ++NumCpyToSet; | ||||||||||||||
1556 | return true; | ||||||||||||||
1557 | } | ||||||||||||||
1558 | } | ||||||||||||||
1559 | |||||||||||||||
1560 | return false; | ||||||||||||||
1561 | } | ||||||||||||||
1562 | |||||||||||||||
1563 | /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed | ||||||||||||||
1564 | /// not to alias. | ||||||||||||||
1565 | bool MemCpyOptPass::processMemMove(MemMoveInst *M) { | ||||||||||||||
1566 | if (!TLI->has(LibFunc_memmove)) | ||||||||||||||
1567 | return false; | ||||||||||||||
1568 | |||||||||||||||
1569 | // See if the pointers alias. | ||||||||||||||
1570 | if (!AA->isNoAlias(MemoryLocation::getForDest(M), | ||||||||||||||
1571 | MemoryLocation::getForSource(M))) | ||||||||||||||
1572 | return false; | ||||||||||||||
1573 | |||||||||||||||
1574 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *Mdo { } while (false) | ||||||||||||||
1575 | << "\n")do { } while (false); | ||||||||||||||
1576 | |||||||||||||||
1577 | // If not, then we know we can transform this. | ||||||||||||||
1578 | Type *ArgTys[3] = { M->getRawDest()->getType(), | ||||||||||||||
1579 | M->getRawSource()->getType(), | ||||||||||||||
1580 | M->getLength()->getType() }; | ||||||||||||||
1581 | M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), | ||||||||||||||
1582 | Intrinsic::memcpy, ArgTys)); | ||||||||||||||
1583 | |||||||||||||||
1584 | // For MemorySSA nothing really changes (except that memcpy may imply stricter | ||||||||||||||
1585 | // aliasing guarantees). | ||||||||||||||
1586 | |||||||||||||||
1587 | // MemDep may have over conservative information about this instruction, just | ||||||||||||||
1588 | // conservatively flush it from the cache. | ||||||||||||||
1589 | if (MD) | ||||||||||||||
1590 | MD->removeInstruction(M); | ||||||||||||||
1591 | |||||||||||||||
1592 | ++NumMoveToCpy; | ||||||||||||||
1593 | return true; | ||||||||||||||
1594 | } | ||||||||||||||
1595 | |||||||||||||||
1596 | /// This is called on every byval argument in call sites. | ||||||||||||||
1597 | bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { | ||||||||||||||
1598 | const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); | ||||||||||||||
1599 | // Find out what feeds this byval argument. | ||||||||||||||
1600 | Value *ByValArg = CB.getArgOperand(ArgNo); | ||||||||||||||
1601 | Type *ByValTy = CB.getParamByValType(ArgNo); | ||||||||||||||
1602 | TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); | ||||||||||||||
1603 | MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); | ||||||||||||||
1604 | MemCpyInst *MDep = nullptr; | ||||||||||||||
1605 | if (EnableMemorySSA) { | ||||||||||||||
1606 | MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); | ||||||||||||||
1607 | if (!CallAccess) | ||||||||||||||
1608 | return false; | ||||||||||||||
1609 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
1610 | CallAccess->getDefiningAccess(), Loc); | ||||||||||||||
1611 | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | ||||||||||||||
1612 | MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); | ||||||||||||||
1613 | } else { | ||||||||||||||
1614 | MemDepResult DepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
1615 | Loc, true, CB.getIterator(), CB.getParent()); | ||||||||||||||
1616 | if (!DepInfo.isClobber()) | ||||||||||||||
1617 | return false; | ||||||||||||||
1618 | MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); | ||||||||||||||
1619 | } | ||||||||||||||
1620 | |||||||||||||||
1621 | // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by | ||||||||||||||
1622 | // a memcpy, see if we can byval from the source of the memcpy instead of the | ||||||||||||||
1623 | // result. | ||||||||||||||
1624 | if (!MDep || MDep->isVolatile() || | ||||||||||||||
1625 | ByValArg->stripPointerCasts() != MDep->getDest()) | ||||||||||||||
1626 | return false; | ||||||||||||||
1627 | |||||||||||||||
1628 | // The length of the memcpy must be larger or equal to the size of the byval. | ||||||||||||||
1629 | ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); | ||||||||||||||
1630 | if (!C1 || !TypeSize::isKnownGE( | ||||||||||||||
1631 | TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) | ||||||||||||||
1632 | return false; | ||||||||||||||
1633 | |||||||||||||||
1634 | // Get the alignment of the byval. If the call doesn't specify the alignment, | ||||||||||||||
1635 | // then it is some target specific value that we can't know. | ||||||||||||||
1636 | MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); | ||||||||||||||
1637 | if (!ByValAlign) return false; | ||||||||||||||
1638 | |||||||||||||||
1639 | // If it is greater than the memcpy, then we check to see if we can force the | ||||||||||||||
1640 | // source of the memcpy to the alignment we need. If we fail, we bail out. | ||||||||||||||
1641 | MaybeAlign MemDepAlign = MDep->getSourceAlign(); | ||||||||||||||
1642 | if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && | ||||||||||||||
1643 | getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, | ||||||||||||||
1644 | DT) < *ByValAlign) | ||||||||||||||
1645 | return false; | ||||||||||||||
1646 | |||||||||||||||
1647 | // The address space of the memcpy source must match the byval argument | ||||||||||||||
1648 | if (MDep->getSource()->getType()->getPointerAddressSpace() != | ||||||||||||||
1649 | ByValArg->getType()->getPointerAddressSpace()) | ||||||||||||||
1650 | return false; | ||||||||||||||
1651 | |||||||||||||||
1652 | // Verify that the copied-from memory doesn't change in between the memcpy and | ||||||||||||||
1653 | // the byval call. | ||||||||||||||
1654 | // memcpy(a <- b) | ||||||||||||||
1655 | // *b = 42; | ||||||||||||||
1656 | // foo(*a) | ||||||||||||||
1657 | // It would be invalid to transform the second memcpy into foo(*b). | ||||||||||||||
1658 | if (EnableMemorySSA) { | ||||||||||||||
1659 | if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), | ||||||||||||||
1660 | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) | ||||||||||||||
1661 | return false; | ||||||||||||||
1662 | } else { | ||||||||||||||
1663 | // NOTE: This is conservative, it will stop on any read from the source loc, | ||||||||||||||
1664 | // not just the defining memcpy. | ||||||||||||||
1665 | MemDepResult SourceDep = MD->getPointerDependencyFrom( | ||||||||||||||
1666 | MemoryLocation::getForSource(MDep), false, | ||||||||||||||
1667 | CB.getIterator(), MDep->getParent()); | ||||||||||||||
1668 | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | ||||||||||||||
1669 | return false; | ||||||||||||||
1670 | } | ||||||||||||||
1671 | |||||||||||||||
1672 | Value *TmpCast = MDep->getSource(); | ||||||||||||||
1673 | if (MDep->getSource()->getType() != ByValArg->getType()) { | ||||||||||||||
1674 | BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), | ||||||||||||||
1675 | "tmpcast", &CB); | ||||||||||||||
1676 | // Set the tmpcast's DebugLoc to MDep's | ||||||||||||||
1677 | TmpBitCast->setDebugLoc(MDep->getDebugLoc()); | ||||||||||||||
1678 | TmpCast = TmpBitCast; | ||||||||||||||
1679 | } | ||||||||||||||
1680 | |||||||||||||||
1681 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"do { } while (false) | ||||||||||||||
1682 | << " " << *MDep << "\n"do { } while (false) | ||||||||||||||
1683 | << " " << CB << "\n")do { } while (false); | ||||||||||||||
1684 | |||||||||||||||
1685 | // Otherwise we're good! Update the byval argument. | ||||||||||||||
1686 | CB.setArgOperand(ArgNo, TmpCast); | ||||||||||||||
1687 | ++NumMemCpyInstr; | ||||||||||||||
1688 | return true; | ||||||||||||||
1689 | } | ||||||||||||||
1690 | |||||||||||||||
1691 | /// Executes one iteration of MemCpyOptPass. | ||||||||||||||
1692 | bool MemCpyOptPass::iterateOnFunction(Function &F) { | ||||||||||||||
1693 | bool MadeChange = false; | ||||||||||||||
1694 | |||||||||||||||
1695 | // Walk all instruction in the function. | ||||||||||||||
1696 | for (BasicBlock &BB : F) { | ||||||||||||||
1697 | // Skip unreachable blocks. For example processStore assumes that an | ||||||||||||||
1698 | // instruction in a BB can't be dominated by a later instruction in the | ||||||||||||||
1699 | // same BB (which is a scenario that can happen for an unreachable BB that | ||||||||||||||
1700 | // has itself as a predecessor). | ||||||||||||||
1701 | if (!DT->isReachableFromEntry(&BB)) | ||||||||||||||
1702 | continue; | ||||||||||||||
1703 | |||||||||||||||
1704 | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | ||||||||||||||
1705 | // Avoid invalidating the iterator. | ||||||||||||||
1706 | Instruction *I = &*BI++; | ||||||||||||||
1707 | |||||||||||||||
1708 | bool RepeatInstruction = false; | ||||||||||||||
1709 | |||||||||||||||
1710 | if (StoreInst *SI
| ||||||||||||||
1711 | MadeChange |= processStore(SI, BI); | ||||||||||||||
1712 | else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) | ||||||||||||||
1713 | RepeatInstruction = processMemSet(M, BI); | ||||||||||||||
1714 | else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) | ||||||||||||||
1715 | RepeatInstruction = processMemCpy(M, BI); | ||||||||||||||
1716 | else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) | ||||||||||||||
1717 | RepeatInstruction = processMemMove(M); | ||||||||||||||
1718 | else if (auto *CB = dyn_cast<CallBase>(I)) { | ||||||||||||||
1719 | for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) | ||||||||||||||
1720 | if (CB->isByValArgument(i)) | ||||||||||||||
1721 | MadeChange |= processByValArgument(*CB, i); | ||||||||||||||
1722 | } | ||||||||||||||
1723 | |||||||||||||||
1724 | // Reprocess the instruction if desired. | ||||||||||||||
1725 | if (RepeatInstruction) { | ||||||||||||||
1726 | if (BI != BB.begin()) | ||||||||||||||
1727 | --BI; | ||||||||||||||
1728 | MadeChange = true; | ||||||||||||||
1729 | } | ||||||||||||||
1730 | } | ||||||||||||||
1731 | } | ||||||||||||||
1732 | |||||||||||||||
1733 | return MadeChange; | ||||||||||||||
1734 | } | ||||||||||||||
1735 | |||||||||||||||
1736 | PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { | ||||||||||||||
1737 | auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F) | ||||||||||||||
1738 | : AM.getCachedResult<MemoryDependenceAnalysis>(F); | ||||||||||||||
1739 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | ||||||||||||||
1740 | auto *AA = &AM.getResult<AAManager>(F); | ||||||||||||||
1741 | auto *AC = &AM.getResult<AssumptionAnalysis>(F); | ||||||||||||||
1742 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); | ||||||||||||||
1743 | auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F) | ||||||||||||||
1744 | : AM.getCachedResult<MemorySSAAnalysis>(F); | ||||||||||||||
1745 | |||||||||||||||
1746 | bool MadeChange = | ||||||||||||||
1747 | runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr); | ||||||||||||||
1748 | if (!MadeChange) | ||||||||||||||
1749 | return PreservedAnalyses::all(); | ||||||||||||||
1750 | |||||||||||||||
1751 | PreservedAnalyses PA; | ||||||||||||||
1752 | PA.preserveSet<CFGAnalyses>(); | ||||||||||||||
1753 | if (MD) | ||||||||||||||
1754 | PA.preserve<MemoryDependenceAnalysis>(); | ||||||||||||||
1755 | if (MSSA) | ||||||||||||||
1756 | PA.preserve<MemorySSAAnalysis>(); | ||||||||||||||
1757 | return PA; | ||||||||||||||
1758 | } | ||||||||||||||
1759 | |||||||||||||||
1760 | bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_, | ||||||||||||||
1761 | TargetLibraryInfo *TLI_, AliasAnalysis *AA_, | ||||||||||||||
1762 | AssumptionCache *AC_, DominatorTree *DT_, | ||||||||||||||
1763 | MemorySSA *MSSA_) { | ||||||||||||||
1764 | bool MadeChange = false; | ||||||||||||||
1765 | MD = MD_; | ||||||||||||||
1766 | TLI = TLI_; | ||||||||||||||
1767 | AA = AA_; | ||||||||||||||
1768 | AC = AC_; | ||||||||||||||
1769 | DT = DT_; | ||||||||||||||
1770 | MSSA = MSSA_; | ||||||||||||||
1771 | MemorySSAUpdater MSSAU_(MSSA_); | ||||||||||||||
1772 | MSSAU = MSSA_
| ||||||||||||||
1773 | // If we don't have at least memset and memcpy, there is little point of doing | ||||||||||||||
1774 | // anything here. These are required by a freestanding implementation, so if | ||||||||||||||
1775 | // even they are disabled, there is no point in trying hard. | ||||||||||||||
1776 | if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) | ||||||||||||||
1777 | return false; | ||||||||||||||
1778 | |||||||||||||||
1779 | while (true) { | ||||||||||||||
1780 | if (!iterateOnFunction(F)) | ||||||||||||||
1781 | break; | ||||||||||||||
1782 | MadeChange = true; | ||||||||||||||
1783 | } | ||||||||||||||
1784 | |||||||||||||||
1785 | if (MSSA_ && VerifyMemorySSA) | ||||||||||||||
1786 | MSSA_->verifyMemorySSA(); | ||||||||||||||
1787 | |||||||||||||||
1788 | MD = nullptr; | ||||||||||||||
1789 | return MadeChange; | ||||||||||||||
1790 | } | ||||||||||||||
1791 | |||||||||||||||
1792 | /// This is the main transformation entry point for a function. | ||||||||||||||
1793 | bool MemCpyOptLegacyPass::runOnFunction(Function &F) { | ||||||||||||||
1794 | if (skipFunction(F)) | ||||||||||||||
| |||||||||||||||
1795 | return false; | ||||||||||||||
1796 | |||||||||||||||
1797 | auto *MDWP = !EnableMemorySSA | ||||||||||||||
1798 | ? &getAnalysis<MemoryDependenceWrapperPass>() | ||||||||||||||
1799 | : getAnalysisIfAvailable<MemoryDependenceWrapperPass>(); | ||||||||||||||
1800 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||||||||||
1801 | auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | ||||||||||||||
1802 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||||||||||
1803 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||||||||||
1804 | auto *MSSAWP = EnableMemorySSA | ||||||||||||||
1805 | ? &getAnalysis<MemorySSAWrapperPass>() | ||||||||||||||
1806 | : getAnalysisIfAvailable<MemorySSAWrapperPass>(); | ||||||||||||||
1807 | |||||||||||||||
1808 | return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT, | ||||||||||||||
1809 | MSSAWP
| ||||||||||||||
1810 | } |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file exposes the class definitions of all of the subclasses of the |
10 | // Instruction class. This is meant to be an easy way to get access to all |
11 | // instruction subclasses. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
16 | #define LLVM_IR_INSTRUCTIONS_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/Bitfields.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/None.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/ADT/Twine.h" |
26 | #include "llvm/ADT/iterator.h" |
27 | #include "llvm/ADT/iterator_range.h" |
28 | #include "llvm/IR/Attributes.h" |
29 | #include "llvm/IR/BasicBlock.h" |
30 | #include "llvm/IR/CallingConv.h" |
31 | #include "llvm/IR/CFG.h" |
32 | #include "llvm/IR/Constant.h" |
33 | #include "llvm/IR/DerivedTypes.h" |
34 | #include "llvm/IR/Function.h" |
35 | #include "llvm/IR/InstrTypes.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/OperandTraits.h" |
38 | #include "llvm/IR/Type.h" |
39 | #include "llvm/IR/Use.h" |
40 | #include "llvm/IR/User.h" |
41 | #include "llvm/IR/Value.h" |
42 | #include "llvm/Support/AtomicOrdering.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include <cassert> |
46 | #include <cstddef> |
47 | #include <cstdint> |
48 | #include <iterator> |
49 | |
50 | namespace llvm { |
51 | |
52 | class APInt; |
53 | class ConstantInt; |
54 | class DataLayout; |
55 | class LLVMContext; |
56 | |
57 | //===----------------------------------------------------------------------===// |
58 | // AllocaInst Class |
59 | //===----------------------------------------------------------------------===// |
60 | |
61 | /// an instruction to allocate memory on the stack |
62 | class AllocaInst : public UnaryInstruction { |
63 | Type *AllocatedType; |
64 | |
65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
69 | SwiftErrorField>(), |
70 | "Bitfields must be contiguous"); |
71 | |
72 | protected: |
73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
74 | friend class Instruction; |
75 | |
76 | AllocaInst *cloneImpl() const; |
77 | |
78 | public: |
79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
80 | const Twine &Name, Instruction *InsertBefore); |
81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
82 | const Twine &Name, BasicBlock *InsertAtEnd); |
83 | |
84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
85 | Instruction *InsertBefore); |
86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
87 | const Twine &Name, BasicBlock *InsertAtEnd); |
88 | |
89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
92 | const Twine &Name, BasicBlock *InsertAtEnd); |
93 | |
94 | /// Return true if there is an allocation size parameter to the allocation |
95 | /// instruction that is not 1. |
96 | bool isArrayAllocation() const; |
97 | |
98 | /// Get the number of elements allocated. For a simple allocation of a single |
99 | /// element, this will return a constant 1 value. |
100 | const Value *getArraySize() const { return getOperand(0); } |
101 | Value *getArraySize() { return getOperand(0); } |
102 | |
103 | /// Overload to return most specific pointer type. |
104 | PointerType *getType() const { |
105 | return cast<PointerType>(Instruction::getType()); |
106 | } |
107 | |
108 | /// Get allocation size in bits. Returns None if size can't be determined, |
109 | /// e.g. in case of a VLA. |
110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
111 | |
112 | /// Return the type that is being allocated by the instruction. |
113 | Type *getAllocatedType() const { return AllocatedType; } |
114 | /// for use only in special circumstances that need to generically |
115 | /// transform a whole instruction (eg: IR linking and vectorization). |
116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
117 | |
118 | /// Return the alignment of the memory that is being allocated by the |
119 | /// instruction. |
120 | Align getAlign() const { |
121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
122 | } |
123 | |
124 | void setAlignment(Align Align) { |
125 | setSubclassData<AlignmentField>(Log2(Align)); |
126 | } |
127 | |
128 | // FIXME: Remove this one transition to Align is over. |
129 | unsigned getAlignment() const { return getAlign().value(); } |
130 | |
131 | /// Return true if this alloca is in the entry block of the function and is a |
132 | /// constant size. If so, the code generator will fold it into the |
133 | /// prolog/epilog code, so it is basically free. |
134 | bool isStaticAlloca() const; |
135 | |
136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
137 | /// allocas are never considered static even if they are in the entry block. |
138 | bool isUsedWithInAlloca() const { |
139 | return getSubclassData<UsedWithInAllocaField>(); |
140 | } |
141 | |
142 | /// Specify whether this alloca is used to represent the arguments to a call. |
143 | void setUsedWithInAlloca(bool V) { |
144 | setSubclassData<UsedWithInAllocaField>(V); |
145 | } |
146 | |
147 | /// Return true if this alloca is used as a swifterror argument to a call. |
148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
149 | /// Specify whether this alloca is used to represent a swifterror. |
150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
151 | |
152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
153 | static bool classof(const Instruction *I) { |
154 | return (I->getOpcode() == Instruction::Alloca); |
155 | } |
156 | static bool classof(const Value *V) { |
157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
158 | } |
159 | |
160 | private: |
161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
162 | // method so that subclasses cannot accidentally use it. |
163 | template <typename Bitfield> |
164 | void setSubclassData(typename Bitfield::Type Value) { |
165 | Instruction::setSubclassData<Bitfield>(Value); |
166 | } |
167 | }; |
168 | |
169 | //===----------------------------------------------------------------------===// |
170 | // LoadInst Class |
171 | //===----------------------------------------------------------------------===// |
172 | |
173 | /// An instruction for reading from memory. This uses the SubclassData field in |
174 | /// Value to store whether or not the load is volatile. |
175 | class LoadInst : public UnaryInstruction { |
176 | using VolatileField = BoolBitfieldElementT<0>; |
177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
179 | static_assert( |
180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
181 | "Bitfields must be contiguous"); |
182 | |
183 | void AssertOK(); |
184 | |
185 | protected: |
186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
187 | friend class Instruction; |
188 | |
189 | LoadInst *cloneImpl() const; |
190 | |
191 | public: |
192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
193 | Instruction *InsertBefore); |
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
196 | Instruction *InsertBefore); |
197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
198 | BasicBlock *InsertAtEnd); |
199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
200 | Align Align, Instruction *InsertBefore = nullptr); |
201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
202 | Align Align, BasicBlock *InsertAtEnd); |
203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
204 | Align Align, AtomicOrdering Order, |
205 | SyncScope::ID SSID = SyncScope::System, |
206 | Instruction *InsertBefore = nullptr); |
207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
209 | BasicBlock *InsertAtEnd); |
210 | |
211 | /// Return true if this is a load from a volatile memory location. |
212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
213 | |
214 | /// Specify whether this is a volatile load or not. |
215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
216 | |
217 | /// Return the alignment of the access that is being performed. |
218 | /// FIXME: Remove this function once transition to Align is over. |
219 | /// Use getAlign() instead. |
220 | unsigned getAlignment() const { return getAlign().value(); } |
221 | |
222 | /// Return the alignment of the access that is being performed. |
223 | Align getAlign() const { |
224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
225 | } |
226 | |
227 | void setAlignment(Align Align) { |
228 | setSubclassData<AlignmentField>(Log2(Align)); |
229 | } |
230 | |
231 | /// Returns the ordering constraint of this load instruction. |
232 | AtomicOrdering getOrdering() const { |
233 | return getSubclassData<OrderingField>(); |
234 | } |
235 | /// Sets the ordering constraint of this load instruction. May not be Release |
236 | /// or AcquireRelease. |
237 | void setOrdering(AtomicOrdering Ordering) { |
238 | setSubclassData<OrderingField>(Ordering); |
239 | } |
240 | |
241 | /// Returns the synchronization scope ID of this load instruction. |
242 | SyncScope::ID getSyncScopeID() const { |
243 | return SSID; |
244 | } |
245 | |
246 | /// Sets the synchronization scope ID of this load instruction. |
247 | void setSyncScopeID(SyncScope::ID SSID) { |
248 | this->SSID = SSID; |
249 | } |
250 | |
251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
252 | /// instruction. |
253 | void setAtomic(AtomicOrdering Ordering, |
254 | SyncScope::ID SSID = SyncScope::System) { |
255 | setOrdering(Ordering); |
256 | setSyncScopeID(SSID); |
257 | } |
258 | |
259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
260 | |
261 | bool isUnordered() const { |
262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
263 | getOrdering() == AtomicOrdering::Unordered) && |
264 | !isVolatile(); |
265 | } |
266 | |
267 | Value *getPointerOperand() { return getOperand(0); } |
268 | const Value *getPointerOperand() const { return getOperand(0); } |
269 | static unsigned getPointerOperandIndex() { return 0U; } |
270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
271 | |
272 | /// Returns the address space of the pointer operand. |
273 | unsigned getPointerAddressSpace() const { |
274 | return getPointerOperandType()->getPointerAddressSpace(); |
275 | } |
276 | |
277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
278 | static bool classof(const Instruction *I) { |
279 | return I->getOpcode() == Instruction::Load; |
280 | } |
281 | static bool classof(const Value *V) { |
282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
283 | } |
284 | |
285 | private: |
286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
287 | // method so that subclasses cannot accidentally use it. |
288 | template <typename Bitfield> |
289 | void setSubclassData(typename Bitfield::Type Value) { |
290 | Instruction::setSubclassData<Bitfield>(Value); |
291 | } |
292 | |
293 | /// The synchronization scope ID of this load instruction. Not quite enough |
294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
295 | /// own field. |
296 | SyncScope::ID SSID; |
297 | }; |
298 | |
299 | //===----------------------------------------------------------------------===// |
300 | // StoreInst Class |
301 | //===----------------------------------------------------------------------===// |
302 | |
303 | /// An instruction for storing to memory. |
304 | class StoreInst : public Instruction { |
305 | using VolatileField = BoolBitfieldElementT<0>; |
306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
308 | static_assert( |
309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
310 | "Bitfields must be contiguous"); |
311 | |
312 | void AssertOK(); |
313 | |
314 | protected: |
315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
316 | friend class Instruction; |
317 | |
318 | StoreInst *cloneImpl() const; |
319 | |
320 | public: |
321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
326 | Instruction *InsertBefore = nullptr); |
327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
328 | BasicBlock *InsertAtEnd); |
329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
331 | Instruction *InsertBefore = nullptr); |
332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
334 | |
335 | // allocate space for exactly two operands |
336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
338 | |
339 | /// Return true if this is a store to a volatile memory location. |
340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
341 | |
342 | /// Specify whether this is a volatile store or not. |
343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
344 | |
345 | /// Transparently provide more efficient getOperand methods. |
346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
347 | |
348 | /// Return the alignment of the access that is being performed |
349 | /// FIXME: Remove this function once transition to Align is over. |
350 | /// Use getAlign() instead. |
351 | unsigned getAlignment() const { return getAlign().value(); } |
352 | |
353 | Align getAlign() const { |
354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
355 | } |
356 | |
357 | void setAlignment(Align Align) { |
358 | setSubclassData<AlignmentField>(Log2(Align)); |
359 | } |
360 | |
361 | /// Returns the ordering constraint of this store instruction. |
362 | AtomicOrdering getOrdering() const { |
363 | return getSubclassData<OrderingField>(); |
364 | } |
365 | |
366 | /// Sets the ordering constraint of this store instruction. May not be |
367 | /// Acquire or AcquireRelease. |
368 | void setOrdering(AtomicOrdering Ordering) { |
369 | setSubclassData<OrderingField>(Ordering); |
370 | } |
371 | |
372 | /// Returns the synchronization scope ID of this store instruction. |
373 | SyncScope::ID getSyncScopeID() const { |
374 | return SSID; |
375 | } |
376 | |
377 | /// Sets the synchronization scope ID of this store instruction. |
378 | void setSyncScopeID(SyncScope::ID SSID) { |
379 | this->SSID = SSID; |
380 | } |
381 | |
382 | /// Sets the ordering constraint and the synchronization scope ID of this |
383 | /// store instruction. |
384 | void setAtomic(AtomicOrdering Ordering, |
385 | SyncScope::ID SSID = SyncScope::System) { |
386 | setOrdering(Ordering); |
387 | setSyncScopeID(SSID); |
388 | } |
389 | |
390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
391 | |
392 | bool isUnordered() const { |
393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
394 | getOrdering() == AtomicOrdering::Unordered) && |
395 | !isVolatile(); |
396 | } |
397 | |
398 | Value *getValueOperand() { return getOperand(0); } |
399 | const Value *getValueOperand() const { return getOperand(0); } |
400 | |
401 | Value *getPointerOperand() { return getOperand(1); } |
402 | const Value *getPointerOperand() const { return getOperand(1); } |
403 | static unsigned getPointerOperandIndex() { return 1U; } |
404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
405 | |
406 | /// Returns the address space of the pointer operand. |
407 | unsigned getPointerAddressSpace() const { |
408 | return getPointerOperandType()->getPointerAddressSpace(); |
409 | } |
410 | |
411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
412 | static bool classof(const Instruction *I) { |
413 | return I->getOpcode() == Instruction::Store; |
414 | } |
415 | static bool classof(const Value *V) { |
416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
417 | } |
418 | |
419 | private: |
420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
421 | // method so that subclasses cannot accidentally use it. |
422 | template <typename Bitfield> |
423 | void setSubclassData(typename Bitfield::Type Value) { |
424 | Instruction::setSubclassData<Bitfield>(Value); |
425 | } |
426 | |
427 | /// The synchronization scope ID of this store instruction. Not quite enough |
428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
429 | /// own field. |
430 | SyncScope::ID SSID; |
431 | }; |
432 | |
433 | template <> |
434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
435 | }; |
436 | |
437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
438 | |
439 | //===----------------------------------------------------------------------===// |
440 | // FenceInst Class |
441 | //===----------------------------------------------------------------------===// |
442 | |
443 | /// An instruction for ordering other memory operations. |
444 | class FenceInst : public Instruction { |
445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
446 | |
447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
448 | |
449 | protected: |
450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
451 | friend class Instruction; |
452 | |
453 | FenceInst *cloneImpl() const; |
454 | |
455 | public: |
456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
457 | // SequentiallyConsistent. |
458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
459 | SyncScope::ID SSID = SyncScope::System, |
460 | Instruction *InsertBefore = nullptr); |
461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
462 | BasicBlock *InsertAtEnd); |
463 | |
464 | // allocate space for exactly zero operands |
465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
467 | |
468 | /// Returns the ordering constraint of this fence instruction. |
469 | AtomicOrdering getOrdering() const { |
470 | return getSubclassData<OrderingField>(); |
471 | } |
472 | |
473 | /// Sets the ordering constraint of this fence instruction. May only be |
474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
475 | void setOrdering(AtomicOrdering Ordering) { |
476 | setSubclassData<OrderingField>(Ordering); |
477 | } |
478 | |
479 | /// Returns the synchronization scope ID of this fence instruction. |
480 | SyncScope::ID getSyncScopeID() const { |
481 | return SSID; |
482 | } |
483 | |
484 | /// Sets the synchronization scope ID of this fence instruction. |
485 | void setSyncScopeID(SyncScope::ID SSID) { |
486 | this->SSID = SSID; |
487 | } |
488 | |
489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
490 | static bool classof(const Instruction *I) { |
491 | return I->getOpcode() == Instruction::Fence; |
492 | } |
493 | static bool classof(const Value *V) { |
494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
495 | } |
496 | |
497 | private: |
498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
499 | // method so that subclasses cannot accidentally use it. |
500 | template <typename Bitfield> |
501 | void setSubclassData(typename Bitfield::Type Value) { |
502 | Instruction::setSubclassData<Bitfield>(Value); |
503 | } |
504 | |
505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
507 | /// own field. |
508 | SyncScope::ID SSID; |
509 | }; |
510 | |
511 | //===----------------------------------------------------------------------===// |
512 | // AtomicCmpXchgInst Class |
513 | //===----------------------------------------------------------------------===// |
514 | |
515 | /// An instruction that atomically checks whether a |
516 | /// specified value is in a memory location, and, if it is, stores a new value |
517 | /// there. The value returned by this instruction is a pair containing the |
518 | /// original value as first element, and an i1 indicating success (true) or |
519 | /// failure (false) as second element. |
520 | /// |
521 | class AtomicCmpXchgInst : public Instruction { |
522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
524 | SyncScope::ID SSID); |
525 | |
526 | template <unsigned Offset> |
527 | using AtomicOrderingBitfieldElement = |
528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
529 | AtomicOrdering::LAST>; |
530 | |
531 | protected: |
532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
533 | friend class Instruction; |
534 | |
535 | AtomicCmpXchgInst *cloneImpl() const; |
536 | |
537 | public: |
538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
539 | AtomicOrdering SuccessOrdering, |
540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
541 | Instruction *InsertBefore = nullptr); |
542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
543 | AtomicOrdering SuccessOrdering, |
544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
545 | BasicBlock *InsertAtEnd); |
546 | |
547 | // allocate space for exactly three operands |
548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
550 | |
551 | using VolatileField = BoolBitfieldElementT<0>; |
552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
553 | using SuccessOrderingField = |
554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
555 | using FailureOrderingField = |
556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
557 | using AlignmentField = |
558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
559 | static_assert( |
560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
561 | FailureOrderingField, AlignmentField>(), |
562 | "Bitfields must be contiguous"); |
563 | |
564 | /// Return the alignment of the memory that is being allocated by the |
565 | /// instruction. |
566 | Align getAlign() const { |
567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
568 | } |
569 | |
570 | void setAlignment(Align Align) { |
571 | setSubclassData<AlignmentField>(Log2(Align)); |
572 | } |
573 | |
574 | /// Return true if this is a cmpxchg from a volatile memory |
575 | /// location. |
576 | /// |
577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
578 | |
579 | /// Specify whether this is a volatile cmpxchg. |
580 | /// |
581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
582 | |
583 | /// Return true if this cmpxchg may spuriously fail. |
584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
585 | |
586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
587 | |
588 | /// Transparently provide more efficient getOperand methods. |
589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
590 | |
591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
592 | return Ordering != AtomicOrdering::NotAtomic && |
593 | Ordering != AtomicOrdering::Unordered; |
594 | } |
595 | |
596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
597 | return Ordering != AtomicOrdering::NotAtomic && |
598 | Ordering != AtomicOrdering::Unordered && |
599 | Ordering != AtomicOrdering::AcquireRelease && |
600 | Ordering != AtomicOrdering::Release; |
601 | } |
602 | |
603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
604 | AtomicOrdering getSuccessOrdering() const { |
605 | return getSubclassData<SuccessOrderingField>(); |
606 | } |
607 | |
608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
611 | "invalid CmpXchg success ordering")((void)0); |
612 | setSubclassData<SuccessOrderingField>(Ordering); |
613 | } |
614 | |
615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
616 | AtomicOrdering getFailureOrdering() const { |
617 | return getSubclassData<FailureOrderingField>(); |
618 | } |
619 | |
620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
621 | void setFailureOrdering(AtomicOrdering Ordering) { |
622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
623 | "invalid CmpXchg failure ordering")((void)0); |
624 | setSubclassData<FailureOrderingField>(Ordering); |
625 | } |
626 | |
627 | /// Returns a single ordering which is at least as strong as both the |
628 | /// success and failure orderings for this cmpxchg. |
629 | AtomicOrdering getMergedOrdering() const { |
630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
631 | return AtomicOrdering::SequentiallyConsistent; |
632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
634 | return AtomicOrdering::Acquire; |
635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
636 | return AtomicOrdering::AcquireRelease; |
637 | } |
638 | return getSuccessOrdering(); |
639 | } |
640 | |
641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
642 | SyncScope::ID getSyncScopeID() const { |
643 | return SSID; |
644 | } |
645 | |
646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
647 | void setSyncScopeID(SyncScope::ID SSID) { |
648 | this->SSID = SSID; |
649 | } |
650 | |
651 | Value *getPointerOperand() { return getOperand(0); } |
652 | const Value *getPointerOperand() const { return getOperand(0); } |
653 | static unsigned getPointerOperandIndex() { return 0U; } |
654 | |
655 | Value *getCompareOperand() { return getOperand(1); } |
656 | const Value *getCompareOperand() const { return getOperand(1); } |
657 | |
658 | Value *getNewValOperand() { return getOperand(2); } |
659 | const Value *getNewValOperand() const { return getOperand(2); } |
660 | |
661 | /// Returns the address space of the pointer operand. |
662 | unsigned getPointerAddressSpace() const { |
663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
664 | } |
665 | |
666 | /// Returns the strongest permitted ordering on failure, given the |
667 | /// desired ordering on success. |
668 | /// |
669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
670 | /// so release semantics cannot be provided. So this function drops explicit |
671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
672 | /// operation would remain SequentiallyConsistent. |
673 | static AtomicOrdering |
674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
675 | switch (SuccessOrdering) { |
676 | default: |
677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
678 | case AtomicOrdering::Release: |
679 | case AtomicOrdering::Monotonic: |
680 | return AtomicOrdering::Monotonic; |
681 | case AtomicOrdering::AcquireRelease: |
682 | case AtomicOrdering::Acquire: |
683 | return AtomicOrdering::Acquire; |
684 | case AtomicOrdering::SequentiallyConsistent: |
685 | return AtomicOrdering::SequentiallyConsistent; |
686 | } |
687 | } |
688 | |
689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
690 | static bool classof(const Instruction *I) { |
691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
692 | } |
693 | static bool classof(const Value *V) { |
694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
695 | } |
696 | |
697 | private: |
698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
699 | // method so that subclasses cannot accidentally use it. |
700 | template <typename Bitfield> |
701 | void setSubclassData(typename Bitfield::Type Value) { |
702 | Instruction::setSubclassData<Bitfield>(Value); |
703 | } |
704 | |
705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
706 | /// enough room in SubClassData for everything, so synchronization scope ID |
707 | /// gets its own field. |
708 | SyncScope::ID SSID; |
709 | }; |
710 | |
711 | template <> |
712 | struct OperandTraits<AtomicCmpXchgInst> : |
713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
714 | }; |
715 | |
716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
717 | |
718 | //===----------------------------------------------------------------------===// |
719 | // AtomicRMWInst Class |
720 | //===----------------------------------------------------------------------===// |
721 | |
722 | /// an instruction that atomically reads a memory location, |
723 | /// combines it with another value, and then stores the result back. Returns |
724 | /// the old value. |
725 | /// |
726 | class AtomicRMWInst : public Instruction { |
727 | protected: |
728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
729 | friend class Instruction; |
730 | |
731 | AtomicRMWInst *cloneImpl() const; |
732 | |
733 | public: |
734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
737 | /// instruction. These instructions always return 'old'. |
738 | enum BinOp : unsigned { |
739 | /// *p = v |
740 | Xchg, |
741 | /// *p = old + v |
742 | Add, |
743 | /// *p = old - v |
744 | Sub, |
745 | /// *p = old & v |
746 | And, |
747 | /// *p = ~(old & v) |
748 | Nand, |
749 | /// *p = old | v |
750 | Or, |
751 | /// *p = old ^ v |
752 | Xor, |
753 | /// *p = old >signed v ? old : v |
754 | Max, |
755 | /// *p = old <signed v ? old : v |
756 | Min, |
757 | /// *p = old >unsigned v ? old : v |
758 | UMax, |
759 | /// *p = old <unsigned v ? old : v |
760 | UMin, |
761 | |
762 | /// *p = old + v |
763 | FAdd, |
764 | |
765 | /// *p = old - v |
766 | FSub, |
767 | |
768 | FIRST_BINOP = Xchg, |
769 | LAST_BINOP = FSub, |
770 | BAD_BINOP |
771 | }; |
772 | |
773 | private: |
774 | template <unsigned Offset> |
775 | using AtomicOrderingBitfieldElement = |
776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
777 | AtomicOrdering::LAST>; |
778 | |
779 | template <unsigned Offset> |
780 | using BinOpBitfieldElement = |
781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
782 | |
783 | public: |
784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
786 | Instruction *InsertBefore = nullptr); |
787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
789 | BasicBlock *InsertAtEnd); |
790 | |
791 | // allocate space for exactly two operands |
792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
794 | |
795 | using VolatileField = BoolBitfieldElementT<0>; |
796 | using AtomicOrderingField = |
797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
801 | OperationField, AlignmentField>(), |
802 | "Bitfields must be contiguous"); |
803 | |
804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
805 | |
806 | static StringRef getOperationName(BinOp Op); |
807 | |
808 | static bool isFPOperation(BinOp Op) { |
809 | switch (Op) { |
810 | case AtomicRMWInst::FAdd: |
811 | case AtomicRMWInst::FSub: |
812 | return true; |
813 | default: |
814 | return false; |
815 | } |
816 | } |
817 | |
818 | void setOperation(BinOp Operation) { |
819 | setSubclassData<OperationField>(Operation); |
820 | } |
821 | |
822 | /// Return the alignment of the memory that is being allocated by the |
823 | /// instruction. |
824 | Align getAlign() const { |
825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
826 | } |
827 | |
828 | void setAlignment(Align Align) { |
829 | setSubclassData<AlignmentField>(Log2(Align)); |
830 | } |
831 | |
832 | /// Return true if this is a RMW on a volatile memory location. |
833 | /// |
834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
835 | |
836 | /// Specify whether this is a volatile RMW or not. |
837 | /// |
838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
839 | |
840 | /// Transparently provide more efficient getOperand methods. |
841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
842 | |
843 | /// Returns the ordering constraint of this rmw instruction. |
844 | AtomicOrdering getOrdering() const { |
845 | return getSubclassData<AtomicOrderingField>(); |
846 | } |
847 | |
848 | /// Sets the ordering constraint of this rmw instruction. |
849 | void setOrdering(AtomicOrdering Ordering) { |
850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
851 | "atomicrmw instructions can only be atomic.")((void)0); |
852 | setSubclassData<AtomicOrderingField>(Ordering); |
853 | } |
854 | |
855 | /// Returns the synchronization scope ID of this rmw instruction. |
856 | SyncScope::ID getSyncScopeID() const { |
857 | return SSID; |
858 | } |
859 | |
860 | /// Sets the synchronization scope ID of this rmw instruction. |
861 | void setSyncScopeID(SyncScope::ID SSID) { |
862 | this->SSID = SSID; |
863 | } |
864 | |
865 | Value *getPointerOperand() { return getOperand(0); } |
866 | const Value *getPointerOperand() const { return getOperand(0); } |
867 | static unsigned getPointerOperandIndex() { return 0U; } |
868 | |
869 | Value *getValOperand() { return getOperand(1); } |
870 | const Value *getValOperand() const { return getOperand(1); } |
871 | |
872 | /// Returns the address space of the pointer operand. |
873 | unsigned getPointerAddressSpace() const { |
874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
875 | } |
876 | |
877 | bool isFloatingPointOperation() const { |
878 | return isFPOperation(getOperation()); |
879 | } |
880 | |
881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
882 | static bool classof(const Instruction *I) { |
883 | return I->getOpcode() == Instruction::AtomicRMW; |
884 | } |
885 | static bool classof(const Value *V) { |
886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
887 | } |
888 | |
889 | private: |
890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
892 | |
893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
894 | // method so that subclasses cannot accidentally use it. |
895 | template <typename Bitfield> |
896 | void setSubclassData(typename Bitfield::Type Value) { |
897 | Instruction::setSubclassData<Bitfield>(Value); |
898 | } |
899 | |
900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
902 | /// own field. |
903 | SyncScope::ID SSID; |
904 | }; |
905 | |
906 | template <> |
907 | struct OperandTraits<AtomicRMWInst> |
908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
909 | }; |
910 | |
911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
912 | |
913 | //===----------------------------------------------------------------------===// |
914 | // GetElementPtrInst Class |
915 | //===----------------------------------------------------------------------===// |
916 | |
917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
918 | // message on bad indexes for a gep instruction. |
919 | // |
920 | inline Type *checkGEPType(Type *Ty) { |
921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
922 | return Ty; |
923 | } |
924 | |
925 | /// an instruction for type-safe pointer arithmetic to |
926 | /// access elements of arrays and structs |
927 | /// |
928 | class GetElementPtrInst : public Instruction { |
929 | Type *SourceElementType; |
930 | Type *ResultElementType; |
931 | |
932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
933 | |
934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
935 | /// list of indices. The first ctor can optionally insert before an existing |
936 | /// instruction, the second appends the new instruction to the specified |
937 | /// BasicBlock. |
938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
939 | ArrayRef<Value *> IdxList, unsigned Values, |
940 | const Twine &NameStr, Instruction *InsertBefore); |
941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
942 | ArrayRef<Value *> IdxList, unsigned Values, |
943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
944 | |
945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
946 | |
947 | protected: |
948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
949 | friend class Instruction; |
950 | |
951 | GetElementPtrInst *cloneImpl() const; |
952 | |
953 | public: |
954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
955 | ArrayRef<Value *> IdxList, |
956 | const Twine &NameStr = "", |
957 | Instruction *InsertBefore = nullptr) { |
958 | unsigned Values = 1 + unsigned(IdxList.size()); |
959 | assert(PointeeType && "Must specify element type")((void)0); |
960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
963 | NameStr, InsertBefore); |
964 | } |
965 | |
966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
967 | ArrayRef<Value *> IdxList, |
968 | const Twine &NameStr, |
969 | BasicBlock *InsertAtEnd) { |
970 | unsigned Values = 1 + unsigned(IdxList.size()); |
971 | assert(PointeeType && "Must specify element type")((void)0); |
972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
975 | NameStr, InsertAtEnd); |
976 | } |
977 | |
978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
982 | return CreateInBounds( |
983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
984 | NameStr, InsertBefore); |
985 | } |
986 | |
987 | /// Create an "inbounds" getelementptr. See the documentation for the |
988 | /// "inbounds" flag in LangRef.html for details. |
989 | static GetElementPtrInst * |
990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
991 | const Twine &NameStr = "", |
992 | Instruction *InsertBefore = nullptr) { |
993 | GetElementPtrInst *GEP = |
994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
995 | GEP->setIsInBounds(true); |
996 | return GEP; |
997 | } |
998 | |
999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1003 | return CreateInBounds( |
1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
1005 | NameStr, InsertAtEnd); |
1006 | } |
1007 | |
1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
1009 | ArrayRef<Value *> IdxList, |
1010 | const Twine &NameStr, |
1011 | BasicBlock *InsertAtEnd) { |
1012 | GetElementPtrInst *GEP = |
1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
1014 | GEP->setIsInBounds(true); |
1015 | return GEP; |
1016 | } |
1017 | |
1018 | /// Transparently provide more efficient getOperand methods. |
1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1020 | |
1021 | Type *getSourceElementType() const { return SourceElementType; } |
1022 | |
1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
1025 | |
1026 | Type *getResultElementType() const { |
1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1029 | return ResultElementType; |
1030 | } |
1031 | |
1032 | /// Returns the address space of this instruction's pointer type. |
1033 | unsigned getAddressSpace() const { |
1034 | // Note that this is always the same as the pointer operand's address space |
1035 | // and that is cheaper to compute, so cheat here. |
1036 | return getPointerAddressSpace(); |
1037 | } |
1038 | |
1039 | /// Returns the result type of a getelementptr with the given source |
1040 | /// element type and indexes. |
1041 | /// |
1042 | /// Null is returned if the indices are invalid for the specified |
1043 | /// source element type. |
1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
1047 | |
1048 | /// Return the type of the element at the given index of an indexable |
1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
1050 | /// |
1051 | /// Returns null if the type can't be indexed, or the given index is not |
1052 | /// legal for the given type. |
1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
1055 | |
1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
1058 | inline op_iterator idx_end() { return op_end(); } |
1059 | inline const_op_iterator idx_end() const { return op_end(); } |
1060 | |
1061 | inline iterator_range<op_iterator> indices() { |
1062 | return make_range(idx_begin(), idx_end()); |
1063 | } |
1064 | |
1065 | inline iterator_range<const_op_iterator> indices() const { |
1066 | return make_range(idx_begin(), idx_end()); |
1067 | } |
1068 | |
1069 | Value *getPointerOperand() { |
1070 | return getOperand(0); |
1071 | } |
1072 | const Value *getPointerOperand() const { |
1073 | return getOperand(0); |
1074 | } |
1075 | static unsigned getPointerOperandIndex() { |
1076 | return 0U; // get index for modifying correct operand. |
1077 | } |
1078 | |
1079 | /// Method to return the pointer operand as a |
1080 | /// PointerType. |
1081 | Type *getPointerOperandType() const { |
1082 | return getPointerOperand()->getType(); |
1083 | } |
1084 | |
1085 | /// Returns the address space of the pointer operand. |
1086 | unsigned getPointerAddressSpace() const { |
1087 | return getPointerOperandType()->getPointerAddressSpace(); |
1088 | } |
1089 | |
1090 | /// Returns the pointer type returned by the GEP |
1091 | /// instruction, which may be a vector of pointers. |
1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
1093 | ArrayRef<Value *> IdxList) { |
1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
1099 | : PointerType::get(ResultElemTy, AddrSpace); |
1100 | // Vector GEP |
1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
1103 | return VectorType::get(PtrTy, EltCount); |
1104 | } |
1105 | for (Value *Index : IdxList) |
1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
1108 | return VectorType::get(PtrTy, EltCount); |
1109 | } |
1110 | // Scalar GEP |
1111 | return PtrTy; |
1112 | } |
1113 | |
1114 | unsigned getNumIndices() const { // Note: always non-negative |
1115 | return getNumOperands() - 1; |
1116 | } |
1117 | |
1118 | bool hasIndices() const { |
1119 | return getNumOperands() > 1; |
1120 | } |
1121 | |
1122 | /// Return true if all of the indices of this GEP are |
