File: | src/sys/arch/amd64/stand/cdboot/../../../../lib/libsa/sha2.c |
Warning: | line 775, column 2 Value stored to 'a' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: sha2.c,v 1.3 2021/03/12 10:22:46 jsg Exp $ */ |
2 | |
3 | /* |
4 | * FILE: sha2.c |
5 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
6 | * |
7 | * Copyright (c) 2000-2001, Aaron D. Gifford |
8 | * All rights reserved. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * 3. Neither the name of the copyright holder nor the names of contributors |
19 | * may be used to endorse or promote products derived from this software |
20 | * without specific prior written permission. |
21 | * |
22 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
32 | * SUCH DAMAGE. |
33 | * |
34 | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
35 | */ |
36 | |
37 | #include <lib/libsa/stand.h> |
38 | |
39 | #include "sha2.h" |
40 | |
41 | #define SHA2_SMALL |
42 | |
43 | /* |
44 | * UNROLLED TRANSFORM LOOP NOTE: |
45 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
46 | * loop version for the hash transform rounds (defined using macros |
47 | * later in this file). Either define on the command line, for example: |
48 | * |
49 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
50 | * |
51 | * or define below: |
52 | * |
53 | * #define SHA2_UNROLL_TRANSFORM |
54 | * |
55 | */ |
56 | #ifndef SHA2_SMALL |
57 | #if defined(__amd64__) || defined(__i386__1) |
58 | #define SHA2_UNROLL_TRANSFORM |
59 | #endif |
60 | #endif |
61 | |
62 | /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ |
63 | /* |
64 | * BYTE_ORDER NOTE: |
65 | * |
66 | * Please make sure that your system defines BYTE_ORDER. If your |
67 | * architecture is little-endian, make sure it also defines |
68 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
69 | * equivalent. |
70 | * |
71 | * If your system does not define the above, then you can do so by |
72 | * hand like this: |
73 | * |
74 | * #define LITTLE_ENDIAN 1234 |
75 | * #define BIG_ENDIAN 4321 |
76 | * |
77 | * And for little-endian machines, add: |
78 | * |
79 | * #define BYTE_ORDER LITTLE_ENDIAN |
80 | * |
81 | * Or for big-endian machines: |
82 | * |
83 | * #define BYTE_ORDER BIG_ENDIAN |
84 | * |
85 | * The FreeBSD machine this was written on defines BYTE_ORDER |
86 | * appropriately by including <sys/types.h> (which in turn includes |
87 | * <machine/endian.h> where the appropriate definitions are actually |
88 | * made). |
89 | */ |
90 | #if !defined(BYTE_ORDER1234) || (BYTE_ORDER1234 != LITTLE_ENDIAN1234 && BYTE_ORDER1234 != BIG_ENDIAN4321) |
91 | #error Define BYTE_ORDER1234 to be equal to either LITTLE_ENDIAN1234 or BIG_ENDIAN4321 |
92 | #endif |
93 | |
94 | |
95 | /*** SHA-224/256/384/512 Various Length Definitions ***********************/ |
96 | /* NOTE: Most of these are in sha2.h */ |
97 | #define SHA224_SHORT_BLOCK_LENGTH(64 - 8) (SHA224_BLOCK_LENGTH64 - 8) |
98 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) |
99 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) |
100 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) |
101 | |
102 | /*** ENDIAN SPECIFIC COPY MACROS **************************************/ |
103 | #define BE_8_TO_32(dst, cp)do { (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); } while(0) do { \ |
104 | (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ |
105 | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ |
106 | } while(0) |
107 | |
108 | #define BE_8_TO_64(dst, cp)do { (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t )(cp)[0] << 56); } while (0) do { \ |
109 | (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ |
110 | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ |
111 | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ |
112 | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ |
113 | } while (0) |
114 | |
115 | #define BE_64_TO_8(cp, src)do { (cp)[0] = (src) >> 56; (cp)[1] = (src) >> 48 ; (cp)[2] = (src) >> 40; (cp)[3] = (src) >> 32; ( cp)[4] = (src) >> 24; (cp)[5] = (src) >> 16; (cp) [6] = (src) >> 8; (cp)[7] = (src); } while (0) do { \ |
116 | (cp)[0] = (src) >> 56; \ |
117 | (cp)[1] = (src) >> 48; \ |
118 | (cp)[2] = (src) >> 40; \ |
119 | (cp)[3] = (src) >> 32; \ |
120 | (cp)[4] = (src) >> 24; \ |
121 | (cp)[5] = (src) >> 16; \ |
122 | (cp)[6] = (src) >> 8; \ |
123 | (cp)[7] = (src); \ |
124 | } while (0) |
125 | |
126 | #define BE_32_TO_8(cp, src)do { (cp)[0] = (src) >> 24; (cp)[1] = (src) >> 16 ; (cp)[2] = (src) >> 8; (cp)[3] = (src); } while (0) do { \ |
127 | (cp)[0] = (src) >> 24; \ |
128 | (cp)[1] = (src) >> 16; \ |
129 | (cp)[2] = (src) >> 8; \ |
130 | (cp)[3] = (src); \ |
131 | } while (0) |
132 | |
133 | /* |
134 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
