File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Analysis/LazyValueInfo.cpp |
Warning: | line 1322, column 34 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | ||||||||
2 | // | ||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
6 | // | ||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||
8 | // | ||||||||
9 | // This file defines the interface for lazy computation of value constraint | ||||||||
10 | // information. | ||||||||
11 | // | ||||||||
12 | //===----------------------------------------------------------------------===// | ||||||||
13 | |||||||||
14 | #include "llvm/Analysis/LazyValueInfo.h" | ||||||||
15 | #include "llvm/ADT/DenseSet.h" | ||||||||
16 | #include "llvm/ADT/Optional.h" | ||||||||
17 | #include "llvm/ADT/STLExtras.h" | ||||||||
18 | #include "llvm/Analysis/AssumptionCache.h" | ||||||||
19 | #include "llvm/Analysis/ConstantFolding.h" | ||||||||
20 | #include "llvm/Analysis/InstructionSimplify.h" | ||||||||
21 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||
22 | #include "llvm/Analysis/ValueLattice.h" | ||||||||
23 | #include "llvm/Analysis/ValueTracking.h" | ||||||||
24 | #include "llvm/IR/AssemblyAnnotationWriter.h" | ||||||||
25 | #include "llvm/IR/CFG.h" | ||||||||
26 | #include "llvm/IR/ConstantRange.h" | ||||||||
27 | #include "llvm/IR/Constants.h" | ||||||||
28 | #include "llvm/IR/DataLayout.h" | ||||||||
29 | #include "llvm/IR/Dominators.h" | ||||||||
30 | #include "llvm/IR/Instructions.h" | ||||||||
31 | #include "llvm/IR/IntrinsicInst.h" | ||||||||
32 | #include "llvm/IR/Intrinsics.h" | ||||||||
33 | #include "llvm/IR/LLVMContext.h" | ||||||||
34 | #include "llvm/IR/PatternMatch.h" | ||||||||
35 | #include "llvm/IR/ValueHandle.h" | ||||||||
36 | #include "llvm/InitializePasses.h" | ||||||||
37 | #include "llvm/Support/Debug.h" | ||||||||
38 | #include "llvm/Support/FormattedStream.h" | ||||||||
39 | #include "llvm/Support/KnownBits.h" | ||||||||
40 | #include "llvm/Support/raw_ostream.h" | ||||||||
41 | #include <map> | ||||||||
42 | using namespace llvm; | ||||||||
43 | using namespace PatternMatch; | ||||||||
44 | |||||||||
45 | #define DEBUG_TYPE"lazy-value-info" "lazy-value-info" | ||||||||
46 | |||||||||
47 | // This is the number of worklist items we will process to try to discover an | ||||||||
48 | // answer for a given value. | ||||||||
49 | static const unsigned MaxProcessedPerValue = 500; | ||||||||
50 | |||||||||
51 | char LazyValueInfoWrapperPass::ID = 0; | ||||||||
52 | LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { | ||||||||
53 | initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); | ||||||||
54 | } | ||||||||
55 | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||||
56 | "Lazy Value Information Analysis", false, true)static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||||
57 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||||
58 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||||
59 | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||||
60 | "Lazy Value Information Analysis", false, true)PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||||
61 | |||||||||
62 | namespace llvm { | ||||||||
63 | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | ||||||||
64 | } | ||||||||
65 | |||||||||
66 | AnalysisKey LazyValueAnalysis::Key; | ||||||||
67 | |||||||||
68 | /// Returns true if this lattice value represents at most one possible value. | ||||||||
69 | /// This is as precise as any lattice value can get while still representing | ||||||||
70 | /// reachable code. | ||||||||
71 | static bool hasSingleValue(const ValueLatticeElement &Val) { | ||||||||
72 | if (Val.isConstantRange() && | ||||||||
73 | Val.getConstantRange().isSingleElement()) | ||||||||
74 | // Integer constants are single element ranges | ||||||||
75 | return true; | ||||||||
76 | if (Val.isConstant()) | ||||||||
77 | // Non integer constants | ||||||||
78 | return true; | ||||||||
79 | return false; | ||||||||
80 | } | ||||||||
81 | |||||||||
82 | /// Combine two sets of facts about the same value into a single set of | ||||||||
83 | /// facts. Note that this method is not suitable for merging facts along | ||||||||
84 | /// different paths in a CFG; that's what the mergeIn function is for. This | ||||||||
85 | /// is for merging facts gathered about the same value at the same location | ||||||||
86 | /// through two independent means. | ||||||||
87 | /// Notes: | ||||||||
88 | /// * This method does not promise to return the most precise possible lattice | ||||||||
89 | /// value implied by A and B. It is allowed to return any lattice element | ||||||||
90 | /// which is at least as strong as *either* A or B (unless our facts | ||||||||
91 | /// conflict, see below). | ||||||||
92 | /// * Due to unreachable code, the intersection of two lattice values could be | ||||||||
93 | /// contradictory. If this happens, we return some valid lattice value so as | ||||||||
94 | /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but | ||||||||
95 | /// we do not make this guarantee. TODO: This would be a useful enhancement. | ||||||||
96 | static ValueLatticeElement intersect(const ValueLatticeElement &A, | ||||||||
97 | const ValueLatticeElement &B) { | ||||||||
98 | // Undefined is the strongest state. It means the value is known to be along | ||||||||
99 | // an unreachable path. | ||||||||
100 | if (A.isUnknown()) | ||||||||
101 | return A; | ||||||||
102 | if (B.isUnknown()) | ||||||||
103 | return B; | ||||||||
104 | |||||||||
105 | // If we gave up for one, but got a useable fact from the other, use it. | ||||||||
106 | if (A.isOverdefined()) | ||||||||
107 | return B; | ||||||||
108 | if (B.isOverdefined()) | ||||||||
109 | return A; | ||||||||
110 | |||||||||
111 | // Can't get any more precise than constants. | ||||||||
112 | if (hasSingleValue(A)) | ||||||||
113 | return A; | ||||||||
114 | if (hasSingleValue(B)) | ||||||||
115 | return B; | ||||||||
116 | |||||||||
117 | // Could be either constant range or not constant here. | ||||||||
118 | if (!A.isConstantRange() || !B.isConstantRange()) { | ||||||||
119 | // TODO: Arbitrary choice, could be improved | ||||||||
120 | return A; | ||||||||
121 | } | ||||||||
122 | |||||||||
123 | // Intersect two constant ranges | ||||||||
124 | ConstantRange Range = | ||||||||
125 | A.getConstantRange().intersectWith(B.getConstantRange()); | ||||||||
126 | // Note: An empty range is implicitly converted to unknown or undef depending | ||||||||
127 | // on MayIncludeUndef internally. | ||||||||
128 | return ValueLatticeElement::getRange( | ||||||||
129 | std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() | | ||||||||
130 | B.isConstantRangeIncludingUndef()); | ||||||||
131 | } | ||||||||
132 | |||||||||
133 | //===----------------------------------------------------------------------===// | ||||||||
134 | // LazyValueInfoCache Decl | ||||||||
135 | //===----------------------------------------------------------------------===// | ||||||||
136 | |||||||||
137 | namespace { | ||||||||
138 | /// A callback value handle updates the cache when values are erased. | ||||||||
139 | class LazyValueInfoCache; | ||||||||
140 | struct LVIValueHandle final : public CallbackVH { | ||||||||
141 | LazyValueInfoCache *Parent; | ||||||||
142 | |||||||||
143 | LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) | ||||||||
144 | : CallbackVH(V), Parent(P) { } | ||||||||
145 | |||||||||
146 | void deleted() override; | ||||||||
147 | void allUsesReplacedWith(Value *V) override { | ||||||||
148 | deleted(); | ||||||||
149 | } | ||||||||
150 | }; | ||||||||
151 | } // end anonymous namespace | ||||||||
152 | |||||||||
153 | namespace { | ||||||||
154 | using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; | ||||||||
155 | |||||||||
156 | /// This is the cache kept by LazyValueInfo which | ||||||||
157 | /// maintains information about queries across the clients' queries. | ||||||||
158 | class LazyValueInfoCache { | ||||||||
159 | /// This is all of the cached information for one basic block. It contains | ||||||||
160 | /// the per-value lattice elements, as well as a separate set for | ||||||||
161 | /// overdefined values to reduce memory usage. Additionally pointers | ||||||||
162 | /// dereferenced in the block are cached for nullability queries. | ||||||||
163 | struct BlockCacheEntry { | ||||||||
164 | SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; | ||||||||
165 | SmallDenseSet<AssertingVH<Value>, 4> OverDefined; | ||||||||
166 | // None indicates that the nonnull pointers for this basic block | ||||||||
167 | // block have not been computed yet. | ||||||||
168 | Optional<NonNullPointerSet> NonNullPointers; | ||||||||
169 | }; | ||||||||
170 | |||||||||
171 | /// Cached information per basic block. | ||||||||
172 | DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> | ||||||||
173 | BlockCache; | ||||||||
174 | /// Set of value handles used to erase values from the cache on deletion. | ||||||||
175 | DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; | ||||||||
176 | |||||||||
177 | const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { | ||||||||
178 | auto It = BlockCache.find_as(BB); | ||||||||
179 | if (It == BlockCache.end()) | ||||||||
180 | return nullptr; | ||||||||
181 | return It->second.get(); | ||||||||
182 | } | ||||||||
183 | |||||||||
184 | BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { | ||||||||
185 | auto It = BlockCache.find_as(BB); | ||||||||
186 | if (It == BlockCache.end()) | ||||||||
187 | It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) | ||||||||
188 | .first; | ||||||||
189 | |||||||||
190 | return It->second.get(); | ||||||||
191 | } | ||||||||
192 | |||||||||
193 | void addValueHandle(Value *Val) { | ||||||||
194 | auto HandleIt = ValueHandles.find_as(Val); | ||||||||
195 | if (HandleIt == ValueHandles.end()) | ||||||||
196 | ValueHandles.insert({ Val, this }); | ||||||||
197 | } | ||||||||
198 | |||||||||
199 | public: | ||||||||
200 | void insertResult(Value *Val, BasicBlock *BB, | ||||||||
201 | const ValueLatticeElement &Result) { | ||||||||
202 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | ||||||||
203 | |||||||||
204 | // Insert over-defined values into their own cache to reduce memory | ||||||||
205 | // overhead. | ||||||||
206 | if (Result.isOverdefined()) | ||||||||
207 | Entry->OverDefined.insert(Val); | ||||||||
208 | else | ||||||||
209 | Entry->LatticeElements.insert({ Val, Result }); | ||||||||
210 | |||||||||
211 | addValueHandle(Val); | ||||||||
212 | } | ||||||||
213 | |||||||||
214 | Optional<ValueLatticeElement> getCachedValueInfo(Value *V, | ||||||||
215 | BasicBlock *BB) const { | ||||||||
216 | const BlockCacheEntry *Entry = getBlockEntry(BB); | ||||||||
217 | if (!Entry) | ||||||||
218 | return None; | ||||||||
219 | |||||||||
220 | if (Entry->OverDefined.count(V)) | ||||||||
221 | return ValueLatticeElement::getOverdefined(); | ||||||||
222 | |||||||||
223 | auto LatticeIt = Entry->LatticeElements.find_as(V); | ||||||||
224 | if (LatticeIt == Entry->LatticeElements.end()) | ||||||||
225 | return None; | ||||||||
226 | |||||||||
227 | return LatticeIt->second; | ||||||||
228 | } | ||||||||
229 | |||||||||
230 | bool isNonNullAtEndOfBlock( | ||||||||
231 | Value *V, BasicBlock *BB, | ||||||||
232 | function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { | ||||||||
233 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | ||||||||
234 | if (!Entry->NonNullPointers) { | ||||||||
235 | Entry->NonNullPointers = InitFn(BB); | ||||||||
236 | for (Value *V : *Entry->NonNullPointers) | ||||||||
237 | addValueHandle(V); | ||||||||
238 | } | ||||||||
239 | |||||||||
240 | return Entry->NonNullPointers->count(V); | ||||||||
241 | } | ||||||||
242 | |||||||||
243 | /// clear - Empty the cache. | ||||||||
244 | void clear() { | ||||||||
245 | BlockCache.clear(); | ||||||||
246 | ValueHandles.clear(); | ||||||||
247 | } | ||||||||
248 | |||||||||
249 | /// Inform the cache that a given value has been deleted. | ||||||||
250 | void eraseValue(Value *V); | ||||||||
251 | |||||||||
252 | /// This is part of the update interface to inform the cache | ||||||||
253 | /// that a block has been deleted. | ||||||||
254 | void eraseBlock(BasicBlock *BB); | ||||||||
255 | |||||||||
256 | /// Updates the cache to remove any influence an overdefined value in | ||||||||
257 | /// OldSucc might have (unless also overdefined in NewSucc). This just | ||||||||
258 | /// flushes elements from the cache and does not add any. | ||||||||
259 | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||||
260 | }; | ||||||||
261 | } | ||||||||
262 | |||||||||
263 | void LazyValueInfoCache::eraseValue(Value *V) { | ||||||||
264 | for (auto &Pair : BlockCache) { | ||||||||
265 | Pair.second->LatticeElements.erase(V); | ||||||||
266 | Pair.second->OverDefined.erase(V); | ||||||||
267 | if (Pair.second->NonNullPointers) | ||||||||
268 | Pair.second->NonNullPointers->erase(V); | ||||||||
269 | } | ||||||||
270 | |||||||||
271 | auto HandleIt = ValueHandles.find_as(V); | ||||||||
272 | if (HandleIt != ValueHandles.end()) | ||||||||
273 | ValueHandles.erase(HandleIt); | ||||||||
274 | } | ||||||||
275 | |||||||||
276 | void LVIValueHandle::deleted() { | ||||||||
277 | // This erasure deallocates *this, so it MUST happen after we're done | ||||||||
278 | // using any and all members of *this. | ||||||||
279 | Parent->eraseValue(*this); | ||||||||
280 | } | ||||||||
281 | |||||||||
282 | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | ||||||||
283 | BlockCache.erase(BB); | ||||||||
284 | } | ||||||||
285 | |||||||||
286 | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, | ||||||||
287 | BasicBlock *NewSucc) { | ||||||||
288 | // When an edge in the graph has been threaded, values that we could not | ||||||||
289 | // determine a value for before (i.e. were marked overdefined) may be | ||||||||
290 | // possible to solve now. We do NOT try to proactively update these values. | ||||||||
291 | // Instead, we clear their entries from the cache, and allow lazy updating to | ||||||||
292 | // recompute them when needed. | ||||||||
293 | |||||||||
294 | // The updating process is fairly simple: we need to drop cached info | ||||||||
295 | // for all values that were marked overdefined in OldSucc, and for those same | ||||||||
296 | // values in any successor of OldSucc (except NewSucc) in which they were | ||||||||
297 | // also marked overdefined. | ||||||||
298 | std::vector<BasicBlock*> worklist; | ||||||||
299 | worklist.push_back(OldSucc); | ||||||||
300 | |||||||||
301 | const BlockCacheEntry *Entry = getBlockEntry(OldSucc); | ||||||||
302 | if (!Entry || Entry->OverDefined.empty()) | ||||||||
303 | return; // Nothing to process here. | ||||||||
304 | SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), | ||||||||
305 | Entry->OverDefined.end()); | ||||||||
306 | |||||||||
307 | // Use a worklist to perform a depth-first search of OldSucc's successors. | ||||||||
308 | // NOTE: We do not need a visited list since any blocks we have already | ||||||||
309 | // visited will have had their overdefined markers cleared already, and we | ||||||||
310 | // thus won't loop to their successors. | ||||||||
311 | while (!worklist.empty()) { | ||||||||
312 | BasicBlock *ToUpdate = worklist.back(); | ||||||||
313 | worklist.pop_back(); | ||||||||
314 | |||||||||
315 | // Skip blocks only accessible through NewSucc. | ||||||||
316 | if (ToUpdate == NewSucc) continue; | ||||||||
317 | |||||||||
318 | // If a value was marked overdefined in OldSucc, and is here too... | ||||||||
319 | auto OI = BlockCache.find_as(ToUpdate); | ||||||||
320 | if (OI == BlockCache.end() || OI->second->OverDefined.empty()) | ||||||||
321 | continue; | ||||||||
322 | auto &ValueSet = OI->second->OverDefined; | ||||||||
323 | |||||||||
324 | bool changed = false; | ||||||||
325 | for (Value *V : ValsToClear) { | ||||||||
326 | if (!ValueSet.erase(V)) | ||||||||
327 | continue; | ||||||||
328 | |||||||||
329 | // If we removed anything, then we potentially need to update | ||||||||
330 | // blocks successors too. | ||||||||
331 | changed = true; | ||||||||
332 | } | ||||||||
333 | |||||||||
334 | if (!changed) continue; | ||||||||
335 | |||||||||
336 | llvm::append_range(worklist, successors(ToUpdate)); | ||||||||
337 | } | ||||||||
338 | } | ||||||||
339 | |||||||||
340 | |||||||||
341 | namespace { | ||||||||
342 | /// An assembly annotator class to print LazyValueCache information in | ||||||||
343 | /// comments. | ||||||||
344 | class LazyValueInfoImpl; | ||||||||
345 | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { | ||||||||
346 | LazyValueInfoImpl *LVIImpl; | ||||||||
347 | // While analyzing which blocks we can solve values for, we need the dominator | ||||||||
348 | // information. | ||||||||
349 | DominatorTree &DT; | ||||||||
350 | |||||||||
351 | public: | ||||||||
352 | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) | ||||||||
353 | : LVIImpl(L), DT(DTree) {} | ||||||||
354 | |||||||||
355 | void emitBasicBlockStartAnnot(const BasicBlock *BB, | ||||||||
356 | formatted_raw_ostream &OS) override; | ||||||||
357 | |||||||||
358 | void emitInstructionAnnot(const Instruction *I, | ||||||||
359 | formatted_raw_ostream &OS) override; | ||||||||
360 | }; | ||||||||
361 | } | ||||||||
362 | namespace { | ||||||||
363 | // The actual implementation of the lazy analysis and update. Note that the | ||||||||
364 | // inheritance from LazyValueInfoCache is intended to be temporary while | ||||||||
365 | // splitting the code and then transitioning to a has-a relationship. | ||||||||
366 | class LazyValueInfoImpl { | ||||||||
367 | |||||||||
368 | /// Cached results from previous queries | ||||||||
369 | LazyValueInfoCache TheCache; | ||||||||
370 | |||||||||
371 | /// This stack holds the state of the value solver during a query. | ||||||||
372 | /// It basically emulates the callstack of the naive | ||||||||
373 | /// recursive value lookup process. | ||||||||
374 | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; | ||||||||
375 | |||||||||
376 | /// Keeps track of which block-value pairs are in BlockValueStack. | ||||||||
377 | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | ||||||||
378 | |||||||||
379 | /// Push BV onto BlockValueStack unless it's already in there. | ||||||||
380 | /// Returns true on success. | ||||||||
381 | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | ||||||||
382 | if (!BlockValueSet.insert(BV).second) | ||||||||
383 | return false; // It's already in the stack. | ||||||||
384 | |||||||||
385 | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "do { } while (false) | ||||||||
386 | << BV.first->getName() << "\n")do { } while (false); | ||||||||
387 | BlockValueStack.push_back(BV); | ||||||||
388 | return true; | ||||||||
389 | } | ||||||||
390 | |||||||||
391 | AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. | ||||||||
392 | const DataLayout &DL; ///< A mandatory DataLayout | ||||||||
393 | |||||||||
394 | /// Declaration of the llvm.experimental.guard() intrinsic, | ||||||||
395 | /// if it exists in the module. | ||||||||
396 | Function *GuardDecl; | ||||||||
397 | |||||||||
398 | Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB); | ||||||||
399 | Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, | ||||||||
400 | BasicBlock *T, Instruction *CxtI = nullptr); | ||||||||
401 | |||||||||
402 | // These methods process one work item and may add more. A false value | ||||||||
403 | // returned means that the work item was not completely processed and must | ||||||||
404 | // be revisited after going through the new items. | ||||||||
405 | bool solveBlockValue(Value *Val, BasicBlock *BB); | ||||||||
406 | Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); | ||||||||
407 | Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, | ||||||||
408 | BasicBlock *BB); | ||||||||
409 | Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, | ||||||||
410 | BasicBlock *BB); | ||||||||
411 | Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, | ||||||||
412 | BasicBlock *BB); | ||||||||
413 | Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, | ||||||||
414 | BasicBlock *BB); | ||||||||
415 | Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( | ||||||||
416 | Instruction *I, BasicBlock *BB, | ||||||||
417 | std::function<ConstantRange(const ConstantRange &, | ||||||||
418 | const ConstantRange &)> OpFn); | ||||||||
419 | Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, | ||||||||
420 | BasicBlock *BB); | ||||||||
421 | Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, | ||||||||
422 | BasicBlock *BB); | ||||||||
423 | Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( | ||||||||
424 | WithOverflowInst *WO, BasicBlock *BB); | ||||||||
425 | Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, | ||||||||
426 | BasicBlock *BB); | ||||||||
427 | Optional<ValueLatticeElement> solveBlockValueExtractValue( | ||||||||
428 | ExtractValueInst *EVI, BasicBlock *BB); | ||||||||
429 | bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); | ||||||||
430 | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, | ||||||||
431 | ValueLatticeElement &BBLV, | ||||||||
432 | Instruction *BBI); | ||||||||
433 | |||||||||
434 | void solve(); | ||||||||
435 | |||||||||
436 | public: | ||||||||
437 | /// This is the query interface to determine the lattice value for the | ||||||||
438 | /// specified Value* at the context instruction (if specified) or at the | ||||||||
439 | /// start of the block. | ||||||||
440 | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, | ||||||||
441 | Instruction *CxtI = nullptr); | ||||||||
442 | |||||||||
443 | /// This is the query interface to determine the lattice value for the | ||||||||
444 | /// specified Value* at the specified instruction using only information | ||||||||
445 | /// from assumes/guards and range metadata. Unlike getValueInBlock(), no | ||||||||
446 | /// recursive query is performed. | ||||||||
447 | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); | ||||||||
448 | |||||||||
449 | /// This is the query interface to determine the lattice | ||||||||
450 | /// value for the specified Value* that is true on the specified edge. | ||||||||
451 | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, | ||||||||
452 | BasicBlock *ToBB, | ||||||||
453 | Instruction *CxtI = nullptr); | ||||||||
454 | |||||||||
455 | /// Complete flush all previously computed values | ||||||||
456 | void clear() { | ||||||||
457 | TheCache.clear(); | ||||||||
458 | } | ||||||||
459 | |||||||||
460 | /// Printing the LazyValueInfo Analysis. | ||||||||
461 | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||||
462 | LazyValueInfoAnnotatedWriter Writer(this, DTree); | ||||||||
463 | F.print(OS, &Writer); | ||||||||
464 | } | ||||||||
465 | |||||||||
466 | /// This is part of the update interface to inform the cache | ||||||||
467 | /// that a block has been deleted. | ||||||||
468 | void eraseBlock(BasicBlock *BB) { | ||||||||
469 | TheCache.eraseBlock(BB); | ||||||||
470 | } | ||||||||
471 | |||||||||
472 | /// This is the update interface to inform the cache that an edge from | ||||||||
473 | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | ||||||||
474 | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||||
475 | |||||||||
476 | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, | ||||||||
477 | Function *GuardDecl) | ||||||||
478 | : AC(AC), DL(DL), GuardDecl(GuardDecl) {} | ||||||||
479 | }; | ||||||||
480 | } // end anonymous namespace | ||||||||
481 | |||||||||
482 | |||||||||
483 | void LazyValueInfoImpl::solve() { | ||||||||
484 | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( | ||||||||
485 | BlockValueStack.begin(), BlockValueStack.end()); | ||||||||
486 | |||||||||
487 | unsigned processedCount = 0; | ||||||||
488 | while (!BlockValueStack.empty()) { | ||||||||
489 | processedCount++; | ||||||||
490 | // Abort if we have to process too many values to get a result for this one. | ||||||||
491 | // Because of the design of the overdefined cache currently being per-block | ||||||||
492 | // to avoid naming-related issues (IE it wants to try to give different | ||||||||
493 | // results for the same name in different blocks), overdefined results don't | ||||||||
494 | // get cached globally, which in turn means we will often try to rediscover | ||||||||
495 | // the same overdefined result again and again. Once something like | ||||||||
496 | // PredicateInfo is used in LVI or CVP, we should be able to make the | ||||||||
497 | // overdefined cache global, and remove this throttle. | ||||||||
498 | if (processedCount > MaxProcessedPerValue) { | ||||||||
499 | LLVM_DEBUG(do { } while (false) | ||||||||
500 | dbgs() << "Giving up on stack because we are getting too deep\n")do { } while (false); | ||||||||
501 | // Fill in the original values | ||||||||
502 | while (!StartingStack.empty()) { | ||||||||
503 | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); | ||||||||
504 | TheCache.insertResult(e.second, e.first, | ||||||||
505 | ValueLatticeElement::getOverdefined()); | ||||||||
506 | StartingStack.pop_back(); | ||||||||
507 | } | ||||||||
508 | BlockValueSet.clear(); | ||||||||
509 | BlockValueStack.clear(); | ||||||||
510 | return; | ||||||||
511 | } | ||||||||
512 | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); | ||||||||
513 | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!")((void)0); | ||||||||
514 | |||||||||
515 | if (solveBlockValue(e.second, e.first)) { | ||||||||
516 | // The work item was completely processed. | ||||||||
517 | assert(BlockValueStack.back() == e && "Nothing should have been pushed!")((void)0); | ||||||||
518 | #ifndef NDEBUG1 | ||||||||
519 | Optional<ValueLatticeElement> BBLV = | ||||||||
520 | TheCache.getCachedValueInfo(e.second, e.first); | ||||||||
521 | assert(BBLV && "Result should be in cache!")((void)0); | ||||||||
522 | LLVM_DEBUG(do { } while (false) | ||||||||
523 | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "do { } while (false) | ||||||||
524 | << *BBLV << "\n")do { } while (false); | ||||||||
525 | #endif | ||||||||
526 | |||||||||
527 | BlockValueStack.pop_back(); | ||||||||
528 | BlockValueSet.erase(e); | ||||||||
529 | } else { | ||||||||
530 | // More work needs to be done before revisiting. | ||||||||
531 | assert(BlockValueStack.back() != e && "Stack should have been pushed!")((void)0); | ||||||||
532 | } | ||||||||
533 | } | ||||||||
534 | } | ||||||||
535 | |||||||||
536 | Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val, | ||||||||
537 | BasicBlock *BB) { | ||||||||
538 | // If already a constant, there is nothing to compute. | ||||||||
539 | if (Constant *VC = dyn_cast<Constant>(Val)) | ||||||||
540 | return ValueLatticeElement::get(VC); | ||||||||
541 | |||||||||
542 | if (Optional<ValueLatticeElement> OptLatticeVal = | ||||||||
543 | TheCache.getCachedValueInfo(Val, BB)) | ||||||||
544 | return OptLatticeVal; | ||||||||
545 | |||||||||
546 | // We have hit a cycle, assume overdefined. | ||||||||
547 | if (!pushBlockValue({ BB, Val })) | ||||||||
548 | return ValueLatticeElement::getOverdefined(); | ||||||||
549 | |||||||||
550 | // Yet to be resolved. | ||||||||
551 | return None; | ||||||||
552 | } | ||||||||
553 | |||||||||
554 | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { | ||||||||
555 | switch (BBI->getOpcode()) { | ||||||||
556 | default: break; | ||||||||
557 | case Instruction::Load: | ||||||||
558 | case Instruction::Call: | ||||||||
559 | case Instruction::Invoke: | ||||||||
560 | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | ||||||||
561 | if (isa<IntegerType>(BBI->getType())) { | ||||||||
562 | return ValueLatticeElement::getRange( | ||||||||
563 | getConstantRangeFromMetadata(*Ranges)); | ||||||||
564 | } | ||||||||
565 | break; | ||||||||
566 | }; | ||||||||
567 | // Nothing known - will be intersected with other facts | ||||||||
568 | return ValueLatticeElement::getOverdefined(); | ||||||||
569 | } | ||||||||
570 | |||||||||
571 | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { | ||||||||
572 | assert(!isa<Constant>(Val) && "Value should not be constant")((void)0); | ||||||||
573 | assert(!TheCache.getCachedValueInfo(Val, BB) &&((void)0) | ||||||||
574 | "Value should not be in cache")((void)0); | ||||||||
575 | |||||||||
576 | // Hold off inserting this value into the Cache in case we have to return | ||||||||
577 | // false and come back later. | ||||||||
578 | Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); | ||||||||
579 | if (!Res) | ||||||||
580 | // Work pushed, will revisit | ||||||||
581 | return false; | ||||||||
582 | |||||||||
583 | TheCache.insertResult(Val, BB, *Res); | ||||||||
584 | return true; | ||||||||
585 | } | ||||||||
586 | |||||||||
587 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( | ||||||||
588 | Value *Val, BasicBlock *BB) { | ||||||||
589 | Instruction *BBI = dyn_cast<Instruction>(Val); | ||||||||
590 | if (!BBI || BBI->getParent() != BB) | ||||||||
591 | return solveBlockValueNonLocal(Val, BB); | ||||||||
592 | |||||||||
593 | if (PHINode *PN = dyn_cast<PHINode>(BBI)) | ||||||||
594 | return solveBlockValuePHINode(PN, BB); | ||||||||
595 | |||||||||