1123 | /// zeros. If so, the result pointer and the first operand have the same |
1124 | /// value, just potentially different types. |
1125 | bool hasAllZeroIndices() const; |
1126 | |
1127 | /// Return true if all of the indices of this GEP are |
1128 | /// constant integers. If so, the result pointer and the first operand have |
1129 | /// a constant offset between them. |
1130 | bool hasAllConstantIndices() const; |
1131 | |
1132 | /// Set or clear the inbounds flag on this GEP instruction. |
1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
1134 | void setIsInBounds(bool b = true); |
1135 | |
1136 | /// Determine whether the GEP has the inbounds flag. |
1137 | bool isInBounds() const; |
1138 | |
1139 | /// Accumulate the constant address offset of this GEP if possible. |
1140 | /// |
1141 | /// This routine accepts an APInt into which it will accumulate the constant |
1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
1143 | /// all-constant, it returns false and the value of the offset APInt is |
1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
1145 | /// must be at least as wide as the IntPtr type for the address space of |
1146 | /// the base GEP pointer. |
1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
1149 | MapVector<Value *, APInt> &VariableOffsets, |
1150 | APInt &ConstantOffset) const; |
1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1152 | static bool classof(const Instruction *I) { |
1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
1154 | } |
1155 | static bool classof(const Value *V) { |
1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1157 | } |
1158 | }; |
1159 | |
1160 | template <> |
1161 | struct OperandTraits<GetElementPtrInst> : |
1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
1163 | }; |
1164 | |
1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1166 | ArrayRef<Value *> IdxList, unsigned Values, |
1167 | const Twine &NameStr, |
1168 | Instruction *InsertBefore) |
1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1171 | Values, InsertBefore), |
1172 | SourceElementType(PointeeType), |
1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1176 | init(Ptr, IdxList, NameStr); |
1177 | } |
1178 | |
1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1180 | ArrayRef<Value *> IdxList, unsigned Values, |
1181 | const Twine &NameStr, |
1182 | BasicBlock *InsertAtEnd) |
1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1185 | Values, InsertAtEnd), |
1186 | SourceElementType(PointeeType), |
1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1190 | init(Ptr, IdxList, NameStr); |
1191 | } |
1192 | |
1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1194 | |
1195 | //===----------------------------------------------------------------------===// |
1196 | // ICmpInst Class |
1197 | //===----------------------------------------------------------------------===// |
1198 | |
1199 | /// This instruction compares its operands according to the predicate given |
1200 | /// to the constructor. It only operates on integers or pointers. The operands |
1201 | /// must be identical types. |
1202 | /// Represent an integer comparison operator. |
1203 | class ICmpInst: public CmpInst { |
1204 | void AssertOK() { |
1205 | assert(isIntPredicate() &&((void)0) |
1206 | "Invalid ICmp predicate value")((void)0); |
1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
1209 | // Check that the operands are the right type |
1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
1212 | "Invalid operand types for ICmp instruction")((void)0); |
1213 | } |
1214 | |
1215 | protected: |
1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1217 | friend class Instruction; |
1218 | |
1219 | /// Clone an identical ICmpInst |
1220 | ICmpInst *cloneImpl() const; |
1221 | |
1222 | public: |
1223 | /// Constructor with insert-before-instruction semantics. |
1224 | ICmpInst( |
1225 | Instruction *InsertBefore, ///< Where to insert |
1226 | Predicate pred, ///< The predicate to use for the comparison |
1227 | Value *LHS, ///< The left-hand-side of the expression |
1228 | Value *RHS, ///< The right-hand-side of the expression |
1229 | const Twine &NameStr = "" ///< Name of the instruction |
1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1232 | InsertBefore) { |
1233 | #ifndef NDEBUG1 |
1234 | AssertOK(); |
1235 | #endif |
1236 | } |
1237 | |
1238 | /// Constructor with insert-at-end semantics. |
1239 | ICmpInst( |
1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1241 | Predicate pred, ///< The predicate to use for the comparison |
1242 | Value *LHS, ///< The left-hand-side of the expression |
1243 | Value *RHS, ///< The right-hand-side of the expression |
1244 | const Twine &NameStr = "" ///< Name of the instruction |
1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1247 | &InsertAtEnd) { |
1248 | #ifndef NDEBUG1 |
1249 | AssertOK(); |
1250 | #endif |
1251 | } |
1252 | |
1253 | /// Constructor with no-insertion semantics |
1254 | ICmpInst( |
1255 | Predicate pred, ///< The predicate to use for the comparison |
1256 | Value *LHS, ///< The left-hand-side of the expression |
1257 | Value *RHS, ///< The right-hand-side of the expression |
1258 | const Twine &NameStr = "" ///< Name of the instruction |
1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
1261 | #ifndef NDEBUG1 |
1262 | AssertOK(); |
1263 | #endif |
1264 | } |
1265 | |
1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
1267 | /// @returns the predicate that would be the result if the operand were |
1268 | /// regarded as signed. |
1269 | /// Return the signed version of the predicate |
1270 | Predicate getSignedPredicate() const { |
1271 | return getSignedPredicate(getPredicate()); |
1272 | } |
1273 | |
1274 | /// This is a static version that you can use without an instruction. |
1275 | /// Return the signed version of the predicate. |
1276 | static Predicate getSignedPredicate(Predicate pred); |
1277 | |
1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
1279 | /// @returns the predicate that would be the result if the operand were |
1280 | /// regarded as unsigned. |
1281 | /// Return the unsigned version of the predicate |
1282 | Predicate getUnsignedPredicate() const { |
1283 | return getUnsignedPredicate(getPredicate()); |
1284 | } |
1285 | |
1286 | /// This is a static version that you can use without an instruction. |
1287 | /// Return the unsigned version of the predicate. |
1288 | static Predicate getUnsignedPredicate(Predicate pred); |
1289 | |
1290 | /// Return true if this predicate is either EQ or NE. This also |
1291 | /// tests for commutativity. |
1292 | static bool isEquality(Predicate P) { |
1293 | return P == ICMP_EQ || P == ICMP_NE; |
1294 | } |
1295 | |
1296 | /// Return true if this predicate is either EQ or NE. This also |
1297 | /// tests for commutativity. |
1298 | bool isEquality() const { |
1299 | return isEquality(getPredicate()); |
1300 | } |
1301 | |
1302 | /// @returns true if the predicate of this ICmpInst is commutative |
1303 | /// Determine if this relation is commutative. |
1304 | bool isCommutative() const { return isEquality(); } |
1305 | |
1306 | /// Return true if the predicate is relational (not EQ or NE). |
1307 | /// |
1308 | bool isRelational() const { |
1309 | return !isEquality(); |
1310 | } |
1311 | |
1312 | /// Return true if the predicate is relational (not EQ or NE). |
1313 | /// |
1314 | static bool isRelational(Predicate P) { |
1315 | return !isEquality(P); |
1316 | } |
1317 | |
1318 | /// Return true if the predicate is SGT or UGT. |
1319 | /// |
1320 | static bool isGT(Predicate P) { |
1321 | return P == ICMP_SGT || P == ICMP_UGT; |
1322 | } |
1323 | |
1324 | /// Return true if the predicate is SLT or ULT. |
1325 | /// |
1326 | static bool isLT(Predicate P) { |
1327 | return P == ICMP_SLT || P == ICMP_ULT; |
1328 | } |
1329 | |
1330 | /// Return true if the predicate is SGE or UGE. |
1331 | /// |
1332 | static bool isGE(Predicate P) { |
1333 | return P == ICMP_SGE || P == ICMP_UGE; |
1334 | } |
1335 | |
1336 | /// Return true if the predicate is SLE or ULE. |
1337 | /// |
1338 | static bool isLE(Predicate P) { |
1339 | return P == ICMP_SLE || P == ICMP_ULE; |
1340 | } |
1341 | |
1342 | /// Exchange the two operands to this instruction in such a way that it does |
1343 | /// not modify the semantics of the instruction. The predicate value may be |
1344 | /// changed to retain the same result if the predicate is order dependent |
1345 | /// (e.g. ult). |
1346 | /// Swap operands and adjust predicate. |
1347 | void swapOperands() { |
1348 | setPredicate(getSwappedPredicate()); |
1349 | Op<0>().swap(Op<1>()); |
1350 | } |
1351 | |
1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1353 | static bool classof(const Instruction *I) { |
1354 | return I->getOpcode() == Instruction::ICmp; |
1355 | } |
1356 | static bool classof(const Value *V) { |
1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1358 | } |
1359 | }; |
1360 | |
1361 | //===----------------------------------------------------------------------===// |
1362 | // FCmpInst Class |
1363 | //===----------------------------------------------------------------------===// |
1364 | |
1365 | /// This instruction compares its operands according to the predicate given |
1366 | /// to the constructor. It only operates on floating point values or packed |
1367 | /// vectors of floating point values. The operands must be identical types. |
1368 | /// Represents a floating point comparison operator. |
1369 | class FCmpInst: public CmpInst { |
1370 | void AssertOK() { |
1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
1374 | // Check that the operands are the right type |
1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
1376 | "Invalid operand types for FCmp instruction")((void)0); |
1377 | } |
1378 | |
1379 | protected: |
1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1381 | friend class Instruction; |
1382 | |
1383 | /// Clone an identical FCmpInst |
1384 | FCmpInst *cloneImpl() const; |
1385 | |
1386 | public: |
1387 | /// Constructor with insert-before-instruction semantics. |
1388 | FCmpInst( |
1389 | Instruction *InsertBefore, ///< Where to insert |
1390 | Predicate pred, ///< The predicate to use for the comparison |
1391 | Value *LHS, ///< The left-hand-side of the expression |
1392 | Value *RHS, ///< The right-hand-side of the expression |
1393 | const Twine &NameStr = "" ///< Name of the instruction |
1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1396 | InsertBefore) { |
1397 | AssertOK(); |
1398 | } |
1399 | |
1400 | /// Constructor with insert-at-end semantics. |
1401 | FCmpInst( |
1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1403 | Predicate pred, ///< The predicate to use for the comparison |
1404 | Value *LHS, ///< The left-hand-side of the expression |
1405 | Value *RHS, ///< The right-hand-side of the expression |
1406 | const Twine &NameStr = "" ///< Name of the instruction |
1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1409 | &InsertAtEnd) { |
1410 | AssertOK(); |
1411 | } |
1412 | |
1413 | /// Constructor with no-insertion semantics |
1414 | FCmpInst( |
1415 | Predicate Pred, ///< The predicate to use for the comparison |
1416 | Value *LHS, ///< The left-hand-side of the expression |
1417 | Value *RHS, ///< The right-hand-side of the expression |
1418 | const Twine &NameStr = "", ///< Name of the instruction |
1419 | Instruction *FlagsSource = nullptr |
1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
1421 | RHS, NameStr, nullptr, FlagsSource) { |
1422 | AssertOK(); |
1423 | } |
1424 | |
1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
1426 | /// Determine if this is an equality predicate. |
1427 | static bool isEquality(Predicate Pred) { |
1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
1429 | Pred == FCMP_UNE; |
1430 | } |
1431 | |
1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
1433 | /// Determine if this is an equality predicate. |
1434 | bool isEquality() const { return isEquality(getPredicate()); } |
1435 | |
1436 | /// @returns true if the predicate of this instruction is commutative. |
1437 | /// Determine if this is a commutative predicate. |
1438 | bool isCommutative() const { |
1439 | return isEquality() || |
1440 | getPredicate() == FCMP_FALSE || |
1441 | getPredicate() == FCMP_TRUE || |
1442 | getPredicate() == FCMP_ORD || |
1443 | getPredicate() == FCMP_UNO; |
1444 | } |
1445 | |
1446 | /// @returns true if the predicate is relational (not EQ or NE). |
1447 | /// Determine if this a relational predicate. |
1448 | bool isRelational() const { return !isEquality(); } |
1449 | |
1450 | /// Exchange the two operands to this instruction in such a way that it does |
1451 | /// not modify the semantics of the instruction. The predicate value may be |
1452 | /// changed to retain the same result if the predicate is order dependent |
1453 | /// (e.g. ult). |
1454 | /// Swap operands and adjust predicate. |
1455 | void swapOperands() { |
1456 | setPredicate(getSwappedPredicate()); |
1457 | Op<0>().swap(Op<1>()); |
1458 | } |
1459 | |
1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1461 | static bool classof(const Instruction *I) { |
1462 | return I->getOpcode() == Instruction::FCmp; |
1463 | } |
1464 | static bool classof(const Value *V) { |
1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1466 | } |
1467 | }; |
1468 | |
1469 | //===----------------------------------------------------------------------===// |
1470 | /// This class represents a function call, abstracting a target |
1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
1473 | /// hold the calling convention of the call. |
1474 | /// |
1475 | class CallInst : public CallBase { |
1476 | CallInst(const CallInst &CI); |
1477 | |
1478 | /// Construct a CallInst given a range of arguments. |
1479 | /// Construct a CallInst from a range of arguments |
1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1482 | Instruction *InsertBefore); |
1483 | |
1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1485 | const Twine &NameStr, Instruction *InsertBefore) |
1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
1487 | |
1488 | /// Construct a CallInst given a range of arguments. |
1489 | /// Construct a CallInst from a range of arguments |
1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1492 | BasicBlock *InsertAtEnd); |
1493 | |
1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
1495 | Instruction *InsertBefore); |
1496 | |
1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
1498 | BasicBlock *InsertAtEnd); |
1499 | |
1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
1503 | |
1504 | /// Compute the number of operands to allocate. |
1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
1506 | // We need one operand for the called function, plus the input operand |
1507 | // counts provided. |
1508 | return 1 + NumArgs + NumBundleInputs; |
1509 | } |
1510 | |
1511 | protected: |
1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1513 | friend class Instruction; |
1514 | |
1515 | CallInst *cloneImpl() const; |
1516 | |
1517 | public: |
1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
1519 | Instruction *InsertBefore = nullptr) { |
1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
1521 | } |
1522 | |
1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1524 | const Twine &NameStr, |
1525 | Instruction *InsertBefore = nullptr) { |
1526 | return new (ComputeNumOperands(Args.size())) |
1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
1528 | } |
1529 | |
1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1531 | ArrayRef<OperandBundleDef> Bundles = None, |
1532 | const Twine &NameStr = "", |
1533 | Instruction *InsertBefore = nullptr) { |
1534 | const int NumOperands = |
1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1537 | |
1538 | return new (NumOperands, DescriptorBytes) |
1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
1540 | } |
1541 | |
1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
1543 | BasicBlock *InsertAtEnd) { |
1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
1545 | } |
1546 | |
1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1549 | return new (ComputeNumOperands(Args.size())) |
1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
1551 | } |
1552 | |
1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1554 | ArrayRef<OperandBundleDef> Bundles, |
1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1556 | const int NumOperands = |
1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1559 | |
1560 | return new (NumOperands, DescriptorBytes) |
1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
1562 | } |
1563 | |
1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
1565 | Instruction *InsertBefore = nullptr) { |
1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1567 | InsertBefore); |
1568 | } |
1569 | |
1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1571 | ArrayRef<OperandBundleDef> Bundles = None, |
1572 | const Twine &NameStr = "", |
1573 | Instruction *InsertBefore = nullptr) { |
1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1575 | NameStr, InsertBefore); |
1576 | } |
1577 | |
1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1579 | const Twine &NameStr, |
1580 | Instruction *InsertBefore = nullptr) { |
1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1582 | InsertBefore); |
1583 | } |
1584 | |
1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
1586 | BasicBlock *InsertAtEnd) { |
1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1588 | InsertAtEnd); |
1589 | } |
1590 | |
1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1594 | InsertAtEnd); |
1595 | } |
1596 | |
1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1598 | ArrayRef<OperandBundleDef> Bundles, |
1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1601 | NameStr, InsertAtEnd); |
1602 | } |
1603 | |
1604 | /// Create a clone of \p CI with a different set of operand bundles and |
1605 | /// insert it before \p InsertPt. |
1606 | /// |
1607 | /// The returned call instruction is identical \p CI in every way except that |
1608 | /// the operand bundles for the new instruction are set to the operand bundles |
1609 | /// in \p Bundles. |
1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
1611 | Instruction *InsertPt = nullptr); |
1612 | |
1613 | /// Generate the IR for a call to malloc: |
1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
1615 | /// possibly multiplied by the array size if the array size is not |
1616 | /// constant 1. |
1617 | /// 2. Call malloc with that argument. |
1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1620 | Type *AllocTy, Value *AllocSize, |
1621 | Value *ArraySize = nullptr, |
1622 | Function *MallocF = nullptr, |
1623 | const Twine &Name = ""); |
1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1625 | Type *AllocTy, Value *AllocSize, |
1626 | Value *ArraySize = nullptr, |
1627 | Function *MallocF = nullptr, |
1628 | const Twine &Name = ""); |
1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1630 | Type *AllocTy, Value *AllocSize, |
1631 | Value *ArraySize = nullptr, |
1632 | ArrayRef<OperandBundleDef> Bundles = None, |
1633 | Function *MallocF = nullptr, |
1634 | const Twine &Name = ""); |
1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1636 | Type *AllocTy, Value *AllocSize, |
1637 | Value *ArraySize = nullptr, |
1638 | ArrayRef<OperandBundleDef> Bundles = None, |
1639 | Function *MallocF = nullptr, |
1640 | const Twine &Name = ""); |
1641 | /// Generate the IR for a call to the builtin free function. |
1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
1644 | static Instruction *CreateFree(Value *Source, |
1645 | ArrayRef<OperandBundleDef> Bundles, |
1646 | Instruction *InsertBefore); |
1647 | static Instruction *CreateFree(Value *Source, |
1648 | ArrayRef<OperandBundleDef> Bundles, |
1649 | BasicBlock *InsertAtEnd); |
1650 | |
1651 | // Note that 'musttail' implies 'tail'. |
1652 | enum TailCallKind : unsigned { |
1653 | TCK_None = 0, |
1654 | TCK_Tail = 1, |
1655 | TCK_MustTail = 2, |
1656 | TCK_NoTail = 3, |
1657 | TCK_LAST = TCK_NoTail |
1658 | }; |
1659 | |
1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
1661 | static_assert( |
1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
1663 | "Bitfields must be contiguous"); |
1664 | |
1665 | TailCallKind getTailCallKind() const { |
1666 | return getSubclassData<TailCallKindField>(); |
1667 | } |
1668 | |
1669 | bool isTailCall() const { |
1670 | TailCallKind Kind = getTailCallKind(); |
1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
1672 | } |
1673 | |
1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
1675 | |
1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
1677 | |
1678 | void setTailCallKind(TailCallKind TCK) { |
1679 | setSubclassData<TailCallKindField>(TCK); |
1680 | } |
1681 | |
1682 | void setTailCall(bool IsTc = true) { |
1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
1684 | } |
1685 | |
1686 | /// Return true if the call can return twice |
1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
1688 | void setCanReturnTwice() { |
1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
1690 | } |
1691 | |
1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1693 | static bool classof(const Instruction *I) { |
1694 | return I->getOpcode() == Instruction::Call; |
1695 | } |
1696 | static bool classof(const Value *V) { |
1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1698 | } |
1699 | |
1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
1701 | void updateProfWeight(uint64_t S, uint64_t T); |
1702 | |
1703 | private: |
1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
1705 | // method so that subclasses cannot accidentally use it. |
1706 | template <typename Bitfield> |
1707 | void setSubclassData(typename Bitfield::Type Value) { |
1708 | Instruction::setSubclassData<Bitfield>(Value); |
1709 | } |
1710 | }; |
1711 | |
1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1714 | BasicBlock *InsertAtEnd) |
1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1716 | OperandTraits<CallBase>::op_end(this) - |
1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1719 | InsertAtEnd) { |
1720 | init(Ty, Func, Args, Bundles, NameStr); |
1721 | } |
1722 | |
1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1725 | Instruction *InsertBefore) |
1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1727 | OperandTraits<CallBase>::op_end(this) - |
1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1730 | InsertBefore) { |
1731 | init(Ty, Func, Args, Bundles, NameStr); |
1732 | } |
1733 | |
1734 | //===----------------------------------------------------------------------===// |
1735 | // SelectInst Class |
1736 | //===----------------------------------------------------------------------===// |
1737 | |
1738 | /// This class represents the LLVM 'select' instruction. |
1739 | /// |
1740 | class SelectInst : public Instruction { |
1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1742 | Instruction *InsertBefore) |
1743 | : Instruction(S1->getType(), Instruction::Select, |
1744 | &Op<0>(), 3, InsertBefore) { |
1745 | init(C, S1, S2); |
1746 | setName(NameStr); |
1747 | } |
1748 | |
1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1750 | BasicBlock *InsertAtEnd) |
1751 | : Instruction(S1->getType(), Instruction::Select, |
1752 | &Op<0>(), 3, InsertAtEnd) { |
1753 | init(C, S1, S2); |
1754 | setName(NameStr); |
1755 | } |
1756 | |
1757 | void init(Value *C, Value *S1, Value *S2) { |
1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
1759 | Op<0>() = C; |
1760 | Op<1>() = S1; |
1761 | Op<2>() = S2; |
1762 | } |
1763 | |
1764 | protected: |
1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1766 | friend class Instruction; |
1767 | |
1768 | SelectInst *cloneImpl() const; |
1769 | |
1770 | public: |
1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1772 | const Twine &NameStr = "", |
1773 | Instruction *InsertBefore = nullptr, |
1774 | Instruction *MDFrom = nullptr) { |
1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
1776 | if (MDFrom) |
1777 | Sel->copyMetadata(*MDFrom); |
1778 | return Sel; |
1779 | } |
1780 | |
1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1782 | const Twine &NameStr, |
1783 | BasicBlock *InsertAtEnd) { |
1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
1785 | } |
1786 | |
1787 | const Value *getCondition() const { return Op<0>(); } |
1788 | const Value *getTrueValue() const { return Op<1>(); } |
1789 | const Value *getFalseValue() const { return Op<2>(); } |
1790 | Value *getCondition() { return Op<0>(); } |
1791 | Value *getTrueValue() { return Op<1>(); } |
1792 | Value *getFalseValue() { return Op<2>(); } |
1793 | |
1794 | void setCondition(Value *V) { Op<0>() = V; } |
1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
1797 | |
1798 | /// Swap the true and false values of the select instruction. |
1799 | /// This doesn't swap prof metadata. |
1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
1801 | |
1802 | /// Return a string if the specified operands are invalid |
1803 | /// for a select operation, otherwise return null. |
1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
1805 | |
1806 | /// Transparently provide more efficient getOperand methods. |
1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1808 | |
1809 | OtherOps getOpcode() const { |
1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
1811 | } |
1812 | |
1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1814 | static bool classof(const Instruction *I) { |
1815 | return I->getOpcode() == Instruction::Select; |
1816 | } |
1817 | static bool classof(const Value *V) { |
1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1819 | } |
1820 | }; |
1821 | |
1822 | template <> |
1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
1824 | }; |
1825 | |
1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
1827 | |
1828 | //===----------------------------------------------------------------------===// |
1829 | // VAArgInst Class |
1830 | //===----------------------------------------------------------------------===// |
1831 | |
1832 | /// This class represents the va_arg llvm instruction, which returns |
1833 | /// an argument of the specified type given a va_list and increments that list |
1834 | /// |
1835 | class VAArgInst : public UnaryInstruction { |
1836 | protected: |
1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1838 | friend class Instruction; |
1839 | |
1840 | VAArgInst *cloneImpl() const; |
1841 | |
1842 | public: |
1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
1844 | Instruction *InsertBefore = nullptr) |
1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
1846 | setName(NameStr); |
1847 | } |
1848 | |
1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
1850 | BasicBlock *InsertAtEnd) |
1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
1852 | setName(NameStr); |
1853 | } |
1854 | |
1855 | Value *getPointerOperand() { return getOperand(0); } |
1856 | const Value *getPointerOperand() const { return getOperand(0); } |
1857 | static unsigned getPointerOperandIndex() { return 0U; } |
1858 | |
1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1860 | static bool classof(const Instruction *I) { |
1861 | return I->getOpcode() == VAArg; |
1862 | } |
1863 | static bool classof(const Value *V) { |
1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1865 | } |
1866 | }; |
1867 | |
1868 | //===----------------------------------------------------------------------===// |
1869 | // ExtractElementInst Class |
1870 | //===----------------------------------------------------------------------===// |
1871 | |
1872 | /// This instruction extracts a single (scalar) |
1873 | /// element from a VectorType value |
1874 | /// |
1875 | class ExtractElementInst : public Instruction { |
1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
1877 | Instruction *InsertBefore = nullptr); |
1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
1879 | BasicBlock *InsertAtEnd); |
1880 | |
1881 | protected: |
1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1883 | friend class Instruction; |
1884 | |
1885 | ExtractElementInst *cloneImpl() const; |
1886 | |
1887 | public: |
1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1889 | const Twine &NameStr = "", |
1890 | Instruction *InsertBefore = nullptr) { |
1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
1892 | } |
1893 | |
1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1895 | const Twine &NameStr, |
1896 | BasicBlock *InsertAtEnd) { |
1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
1898 | } |
1899 | |
1900 | /// Return true if an extractelement instruction can be |
1901 | /// formed with the specified operands. |
1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
1903 | |
1904 | Value *getVectorOperand() { return Op<0>(); } |
1905 | Value *getIndexOperand() { return Op<1>(); } |
1906 | const Value *getVectorOperand() const { return Op<0>(); } |
1907 | const Value *getIndexOperand() const { return Op<1>(); } |
1908 | |
1909 | VectorType *getVectorOperandType() const { |
1910 | return cast<VectorType>(getVectorOperand()->getType()); |
1911 | } |
1912 | |
1913 | /// Transparently provide more efficient getOperand methods. |
1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1915 | |
1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1917 | static bool classof(const Instruction *I) { |
1918 | return I->getOpcode() == Instruction::ExtractElement; |
1919 | } |
1920 | static bool classof(const Value *V) { |
1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1922 | } |
1923 | }; |
1924 | |
1925 | template <> |
1926 | struct OperandTraits<ExtractElementInst> : |
1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
1928 | }; |
1929 | |
1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1931 | |
1932 | //===----------------------------------------------------------------------===// |
1933 | // InsertElementInst Class |
1934 | //===----------------------------------------------------------------------===// |
1935 | |
1936 | /// This instruction inserts a single (scalar) |
1937 | /// element into a VectorType value |
1938 | /// |
1939 | class InsertElementInst : public Instruction { |
1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
1941 | const Twine &NameStr = "", |
1942 | Instruction *InsertBefore = nullptr); |
1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
1944 | BasicBlock *InsertAtEnd); |
1945 | |
1946 | protected: |
1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1948 | friend class Instruction; |
1949 | |
1950 | InsertElementInst *cloneImpl() const; |
1951 | |
1952 | public: |
1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1954 | const Twine &NameStr = "", |
1955 | Instruction *InsertBefore = nullptr) { |
1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
1957 | } |
1958 | |
1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1960 | const Twine &NameStr, |
1961 | BasicBlock *InsertAtEnd) { |
1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
1963 | } |
1964 | |
1965 | /// Return true if an insertelement instruction can be |
1966 | /// formed with the specified operands. |
1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
1968 | const Value *Idx); |
1969 | |
1970 | /// Overload to return most specific vector type. |
1971 | /// |
1972 | VectorType *getType() const { |
1973 | return cast<VectorType>(Instruction::getType()); |
1974 | } |
1975 | |
1976 | /// Transparently provide more efficient getOperand methods. |
1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1978 | |
1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1980 | static bool classof(const Instruction *I) { |
1981 | return I->getOpcode() == Instruction::InsertElement; |
1982 | } |
1983 | static bool classof(const Value *V) { |
1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1985 | } |
1986 | }; |
1987 | |
1988 | template <> |
1989 | struct OperandTraits<InsertElementInst> : |
1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
1991 | }; |
1992 | |
1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1994 | |
1995 | //===----------------------------------------------------------------------===// |
1996 | // ShuffleVectorInst Class |
1997 | //===----------------------------------------------------------------------===// |
1998 | |
1999 | constexpr int UndefMaskElem = -1; |
2000 | |
2001 | /// This instruction constructs a fixed permutation of two |
2002 | /// input vectors. |
2003 | /// |
2004 | /// For each element of the result vector, the shuffle mask selects an element |
2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
2008 | /// |
2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
2010 | /// requirement may be relaxed in the future. |
2011 | class ShuffleVectorInst : public Instruction { |
2012 | SmallVector<int, 4> ShuffleMask; |
2013 | Constant *ShuffleMaskForBitcode; |
2014 | |
2015 | protected: |
2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2017 | friend class Instruction; |
2018 | |
2019 | ShuffleVectorInst *cloneImpl() const; |
2020 | |
2021 | public: |
2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2023 | const Twine &NameStr = "", |
2024 | Instruction *InsertBefor = nullptr); |
2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2028 | const Twine &NameStr = "", |
2029 | Instruction *InsertBefor = nullptr); |
2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2032 | |
2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
2035 | |
2036 | /// Swap the operands and adjust the mask to preserve the semantics |
2037 | /// of the instruction. |
2038 | void commute(); |
2039 | |
2040 | /// Return true if a shufflevector instruction can be |
2041 | /// formed with the specified operands. |
2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
2043 | const Value *Mask); |
2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
2045 | ArrayRef<int> Mask); |
2046 | |
2047 | /// Overload to return most specific vector type. |
2048 | /// |
2049 | VectorType *getType() const { |
2050 | return cast<VectorType>(Instruction::getType()); |
2051 | } |
2052 | |
2053 | /// Transparently provide more efficient getOperand methods. |
2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2055 | |
2056 | /// Return the shuffle mask value of this instruction for the given element |
2057 | /// index. Return UndefMaskElem if the element is undef. |
2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
2059 | |
2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
2061 | /// elements of the mask are returned as UndefMaskElem. |
2062 | static void getShuffleMask(const Constant *Mask, |
2063 | SmallVectorImpl<int> &Result); |
2064 | |
2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
2066 | /// elements of the mask are returned as UndefMaskElem. |
2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
2069 | } |
2070 | |
2071 | /// Return the mask for this instruction, for use in bitcode. |
2072 | /// |
2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
2074 | /// shufflevector. |
2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
2076 | |
2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
2078 | Type *ResultTy); |
2079 | |
2080 | void setShuffleMask(ArrayRef<int> Mask); |
2081 | |
2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
2083 | |
2084 | /// Return true if this shuffle returns a vector with a different number of |
2085 | /// elements than its source vectors. |
2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
2088 | bool changesLength() const { |
2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2090 | ->getElementCount() |
2091 | .getKnownMinValue(); |
2092 | unsigned NumMaskElts = ShuffleMask.size(); |
2093 | return NumSourceElts != NumMaskElts; |
2094 | } |
2095 | |
2096 | /// Return true if this shuffle returns a vector with a greater number of |
2097 | /// elements than its source vectors. |
2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
2099 | bool increasesLength() const { |
2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2101 | ->getElementCount() |
2102 | .getKnownMinValue(); |
2103 | unsigned NumMaskElts = ShuffleMask.size(); |
2104 | return NumSourceElts < NumMaskElts; |
2105 | } |
2106 | |
2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
2108 | /// vector. |
2109 | /// Example: <7,5,undef,7> |
2110 | /// This assumes that vector operands are the same length as the mask. |
2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
2112 | static bool isSingleSourceMask(const Constant *Mask) { |
2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2114 | SmallVector<int, 16> MaskAsInts; |
2115 | getShuffleMask(Mask, MaskAsInts); |
2116 | return isSingleSourceMask(MaskAsInts); |
2117 | } |
2118 | |
2119 | /// Return true if this shuffle chooses elements from exactly one source |
2120 | /// vector without changing the length of that vector. |
2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
2122 | /// TODO: Optionally allow length-changing shuffles. |
2123 | bool isSingleSource() const { |
2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
2125 | } |
2126 | |
2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
2128 | /// vector without lane crossings. A shuffle using this mask is not |
2129 | /// necessarily a no-op because it may change the number of elements from its |
2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
2131 | /// Example: <undef,undef,2,3> |
2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
2133 | static bool isIdentityMask(const Constant *Mask) { |
2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2135 | SmallVector<int, 16> MaskAsInts; |
2136 | getShuffleMask(Mask, MaskAsInts); |
2137 | return isIdentityMask(MaskAsInts); |
2138 | } |
2139 | |
2140 | /// Return true if this shuffle chooses elements from exactly one source |
2141 | /// vector without lane crossings and does not change the number of elements |
2142 | /// from its input vectors. |
2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
2144 | bool isIdentity() const { |
2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
2146 | } |
2147 | |
2148 | /// Return true if this shuffle lengthens exactly one source vector with |
2149 | /// undefs in the high elements. |
2150 | bool isIdentityWithPadding() const; |
2151 | |
2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
2153 | /// source vector. |
2154 | bool isIdentityWithExtract() const; |
2155 | |
2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
2157 | /// returns false if either input is undefined. In that case, the shuffle is |
2158 | /// is better classified as an identity with padding operation. |
2159 | bool isConcat() const; |
2160 | |
2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
2162 | /// without lane crossings. A shuffle using this mask would be |
2163 | /// equivalent to a vector select with a constant condition operand. |
2164 | /// Example: <4,1,6,undef> |
2165 | /// This returns false if the mask does not choose from both input vectors. |
2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
2167 | /// This assumes that vector operands are the same length as the mask |
2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
2169 | static bool isSelectMask(ArrayRef<int> Mask); |
2170 | static bool isSelectMask(const Constant *Mask) { |
2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2172 | SmallVector<int, 16> MaskAsInts; |
2173 | getShuffleMask(Mask, MaskAsInts); |
2174 | return isSelectMask(MaskAsInts); |
2175 | } |
2176 | |
2177 | /// Return true if this shuffle chooses elements from its source vectors |
2178 | /// without lane crossings and all operands have the same number of elements. |
2179 | /// In other words, this shuffle is equivalent to a vector select with a |
2180 | /// constant condition operand. |
2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
2182 | /// This returns false if the mask does not choose from both input vectors. |
2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
2184 | /// TODO: Optionally allow length-changing shuffles. |
2185 | bool isSelect() const { |
2186 | return !changesLength() && isSelectMask(ShuffleMask); |
2187 | } |
2188 | |
2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
2190 | /// one source vector. |
2191 | /// Example: <7,6,undef,4> |
2192 | /// This assumes that vector operands are the same length as the mask. |
2193 | static bool isReverseMask(ArrayRef<int> Mask); |
2194 | static bool isReverseMask(const Constant *Mask) { |
2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2196 | SmallVector<int, 16> MaskAsInts; |
2197 | getShuffleMask(Mask, MaskAsInts); |
2198 | return isReverseMask(MaskAsInts); |
2199 | } |
2200 | |
2201 | /// Return true if this shuffle swaps the order of elements from exactly |
2202 | /// one source vector. |
2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
2204 | /// TODO: Optionally allow length-changing shuffles. |
2205 | bool isReverse() const { |
2206 | return !changesLength() && isReverseMask(ShuffleMask); |
2207 | } |
2208 | |
2209 | /// Return true if this shuffle mask chooses all elements with the same value |
2210 | /// as the first element of exactly one source vector. |
2211 | /// Example: <4,undef,undef,4> |
2212 | /// This assumes that vector operands are the same length as the mask. |
2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2216 | SmallVector<int, 16> MaskAsInts; |
2217 | getShuffleMask(Mask, MaskAsInts); |
2218 | return isZeroEltSplatMask(MaskAsInts); |
2219 | } |
2220 | |
2221 | /// Return true if all elements of this shuffle are the same value as the |
2222 | /// first element of exactly one source vector without changing the length |
2223 | /// of that vector. |
2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
2225 | /// TODO: Optionally allow length-changing shuffles. |
2226 | /// TODO: Optionally allow splats from other elements. |
2227 | bool isZeroEltSplat() const { |
2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
2229 | } |
2230 | |
2231 | /// Return true if this shuffle mask is a transpose mask. |
2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
2234 | /// vectors and write each result into consecutive elements of an |
2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
2236 | /// the transpose, one for the even elements and another for the odd elements. |
2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
2238 | /// instructions operate. |
2239 | /// |
2240 | /// For example, a simple 2x2 matrix can be transposed with: |
2241 | /// |
2242 | /// ; Original matrix |
2243 | /// m0 = < a, b > |
2244 | /// m1 = < c, d > |
2245 | /// |
2246 | /// ; Transposed matrix |
2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
2249 | /// |
2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
2251 | /// matrix is stored in two result vectors such that one vector contains |
2252 | /// interleaved elements from all the even-numbered rows and the other vector |
2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
2254 | /// a 2x4 matrix can be transposed with: |
2255 | /// |
2256 | /// ; Original matrix |
2257 | /// m0 = < a, b, c, d > |
2258 | /// m1 = < e, f, g, h > |
2259 | /// |
2260 | /// ; Transposed matrix |
2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
2264 | static bool isTransposeMask(const Constant *Mask) { |
2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2266 | SmallVector<int, 16> MaskAsInts; |
2267 | getShuffleMask(Mask, MaskAsInts); |
2268 | return isTransposeMask(MaskAsInts); |
2269 | } |
2270 | |
2271 | /// Return true if this shuffle transposes the elements of its inputs without |
2272 | /// changing the length of the vectors. This operation may also be known as a |
2273 | /// merge or interleave. See the description for isTransposeMask() for the |
2274 | /// exact specification. |
2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
2276 | bool isTranspose() const { |
2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
2278 | } |
2279 | |
2280 | /// Return true if this shuffle mask is an extract subvector mask. |
2281 | /// A valid extract subvector mask returns a smaller vector from a single |
2282 | /// source operand. The base extraction index is returned as well. |
2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
2284 | int &Index); |
2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
2286 | int &Index) { |
2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2288 | // Not possible to express a shuffle mask for a scalable vector for this |
2289 | // case. |
2290 | if (isa<ScalableVectorType>(Mask->getType())) |
2291 | return false; |
2292 | SmallVector<int, 16> MaskAsInts; |
2293 | getShuffleMask(Mask, MaskAsInts); |
2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
2295 | } |
2296 | |
2297 | /// Return true if this shuffle mask is an extract subvector mask. |
2298 | bool isExtractSubvectorMask(int &Index) const { |
2299 | // Not possible to express a shuffle mask for a scalable vector for this |
2300 | // case. |
2301 | if (isa<ScalableVectorType>(getType())) |
2302 | return false; |
2303 | |
2304 | int NumSrcElts = |
2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
2307 | } |
2308 | |
2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
2310 | /// of length InVecNumElts have swapped position. |
2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
2312 | unsigned InVecNumElts) { |
2313 | for (int &Idx : Mask) { |
2314 | if (Idx == -1) |
2315 | continue; |
2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
2318 | "shufflevector mask index out of range")((void)0); |
2319 | } |
2320 | } |
2321 | |
2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2323 | static bool classof(const Instruction *I) { |
2324 | return I->getOpcode() == Instruction::ShuffleVector; |
2325 | } |
2326 | static bool classof(const Value *V) { |
2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2328 | } |
2329 | }; |
2330 | |
2331 | template <> |
2332 | struct OperandTraits<ShuffleVectorInst> |
2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
2334 | |
2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
2336 | |
2337 | //===----------------------------------------------------------------------===// |
2338 | // ExtractValueInst Class |
2339 | //===----------------------------------------------------------------------===// |
2340 | |
2341 | /// This instruction extracts a struct member or array |
2342 | /// element value from an aggregate value. |
2343 | /// |
2344 | class ExtractValueInst : public UnaryInstruction { |
2345 | SmallVector<unsigned, 4> Indices; |
2346 | |
2347 | ExtractValueInst(const ExtractValueInst &EVI); |
2348 | |
2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
2350 | /// value and a list of indices. The first ctor can optionally insert before |
2351 | /// an existing instruction, the second appends the new instruction to the |
2352 | /// specified BasicBlock. |
2353 | inline ExtractValueInst(Value *Agg, |
2354 | ArrayRef<unsigned> Idxs, |
2355 | const Twine &NameStr, |
2356 | Instruction *InsertBefore); |
2357 | inline ExtractValueInst(Value *Agg, |
2358 | ArrayRef<unsigned> Idxs, |
2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2360 | |
2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
2362 | |
2363 | protected: |
2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2365 | friend class Instruction; |
2366 | |
2367 | ExtractValueInst *cloneImpl() const; |
2368 | |
2369 | public: |
2370 | static ExtractValueInst *Create(Value *Agg, |
2371 | ArrayRef<unsigned> Idxs, |
2372 | const Twine &NameStr = "", |
2373 | Instruction *InsertBefore = nullptr) { |
2374 | return new |
2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
2376 | } |
2377 | |
2378 | static ExtractValueInst *Create(Value *Agg, |
2379 | ArrayRef<unsigned> Idxs, |
2380 | const Twine &NameStr, |
2381 | BasicBlock *InsertAtEnd) { |
2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
2383 | } |
2384 | |
2385 | /// Returns the type of the element that would be extracted |
2386 | /// with an extractvalue instruction with the specified parameters. |
2387 | /// |
2388 | /// Null is returned if the indices are invalid for the specified type. |
2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
2390 | |
2391 | using idx_iterator = const unsigned*; |
2392 | |
2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
2395 | inline iterator_range<idx_iterator> indices() const { |
2396 | return make_range(idx_begin(), idx_end()); |
2397 | } |
2398 | |
2399 | Value *getAggregateOperand() { |
2400 | return getOperand(0); |
2401 | } |
2402 | const Value *getAggregateOperand() const { |
2403 | return getOperand(0); |
2404 | } |
2405 | static unsigned getAggregateOperandIndex() { |
2406 | return 0U; // get index for modifying correct operand |
2407 | } |
2408 | |
2409 | ArrayRef<unsigned> getIndices() const { |
2410 | return Indices; |
2411 | } |
2412 | |
2413 | unsigned getNumIndices() const { |
2414 | return (unsigned)Indices.size(); |
2415 | } |
2416 | |
2417 | bool hasIndices() const { |
2418 | return true; |
2419 | } |
2420 | |
2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2422 | static bool classof(const Instruction *I) { |
2423 | return I->getOpcode() == Instruction::ExtractValue; |
2424 | } |
2425 | static bool classof(const Value *V) { |
2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2427 | } |
2428 | }; |
2429 | |
2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2431 | ArrayRef<unsigned> Idxs, |
2432 | const Twine &NameStr, |
2433 | Instruction *InsertBefore) |
2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2435 | ExtractValue, Agg, InsertBefore) { |
2436 | init(Idxs, NameStr); |
2437 | } |
2438 | |
2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2440 | ArrayRef<unsigned> Idxs, |
2441 | const Twine &NameStr, |
2442 | BasicBlock *InsertAtEnd) |
2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2444 | ExtractValue, Agg, InsertAtEnd) { |
2445 | init(Idxs, NameStr); |
2446 | } |
2447 | |
2448 | //===----------------------------------------------------------------------===// |
2449 | // InsertValueInst Class |
2450 | //===----------------------------------------------------------------------===// |
2451 | |
2452 | /// This instruction inserts a struct field of array element |
2453 | /// value into an aggregate value. |
2454 | /// |
2455 | class InsertValueInst : public Instruction { |
2456 | SmallVector<unsigned, 4> Indices; |
2457 | |
2458 | InsertValueInst(const InsertValueInst &IVI); |
2459 | |
2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
2461 | /// value, a value to insert, and a list of indices. The first ctor can |
2462 | /// optionally insert before an existing instruction, the second appends |
2463 | /// the new instruction to the specified BasicBlock. |
2464 | inline InsertValueInst(Value *Agg, Value *Val, |
2465 | ArrayRef<unsigned> Idxs, |
2466 | const Twine &NameStr, |
2467 | Instruction *InsertBefore); |
2468 | inline InsertValueInst(Value *Agg, Value *Val, |
2469 | ArrayRef<unsigned> Idxs, |
2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2471 | |
2472 | /// Constructors - These two constructors are convenience methods because one |
2473 | /// and two index insertvalue instructions are so common. |
2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
2475 | const Twine &NameStr = "", |
2476 | Instruction *InsertBefore = nullptr); |
2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
2478 | BasicBlock *InsertAtEnd); |
2479 | |
2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
2481 | const Twine &NameStr); |
2482 | |
2483 | protected: |
2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2485 | friend class Instruction; |
2486 | |
2487 | InsertValueInst *cloneImpl() const; |
2488 | |
2489 | public: |
2490 | // allocate space for exactly two operands |
2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2493 | |
2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2495 | ArrayRef<unsigned> Idxs, |
2496 | const Twine &NameStr = "", |
2497 | Instruction *InsertBefore = nullptr) { |
2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
2499 | } |
2500 | |
2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2502 | ArrayRef<unsigned> Idxs, |
2503 | const Twine &NameStr, |
2504 | BasicBlock *InsertAtEnd) { |
2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
2506 | } |
2507 | |
2508 | /// Transparently provide more efficient getOperand methods. |
2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2510 | |
2511 | using idx_iterator = const unsigned*; |
2512 | |
2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
2515 | inline iterator_range<idx_iterator> indices() const { |
2516 | return make_range(idx_begin(), idx_end()); |
2517 | } |
2518 | |
2519 | Value *getAggregateOperand() { |
2520 | return getOperand(0); |
2521 | } |
2522 | const Value *getAggregateOperand() const { |
2523 | return getOperand(0); |
2524 | } |
2525 | static unsigned getAggregateOperandIndex() { |
2526 | return 0U; // get index for modifying correct operand |
2527 | } |
2528 | |
2529 | Value *getInsertedValueOperand() { |
2530 | return getOperand(1); |
2531 | } |
2532 | const Value *getInsertedValueOperand() const { |
2533 | return getOperand(1); |
2534 | } |
2535 | static unsigned getInsertedValueOperandIndex() { |
2536 | return 1U; // get index for modifying correct operand |
2537 | } |
2538 | |
