File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp |
Warning: | line 481, column 18 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This pass implements a simple loop reroller. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "llvm/ADT/APInt.h" | ||||
14 | #include "llvm/ADT/BitVector.h" | ||||
15 | #include "llvm/ADT/DenseMap.h" | ||||
16 | #include "llvm/ADT/DenseSet.h" | ||||
17 | #include "llvm/ADT/MapVector.h" | ||||
18 | #include "llvm/ADT/STLExtras.h" | ||||
19 | #include "llvm/ADT/SmallPtrSet.h" | ||||
20 | #include "llvm/ADT/SmallVector.h" | ||||
21 | #include "llvm/ADT/Statistic.h" | ||||
22 | #include "llvm/Analysis/AliasAnalysis.h" | ||||
23 | #include "llvm/Analysis/AliasSetTracker.h" | ||||
24 | #include "llvm/Analysis/LoopInfo.h" | ||||
25 | #include "llvm/Analysis/LoopPass.h" | ||||
26 | #include "llvm/Analysis/ScalarEvolution.h" | ||||
27 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | ||||
28 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||
29 | #include "llvm/Analysis/ValueTracking.h" | ||||
30 | #include "llvm/IR/BasicBlock.h" | ||||
31 | #include "llvm/IR/Constants.h" | ||||
32 | #include "llvm/IR/DataLayout.h" | ||||
33 | #include "llvm/IR/DerivedTypes.h" | ||||
34 | #include "llvm/IR/Dominators.h" | ||||
35 | #include "llvm/IR/IRBuilder.h" | ||||
36 | #include "llvm/IR/InstrTypes.h" | ||||
37 | #include "llvm/IR/Instruction.h" | ||||
38 | #include "llvm/IR/Instructions.h" | ||||
39 | #include "llvm/IR/IntrinsicInst.h" | ||||
40 | #include "llvm/IR/Intrinsics.h" | ||||
41 | #include "llvm/IR/Module.h" | ||||
42 | #include "llvm/IR/Type.h" | ||||
43 | #include "llvm/IR/Use.h" | ||||
44 | #include "llvm/IR/User.h" | ||||
45 | #include "llvm/IR/Value.h" | ||||
46 | #include "llvm/InitializePasses.h" | ||||
47 | #include "llvm/Pass.h" | ||||
48 | #include "llvm/Support/Casting.h" | ||||
49 | #include "llvm/Support/CommandLine.h" | ||||
50 | #include "llvm/Support/Debug.h" | ||||
51 | #include "llvm/Support/raw_ostream.h" | ||||
52 | #include "llvm/Transforms/Scalar.h" | ||||
53 | #include "llvm/Transforms/Scalar/LoopReroll.h" | ||||
54 | #include "llvm/Transforms/Utils.h" | ||||
55 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||
56 | #include "llvm/Transforms/Utils/Local.h" | ||||
57 | #include "llvm/Transforms/Utils/LoopUtils.h" | ||||
58 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | ||||
59 | #include <cassert> | ||||
60 | #include <cstddef> | ||||
61 | #include <cstdint> | ||||
62 | #include <cstdlib> | ||||
63 | #include <iterator> | ||||
64 | #include <map> | ||||
65 | #include <utility> | ||||
66 | |||||
67 | using namespace llvm; | ||||
68 | |||||
69 | #define DEBUG_TYPE"loop-reroll" "loop-reroll" | ||||
70 | |||||
71 | STATISTIC(NumRerolledLoops, "Number of rerolled loops")static llvm::Statistic NumRerolledLoops = {"loop-reroll", "NumRerolledLoops" , "Number of rerolled loops"}; | ||||
72 | |||||
73 | static cl::opt<unsigned> | ||||
74 | NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), | ||||
75 | cl::Hidden, | ||||
76 | cl::desc("The maximum number of failures to tolerate" | ||||
77 | " during fuzzy matching. (default: 400)")); | ||||
78 | |||||
79 | // This loop re-rolling transformation aims to transform loops like this: | ||||
80 | // | ||||
81 | // int foo(int a); | ||||
82 | // void bar(int *x) { | ||||
83 | // for (int i = 0; i < 500; i += 3) { | ||||
84 | // foo(i); | ||||
85 | // foo(i+1); | ||||
86 | // foo(i+2); | ||||
87 | // } | ||||
88 | // } | ||||
89 | // | ||||
90 | // into a loop like this: | ||||
91 | // | ||||
92 | // void bar(int *x) { | ||||
93 | // for (int i = 0; i < 500; ++i) | ||||
94 | // foo(i); | ||||
95 | // } | ||||
96 | // | ||||
97 | // It does this by looking for loops that, besides the latch code, are composed | ||||
98 | // of isomorphic DAGs of instructions, with each DAG rooted at some increment | ||||
99 | // to the induction variable, and where each DAG is isomorphic to the DAG | ||||
100 | // rooted at the induction variable (excepting the sub-DAGs which root the | ||||
101 | // other induction-variable increments). In other words, we're looking for loop | ||||
102 | // bodies of the form: | ||||
103 | // | ||||
104 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] | ||||
105 | // f(%iv) | ||||
106 | // %iv.1 = add %iv, 1 <-- a root increment | ||||
107 | // f(%iv.1) | ||||
108 | // %iv.2 = add %iv, 2 <-- a root increment | ||||
109 | // f(%iv.2) | ||||
110 | // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment | ||||
111 | // f(%iv.scale_m_1) | ||||
112 | // ... | ||||
113 | // %iv.next = add %iv, scale | ||||
114 | // %cmp = icmp(%iv, ...) | ||||
115 | // br %cmp, header, exit | ||||
116 | // | ||||
117 | // where each f(i) is a set of instructions that, collectively, are a function | ||||
118 | // only of i (and other loop-invariant values). | ||||
119 | // | ||||
120 | // As a special case, we can also reroll loops like this: | ||||
121 | // | ||||
122 | // int foo(int); | ||||
123 | // void bar(int *x) { | ||||
124 | // for (int i = 0; i < 500; ++i) { | ||||
125 | // x[3*i] = foo(0); | ||||
126 | // x[3*i+1] = foo(0); | ||||
127 | // x[3*i+2] = foo(0); | ||||
128 | // } | ||||
129 | // } | ||||
130 | // | ||||
131 | // into this: | ||||
132 | // | ||||
133 | // void bar(int *x) { | ||||
134 | // for (int i = 0; i < 1500; ++i) | ||||
135 | // x[i] = foo(0); | ||||
136 | // } | ||||
137 | // | ||||
138 | // in which case, we're looking for inputs like this: | ||||
139 | // | ||||
140 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] | ||||
141 | // %scaled.iv = mul %iv, scale | ||||
142 | // f(%scaled.iv) | ||||
143 | // %scaled.iv.1 = add %scaled.iv, 1 | ||||
144 | // f(%scaled.iv.1) | ||||
145 | // %scaled.iv.2 = add %scaled.iv, 2 | ||||
146 | // f(%scaled.iv.2) | ||||
147 | // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 | ||||
148 | // f(%scaled.iv.scale_m_1) | ||||
149 | // ... | ||||
150 | // %iv.next = add %iv, 1 | ||||
151 | // %cmp = icmp(%iv, ...) | ||||
152 | // br %cmp, header, exit | ||||
153 | |||||
154 | namespace { | ||||
155 | |||||
156 | enum IterationLimits { | ||||
157 | /// The maximum number of iterations that we'll try and reroll. | ||||
158 | IL_MaxRerollIterations = 32, | ||||
159 | /// The bitvector index used by loop induction variables and other | ||||
160 | /// instructions that belong to all iterations. | ||||
161 | IL_All, | ||||
162 | IL_End | ||||
163 | }; | ||||
164 | |||||
165 | class LoopRerollLegacyPass : public LoopPass { | ||||
166 | public: | ||||
167 | static char ID; // Pass ID, replacement for typeid | ||||
168 | |||||
169 | LoopRerollLegacyPass() : LoopPass(ID) { | ||||
170 | initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||
171 | } | ||||
172 | |||||
173 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; | ||||
174 | |||||
175 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
176 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||
177 | getLoopAnalysisUsage(AU); | ||||
178 | } | ||||
179 | }; | ||||
180 | |||||
181 | class LoopReroll { | ||||
182 | public: | ||||
183 | LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE, | ||||
184 | TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA) | ||||
185 | : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT), | ||||
186 | PreserveLCSSA(PreserveLCSSA) {} | ||||
187 | bool runOnLoop(Loop *L); | ||||
188 | |||||
189 | protected: | ||||
190 | AliasAnalysis *AA; | ||||
191 | LoopInfo *LI; | ||||
192 | ScalarEvolution *SE; | ||||
193 | TargetLibraryInfo *TLI; | ||||
194 | DominatorTree *DT; | ||||
195 | bool PreserveLCSSA; | ||||
196 | |||||
197 | using SmallInstructionVector = SmallVector<Instruction *, 16>; | ||||
198 | using SmallInstructionSet = SmallPtrSet<Instruction *, 16>; | ||||
199 | |||||
200 | // Map between induction variable and its increment | ||||
201 | DenseMap<Instruction *, int64_t> IVToIncMap; | ||||
202 | |||||
203 | // For loop with multiple induction variable, remember the one used only to | ||||
204 | // control the loop. | ||||
205 | Instruction *LoopControlIV; | ||||
206 | |||||
207 | // A chain of isomorphic instructions, identified by a single-use PHI | ||||
208 | // representing a reduction. Only the last value may be used outside the | ||||
209 | // loop. | ||||
210 | struct SimpleLoopReduction { | ||||
211 | SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { | ||||
212 | assert(isa<PHINode>(P) && "First reduction instruction must be a PHI")((void)0); | ||||
213 | add(L); | ||||
214 | } | ||||
215 | |||||
216 | bool valid() const { | ||||
217 | return Valid; | ||||
218 | } | ||||
219 | |||||
220 | Instruction *getPHI() const { | ||||
221 | assert(Valid && "Using invalid reduction")((void)0); | ||||
222 | return Instructions.front(); | ||||
223 | } | ||||
224 | |||||
225 | Instruction *getReducedValue() const { | ||||
226 | assert(Valid && "Using invalid reduction")((void)0); | ||||
227 | return Instructions.back(); | ||||
228 | } | ||||
229 | |||||
230 | Instruction *get(size_t i) const { | ||||
231 | assert(Valid && "Using invalid reduction")((void)0); | ||||
232 | return Instructions[i+1]; | ||||
233 | } | ||||
234 | |||||
235 | Instruction *operator [] (size_t i) const { return get(i); } | ||||
236 | |||||
237 | // The size, ignoring the initial PHI. | ||||
238 | size_t size() const { | ||||
239 | assert(Valid && "Using invalid reduction")((void)0); | ||||
240 | return Instructions.size()-1; | ||||
241 | } | ||||
242 | |||||