135 | * unsigned 128-bit integer (represented using a two-element array of |
136 | * 64-bit words): |
137 | */ |
138 | #define ADDINC128(w,n)do { (w)[0] += (u_int64_t)(n); if ((w)[0] < (n)) { (w)[1]++ ; } } while (0) do { \ |
139 | (w)[0] += (u_int64_t)(n); \ |
140 | if ((w)[0] < (n)) { \ |
141 | (w)[1]++; \ |
142 | } \ |
143 | } while (0) |
144 | |
145 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
146 | /* |
147 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
148 | * |
149 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
150 | * S is a ROTATION) because the SHA-224/256/384/512 description document |
151 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
152 | * same "backwards" definition. |
153 | */ |
154 | /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ |
155 | #define R(b,x)((x) >> (b)) ((x) >> (b)) |
156 | /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ |
157 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) |
158 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
159 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) |
160 | |
161 | /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ |
162 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) |
163 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
164 | |
165 | /* Four of six logical functions used in SHA-224 and SHA-256: */ |
166 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) |
167 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) |
168 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) |
169 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) |
170 | |
171 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
172 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) |
173 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) |
174 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) |
175 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) |
176 | |
177 | |
178 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
179 | /* Hash constant words K for SHA-224 and SHA-256: */ |
180 | static const u_int32_t K256[64] = { |
181 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
182 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
183 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
184 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
185 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
186 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
187 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
188 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
189 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
190 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
191 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
192 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
193 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
194 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
195 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
196 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
197 | }; |
198 | |
199 | /* Initial hash value H for SHA-256: */ |
200 | static const u_int32_t sha256_initial_hash_value[8] = { |
201 | 0x6a09e667UL, |
202 | 0xbb67ae85UL, |
203 | 0x3c6ef372UL, |
204 | 0xa54ff53aUL, |
205 | 0x510e527fUL, |
206 | 0x9b05688cUL, |
207 | 0x1f83d9abUL, |
208 | 0x5be0cd19UL |
209 | }; |
210 | |
211 | /* Hash constant words K for SHA-384 and SHA-512: */ |
212 | static const u_int64_t K512[80] = { |
213 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
214 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
215 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
216 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
217 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
218 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
219 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
220 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
221 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
222 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
223 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
224 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
225 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
226 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
227 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
228 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
229 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
230 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
231 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
232 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
233 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
234 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
235 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