2539 | ArrayRef<unsigned> getIndices() const { |
2540 | return Indices; |
2541 | } |
2542 | |
2543 | unsigned getNumIndices() const { |
2544 | return (unsigned)Indices.size(); |
2545 | } |
2546 | |
2547 | bool hasIndices() const { |
2548 | return true; |
2549 | } |
2550 | |
2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2552 | static bool classof(const Instruction *I) { |
2553 | return I->getOpcode() == Instruction::InsertValue; |
2554 | } |
2555 | static bool classof(const Value *V) { |
2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2557 | } |
2558 | }; |
2559 | |
2560 | template <> |
2561 | struct OperandTraits<InsertValueInst> : |
2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
2563 | }; |
2564 | |
2565 | InsertValueInst::InsertValueInst(Value *Agg, |
2566 | Value *Val, |
2567 | ArrayRef<unsigned> Idxs, |
2568 | const Twine &NameStr, |
2569 | Instruction *InsertBefore) |
2570 | : Instruction(Agg->getType(), InsertValue, |
2571 | OperandTraits<InsertValueInst>::op_begin(this), |
2572 | 2, InsertBefore) { |
2573 | init(Agg, Val, Idxs, NameStr); |
2574 | } |
2575 | |
2576 | InsertValueInst::InsertValueInst(Value *Agg, |
2577 | Value *Val, |
2578 | ArrayRef<unsigned> Idxs, |
2579 | const Twine &NameStr, |
2580 | BasicBlock *InsertAtEnd) |
2581 | : Instruction(Agg->getType(), InsertValue, |
2582 | OperandTraits<InsertValueInst>::op_begin(this), |
2583 | 2, InsertAtEnd) { |
2584 | init(Agg, Val, Idxs, NameStr); |
2585 | } |
2586 | |
2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2588 | |
2589 | //===----------------------------------------------------------------------===// |
2590 | // PHINode Class |
2591 | //===----------------------------------------------------------------------===// |
2592 | |
2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
2594 | // node, that can not exist in nature, but can be synthesized in a computer |
2595 | // scientist's overactive imagination. |
2596 | // |
2597 | class PHINode : public Instruction { |
2598 | /// The number of operands actually allocated. NumOperands is |
2599 | /// the number actually in use. |
2600 | unsigned ReservedSpace; |
2601 | |
2602 | PHINode(const PHINode &PN); |
2603 | |
2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
2605 | const Twine &NameStr = "", |
2606 | Instruction *InsertBefore = nullptr) |
2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
2608 | ReservedSpace(NumReservedValues) { |
2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2610 | setName(NameStr); |
2611 | allocHungoffUses(ReservedSpace); |
2612 | } |
2613 | |
2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
2615 | BasicBlock *InsertAtEnd) |
2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
2617 | ReservedSpace(NumReservedValues) { |
2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2619 | setName(NameStr); |
2620 | allocHungoffUses(ReservedSpace); |
2621 | } |
2622 | |
2623 | protected: |
2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2625 | friend class Instruction; |
2626 | |
2627 | PHINode *cloneImpl() const; |
2628 | |
2629 | // allocHungoffUses - this is more complicated than the generic |
2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
2631 | // values and pointers to the incoming blocks, all in one allocation. |
2632 | void allocHungoffUses(unsigned N) { |
2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
2634 | } |
2635 | |
2636 | public: |
2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2640 | const Twine &NameStr = "", |
2641 | Instruction *InsertBefore = nullptr) { |
2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
2643 | } |
2644 | |
2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
2648 | } |
2649 | |
2650 | /// Provide fast operand accessors |
2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2652 | |
2653 | // Block iterator interface. This provides access to the list of incoming |
2654 | // basic blocks, which parallels the list of incoming values. |
2655 | |
2656 | using block_iterator = BasicBlock **; |
2657 | using const_block_iterator = BasicBlock * const *; |
2658 | |
2659 | block_iterator block_begin() { |
2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
2661 | } |
2662 | |
2663 | const_block_iterator block_begin() const { |
2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
2665 | } |
2666 | |
2667 | block_iterator block_end() { |
2668 | return block_begin() + getNumOperands(); |
2669 | } |
2670 | |
2671 | const_block_iterator block_end() const { |
2672 | return block_begin() + getNumOperands(); |
2673 | } |
2674 | |
2675 | iterator_range<block_iterator> blocks() { |
2676 | return make_range(block_begin(), block_end()); |
2677 | } |
2678 | |
2679 | iterator_range<const_block_iterator> blocks() const { |
2680 | return make_range(block_begin(), block_end()); |
2681 | } |
2682 | |
2683 | op_range incoming_values() { return operands(); } |
2684 | |
2685 | const_op_range incoming_values() const { return operands(); } |
2686 | |
2687 | /// Return the number of incoming edges |
2688 | /// |
2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
2690 | |
2691 | /// Return incoming value number x |
2692 | /// |
2693 | Value *getIncomingValue(unsigned i) const { |
2694 | return getOperand(i); |
2695 | } |
2696 | void setIncomingValue(unsigned i, Value *V) { |
2697 | assert(V && "PHI node got a null value!")((void)0); |
2698 | assert(getType() == V->getType() &&((void)0) |
2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
2700 | setOperand(i, V); |
2701 | } |
2702 | |
2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
2704 | return i; |
2705 | } |
2706 | |
2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
2708 | return i; |
2709 | } |
2710 | |
2711 | /// Return incoming basic block number @p i. |
2712 | /// |
2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
2714 | return block_begin()[i]; |
2715 | } |
2716 | |
2717 | /// Return incoming basic block corresponding |
2718 | /// to an operand of the PHI. |
2719 | /// |
2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
2723 | } |
2724 | |
2725 | /// Return incoming basic block corresponding |
2726 | /// to value use iterator. |
2727 | /// |
2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
2729 | return getIncomingBlock(I.getUse()); |
2730 | } |
2731 | |
2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
2734 | block_begin()[i] = BB; |
2735 | } |
2736 | |
2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2741 | if (getIncomingBlock(Op) == Old) |
2742 | setIncomingBlock(Op, New); |
2743 | } |
2744 | |
2745 | /// Add an incoming value to the end of the PHI list |
2746 | /// |
2747 | void addIncoming(Value *V, BasicBlock *BB) { |
2748 | if (getNumOperands() == ReservedSpace) |
2749 | growOperands(); // Get more space! |
2750 | // Initialize some new operands. |
2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
2752 | setIncomingValue(getNumOperands() - 1, V); |
2753 | setIncomingBlock(getNumOperands() - 1, BB); |
2754 | } |
2755 | |
2756 | /// Remove an incoming value. This is useful if a |
2757 | /// predecessor basic block is deleted. The value removed is returned. |
2758 | /// |
2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
2762 | /// node is when the block is dead, so this strategy is sound. |
2763 | /// |
2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
2765 | |
2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
2767 | int Idx = getBasicBlockIndex(BB); |
2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
2770 | } |
2771 | |
2772 | /// Return the first index of the specified basic |
2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
2774 | /// |
2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
2777 | if (block_begin()[i] == BB) |
2778 | return i; |
2779 | return -1; |
2780 | } |
2781 | |
2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
2783 | int Idx = getBasicBlockIndex(BB); |
2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
2785 | return getIncomingValue(Idx); |
2786 | } |
2787 | |
2788 | /// Set every incoming value(s) for block \p BB to \p V. |
2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
2791 | bool Found = false; |
2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2793 | if (getIncomingBlock(Op) == BB) { |
2794 | Found = true; |
2795 | setIncomingValue(Op, V); |
2796 | } |
2797 | (void)Found; |
2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
2799 | } |
2800 | |
2801 | /// If the specified PHI node always merges together the |
2802 | /// same value, return the value, otherwise return null. |
2803 | Value *hasConstantValue() const; |
2804 | |
2805 | /// Whether the specified PHI node always merges |
2806 | /// together the same value, assuming undefs are equal to a unique |
2807 | /// non-undef value. |
2808 | bool hasConstantOrUndefValue() const; |
2809 | |
2810 | /// If the PHI node is complete which means all of its parent's predecessors |
2811 | /// have incoming value in this PHI, return true, otherwise return false. |
2812 | bool isComplete() const { |
2813 | return llvm::all_of(predecessors(getParent()), |
2814 | [this](const BasicBlock *Pred) { |
2815 | return getBasicBlockIndex(Pred) >= 0; |
2816 | }); |
2817 | } |
2818 | |
2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
2820 | static bool classof(const Instruction *I) { |
2821 | return I->getOpcode() == Instruction::PHI; |
2822 | } |
2823 | static bool classof(const Value *V) { |
2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2825 | } |
2826 | |
2827 | private: |
2828 | void growOperands(); |
2829 | }; |
2830 | |
2831 | template <> |
2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
2833 | }; |
2834 | |
2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
2836 | |
2837 | //===----------------------------------------------------------------------===// |
2838 | // LandingPadInst Class |
2839 | //===----------------------------------------------------------------------===// |
2840 | |
2841 | //===--------------------------------------------------------------------------- |
2842 | /// The landingpad instruction holds all of the information |
2843 | /// necessary to generate correct exception handling. The landingpad instruction |
2844 | /// cannot be moved from the top of a landing pad block, which itself is |
2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
2847 | /// cleanup. |
2848 | /// |
2849 | class LandingPadInst : public Instruction { |
2850 | using CleanupField = BoolBitfieldElementT<0>; |
2851 | |
2852 | /// The number of operands actually allocated. NumOperands is |
2853 | /// the number actually in use. |
2854 | unsigned ReservedSpace; |
2855 | |
2856 | LandingPadInst(const LandingPadInst &LP); |
2857 | |
2858 | public: |
2859 | enum ClauseType { Catch, Filter }; |
2860 | |
2861 | private: |
2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2863 | const Twine &NameStr, Instruction *InsertBefore); |
2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2866 | |
2867 | // Allocate space for exactly zero operands. |
2868 | void *operator new(size_t S) { return User::operator new(S); } |
2869 | |
2870 | void growOperands(unsigned Size); |
2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
2872 | |
2873 | protected: |
2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2875 | friend class Instruction; |
2876 | |
2877 | LandingPadInst *cloneImpl() const; |
2878 | |
2879 | public: |
2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2881 | |
2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2885 | const Twine &NameStr = "", |
2886 | Instruction *InsertBefore = nullptr); |
2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2889 | |
2890 | /// Provide fast operand accessors |
2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2892 | |
2893 | /// Return 'true' if this landingpad instruction is a |
2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
2895 | /// doesn't catch the exception. |
2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
2897 | |
2898 | /// Indicate that this landingpad instruction is a cleanup. |
2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
2900 | |
2901 | /// Add a catch or filter clause to the landing pad. |
2902 | void addClause(Constant *ClauseVal); |
2903 | |
2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
2905 | /// determine what type of clause this is. |
2906 | Constant *getClause(unsigned Idx) const { |
2907 | return cast<Constant>(getOperandList()[Idx]); |
2908 | } |
2909 | |
2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
2911 | bool isCatch(unsigned Idx) const { |
2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
2913 | } |
2914 | |
2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
2916 | bool isFilter(unsigned Idx) const { |
2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
2918 | } |
2919 | |
2920 | /// Get the number of clauses for this landing pad. |
2921 | unsigned getNumClauses() const { return getNumOperands(); } |
2922 | |
2923 | /// Grow the size of the operand list to accommodate the new |
2924 | /// number of clauses. |
2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
2926 | |
2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2928 | static bool classof(const Instruction *I) { |
2929 | return I->getOpcode() == Instruction::LandingPad; |
2930 | } |
2931 | static bool classof(const Value *V) { |
2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2933 | } |
2934 | }; |
2935 | |
2936 | template <> |
2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
2938 | }; |
2939 | |
2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2941 | |
2942 | //===----------------------------------------------------------------------===// |
2943 | // ReturnInst Class |
2944 | //===----------------------------------------------------------------------===// |
2945 | |
2946 | //===--------------------------------------------------------------------------- |
2947 | /// Return a value (possibly void), from a function. Execution |
2948 | /// does not continue in this function any longer. |
2949 | /// |
2950 | class ReturnInst : public Instruction { |
2951 | ReturnInst(const ReturnInst &RI); |
2952 | |
2953 | private: |
2954 | // ReturnInst constructors: |
2955 | // ReturnInst() - 'ret void' instruction |
2956 | // ReturnInst( null) - 'ret void' instruction |
2957 | // ReturnInst(Value* X) - 'ret X' instruction |
2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
2962 | // |
2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
2964 | // if it was passed NULL. |
2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
2966 | Instruction *InsertBefore = nullptr); |
2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
2969 | |
2970 | protected: |
2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2972 | friend class Instruction; |
2973 | |
2974 | ReturnInst *cloneImpl() const; |
2975 | |
2976 | public: |
2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
2978 | Instruction *InsertBefore = nullptr) { |
2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
2980 | } |
2981 | |
2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
2983 | BasicBlock *InsertAtEnd) { |
2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
2985 | } |
2986 | |
2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
2988 | return new(0) ReturnInst(C, InsertAtEnd); |
2989 | } |
2990 | |
2991 | /// Provide fast operand accessors |
2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2993 | |
2994 | /// Convenience accessor. Returns null if there is no return value. |
2995 | Value *getReturnValue() const { |
2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
2997 | } |
2998 | |
2999 | unsigned getNumSuccessors() const { return 0; } |
3000 | |
3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3002 | static bool classof(const Instruction *I) { |
3003 | return (I->getOpcode() == Instruction::Ret); |
3004 | } |
3005 | static bool classof(const Value *V) { |
3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3007 | } |
3008 | |
3009 | private: |
3010 | BasicBlock *getSuccessor(unsigned idx) const { |
3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3012 | } |
3013 | |
3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3016 | } |
3017 | }; |
3018 | |
3019 | template <> |
3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
3021 | }; |
3022 | |
3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3024 | |
3025 | //===----------------------------------------------------------------------===// |
3026 | // BranchInst Class |
3027 | //===----------------------------------------------------------------------===// |
3028 | |
3029 | //===--------------------------------------------------------------------------- |
3030 | /// Conditional or Unconditional Branch instruction. |
3031 | /// |
3032 | class BranchInst : public Instruction { |
3033 | /// Ops list - Branches are strange. The operands are ordered: |
3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
3036 | /// accessed relative from op_end(). |
3037 | BranchInst(const BranchInst &BI); |
3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
3039 | // BranchInst(BB *B) - 'br B' |
3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3047 | Instruction *InsertBefore = nullptr); |
3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3050 | BasicBlock *InsertAtEnd); |
3051 | |
3052 | void AssertOK(); |
3053 | |
3054 | protected: |
3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3056 | friend class Instruction; |
3057 | |
3058 | BranchInst *cloneImpl() const; |
3059 | |
3060 | public: |
3061 | /// Iterator type that casts an operand to a basic block. |
3062 | /// |
3063 | /// This only makes sense because the successors are stored as adjacent |
3064 | /// operands for branch instructions. |
3065 | struct succ_op_iterator |
3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3067 | std::random_access_iterator_tag, BasicBlock *, |
3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3070 | |
3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3072 | BasicBlock *operator->() const { return operator*(); } |
3073 | }; |
3074 | |
3075 | /// The const version of `succ_op_iterator`. |
3076 | struct const_succ_op_iterator |
3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3078 | std::random_access_iterator_tag, |
3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3080 | const BasicBlock *> { |
3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3082 | : iterator_adaptor_base(I) {} |
3083 | |
3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3085 | const BasicBlock *operator->() const { return operator*(); } |
3086 | }; |
3087 | |
3088 | static BranchInst *Create(BasicBlock *IfTrue, |
3089 | Instruction *InsertBefore = nullptr) { |
3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
3091 | } |
3092 | |
3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
3096 | } |
3097 | |
3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
3100 | } |
3101 | |
3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
3105 | } |
3106 | |
3107 | /// Transparently provide more efficient getOperand methods. |
3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3109 | |
3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
3111 | bool isConditional() const { return getNumOperands() == 3; } |
3112 | |
3113 | Value *getCondition() const { |
3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
3115 | return Op<-3>(); |
3116 | } |
3117 | |
3118 | void setCondition(Value *V) { |
3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
3120 | Op<-3>() = V; |
3121 | } |
3122 | |
3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
3124 | |
3125 | BasicBlock *getSuccessor(unsigned i) const { |
3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
3128 | } |
3129 | |
3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3132 | *(&Op<-1>() - idx) = NewSucc; |
3133 | } |
3134 | |
3135 | /// Swap the successors of this branch instruction. |
3136 | /// |
3137 | /// Swaps the successors of the branch instruction. This also swaps any |
3138 | /// branch weight metadata associated with the instruction so that it |
3139 | /// continues to map correctly to each operand. |
3140 | void swapSuccessors(); |
3141 | |
3142 | iterator_range<succ_op_iterator> successors() { |
3143 | return make_range( |
3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3145 | succ_op_iterator(value_op_end())); |
3146 | } |
3147 | |
3148 | iterator_range<const_succ_op_iterator> successors() const { |
3149 | return make_range(const_succ_op_iterator( |
3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3151 | const_succ_op_iterator(value_op_end())); |
3152 | } |
3153 | |
3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3155 | static bool classof(const Instruction *I) { |
3156 | return (I->getOpcode() == Instruction::Br); |
3157 | } |
3158 | static bool classof(const Value *V) { |
3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3160 | } |
3161 | }; |
3162 | |
3163 | template <> |
3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
3165 | }; |
3166 | |
3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3168 | |
3169 | //===----------------------------------------------------------------------===// |
3170 | // SwitchInst Class |
3171 | //===----------------------------------------------------------------------===// |
3172 | |
3173 | //===--------------------------------------------------------------------------- |
3174 | /// Multiway switch |
3175 | /// |
3176 | class SwitchInst : public Instruction { |
3177 | unsigned ReservedSpace; |
3178 | |
3179 | // Operand[0] = Value to switch on |
3180 | // Operand[1] = Default basic block destination |
3181 | // Operand[2n ] = Value to match |
3182 | // Operand[2n+1] = BasicBlock to go to on match |
3183 | SwitchInst(const SwitchInst &SI); |
3184 | |
3185 | /// Create a new switch instruction, specifying a value to switch on and a |
3186 | /// default destination. The number of additional cases can be specified here |
3187 | /// to make memory allocation more efficient. This constructor can also |
3188 | /// auto-insert before another instruction. |
3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3190 | Instruction *InsertBefore); |
3191 | |
3192 | /// Create a new switch instruction, specifying a value to switch on and a |
3193 | /// default destination. The number of additional cases can be specified here |
3194 | /// to make memory allocation more efficient. This constructor also |
3195 | /// auto-inserts at the end of the specified BasicBlock. |
3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3197 | BasicBlock *InsertAtEnd); |
3198 | |
3199 | // allocate space for exactly zero operands |
3200 | void *operator new(size_t S) { return User::operator new(S); } |
3201 | |
3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
3203 | void growOperands(); |
3204 | |
3205 | protected: |
3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3207 | friend class Instruction; |
3208 | |
3209 | SwitchInst *cloneImpl() const; |
3210 | |
3211 | public: |
3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
3213 | |
3214 | // -2 |
3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
3216 | |
3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
3218 | |
3219 | /// A handle to a particular switch case. It exposes a convenient interface |
3220 | /// to both the case value and the successor block. |
3221 | /// |
3222 | /// We define this as a template and instantiate it to form both a const and |
3223 | /// non-const handle. |
3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
3225 | class CaseHandleImpl { |
3226 | // Directly befriend both const and non-const iterators. |
3227 | friend class SwitchInst::CaseIteratorImpl< |
3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
3229 | |
3230 | protected: |
3231 | // Expose the switch type we're parameterized with to the iterator. |
3232 | using SwitchInstType = SwitchInstT; |
3233 | |
3234 | SwitchInstT *SI; |
3235 | ptrdiff_t Index; |
3236 | |
3237 | CaseHandleImpl() = default; |
3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
3239 | |
3240 | public: |
3241 | /// Resolves case value for current case. |
3242 | ConstantIntT *getCaseValue() const { |
3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
3244 | "Index out the number of cases.")((void)0); |
3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
3246 | } |
3247 | |
3248 | /// Resolves successor for current case. |
3249 | BasicBlockT *getCaseSuccessor() const { |
3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
3252 | "Index out the number of cases.")((void)0); |
3253 | return SI->getSuccessor(getSuccessorIndex()); |
3254 | } |
3255 | |
3256 | /// Returns number of current case. |
3257 | unsigned getCaseIndex() const { return Index; } |
3258 | |
3259 | /// Returns successor index for current case successor. |
3260 | unsigned getSuccessorIndex() const { |
3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
3263 | "Index out the number of cases.")((void)0); |
3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
3265 | } |
3266 | |
3267 | bool operator==(const CaseHandleImpl &RHS) const { |
3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
3269 | return Index == RHS.Index; |
3270 | } |
3271 | }; |
3272 | |
3273 | using ConstCaseHandle = |
3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
3275 | |
3276 | class CaseHandle |
3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
3279 | |
3280 | public: |
3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
3282 | |
3283 | /// Sets the new value for current case. |
3284 | void setValue(ConstantInt *V) { |
3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
3286 | "Index out the number of cases.")((void)0); |
3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
3288 | } |
3289 | |
3290 | /// Sets the new successor for current case. |
3291 | void setSuccessor(BasicBlock *S) { |
3292 | SI->setSuccessor(getSuccessorIndex(), S); |
3293 | } |
3294 | }; |
3295 | |
3296 | template <typename CaseHandleT> |
3297 | class CaseIteratorImpl |
3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
3299 | std::random_access_iterator_tag, |
3300 | CaseHandleT> { |
3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
3302 | |
3303 | CaseHandleT Case; |
3304 | |
3305 | public: |
3306 | /// Default constructed iterator is in an invalid state until assigned to |
3307 | /// a case for a particular switch. |
3308 | CaseIteratorImpl() = default; |
3309 | |
3310 | /// Initializes case iterator for given SwitchInst and for given |
3311 | /// case number. |
3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
3313 | |
3314 | /// Initializes case iterator for given SwitchInst and for given |
3315 | /// successor index. |
3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
3317 | unsigned SuccessorIndex) { |
3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
3319 | "Successor index # out of range!")((void)0); |
3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
3322 | } |
3323 | |
3324 | /// Support converting to the const variant. This will be a no-op for const |
3325 | /// variant. |
3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
3328 | } |
3329 | |
3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
3331 | // Check index correctness after addition. |
3332 | // Note: Index == getNumCases() means end(). |
3333 | assert(Case.Index + N >= 0 &&((void)0) |
3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
3335 | "Case.Index out the number of cases.")((void)0); |
3336 | Case.Index += N; |
3337 | return *this; |
3338 | } |
3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
3340 | // Check index correctness after subtraction. |
3341 | // Note: Case.Index == getNumCases() means end(). |
3342 | assert(Case.Index - N >= 0 &&((void)0) |
3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
3344 | "Case.Index out the number of cases.")((void)0); |
3345 | Case.Index -= N; |
3346 | return *this; |
3347 | } |
3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
3350 | return Case.Index - RHS.Case.Index; |
3351 | } |
3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
3353 | return Case == RHS.Case; |
3354 | } |
3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
3357 | return Case.Index < RHS.Case.Index; |
3358 | } |
3359 | CaseHandleT &operator*() { return Case; } |
3360 | const CaseHandleT &operator*() const { return Case; } |
3361 | }; |
3362 | |
3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
3365 | |
3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3367 | unsigned NumCases, |
3368 | Instruction *InsertBefore = nullptr) { |
3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
3370 | } |
3371 | |
3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
3375 | } |
3376 | |
3377 | /// Provide fast operand accessors |
3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3379 | |
3380 | // Accessor Methods for Switch stmt |
3381 | Value *getCondition() const { return getOperand(0); } |
3382 | void setCondition(Value *V) { setOperand(0, V); } |
3383 | |
3384 | BasicBlock *getDefaultDest() const { |
3385 | return cast<BasicBlock>(getOperand(1)); |
3386 | } |
3387 | |
3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
3390 | } |
3391 | |
3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
3393 | /// default case. |
3394 | unsigned getNumCases() const { |
3395 | return getNumOperands()/2 - 1; |
3396 | } |
3397 | |
3398 | /// Returns a read/write iterator that points to the first case in the |
3399 | /// SwitchInst. |
3400 | CaseIt case_begin() { |
3401 | return CaseIt(this, 0); |
3402 | } |
3403 | |
3404 | /// Returns a read-only iterator that points to the first case in the |
3405 | /// SwitchInst. |
3406 | ConstCaseIt case_begin() const { |
3407 | return ConstCaseIt(this, 0); |
3408 | } |
3409 | |
3410 | /// Returns a read/write iterator that points one past the last in the |
3411 | /// SwitchInst. |
3412 | CaseIt case_end() { |
3413 | return CaseIt(this, getNumCases()); |
3414 | } |
3415 | |
3416 | /// Returns a read-only iterator that points one past the last in the |
3417 | /// SwitchInst. |
3418 | ConstCaseIt case_end() const { |
3419 | return ConstCaseIt(this, getNumCases()); |
3420 | } |
3421 | |
3422 | /// Iteration adapter for range-for loops. |
3423 | iterator_range<CaseIt> cases() { |
3424 | return make_range(case_begin(), case_end()); |
3425 | } |
3426 | |
3427 | /// Constant iteration adapter for range-for loops. |
3428 | iterator_range<ConstCaseIt> cases() const { |
3429 | return make_range(case_begin(), case_end()); |
3430 | } |
3431 | |
3432 | /// Returns an iterator that points to the default case. |
3433 | /// Note: this iterator allows to resolve successor only. Attempt |
3434 | /// to resolve case value causes an assertion. |
3435 | /// Also note, that increment and decrement also causes an assertion and |
3436 | /// makes iterator invalid. |
3437 | CaseIt case_default() { |
3438 | return CaseIt(this, DefaultPseudoIndex); |
3439 | } |
3440 | ConstCaseIt case_default() const { |
3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
3442 | } |
3443 | |
3444 | /// Search all of the case values for the specified constant. If it is |
3445 | /// explicitly handled, return the case iterator of it, otherwise return |
3446 | /// default case iterator to indicate that it is handled by the default |
3447 | /// handler. |
3448 | CaseIt findCaseValue(const ConstantInt *C) { |
3449 | CaseIt I = llvm::find_if( |
3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
3451 | if (I != case_end()) |
3452 | return I; |
3453 | |
3454 | return case_default(); |
3455 | } |
3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
3458 | return Case.getCaseValue() == C; |
3459 | }); |
3460 | if (I != case_end()) |
3461 | return I; |
3462 | |
3463 | return case_default(); |
3464 | } |
3465 | |
3466 | /// Finds the unique case value for a given successor. Returns null if the |
3467 | /// successor is not found, not unique, or is the default case. |
3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
3469 | if (BB == getDefaultDest()) |
3470 | return nullptr; |
3471 | |
3472 | ConstantInt *CI = nullptr; |
3473 | for (auto Case : cases()) { |
3474 | if (Case.getCaseSuccessor() != BB) |
3475 | continue; |
3476 | |
3477 | if (CI) |
3478 | return nullptr; // Multiple cases lead to BB. |
3479 | |
3480 | CI = Case.getCaseValue(); |
3481 | } |
3482 | |
3483 | return CI; |
3484 | } |
3485 | |
3486 | /// Add an entry to the switch instruction. |
3487 | /// Note: |
3488 | /// This action invalidates case_end(). Old case_end() iterator will |
3489 | /// point to the added case. |
3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
3491 | |
3492 | /// This method removes the specified case and its successor from the switch |
3493 | /// instruction. Note that this operation may reorder the remaining cases at |
3494 | /// index idx and above. |
3495 | /// Note: |
3496 | /// This action invalidates iterators for all cases following the one removed, |
3497 | /// including the case_end() iterator. It returns an iterator for the next |
3498 | /// case. |
3499 | CaseIt removeCase(CaseIt I); |
3500 | |
3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
3502 | BasicBlock *getSuccessor(unsigned idx) const { |
3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
3505 | } |
3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
3508 | setOperand(idx * 2 + 1, NewSucc); |
3509 | } |
3510 | |
3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3512 | static bool classof(const Instruction *I) { |
3513 | return I->getOpcode() == Instruction::Switch; |
3514 | } |
3515 | static bool classof(const Value *V) { |
3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3517 | } |
3518 | }; |
3519 | |
3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
3521 | /// their prof branch_weights metadata. |
3522 | class SwitchInstProfUpdateWrapper { |
3523 | SwitchInst &SI; |
3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
3525 | bool Changed = false; |
3526 | |
3527 | protected: |
3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
3529 | |
3530 | MDNode *buildProfBranchWeightsMD(); |
3531 | |
3532 | void init(); |
3533 | |
3534 | public: |
3535 | using CaseWeightOpt = Optional<uint32_t>; |
3536 | SwitchInst *operator->() { return &SI; } |
3537 | SwitchInst &operator*() { return SI; } |
3538 | operator SwitchInst *() { return &SI; } |
3539 | |
3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
3541 | |
3542 | ~SwitchInstProfUpdateWrapper() { |
3543 | if (Changed) |
3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
3545 | } |
3546 | |
3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
3548 | /// correspondent branch weight. |
3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
3550 | |
3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
3552 | /// specified branch weight for the added case. |
3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
3554 | |
3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
3556 | /// this object to not touch the underlying SwitchInst in destructor. |
3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
3558 | |
3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
3561 | |
3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
3563 | }; |
3564 | |
3565 | template <> |
3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
3567 | }; |
3568 | |
3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3570 | |
3571 | //===----------------------------------------------------------------------===// |
3572 | // IndirectBrInst Class |
3573 | //===----------------------------------------------------------------------===// |
3574 | |
3575 | //===--------------------------------------------------------------------------- |
3576 | /// Indirect Branch Instruction. |
3577 | /// |
3578 | class IndirectBrInst : public Instruction { |
3579 | unsigned ReservedSpace; |
3580 | |
3581 | // Operand[0] = Address to jump to |
3582 | // Operand[n+1] = n-th destination |
3583 | IndirectBrInst(const IndirectBrInst &IBI); |
3584 | |
3585 | /// Create a new indirectbr instruction, specifying an |
3586 | /// Address to jump to. The number of expected destinations can be specified |
3587 | /// here to make memory allocation more efficient. This constructor can also |
3588 | /// autoinsert before another instruction. |
3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
3590 | |
3591 | /// Create a new indirectbr instruction, specifying an |
3592 | /// Address to jump to. The number of expected destinations can be specified |
3593 | /// here to make memory allocation more efficient. This constructor also |
3594 | /// autoinserts at the end of the specified BasicBlock. |
3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
3596 | |
3597 | // allocate space for exactly zero operands |
3598 | void *operator new(size_t S) { return User::operator new(S); } |
3599 | |
3600 | void init(Value *Address, unsigned NumDests); |
3601 | void growOperands(); |
3602 | |
3603 | protected: |
3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3605 | friend class Instruction; |
3606 | |
3607 | IndirectBrInst *cloneImpl() const; |
3608 | |
3609 | public: |
3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
3611 | |
3612 | /// Iterator type that casts an operand to a basic block. |
3613 | /// |
3614 | /// This only makes sense because the successors are stored as adjacent |
3615 | /// operands for indirectbr instructions. |
3616 | struct succ_op_iterator |
3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3618 | std::random_access_iterator_tag, BasicBlock *, |
3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3621 | |
3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3623 | BasicBlock *operator->() const { return operator*(); } |
3624 | }; |
3625 | |
3626 | /// The const version of `succ_op_iterator`. |
3627 | struct const_succ_op_iterator |
3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3629 | std::random_access_iterator_tag, |
3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3631 | const BasicBlock *> { |
3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3633 | : iterator_adaptor_base(I) {} |
3634 | |
3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3636 | const BasicBlock *operator->() const { return operator*(); } |
3637 | }; |
3638 | |
3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
3640 | Instruction *InsertBefore = nullptr) { |
3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
3642 | } |
3643 | |
3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
3645 | BasicBlock *InsertAtEnd) { |
3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
3647 | } |
3648 | |
3649 | /// Provide fast operand accessors. |
3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3651 | |
3652 | // Accessor Methods for IndirectBrInst instruction. |
3653 | Value *getAddress() { return getOperand(0); } |
3654 | const Value *getAddress() const { return getOperand(0); } |
3655 | void setAddress(Value *V) { setOperand(0, V); } |
3656 | |
3657 | /// return the number of possible destinations in this |
3658 | /// indirectbr instruction. |
3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
3660 | |
3661 | /// Return the specified destination. |
3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
3664 | |
3665 | /// Add a destination. |
3666 | /// |
3667 | void addDestination(BasicBlock *Dest); |
3668 | |
3669 | /// This method removes the specified successor from the |
3670 | /// indirectbr instruction. |
3671 | void removeDestination(unsigned i); |
3672 | |
3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
3674 | BasicBlock *getSuccessor(unsigned i) const { |
3675 | return cast<BasicBlock>(getOperand(i+1)); |
3676 | } |
3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
3678 | setOperand(i + 1, NewSucc); |
3679 | } |
3680 | |
3681 | iterator_range<succ_op_iterator> successors() { |
3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
3683 | succ_op_iterator(value_op_end())); |
3684 | } |
3685 | |
3686 | iterator_range<const_succ_op_iterator> successors() const { |
3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
3688 | const_succ_op_iterator(value_op_end())); |
3689 | } |
3690 | |
3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3692 | static bool classof(const Instruction *I) { |
3693 | return I->getOpcode() == Instruction::IndirectBr; |
3694 | } |
3695 | static bool classof(const Value *V) { |
3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3697 | } |
3698 | }; |
3699 | |
3700 | template <> |
3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
3702 | }; |
3703 | |
3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
3705 | |
3706 | //===----------------------------------------------------------------------===// |
3707 | // InvokeInst Class |
3708 | //===----------------------------------------------------------------------===// |
3709 | |
3710 | /// Invoke instruction. The SubclassData field is used to hold the |
3711 | /// calling convention of the call. |
3712 | /// |
3713 | class InvokeInst : public CallBase { |
3714 | /// The number of operands for this call beyond the called function, |
3715 | /// arguments, and operand bundles. |
3716 | static constexpr int NumExtraOperands = 2; |
3717 | |
3718 | /// The index from the end of the operand array to the normal destination. |
3719 | static constexpr int NormalDestOpEndIdx = -3; |
3720 | |
3721 | /// The index from the end of the operand array to the unwind destination. |
3722 | static constexpr int UnwindDestOpEndIdx = -2; |
3723 | |
3724 | InvokeInst(const InvokeInst &BI); |
3725 | |
3726 | /// Construct an InvokeInst given a range of arguments. |
3727 | /// |
3728 | /// Construct an InvokeInst from a range of arguments |
3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3732 | const Twine &NameStr, Instruction *InsertBefore); |
3733 | |
3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
3738 | |
3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
3742 | |
3743 | /// Compute the number of operands to allocate. |
3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
3745 | // We need one operand for the called function, plus our extra operands and |
3746 | // the input operand counts provided. |
3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
3748 | } |
3749 | |
3750 | protected: |
3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3752 | friend class Instruction; |
3753 | |
3754 | InvokeInst *cloneImpl() const; |
3755 | |
3756 | public: |
3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3759 | const Twine &NameStr, |
3760 | Instruction *InsertBefore = nullptr) { |
3761 | int NumOperands = ComputeNumOperands(Args.size()); |
3762 | return new (NumOperands) |
3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
3764 | NameStr, InsertBefore); |
3765 | } |
3766 | |
3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3769 | ArrayRef<OperandBundleDef> Bundles = None, |
3770 | const Twine &NameStr = "", |
3771 | Instruction *InsertBefore = nullptr) { |
3772 | int NumOperands = |
3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3775 | |
3776 | return new (NumOperands, DescriptorBytes) |
3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
3778 | NameStr, InsertBefore); |
3779 | } |
3780 | |
3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3784 | int NumOperands = ComputeNumOperands(Args.size()); |
3785 | return new (NumOperands) |
3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
3787 | NameStr, InsertAtEnd); |
3788 | } |
3789 | |
3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3792 | ArrayRef<OperandBundleDef> Bundles, |
3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3794 | int NumOperands = |
3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3797 | |
3798 | return new (NumOperands, DescriptorBytes) |
3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
3800 | NameStr, InsertAtEnd); |
3801 | } |
3802 | |
3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3805 | const Twine &NameStr, |
3806 | Instruction *InsertBefore = nullptr) { |
3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3808 | IfException, Args, None, NameStr, InsertBefore); |
3809 | } |
3810 | |
3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3813 | ArrayRef<OperandBundleDef> Bundles = None, |
3814 | const Twine &NameStr = "", |
3815 | Instruction *InsertBefore = nullptr) { |
3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
3818 | } |
3819 | |
3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3824 | IfException, Args, NameStr, InsertAtEnd); |
3825 | } |
3826 | |
3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3829 | ArrayRef<OperandBundleDef> Bundles, |
3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
3833 | } |
3834 | |
3835 | /// Create a clone of \p II with a different set of operand bundles and |
3836 | /// insert it before \p InsertPt. |
3837 | /// |
3838 | /// The returned invoke instruction is identical to \p II in every way except |
3839 | /// that the operand bundles for the new instruction are set to the operand |
3840 | /// bundles in \p Bundles. |
3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
3842 | Instruction *InsertPt = nullptr); |
3843 | |
3844 | // get*Dest - Return the destination basic blocks... |
3845 | BasicBlock *getNormalDest() const { |
3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
3847 | } |
3848 | BasicBlock *getUnwindDest() const { |
3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
3850 | } |
3851 | void setNormalDest(BasicBlock *B) { |
3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
3853 | } |
3854 | void setUnwindDest(BasicBlock *B) { |
3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
3856 | } |
3857 | |
3858 | /// Get the landingpad instruction from the landing pad |
3859 | /// block (the unwind destination). |
3860 | LandingPadInst *getLandingPadInst() const; |
3861 | |
3862 | BasicBlock *getSuccessor(unsigned i) const { |
3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
3865 | } |
3866 | |
3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
3869 | if (i == 0) |
3870 | setNormalDest(NewSucc); |
3871 | else |
3872 | setUnwindDest(NewSucc); |
3873 | } |
3874 | |
3875 | unsigned getNumSuccessors() const { return 2; } |
3876 | |
3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3878 | static bool classof(const Instruction *I) { |
3879 | return (I->getOpcode() == Instruction::Invoke); |
3880 | } |
3881 | static bool classof(const Value *V) { |
3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3883 | } |
3884 | |
3885 | private: |
3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
3887 | // method so that subclasses cannot accidentally use it. |
3888 | template <typename Bitfield> |
3889 | void setSubclassData(typename Bitfield::Type Value) { |
3890 | Instruction::setSubclassData<Bitfield>(Value); |
3891 | } |
3892 | }; |
3893 | |
3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3897 | const Twine &NameStr, Instruction *InsertBefore) |
3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
3900 | InsertBefore) { |
3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
3902 | } |
3903 | |
3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
3910 | InsertAtEnd) { |
3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
3912 | } |
3913 | |
3914 | //===----------------------------------------------------------------------===// |
3915 | // CallBrInst Class |
3916 | //===----------------------------------------------------------------------===// |
3917 | |
3918 | /// CallBr instruction, tracking function calls that may not return control but |
3919 | /// instead transfer it to a third location. The SubclassData field is used to |
3920 | /// hold the calling convention of the call. |
3921 | /// |
3922 | class CallBrInst : public CallBase { |
3923 | |
3924 | unsigned NumIndirectDests; |
3925 | |
3926 | CallBrInst(const CallBrInst &BI); |
3927 | |
3928 | /// Construct a CallBrInst given a range of arguments. |
3929 | /// |
3930 | /// Construct a CallBrInst from a range of arguments |
3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
3932 | ArrayRef<BasicBlock *> IndirectDests, |
3933 | ArrayRef<Value *> Args, |
3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3935 | const Twine &NameStr, Instruction *InsertBefore); |
3936 | |
3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
3938 | ArrayRef<BasicBlock *> IndirectDests, |
3939 | ArrayRef<Value *> Args, |
3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
3942 | |
3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
3946 | |
3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
3949 | |
3950 | /// Compute the number of operands to allocate. |
3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
3952 | int NumBundleInputs = 0) { |
3953 | // We need one operand for the called function, plus our extra operands and |
3954 | // the input operand counts provided. |
3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
3956 | } |
3957 | |
3958 | protected: |
3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3960 | friend class Instruction; |
3961 | |
3962 | CallBrInst *cloneImpl() const; |
3963 | |
3964 | public: |
3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3966 | BasicBlock *DefaultDest, |
3967 | ArrayRef<BasicBlock *> IndirectDests, |
3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
3969 | Instruction *InsertBefore = nullptr) { |
3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
3971 | return new (NumOperands) |
3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
3973 | NumOperands, NameStr, InsertBefore); |
3974 | } |
3975 | |
3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3977 | BasicBlock *DefaultDest, |
3978 | ArrayRef<BasicBlock *> IndirectDests, |
3979 | ArrayRef<Value *> Args, |
3980 | ArrayRef<OperandBundleDef> Bundles = None, |
3981 | const Twine &NameStr = "", |
3982 | Instruction *InsertBefore = nullptr) { |
3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
3984 | CountBundleInputs(Bundles)); |
3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3986 | |
3987 | return new (NumOperands, DescriptorBytes) |
3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
3989 | NumOperands, NameStr, InsertBefore); |
3990 | } |
3991 | |
3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3993 | BasicBlock *DefaultDest, |
3994 | ArrayRef<BasicBlock *> IndirectDests, |
3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
3996 | BasicBlock *InsertAtEnd) { |
3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
3998 | return new (NumOperands) |
3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
4000 | NumOperands, NameStr, InsertAtEnd); |
4001 | } |
4002 | |
4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
4004 | BasicBlock *DefaultDest, |
4005 | ArrayRef<BasicBlock *> IndirectDests, |
4006 | ArrayRef<Value *> Args, |
4007 | ArrayRef<OperandBundleDef> Bundles, |
4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
4010 | CountBundleInputs(Bundles)); |
4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
4012 | |
4013 | return new (NumOperands, DescriptorBytes) |
4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
4015 | NumOperands, NameStr, InsertAtEnd); |
4016 | } |
4017 | |
4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4019 | ArrayRef<BasicBlock *> IndirectDests, |
4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
4021 | Instruction *InsertBefore = nullptr) { |
4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4023 | IndirectDests, Args, NameStr, InsertBefore); |
4024 | } |
4025 | |
4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4027 | ArrayRef<BasicBlock *> IndirectDests, |
4028 | ArrayRef<Value *> Args, |
4029 | ArrayRef<OperandBundleDef> Bundles = None, |
4030 | const Twine &NameStr = "", |
4031 | Instruction *InsertBefore = nullptr) { |
4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
4034 | } |
4035 | |
4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4037 | ArrayRef<BasicBlock *> IndirectDests, |
4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
4039 | BasicBlock *InsertAtEnd) { |
4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
4042 | } |
4043 | |
4044 | static CallBrInst *Create(FunctionCallee Func, |
4045 | BasicBlock *DefaultDest, |
4046 | ArrayRef<BasicBlock *> IndirectDests, |
4047 | ArrayRef<Value *> Args, |
4048 | ArrayRef<OperandBundleDef> Bundles, |
4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
4052 | } |
4053 | |
4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
4055 | /// insert it before \p InsertPt. |
4056 | /// |
4057 | /// The returned callbr instruction is identical to \p CBI in every way |
4058 | /// except that the operand bundles for the new instruction are set to the |
4059 | /// operand bundles in \p Bundles. |
4060 | static CallBrInst *Create(CallBrInst *CBI, |
4061 | ArrayRef<OperandBundleDef> Bundles, |
4062 | Instruction *InsertPt = nullptr); |
4063 | |
4064 | /// Return the number of callbr indirect dest labels. |
4065 | /// |
4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
4067 | |
4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
4069 | /// |
4070 | Value *getIndirectDestLabel(unsigned i) const { |
4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
4073 | 1); |
4074 | } |
4075 | |
4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
4079 | 1); |
4080 | } |
4081 | |
4082 | // Return the destination basic blocks... |
4083 | BasicBlock *getDefaultDest() const { |
4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
4085 | } |
4086 | BasicBlock *getIndirectDest(unsigned i) const { |