243 | using iterator = SmallInstructionVector::iterator; | ||||
244 | using const_iterator = SmallInstructionVector::const_iterator; | ||||
245 | |||||
246 | iterator begin() { | ||||
247 | assert(Valid && "Using invalid reduction")((void)0); | ||||
248 | return std::next(Instructions.begin()); | ||||
249 | } | ||||
250 | |||||
251 | const_iterator begin() const { | ||||
252 | assert(Valid && "Using invalid reduction")((void)0); | ||||
253 | return std::next(Instructions.begin()); | ||||
254 | } | ||||
255 | |||||
256 | iterator end() { return Instructions.end(); } | ||||
257 | const_iterator end() const { return Instructions.end(); } | ||||
258 | |||||
259 | protected: | ||||
260 | bool Valid = false; | ||||
261 | SmallInstructionVector Instructions; | ||||
262 | |||||
263 | void add(Loop *L); | ||||
264 | }; | ||||
265 | |||||
266 | // The set of all reductions, and state tracking of possible reductions | ||||
267 | // during loop instruction processing. | ||||
268 | struct ReductionTracker { | ||||
269 | using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; | ||||
270 | |||||
271 | // Add a new possible reduction. | ||||
272 | void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } | ||||
273 | |||||
274 | // Setup to track possible reductions corresponding to the provided | ||||
275 | // rerolling scale. Only reductions with a number of non-PHI instructions | ||||
276 | // that is divisible by the scale are considered. Three instructions sets | ||||
277 | // are filled in: | ||||
278 | // - A set of all possible instructions in eligible reductions. | ||||
279 | // - A set of all PHIs in eligible reductions | ||||
280 | // - A set of all reduced values (last instructions) in eligible | ||||
281 | // reductions. | ||||
282 | void restrictToScale(uint64_t Scale, | ||||
283 | SmallInstructionSet &PossibleRedSet, | ||||
284 | SmallInstructionSet &PossibleRedPHISet, | ||||
285 | SmallInstructionSet &PossibleRedLastSet) { | ||||
286 | PossibleRedIdx.clear(); | ||||
287 | PossibleRedIter.clear(); | ||||
288 | Reds.clear(); | ||||
289 | |||||
290 | for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) | ||||
291 | if (PossibleReds[i].size() % Scale == 0) { | ||||
292 | PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); | ||||
293 | PossibleRedPHISet.insert(PossibleReds[i].getPHI()); | ||||
294 | |||||
295 | PossibleRedSet.insert(PossibleReds[i].getPHI()); | ||||
296 | PossibleRedIdx[PossibleReds[i].getPHI()] = i; | ||||
297 | for (Instruction *J : PossibleReds[i]) { | ||||
298 | PossibleRedSet.insert(J); | ||||
299 | PossibleRedIdx[J] = i; | ||||
300 | } | ||||
301 | } | ||||
302 | } | ||||
303 | |||||
304 | // The functions below are used while processing the loop instructions. | ||||
305 | |||||
306 | // Are the two instructions both from reductions, and furthermore, from | ||||
307 | // the same reduction? | ||||
308 | bool isPairInSame(Instruction *J1, Instruction *J2) { | ||||
309 | DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); | ||||
310 | if (J1I != PossibleRedIdx.end()) { | ||||
311 | DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); | ||||
312 | if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) | ||||
313 | return true; | ||||
314 | } | ||||
315 | |||||
316 | return false; | ||||
317 | } | ||||
318 | |||||
319 | // The two provided instructions, the first from the base iteration, and | ||||
320 | // the second from iteration i, form a matched pair. If these are part of | ||||
321 | // a reduction, record that fact. | ||||
322 | void recordPair(Instruction *J1, Instruction *J2, unsigned i) { | ||||
323 | if (PossibleRedIdx.count(J1)) { | ||||
324 | assert(PossibleRedIdx.count(J2) &&((void)0) | ||||
325 | "Recording reduction vs. non-reduction instruction?")((void)0); | ||||
326 | |||||
327 | PossibleRedIter[J1] = 0; | ||||
328 | PossibleRedIter[J2] = i; | ||||
329 | |||||
330 | int Idx = PossibleRedIdx[J1]; | ||||
331 | assert(Idx == PossibleRedIdx[J2] &&((void)0) | ||||
332 | "Recording pair from different reductions?")((void)0); | ||||
333 | Reds.insert(Idx); | ||||
334 | } | ||||
335 | } | ||||
336 | |||||
337 | // The functions below can be called after we've finished processing all | ||||
338 | // instructions in the loop, and we know which reductions were selected. | ||||
339 | |||||
340 | bool validateSelected(); | ||||
341 | void replaceSelected(); | ||||
342 | |||||
343 | protected: | ||||
344 | // The vector of all possible reductions (for any scale). | ||||
345 | SmallReductionVector PossibleReds; | ||||
346 | |||||
347 | DenseMap<Instruction *, int> PossibleRedIdx; | ||||
348 | DenseMap<Instruction *, int> PossibleRedIter; | ||||
349 | DenseSet<int> Reds; | ||||
350 | }; | ||||
351 | |||||
352 | // A DAGRootSet models an induction variable being used in a rerollable | ||||
353 | // loop. For example, | ||||
354 | // | ||||
355 | // x[i*3+0] = y1 | ||||
356 | // x[i*3+1] = y2 | ||||
357 | // x[i*3+2] = y3 | ||||
358 | // | ||||
359 | // Base instruction -> i*3 | ||||
360 | // +---+----+ | ||||
361 | // / | \ | ||||
362 | // ST[y1] +1 +2 <-- Roots | ||||
363 | // | | | ||||
364 | // ST[y2] ST[y3] | ||||
365 | // | ||||
366 | // There may be multiple DAGRoots, for example: | ||||
367 | // | ||||
368 | // x[i*2+0] = ... (1) | ||||
369 | // x[i*2+1] = ... (1) | ||||
370 | // x[i*2+4] = ... (2) | ||||
371 | // x[i*2+5] = ... (2) | ||||
372 | // x[(i+1234)*2+5678] = ... (3) | ||||
373 | // x[(i+1234)*2+5679] = ... (3) | ||||
374 | // | ||||
375 | // The loop will be rerolled by adding a new loop induction variable, | ||||
376 | // one for the Base instruction in each DAGRootSet. | ||||
377 | // | ||||
378 | struct DAGRootSet { | ||||
379 | Instruction *BaseInst; | ||||
380 | SmallInstructionVector Roots; | ||||
381 | |||||
382 | // The instructions between IV and BaseInst (but not including BaseInst). | ||||
383 | SmallInstructionSet SubsumedInsts; | ||||
384 | }; | ||||
385 | |||||
386 | // The set of all DAG roots, and state tracking of all roots | ||||
387 | // for a particular induction variable. | ||||
388 | struct DAGRootTracker { | ||||
389 | DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, | ||||
390 | ScalarEvolution *SE, AliasAnalysis *AA, | ||||
391 | TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, | ||||
392 | bool PreserveLCSSA, | ||||
393 | DenseMap<Instruction *, int64_t> &IncrMap, | ||||
394 | Instruction *LoopCtrlIV) | ||||
395 | : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), | ||||
396 | PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), | ||||
397 | LoopControlIV(LoopCtrlIV) {} | ||||
398 | |||||
399 | /// Stage 1: Find all the DAG roots for the induction variable. | ||||
400 | bool findRoots(); | ||||
401 | |||||
402 | /// Stage 2: Validate if the found roots are valid. | ||||
403 | bool validate(ReductionTracker &Reductions); | ||||
404 | |||||
405 | /// Stage 3: Assuming validate() returned true, perform the | ||||
406 | /// replacement. | ||||
407 | /// @param BackedgeTakenCount The backedge-taken count of L. | ||||
408 | void replace(const SCEV *BackedgeTakenCount); | ||||
409 | |||||
410 | protected: | ||||
411 | using UsesTy = MapVector<Instruction *, BitVector>; | ||||
412 | |||||
413 | void findRootsRecursive(Instruction *IVU, | ||||
414 | SmallInstructionSet SubsumedInsts); | ||||
415 | bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); | ||||
416 | bool collectPossibleRoots(Instruction *Base, | ||||
417 | std::map<int64_t,Instruction*> &Roots); | ||||
418 | bool validateRootSet(DAGRootSet &DRS); | ||||
419 | |||||
420 | bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); | ||||
421 | void collectInLoopUserSet(const SmallInstructionVector &Roots, | ||||
422 | const SmallInstructionSet &Exclude, | ||||
423 | const SmallInstructionSet &Final, | ||||
424 | DenseSet<Instruction *> &Users); | ||||
425 | void collectInLoopUserSet(Instruction *Root, | ||||
426 | const SmallInstructionSet &Exclude, | ||||
427 | const SmallInstructionSet &Final, | ||||
428 | DenseSet<Instruction *> &Users); | ||||
429 | |||||
430 | UsesTy::iterator nextInstr(int Val, UsesTy &In, | ||||
431 | const SmallInstructionSet &Exclude, | ||||
432 | UsesTy::iterator *StartI=nullptr); | ||||
433 | bool isBaseInst(Instruction *I); | ||||
434 | bool isRootInst(Instruction *I); | ||||
435 | bool instrDependsOn(Instruction *I, | ||||
436 | UsesTy::iterator Start, | ||||
437 | UsesTy::iterator End); | ||||
438 | void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr); | ||||
439 | |||||
440 | LoopReroll *Parent; | ||||
441 | |||||
442 | // Members of Parent, replicated here for brevity. | ||||
443 | Loop *L; | ||||
444 | ScalarEvolution *SE; | ||||
445 | AliasAnalysis *AA; | ||||
446 | TargetLibraryInfo *TLI; | ||||
447 | DominatorTree *DT; | ||||
448 | LoopInfo *LI; | ||||
449 | bool PreserveLCSSA; | ||||
450 | |||||
451 | // The loop induction variable. | ||||
452 | Instruction *IV; | ||||
453 | |||||
454 | // Loop step amount. | ||||
455 | int64_t Inc; | ||||
456 | |||||
457 | // Loop reroll count; if Inc == 1, this records the scaling applied | ||||
458 | // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; | ||||
459 | // If Inc is not 1, Scale = Inc. | ||||
460 | uint64_t Scale; | ||||
461 | |||||
462 | // The roots themselves. | ||||
463 | SmallVector<DAGRootSet,16> RootSets; | ||||
464 | |||||
465 | // All increment instructions for IV. | ||||
466 | SmallInstructionVector LoopIncs; | ||||
467 | |||||
468 | // Map of all instructions in the loop (in order) to the iterations | ||||