596 | if (auto *SI = dyn_cast<SelectInst>(BBI)) | ||||||||
597 | return solveBlockValueSelect(SI, BB); | ||||||||
598 | |||||||||
599 | // If this value is a nonnull pointer, record it's range and bailout. Note | ||||||||
600 | // that for all other pointer typed values, we terminate the search at the | ||||||||
601 | // definition. We could easily extend this to look through geps, bitcasts, | ||||||||
602 | // and the like to prove non-nullness, but it's not clear that's worth it | ||||||||
603 | // compile time wise. The context-insensitive value walk done inside | ||||||||
604 | // isKnownNonZero gets most of the profitable cases at much less expense. | ||||||||
605 | // This does mean that we have a sensitivity to where the defining | ||||||||
606 | // instruction is placed, even if it could legally be hoisted much higher. | ||||||||
607 | // That is unfortunate. | ||||||||
608 | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); | ||||||||
609 | if (PT && isKnownNonZero(BBI, DL)) | ||||||||
610 | return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); | ||||||||
611 | |||||||||
612 | if (BBI->getType()->isIntegerTy()) { | ||||||||
613 | if (auto *CI = dyn_cast<CastInst>(BBI)) | ||||||||
614 | return solveBlockValueCast(CI, BB); | ||||||||
615 | |||||||||
616 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) | ||||||||
617 | return solveBlockValueBinaryOp(BO, BB); | ||||||||
618 | |||||||||
619 | if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) | ||||||||
620 | return solveBlockValueExtractValue(EVI, BB); | ||||||||
621 | |||||||||
622 | if (auto *II = dyn_cast<IntrinsicInst>(BBI)) | ||||||||
623 | return solveBlockValueIntrinsic(II, BB); | ||||||||
624 | } | ||||||||
625 | |||||||||
626 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
627 | << "' - unknown inst def found.\n")do { } while (false); | ||||||||
628 | return getFromRangeMetadata(BBI); | ||||||||
629 | } | ||||||||
630 | |||||||||
631 | static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { | ||||||||
632 | // TODO: Use NullPointerIsDefined instead. | ||||||||
633 | if (Ptr->getType()->getPointerAddressSpace() == 0) | ||||||||
634 | PtrSet.insert(getUnderlyingObject(Ptr)); | ||||||||
635 | } | ||||||||
636 | |||||||||
637 | static void AddNonNullPointersByInstruction( | ||||||||
638 | Instruction *I, NonNullPointerSet &PtrSet) { | ||||||||
639 | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | ||||||||
640 | AddNonNullPointer(L->getPointerOperand(), PtrSet); | ||||||||
641 | } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { | ||||||||
642 | AddNonNullPointer(S->getPointerOperand(), PtrSet); | ||||||||
643 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | ||||||||
644 | if (MI->isVolatile()) return; | ||||||||
645 | |||||||||
646 | // FIXME: check whether it has a valuerange that excludes zero? | ||||||||
647 | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | ||||||||
648 | if (!Len || Len->isZero()) return; | ||||||||
649 | |||||||||
650 | AddNonNullPointer(MI->getRawDest(), PtrSet); | ||||||||
651 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | ||||||||
652 | AddNonNullPointer(MTI->getRawSource(), PtrSet); | ||||||||
653 | } | ||||||||
654 | } | ||||||||
655 | |||||||||
656 | bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { | ||||||||
657 | if (NullPointerIsDefined(BB->getParent(), | ||||||||
658 | Val->getType()->getPointerAddressSpace())) | ||||||||
659 | return false; | ||||||||
660 | |||||||||
661 | Val = Val->stripInBoundsOffsets(); | ||||||||
662 | return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { | ||||||||
663 | NonNullPointerSet NonNullPointers; | ||||||||
664 | for (Instruction &I : *BB) | ||||||||
665 | AddNonNullPointersByInstruction(&I, NonNullPointers); | ||||||||
666 | return NonNullPointers; | ||||||||
667 | }); | ||||||||
668 | } | ||||||||
669 | |||||||||
670 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( | ||||||||
671 | Value *Val, BasicBlock *BB) { | ||||||||
672 | ValueLatticeElement Result; // Start Undefined. | ||||||||
673 | |||||||||
674 | // If this is the entry block, we must be asking about an argument. The | ||||||||
675 | // value is overdefined. | ||||||||
676 | if (BB->isEntryBlock()) { | ||||||||
677 | assert(isa<Argument>(Val) && "Unknown live-in to the entry block")((void)0); | ||||||||
678 | return ValueLatticeElement::getOverdefined(); | ||||||||
679 | } | ||||||||
680 | |||||||||
681 | // Loop over all of our predecessors, merging what we know from them into | ||||||||
682 | // result. If we encounter an unexplored predecessor, we eagerly explore it | ||||||||
683 | // in a depth first manner. In practice, this has the effect of discovering | ||||||||
684 | // paths we can't analyze eagerly without spending compile times analyzing | ||||||||
685 | // other paths. This heuristic benefits from the fact that predecessors are | ||||||||
686 | // frequently arranged such that dominating ones come first and we quickly | ||||||||
687 | // find a path to function entry. TODO: We should consider explicitly | ||||||||
688 | // canonicalizing to make this true rather than relying on this happy | ||||||||
689 | // accident. | ||||||||
690 | for (BasicBlock *Pred : predecessors(BB)) { | ||||||||
691 | Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); | ||||||||
692 | if (!EdgeResult) | ||||||||
693 | // Explore that input, then return here | ||||||||
694 | return None; | ||||||||
695 | |||||||||
696 | Result.mergeIn(*EdgeResult); | ||||||||
697 | |||||||||
698 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||||
699 | // to overdefined. | ||||||||
700 | if (Result.isOverdefined()) { | ||||||||
701 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
702 | << "' - overdefined because of pred (non local).\n")do { } while (false); | ||||||||
703 | return Result; | ||||||||
704 | } | ||||||||
705 | } | ||||||||
706 | |||||||||
707 | // Return the merged value, which is more precise than 'overdefined'. | ||||||||
708 | assert(!Result.isOverdefined())((void)0); | ||||||||
709 | return Result; | ||||||||
710 | } | ||||||||
711 | |||||||||
712 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( | ||||||||
713 | PHINode *PN, BasicBlock *BB) { | ||||||||
714 | ValueLatticeElement Result; // Start Undefined. | ||||||||
715 | |||||||||
716 | // Loop over all of our predecessors, merging what we know from them into | ||||||||
717 | // result. See the comment about the chosen traversal order in | ||||||||
718 | // solveBlockValueNonLocal; the same reasoning applies here. | ||||||||
719 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | ||||||||
720 | BasicBlock *PhiBB = PN->getIncomingBlock(i); | ||||||||
721 | Value *PhiVal = PN->getIncomingValue(i); | ||||||||
722 | // Note that we can provide PN as the context value to getEdgeValue, even | ||||||||
723 | // though the results will be cached, because PN is the value being used as | ||||||||
724 | // the cache key in the caller. | ||||||||
725 | Optional<ValueLatticeElement> EdgeResult = | ||||||||
726 | getEdgeValue(PhiVal, PhiBB, BB, PN); | ||||||||
727 | if (!EdgeResult) | ||||||||
728 | // Explore that input, then return here | ||||||||
729 | return None; | ||||||||
730 | |||||||||
731 | Result.mergeIn(*EdgeResult); | ||||||||
732 | |||||||||
733 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||||
734 | // to overdefined. | ||||||||
735 | if (Result.isOverdefined()) { | ||||||||
736 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
737 | << "' - overdefined because of pred (local).\n")do { } while (false); | ||||||||
738 | |||||||||
739 | return Result; | ||||||||
740 | } | ||||||||
741 | } | ||||||||
742 | |||||||||
743 | // Return the merged value, which is more precise than 'overdefined'. | ||||||||
744 | assert(!Result.isOverdefined() && "Possible PHI in entry block?")((void)0); | ||||||||
745 | return Result; | ||||||||
746 | } | ||||||||
747 | |||||||||
748 | static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||||
749 | bool isTrueDest = true); | ||||||||
750 | |||||||||
751 | // If we can determine a constraint on the value given conditions assumed by | ||||||||
752 | // the program, intersect those constraints with BBLV | ||||||||
753 | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( | ||||||||
754 | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { | ||||||||
755 | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | ||||||||
756 | if (!BBI) | ||||||||
757 | return; | ||||||||
758 | |||||||||
759 | BasicBlock *BB = BBI->getParent(); | ||||||||
760 | for (auto &AssumeVH : AC->assumptionsFor(Val)) { | ||||||||
761 | if (!AssumeVH) | ||||||||
762 | continue; | ||||||||
763 | |||||||||
764 | // Only check assumes in the block of the context instruction. Other | ||||||||
765 | // assumes will have already been taken into account when the value was | ||||||||
766 | // propagated from predecessor blocks. | ||||||||
767 | auto *I = cast<CallInst>(AssumeVH); | ||||||||
768 | if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) | ||||||||
769 | continue; | ||||||||
770 | |||||||||
771 | BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); | ||||||||
772 | } | ||||||||
773 | |||||||||
774 | // If guards are not used in the module, don't spend time looking for them | ||||||||
775 | if (GuardDecl && !GuardDecl->use_empty() && | ||||||||
776 | BBI->getIterator() != BB->begin()) { | ||||||||
777 | for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), | ||||||||
778 | BB->rend())) { | ||||||||
779 | Value *Cond = nullptr; | ||||||||
780 | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) | ||||||||
781 | BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); | ||||||||
782 | } | ||||||||
783 | } | ||||||||
784 | |||||||||
785 | if (BBLV.isOverdefined()) { | ||||||||
786 | // Check whether we're checking at the terminator, and the pointer has | ||||||||
787 | // been dereferenced in this block. | ||||||||
788 | PointerType *PTy = dyn_cast<PointerType>(Val->getType()); | ||||||||
789 | if (PTy && BB->getTerminator() == BBI && | ||||||||
790 | isNonNullAtEndOfBlock(Val, BB)) | ||||||||
791 | BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | ||||||||
792 | } | ||||||||
793 | } | ||||||||
794 | |||||||||
795 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( | ||||||||
796 | SelectInst *SI, BasicBlock *BB) { | ||||||||
797 | // Recurse on our inputs if needed | ||||||||
798 | Optional<ValueLatticeElement> OptTrueVal = | ||||||||
799 | getBlockValue(SI->getTrueValue(), BB); | ||||||||
800 | if (!OptTrueVal) | ||||||||
801 | return None; | ||||||||
802 | ValueLatticeElement &TrueVal = *OptTrueVal; | ||||||||
803 | |||||||||
804 | Optional<ValueLatticeElement> OptFalseVal = | ||||||||
805 | getBlockValue(SI->getFalseValue(), BB); | ||||||||
806 | if (!OptFalseVal) | ||||||||
807 | return None; | ||||||||
808 | ValueLatticeElement &FalseVal = *OptFalseVal; | ||||||||
809 | |||||||||
810 | if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { | ||||||||
811 | const ConstantRange &TrueCR = TrueVal.getConstantRange(); | ||||||||
812 | const ConstantRange &FalseCR = FalseVal.getConstantRange(); | ||||||||
813 | Value *LHS = nullptr; | ||||||||
814 | Value *RHS = nullptr; | ||||||||
815 | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | ||||||||
816 | // Is this a min specifically of our two inputs? (Avoid the risk of | ||||||||
817 | // ValueTracking getting smarter looking back past our immediate inputs.) | ||||||||
818 | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | ||||||||
819 | LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { | ||||||||
820 | ConstantRange ResultCR = [&]() { | ||||||||
821 | switch (SPR.Flavor) { | ||||||||
822 | default: | ||||||||
823 | llvm_unreachable("unexpected minmax type!")__builtin_unreachable(); | ||||||||
824 | case SPF_SMIN: /// Signed minimum | ||||||||
825 | return TrueCR.smin(FalseCR); | ||||||||
826 | case SPF_UMIN: /// Unsigned minimum | ||||||||
827 | return TrueCR.umin(FalseCR); | ||||||||
828 | case SPF_SMAX: /// Signed maximum | ||||||||
829 | return TrueCR.smax(FalseCR); | ||||||||
830 | case SPF_UMAX: /// Unsigned maximum | ||||||||
831 | return TrueCR.umax(FalseCR); | ||||||||
832 | }; | ||||||||
833 | }(); | ||||||||
834 | return ValueLatticeElement::getRange( | ||||||||
835 | ResultCR, TrueVal.isConstantRangeIncludingUndef() | | ||||||||
836 | FalseVal.isConstantRangeIncludingUndef()); | ||||||||
837 | } | ||||||||
838 | |||||||||
839 | if (SPR.Flavor == SPF_ABS) { | ||||||||
840 | if (LHS == SI->getTrueValue()) | ||||||||
841 | return ValueLatticeElement::getRange( | ||||||||
842 | TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); | ||||||||
843 | if (LHS == SI->getFalseValue()) | ||||||||
844 | return ValueLatticeElement::getRange( | ||||||||
845 | FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); | ||||||||
846 | } | ||||||||
847 | |||||||||
848 | if (SPR.Flavor == SPF_NABS) { | ||||||||
849 | ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); | ||||||||
850 | if (LHS == SI->getTrueValue()) | ||||||||
851 | return ValueLatticeElement::getRange( | ||||||||
852 | Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | ||||||||
853 | if (LHS == SI->getFalseValue()) | ||||||||
854 | return ValueLatticeElement::getRange( | ||||||||
855 | Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | ||||||||
856 | } | ||||||||
857 | } | ||||||||
858 | |||||||||
859 | // Can we constrain the facts about the true and false values by using the | ||||||||
860 | // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). | ||||||||
861 | // TODO: We could potentially refine an overdefined true value above. | ||||||||
862 | Value *Cond = SI->getCondition(); | ||||||||
863 | TrueVal = intersect(TrueVal, | ||||||||
864 | getValueFromCondition(SI->getTrueValue(), Cond, true)); | ||||||||
865 | FalseVal = intersect(FalseVal, | ||||||||
866 | getValueFromCondition(SI->getFalseValue(), Cond, false)); | ||||||||
867 | |||||||||
868 | ValueLatticeElement Result = TrueVal; | ||||||||
869 | Result.mergeIn(FalseVal); | ||||||||
870 | return Result; | ||||||||
871 | } | ||||||||
872 | |||||||||
873 | Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V, | ||||||||
874 | Instruction *CxtI, | ||||||||
875 | BasicBlock *BB) { | ||||||||
876 | Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB); | ||||||||
877 | if (!OptVal) | ||||||||
878 | return None; | ||||||||
879 | |||||||||
880 | ValueLatticeElement &Val = *OptVal; | ||||||||
881 | intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI); | ||||||||
882 | if (Val.isConstantRange()) | ||||||||
883 | return Val.getConstantRange(); | ||||||||
884 | |||||||||
885 | const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType()); | ||||||||
886 | return ConstantRange::getFull(OperandBitWidth); | ||||||||
887 | } | ||||||||
888 | |||||||||
889 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( | ||||||||
890 | CastInst *CI, BasicBlock *BB) { | ||||||||
891 | // Without knowing how wide the input is, we can't analyze it in any useful | ||||||||
892 | // way. | ||||||||
893 | if (!CI->getOperand(0)->getType()->isSized()) | ||||||||
894 | return ValueLatticeElement::getOverdefined(); | ||||||||
895 | |||||||||
896 | // Filter out casts we don't know how to reason about before attempting to | ||||||||
897 | // recurse on our operand. This can cut a long search short if we know we're | ||||||||
898 | // not going to be able to get any useful information anways. | ||||||||
899 | switch (CI->getOpcode()) { | ||||||||
900 | case Instruction::Trunc: | ||||||||
901 | case Instruction::SExt: | ||||||||
902 | case Instruction::ZExt: | ||||||||
903 | case Instruction::BitCast: | ||||||||
904 | break; | ||||||||
905 | default: | ||||||||
906 | // Unhandled instructions are overdefined. | ||||||||
907 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
908 | << "' - overdefined (unknown cast).\n")do { } while (false); | ||||||||
909 | return ValueLatticeElement::getOverdefined(); | ||||||||
910 | } | ||||||||
911 | |||||||||
912 | // Figure out the range of the LHS. If that fails, we still apply the | ||||||||
913 | // transfer rule on the full set since we may be able to locally infer | ||||||||
914 | // interesting facts. | ||||||||
915 | Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); | ||||||||
916 | if (!LHSRes.hasValue()) | ||||||||
917 | // More work to do before applying this transfer rule. | ||||||||
918 | return None; | ||||||||
919 | const ConstantRange &LHSRange = LHSRes.getValue(); | ||||||||
920 | |||||||||
921 | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); | ||||||||
922 | |||||||||
923 | // NOTE: We're currently limited by the set of operations that ConstantRange | ||||||||
924 | // can evaluate symbolically. Enhancing that set will allows us to analyze | ||||||||
925 | // more definitions. | ||||||||
926 | return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), | ||||||||
927 | ResultBitWidth)); | ||||||||
928 | } | ||||||||
929 | |||||||||
930 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( | ||||||||
931 | Instruction *I, BasicBlock *BB, | ||||||||
932 | std::function<ConstantRange(const ConstantRange &, | ||||||||
933 | const ConstantRange &)> OpFn) { | ||||||||
934 | // Figure out the ranges of the operands. If that fails, use a | ||||||||
935 | // conservative range, but apply the transfer rule anyways. This | ||||||||
936 | // lets us pick up facts from expressions like "and i32 (call i32 | ||||||||
937 | // @foo()), 32" | ||||||||
938 | Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); | ||||||||
939 | Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); | ||||||||
940 | if (!LHSRes.hasValue() || !RHSRes.hasValue()) | ||||||||
941 | // More work to do before applying this transfer rule. | ||||||||
942 | return None; | ||||||||
943 | |||||||||
944 | const ConstantRange &LHSRange = LHSRes.getValue(); | ||||||||
945 | const ConstantRange &RHSRange = RHSRes.getValue(); | ||||||||
946 | return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); | ||||||||
947 | } | ||||||||
948 | |||||||||
949 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( | ||||||||
950 | BinaryOperator *BO, BasicBlock *BB) { | ||||||||
951 | assert(BO->getOperand(0)->getType()->isSized() &&((void)0) | ||||||||
952 | "all operands to binary operators are sized")((void)0); | ||||||||
953 | if (BO->getOpcode() == Instruction::Xor) { | ||||||||
954 | // Xor is the only operation not supported by ConstantRange::binaryOp(). | ||||||||
955 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
956 | << "' - overdefined (unknown binary operator).\n")do { } while (false); | ||||||||
957 | return ValueLatticeElement::getOverdefined(); | ||||||||
958 | } | ||||||||
959 | |||||||||
960 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { | ||||||||
961 | unsigned NoWrapKind = 0; | ||||||||
962 | if (OBO->hasNoUnsignedWrap()) | ||||||||
963 | NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; | ||||||||
964 | if (OBO->hasNoSignedWrap()) | ||||||||
965 | NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; | ||||||||
966 | |||||||||
967 | return solveBlockValueBinaryOpImpl( | ||||||||
968 | BO, BB, | ||||||||
969 | [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||||
970 | return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); | ||||||||
971 | }); | ||||||||
972 | } | ||||||||
973 | |||||||||
974 | return solveBlockValueBinaryOpImpl( | ||||||||
975 | BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||||
976 | return CR1.binaryOp(BO->getOpcode(), CR2); | ||||||||
977 | }); | ||||||||
978 | } | ||||||||
979 | |||||||||
980 | Optional<ValueLatticeElement> | ||||||||
981 | LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, | ||||||||
982 | BasicBlock *BB) { | ||||||||
983 | return solveBlockValueBinaryOpImpl( | ||||||||
984 | WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||||
985 | return CR1.binaryOp(WO->getBinaryOp(), CR2); | ||||||||
986 | }); | ||||||||
987 | } | ||||||||
988 | |||||||||
989 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( | ||||||||
990 | IntrinsicInst *II, BasicBlock *BB) { | ||||||||
991 | if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { | ||||||||
992 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
993 | << "' - unknown intrinsic.\n")do { } while (false); | ||||||||
994 | return getFromRangeMetadata(II); | ||||||||
995 | } | ||||||||
996 | |||||||||
997 | SmallVector<ConstantRange, 2> OpRanges; | ||||||||
998 | for (Value *Op : II->args()) { | ||||||||
999 | Optional<ConstantRange> Range = getRangeFor(Op, II, BB); | ||||||||
1000 | if (!Range) | ||||||||
1001 | return None; | ||||||||
1002 | OpRanges.push_back(*Range); | ||||||||
1003 | } | ||||||||
1004 | |||||||||
1005 | return ValueLatticeElement::getRange( | ||||||||
1006 | ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)); | ||||||||
1007 | } | ||||||||
1008 | |||||||||
1009 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( | ||||||||
1010 | ExtractValueInst *EVI, BasicBlock *BB) { | ||||||||
1011 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||||
1012 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) | ||||||||
1013 | return solveBlockValueOverflowIntrinsic(WO, BB); | ||||||||
1014 | |||||||||
1015 | // Handle extractvalue of insertvalue to allow further simplification | ||||||||
1016 | // based on replaced with.overflow intrinsics. | ||||||||
1017 | if (Value *V = SimplifyExtractValueInst( | ||||||||
1018 | EVI->getAggregateOperand(), EVI->getIndices(), | ||||||||
1019 | EVI->getModule()->getDataLayout())) | ||||||||
1020 | return getBlockValue(V, BB); | ||||||||
1021 | |||||||||
1022 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { } while (false) | ||||||||
1023 | << "' - overdefined (unknown extractvalue).\n")do { } while (false); | ||||||||
1024 | return ValueLatticeElement::getOverdefined(); | ||||||||
1025 | } | ||||||||
1026 | |||||||||
1027 | static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, | ||||||||
1028 | ICmpInst::Predicate Pred) { | ||||||||
1029 | if (LHS == Val) | ||||||||
1030 | return true; | ||||||||
1031 | |||||||||
1032 | // Handle range checking idiom produced by InstCombine. We will subtract the | ||||||||
1033 | // offset from the allowed range for RHS in this case. | ||||||||
1034 | const APInt *C; | ||||||||
1035 | if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { | ||||||||
1036 | Offset = *C; | ||||||||
1037 | return true; | ||||||||
1038 | } | ||||||||
1039 | |||||||||
1040 | // Handle the symmetric case. This appears in saturation patterns like | ||||||||
1041 | // (x == 16) ? 16 : (x + 1). | ||||||||
1042 | if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { | ||||||||
1043 | Offset = -*C; | ||||||||
1044 | return true; | ||||||||
1045 | } | ||||||||
1046 | |||||||||
1047 | // If (x | y) < C, then (x < C) && (y < C). | ||||||||
1048 | if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && | ||||||||
1049 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) | ||||||||
1050 | return true; | ||||||||
1051 | |||||||||
1052 | // If (x & y) > C, then (x > C) && (y > C). | ||||||||
1053 | if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && | ||||||||
1054 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) | ||||||||
1055 | return true; | ||||||||
1056 | |||||||||
1057 | return false; | ||||||||
1058 | } | ||||||||
1059 | |||||||||
1060 | /// Get value range for a "(Val + Offset) Pred RHS" condition. | ||||||||
1061 | static ValueLatticeElement getValueFromSimpleICmpCondition( | ||||||||
1062 | CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) { | ||||||||
1063 | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), | ||||||||
1064 | /*isFullSet=*/true); | ||||||||
1065 | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) | ||||||||
1066 | RHSRange = ConstantRange(CI->getValue()); | ||||||||
1067 | else if (Instruction *I = dyn_cast<Instruction>(RHS)) | ||||||||
1068 | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | ||||||||
1069 | RHSRange = getConstantRangeFromMetadata(*Ranges); | ||||||||
1070 | |||||||||
1071 | ConstantRange TrueValues = | ||||||||
1072 | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); | ||||||||
1073 | return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); | ||||||||
1074 | } | ||||||||
1075 | |||||||||
1076 | static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, | ||||||||
1077 | bool isTrueDest) { | ||||||||
1078 | Value *LHS = ICI->getOperand(0); | ||||||||
1079 | Value *RHS = ICI->getOperand(1); | ||||||||
1080 | |||||||||
1081 | // Get the predicate that must hold along the considered edge. | ||||||||
1082 | CmpInst::Predicate EdgePred = | ||||||||
1083 | isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); | ||||||||
1084 | |||||||||
1085 | if (isa<Constant>(RHS)) { | ||||||||
1086 | if (ICI->isEquality() && LHS == Val) { | ||||||||
1087 | if (EdgePred == ICmpInst::ICMP_EQ) | ||||||||
1088 | return ValueLatticeElement::get(cast<Constant>(RHS)); | ||||||||
1089 | else if (!isa<UndefValue>(RHS)) | ||||||||
1090 | return ValueLatticeElement::getNot(cast<Constant>(RHS)); | ||||||||
1091 | } | ||||||||
1092 | } | ||||||||
1093 | |||||||||
1094 | Type *Ty = Val->getType(); | ||||||||
1095 | if (!Ty->isIntegerTy()) | ||||||||
1096 | return ValueLatticeElement::getOverdefined(); | ||||||||
1097 | |||||||||
1098 | APInt Offset(Ty->getScalarSizeInBits(), 0); | ||||||||
1099 | if (matchICmpOperand(Offset, LHS, Val, EdgePred)) | ||||||||
1100 | return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset); | ||||||||
1101 | |||||||||
1102 | CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); | ||||||||
1103 | if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) | ||||||||
1104 | return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset); | ||||||||
1105 | |||||||||
1106 | const APInt *Mask, *C; | ||||||||
1107 | if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && | ||||||||
1108 | match(RHS, m_APInt(C))) { | ||||||||
1109 | // If (Val & Mask) == C then all the masked bits are known and we can | ||||||||
1110 | // compute a value range based on that. | ||||||||
1111 | if (EdgePred == ICmpInst::ICMP_EQ) { | ||||||||
1112 | KnownBits Known; | ||||||||
1113 | Known.Zero = ~*C & *Mask; | ||||||||
1114 | Known.One = *C & *Mask; | ||||||||
1115 | return ValueLatticeElement::getRange( | ||||||||
1116 | ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); | ||||||||
1117 | } | ||||||||
1118 | // If (Val & Mask) != 0 then the value must be larger than the lowest set | ||||||||
1119 | // bit of Mask. | ||||||||
1120 | if (EdgePred == ICmpInst::ICMP_NE && !Mask->isNullValue() && | ||||||||
1121 | C->isNullValue()) { | ||||||||
1122 | unsigned BitWidth = Ty->getIntegerBitWidth(); | ||||||||
1123 | return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( | ||||||||
1124 | APInt::getOneBitSet(BitWidth, Mask->countTrailingZeros()), | ||||||||
1125 | APInt::getNullValue(BitWidth))); | ||||||||
1126 | } | ||||||||
1127 | } | ||||||||
1128 | |||||||||
1129 | return ValueLatticeElement::getOverdefined(); | ||||||||
1130 | } | ||||||||
1131 | |||||||||
1132 | // Handle conditions of the form | ||||||||
1133 | // extractvalue(op.with.overflow(%x, C), 1). | ||||||||
1134 | static ValueLatticeElement getValueFromOverflowCondition( | ||||||||
1135 | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { | ||||||||
1136 | // TODO: This only works with a constant RHS for now. We could also compute | ||||||||
1137 | // the range of the RHS, but this doesn't fit into the current structure of | ||||||||
1138 | // the edge value calculation. | ||||||||
1139 | const APInt *C; | ||||||||
1140 | if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) | ||||||||
1141 | return ValueLatticeElement::getOverdefined(); | ||||||||
1142 | |||||||||
1143 | // Calculate the possible values of %x for which no overflow occurs. | ||||||||
1144 | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( | ||||||||
1145 | WO->getBinaryOp(), *C, WO->getNoWrapKind()); | ||||||||
1146 | |||||||||
1147 | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is | ||||||||
1148 | // constrained to it's inverse (all values that might cause overflow). | ||||||||
1149 | if (IsTrueDest) | ||||||||
1150 | NWR = NWR.inverse(); | ||||||||
1151 | return ValueLatticeElement::getRange(NWR); | ||||||||
1152 | } | ||||||||
1153 | |||||||||
1154 | static Optional<ValueLatticeElement> | ||||||||
1155 | getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, | ||||||||
1156 | bool isRevisit, | ||||||||
1157 | SmallDenseMap<Value *, ValueLatticeElement> &Visited, | ||||||||
1158 | SmallVectorImpl<Value *> &Worklist) { | ||||||||
1159 | if (!isRevisit) { | ||||||||
1160 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) | ||||||||
1161 | return getValueFromICmpCondition(Val, ICI, isTrueDest); | ||||||||
1162 | |||||||||
1163 | if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) | ||||||||
1164 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||||
1165 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) | ||||||||
1166 | return getValueFromOverflowCondition(Val, WO, isTrueDest); | ||||||||
1167 | } | ||||||||
1168 | |||||||||
1169 | Value *L, *R; | ||||||||