4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
4088 | } |
4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
4092 | IndirectDests.push_back(getIndirectDest(i)); |
4093 | return IndirectDests; |
4094 | } |
4095 | void setDefaultDest(BasicBlock *B) { |
4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
4097 | } |
4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
4099 | updateArgBlockAddresses(i, B); |
4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
4101 | } |
4102 | |
4103 | BasicBlock *getSuccessor(unsigned i) const { |
4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
4105 | "Successor # out of range for callbr!")((void)0); |
4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
4107 | } |
4108 | |
4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
4111 | "Successor # out of range for callbr!")((void)0); |
4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
4113 | } |
4114 | |
4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
4116 | |
4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4118 | static bool classof(const Instruction *I) { |
4119 | return (I->getOpcode() == Instruction::CallBr); |
4120 | } |
4121 | static bool classof(const Value *V) { |
4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4123 | } |
4124 | |
4125 | private: |
4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
4127 | // method so that subclasses cannot accidentally use it. |
4128 | template <typename Bitfield> |
4129 | void setSubclassData(typename Bitfield::Type Value) { |
4130 | Instruction::setSubclassData<Bitfield>(Value); |
4131 | } |
4132 | }; |
4133 | |
4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
4135 | ArrayRef<BasicBlock *> IndirectDests, |
4136 | ArrayRef<Value *> Args, |
4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
4138 | const Twine &NameStr, Instruction *InsertBefore) |
4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
4141 | InsertBefore) { |
4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
4143 | } |
4144 | |
4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
4146 | ArrayRef<BasicBlock *> IndirectDests, |
4147 | ArrayRef<Value *> Args, |
4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
4152 | InsertAtEnd) { |
4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
4154 | } |
4155 | |
4156 | //===----------------------------------------------------------------------===// |
4157 | // ResumeInst Class |
4158 | //===----------------------------------------------------------------------===// |
4159 | |
4160 | //===--------------------------------------------------------------------------- |
4161 | /// Resume the propagation of an exception. |
4162 | /// |
4163 | class ResumeInst : public Instruction { |
4164 | ResumeInst(const ResumeInst &RI); |
4165 | |
4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
4168 | |
4169 | protected: |
4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4171 | friend class Instruction; |
4172 | |
4173 | ResumeInst *cloneImpl() const; |
4174 | |
4175 | public: |
4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
4177 | return new(1) ResumeInst(Exn, InsertBefore); |
4178 | } |
4179 | |
4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
4182 | } |
4183 | |
4184 | /// Provide fast operand accessors |
4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4186 | |
4187 | /// Convenience accessor. |
4188 | Value *getValue() const { return Op<0>(); } |
4189 | |
4190 | unsigned getNumSuccessors() const { return 0; } |
4191 | |
4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4193 | static bool classof(const Instruction *I) { |
4194 | return I->getOpcode() == Instruction::Resume; |
4195 | } |
4196 | static bool classof(const Value *V) { |
4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4198 | } |
4199 | |
4200 | private: |
4201 | BasicBlock *getSuccessor(unsigned idx) const { |
4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
4203 | } |
4204 | |
4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
4207 | } |
4208 | }; |
4209 | |
4210 | template <> |
4211 | struct OperandTraits<ResumeInst> : |
4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
4213 | }; |
4214 | |
4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
4216 | |
4217 | //===----------------------------------------------------------------------===// |
4218 | // CatchSwitchInst Class |
4219 | //===----------------------------------------------------------------------===// |
4220 | class CatchSwitchInst : public Instruction { |
4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
4222 | |
4223 | /// The number of operands actually allocated. NumOperands is |
4224 | /// the number actually in use. |
4225 | unsigned ReservedSpace; |
4226 | |
4227 | // Operand[0] = Outer scope |
4228 | // Operand[1] = Unwind block destination |
4229 | // Operand[n] = BasicBlock to go to on match |
4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
4231 | |
4232 | /// Create a new switch instruction, specifying a |
4233 | /// default destination. The number of additional handlers can be specified |
4234 | /// here to make memory allocation more efficient. |
4235 | /// This constructor can also autoinsert before another instruction. |
4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
4237 | unsigned NumHandlers, const Twine &NameStr, |
4238 | Instruction *InsertBefore); |
4239 | |
4240 | /// Create a new switch instruction, specifying a |
4241 | /// default destination. The number of additional handlers can be specified |
4242 | /// here to make memory allocation more efficient. |
4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
4245 | unsigned NumHandlers, const Twine &NameStr, |
4246 | BasicBlock *InsertAtEnd); |
4247 | |
4248 | // allocate space for exactly zero operands |
4249 | void *operator new(size_t S) { return User::operator new(S); } |
4250 | |
4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
4252 | void growOperands(unsigned Size); |
4253 | |
4254 | protected: |
4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4256 | friend class Instruction; |
4257 | |
4258 | CatchSwitchInst *cloneImpl() const; |
4259 | |
4260 | public: |
4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
4262 | |
4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
4264 | unsigned NumHandlers, |
4265 | const Twine &NameStr = "", |
4266 | Instruction *InsertBefore = nullptr) { |
4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
4268 | InsertBefore); |
4269 | } |
4270 | |
4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
4272 | unsigned NumHandlers, const Twine &NameStr, |
4273 | BasicBlock *InsertAtEnd) { |
4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
4275 | InsertAtEnd); |
4276 | } |
4277 | |
4278 | /// Provide fast operand accessors |
4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4280 | |
4281 | // Accessor Methods for CatchSwitch stmt |
4282 | Value *getParentPad() const { return getOperand(0); } |
4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
4284 | |
4285 | // Accessor Methods for CatchSwitch stmt |
4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
4288 | BasicBlock *getUnwindDest() const { |
4289 | if (hasUnwindDest()) |
4290 | return cast<BasicBlock>(getOperand(1)); |
4291 | return nullptr; |
4292 | } |
4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
4294 | assert(UnwindDest)((void)0); |
4295 | assert(hasUnwindDest())((void)0); |
4296 | setOperand(1, UnwindDest); |
4297 | } |
4298 | |
4299 | /// return the number of 'handlers' in this catchswitch |
4300 | /// instruction, except the default handler |
4301 | unsigned getNumHandlers() const { |
4302 | if (hasUnwindDest()) |
4303 | return getNumOperands() - 2; |
4304 | return getNumOperands() - 1; |
4305 | } |
4306 | |
4307 | private: |
4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
4309 | static const BasicBlock *handler_helper(const Value *V) { |
4310 | return cast<BasicBlock>(V); |
4311 | } |
4312 | |
4313 | public: |
4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
4316 | using handler_range = iterator_range<handler_iterator>; |
4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
4318 | using const_handler_iterator = |
4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
4321 | |
4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
4323 | handler_iterator handler_begin() { |
4324 | op_iterator It = op_begin() + 1; |
4325 | if (hasUnwindDest()) |
4326 | ++It; |
4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
4328 | } |
4329 | |
4330 | /// Returns an iterator that points to the first handler in the |
4331 | /// CatchSwitchInst. |
4332 | const_handler_iterator handler_begin() const { |
4333 | const_op_iterator It = op_begin() + 1; |
4334 | if (hasUnwindDest()) |
4335 | ++It; |
4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
4337 | } |
4338 | |
4339 | /// Returns a read-only iterator that points one past the last |
4340 | /// handler in the CatchSwitchInst. |
4341 | handler_iterator handler_end() { |
4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
4343 | } |
4344 | |
4345 | /// Returns an iterator that points one past the last handler in the |
4346 | /// CatchSwitchInst. |
4347 | const_handler_iterator handler_end() const { |
4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
4349 | } |
4350 | |
4351 | /// iteration adapter for range-for loops. |
4352 | handler_range handlers() { |
4353 | return make_range(handler_begin(), handler_end()); |
4354 | } |
4355 | |
4356 | /// iteration adapter for range-for loops. |
4357 | const_handler_range handlers() const { |
4358 | return make_range(handler_begin(), handler_end()); |
4359 | } |
4360 | |
4361 | /// Add an entry to the switch instruction... |
4362 | /// Note: |
4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
4364 | /// point to the added handler. |
4365 | void addHandler(BasicBlock *Dest); |
4366 | |
4367 | void removeHandler(handler_iterator HI); |
4368 | |
4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
4371 | assert(Idx < getNumSuccessors() &&((void)0) |
4372 | "Successor # out of range for catchswitch!")((void)0); |
4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
4374 | } |
4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
4376 | assert(Idx < getNumSuccessors() &&((void)0) |
4377 | "Successor # out of range for catchswitch!")((void)0); |
4378 | setOperand(Idx + 1, NewSucc); |
4379 | } |
4380 | |
4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4382 | static bool classof(const Instruction *I) { |
4383 | return I->getOpcode() == Instruction::CatchSwitch; |
4384 | } |
4385 | static bool classof(const Value *V) { |
4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4387 | } |
4388 | }; |
4389 | |
4390 | template <> |
4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
4392 | |
4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
4394 | |
4395 | //===----------------------------------------------------------------------===// |
4396 | // CleanupPadInst Class |
4397 | //===----------------------------------------------------------------------===// |
4398 | class CleanupPadInst : public FuncletPadInst { |
4399 | private: |
4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
4401 | unsigned Values, const Twine &NameStr, |
4402 | Instruction *InsertBefore) |
4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
4404 | NameStr, InsertBefore) {} |
4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
4406 | unsigned Values, const Twine &NameStr, |
4407 | BasicBlock *InsertAtEnd) |
4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
4409 | NameStr, InsertAtEnd) {} |
4410 | |
4411 | public: |
4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
4413 | const Twine &NameStr = "", |
4414 | Instruction *InsertBefore = nullptr) { |
4415 | unsigned Values = 1 + Args.size(); |
4416 | return new (Values) |
4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
4418 | } |
4419 | |
4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4422 | unsigned Values = 1 + Args.size(); |
4423 | return new (Values) |
4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
4425 | } |
4426 | |
4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4428 | static bool classof(const Instruction *I) { |
4429 | return I->getOpcode() == Instruction::CleanupPad; |
4430 | } |
4431 | static bool classof(const Value *V) { |
4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4433 | } |
4434 | }; |
4435 | |
4436 | //===----------------------------------------------------------------------===// |
4437 | // CatchPadInst Class |
4438 | //===----------------------------------------------------------------------===// |
4439 | class CatchPadInst : public FuncletPadInst { |
4440 | private: |
4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
4442 | unsigned Values, const Twine &NameStr, |
4443 | Instruction *InsertBefore) |
4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
4445 | NameStr, InsertBefore) {} |
4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
4447 | unsigned Values, const Twine &NameStr, |
4448 | BasicBlock *InsertAtEnd) |
4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
4450 | NameStr, InsertAtEnd) {} |
4451 | |
4452 | public: |
4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
4454 | const Twine &NameStr = "", |
4455 | Instruction *InsertBefore = nullptr) { |
4456 | unsigned Values = 1 + Args.size(); |
4457 | return new (Values) |
4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
4459 | } |
4460 | |
4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4463 | unsigned Values = 1 + Args.size(); |
4464 | return new (Values) |
4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
4466 | } |
4467 | |
4468 | /// Convenience accessors |
4469 | CatchSwitchInst *getCatchSwitch() const { |
4470 | return cast<CatchSwitchInst>(Op<-1>()); |
4471 | } |
4472 | void setCatchSwitch(Value *CatchSwitch) { |
4473 | assert(CatchSwitch)((void)0); |
4474 | Op<-1>() = CatchSwitch; |
4475 | } |
4476 | |
4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4478 | static bool classof(const Instruction *I) { |
4479 | return I->getOpcode() == Instruction::CatchPad; |
4480 | } |
4481 | static bool classof(const Value *V) { |
4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4483 | } |
4484 | }; |
4485 | |
4486 | //===----------------------------------------------------------------------===// |
4487 | // CatchReturnInst Class |
4488 | //===----------------------------------------------------------------------===// |
4489 | |
4490 | class CatchReturnInst : public Instruction { |
4491 | CatchReturnInst(const CatchReturnInst &RI); |
4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
4494 | |
4495 | void init(Value *CatchPad, BasicBlock *BB); |
4496 | |
4497 | protected: |
4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4499 | friend class Instruction; |
4500 | |
4501 | CatchReturnInst *cloneImpl() const; |
4502 | |
4503 | public: |
4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
4505 | Instruction *InsertBefore = nullptr) { |
4506 | assert(CatchPad)((void)0); |
4507 | assert(BB)((void)0); |
4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
4509 | } |
4510 | |
4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
4512 | BasicBlock *InsertAtEnd) { |
4513 | assert(CatchPad)((void)0); |
4514 | assert(BB)((void)0); |
4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
4516 | } |
4517 | |
4518 | /// Provide fast operand accessors |
4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4520 | |
4521 | /// Convenience accessors. |
4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
4523 | void setCatchPad(CatchPadInst *CatchPad) { |
4524 | assert(CatchPad)((void)0); |
4525 | Op<0>() = CatchPad; |
4526 | } |
4527 | |
4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
4529 | void setSuccessor(BasicBlock *NewSucc) { |
4530 | assert(NewSucc)((void)0); |
4531 | Op<1>() = NewSucc; |
4532 | } |
4533 | unsigned getNumSuccessors() const { return 1; } |
4534 | |
4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
4536 | /// The successor block is implicitly a member of this funclet. |
4537 | Value *getCatchSwitchParentPad() const { |
4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
4539 | } |
4540 | |
4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4542 | static bool classof(const Instruction *I) { |
4543 | return (I->getOpcode() == Instruction::CatchRet); |
4544 | } |
4545 | static bool classof(const Value *V) { |
4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4547 | } |
4548 | |
4549 | private: |
4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
4552 | return getSuccessor(); |
4553 | } |
4554 | |
4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
4557 | setSuccessor(B); |
4558 | } |
4559 | }; |
4560 | |
4561 | template <> |
4562 | struct OperandTraits<CatchReturnInst> |
4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
4564 | |
4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
4566 | |
4567 | //===----------------------------------------------------------------------===// |
4568 | // CleanupReturnInst Class |
4569 | //===----------------------------------------------------------------------===// |
4570 | |
4571 | class CleanupReturnInst : public Instruction { |
4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
4573 | |
4574 | private: |
4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
4577 | Instruction *InsertBefore = nullptr); |
4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
4579 | BasicBlock *InsertAtEnd); |
4580 | |
4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
4582 | |
4583 | protected: |
4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4585 | friend class Instruction; |
4586 | |
4587 | CleanupReturnInst *cloneImpl() const; |
4588 | |
4589 | public: |
4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
4591 | BasicBlock *UnwindBB = nullptr, |
4592 | Instruction *InsertBefore = nullptr) { |
4593 | assert(CleanupPad)((void)0); |
4594 | unsigned Values = 1; |
4595 | if (UnwindBB) |
4596 | ++Values; |
4597 | return new (Values) |
4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
4599 | } |
4600 | |
4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
4602 | BasicBlock *InsertAtEnd) { |
4603 | assert(CleanupPad)((void)0); |
4604 | unsigned Values = 1; |
4605 | if (UnwindBB) |
4606 | ++Values; |
4607 | return new (Values) |
4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
4609 | } |
4610 | |
4611 | /// Provide fast operand accessors |
4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4613 | |
4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
4616 | |
4617 | /// Convenience accessor. |
4618 | CleanupPadInst *getCleanupPad() const { |
4619 | return cast<CleanupPadInst>(Op<0>()); |
4620 | } |
4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
4622 | assert(CleanupPad)((void)0); |
4623 | Op<0>() = CleanupPad; |
4624 | } |
4625 | |
4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
4627 | |
4628 | BasicBlock *getUnwindDest() const { |
4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
4630 | } |
4631 | void setUnwindDest(BasicBlock *NewDest) { |
4632 | assert(NewDest)((void)0); |
4633 | assert(hasUnwindDest())((void)0); |
4634 | Op<1>() = NewDest; |
4635 | } |
4636 | |
4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4638 | static bool classof(const Instruction *I) { |
4639 | return (I->getOpcode() == Instruction::CleanupRet); |
4640 | } |
4641 | static bool classof(const Value *V) { |
4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4643 | } |
4644 | |
4645 | private: |
4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
4647 | assert(Idx == 0)((void)0); |
4648 | return getUnwindDest(); |
4649 | } |
4650 | |
4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
4652 | assert(Idx == 0)((void)0); |
4653 | setUnwindDest(B); |
4654 | } |
4655 | |
4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
4657 | // method so that subclasses cannot accidentally use it. |
4658 | template <typename Bitfield> |
4659 | void setSubclassData(typename Bitfield::Type Value) { |
4660 | Instruction::setSubclassData<Bitfield>(Value); |
4661 | } |
4662 | }; |
4663 | |
4664 | template <> |
4665 | struct OperandTraits<CleanupReturnInst> |
4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
4667 | |
4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
4669 | |
4670 | //===----------------------------------------------------------------------===// |
4671 | // UnreachableInst Class |
4672 | //===----------------------------------------------------------------------===// |
4673 | |
4674 | //===--------------------------------------------------------------------------- |
4675 | /// This function has undefined behavior. In particular, the |
4676 | /// presence of this instruction indicates some higher level knowledge that the |
4677 | /// end of the block cannot be reached. |
4678 | /// |
4679 | class UnreachableInst : public Instruction { |
4680 | protected: |
4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4682 | friend class Instruction; |
4683 | |
4684 | UnreachableInst *cloneImpl() const; |
4685 | |
4686 | public: |
4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
4689 | |
4690 | // allocate space for exactly zero operands |
4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
4693 | |
4694 | unsigned getNumSuccessors() const { return 0; } |
4695 | |
4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4697 | static bool classof(const Instruction *I) { |
4698 | return I->getOpcode() == Instruction::Unreachable; |
4699 | } |
4700 | static bool classof(const Value *V) { |
4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4702 | } |
4703 | |
4704 | private: |
4705 | BasicBlock *getSuccessor(unsigned idx) const { |
4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
4707 | } |
4708 | |
4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
4711 | } |
4712 | }; |
4713 | |
4714 | //===----------------------------------------------------------------------===// |
4715 | // TruncInst Class |
4716 | //===----------------------------------------------------------------------===// |
4717 | |
4718 | /// This class represents a truncation of integer types. |
4719 | class TruncInst : public CastInst { |
4720 | protected: |
4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4722 | friend class Instruction; |
4723 | |
4724 | /// Clone an identical TruncInst |
4725 | TruncInst *cloneImpl() const; |
4726 | |
4727 | public: |
4728 | /// Constructor with insert-before-instruction semantics |
4729 | TruncInst( |
4730 | Value *S, ///< The value to be truncated |
4731 | Type *Ty, ///< The (smaller) type to truncate to |
4732 | const Twine &NameStr = "", ///< A name for the new instruction |
4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4734 | ); |
4735 | |
4736 | /// Constructor with insert-at-end-of-block semantics |
4737 | TruncInst( |
4738 | Value *S, ///< The value to be truncated |
4739 | Type *Ty, ///< The (smaller) type to truncate to |
4740 | const Twine &NameStr, ///< A name for the new instruction |
4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4742 | ); |
4743 | |
4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4745 | static bool classof(const Instruction *I) { |
4746 | return I->getOpcode() == Trunc; |
4747 | } |
4748 | static bool classof(const Value *V) { |
4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4750 | } |
4751 | }; |
4752 | |
4753 | //===----------------------------------------------------------------------===// |
4754 | // ZExtInst Class |
4755 | //===----------------------------------------------------------------------===// |
4756 | |
4757 | /// This class represents zero extension of integer types. |
4758 | class ZExtInst : public CastInst { |
4759 | protected: |
4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4761 | friend class Instruction; |
4762 | |
4763 | /// Clone an identical ZExtInst |
4764 | ZExtInst *cloneImpl() const; |
4765 | |
4766 | public: |
4767 | /// Constructor with insert-before-instruction semantics |
4768 | ZExtInst( |
4769 | Value *S, ///< The value to be zero extended |
4770 | Type *Ty, ///< The type to zero extend to |
4771 | const Twine &NameStr = "", ///< A name for the new instruction |
4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4773 | ); |
4774 | |
4775 | /// Constructor with insert-at-end semantics. |
4776 | ZExtInst( |
4777 | Value *S, ///< The value to be zero extended |
4778 | Type *Ty, ///< The type to zero extend to |
4779 | const Twine &NameStr, ///< A name for the new instruction |
4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4781 | ); |
4782 | |
4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4784 | static bool classof(const Instruction *I) { |
4785 | return I->getOpcode() == ZExt; |
4786 | } |
4787 | static bool classof(const Value *V) { |
4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4789 | } |
4790 | }; |
4791 | |
4792 | //===----------------------------------------------------------------------===// |
4793 | // SExtInst Class |
4794 | //===----------------------------------------------------------------------===// |
4795 | |
4796 | /// This class represents a sign extension of integer types. |
4797 | class SExtInst : public CastInst { |
4798 | protected: |
4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4800 | friend class Instruction; |
4801 | |
4802 | /// Clone an identical SExtInst |
4803 | SExtInst *cloneImpl() const; |
4804 | |
4805 | public: |
4806 | /// Constructor with insert-before-instruction semantics |
4807 | SExtInst( |
4808 | Value *S, ///< The value to be sign extended |
4809 | Type *Ty, ///< The type to sign extend to |
4810 | const Twine &NameStr = "", ///< A name for the new instruction |
4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4812 | ); |
4813 | |
4814 | /// Constructor with insert-at-end-of-block semantics |
4815 | SExtInst( |
4816 | Value *S, ///< The value to be sign extended |
4817 | Type *Ty, ///< The type to sign extend to |
4818 | const Twine &NameStr, ///< A name for the new instruction |
4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4820 | ); |
4821 | |
4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4823 | static bool classof(const Instruction *I) { |
4824 | return I->getOpcode() == SExt; |
4825 | } |
4826 | static bool classof(const Value *V) { |
4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4828 | } |
4829 | }; |
4830 | |
4831 | //===----------------------------------------------------------------------===// |
4832 | // FPTruncInst Class |
4833 | //===----------------------------------------------------------------------===// |
4834 | |
4835 | /// This class represents a truncation of floating point types. |
4836 | class FPTruncInst : public CastInst { |
4837 | protected: |
4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4839 | friend class Instruction; |
4840 | |
4841 | /// Clone an identical FPTruncInst |
4842 | FPTruncInst *cloneImpl() const; |
4843 | |
4844 | public: |
4845 | /// Constructor with insert-before-instruction semantics |
4846 | FPTruncInst( |
4847 | Value *S, ///< The value to be truncated |
4848 | Type *Ty, ///< The type to truncate to |
4849 | const Twine &NameStr = "", ///< A name for the new instruction |
4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4851 | ); |
4852 | |
4853 | /// Constructor with insert-before-instruction semantics |
4854 | FPTruncInst( |
4855 | Value *S, ///< The value to be truncated |
4856 | Type *Ty, ///< The type to truncate to |
4857 | const Twine &NameStr, ///< A name for the new instruction |
4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4859 | ); |
4860 | |
4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4862 | static bool classof(const Instruction *I) { |
4863 | return I->getOpcode() == FPTrunc; |
4864 | } |
4865 | static bool classof(const Value *V) { |
4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4867 | } |
4868 | }; |
4869 | |
4870 | //===----------------------------------------------------------------------===// |
4871 | // FPExtInst Class |
4872 | //===----------------------------------------------------------------------===// |
4873 | |
4874 | /// This class represents an extension of floating point types. |
4875 | class FPExtInst : public CastInst { |
4876 | protected: |
4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4878 | friend class Instruction; |
4879 | |
4880 | /// Clone an identical FPExtInst |
4881 | FPExtInst *cloneImpl() const; |
4882 | |
4883 | public: |
4884 | /// Constructor with insert-before-instruction semantics |
4885 | FPExtInst( |
4886 | Value *S, ///< The value to be extended |
4887 | Type *Ty, ///< The type to extend to |
4888 | const Twine &NameStr = "", ///< A name for the new instruction |
4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4890 | ); |
4891 | |
4892 | /// Constructor with insert-at-end-of-block semantics |
4893 | FPExtInst( |
4894 | Value *S, ///< The value to be extended |
4895 | Type *Ty, ///< The type to extend to |
4896 | const Twine &NameStr, ///< A name for the new instruction |
4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4898 | ); |
4899 | |
4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4901 | static bool classof(const Instruction *I) { |
4902 | return I->getOpcode() == FPExt; |
4903 | } |
4904 | static bool classof(const Value *V) { |
4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4906 | } |
4907 | }; |
4908 | |
4909 | //===----------------------------------------------------------------------===// |
4910 | // UIToFPInst Class |
4911 | //===----------------------------------------------------------------------===// |
4912 | |
4913 | /// This class represents a cast unsigned integer to floating point. |
4914 | class UIToFPInst : public CastInst { |
4915 | protected: |
4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4917 | friend class Instruction; |
4918 | |
4919 | /// Clone an identical UIToFPInst |
4920 | UIToFPInst *cloneImpl() const; |
4921 | |
4922 | public: |
4923 | /// Constructor with insert-before-instruction semantics |
4924 | UIToFPInst( |
4925 | Value *S, ///< The value to be converted |
4926 | Type *Ty, ///< The type to convert to |
4927 | const Twine &NameStr = "", ///< A name for the new instruction |
4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4929 | ); |
4930 | |
4931 | /// Constructor with insert-at-end-of-block semantics |
4932 | UIToFPInst( |
4933 | Value *S, ///< The value to be converted |
4934 | Type *Ty, ///< The type to convert to |
4935 | const Twine &NameStr, ///< A name for the new instruction |
4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4937 | ); |
4938 | |
4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4940 | static bool classof(const Instruction *I) { |
4941 | return I->getOpcode() == UIToFP; |
4942 | } |
4943 | static bool classof(const Value *V) { |
4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4945 | } |
4946 | }; |
4947 | |
4948 | //===----------------------------------------------------------------------===// |
4949 | // SIToFPInst Class |
4950 | //===----------------------------------------------------------------------===// |
4951 | |
4952 | /// This class represents a cast from signed integer to floating point. |
4953 | class SIToFPInst : public CastInst { |
4954 | protected: |
4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4956 | friend class Instruction; |
4957 | |
4958 | /// Clone an identical SIToFPInst |
4959 | SIToFPInst *cloneImpl() const; |
4960 | |
4961 | public: |
4962 | /// Constructor with insert-before-instruction semantics |
4963 | SIToFPInst( |
4964 | Value *S, ///< The value to be converted |
4965 | Type *Ty, ///< The type to convert to |
4966 | const Twine &NameStr = "", ///< A name for the new instruction |
4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
4968 | ); |
4969 | |
4970 | /// Constructor with insert-at-end-of-block semantics |
4971 | SIToFPInst( |
4972 | Value *S, ///< The value to be converted |
4973 | Type *Ty, ///< The type to convert to |
4974 | const Twine &NameStr, ///< A name for the new instruction |
4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
4976 | ); |
4977 | |
4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4979 | static bool classof(const Instruction *I) { |
4980 | return I->getOpcode() == SIToFP; |
4981 | } |
4982 | static bool classof(const Value *V) { |
4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4984 | } |
4985 | }; |
4986 | |
4987 | //===----------------------------------------------------------------------===// |
4988 | // FPToUIInst Class |
4989 | //===----------------------------------------------------------------------===// |
4990 | |
4991 | /// This class represents a cast from floating point to unsigned integer |
4992 | class FPToUIInst : public CastInst { |
4993 | protected: |
4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4995 | friend class Instruction; |
4996 | |
4997 | /// Clone an identical FPToUIInst |
4998 | FPToUIInst *cloneImpl() const; |
4999 | |
5000 | public: |
5001 | /// Constructor with insert-before-instruction semantics |
5002 | FPToUIInst( |
5003 | Value *S, ///< The value to be converted |
5004 | Type *Ty, ///< The type to convert to |
5005 | const Twine &NameStr = "", ///< A name for the new instruction |
5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5007 | ); |
5008 | |
5009 | /// Constructor with insert-at-end-of-block semantics |
5010 | FPToUIInst( |
5011 | Value *S, ///< The value to be converted |
5012 | Type *Ty, ///< The type to convert to |
5013 | const Twine &NameStr, ///< A name for the new instruction |
5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
5015 | ); |
5016 | |
5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
5018 | static bool classof(const Instruction *I) { |
5019 | return I->getOpcode() == FPToUI; |
5020 | } |
5021 | static bool classof(const Value *V) { |
5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5023 | } |
5024 | }; |
5025 | |
5026 | //===----------------------------------------------------------------------===// |
5027 | // FPToSIInst Class |
5028 | //===----------------------------------------------------------------------===// |
5029 | |
5030 | /// This class represents a cast from floating point to signed integer. |
5031 | class FPToSIInst : public CastInst { |
5032 | protected: |
5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5034 | friend class Instruction; |
5035 | |
5036 | /// Clone an identical FPToSIInst |
5037 | FPToSIInst *cloneImpl() const; |
5038 | |
5039 | public: |
5040 | /// Constructor with insert-before-instruction semantics |
5041 | FPToSIInst( |
5042 | Value *S, ///< The value to be converted |
5043 | Type *Ty, ///< The type to convert to |
5044 | const Twine &NameStr = "", ///< A name for the new instruction |
5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5046 | ); |
5047 | |
5048 | /// Constructor with insert-at-end-of-block semantics |
5049 | FPToSIInst( |
5050 | Value *S, ///< The value to be converted |
5051 | Type *Ty, ///< The type to convert to |
5052 | const Twine &NameStr, ///< A name for the new instruction |
5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
5054 | ); |
5055 | |
5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
5057 | static bool classof(const Instruction *I) { |
5058 | return I->getOpcode() == FPToSI; |
5059 | } |
5060 | static bool classof(const Value *V) { |
5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5062 | } |
5063 | }; |
5064 | |
5065 | //===----------------------------------------------------------------------===// |
5066 | // IntToPtrInst Class |
5067 | //===----------------------------------------------------------------------===// |
5068 | |
5069 | /// This class represents a cast from an integer to a pointer. |
5070 | class IntToPtrInst : public CastInst { |
5071 | public: |
5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5073 | friend class Instruction; |
5074 | |
5075 | /// Constructor with insert-before-instruction semantics |
5076 | IntToPtrInst( |
5077 | Value *S, ///< The value to be converted |
5078 | Type *Ty, ///< The type to convert to |
5079 | const Twine &NameStr = "", ///< A name for the new instruction |
5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5081 | ); |
5082 | |
5083 | /// Constructor with insert-at-end-of-block semantics |
5084 | IntToPtrInst( |
5085 | Value *S, ///< The value to be converted |
5086 | Type *Ty, ///< The type to convert to |
5087 | const Twine &NameStr, ///< A name for the new instruction |
5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
5089 | ); |
5090 | |
5091 | /// Clone an identical IntToPtrInst. |
5092 | IntToPtrInst *cloneImpl() const; |
5093 | |
5094 | /// Returns the address space of this instruction's pointer type. |
5095 | unsigned getAddressSpace() const { |
5096 | return getType()->getPointerAddressSpace(); |
5097 | } |
5098 | |
5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
5100 | static bool classof(const Instruction *I) { |
5101 | return I->getOpcode() == IntToPtr; |
5102 | } |
5103 | static bool classof(const Value *V) { |
5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5105 | } |
5106 | }; |
5107 | |
5108 | //===----------------------------------------------------------------------===// |
5109 | // PtrToIntInst Class |
5110 | //===----------------------------------------------------------------------===// |
5111 | |
5112 | /// This class represents a cast from a pointer to an integer. |
5113 | class PtrToIntInst : public CastInst { |
5114 | protected: |
5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5116 | friend class Instruction; |
5117 | |
5118 | /// Clone an identical PtrToIntInst. |
5119 | PtrToIntInst *cloneImpl() const; |
5120 | |
5121 | public: |
5122 | /// Constructor with insert-before-instruction semantics |
5123 | PtrToIntInst( |
5124 | Value *S, ///< The value to be converted |
5125 | Type *Ty, ///< The type to convert to |
5126 | const Twine &NameStr = "", ///< A name for the new instruction |
5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5128 | ); |
5129 | |
5130 | /// Constructor with insert-at-end-of-block semantics |
5131 | PtrToIntInst( |
5132 | Value *S, ///< The value to be converted |
5133 | Type *Ty, ///< The type to convert to |
5134 | const Twine &NameStr, ///< A name for the new instruction |
5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
5136 | ); |
5137 | |
5138 | /// Gets the pointer operand. |
5139 | Value *getPointerOperand() { return getOperand(0); } |
5140 | /// Gets the pointer operand. |
5141 | const Value *getPointerOperand() const { return getOperand(0); } |
5142 | /// Gets the operand index of the pointer operand. |
5143 | static unsigned getPointerOperandIndex() { return 0U; } |
5144 | |
5145 | /// Returns the address space of the pointer operand. |
5146 | unsigned getPointerAddressSpace() const { |
5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
5148 | } |
5149 | |
5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
5151 | static bool classof(const Instruction *I) { |
5152 | return I->getOpcode() == PtrToInt; |
5153 | } |
5154 | static bool classof(const Value *V) { |
5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5156 | } |
5157 | }; |
5158 | |
5159 | //===----------------------------------------------------------------------===// |
5160 | // BitCastInst Class |
5161 | //===----------------------------------------------------------------------===// |
5162 | |
5163 | /// This class represents a no-op cast from one type to another. |
5164 | class BitCastInst : public CastInst { |
5165 | protected: |
5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5167 | friend class Instruction; |
5168 | |
5169 | /// Clone an identical BitCastInst. |
5170 | BitCastInst *cloneImpl() const; |
5171 | |
5172 | public: |
5173 | /// Constructor with insert-before-instruction semantics |
5174 | BitCastInst( |
5175 | Value *S, ///< The value to be casted |
5176 | Type *Ty, ///< The type to casted to |
5177 | const Twine &NameStr = "", ///< A name for the new instruction |
5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5179 | ); |
5180 | |
5181 | /// Constructor with insert-at-end-of-block semantics |
5182 | BitCastInst( |
5183 | Value *S, ///< The value to be casted |
5184 | Type *Ty, ///< The type to casted to |
5185 | const Twine &NameStr, ///< A name for the new instruction |
5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
5187 | ); |
5188 | |
5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
5190 | static bool classof(const Instruction *I) { |
5191 | return I->getOpcode() == BitCast; |
5192 | } |
5193 | static bool classof(const Value *V) { |
5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5195 | } |
5196 | }; |
5197 | |
5198 | //===----------------------------------------------------------------------===// |
5199 | // AddrSpaceCastInst Class |
5200 | //===----------------------------------------------------------------------===// |
5201 | |
5202 | /// This class represents a conversion between pointers from one address space |
5203 | /// to another. |
5204 | class AddrSpaceCastInst : public CastInst { |
5205 | protected: |
5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5207 | friend class Instruction; |
5208 | |
5209 | /// Clone an identical AddrSpaceCastInst. |
5210 | AddrSpaceCastInst *cloneImpl() const; |
5211 | |
5212 | public: |
5213 | /// Constructor with insert-before-instruction semantics |
5214 | AddrSpaceCastInst( |
5215 | Value *S, ///< The value to be casted |
5216 | Type *Ty, ///< The type to casted to |
5217 | const Twine &NameStr = "", ///< A name for the new instruction |
5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
5219 | ); |
5220 | |
5221 | /// Constructor with insert-at-end-of-block semantics |
5222 | AddrSpaceCastInst( |
5223 | Value *S, ///< The value to be casted |
5224 | Type *Ty, ///< The type to casted to |
5225 | const Twine &NameStr, ///< A name for the new instruction |
5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
5227 | ); |
5228 | |
5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
5230 | static bool classof(const Instruction *I) { |
5231 | return I->getOpcode() == AddrSpaceCast; |
5232 | } |
5233 | static bool classof(const Value *V) { |
5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5235 | } |
5236 | |
5237 | /// Gets the pointer operand. |
5238 | Value *getPointerOperand() { |
5239 | return getOperand(0); |
5240 | } |
5241 | |
5242 | /// Gets the pointer operand. |
5243 | const Value *getPointerOperand() const { |
5244 | return getOperand(0); |
5245 | } |
5246 | |
5247 | /// Gets the operand index of the pointer operand. |
5248 | static unsigned getPointerOperandIndex() { |
5249 | return 0U; |
5250 | } |
5251 | |
5252 | /// Returns the address space of the pointer operand. |
5253 | unsigned getSrcAddressSpace() const { |
5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
5255 | } |
5256 | |
5257 | /// Returns the address space of the result. |
5258 | unsigned getDestAddressSpace() const { |
5259 | return getType()->getPointerAddressSpace(); |
5260 | } |
5261 | }; |
5262 | |
5263 | /// A helper function that returns the pointer operand of a load or store |
5264 | /// instruction. Returns nullptr if not load or store. |
5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
5267 | return Load->getPointerOperand(); |
5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
5269 | return Store->getPointerOperand(); |
5270 | return nullptr; |
5271 | } |
5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
5273 | return const_cast<Value *>( |
5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
5275 | } |
5276 | |
5277 | /// A helper function that returns the pointer operand of a load, store |
5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
5279 | inline const Value *getPointerOperand(const Value *V) { |
5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
5281 | return Ptr; |
5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
5283 | return Gep->getPointerOperand(); |
5284 | return nullptr; |
5285 | } |
5286 | inline Value *getPointerOperand(Value *V) { |
5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
5288 | } |
5289 | |
5290 | /// A helper function that returns the alignment of load or store instruction. |
5291 | inline Align getLoadStoreAlignment(Value *I) { |
5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
5293 | "Expected Load or Store instruction")((void)0); |
5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
5295 | return LI->getAlign(); |
5296 | return cast<StoreInst>(I)->getAlign(); |
5297 | } |
5298 | |
5299 | /// A helper function that returns the address space of the pointer operand of |
5300 | /// load or store instruction. |
5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
5303 | "Expected Load or Store instruction")((void)0); |
5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
5305 | return LI->getPointerAddressSpace(); |
5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
5307 | } |
5308 | |
5309 | /// A helper function that returns the type of a load or store instruction. |
5310 | inline Type *getLoadStoreType(Value *I) { |
5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
5312 | "Expected Load or Store instruction")((void)0); |
5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
5314 | return LI->getType(); |
5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
5316 | } |
5317 | |
5318 | //===----------------------------------------------------------------------===// |
5319 | // FreezeInst Class |
5320 | //===----------------------------------------------------------------------===// |
5321 | |
5322 | /// This class represents a freeze function that returns random concrete |
5323 | /// value if an operand is either a poison value or an undef value |
5324 | class FreezeInst : public UnaryInstruction { |
5325 | protected: |
5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
5327 | friend class Instruction; |
5328 | |
5329 | /// Clone an identical FreezeInst |
5330 | FreezeInst *cloneImpl() const; |
5331 | |
5332 | public: |
5333 | explicit FreezeInst(Value *S, |
5334 | const Twine &NameStr = "", |
5335 | Instruction *InsertBefore = nullptr); |
5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
5337 | |
5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
5339 | static inline bool classof(const Instruction *I) { |
5340 | return I->getOpcode() == Freeze; |
5341 | } |
5342 | static inline bool classof(const Value *V) { |
5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
5344 | } |
5345 | }; |
5346 | |
5347 | } // end namespace llvm |
5348 | |
5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
1 | //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the declaration of the Instruction class, which is the |
10 | // base class for all of the LLVM instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_IR_INSTRUCTION_H |
15 | #define LLVM_IR_INSTRUCTION_H |
16 | |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/Bitfields.h" |
19 | #include "llvm/ADT/None.h" |
20 | #include "llvm/ADT/StringRef.h" |
21 | #include "llvm/ADT/ilist_node.h" |
22 | #include "llvm/IR/DebugLoc.h" |
23 | #include "llvm/IR/SymbolTableListTraits.h" |
24 | #include "llvm/IR/User.h" |
25 | #include "llvm/IR/Value.h" |
26 | #include "llvm/Support/AtomicOrdering.h" |
27 | #include "llvm/Support/Casting.h" |
28 | #include <algorithm> |
29 | #include <cassert> |
30 | #include <cstdint> |
31 | #include <utility> |
32 | |
33 | namespace llvm { |
34 | |
35 | class BasicBlock; |
36 | class FastMathFlags; |
37 | class MDNode; |
38 | class Module; |
39 | struct AAMDNodes; |
40 | |
41 | template <> struct ilist_alloc_traits<Instruction> { |
42 | static inline void deleteNode(Instruction *V); |
43 | }; |
44 | |
45 | class Instruction : public User, |
46 | public ilist_node_with_parent<Instruction, BasicBlock> { |
47 | BasicBlock *Parent; |
48 | DebugLoc DbgLoc; // 'dbg' Metadata cache. |
49 | |
50 | /// Relative order of this instruction in its parent basic block. Used for |
51 | /// O(1) local dominance checks between instructions. |
52 | mutable unsigned Order = 0; |
53 | |
54 | protected: |
55 | // The 15 first bits of `Value::SubclassData` are available for subclasses of |
56 | // `Instruction` to use. |
57 | using OpaqueField = Bitfield::Element<uint16_t, 0, 15>; |
58 | |
59 | // Template alias so that all Instruction storing alignment use the same |
60 | // definiton. |
61 | // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent = |
62 | // 2^29. We store them as Log2(Alignment), so we need 5 bits to encode the 30 |
63 | // possible values. |
64 | template <unsigned Offset> |
65 | using AlignmentBitfieldElementT = |
66 | typename Bitfield::Element<unsigned, Offset, 5, |
67 | Value::MaxAlignmentExponent>; |
68 | |
69 | template <unsigned Offset> |
70 | using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>; |
71 | |
72 | template <unsigned Offset> |
73 | using AtomicOrderingBitfieldElementT = |
74 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
75 | AtomicOrdering::LAST>; |
76 | |
77 | private: |
78 | // The last bit is used to store whether the instruction has metadata attached |
79 | // or not. |
80 | using HasMetadataField = Bitfield::Element<bool, 15, 1>; |
81 | |
82 | protected: |
83 | ~Instruction(); // Use deleteValue() to delete a generic Instruction. |
84 | |
85 | public: |
86 | Instruction(const Instruction &) = delete; |
87 | Instruction &operator=(const Instruction &) = delete; |
88 | |
89 | /// Specialize the methods defined in Value, as we know that an instruction |
90 | /// can only be used by other instructions. |
91 | Instruction *user_back() { return cast<Instruction>(*user_begin());} |
92 | const Instruction *user_back() const { return cast<Instruction>(*user_begin());} |
93 | |
94 | inline const BasicBlock *getParent() const { return Parent; } |
95 | inline BasicBlock *getParent() { return Parent; } |
96 | |
97 | /// Return the module owning the function this instruction belongs to |
98 | /// or nullptr it the function does not have a module. |
99 | /// |
100 | /// Note: this is undefined behavior if the instruction does not have a |
101 | /// parent, or the parent basic block does not have a parent function. |
102 | const Module *getModule() const; |
103 | Module *getModule() { |
104 | return const_cast<Module *>( |
105 | static_cast<const Instruction *>(this)->getModule()); |
106 | } |
107 | |
108 | /// Return the function this instruction belongs to. |
109 | /// |
110 | /// Note: it is undefined behavior to call this on an instruction not |
111 | /// currently inserted into a function. |
112 | const Function *getFunction() const; |
113 | Function *getFunction() { |
114 | return const_cast<Function *>( |
115 | static_cast<const Instruction *>(this)->getFunction()); |
116 | } |
117 | |
118 | /// This method unlinks 'this' from the containing basic block, but does not |
119 | /// delete it. |
120 | void removeFromParent(); |
121 | |
122 | /// This method unlinks 'this' from the containing basic block and deletes it. |
123 | /// |
124 | /// \returns an iterator pointing to the element after the erased one |
125 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
126 | |
127 | /// Insert an unlinked instruction into a basic block immediately before |
128 | /// the specified instruction. |
129 | void insertBefore(Instruction *InsertPos); |
130 | |
131 | /// Insert an unlinked instruction into a basic block immediately after the |
132 | /// specified instruction. |
133 | void insertAfter(Instruction *InsertPos); |
134 | |
135 | /// Unlink this instruction from its current basic block and insert it into |
136 | /// the basic block that MovePos lives in, right before MovePos. |
137 | void moveBefore(Instruction *MovePos); |
138 | |
139 | /// Unlink this instruction and insert into BB before I. |
140 | /// |
141 | /// \pre I is a valid iterator into BB. |
142 | void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I); |
143 | |
144 | /// Unlink this instruction from its current basic block and insert it into |
145 | /// the basic block that MovePos lives in, right after MovePos. |
146 | void moveAfter(Instruction *MovePos); |
147 | |
148 | /// Given an instruction Other in the same basic block as this instruction, |
149 | /// return true if this instruction comes before Other. In this worst case, |
150 | /// this takes linear time in the number of instructions in the block. The |
151 | /// results are cached, so in common cases when the block remains unmodified, |
152 | /// it takes constant time. |
153 | bool comesBefore(const Instruction *Other) const; |
154 | |
155 | //===--------------------------------------------------------------------===// |
156 | // Subclass classification. |
157 | //===--------------------------------------------------------------------===// |
158 | |
159 | /// Returns a member of one of the enums like Instruction::Add. |
160 | unsigned getOpcode() const { return getValueID() - InstructionVal; } |
161 | |
162 | const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } |
163 | bool isTerminator() const { return isTerminator(getOpcode()); } |
164 | bool isUnaryOp() const { return isUnaryOp(getOpcode()); } |
165 | bool isBinaryOp() const { return isBinaryOp(getOpcode()); } |
166 | bool isIntDivRem() const { return isIntDivRem(getOpcode()); } |
167 | bool isShift() const { return isShift(getOpcode()); } |
168 | bool isCast() const { return isCast(getOpcode()); } |
