Bug Summary

File:src/sys/arch/amd64/stand/cdboot/../../../../lib/libsa/sha2.c
Warning:line 806, column 4
Value stored to 'usedspace' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple i386-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name sha2.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -ffreestanding -target-cpu i586 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/stand/cdboot/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/lib/clang/13.0.0 -D MDRANDOM -D _STANDALONE -D __INTERNAL_LIBSA_CREAD -D OSREV="7.0" -D MACHINE="amd64" -D KERNEL="/7.0/amd64/bsd.rd" -I /usr/src/sys/arch/amd64/stand/cdboot/../../../.. -I /usr/src/sys/arch/amd64/stand/cdboot/../libsa -I . -I /usr/src/sys/arch/amd64/stand/cdboot -D SOFTRAID -D BOOTMAGIC=0xc001d00d -D LINKADDR=0x40120 -D SLOW -D SMALL -D NOBYFOUR -D NO_GZIP -D DYNAMIC_CRC_TABLE -D BUILDFIXED -I /usr/src/sys/arch/amd64/stand/cdboot/../../../../stand/boot -Oz -fdebug-compilation-dir=/usr/src/sys/arch/amd64/stand/cdboot/obj -ferror-limit 19 -fwrapv -fno-builtin -fgnuc-version=4.2.1 -fpack-struct=1 -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/sys/arch/amd64/stand/cdboot/../../../../lib/libsa/sha2.c
1/* $OpenBSD: sha2.c,v 1.3 2021/03/12 10:22:46 jsg Exp $ */
2
3/*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37#include <lib/libsa/stand.h>
38
39#include "sha2.h"
40
41#define SHA2_SMALL
42
43/*
44 * UNROLLED TRANSFORM LOOP NOTE:
45 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
46 * loop version for the hash transform rounds (defined using macros
47 * later in this file). Either define on the command line, for example:
48 *
49 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
50 *
51 * or define below:
52 *
53 * #define SHA2_UNROLL_TRANSFORM
54 *
55 */
56#ifndef SHA2_SMALL
57#if defined(__amd64__) || defined(__i386__1)
58#define SHA2_UNROLL_TRANSFORM
59#endif
60#endif
61
62/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
63/*
64 * BYTE_ORDER NOTE:
65 *
66 * Please make sure that your system defines BYTE_ORDER. If your
67 * architecture is little-endian, make sure it also defines
68 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
69 * equivalent.
70 *
71 * If your system does not define the above, then you can do so by
72 * hand like this:
73 *
74 * #define LITTLE_ENDIAN 1234
75 * #define BIG_ENDIAN 4321
76 *
77 * And for little-endian machines, add:
78 *
79 * #define BYTE_ORDER LITTLE_ENDIAN
80 *
81 * Or for big-endian machines:
82 *
83 * #define BYTE_ORDER BIG_ENDIAN
84 *
85 * The FreeBSD machine this was written on defines BYTE_ORDER
86 * appropriately by including <sys/types.h> (which in turn includes
87 * <machine/endian.h> where the appropriate definitions are actually
88 * made).
89 */
90#if !defined(BYTE_ORDER1234) || (BYTE_ORDER1234 != LITTLE_ENDIAN1234 && BYTE_ORDER1234 != BIG_ENDIAN4321)
91#error Define BYTE_ORDER1234 to be equal to either LITTLE_ENDIAN1234 or BIG_ENDIAN4321
92#endif
93
94
95/*** SHA-224/256/384/512 Various Length Definitions ***********************/
96/* NOTE: Most of these are in sha2.h */
97#define SHA224_SHORT_BLOCK_LENGTH(64 - 8) (SHA224_BLOCK_LENGTH64 - 8)
98#define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8)
99#define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16)
100#define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16)
101
102/*** ENDIAN SPECIFIC COPY MACROS **************************************/
103#define BE_8_TO_32(dst, cp)do { (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] <<
8) | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] <<
24); } while(0)
do { \
104 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
105 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
106} while(0)
107
108#define BE_8_TO_64(dst, cp)do { (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] <<
8) | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] <<
24) | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2]
<< 40) | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t
)(cp)[0] << 56); } while (0)
do { \
109 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
110 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
111 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
112 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
113} while (0)
114
115#define BE_64_TO_8(cp, src)do { (cp)[0] = (src) >> 56; (cp)[1] = (src) >> 48
; (cp)[2] = (src) >> 40; (cp)[3] = (src) >> 32; (
cp)[4] = (src) >> 24; (cp)[5] = (src) >> 16; (cp)
[6] = (src) >> 8; (cp)[7] = (src); } while (0)
do { \
116 (cp)[0] = (src) >> 56; \
117 (cp)[1] = (src) >> 48; \
118 (cp)[2] = (src) >> 40; \
119 (cp)[3] = (src) >> 32; \
120 (cp)[4] = (src) >> 24; \
121 (cp)[5] = (src) >> 16; \
122 (cp)[6] = (src) >> 8; \
123 (cp)[7] = (src); \
124} while (0)
125
126#define BE_32_TO_8(cp, src)do { (cp)[0] = (src) >> 24; (cp)[1] = (src) >> 16
; (cp)[2] = (src) >> 8; (cp)[3] = (src); } while (0)
do { \
127 (cp)[0] = (src) >> 24; \
128 (cp)[1] = (src) >> 16; \
129 (cp)[2] = (src) >> 8; \
130 (cp)[3] = (src); \
131} while (0)
132
133/*
134 * Macro for incrementally adding the unsigned 64-bit integer n to the
135 * unsigned 128-bit integer (represented using a two-element array of
136 * 64-bit words):
137 */
138#define ADDINC128(w,n)do { (w)[0] += (u_int64_t)(n); if ((w)[0] < (n)) { (w)[1]++
; } } while (0)
do { \
139 (w)[0] += (u_int64_t)(n); \
140 if ((w)[0] < (n)) { \
141 (w)[1]++; \
142 } \
143} while (0)
144
145/*** THE SIX LOGICAL FUNCTIONS ****************************************/
146/*
147 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
148 *
149 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
150 * S is a ROTATION) because the SHA-224/256/384/512 description document
151 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
152 * same "backwards" definition.
153 */
154/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
155#define R(b,x)((x) >> (b)) ((x) >> (b))
156/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
157#define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b))))
158/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
159#define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b))))
160
161/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