1170 | bool IsAnd; | ||||||||
1171 | if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) | ||||||||
1172 | IsAnd = true; | ||||||||
1173 | else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) | ||||||||
1174 | IsAnd = false; | ||||||||
1175 | else | ||||||||
1176 | return ValueLatticeElement::getOverdefined(); | ||||||||
1177 | |||||||||
1178 | auto LV = Visited.find(L); | ||||||||
1179 | auto RV = Visited.find(R); | ||||||||
1180 | |||||||||
1181 | // if (L && R) -> intersect L and R | ||||||||
1182 | // if (!(L || R)) -> intersect L and R | ||||||||
1183 | // if (L || R) -> union L and R | ||||||||
1184 | // if (!(L && R)) -> union L and R | ||||||||
1185 | if ((isTrueDest ^ IsAnd) && (LV != Visited.end())) { | ||||||||
1186 | ValueLatticeElement V = LV->second; | ||||||||
1187 | if (V.isOverdefined()) | ||||||||
1188 | return V; | ||||||||
1189 | if (RV != Visited.end()) { | ||||||||
1190 | V.mergeIn(RV->second); | ||||||||
1191 | return V; | ||||||||
1192 | } | ||||||||
1193 | } | ||||||||
1194 | |||||||||
1195 | if (LV == Visited.end() || RV == Visited.end()) { | ||||||||
1196 | assert(!isRevisit)((void)0); | ||||||||
1197 | if (LV == Visited.end()) | ||||||||
1198 | Worklist.push_back(L); | ||||||||
1199 | if (RV == Visited.end()) | ||||||||
1200 | Worklist.push_back(R); | ||||||||
1201 | return None; | ||||||||
1202 | } | ||||||||
1203 | |||||||||
1204 | return intersect(LV->second, RV->second); | ||||||||
1205 | } | ||||||||
1206 | |||||||||
1207 | ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||||
1208 | bool isTrueDest) { | ||||||||
1209 | assert(Cond && "precondition")((void)0); | ||||||||
1210 | SmallDenseMap<Value*, ValueLatticeElement> Visited; | ||||||||
1211 | SmallVector<Value *> Worklist; | ||||||||
1212 | |||||||||
1213 | Worklist.push_back(Cond); | ||||||||
1214 | do { | ||||||||
1215 | Value *CurrentCond = Worklist.back(); | ||||||||
1216 | // Insert an Overdefined placeholder into the set to prevent | ||||||||
1217 | // infinite recursion if there exists IRs that use not | ||||||||
1218 | // dominated by its def as in this example: | ||||||||
1219 | // "%tmp3 = or i1 undef, %tmp4" | ||||||||
1220 | // "%tmp4 = or i1 undef, %tmp3" | ||||||||
1221 | auto Iter = | ||||||||
1222 | Visited.try_emplace(CurrentCond, ValueLatticeElement::getOverdefined()); | ||||||||
1223 | bool isRevisit = !Iter.second; | ||||||||
1224 | Optional<ValueLatticeElement> Result = getValueFromConditionImpl( | ||||||||
1225 | Val, CurrentCond, isTrueDest, isRevisit, Visited, Worklist); | ||||||||
1226 | if (Result) { | ||||||||
1227 | Visited[CurrentCond] = *Result; | ||||||||
1228 | Worklist.pop_back(); | ||||||||
1229 | } | ||||||||
1230 | } while (!Worklist.empty()); | ||||||||
1231 | |||||||||
1232 | auto Result = Visited.find(Cond); | ||||||||
1233 | assert(Result != Visited.end())((void)0); | ||||||||
1234 | return Result->second; | ||||||||
1235 | } | ||||||||
1236 | |||||||||
1237 | // Return true if Usr has Op as an operand, otherwise false. | ||||||||
1238 | static bool usesOperand(User *Usr, Value *Op) { | ||||||||
1239 | return is_contained(Usr->operands(), Op); | ||||||||
1240 | } | ||||||||
1241 | |||||||||
1242 | // Return true if the instruction type of Val is supported by | ||||||||
1243 | // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. | ||||||||
1244 | // Call this before calling constantFoldUser() to find out if it's even worth | ||||||||
1245 | // attempting to call it. | ||||||||
1246 | static bool isOperationFoldable(User *Usr) { | ||||||||
1247 | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); | ||||||||
1248 | } | ||||||||
1249 | |||||||||
1250 | // Check if Usr can be simplified to an integer constant when the value of one | ||||||||
1251 | // of its operands Op is an integer constant OpConstVal. If so, return it as an | ||||||||
1252 | // lattice value range with a single element or otherwise return an overdefined | ||||||||
1253 | // lattice value. | ||||||||
1254 | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, | ||||||||
1255 | const APInt &OpConstVal, | ||||||||
1256 | const DataLayout &DL) { | ||||||||
1257 | assert(isOperationFoldable(Usr) && "Precondition")((void)0); | ||||||||
1258 | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); | ||||||||
1259 | // Check if Usr can be simplified to a constant. | ||||||||
1260 | if (auto *CI = dyn_cast<CastInst>(Usr)) { | ||||||||
1261 | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op")((void)0); | ||||||||
1262 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||||
1263 | SimplifyCastInst(CI->getOpcode(), OpConst, | ||||||||
1264 | CI->getDestTy(), DL))) { | ||||||||
1265 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||||
1266 | } | ||||||||
1267 | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { | ||||||||
1268 | bool Op0Match = BO->getOperand(0) == Op; | ||||||||
1269 | bool Op1Match = BO->getOperand(1) == Op; | ||||||||
1270 | assert((Op0Match || Op1Match) &&((void)0) | ||||||||
1271 | "Operand 0 nor Operand 1 isn't a match")((void)0); | ||||||||
1272 | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); | ||||||||
1273 | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); | ||||||||
1274 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||||
1275 | SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { | ||||||||
1276 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||||
1277 | } | ||||||||
1278 | } else if (isa<FreezeInst>(Usr)) { | ||||||||
1279 | assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op")((void)0); | ||||||||
1280 | return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); | ||||||||
1281 | } | ||||||||
1282 | return ValueLatticeElement::getOverdefined(); | ||||||||
1283 | } | ||||||||
1284 | |||||||||
1285 | /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if | ||||||||
1286 | /// Val is not constrained on the edge. Result is unspecified if return value | ||||||||
1287 | /// is false. | ||||||||
1288 | static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, | ||||||||
1289 | BasicBlock *BBFrom, | ||||||||
1290 | BasicBlock *BBTo) { | ||||||||
1291 | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | ||||||||
1292 | // know that v != 0. | ||||||||
1293 | if (BranchInst *BI
| ||||||||
1294 | // If this is a conditional branch and only one successor goes to BBTo, then | ||||||||
1295 | // we may be able to infer something from the condition. | ||||||||
1296 | if (BI->isConditional() && | ||||||||
1297 | BI->getSuccessor(0) != BI->getSuccessor(1)) { | ||||||||
1298 | bool isTrueDest = BI->getSuccessor(0) == BBTo; | ||||||||
1299 | assert(BI->getSuccessor(!isTrueDest) == BBTo &&((void)0) | ||||||||
1300 | "BBTo isn't a successor of BBFrom")((void)0); | ||||||||
1301 | Value *Condition = BI->getCondition(); | ||||||||
1302 | |||||||||
1303 | // If V is the condition of the branch itself, then we know exactly what | ||||||||
1304 | // it is. | ||||||||
1305 | if (Condition == Val) | ||||||||
1306 | return ValueLatticeElement::get(ConstantInt::get( | ||||||||
1307 | Type::getInt1Ty(Val->getContext()), isTrueDest)); | ||||||||
1308 | |||||||||
1309 | // If the condition of the branch is an equality comparison, we may be | ||||||||
1310 | // able to infer the value. | ||||||||
1311 | ValueLatticeElement Result = getValueFromCondition(Val, Condition, | ||||||||
1312 | isTrueDest); | ||||||||
1313 | if (!Result.isOverdefined()) | ||||||||
1314 | return Result; | ||||||||
1315 | |||||||||
1316 | if (User *Usr
| ||||||||
1317 | assert(Result.isOverdefined() && "Result isn't overdefined")((void)0); | ||||||||
1318 | // Check with isOperationFoldable() first to avoid linearly iterating | ||||||||
1319 | // over the operands unnecessarily which can be expensive for | ||||||||
1320 | // instructions with many operands. | ||||||||
1321 | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { | ||||||||
1322 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||||
| |||||||||
1323 | if (usesOperand(Usr, Condition)) { | ||||||||
1324 | // If Val has Condition as an operand and Val can be folded into a | ||||||||
1325 | // constant with either Condition == true or Condition == false, | ||||||||
1326 | // propagate the constant. | ||||||||
1327 | // eg. | ||||||||
1328 | // ; %Val is true on the edge to %then. | ||||||||
1329 | // %Val = and i1 %Condition, true. | ||||||||
1330 | // br %Condition, label %then, label %else | ||||||||
1331 | APInt ConditionVal(1, isTrueDest ? 1 : 0); | ||||||||
1332 | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); | ||||||||
1333 | } else { | ||||||||
1334 | // If one of Val's operand has an inferred value, we may be able to | ||||||||
1335 | // infer the value of Val. | ||||||||
1336 | // eg. | ||||||||
1337 | // ; %Val is 94 on the edge to %then. | ||||||||
1338 | // %Val = add i8 %Op, 1 | ||||||||
1339 | // %Condition = icmp eq i8 %Op, 93 | ||||||||
1340 | // br i1 %Condition, label %then, label %else | ||||||||
1341 | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { | ||||||||
1342 | Value *Op = Usr->getOperand(i); | ||||||||
1343 | ValueLatticeElement OpLatticeVal = | ||||||||
1344 | getValueFromCondition(Op, Condition, isTrueDest); | ||||||||
1345 | if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { | ||||||||
1346 | Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); | ||||||||
1347 | break; | ||||||||
1348 | } | ||||||||
1349 | } | ||||||||
1350 | } | ||||||||
1351 | } | ||||||||
1352 | } | ||||||||
1353 | if (!Result.isOverdefined()) | ||||||||
1354 | return Result; | ||||||||
1355 | } | ||||||||
1356 | } | ||||||||
1357 | |||||||||
1358 | // If the edge was formed by a switch on the value, then we may know exactly | ||||||||
1359 | // what it is. | ||||||||
1360 | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | ||||||||
1361 | Value *Condition = SI->getCondition(); | ||||||||
1362 | if (!isa<IntegerType>(Val->getType())) | ||||||||
1363 | return None; | ||||||||
1364 | bool ValUsesConditionAndMayBeFoldable = false; | ||||||||
1365 | if (Condition != Val) { | ||||||||
1366 | // Check if Val has Condition as an operand. | ||||||||
1367 | if (User *Usr = dyn_cast<User>(Val)) | ||||||||
1368 | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && | ||||||||
1369 | usesOperand(Usr, Condition); | ||||||||
1370 | if (!ValUsesConditionAndMayBeFoldable) | ||||||||
1371 | return None; | ||||||||
1372 | } | ||||||||
1373 | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&((void)0) | ||||||||
1374 | "Condition != Val nor Val doesn't use Condition")((void)0); | ||||||||
1375 | |||||||||
1376 | bool DefaultCase = SI->getDefaultDest() == BBTo; | ||||||||
1377 | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | ||||||||
1378 | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | ||||||||
1379 | |||||||||
1380 | for (auto Case : SI->cases()) { | ||||||||
1381 | APInt CaseValue = Case.getCaseValue()->getValue(); | ||||||||
1382 | ConstantRange EdgeVal(CaseValue); | ||||||||
1383 | if (ValUsesConditionAndMayBeFoldable) { | ||||||||
1384 | User *Usr = cast<User>(Val); | ||||||||
1385 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||||
1386 | ValueLatticeElement EdgeLatticeVal = | ||||||||
1387 | constantFoldUser(Usr, Condition, CaseValue, DL); | ||||||||
1388 | if (EdgeLatticeVal.isOverdefined()) | ||||||||
1389 | return None; | ||||||||
1390 | EdgeVal = EdgeLatticeVal.getConstantRange(); | ||||||||
1391 | } | ||||||||
1392 | if (DefaultCase) { | ||||||||
1393 | // It is possible that the default destination is the destination of | ||||||||
1394 | // some cases. We cannot perform difference for those cases. | ||||||||
1395 | // We know Condition != CaseValue in BBTo. In some cases we can use | ||||||||
1396 | // this to infer Val == f(Condition) is != f(CaseValue). For now, we | ||||||||
1397 | // only do this when f is identity (i.e. Val == Condition), but we | ||||||||
1398 | // should be able to do this for any injective f. | ||||||||
1399 | if (Case.getCaseSuccessor() != BBTo && Condition == Val) | ||||||||
1400 | EdgesVals = EdgesVals.difference(EdgeVal); | ||||||||
1401 | } else if (Case.getCaseSuccessor() == BBTo) | ||||||||
1402 | EdgesVals = EdgesVals.unionWith(EdgeVal); | ||||||||
1403 | } | ||||||||
1404 | return ValueLatticeElement::getRange(std::move(EdgesVals)); | ||||||||
1405 | } | ||||||||
1406 | return None; | ||||||||
1407 | } | ||||||||
1408 | |||||||||
1409 | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at | ||||||||
1410 | /// the basic block if the edge does not constrain Val. | ||||||||
1411 | Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( | ||||||||
1412 | Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { | ||||||||
1413 | // If already a constant, there is nothing to compute. | ||||||||
1414 | if (Constant *VC
| ||||||||
1415 | return ValueLatticeElement::get(VC); | ||||||||
1416 | |||||||||
1417 | ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo) | ||||||||
1418 | .getValueOr(ValueLatticeElement::getOverdefined()); | ||||||||
1419 | if (hasSingleValue(LocalResult)) | ||||||||
1420 | // Can't get any more precise here | ||||||||
1421 | return LocalResult; | ||||||||
1422 | |||||||||
1423 | Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom); | ||||||||
1424 | if (!OptInBlock) | ||||||||
1425 | return None; | ||||||||
1426 | ValueLatticeElement &InBlock = *OptInBlock; | ||||||||
1427 | |||||||||
1428 | // Try to intersect ranges of the BB and the constraint on the edge. | ||||||||
1429 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, | ||||||||
1430 | BBFrom->getTerminator()); | ||||||||
1431 | // We can use the context instruction (generically the ultimate instruction | ||||||||
1432 | // the calling pass is trying to simplify) here, even though the result of | ||||||||
1433 | // this function is generally cached when called from the solve* functions | ||||||||
1434 | // (and that cached result might be used with queries using a different | ||||||||
1435 | // context instruction), because when this function is called from the solve* | ||||||||
1436 | // functions, the context instruction is not provided. When called from | ||||||||
1437 | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, | ||||||||
1438 | // but then the result is not cached. | ||||||||
1439 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); | ||||||||
1440 | |||||||||
1441 | return intersect(LocalResult, InBlock); | ||||||||
1442 | } | ||||||||
1443 | |||||||||
1444 | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, | ||||||||
1445 | Instruction *CxtI) { | ||||||||
1446 | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"do { } while (false) | ||||||||
1447 | << BB->getName() << "'\n")do { } while (false); | ||||||||
1448 | |||||||||
1449 | assert(BlockValueStack.empty() && BlockValueSet.empty())((void)0); | ||||||||
1450 | Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB); | ||||||||
1451 | if (!OptResult) { | ||||||||
1452 | solve(); | ||||||||
1453 | OptResult = getBlockValue(V, BB); | ||||||||
1454 | assert(OptResult && "Value not available after solving")((void)0); | ||||||||
1455 | } | ||||||||
1456 | ValueLatticeElement Result = *OptResult; | ||||||||
1457 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||||
1458 | |||||||||
1459 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { } while (false); | ||||||||
1460 | return Result; | ||||||||
1461 | } | ||||||||
1462 | |||||||||
1463 | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { | ||||||||
1464 | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()do { } while (false) | ||||||||
1465 | << "'\n")do { } while (false); | ||||||||
1466 | |||||||||
1467 | if (auto *C
| ||||||||
1468 | return ValueLatticeElement::get(C); | ||||||||
1469 | |||||||||
1470 | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); | ||||||||
1471 | if (auto *I
| ||||||||
1472 | Result = getFromRangeMetadata(I); | ||||||||
1473 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||||
1474 | |||||||||
1475 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { } while (false); | ||||||||
1476 | return Result; | ||||||||
1477 | } | ||||||||
1478 | |||||||||
1479 | ValueLatticeElement LazyValueInfoImpl:: | ||||||||
1480 | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | ||||||||
1481 | Instruction *CxtI) { | ||||||||
1482 | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"do { } while (false) | ||||||||
1483 | << FromBB->getName() << "' to '" << ToBB->getName()do { } while (false) | ||||||||
1484 | << "'\n")do { } while (false); | ||||||||
1485 | |||||||||
1486 | Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); | ||||||||
1487 | if (!Result) { | ||||||||
1488 | solve(); | ||||||||
1489 | Result = getEdgeValue(V, FromBB, ToBB, CxtI); | ||||||||
1490 | assert(Result && "More work to do after problem solved?")((void)0); | ||||||||
1491 | } | ||||||||
1492 | |||||||||
1493 | LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n")do { } while (false); | ||||||||
1494 | return *Result; | ||||||||
1495 | } | ||||||||
1496 | |||||||||
1497 | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||||
1498 | BasicBlock *NewSucc) { | ||||||||
1499 | TheCache.threadEdgeImpl(OldSucc, NewSucc); | ||||||||
1500 | } | ||||||||
1501 | |||||||||
1502 | //===----------------------------------------------------------------------===// | ||||||||
1503 | // LazyValueInfo Impl | ||||||||
1504 | //===----------------------------------------------------------------------===// | ||||||||
1505 | |||||||||
1506 | /// This lazily constructs the LazyValueInfoImpl. | ||||||||
1507 | static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, | ||||||||
1508 | const Module *M) { | ||||||||
1509 | if (!PImpl) { | ||||||||
1510 | assert(M && "getCache() called with a null Module")((void)0); | ||||||||
1511 | const DataLayout &DL = M->getDataLayout(); | ||||||||
1512 | Function *GuardDecl = M->getFunction( | ||||||||
1513 | Intrinsic::getName(Intrinsic::experimental_guard)); | ||||||||
1514 | PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); | ||||||||
1515 | } | ||||||||
1516 | return *static_cast<LazyValueInfoImpl*>(PImpl); | ||||||||
1517 | } | ||||||||
1518 | |||||||||
1519 | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | ||||||||
1520 | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||||
1521 | Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||||
1522 | |||||||||
1523 | if (Info.PImpl) | ||||||||
1524 | getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); | ||||||||
1525 | |||||||||
1526 | // Fully lazy. | ||||||||
1527 | return false; | ||||||||
1528 | } | ||||||||
1529 | |||||||||
1530 | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | ||||||||
1531 | AU.setPreservesAll(); | ||||||||
1532 | AU.addRequired<AssumptionCacheTracker>(); | ||||||||
1533 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||||
1534 | } | ||||||||
1535 | |||||||||
1536 | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | ||||||||
1537 | |||||||||
1538 | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | ||||||||
1539 | |||||||||
1540 | void LazyValueInfo::releaseMemory() { | ||||||||
1541 | // If the cache was allocated, free it. | ||||||||
1542 | if (PImpl) { | ||||||||
1543 | delete &getImpl(PImpl, AC, nullptr); | ||||||||
1544 | PImpl = nullptr; | ||||||||
1545 | } | ||||||||
1546 | } | ||||||||
1547 | |||||||||
1548 | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, | ||||||||
1549 | FunctionAnalysisManager::Invalidator &Inv) { | ||||||||
1550 | // We need to invalidate if we have either failed to preserve this analyses | ||||||||
1551 | // result directly or if any of its dependencies have been invalidated. | ||||||||
1552 | auto PAC = PA.getChecker<LazyValueAnalysis>(); | ||||||||
1553 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) | ||||||||
1554 | return true; | ||||||||
1555 | |||||||||
1556 | return false; | ||||||||
1557 | } | ||||||||
1558 | |||||||||
1559 | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | ||||||||
1560 | |||||||||
1561 | LazyValueInfo LazyValueAnalysis::run(Function &F, | ||||||||
1562 | FunctionAnalysisManager &FAM) { | ||||||||
1563 | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | ||||||||
1564 | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | ||||||||
1565 | |||||||||
1566 | return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); | ||||||||
1567 | } | ||||||||
1568 | |||||||||
1569 | /// Returns true if we can statically tell that this value will never be a | ||||||||
1570 | /// "useful" constant. In practice, this means we've got something like an | ||||||||
1571 | /// alloca or a malloc call for which a comparison against a constant can | ||||||||
1572 | /// only be guarding dead code. Note that we are potentially giving up some | ||||||||
1573 | /// precision in dead code (a constant result) in favour of avoiding a | ||||||||
1574 | /// expensive search for a easily answered common query. | ||||||||
1575 | static bool isKnownNonConstant(Value *V) { | ||||||||
1576 | V = V->stripPointerCasts(); | ||||||||
1577 | // The return val of alloc cannot be a Constant. | ||||||||
1578 | if (isa<AllocaInst>(V)) | ||||||||
1579 | return true; | ||||||||
1580 | return false; | ||||||||
1581 | } | ||||||||
1582 | |||||||||
1583 | Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { | ||||||||
1584 | // Bail out early if V is known not to be a Constant. | ||||||||
1585 | if (isKnownNonConstant(V)) | ||||||||
1586 | return nullptr; | ||||||||
1587 | |||||||||
1588 | BasicBlock *BB = CxtI->getParent(); | ||||||||
1589 | ValueLatticeElement Result = | ||||||||
1590 | getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); | ||||||||
1591 | |||||||||
1592 | if (Result.isConstant()) | ||||||||
1593 | return Result.getConstant(); | ||||||||
1594 | if (Result.isConstantRange()) { | ||||||||
1595 | const ConstantRange &CR = Result.getConstantRange(); | ||||||||
1596 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||||
1597 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||||
1598 | } | ||||||||
1599 | return nullptr; | ||||||||
1600 | } | ||||||||
1601 | |||||||||
1602 | ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, | ||||||||
1603 | bool UndefAllowed) { | ||||||||
1604 | assert(V->getType()->isIntegerTy())((void)0); | ||||||||
1605 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||||
1606 | BasicBlock *BB = CxtI->getParent(); | ||||||||
1607 | ValueLatticeElement Result = | ||||||||
1608 | getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); | ||||||||
1609 | if (Result.isUnknown()) | ||||||||
1610 | return ConstantRange::getEmpty(Width); | ||||||||
1611 | if (Result.isConstantRange(UndefAllowed)) | ||||||||
1612 | return Result.getConstantRange(UndefAllowed); | ||||||||
1613 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||||
1614 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||||
1615 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((void)0) | ||||||||
1616 | "ConstantInt value must be represented as constantrange")((void)0); | ||||||||
1617 | return ConstantRange::getFull(Width); | ||||||||
1618 | } | ||||||||
1619 | |||||||||
1620 | /// Determine whether the specified value is known to be a | ||||||||
1621 | /// constant on the specified edge. Return null if not. | ||||||||
1622 | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | ||||||||
1623 | BasicBlock *ToBB, | ||||||||
1624 | Instruction *CxtI) { | ||||||||
1625 | Module *M = FromBB->getModule(); | ||||||||
1626 | ValueLatticeElement Result = | ||||||||
1627 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||||
1628 | |||||||||
1629 | if (Result.isConstant()) | ||||||||
1630 | return Result.getConstant(); | ||||||||
1631 | if (Result.isConstantRange()) { | ||||||||
1632 | const ConstantRange &CR = Result.getConstantRange(); | ||||||||
1633 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||||
1634 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||||
1635 | } | ||||||||
1636 | return nullptr; | ||||||||
1637 | } | ||||||||
1638 | |||||||||
1639 | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, | ||||||||
1640 | BasicBlock *FromBB, | ||||||||
1641 | BasicBlock *ToBB, | ||||||||
1642 | Instruction *CxtI) { | ||||||||
1643 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||||
1644 | Module *M = FromBB->getModule(); | ||||||||
1645 | ValueLatticeElement Result = | ||||||||
1646 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||||
1647 | |||||||||
1648 | if (Result.isUnknown()) | ||||||||
1649 | return ConstantRange::getEmpty(Width); | ||||||||
1650 | if (Result.isConstantRange()) | ||||||||
1651 | return Result.getConstantRange(); | ||||||||
1652 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||||
1653 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||||
1654 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((void)0) | ||||||||
1655 | "ConstantInt value must be represented as constantrange")((void)0); | ||||||||
1656 | return ConstantRange::getFull(Width); | ||||||||
1657 | } | ||||||||
1658 | |||||||||
1659 | static LazyValueInfo::Tristate | ||||||||
1660 | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, | ||||||||
1661 | const DataLayout &DL, TargetLibraryInfo *TLI) { | ||||||||
1662 | // If we know the value is a constant, evaluate the conditional. | ||||||||
1663 | Constant *Res = nullptr; | ||||||||
1664 | if (Val.isConstant()) { | ||||||||
1665 | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); | ||||||||
1666 | if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) | ||||||||
1667 | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | ||||||||
1668 | return LazyValueInfo::Unknown; | ||||||||
1669 | } | ||||||||
1670 | |||||||||
1671 | if (Val.isConstantRange()) { | ||||||||
1672 | ConstantInt *CI = dyn_cast<ConstantInt>(C); | ||||||||
1673 | if (!CI) return LazyValueInfo::Unknown; | ||||||||
1674 | |||||||||
1675 | const ConstantRange &CR = Val.getConstantRange(); | ||||||||
1676 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||||
1677 | if (!CR.contains(CI->getValue())) | ||||||||
1678 | return LazyValueInfo::False; | ||||||||
1679 | |||||||||
1680 | if (CR.isSingleElement()) | ||||||||
1681 | return LazyValueInfo::True; | ||||||||
1682 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||||
1683 | if (!CR.contains(CI->getValue())) | ||||||||
1684 | return LazyValueInfo::True; | ||||||||
1685 | |||||||||
1686 | if (CR.isSingleElement()) | ||||||||
1687 | return LazyValueInfo::False; | ||||||||
1688 | } else { | ||||||||
1689 | // Handle more complex predicates. | ||||||||
1690 | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( | ||||||||
1691 | (ICmpInst::Predicate)Pred, CI->getValue()); | ||||||||
1692 | if (TrueValues.contains(CR)) | ||||||||
1693 | return LazyValueInfo::True; | ||||||||
1694 | if (TrueValues.inverse().contains(CR)) | ||||||||
1695 | return LazyValueInfo::False; | ||||||||
1696 | } | ||||||||
1697 | return LazyValueInfo::Unknown; | ||||||||
1698 | } | ||||||||
1699 | |||||||||
1700 | if (Val.isNotConstant()) { | ||||||||
1701 | // If this is an equality comparison, we can try to fold it knowing that | ||||||||
1702 | // "V != C1". | ||||||||
1703 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||||
1704 | // !C1 == C -> false iff C1 == C. | ||||||||
1705 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||||
1706 | Val.getNotConstant(), C, DL, | ||||||||
1707 | TLI); | ||||||||
1708 | if (Res->isNullValue()) | ||||||||
1709 | return LazyValueInfo::False; | ||||||||
1710 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||||
1711 | // !C1 != C -> true iff C1 == C. | ||||||||
1712 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||||
1713 | Val.getNotConstant(), C, DL, | ||||||||
1714 | TLI); | ||||||||
1715 | if (Res->isNullValue()) | ||||||||
1716 | return LazyValueInfo::True; | ||||||||
1717 | } | ||||||||
1718 | return LazyValueInfo::Unknown; | ||||||||
1719 | } | ||||||||
1720 | |||||||||
1721 | return LazyValueInfo::Unknown; | ||||||||
1722 | } | ||||||||
1723 | |||||||||
1724 | /// Determine whether the specified value comparison with a constant is known to | ||||||||
1725 | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | ||||||||
1726 | LazyValueInfo::Tristate | ||||||||
1727 | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | ||||||||
1728 | BasicBlock *FromBB, BasicBlock *ToBB, | ||||||||
1729 | Instruction *CxtI) { | ||||||||
1730 | Module *M = FromBB->getModule(); | ||||||||
1731 | ValueLatticeElement Result = | ||||||||
1732 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||||
1733 | |||||||||
1734 | return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); | ||||||||
1735 | } | ||||||||
1736 | |||||||||
1737 | LazyValueInfo::Tristate | ||||||||
1738 | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | ||||||||
1739 | Instruction *CxtI, bool UseBlockValue) { | ||||||||
1740 | // Is or is not NonNull are common predicates being queried. If | ||||||||
1741 | // isKnownNonZero can tell us the result of the predicate, we can | ||||||||
1742 | // return it quickly. But this is only a fastpath, and falling | ||||||||
1743 | // through would still be correct. | ||||||||
1744 | Module *M = CxtI->getModule(); | ||||||||
1745 | const DataLayout &DL = M->getDataLayout(); | ||||||||