236 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
237 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
238 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
239 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
240 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
241 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
242 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
243 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
244 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
245 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
246 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
247 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
248 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
249 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
250 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
251 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
252 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
253 | }; |
254 | |
255 | /* Initial hash value H for SHA-512 */ |
256 | static const u_int64_t sha512_initial_hash_value[8] = { |
257 | 0x6a09e667f3bcc908ULL, |
258 | 0xbb67ae8584caa73bULL, |
259 | 0x3c6ef372fe94f82bULL, |
260 | 0xa54ff53a5f1d36f1ULL, |
261 | 0x510e527fade682d1ULL, |
262 | 0x9b05688c2b3e6c1fULL, |
263 | 0x1f83d9abfb41bd6bULL, |
264 | 0x5be0cd19137e2179ULL |
265 | }; |
266 | |
267 | #if !defined(SHA2_SMALL) |
268 | /* Initial hash value H for SHA-224: */ |
269 | static const u_int32_t sha224_initial_hash_value[8] = { |
270 | 0xc1059ed8UL, |
271 | 0x367cd507UL, |
272 | 0x3070dd17UL, |
273 | 0xf70e5939UL, |
274 | 0xffc00b31UL, |
275 | 0x68581511UL, |
276 | 0x64f98fa7UL, |
277 | 0xbefa4fa4UL |
278 | }; |
279 | |
280 | /* Initial hash value H for SHA-384 */ |
281 | static const u_int64_t sha384_initial_hash_value[8] = { |
282 | 0xcbbb9d5dc1059ed8ULL, |
283 | 0x629a292a367cd507ULL, |
284 | 0x9159015a3070dd17ULL, |
285 | 0x152fecd8f70e5939ULL, |
286 | 0x67332667ffc00b31ULL, |
287 | 0x8eb44a8768581511ULL, |
288 | 0xdb0c2e0d64f98fa7ULL, |
289 | 0x47b5481dbefa4fa4ULL |
290 | }; |
291 | |
292 | /* Initial hash value H for SHA-512-256 */ |
293 | static const u_int64_t sha512_256_initial_hash_value[8] = { |
294 | 0x22312194fc2bf72cULL, |
295 | 0x9f555fa3c84c64c2ULL, |
296 | 0x2393b86b6f53b151ULL, |
297 | 0x963877195940eabdULL, |
298 | 0x96283ee2a88effe3ULL, |
299 | 0xbe5e1e2553863992ULL, |
300 | 0x2b0199fc2c85b8aaULL, |
301 | 0x0eb72ddc81c52ca2ULL |
302 | }; |
303 | |
304 | /*** SHA-224: *********************************************************/ |
305 | void |
306 | SHA224Init(SHA2_CTX *context) |
307 | { |
308 | memcpy(context->state.st32, sha224_initial_hash_value, |
309 | sizeof(sha224_initial_hash_value)); |
310 | memset(context->buffer, 0, sizeof(context->buffer)); |
311 | context->bitcount[0] = 0; |
312 | } |
313 | |
314 | __weak_alias(SHA224Transform, SHA256Transform)__asm__(".weak " "SHA224Transform" " ; " "SHA224Transform" " = " "SHA256Transform"); |
315 | __weak_alias(SHA224Update, SHA256Update)__asm__(".weak " "SHA224Update" " ; " "SHA224Update" " = " "SHA256Update" ); |
316 | __weak_alias(SHA224Pad, SHA256Pad)__asm__(".weak " "SHA224Pad" " ; " "SHA224Pad" " = " "SHA256Pad" ); |
317 | |
318 | void |
319 | SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH28], SHA2_CTX *context) |
320 | { |
321 | SHA224Pad(context); |
322 | |
323 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
324 | int i; |
325 | |
326 | /* Convert TO host byte order */ |
327 | for (i = 0; i < 7; i++) |
328 | BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >> 24; (digest + i * 4)[1] = (context->state.st32[i]) >> 16; (digest + i * 4)[2] = (context->state.st32[i]) >> 8; (digest + i * 4)[3] = (context->state.st32[i]); } while (0); |
329 | #else |
330 | memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH28); |
331 | #endif |
332 | explicit_bzero(context, sizeof(*context)); |
333 | } |
334 | #endif /* !defined(SHA2_SMALL) */ |
335 | |
336 | /*** SHA-256: *********************************************************/ |
337 | void |
338 | SHA256Init(SHA2_CTX *context) |
339 | { |
340 | memcpy(context->state.st32, sha256_initial_hash_value, |
341 | sizeof(sha256_initial_hash_value)); |
342 | memset(context->buffer, 0, sizeof(context->buffer)); |
343 | context->bitcount[0] = 0; |
344 | } |
345 | |
346 | #ifdef SHA2_UNROLL_TRANSFORM |
347 | |
348 | /* Unrolled SHA-256 round macros: */ |
349 | |
350 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
351 | BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2] << 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t )(data)[0] << 24); } while(0); \ |
352 | data += 4; \ |
353 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; \ |
354 | (d) += T1; \ |