169 | bool isFuncletPad() const { return isFuncletPad(getOpcode()); } |
170 | bool isExceptionalTerminator() const { |
171 | return isExceptionalTerminator(getOpcode()); |
172 | } |
173 | |
174 | /// It checks if this instruction is the only user of at least one of |
175 | /// its operands. |
176 | bool isOnlyUserOfAnyOperand(); |
177 | |
178 | bool isIndirectTerminator() const { |
179 | return isIndirectTerminator(getOpcode()); |
180 | } |
181 | |
182 | static const char* getOpcodeName(unsigned OpCode); |
183 | |
184 | static inline bool isTerminator(unsigned OpCode) { |
185 | return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; |
186 | } |
187 | |
188 | static inline bool isUnaryOp(unsigned Opcode) { |
189 | return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd; |
190 | } |
191 | static inline bool isBinaryOp(unsigned Opcode) { |
192 | return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; |
193 | } |
194 | |
195 | static inline bool isIntDivRem(unsigned Opcode) { |
196 | return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem; |
197 | } |
198 | |
199 | /// Determine if the Opcode is one of the shift instructions. |
200 | static inline bool isShift(unsigned Opcode) { |
201 | return Opcode >= Shl && Opcode <= AShr; |
202 | } |
203 | |
204 | /// Return true if this is a logical shift left or a logical shift right. |
205 | inline bool isLogicalShift() const { |
206 | return getOpcode() == Shl || getOpcode() == LShr; |
207 | } |
208 | |
209 | /// Return true if this is an arithmetic shift right. |
210 | inline bool isArithmeticShift() const { |
211 | return getOpcode() == AShr; |
212 | } |
213 | |
214 | /// Determine if the Opcode is and/or/xor. |
215 | static inline bool isBitwiseLogicOp(unsigned Opcode) { |
216 | return Opcode == And || Opcode == Or || Opcode == Xor; |
217 | } |
218 | |
219 | /// Return true if this is and/or/xor. |
220 | inline bool isBitwiseLogicOp() const { |
221 | return isBitwiseLogicOp(getOpcode()); |
222 | } |
223 | |
224 | /// Determine if the OpCode is one of the CastInst instructions. |
225 | static inline bool isCast(unsigned OpCode) { |
226 | return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; |
227 | } |
228 | |
229 | /// Determine if the OpCode is one of the FuncletPadInst instructions. |
230 | static inline bool isFuncletPad(unsigned OpCode) { |
231 | return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd; |
232 | } |
233 | |
234 | /// Returns true if the OpCode is a terminator related to exception handling. |
235 | static inline bool isExceptionalTerminator(unsigned OpCode) { |
236 | switch (OpCode) { |
237 | case Instruction::CatchSwitch: |
238 | case Instruction::CatchRet: |
239 | case Instruction::CleanupRet: |
240 | case Instruction::Invoke: |
241 | case Instruction::Resume: |
242 | return true; |
243 | default: |
244 | return false; |
245 | } |
246 | } |
247 | |
248 | /// Returns true if the OpCode is a terminator with indirect targets. |
249 | static inline bool isIndirectTerminator(unsigned OpCode) { |
250 | switch (OpCode) { |
251 | case Instruction::IndirectBr: |
252 | case Instruction::CallBr: |
253 | return true; |
254 | default: |
255 | return false; |
256 | } |
257 | } |
258 | |
259 | //===--------------------------------------------------------------------===// |
260 | // Metadata manipulation. |
261 | //===--------------------------------------------------------------------===// |
262 | |
263 | /// Return true if this instruction has any metadata attached to it. |
264 | bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); } |
265 | |
266 | /// Return true if this instruction has metadata attached to it other than a |
267 | /// debug location. |
268 | bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); } |
269 | |
270 | /// Return true if this instruction has the given type of metadata attached. |
271 | bool hasMetadata(unsigned KindID) const { |
272 | return getMetadata(KindID) != nullptr; |
273 | } |
274 | |
275 | /// Return true if this instruction has the given type of metadata attached. |
276 | bool hasMetadata(StringRef Kind) const { |
277 | return getMetadata(Kind) != nullptr; |
278 | } |
279 | |
280 | /// Get the metadata of given kind attached to this Instruction. |
281 | /// If the metadata is not found then return null. |
282 | MDNode *getMetadata(unsigned KindID) const { |
283 | if (!hasMetadata()) return nullptr; |
284 | return getMetadataImpl(KindID); |
285 | } |
286 | |
287 | /// Get the metadata of given kind attached to this Instruction. |
288 | /// If the metadata is not found then return null. |
289 | MDNode *getMetadata(StringRef Kind) const { |
290 | if (!hasMetadata()) return nullptr; |
291 | return getMetadataImpl(Kind); |
292 | } |
293 | |
294 | /// Get all metadata attached to this Instruction. The first element of each |
295 | /// pair returned is the KindID, the second element is the metadata value. |
296 | /// This list is returned sorted by the KindID. |
297 | void |
298 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
299 | if (hasMetadata()) |
300 | getAllMetadataImpl(MDs); |
301 | } |
302 | |
303 | /// This does the same thing as getAllMetadata, except that it filters out the |
304 | /// debug location. |
305 | void getAllMetadataOtherThanDebugLoc( |
306 | SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
307 | Value::getAllMetadata(MDs); |
308 | } |
309 | |
310 | /// Fills the AAMDNodes structure with AA metadata from this instruction. |
311 | /// When Merge is true, the existing AA metadata is merged with that from this |
312 | /// instruction providing the most-general result. |
313 | void getAAMetadata(AAMDNodes &N, bool Merge = false) const; |
314 | |
315 | /// Set the metadata of the specified kind to the specified node. This updates |
316 | /// or replaces metadata if already present, or removes it if Node is null. |
317 | void setMetadata(unsigned KindID, MDNode *Node); |
318 | void setMetadata(StringRef Kind, MDNode *Node); |
319 | |
320 | /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty, |
321 | /// specifies the list of meta data that needs to be copied. If \p WL is |
322 | /// empty, all meta data will be copied. |
323 | void copyMetadata(const Instruction &SrcInst, |
324 | ArrayRef<unsigned> WL = ArrayRef<unsigned>()); |
325 | |
326 | /// If the instruction has "branch_weights" MD_prof metadata and the MDNode |
327 | /// has three operands (including name string), swap the order of the |
328 | /// metadata. |
329 | void swapProfMetadata(); |
330 | |
331 | /// Drop all unknown metadata except for debug locations. |
332 | /// @{ |
333 | /// Passes are required to drop metadata they don't understand. This is a |
334 | /// convenience method for passes to do so. |
335 | /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of |
336 | /// this API if the Instruction being modified is a call. |
337 | void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs); |
338 | void dropUnknownNonDebugMetadata() { |
339 | return dropUnknownNonDebugMetadata(None); |
340 | } |
341 | void dropUnknownNonDebugMetadata(unsigned ID1) { |
342 | return dropUnknownNonDebugMetadata(makeArrayRef(ID1)); |
343 | } |
344 | void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) { |
345 | unsigned IDs[] = {ID1, ID2}; |
346 | return dropUnknownNonDebugMetadata(IDs); |
347 | } |
348 | /// @} |
349 | |
350 | /// Adds an !annotation metadata node with \p Annotation to this instruction. |
351 | /// If this instruction already has !annotation metadata, append \p Annotation |
352 | /// to the existing node. |
353 | void addAnnotationMetadata(StringRef Annotation); |
354 | |
355 | /// Sets the metadata on this instruction from the AAMDNodes structure. |
356 | void setAAMetadata(const AAMDNodes &N); |
357 | |
358 | /// Retrieve the raw weight values of a conditional branch or select. |
359 | /// Returns true on success with profile weights filled in. |
360 | /// Returns false if no metadata or invalid metadata was found. |
361 | bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const; |
362 | |
363 | /// Retrieve total raw weight values of a branch. |
364 | /// Returns true on success with profile total weights filled in. |
365 | /// Returns false if no metadata was found. |
366 | bool extractProfTotalWeight(uint64_t &TotalVal) const; |
367 | |
368 | /// Set the debug location information for this instruction. |
369 | void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); } |
370 | |
371 | /// Return the debug location for this node as a DebugLoc. |
372 | const DebugLoc &getDebugLoc() const { return DbgLoc; } |
373 | |
374 | /// Set or clear the nuw flag on this instruction, which must be an operator |
375 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
376 | void setHasNoUnsignedWrap(bool b = true); |
377 | |
378 | /// Set or clear the nsw flag on this instruction, which must be an operator |
379 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
380 | void setHasNoSignedWrap(bool b = true); |
381 | |
382 | /// Set or clear the exact flag on this instruction, which must be an operator |
383 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
384 | void setIsExact(bool b = true); |
385 | |
386 | /// Determine whether the no unsigned wrap flag is set. |
387 | bool hasNoUnsignedWrap() const; |
388 | |
389 | /// Determine whether the no signed wrap flag is set. |
390 | bool hasNoSignedWrap() const; |
391 | |
392 | /// Drops flags that may cause this instruction to evaluate to poison despite |
393 | /// having non-poison inputs. |
394 | void dropPoisonGeneratingFlags(); |
395 | |
396 | /// This function drops non-debug unknown metadata (through |
397 | /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and |
398 | /// return attributes that can cause undefined behaviour. Both of these should |
399 | /// be done by passes which move instructions in IR. |
400 | void |
401 | dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {}); |
402 | |
403 | /// Determine whether the exact flag is set. |
404 | bool isExact() const; |
405 | |
406 | /// Set or clear all fast-math-flags on this instruction, which must be an |
407 | /// operator which supports this flag. See LangRef.html for the meaning of |
408 | /// this flag. |
409 | void setFast(bool B); |
410 | |
411 | /// Set or clear the reassociation flag on this instruction, which must be |
412 | /// an operator which supports this flag. See LangRef.html for the meaning of |
413 | /// this flag. |
414 | void setHasAllowReassoc(bool B); |
415 | |
416 | /// Set or clear the no-nans flag on this instruction, which must be an |
417 | /// operator which supports this flag. See LangRef.html for the meaning of |
418 | /// this flag. |
419 | void setHasNoNaNs(bool B); |
420 | |
421 | /// Set or clear the no-infs flag on this instruction, which must be an |
422 | /// operator which supports this flag. See LangRef.html for the meaning of |
423 | /// this flag. |
424 | void setHasNoInfs(bool B); |
425 | |
426 | /// Set or clear the no-signed-zeros flag on this instruction, which must be |
427 | /// an operator which supports this flag. See LangRef.html for the meaning of |
428 | /// this flag. |
429 | void setHasNoSignedZeros(bool B); |
430 | |
431 | /// Set or clear the allow-reciprocal flag on this instruction, which must be |
432 | /// an operator which supports this flag. See LangRef.html for the meaning of |
433 | /// this flag. |
434 | void setHasAllowReciprocal(bool B); |
435 | |
436 | /// Set or clear the allow-contract flag on this instruction, which must be |
437 | /// an operator which supports this flag. See LangRef.html for the meaning of |
438 | /// this flag. |
439 | void setHasAllowContract(bool B); |
440 | |
441 | /// Set or clear the approximate-math-functions flag on this instruction, |
442 | /// which must be an operator which supports this flag. See LangRef.html for |
443 | /// the meaning of this flag. |
444 | void setHasApproxFunc(bool B); |
445 | |
446 | /// Convenience function for setting multiple fast-math flags on this |
447 | /// instruction, which must be an operator which supports these flags. See |
448 | /// LangRef.html for the meaning of these flags. |
449 | void setFastMathFlags(FastMathFlags FMF); |
450 | |
451 | /// Convenience function for transferring all fast-math flag values to this |
452 | /// instruction, which must be an operator which supports these flags. See |
453 | /// LangRef.html for the meaning of these flags. |
454 | void copyFastMathFlags(FastMathFlags FMF); |
455 | |
456 | /// Determine whether all fast-math-flags are set. |
457 | bool isFast() const; |
458 | |
459 | /// Determine whether the allow-reassociation flag is set. |
460 | bool hasAllowReassoc() const; |
461 | |
462 | /// Determine whether the no-NaNs flag is set. |
463 | bool hasNoNaNs() const; |
464 | |
465 | /// Determine whether the no-infs flag is set. |
466 | bool hasNoInfs() const; |
467 | |
468 | /// Determine whether the no-signed-zeros flag is set. |
469 | bool hasNoSignedZeros() const; |
470 | |
471 | /// Determine whether the allow-reciprocal flag is set. |
472 | bool hasAllowReciprocal() const; |
473 | |
474 | /// Determine whether the allow-contract flag is set. |
475 | bool hasAllowContract() const; |
476 | |
477 | /// Determine whether the approximate-math-functions flag is set. |
478 | bool hasApproxFunc() const; |
479 | |
480 | /// Convenience function for getting all the fast-math flags, which must be an |
481 | /// operator which supports these flags. See LangRef.html for the meaning of |
482 | /// these flags. |
483 | FastMathFlags getFastMathFlags() const; |
484 | |
485 | /// Copy I's fast-math flags |
486 | void copyFastMathFlags(const Instruction *I); |
487 | |
488 | /// Convenience method to copy supported exact, fast-math, and (optionally) |
489 | /// wrapping flags from V to this instruction. |
490 | void copyIRFlags(const Value *V, bool IncludeWrapFlags = true); |
491 | |
492 | /// Logical 'and' of any supported wrapping, exact, and fast-math flags of |
493 | /// V and this instruction. |
494 | void andIRFlags(const Value *V); |
495 | |
496 | /// Merge 2 debug locations and apply it to the Instruction. If the |
497 | /// instruction is a CallIns, we need to traverse the inline chain to find |
498 | /// the common scope. This is not efficient for N-way merging as each time |
499 | /// you merge 2 iterations, you need to rebuild the hashmap to find the |
500 | /// common scope. However, we still choose this API because: |
501 | /// 1) Simplicity: it takes 2 locations instead of a list of locations. |
502 | /// 2) In worst case, it increases the complexity from O(N*I) to |
503 | /// O(2*N*I), where N is # of Instructions to merge, and I is the |
504 | /// maximum level of inline stack. So it is still linear. |
505 | /// 3) Merging of call instructions should be extremely rare in real |
506 | /// applications, thus the N-way merging should be in code path. |
507 | /// The DebugLoc attached to this instruction will be overwritten by the |
508 | /// merged DebugLoc. |
509 | void applyMergedLocation(const DILocation *LocA, const DILocation *LocB); |
510 | |
511 | /// Updates the debug location given that the instruction has been hoisted |
512 | /// from a block to a predecessor of that block. |
513 | /// Note: it is undefined behavior to call this on an instruction not |
514 | /// currently inserted into a function. |
515 | void updateLocationAfterHoist(); |
516 | |
517 | /// Drop the instruction's debug location. This does not guarantee removal |
518 | /// of the !dbg source location attachment, as it must set a line 0 location |
519 | /// with scope information attached on call instructions. To guarantee |
520 | /// removal of the !dbg attachment, use the \ref setDebugLoc() API. |
521 | /// Note: it is undefined behavior to call this on an instruction not |
522 | /// currently inserted into a function. |
523 | void dropLocation(); |
524 | |
525 | private: |
526 | // These are all implemented in Metadata.cpp. |
527 | MDNode *getMetadataImpl(unsigned KindID) const; |
528 | MDNode *getMetadataImpl(StringRef Kind) const; |
529 | void |
530 | getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const; |
531 | |
532 | public: |
533 | //===--------------------------------------------------------------------===// |
534 | // Predicates and helper methods. |
535 | //===--------------------------------------------------------------------===// |
536 | |
537 | /// Return true if the instruction is associative: |
538 | /// |
539 | /// Associative operators satisfy: x op (y op z) === (x op y) op z |
540 | /// |
541 | /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. |
542 | /// |
543 | bool isAssociative() const LLVM_READONLY__attribute__((__pure__)); |
544 | static bool isAssociative(unsigned Opcode) { |
545 | return Opcode == And || Opcode == Or || Opcode == Xor || |
546 | Opcode == Add || Opcode == Mul; |
547 | } |
548 | |
549 | /// Return true if the instruction is commutative: |
550 | /// |
551 | /// Commutative operators satisfy: (x op y) === (y op x) |
552 | /// |
553 | /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when |
554 | /// applied to any type. |
555 | /// |
556 | bool isCommutative() const LLVM_READONLY__attribute__((__pure__)); |
557 | static bool isCommutative(unsigned Opcode) { |
558 | switch (Opcode) { |
559 | case Add: case FAdd: |
560 | case Mul: case FMul: |
561 | case And: case Or: case Xor: |
562 | return true; |
563 | default: |
564 | return false; |
565 | } |
566 | } |
567 | |
568 | /// Return true if the instruction is idempotent: |
569 | /// |
570 | /// Idempotent operators satisfy: x op x === x |
571 | /// |
572 | /// In LLVM, the And and Or operators are idempotent. |
573 | /// |
574 | bool isIdempotent() const { return isIdempotent(getOpcode()); } |
575 | static bool isIdempotent(unsigned Opcode) { |
576 | return Opcode == And || Opcode == Or; |
577 | } |
578 | |
579 | /// Return true if the instruction is nilpotent: |
580 | /// |
581 | /// Nilpotent operators satisfy: x op x === Id, |
582 | /// |
583 | /// where Id is the identity for the operator, i.e. a constant such that |
584 | /// x op Id === x and Id op x === x for all x. |
585 | /// |
586 | /// In LLVM, the Xor operator is nilpotent. |
587 | /// |
588 | bool isNilpotent() const { return isNilpotent(getOpcode()); } |
589 | static bool isNilpotent(unsigned Opcode) { |
590 | return Opcode == Xor; |
591 | } |
592 | |
593 | /// Return true if this instruction may modify memory. |
594 | bool mayWriteToMemory() const; |
595 | |
596 | /// Return true if this instruction may read memory. |
597 | bool mayReadFromMemory() const; |
598 | |
599 | /// Return true if this instruction may read or write memory. |
600 | bool mayReadOrWriteMemory() const { |
601 | return mayReadFromMemory() || mayWriteToMemory(); |
602 | } |
603 | |
604 | /// Return true if this instruction has an AtomicOrdering of unordered or |
605 | /// higher. |
606 | bool isAtomic() const; |
607 | |
608 | /// Return true if this atomic instruction loads from memory. |
609 | bool hasAtomicLoad() const; |
610 | |
611 | /// Return true if this atomic instruction stores to memory. |
612 | bool hasAtomicStore() const; |
613 | |
614 | /// Return true if this instruction has a volatile memory access. |
615 | bool isVolatile() const; |
616 | |
617 | /// Return true if this instruction may throw an exception. |
618 | bool mayThrow() const; |
619 | |
620 | /// Return true if this instruction behaves like a memory fence: it can load |
621 | /// or store to memory location without being given a memory location. |
622 | bool isFenceLike() const { |
623 | switch (getOpcode()) { |
624 | default: |
625 | return false; |
626 | // This list should be kept in sync with the list in mayWriteToMemory for |
627 | // all opcodes which don't have a memory location. |
628 | case Instruction::Fence: |
629 | case Instruction::CatchPad: |
630 | case Instruction::CatchRet: |
631 | case Instruction::Call: |
632 | case Instruction::Invoke: |
633 | return true; |
634 | } |
635 | } |
636 | |
637 | /// Return true if the instruction may have side effects. |
638 | /// |
639 | /// Side effects are: |
640 | /// * Writing to memory. |
641 | /// * Unwinding. |
642 | /// * Not returning (e.g. an infinite loop). |
643 | /// |
644 | /// Note that this does not consider malloc and alloca to have side |
645 | /// effects because the newly allocated memory is completely invisible to |
646 | /// instructions which don't use the returned value. For cases where this |
647 | /// matters, isSafeToSpeculativelyExecute may be more appropriate. |
648 | bool mayHaveSideEffects() const; |
649 | |
650 | /// Return true if the instruction can be removed if the result is unused. |
651 | /// |
652 | /// When constant folding some instructions cannot be removed even if their |
653 | /// results are unused. Specifically terminator instructions and calls that |
654 | /// may have side effects cannot be removed without semantically changing the |
655 | /// generated program. |
656 | bool isSafeToRemove() const; |
657 | |
658 | /// Return true if the instruction will return (unwinding is considered as |
659 | /// a form of returning control flow here). |
660 | bool willReturn() const; |
661 | |
662 | /// Return true if the instruction is a variety of EH-block. |
663 | bool isEHPad() const { |
664 | switch (getOpcode()) { |
665 | case Instruction::CatchSwitch: |
666 | case Instruction::CatchPad: |
667 | case Instruction::CleanupPad: |
668 | case Instruction::LandingPad: |
669 | return true; |
670 | default: |
671 | return false; |
672 | } |
673 | } |
674 | |
675 | /// Return true if the instruction is a llvm.lifetime.start or |
676 | /// llvm.lifetime.end marker. |
677 | bool isLifetimeStartOrEnd() const; |
678 | |
679 | /// Return true if the instruction is a llvm.launder.invariant.group or |
680 | /// llvm.strip.invariant.group. |
681 | bool isLaunderOrStripInvariantGroup() const; |
682 | |
683 | /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst. |
684 | bool isDebugOrPseudoInst() const; |
685 | |
686 | /// Return a pointer to the next non-debug instruction in the same basic |
687 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
688 | /// operations if \c SkipPseudoOp is true. |
689 | const Instruction * |
690 | getNextNonDebugInstruction(bool SkipPseudoOp = false) const; |
691 | Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) { |
692 | return const_cast<Instruction *>( |
693 | static_cast<const Instruction *>(this)->getNextNonDebugInstruction( |
694 | SkipPseudoOp)); |
695 | } |
696 | |
697 | /// Return a pointer to the previous non-debug instruction in the same basic |
698 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
699 | /// operations if \c SkipPseudoOp is true. |
700 | const Instruction * |
701 | getPrevNonDebugInstruction(bool SkipPseudoOp = false) const; |
702 | Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) { |
703 | return const_cast<Instruction *>( |
704 | static_cast<const Instruction *>(this)->getPrevNonDebugInstruction( |
705 | SkipPseudoOp)); |
706 | } |
707 | |
708 | /// Create a copy of 'this' instruction that is identical in all ways except |
709 | /// the following: |
710 | /// * The instruction has no parent |
711 | /// * The instruction has no name |
712 | /// |
713 | Instruction *clone() const; |
714 | |
715 | /// Return true if the specified instruction is exactly identical to the |
716 | /// current one. This means that all operands match and any extra information |
717 | /// (e.g. load is volatile) agree. |
718 | bool isIdenticalTo(const Instruction *I) const; |
719 | |
720 | /// This is like isIdenticalTo, except that it ignores the |
721 | /// SubclassOptionalData flags, which may specify conditions under which the |
722 | /// instruction's result is undefined. |
723 | bool isIdenticalToWhenDefined(const Instruction *I) const; |
724 | |
725 | /// When checking for operation equivalence (using isSameOperationAs) it is |
726 | /// sometimes useful to ignore certain attributes. |
727 | enum OperationEquivalenceFlags { |
728 | /// Check for equivalence ignoring load/store alignment. |
729 | CompareIgnoringAlignment = 1<<0, |
730 | /// Check for equivalence treating a type and a vector of that type |
731 | /// as equivalent. |
732 | CompareUsingScalarTypes = 1<<1 |
733 | }; |
734 | |
735 | /// This function determines if the specified instruction executes the same |
736 | /// operation as the current one. This means that the opcodes, type, operand |
737 | /// types and any other factors affecting the operation must be the same. This |
738 | /// is similar to isIdenticalTo except the operands themselves don't have to |
739 | /// be identical. |
740 | /// @returns true if the specified instruction is the same operation as |
741 | /// the current one. |
742 | /// Determine if one instruction is the same operation as another. |
743 | bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; |
744 | |
745 | /// Return true if there are any uses of this instruction in blocks other than |
746 | /// the specified block. Note that PHI nodes are considered to evaluate their |
747 | /// operands in the corresponding predecessor block. |
748 | bool isUsedOutsideOfBlock(const BasicBlock *BB) const; |
749 | |
750 | /// Return the number of successors that this instruction has. The instruction |
751 | /// must be a terminator. |
752 | unsigned getNumSuccessors() const; |
753 | |
754 | /// Return the specified successor. This instruction must be a terminator. |
755 | BasicBlock *getSuccessor(unsigned Idx) const; |
756 | |
757 | /// Update the specified successor to point at the provided block. This |
758 | /// instruction must be a terminator. |
759 | void setSuccessor(unsigned Idx, BasicBlock *BB); |
760 | |
761 | /// Replace specified successor OldBB to point at the provided block. |
762 | /// This instruction must be a terminator. |
763 | void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB); |
764 | |
765 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
766 | static bool classof(const Value *V) { |
767 | return V->getValueID() >= Value::InstructionVal; |
768 | } |
769 | |
770 | //---------------------------------------------------------------------- |
771 | // Exported enumerations. |
772 | // |
773 | enum TermOps { // These terminate basic blocks |
774 | #define FIRST_TERM_INST(N) TermOpsBegin = N, |
775 | #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, |
776 | #define LAST_TERM_INST(N) TermOpsEnd = N+1 |
777 | #include "llvm/IR/Instruction.def" |
778 | }; |
779 | |
780 | enum UnaryOps { |
781 | #define FIRST_UNARY_INST(N) UnaryOpsBegin = N, |
782 | #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N, |
783 | #define LAST_UNARY_INST(N) UnaryOpsEnd = N+1 |
784 | #include "llvm/IR/Instruction.def" |
785 | }; |
786 | |
787 | enum BinaryOps { |
788 | #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, |
789 | #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, |
790 | #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 |
791 | #include "llvm/IR/Instruction.def" |
792 | }; |
793 | |
794 | enum MemoryOps { |
795 | #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, |
796 | #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, |
797 | #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 |
798 | #include "llvm/IR/Instruction.def" |
799 | }; |
800 | |
801 | enum CastOps { |
802 | #define FIRST_CAST_INST(N) CastOpsBegin = N, |
803 | #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, |
804 | #define LAST_CAST_INST(N) CastOpsEnd = N+1 |
805 | #include "llvm/IR/Instruction.def" |
806 | }; |
807 | |
808 | enum FuncletPadOps { |
809 | #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N, |
810 | #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N, |
811 | #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1 |
812 | #include "llvm/IR/Instruction.def" |
813 | }; |
814 | |
815 | enum OtherOps { |
816 | #define FIRST_OTHER_INST(N) OtherOpsBegin = N, |
817 | #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, |
818 | #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 |
819 | #include "llvm/IR/Instruction.def" |
820 | }; |
821 | |
822 | private: |
823 | friend class SymbolTableListTraits<Instruction>; |
824 | friend class BasicBlock; // For renumbering. |
825 | |
826 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
827 | // subclasses cannot accidentally use it. |
828 | void setValueSubclassData(unsigned short D) { |
829 | Value::setValueSubclassData(D); |
830 | } |
831 | |
832 | unsigned short getSubclassDataFromValue() const { |
833 | return Value::getSubclassDataFromValue(); |
834 | } |
835 | |
836 | void setParent(BasicBlock *P); |
837 | |
838 | protected: |
839 | // Instruction subclasses can stick up to 15 bits of stuff into the |
840 | // SubclassData field of instruction with these members. |
841 | |
842 | template <typename BitfieldElement> |
843 | typename BitfieldElement::Type getSubclassData() const { |
844 | static_assert( |
845 | std::is_same<BitfieldElement, HasMetadataField>::value || |
846 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
847 | "Must not overlap with the metadata bit"); |
848 | return Bitfield::get<BitfieldElement>(getSubclassDataFromValue()); |
849 | } |
850 | |
851 | template <typename BitfieldElement> |
852 | void setSubclassData(typename BitfieldElement::Type Value) { |
853 | static_assert( |
854 | std::is_same<BitfieldElement, HasMetadataField>::value || |
855 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
856 | "Must not overlap with the metadata bit"); |
857 | auto Storage = getSubclassDataFromValue(); |
858 | Bitfield::set<BitfieldElement>(Storage, Value); |
859 | setValueSubclassData(Storage); |
860 | } |
861 | |
862 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
863 | Instruction *InsertBefore = nullptr); |
864 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
865 | BasicBlock *InsertAtEnd); |
866 | |
867 | private: |
868 | /// Create a copy of this instruction. |
869 | Instruction *cloneImpl() const; |
870 | }; |
871 | |
872 | inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) { |
873 | V->deleteValue(); |
874 | } |
875 | |
876 | } // end namespace llvm |
877 | |
878 | #endif // LLVM_IR_INSTRUCTION_H |
1 | //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// | ||||||||||||||
2 | // | ||||||||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||||||
6 | // | ||||||||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||||||||
8 | // | ||||||||||||||
9 | // This file defines layout properties related to datatype size/offset/alignment | ||||||||||||||
10 | // information. It uses lazy annotations to cache information about how | ||||||||||||||
11 | // structure types are laid out and used. | ||||||||||||||
12 | // | ||||||||||||||
13 | // This structure should be created once, filled in if the defaults are not | ||||||||||||||
14 | // correct and then passed around by const&. None of the members functions | ||||||||||||||
15 | // require modification to the object. | ||||||||||||||
16 | // | ||||||||||||||
17 | //===----------------------------------------------------------------------===// | ||||||||||||||
18 | |||||||||||||||
19 | #ifndef LLVM_IR_DATALAYOUT_H | ||||||||||||||
20 | #define LLVM_IR_DATALAYOUT_H | ||||||||||||||
21 | |||||||||||||||
22 | #include "llvm/ADT/ArrayRef.h" | ||||||||||||||
23 | #include "llvm/ADT/STLExtras.h" | ||||||||||||||
24 | #include "llvm/ADT/SmallVector.h" | ||||||||||||||
25 | #include "llvm/ADT/StringRef.h" | ||||||||||||||
26 | #include "llvm/IR/DerivedTypes.h" | ||||||||||||||
27 | #include "llvm/IR/Type.h" | ||||||||||||||
28 | #include "llvm/Support/Casting.h" | ||||||||||||||
29 | #include "llvm/Support/ErrorHandling.h" | ||||||||||||||
30 | #include "llvm/Support/MathExtras.h" | ||||||||||||||
31 | #include "llvm/Support/Alignment.h" | ||||||||||||||
32 | #include "llvm/Support/TrailingObjects.h" | ||||||||||||||
33 | #include "llvm/Support/TypeSize.h" | ||||||||||||||
34 | #include <cassert> | ||||||||||||||
35 | #include <cstdint> | ||||||||||||||
36 | #include <string> | ||||||||||||||
37 | |||||||||||||||
38 | // This needs to be outside of the namespace, to avoid conflict with llvm-c | ||||||||||||||
39 | // decl. | ||||||||||||||
40 | using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; | ||||||||||||||
41 | |||||||||||||||
42 | namespace llvm { | ||||||||||||||
43 | |||||||||||||||
44 | class GlobalVariable; | ||||||||||||||
45 | class LLVMContext; | ||||||||||||||
46 | class Module; | ||||||||||||||
47 | class StructLayout; | ||||||||||||||
48 | class Triple; | ||||||||||||||
49 | class Value; | ||||||||||||||
50 | |||||||||||||||
51 | /// Enum used to categorize the alignment types stored by LayoutAlignElem | ||||||||||||||
52 | enum AlignTypeEnum { | ||||||||||||||
53 | INVALID_ALIGN = 0, | ||||||||||||||
54 | INTEGER_ALIGN = 'i', | ||||||||||||||
55 | VECTOR_ALIGN = 'v', | ||||||||||||||
56 | FLOAT_ALIGN = 'f', | ||||||||||||||
57 | AGGREGATE_ALIGN = 'a' | ||||||||||||||
58 | }; | ||||||||||||||
59 | |||||||||||||||
60 | // FIXME: Currently the DataLayout string carries a "preferred alignment" | ||||||||||||||
61 | // for types. As the DataLayout is module/global, this should likely be | ||||||||||||||
62 | // sunk down to an FTTI element that is queried rather than a global | ||||||||||||||
63 | // preference. | ||||||||||||||
64 | |||||||||||||||
65 | /// Layout alignment element. | ||||||||||||||
66 | /// | ||||||||||||||
67 | /// Stores the alignment data associated with a given alignment type (integer, | ||||||||||||||
68 | /// vector, float) and type bit width. | ||||||||||||||
69 | /// | ||||||||||||||
70 | /// \note The unusual order of elements in the structure attempts to reduce | ||||||||||||||
71 | /// padding and make the structure slightly more cache friendly. | ||||||||||||||
72 | struct LayoutAlignElem { | ||||||||||||||
73 | /// Alignment type from \c AlignTypeEnum | ||||||||||||||
74 | unsigned AlignType : 8; | ||||||||||||||
75 | unsigned TypeBitWidth : 24; | ||||||||||||||
76 | Align ABIAlign; | ||||||||||||||
77 | Align PrefAlign; | ||||||||||||||
78 | |||||||||||||||
79 | static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align, | ||||||||||||||
80 | Align pref_align, uint32_t bit_width); | ||||||||||||||
81 | |||||||||||||||
82 | bool operator==(const LayoutAlignElem &rhs) const; | ||||||||||||||
83 | }; | ||||||||||||||
84 | |||||||||||||||
85 | /// Layout pointer alignment element. | ||||||||||||||
86 | /// | ||||||||||||||
87 | /// Stores the alignment data associated with a given pointer and address space. | ||||||||||||||
88 | /// | ||||||||||||||
89 | /// \note The unusual order of elements in the structure attempts to reduce | ||||||||||||||
90 | /// padding and make the structure slightly more cache friendly. | ||||||||||||||
91 | struct PointerAlignElem { | ||||||||||||||
92 | Align ABIAlign; | ||||||||||||||
93 | Align PrefAlign; | ||||||||||||||
94 | uint32_t TypeByteWidth; | ||||||||||||||
95 | uint32_t AddressSpace; | ||||||||||||||
96 | uint32_t IndexWidth; | ||||||||||||||
97 | |||||||||||||||
98 | /// Initializer | ||||||||||||||
99 | static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign, | ||||||||||||||
100 | Align PrefAlign, uint32_t TypeByteWidth, | ||||||||||||||
101 | uint32_t IndexWidth); | ||||||||||||||
102 | |||||||||||||||
103 | bool operator==(const PointerAlignElem &rhs) const; | ||||||||||||||
104 | }; | ||||||||||||||
105 | |||||||||||||||
106 | /// A parsed version of the target data layout string in and methods for | ||||||||||||||
107 | /// querying it. | ||||||||||||||
108 | /// | ||||||||||||||
109 | /// The target data layout string is specified *by the target* - a frontend | ||||||||||||||
110 | /// generating LLVM IR is required to generate the right target data for the | ||||||||||||||
111 | /// target being codegen'd to. | ||||||||||||||
112 | class DataLayout { | ||||||||||||||
113 | public: | ||||||||||||||
114 | enum class FunctionPtrAlignType { | ||||||||||||||
115 | /// The function pointer alignment is independent of the function alignment. | ||||||||||||||
116 | Independent, | ||||||||||||||
117 | /// The function pointer alignment is a multiple of the function alignment. | ||||||||||||||
118 | MultipleOfFunctionAlign, | ||||||||||||||
119 | }; | ||||||||||||||
120 | private: | ||||||||||||||
121 | /// Defaults to false. | ||||||||||||||
122 | bool BigEndian; | ||||||||||||||
123 | |||||||||||||||
124 | unsigned AllocaAddrSpace; | ||||||||||||||
125 | MaybeAlign StackNaturalAlign; | ||||||||||||||
126 | unsigned ProgramAddrSpace; | ||||||||||||||
127 | unsigned DefaultGlobalsAddrSpace; | ||||||||||||||
128 | |||||||||||||||
129 | MaybeAlign FunctionPtrAlign; | ||||||||||||||
130 | FunctionPtrAlignType TheFunctionPtrAlignType; | ||||||||||||||
131 | |||||||||||||||
132 | enum ManglingModeT { | ||||||||||||||
133 | MM_None, | ||||||||||||||
134 | MM_ELF, | ||||||||||||||
135 | MM_MachO, | ||||||||||||||
136 | MM_WinCOFF, | ||||||||||||||
137 | MM_WinCOFFX86, | ||||||||||||||
138 | MM_Mips, | ||||||||||||||
139 | MM_XCOFF | ||||||||||||||
140 | }; | ||||||||||||||
141 | ManglingModeT ManglingMode; | ||||||||||||||
142 | |||||||||||||||
143 | SmallVector<unsigned char, 8> LegalIntWidths; | ||||||||||||||
144 | |||||||||||||||
145 | /// Primitive type alignment data. This is sorted by type and bit | ||||||||||||||
146 | /// width during construction. | ||||||||||||||
147 | using AlignmentsTy = SmallVector<LayoutAlignElem, 16>; | ||||||||||||||
148 | AlignmentsTy Alignments; | ||||||||||||||
149 | |||||||||||||||
150 | AlignmentsTy::const_iterator | ||||||||||||||
151 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const { | ||||||||||||||
152 | return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType, | ||||||||||||||
153 | BitWidth); | ||||||||||||||
154 | } | ||||||||||||||
155 | |||||||||||||||
156 | AlignmentsTy::iterator | ||||||||||||||
157 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth); | ||||||||||||||
158 | |||||||||||||||
159 | /// The string representation used to create this DataLayout | ||||||||||||||
160 | std::string StringRepresentation; | ||||||||||||||
161 | |||||||||||||||
162 | using PointersTy = SmallVector<PointerAlignElem, 8>; | ||||||||||||||
163 | PointersTy Pointers; | ||||||||||||||
164 | |||||||||||||||
165 | const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const; | ||||||||||||||
166 | |||||||||||||||
167 | // The StructType -> StructLayout map. | ||||||||||||||
168 | mutable void *LayoutMap = nullptr; | ||||||||||||||
169 | |||||||||||||||
170 | /// Pointers in these address spaces are non-integral, and don't have a | ||||||||||||||
171 | /// well-defined bitwise representation. | ||||||||||||||
172 | SmallVector<unsigned, 8> NonIntegralAddressSpaces; | ||||||||||||||
173 | |||||||||||||||
174 | /// Attempts to set the alignment of the given type. Returns an error | ||||||||||||||
175 | /// description on failure. | ||||||||||||||
176 | Error setAlignment(AlignTypeEnum align_type, Align abi_align, | ||||||||||||||
177 | Align pref_align, uint32_t bit_width); | ||||||||||||||
178 | |||||||||||||||
179 | /// Attempts to set the alignment of a pointer in the given address space. | ||||||||||||||
180 | /// Returns an error description on failure. | ||||||||||||||
181 | Error setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign, | ||||||||||||||
182 | uint32_t TypeByteWidth, uint32_t IndexWidth); | ||||||||||||||
183 | |||||||||||||||
184 | /// Internal helper to get alignment for integer of given bitwidth. | ||||||||||||||
185 | Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const; | ||||||||||||||
186 | |||||||||||||||
187 | /// Internal helper method that returns requested alignment for type. | ||||||||||||||
188 | Align getAlignment(Type *Ty, bool abi_or_pref) const; | ||||||||||||||
189 | |||||||||||||||
190 | /// Attempts to parse a target data specification string and reports an error | ||||||||||||||
191 | /// if the string is malformed. | ||||||||||||||
192 | Error parseSpecifier(StringRef Desc); | ||||||||||||||
193 | |||||||||||||||
194 | // Free all internal data structures. | ||||||||||||||
195 | void clear(); | ||||||||||||||
196 | |||||||||||||||
197 | public: | ||||||||||||||
198 | /// Constructs a DataLayout from a specification string. See reset(). | ||||||||||||||
199 | explicit DataLayout(StringRef LayoutDescription) { | ||||||||||||||
200 | reset(LayoutDescription); | ||||||||||||||
201 | } | ||||||||||||||
202 | |||||||||||||||
203 | /// Initialize target data from properties stored in the module. | ||||||||||||||
204 | explicit DataLayout(const Module *M); | ||||||||||||||
205 | |||||||||||||||
206 | DataLayout(const DataLayout &DL) { *this = DL; } | ||||||||||||||
207 | |||||||||||||||
208 | ~DataLayout(); // Not virtual, do not subclass this class | ||||||||||||||
209 | |||||||||||||||
210 | DataLayout &operator=(const DataLayout &DL) { | ||||||||||||||
211 | clear(); | ||||||||||||||
212 | StringRepresentation = DL.StringRepresentation; | ||||||||||||||
213 | BigEndian = DL.isBigEndian(); | ||||||||||||||
214 | AllocaAddrSpace = DL.AllocaAddrSpace; | ||||||||||||||
215 | StackNaturalAlign = DL.StackNaturalAlign; | ||||||||||||||
216 | FunctionPtrAlign = DL.FunctionPtrAlign; | ||||||||||||||
217 | TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType; | ||||||||||||||
218 | ProgramAddrSpace = DL.ProgramAddrSpace; | ||||||||||||||
219 | DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace; | ||||||||||||||
220 | ManglingMode = DL.ManglingMode; | ||||||||||||||
221 | LegalIntWidths = DL.LegalIntWidths; | ||||||||||||||
222 | Alignments = DL.Alignments; | ||||||||||||||
223 | Pointers = DL.Pointers; | ||||||||||||||
224 | NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces; | ||||||||||||||
225 | return *this; | ||||||||||||||
226 | } | ||||||||||||||
227 | |||||||||||||||
228 | bool operator==(const DataLayout &Other) const; | ||||||||||||||
229 | bool operator!=(const DataLayout &Other) const { return !(*this == Other); } | ||||||||||||||
230 | |||||||||||||||
231 | void init(const Module *M); | ||||||||||||||
232 | |||||||||||||||
233 | /// Parse a data layout string (with fallback to default values). | ||||||||||||||
234 | void reset(StringRef LayoutDescription); | ||||||||||||||
235 | |||||||||||||||
236 | /// Parse a data layout string and return the layout. Return an error | ||||||||||||||
237 | /// description on failure. | ||||||||||||||
238 | static Expected<DataLayout> parse(StringRef LayoutDescription); | ||||||||||||||
239 | |||||||||||||||
240 | /// Layout endianness... | ||||||||||||||
241 | bool isLittleEndian() const { return !BigEndian; } | ||||||||||||||
242 | bool isBigEndian() const { return BigEndian; } | ||||||||||||||
243 | |||||||||||||||
244 | /// Returns the string representation of the DataLayout. | ||||||||||||||
245 | /// | ||||||||||||||
246 | /// This representation is in the same format accepted by the string | ||||||||||||||
247 | /// constructor above. This should not be used to compare two DataLayout as | ||||||||||||||
248 | /// different string can represent the same layout. | ||||||||||||||
249 | const std::string &getStringRepresentation() const { | ||||||||||||||
250 | return StringRepresentation; | ||||||||||||||
251 | } | ||||||||||||||
252 | |||||||||||||||
253 | /// Test if the DataLayout was constructed from an empty string. | ||||||||||||||
254 | bool isDefault() const { return StringRepresentation.empty(); } | ||||||||||||||
255 | |||||||||||||||
256 | /// Returns true if the specified type is known to be a native integer | ||||||||||||||
257 | /// type supported by the CPU. | ||||||||||||||
258 | /// | ||||||||||||||
259 | /// For example, i64 is not native on most 32-bit CPUs and i37 is not native | ||||||||||||||
260 | /// on any known one. This returns false if the integer width is not legal. | ||||||||||||||
261 | /// | ||||||||||||||
262 | /// The width is specified in bits. | ||||||||||||||
263 | bool isLegalInteger(uint64_t Width) const { | ||||||||||||||
264 | return llvm::is_contained(LegalIntWidths, Width); | ||||||||||||||
265 | } | ||||||||||||||
266 | |||||||||||||||
267 | bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } | ||||||||||||||
268 | |||||||||||||||
269 | /// Returns true if the given alignment exceeds the natural stack alignment. | ||||||||||||||
270 | bool exceedsNaturalStackAlignment(Align Alignment) const { | ||||||||||||||
271 | return StackNaturalAlign && (Alignment > *StackNaturalAlign); | ||||||||||||||
272 | } | ||||||||||||||
273 | |||||||||||||||
274 | Align getStackAlignment() const { | ||||||||||||||
275 | assert(StackNaturalAlign && "StackNaturalAlign must be defined")((void)0); | ||||||||||||||
276 | return *StackNaturalAlign; | ||||||||||||||
277 | } | ||||||||||||||
278 | |||||||||||||||
279 | unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } | ||||||||||||||
280 | |||||||||||||||
281 | /// Returns the alignment of function pointers, which may or may not be | ||||||||||||||
282 | /// related to the alignment of functions. | ||||||||||||||
283 | /// \see getFunctionPtrAlignType | ||||||||||||||
284 | MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; } | ||||||||||||||
285 | |||||||||||||||
286 | /// Return the type of function pointer alignment. | ||||||||||||||
287 | /// \see getFunctionPtrAlign | ||||||||||||||
288 | FunctionPtrAlignType getFunctionPtrAlignType() const { | ||||||||||||||
289 | return TheFunctionPtrAlignType; | ||||||||||||||
290 | } | ||||||||||||||
291 | |||||||||||||||
292 | unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } | ||||||||||||||
293 | unsigned getDefaultGlobalsAddressSpace() const { | ||||||||||||||
294 | return DefaultGlobalsAddrSpace; | ||||||||||||||
295 | } | ||||||||||||||
296 | |||||||||||||||
297 | bool hasMicrosoftFastStdCallMangling() const { | ||||||||||||||
298 | return ManglingMode == MM_WinCOFFX86; | ||||||||||||||
299 | } | ||||||||||||||
300 | |||||||||||||||
301 | /// Returns true if symbols with leading question marks should not receive IR | ||||||||||||||
302 | /// mangling. True for Windows mangling modes. | ||||||||||||||
303 | bool doNotMangleLeadingQuestionMark() const { | ||||||||||||||
304 | return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; | ||||||||||||||
305 | } | ||||||||||||||
306 | |||||||||||||||
307 | bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } | ||||||||||||||
308 | |||||||||||||||
309 | StringRef getLinkerPrivateGlobalPrefix() const { | ||||||||||||||
310 | if (ManglingMode == MM_MachO) | ||||||||||||||
311 | return "l"; | ||||||||||||||
312 | return ""; | ||||||||||||||
313 | } | ||||||||||||||
314 | |||||||||||||||
315 | char getGlobalPrefix() const { | ||||||||||||||
316 | switch (ManglingMode) { | ||||||||||||||
317 | case MM_None: | ||||||||||||||
318 | case MM_ELF: | ||||||||||||||
319 | case MM_Mips: | ||||||||||||||
320 | case MM_WinCOFF: | ||||||||||||||
321 | case MM_XCOFF: | ||||||||||||||
322 | return '\0'; | ||||||||||||||
323 | case MM_MachO: | ||||||||||||||
324 | case MM_WinCOFFX86: | ||||||||||||||
325 | return '_'; | ||||||||||||||
326 | } | ||||||||||||||
327 | llvm_unreachable("invalid mangling mode")__builtin_unreachable(); | ||||||||||||||
328 | } | ||||||||||||||
329 | |||||||||||||||
330 | StringRef getPrivateGlobalPrefix() const { | ||||||||||||||
331 | switch (ManglingMode) { | ||||||||||||||
332 | case MM_None: | ||||||||||||||
333 | return ""; | ||||||||||||||
334 | case MM_ELF: | ||||||||||||||
335 | case MM_WinCOFF: | ||||||||||||||
336 | return ".L"; | ||||||||||||||
337 | case MM_Mips: | ||||||||||||||
338 | return "$"; | ||||||||||||||
339 | case MM_MachO: | ||||||||||||||
340 | case MM_WinCOFFX86: | ||||||||||||||
341 | return "L"; | ||||||||||||||
342 | case MM_XCOFF: | ||||||||||||||
343 | return "L.."; | ||||||||||||||
344 | } | ||||||||||||||
345 | llvm_unreachable("invalid mangling mode")__builtin_unreachable(); | ||||||||||||||
346 | } | ||||||||||||||
347 | |||||||||||||||
348 | static const char *getManglingComponent(const Triple &T); | ||||||||||||||
349 | |||||||||||||||
350 | /// Returns true if the specified type fits in a native integer type | ||||||||||||||
351 | /// supported by the CPU. | ||||||||||||||
352 | /// | ||||||||||||||
353 | /// For example, if the CPU only supports i32 as a native integer type, then | ||||||||||||||
354 | /// i27 fits in a legal integer type but i45 does not. | ||||||||||||||
355 | bool fitsInLegalInteger(unsigned Width) const { | ||||||||||||||
356 | for (unsigned LegalIntWidth : LegalIntWidths) | ||||||||||||||
357 | if (Width <= LegalIntWidth) | ||||||||||||||
358 | return true; | ||||||||||||||
359 | return false; | ||||||||||||||
360 | } | ||||||||||||||
361 | |||||||||||||||
362 | /// Layout pointer alignment | ||||||||||||||
363 | Align getPointerABIAlignment(unsigned AS) const; | ||||||||||||||
364 | |||||||||||||||
365 | /// Return target's alignment for stack-based pointers | ||||||||||||||
366 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
367 | /// the backends/clients are updated. | ||||||||||||||
368 | Align getPointerPrefAlignment(unsigned AS = 0) const; | ||||||||||||||
369 | |||||||||||||||
370 | /// Layout pointer size | ||||||||||||||
371 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
372 | /// the backends/clients are updated. | ||||||||||||||
373 | unsigned getPointerSize(unsigned AS = 0) const; | ||||||||||||||
374 | |||||||||||||||
375 | /// Returns the maximum pointer size over all address spaces. | ||||||||||||||
376 | unsigned getMaxPointerSize() const; | ||||||||||||||
377 | |||||||||||||||
378 | // Index size used for address calculation. | ||||||||||||||
379 | unsigned getIndexSize(unsigned AS) const; | ||||||||||||||
380 | |||||||||||||||
381 | /// Return the address spaces containing non-integral pointers. Pointers in | ||||||||||||||
382 | /// this address space don't have a well-defined bitwise representation. | ||||||||||||||
383 | ArrayRef<unsigned> getNonIntegralAddressSpaces() const { | ||||||||||||||
384 | return NonIntegralAddressSpaces; | ||||||||||||||
385 | } | ||||||||||||||
386 | |||||||||||||||
387 | bool isNonIntegralAddressSpace(unsigned AddrSpace) const { | ||||||||||||||
388 | ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces(); | ||||||||||||||
389 | return is_contained(NonIntegralSpaces, AddrSpace); | ||||||||||||||
390 | } | ||||||||||||||
391 | |||||||||||||||
392 | bool isNonIntegralPointerType(PointerType *PT) const { | ||||||||||||||
393 | return isNonIntegralAddressSpace(PT->getAddressSpace()); | ||||||||||||||
394 | } | ||||||||||||||
395 | |||||||||||||||
396 | bool isNonIntegralPointerType(Type *Ty) const { | ||||||||||||||
397 | auto *PTy = dyn_cast<PointerType>(Ty); | ||||||||||||||
398 | return PTy
| ||||||||||||||
399 | } | ||||||||||||||
400 | |||||||||||||||
401 | /// Layout pointer size, in bits | ||||||||||||||
402 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
403 | /// the backends/clients are updated. | ||||||||||||||
404 | unsigned getPointerSizeInBits(unsigned AS = 0) const { | ||||||||||||||
405 | return getPointerSize(AS) * 8; | ||||||||||||||
406 | } | ||||||||||||||
407 | |||||||||||||||
408 | /// Returns the maximum pointer size over all address spaces. | ||||||||||||||
409 | unsigned getMaxPointerSizeInBits() const { | ||||||||||||||
410 | return getMaxPointerSize() * 8; | ||||||||||||||
411 | } | ||||||||||||||
412 | |||||||||||||||
413 | /// Size in bits of index used for address calculation in getelementptr. | ||||||||||||||
414 | unsigned getIndexSizeInBits(unsigned AS) const { | ||||||||||||||
415 | return getIndexSize(AS) * 8; | ||||||||||||||
416 | } | ||||||||||||||
417 | |||||||||||||||
418 | /// Layout pointer size, in bits, based on the type. If this function is | ||||||||||||||
419 | /// called with a pointer type, then the type size of the pointer is returned. | ||||||||||||||
420 | /// If this function is called with a vector of pointers, then the type size | ||||||||||||||
421 | /// of the pointer is returned. This should only be called with a pointer or | ||||||||||||||
422 | /// vector of pointers. | ||||||||||||||
423 | unsigned getPointerTypeSizeInBits(Type *) const; | ||||||||||||||
424 | |||||||||||||||
425 | /// Layout size of the index used in GEP calculation. | ||||||||||||||
426 | /// The function should be called with pointer or vector of pointers type. | ||||||||||||||
427 | unsigned getIndexTypeSizeInBits(Type *Ty) const; | ||||||||||||||
428 | |||||||||||||||
429 | unsigned getPointerTypeSize(Type *Ty) const { | ||||||||||||||
430 | return getPointerTypeSizeInBits(Ty) / 8; | ||||||||||||||
431 | } | ||||||||||||||
432 | |||||||||||||||
433 | /// Size examples: | ||||||||||||||
434 | /// | ||||||||||||||
435 | /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] | ||||||||||||||
436 | /// ---- ---------- --------------- --------------- | ||||||||||||||
437 | /// i1 1 8 8 | ||||||||||||||
438 | /// i8 8 8 8 | ||||||||||||||
439 | /// i19 19 24 32 | ||||||||||||||
440 | /// i32 32 32 32 | ||||||||||||||
441 | /// i100 100 104 128 | ||||||||||||||
442 | /// i128 128 128 128 | ||||||||||||||
443 | /// Float 32 32 32 | ||||||||||||||
444 | /// Double 64 64 64 | ||||||||||||||
445 | /// X86_FP80 80 80 96 | ||||||||||||||
446 | /// | ||||||||||||||