1746 | if (V->getType()->isPointerTy() && C->isNullValue() && | ||||||||
1747 | isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { | ||||||||
1748 | if (Pred == ICmpInst::ICMP_EQ) | ||||||||
1749 | return LazyValueInfo::False; | ||||||||
1750 | else if (Pred == ICmpInst::ICMP_NE) | ||||||||
1751 | return LazyValueInfo::True; | ||||||||
1752 | } | ||||||||
1753 | |||||||||
1754 | ValueLatticeElement Result = UseBlockValue | ||||||||
1755 | ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI) | ||||||||
1756 | : getImpl(PImpl, AC, M).getValueAt(V, CxtI); | ||||||||
1757 | Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); | ||||||||
1758 | if (Ret
| ||||||||
1759 | return Ret; | ||||||||
1760 | |||||||||
1761 | // Note: The following bit of code is somewhat distinct from the rest of LVI; | ||||||||
1762 | // LVI as a whole tries to compute a lattice value which is conservatively | ||||||||
1763 | // correct at a given location. In this case, we have a predicate which we | ||||||||
1764 | // weren't able to prove about the merged result, and we're pushing that | ||||||||
1765 | // predicate back along each incoming edge to see if we can prove it | ||||||||
1766 | // separately for each input. As a motivating example, consider: | ||||||||
1767 | // bb1: | ||||||||
1768 | // %v1 = ... ; constantrange<1, 5> | ||||||||
1769 | // br label %merge | ||||||||
1770 | // bb2: | ||||||||
1771 | // %v2 = ... ; constantrange<10, 20> | ||||||||
1772 | // br label %merge | ||||||||
1773 | // merge: | ||||||||
1774 | // %phi = phi [%v1, %v2] ; constantrange<1,20> | ||||||||
1775 | // %pred = icmp eq i32 %phi, 8 | ||||||||
1776 | // We can't tell from the lattice value for '%phi' that '%pred' is false | ||||||||
1777 | // along each path, but by checking the predicate over each input separately, | ||||||||
1778 | // we can. | ||||||||
1779 | // We limit the search to one step backwards from the current BB and value. | ||||||||
1780 | // We could consider extending this to search further backwards through the | ||||||||
1781 | // CFG and/or value graph, but there are non-obvious compile time vs quality | ||||||||
1782 | // tradeoffs. | ||||||||
1783 | if (CxtI
| ||||||||
1784 | BasicBlock *BB = CxtI->getParent(); | ||||||||
1785 | |||||||||
1786 | // Function entry or an unreachable block. Bail to avoid confusing | ||||||||
1787 | // analysis below. | ||||||||
1788 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | ||||||||
1789 | if (PI == PE) | ||||||||
1790 | return Unknown; | ||||||||
1791 | |||||||||
1792 | // If V is a PHI node in the same block as the context, we need to ask | ||||||||
1793 | // questions about the predicate as applied to the incoming value along | ||||||||
1794 | // each edge. This is useful for eliminating cases where the predicate is | ||||||||
1795 | // known along all incoming edges. | ||||||||
1796 | if (auto *PHI
| ||||||||
1797 | if (PHI->getParent() == BB) { | ||||||||
1798 | Tristate Baseline = Unknown; | ||||||||
1799 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | ||||||||
1800 | Value *Incoming = PHI->getIncomingValue(i); | ||||||||
1801 | BasicBlock *PredBB = PHI->getIncomingBlock(i); | ||||||||
1802 | // Note that PredBB may be BB itself. | ||||||||
1803 | Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, | ||||||||
1804 | CxtI); | ||||||||
1805 | |||||||||
1806 | // Keep going as long as we've seen a consistent known result for | ||||||||
1807 | // all inputs. | ||||||||
1808 | Baseline = (i == 0) ? Result /* First iteration */ | ||||||||
1809 | : (Baseline == Result ? Baseline : Unknown); /* All others */ | ||||||||
1810 | if (Baseline == Unknown) | ||||||||
1811 | break; | ||||||||
1812 | } | ||||||||
1813 | if (Baseline != Unknown) | ||||||||
1814 | return Baseline; | ||||||||
1815 | } | ||||||||
1816 | |||||||||
1817 | // For a comparison where the V is outside this block, it's possible | ||||||||
1818 | // that we've branched on it before. Look to see if the value is known | ||||||||
1819 | // on all incoming edges. | ||||||||
1820 | if (!isa<Instruction>(V) || | ||||||||
1821 | cast<Instruction>(V)->getParent() != BB) { | ||||||||
1822 | // For predecessor edge, determine if the comparison is true or false | ||||||||
1823 | // on that edge. If they're all true or all false, we can conclude | ||||||||
1824 | // the value of the comparison in this block. | ||||||||
1825 | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||||
1826 | if (Baseline != Unknown) { | ||||||||
1827 | // Check that all remaining incoming values match the first one. | ||||||||
1828 | while (++PI != PE) { | ||||||||
1829 | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||||
1830 | if (Ret != Baseline) break; | ||||||||
1831 | } | ||||||||
1832 | // If we terminated early, then one of the values didn't match. | ||||||||
1833 | if (PI == PE) { | ||||||||
1834 | return Baseline; | ||||||||
1835 | } | ||||||||
1836 | } | ||||||||
1837 | } | ||||||||
1838 | } | ||||||||
1839 | return Unknown; | ||||||||
1840 | } | ||||||||
1841 | |||||||||
1842 | LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, | ||||||||
1843 | Value *RHS, | ||||||||
1844 | Instruction *CxtI, | ||||||||
1845 | bool UseBlockValue) { | ||||||||
1846 | CmpInst::Predicate Pred = (CmpInst::Predicate)P; | ||||||||
1847 | |||||||||
1848 | if (auto *C
| ||||||||
| |||||||||
1849 | return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); | ||||||||
1850 | if (auto *C = dyn_cast<Constant>(LHS)) | ||||||||
1851 | return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, | ||||||||
1852 | UseBlockValue); | ||||||||
1853 | |||||||||
1854 | // Got two non-Constant values. While we could handle them somewhat, | ||||||||
1855 | // by getting their constant ranges, and applying ConstantRange::icmp(), | ||||||||
1856 | // so far it did not appear to be profitable. | ||||||||
1857 | return LazyValueInfo::Unknown; | ||||||||
1858 | } | ||||||||
1859 | |||||||||
1860 | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||||
1861 | BasicBlock *NewSucc) { | ||||||||
1862 | if (PImpl) { | ||||||||
1863 | getImpl(PImpl, AC, PredBB->getModule()) | ||||||||
1864 | .threadEdge(PredBB, OldSucc, NewSucc); | ||||||||
1865 | } | ||||||||
1866 | } | ||||||||
1867 | |||||||||
1868 | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | ||||||||
1869 | if (PImpl) { | ||||||||
1870 | getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); | ||||||||
1871 | } | ||||||||
1872 | } | ||||||||
1873 | |||||||||
1874 | |||||||||
1875 | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||||
1876 | if (PImpl) { | ||||||||
1877 | getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); | ||||||||
1878 | } | ||||||||
1879 | } | ||||||||
1880 | |||||||||
1881 | // Print the LVI for the function arguments at the start of each basic block. | ||||||||
1882 | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( | ||||||||
1883 | const BasicBlock *BB, formatted_raw_ostream &OS) { | ||||||||
1884 | // Find if there are latticevalues defined for arguments of the function. | ||||||||
1885 | auto *F = BB->getParent(); | ||||||||
1886 | for (auto &Arg : F->args()) { | ||||||||
1887 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||||
1888 | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); | ||||||||
1889 | if (Result.isUnknown()) | ||||||||
1890 | continue; | ||||||||
1891 | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; | ||||||||
1892 | } | ||||||||
1893 | } | ||||||||
1894 | |||||||||
1895 | // This function prints the LVI analysis for the instruction I at the beginning | ||||||||
1896 | // of various basic blocks. It relies on calculated values that are stored in | ||||||||
1897 | // the LazyValueInfoCache, and in the absence of cached values, recalculate the | ||||||||
1898 | // LazyValueInfo for `I`, and print that info. | ||||||||
1899 | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( | ||||||||
1900 | const Instruction *I, formatted_raw_ostream &OS) { | ||||||||
1901 | |||||||||
1902 | auto *ParentBB = I->getParent(); | ||||||||
1903 | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; | ||||||||
1904 | // We can generate (solve) LVI values only for blocks that are dominated by | ||||||||
1905 | // the I's parent. However, to avoid generating LVI for all dominating blocks, | ||||||||
1906 | // that contain redundant/uninteresting information, we print LVI for | ||||||||
1907 | // blocks that may use this LVI information (such as immediate successor | ||||||||
1908 | // blocks, and blocks that contain uses of `I`). | ||||||||
1909 | auto printResult = [&](const BasicBlock *BB) { | ||||||||
1910 | if (!BlocksContainingLVI.insert(BB).second) | ||||||||
1911 | return; | ||||||||
1912 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||||
1913 | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); | ||||||||
1914 | OS << "; LatticeVal for: '" << *I << "' in BB: '"; | ||||||||
1915 | BB->printAsOperand(OS, false); | ||||||||
1916 | OS << "' is: " << Result << "\n"; | ||||||||
1917 | }; | ||||||||
1918 | |||||||||
1919 | printResult(ParentBB); | ||||||||
1920 | // Print the LVI analysis results for the immediate successor blocks, that | ||||||||
1921 | // are dominated by `ParentBB`. | ||||||||
1922 | for (auto *BBSucc : successors(ParentBB)) | ||||||||
1923 | if (DT.dominates(ParentBB, BBSucc)) | ||||||||
1924 | printResult(BBSucc); | ||||||||
1925 | |||||||||
1926 | // Print LVI in blocks where `I` is used. | ||||||||
1927 | for (auto *U : I->users()) | ||||||||
1928 | if (auto *UseI = dyn_cast<Instruction>(U)) | ||||||||
1929 | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) | ||||||||
1930 | printResult(UseI->getParent()); | ||||||||
1931 | |||||||||
1932 | } | ||||||||
1933 | |||||||||
1934 | namespace { | ||||||||
1935 | // Printer class for LazyValueInfo results. | ||||||||
1936 | class LazyValueInfoPrinter : public FunctionPass { | ||||||||
1937 | public: | ||||||||
1938 | static char ID; // Pass identification, replacement for typeid | ||||||||
1939 | LazyValueInfoPrinter() : FunctionPass(ID) { | ||||||||
1940 | initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); | ||||||||
1941 | } | ||||||||
1942 | |||||||||
1943 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
1944 | AU.setPreservesAll(); | ||||||||
1945 | AU.addRequired<LazyValueInfoWrapperPass>(); | ||||||||
1946 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||||
1947 | } | ||||||||
1948 | |||||||||
1949 | // Get the mandatory dominator tree analysis and pass this in to the | ||||||||
1950 | // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. | ||||||||
1951 | bool runOnFunction(Function &F) override { | ||||||||
1952 | dbgs() << "LVI for function '" << F.getName() << "':\n"; | ||||||||
1953 | auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | ||||||||
1954 | auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||||
1955 | LVI.printLVI(F, DTree, dbgs()); | ||||||||
1956 | return false; | ||||||||
1957 | } | ||||||||
1958 | }; | ||||||||
1959 | } | ||||||||
1960 | |||||||||
1961 | char LazyValueInfoPrinter::ID = 0; | ||||||||
1962 | INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||||
1963 | "Lazy Value Info Printer Pass", false, false)static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||||
1964 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry); | ||||||||
1965 | INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } | ||||||||
1966 | "Lazy Value Info Printer Pass", false, false)PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } |
1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the declaration of the Type class. For more "Type" |
10 | // stuff, look in DerivedTypes.h. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_IR_TYPE_H |
15 | #define LLVM_IR_TYPE_H |
16 | |
17 | #include "llvm/ADT/APFloat.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/Support/CBindingWrapping.h" |
21 | #include "llvm/Support/Casting.h" |
22 | #include "llvm/Support/Compiler.h" |
23 | #include "llvm/Support/ErrorHandling.h" |
24 | #include "llvm/Support/TypeSize.h" |
25 | #include <cassert> |
26 | #include <cstdint> |
27 | #include <iterator> |
28 | |
29 | namespace llvm { |
30 | |
31 | class IntegerType; |
32 | class LLVMContext; |
33 | class PointerType; |
34 | class raw_ostream; |
35 | class StringRef; |
36 | |
37 | /// The instances of the Type class are immutable: once they are created, |
38 | /// they are never changed. Also note that only one instance of a particular |
39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
41 | /// are created, Type instances can only be created via static factory methods |
42 | /// in class Type and in derived classes. Once allocated, Types are never |
43 | /// free'd. |
44 | /// |
45 | class Type { |
46 | public: |
47 | //===--------------------------------------------------------------------===// |
48 | /// Definitions of all of the base types for the Type system. Based on this |
49 | /// value, you can cast to a class defined in DerivedTypes.h. |
50 | /// Note: If you add an element to this, you need to add an element to the |
51 | /// Type::getPrimitiveType function, or else things will break! |
52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
53 | /// |
54 | enum TypeID { |
55 | // PrimitiveTypes |
56 | HalfTyID = 0, ///< 16-bit floating point type |
57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
58 | FloatTyID, ///< 32-bit floating point type |
59 | DoubleTyID, ///< 64-bit floating point type |
60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
63 | VoidTyID, ///< type with no size |
64 | LabelTyID, ///< Labels |
65 | MetadataTyID, ///< Metadata |
66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
68 | TokenTyID, ///< Tokens |
69 | |
70 | // Derived types... see DerivedTypes.h file. |
71 | IntegerTyID, ///< Arbitrary bit width integers |
72 | FunctionTyID, ///< Functions |
73 | PointerTyID, ///< Pointers |
74 | StructTyID, ///< Structures |
75 | ArrayTyID, ///< Arrays |
76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
77 | ScalableVectorTyID ///< Scalable SIMD vector type |
78 | }; |
79 | |
80 | private: |
81 | /// This refers to the LLVMContext in which this type was uniqued. |
82 | LLVMContext &Context; |
83 | |
84 | TypeID ID : 8; // The current base type of this type. |
85 | unsigned SubclassData : 24; // Space for subclasses to store data. |
86 | // Note that this should be synchronized with |
87 | // MAX_INT_BITS value in IntegerType class. |
88 | |
89 | protected: |
90 | friend class LLVMContextImpl; |
91 | |
92 | explicit Type(LLVMContext &C, TypeID tid) |
93 | : Context(C), ID(tid), SubclassData(0) {} |
94 | ~Type() = default; |
95 | |
96 | unsigned getSubclassData() const { return SubclassData; } |
97 | |
98 | void setSubclassData(unsigned val) { |
99 | SubclassData = val; |
100 | // Ensure we don't have any accidental truncation. |
101 | assert(getSubclassData() == val && "Subclass data too large for field")((void)0); |
102 | } |
103 | |
104 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
105 | unsigned NumContainedTys = 0; |
106 | |
107 | /// A pointer to the array of Types contained by this Type. For example, this |
108 | /// includes the arguments of a function type, the elements of a structure, |
109 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
110 | /// may be 0 for types that don't contain other types (Integer, Double, |
111 | /// Float). |
112 | Type * const *ContainedTys = nullptr; |
113 | |
114 | public: |
115 | /// Print the current type. |
116 | /// Omit the type details if \p NoDetails == true. |
117 | /// E.g., let %st = type { i32, i16 } |
118 | /// When \p NoDetails is true, we only print %st. |
119 | /// Put differently, \p NoDetails prints the type as if |
120 | /// inlined with the operands when printing an instruction. |
121 | void print(raw_ostream &O, bool IsForDebug = false, |
122 | bool NoDetails = false) const; |
123 | |
124 | void dump() const; |
125 | |
126 | /// Return the LLVMContext in which this type was uniqued. |
127 | LLVMContext &getContext() const { return Context; } |
128 | |
129 | //===--------------------------------------------------------------------===// |
130 | // Accessors for working with types. |
131 | // |
132 | |
133 | /// Return the type id for the type. This will return one of the TypeID enum |
134 | /// elements defined above. |
135 | TypeID getTypeID() const { return ID; } |
136 | |
137 | /// Return true if this is 'void'. |
138 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
139 | |
140 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
141 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
142 | |
143 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
144 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
145 | |
146 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
147 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
148 | |
149 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
150 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
151 | |
152 | /// Return true if this is x86 long double. |
153 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
154 | |
155 | /// Return true if this is 'fp128'. |
156 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
157 | |
158 | /// Return true if this is powerpc long double. |
159 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
160 | |
161 | /// Return true if this is one of the six floating-point types |
162 | bool isFloatingPointTy() const { |
163 | return getTypeID() == HalfTyID || getTypeID() == BFloatTyID || |
164 | getTypeID() == FloatTyID || getTypeID() == DoubleTyID || |
165 | getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || |
166 | getTypeID() == PPC_FP128TyID; |
167 | } |
168 | |
169 | const fltSemantics &getFltSemantics() const { |
170 | switch (getTypeID()) { |
171 | case HalfTyID: return APFloat::IEEEhalf(); |
172 | case BFloatTyID: return APFloat::BFloat(); |
173 | case FloatTyID: return APFloat::IEEEsingle(); |
174 | case DoubleTyID: return APFloat::IEEEdouble(); |
175 | case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
176 | case FP128TyID: return APFloat::IEEEquad(); |
177 | case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
178 | default: llvm_unreachable("Invalid floating type")__builtin_unreachable(); |
179 | } |
180 | } |
181 | |
182 | /// Return true if this is X86 MMX. |
183 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
184 | |
185 | /// Return true if this is X86 AMX. |
186 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
187 | |
188 | /// Return true if this is a FP type or a vector of FP. |
189 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
190 | |
191 | /// Return true if this is 'label'. |
192 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
193 | |
194 | /// Return true if this is 'metadata'. |
195 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
196 | |
197 | /// Return true if this is 'token'. |
198 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
199 | |
200 | /// True if this is an instance of IntegerType. |
201 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
202 | |
203 | /// Return true if this is an IntegerType of the given width. |
204 | bool isIntegerTy(unsigned Bitwidth) const; |
205 | |
206 | /// Return true if this is an integer type or a vector of integer types. |
207 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
208 | |
209 | /// Return true if this is an integer type or a vector of integer types of |
210 | /// the given width. |
211 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
212 | return getScalarType()->isIntegerTy(BitWidth); |
213 | } |
214 | |
215 | /// Return true if this is an integer type or a pointer type. |
216 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
217 | |
218 | /// True if this is an instance of FunctionType. |
219 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
220 | |
221 | /// True if this is an instance of StructType. |
222 | bool isStructTy() const { return getTypeID() == StructTyID; } |
223 | |
224 | /// True if this is an instance of ArrayType. |
225 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
226 | |
227 | /// True if this is an instance of PointerType. |
228 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
229 | |
230 | /// True if this is an instance of an opaque PointerType. |
231 | bool isOpaquePointerTy() const; |
232 | |
233 | /// Return true if this is a pointer type or a vector of pointer types. |
234 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
235 | |
236 | /// True if this is an instance of VectorType. |
237 | inline bool isVectorTy() const { |
238 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
239 | } |
240 | |
241 | /// Return true if this type could be converted with a lossless BitCast to |
242 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
243 | /// same size only where no re-interpretation of the bits is done. |
244 | /// Determine if this type could be losslessly bitcast to Ty |
245 | bool canLosslesslyBitCastTo(Type *Ty) const; |
246 | |
247 | /// Return true if this type is empty, that is, it has no elements or all of |
248 | /// its elements are empty. |
249 | bool isEmptyTy() const; |
250 | |
251 | /// Return true if the type is "first class", meaning it is a valid type for a |
252 | /// Value. |
253 | bool isFirstClassType() const { |
254 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
255 | } |
256 | |
257 | /// Return true if the type is a valid type for a register in codegen. This |
258 | /// includes all first-class types except struct and array types. |
259 | bool isSingleValueType() const { |
260 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
261 | isPointerTy() || isVectorTy() || isX86_AMXTy(); |
262 | } |
263 | |
264 | /// Return true if the type is an aggregate type. This means it is valid as |
265 | /// the first operand of an insertvalue or extractvalue instruction. This |
266 | /// includes struct and array types, but does not include vector types. |
267 | bool isAggregateType() const { |
268 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
269 | } |
270 | |
271 | /// Return true if it makes sense to take the size of this type. To get the |
272 | /// actual size for a particular target, it is reasonable to use the |
273 | /// DataLayout subsystem to do this. |
274 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
275 | // If it's a primitive, it is always sized. |
276 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
277 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
278 | getTypeID() == X86_AMXTyID) |
279 | return true; |
280 | // If it is not something that can have a size (e.g. a function or label), |
281 | // it doesn't have a size. |
282 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy()) |
283 | return false; |
284 | // Otherwise we have to try harder to decide. |
285 | return isSizedDerivedType(Visited); |
286 | } |
287 | |
288 | /// Return the basic size of this type if it is a primitive type. These are |
289 | /// fixed by LLVM and are not target-dependent. |
290 | /// This will return zero if the type does not have a size or is not a |
291 | /// primitive type. |
292 | /// |
293 | /// If this is a scalable vector type, the scalable property will be set and |
294 | /// the runtime size will be a positive integer multiple of the base size. |
295 | /// |
296 | /// Note that this may not reflect the size of memory allocated for an |
297 | /// instance of the type or the number of bytes that are written when an |
298 | /// instance of the type is stored to memory. The DataLayout class provides |
299 | /// additional query functions to provide this information. |
300 | /// |
301 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
302 | |
303 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
304 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
305 | /// type. |
306 | unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
307 | |
308 | /// Return the width of the mantissa of this type. This is only valid on |
309 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
310 | /// ppc long double), this method returns -1. |
311 | int getFPMantissaWidth() const; |
312 | |
313 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
314 | /// method in APFloat. |
315 | bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } |
316 | |
317 | /// If this is a vector type, return the element type, otherwise return |
318 | /// 'this'. |
319 | inline Type *getScalarType() const { |
320 | if (isVectorTy()) |
321 | return getContainedType(0); |
322 | return const_cast<Type *>(this); |
323 | } |
324 | |
325 | //===--------------------------------------------------------------------===// |
326 | // Type Iteration support. |
327 | // |
328 | using subtype_iterator = Type * const *; |
329 | |
330 | subtype_iterator subtype_begin() const { return ContainedTys; } |
331 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
332 | ArrayRef<Type*> subtypes() const { |
333 | return makeArrayRef(subtype_begin(), subtype_end()); |
334 | } |
335 | |
336 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
337 | |
338 | subtype_reverse_iterator subtype_rbegin() const { |
339 | return subtype_reverse_iterator(subtype_end()); |
340 | } |
341 | subtype_reverse_iterator subtype_rend() const { |
342 | return subtype_reverse_iterator(subtype_begin()); |
343 | } |
344 | |
345 | /// This method is used to implement the type iterator (defined at the end of |
346 | /// the file). For derived types, this returns the types 'contained' in the |
347 | /// derived type. |
348 | Type *getContainedType(unsigned i) const { |
349 | assert(i < NumContainedTys && "Index out of range!")((void)0); |
350 | return ContainedTys[i]; |
351 | } |
352 | |
353 | /// Return the number of types in the derived type. |
354 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
355 | |
356 | //===--------------------------------------------------------------------===// |
357 | // Helper methods corresponding to subclass methods. This forces a cast to |
358 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
359 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
360 | // only intended to cover the core methods that are frequently used, helper |
361 | // methods should not be added here. |
362 | |
363 | inline unsigned getIntegerBitWidth() const; |
364 | |
365 | inline Type *getFunctionParamType(unsigned i) const; |
366 | inline unsigned getFunctionNumParams() const; |
367 | inline bool isFunctionVarArg() const; |
368 | |
369 | inline StringRef getStructName() const; |
370 | inline unsigned getStructNumElements() const; |
371 | inline Type *getStructElementType(unsigned N) const; |
372 | |
373 | inline uint64_t getArrayNumElements() const; |
374 | |
375 | Type *getArrayElementType() const { |
376 | assert(getTypeID() == ArrayTyID)((void)0); |
377 | return ContainedTys[0]; |
378 | } |
379 | |
380 | Type *getPointerElementType() const { |
381 | assert(getTypeID() == PointerTyID)((void)0); |
382 | return ContainedTys[0]; |
383 | } |
384 | |
385 | /// Given vector type, change the element type, |
386 | /// whilst keeping the old number of elements. |
387 | /// For non-vectors simply returns \p EltTy. |
388 | inline Type *getWithNewType(Type *EltTy) const; |
389 | |
390 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
391 | /// whilst keeping the old number of lanes. |
392 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
393 | |
394 | /// Given scalar/vector integer type, returns a type with elements twice as |
395 | /// wide as in the original type. For vectors, preserves element count. |
396 | inline Type *getExtendedType() const; |
397 | |
398 | /// Get the address space of this pointer or pointer vector type. |
399 | inline unsigned getPointerAddressSpace() const; |
400 | |
401 | //===--------------------------------------------------------------------===// |
402 | // Static members exported by the Type class itself. Useful for getting |
403 | // instances of Type. |
404 | // |
405 | |
406 | /// Return a type based on an identifier. |
407 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
408 | |
409 | //===--------------------------------------------------------------------===// |
410 | // These are the builtin types that are always available. |
411 | // |
412 | static Type *getVoidTy(LLVMContext &C); |
413 | static Type *getLabelTy(LLVMContext &C); |
414 | static Type *getHalfTy(LLVMContext &C); |
415 | static Type *getBFloatTy(LLVMContext &C); |
416 | static Type *getFloatTy(LLVMContext &C); |
417 | static Type *getDoubleTy(LLVMContext &C); |
418 | static Type *getMetadataTy(LLVMContext &C); |
419 | static Type *getX86_FP80Ty(LLVMContext &C); |
420 | static Type *getFP128Ty(LLVMContext &C); |
421 | static Type *getPPC_FP128Ty(LLVMContext &C); |
422 | static Type *getX86_MMXTy(LLVMContext &C); |
423 | static Type *getX86_AMXTy(LLVMContext &C); |
424 | static Type *getTokenTy(LLVMContext &C); |
425 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
426 | static IntegerType *getInt1Ty(LLVMContext &C); |
427 | static IntegerType *getInt8Ty(LLVMContext &C); |
428 | static IntegerType *getInt16Ty(LLVMContext &C); |
429 | static IntegerType *getInt32Ty(LLVMContext &C); |
430 | static IntegerType *getInt64Ty(LLVMContext &C); |