355 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
356 | j++; \ |
357 | } while(0) |
358 | |
359 | #define ROUND256(a,b,c,d,e,f,g,h) do { \ |
360 | s0 = W256[(j+1)&0x0f]; \ |
361 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ |
362 | s1 = W256[(j+14)&0x0f]; \ |
363 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ |
364 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ |
365 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
366 | (d) += T1; \ |
367 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
368 | j++; \ |
369 | } while(0) |
370 | |
371 | void |
372 | SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64]) |
373 | { |
374 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
375 | u_int32_t T1, W256[16]; |
376 | int j; |
377 | |
378 | /* Initialize registers with the prev. intermediate value */ |
379 | a = state[0]; |
380 | b = state[1]; |
381 | c = state[2]; |
382 | d = state[3]; |
383 | e = state[4]; |
384 | f = state[5]; |
385 | g = state[6]; |
386 | h = state[7]; |
387 | |
388 | j = 0; |
389 | do { |
390 | /* Rounds 0 to 15 (unrolled): */ |
391 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
392 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
393 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
394 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
395 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
396 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
397 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
398 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
399 | } while (j < 16); |
400 | |
401 | /* Now for the remaining rounds up to 63: */ |
402 | do { |
403 | ROUND256(a,b,c,d,e,f,g,h); |
404 | ROUND256(h,a,b,c,d,e,f,g); |
405 | ROUND256(g,h,a,b,c,d,e,f); |
406 | ROUND256(f,g,h,a,b,c,d,e); |
407 | ROUND256(e,f,g,h,a,b,c,d); |
408 | ROUND256(d,e,f,g,h,a,b,c); |
409 | ROUND256(c,d,e,f,g,h,a,b); |
410 | ROUND256(b,c,d,e,f,g,h,a); |
411 | } while (j < 64); |
412 | |
413 | /* Compute the current intermediate hash value */ |
414 | state[0] += a; |
415 | state[1] += b; |
416 | state[2] += c; |
417 | state[3] += d; |
418 | state[4] += e; |
419 | state[5] += f; |
420 | state[6] += g; |
421 | state[7] += h; |
422 | |
423 | /* Clean up */ |
424 | a = b = c = d = e = f = g = h = T1 = 0; |
425 | } |
426 | |
427 | #else /* SHA2_UNROLL_TRANSFORM */ |
428 | |
429 | void |
430 | SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64]) |
431 | { |
432 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
433 | u_int32_t T1, T2, W256[16]; |
434 | int j; |
435 | |
436 | /* Initialize registers with the prev. intermediate value */ |
437 | a = state[0]; |
438 | b = state[1]; |
439 | c = state[2]; |
440 | d = state[3]; |
441 | e = state[4]; |
442 | f = state[5]; |
443 | g = state[6]; |
444 | h = state[7]; |
445 | |
446 | j = 0; |
447 | do { |
448 | BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2] << 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t )(data)[0] << 24); } while(0); |
449 | data += 4; |
450 | /* Apply the SHA-256 compression function to update a..h */ |
451 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; |
452 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
453 | h = g; |
454 | g = f; |
455 | f = e; |
456 | e = d + T1; |
457 | d = c; |
458 | c = b; |
459 | b = a; |
460 | a = T1 + T2; |
461 | |
462 | j++; |
463 | } while (j < 16); |
464 | |
465 | do { |
466 | /* Part of the message block expansion: */ |
467 | s0 = W256[(j+1)&0x0f]; |
468 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); |
469 | s1 = W256[(j+14)&0x0f]; |
470 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); |
471 | |
472 | /* Apply the SHA-256 compression function to update a..h */ |
473 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + |
474 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
475 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
476 | h = g; |
477 | g = f; |
478 | f = e; |
479 | e = d + T1; |
480 | d = c; |
481 | c = b; |
482 | b = a; |
483 | a = T1 + T2; |
484 | |
485 | j++; |
486 | } while (j < 64); |
487 | |
488 | /* Compute the current intermediate hash value */ |
489 | state[0] += a; |
490 | state[1] += b; |
491 | state[2] += c; |
492 | state[3] += d; |
493 | state[4] += e; |
494 | state[5] += f; |
495 | state[6] += g; |
496 | state[7] += h; |
497 | |
498 | /* Clean up */ |
499 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
500 | } |
501 | |
502 | #endif /* SHA2_UNROLL_TRANSFORM */ |
503 | |
504 | void |
505 | SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) |
506 | { |
507 | size_t freespace, usedspace; |
508 | |
509 | /* Calling with no data is valid (we do nothing) */ |
510 | if (len == 0) |
511 | return; |
512 | |