469 | // they are used in (or specially, IL_All for instructions | ||||
470 | // used in the loop increment mechanism). | ||||
471 | UsesTy Uses; | ||||
472 | |||||
473 | // Map between induction variable and its increment | ||||
474 | DenseMap<Instruction *, int64_t> &IVToIncMap; | ||||
475 | |||||
476 | Instruction *LoopControlIV; | ||||
477 | }; | ||||
478 | |||||
479 | // Check if it is a compare-like instruction whose user is a branch | ||||
480 | bool isCompareUsedByBranch(Instruction *I) { | ||||
481 | auto *TI = I->getParent()->getTerminator(); | ||||
| |||||
482 | if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) | ||||
483 | return false; | ||||
484 | return I->hasOneUse() && TI->getOperand(0) == I; | ||||
485 | }; | ||||
486 | |||||
487 | bool isLoopControlIV(Loop *L, Instruction *IV); | ||||
488 | void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); | ||||
489 | void collectPossibleReductions(Loop *L, | ||||
490 | ReductionTracker &Reductions); | ||||
491 | bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, | ||||
492 | const SCEV *BackedgeTakenCount, ReductionTracker &Reductions); | ||||
493 | }; | ||||
494 | |||||
495 | } // end anonymous namespace | ||||
496 | |||||
497 | char LoopRerollLegacyPass::ID = 0; | ||||
498 | |||||
499 | INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",static void *initializeLoopRerollLegacyPassPassOnce(PassRegistry &Registry) { | ||||
500 | false, false)static void *initializeLoopRerollLegacyPassPassOnce(PassRegistry &Registry) { | ||||
501 | INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry); | ||||
502 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||
503 | INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,PassInfo *PI = new PassInfo( "Reroll loops", "loop-reroll", & LoopRerollLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LoopRerollLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLoopRerollLegacyPassPassFlag ; void llvm::initializeLoopRerollLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeLoopRerollLegacyPassPassFlag , initializeLoopRerollLegacyPassPassOnce, std::ref(Registry)) ; } | ||||
504 | false)PassInfo *PI = new PassInfo( "Reroll loops", "loop-reroll", & LoopRerollLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LoopRerollLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLoopRerollLegacyPassPassFlag ; void llvm::initializeLoopRerollLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeLoopRerollLegacyPassPassFlag , initializeLoopRerollLegacyPassPassOnce, std::ref(Registry)) ; } | ||||
505 | |||||
506 | Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; } | ||||
507 | |||||
508 | // Returns true if the provided instruction is used outside the given loop. | ||||
509 | // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in | ||||
510 | // non-loop blocks to be outside the loop. | ||||
511 | static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { | ||||
512 | for (User *U : I->users()) { | ||||
513 | if (!L->contains(cast<Instruction>(U))) | ||||
514 | return true; | ||||
515 | } | ||||
516 | return false; | ||||
517 | } | ||||
518 | |||||
519 | // Check if an IV is only used to control the loop. There are two cases: | ||||
520 | // 1. It only has one use which is loop increment, and the increment is only | ||||
521 | // used by comparison and the PHI (could has sext with nsw in between), and the | ||||
522 | // comparison is only used by branch. | ||||
523 | // 2. It is used by loop increment and the comparison, the loop increment is | ||||
524 | // only used by the PHI, and the comparison is used only by the branch. | ||||
525 | bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { | ||||
526 | unsigned IVUses = IV->getNumUses(); | ||||
527 | if (IVUses != 2 && IVUses != 1) | ||||
528 | return false; | ||||
529 | |||||
530 | for (auto *User : IV->users()) { | ||||
531 | int32_t IncOrCmpUses = User->getNumUses(); | ||||
532 | bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); | ||||
533 | |||||
534 | // User can only have one or two uses. | ||||
535 | if (IncOrCmpUses != 2 && IncOrCmpUses != 1) | ||||
536 | return false; | ||||
537 | |||||
538 | // Case 1 | ||||
539 | if (IVUses
| ||||
540 | // The only user must be the loop increment. | ||||
541 | // The loop increment must have two uses. | ||||
542 | if (IsCompInst || IncOrCmpUses != 2) | ||||
543 | return false; | ||||
544 | } | ||||
545 | |||||
546 | // Case 2 | ||||
547 | if (IVUses
| ||||
548 | return false; | ||||
549 | |||||
550 | // The users of the IV must be a binary operation or a comparison | ||||
551 | if (auto *BO
| ||||
552 | if (BO->getOpcode() == Instruction::Add) { | ||||
553 | // Loop Increment | ||||
554 | // User of Loop Increment should be either PHI or CMP | ||||
555 | for (auto *UU : User->users()) { | ||||
556 | if (PHINode *PN
| ||||
557 | if (PN != IV) | ||||
558 | return false; | ||||
559 | } | ||||
560 | // Must be a CMP or an ext (of a value with nsw) then CMP | ||||
561 | else { | ||||
562 | Instruction *UUser = dyn_cast<Instruction>(UU); | ||||
563 | // Skip SExt if we are extending an nsw value | ||||
564 | // TODO: Allow ZExt too | ||||
565 | if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && | ||||
566 | isa<SExtInst>(UUser)) | ||||
567 | UUser = dyn_cast<Instruction>(*(UUser->user_begin())); | ||||
568 | if (!isCompareUsedByBranch(UUser)) | ||||
569 | return false; | ||||
570 | } | ||||
571 | } | ||||
572 | } else | ||||
573 | return false; | ||||
574 | // Compare : can only have one use, and must be branch | ||||
575 | } else if (!IsCompInst) | ||||
576 | return false; | ||||
577 | } | ||||
578 | return true; | ||||
579 | } | ||||
580 | |||||
581 | // Collect the list of loop induction variables with respect to which it might | ||||
582 | // be possible to reroll the loop. | ||||
583 | void LoopReroll::collectPossibleIVs(Loop *L, | ||||
584 | SmallInstructionVector &PossibleIVs) { | ||||
585 | BasicBlock *Header = L->getHeader(); | ||||
586 | for (BasicBlock::iterator I = Header->begin(), | ||||
587 | IE = Header->getFirstInsertionPt(); I != IE; ++I) { | ||||
588 | if (!isa<PHINode>(I)) | ||||
589 | continue; | ||||
590 | if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) | ||||
591 | continue; | ||||
592 | |||||
593 | if (const SCEVAddRecExpr *PHISCEV
| ||||
594 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { | ||||
595 | if (PHISCEV->getLoop() != L) | ||||
596 | continue; | ||||
597 | if (!PHISCEV->isAffine()) | ||||
598 | continue; | ||||
599 | auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); | ||||
600 | if (IncSCEV
| ||||
601 | IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); | ||||
602 | LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEVdo { } while (false) | ||||
603 | << "\n")do { } while (false); | ||||
604 | |||||
605 | if (isLoopControlIV(L, &*I)) { | ||||
606 | assert(!LoopControlIV && "Found two loop control only IV")((void)0); | ||||
607 | LoopControlIV = &(*I); | ||||
608 | LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *Ido { } while (false) | ||||
609 | << " = " << *PHISCEV << "\n")do { } while (false); | ||||
610 | } else | ||||
611 | PossibleIVs.push_back(&*I); | ||||
612 | } | ||||
613 | } | ||||
614 | } | ||||
615 | } | ||||
616 | |||||
617 | // Add the remainder of the reduction-variable chain to the instruction vector | ||||
618 | // (the initial PHINode has already been added). If successful, the object is | ||||
619 | // marked as valid. | ||||
620 | void LoopReroll::SimpleLoopReduction::add(Loop *L) { | ||||
621 | assert(!Valid && "Cannot add to an already-valid chain")((void)0); | ||||
622 | |||||
623 | // The reduction variable must be a chain of single-use instructions | ||||
624 | // (including the PHI), except for the last value (which is used by the PHI | ||||
625 | // and also outside the loop). | ||||
626 | Instruction *C = Instructions.front(); | ||||
627 | if (C->user_empty()) | ||||
628 | return; | ||||
629 | |||||
630 | do { | ||||
631 | C = cast<Instruction>(*C->user_begin()); | ||||
632 | if (C->hasOneUse()) { | ||||
633 | if (!C->isBinaryOp()) | ||||
634 | return; | ||||
635 | |||||
636 | if (!(isa<PHINode>(Instructions.back()) || | ||||
637 | C->isSameOperationAs(Instructions.back()))) | ||||
638 | return; | ||||
639 | |||||
640 | Instructions.push_back(C); | ||||
641 | } | ||||
642 | } while (C->hasOneUse()); | ||||
643 | |||||
644 | if (Instructions.size() < 2 || | ||||
645 | !C->isSameOperationAs(Instructions.back()) || | ||||
646 | C->use_empty()) | ||||
647 | return; | ||||
648 | |||||
649 | // C is now the (potential) last instruction in the reduction chain. | ||||
650 | for (User *U : C->users()) { | ||||
651 | // The only in-loop user can be the initial PHI. | ||||
652 | if (L->contains(cast<Instruction>(U))) | ||||
653 | if (cast<Instruction>(U) != Instructions.front()) | ||||
654 | return; | ||||
655 | } | ||||
656 | |||||
657 | Instructions.push_back(C); | ||||
658 | Valid = true; | ||||
659 | } | ||||
660 | |||||
661 | // Collect the vector of possible reduction variables. | ||||
662 | void LoopReroll::collectPossibleReductions(Loop *L, | ||||
663 | ReductionTracker &Reductions) { | ||||
664 | BasicBlock *Header = L->getHeader(); | ||||
665 | for (BasicBlock::iterator I = Header->begin(), | ||||
666 | IE = Header->getFirstInsertionPt(); I != IE; ++I) { | ||||
667 | if (!isa<PHINode>(I)) | ||||
668 | continue; | ||||
669 | if (!I->getType()->isSingleValueType()) | ||||
670 | continue; | ||||
671 | |||||
672 | SimpleLoopReduction SLR(&*I, L); | ||||