431 | static IntegerType *getInt128Ty(LLVMContext &C); |
432 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
433 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT8; |
434 | if (std::is_integral<ScalarTy>::value) { |
435 | return (Type*) Type::getIntNTy(C, noOfBits); |
436 | } else if (std::is_floating_point<ScalarTy>::value) { |
437 | switch (noOfBits) { |
438 | case 32: |
439 | return Type::getFloatTy(C); |
440 | case 64: |
441 | return Type::getDoubleTy(C); |
442 | } |
443 | } |
444 | llvm_unreachable("Unsupported type in Type::getScalarTy")__builtin_unreachable(); |
445 | } |
446 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
447 | Type *Ty; |
448 | if (&S == &APFloat::IEEEhalf()) |
449 | Ty = Type::getHalfTy(C); |
450 | else if (&S == &APFloat::BFloat()) |
451 | Ty = Type::getBFloatTy(C); |
452 | else if (&S == &APFloat::IEEEsingle()) |
453 | Ty = Type::getFloatTy(C); |
454 | else if (&S == &APFloat::IEEEdouble()) |
455 | Ty = Type::getDoubleTy(C); |
456 | else if (&S == &APFloat::x87DoubleExtended()) |
457 | Ty = Type::getX86_FP80Ty(C); |
458 | else if (&S == &APFloat::IEEEquad()) |
459 | Ty = Type::getFP128Ty(C); |
460 | else { |
461 | assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((void)0); |
462 | Ty = Type::getPPC_FP128Ty(C); |
463 | } |
464 | return Ty; |
465 | } |
466 | |
467 | //===--------------------------------------------------------------------===// |
468 | // Convenience methods for getting pointer types with one of the above builtin |
469 | // types as pointee. |
470 | // |
471 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
472 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
473 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
474 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
475 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
476 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
477 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
478 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
479 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
480 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
481 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
482 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
483 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
484 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
485 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
486 | |
487 | /// Return a pointer to the current type. This is equivalent to |
488 | /// PointerType::get(Foo, AddrSpace). |
489 | /// TODO: Remove this after opaque pointer transition is complete. |
490 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
491 | |
492 | private: |
493 | /// Derived types like structures and arrays are sized iff all of the members |
494 | /// of the type are sized as well. Since asking for their size is relatively |
495 | /// uncommon, move this operation out-of-line. |
496 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
497 | }; |
498 | |
499 | // Printing of types. |
500 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
501 | T.print(OS); |
502 | return OS; |
503 | } |
504 | |
505 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
506 | template <> struct isa_impl<PointerType, Type> { |
507 | static inline bool doit(const Type &Ty) { |
508 | return Ty.getTypeID() == Type::PointerTyID; |
509 | } |
510 | }; |
511 | |
512 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
513 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast< Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return reinterpret_cast<LLVMTypeRef>(const_cast<Type*>( P)); } template<typename T> inline T *unwrap(LLVMTypeRef P) { return cast<T>(unwrap(P)); } |
514 | |
515 | /* Specialized opaque type conversions. |
516 | */ |
517 | inline Type **unwrap(LLVMTypeRef* Tys) { |
518 | return reinterpret_cast<Type**>(Tys); |
519 | } |
520 | |
521 | inline LLVMTypeRef *wrap(Type **Tys) { |
522 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
523 | } |
524 | |
525 | } // end namespace llvm |
526 | |
527 | #endif // LLVM_IR_TYPE_H |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file exposes the class definitions of all of the subclasses of the |
10 | // Instruction class. This is meant to be an easy way to get access to all |
11 | // instruction subclasses. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
16 | #define LLVM_IR_INSTRUCTIONS_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/Bitfields.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/None.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/ADT/Twine.h" |
26 | #include "llvm/ADT/iterator.h" |
27 | #include "llvm/ADT/iterator_range.h" |
28 | #include "llvm/IR/Attributes.h" |
29 | #include "llvm/IR/BasicBlock.h" |
30 | #include "llvm/IR/CallingConv.h" |
31 | #include "llvm/IR/CFG.h" |
32 | #include "llvm/IR/Constant.h" |
33 | #include "llvm/IR/DerivedTypes.h" |
34 | #include "llvm/IR/Function.h" |
35 | #include "llvm/IR/InstrTypes.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/OperandTraits.h" |
38 | #include "llvm/IR/Type.h" |
39 | #include "llvm/IR/Use.h" |
40 | #include "llvm/IR/User.h" |
41 | #include "llvm/IR/Value.h" |
42 | #include "llvm/Support/AtomicOrdering.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include <cassert> |
46 | #include <cstddef> |
47 | #include <cstdint> |
48 | #include <iterator> |
49 | |
50 | namespace llvm { |
51 | |
52 | class APInt; |
53 | class ConstantInt; |
54 | class DataLayout; |
55 | class LLVMContext; |
56 | |
57 | //===----------------------------------------------------------------------===// |
58 | // AllocaInst Class |
59 | //===----------------------------------------------------------------------===// |
60 | |
61 | /// an instruction to allocate memory on the stack |
62 | class AllocaInst : public UnaryInstruction { |
63 | Type *AllocatedType; |
64 | |
65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
69 | SwiftErrorField>(), |
70 | "Bitfields must be contiguous"); |
71 | |
72 | protected: |
73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
74 | friend class Instruction; |
75 | |
76 | AllocaInst *cloneImpl() const; |
77 | |
78 | public: |
79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
80 | const Twine &Name, Instruction *InsertBefore); |
81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
82 | const Twine &Name, BasicBlock *InsertAtEnd); |
83 | |
84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
85 | Instruction *InsertBefore); |
86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
87 | const Twine &Name, BasicBlock *InsertAtEnd); |
88 | |
89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
92 | const Twine &Name, BasicBlock *InsertAtEnd); |
93 | |
94 | /// Return true if there is an allocation size parameter to the allocation |
95 | /// instruction that is not 1. |
96 | bool isArrayAllocation() const; |
97 | |
98 | /// Get the number of elements allocated. For a simple allocation of a single |
99 | /// element, this will return a constant 1 value. |
100 | const Value *getArraySize() const { return getOperand(0); } |
101 | Value *getArraySize() { return getOperand(0); } |
102 | |
103 | /// Overload to return most specific pointer type. |
104 | PointerType *getType() const { |
105 | return cast<PointerType>(Instruction::getType()); |
106 | } |
107 | |
108 | /// Get allocation size in bits. Returns None if size can't be determined, |
109 | /// e.g. in case of a VLA. |
110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
111 | |
112 | /// Return the type that is being allocated by the instruction. |
113 | Type *getAllocatedType() const { return AllocatedType; } |
114 | /// for use only in special circumstances that need to generically |
115 | /// transform a whole instruction (eg: IR linking and vectorization). |
116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
117 | |
118 | /// Return the alignment of the memory that is being allocated by the |
119 | /// instruction. |
120 | Align getAlign() const { |
121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
122 | } |
123 | |
124 | void setAlignment(Align Align) { |
125 | setSubclassData<AlignmentField>(Log2(Align)); |
126 | } |
127 | |
128 | // FIXME: Remove this one transition to Align is over. |
129 | unsigned getAlignment() const { return getAlign().value(); } |
130 | |
131 | /// Return true if this alloca is in the entry block of the function and is a |
132 | /// constant size. If so, the code generator will fold it into the |
133 | /// prolog/epilog code, so it is basically free. |
134 | bool isStaticAlloca() const; |
135 | |
136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
137 | /// allocas are never considered static even if they are in the entry block. |
138 | bool isUsedWithInAlloca() const { |
139 | return getSubclassData<UsedWithInAllocaField>(); |
140 | } |
141 | |
142 | /// Specify whether this alloca is used to represent the arguments to a call. |
143 | void setUsedWithInAlloca(bool V) { |
144 | setSubclassData<UsedWithInAllocaField>(V); |
145 | } |
146 | |
147 | /// Return true if this alloca is used as a swifterror argument to a call. |
148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
149 | /// Specify whether this alloca is used to represent a swifterror. |
150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
151 | |
152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
153 | static bool classof(const Instruction *I) { |
154 | return (I->getOpcode() == Instruction::Alloca); |
155 | } |
156 | static bool classof(const Value *V) { |
157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
158 | } |
159 | |
160 | private: |
161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
162 | // method so that subclasses cannot accidentally use it. |
163 | template <typename Bitfield> |
164 | void setSubclassData(typename Bitfield::Type Value) { |
165 | Instruction::setSubclassData<Bitfield>(Value); |
166 | } |
167 | }; |
168 | |
169 | //===----------------------------------------------------------------------===// |
170 | // LoadInst Class |
171 | //===----------------------------------------------------------------------===// |
172 | |
173 | /// An instruction for reading from memory. This uses the SubclassData field in |
174 | /// Value to store whether or not the load is volatile. |
175 | class LoadInst : public UnaryInstruction { |
176 | using VolatileField = BoolBitfieldElementT<0>; |
177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
179 | static_assert( |
180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
181 | "Bitfields must be contiguous"); |
182 | |
183 | void AssertOK(); |
184 | |
185 | protected: |
186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
187 | friend class Instruction; |
188 | |
189 | LoadInst *cloneImpl() const; |
190 | |
191 | public: |
192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
193 | Instruction *InsertBefore); |
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
196 | Instruction *InsertBefore); |
197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
198 | BasicBlock *InsertAtEnd); |
199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
200 | Align Align, Instruction *InsertBefore = nullptr); |
201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
202 | Align Align, BasicBlock *InsertAtEnd); |
203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
204 | Align Align, AtomicOrdering Order, |
205 | SyncScope::ID SSID = SyncScope::System, |
206 | Instruction *InsertBefore = nullptr); |
207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
209 | BasicBlock *InsertAtEnd); |
210 | |
211 | /// Return true if this is a load from a volatile memory location. |
212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
213 | |
214 | /// Specify whether this is a volatile load or not. |
215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
216 | |
217 | /// Return the alignment of the access that is being performed. |
218 | /// FIXME: Remove this function once transition to Align is over. |
219 | /// Use getAlign() instead. |
220 | unsigned getAlignment() const { return getAlign().value(); } |
221 | |
222 | /// Return the alignment of the access that is being performed. |
223 | Align getAlign() const { |
224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
225 | } |
226 | |
227 | void setAlignment(Align Align) { |
228 | setSubclassData<AlignmentField>(Log2(Align)); |
229 | } |
230 | |
231 | /// Returns the ordering constraint of this load instruction. |
232 | AtomicOrdering getOrdering() const { |
233 | return getSubclassData<OrderingField>(); |
234 | } |
235 | /// Sets the ordering constraint of this load instruction. May not be Release |
236 | /// or AcquireRelease. |
237 | void setOrdering(AtomicOrdering Ordering) { |
238 | setSubclassData<OrderingField>(Ordering); |
239 | } |
240 | |
241 | /// Returns the synchronization scope ID of this load instruction. |
242 | SyncScope::ID getSyncScopeID() const { |
243 | return SSID; |
244 | } |
245 | |
246 | /// Sets the synchronization scope ID of this load instruction. |
247 | void setSyncScopeID(SyncScope::ID SSID) { |
248 | this->SSID = SSID; |
249 | } |
250 | |
251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
252 | /// instruction. |
253 | void setAtomic(AtomicOrdering Ordering, |
254 | SyncScope::ID SSID = SyncScope::System) { |
255 | setOrdering(Ordering); |
256 | setSyncScopeID(SSID); |
257 | } |
258 | |
259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
260 | |
261 | bool isUnordered() const { |
262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
263 | getOrdering() == AtomicOrdering::Unordered) && |
264 | !isVolatile(); |
265 | } |
266 | |
267 | Value *getPointerOperand() { return getOperand(0); } |
268 | const Value *getPointerOperand() const { return getOperand(0); } |
269 | static unsigned getPointerOperandIndex() { return 0U; } |
270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
271 | |
272 | /// Returns the address space of the pointer operand. |
273 | unsigned getPointerAddressSpace() const { |
274 | return getPointerOperandType()->getPointerAddressSpace(); |
275 | } |
276 | |
277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
278 | static bool classof(const Instruction *I) { |
279 | return I->getOpcode() == Instruction::Load; |
280 | } |
281 | static bool classof(const Value *V) { |
282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
283 | } |
284 | |
285 | private: |
286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
287 | // method so that subclasses cannot accidentally use it. |
288 | template <typename Bitfield> |
289 | void setSubclassData(typename Bitfield::Type Value) { |
290 | Instruction::setSubclassData<Bitfield>(Value); |
291 | } |
292 | |
293 | /// The synchronization scope ID of this load instruction. Not quite enough |
294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
295 | /// own field. |
296 | SyncScope::ID SSID; |
297 | }; |
298 | |
299 | //===----------------------------------------------------------------------===// |
300 | // StoreInst Class |
301 | //===----------------------------------------------------------------------===// |
302 | |
303 | /// An instruction for storing to memory. |
304 | class StoreInst : public Instruction { |
305 | using VolatileField = BoolBitfieldElementT<0>; |
306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
308 | static_assert( |
309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
310 | "Bitfields must be contiguous"); |
311 | |
312 | void AssertOK(); |
313 | |
314 | protected: |
315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
316 | friend class Instruction; |
317 | |
318 | StoreInst *cloneImpl() const; |
319 | |
320 | public: |
321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
326 | Instruction *InsertBefore = nullptr); |
327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
328 | BasicBlock *InsertAtEnd); |
329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
331 | Instruction *InsertBefore = nullptr); |
332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
334 | |
335 | // allocate space for exactly two operands |
336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
338 | |
339 | /// Return true if this is a store to a volatile memory location. |
340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
341 | |
342 | /// Specify whether this is a volatile store or not. |
343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
344 | |
345 | /// Transparently provide more efficient getOperand methods. |
346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
347 | |
348 | /// Return the alignment of the access that is being performed |
349 | /// FIXME: Remove this function once transition to Align is over. |
350 | /// Use getAlign() instead. |
351 | unsigned getAlignment() const { return getAlign().value(); } |
352 | |
353 | Align getAlign() const { |
354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
355 | } |
356 | |
357 | void setAlignment(Align Align) { |
358 | setSubclassData<AlignmentField>(Log2(Align)); |
359 | } |
360 | |
361 | /// Returns the ordering constraint of this store instruction. |
362 | AtomicOrdering getOrdering() const { |
363 | return getSubclassData<OrderingField>(); |
364 | } |
365 | |
366 | /// Sets the ordering constraint of this store instruction. May not be |
367 | /// Acquire or AcquireRelease. |
368 | void setOrdering(AtomicOrdering Ordering) { |
369 | setSubclassData<OrderingField>(Ordering); |
370 | } |
371 | |
372 | /// Returns the synchronization scope ID of this store instruction. |
373 | SyncScope::ID getSyncScopeID() const { |
374 | return SSID; |
375 | } |
376 | |
377 | /// Sets the synchronization scope ID of this store instruction. |
378 | void setSyncScopeID(SyncScope::ID SSID) { |
379 | this->SSID = SSID; |
380 | } |
381 | |
382 | /// Sets the ordering constraint and the synchronization scope ID of this |
383 | /// store instruction. |
384 | void setAtomic(AtomicOrdering Ordering, |
385 | SyncScope::ID SSID = SyncScope::System) { |
386 | setOrdering(Ordering); |
387 | setSyncScopeID(SSID); |
388 | } |
389 | |
390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
391 | |
392 | bool isUnordered() const { |
393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
394 | getOrdering() == AtomicOrdering::Unordered) && |
395 | !isVolatile(); |
396 | } |
397 | |
398 | Value *getValueOperand() { return getOperand(0); } |
399 | const Value *getValueOperand() const { return getOperand(0); } |
400 | |
401 | Value *getPointerOperand() { return getOperand(1); } |
402 | const Value *getPointerOperand() const { return getOperand(1); } |
403 | static unsigned getPointerOperandIndex() { return 1U; } |
404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
405 | |
406 | /// Returns the address space of the pointer operand. |
407 | unsigned getPointerAddressSpace() const { |
408 | return getPointerOperandType()->getPointerAddressSpace(); |
409 | } |
410 | |
411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
412 | static bool classof(const Instruction *I) { |
413 | return I->getOpcode() == Instruction::Store; |
414 | } |
415 | static bool classof(const Value *V) { |
416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
417 | } |
418 | |
419 | private: |
420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
421 | // method so that subclasses cannot accidentally use it. |
422 | template <typename Bitfield> |
423 | void setSubclassData(typename Bitfield::Type Value) { |
424 | Instruction::setSubclassData<Bitfield>(Value); |
425 | } |
426 | |
427 | /// The synchronization scope ID of this store instruction. Not quite enough |
428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
429 | /// own field. |
430 | SyncScope::ID SSID; |
431 | }; |
432 | |
433 | template <> |
434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
435 | }; |
436 | |
437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
438 | |
439 | //===----------------------------------------------------------------------===// |
440 | // FenceInst Class |
441 | //===----------------------------------------------------------------------===// |
442 | |
443 | /// An instruction for ordering other memory operations. |
444 | class FenceInst : public Instruction { |
445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
446 | |
447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
448 | |
449 | protected: |
450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
451 | friend class Instruction; |
452 | |
453 | FenceInst *cloneImpl() const; |
454 | |
455 | public: |
456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
457 | // SequentiallyConsistent. |
458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
459 | SyncScope::ID SSID = SyncScope::System, |
460 | Instruction *InsertBefore = nullptr); |
461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
462 | BasicBlock *InsertAtEnd); |
463 | |
464 | // allocate space for exactly zero operands |
465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
467 | |
468 | /// Returns the ordering constraint of this fence instruction. |
469 | AtomicOrdering getOrdering() const { |
470 | return getSubclassData<OrderingField>(); |
471 | } |
472 | |
473 | /// Sets the ordering constraint of this fence instruction. May only be |
474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
475 | void setOrdering(AtomicOrdering Ordering) { |
476 | setSubclassData<OrderingField>(Ordering); |
477 | } |
478 | |
479 | /// Returns the synchronization scope ID of this fence instruction. |
480 | SyncScope::ID getSyncScopeID() const { |
481 | return SSID; |
482 | } |
483 | |
484 | /// Sets the synchronization scope ID of this fence instruction. |
485 | void setSyncScopeID(SyncScope::ID SSID) { |
486 | this->SSID = SSID; |
487 | } |
488 | |
489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
490 | static bool classof(const Instruction *I) { |
491 | return I->getOpcode() == Instruction::Fence; |
492 | } |
493 | static bool classof(const Value *V) { |
494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
495 | } |
496 | |
497 | private: |
498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
499 | // method so that subclasses cannot accidentally use it. |
500 | template <typename Bitfield> |
501 | void setSubclassData(typename Bitfield::Type Value) { |
502 | Instruction::setSubclassData<Bitfield>(Value); |
503 | } |
504 | |
505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
507 | /// own field. |
508 | SyncScope::ID SSID; |
509 | }; |
510 | |
511 | //===----------------------------------------------------------------------===// |
512 | // AtomicCmpXchgInst Class |
513 | //===----------------------------------------------------------------------===// |
514 | |
515 | /// An instruction that atomically checks whether a |
516 | /// specified value is in a memory location, and, if it is, stores a new value |
517 | /// there. The value returned by this instruction is a pair containing the |
518 | /// original value as first element, and an i1 indicating success (true) or |
519 | /// failure (false) as second element. |
520 | /// |
521 | class AtomicCmpXchgInst : public Instruction { |
522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
524 | SyncScope::ID SSID); |
525 | |
526 | template <unsigned Offset> |
527 | using AtomicOrderingBitfieldElement = |
528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
529 | AtomicOrdering::LAST>; |
530 | |
531 | protected: |
532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
533 | friend class Instruction; |
534 | |
535 | AtomicCmpXchgInst *cloneImpl() const; |
536 | |
537 | public: |
538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
539 | AtomicOrdering SuccessOrdering, |
540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
541 | Instruction *InsertBefore = nullptr); |
542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
543 | AtomicOrdering SuccessOrdering, |
544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
545 | BasicBlock *InsertAtEnd); |
546 | |
547 | // allocate space for exactly three operands |
548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
550 | |
551 | using VolatileField = BoolBitfieldElementT<0>; |
552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
553 | using SuccessOrderingField = |
554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
555 | using FailureOrderingField = |
556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
557 | using AlignmentField = |
558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
559 | static_assert( |
560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
561 | FailureOrderingField, AlignmentField>(), |
562 | "Bitfields must be contiguous"); |
563 | |
564 | /// Return the alignment of the memory that is being allocated by the |
565 | /// instruction. |
566 | Align getAlign() const { |
567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
568 | } |
569 | |
570 | void setAlignment(Align Align) { |
571 | setSubclassData<AlignmentField>(Log2(Align)); |
572 | } |
573 | |
574 | /// Return true if this is a cmpxchg from a volatile memory |
575 | /// location. |
576 | /// |
577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
578 | |
579 | /// Specify whether this is a volatile cmpxchg. |
580 | /// |
581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
582 | |
583 | /// Return true if this cmpxchg may spuriously fail. |
584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
585 | |
586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
587 | |
588 | /// Transparently provide more efficient getOperand methods. |
589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
590 | |
591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
592 | return Ordering != AtomicOrdering::NotAtomic && |
593 | Ordering != AtomicOrdering::Unordered; |
594 | } |
595 | |
596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
597 | return Ordering != AtomicOrdering::NotAtomic && |
598 | Ordering != AtomicOrdering::Unordered && |
599 | Ordering != AtomicOrdering::AcquireRelease && |
600 | Ordering != AtomicOrdering::Release; |
601 | } |
602 | |
603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
604 | AtomicOrdering getSuccessOrdering() const { |
605 | return getSubclassData<SuccessOrderingField>(); |
606 | } |
607 | |
608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
611 | "invalid CmpXchg success ordering")((void)0); |
612 | setSubclassData<SuccessOrderingField>(Ordering); |
613 | } |
614 | |
615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
616 | AtomicOrdering getFailureOrdering() const { |
617 | return getSubclassData<FailureOrderingField>(); |
618 | } |
619 | |
620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
621 | void setFailureOrdering(AtomicOrdering Ordering) { |
622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
623 | "invalid CmpXchg failure ordering")((void)0); |
624 | setSubclassData<FailureOrderingField>(Ordering); |
625 | } |
626 | |
627 | /// Returns a single ordering which is at least as strong as both the |
628 | /// success and failure orderings for this cmpxchg. |
629 | AtomicOrdering getMergedOrdering() const { |
630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
631 | return AtomicOrdering::SequentiallyConsistent; |
632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
634 | return AtomicOrdering::Acquire; |
635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
636 | return AtomicOrdering::AcquireRelease; |
637 | } |
638 | return getSuccessOrdering(); |
639 | } |
640 | |
641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
642 | SyncScope::ID getSyncScopeID() const { |
643 | return SSID; |
644 | } |
645 | |
646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
647 | void setSyncScopeID(SyncScope::ID SSID) { |
648 | this->SSID = SSID; |
649 | } |
650 | |
651 | Value *getPointerOperand() { return getOperand(0); } |
652 | const Value *getPointerOperand() const { return getOperand(0); } |
653 | static unsigned getPointerOperandIndex() { return 0U; } |
654 | |
655 | Value *getCompareOperand() { return getOperand(1); } |
656 | const Value *getCompareOperand() const { return getOperand(1); } |
657 | |
658 | Value *getNewValOperand() { return getOperand(2); } |
659 | const Value *getNewValOperand() const { return getOperand(2); } |
660 | |
661 | /// Returns the address space of the pointer operand. |
662 | unsigned getPointerAddressSpace() const { |
663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
664 | } |
665 | |
666 | /// Returns the strongest permitted ordering on failure, given the |
667 | /// desired ordering on success. |
668 | /// |
669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
670 | /// so release semantics cannot be provided. So this function drops explicit |
671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
672 | /// operation would remain SequentiallyConsistent. |
673 | static AtomicOrdering |
674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
675 | switch (SuccessOrdering) { |
676 | default: |
677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
678 | case AtomicOrdering::Release: |
679 | case AtomicOrdering::Monotonic: |
680 | return AtomicOrdering::Monotonic; |
681 | case AtomicOrdering::AcquireRelease: |
682 | case AtomicOrdering::Acquire: |
683 | return AtomicOrdering::Acquire; |