447 | /// [*] The alloc size depends on the alignment, and thus on the target. | ||||||||||||||
448 | /// These values are for x86-32 linux. | ||||||||||||||
449 | |||||||||||||||
450 | /// Returns the number of bits necessary to hold the specified type. | ||||||||||||||
451 | /// | ||||||||||||||
452 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
453 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
454 | /// | ||||||||||||||
455 | /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must | ||||||||||||||
456 | /// have a size (Type::isSized() must return true). | ||||||||||||||
457 | TypeSize getTypeSizeInBits(Type *Ty) const; | ||||||||||||||
458 | |||||||||||||||
459 | /// Returns the maximum number of bytes that may be overwritten by | ||||||||||||||
460 | /// storing the specified type. | ||||||||||||||
461 | /// | ||||||||||||||
462 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
463 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
464 | /// | ||||||||||||||
465 | /// For example, returns 5 for i36 and 10 for x86_fp80. | ||||||||||||||
466 | TypeSize getTypeStoreSize(Type *Ty) const { | ||||||||||||||
467 | TypeSize BaseSize = getTypeSizeInBits(Ty); | ||||||||||||||
468 | return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() }; | ||||||||||||||
469 | } | ||||||||||||||
470 | |||||||||||||||
471 | /// Returns the maximum number of bits that may be overwritten by | ||||||||||||||
472 | /// storing the specified type; always a multiple of 8. | ||||||||||||||
473 | /// | ||||||||||||||
474 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
475 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
476 | /// | ||||||||||||||
477 | /// For example, returns 40 for i36 and 80 for x86_fp80. | ||||||||||||||
478 | TypeSize getTypeStoreSizeInBits(Type *Ty) const { | ||||||||||||||
479 | return 8 * getTypeStoreSize(Ty); | ||||||||||||||
480 | } | ||||||||||||||
481 | |||||||||||||||
482 | /// Returns true if no extra padding bits are needed when storing the | ||||||||||||||
483 | /// specified type. | ||||||||||||||
484 | /// | ||||||||||||||
485 | /// For example, returns false for i19 that has a 24-bit store size. | ||||||||||||||
486 | bool typeSizeEqualsStoreSize(Type *Ty) const { | ||||||||||||||
487 | return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty); | ||||||||||||||
488 | } | ||||||||||||||
489 | |||||||||||||||
490 | /// Returns the offset in bytes between successive objects of the | ||||||||||||||
491 | /// specified type, including alignment padding. | ||||||||||||||
492 | /// | ||||||||||||||
493 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
494 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
495 | /// | ||||||||||||||
496 | /// This is the amount that alloca reserves for this type. For example, | ||||||||||||||
497 | /// returns 12 or 16 for x86_fp80, depending on alignment. | ||||||||||||||
498 | TypeSize getTypeAllocSize(Type *Ty) const { | ||||||||||||||
499 | // Round up to the next alignment boundary. | ||||||||||||||
500 | return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); | ||||||||||||||
501 | } | ||||||||||||||
502 | |||||||||||||||
503 | /// Returns the offset in bits between successive objects of the | ||||||||||||||
504 | /// specified type, including alignment padding; always a multiple of 8. | ||||||||||||||
505 | /// | ||||||||||||||
506 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
507 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
508 | /// | ||||||||||||||
509 | /// This is the amount that alloca reserves for this type. For example, | ||||||||||||||
510 | /// returns 96 or 128 for x86_fp80, depending on alignment. | ||||||||||||||
511 | TypeSize getTypeAllocSizeInBits(Type *Ty) const { | ||||||||||||||
512 | return 8 * getTypeAllocSize(Ty); | ||||||||||||||
513 | } | ||||||||||||||
514 | |||||||||||||||
515 | /// Returns the minimum ABI-required alignment for the specified type. | ||||||||||||||
516 | /// FIXME: Deprecate this function once migration to Align is over. | ||||||||||||||
517 | unsigned getABITypeAlignment(Type *Ty) const; | ||||||||||||||
518 | |||||||||||||||
519 | /// Returns the minimum ABI-required alignment for the specified type. | ||||||||||||||
520 | Align getABITypeAlign(Type *Ty) const; | ||||||||||||||
521 | |||||||||||||||
522 | /// Helper function to return `Alignment` if it's set or the result of | ||||||||||||||
523 | /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment. | ||||||||||||||
524 | inline Align getValueOrABITypeAlignment(MaybeAlign Alignment, | ||||||||||||||
525 | Type *Ty) const { | ||||||||||||||
526 | return Alignment ? *Alignment : getABITypeAlign(Ty); | ||||||||||||||
527 | } | ||||||||||||||
528 | |||||||||||||||
529 | /// Returns the minimum ABI-required alignment for an integer type of | ||||||||||||||
530 | /// the specified bitwidth. | ||||||||||||||
531 | Align getABIIntegerTypeAlignment(unsigned BitWidth) const { | ||||||||||||||
532 | return getIntegerAlignment(BitWidth, /* abi_or_pref */ true); | ||||||||||||||
533 | } | ||||||||||||||
534 | |||||||||||||||
535 | /// Returns the preferred stack/global alignment for the specified | ||||||||||||||
536 | /// type. | ||||||||||||||
537 | /// | ||||||||||||||
538 | /// This is always at least as good as the ABI alignment. | ||||||||||||||
539 | /// FIXME: Deprecate this function once migration to Align is over. | ||||||||||||||
540 | unsigned getPrefTypeAlignment(Type *Ty) const; | ||||||||||||||
541 | |||||||||||||||
542 | /// Returns the preferred stack/global alignment for the specified | ||||||||||||||
543 | /// type. | ||||||||||||||
544 | /// | ||||||||||||||
545 | /// This is always at least as good as the ABI alignment. | ||||||||||||||
546 | Align getPrefTypeAlign(Type *Ty) const; | ||||||||||||||
547 | |||||||||||||||
548 | /// Returns an integer type with size at least as big as that of a | ||||||||||||||
549 | /// pointer in the given address space. | ||||||||||||||
550 | IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; | ||||||||||||||
551 | |||||||||||||||
552 | /// Returns an integer (vector of integer) type with size at least as | ||||||||||||||
553 | /// big as that of a pointer of the given pointer (vector of pointer) type. | ||||||||||||||
554 | Type *getIntPtrType(Type *) const; | ||||||||||||||
555 | |||||||||||||||
556 | /// Returns the smallest integer type with size at least as big as | ||||||||||||||
557 | /// Width bits. | ||||||||||||||
558 | Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; | ||||||||||||||
559 | |||||||||||||||
560 | /// Returns the largest legal integer type, or null if none are set. | ||||||||||||||
561 | Type *getLargestLegalIntType(LLVMContext &C) const { | ||||||||||||||
562 | unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); | ||||||||||||||
563 | return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); | ||||||||||||||
564 | } | ||||||||||||||
565 | |||||||||||||||
566 | /// Returns the size of largest legal integer type size, or 0 if none | ||||||||||||||
567 | /// are set. | ||||||||||||||
568 | unsigned getLargestLegalIntTypeSizeInBits() const; | ||||||||||||||
569 | |||||||||||||||
570 | /// Returns the type of a GEP index. | ||||||||||||||
571 | /// If it was not specified explicitly, it will be the integer type of the | ||||||||||||||
572 | /// pointer width - IntPtrType. | ||||||||||||||
573 | Type *getIndexType(Type *PtrTy) const; | ||||||||||||||
574 | |||||||||||||||
575 | /// Returns the offset from the beginning of the type for the specified | ||||||||||||||
576 | /// indices. | ||||||||||||||
577 | /// | ||||||||||||||
578 | /// Note that this takes the element type, not the pointer type. | ||||||||||||||
579 | /// This is used to implement getelementptr. | ||||||||||||||
580 | int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const; | ||||||||||||||
581 | |||||||||||||||
582 | /// Returns a StructLayout object, indicating the alignment of the | ||||||||||||||
583 | /// struct, its size, and the offsets of its fields. | ||||||||||||||
584 | /// | ||||||||||||||
585 | /// Note that this information is lazily cached. | ||||||||||||||
586 | const StructLayout *getStructLayout(StructType *Ty) const; | ||||||||||||||
587 | |||||||||||||||
588 | /// Returns the preferred alignment of the specified global. | ||||||||||||||
589 | /// | ||||||||||||||
590 | /// This includes an explicitly requested alignment (if the global has one). | ||||||||||||||
591 | Align getPreferredAlign(const GlobalVariable *GV) const; | ||||||||||||||
592 | }; | ||||||||||||||
593 | |||||||||||||||
594 | inline DataLayout *unwrap(LLVMTargetDataRef P) { | ||||||||||||||
595 | return reinterpret_cast<DataLayout *>(P); | ||||||||||||||
596 | } | ||||||||||||||
597 | |||||||||||||||
598 | inline LLVMTargetDataRef wrap(const DataLayout *P) { | ||||||||||||||
599 | return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); | ||||||||||||||
600 | } | ||||||||||||||
601 | |||||||||||||||
602 | /// Used to lazily calculate structure layout information for a target machine, | ||||||||||||||
603 | /// based on the DataLayout structure. | ||||||||||||||
604 | class StructLayout final : public TrailingObjects<StructLayout, uint64_t> { | ||||||||||||||
605 | uint64_t StructSize; | ||||||||||||||
606 | Align StructAlignment; | ||||||||||||||
607 | unsigned IsPadded : 1; | ||||||||||||||
608 | unsigned NumElements : 31; | ||||||||||||||
609 | |||||||||||||||
610 | public: | ||||||||||||||
611 | uint64_t getSizeInBytes() const { return StructSize; } | ||||||||||||||
612 | |||||||||||||||
613 | uint64_t getSizeInBits() const { return 8 * StructSize; } | ||||||||||||||
614 | |||||||||||||||
615 | Align getAlignment() const { return StructAlignment; } | ||||||||||||||
616 | |||||||||||||||
617 | /// Returns whether the struct has padding or not between its fields. | ||||||||||||||
618 | /// NB: Padding in nested element is not taken into account. | ||||||||||||||
619 | bool hasPadding() const { return IsPadded; } | ||||||||||||||
620 | |||||||||||||||
621 | /// Given a valid byte offset into the structure, returns the structure | ||||||||||||||
622 | /// index that contains it. | ||||||||||||||
623 | unsigned getElementContainingOffset(uint64_t Offset) const; | ||||||||||||||
624 | |||||||||||||||
625 | MutableArrayRef<uint64_t> getMemberOffsets() { | ||||||||||||||
626 | return llvm::makeMutableArrayRef(getTrailingObjects<uint64_t>(), | ||||||||||||||
627 | NumElements); | ||||||||||||||
628 | } | ||||||||||||||
629 | |||||||||||||||
630 | ArrayRef<uint64_t> getMemberOffsets() const { | ||||||||||||||
631 | return llvm::makeArrayRef(getTrailingObjects<uint64_t>(), NumElements); | ||||||||||||||
632 | } | ||||||||||||||
633 | |||||||||||||||
634 | uint64_t getElementOffset(unsigned Idx) const { | ||||||||||||||
635 | assert(Idx < NumElements && "Invalid element idx!")((void)0); | ||||||||||||||
636 | return getMemberOffsets()[Idx]; | ||||||||||||||
637 | } | ||||||||||||||
638 | |||||||||||||||
639 | uint64_t getElementOffsetInBits(unsigned Idx) const { | ||||||||||||||
640 | return getElementOffset(Idx) * 8; | ||||||||||||||
641 | } | ||||||||||||||
642 | |||||||||||||||
643 | private: | ||||||||||||||
644 | friend class DataLayout; // Only DataLayout can create this class | ||||||||||||||
645 | |||||||||||||||
646 | StructLayout(StructType *ST, const DataLayout &DL); | ||||||||||||||
647 | |||||||||||||||
648 | size_t numTrailingObjects(OverloadToken<uint64_t>) const { | ||||||||||||||
649 | return NumElements; | ||||||||||||||
650 | } | ||||||||||||||
651 | }; | ||||||||||||||
652 | |||||||||||||||
653 | // The implementation of this method is provided inline as it is particularly | ||||||||||||||
654 | // well suited to constant folding when called on a specific Type subclass. | ||||||||||||||
655 | inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const { | ||||||||||||||
656 | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!")((void)0); | ||||||||||||||
657 | switch (Ty->getTypeID()) { | ||||||||||||||
658 | case Type::LabelTyID: | ||||||||||||||
659 | return TypeSize::Fixed(getPointerSizeInBits(0)); | ||||||||||||||
660 | case Type::PointerTyID: | ||||||||||||||
661 | return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace())); | ||||||||||||||
662 | case Type::ArrayTyID: { | ||||||||||||||
663 | ArrayType *ATy = cast<ArrayType>(Ty); | ||||||||||||||
664 | return ATy->getNumElements() * | ||||||||||||||
665 | getTypeAllocSizeInBits(ATy->getElementType()); | ||||||||||||||
666 | } | ||||||||||||||
667 | case Type::StructTyID: | ||||||||||||||
668 | // Get the layout annotation... which is lazily created on demand. | ||||||||||||||
669 | return TypeSize::Fixed( | ||||||||||||||
670 | getStructLayout(cast<StructType>(Ty))->getSizeInBits()); | ||||||||||||||
671 | case Type::IntegerTyID: | ||||||||||||||
672 | return TypeSize::Fixed(Ty->getIntegerBitWidth()); | ||||||||||||||
673 | case Type::HalfTyID: | ||||||||||||||
674 | case Type::BFloatTyID: | ||||||||||||||
675 | return TypeSize::Fixed(16); | ||||||||||||||
676 | case Type::FloatTyID: | ||||||||||||||
677 | return TypeSize::Fixed(32); | ||||||||||||||
678 | case Type::DoubleTyID: | ||||||||||||||
679 | case Type::X86_MMXTyID: | ||||||||||||||
680 | return TypeSize::Fixed(64); | ||||||||||||||
681 | case Type::PPC_FP128TyID: | ||||||||||||||
682 | case Type::FP128TyID: | ||||||||||||||
683 | return TypeSize::Fixed(128); | ||||||||||||||
684 | case Type::X86_AMXTyID: | ||||||||||||||
685 | return TypeSize::Fixed(8192); | ||||||||||||||
686 | // In memory objects this is always aligned to a higher boundary, but | ||||||||||||||
687 | // only 80 bits contain information. | ||||||||||||||
688 | case Type::X86_FP80TyID: | ||||||||||||||
689 | return TypeSize::Fixed(80); | ||||||||||||||
690 | case Type::FixedVectorTyID: | ||||||||||||||
691 | case Type::ScalableVectorTyID: { | ||||||||||||||
692 | VectorType *VTy = cast<VectorType>(Ty); | ||||||||||||||
693 | auto EltCnt = VTy->getElementCount(); | ||||||||||||||
694 | uint64_t MinBits = EltCnt.getKnownMinValue() * | ||||||||||||||
695 | getTypeSizeInBits(VTy->getElementType()).getFixedSize(); | ||||||||||||||
696 | return TypeSize(MinBits, EltCnt.isScalable()); | ||||||||||||||
697 | } | ||||||||||||||
698 | default: | ||||||||||||||
699 | llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type")__builtin_unreachable(); | ||||||||||||||
700 | } | ||||||||||||||
701 | } | ||||||||||||||
702 | |||||||||||||||
703 | } // end namespace llvm | ||||||||||||||
704 | |||||||||||||||
705 | #endif // LLVM_IR_DATALAYOUT_H |
1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file declares the Value class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_IR_VALUE_H |
14 | #define LLVM_IR_VALUE_H |
15 | |
16 | #include "llvm-c/Types.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/ADT/iterator_range.h" |
20 | #include "llvm/IR/Use.h" |
21 | #include "llvm/Support/Alignment.h" |
22 | #include "llvm/Support/CBindingWrapping.h" |
23 | #include "llvm/Support/Casting.h" |
24 | #include <cassert> |
25 | #include <iterator> |
26 | #include <memory> |
27 | |
28 | namespace llvm { |
29 | |
30 | class APInt; |
31 | class Argument; |
32 | class BasicBlock; |
33 | class Constant; |
34 | class ConstantData; |
35 | class ConstantAggregate; |
36 | class DataLayout; |
37 | class Function; |
38 | class GlobalAlias; |
39 | class GlobalIFunc; |
40 | class GlobalIndirectSymbol; |
41 | class GlobalObject; |
42 | class GlobalValue; |
43 | class GlobalVariable; |
44 | class InlineAsm; |
45 | class Instruction; |
46 | class LLVMContext; |
47 | class MDNode; |
48 | class Module; |
49 | class ModuleSlotTracker; |
50 | class raw_ostream; |
51 | template<typename ValueTy> class StringMapEntry; |
52 | class Twine; |
53 | class Type; |
54 | class User; |
55 | |
56 | using ValueName = StringMapEntry<Value *>; |
57 | |
58 | //===----------------------------------------------------------------------===// |
59 | // Value Class |
60 | //===----------------------------------------------------------------------===// |
61 | |
62 | /// LLVM Value Representation |
63 | /// |
64 | /// This is a very important LLVM class. It is the base class of all values |
65 | /// computed by a program that may be used as operands to other values. Value is |
66 | /// the super class of other important classes such as Instruction and Function. |
67 | /// All Values have a Type. Type is not a subclass of Value. Some values can |
68 | /// have a name and they belong to some Module. Setting the name on the Value |
69 | /// automatically updates the module's symbol table. |
70 | /// |
71 | /// Every value has a "use list" that keeps track of which other Values are |
72 | /// using this Value. A Value can also have an arbitrary number of ValueHandle |
73 | /// objects that watch it and listen to RAUW and Destroy events. See |
74 | /// llvm/IR/ValueHandle.h for details. |
75 | class Value { |
76 | Type *VTy; |
77 | Use *UseList; |
78 | |
79 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
80 | friend class ValueHandleBase; |
81 | |
82 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
83 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
84 | |
85 | protected: |
86 | /// Hold subclass data that can be dropped. |
87 | /// |
88 | /// This member is similar to SubclassData, however it is for holding |
89 | /// information which may be used to aid optimization, but which may be |
90 | /// cleared to zero without affecting conservative interpretation. |
91 | unsigned char SubclassOptionalData : 7; |
92 | |
93 | private: |
94 | /// Hold arbitrary subclass data. |
95 | /// |
96 | /// This member is defined by this class, but is not used for anything. |
97 | /// Subclasses can use it to hold whatever state they find useful. This |
98 | /// field is initialized to zero by the ctor. |
99 | unsigned short SubclassData; |
100 | |
101 | protected: |
102 | /// The number of operands in the subclass. |
103 | /// |
104 | /// This member is defined by this class, but not used for anything. |
105 | /// Subclasses can use it to store their number of operands, if they have |
106 | /// any. |
107 | /// |
108 | /// This is stored here to save space in User on 64-bit hosts. Since most |
109 | /// instances of Value have operands, 32-bit hosts aren't significantly |
110 | /// affected. |
111 | /// |
112 | /// Note, this should *NOT* be used directly by any class other than User. |
113 | /// User uses this value to find the Use list. |
114 | enum : unsigned { NumUserOperandsBits = 27 }; |
115 | unsigned NumUserOperands : NumUserOperandsBits; |
116 | |
117 | // Use the same type as the bitfield above so that MSVC will pack them. |
118 | unsigned IsUsedByMD : 1; |
119 | unsigned HasName : 1; |
120 | unsigned HasMetadata : 1; // Has metadata attached to this? |
121 | unsigned HasHungOffUses : 1; |
122 | unsigned HasDescriptor : 1; |
123 | |
124 | private: |
125 | template <typename UseT> // UseT == 'Use' or 'const Use' |
126 | class use_iterator_impl { |
127 | friend class Value; |
128 | |
129 | UseT *U; |
130 | |
131 | explicit use_iterator_impl(UseT *u) : U(u) {} |
132 | |
133 | public: |
134 | using iterator_category = std::forward_iterator_tag; |
135 | using value_type = UseT *; |
136 | using difference_type = std::ptrdiff_t; |
137 | using pointer = value_type *; |
138 | using reference = value_type &; |
139 | |
140 | use_iterator_impl() : U() {} |
141 | |
142 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
143 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
144 | |
145 | use_iterator_impl &operator++() { // Preincrement |
146 | assert(U && "Cannot increment end iterator!")((void)0); |
147 | U = U->getNext(); |
148 | return *this; |
149 | } |
150 | |
151 | use_iterator_impl operator++(int) { // Postincrement |
152 | auto tmp = *this; |
153 | ++*this; |
154 | return tmp; |
155 | } |
156 | |
157 | UseT &operator*() const { |
158 | assert(U && "Cannot dereference end iterator!")((void)0); |
159 | return *U; |
160 | } |
161 | |
162 | UseT *operator->() const { return &operator*(); } |
163 | |
164 | operator use_iterator_impl<const UseT>() const { |
165 | return use_iterator_impl<const UseT>(U); |
166 | } |
167 | }; |
168 | |
169 | template <typename UserTy> // UserTy == 'User' or 'const User' |
170 | class user_iterator_impl { |
171 | use_iterator_impl<Use> UI; |
172 | explicit user_iterator_impl(Use *U) : UI(U) {} |
173 | friend class Value; |
174 | |
175 | public: |
176 | using iterator_category = std::forward_iterator_tag; |
177 | using value_type = UserTy *; |
178 | using difference_type = std::ptrdiff_t; |
179 | using pointer = value_type *; |
180 | using reference = value_type &; |
181 | |
182 | user_iterator_impl() = default; |
183 | |
184 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
185 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
186 | |
187 | /// Returns true if this iterator is equal to user_end() on the value. |
188 | bool atEnd() const { return *this == user_iterator_impl(); } |
189 | |
190 | user_iterator_impl &operator++() { // Preincrement |
191 | ++UI; |
192 | return *this; |
193 | } |
194 | |
195 | user_iterator_impl operator++(int) { // Postincrement |
196 | auto tmp = *this; |
197 | ++*this; |
198 | return tmp; |
199 | } |
200 | |
201 | // Retrieve a pointer to the current User. |
202 | UserTy *operator*() const { |
203 | return UI->getUser(); |
204 | } |
205 | |
206 | UserTy *operator->() const { return operator*(); } |
207 | |
208 | operator user_iterator_impl<const UserTy>() const { |
209 | return user_iterator_impl<const UserTy>(*UI); |
210 | } |
211 | |
212 | Use &getUse() const { return *UI; } |
213 | }; |
214 | |
215 | protected: |
216 | Value(Type *Ty, unsigned scid); |
217 | |
218 | /// Value's destructor should be virtual by design, but that would require |
219 | /// that Value and all of its subclasses have a vtable that effectively |
220 | /// duplicates the information in the value ID. As a size optimization, the |
221 | /// destructor has been protected, and the caller should manually call |
222 | /// deleteValue. |
223 | ~Value(); // Use deleteValue() to delete a generic Value. |
224 | |
225 | public: |
226 | Value(const Value &) = delete; |
227 | Value &operator=(const Value &) = delete; |
228 | |
229 | /// Delete a pointer to a generic Value. |
230 | void deleteValue(); |
231 | |
232 | /// Support for debugging, callable in GDB: V->dump() |
233 | void dump() const; |
234 | |
235 | /// Implement operator<< on Value. |
236 | /// @{ |
237 | void print(raw_ostream &O, bool IsForDebug = false) const; |
238 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
239 | bool IsForDebug = false) const; |
240 | /// @} |
241 | |
242 | /// Print the name of this Value out to the specified raw_ostream. |
243 | /// |
244 | /// This is useful when you just want to print 'int %reg126', not the |
245 | /// instruction that generated it. If you specify a Module for context, then |
246 | /// even constanst get pretty-printed; for example, the type of a null |
247 | /// pointer is printed symbolically. |
248 | /// @{ |
249 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
250 | const Module *M = nullptr) const; |
251 | void printAsOperand(raw_ostream &O, bool PrintType, |
252 | ModuleSlotTracker &MST) const; |
253 | /// @} |
254 | |
255 | /// All values are typed, get the type of this value. |
256 | Type *getType() const { return VTy; } |
257 | |
258 | /// All values hold a context through their type. |
259 | LLVMContext &getContext() const; |
260 | |
261 | // All values can potentially be named. |
262 | bool hasName() const { return HasName; } |
263 | ValueName *getValueName() const; |
264 | void setValueName(ValueName *VN); |
265 | |
266 | private: |
267 | void destroyValueName(); |
268 | enum class ReplaceMetadataUses { No, Yes }; |
269 | void doRAUW(Value *New, ReplaceMetadataUses); |
270 | void setNameImpl(const Twine &Name); |
271 | |
272 | public: |
273 | /// Return a constant reference to the value's name. |
274 | /// |
275 | /// This guaranteed to return the same reference as long as the value is not |
276 | /// modified. If the value has a name, this does a hashtable lookup, so it's |
277 | /// not free. |
278 | StringRef getName() const; |
279 | |
280 | /// Change the name of the value. |
281 | /// |
282 | /// Choose a new unique name if the provided name is taken. |
283 | /// |
284 | /// \param Name The new name; or "" if the value's name should be removed. |
285 | void setName(const Twine &Name); |
286 | |
287 | /// Transfer the name from V to this value. |
288 | /// |
289 | /// After taking V's name, sets V's name to empty. |
290 | /// |
291 | /// \note It is an error to call V->takeName(V). |
292 | void takeName(Value *V); |
293 | |
294 | #ifndef NDEBUG1 |
295 | std::string getNameOrAsOperand() const; |
296 | #endif |
297 | |
298 | /// Change all uses of this to point to a new Value. |
299 | /// |
300 | /// Go through the uses list for this definition and make each use point to |
301 | /// "V" instead of "this". After this completes, 'this's use list is |
302 | /// guaranteed to be empty. |
303 | void replaceAllUsesWith(Value *V); |
304 | |
305 | /// Change non-metadata uses of this to point to a new Value. |
306 | /// |
307 | /// Go through the uses list for this definition and make each use point to |
308 | /// "V" instead of "this". This function skips metadata entries in the list. |
309 | void replaceNonMetadataUsesWith(Value *V); |
310 | |
311 | /// Go through the uses list for this definition and make each use point |
312 | /// to "V" if the callback ShouldReplace returns true for the given Use. |
313 | /// Unlike replaceAllUsesWith() this function does not support basic block |
314 | /// values. |
315 | void replaceUsesWithIf(Value *New, |
316 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
317 | |
318 | /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
319 | /// make each use point to "V" instead of "this" when the use is outside the |
320 | /// block. 'This's use list is expected to have at least one element. |
321 | /// Unlike replaceAllUsesWith() this function does not support basic block |
322 | /// values. |
323 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
324 | |
325 | //---------------------------------------------------------------------- |
326 | // Methods for handling the chain of uses of this Value. |
327 | // |
328 | // Materializing a function can introduce new uses, so these methods come in |
329 | // two variants: |
330 | // The methods that start with materialized_ check the uses that are |
331 | // currently known given which functions are materialized. Be very careful |
332 | // when using them since you might not get all uses. |
333 | // The methods that don't start with materialized_ assert that modules is |
334 | // fully materialized. |
335 | void assertModuleIsMaterializedImpl() const; |
336 | // This indirection exists so we can keep assertModuleIsMaterializedImpl() |
337 | // around in release builds of Value.cpp to be linked with other code built |
338 | // in debug mode. But this avoids calling it in any of the release built code. |
339 | void assertModuleIsMaterialized() const { |
340 | #ifndef NDEBUG1 |
341 | assertModuleIsMaterializedImpl(); |
342 | #endif |
343 | } |
344 | |
345 | bool use_empty() const { |
346 | assertModuleIsMaterialized(); |
347 | return UseList == nullptr; |
348 | } |
349 | |
350 | bool materialized_use_empty() const { |
351 | return UseList == nullptr; |
352 | } |
353 | |
354 | using use_iterator = use_iterator_impl<Use>; |
355 | using const_use_iterator = use_iterator_impl<const Use>; |
356 | |
357 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
358 | const_use_iterator materialized_use_begin() const { |
359 | return const_use_iterator(UseList); |
360 | } |
361 | use_iterator use_begin() { |
362 | assertModuleIsMaterialized(); |
363 | return materialized_use_begin(); |
364 | } |
365 | const_use_iterator use_begin() const { |
366 | assertModuleIsMaterialized(); |
367 | return materialized_use_begin(); |
368 | } |
369 | use_iterator use_end() { return use_iterator(); } |
370 | const_use_iterator use_end() const { return const_use_iterator(); } |
371 | iterator_range<use_iterator> materialized_uses() { |
372 | return make_range(materialized_use_begin(), use_end()); |
373 | } |
374 | iterator_range<const_use_iterator> materialized_uses() const { |
375 | return make_range(materialized_use_begin(), use_end()); |
376 | } |
377 | iterator_range<use_iterator> uses() { |
378 | assertModuleIsMaterialized(); |
379 | return materialized_uses(); |
380 | } |
381 | iterator_range<const_use_iterator> uses() const { |
382 | assertModuleIsMaterialized(); |
383 | return materialized_uses(); |
384 | } |
385 | |
386 | bool user_empty() const { |
387 | assertModuleIsMaterialized(); |
388 | return UseList == nullptr; |
389 | } |
390 | |
391 | using user_iterator = user_iterator_impl<User>; |
392 | using const_user_iterator = user_iterator_impl<const User>; |
393 | |
394 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
395 | const_user_iterator materialized_user_begin() const { |
396 | return const_user_iterator(UseList); |
397 | } |
398 | user_iterator user_begin() { |
399 | assertModuleIsMaterialized(); |
400 | return materialized_user_begin(); |
401 | } |
402 | const_user_iterator user_begin() const { |
403 | assertModuleIsMaterialized(); |
404 | return materialized_user_begin(); |
405 | } |
406 | user_iterator user_end() { return user_iterator(); } |
407 | const_user_iterator user_end() const { return const_user_iterator(); } |
408 | User *user_back() { |
409 | assertModuleIsMaterialized(); |
410 | return *materialized_user_begin(); |
411 | } |
412 | const User *user_back() const { |
413 | assertModuleIsMaterialized(); |
414 | return *materialized_user_begin(); |
415 | } |
416 | iterator_range<user_iterator> materialized_users() { |
417 | return make_range(materialized_user_begin(), user_end()); |
418 | } |
419 | iterator_range<const_user_iterator> materialized_users() const { |
420 | return make_range(materialized_user_begin(), user_end()); |
421 | } |
422 | iterator_range<user_iterator> users() { |
423 | assertModuleIsMaterialized(); |
424 | return materialized_users(); |
425 | } |
426 | iterator_range<const_user_iterator> users() const { |
427 | assertModuleIsMaterialized(); |
428 | return materialized_users(); |
429 | } |
430 | |
431 | /// Return true if there is exactly one use of this value. |
432 | /// |
433 | /// This is specialized because it is a common request and does not require |
434 | /// traversing the whole use list. |
435 | bool hasOneUse() const { return hasSingleElement(uses()); } |
436 | |
437 | /// Return true if this Value has exactly N uses. |
438 | bool hasNUses(unsigned N) const; |
439 | |
440 | /// Return true if this value has N uses or more. |
441 | /// |
442 | /// This is logically equivalent to getNumUses() >= N. |
443 | bool hasNUsesOrMore(unsigned N) const; |
444 | |
445 | /// Return true if there is exactly one user of this value. |
446 | /// |
447 | /// Note that this is not the same as "has one use". If a value has one use, |
448 | /// then there certainly is a single user. But if value has several uses, |
449 | /// it is possible that all uses are in a single user, or not. |
450 | /// |
451 | /// This check is potentially costly, since it requires traversing, |
452 | /// in the worst case, the whole use list of a value. |
453 | bool hasOneUser() const; |
454 | |
455 | /// Return true if there is exactly one use of this value that cannot be |
456 | /// dropped. |
457 | /// |
458 | /// This is specialized because it is a common request and does not require |
459 | /// traversing the whole use list. |
460 | Use *getSingleUndroppableUse(); |
461 | const Use *getSingleUndroppableUse() const { |
462 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
463 | } |
464 | |
465 | /// Return true if there this value. |
466 | /// |
467 | /// This is specialized because it is a common request and does not require |
468 | /// traversing the whole use list. |
469 | bool hasNUndroppableUses(unsigned N) const; |
470 | |
471 | /// Return true if this value has N uses or more. |
472 | /// |
473 | /// This is logically equivalent to getNumUses() >= N. |
474 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
475 | |
476 | /// Remove every uses that can safely be removed. |
477 | /// |
478 | /// This will remove for example uses in llvm.assume. |
479 | /// This should be used when performing want to perform a tranformation but |
480 | /// some Droppable uses pervent it. |
481 | /// This function optionally takes a filter to only remove some droppable |
482 | /// uses. |
483 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
484 | [](const Use *) { return true; }); |
485 | |
486 | /// Remove every use of this value in \p User that can safely be removed. |
487 | void dropDroppableUsesIn(User &Usr); |
488 | |
489 | /// Remove the droppable use \p U. |
490 | static void dropDroppableUse(Use &U); |
491 | |
492 | /// Check if this value is used in the specified basic block. |
493 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
494 | |
495 | /// This method computes the number of uses of this Value. |
496 | /// |
497 | /// This is a linear time operation. Use hasOneUse, hasNUses, or |
498 | /// hasNUsesOrMore to check for specific values. |
499 | unsigned getNumUses() const; |
500 | |
501 | /// This method should only be used by the Use class. |
502 | void addUse(Use &U) { U.addToList(&UseList); } |
503 | |
504 | /// Concrete subclass of this. |
505 | /// |
506 | /// An enumeration for keeping track of the concrete subclass of Value that |
507 | /// is actually instantiated. Values of this enumeration are kept in the |
508 | /// Value classes SubclassID field. They are used for concrete type |
509 | /// identification. |
510 | enum ValueTy { |
511 | #define HANDLE_VALUE(Name) Name##Val, |
512 | #include "llvm/IR/Value.def" |
513 | |
514 | // Markers: |
515 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
516 | #include "llvm/IR/Value.def" |
517 | }; |
518 | |
519 | /// Return an ID for the concrete type of this object. |
520 | /// |
521 | /// This is used to implement the classof checks. This should not be used |
522 | /// for any other purpose, as the values may change as LLVM evolves. Also, |
523 | /// note that for instructions, the Instruction's opcode is added to |
524 | /// InstructionVal. So this means three things: |
525 | /// # there is no value with code InstructionVal (no opcode==0). |
526 | /// # there are more possible values for the value type than in ValueTy enum. |
527 | /// # the InstructionVal enumerator must be the highest valued enumerator in |
528 | /// the ValueTy enum. |
529 | unsigned getValueID() const { |
530 | return SubclassID; |
531 | } |
532 | |
533 | /// Return the raw optional flags value contained in this value. |
534 | /// |
535 | /// This should only be used when testing two Values for equivalence. |
536 | unsigned getRawSubclassOptionalData() const { |
537 | return SubclassOptionalData; |
538 | } |
539 | |
540 | /// Clear the optional flags contained in this value. |
541 | void clearSubclassOptionalData() { |
542 | SubclassOptionalData = 0; |
543 | } |
544 | |
545 | /// Check the optional flags for equality. |
546 | bool hasSameSubclassOptionalData(const Value *V) const { |
547 | return SubclassOptionalData == V->SubclassOptionalData; |
548 | } |
549 | |
550 | /// Return true if there is a value handle associated with this value. |
551 | bool hasValueHandle() const { return HasValueHandle; } |
552 | |
553 | /// Return true if there is metadata referencing this value. |
554 | bool isUsedByMetadata() const { return IsUsedByMD; } |
555 | |
556 | // Return true if this value is only transitively referenced by metadata. |
557 | bool isTransitiveUsedByMetadataOnly() const; |
558 | |
559 | protected: |
560 | /// Get the current metadata attachments for the given kind, if any. |
561 | /// |
562 | /// These functions require that the value have at most a single attachment |
563 | /// of the given kind, and return \c nullptr if such an attachment is missing. |
564 | /// @{ |
565 | MDNode *getMetadata(unsigned KindID) const; |
566 | MDNode *getMetadata(StringRef Kind) const; |
567 | /// @} |
568 | |
569 | /// Appends all attachments with the given ID to \c MDs in insertion order. |
570 | /// If the Value has no attachments with the given ID, or if ID is invalid, |
571 | /// leaves MDs unchanged. |
572 | /// @{ |
573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
575 | /// @} |
576 | |
577 | /// Appends all metadata attached to this value to \c MDs, sorting by |
578 | /// KindID. The first element of each pair returned is the KindID, the second |
579 | /// element is the metadata value. Attachments with the same ID appear in |
580 | /// insertion order. |
581 | void |
582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
583 | |
584 | /// Return true if this value has any metadata attached to it. |
585 | bool hasMetadata() const { return (bool)HasMetadata; } |
586 | |
587 | /// Return true if this value has the given type of metadata attached. |
588 | /// @{ |
589 | bool hasMetadata(unsigned KindID) const { |
590 | return getMetadata(KindID) != nullptr; |
591 | } |
592 | bool hasMetadata(StringRef Kind) const { |
593 | return getMetadata(Kind) != nullptr; |
594 | } |
595 | /// @} |
596 | |
597 | /// Set a particular kind of metadata attachment. |
598 | /// |
599 | /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or |
600 | /// replacing it if it already exists. |
601 | /// @{ |
602 | void setMetadata(unsigned KindID, MDNode *Node); |
603 | void setMetadata(StringRef Kind, MDNode *Node); |
604 | /// @} |
605 | |
606 | /// Add a metadata attachment. |
607 | /// @{ |
608 | void addMetadata(unsigned KindID, MDNode &MD); |
609 | void addMetadata(StringRef Kind, MDNode &MD); |
610 | /// @} |
611 | |
612 | /// Erase all metadata attachments with the given kind. |
613 | /// |
614 | /// \returns true if any metadata was removed. |
615 | bool eraseMetadata(unsigned KindID); |
616 | |
617 | /// Erase all metadata attached to this Value. |
618 | void clearMetadata(); |
619 | |
620 | public: |
621 | /// Return true if this value is a swifterror value. |
622 | /// |
623 | /// swifterror values can be either a function argument or an alloca with a |
624 | /// swifterror attribute. |
625 | bool isSwiftError() const; |
626 | |
627 | /// Strip off pointer casts, all-zero GEPs and address space casts. |
628 | /// |
629 | /// Returns the original uncasted value. If this is called on a non-pointer |
630 | /// value, it returns 'this'. |
631 | const Value *stripPointerCasts() const; |
632 | Value *stripPointerCasts() { |
633 | return const_cast<Value *>( |
634 | static_cast<const Value *>(this)->stripPointerCasts()); |
635 | } |
636 | |
637 | /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. |
638 | /// |
639 | /// Returns the original uncasted value. If this is called on a non-pointer |
640 | /// value, it returns 'this'. |
641 | const Value *stripPointerCastsAndAliases() const; |
642 | Value *stripPointerCastsAndAliases() { |
643 | return const_cast<Value *>( |
644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
645 | } |
646 | |
647 | /// Strip off pointer casts, all-zero GEPs and address space casts |
648 | /// but ensures the representation of the result stays the same. |
649 | /// |
650 | /// Returns the original uncasted value with the same representation. If this |
651 | /// is called on a non-pointer value, it returns 'this'. |
652 | const Value *stripPointerCastsSameRepresentation() const; |
653 | Value *stripPointerCastsSameRepresentation() { |
654 | return const_cast<Value *>(static_cast<const Value *>(this) |
655 | ->stripPointerCastsSameRepresentation()); |
656 | } |
657 | |
658 | /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and |
659 | /// invariant group info. |
660 | /// |
661 | /// Returns the original uncasted value. If this is called on a non-pointer |
662 | /// value, it returns 'this'. This function should be used only in |
663 | /// Alias analysis. |
664 | const Value *stripPointerCastsForAliasAnalysis() const; |
665 | Value *stripPointerCastsForAliasAnalysis() { |
666 | return const_cast<Value *>(static_cast<const Value *>(this) |
667 | ->stripPointerCastsForAliasAnalysis()); |
668 | } |
669 | |
670 | /// Strip off pointer casts and all-constant inbounds GEPs. |
671 | /// |
672 | /// Returns the original pointer value. If this is called on a non-pointer |
673 | /// value, it returns 'this'. |
674 | const Value *stripInBoundsConstantOffsets() const; |
675 | Value *stripInBoundsConstantOffsets() { |
676 | return const_cast<Value *>( |
677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
678 | } |
679 | |
680 | /// Accumulate the constant offset this value has compared to a base pointer. |
681 | /// Only 'getelementptr' instructions (GEPs) are accumulated but other |
682 | /// instructions, e.g., casts, are stripped away as well. |
683 | /// The accumulated constant offset is added to \p Offset and the base |
684 | /// pointer is returned. |
685 | /// |
686 | /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for |
687 | /// the address space of 'this' pointer value, e.g., use |
688 | /// DataLayout::getIndexTypeSizeInBits(Ty). |
689 | /// |
690 | /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and |
691 | /// accumulated even if the GEP is not "inbounds". |
692 | /// |
693 | /// If \p ExternalAnalysis is provided it will be used to calculate a offset |
694 | /// when a operand of GEP is not constant. |
695 | /// For example, for a value \p ExternalAnalysis might try to calculate a |
696 | /// lower bound. If \p ExternalAnalysis is successful, it should return true. |
697 | /// |
698 | /// If this is called on a non-pointer value, it returns 'this' and the |
699 | /// \p Offset is not modified. |
700 | /// |
701 | /// Note that this function will never return a nullptr. It will also never |
702 | /// manipulate the \p Offset in a way that would not match the difference |
703 | /// between the underlying value and the returned one. Thus, if no constant |
704 | /// offset was found, the returned value is the underlying one and \p Offset |
705 | /// is unchanged. |
706 | const Value *stripAndAccumulateConstantOffsets( |
707 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
708 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
709 | nullptr) const; |
710 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
711 | bool AllowNonInbounds) { |
712 | return const_cast<Value *>( |
713 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
714 | DL, Offset, AllowNonInbounds)); |
715 | } |
716 | |
717 | /// This is a wrapper around stripAndAccumulateConstantOffsets with the |
718 | /// in-bounds requirement set to false. |
719 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
720 | APInt &Offset) const { |
721 | return stripAndAccumulateConstantOffsets(DL, Offset, |
722 | /* AllowNonInbounds */ false); |
723 | } |
724 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
725 | APInt &Offset) { |
726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
727 | /* AllowNonInbounds */ false); |
728 | } |
729 | |
730 | /// Strip off pointer casts and inbounds GEPs. |
731 | /// |
732 | /// Returns the original pointer value. If this is called on a non-pointer |
733 | /// value, it returns 'this'. |
734 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
735 | [](const Value *) {}) const; |
736 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
737 | [](const Value *) {}) { |
738 | return const_cast<Value *>( |
739 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
740 | } |
741 | |
742 | /// Return true if the memory object referred to by V can by freed in the |
743 | /// scope for which the SSA value defining the allocation is statically |
744 | /// defined. E.g. deallocation after the static scope of a value does not |
745 | /// count, but a deallocation before that does. |
746 | bool canBeFreed() const; |
747 | |
748 | /// Returns the number of bytes known to be dereferenceable for the |
749 | /// pointer value. |
750 | /// |
751 | /// If CanBeNull is set by this function the pointer can either be null or be |
752 | /// dereferenceable up to the returned number of bytes. |
753 | /// |
754 | /// IF CanBeFreed is true, the pointer is known to be dereferenceable at |
755 | /// point of definition only. Caller must prove that allocation is not |
756 | /// deallocated between point of definition and use. |
757 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
758 | bool &CanBeNull, |
759 | bool &CanBeFreed) const; |
760 | |
761 | /// Returns an alignment of the pointer value. |
762 | /// |
763 | /// Returns an alignment which is either specified explicitly, e.g. via |
764 | /// align attribute of a function argument, or guaranteed by DataLayout. |
765 | Align getPointerAlignment(const DataLayout &DL) const; |
766 | |
767 | /// Translate PHI node to its predecessor from the given basic block. |
768 | /// |
769 | /// If this value is a PHI node with CurBB as its parent, return the value in |
770 | /// the PHI node corresponding to PredBB. If not, return ourself. This is |
771 | /// useful if you want to know the value something has in a predecessor |
772 | /// block. |
773 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
774 | const BasicBlock *PredBB) const; |
775 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
776 | return const_cast<Value *>( |
777 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
778 | } |
779 | |
780 | /// The maximum alignment for instructions. |
781 | /// |
782 | /// This is the greatest alignment value supported by load, store, and alloca |
783 | /// instructions, and global values. |
784 | static const unsigned MaxAlignmentExponent = 29; |
785 | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; |
786 | |
787 | /// Mutate the type of this Value to be of the specified type. |
788 | /// |
789 | /// Note that this is an extremely dangerous operation which can create |
790 | /// completely invalid IR very easily. It is strongly recommended that you |
791 | /// recreate IR objects with the right types instead of mutating them in |
792 | /// place. |
793 | void mutateType(Type *Ty) { |
794 | VTy = Ty; |
795 | } |
796 | |
797 | /// Sort the use-list. |
798 | /// |
799 | /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
800 | /// expected to compare two \a Use references. |
801 | template <class Compare> void sortUseList(Compare Cmp); |
802 | |
803 | /// Reverse the use-list. |
804 | void reverseUseList(); |
805 | |
806 | private: |
807 | /// Merge two lists together. |
808 | /// |
809 | /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
810 | /// "equal" items from L before items from R. |
811 | /// |
812 | /// \return the first element in the list. |
813 | /// |
814 | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
815 | template <class Compare> |
816 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
817 | Use *Merged; |
818 | Use **Next = &Merged; |
819 | |
820 | while (true) { |
821 | if (!L) { |
822 | *Next = R; |
823 | break; |
824 | } |
825 | if (!R) { |
826 | *Next = L; |
827 | break; |
828 | } |
829 | if (Cmp(*R, *L)) { |
830 | *Next = R; |
831 | Next = &R->Next; |
832 | R = R->Next; |
833 | } else { |
834 | *Next = L; |
835 | Next = &L->Next; |
836 | L = L->Next; |
837 | } |
838 | } |
839 | |
840 | return Merged; |
841 | } |
842 | |
843 | protected: |
844 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
845 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
846 | }; |
847 | |
848 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
849 | |
850 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. |
851 | /// Those don't work because Value and Instruction's destructors are protected, |
852 | /// aren't virtual, and won't destroy the complete object. |
853 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
854 | |
855 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
856 | V.print(OS); |
857 | return OS; |
858 | } |
859 | |
860 | void Use::set(Value *V) { |
861 | if (Val) removeFromList(); |
862 | Val = V; |
863 | if (V) V->addUse(*this); |
864 | } |
865 | |
866 | Value *Use::operator=(Value *RHS) { |
867 | set(RHS); |
868 | return RHS; |
869 | } |
870 | |
871 | const Use &Use::operator=(const Use &RHS) { |
872 | set(RHS.Val); |
873 | return *this; |
874 | } |
875 | |
876 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
877 | if (!UseList || !UseList->Next) |
878 | // No need to sort 0 or 1 uses. |
879 | return; |
880 | |
881 | // Note: this function completely ignores Prev pointers until the end when |
882 | // they're fixed en masse. |
883 | |
884 | // Create a binomial vector of sorted lists, visiting uses one at a time and |
885 | // merging lists as necessary. |
886 | const unsigned MaxSlots = 32; |
887 | Use *Slots[MaxSlots]; |
888 | |
889 | // Collect the first use, turning it into a single-item list. |
890 | Use *Next = UseList->Next; |
891 | UseList->Next = nullptr; |
892 | unsigned NumSlots = 1; |
893 | Slots[0] = UseList; |
894 | |
895 | // Collect all but the last use. |
896 | while (Next->Next) { |
897 | Use *Current = Next; |
898 | Next = Current->Next; |
899 | |
900 | // Turn Current into a single-item list. |
901 | Current->Next = nullptr; |
902 | |
903 | // Save Current in the first available slot, merging on collisions. |
904 | unsigned I; |
905 | for (I = 0; I < NumSlots; ++I) { |
906 | if (!Slots[I]) |
907 | break; |
908 | |
909 | // Merge two lists, doubling the size of Current and emptying slot I. |
910 | // |
911 | // Since the uses in Slots[I] originally preceded those in Current, send |
912 | // Slots[I] in as the left parameter to maintain a stable sort. |
913 | Current = mergeUseLists(Slots[I], Current, Cmp); |
914 | Slots[I] = nullptr; |
915 | } |
916 | // Check if this is a new slot. |
917 | if (I == NumSlots) { |
918 | ++NumSlots; |
919 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")((void)0); |
920 | } |
921 | |
922 | // Found an open slot. |
923 | Slots[I] = Current; |
924 | } |
925 | |
926 | // Merge all the lists together. |
927 | assert(Next && "Expected one more Use")((void)0); |
928 | assert(!Next->Next && "Expected only one Use")((void)0); |
929 | UseList = Next; |
930 | for (unsigned I = 0; I < NumSlots; ++I) |
931 | if (Slots[I]) |
932 | // Since the uses in Slots[I] originally preceded those in UseList, send |
933 | // Slots[I] in as the left parameter to maintain a stable sort. |
934 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
935 | |
936 | // Fix the Prev pointers. |
937 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
938 | I->Prev = Prev; |
939 | Prev = &I->Next; |
940 | } |
941 | } |
942 | |
943 | // isa - Provide some specializations of isa so that we don't have to include |
944 | // the subtype header files to test to see if the value is a subclass... |
945 | // |
946 | template <> struct isa_impl<Constant, Value> { |
947 | static inline bool doit(const Value &Val) { |
948 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
949 | return Val.getValueID() <= Value::ConstantLastVal; |
950 | } |
951 | }; |
952 | |
953 | template <> struct isa_impl<ConstantData, Value> { |
954 | static inline bool doit(const Value &Val) { |
955 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
956 | Val.getValueID() <= Value::ConstantDataLastVal; |
957 | } |
958 | }; |
959 | |
960 | template <> struct isa_impl<ConstantAggregate, Value> { |
961 | static inline bool doit(const Value &Val) { |
962 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
963 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
964 | } |
965 | }; |
966 | |
967 | template <> struct isa_impl<Argument, Value> { |
968 | static inline bool doit (const Value &Val) { |
969 | return Val.getValueID() == Value::ArgumentVal; |
970 | } |
971 | }; |
972 | |
973 | template <> struct isa_impl<InlineAsm, Value> { |
974 | static inline bool doit(const Value &Val) { |
975 | return Val.getValueID() == Value::InlineAsmVal; |
976 | } |
977 | }; |
978 | |
979 | template <> struct isa_impl<Instruction, Value> { |
980 | static inline bool doit(const Value &Val) { |
981 | return Val.getValueID() >= Value::InstructionVal; |
982 | } |
983 | }; |
984 | |
985 | template <> struct isa_impl<BasicBlock, Value> { |
986 | static inline bool doit(const Value &Val) { |
987 | return Val.getValueID() == Value::BasicBlockVal; |
988 | } |
989 | }; |
990 | |
991 | template <> struct isa_impl<Function, Value> { |
992 | static inline bool doit(const Value &Val) { |
993 | return Val.getValueID() == Value::FunctionVal; |
994 | } |
995 | }; |
996 | |
997 | template <> struct isa_impl<GlobalVariable, Value> { |
998 | static inline bool doit(const Value &Val) { |
999 | return Val.getValueID() == Value::GlobalVariableVal; |
1000 | } |
1001 | }; |
1002 | |
1003 | template <> struct isa_impl<GlobalAlias, Value> { |
1004 | static inline bool doit(const Value &Val) { |
1005 | return Val.getValueID() == Value::GlobalAliasVal; |
1006 | } |
1007 | }; |
1008 | |
1009 | template <> struct isa_impl<GlobalIFunc, Value> { |
1010 | static inline bool doit(const Value &Val) { |
1011 | return Val.getValueID() == Value::GlobalIFuncVal; |
1012 | } |
1013 | }; |
1014 | |
1015 | template <> struct isa_impl<GlobalIndirectSymbol, Value> { |