673 | if (!SLR.valid()) | ||||
674 | continue; | ||||
675 | |||||
676 | LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "do { } while (false) | ||||
677 | << SLR.size() << " chained instructions)\n")do { } while (false); | ||||
678 | Reductions.addSLR(SLR); | ||||
679 | } | ||||
680 | } | ||||
681 | |||||
682 | // Collect the set of all users of the provided root instruction. This set of | ||||
683 | // users contains not only the direct users of the root instruction, but also | ||||
684 | // all users of those users, and so on. There are two exceptions: | ||||
685 | // | ||||
686 | // 1. Instructions in the set of excluded instructions are never added to the | ||||
687 | // use set (even if they are users). This is used, for example, to exclude | ||||
688 | // including root increments in the use set of the primary IV. | ||||
689 | // | ||||
690 | // 2. Instructions in the set of final instructions are added to the use set | ||||
691 | // if they are users, but their users are not added. This is used, for | ||||
692 | // example, to prevent a reduction update from forcing all later reduction | ||||
693 | // updates into the use set. | ||||
694 | void LoopReroll::DAGRootTracker::collectInLoopUserSet( | ||||
695 | Instruction *Root, const SmallInstructionSet &Exclude, | ||||
696 | const SmallInstructionSet &Final, | ||||
697 | DenseSet<Instruction *> &Users) { | ||||
698 | SmallInstructionVector Queue(1, Root); | ||||
699 | while (!Queue.empty()) { | ||||
700 | Instruction *I = Queue.pop_back_val(); | ||||
701 | if (!Users.insert(I).second) | ||||
702 | continue; | ||||
703 | |||||
704 | if (!Final.count(I)) | ||||
705 | for (Use &U : I->uses()) { | ||||
706 | Instruction *User = cast<Instruction>(U.getUser()); | ||||
707 | if (PHINode *PN = dyn_cast<PHINode>(User)) { | ||||
708 | // Ignore "wrap-around" uses to PHIs of this loop's header. | ||||
709 | if (PN->getIncomingBlock(U) == L->getHeader()) | ||||
710 | continue; | ||||
711 | } | ||||
712 | |||||
713 | if (L->contains(User) && !Exclude.count(User)) { | ||||
714 | Queue.push_back(User); | ||||
715 | } | ||||
716 | } | ||||
717 | |||||
718 | // We also want to collect single-user "feeder" values. | ||||
719 | for (Use &U : I->operands()) { | ||||
720 | if (Instruction *Op = dyn_cast<Instruction>(U)) | ||||
721 | if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && | ||||
722 | !Final.count(Op)) | ||||
723 | Queue.push_back(Op); | ||||
724 | } | ||||
725 | } | ||||
726 | } | ||||
727 | |||||
728 | // Collect all of the users of all of the provided root instructions (combined | ||||
729 | // into a single set). | ||||
730 | void LoopReroll::DAGRootTracker::collectInLoopUserSet( | ||||
731 | const SmallInstructionVector &Roots, | ||||
732 | const SmallInstructionSet &Exclude, | ||||
733 | const SmallInstructionSet &Final, | ||||
734 | DenseSet<Instruction *> &Users) { | ||||
735 | for (Instruction *Root : Roots) | ||||
736 | collectInLoopUserSet(Root, Exclude, Final, Users); | ||||
737 | } | ||||
738 | |||||
739 | static bool isUnorderedLoadStore(Instruction *I) { | ||||
740 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | ||||
741 | return LI->isUnordered(); | ||||
742 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) | ||||
743 | return SI->isUnordered(); | ||||
744 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) | ||||
745 | return !MI->isVolatile(); | ||||
746 | return false; | ||||
747 | } | ||||
748 | |||||
749 | /// Return true if IVU is a "simple" arithmetic operation. | ||||
750 | /// This is used for narrowing the search space for DAGRoots; only arithmetic | ||||
751 | /// and GEPs can be part of a DAGRoot. | ||||
752 | static bool isSimpleArithmeticOp(User *IVU) { | ||||
753 | if (Instruction *I = dyn_cast<Instruction>(IVU)) { | ||||
754 | switch (I->getOpcode()) { | ||||
755 | default: return false; | ||||
756 | case Instruction::Add: | ||||
757 | case Instruction::Sub: | ||||
758 | case Instruction::Mul: | ||||
759 | case Instruction::Shl: | ||||
760 | case Instruction::AShr: | ||||
761 | case Instruction::LShr: | ||||
762 | case Instruction::GetElementPtr: | ||||
763 | case Instruction::Trunc: | ||||
764 | case Instruction::ZExt: | ||||
765 | case Instruction::SExt: | ||||
766 | return true; | ||||
767 | } | ||||
768 | } | ||||
769 | return false; | ||||
770 | } | ||||
771 | |||||
772 | static bool isLoopIncrement(User *U, Instruction *IV) { | ||||
773 | BinaryOperator *BO = dyn_cast<BinaryOperator>(U); | ||||
774 | |||||
775 | if ((BO && BO->getOpcode() != Instruction::Add) || | ||||
776 | (!BO && !isa<GetElementPtrInst>(U))) | ||||
777 | return false; | ||||
778 | |||||
779 | for (auto *UU : U->users()) { | ||||
780 | PHINode *PN = dyn_cast<PHINode>(UU); | ||||
781 | if (PN && PN == IV) | ||||
782 | return true; | ||||
783 | } | ||||
784 | return false; | ||||
785 | } | ||||
786 | |||||
787 | bool LoopReroll::DAGRootTracker:: | ||||
788 | collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { | ||||
789 | SmallInstructionVector BaseUsers; | ||||
790 | |||||
791 | for (auto *I : Base->users()) { | ||||
792 | ConstantInt *CI = nullptr; | ||||
793 | |||||
794 | if (isLoopIncrement(I, IV)) { | ||||
795 | LoopIncs.push_back(cast<Instruction>(I)); | ||||
796 | continue; | ||||
797 | } | ||||
798 | |||||
799 | // The root nodes must be either GEPs, ORs or ADDs. | ||||
800 | if (auto *BO = dyn_cast<BinaryOperator>(I)) { | ||||
801 | if (BO->getOpcode() == Instruction::Add || | ||||
802 | BO->getOpcode() == Instruction::Or) | ||||
803 | CI = dyn_cast<ConstantInt>(BO->getOperand(1)); | ||||
804 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { | ||||
805 | Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); | ||||
806 | CI = dyn_cast<ConstantInt>(LastOperand); | ||||
807 | } | ||||
808 | |||||
809 | if (!CI) { | ||||
810 | if (Instruction *II = dyn_cast<Instruction>(I)) { | ||||
811 | BaseUsers.push_back(II); | ||||
812 | continue; | ||||
813 | } else { | ||||
814 | LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *Ido { } while (false) | ||||
815 | << "\n")do { } while (false); | ||||
816 | return false; | ||||
817 | } | ||||
818 | } | ||||
819 | |||||
820 | int64_t V = std::abs(CI->getValue().getSExtValue()); | ||||
821 | if (Roots.find(V) != Roots.end()) | ||||
822 | // No duplicates, please. | ||||
823 | return false; | ||||
824 | |||||
825 | Roots[V] = cast<Instruction>(I); | ||||
826 | } | ||||
827 | |||||
828 | // Make sure we have at least two roots. | ||||
829 | if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) | ||||
830 | return false; | ||||
831 | |||||
832 | // If we found non-loop-inc, non-root users of Base, assume they are | ||||
833 | // for the zeroth root index. This is because "add %a, 0" gets optimized | ||||
834 | // away. | ||||
835 | if (BaseUsers.size()) { | ||||
836 | if (Roots.find(0) != Roots.end()) { | ||||
837 | LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n")do { } while (false); | ||||
838 | return false; | ||||
839 | } | ||||
840 | Roots[0] = Base; | ||||
841 | } | ||||
842 | |||||
843 | // Calculate the number of users of the base, or lowest indexed, iteration. | ||||
844 | unsigned NumBaseUses = BaseUsers.size(); | ||||
845 | if (NumBaseUses == 0) | ||||
846 | NumBaseUses = Roots.begin()->second->getNumUses(); | ||||
847 | |||||
848 | // Check that every node has the same number of users. | ||||
849 | for (auto &KV : Roots) { | ||||
850 | if (KV.first == 0) | ||||
851 | continue; | ||||
852 | if (!KV.second->hasNUses(NumBaseUses)) { | ||||
853 | LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "do { } while (false) | ||||
854 | << "#Base=" << NumBaseUsesdo { } while (false) | ||||
855 | << ", #Root=" << KV.second->getNumUses() << "\n")do { } while (false); | ||||
856 | return false; | ||||
857 | } | ||||
858 | } | ||||
859 | |||||
860 | return true; | ||||
861 | } | ||||
862 | |||||
863 | void LoopReroll::DAGRootTracker:: | ||||
864 | findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { | ||||
865 | // Does the user look like it could be part of a root set? | ||||
866 | // All its users must be simple arithmetic ops. | ||||
867 | if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) | ||||
868 | return; | ||||
869 | |||||
870 | if (I != IV && findRootsBase(I, SubsumedInsts)) | ||||
871 | return; | ||||
872 | |||||
873 | SubsumedInsts.insert(I); | ||||
874 | |||||
875 | for (User *V : I->users()) { | ||||
876 | Instruction *I = cast<Instruction>(V); | ||||
877 | if (is_contained(LoopIncs, I)) | ||||
878 | continue; | ||||
879 | |||||
880 | if (!isSimpleArithmeticOp(I)) | ||||
881 | continue; | ||||
882 | |||||
883 | // The recursive call makes a copy of SubsumedInsts. | ||||
884 | findRootsRecursive(I, SubsumedInsts); | ||||
885 | } | ||||
886 | } | ||||
887 | |||||
888 | bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { | ||||
889 | if (DRS.Roots.empty()) | ||||
890 | return false; | ||||
891 | |||||
892 | // If the value of the base instruction is used outside the loop, we cannot | ||||
893 | // reroll the loop. Check for other root instructions is unnecessary because | ||||
894 | // they don't match any base instructions if their values are used outside. | ||||
895 | if (hasUsesOutsideLoop(DRS.BaseInst, L)) | ||||
896 | return false; | ||||
897 | |||||
898 | // Consider a DAGRootSet with N-1 roots (so N different values including | ||||
899 | // BaseInst). | ||||
900 | // Define d = Roots[0] - BaseInst, which should be the same as | ||||