684 | case AtomicOrdering::SequentiallyConsistent: |
685 | return AtomicOrdering::SequentiallyConsistent; |
686 | } |
687 | } |
688 | |
689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
690 | static bool classof(const Instruction *I) { |
691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
692 | } |
693 | static bool classof(const Value *V) { |
694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
695 | } |
696 | |
697 | private: |
698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
699 | // method so that subclasses cannot accidentally use it. |
700 | template <typename Bitfield> |
701 | void setSubclassData(typename Bitfield::Type Value) { |
702 | Instruction::setSubclassData<Bitfield>(Value); |
703 | } |
704 | |
705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
706 | /// enough room in SubClassData for everything, so synchronization scope ID |
707 | /// gets its own field. |
708 | SyncScope::ID SSID; |
709 | }; |
710 | |
711 | template <> |
712 | struct OperandTraits<AtomicCmpXchgInst> : |
713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
714 | }; |
715 | |
716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
717 | |
718 | //===----------------------------------------------------------------------===// |
719 | // AtomicRMWInst Class |
720 | //===----------------------------------------------------------------------===// |
721 | |
722 | /// an instruction that atomically reads a memory location, |
723 | /// combines it with another value, and then stores the result back. Returns |
724 | /// the old value. |
725 | /// |
726 | class AtomicRMWInst : public Instruction { |
727 | protected: |
728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
729 | friend class Instruction; |
730 | |
731 | AtomicRMWInst *cloneImpl() const; |
732 | |
733 | public: |
734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
737 | /// instruction. These instructions always return 'old'. |
738 | enum BinOp : unsigned { |
739 | /// *p = v |
740 | Xchg, |
741 | /// *p = old + v |
742 | Add, |
743 | /// *p = old - v |
744 | Sub, |
745 | /// *p = old & v |
746 | And, |
747 | /// *p = ~(old & v) |
748 | Nand, |
749 | /// *p = old | v |
750 | Or, |
751 | /// *p = old ^ v |
752 | Xor, |
753 | /// *p = old >signed v ? old : v |
754 | Max, |
755 | /// *p = old <signed v ? old : v |
756 | Min, |
757 | /// *p = old >unsigned v ? old : v |
758 | UMax, |
759 | /// *p = old <unsigned v ? old : v |
760 | UMin, |
761 | |
762 | /// *p = old + v |
763 | FAdd, |
764 | |
765 | /// *p = old - v |
766 | FSub, |
767 | |
768 | FIRST_BINOP = Xchg, |
769 | LAST_BINOP = FSub, |
770 | BAD_BINOP |
771 | }; |
772 | |
773 | private: |
774 | template <unsigned Offset> |
775 | using AtomicOrderingBitfieldElement = |
776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
777 | AtomicOrdering::LAST>; |
778 | |
779 | template <unsigned Offset> |
780 | using BinOpBitfieldElement = |
781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
782 | |
783 | public: |
784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
786 | Instruction *InsertBefore = nullptr); |
787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
789 | BasicBlock *InsertAtEnd); |
790 | |
791 | // allocate space for exactly two operands |
792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
794 | |
795 | using VolatileField = BoolBitfieldElementT<0>; |
796 | using AtomicOrderingField = |
797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
801 | OperationField, AlignmentField>(), |
802 | "Bitfields must be contiguous"); |
803 | |
804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
805 | |
806 | static StringRef getOperationName(BinOp Op); |
807 | |
808 | static bool isFPOperation(BinOp Op) { |
809 | switch (Op) { |
810 | case AtomicRMWInst::FAdd: |
811 | case AtomicRMWInst::FSub: |
812 | return true; |
813 | default: |
814 | return false; |
815 | } |
816 | } |
817 | |
818 | void setOperation(BinOp Operation) { |
819 | setSubclassData<OperationField>(Operation); |
820 | } |
821 | |
822 | /// Return the alignment of the memory that is being allocated by the |
823 | /// instruction. |
824 | Align getAlign() const { |
825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
826 | } |
827 | |
828 | void setAlignment(Align Align) { |
829 | setSubclassData<AlignmentField>(Log2(Align)); |
830 | } |
831 | |
832 | /// Return true if this is a RMW on a volatile memory location. |
833 | /// |
834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
835 | |
836 | /// Specify whether this is a volatile RMW or not. |
837 | /// |
838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
839 | |
840 | /// Transparently provide more efficient getOperand methods. |
841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
842 | |
843 | /// Returns the ordering constraint of this rmw instruction. |
844 | AtomicOrdering getOrdering() const { |
845 | return getSubclassData<AtomicOrderingField>(); |
846 | } |
847 | |
848 | /// Sets the ordering constraint of this rmw instruction. |
849 | void setOrdering(AtomicOrdering Ordering) { |
850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
851 | "atomicrmw instructions can only be atomic.")((void)0); |
852 | setSubclassData<AtomicOrderingField>(Ordering); |
853 | } |
854 | |
855 | /// Returns the synchronization scope ID of this rmw instruction. |
856 | SyncScope::ID getSyncScopeID() const { |
857 | return SSID; |
858 | } |
859 | |
860 | /// Sets the synchronization scope ID of this rmw instruction. |
861 | void setSyncScopeID(SyncScope::ID SSID) { |
862 | this->SSID = SSID; |
863 | } |
864 | |
865 | Value *getPointerOperand() { return getOperand(0); } |
866 | const Value *getPointerOperand() const { return getOperand(0); } |
867 | static unsigned getPointerOperandIndex() { return 0U; } |
868 | |
869 | Value *getValOperand() { return getOperand(1); } |
870 | const Value *getValOperand() const { return getOperand(1); } |
871 | |
872 | /// Returns the address space of the pointer operand. |
873 | unsigned getPointerAddressSpace() const { |
874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
875 | } |
876 | |
877 | bool isFloatingPointOperation() const { |
878 | return isFPOperation(getOperation()); |
879 | } |
880 | |
881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
882 | static bool classof(const Instruction *I) { |
883 | return I->getOpcode() == Instruction::AtomicRMW; |
884 | } |
885 | static bool classof(const Value *V) { |
886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
887 | } |
888 | |
889 | private: |
890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
892 | |
893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
894 | // method so that subclasses cannot accidentally use it. |
895 | template <typename Bitfield> |
896 | void setSubclassData(typename Bitfield::Type Value) { |
897 | Instruction::setSubclassData<Bitfield>(Value); |
898 | } |
899 | |
900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
902 | /// own field. |
903 | SyncScope::ID SSID; |
904 | }; |
905 | |
906 | template <> |
907 | struct OperandTraits<AtomicRMWInst> |
908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
909 | }; |
910 | |
911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
912 | |
913 | //===----------------------------------------------------------------------===// |
914 | // GetElementPtrInst Class |
915 | //===----------------------------------------------------------------------===// |
916 | |
917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
918 | // message on bad indexes for a gep instruction. |
919 | // |
920 | inline Type *checkGEPType(Type *Ty) { |
921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
922 | return Ty; |
923 | } |
924 | |
925 | /// an instruction for type-safe pointer arithmetic to |
926 | /// access elements of arrays and structs |
927 | /// |
928 | class GetElementPtrInst : public Instruction { |
929 | Type *SourceElementType; |
930 | Type *ResultElementType; |
931 | |
932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
933 | |
934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
935 | /// list of indices. The first ctor can optionally insert before an existing |
936 | /// instruction, the second appends the new instruction to the specified |
937 | /// BasicBlock. |
938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
939 | ArrayRef<Value *> IdxList, unsigned Values, |
940 | const Twine &NameStr, Instruction *InsertBefore); |
941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
942 | ArrayRef<Value *> IdxList, unsigned Values, |
943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
944 | |
945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
946 | |
947 | protected: |
948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
949 | friend class Instruction; |
950 | |
951 | GetElementPtrInst *cloneImpl() const; |
952 | |
953 | public: |
954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
955 | ArrayRef<Value *> IdxList, |
956 | const Twine &NameStr = "", |
957 | Instruction *InsertBefore = nullptr) { |
958 | unsigned Values = 1 + unsigned(IdxList.size()); |
959 | assert(PointeeType && "Must specify element type")((void)0); |
960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
963 | NameStr, InsertBefore); |
964 | } |
965 | |
966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
967 | ArrayRef<Value *> IdxList, |
968 | const Twine &NameStr, |
969 | BasicBlock *InsertAtEnd) { |
970 | unsigned Values = 1 + unsigned(IdxList.size()); |
971 | assert(PointeeType && "Must specify element type")((void)0); |
972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
975 | NameStr, InsertAtEnd); |
976 | } |
977 | |
978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
982 | return CreateInBounds( |
983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
984 | NameStr, InsertBefore); |
985 | } |
986 | |
987 | /// Create an "inbounds" getelementptr. See the documentation for the |
988 | /// "inbounds" flag in LangRef.html for details. |
989 | static GetElementPtrInst * |
990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
991 | const Twine &NameStr = "", |
992 | Instruction *InsertBefore = nullptr) { |
993 | GetElementPtrInst *GEP = |
994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
995 | GEP->setIsInBounds(true); |
996 | return GEP; |
997 | } |
998 | |
999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1003 | return CreateInBounds( |
1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
1005 | NameStr, InsertAtEnd); |
1006 | } |
1007 | |
1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
1009 | ArrayRef<Value *> IdxList, |
1010 | const Twine &NameStr, |
1011 | BasicBlock *InsertAtEnd) { |
1012 | GetElementPtrInst *GEP = |
1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
1014 | GEP->setIsInBounds(true); |
1015 | return GEP; |
1016 | } |
1017 | |
1018 | /// Transparently provide more efficient getOperand methods. |
1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1020 | |
1021 | Type *getSourceElementType() const { return SourceElementType; } |
1022 | |
1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
1025 | |
1026 | Type *getResultElementType() const { |
1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1029 | return ResultElementType; |
1030 | } |
1031 | |
1032 | /// Returns the address space of this instruction's pointer type. |
1033 | unsigned getAddressSpace() const { |
1034 | // Note that this is always the same as the pointer operand's address space |
1035 | // and that is cheaper to compute, so cheat here. |
1036 | return getPointerAddressSpace(); |
1037 | } |
1038 | |
1039 | /// Returns the result type of a getelementptr with the given source |
1040 | /// element type and indexes. |
1041 | /// |
1042 | /// Null is returned if the indices are invalid for the specified |
1043 | /// source element type. |
1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
1047 | |
1048 | /// Return the type of the element at the given index of an indexable |
1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
1050 | /// |
1051 | /// Returns null if the type can't be indexed, or the given index is not |
1052 | /// legal for the given type. |
1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
1055 | |
1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
1058 | inline op_iterator idx_end() { return op_end(); } |
1059 | inline const_op_iterator idx_end() const { return op_end(); } |
1060 | |
1061 | inline iterator_range<op_iterator> indices() { |
1062 | return make_range(idx_begin(), idx_end()); |
1063 | } |
1064 | |
1065 | inline iterator_range<const_op_iterator> indices() const { |
1066 | return make_range(idx_begin(), idx_end()); |
1067 | } |
1068 | |
1069 | Value *getPointerOperand() { |
1070 | return getOperand(0); |
1071 | } |
1072 | const Value *getPointerOperand() const { |
1073 | return getOperand(0); |
1074 | } |
1075 | static unsigned getPointerOperandIndex() { |
1076 | return 0U; // get index for modifying correct operand. |
1077 | } |
1078 | |
1079 | /// Method to return the pointer operand as a |
1080 | /// PointerType. |
1081 | Type *getPointerOperandType() const { |
1082 | return getPointerOperand()->getType(); |
1083 | } |
1084 | |
1085 | /// Returns the address space of the pointer operand. |
1086 | unsigned getPointerAddressSpace() const { |
1087 | return getPointerOperandType()->getPointerAddressSpace(); |
1088 | } |
1089 | |
1090 | /// Returns the pointer type returned by the GEP |
1091 | /// instruction, which may be a vector of pointers. |
1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
1093 | ArrayRef<Value *> IdxList) { |
1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
1099 | : PointerType::get(ResultElemTy, AddrSpace); |
1100 | // Vector GEP |
1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
1103 | return VectorType::get(PtrTy, EltCount); |
1104 | } |
1105 | for (Value *Index : IdxList) |
1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
1108 | return VectorType::get(PtrTy, EltCount); |
1109 | } |
1110 | // Scalar GEP |
1111 | return PtrTy; |
1112 | } |
1113 | |
1114 | unsigned getNumIndices() const { // Note: always non-negative |
1115 | return getNumOperands() - 1; |
1116 | } |
1117 | |
1118 | bool hasIndices() const { |
1119 | return getNumOperands() > 1; |
1120 | } |
1121 | |
1122 | /// Return true if all of the indices of this GEP are |
1123 | /// zeros. If so, the result pointer and the first operand have the same |
1124 | /// value, just potentially different types. |
1125 | bool hasAllZeroIndices() const; |
1126 | |
1127 | /// Return true if all of the indices of this GEP are |
1128 | /// constant integers. If so, the result pointer and the first operand have |
1129 | /// a constant offset between them. |
1130 | bool hasAllConstantIndices() const; |
1131 | |
1132 | /// Set or clear the inbounds flag on this GEP instruction. |
1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
1134 | void setIsInBounds(bool b = true); |
1135 | |
1136 | /// Determine whether the GEP has the inbounds flag. |
1137 | bool isInBounds() const; |
1138 | |
1139 | /// Accumulate the constant address offset of this GEP if possible. |
1140 | /// |
1141 | /// This routine accepts an APInt into which it will accumulate the constant |
1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
1143 | /// all-constant, it returns false and the value of the offset APInt is |
1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
1145 | /// must be at least as wide as the IntPtr type for the address space of |
1146 | /// the base GEP pointer. |
1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
1149 | MapVector<Value *, APInt> &VariableOffsets, |
1150 | APInt &ConstantOffset) const; |
1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1152 | static bool classof(const Instruction *I) { |
1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
1154 | } |
1155 | static bool classof(const Value *V) { |
1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1157 | } |
1158 | }; |
1159 | |
1160 | template <> |
1161 | struct OperandTraits<GetElementPtrInst> : |
1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
1163 | }; |
1164 | |
1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1166 | ArrayRef<Value *> IdxList, unsigned Values, |
1167 | const Twine &NameStr, |
1168 | Instruction *InsertBefore) |
1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1171 | Values, InsertBefore), |
1172 | SourceElementType(PointeeType), |
1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1176 | init(Ptr, IdxList, NameStr); |
1177 | } |
1178 | |
1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1180 | ArrayRef<Value *> IdxList, unsigned Values, |
1181 | const Twine &NameStr, |
1182 | BasicBlock *InsertAtEnd) |
1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1185 | Values, InsertAtEnd), |
1186 | SourceElementType(PointeeType), |
1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1190 | init(Ptr, IdxList, NameStr); |
1191 | } |
1192 | |
1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1194 | |
1195 | //===----------------------------------------------------------------------===// |
1196 | // ICmpInst Class |
1197 | //===----------------------------------------------------------------------===// |
1198 | |
1199 | /// This instruction compares its operands according to the predicate given |
1200 | /// to the constructor. It only operates on integers or pointers. The operands |
1201 | /// must be identical types. |
1202 | /// Represent an integer comparison operator. |
1203 | class ICmpInst: public CmpInst { |
1204 | void AssertOK() { |
1205 | assert(isIntPredicate() &&((void)0) |
1206 | "Invalid ICmp predicate value")((void)0); |
1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
1209 | // Check that the operands are the right type |
1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
1212 | "Invalid operand types for ICmp instruction")((void)0); |
1213 | } |
1214 | |
1215 | protected: |
1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1217 | friend class Instruction; |
1218 | |
1219 | /// Clone an identical ICmpInst |
1220 | ICmpInst *cloneImpl() const; |
1221 | |
1222 | public: |
1223 | /// Constructor with insert-before-instruction semantics. |
1224 | ICmpInst( |
1225 | Instruction *InsertBefore, ///< Where to insert |
1226 | Predicate pred, ///< The predicate to use for the comparison |
1227 | Value *LHS, ///< The left-hand-side of the expression |
1228 | Value *RHS, ///< The right-hand-side of the expression |
1229 | const Twine &NameStr = "" ///< Name of the instruction |
1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1232 | InsertBefore) { |
1233 | #ifndef NDEBUG1 |
1234 | AssertOK(); |
1235 | #endif |
1236 | } |
1237 | |
1238 | /// Constructor with insert-at-end semantics. |
1239 | ICmpInst( |
1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1241 | Predicate pred, ///< The predicate to use for the comparison |
1242 | Value *LHS, ///< The left-hand-side of the expression |
1243 | Value *RHS, ///< The right-hand-side of the expression |
1244 | const Twine &NameStr = "" ///< Name of the instruction |
1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1247 | &InsertAtEnd) { |
1248 | #ifndef NDEBUG1 |
1249 | AssertOK(); |
1250 | #endif |
1251 | } |
1252 | |
1253 | /// Constructor with no-insertion semantics |
1254 | ICmpInst( |
1255 | Predicate pred, ///< The predicate to use for the comparison |
1256 | Value *LHS, ///< The left-hand-side of the expression |
1257 | Value *RHS, ///< The right-hand-side of the expression |
1258 | const Twine &NameStr = "" ///< Name of the instruction |
1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
1261 | #ifndef NDEBUG1 |
1262 | AssertOK(); |
1263 | #endif |
1264 | } |
1265 | |
1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
1267 | /// @returns the predicate that would be the result if the operand were |
1268 | /// regarded as signed. |
1269 | /// Return the signed version of the predicate |
1270 | Predicate getSignedPredicate() const { |
1271 | return getSignedPredicate(getPredicate()); |
1272 | } |
1273 | |
1274 | /// This is a static version that you can use without an instruction. |
1275 | /// Return the signed version of the predicate. |
1276 | static Predicate getSignedPredicate(Predicate pred); |
1277 | |
1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
1279 | /// @returns the predicate that would be the result if the operand were |
1280 | /// regarded as unsigned. |
1281 | /// Return the unsigned version of the predicate |
1282 | Predicate getUnsignedPredicate() const { |
1283 | return getUnsignedPredicate(getPredicate()); |
1284 | } |
1285 | |
1286 | /// This is a static version that you can use without an instruction. |
1287 | /// Return the unsigned version of the predicate. |
1288 | static Predicate getUnsignedPredicate(Predicate pred); |
1289 | |
1290 | /// Return true if this predicate is either EQ or NE. This also |
1291 | /// tests for commutativity. |
1292 | static bool isEquality(Predicate P) { |
1293 | return P == ICMP_EQ || P == ICMP_NE; |
1294 | } |
1295 | |
1296 | /// Return true if this predicate is either EQ or NE. This also |
1297 | /// tests for commutativity. |
1298 | bool isEquality() const { |
1299 | return isEquality(getPredicate()); |
1300 | } |
1301 | |
1302 | /// @returns true if the predicate of this ICmpInst is commutative |
1303 | /// Determine if this relation is commutative. |
1304 | bool isCommutative() const { return isEquality(); } |
1305 | |
1306 | /// Return true if the predicate is relational (not EQ or NE). |
1307 | /// |
1308 | bool isRelational() const { |
1309 | return !isEquality(); |
1310 | } |
1311 | |
1312 | /// Return true if the predicate is relational (not EQ or NE). |
1313 | /// |
1314 | static bool isRelational(Predicate P) { |
1315 | return !isEquality(P); |
1316 | } |
1317 | |
1318 | /// Return true if the predicate is SGT or UGT. |
1319 | /// |
1320 | static bool isGT(Predicate P) { |
1321 | return P == ICMP_SGT || P == ICMP_UGT; |
1322 | } |
1323 | |
1324 | /// Return true if the predicate is SLT or ULT. |
1325 | /// |
1326 | static bool isLT(Predicate P) { |
1327 | return P == ICMP_SLT || P == ICMP_ULT; |
1328 | } |
1329 | |
1330 | /// Return true if the predicate is SGE or UGE. |
1331 | /// |
1332 | static bool isGE(Predicate P) { |
1333 | return P == ICMP_SGE || P == ICMP_UGE; |
1334 | } |
1335 | |
1336 | /// Return true if the predicate is SLE or ULE. |
1337 | /// |
1338 | static bool isLE(Predicate P) { |
1339 | return P == ICMP_SLE || P == ICMP_ULE; |
1340 | } |
1341 | |
1342 | /// Exchange the two operands to this instruction in such a way that it does |
1343 | /// not modify the semantics of the instruction. The predicate value may be |
1344 | /// changed to retain the same result if the predicate is order dependent |
1345 | /// (e.g. ult). |
1346 | /// Swap operands and adjust predicate. |
1347 | void swapOperands() { |
1348 | setPredicate(getSwappedPredicate()); |
1349 | Op<0>().swap(Op<1>()); |
1350 | } |
1351 | |
1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1353 | static bool classof(const Instruction *I) { |
1354 | return I->getOpcode() == Instruction::ICmp; |
1355 | } |
1356 | static bool classof(const Value *V) { |
1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1358 | } |
1359 | }; |
1360 | |
1361 | //===----------------------------------------------------------------------===// |
1362 | // FCmpInst Class |
1363 | //===----------------------------------------------------------------------===// |
1364 | |
1365 | /// This instruction compares its operands according to the predicate given |
1366 | /// to the constructor. It only operates on floating point values or packed |
1367 | /// vectors of floating point values. The operands must be identical types. |
1368 | /// Represents a floating point comparison operator. |
1369 | class FCmpInst: public CmpInst { |
1370 | void AssertOK() { |
1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
1374 | // Check that the operands are the right type |
1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
1376 | "Invalid operand types for FCmp instruction")((void)0); |
1377 | } |
1378 | |
1379 | protected: |
1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1381 | friend class Instruction; |
1382 | |
1383 | /// Clone an identical FCmpInst |
1384 | FCmpInst *cloneImpl() const; |
1385 | |
1386 | public: |
1387 | /// Constructor with insert-before-instruction semantics. |
1388 | FCmpInst( |
1389 | Instruction *InsertBefore, ///< Where to insert |
1390 | Predicate pred, ///< The predicate to use for the comparison |
1391 | Value *LHS, ///< The left-hand-side of the expression |
1392 | Value *RHS, ///< The right-hand-side of the expression |
1393 | const Twine &NameStr = "" ///< Name of the instruction |
1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1396 | InsertBefore) { |
1397 | AssertOK(); |
1398 | } |
1399 | |
1400 | /// Constructor with insert-at-end semantics. |
1401 | FCmpInst( |
1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1403 | Predicate pred, ///< The predicate to use for the comparison |
1404 | Value *LHS, ///< The left-hand-side of the expression |
1405 | Value *RHS, ///< The right-hand-side of the expression |
1406 | const Twine &NameStr = "" ///< Name of the instruction |
1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1409 | &InsertAtEnd) { |
1410 | AssertOK(); |
1411 | } |
1412 | |
1413 | /// Constructor with no-insertion semantics |
1414 | FCmpInst( |
1415 | Predicate Pred, ///< The predicate to use for the comparison |
1416 | Value *LHS, ///< The left-hand-side of the expression |
1417 | Value *RHS, ///< The right-hand-side of the expression |
1418 | const Twine &NameStr = "", ///< Name of the instruction |
1419 | Instruction *FlagsSource = nullptr |
1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
1421 | RHS, NameStr, nullptr, FlagsSource) { |
1422 | AssertOK(); |
1423 | } |
1424 | |
1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
1426 | /// Determine if this is an equality predicate. |
1427 | static bool isEquality(Predicate Pred) { |
1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
1429 | Pred == FCMP_UNE; |
1430 | } |
1431 | |
1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
1433 | /// Determine if this is an equality predicate. |
1434 | bool isEquality() const { return isEquality(getPredicate()); } |
1435 | |
1436 | /// @returns true if the predicate of this instruction is commutative. |
1437 | /// Determine if this is a commutative predicate. |
1438 | bool isCommutative() const { |
1439 | return isEquality() || |
1440 | getPredicate() == FCMP_FALSE || |
1441 | getPredicate() == FCMP_TRUE || |
1442 | getPredicate() == FCMP_ORD || |
1443 | getPredicate() == FCMP_UNO; |
1444 | } |
1445 | |
1446 | /// @returns true if the predicate is relational (not EQ or NE). |
1447 | /// Determine if this a relational predicate. |
1448 | bool isRelational() const { return !isEquality(); } |
1449 | |
1450 | /// Exchange the two operands to this instruction in such a way that it does |
1451 | /// not modify the semantics of the instruction. The predicate value may be |
1452 | /// changed to retain the same result if the predicate is order dependent |
1453 | /// (e.g. ult). |
1454 | /// Swap operands and adjust predicate. |
1455 | void swapOperands() { |
1456 | setPredicate(getSwappedPredicate()); |
1457 | Op<0>().swap(Op<1>()); |
1458 | } |
1459 | |
1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1461 | static bool classof(const Instruction *I) { |
1462 | return I->getOpcode() == Instruction::FCmp; |
1463 | } |
1464 | static bool classof(const Value *V) { |
1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1466 | } |
1467 | }; |
1468 | |
1469 | //===----------------------------------------------------------------------===// |
1470 | /// This class represents a function call, abstracting a target |
1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
1473 | /// hold the calling convention of the call. |
1474 | /// |
1475 | class CallInst : public CallBase { |
1476 | CallInst(const CallInst &CI); |
1477 | |
1478 | /// Construct a CallInst given a range of arguments. |
1479 | /// Construct a CallInst from a range of arguments |
1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1482 | Instruction *InsertBefore); |
1483 | |
1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1485 | const Twine &NameStr, Instruction *InsertBefore) |
1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
1487 | |
1488 | /// Construct a CallInst given a range of arguments. |
1489 | /// Construct a CallInst from a range of arguments |
1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1492 | BasicBlock *InsertAtEnd); |
1493 | |
1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
1495 | Instruction *InsertBefore); |
1496 | |
1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
1498 | BasicBlock *InsertAtEnd); |
1499 | |
1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
1503 | |
1504 | /// Compute the number of operands to allocate. |
1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
1506 | // We need one operand for the called function, plus the input operand |
1507 | // counts provided. |
1508 | return 1 + NumArgs + NumBundleInputs; |
1509 | } |
1510 | |
1511 | protected: |