513 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; |
514 | if (usedspace > 0) { |
515 | /* Calculate how much free space is available in the buffer */ |
516 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; |
517 | |
518 | if (len >= freespace) { |
519 | /* Fill the buffer completely and process it */ |
520 | memcpy(&context->buffer[usedspace], data, freespace); |
521 | context->bitcount[0] += freespace << 3; |
522 | len -= freespace; |
523 | data += freespace; |
524 | SHA256Transform(context->state.st32, context->buffer); |
525 | } else { |
526 | /* The buffer is not yet full */ |
527 | memcpy(&context->buffer[usedspace], data, len); |
528 | context->bitcount[0] += len << 3; |
529 | /* Clean up: */ |
530 | usedspace = freespace = 0; |
531 | return; |
532 | } |
533 | } |
534 | while (len >= SHA256_BLOCK_LENGTH64) { |
535 | /* Process as many complete blocks as we can */ |
536 | SHA256Transform(context->state.st32, data); |
537 | context->bitcount[0] += SHA256_BLOCK_LENGTH64 << 3; |
538 | len -= SHA256_BLOCK_LENGTH64; |
539 | data += SHA256_BLOCK_LENGTH64; |
540 | } |
541 | if (len > 0) { |
542 | /* There's left-overs, so save 'em */ |
543 | memcpy(context->buffer, data, len); |
544 | context->bitcount[0] += len << 3; |
545 | } |
546 | /* Clean up: */ |
547 | usedspace = freespace = 0; |
548 | } |
549 | |
550 | void |
551 | SHA256Pad(SHA2_CTX *context) |
552 | { |
553 | unsigned int usedspace; |
554 | |
555 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; |
556 | if (usedspace > 0) { |
557 | /* Begin padding with a 1 bit: */ |
558 | context->buffer[usedspace++] = 0x80; |
559 | |
560 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { |
561 | /* Set-up for the last transform: */ |
562 | memset(&context->buffer[usedspace], 0, |
563 | SHA256_SHORT_BLOCK_LENGTH(64 - 8) - usedspace); |
564 | } else { |
565 | if (usedspace < SHA256_BLOCK_LENGTH64) { |
566 | memset(&context->buffer[usedspace], 0, |
567 | SHA256_BLOCK_LENGTH64 - usedspace); |
568 | } |
569 | /* Do second-to-last transform: */ |
570 | SHA256Transform(context->state.st32, context->buffer); |
571 | |
572 | /* Prepare for last transform: */ |
573 | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8)); |
574 | } |
575 | } else { |
576 | /* Set-up for the last transform: */ |
577 | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8)); |
578 | |
579 | /* Begin padding with a 1 bit: */ |
580 | *context->buffer = 0x80; |
581 | } |
582 | /* Store the length of input data (in bits) in big endian format: */ |
583 | BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],do { (&context->buffer[(64 - 8)])[0] = (context->bitcount [0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context ->bitcount[0]) >> 48; (&context->buffer[(64 - 8)])[2] = (context->bitcount[0]) >> 40; (&context ->buffer[(64 - 8)])[3] = (context->bitcount[0]) >> 32; (&context->buffer[(64 - 8)])[4] = (context->bitcount [0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context ->bitcount[0]) >> 16; (&context->buffer[(64 - 8)])[6] = (context->bitcount[0]) >> 8; (&context ->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while (0) |
584 | context->bitcount[0])do { (&context->buffer[(64 - 8)])[0] = (context->bitcount [0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context ->bitcount[0]) >> 48; (&context->buffer[(64 - 8)])[2] = (context->bitcount[0]) >> 40; (&context ->buffer[(64 - 8)])[3] = (context->bitcount[0]) >> 32; (&context->buffer[(64 - 8)])[4] = (context->bitcount [0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context ->bitcount[0]) >> 16; (&context->buffer[(64 - 8)])[6] = (context->bitcount[0]) >> 8; (&context ->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while (0); |
585 | |
586 | /* Final transform: */ |
587 | SHA256Transform(context->state.st32, context->buffer); |
588 | |
589 | /* Clean up: */ |
590 | usedspace = 0; |
591 | } |
592 | |
593 | void |
594 | SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH32], SHA2_CTX *context) |
595 | { |
596 | SHA256Pad(context); |
597 | |
598 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
599 | int i; |
600 | |
601 | /* Convert TO host byte order */ |
602 | for (i = 0; i < 8; i++) |
603 | BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >> 24; (digest + i * 4)[1] = (context->state.st32[i]) >> 16; (digest + i * 4)[2] = (context->state.st32[i]) >> 8; (digest + i * 4)[3] = (context->state.st32[i]); } while (0); |
604 | #else |
605 | memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH32); |
606 | #endif |
607 | explicit_bzero(context, sizeof(*context)); |
608 | } |
609 | |
610 | |
611 | /*** SHA-512: *********************************************************/ |
612 | void |
613 | SHA512Init(SHA2_CTX *context) |
614 | { |
615 | memcpy(context->state.st64, sha512_initial_hash_value, |