901 | // Roots[I] - Roots[I-1] for all I in [1..N). | ||||
902 | // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the | ||||
903 | // loop iteration J. | ||||
904 | // | ||||
905 | // Now, For the loop iterations to be consecutive: | ||||
906 | // D = d * N | ||||
907 | const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); | ||||
908 | if (!ADR) | ||||
909 | return false; | ||||
910 | |||||
911 | // Check that the first root is evenly spaced. | ||||
912 | unsigned N = DRS.Roots.size() + 1; | ||||
913 | const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); | ||||
914 | if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy()) | ||||
915 | return false; | ||||
916 | const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); | ||||
917 | if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) | ||||
918 | return false; | ||||
919 | |||||
920 | // Check that the remainling roots are evenly spaced. | ||||
921 | for (unsigned i = 1; i < N - 1; ++i) { | ||||
922 | const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]), | ||||
923 | SE->getSCEV(DRS.Roots[i-1])); | ||||
924 | if (NewStepSCEV != StepSCEV) | ||||
925 | return false; | ||||
926 | } | ||||
927 | |||||
928 | return true; | ||||
929 | } | ||||
930 | |||||
931 | bool LoopReroll::DAGRootTracker:: | ||||
932 | findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { | ||||
933 | // The base of a RootSet must be an AddRec, so it can be erased. | ||||
934 | const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); | ||||
935 | if (!IVU_ADR || IVU_ADR->getLoop() != L) | ||||
936 | return false; | ||||
937 | |||||
938 | std::map<int64_t, Instruction*> V; | ||||
939 | if (!collectPossibleRoots(IVU, V)) | ||||
940 | return false; | ||||
941 | |||||
942 | // If we didn't get a root for index zero, then IVU must be | ||||
943 | // subsumed. | ||||
944 | if (V.find(0) == V.end()) | ||||
945 | SubsumedInsts.insert(IVU); | ||||
946 | |||||
947 | // Partition the vector into monotonically increasing indexes. | ||||
948 | DAGRootSet DRS; | ||||
949 | DRS.BaseInst = nullptr; | ||||
950 | |||||
951 | SmallVector<DAGRootSet, 16> PotentialRootSets; | ||||
952 | |||||
953 | for (auto &KV : V) { | ||||
954 | if (!DRS.BaseInst) { | ||||
955 | DRS.BaseInst = KV.second; | ||||
956 | DRS.SubsumedInsts = SubsumedInsts; | ||||
957 | } else if (DRS.Roots.empty()) { | ||||
958 | DRS.Roots.push_back(KV.second); | ||||
959 | } else if (V.find(KV.first - 1) != V.end()) { | ||||
960 | DRS.Roots.push_back(KV.second); | ||||
961 | } else { | ||||
962 | // Linear sequence terminated. | ||||
963 | if (!validateRootSet(DRS)) | ||||
964 | return false; | ||||
965 | |||||
966 | // Construct a new DAGRootSet with the next sequence. | ||||
967 | PotentialRootSets.push_back(DRS); | ||||
968 | DRS.BaseInst = KV.second; | ||||
969 | DRS.Roots.clear(); | ||||
970 | } | ||||
971 | } | ||||
972 | |||||
973 | if (!validateRootSet(DRS)) | ||||
974 | return false; | ||||
975 | |||||
976 | PotentialRootSets.push_back(DRS); | ||||
977 | |||||
978 | RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); | ||||
979 | |||||
980 | return true; | ||||
981 | } | ||||
982 | |||||
983 | bool LoopReroll::DAGRootTracker::findRoots() { | ||||
984 | Inc = IVToIncMap[IV]; | ||||
985 | |||||
986 | assert(RootSets.empty() && "Unclean state!")((void)0); | ||||
987 | if (std::abs(Inc) == 1) { | ||||
988 | for (auto *IVU : IV->users()) { | ||||
989 | if (isLoopIncrement(IVU, IV)) | ||||
990 | LoopIncs.push_back(cast<Instruction>(IVU)); | ||||
991 | } | ||||
992 | findRootsRecursive(IV, SmallInstructionSet()); | ||||
993 | LoopIncs.push_back(IV); | ||||
994 | } else { | ||||
995 | if (!findRootsBase(IV, SmallInstructionSet())) | ||||
996 | return false; | ||||
997 | } | ||||
998 | |||||
999 | // Ensure all sets have the same size. | ||||
1000 | if (RootSets.empty()) { | ||||
1001 | LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n")do { } while (false); | ||||
1002 | return false; | ||||
1003 | } | ||||
1004 | for (auto &V : RootSets) { | ||||
1005 | if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { | ||||
1006 | LLVM_DEBUG(do { } while (false) | ||||
1007 | dbgs()do { } while (false) | ||||
1008 | << "LRR: Aborting because not all root sets have the same size\n")do { } while (false); | ||||
1009 | return false; | ||||
1010 | } | ||||
1011 | } | ||||
1012 | |||||
1013 | Scale = RootSets[0].Roots.size() + 1; | ||||
1014 | |||||
1015 | if (Scale > IL_MaxRerollIterations) { | ||||
1016 | LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "do { } while (false) | ||||
1017 | << "#Found=" << Scaledo { } while (false) | ||||
1018 | << ", #Max=" << IL_MaxRerollIterations << "\n")do { } while (false); | ||||
1019 | return false; | ||||
1020 | } | ||||
1021 | |||||
1022 | LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scaledo { } while (false) | ||||
1023 | << "\n")do { } while (false); | ||||
1024 | |||||
1025 | return true; | ||||
1026 | } | ||||
1027 | |||||
1028 | bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { | ||||
1029 | // Populate the MapVector with all instructions in the block, in order first, | ||||
1030 | // so we can iterate over the contents later in perfect order. | ||||
1031 | for (auto &I : *L->getHeader()) { | ||||
1032 | Uses[&I].resize(IL_End); | ||||
1033 | } | ||||
1034 | |||||
1035 | SmallInstructionSet Exclude; | ||||
1036 | for (auto &DRS : RootSets) { | ||||
1037 | Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); | ||||
1038 | Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); | ||||
1039 | Exclude.insert(DRS.BaseInst); | ||||
1040 | } | ||||
1041 | Exclude.insert(LoopIncs.begin(), LoopIncs.end()); | ||||
1042 | |||||
1043 | for (auto &DRS : RootSets) { | ||||
1044 | DenseSet<Instruction*> VBase; | ||||
1045 | collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); | ||||
1046 | for (auto *I : VBase) { | ||||
1047 | Uses[I].set(0); | ||||
1048 | } | ||||
1049 | |||||
1050 | unsigned Idx = 1; | ||||
1051 | for (auto *Root : DRS.Roots) { | ||||
1052 | DenseSet<Instruction*> V; | ||||
1053 | collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); | ||||
1054 | |||||
1055 | // While we're here, check the use sets are the same size. | ||||
1056 | if (V.size() != VBase.size()) { | ||||
1057 | LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n")do { } while (false); | ||||
1058 | return false; | ||||
1059 | } | ||||
1060 | |||||
1061 | for (auto *I : V) { | ||||
1062 | Uses[I].set(Idx); | ||||
1063 | } | ||||
1064 | ++Idx; | ||||
1065 | } | ||||
1066 | |||||
1067 | // Make sure our subsumed instructions are remembered too. | ||||
1068 | for (auto *I : DRS.SubsumedInsts) { | ||||
1069 | Uses[I].set(IL_All); | ||||
1070 | } | ||||
1071 | } | ||||
1072 | |||||
1073 | // Make sure the loop increments are also accounted for. | ||||
1074 | |||||
1075 | Exclude.clear(); | ||||
1076 | for (auto &DRS : RootSets) { | ||||
1077 | Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); | ||||
1078 | Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); | ||||
1079 | Exclude.insert(DRS.BaseInst); | ||||
1080 | } | ||||
1081 | |||||
1082 | DenseSet<Instruction*> V; | ||||
1083 | collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); | ||||
1084 | for (auto *I : V) { | ||||
1085 | if (I->mayHaveSideEffects()) { | ||||
1086 | LLVM_DEBUG(dbgs() << "LRR: Aborting - "do { } while (false) | ||||
1087 | << "An instruction which does not belong to any root "do { } while (false) | ||||
1088 | << "sets must not have side effects: " << *I)do { } while (false); | ||||
1089 | return false; | ||||
1090 | } | ||||
1091 | Uses[I].set(IL_All); | ||||
1092 | } | ||||
1093 | |||||
1094 | return true; | ||||
1095 | } | ||||
1096 | |||||
1097 | /// Get the next instruction in "In" that is a member of set Val. | ||||
1098 | /// Start searching from StartI, and do not return anything in Exclude. | ||||
1099 | /// If StartI is not given, start from In.begin(). | ||||
1100 | LoopReroll::DAGRootTracker::UsesTy::iterator | ||||
1101 | LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, | ||||
1102 | const SmallInstructionSet &Exclude, | ||||
1103 | UsesTy::iterator *StartI) { | ||||
1104 | UsesTy::iterator I = StartI ? *StartI : In.begin(); | ||||
1105 | while (I != In.end() && (I->second.test(Val) == 0 || | ||||
1106 | Exclude.contains(I->first))) | ||||
1107 | ++I; | ||||
1108 | return I; | ||||
1109 | } | ||||
1110 | |||||
1111 | bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { | ||||
1112 | for (auto &DRS : RootSets) { | ||||
1113 | if (DRS.BaseInst == I) | ||||
1114 | return true; | ||||
1115 | } | ||||
1116 | return false; | ||||
1117 | } | ||||
1118 | |||||
1119 | bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { | ||||
1120 | for (auto &DRS : RootSets) { | ||||
1121 | if (is_contained(DRS.Roots, I)) | ||||
1122 | return true; | ||||
1123 | } | ||||
1124 | return false; | ||||
1125 | } | ||||
1126 | |||||
1127 | /// Return true if instruction I depends on any instruction between | ||||
1128 | /// Start and End. | ||||
1129 | bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, | ||||
1130 | UsesTy::iterator Start, | ||||
1131 | UsesTy::iterator End) { | ||||
1132 | for (auto *U : I->users()) { | ||||
1133 | for (auto It = Start; It != End; ++It) | ||||
1134 | if (U == It->first) | ||||
1135 | return true; | ||||
1136 | } | ||||
1137 | return false; | ||||
1138 | } | ||||
1139 | |||||
1140 | static bool isIgnorableInst(const Instruction *I) { | ||||
1141 | if (isa<DbgInfoIntrinsic>(I)) | ||||