1016 | static inline bool doit(const Value &Val) { |
1017 | return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); |
1018 | } |
1019 | }; |
1020 | |
1021 | template <> struct isa_impl<GlobalValue, Value> { |
1022 | static inline bool doit(const Value &Val) { |
1023 | return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); |
1024 | } |
1025 | }; |
1026 | |
1027 | template <> struct isa_impl<GlobalObject, Value> { |
1028 | static inline bool doit(const Value &Val) { |
1029 | return isa<GlobalVariable>(Val) || isa<Function>(Val); |
1030 | } |
1031 | }; |
1032 | |
1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast <Value*>(P); } inline LLVMValueRef wrap(const Value *P) { return reinterpret_cast<LLVMValueRef>(const_cast< Value*>(P)); } template<typename T> inline T *unwrap (LLVMValueRef P) { return cast<T>(unwrap(P)); } |
1035 | |
1036 | // Specialized opaque value conversions. |
1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
1038 | return reinterpret_cast<Value**>(Vals); |
1039 | } |
1040 | |
1041 | template<typename T> |
1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
1043 | #ifndef NDEBUG1 |
1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
1046 | #endif |
1047 | (void)Length; |
1048 | return reinterpret_cast<T**>(Vals); |
1049 | } |
1050 | |
1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
1053 | } |
1054 | |
1055 | } // end namespace llvm |
1056 | |
1057 | #endif // LLVM_IR_VALUE_H |
1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains some templates that are useful if you are working with the |
10 | // STL at all. |
11 | // |
12 | // No library is required when using these functions. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #ifndef LLVM_ADT_STLEXTRAS_H |
17 | #define LLVM_ADT_STLEXTRAS_H |
18 | |
19 | #include "llvm/ADT/Optional.h" |
20 | #include "llvm/ADT/STLForwardCompat.h" |
21 | #include "llvm/ADT/iterator.h" |
22 | #include "llvm/ADT/iterator_range.h" |
23 | #include "llvm/Config/abi-breaking.h" |
24 | #include "llvm/Support/ErrorHandling.h" |
25 | #include <algorithm> |
26 | #include <cassert> |
27 | #include <cstddef> |
28 | #include <cstdint> |
29 | #include <cstdlib> |
30 | #include <functional> |
31 | #include <initializer_list> |
32 | #include <iterator> |
33 | #include <limits> |
34 | #include <memory> |
35 | #include <tuple> |
36 | #include <type_traits> |
37 | #include <utility> |
38 | |
39 | #ifdef EXPENSIVE_CHECKS |
40 | #include <random> // for std::mt19937 |
41 | #endif |
42 | |
43 | namespace llvm { |
44 | |
45 | // Only used by compiler if both template types are the same. Useful when |
46 | // using SFINAE to test for the existence of member functions. |
47 | template <typename T, T> struct SameType; |
48 | |
49 | namespace detail { |
50 | |
51 | template <typename RangeT> |
52 | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); |
53 | |
54 | template <typename RangeT> |
55 | using ValueOfRange = typename std::remove_reference<decltype( |
56 | *std::begin(std::declval<RangeT &>()))>::type; |
57 | |
58 | } // end namespace detail |
59 | |
60 | //===----------------------------------------------------------------------===// |
61 | // Extra additions to <type_traits> |
62 | //===----------------------------------------------------------------------===// |
63 | |
64 | template <typename T> struct make_const_ptr { |
65 | using type = |
66 | typename std::add_pointer<typename std::add_const<T>::type>::type; |
67 | }; |
68 | |
69 | template <typename T> struct make_const_ref { |
70 | using type = typename std::add_lvalue_reference< |
71 | typename std::add_const<T>::type>::type; |
72 | }; |
73 | |
74 | namespace detail { |
75 | template <typename...> using void_t = void; |
76 | template <class, template <class...> class Op, class... Args> struct detector { |
77 | using value_t = std::false_type; |
78 | }; |
79 | template <template <class...> class Op, class... Args> |
80 | struct detector<void_t<Op<Args...>>, Op, Args...> { |
81 | using value_t = std::true_type; |
82 | }; |
83 | } // end namespace detail |
84 | |
85 | /// Detects if a given trait holds for some set of arguments 'Args'. |
86 | /// For example, the given trait could be used to detect if a given type |
87 | /// has a copy assignment operator: |
88 | /// template<class T> |
89 | /// using has_copy_assign_t = decltype(std::declval<T&>() |
90 | /// = std::declval<const T&>()); |
91 | /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; |
92 | template <template <class...> class Op, class... Args> |
93 | using is_detected = typename detail::detector<void, Op, Args...>::value_t; |
94 | |
95 | namespace detail { |
96 | template <typename Callable, typename... Args> |
97 | using is_invocable = |
98 | decltype(std::declval<Callable &>()(std::declval<Args>()...)); |
99 | } // namespace detail |
100 | |
101 | /// Check if a Callable type can be invoked with the given set of arg types. |
102 | template <typename Callable, typename... Args> |
103 | using is_invocable = is_detected<detail::is_invocable, Callable, Args...>; |
104 | |
105 | /// This class provides various trait information about a callable object. |
106 | /// * To access the number of arguments: Traits::num_args |
107 | /// * To access the type of an argument: Traits::arg_t<Index> |
108 | /// * To access the type of the result: Traits::result_t |
109 | template <typename T, bool isClass = std::is_class<T>::value> |
110 | struct function_traits : public function_traits<decltype(&T::operator())> {}; |
111 | |
112 | /// Overload for class function types. |
113 | template <typename ClassType, typename ReturnType, typename... Args> |
114 | struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { |
115 | /// The number of arguments to this function. |
116 | enum { num_args = sizeof...(Args) }; |
117 | |
118 | /// The result type of this function. |
119 | using result_t = ReturnType; |
120 | |
121 | /// The type of an argument to this function. |
122 | template <size_t Index> |
123 | using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type; |
124 | }; |
125 | /// Overload for class function types. |
126 | template <typename ClassType, typename ReturnType, typename... Args> |
127 | struct function_traits<ReturnType (ClassType::*)(Args...), false> |
128 | : function_traits<ReturnType (ClassType::*)(Args...) const> {}; |
129 | /// Overload for non-class function types. |
130 | template <typename ReturnType, typename... Args> |
131 | struct function_traits<ReturnType (*)(Args...), false> { |
132 | /// The number of arguments to this function. |
133 | enum { num_args = sizeof...(Args) }; |
134 | |
135 | /// The result type of this function. |
136 | using result_t = ReturnType; |
137 | |
138 | /// The type of an argument to this function. |
139 | template <size_t i> |
140 | using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type; |
141 | }; |
142 | /// Overload for non-class function type references. |
143 | template <typename ReturnType, typename... Args> |
144 | struct function_traits<ReturnType (&)(Args...), false> |
145 | : public function_traits<ReturnType (*)(Args...)> {}; |
146 | |
147 | //===----------------------------------------------------------------------===// |
148 | // Extra additions to <functional> |
149 | //===----------------------------------------------------------------------===// |
150 | |
151 | template <class Ty> struct identity { |
152 | using argument_type = Ty; |
153 | |
154 | Ty &operator()(Ty &self) const { |
155 | return self; |
156 | } |
157 | const Ty &operator()(const Ty &self) const { |
158 | return self; |
159 | } |
160 | }; |
161 | |
162 | /// An efficient, type-erasing, non-owning reference to a callable. This is |
163 | /// intended for use as the type of a function parameter that is not used |
164 | /// after the function in question returns. |
165 | /// |
166 | /// This class does not own the callable, so it is not in general safe to store |
167 | /// a function_ref. |
168 | template<typename Fn> class function_ref; |
169 | |
170 | template<typename Ret, typename ...Params> |
171 | class function_ref<Ret(Params...)> { |
172 | Ret (*callback)(intptr_t callable, Params ...params) = nullptr; |
173 | intptr_t callable; |
174 | |
175 | template<typename Callable> |
176 | static Ret callback_fn(intptr_t callable, Params ...params) { |
177 | return (*reinterpret_cast<Callable*>(callable))( |
178 | std::forward<Params>(params)...); |
179 | } |
180 | |
181 | public: |
182 | function_ref() = default; |
183 | function_ref(std::nullptr_t) {} |
184 | |
185 | template <typename Callable> |
186 | function_ref( |
187 | Callable &&callable, |
188 | // This is not the copy-constructor. |
189 | std::enable_if_t<!std::is_same<remove_cvref_t<Callable>, |
190 | function_ref>::value> * = nullptr, |
191 | // Functor must be callable and return a suitable type. |
192 | std::enable_if_t<std::is_void<Ret>::value || |
193 | std::is_convertible<decltype(std::declval<Callable>()( |
194 | std::declval<Params>()...)), |
195 | Ret>::value> * = nullptr) |
196 | : callback(callback_fn<typename std::remove_reference<Callable>::type>), |
197 | callable(reinterpret_cast<intptr_t>(&callable)) {} |
198 | |
199 | Ret operator()(Params ...params) const { |
200 | return callback(callable, std::forward<Params>(params)...); |
201 | } |
202 | |
203 | explicit operator bool() const { return callback; } |
204 | }; |
205 | |
206 | //===----------------------------------------------------------------------===// |
207 | // Extra additions to <iterator> |
208 | //===----------------------------------------------------------------------===// |
209 | |
210 | namespace adl_detail { |
211 | |
212 | using std::begin; |
213 | |
214 | template <typename ContainerTy> |
215 | decltype(auto) adl_begin(ContainerTy &&container) { |
216 | return begin(std::forward<ContainerTy>(container)); |
217 | } |
218 | |
219 | using std::end; |
220 | |
221 | template <typename ContainerTy> |
222 | decltype(auto) adl_end(ContainerTy &&container) { |
223 | return end(std::forward<ContainerTy>(container)); |
224 | } |
225 | |
226 | using std::swap; |
227 | |
228 | template <typename T> |
229 | void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), |
230 | std::declval<T>()))) { |
231 | swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
232 | } |
233 | |
234 | } // end namespace adl_detail |
235 | |
236 | template <typename ContainerTy> |
237 | decltype(auto) adl_begin(ContainerTy &&container) { |
238 | return adl_detail::adl_begin(std::forward<ContainerTy>(container)); |
239 | } |
240 | |
241 | template <typename ContainerTy> |
242 | decltype(auto) adl_end(ContainerTy &&container) { |
243 | return adl_detail::adl_end(std::forward<ContainerTy>(container)); |
244 | } |
245 | |
246 | template <typename T> |
247 | void adl_swap(T &&lhs, T &&rhs) noexcept( |
248 | noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { |
249 | adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
250 | } |
251 | |
252 | /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. |
253 | template <typename T> |
254 | constexpr bool empty(const T &RangeOrContainer) { |
255 | return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); |
256 | } |
257 | |
258 | /// Returns true if the given container only contains a single element. |
259 | template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { |
260 | auto B = std::begin(C), E = std::end(C); |
261 | return B != E && std::next(B) == E; |
262 | } |
263 | |
264 | /// Return a range covering \p RangeOrContainer with the first N elements |
265 | /// excluded. |
266 | template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { |
267 | return make_range(std::next(adl_begin(RangeOrContainer), N), |
268 | adl_end(RangeOrContainer)); |
269 | } |
270 | |
271 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
272 | // be applied whenever operator* is invoked on the iterator. |
273 | |
274 | template <typename ItTy, typename FuncTy, |
275 | typename FuncReturnTy = |
276 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
277 | class mapped_iterator |
278 | : public iterator_adaptor_base< |
279 | mapped_iterator<ItTy, FuncTy>, ItTy, |
280 | typename std::iterator_traits<ItTy>::iterator_category, |
281 | typename std::remove_reference<FuncReturnTy>::type> { |
282 | public: |
283 | mapped_iterator(ItTy U, FuncTy F) |
284 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
285 | |
286 | ItTy getCurrent() { return this->I; } |
287 | |
288 | FuncReturnTy operator*() const { return F(*this->I); } |
289 | |
290 | private: |
291 | FuncTy F; |
292 | }; |
293 | |
294 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
295 | // make_pair is useful for creating pairs... |
296 | template <class ItTy, class FuncTy> |
297 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
298 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
299 | } |
300 | |
301 | template <class ContainerTy, class FuncTy> |
302 | auto map_range(ContainerTy &&C, FuncTy F) { |
303 | return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); |
304 | } |
305 | |
306 | /// Helper to determine if type T has a member called rbegin(). |
307 | template <typename Ty> class has_rbegin_impl { |
308 | using yes = char[1]; |
309 | using no = char[2]; |
310 | |
311 | template <typename Inner> |
312 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
313 | |
314 | template <typename> |
315 | static no& test(...); |
316 | |
317 | public: |
318 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
319 | }; |
320 | |
321 | /// Metafunction to determine if T& or T has a member called rbegin(). |
322 | template <typename Ty> |
323 | struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { |
324 | }; |
325 | |
326 | // Returns an iterator_range over the given container which iterates in reverse. |
327 | // Note that the container must have rbegin()/rend() methods for this to work. |
328 | template <typename ContainerTy> |
329 | auto reverse(ContainerTy &&C, |
330 | std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) { |
331 | return make_range(C.rbegin(), C.rend()); |
332 | } |
333 | |
334 | // Returns a std::reverse_iterator wrapped around the given iterator. |
335 | template <typename IteratorTy> |
336 | std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { |
337 | return std::reverse_iterator<IteratorTy>(It); |
338 | } |
339 | |
340 | // Returns an iterator_range over the given container which iterates in reverse. |
341 | // Note that the container must have begin()/end() methods which return |
342 | // bidirectional iterators for this to work. |
343 | template <typename ContainerTy> |
344 | auto reverse(ContainerTy &&C, |
345 | std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) { |
346 | return make_range(llvm::make_reverse_iterator(std::end(C)), |
347 | llvm::make_reverse_iterator(std::begin(C))); |
348 | } |
349 | |
350 | /// An iterator adaptor that filters the elements of given inner iterators. |
351 | /// |
352 | /// The predicate parameter should be a callable object that accepts the wrapped |
353 | /// iterator's reference type and returns a bool. When incrementing or |
354 | /// decrementing the iterator, it will call the predicate on each element and |
355 | /// skip any where it returns false. |
356 | /// |
357 | /// \code |
358 | /// int A[] = { 1, 2, 3, 4 }; |
359 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
360 | /// // R contains { 1, 3 }. |
361 | /// \endcode |
362 | /// |
363 | /// Note: filter_iterator_base implements support for forward iteration. |
364 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
365 | /// conditional on whether the wrapped iterator supports it. |
366 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
367 | class filter_iterator_base |
368 | : public iterator_adaptor_base< |
369 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
370 | WrappedIteratorT, |
371 | typename std::common_type< |
372 | IterTag, typename std::iterator_traits< |
373 | WrappedIteratorT>::iterator_category>::type> { |
374 | using BaseT = iterator_adaptor_base< |
375 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
376 | WrappedIteratorT, |
377 | typename std::common_type< |
378 | IterTag, typename std::iterator_traits< |
379 | WrappedIteratorT>::iterator_category>::type>; |
380 | |
381 | protected: |
382 | WrappedIteratorT End; |
383 | PredicateT Pred; |
384 | |
385 | void findNextValid() { |
386 | while (this->I != End && !Pred(*this->I)) |
387 | BaseT::operator++(); |
388 | } |
389 | |
390 | // Construct the iterator. The begin iterator needs to know where the end |
391 | // is, so that it can properly stop when it gets there. The end iterator only |
392 | // needs the predicate to support bidirectional iteration. |
393 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
394 | PredicateT Pred) |
395 | : BaseT(Begin), End(End), Pred(Pred) { |
396 | findNextValid(); |
397 | } |
398 | |
399 | public: |
400 | using BaseT::operator++; |
401 | |
402 | filter_iterator_base &operator++() { |
403 | BaseT::operator++(); |
404 | findNextValid(); |
405 | return *this; |
406 | } |
407 | }; |
408 | |
409 | /// Specialization of filter_iterator_base for forward iteration only. |
410 | template <typename WrappedIteratorT, typename PredicateT, |
411 | typename IterTag = std::forward_iterator_tag> |
412 | class filter_iterator_impl |
413 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
414 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; |
415 | |
416 | public: |
417 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
418 | PredicateT Pred) |
419 | : BaseT(Begin, End, Pred) {} |
420 | }; |
421 | |
422 | /// Specialization of filter_iterator_base for bidirectional iteration. |
423 | template <typename WrappedIteratorT, typename PredicateT> |
424 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
425 | std::bidirectional_iterator_tag> |
426 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
427 | std::bidirectional_iterator_tag> { |
428 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, |
429 | std::bidirectional_iterator_tag>; |
430 | void findPrevValid() { |
431 | while (!this->Pred(*this->I)) |
432 | BaseT::operator--(); |
433 | } |
434 | |
435 | public: |
436 | using BaseT::operator--; |
437 | |
438 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
439 | PredicateT Pred) |
440 | : BaseT(Begin, End, Pred) {} |
441 | |
442 | filter_iterator_impl &operator--() { |
443 | BaseT::operator--(); |
444 | findPrevValid(); |
445 | return *this; |
446 | } |
447 | }; |
448 | |
449 | namespace detail { |
450 | |
451 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
452 | using type = std::forward_iterator_tag; |
453 | }; |
454 | |
455 | template <> struct fwd_or_bidi_tag_impl<true> { |
456 | using type = std::bidirectional_iterator_tag; |
457 | }; |
458 | |
459 | /// Helper which sets its type member to forward_iterator_tag if the category |
460 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
461 | /// bidirectional_iterator_tag otherwise. |
462 | template <typename IterT> struct fwd_or_bidi_tag { |
463 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
464 | std::bidirectional_iterator_tag, |
465 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
466 | }; |
467 | |
468 | } // namespace detail |
469 | |
470 | /// Defines filter_iterator to a suitable specialization of |
471 | /// filter_iterator_impl, based on the underlying iterator's category. |
472 | template <typename WrappedIteratorT, typename PredicateT> |
473 | using filter_iterator = filter_iterator_impl< |
474 | WrappedIteratorT, PredicateT, |
475 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
476 | |
477 | /// Convenience function that takes a range of elements and a predicate, |
478 | /// and return a new filter_iterator range. |
479 | /// |
480 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
481 | /// lifetime of that temporary is not kept by the returned range object, and the |
482 | /// temporary is going to be dropped on the floor after the make_iterator_range |
483 | /// full expression that contains this function call. |
484 | template <typename RangeT, typename PredicateT> |
485 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
486 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
487 | using FilterIteratorT = |
488 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
489 | return make_range( |
490 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
491 | std::end(std::forward<RangeT>(Range)), Pred), |
492 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
493 | std::end(std::forward<RangeT>(Range)), Pred)); |
494 | } |
495 | |
496 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
497 | /// style loops. |
498 | /// |
499 | /// This is *not a normal iterator* and should almost never be used directly. It |
500 | /// is intended primarily to be used with range based for loops and some range |
501 | /// algorithms. |
502 | /// |
503 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
504 | /// somewhere between them. The constraints of these iterators are: |
505 | /// |
506 | /// - On construction or after being incremented, it is comparable and |
507 | /// dereferencable. It is *not* incrementable. |
508 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
509 | /// is only incrementable. |
510 | /// |
511 | /// This means you can only dereference the iterator once, and you can only |
512 | /// increment it once between dereferences. |
513 | template <typename WrappedIteratorT> |
514 | class early_inc_iterator_impl |
515 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
516 | WrappedIteratorT, std::input_iterator_tag> { |
517 | using BaseT = |
518 | iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
519 | WrappedIteratorT, std::input_iterator_tag>; |
520 | |
521 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
522 | |
523 | protected: |
524 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
525 | bool IsEarlyIncremented = false; |
526 | #endif |
527 | |
528 | public: |
529 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
530 | |
531 | using BaseT::operator*; |
532 | decltype(*std::declval<WrappedIteratorT>()) operator*() { |
533 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
534 | assert(!IsEarlyIncremented && "Cannot dereference twice!")((void)0); |
535 | IsEarlyIncremented = true; |
536 | #endif |
537 | return *(this->I)++; |
538 | } |
539 | |
540 | using BaseT::operator++; |
541 | early_inc_iterator_impl &operator++() { |
542 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
543 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((void)0); |
544 | IsEarlyIncremented = false; |
545 | #endif |
546 | return *this; |
547 | } |
548 | |
549 | friend bool operator==(const early_inc_iterator_impl &LHS, |
550 | const early_inc_iterator_impl &RHS) { |
551 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
552 | assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!")((void)0); |
553 | #endif |
554 | return (const BaseT &)LHS == (const BaseT &)RHS; |
555 | } |
556 | }; |
557 | |
558 | /// Make a range that does early increment to allow mutation of the underlying |
559 | /// range without disrupting iteration. |
560 | /// |
561 | /// The underlying iterator will be incremented immediately after it is |
562 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
563 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
564 | /// the current iterator can be invalidated. |
565 | /// |
566 | /// This requires a very exact pattern of use that is only really suitable to |
567 | /// range based for loops and other range algorithms that explicitly guarantee |
568 | /// to dereference exactly once each element, and to increment exactly once each |
569 | /// element. |
570 | template <typename RangeT> |
571 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
572 | make_early_inc_range(RangeT &&Range) { |
573 | using EarlyIncIteratorT = |
574 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
575 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
576 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
577 | } |
578 | |
579 | // forward declarations required by zip_shortest/zip_first/zip_longest |
580 | template <typename R, typename UnaryPredicate> |
581 | bool all_of(R &&range, UnaryPredicate P); |
582 | template <typename R, typename UnaryPredicate> |
583 | bool any_of(R &&range, UnaryPredicate P); |
584 | |
585 | namespace detail { |
586 | |
587 | using std::declval; |
588 | |
589 | // We have to alias this since inlining the actual type at the usage site |
590 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
591 | template<typename... Iters> struct ZipTupleType { |
592 | using type = std::tuple<decltype(*declval<Iters>())...>; |
593 | }; |
594 | |
595 | template <typename ZipType, typename... Iters> |
596 | using zip_traits = iterator_facade_base< |
597 | ZipType, typename std::common_type<std::bidirectional_iterator_tag, |
598 | typename std::iterator_traits< |
599 | Iters>::iterator_category...>::type, |
600 | // ^ TODO: Implement random access methods. |
601 | typename ZipTupleType<Iters...>::type, |
602 | typename std::iterator_traits<typename std::tuple_element< |
603 | 0, std::tuple<Iters...>>::type>::difference_type, |
604 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
605 | // inner iterators have the same difference_type. It would fail if, for |
606 | // instance, the second field's difference_type were non-numeric while the |
607 | // first is. |
608 | typename ZipTupleType<Iters...>::type *, |
609 | typename ZipTupleType<Iters...>::type>; |
610 | |
611 | template <typename ZipType, typename... Iters> |
612 | struct zip_common : public zip_traits<ZipType, Iters...> { |
613 | using Base = zip_traits<ZipType, Iters...>; |
614 | using value_type = typename Base::value_type; |
615 | |
616 | std::tuple<Iters...> iterators; |
617 | |
618 | protected: |
619 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
620 | return value_type(*std::get<Ns>(iterators)...); |
621 | } |
622 | |
623 | template <size_t... Ns> |
624 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
625 | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); |
626 | } |
627 | |
628 | template <size_t... Ns> |
629 | decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { |
630 | return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); |
631 | } |
632 | |
633 | public: |
634 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
635 | |
636 | value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } |
637 | |
638 | const value_type operator*() const { |
639 | return deref(std::index_sequence_for<Iters...>{}); |
640 | } |
641 | |
642 | ZipType &operator++() { |
643 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
644 | return *reinterpret_cast<ZipType *>(this); |
645 | } |
646 | |
647 | ZipType &operator--() { |
648 | static_assert(Base::IsBidirectional, |
649 | "All inner iterators must be at least bidirectional."); |
650 | iterators = tup_dec(std::index_sequence_for<Iters...>{}); |
651 | return *reinterpret_cast<ZipType *>(this); |
652 | } |
653 | }; |
654 | |
655 | template <typename... Iters> |
656 | struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { |
657 | using Base = zip_common<zip_first<Iters...>, Iters...>; |
658 | |
659 | bool operator==(const zip_first<Iters...> &other) const { |
660 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
661 | } |
662 | |
663 | zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
664 | }; |
665 | |
666 | template <typename... Iters> |
667 | class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { |
668 | template <size_t... Ns> |
669 | bool test(const zip_shortest<Iters...> &other, |
670 | std::index_sequence<Ns...>) const { |
671 | return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
672 | std::get<Ns>(other.iterators)...}, |
673 | identity<bool>{}); |
674 | } |
675 | |
676 | public: |
677 | using Base = zip_common<zip_shortest<Iters...>, Iters...>; |
678 | |
679 | zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
680 | |
681 | bool operator==(const zip_shortest<Iters...> &other) const { |
682 | return !test(other, std::index_sequence_for<Iters...>{}); |
683 | } |
684 | }; |
685 | |
686 | template <template <typename...> class ItType, typename... Args> class zippy { |
687 | public: |
688 | using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; |
689 | using iterator_category = typename iterator::iterator_category; |
690 | using value_type = typename iterator::value_type; |
691 | using difference_type = typename iterator::difference_type; |
692 | using pointer = typename iterator::pointer; |
693 | using reference = typename iterator::reference; |
694 | |
695 | private: |
696 | std::tuple<Args...> ts; |
697 | |
698 | template <size_t... Ns> |
699 | iterator begin_impl(std::index_sequence<Ns...>) const { |
700 | return iterator(std::begin(std::get<Ns>(ts))...); |
701 | } |
702 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
703 | return iterator(std::end(std::get<Ns>(ts))...); |
704 | } |
705 | |
706 | public: |
707 | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
708 | |
709 | iterator begin() const { |
710 | return begin_impl(std::index_sequence_for<Args...>{}); |
711 | } |
712 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
713 | }; |
714 | |
715 | } // end namespace detail |
716 | |
717 | /// zip iterator for two or more iteratable types. |
718 | template <typename T, typename U, typename... Args> |
719 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
720 | Args &&... args) { |
721 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
722 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
723 | } |
724 | |
725 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
726 | /// be the shortest. |
727 | template <typename T, typename U, typename... Args> |
728 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
729 | Args &&... args) { |
730 | return detail::zippy<detail::zip_first, T, U, Args...>( |
731 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
732 | } |
733 | |
734 | namespace detail { |
735 | template <typename Iter> |
736 | Iter next_or_end(const Iter &I, const Iter &End) { |
737 | if (I == End) |
738 | return End; |
739 | return std::next(I); |
740 | } |
741 | |
742 | template <typename Iter> |
743 | auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional< |
744 | std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { |
745 | if (I == End) |
746 | return None; |
747 | return *I; |
748 | } |
749 | |
750 | template <typename Iter> struct ZipLongestItemType { |
751 | using type = |
752 | llvm::Optional<typename std::remove_const<typename std::remove_reference< |
753 | decltype(*std::declval<Iter>())>::type>::type>; |
754 | }; |
755 | |
756 | template <typename... Iters> struct ZipLongestTupleType { |
757 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
758 | }; |
759 | |
760 | template <typename... Iters> |
761 | class zip_longest_iterator |
762 | : public iterator_facade_base< |
763 | zip_longest_iterator<Iters...>, |
764 | typename std::common_type< |
765 | std::forward_iterator_tag, |
766 | typename std::iterator_traits<Iters>::iterator_category...>::type, |
767 | typename ZipLongestTupleType<Iters...>::type, |
768 | typename std::iterator_traits<typename std::tuple_element< |
769 | 0, std::tuple<Iters...>>::type>::difference_type, |
770 | typename ZipLongestTupleType<Iters...>::type *, |
771 | typename ZipLongestTupleType<Iters...>::type> { |
772 | public: |
773 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
774 | |
775 | private: |
776 | std::tuple<Iters...> iterators; |
777 | std::tuple<Iters...> end_iterators; |
778 | |
779 | template <size_t... Ns> |
780 | bool test(const zip_longest_iterator<Iters...> &other, |
781 | std::index_sequence<Ns...>) const { |
782 | return llvm::any_of( |
783 | std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
784 | std::get<Ns>(other.iterators)...}, |
785 | identity<bool>{}); |
786 | } |
787 | |
788 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
789 | return value_type( |
790 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
791 | } |
792 | |
793 | template <size_t... Ns> |
794 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
795 | return std::tuple<Iters...>( |
796 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
797 | } |
798 | |
799 | public: |
800 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
801 | : iterators(std::forward<Iters>(ts.first)...), |
802 | end_iterators(std::forward<Iters>(ts.second)...) {} |
803 | |
804 | value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } |
805 | |
806 | value_type operator*() const { |
807 | return deref(std::index_sequence_for<Iters...>{}); |
808 | } |
809 | |
810 | zip_longest_iterator<Iters...> &operator++() { |
811 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
812 | return *this; |
813 | } |
814 | |
815 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
816 | return !test(other, std::index_sequence_for<Iters...>{}); |
817 | } |
818 | }; |
819 | |
820 | template <typename... Args> class zip_longest_range { |
821 | public: |
822 | using iterator = |
823 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
824 | using iterator_category = typename iterator::iterator_category; |
825 | using value_type = typename iterator::value_type; |
826 | using difference_type = typename iterator::difference_type; |
827 | using pointer = typename iterator::pointer; |
828 | using reference = typename iterator::reference; |
829 | |
830 | private: |
831 | std::tuple<Args...> ts; |
832 | |
833 | template <size_t... Ns> |
834 | iterator begin_impl(std::index_sequence<Ns...>) const { |
835 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
836 | adl_end(std::get<Ns>(ts)))...); |
837 | } |
838 | |
839 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
840 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
841 | adl_end(std::get<Ns>(ts)))...); |
842 | } |
843 | |
844 | public: |
845 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
846 | |
847 | iterator begin() const { |
848 | return begin_impl(std::index_sequence_for<Args...>{}); |
849 | } |
850 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
851 | }; |
852 | } // namespace detail |
853 | |
854 | /// Iterate over two or more iterators at the same time. Iteration continues |
855 | /// until all iterators reach the end. The llvm::Optional only contains a value |
856 | /// if the iterator has not reached the end. |
857 | template <typename T, typename U, typename... Args> |
858 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
859 | Args &&... args) { |
860 | return detail::zip_longest_range<T, U, Args...>( |
861 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
862 | } |
863 | |
864 | /// Iterator wrapper that concatenates sequences together. |
865 | /// |
866 | /// This can concatenate different iterators, even with different types, into |
867 | /// a single iterator provided the value types of all the concatenated |
868 | /// iterators expose `reference` and `pointer` types that can be converted to |
869 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
870 | /// interesting/customized pointer or reference types. |
871 | /// |
872 | /// Currently this only supports forward or higher iterator categories as |
873 | /// inputs and always exposes a forward iterator interface. |
874 | template <typename ValueT, typename... IterTs> |
875 | class concat_iterator |
876 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
877 | std::forward_iterator_tag, ValueT> { |
878 | using BaseT = typename concat_iterator::iterator_facade_base; |
879 | |
880 | /// We store both the current and end iterators for each concatenated |
881 | /// sequence in a tuple of pairs. |
882 | /// |
883 | /// Note that something like iterator_range seems nice at first here, but the |
884 | /// range properties are of little benefit and end up getting in the way |
885 | /// because we need to do mutation on the current iterators. |
886 | std::tuple<IterTs...> Begins; |
887 | std::tuple<IterTs...> Ends; |
888 | |
889 | /// Attempts to increment a specific iterator. |
890 | /// |
891 | /// Returns true if it was able to increment the iterator. Returns false if |
892 | /// the iterator is already at the end iterator. |
893 | template <size_t Index> bool incrementHelper() { |
894 | auto &Begin = std::get<Index>(Begins); |
895 | auto &End = std::get<Index>(Ends); |
896 | if (Begin == End) |
897 | return false; |
898 | |
899 | ++Begin; |
900 | return true; |
901 | } |
902 | |
903 | /// Increments the first non-end iterator. |
904 | /// |
905 | /// It is an error to call this with all iterators at the end. |
906 | template <size_t... Ns> void increment(std::index_sequence<Ns...>) { |
907 | // Build a sequence of functions to increment each iterator if possible. |
908 | bool (concat_iterator::*IncrementHelperFns[])() = { |
909 | &concat_iterator::incrementHelper<Ns>...}; |
910 | |
911 | // Loop over them, and stop as soon as we succeed at incrementing one. |
912 | for (auto &IncrementHelperFn : IncrementHelperFns) |
913 | if ((this->*IncrementHelperFn)()) |
914 | return; |
915 | |
916 | llvm_unreachable("Attempted to increment an end concat iterator!")__builtin_unreachable(); |
917 | } |
918 | |
919 | /// Returns null if the specified iterator is at the end. Otherwise, |
920 | /// dereferences the iterator and returns the address of the resulting |
921 | /// reference. |
922 | template <size_t Index> ValueT *getHelper() const { |
923 | auto &Begin = std::get<Index>(Begins); |
924 | auto &End = std::get<Index>(Ends); |
925 | if (Begin == End) |
926 | return nullptr; |
927 | |
928 | return &*Begin; |
929 | } |
930 | |
931 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
932 | /// reference. |
933 | /// |
934 | /// It is an error to call this with all iterators at the end. |
935 | template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { |
936 | // Build a sequence of functions to get from iterator if possible. |
937 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
938 | &concat_iterator::getHelper<Ns>...}; |
939 | |
940 | // Loop over them, and return the first result we find. |
941 | for (auto &GetHelperFn : GetHelperFns) |
942 | if (ValueT *P = (this->*GetHelperFn)()) |
943 | return *P; |
944 | |
945 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!")__builtin_unreachable(); |
946 | } |
947 | |
948 | public: |
949 | /// Constructs an iterator from a sequence of ranges. |
950 | /// |
951 | /// We need the full range to know how to switch between each of the |
952 | /// iterators. |
953 | template <typename... RangeTs> |
954 | explicit concat_iterator(RangeTs &&... Ranges) |
955 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
956 | |
957 | using BaseT::operator++; |
958 | |
959 | concat_iterator &operator++() { |
960 | increment(std::index_sequence_for<IterTs...>()); |
961 | return *this; |
962 | } |
963 | |
964 | ValueT &operator*() const { |
965 | return get(std::index_sequence_for<IterTs...>()); |
966 | } |
967 | |
968 | bool operator==(const concat_iterator &RHS) const { |
969 | return Begins == RHS.Begins && Ends == RHS.Ends; |
970 | } |
971 | }; |
972 | |
973 | namespace detail { |
974 | |
975 | /// Helper to store a sequence of ranges being concatenated and access them. |
976 | /// |
977 | /// This is designed to facilitate providing actual storage when temporaries |
978 | /// are passed into the constructor such that we can use it as part of range |
979 | /// based for loops. |
980 | template <typename ValueT, typename... RangeTs> class concat_range { |
981 | public: |
982 | using iterator = |
983 | concat_iterator<ValueT, |
984 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
985 | |
986 | private: |
987 | std::tuple<RangeTs...> Ranges; |
988 | |
989 | template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { |
990 | return iterator(std::get<Ns>(Ranges)...); |
991 | } |
992 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
993 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
994 | std::end(std::get<Ns>(Ranges)))...); |
995 | } |
996 | |
997 | public: |
998 | concat_range(RangeTs &&... Ranges) |
999 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
1000 | |
1001 | iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); } |
1002 | iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); } |
1003 | }; |
1004 | |
1005 | } // end namespace detail |
1006 | |
1007 | /// Concatenated range across two or more ranges. |
1008 | /// |
1009 | /// The desired value type must be explicitly specified. |
1010 | template <typename ValueT, typename... RangeTs> |
1011 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
1012 | static_assert(sizeof...(RangeTs) > 1, |
1013 | "Need more than one range to concatenate!"); |
1014 | return detail::concat_range<ValueT, RangeTs...>( |
1015 | std::forward<RangeTs>(Ranges)...); |
1016 | } |
1017 | |
1018 | /// A utility class used to implement an iterator that contains some base object |
1019 | /// and an index. The iterator moves the index but keeps the base constant. |
1020 | template <typename DerivedT, typename BaseT, typename T, |
1021 | typename PointerT = T *, typename ReferenceT = T &> |
1022 | class indexed_accessor_iterator |
1023 | : public llvm::iterator_facade_base<DerivedT, |
1024 | std::random_access_iterator_tag, T, |
1025 | std::ptrdiff_t, PointerT, ReferenceT> { |
1026 | public: |
1027 | ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { |
1028 | assert(base == rhs.base && "incompatible iterators")((void)0); |
1029 | return index - rhs.index; |
1030 | } |
1031 | bool operator==(const indexed_accessor_iterator &rhs) const { |
1032 | return base == rhs.base && index == rhs.index; |
1033 | } |
1034 | bool operator<(const indexed_accessor_iterator &rhs) const { |
1035 | assert(base == rhs.base && "incompatible iterators")((void)0); |
1036 | return index < rhs.index; |
1037 | } |
1038 | |
1039 | DerivedT &operator+=(ptrdiff_t offset) { |
1040 | this->index += offset; |
1041 | return static_cast<DerivedT &>(*this); |
1042 | } |
1043 | DerivedT &operator-=(ptrdiff_t offset) { |
1044 | this->index -= offset; |
1045 | return static_cast<DerivedT &>(*this); |
1046 | } |
1047 | |
1048 | /// Returns the current index of the iterator. |
1049 | ptrdiff_t getIndex() const { return index; } |
1050 | |
1051 | /// Returns the current base of the iterator. |
1052 | const BaseT &getBase() const { return base; } |
1053 | |
1054 | protected: |
1055 | indexed_accessor_iterator(BaseT base, ptrdiff_t index) |
1056 | : base(base), index(index) {} |
1057 | BaseT base; |
1058 | ptrdiff_t index; |
1059 | }; |
1060 | |
1061 | namespace detail { |
1062 | /// The class represents the base of a range of indexed_accessor_iterators. It |
1063 | /// provides support for many different range functionalities, e.g. |
1064 | /// drop_front/slice/etc.. Derived range classes must implement the following |
1065 | /// static methods: |
1066 | /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) |
1067 | /// - Dereference an iterator pointing to the base object at the given |
1068 | /// index. |
1069 | /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) |
1070 | /// - Return a new base that is offset from the provide base by 'index' |
1071 | /// elements. |
1072 | template <typename DerivedT, typename BaseT, typename T, |
1073 | typename PointerT = T *, typename ReferenceT = T &> |
1074 | class indexed_accessor_range_base { |
1075 | public: |
1076 | using RangeBaseT = |
1077 | indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>; |
1078 | |
1079 | /// An iterator element of this range. |
1080 | class iterator : public indexed_accessor_iterator<iterator, BaseT, T, |
1081 | PointerT, ReferenceT> { |
1082 | public: |
1083 | // Index into this iterator, invoking a static method on the derived type. |
1084 | ReferenceT operator*() const { |
1085 | return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); |
1086 | } |
1087 | |
1088 | private: |
1089 | iterator(BaseT owner, ptrdiff_t curIndex) |
1090 | : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>( |
1091 | owner, curIndex) {} |
1092 | |
1093 | /// Allow access to the constructor. |
1094 | friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, |
1095 | ReferenceT>; |
1096 | }; |
1097 | |
1098 | indexed_accessor_range_base(iterator begin, iterator end) |
1099 | : base(offset_base(begin.getBase(), begin.getIndex())), |
1100 | count(end.getIndex() - begin.getIndex()) {} |
1101 | indexed_accessor_range_base(const iterator_range<iterator> &range) |
1102 | : indexed_accessor_range_base(range.begin(), range.end()) {} |
1103 | indexed_accessor_range_base(BaseT base, ptrdiff_t count) |
1104 | : base(base), count(count) {} |
1105 | |
1106 | iterator begin() const { return iterator(base, 0); } |
1107 | iterator end() const { return iterator(base, count); } |
1108 | ReferenceT operator[](size_t Index) const { |
1109 | assert(Index < size() && "invalid index for value range")((void)0); |
1110 | return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); |
1111 | } |
1112 | ReferenceT front() const { |
1113 | assert(!empty() && "expected non-empty range")((void)0); |
1114 | return (*this)[0]; |
1115 | } |
1116 | ReferenceT back() const { |
1117 | assert(!empty() && "expected non-empty range")((void)0); |
1118 | return (*this)[size() - 1]; |
1119 | } |
1120 | |
1121 | /// Compare this range with another. |
1122 | template <typename OtherT> bool operator==(const OtherT &other) const { |
1123 | return size() == |
1124 | static_cast<size_t>(std::distance(other.begin(), other.end())) && |
1125 | std::equal(begin(), end(), other.begin()); |
1126 | } |
1127 | template <typename OtherT> bool operator!=(const OtherT &other) const { |
1128 | return !(*this == other); |
1129 | } |
1130 | |
1131 | /// Return the size of this range. |
1132 | size_t size() const { return count; } |
1133 | |
1134 | /// Return if the range is empty. |
1135 | bool empty() const { return size() == 0; } |
1136 | |
1137 | /// Drop the first N elements, and keep M elements. |
1138 | DerivedT slice(size_t n, size_t m) const { |
1139 | assert(n + m <= size() && "invalid size specifiers")((void)0); |
1140 | return DerivedT(offset_base(base, n), m); |
1141 | } |
1142 | |
1143 | /// Drop the first n elements. |
1144 | DerivedT drop_front(size_t n = 1) const { |
1145 | assert(size() >= n && "Dropping more elements than exist")((void)0); |
1146 | return slice(n, size() - n); |
1147 | } |
1148 | /// Drop the last n elements. |
1149 | DerivedT drop_back(size_t n = 1) const { |
1150 | assert(size() >= n && "Dropping more elements than exist")((void)0); |
1151 | return DerivedT(base, size() - n); |
1152 | } |
1153 | |
1154 | /// Take the first n elements. |
1155 | DerivedT take_front(size_t n = 1) const { |
1156 | return n < size() ? drop_back(size() - n) |
1157 | : static_cast<const DerivedT &>(*this); |
1158 | } |
1159 | |
1160 | /// Take the last n elements. |
1161 | DerivedT take_back(size_t n = 1) const { |
1162 | return n < size() ? drop_front(size() - n) |
1163 | : static_cast<const DerivedT &>(*this); |
1164 | } |
1165 | |
1166 | /// Allow conversion to any type accepting an iterator_range. |
1167 | template <typename RangeT, typename = std::enable_if_t<std::is_constructible< |
1168 | RangeT, iterator_range<iterator>>::value>> |
1169 | operator RangeT() const { |
1170 | return RangeT(iterator_range<iterator>(*this)); |
1171 | } |
1172 | |
1173 | /// Returns the base of this range. |
1174 | const BaseT &getBase() const { return base; } |
1175 | |
1176 | private: |
1177 | /// Offset the given base by the given amount. |
1178 | static BaseT offset_base(const BaseT &base, size_t n) { |
1179 | return n == 0 ? base : DerivedT::offset_base(base, n); |
1180 | } |
1181 | |
1182 | protected: |
1183 | indexed_accessor_range_base(const indexed_accessor_range_base &) = default; |
1184 | indexed_accessor_range_base(indexed_accessor_range_base &&) = default; |
1185 | indexed_accessor_range_base & |
1186 | operator=(const indexed_accessor_range_base &) = default; |
1187 | |
1188 | /// The base that owns the provided range of values. |
1189 | BaseT base; |
1190 | /// The size from the owning range. |
1191 | ptrdiff_t count; |
1192 | }; |
1193 | } // end namespace detail |
1194 | |
1195 | /// This class provides an implementation of a range of |
1196 | /// indexed_accessor_iterators where the base is not indexable. Ranges with |
1197 | /// bases that are offsetable should derive from indexed_accessor_range_base |
1198 | /// instead. Derived range classes are expected to implement the following |
1199 | /// static method: |
1200 | /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) |
1201 | /// - Dereference an iterator pointing to a parent base at the given index. |
1202 | template <typename DerivedT, typename BaseT, typename T, |
1203 | typename PointerT = T *, typename ReferenceT = T &> |
1204 | class indexed_accessor_range |
1205 | : public detail::indexed_accessor_range_base< |
1206 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { |
1207 | public: |
1208 | indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) |
1209 | : detail::indexed_accessor_range_base< |
1210 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( |
1211 | std::make_pair(base, startIndex), count) {} |
1212 | using detail::indexed_accessor_range_base< |
1213 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, |
1214 | ReferenceT>::indexed_accessor_range_base; |
1215 | |
1216 | /// Returns the current base of the range. |
1217 | const BaseT &getBase() const { return this->base.first; } |
1218 | |
1219 | /// Returns the current start index of the range. |
1220 | ptrdiff_t getStartIndex() const { return this->base.second; } |
1221 | |
1222 | /// See `detail::indexed_accessor_range_base` for details. |
1223 | static std::pair<BaseT, ptrdiff_t> |
1224 | offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { |
1225 | // We encode the internal base as a pair of the derived base and a start |
1226 | // index into the derived base. |
1227 | return std::make_pair(base.first, base.second + index); |
1228 | } |
1229 | /// See `detail::indexed_accessor_range_base` for details. |
1230 | static ReferenceT |
1231 | dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, |
1232 | ptrdiff_t index) { |
1233 | return DerivedT::dereference(base.first, base.second + index); |
1234 | } |
1235 | }; |
1236 | |
1237 | /// Given a container of pairs, return a range over the first elements. |
1238 | template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { |
1239 | return llvm::map_range( |
1240 | std::forward<ContainerTy>(c), |
1241 | [](decltype((*std::begin(c))) elt) -> decltype((elt.first)) { |
1242 | return elt.first; |
1243 | }); |
1244 | } |
1245 | |
1246 | /// Given a container of pairs, return a range over the second elements. |
1247 | template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { |
1248 | return llvm::map_range( |
1249 | std::forward<ContainerTy>(c), |
1250 | [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) { |
1251 | return elt.second; |
1252 | }); |
1253 | } |
1254 | |
1255 | //===----------------------------------------------------------------------===// |
1256 | // Extra additions to <utility> |
1257 | //===----------------------------------------------------------------------===// |
1258 | |
1259 | /// Function object to check whether the first component of a std::pair |
1260 | /// compares less than the first component of another std::pair. |
1261 | struct less_first { |
1262 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
1263 | return lhs.first < rhs.first; |
1264 | } |
1265 | }; |
1266 | |
1267 | /// Function object to check whether the second component of a std::pair |
1268 | /// compares less than the second component of another std::pair. |
1269 | struct less_second { |
1270 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
1271 | return lhs.second < rhs.second; |
1272 | } |
1273 | }; |
1274 | |
1275 | /// \brief Function object to apply a binary function to the first component of |
1276 | /// a std::pair. |
1277 | template<typename FuncTy> |
1278 | struct on_first { |
1279 | FuncTy func; |
1280 | |
1281 | template <typename T> |
1282 | decltype(auto) operator()(const T &lhs, const T &rhs) const { |
1283 | return func(lhs.first, rhs.first); |
1284 | } |
1285 | }; |
1286 | |
1287 | /// Utility type to build an inheritance chain that makes it easy to rank |
1288 | /// overload candidates. |
1289 | template <int N> struct rank : rank<N - 1> {}; |
1290 | template <> struct rank<0> {}; |
1291 | |
1292 | /// traits class for checking whether type T is one of any of the given |
1293 | /// types in the variadic list. |
1294 | template <typename T, typename... Ts> |
1295 | using is_one_of = disjunction<std::is_same<T, Ts>...>; |
1296 | |
1297 | /// traits class for checking whether type T is a base class for all |
1298 | /// the given types in the variadic list. |
1299 | template <typename T, typename... Ts> |
1300 | using are_base_of = conjunction<std::is_base_of<T, Ts>...>; |
1301 | |
1302 | namespace detail { |
1303 | template <typename... Ts> struct Visitor; |
1304 | |
1305 | template <typename HeadT, typename... TailTs> |
1306 | struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { |
1307 | explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) |
1308 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), |