616 | sizeof(sha512_initial_hash_value)); |
617 | memset(context->buffer, 0, sizeof(context->buffer)); |
618 | context->bitcount[0] = context->bitcount[1] = 0; |
619 | } |
620 | |
621 | #ifdef SHA2_UNROLL_TRANSFORM |
622 | |
623 | /* Unrolled SHA-512 round macros: */ |
624 | |
625 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ |
626 | BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6] << 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t )(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) | ((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] << 48) | ((u_int64_t)(data)[0] << 56); } while (0); \ |
627 | data += 8; \ |
628 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; \ |
629 | (d) += T1; \ |
630 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
631 | j++; \ |
632 | } while(0) |
633 | |
634 | |
635 | #define ROUND512(a,b,c,d,e,f,g,h) do { \ |
636 | s0 = W512[(j+1)&0x0f]; \ |
637 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ |
638 | s1 = W512[(j+14)&0x0f]; \ |
639 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ |
640 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ |
641 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
642 | (d) += T1; \ |
643 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
644 | j++; \ |
645 | } while(0) |
646 | |
647 | void |
648 | SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128]) |
649 | { |
650 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
651 | u_int64_t T1, W512[16]; |
652 | int j; |
653 | |
654 | /* Initialize registers with the prev. intermediate value */ |
655 | a = state[0]; |
656 | b = state[1]; |
657 | c = state[2]; |
658 | d = state[3]; |
659 | e = state[4]; |
660 | f = state[5]; |
661 | g = state[6]; |
662 | h = state[7]; |
663 | |
664 | j = 0; |
665 | do { |
666 | /* Rounds 0 to 15 (unrolled): */ |
667 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
668 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
669 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
670 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
671 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
672 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
673 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
674 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
675 | } while (j < 16); |
676 | |
677 | /* Now for the remaining rounds up to 79: */ |
678 | do { |
679 | ROUND512(a,b,c,d,e,f,g,h); |
680 | ROUND512(h,a,b,c,d,e,f,g); |
681 | ROUND512(g,h,a,b,c,d,e,f); |
682 | ROUND512(f,g,h,a,b,c,d,e); |
683 | ROUND512(e,f,g,h,a,b,c,d); |
684 | ROUND512(d,e,f,g,h,a,b,c); |
685 | ROUND512(c,d,e,f,g,h,a,b); |
686 | ROUND512(b,c,d,e,f,g,h,a); |
687 | } while (j < 80); |
688 | |
689 | /* Compute the current intermediate hash value */ |
690 | state[0] += a; |
691 | state[1] += b; |
692 | state[2] += c; |
693 | state[3] += d; |
694 | state[4] += e; |
695 | state[5] += f; |
696 | state[6] += g; |
697 | state[7] += h; |
698 | |
699 | /* Clean up */ |
700 | a = b = c = d = e = f = g = h = T1 = 0; |
701 | } |
702 | |
703 | #else /* SHA2_UNROLL_TRANSFORM */ |
704 | |
705 | void |
706 | SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128]) |
707 | { |
708 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
709 | u_int64_t T1, T2, W512[16]; |
710 | int j; |
711 | |
712 | /* Initialize registers with the prev. intermediate value */ |
713 | a = state[0]; |
714 | b = state[1]; |
715 | c = state[2]; |
716 | d = state[3]; |
717 | e = state[4]; |
718 | f = state[5]; |
719 | g = state[6]; |
720 | h = state[7]; |
721 | |
722 | j = 0; |
723 | do { |
724 | BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6] << 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t )(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) | ((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] << 48) | ((u_int64_t)(data)[0] << 56); } while (0); |
725 | data += 8; |
726 | /* Apply the SHA-512 compression function to update a..h */ |
727 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; |
728 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
729 | h = g; |
730 | g = f; |
731 | f = e; |
732 | e = d + T1; |
733 | d = c; |
734 | c = b; |
735 | b = a; |
736 | a = T1 + T2; |
737 | |
738 | j++; |
739 | } while (j < 16); |
740 | |
741 | do { |
742 | /* Part of the message block expansion: */ |
743 | s0 = W512[(j+1)&0x0f]; |
744 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); |
745 | s1 = W512[(j+14)&0x0f]; |
746 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); |
747 | |
748 | /* Apply the SHA-512 compression function to update a..h */ |
749 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + |
750 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