1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1513 | friend class Instruction; |
1514 | |
1515 | CallInst *cloneImpl() const; |
1516 | |
1517 | public: |
1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
1519 | Instruction *InsertBefore = nullptr) { |
1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
1521 | } |
1522 | |
1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1524 | const Twine &NameStr, |
1525 | Instruction *InsertBefore = nullptr) { |
1526 | return new (ComputeNumOperands(Args.size())) |
1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
1528 | } |
1529 | |
1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1531 | ArrayRef<OperandBundleDef> Bundles = None, |
1532 | const Twine &NameStr = "", |
1533 | Instruction *InsertBefore = nullptr) { |
1534 | const int NumOperands = |
1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1537 | |
1538 | return new (NumOperands, DescriptorBytes) |
1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
1540 | } |
1541 | |
1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
1543 | BasicBlock *InsertAtEnd) { |
1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
1545 | } |
1546 | |
1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1549 | return new (ComputeNumOperands(Args.size())) |
1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
1551 | } |
1552 | |
1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1554 | ArrayRef<OperandBundleDef> Bundles, |
1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1556 | const int NumOperands = |
1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1559 | |
1560 | return new (NumOperands, DescriptorBytes) |
1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
1562 | } |
1563 | |
1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
1565 | Instruction *InsertBefore = nullptr) { |
1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1567 | InsertBefore); |
1568 | } |
1569 | |
1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1571 | ArrayRef<OperandBundleDef> Bundles = None, |
1572 | const Twine &NameStr = "", |
1573 | Instruction *InsertBefore = nullptr) { |
1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1575 | NameStr, InsertBefore); |
1576 | } |
1577 | |
1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1579 | const Twine &NameStr, |
1580 | Instruction *InsertBefore = nullptr) { |
1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1582 | InsertBefore); |
1583 | } |
1584 | |
1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
1586 | BasicBlock *InsertAtEnd) { |
1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1588 | InsertAtEnd); |
1589 | } |
1590 | |
1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1594 | InsertAtEnd); |
1595 | } |
1596 | |
1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1598 | ArrayRef<OperandBundleDef> Bundles, |
1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1601 | NameStr, InsertAtEnd); |
1602 | } |
1603 | |
1604 | /// Create a clone of \p CI with a different set of operand bundles and |
1605 | /// insert it before \p InsertPt. |
1606 | /// |
1607 | /// The returned call instruction is identical \p CI in every way except that |
1608 | /// the operand bundles for the new instruction are set to the operand bundles |
1609 | /// in \p Bundles. |
1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
1611 | Instruction *InsertPt = nullptr); |
1612 | |
1613 | /// Generate the IR for a call to malloc: |
1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
1615 | /// possibly multiplied by the array size if the array size is not |
1616 | /// constant 1. |
1617 | /// 2. Call malloc with that argument. |
1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1620 | Type *AllocTy, Value *AllocSize, |
1621 | Value *ArraySize = nullptr, |
1622 | Function *MallocF = nullptr, |
1623 | const Twine &Name = ""); |
1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1625 | Type *AllocTy, Value *AllocSize, |
1626 | Value *ArraySize = nullptr, |
1627 | Function *MallocF = nullptr, |
1628 | const Twine &Name = ""); |
1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1630 | Type *AllocTy, Value *AllocSize, |
1631 | Value *ArraySize = nullptr, |
1632 | ArrayRef<OperandBundleDef> Bundles = None, |
1633 | Function *MallocF = nullptr, |
1634 | const Twine &Name = ""); |
1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1636 | Type *AllocTy, Value *AllocSize, |
1637 | Value *ArraySize = nullptr, |
1638 | ArrayRef<OperandBundleDef> Bundles = None, |
1639 | Function *MallocF = nullptr, |
1640 | const Twine &Name = ""); |
1641 | /// Generate the IR for a call to the builtin free function. |
1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
1644 | static Instruction *CreateFree(Value *Source, |
1645 | ArrayRef<OperandBundleDef> Bundles, |
1646 | Instruction *InsertBefore); |
1647 | static Instruction *CreateFree(Value *Source, |
1648 | ArrayRef<OperandBundleDef> Bundles, |
1649 | BasicBlock *InsertAtEnd); |
1650 | |
1651 | // Note that 'musttail' implies 'tail'. |
1652 | enum TailCallKind : unsigned { |
1653 | TCK_None = 0, |
1654 | TCK_Tail = 1, |
1655 | TCK_MustTail = 2, |
1656 | TCK_NoTail = 3, |
1657 | TCK_LAST = TCK_NoTail |
1658 | }; |
1659 | |
1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
1661 | static_assert( |
1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
1663 | "Bitfields must be contiguous"); |
1664 | |
1665 | TailCallKind getTailCallKind() const { |
1666 | return getSubclassData<TailCallKindField>(); |
1667 | } |
1668 | |
1669 | bool isTailCall() const { |
1670 | TailCallKind Kind = getTailCallKind(); |
1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
1672 | } |
1673 | |
1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
1675 | |
1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
1677 | |
1678 | void setTailCallKind(TailCallKind TCK) { |
1679 | setSubclassData<TailCallKindField>(TCK); |
1680 | } |
1681 | |
1682 | void setTailCall(bool IsTc = true) { |
1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
1684 | } |
1685 | |
1686 | /// Return true if the call can return twice |
1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
1688 | void setCanReturnTwice() { |
1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
1690 | } |
1691 | |
1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1693 | static bool classof(const Instruction *I) { |
1694 | return I->getOpcode() == Instruction::Call; |
1695 | } |
1696 | static bool classof(const Value *V) { |
1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1698 | } |
1699 | |
1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
1701 | void updateProfWeight(uint64_t S, uint64_t T); |
1702 | |
1703 | private: |
1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
1705 | // method so that subclasses cannot accidentally use it. |
1706 | template <typename Bitfield> |
1707 | void setSubclassData(typename Bitfield::Type Value) { |
1708 | Instruction::setSubclassData<Bitfield>(Value); |
1709 | } |
1710 | }; |
1711 | |
1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1714 | BasicBlock *InsertAtEnd) |
1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1716 | OperandTraits<CallBase>::op_end(this) - |
1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1719 | InsertAtEnd) { |
1720 | init(Ty, Func, Args, Bundles, NameStr); |
1721 | } |
1722 | |
1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1725 | Instruction *InsertBefore) |
1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1727 | OperandTraits<CallBase>::op_end(this) - |
1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1730 | InsertBefore) { |
1731 | init(Ty, Func, Args, Bundles, NameStr); |
1732 | } |
1733 | |
1734 | //===----------------------------------------------------------------------===// |
1735 | // SelectInst Class |
1736 | //===----------------------------------------------------------------------===// |
1737 | |
1738 | /// This class represents the LLVM 'select' instruction. |
1739 | /// |
1740 | class SelectInst : public Instruction { |
1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1742 | Instruction *InsertBefore) |
1743 | : Instruction(S1->getType(), Instruction::Select, |
1744 | &Op<0>(), 3, InsertBefore) { |
1745 | init(C, S1, S2); |
1746 | setName(NameStr); |
1747 | } |
1748 | |
1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1750 | BasicBlock *InsertAtEnd) |
1751 | : Instruction(S1->getType(), Instruction::Select, |
1752 | &Op<0>(), 3, InsertAtEnd) { |
1753 | init(C, S1, S2); |
1754 | setName(NameStr); |
1755 | } |
1756 | |
1757 | void init(Value *C, Value *S1, Value *S2) { |
1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
1759 | Op<0>() = C; |
1760 | Op<1>() = S1; |
1761 | Op<2>() = S2; |
1762 | } |
1763 | |
1764 | protected: |
1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1766 | friend class Instruction; |
1767 | |
1768 | SelectInst *cloneImpl() const; |
1769 | |
1770 | public: |
1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1772 | const Twine &NameStr = "", |
1773 | Instruction *InsertBefore = nullptr, |
1774 | Instruction *MDFrom = nullptr) { |
1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
1776 | if (MDFrom) |
1777 | Sel->copyMetadata(*MDFrom); |
1778 | return Sel; |
1779 | } |
1780 | |
1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1782 | const Twine &NameStr, |
1783 | BasicBlock *InsertAtEnd) { |
1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
1785 | } |
1786 | |
1787 | const Value *getCondition() const { return Op<0>(); } |
1788 | const Value *getTrueValue() const { return Op<1>(); } |
1789 | const Value *getFalseValue() const { return Op<2>(); } |
1790 | Value *getCondition() { return Op<0>(); } |
1791 | Value *getTrueValue() { return Op<1>(); } |
1792 | Value *getFalseValue() { return Op<2>(); } |
1793 | |
1794 | void setCondition(Value *V) { Op<0>() = V; } |
1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
1797 | |
1798 | /// Swap the true and false values of the select instruction. |
1799 | /// This doesn't swap prof metadata. |
1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
1801 | |
1802 | /// Return a string if the specified operands are invalid |
1803 | /// for a select operation, otherwise return null. |
1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
1805 | |
1806 | /// Transparently provide more efficient getOperand methods. |
1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1808 | |
1809 | OtherOps getOpcode() const { |
1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
1811 | } |
1812 | |
1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1814 | static bool classof(const Instruction *I) { |
1815 | return I->getOpcode() == Instruction::Select; |
1816 | } |
1817 | static bool classof(const Value *V) { |
1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1819 | } |
1820 | }; |
1821 | |
1822 | template <> |
1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
1824 | }; |
1825 | |
1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
1827 | |
1828 | //===----------------------------------------------------------------------===// |
1829 | // VAArgInst Class |
1830 | //===----------------------------------------------------------------------===// |
1831 | |
1832 | /// This class represents the va_arg llvm instruction, which returns |
1833 | /// an argument of the specified type given a va_list and increments that list |
1834 | /// |
1835 | class VAArgInst : public UnaryInstruction { |
1836 | protected: |
1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1838 | friend class Instruction; |
1839 | |
1840 | VAArgInst *cloneImpl() const; |
1841 | |
1842 | public: |
1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
1844 | Instruction *InsertBefore = nullptr) |
1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
1846 | setName(NameStr); |
1847 | } |
1848 | |
1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
1850 | BasicBlock *InsertAtEnd) |
1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
1852 | setName(NameStr); |
1853 | } |
1854 | |
1855 | Value *getPointerOperand() { return getOperand(0); } |
1856 | const Value *getPointerOperand() const { return getOperand(0); } |
1857 | static unsigned getPointerOperandIndex() { return 0U; } |
1858 | |
1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1860 | static bool classof(const Instruction *I) { |
1861 | return I->getOpcode() == VAArg; |
1862 | } |
1863 | static bool classof(const Value *V) { |
1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1865 | } |
1866 | }; |
1867 | |
1868 | //===----------------------------------------------------------------------===// |
1869 | // ExtractElementInst Class |
1870 | //===----------------------------------------------------------------------===// |
1871 | |
1872 | /// This instruction extracts a single (scalar) |
1873 | /// element from a VectorType value |
1874 | /// |
1875 | class ExtractElementInst : public Instruction { |
1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
1877 | Instruction *InsertBefore = nullptr); |
1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
1879 | BasicBlock *InsertAtEnd); |
1880 | |
1881 | protected: |
1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1883 | friend class Instruction; |
1884 | |
1885 | ExtractElementInst *cloneImpl() const; |
1886 | |
1887 | public: |
1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1889 | const Twine &NameStr = "", |
1890 | Instruction *InsertBefore = nullptr) { |
1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
1892 | } |
1893 | |
1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1895 | const Twine &NameStr, |
1896 | BasicBlock *InsertAtEnd) { |
1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
1898 | } |
1899 | |
1900 | /// Return true if an extractelement instruction can be |
1901 | /// formed with the specified operands. |
1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
1903 | |
1904 | Value *getVectorOperand() { return Op<0>(); } |
1905 | Value *getIndexOperand() { return Op<1>(); } |
1906 | const Value *getVectorOperand() const { return Op<0>(); } |
1907 | const Value *getIndexOperand() const { return Op<1>(); } |
1908 | |
1909 | VectorType *getVectorOperandType() const { |
1910 | return cast<VectorType>(getVectorOperand()->getType()); |
1911 | } |
1912 | |
1913 | /// Transparently provide more efficient getOperand methods. |
1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1915 | |
1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1917 | static bool classof(const Instruction *I) { |
1918 | return I->getOpcode() == Instruction::ExtractElement; |
1919 | } |
1920 | static bool classof(const Value *V) { |
1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1922 | } |
1923 | }; |
1924 | |
1925 | template <> |
1926 | struct OperandTraits<ExtractElementInst> : |
1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
1928 | }; |
1929 | |
1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1931 | |
1932 | //===----------------------------------------------------------------------===// |
1933 | // InsertElementInst Class |
1934 | //===----------------------------------------------------------------------===// |
1935 | |
1936 | /// This instruction inserts a single (scalar) |
1937 | /// element into a VectorType value |
1938 | /// |
1939 | class InsertElementInst : public Instruction { |
1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
1941 | const Twine &NameStr = "", |
1942 | Instruction *InsertBefore = nullptr); |
1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
1944 | BasicBlock *InsertAtEnd); |
1945 | |
1946 | protected: |
1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1948 | friend class Instruction; |
1949 | |
1950 | InsertElementInst *cloneImpl() const; |
1951 | |
1952 | public: |
1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1954 | const Twine &NameStr = "", |
1955 | Instruction *InsertBefore = nullptr) { |
1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
1957 | } |
1958 | |
1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1960 | const Twine &NameStr, |
1961 | BasicBlock *InsertAtEnd) { |
1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
1963 | } |
1964 | |
1965 | /// Return true if an insertelement instruction can be |
1966 | /// formed with the specified operands. |
1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
1968 | const Value *Idx); |
1969 | |
1970 | /// Overload to return most specific vector type. |
1971 | /// |
1972 | VectorType *getType() const { |
1973 | return cast<VectorType>(Instruction::getType()); |
1974 | } |
1975 | |
1976 | /// Transparently provide more efficient getOperand methods. |
1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1978 | |
1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1980 | static bool classof(const Instruction *I) { |
1981 | return I->getOpcode() == Instruction::InsertElement; |
1982 | } |
1983 | static bool classof(const Value *V) { |
1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1985 | } |
1986 | }; |
1987 | |
1988 | template <> |
1989 | struct OperandTraits<InsertElementInst> : |
1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
1991 | }; |
1992 | |
1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1994 | |
1995 | //===----------------------------------------------------------------------===// |
1996 | // ShuffleVectorInst Class |
1997 | //===----------------------------------------------------------------------===// |
1998 | |
1999 | constexpr int UndefMaskElem = -1; |
2000 | |
2001 | /// This instruction constructs a fixed permutation of two |
2002 | /// input vectors. |
2003 | /// |
2004 | /// For each element of the result vector, the shuffle mask selects an element |
2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
2008 | /// |
2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
2010 | /// requirement may be relaxed in the future. |
2011 | class ShuffleVectorInst : public Instruction { |
2012 | SmallVector<int, 4> ShuffleMask; |
2013 | Constant *ShuffleMaskForBitcode; |
2014 | |
2015 | protected: |
2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2017 | friend class Instruction; |
2018 | |
2019 | ShuffleVectorInst *cloneImpl() const; |
2020 | |
2021 | public: |
2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2023 | const Twine &NameStr = "", |
2024 | Instruction *InsertBefor = nullptr); |
2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2028 | const Twine &NameStr = "", |
2029 | Instruction *InsertBefor = nullptr); |
2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2032 | |
2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
2035 | |
2036 | /// Swap the operands and adjust the mask to preserve the semantics |
2037 | /// of the instruction. |
2038 | void commute(); |
2039 | |
2040 | /// Return true if a shufflevector instruction can be |
2041 | /// formed with the specified operands. |
2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
2043 | const Value *Mask); |
2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
2045 | ArrayRef<int> Mask); |
2046 | |
2047 | /// Overload to return most specific vector type. |
2048 | /// |
2049 | VectorType *getType() const { |
2050 | return cast<VectorType>(Instruction::getType()); |
2051 | } |
2052 | |
2053 | /// Transparently provide more efficient getOperand methods. |
2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2055 | |
2056 | /// Return the shuffle mask value of this instruction for the given element |
2057 | /// index. Return UndefMaskElem if the element is undef. |
2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
2059 | |
2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
2061 | /// elements of the mask are returned as UndefMaskElem. |
2062 | static void getShuffleMask(const Constant *Mask, |
2063 | SmallVectorImpl<int> &Result); |
2064 | |
2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
2066 | /// elements of the mask are returned as UndefMaskElem. |
2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
2069 | } |
2070 | |
2071 | /// Return the mask for this instruction, for use in bitcode. |
2072 | /// |
2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
2074 | /// shufflevector. |
2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
2076 | |
2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
2078 | Type *ResultTy); |
2079 | |
2080 | void setShuffleMask(ArrayRef<int> Mask); |
2081 | |
2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
2083 | |
2084 | /// Return true if this shuffle returns a vector with a different number of |
2085 | /// elements than its source vectors. |
2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
2088 | bool changesLength() const { |
2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2090 | ->getElementCount() |
2091 | .getKnownMinValue(); |
2092 | unsigned NumMaskElts = ShuffleMask.size(); |
2093 | return NumSourceElts != NumMaskElts; |
2094 | } |
2095 | |
2096 | /// Return true if this shuffle returns a vector with a greater number of |
2097 | /// elements than its source vectors. |
2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
2099 | bool increasesLength() const { |
2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2101 | ->getElementCount() |
2102 | .getKnownMinValue(); |
2103 | unsigned NumMaskElts = ShuffleMask.size(); |
2104 | return NumSourceElts < NumMaskElts; |
2105 | } |
2106 | |
2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
2108 | /// vector. |
2109 | /// Example: <7,5,undef,7> |
2110 | /// This assumes that vector operands are the same length as the mask. |
2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
2112 | static bool isSingleSourceMask(const Constant *Mask) { |
2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2114 | SmallVector<int, 16> MaskAsInts; |
2115 | getShuffleMask(Mask, MaskAsInts); |
2116 | return isSingleSourceMask(MaskAsInts); |
2117 | } |
2118 | |
2119 | /// Return true if this shuffle chooses elements from exactly one source |
2120 | /// vector without changing the length of that vector. |
2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
2122 | /// TODO: Optionally allow length-changing shuffles. |
2123 | bool isSingleSource() const { |
2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
2125 | } |
2126 | |
2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
2128 | /// vector without lane crossings. A shuffle using this mask is not |
2129 | /// necessarily a no-op because it may change the number of elements from its |
2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
2131 | /// Example: <undef,undef,2,3> |
2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
2133 | static bool isIdentityMask(const Constant *Mask) { |
2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2135 | SmallVector<int, 16> MaskAsInts; |
2136 | getShuffleMask(Mask, MaskAsInts); |
2137 | return isIdentityMask(MaskAsInts); |
2138 | } |
2139 | |
2140 | /// Return true if this shuffle chooses elements from exactly one source |
2141 | /// vector without lane crossings and does not change the number of elements |
2142 | /// from its input vectors. |
2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
2144 | bool isIdentity() const { |
2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
2146 | } |
2147 | |
2148 | /// Return true if this shuffle lengthens exactly one source vector with |
2149 | /// undefs in the high elements. |
2150 | bool isIdentityWithPadding() const; |
2151 | |
2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
2153 | /// source vector. |
2154 | bool isIdentityWithExtract() const; |
2155 | |
2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
2157 | /// returns false if either input is undefined. In that case, the shuffle is |
2158 | /// is better classified as an identity with padding operation. |
2159 | bool isConcat() const; |
2160 | |
2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
2162 | /// without lane crossings. A shuffle using this mask would be |
2163 | /// equivalent to a vector select with a constant condition operand. |
2164 | /// Example: <4,1,6,undef> |
2165 | /// This returns false if the mask does not choose from both input vectors. |
2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
2167 | /// This assumes that vector operands are the same length as the mask |
2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
2169 | static bool isSelectMask(ArrayRef<int> Mask); |
2170 | static bool isSelectMask(const Constant *Mask) { |
2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2172 | SmallVector<int, 16> MaskAsInts; |
2173 | getShuffleMask(Mask, MaskAsInts); |
2174 | return isSelectMask(MaskAsInts); |
2175 | } |
2176 | |
2177 | /// Return true if this shuffle chooses elements from its source vectors |
2178 | /// without lane crossings and all operands have the same number of elements. |
2179 | /// In other words, this shuffle is equivalent to a vector select with a |
2180 | /// constant condition operand. |
2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
2182 | /// This returns false if the mask does not choose from both input vectors. |
2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
2184 | /// TODO: Optionally allow length-changing shuffles. |
2185 | bool isSelect() const { |
2186 | return !changesLength() && isSelectMask(ShuffleMask); |
2187 | } |
2188 | |
2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
2190 | /// one source vector. |
2191 | /// Example: <7,6,undef,4> |
2192 | /// This assumes that vector operands are the same length as the mask. |
2193 | static bool isReverseMask(ArrayRef<int> Mask); |
2194 | static bool isReverseMask(const Constant *Mask) { |
2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2196 | SmallVector<int, 16> MaskAsInts; |
2197 | getShuffleMask(Mask, MaskAsInts); |
2198 | return isReverseMask(MaskAsInts); |
2199 | } |
2200 | |
2201 | /// Return true if this shuffle swaps the order of elements from exactly |
2202 | /// one source vector. |
2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
2204 | /// TODO: Optionally allow length-changing shuffles. |
2205 | bool isReverse() const { |
2206 | return !changesLength() && isReverseMask(ShuffleMask); |
2207 | } |
2208 | |
2209 | /// Return true if this shuffle mask chooses all elements with the same value |
2210 | /// as the first element of exactly one source vector. |
2211 | /// Example: <4,undef,undef,4> |
2212 | /// This assumes that vector operands are the same length as the mask. |
2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2216 | SmallVector<int, 16> MaskAsInts; |
2217 | getShuffleMask(Mask, MaskAsInts); |
2218 | return isZeroEltSplatMask(MaskAsInts); |
2219 | } |
2220 | |
2221 | /// Return true if all elements of this shuffle are the same value as the |
2222 | /// first element of exactly one source vector without changing the length |
2223 | /// of that vector. |
2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
2225 | /// TODO: Optionally allow length-changing shuffles. |
2226 | /// TODO: Optionally allow splats from other elements. |
2227 | bool isZeroEltSplat() const { |
2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
2229 | } |
2230 | |
2231 | /// Return true if this shuffle mask is a transpose mask. |
2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
2234 | /// vectors and write each result into consecutive elements of an |
2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
2236 | /// the transpose, one for the even elements and another for the odd elements. |
2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
2238 | /// instructions operate. |
2239 | /// |
2240 | /// For example, a simple 2x2 matrix can be transposed with: |
2241 | /// |
2242 | /// ; Original matrix |
2243 | /// m0 = < a, b > |
2244 | /// m1 = < c, d > |
2245 | /// |
2246 | /// ; Transposed matrix |
2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
2249 | /// |
2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
2251 | /// matrix is stored in two result vectors such that one vector contains |
2252 | /// interleaved elements from all the even-numbered rows and the other vector |
2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
2254 | /// a 2x4 matrix can be transposed with: |
2255 | /// |
2256 | /// ; Original matrix |
2257 | /// m0 = < a, b, c, d > |
2258 | /// m1 = < e, f, g, h > |
2259 | /// |
2260 | /// ; Transposed matrix |
2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
2264 | static bool isTransposeMask(const Constant *Mask) { |
2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2266 | SmallVector<int, 16> MaskAsInts; |
2267 | getShuffleMask(Mask, MaskAsInts); |
2268 | return isTransposeMask(MaskAsInts); |
2269 | } |
2270 | |
2271 | /// Return true if this shuffle transposes the elements of its inputs without |
2272 | /// changing the length of the vectors. This operation may also be known as a |
2273 | /// merge or interleave. See the description for isTransposeMask() for the |
2274 | /// exact specification. |
2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
2276 | bool isTranspose() const { |
2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
2278 | } |
2279 | |
2280 | /// Return true if this shuffle mask is an extract subvector mask. |
2281 | /// A valid extract subvector mask returns a smaller vector from a single |