1142 | return true; | ||||
1143 | const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); | ||||
1144 | if (!II) | ||||
1145 | return false; | ||||
1146 | switch (II->getIntrinsicID()) { | ||||
1147 | default: | ||||
1148 | return false; | ||||
1149 | case Intrinsic::annotation: | ||||
1150 | case Intrinsic::ptr_annotation: | ||||
1151 | case Intrinsic::var_annotation: | ||||
1152 | // TODO: the following intrinsics may also be allowed: | ||||
1153 | // lifetime_start, lifetime_end, invariant_start, invariant_end | ||||
1154 | return true; | ||||
1155 | } | ||||
1156 | return false; | ||||
1157 | } | ||||
1158 | |||||
1159 | bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { | ||||
1160 | // We now need to check for equivalence of the use graph of each root with | ||||
1161 | // that of the primary induction variable (excluding the roots). Our goal | ||||
1162 | // here is not to solve the full graph isomorphism problem, but rather to | ||||
1163 | // catch common cases without a lot of work. As a result, we will assume | ||||
1164 | // that the relative order of the instructions in each unrolled iteration | ||||
1165 | // is the same (although we will not make an assumption about how the | ||||
1166 | // different iterations are intermixed). Note that while the order must be | ||||
1167 | // the same, the instructions may not be in the same basic block. | ||||
1168 | |||||
1169 | // An array of just the possible reductions for this scale factor. When we | ||||
1170 | // collect the set of all users of some root instructions, these reduction | ||||
1171 | // instructions are treated as 'final' (their uses are not considered). | ||||
1172 | // This is important because we don't want the root use set to search down | ||||
1173 | // the reduction chain. | ||||
1174 | SmallInstructionSet PossibleRedSet; | ||||
1175 | SmallInstructionSet PossibleRedLastSet; | ||||
1176 | SmallInstructionSet PossibleRedPHISet; | ||||
1177 | Reductions.restrictToScale(Scale, PossibleRedSet, | ||||
1178 | PossibleRedPHISet, PossibleRedLastSet); | ||||
1179 | |||||
1180 | // Populate "Uses" with where each instruction is used. | ||||
1181 | if (!collectUsedInstructions(PossibleRedSet)) | ||||
1182 | return false; | ||||
1183 | |||||
1184 | // Make sure we mark the reduction PHIs as used in all iterations. | ||||
1185 | for (auto *I : PossibleRedPHISet) { | ||||
1186 | Uses[I].set(IL_All); | ||||
1187 | } | ||||
1188 | |||||
1189 | // Make sure we mark loop-control-only PHIs as used in all iterations. See | ||||
1190 | // comment above LoopReroll::isLoopControlIV for more information. | ||||
1191 | BasicBlock *Header = L->getHeader(); | ||||
1192 | if (LoopControlIV && LoopControlIV != IV) { | ||||
1193 | for (auto *U : LoopControlIV->users()) { | ||||
1194 | Instruction *IVUser = dyn_cast<Instruction>(U); | ||||
1195 | // IVUser could be loop increment or compare | ||||
1196 | Uses[IVUser].set(IL_All); | ||||
1197 | for (auto *UU : IVUser->users()) { | ||||
1198 | Instruction *UUser = dyn_cast<Instruction>(UU); | ||||
1199 | // UUser could be compare, PHI or branch | ||||
1200 | Uses[UUser].set(IL_All); | ||||
1201 | // Skip SExt | ||||
1202 | if (isa<SExtInst>(UUser)) { | ||||
1203 | UUser = dyn_cast<Instruction>(*(UUser->user_begin())); | ||||
1204 | Uses[UUser].set(IL_All); | ||||
1205 | } | ||||
1206 | // Is UUser a compare instruction? | ||||
1207 | if (UU->hasOneUse()) { | ||||
1208 | Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); | ||||
1209 | if (BI == cast<BranchInst>(Header->getTerminator())) | ||||
1210 | Uses[BI].set(IL_All); | ||||
1211 | } | ||||
1212 | } | ||||
1213 | } | ||||
1214 | } | ||||
1215 | |||||
1216 | // Make sure all instructions in the loop are in one and only one | ||||
1217 | // set. | ||||
1218 | for (auto &KV : Uses) { | ||||
1219 | if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { | ||||
1220 | LLVM_DEBUG(do { } while (false) | ||||
1221 | dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "do { } while (false) | ||||
1222 | << *KV.first << " (#uses=" << KV.second.count() << ")\n")do { } while (false); | ||||
1223 | return false; | ||||
1224 | } | ||||
1225 | } | ||||
1226 | |||||
1227 | LLVM_DEBUG(for (auto &KVdo { } while (false) | ||||
1228 | : Uses) {do { } while (false) | ||||
1229 | dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";do { } while (false) | ||||
1230 | })do { } while (false); | ||||
1231 | |||||
1232 | for (unsigned Iter = 1; Iter < Scale; ++Iter) { | ||||
1233 | // In addition to regular aliasing information, we need to look for | ||||
1234 | // instructions from later (future) iterations that have side effects | ||||
1235 | // preventing us from reordering them past other instructions with side | ||||
1236 | // effects. | ||||
1237 | bool FutureSideEffects = false; | ||||
1238 | AliasSetTracker AST(*AA); | ||||
1239 | // The map between instructions in f(%iv.(i+1)) and f(%iv). | ||||
1240 | DenseMap<Value *, Value *> BaseMap; | ||||
1241 | |||||
1242 | // Compare iteration Iter to the base. | ||||
1243 | SmallInstructionSet Visited; | ||||
1244 | auto BaseIt = nextInstr(0, Uses, Visited); | ||||
1245 | auto RootIt = nextInstr(Iter, Uses, Visited); | ||||
1246 | auto LastRootIt = Uses.begin(); | ||||
1247 | |||||
1248 | while (BaseIt != Uses.end() && RootIt != Uses.end()) { | ||||
1249 | Instruction *BaseInst = BaseIt->first; | ||||
1250 | Instruction *RootInst = RootIt->first; | ||||
1251 | |||||
1252 | // Skip over the IV or root instructions; only match their users. | ||||
1253 | bool Continue = false; | ||||
1254 | if (isBaseInst(BaseInst)) { | ||||
1255 | Visited.insert(BaseInst); | ||||
1256 | BaseIt = nextInstr(0, Uses, Visited); | ||||
1257 | Continue = true; | ||||
1258 | } | ||||
1259 | if (isRootInst(RootInst)) { | ||||
1260 | LastRootIt = RootIt; | ||||
1261 | Visited.insert(RootInst); | ||||
1262 | RootIt = nextInstr(Iter, Uses, Visited); | ||||
1263 | Continue = true; | ||||
1264 | } | ||||
1265 | if (Continue) continue; | ||||
1266 | |||||
1267 | if (!BaseInst->isSameOperationAs(RootInst)) { | ||||
1268 | // Last chance saloon. We don't try and solve the full isomorphism | ||||
1269 | // problem, but try and at least catch the case where two instructions | ||||
1270 | // *of different types* are round the wrong way. We won't be able to | ||||
1271 | // efficiently tell, given two ADD instructions, which way around we | ||||
1272 | // should match them, but given an ADD and a SUB, we can at least infer | ||||
1273 | // which one is which. | ||||
1274 | // | ||||
1275 | // This should allow us to deal with a greater subset of the isomorphism | ||||
1276 | // problem. It does however change a linear algorithm into a quadratic | ||||
1277 | // one, so limit the number of probes we do. | ||||
1278 | auto TryIt = RootIt; | ||||
1279 | unsigned N = NumToleratedFailedMatches; | ||||
1280 | while (TryIt != Uses.end() && | ||||
1281 | !BaseInst->isSameOperationAs(TryIt->first) && | ||||
1282 | N--) { | ||||
1283 | ++TryIt; | ||||
1284 | TryIt = nextInstr(Iter, Uses, Visited, &TryIt); | ||||
1285 | } | ||||
1286 | |||||
1287 | if (TryIt == Uses.end() || TryIt == RootIt || | ||||
1288 | instrDependsOn(TryIt->first, RootIt, TryIt)) { | ||||
1289 | LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "do { } while (false) | ||||
1290 | << *BaseInst << " vs. " << *RootInst << "\n")do { } while (false); | ||||
1291 | return false; | ||||
1292 | } | ||||
1293 | |||||
1294 | RootIt = TryIt; | ||||
1295 | RootInst = TryIt->first; | ||||
1296 | } | ||||
1297 | |||||
1298 | // All instructions between the last root and this root | ||||
1299 | // may belong to some other iteration. If they belong to a | ||||
1300 | // future iteration, then they're dangerous to alias with. | ||||
1301 | // | ||||
1302 | // Note that because we allow a limited amount of flexibility in the order | ||||
1303 | // that we visit nodes, LastRootIt might be *before* RootIt, in which | ||||
1304 | // case we've already checked this set of instructions so we shouldn't | ||||
1305 | // do anything. | ||||
1306 | for (; LastRootIt < RootIt; ++LastRootIt) { | ||||
1307 | Instruction *I = LastRootIt->first; | ||||
1308 | if (LastRootIt->second.find_first() < (int)Iter) | ||||
1309 | continue; | ||||
1310 | if (I->mayWriteToMemory()) | ||||
1311 | AST.add(I); | ||||
1312 | // Note: This is specifically guarded by a check on isa<PHINode>, | ||||
1313 | // which while a valid (somewhat arbitrary) micro-optimization, is | ||||
1314 | // needed because otherwise isSafeToSpeculativelyExecute returns | ||||
1315 | // false on PHI nodes. | ||||
1316 | if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && | ||||
1317 | !isSafeToSpeculativelyExecute(I)) | ||||
1318 | // Intervening instructions cause side effects. | ||||
1319 | FutureSideEffects = true; | ||||
1320 | } | ||||
1321 | |||||
1322 | // Make sure that this instruction, which is in the use set of this | ||||
1323 | // root instruction, does not also belong to the base set or the set of | ||||
1324 | // some other root instruction. | ||||
1325 | if (RootIt->second.count() > 1) { | ||||
1326 | LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInstdo { } while (false) | ||||
1327 | << " vs. " << *RootInst << " (prev. case overlap)\n")do { } while (false); | ||||
1328 | return false; | ||||
1329 | } | ||||
1330 | |||||
1331 | // Make sure that we don't alias with any instruction in the alias set | ||||
1332 | // tracker. If we do, then we depend on a future iteration, and we | ||||