751 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
752 | h = g; |
753 | g = f; |
754 | f = e; |
755 | e = d + T1; |
756 | d = c; |
757 | c = b; |
758 | b = a; |
759 | a = T1 + T2; |
760 | |
761 | j++; |
762 | } while (j < 80); |
763 | |
764 | /* Compute the current intermediate hash value */ |
765 | state[0] += a; |
766 | state[1] += b; |
767 | state[2] += c; |
768 | state[3] += d; |
769 | state[4] += e; |
770 | state[5] += f; |
771 | state[6] += g; |
772 | state[7] += h; |
773 | |
774 | /* Clean up */ |
775 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
Value stored to 'a' is never read | |
776 | } |
777 | |
778 | #endif /* SHA2_UNROLL_TRANSFORM */ |
779 | |
780 | void |
781 | SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) |
782 | { |
783 | size_t freespace, usedspace; |
784 | |
785 | /* Calling with no data is valid (we do nothing) */ |
786 | if (len == 0) |
787 | return; |
788 | |
789 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
790 | if (usedspace > 0) { |
791 | /* Calculate how much free space is available in the buffer */ |
792 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; |
793 | |
794 | if (len >= freespace) { |
795 | /* Fill the buffer completely and process it */ |
796 | memcpy(&context->buffer[usedspace], data, freespace); |
797 | ADDINC128(context->bitcount, freespace << 3)do { (context->bitcount)[0] += (u_int64_t)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } } while (0); |
798 | len -= freespace; |
799 | data += freespace; |
800 | SHA512Transform(context->state.st64, context->buffer); |
801 | } else { |
802 | /* The buffer is not yet full */ |
803 | memcpy(&context->buffer[usedspace], data, len); |
804 | ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3) ; if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } } while (0); |
805 | /* Clean up: */ |
806 | usedspace = freespace = 0; |
807 | return; |
808 | } |
809 | } |
810 | while (len >= SHA512_BLOCK_LENGTH128) { |
811 | /* Process as many complete blocks as we can */ |
812 | SHA512Transform(context->state.st64, data); |
813 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3)do { (context->bitcount)[0] += (u_int64_t)(128 << 3) ; if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } } while (0); |
814 | len -= SHA512_BLOCK_LENGTH128; |
815 | data += SHA512_BLOCK_LENGTH128; |
816 | } |
817 | if (len > 0) { |
818 | /* There's left-overs, so save 'em */ |
819 | memcpy(context->buffer, data, len); |
820 | ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3) ; if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } } while (0); |
821 | } |
822 | /* Clean up: */ |
823 | usedspace = freespace = 0; |
824 | } |
825 | |
826 | void |
827 | SHA512Pad(SHA2_CTX *context) |
828 | { |
829 | unsigned int usedspace; |
830 | |
831 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
832 | if (usedspace > 0) { |
833 | /* Begin padding with a 1 bit: */ |
834 | context->buffer[usedspace++] = 0x80; |
835 | |
836 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { |
837 | /* Set-up for the last transform: */ |
838 | memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16) - usedspace); |
839 | } else { |
840 | if (usedspace < SHA512_BLOCK_LENGTH128) { |
841 | memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH128 - usedspace); |
842 | } |
843 | /* Do second-to-last transform: */ |
844 | SHA512Transform(context->state.st64, context->buffer); |
845 | |
846 | /* And set-up for the last transform: */ |
847 | memset(context->buffer, 0, SHA512_BLOCK_LENGTH128 - 2); |
848 | } |
849 | } else { |
850 | /* Prepare for final transform: */ |
851 | memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16)); |
852 | |
853 | /* Begin padding with a 1 bit: */ |
854 | *context->buffer = 0x80; |
855 | } |
856 | /* Store the length of input data (in bits) in big endian format: */ |
857 | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],do { (&context->buffer[(128 - 16)])[0] = (context-> bitcount[1]) >> 56; (&context->buffer[(128 - 16) ])[1] = (context->bitcount[1]) >> 48; (&context-> buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40 ; (&context->buffer[(128 - 16)])[3] = (context->bitcount [1]) >> 32; (&context->buffer[(128 - 16)])[4] = ( context->bitcount[1]) >> 24; (&context->buffer [(128 - 16)])[5] = (context->bitcount[1]) >> 16; (& context->buffer[(128 - 16)])[6] = (context->bitcount[1] ) >> 8; (&context->buffer[(128 - 16)])[7] = (context ->bitcount[1]); } while (0) |
858 | context->bitcount[1])do { (&context->buffer[(128 - 16)])[0] = (context-> bitcount[1]) >> 56; (&context->buffer[(128 - 16) ])[1] = (context->bitcount[1]) >> 48; (&context-> buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40 ; (&context->buffer[(128 - 16)])[3] = (context->bitcount [1]) >> 32; (&context->buffer[(128 - 16)])[4] = ( context->bitcount[1]) >> 24; (&context->buffer [(128 - 16)])[5] = (context->bitcount[1]) >> 16; (& context->buffer[(128 - 16)])[6] = (context->bitcount[1] ) >> 8; (&context->buffer[(128 - 16)])[7] = (context ->bitcount[1]); } while (0); |