2282 | /// source operand. The base extraction index is returned as well. |
2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
2284 | int &Index); |
2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
2286 | int &Index) { |
2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2288 | // Not possible to express a shuffle mask for a scalable vector for this |
2289 | // case. |
2290 | if (isa<ScalableVectorType>(Mask->getType())) |
2291 | return false; |
2292 | SmallVector<int, 16> MaskAsInts; |
2293 | getShuffleMask(Mask, MaskAsInts); |
2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
2295 | } |
2296 | |
2297 | /// Return true if this shuffle mask is an extract subvector mask. |
2298 | bool isExtractSubvectorMask(int &Index) const { |
2299 | // Not possible to express a shuffle mask for a scalable vector for this |
2300 | // case. |
2301 | if (isa<ScalableVectorType>(getType())) |
2302 | return false; |
2303 | |
2304 | int NumSrcElts = |
2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
2307 | } |
2308 | |
2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
2310 | /// of length InVecNumElts have swapped position. |
2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
2312 | unsigned InVecNumElts) { |
2313 | for (int &Idx : Mask) { |
2314 | if (Idx == -1) |
2315 | continue; |
2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
2318 | "shufflevector mask index out of range")((void)0); |
2319 | } |
2320 | } |
2321 | |
2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2323 | static bool classof(const Instruction *I) { |
2324 | return I->getOpcode() == Instruction::ShuffleVector; |
2325 | } |
2326 | static bool classof(const Value *V) { |
2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2328 | } |
2329 | }; |
2330 | |
2331 | template <> |
2332 | struct OperandTraits<ShuffleVectorInst> |
2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
2334 | |
2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
2336 | |
2337 | //===----------------------------------------------------------------------===// |
2338 | // ExtractValueInst Class |
2339 | //===----------------------------------------------------------------------===// |
2340 | |
2341 | /// This instruction extracts a struct member or array |
2342 | /// element value from an aggregate value. |
2343 | /// |
2344 | class ExtractValueInst : public UnaryInstruction { |
2345 | SmallVector<unsigned, 4> Indices; |
2346 | |
2347 | ExtractValueInst(const ExtractValueInst &EVI); |
2348 | |
2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
2350 | /// value and a list of indices. The first ctor can optionally insert before |
2351 | /// an existing instruction, the second appends the new instruction to the |
2352 | /// specified BasicBlock. |
2353 | inline ExtractValueInst(Value *Agg, |
2354 | ArrayRef<unsigned> Idxs, |
2355 | const Twine &NameStr, |
2356 | Instruction *InsertBefore); |
2357 | inline ExtractValueInst(Value *Agg, |
2358 | ArrayRef<unsigned> Idxs, |
2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2360 | |
2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
2362 | |
2363 | protected: |
2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2365 | friend class Instruction; |
2366 | |
2367 | ExtractValueInst *cloneImpl() const; |
2368 | |
2369 | public: |
2370 | static ExtractValueInst *Create(Value *Agg, |
2371 | ArrayRef<unsigned> Idxs, |
2372 | const Twine &NameStr = "", |
2373 | Instruction *InsertBefore = nullptr) { |
2374 | return new |
2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
2376 | } |
2377 | |
2378 | static ExtractValueInst *Create(Value *Agg, |
2379 | ArrayRef<unsigned> Idxs, |
2380 | const Twine &NameStr, |
2381 | BasicBlock *InsertAtEnd) { |
2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
2383 | } |
2384 | |
2385 | /// Returns the type of the element that would be extracted |
2386 | /// with an extractvalue instruction with the specified parameters. |
2387 | /// |
2388 | /// Null is returned if the indices are invalid for the specified type. |
2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
2390 | |
2391 | using idx_iterator = const unsigned*; |
2392 | |
2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
2395 | inline iterator_range<idx_iterator> indices() const { |
2396 | return make_range(idx_begin(), idx_end()); |
2397 | } |
2398 | |
2399 | Value *getAggregateOperand() { |
2400 | return getOperand(0); |
2401 | } |
2402 | const Value *getAggregateOperand() const { |
2403 | return getOperand(0); |
2404 | } |
2405 | static unsigned getAggregateOperandIndex() { |
2406 | return 0U; // get index for modifying correct operand |
2407 | } |
2408 | |
2409 | ArrayRef<unsigned> getIndices() const { |
2410 | return Indices; |
2411 | } |
2412 | |
2413 | unsigned getNumIndices() const { |
2414 | return (unsigned)Indices.size(); |
2415 | } |
2416 | |
2417 | bool hasIndices() const { |
2418 | return true; |
2419 | } |
2420 | |
2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2422 | static bool classof(const Instruction *I) { |
2423 | return I->getOpcode() == Instruction::ExtractValue; |
2424 | } |
2425 | static bool classof(const Value *V) { |
2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2427 | } |
2428 | }; |
2429 | |
2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2431 | ArrayRef<unsigned> Idxs, |
2432 | const Twine &NameStr, |
2433 | Instruction *InsertBefore) |
2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2435 | ExtractValue, Agg, InsertBefore) { |
2436 | init(Idxs, NameStr); |
2437 | } |
2438 | |
2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2440 | ArrayRef<unsigned> Idxs, |
2441 | const Twine &NameStr, |
2442 | BasicBlock *InsertAtEnd) |
2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2444 | ExtractValue, Agg, InsertAtEnd) { |
2445 | init(Idxs, NameStr); |
2446 | } |
2447 | |
2448 | //===----------------------------------------------------------------------===// |
2449 | // InsertValueInst Class |
2450 | //===----------------------------------------------------------------------===// |
2451 | |
2452 | /// This instruction inserts a struct field of array element |
2453 | /// value into an aggregate value. |
2454 | /// |
2455 | class InsertValueInst : public Instruction { |
2456 | SmallVector<unsigned, 4> Indices; |
2457 | |
2458 | InsertValueInst(const InsertValueInst &IVI); |
2459 | |
2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
2461 | /// value, a value to insert, and a list of indices. The first ctor can |
2462 | /// optionally insert before an existing instruction, the second appends |
2463 | /// the new instruction to the specified BasicBlock. |
2464 | inline InsertValueInst(Value *Agg, Value *Val, |
2465 | ArrayRef<unsigned> Idxs, |
2466 | const Twine &NameStr, |
2467 | Instruction *InsertBefore); |
2468 | inline InsertValueInst(Value *Agg, Value *Val, |
2469 | ArrayRef<unsigned> Idxs, |
2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2471 | |
2472 | /// Constructors - These two constructors are convenience methods because one |
2473 | /// and two index insertvalue instructions are so common. |
2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
2475 | const Twine &NameStr = "", |
2476 | Instruction *InsertBefore = nullptr); |
2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
2478 | BasicBlock *InsertAtEnd); |
2479 | |
2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
2481 | const Twine &NameStr); |
2482 | |
2483 | protected: |
2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2485 | friend class Instruction; |
2486 | |
2487 | InsertValueInst *cloneImpl() const; |
2488 | |
2489 | public: |
2490 | // allocate space for exactly two operands |
2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2493 | |
2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2495 | ArrayRef<unsigned> Idxs, |
2496 | const Twine &NameStr = "", |
2497 | Instruction *InsertBefore = nullptr) { |
2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
2499 | } |
2500 | |
2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2502 | ArrayRef<unsigned> Idxs, |
2503 | const Twine &NameStr, |
2504 | BasicBlock *InsertAtEnd) { |
2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
2506 | } |
2507 | |
2508 | /// Transparently provide more efficient getOperand methods. |
2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2510 | |
2511 | using idx_iterator = const unsigned*; |
2512 | |
2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
2515 | inline iterator_range<idx_iterator> indices() const { |
2516 | return make_range(idx_begin(), idx_end()); |
2517 | } |
2518 | |
2519 | Value *getAggregateOperand() { |
2520 | return getOperand(0); |
2521 | } |
2522 | const Value *getAggregateOperand() const { |
2523 | return getOperand(0); |
2524 | } |
2525 | static unsigned getAggregateOperandIndex() { |
2526 | return 0U; // get index for modifying correct operand |
2527 | } |
2528 | |
2529 | Value *getInsertedValueOperand() { |
2530 | return getOperand(1); |
2531 | } |
2532 | const Value *getInsertedValueOperand() const { |
2533 | return getOperand(1); |
2534 | } |
2535 | static unsigned getInsertedValueOperandIndex() { |
2536 | return 1U; // get index for modifying correct operand |
2537 | } |
2538 | |
2539 | ArrayRef<unsigned> getIndices() const { |
2540 | return Indices; |
2541 | } |
2542 | |
2543 | unsigned getNumIndices() const { |
2544 | return (unsigned)Indices.size(); |
2545 | } |
2546 | |
2547 | bool hasIndices() const { |
2548 | return true; |
2549 | } |
2550 | |
2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2552 | static bool classof(const Instruction *I) { |
2553 | return I->getOpcode() == Instruction::InsertValue; |
2554 | } |
2555 | static bool classof(const Value *V) { |
2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2557 | } |
2558 | }; |
2559 | |
2560 | template <> |
2561 | struct OperandTraits<InsertValueInst> : |
2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
2563 | }; |
2564 | |
2565 | InsertValueInst::InsertValueInst(Value *Agg, |
2566 | Value *Val, |
2567 | ArrayRef<unsigned> Idxs, |
2568 | const Twine &NameStr, |
2569 | Instruction *InsertBefore) |
2570 | : Instruction(Agg->getType(), InsertValue, |
2571 | OperandTraits<InsertValueInst>::op_begin(this), |
2572 | 2, InsertBefore) { |
2573 | init(Agg, Val, Idxs, NameStr); |
2574 | } |
2575 | |
2576 | InsertValueInst::InsertValueInst(Value *Agg, |
2577 | Value *Val, |
2578 | ArrayRef<unsigned> Idxs, |
2579 | const Twine &NameStr, |
2580 | BasicBlock *InsertAtEnd) |
2581 | : Instruction(Agg->getType(), InsertValue, |
2582 | OperandTraits<InsertValueInst>::op_begin(this), |
2583 | 2, InsertAtEnd) { |
2584 | init(Agg, Val, Idxs, NameStr); |
2585 | } |
2586 | |
2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2588 | |
2589 | //===----------------------------------------------------------------------===// |
2590 | // PHINode Class |
2591 | //===----------------------------------------------------------------------===// |
2592 | |
2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
2594 | // node, that can not exist in nature, but can be synthesized in a computer |
2595 | // scientist's overactive imagination. |
2596 | // |
2597 | class PHINode : public Instruction { |
2598 | /// The number of operands actually allocated. NumOperands is |
2599 | /// the number actually in use. |
2600 | unsigned ReservedSpace; |
2601 | |
2602 | PHINode(const PHINode &PN); |
2603 | |
2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
2605 | const Twine &NameStr = "", |
2606 | Instruction *InsertBefore = nullptr) |
2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
2608 | ReservedSpace(NumReservedValues) { |
2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2610 | setName(NameStr); |
2611 | allocHungoffUses(ReservedSpace); |
2612 | } |
2613 | |
2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
2615 | BasicBlock *InsertAtEnd) |
2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
2617 | ReservedSpace(NumReservedValues) { |
2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2619 | setName(NameStr); |
2620 | allocHungoffUses(ReservedSpace); |
2621 | } |
2622 | |
2623 | protected: |
2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2625 | friend class Instruction; |
2626 | |
2627 | PHINode *cloneImpl() const; |
2628 | |
2629 | // allocHungoffUses - this is more complicated than the generic |
2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
2631 | // values and pointers to the incoming blocks, all in one allocation. |
2632 | void allocHungoffUses(unsigned N) { |
2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
2634 | } |
2635 | |
2636 | public: |
2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2640 | const Twine &NameStr = "", |
2641 | Instruction *InsertBefore = nullptr) { |
2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
2643 | } |
2644 | |
2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
2648 | } |
2649 | |
2650 | /// Provide fast operand accessors |
2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2652 | |
2653 | // Block iterator interface. This provides access to the list of incoming |
2654 | // basic blocks, which parallels the list of incoming values. |
2655 | |
2656 | using block_iterator = BasicBlock **; |
2657 | using const_block_iterator = BasicBlock * const *; |
2658 | |
2659 | block_iterator block_begin() { |
2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
2661 | } |
2662 | |
2663 | const_block_iterator block_begin() const { |
2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
2665 | } |
2666 | |
2667 | block_iterator block_end() { |
2668 | return block_begin() + getNumOperands(); |
2669 | } |
2670 | |
2671 | const_block_iterator block_end() const { |
2672 | return block_begin() + getNumOperands(); |
2673 | } |
2674 | |
2675 | iterator_range<block_iterator> blocks() { |
2676 | return make_range(block_begin(), block_end()); |
2677 | } |
2678 | |
2679 | iterator_range<const_block_iterator> blocks() const { |
2680 | return make_range(block_begin(), block_end()); |
2681 | } |
2682 | |
2683 | op_range incoming_values() { return operands(); } |
2684 | |
2685 | const_op_range incoming_values() const { return operands(); } |
2686 | |
2687 | /// Return the number of incoming edges |
2688 | /// |
2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
2690 | |
2691 | /// Return incoming value number x |
2692 | /// |
2693 | Value *getIncomingValue(unsigned i) const { |
2694 | return getOperand(i); |
2695 | } |
2696 | void setIncomingValue(unsigned i, Value *V) { |
2697 | assert(V && "PHI node got a null value!")((void)0); |
2698 | assert(getType() == V->getType() &&((void)0) |
2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
2700 | setOperand(i, V); |
2701 | } |
2702 | |
2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
2704 | return i; |
2705 | } |
2706 | |
2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
2708 | return i; |
2709 | } |
2710 | |
2711 | /// Return incoming basic block number @p i. |
2712 | /// |
2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
2714 | return block_begin()[i]; |
2715 | } |
2716 | |
2717 | /// Return incoming basic block corresponding |
2718 | /// to an operand of the PHI. |
2719 | /// |
2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
2723 | } |
2724 | |
2725 | /// Return incoming basic block corresponding |
2726 | /// to value use iterator. |
2727 | /// |
2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
2729 | return getIncomingBlock(I.getUse()); |
2730 | } |
2731 | |
2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
2734 | block_begin()[i] = BB; |
2735 | } |
2736 | |
2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2741 | if (getIncomingBlock(Op) == Old) |
2742 | setIncomingBlock(Op, New); |
2743 | } |
2744 | |
2745 | /// Add an incoming value to the end of the PHI list |
2746 | /// |
2747 | void addIncoming(Value *V, BasicBlock *BB) { |
2748 | if (getNumOperands() == ReservedSpace) |
2749 | growOperands(); // Get more space! |
2750 | // Initialize some new operands. |
2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
2752 | setIncomingValue(getNumOperands() - 1, V); |
2753 | setIncomingBlock(getNumOperands() - 1, BB); |
2754 | } |
2755 | |
2756 | /// Remove an incoming value. This is useful if a |
2757 | /// predecessor basic block is deleted. The value removed is returned. |
2758 | /// |
2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
2762 | /// node is when the block is dead, so this strategy is sound. |
2763 | /// |
2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
2765 | |
2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
2767 | int Idx = getBasicBlockIndex(BB); |
2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
2770 | } |
2771 | |
2772 | /// Return the first index of the specified basic |
2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
2774 | /// |
2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
2777 | if (block_begin()[i] == BB) |
2778 | return i; |
2779 | return -1; |
2780 | } |
2781 | |
2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
2783 | int Idx = getBasicBlockIndex(BB); |
2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
2785 | return getIncomingValue(Idx); |
2786 | } |
2787 | |
2788 | /// Set every incoming value(s) for block \p BB to \p V. |
2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
2791 | bool Found = false; |
2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2793 | if (getIncomingBlock(Op) == BB) { |
2794 | Found = true; |
2795 | setIncomingValue(Op, V); |
2796 | } |
2797 | (void)Found; |
2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
2799 | } |
2800 | |
2801 | /// If the specified PHI node always merges together the |
2802 | /// same value, return the value, otherwise return null. |
2803 | Value *hasConstantValue() const; |
2804 | |
2805 | /// Whether the specified PHI node always merges |
2806 | /// together the same value, assuming undefs are equal to a unique |
2807 | /// non-undef value. |
2808 | bool hasConstantOrUndefValue() const; |
2809 | |
2810 | /// If the PHI node is complete which means all of its parent's predecessors |
2811 | /// have incoming value in this PHI, return true, otherwise return false. |
2812 | bool isComplete() const { |
2813 | return llvm::all_of(predecessors(getParent()), |
2814 | [this](const BasicBlock *Pred) { |
2815 | return getBasicBlockIndex(Pred) >= 0; |
2816 | }); |
2817 | } |
2818 | |
2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
2820 | static bool classof(const Instruction *I) { |
2821 | return I->getOpcode() == Instruction::PHI; |
2822 | } |
2823 | static bool classof(const Value *V) { |
2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2825 | } |
2826 | |
2827 | private: |
2828 | void growOperands(); |
2829 | }; |
2830 | |
2831 | template <> |
2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
2833 | }; |
2834 | |
2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
2836 | |
2837 | //===----------------------------------------------------------------------===// |
2838 | // LandingPadInst Class |
2839 | //===----------------------------------------------------------------------===// |
2840 | |
2841 | //===--------------------------------------------------------------------------- |
2842 | /// The landingpad instruction holds all of the information |
2843 | /// necessary to generate correct exception handling. The landingpad instruction |
2844 | /// cannot be moved from the top of a landing pad block, which itself is |
2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
2847 | /// cleanup. |
2848 | /// |
2849 | class LandingPadInst : public Instruction { |
2850 | using CleanupField = BoolBitfieldElementT<0>; |
2851 | |
2852 | /// The number of operands actually allocated. NumOperands is |
2853 | /// the number actually in use. |
2854 | unsigned ReservedSpace; |
2855 | |
2856 | LandingPadInst(const LandingPadInst &LP); |
2857 | |
2858 | public: |
2859 | enum ClauseType { Catch, Filter }; |
2860 | |
2861 | private: |
2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2863 | const Twine &NameStr, Instruction *InsertBefore); |
2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2866 | |
2867 | // Allocate space for exactly zero operands. |
2868 | void *operator new(size_t S) { return User::operator new(S); } |
2869 | |
2870 | void growOperands(unsigned Size); |
2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
2872 | |
2873 | protected: |
2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2875 | friend class Instruction; |
2876 | |
2877 | LandingPadInst *cloneImpl() const; |
2878 | |
2879 | public: |
2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2881 | |
2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2885 | const Twine &NameStr = "", |
2886 | Instruction *InsertBefore = nullptr); |
2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2889 | |
2890 | /// Provide fast operand accessors |
2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2892 | |
2893 | /// Return 'true' if this landingpad instruction is a |
2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
2895 | /// doesn't catch the exception. |
2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
2897 | |
2898 | /// Indicate that this landingpad instruction is a cleanup. |
2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
2900 | |
2901 | /// Add a catch or filter clause to the landing pad. |
2902 | void addClause(Constant *ClauseVal); |
2903 | |
2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
2905 | /// determine what type of clause this is. |
2906 | Constant *getClause(unsigned Idx) const { |
2907 | return cast<Constant>(getOperandList()[Idx]); |
2908 | } |
2909 | |
2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
2911 | bool isCatch(unsigned Idx) const { |
2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
2913 | } |
2914 | |
2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
2916 | bool isFilter(unsigned Idx) const { |
2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
2918 | } |
2919 | |
2920 | /// Get the number of clauses for this landing pad. |
2921 | unsigned getNumClauses() const { return getNumOperands(); } |
2922 | |
2923 | /// Grow the size of the operand list to accommodate the new |
2924 | /// number of clauses. |
2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
2926 | |
2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2928 | static bool classof(const Instruction *I) { |
2929 | return I->getOpcode() == Instruction::LandingPad; |
2930 | } |
2931 | static bool classof(const Value *V) { |
2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2933 | } |
2934 | }; |
2935 | |
2936 | template <> |
2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
2938 | }; |
2939 | |
2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2941 | |
2942 | //===----------------------------------------------------------------------===// |
2943 | // ReturnInst Class |
2944 | //===----------------------------------------------------------------------===// |
2945 | |
2946 | //===--------------------------------------------------------------------------- |
2947 | /// Return a value (possibly void), from a function. Execution |
2948 | /// does not continue in this function any longer. |
2949 | /// |
2950 | class ReturnInst : public Instruction { |
2951 | ReturnInst(const ReturnInst &RI); |
2952 | |
2953 | private: |
2954 | // ReturnInst constructors: |
2955 | // ReturnInst() - 'ret void' instruction |
2956 | // ReturnInst( null) - 'ret void' instruction |
2957 | // ReturnInst(Value* X) - 'ret X' instruction |
2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
2962 | // |
2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
2964 | // if it was passed NULL. |
2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
2966 | Instruction *InsertBefore = nullptr); |
2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
2969 | |
2970 | protected: |
2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2972 | friend class Instruction; |
2973 | |
2974 | ReturnInst *cloneImpl() const; |
2975 | |
2976 | public: |
2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
2978 | Instruction *InsertBefore = nullptr) { |
2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
2980 | } |
2981 | |
2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
2983 | BasicBlock *InsertAtEnd) { |
2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
2985 | } |
2986 | |
2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
2988 | return new(0) ReturnInst(C, InsertAtEnd); |
2989 | } |
2990 | |
2991 | /// Provide fast operand accessors |
2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2993 | |
2994 | /// Convenience accessor. Returns null if there is no return value. |
2995 | Value *getReturnValue() const { |
2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
2997 | } |
2998 | |
2999 | unsigned getNumSuccessors() const { return 0; } |
3000 | |
3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3002 | static bool classof(const Instruction *I) { |
3003 | return (I->getOpcode() == Instruction::Ret); |
3004 | } |
3005 | static bool classof(const Value *V) { |
3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3007 | } |
3008 | |
3009 | private: |
3010 | BasicBlock *getSuccessor(unsigned idx) const { |
3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3012 | } |
3013 | |
3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3016 | } |
3017 | }; |
3018 | |
3019 | template <> |
3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
3021 | }; |
3022 | |
3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3024 | |
3025 | //===----------------------------------------------------------------------===// |
3026 | // BranchInst Class |
3027 | //===----------------------------------------------------------------------===// |
3028 | |
3029 | //===--------------------------------------------------------------------------- |
3030 | /// Conditional or Unconditional Branch instruction. |
3031 | /// |
3032 | class BranchInst : public Instruction { |
3033 | /// Ops list - Branches are strange. The operands are ordered: |
3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
3036 | /// accessed relative from op_end(). |
3037 | BranchInst(const BranchInst &BI); |
3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
3039 | // BranchInst(BB *B) - 'br B' |
3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3047 | Instruction *InsertBefore = nullptr); |
3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3050 | BasicBlock *InsertAtEnd); |
3051 | |
3052 | void AssertOK(); |
3053 | |
3054 | protected: |
3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3056 | friend class Instruction; |
3057 | |
3058 | BranchInst *cloneImpl() const; |
3059 | |
3060 | public: |
3061 | /// Iterator type that casts an operand to a basic block. |
3062 | /// |
3063 | /// This only makes sense because the successors are stored as adjacent |
3064 | /// operands for branch instructions. |
3065 | struct succ_op_iterator |
3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3067 | std::random_access_iterator_tag, BasicBlock *, |
3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3070 | |
3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3072 | BasicBlock *operator->() const { return operator*(); } |
3073 | }; |
3074 | |
3075 | /// The const version of `succ_op_iterator`. |
3076 | struct const_succ_op_iterator |
3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3078 | std::random_access_iterator_tag, |
3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3080 | const BasicBlock *> { |
3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3082 | : iterator_adaptor_base(I) {} |
3083 | |
3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3085 | const BasicBlock *operator->() const { return operator*(); } |
3086 | }; |
3087 | |
3088 | static BranchInst *Create(BasicBlock *IfTrue, |
3089 | Instruction *InsertBefore = nullptr) { |
3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
3091 | } |
3092 | |
3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
3096 | } |
3097 | |
3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
3100 | } |
3101 | |
3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
3105 | } |
3106 | |
3107 | /// Transparently provide more efficient getOperand methods. |
3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3109 | |
3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
3111 | bool isConditional() const { return getNumOperands() == 3; } |
3112 | |
3113 | Value *getCondition() const { |
3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
3115 | return Op<-3>(); |
3116 | } |
3117 | |
3118 | void setCondition(Value *V) { |
3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
3120 | Op<-3>() = V; |
3121 | } |
3122 | |
3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
3124 | |
3125 | BasicBlock *getSuccessor(unsigned i) const { |
3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
3128 | } |
3129 | |
3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3132 | *(&Op<-1>() - idx) = NewSucc; |
3133 | } |
3134 | |
3135 | /// Swap the successors of this branch instruction. |
3136 | /// |
3137 | /// Swaps the successors of the branch instruction. This also swaps any |
3138 | /// branch weight metadata associated with the instruction so that it |
3139 | /// continues to map correc |