1309 | Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} |
1310 | using remove_cvref_t<HeadT>::operator(); |
1311 | using Visitor<TailTs...>::operator(); |
1312 | }; |
1313 | |
1314 | template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { |
1315 | explicit constexpr Visitor(HeadT &&Head) |
1316 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} |
1317 | using remove_cvref_t<HeadT>::operator(); |
1318 | }; |
1319 | } // namespace detail |
1320 | |
1321 | /// Returns an opaquely-typed Callable object whose operator() overload set is |
1322 | /// the sum of the operator() overload sets of each CallableT in CallableTs. |
1323 | /// |
1324 | /// The type of the returned object derives from each CallableT in CallableTs. |
1325 | /// The returned object is constructed by invoking the appropriate copy or move |
1326 | /// constructor of each CallableT, as selected by overload resolution on the |
1327 | /// corresponding argument to makeVisitor. |
1328 | /// |
1329 | /// Example: |
1330 | /// |
1331 | /// \code |
1332 | /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, |
1333 | /// [](int i) { return "int"; }, |
1334 | /// [](std::string s) { return "str"; }); |
1335 | /// auto a = visitor(42); // `a` is now "int". |
1336 | /// auto b = visitor("foo"); // `b` is now "str". |
1337 | /// auto c = visitor(3.14f); // `c` is now "unhandled type". |
1338 | /// \endcode |
1339 | /// |
1340 | /// Example of making a visitor with a lambda which captures a move-only type: |
1341 | /// |
1342 | /// \code |
1343 | /// std::unique_ptr<FooHandler> FH = /* ... */; |
1344 | /// auto visitor = makeVisitor( |
1345 | /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, |
1346 | /// [](int i) { return i; }, |
1347 | /// [](std::string s) { return atoi(s); }); |
1348 | /// \endcode |
1349 | template <typename... CallableTs> |
1350 | constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { |
1351 | return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); |
1352 | } |
1353 | |
1354 | //===----------------------------------------------------------------------===// |
1355 | // Extra additions for arrays |
1356 | //===----------------------------------------------------------------------===// |
1357 | |
1358 | // We have a copy here so that LLVM behaves the same when using different |
1359 | // standard libraries. |
1360 | template <class Iterator, class RNG> |
1361 | void shuffle(Iterator first, Iterator last, RNG &&g) { |
1362 | // It would be better to use a std::uniform_int_distribution, |
1363 | // but that would be stdlib dependent. |
1364 | typedef |
1365 | typename std::iterator_traits<Iterator>::difference_type difference_type; |
1366 | for (auto size = last - first; size > 1; ++first, (void)--size) { |
1367 | difference_type offset = g() % size; |
1368 | // Avoid self-assignment due to incorrect assertions in libstdc++ |
1369 | // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). |
1370 | if (offset != difference_type(0)) |
1371 | std::iter_swap(first, first + offset); |
1372 | } |
1373 | } |
1374 | |
1375 | /// Find the length of an array. |
1376 | template <class T, std::size_t N> |
1377 | constexpr inline size_t array_lengthof(T (&)[N]) { |
1378 | return N; |
1379 | } |
1380 | |
1381 | /// Adapt std::less<T> for array_pod_sort. |
1382 | template<typename T> |
1383 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
1384 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
1385 | *reinterpret_cast<const T*>(P2))) |
1386 | return -1; |
1387 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
1388 | *reinterpret_cast<const T*>(P1))) |
1389 | return 1; |
1390 | return 0; |
1391 | } |
1392 | |
1393 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
1394 | /// get type deduction of T right. |
1395 | template<typename T> |
1396 | inline int (*get_array_pod_sort_comparator(const T &)) |
1397 | (const void*, const void*) { |
1398 | return array_pod_sort_comparator<T>; |
1399 | } |
1400 | |
1401 | #ifdef EXPENSIVE_CHECKS |
1402 | namespace detail { |
1403 | |
1404 | inline unsigned presortShuffleEntropy() { |
1405 | static unsigned Result(std::random_device{}()); |
1406 | return Result; |
1407 | } |
1408 | |
1409 | template <class IteratorTy> |
1410 | inline void presortShuffle(IteratorTy Start, IteratorTy End) { |
1411 | std::mt19937 Generator(presortShuffleEntropy()); |
1412 | llvm::shuffle(Start, End, Generator); |
1413 | } |
1414 | |
1415 | } // end namespace detail |
1416 | #endif |
1417 | |
1418 | /// array_pod_sort - This sorts an array with the specified start and end |
1419 | /// extent. This is just like std::sort, except that it calls qsort instead of |
1420 | /// using an inlined template. qsort is slightly slower than std::sort, but |
1421 | /// most sorts are not performance critical in LLVM and std::sort has to be |
1422 | /// template instantiated for each type, leading to significant measured code |
1423 | /// bloat. This function should generally be used instead of std::sort where |
1424 | /// possible. |
1425 | /// |
1426 | /// This function assumes that you have simple POD-like types that can be |
1427 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
1428 | /// you should use std::sort. |
1429 | /// |
1430 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
1431 | /// default to std::less. |
1432 | template<class IteratorTy> |
1433 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
1434 | // Don't inefficiently call qsort with one element or trigger undefined |
1435 | // behavior with an empty sequence. |
1436 | auto NElts = End - Start; |
1437 | if (NElts <= 1) return; |
1438 | #ifdef EXPENSIVE_CHECKS |
1439 | detail::presortShuffle<IteratorTy>(Start, End); |
1440 | #endif |
1441 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
1442 | } |
1443 | |
1444 | template <class IteratorTy> |
1445 | inline void array_pod_sort( |
1446 | IteratorTy Start, IteratorTy End, |
1447 | int (*Compare)( |
1448 | const typename std::iterator_traits<IteratorTy>::value_type *, |
1449 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
1450 | // Don't inefficiently call qsort with one element or trigger undefined |
1451 | // behavior with an empty sequence. |
1452 | auto NElts = End - Start; |
1453 | if (NElts <= 1) return; |
1454 | #ifdef EXPENSIVE_CHECKS |
1455 | detail::presortShuffle<IteratorTy>(Start, End); |
1456 | #endif |
1457 | qsort(&*Start, NElts, sizeof(*Start), |
1458 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
1459 | } |
1460 | |
1461 | namespace detail { |
1462 | template <typename T> |
1463 | // We can use qsort if the iterator type is a pointer and the underlying value |
1464 | // is trivially copyable. |
1465 | using sort_trivially_copyable = conjunction< |
1466 | std::is_pointer<T>, |
1467 | std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; |
1468 | } // namespace detail |
1469 | |
1470 | // Provide wrappers to std::sort which shuffle the elements before sorting |
1471 | // to help uncover non-deterministic behavior (PR35135). |
1472 | template <typename IteratorTy, |
1473 | std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value, |
1474 | int> = 0> |
1475 | inline void sort(IteratorTy Start, IteratorTy End) { |
1476 | #ifdef EXPENSIVE_CHECKS |
1477 | detail::presortShuffle<IteratorTy>(Start, End); |
1478 | #endif |
1479 | std::sort(Start, End); |
1480 | } |
1481 | |
1482 | // Forward trivially copyable types to array_pod_sort. This avoids a large |
1483 | // amount of code bloat for a minor performance hit. |
1484 | template <typename IteratorTy, |
1485 | std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value, |
1486 | int> = 0> |
1487 | inline void sort(IteratorTy Start, IteratorTy End) { |
1488 | array_pod_sort(Start, End); |
1489 | } |
1490 | |
1491 | template <typename Container> inline void sort(Container &&C) { |
1492 | llvm::sort(adl_begin(C), adl_end(C)); |
1493 | } |
1494 | |
1495 | template <typename IteratorTy, typename Compare> |
1496 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
1497 | #ifdef EXPENSIVE_CHECKS |
1498 | detail::presortShuffle<IteratorTy>(Start, End); |
1499 | #endif |
1500 | std::sort(Start, End, Comp); |
1501 | } |
1502 | |
1503 | template <typename Container, typename Compare> |
1504 | inline void sort(Container &&C, Compare Comp) { |
1505 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
1506 | } |
1507 | |
1508 | //===----------------------------------------------------------------------===// |
1509 | // Extra additions to <algorithm> |
1510 | //===----------------------------------------------------------------------===// |
1511 | |
1512 | /// Get the size of a range. This is a wrapper function around std::distance |
1513 | /// which is only enabled when the operation is O(1). |
1514 | template <typename R> |
1515 | auto size(R &&Range, |
1516 | std::enable_if_t< |
1517 | std::is_base_of<std::random_access_iterator_tag, |
1518 | typename std::iterator_traits<decltype( |
1519 | Range.begin())>::iterator_category>::value, |
1520 | void> * = nullptr) { |
1521 | return std::distance(Range.begin(), Range.end()); |
1522 | } |
1523 | |
1524 | /// Provide wrappers to std::for_each which take ranges instead of having to |
1525 | /// pass begin/end explicitly. |
1526 | template <typename R, typename UnaryFunction> |
1527 | UnaryFunction for_each(R &&Range, UnaryFunction F) { |
1528 | return std::for_each(adl_begin(Range), adl_end(Range), F); |
1529 | } |
1530 | |
1531 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
1532 | /// begin/end explicitly. |
1533 | template <typename R, typename UnaryPredicate> |
1534 | bool all_of(R &&Range, UnaryPredicate P) { |
1535 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
1536 | } |
1537 | |
1538 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
1539 | /// begin/end explicitly. |
1540 | template <typename R, typename UnaryPredicate> |
1541 | bool any_of(R &&Range, UnaryPredicate P) { |
1542 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
1543 | } |
1544 | |
1545 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
1546 | /// begin/end explicitly. |
1547 | template <typename R, typename UnaryPredicate> |
1548 | bool none_of(R &&Range, UnaryPredicate P) { |
1549 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
1550 | } |
1551 | |
1552 | /// Provide wrappers to std::find which take ranges instead of having to pass |
1553 | /// begin/end explicitly. |
1554 | template <typename R, typename T> auto find(R &&Range, const T &Val) { |
1555 | return std::find(adl_begin(Range), adl_end(Range), Val); |
1556 | } |
1557 | |
1558 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
1559 | /// begin/end explicitly. |
1560 | template <typename R, typename UnaryPredicate> |
1561 | auto find_if(R &&Range, UnaryPredicate P) { |
1562 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
1563 | } |
1564 | |
1565 | template <typename R, typename UnaryPredicate> |
1566 | auto find_if_not(R &&Range, UnaryPredicate P) { |
1567 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
1568 | } |
1569 | |
1570 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
1571 | /// pass begin/end explicitly. |
1572 | template <typename R, typename UnaryPredicate> |
1573 | auto remove_if(R &&Range, UnaryPredicate P) { |
1574 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
1575 | } |
1576 | |
1577 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
1578 | /// pass begin/end explicitly. |
1579 | template <typename R, typename OutputIt, typename UnaryPredicate> |
1580 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
1581 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
1582 | } |
1583 | |
1584 | template <typename R, typename OutputIt> |
1585 | OutputIt copy(R &&Range, OutputIt Out) { |
1586 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
1587 | } |
1588 | |
1589 | /// Provide wrappers to std::move which take ranges instead of having to |
1590 | /// pass begin/end explicitly. |
1591 | template <typename R, typename OutputIt> |
1592 | OutputIt move(R &&Range, OutputIt Out) { |
1593 | return std::move(adl_begin(Range), adl_end(Range), Out); |
1594 | } |
1595 | |
1596 | /// Wrapper function around std::find to detect if an element exists |
1597 | /// in a container. |
1598 | template <typename R, typename E> |
1599 | bool is_contained(R &&Range, const E &Element) { |
1600 | return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); |
1601 | } |
1602 | |
1603 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
1604 | /// are sorted with respect to a comparator \p C. |
1605 | template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { |
1606 | return std::is_sorted(adl_begin(Range), adl_end(Range), C); |
1607 | } |
1608 | |
1609 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
1610 | /// are sorted in non-descending order. |
1611 | template <typename R> bool is_sorted(R &&Range) { |
1612 | return std::is_sorted(adl_begin(Range), adl_end(Range)); |
1613 | } |
1614 | |
1615 | /// Wrapper function around std::count to count the number of times an element |
1616 | /// \p Element occurs in the given range \p Range. |
1617 | template <typename R, typename E> auto count(R &&Range, const E &Element) { |
1618 | return std::count(adl_begin(Range), adl_end(Range), Element); |
1619 | } |
1620 | |
1621 | /// Wrapper function around std::count_if to count the number of times an |
1622 | /// element satisfying a given predicate occurs in a range. |
1623 | template <typename R, typename UnaryPredicate> |
1624 | auto count_if(R &&Range, UnaryPredicate P) { |
1625 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
1626 | } |
1627 | |
1628 | /// Wrapper function around std::transform to apply a function to a range and |
1629 | /// store the result elsewhere. |
1630 | template <typename R, typename OutputIt, typename UnaryFunction> |
1631 | OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { |
1632 | return std::transform(adl_begin(Range), adl_end(Range), d_first, F); |
1633 | } |
1634 | |
1635 | /// Provide wrappers to std::partition which take ranges instead of having to |
1636 | /// pass begin/end explicitly. |
1637 | template <typename R, typename UnaryPredicate> |
1638 | auto partition(R &&Range, UnaryPredicate P) { |
1639 | return std::partition(adl_begin(Range), adl_end(Range), P); |
1640 | } |
1641 | |
1642 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
1643 | /// pass begin/end explicitly. |
1644 | template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { |
1645 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
1646 | std::forward<T>(Value)); |
1647 | } |
1648 | |
1649 | template <typename R, typename T, typename Compare> |
1650 | auto lower_bound(R &&Range, T &&Value, Compare C) { |
1651 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
1652 | std::forward<T>(Value), C); |
1653 | } |
1654 | |
1655 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
1656 | /// pass begin/end explicitly. |
1657 | template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { |
1658 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
1659 | std::forward<T>(Value)); |
1660 | } |
1661 | |
1662 | template <typename R, typename T, typename Compare> |
1663 | auto upper_bound(R &&Range, T &&Value, Compare C) { |
1664 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
1665 | std::forward<T>(Value), C); |
1666 | } |
1667 | |
1668 | template <typename R> |
1669 | void stable_sort(R &&Range) { |
1670 | std::stable_sort(adl_begin(Range), adl_end(Range)); |
1671 | } |
1672 | |
1673 | template <typename R, typename Compare> |
1674 | void stable_sort(R &&Range, Compare C) { |
1675 | std::stable_sort(adl_begin(Range), adl_end(Range), C); |
1676 | } |
1677 | |
1678 | /// Binary search for the first iterator in a range where a predicate is false. |
1679 | /// Requires that C is always true below some limit, and always false above it. |
1680 | template <typename R, typename Predicate, |
1681 | typename Val = decltype(*adl_begin(std::declval<R>()))> |
1682 | auto partition_point(R &&Range, Predicate P) { |
1683 | return std::partition_point(adl_begin(Range), adl_end(Range), P); |
1684 | } |
1685 | |
1686 | template<typename Range, typename Predicate> |
1687 | auto unique(Range &&R, Predicate P) { |
1688 | return std::unique(adl_begin(R), adl_end(R), P); |
1689 | } |
1690 | |
1691 | /// Wrapper function around std::equal to detect if pair-wise elements between |
1692 | /// two ranges are the same. |
1693 | template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { |
1694 | return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), |
1695 | adl_end(RRange)); |
1696 | } |
1697 | |
1698 | /// Wrapper function around std::equal to detect if all elements |
1699 | /// in a container are same. |
1700 | template <typename R> |
1701 | bool is_splat(R &&Range) { |
1702 | size_t range_size = size(Range); |
1703 | return range_size != 0 && (range_size == 1 || |
1704 | std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); |
1705 | } |
1706 | |
1707 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
1708 | /// `erase_if` which is equivalent to: |
1709 | /// |
1710 | /// C.erase(remove_if(C, pred), C.end()); |
1711 | /// |
1712 | /// This version works for any container with an erase method call accepting |
1713 | /// two iterators. |
1714 | template <typename Container, typename UnaryPredicate> |
1715 | void erase_if(Container &C, UnaryPredicate P) { |
1716 | C.erase(remove_if(C, P), C.end()); |
1717 | } |
1718 | |
1719 | /// Wrapper function to remove a value from a container: |
1720 | /// |
1721 | /// C.erase(remove(C.begin(), C.end(), V), C.end()); |
1722 | template <typename Container, typename ValueType> |
1723 | void erase_value(Container &C, ValueType V) { |
1724 | C.erase(std::remove(C.begin(), C.end(), V), C.end()); |
1725 | } |
1726 | |
1727 | /// Wrapper function to append a range to a container. |
1728 | /// |
1729 | /// C.insert(C.end(), R.begin(), R.end()); |
1730 | template <typename Container, typename Range> |
1731 | inline void append_range(Container &C, Range &&R) { |
1732 | C.insert(C.end(), R.begin(), R.end()); |
1733 | } |
1734 | |
1735 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
1736 | /// the range [ValIt, ValEnd) (which is not from the same container). |
1737 | template<typename Container, typename RandomAccessIterator> |
1738 | void replace(Container &Cont, typename Container::iterator ContIt, |
1739 | typename Container::iterator ContEnd, RandomAccessIterator ValIt, |
1740 | RandomAccessIterator ValEnd) { |
1741 | while (true) { |
1742 | if (ValIt == ValEnd) { |
1743 | Cont.erase(ContIt, ContEnd); |
1744 | return; |
1745 | } else if (ContIt == ContEnd) { |
1746 | Cont.insert(ContIt, ValIt, ValEnd); |
1747 | return; |
1748 | } |
1749 | *ContIt++ = *ValIt++; |
1750 | } |
1751 | } |
1752 | |
1753 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
1754 | /// the range R. |
1755 | template<typename Container, typename Range = std::initializer_list< |
1756 | typename Container::value_type>> |
1757 | void replace(Container &Cont, typename Container::iterator ContIt, |
1758 | typename Container::iterator ContEnd, Range R) { |
1759 | replace(Cont, ContIt, ContEnd, R.begin(), R.end()); |
1760 | } |
1761 | |
1762 | /// An STL-style algorithm similar to std::for_each that applies a second |
1763 | /// functor between every pair of elements. |
1764 | /// |
1765 | /// This provides the control flow logic to, for example, print a |
1766 | /// comma-separated list: |
1767 | /// \code |
1768 | /// interleave(names.begin(), names.end(), |
1769 | /// [&](StringRef name) { os << name; }, |
1770 | /// [&] { os << ", "; }); |
1771 | /// \endcode |
1772 | template <typename ForwardIterator, typename UnaryFunctor, |
1773 | typename NullaryFunctor, |
1774 | typename = typename std::enable_if< |
1775 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
1776 | !std::is_constructible<StringRef, NullaryFunctor>::value>::type> |
1777 | inline void interleave(ForwardIterator begin, ForwardIterator end, |
1778 | UnaryFunctor each_fn, NullaryFunctor between_fn) { |
1779 | if (begin == end) |
1780 | return; |
1781 | each_fn(*begin); |
1782 | ++begin; |
1783 | for (; begin != end; ++begin) { |
1784 | between_fn(); |
1785 | each_fn(*begin); |
1786 | } |
1787 | } |
1788 | |
1789 | template <typename Container, typename UnaryFunctor, typename NullaryFunctor, |
1790 | typename = typename std::enable_if< |
1791 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
1792 | !std::is_constructible<StringRef, NullaryFunctor>::value>::type> |
1793 | inline void interleave(const Container &c, UnaryFunctor each_fn, |
1794 | NullaryFunctor between_fn) { |
1795 | interleave(c.begin(), c.end(), each_fn, between_fn); |
1796 | } |
1797 | |
1798 | /// Overload of interleave for the common case of string separator. |
1799 | template <typename Container, typename UnaryFunctor, typename StreamT, |
1800 | typename T = detail::ValueOfRange<Container>> |
1801 | inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, |
1802 | const StringRef &separator) { |
1803 | interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); |
1804 | } |
1805 | template <typename Container, typename StreamT, |
1806 | typename T = detail::ValueOfRange<Container>> |
1807 | inline void interleave(const Container &c, StreamT &os, |
1808 | const StringRef &separator) { |
1809 | interleave( |
1810 | c, os, [&](const T &a) { os << a; }, separator); |
1811 | } |
1812 | |
1813 | template <typename Container, typename UnaryFunctor, typename StreamT, |
1814 | typename T = detail::ValueOfRange<Container>> |
1815 | inline void interleaveComma(const Container &c, StreamT &os, |
1816 | UnaryFunctor each_fn) { |
1817 | interleave(c, os, each_fn, ", "); |
1818 | } |
1819 | template <typename Container, typename StreamT, |
1820 | typename T = detail::ValueOfRange<Container>> |
1821 | inline void interleaveComma(const Container &c, StreamT &os) { |
1822 | interleaveComma(c, os, [&](const T &a) { os << a; }); |
1823 | } |
1824 | |
1825 | //===----------------------------------------------------------------------===// |
1826 | // Extra additions to <memory> |
1827 | //===----------------------------------------------------------------------===// |
1828 | |
1829 | struct FreeDeleter { |
1830 | void operator()(void* v) { |
1831 | ::free(v); |
1832 | } |
1833 | }; |
1834 | |
1835 | template<typename First, typename Second> |
1836 | struct pair_hash { |
1837 | size_t operator()(const std::pair<First, Second> &P) const { |
1838 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
1839 | } |
1840 | }; |
1841 | |
1842 | /// Binary functor that adapts to any other binary functor after dereferencing |
1843 | /// operands. |
1844 | template <typename T> struct deref { |
1845 | T func; |
1846 | |
1847 | // Could be further improved to cope with non-derivable functors and |
1848 | // non-binary functors (should be a variadic template member function |
1849 | // operator()). |
1850 | template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { |
1851 | assert(lhs)((void)0); |
1852 | assert(rhs)((void)0); |
1853 | return func(*lhs, *rhs); |
1854 | } |
1855 | }; |
1856 | |
1857 | namespace detail { |
1858 | |
1859 | template <typename R> class enumerator_iter; |
1860 | |
1861 | template <typename R> struct result_pair { |
1862 | using value_reference = |
1863 | typename std::iterator_traits<IterOfRange<R>>::reference; |
1864 | |
1865 | friend class enumerator_iter<R>; |
1866 | |
1867 | result_pair() = default; |
1868 | result_pair(std::size_t Index, IterOfRange<R> Iter) |
1869 | : Index(Index), Iter(Iter) {} |
1870 | |
1871 | result_pair(const result_pair<R> &Other) |
1872 | : Index(Other.Index), Iter(Other.Iter) {} |
1873 | result_pair &operator=(const result_pair &Other) { |
1874 | Index = Other.Index; |
1875 | Iter = Other.Iter; |
1876 | return *this; |
1877 | } |
1878 | |
1879 | std::size_t index() const { return Index; } |
1880 | const value_reference value() const { return *Iter; } |
1881 | value_reference value() { return *Iter; } |
1882 | |
1883 | private: |
1884 | std::size_t Index = std::numeric_limits<std::size_t>::max(); |
1885 | IterOfRange<R> Iter; |
1886 | }; |
1887 | |
1888 | template <typename R> |
1889 | class enumerator_iter |
1890 | : public iterator_facade_base< |
1891 | enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, |
1892 | typename std::iterator_traits<IterOfRange<R>>::difference_type, |
1893 | typename std::iterator_traits<IterOfRange<R>>::pointer, |
1894 | typename std::iterator_traits<IterOfRange<R>>::reference> { |
1895 | using result_type = result_pair<R>; |
1896 | |
1897 | public: |
1898 | explicit enumerator_iter(IterOfRange<R> EndIter) |
1899 | : Result(std::numeric_limits<size_t>::max(), EndIter) {} |
1900 | |
1901 | enumerator_iter(std::size_t Index, IterOfRange<R> Iter) |
1902 | : Result(Index, Iter) {} |
1903 | |
1904 | result_type &operator*() { return Result; } |
1905 | const result_type &operator*() const { return Result; } |
1906 | |
1907 | enumerator_iter &operator++() { |
1908 | assert(Result.Index != std::numeric_limits<size_t>::max())((void)0); |
1909 | ++Result.Iter; |
1910 | ++Result.Index; |
1911 | return *this; |
1912 | } |
1913 | |
1914 | bool operator==(const enumerator_iter &RHS) const { |
1915 | // Don't compare indices here, only iterators. It's possible for an end |
1916 | // iterator to have different indices depending on whether it was created |
1917 | // by calling std::end() versus incrementing a valid iterator. |
1918 | return Result.Iter == RHS.Result.Iter; |
1919 | } |
1920 | |
1921 | enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {} |
1922 | enumerator_iter &operator=(const enumerator_iter &Other) { |
1923 | Result = Other.Result; |
1924 | return *this; |
1925 | } |
1926 | |
1927 | private: |
1928 | result_type Result; |
1929 | }; |
1930 | |
1931 | template <typename R> class enumerator { |
1932 | public: |
1933 | explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} |
1934 | |
1935 | enumerator_iter<R> begin() { |
1936 | return enumerator_iter<R>(0, std::begin(TheRange)); |
1937 | } |
1938 | |
1939 | enumerator_iter<R> end() { |
1940 | return enumerator_iter<R>(std::end(TheRange)); |
1941 | } |
1942 | |
1943 | private: |
1944 | R TheRange; |
1945 | }; |
1946 | |
1947 | } // end namespace detail |
1948 | |
1949 | /// Given an input range, returns a new range whose values are are pair (A,B) |
1950 | /// such that A is the 0-based index of the item in the sequence, and B is |
1951 | /// the value from the original sequence. Example: |
1952 | /// |
1953 | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; |
1954 | /// for (auto X : enumerate(Items)) { |
1955 | /// printf("Item %d - %c\n", X.index(), X.value()); |
1956 | /// } |
1957 | /// |
1958 | /// Output: |
1959 | /// Item 0 - A |
1960 | /// Item 1 - B |
1961 | /// Item 2 - C |
1962 | /// Item 3 - D |
1963 | /// |
1964 | template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { |
1965 | return detail::enumerator<R>(std::forward<R>(TheRange)); |
1966 | } |
1967 | |
1968 | namespace detail { |
1969 | |
1970 | template <typename F, typename Tuple, std::size_t... I> |
1971 | decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) { |
1972 | return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); |
1973 | } |
1974 | |
1975 | } // end namespace detail |
1976 | |
1977 | /// Given an input tuple (a1, a2, ..., an), pass the arguments of the |
1978 | /// tuple variadically to f as if by calling f(a1, a2, ..., an) and |
1979 | /// return the result. |
1980 | template <typename F, typename Tuple> |
1981 | decltype(auto) apply_tuple(F &&f, Tuple &&t) { |
1982 | using Indices = std::make_index_sequence< |
1983 | std::tuple_size<typename std::decay<Tuple>::type>::value>; |
1984 | |
1985 | return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), |
1986 | Indices{}); |
1987 | } |
1988 | |
1989 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
1990 | /// time. Not meant for use with random-access iterators. |
1991 | /// Can optionally take a predicate to filter lazily some items. |
1992 | template <typename IterTy, |
1993 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
1994 | bool hasNItems( |
1995 | IterTy &&Begin, IterTy &&End, unsigned N, |
1996 | Pred &&ShouldBeCounted = |
1997 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
1998 | std::enable_if_t< |
1999 | !std::is_base_of<std::random_access_iterator_tag, |
2000 | typename std::iterator_traits<std::remove_reference_t< |
2001 | decltype(Begin)>>::iterator_category>::value, |
2002 | void> * = nullptr) { |
2003 | for (; N; ++Begin) { |
2004 | if (Begin == End) |
2005 | return false; // Too few. |
2006 | N -= ShouldBeCounted(*Begin); |
2007 | } |
2008 | for (; Begin != End; ++Begin) |
2009 | if (ShouldBeCounted(*Begin)) |
2010 | return false; // Too many. |
2011 | return true; |
2012 | } |
2013 | |
2014 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
2015 | /// time. Not meant for use with random-access iterators. |
2016 | /// Can optionally take a predicate to lazily filter some items. |
2017 | template <typename IterTy, |
2018 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
2019 | bool hasNItemsOrMore( |
2020 | IterTy &&Begin, IterTy &&End, unsigned N, |
2021 | Pred &&ShouldBeCounted = |
2022 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
2023 | std::enable_if_t< |
2024 | !std::is_base_of<std::random_access_iterator_tag, |
2025 | typename std::iterator_traits<std::remove_reference_t< |
2026 | decltype(Begin)>>::iterator_category>::value, |
2027 | void> * = nullptr) { |
2028 | for (; N; ++Begin) { |
2029 | if (Begin == End) |
2030 | return false; // Too few. |
2031 | N -= ShouldBeCounted(*Begin); |
2032 | } |
2033 | return true; |
2034 | } |
2035 | |
2036 | /// Returns true if the sequence [Begin, End) has N or less items. Can |
2037 | /// optionally take a predicate to lazily filter some items. |
2038 | template <typename IterTy, |
2039 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
2040 | bool hasNItemsOrLess( |
2041 | IterTy &&Begin, IterTy &&End, unsigned N, |
2042 | Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { |
2043 | return true; |
2044 | }) { |
2045 | assert(N != std::numeric_limits<unsigned>::max())((void)0); |
2046 | return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); |
2047 | } |
2048 | |
2049 | /// Returns true if the given container has exactly N items |
2050 | template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { |
2051 | return hasNItems(std::begin(C), std::end(C), N); |
2052 | } |
2053 | |
2054 | /// Returns true if the given container has N or more items |
2055 | template <typename ContainerTy> |
2056 | bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { |
2057 | return hasNItemsOrMore(std::begin(C), std::end(C), N); |
2058 | } |
2059 | |
2060 | /// Returns true if the given container has N or less items |
2061 | template <typename ContainerTy> |
2062 | bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { |
2063 | return hasNItemsOrLess(std::begin(C), std::end(C), N); |
2064 | } |
2065 | |
2066 | /// Returns a raw pointer that represents the same address as the argument. |
2067 | /// |
2068 | /// This implementation can be removed once we move to C++20 where it's defined |
2069 | /// as std::to_address(). |
2070 | /// |
2071 | /// The std::pointer_traits<>::to_address(p) variations of these overloads has |
2072 | /// not been implemented. |
2073 | template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } |
2074 | template <class T> constexpr T *to_address(T *P) { return P; } |
2075 | |
2076 | } // end namespace llvm |
2077 | |
2078 | #endif // LLVM_ADT_STLEXTRAS_H |
1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the declaration of the Type class. For more "Type" |
10 | // stuff, look in DerivedTypes.h. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_IR_TYPE_H |
15 | #define LLVM_IR_TYPE_H |
16 | |
17 | #include "llvm/ADT/APFloat.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/Support/CBindingWrapping.h" |
21 | #include "llvm/Support/Casting.h" |
22 | #include "llvm/Support/Compiler.h" |
23 | #include "llvm/Support/ErrorHandling.h" |
24 | #include "llvm/Support/TypeSize.h" |
25 | #include <cassert> |
26 | #include <cstdint> |
27 | #include <iterator> |
28 | |
29 | namespace llvm { |
30 | |
31 | class IntegerType; |
32 | class LLVMContext; |
33 | class PointerType; |
34 | class raw_ostream; |
35 | class StringRef; |
36 | |
37 | /// The instances of the Type class are immutable: once they are created, |
38 | /// they are never changed. Also note that only one instance of a particular |
39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
41 | /// are created, Type instances can only be created via static factory methods |
42 | /// in class Type and in derived classes. Once allocated, Types are never |
43 | /// free'd. |
44 | /// |
45 | class Type { |
46 | public: |
47 | //===--------------------------------------------------------------------===// |
48 | /// Definitions of all of the base types for the Type system. Based on this |
49 | /// value, you can cast to a class defined in DerivedTypes.h. |
50 | /// Note: If you add an element to this, you need to add an element to the |
51 | /// Type::getPrimitiveType function, or else things will break! |
52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
53 | /// |
54 | enum TypeID { |
55 | // PrimitiveTypes |
56 | HalfTyID = 0, ///< 16-bit floating point type |
57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
58 | FloatTyID, ///< 32-bit floating point type |
59 | DoubleTyID, ///< 64-bit floating point type |
60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
63 | VoidTyID, ///< type with no size |
64 | LabelTyID, ///< Labels |
65 | MetadataTyID, ///< Metadata |
66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
68 | TokenTyID, ///< Tokens |
69 | |
70 | // Derived types... see DerivedTypes.h file. |
71 | IntegerTyID, ///< Arbitrary bit width integers |
72 | FunctionTyID, ///< Functions |
73 | PointerTyID, ///< Pointers |
74 | StructTyID, ///< Structures |
75 | ArrayTyID, ///< Arrays |
76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
77 | ScalableVectorTyID ///< Scalable SIMD vector type |
78 | }; |
79 | |
80 | private: |
81 | /// This refers to the LLVMContext in which this type was uniqued. |
82 | LLVMContext &Context; |
83 | |
84 | TypeID ID : 8; // The current base type of this type. |
85 | unsigned SubclassData : 24; // Space for subclasses to store data. |
86 | // Note that this should be synchronized with |
87 | // MAX_INT_BITS value in IntegerType class. |
88 | |
89 | protected: |
90 | friend class LLVMContextImpl; |
91 | |
92 | explicit Type(LLVMContext &C, TypeID tid) |
93 | : Context(C), ID(tid), SubclassData(0) {} |
94 | ~Type() = default; |
95 | |
96 | unsigned getSubclassData() const { return SubclassData; } |
97 | |
98 | void setSubclassData(unsigned val) { |
99 | SubclassData = val; |
100 | // Ensure we don't have any accidental truncation. |
101 | assert(getSubclassData() == val && "Subclass data too large for field")((void)0); |
102 | } |
103 | |
104 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
105 | unsigned NumContainedTys = 0; |
106 | |
107 | /// A pointer to the array of Types contained by this Type. For example, this |
108 | /// includes the arguments of a function type, the elements of a structure, |
109 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
110 | /// may be 0 for types that don't contain other types (Integer, Double, |
111 | /// Float). |
112 | Type * const *ContainedTys = nullptr; |
113 | |
114 | public: |
115 | /// Print the current type. |
116 | /// Omit the type details if \p NoDetails == true. |
117 | /// E.g., let %st = type { i32, i16 } |
118 | /// When \p NoDetails is true, we only print %st. |
119 | /// Put differently, \p NoDetails prints the type as if |
120 | /// inlined with the operands when printing an instruction. |
121 | void print(raw_ostream &O, bool IsForDebug = false, |
122 | bool NoDetails = false) const; |
123 | |
124 | void dump() const; |
125 | |
126 | /// Return the LLVMContext in which this type was uniqued. |
127 | LLVMContext &getContext() const { return Context; } |
128 | |
129 | //===--------------------------------------------------------------------===// |
130 | // Accessors for working with types. |
131 | // |
132 | |
133 | /// Return the type id for the type. This will return one of the TypeID enum |
134 | /// elements defined above. |
135 | TypeID getTypeID() const { return ID; } |
136 | |
137 | /// Return true if this is 'void'. |
138 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
139 | |
140 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
141 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
142 | |
143 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
144 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
145 | |
146 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
147 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
148 | |
149 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
150 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
151 | |
152 | /// Return true if this is x86 long double. |
153 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
154 | |
155 | /// Return true if this is 'fp128'. |
156 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
157 | |
158 | /// Return true if this is powerpc long double. |
159 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
160 | |
161 | /// Return true if this is one of the six floating-point types |
162 | bool isFloatingPointTy() const { |
163 | return getTypeID() == HalfTyID || getTypeID() == BFloatTyID || |
164 | getTypeID() == FloatTyID || getTypeID() == DoubleTyID || |
165 | getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || |
166 | getTypeID() == PPC_FP128TyID; |
167 | } |
168 | |
169 | const fltSemantics &getFltSemantics() const { |
170 | switch (getTypeID()) { |
171 | case HalfTyID: return APFloat::IEEEhalf(); |
172 | case BFloatTyID: return APFloat::BFloat(); |
173 | case FloatTyID: return APFloat::IEEEsingle(); |
174 | case DoubleTyID: return APFloat::IEEEdouble(); |
175 | case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
176 | case FP128TyID: return APFloat::IEEEquad(); |
177 | case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
178 | default: llvm_unreachable("Invalid floating type")__builtin_unreachable(); |
179 | } |
180 | } |
181 | |
182 | /// Return true if this is X86 MMX. |
183 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
184 | |
185 | /// Return true if this is X86 AMX. |
186 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
187 | |
188 | /// Return true if this is a FP type or a vector of FP. |
189 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
190 | |
191 | /// Return true if this is 'label'. |
192 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
193 | |
194 | /// Return true if this is 'metadata'. |
195 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
196 | |
197 | /// Return true if this is 'token'. |
198 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
199 | |
200 | /// True if this is an instance of IntegerType. |
201 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
202 | |
203 | /// Return true if this is an IntegerType of the given width. |
204 | bool isIntegerTy(unsigned Bitwidth) const; |
205 | |
206 | /// Return true if this is an integer type or a vector of integer types. |
207 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
208 | |
209 | /// Return true if this is an integer type or a vector of integer types of |
210 | /// the given width. |
211 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
212 | return getScalarType()->isIntegerTy(BitWidth); |
213 | } |
214 | |
215 | /// Return true if this is an integer type or a pointer type. |
216 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
217 | |
218 | /// True if this is an instance of FunctionType. |
219 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
220 | |
221 | /// True if this is an instance of StructType. |
222 | bool isStructTy() const { return getTypeID() == StructTyID; } |
223 | |
224 | /// True if this is an instance of ArrayType. |
225 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
226 | |
227 | /// True if this is an instance of PointerType. |
228 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
229 | |
230 | /// True if this is an instance of an opaque PointerType. |
231 | bool isOpaquePointerTy() const; |
232 | |
233 | /// Return true if this is a pointer type or a vector of pointer types. |
234 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
235 | |
236 | /// True if this is an instance of VectorType. |
237 | inline bool isVectorTy() const { |
238 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
239 | } |
240 | |
241 | /// Return true if this type could be converted with a lossless BitCast to |
242 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
243 | /// same size only where no re-interpretation of the bits is done. |
244 | /// Determine if this type could be losslessly bitcast to Ty |
245 | bool canLosslesslyBitCastTo(Type *Ty) const; |
246 | |
247 | /// Return true if this type is empty, that is, it has no elements or all of |
248 | /// its elements are empty. |
249 | bool isEmptyTy() const; |
250 | |
251 | /// Return true if the type is "first class", meaning it is a valid type for a |
252 | /// Value. |
253 | bool isFirstClassType() const { |
254 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
255 | } |
256 | |
257 | /// Return true if the type is a valid type for a register in codegen. This |
258 | /// includes all first-class types except struct and array types. |
259 | bool isSingleValueType() const { |
260 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
261 | isPointerTy() || isVectorTy() || isX86_AMXTy(); |
262 | } |
263 | |
264 | /// Return true if the type is an aggregate type. This means it is valid as |
265 | /// the first operand of an insertvalue or extractvalue instruction. This |
266 | /// includes struct and array types, but does not include vector types. |
267 | bool isAggregateType() const { |
268 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
269 | } |
270 | |
271 | /// Return true if it makes sense to take the size of this type. To get the |
272 | /// actual size for a particular target, it is reasonable to use the |
273 | /// DataLayout subsystem to do this. |
274 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
275 | // If it's a primitive, it is always sized. |
276 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
277 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
278 | getTypeID() == X86_AMXTyID) |
279 | return true; |
280 | // If it is not something that can have a size (e.g. a function or label), |
281 | // it doesn't have a size. |
282 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy()) |
283 | return false; |
284 | // Otherwise we have to try harder to decide. |
285 | return isSizedDerivedType(Visited); |
286 | } |
287 | |
288 | /// Return the basic size of this type if it is a primitive type. These are |
289 | /// fixed by LLVM and are not target-dependent. |
290 | /// This will return zero if the type does not have a size or is not a |
291 | /// primitive type. |
292 | /// |
293 | /// If this is a scalable vector type, the scalable property will be set and |
294 | /// the runtime size will be a positive integer multiple of the base size. |
295 | /// |
296 | /// Note that this may not reflect the size of memory allocated for an |
297 | /// instance of the type or the number of bytes that are written when an |
298 | /// instance of the type is stored to memory. The DataLayout class provides |
299 | /// additional query functions to provide this information. |
300 | /// |
301 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
302 | |
303 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
304 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
305 | /// type. |
306 | unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
307 | |
308 | /// Return the width of the mantissa of this type. This is only valid on |
309 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
310 | /// ppc long double), this method returns -1. |
311 | int getFPMantissaWidth() const; |
312 | |
313 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
314 | /// method in APFloat. |
315 | bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } |
316 | |
317 | /// If this is a vector type, return the element type, otherwise return |
318 | /// 'this'. |
319 | inline Type *getScalarType() const { |
320 | if (isVectorTy()) |
321 | return getContainedType(0); |
322 | return const_cast<Type *>(this); |
323 | } |
324 | |
325 | //===--------------------------------------------------------------------===// |
326 | // Type Iteration support. |
327 | // |
328 | using subtype_iterator = Type * const *; |
329 | |
330 | subtype_iterator subtype_begin() const { return ContainedTys; } |
331 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
332 | ArrayRef<Type*> subtypes() const { |
333 | return makeArrayRef(subtype_begin(), subtype_end()); |
334 | } |
335 | |
336 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
337 | |
338 | subtype_reverse_iterator subtype_rbegin() const { |
339 | return subtype_reverse_iterator(subtype_end()); |
340 | } |
341 | subtype_reverse_iterator subtype_rend() const { |
342 | return subtype_reverse_iterator(subtype_begin()); |
343 | } |
344 | |
345 | /// This method is used to implement the type iterator (defined at the end of |
346 | /// the file). For derived types, this returns the types 'contained' in the |
347 | /// derived type. |
348 | Type *getContainedType(unsigned i) const { |
349 | assert(i < NumContainedTys && "Index out of range!")((void)0); |
350 | return ContainedTys[i]; |
351 | } |
352 | |
353 | /// Return the number of types in the derived type. |
354 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
355 | |
356 | //===--------------------------------------------------------------------===// |
357 | // Helper methods corresponding to subclass methods. This forces a cast to |
358 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
359 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
360 | // only intended to cover the core methods that are frequently used, helper |
361 | // methods should not be added here. |
362 | |
363 | inline unsigned getIntegerBitWidth() const; |
364 | |
365 | inline Type *getFunctionParamType(unsigned i) const; |
366 | inline unsigned getFunctionNumParams() const; |
367 | inline bool isFunctionVarArg() const; |
368 | |
369 | inline StringRef getStructName() const; |
370 | inline unsigned getStructNumElements() const; |
371 | inline Type *getStructElementType(unsigned N) const; |
372 | |
373 | inline uint64_t getArrayNumElements() const; |
374 | |
375 | Type *getArrayElementType() const { |
376 | assert(getTypeID() == ArrayTyID)((void)0); |
377 | return ContainedTys[0]; |
378 | } |
379 | |
380 | Type *getPointerElementType() const { |
381 | assert(getTypeID() == PointerTyID)((void)0); |
382 | return ContainedTys[0]; |
383 | } |
384 | |
385 | /// Given vector type, change the element type, |
386 | /// whilst keeping the old number of elements. |
387 | /// For non-vectors simply returns \p EltTy. |
388 | inline Type *getWithNewType(Type *EltTy) const; |
389 | |
390 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
391 | /// whilst keeping the old number of lanes. |
392 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
393 | |
394 | /// Given scalar/vector integer type, returns a type with elements twice as |
395 | /// wide as in the original type. For vectors, preserves element count. |
396 | inline Type *getExtendedType() const; |
397 | |
398 | /// Get the address space of this pointer or pointer vector type. |
399 | inline unsigned getPointerAddressSpace() const; |
400 | |
401 | //===--------------------------------------------------------------------===// |
402 | // Static members exported by the Type class itself. Useful for getting |
403 | // instances of Type. |
404 | // |
405 | |
406 | /// Return a type based on an identifier. |
407 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
408 | |
409 | //===--------------------------------------------------------------------===// |
410 | // These are the builtin types that are always available. |
411 | // |
412 | static Type *getVoidTy(LLVMContext &C); |
413 | static Type *getLabelTy(LLVMContext &C); |
414 | static Type *getHalfTy(LLVMContext &C); |
415 | static Type *getBFloatTy(LLVMContext &C); |
416 | static Type *getFloatTy(LLVMContext &C); |
417 | static Type *getDoubleTy(LLVMContext &C); |
418 | static Type *getMetadataTy(LLVMContext &C); |
419 | static Type *getX86_FP80Ty(LLVMContext &C); |
420 | static Type *getFP128Ty(LLVMContext &C); |
421 | static Type *getPPC_FP128Ty(LLVMContext &C); |
422 | static Type *getX86_MMXTy(LLVMContext &C); |
423 | static Type *getX86_AMXTy(LLVMContext &C); |
424 | static Type *getTokenTy(LLVMContext &C); |
425 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
426 | static IntegerType *getInt1Ty(LLVMContext &C); |
427 | static IntegerType *getInt8Ty(LLVMContext &C); |
428 | static IntegerType *getInt16Ty(LLVMContext &C); |
429 | static IntegerType *getInt32Ty(LLVMContext &C); |
430 | static IntegerType *getInt64Ty(LLVMContext &C); |
431 | static IntegerType *getInt128Ty(LLVMContext &C); |
432 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
433 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT8; |
434 | if (std::is_integral<ScalarTy>::value) { |
435 | return (Type*) Type::getIntNTy(C, noOfBits); |
436 | } else if (std::is_floating_point<ScalarTy>::value) { |
437 | switch (noOfBits) { |
438 | case 32: |
439 | return Type::getFloatTy(C); |
440 | case 64: |
441 | return Type::getDoubleTy(C); |
442 | } |
443 | } |
444 | llvm_unreachable("Unsupported type in Type::getScalarTy")__builtin_unreachable(); |
445 | } |
446 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
447 | Type *Ty; |
448 | if (&S == &APFloat::IEEEhalf()) |
449 | Ty = Type::getHalfTy(C); |
450 | else if (&S == &APFloat::BFloat()) |
451 | Ty = Type::getBFloatTy(C); |
452 | else if (&S == &APFloat::IEEEsingle()) |
453 | Ty = Type::getFloatTy(C); |
454 | else if (&S == &APFloat::IEEEdouble()) |
455 | Ty = Type::getDoubleTy(C); |
456 | else if (&S == &APFloat::x87DoubleExtended()) |
457 | Ty = Type::getX86_FP80Ty(C); |
458 | else if (&S == &APFloat::IEEEquad()) |
459 | Ty = Type::getFP128Ty(C); |
460 | else { |
461 | assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((void)0); |
462 | Ty = Type::getPPC_FP128Ty(C); |
463 | } |
464 | return Ty; |
465 | } |
466 | |
467 | //===--------------------------------------------------------------------===// |
468 | // Convenience methods for getting pointer types with one of the above builtin |
469 | // types as pointee. |
470 | // |
471 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
472 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
473 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
474 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
475 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
476 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
477 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
478 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
479 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
480 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
481 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
482 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
483 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
484 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
485 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
486 | |
487 | /// Return a pointer to the current type. This is equivalent to |
488 | /// PointerType::get(Foo, AddrSpace). |
489 | /// TODO: Remove this after opaque pointer transition is complete. |
490 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
491 | |
492 | private: |
493 | /// Derived types like structures and arrays are sized iff all of the members |
494 | /// of the type are sized as well. Since asking for their size is relatively |
495 | /// uncommon, move this operation out-of-line. |
496 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
497 | }; |
498 | |
499 | // Printing of types. |
500 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
501 | T.print(OS); |
502 | return OS; |
503 | } |
504 | |
505 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
506 | template <> struct isa_impl<PointerType, Type> { |
507 | static inline bool doit(const Type &Ty) { |
508 | return Ty.getTypeID() == Type::PointerTyID; |
509 | } |
510 | }; |
511 | |
512 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
513 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast< Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return reinterpret_cast<LLVMTypeRef>(const_cast<Type*>( P)); } template<typename T> inline T *unwrap(LLVMTypeRef P) { return cast<T>(unwrap(P)); } |
514 | |
515 | /* Specialized opaque type conversions. |
516 | */ |
517 | inline Type **unwrap(LLVMTypeRef* Tys) { |
518 | return reinterpret_cast<Type**>(Tys); |
519 | } |
520 | |
521 | inline LLVMTypeRef *wrap(Type **Tys) { |
522 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
523 | } |
524 | |
525 | } // end namespace llvm |
526 | |
527 | #endif // LLVM_IR_TYPE_H |