859 | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],do { (&context->buffer[(128 - 16) + 8])[0] = (context-> bitcount[0]) >> 56; (&context->buffer[(128 - 16) + 8])[1] = (context->bitcount[0]) >> 48; (&context ->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >> 40; (&context->buffer[(128 - 16) + 8])[3] = (context-> bitcount[0]) >> 32; (&context->buffer[(128 - 16) + 8])[4] = (context->bitcount[0]) >> 24; (&context ->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >> 16; (&context->buffer[(128 - 16) + 8])[6] = (context-> bitcount[0]) >> 8; (&context->buffer[(128 - 16) + 8])[7] = (context->bitcount[0]); } while (0) |
860 | context->bitcount[0])do { (&context->buffer[(128 - 16) + 8])[0] = (context-> bitcount[0]) >> 56; (&context->buffer[(128 - 16) + 8])[1] = (context->bitcount[0]) >> 48; (&context ->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >> 40; (&context->buffer[(128 - 16) + 8])[3] = (context-> bitcount[0]) >> 32; (&context->buffer[(128 - 16) + 8])[4] = (context->bitcount[0]) >> 24; (&context ->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >> 16; (&context->buffer[(128 - 16) + 8])[6] = (context-> bitcount[0]) >> 8; (&context->buffer[(128 - 16) + 8])[7] = (context->bitcount[0]); } while (0); |
861 | |
862 | /* Final transform: */ |
863 | SHA512Transform(context->state.st64, context->buffer); |
864 | |
865 | /* Clean up: */ |
866 | usedspace = 0; |
867 | } |
868 | |
869 | void |
870 | SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH64], SHA2_CTX *context) |
871 | { |
872 | SHA512Pad(context); |
873 | |
874 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
875 | int i; |
876 | |
877 | /* Convert TO host byte order */ |
878 | for (i = 0; i < 8; i++) |
879 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); |
880 | #else |
881 | memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH64); |
882 | #endif |
883 | explicit_bzero(context, sizeof(*context)); |
884 | } |
885 | |
886 | #if !defined(SHA2_SMALL) |
887 | |
888 | /*** SHA-384: *********************************************************/ |
889 | void |
890 | SHA384Init(SHA2_CTX *context) |
891 | { |
892 | memcpy(context->state.st64, sha384_initial_hash_value, |
893 | sizeof(sha384_initial_hash_value)); |
894 | memset(context->buffer, 0, sizeof(context->buffer)); |
895 | context->bitcount[0] = context->bitcount[1] = 0; |
896 | } |
897 | |
898 | __weak_alias(SHA384Transform, SHA512Transform)__asm__(".weak " "SHA384Transform" " ; " "SHA384Transform" " = " "SHA512Transform"); |
899 | __weak_alias(SHA384Update, SHA512Update)__asm__(".weak " "SHA384Update" " ; " "SHA384Update" " = " "SHA512Update" ); |
900 | __weak_alias(SHA384Pad, SHA512Pad)__asm__(".weak " "SHA384Pad" " ; " "SHA384Pad" " = " "SHA512Pad" ); |
901 | |
902 | void |
903 | SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH48], SHA2_CTX *context) |
904 | { |
905 | SHA384Pad(context); |
906 | |
907 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
908 | int i; |
909 | |
910 | /* Convert TO host byte order */ |
911 | for (i = 0; i < 6; i++) |
912 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); |
913 | #else |
914 | memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH48); |
915 | #endif |
916 | /* Zero out state data */ |
917 | explicit_bzero(context, sizeof(*context)); |
918 | } |
919 | |
920 | /*** SHA-512/256: *********************************************************/ |
921 | void |
922 | SHA512_256Init(SHA2_CTX *context) |
923 | { |
924 | memcpy(context->state.st64, sha512_256_initial_hash_value, |
925 | sizeof(sha512_256_initial_hash_value)); |
926 | memset(context->buffer, 0, sizeof(context->buffer)); |
927 | context->bitcount[0] = context->bitcount[1] = 0; |
928 | } |
929 | |
930 | MAKE_CLONE(SHA512_256Transform, SHA512Transform); |
931 | MAKE_CLONE(SHA512_256Update, SHA512Update); |
932 | MAKE_CLONE(SHA512_256Pad, SHA512Pad); |
933 | |
934 | void |
935 | SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH32], SHA2_CTX *context) |
936 | { |
937 | SHA512_256Pad(context); |
938 | |
939 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
940 | int i; |
941 | |
942 | /* Convert TO host byte order */ |
943 | for (i = 0; i < 4; i++) |
944 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); |
945 | #else |
946 | memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH32); |
947 | #endif |
948 | /* Zero out state data */ |
949 | explicit_bzero(context, sizeof(*context)); |
950 | } |
951 | #endif /* !defined(SHA2_SMALL) */ |