1333 | // can't reroll. | ||||
1334 | if (RootInst->mayReadFromMemory()) | ||||
1335 | for (auto &K : AST) { | ||||
1336 | if (K.aliasesUnknownInst(RootInst, *AA)) { | ||||
1337 | LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "do { } while (false) | ||||
1338 | << *BaseInst << " vs. " << *RootInstdo { } while (false) | ||||
1339 | << " (depends on future store)\n")do { } while (false); | ||||
1340 | return false; | ||||
1341 | } | ||||
1342 | } | ||||
1343 | |||||
1344 | // If we've past an instruction from a future iteration that may have | ||||
1345 | // side effects, and this instruction might also, then we can't reorder | ||||
1346 | // them, and this matching fails. As an exception, we allow the alias | ||||
1347 | // set tracker to handle regular (unordered) load/store dependencies. | ||||
1348 | if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && | ||||
1349 | !isSafeToSpeculativelyExecute(BaseInst)) || | ||||
1350 | (!isUnorderedLoadStore(RootInst) && | ||||
1351 | !isSafeToSpeculativelyExecute(RootInst)))) { | ||||
1352 | LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInstdo { } while (false) | ||||
1353 | << " vs. " << *RootInstdo { } while (false) | ||||
1354 | << " (side effects prevent reordering)\n")do { } while (false); | ||||
1355 | return false; | ||||
1356 | } | ||||
1357 | |||||
1358 | // For instructions that are part of a reduction, if the operation is | ||||
1359 | // associative, then don't bother matching the operands (because we | ||||
1360 | // already know that the instructions are isomorphic, and the order | ||||
1361 | // within the iteration does not matter). For non-associative reductions, | ||||
1362 | // we do need to match the operands, because we need to reject | ||||
1363 | // out-of-order instructions within an iteration! | ||||
1364 | // For example (assume floating-point addition), we need to reject this: | ||||
1365 | // x += a[i]; x += b[i]; | ||||
1366 | // x += a[i+1]; x += b[i+1]; | ||||
1367 | // x += b[i+2]; x += a[i+2]; | ||||
1368 | bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); | ||||
1369 | |||||
1370 | if (!(InReduction && BaseInst->isAssociative())) { | ||||
1371 | bool Swapped = false, SomeOpMatched = false; | ||||
1372 | for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { | ||||
1373 | Value *Op2 = RootInst->getOperand(j); | ||||
1374 | |||||
1375 | // If this is part of a reduction (and the operation is not | ||||
1376 | // associatve), then we match all operands, but not those that are | ||||
1377 | // part of the reduction. | ||||
1378 | if (InReduction) | ||||
1379 | if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) | ||||
1380 | if (Reductions.isPairInSame(RootInst, Op2I)) | ||||
1381 | continue; | ||||
1382 | |||||
1383 | DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); | ||||
1384 | if (BMI != BaseMap.end()) { | ||||
1385 | Op2 = BMI->second; | ||||
1386 | } else { | ||||
1387 | for (auto &DRS : RootSets) { | ||||
1388 | if (DRS.Roots[Iter-1] == (Instruction*) Op2) { | ||||
1389 | Op2 = DRS.BaseInst; | ||||
1390 | break; | ||||
1391 | } | ||||
1392 | } | ||||
1393 | } | ||||
1394 | |||||
1395 | if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { | ||||
1396 | // If we've not already decided to swap the matched operands, and | ||||
1397 | // we've not already matched our first operand (note that we could | ||||
1398 | // have skipped matching the first operand because it is part of a | ||||
1399 | // reduction above), and the instruction is commutative, then try | ||||
1400 | // the swapped match. | ||||
1401 | if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && | ||||
1402 | BaseInst->getOperand(!j) == Op2) { | ||||
1403 | Swapped = true; | ||||
1404 | } else { | ||||
1405 | LLVM_DEBUG(dbgs()do { } while (false) | ||||
1406 | << "LRR: iteration root match failed at " << *BaseInstdo { } while (false) | ||||
1407 | << " vs. " << *RootInst << " (operand " << j << ")\n")do { } while (false); | ||||
1408 | return false; | ||||
1409 | } | ||||
1410 | } | ||||
1411 | |||||
1412 | SomeOpMatched = true; | ||||
1413 | } | ||||
1414 | } | ||||
1415 | |||||
1416 | if ((!PossibleRedLastSet.count(BaseInst) && | ||||
1417 | hasUsesOutsideLoop(BaseInst, L)) || | ||||
1418 | (!PossibleRedLastSet.count(RootInst) && | ||||
1419 | hasUsesOutsideLoop(RootInst, L))) { | ||||
1420 | LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInstdo { } while (false) | ||||
1421 | << " vs. " << *RootInst << " (uses outside loop)\n")do { } while (false); | ||||
1422 | return false; | ||||
1423 | } | ||||
1424 | |||||
1425 | Reductions.recordPair(BaseInst, RootInst, Iter); | ||||
1426 | BaseMap.insert(std::make_pair(RootInst, BaseInst)); | ||||
1427 | |||||
1428 | LastRootIt = RootIt; | ||||
1429 | Visited.insert(BaseInst); | ||||
1430 | Visited.insert(RootInst); | ||||
1431 | BaseIt = nextInstr(0, Uses, Visited); | ||||
1432 | RootIt = nextInstr(Iter, Uses, Visited); | ||||
1433 | } | ||||
1434 | assert(BaseIt == Uses.end() && RootIt == Uses.end() &&((void)0) | ||||
1435 | "Mismatched set sizes!")((void)0); | ||||
1436 | } | ||||
1437 | |||||
1438 | LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IVdo { } while (false) | ||||
1439 | << "\n")do { } while (false); | ||||
1440 | |||||
1441 | return true; | ||||
1442 | } | ||||
1443 | |||||
1444 | void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) { | ||||
1445 | BasicBlock *Header = L->getHeader(); | ||||
1446 | |||||
1447 | // Compute the start and increment for each BaseInst before we start erasing | ||||
1448 | // instructions. | ||||
1449 | SmallVector<const SCEV *, 8> StartExprs; | ||||
1450 | SmallVector<const SCEV *, 8> IncrExprs; | ||||
1451 | for (auto &DRS : RootSets) { | ||||
1452 | const SCEVAddRecExpr *IVSCEV = | ||||
1453 | cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); | ||||
1454 | StartExprs.push_back(IVSCEV->getStart()); | ||||
1455 | IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV)); | ||||
1456 | } | ||||
1457 | |||||
1458 | // Remove instructions associated with non-base iterations. | ||||
1459 | for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); | ||||
1460 | J != JE;) { | ||||
1461 | unsigned I = Uses[&*J].find_first(); | ||||
1462 | if (I > 0 && I < IL_All) { | ||||
1463 | LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n")do { } while (false); | ||||
1464 | J++->eraseFromParent(); | ||||
1465 | continue; | ||||
1466 | } | ||||
1467 | |||||
1468 | ++J; | ||||
1469 | } | ||||
1470 | |||||
1471 | // Rewrite each BaseInst using SCEV. | ||||
1472 | for (size_t i = 0, e = RootSets.size(); i != e; ++i) | ||||
1473 | // Insert the new induction variable. | ||||
1474 | replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]); | ||||
1475 | |||||
1476 | { // Limit the lifetime of SCEVExpander. | ||||
1477 | BranchInst *BI = cast<BranchInst>(Header->getTerminator()); | ||||
1478 | const DataLayout &DL = Header->getModule()->getDataLayout(); | ||||
1479 | SCEVExpander Expander(*SE, DL, "reroll"); | ||||
1480 | auto Zero = SE->getZero(BackedgeTakenCount->getType()); | ||||
1481 | auto One = SE->getOne(BackedgeTakenCount->getType()); | ||||
1482 | auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap); | ||||
1483 | Value *NewIV = | ||||
1484 | Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(), | ||||
1485 | Header->getFirstNonPHIOrDbg()); | ||||
1486 | // FIXME: This arithmetic can overflow. | ||||
1487 | auto TripCount = SE->getAddExpr(BackedgeTakenCount, One); | ||||
1488 | auto ScaledTripCount = SE->getMulExpr( | ||||
1489 | TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale)); | ||||
1490 | auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One); | ||||
1491 | Value *TakenCount = | ||||
1492 | Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(), | ||||
1493 | Header->getFirstNonPHIOrDbg()); | ||||
1494 | Value *Cond = | ||||
1495 | new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond"); | ||||
1496 | BI->setCondition(Cond); | ||||
1497 | |||||
1498 | if (BI->getSuccessor(1) != Header) | ||||
1499 | BI->swapSuccessors(); | ||||
1500 | } | ||||
1501 | |||||
1502 | SimplifyInstructionsInBlock(Header, TLI); | ||||
1503 | DeleteDeadPHIs(Header, TLI); | ||||
1504 | } | ||||
1505 | |||||
1506 | void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS, | ||||
1507 | const SCEV *Start, | ||||
1508 | const SCEV *IncrExpr) { | ||||
1509 | BasicBlock *Header = L->getHeader(); | ||||
1510 | Instruction *Inst = DRS.BaseInst; | ||||
1511 | |||||
1512 | const SCEV *NewIVSCEV = | ||||
1513 | SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); | ||||
1514 | |||||
1515 | { // Limit the lifetime of SCEVExpander. | ||||
1516 | const DataLayout &DL = Header->getModule()->getDataLayout(); | ||||
1517 | SCEVExpander Expander(*SE, DL, "reroll"); | ||||
1518 | Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), | ||||
1519 | Header->getFirstNonPHIOrDbg()); | ||||
1520 | |||||
1521 | for (auto &KV : Uses) | ||||
1522 | if (KV.second.find_first() == 0) | ||||
1523 | KV.first->replaceUsesOfWith(Inst, NewIV); | ||||
1524 | } | ||||
1525 | } | ||||
1526 | |||||
1527 | // Validate the selected reductions. All iterations must have an isomorphic | ||||
1528 | // part of the reduction chain and, for non-associative reductions, the chain | ||||
1529 | // entries must appear in order. | ||||
1530 | bool LoopReroll::ReductionTracker::validateSelected() { | ||||
1531 | // For a non-associative reduction, the chain entries must appear in order. | ||||
1532 | for (int i : Reds) { | ||||
1533 | int PrevIter = 0, BaseCount = 0, Count = 0; | ||||
1534 | for (Instruction *J : PossibleReds[i]) { | ||||
1535 | // Note that all instructions in the chain must have been found because | ||||
1536 | // all instructions in the function must have been assigned to some | ||||
1537 | // iteration. | ||||
1538 | int Iter = PossibleRedIter[J]; | ||||
1539 | if (Iter != PrevIter && Iter != PrevIter + 1 && | ||||
1540 | !PossibleReds[i].getReducedValue()->isAssociative()) { | ||||
1541 | LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "do { } while (false) | ||||
1542 | << J << "\n")do { } while (false); | ||||
1543 | return false; | ||||
1544 | } | ||||
1545 | |||||
1546 | if (Iter != PrevIter) { | ||||
1547 | if (Count != BaseCount) { | ||||
1548 | LLVM_DEBUG(dbgs()do { } while (false) | ||||
1549 | << "LRR: Iteration " << PrevIter << " reduction use count "do { } while (false) | ||||
1550 | << Count << " is not equal to the base use count "do { } while (false) | ||||
1551 | << BaseCount << "\n")do { } while (false); | ||||
1552 | return false; | ||||
1553 | } | ||||
1554 | |||||
1555 | Count = 0; | ||||
1556 | } | ||||
1557 | |||||
1558 | ++Count; | ||||
1559 | if (Iter == 0) | ||||
1560 | ++BaseCount; | ||||
1561 | |||||
1562 | PrevIter = Iter; | ||||
1563 | } | ||||
1564 | } | ||||
1565 | |||||
1566 | return true; | ||||
1567 | } | ||||
1568 | |||||
1569 | // For all selected reductions, remove all parts except those in the first | ||||
1570 | // iteration (and the PHI). Replace outside uses of the reduced value with uses | ||||
1571 | // of the first-iteration reduced value (in other words, reroll the selected | ||||
1572 | // reductions). | ||||
1573 | void LoopReroll::ReductionTracker::replaceSelected() { | ||||
1574 | // Fixup reductions to refer to the last instruction associated with the | ||||
1575 | // first iteration (not the last). | ||||
1576 | for (int i : Reds) { | ||||
1577 | int j = 0; | ||||
1578 | for (int e = PossibleReds[i].size(); j != e; ++j) | ||||
1579 | if (PossibleRedIter[PossibleReds[i][j]] != 0) { | ||||
1580 | --j; | ||||
1581 | break; | ||||
1582 | } | ||||
1583 | |||||
1584 | // Replace users with the new end-of-chain value. | ||||
1585 | SmallInstructionVector Users; | ||||
1586 | for (User *U : PossibleReds[i].getReducedValue()->users()) { | ||||
1587 | Users.push_back(cast<Instruction>(U)); | ||||
1588 | } | ||||
1589 | |||||
1590 | for (Instruction *User : Users) | ||||
1591 | User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), | ||||
1592 | PossibleReds[i][j]); | ||||
1593 | } | ||||
1594 | } | ||||
1595 | |||||
1596 | // Reroll the provided loop with respect to the provided induction variable. | ||||
1597 | // Generally, we're looking for a loop like this: | ||||
1598 | // | ||||
1599 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] | ||||
1600 | // f(%iv) | ||||
1601 | // %iv.1 = add %iv, 1 <-- a root increment | ||||
1602 | // f(%iv.1) | ||||
1603 | // %iv.2 = add %iv, 2 <-- a root increment | ||||
1604 | // f(%iv.2) | ||||
1605 | // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment | ||||
1606 | // f(%iv.scale_m_1) | ||||
1607 | // ... | ||||
1608 | // %iv.next = add %iv, scale | ||||
1609 | // %cmp = icmp(%iv, ...) | ||||
1610 | // br %cmp, header, exit | ||||
1611 | // | ||||
1612 | // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of | ||||
1613 | // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can | ||||
1614 | // be intermixed with eachother. The restriction imposed by this algorithm is | ||||
1615 | // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), | ||||
1616 | // etc. be the same. | ||||
1617 | // | ||||
1618 | // First, we collect the use set of %iv, excluding the other increment roots. | ||||
1619 | // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) | ||||
1620 | // times, having collected the use set of f(%iv.(i+1)), during which we: | ||||
1621 | // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to | ||||
1622 | // the next unmatched instruction in f(%iv.(i+1)). | ||||
1623 | // - Ensure that both matched instructions don't have any external users | ||||
1624 | // (with the exception of last-in-chain reduction instructions). | ||||
1625 | // - Track the (aliasing) write set, and other side effects, of all | ||||
1626 | // instructions that belong to future iterations that come before the matched | ||||
1627 | // instructions. If the matched instructions read from that write set, then | ||||
1628 | // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in | ||||
1629 | // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, | ||||
1630 | // if any of these future instructions had side effects (could not be | ||||
1631 | // speculatively executed), and so do the matched instructions, when we | ||||
1632 | // cannot reorder those side-effect-producing instructions, and rerolling | ||||
1633 | // fails. | ||||
1634 | // | ||||
1635 | // Finally, we make sure that all loop instructions are either loop increment | ||||
1636 | // roots, belong to simple latch code, parts of validated reductions, part of | ||||
1637 | // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions | ||||
1638 | // have been validated), then we reroll the loop. | ||||
1639 | bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, | ||||
1640 | const SCEV *BackedgeTakenCount, | ||||
1641 | ReductionTracker &Reductions) { | ||||
1642 | DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, | ||||
1643 | IVToIncMap, LoopControlIV); | ||||
1644 | |||||
1645 | if (!DAGRoots.findRoots()) | ||||
1646 | return false; | ||||
1647 | LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IVdo { } while (false) | ||||
1648 | << "\n")do { } while (false); | ||||
1649 | |||||
1650 | if (!DAGRoots.validate(Reductions)) | ||||
1651 | return false; | ||||
1652 | if (!Reductions.validateSelected()) | ||||
1653 | return false; | ||||
1654 | // At this point, we've validated the rerolling, and we're committed to | ||||
1655 | // making changes! | ||||
1656 | |||||
1657 | Reductions.replaceSelected(); | ||||
1658 | DAGRoots.replace(BackedgeTakenCount); | ||||
1659 | |||||
1660 | ++NumRerolledLoops; | ||||
1661 | return true; | ||||
1662 | } | ||||
1663 | |||||
1664 | bool LoopReroll::runOnLoop(Loop *L) { | ||||
1665 | BasicBlock *Header = L->getHeader(); | ||||
1666 | LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"do { } while (false) | ||||
1667 | << Header->getName() << " (" << L->getNumBlocks()do { } while (false) | ||||
1668 | << " block(s))\n")do { } while (false); | ||||
1669 | |||||
1670 | // For now, we'll handle only single BB loops. | ||||
1671 | if (L->getNumBlocks() > 1) | ||||
1672 | return false; | ||||
1673 | |||||
1674 | if (!SE->hasLoopInvariantBackedgeTakenCount(L)) | ||||
1675 | return false; | ||||
1676 | |||||
1677 | const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); | ||||
1678 | LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n")do { } while (false); | ||||
1679 | LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCountdo { } while (false) | ||||
1680 | << "\n")do { } while (false); | ||||
1681 | |||||
1682 | // First, we need to find the induction variable with respect to which we can | ||||
1683 | // reroll (there may be several possible options). | ||||
1684 | SmallInstructionVector PossibleIVs; | ||||
1685 | IVToIncMap.clear(); | ||||
1686 | LoopControlIV = nullptr; | ||||
1687 | collectPossibleIVs(L, PossibleIVs); | ||||
1688 | |||||
1689 | if (PossibleIVs.empty()) { | ||||
1690 | LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n")do { } while (false); | ||||
1691 | return false; | ||||
1692 | } | ||||
1693 | |||||
1694 | ReductionTracker Reductions; | ||||
1695 | collectPossibleReductions(L, Reductions); | ||||
1696 | bool Changed = false; | ||||
1697 | |||||
1698 | // For each possible IV, collect the associated possible set of 'root' nodes | ||||
1699 | // (i+1, i+2, etc.). | ||||
1700 | for (Instruction *PossibleIV : PossibleIVs) | ||||
1701 | if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) { | ||||
1702 | Changed = true; | ||||
1703 | break; | ||||
1704 | } | ||||
1705 | LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n")do { } while (false); | ||||
1706 | |||||
1707 | // Trip count of L has changed so SE must be re-evaluated. | ||||
1708 | if (Changed) | ||||
1709 | SE->forgetLoop(L); | ||||
1710 | |||||
1711 | return Changed; | ||||
1712 | } | ||||
1713 | |||||
1714 | bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { | ||||
1715 | if (skipLoop(L)) | ||||
1716 | return false; | ||||
1717 | |||||
1718 | auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | ||||
1719 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | ||||
1720 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | ||||
1721 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( | ||||
1722 | *L->getHeader()->getParent()); | ||||
1723 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||
1724 | bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); | ||||
1725 | |||||
1726 | return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L); | ||||
1727 | } | ||||
1728 | |||||
1729 | PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM, | ||||
1730 | LoopStandardAnalysisResults &AR, | ||||
1731 | LPMUpdater &U) { | ||||
1732 | return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L) | ||||
| |||||
1733 | ? getLoopPassPreservedAnalyses() | ||||
1734 | : PreservedAnalyses::all(); | ||||
1735 | } |