162#define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z)))
163#define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
164
165/* Four of six logical functions used in SHA-224 and SHA-256: */
166#define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x
)) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >>
(22)) | (((x)) << (32 - (22)))))
(S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22)))))
167#define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x
)) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >>
(25)) | (((x)) << (32 - (25)))))
(S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25)))))
168#define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x
)) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >>
(3)))
(S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3)))
169#define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ (((
(x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >>
(10)))
(S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10)))
170
171/* Four of six logical functions used in SHA-384 and SHA-512: */
172#define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ (((
(x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x))
>> (39)) | (((x)) << (64 - (39)))))
(S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39)))))
173#define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ (((
(x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x))
>> (41)) | (((x)) << (64 - (41)))))
(S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41)))))
174#define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x
)) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >>
(7)))
(S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7)))
175#define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ (((
(x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >>
(6)))
(S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6)))
176
177
178/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
179/* Hash constant words K for SHA-224 and SHA-256: */
180static const u_int32_t K256[64] = {
181 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
182 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
183 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
184 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
185 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
186 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
187 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
188 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
189 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
190 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
191 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
192 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
193 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
194 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
195 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
196 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
197};
198
199/* Initial hash value H for SHA-256: */
200static const u_int32_t sha256_initial_hash_value[8] = {
201 0x6a09e667UL,
202 0xbb67ae85UL,
203 0x3c6ef372UL,
204 0xa54ff53aUL,
205 0x510e527fUL,
206 0x9b05688cUL,
207 0x1f83d9abUL,
208 0x5be0cd19UL
209};
210
211/* Hash constant words K for SHA-384 and SHA-512: */
212static const u_int64_t K512[80] = {
213 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
214 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
215 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
216 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
217 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
218 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
219 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
220 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
221 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
222 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
223 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
224 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
225 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
226 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
227 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
228 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
229 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
230 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
231 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
232 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
233 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
234 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
235 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
236 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
237 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
238 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
239 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
240 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
241 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
242 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
243 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
244 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
245 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
246 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
247 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
248 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
249 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
250 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
251 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
252 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
253};
254
255/* Initial hash value H for SHA-512 */
256static const u_int64_t sha512_initial_hash_value[8] = {
257 0x6a09e667f3bcc908ULL,
258 0xbb67ae8584caa73bULL,
259 0x3c6ef372fe94f82bULL,
260 0xa54ff53a5f1d36f1ULL,
261 0x510e527fade682d1ULL,
262 0x9b05688c2b3e6c1fULL,
263 0x1f83d9abfb41bd6bULL,
264 0x5be0cd19137e2179ULL
265};
266
267#if !defined(SHA2_SMALL)
268/* Initial hash value H for SHA-224: */
269static const u_int32_t sha224_initial_hash_value[8] = {
270 0xc1059ed8UL,
271 0x367cd507UL,
272 0x3070dd17UL,
273 0xf70e5939UL,
274 0xffc00b31UL,
275 0x68581511UL,
276 0x64f98fa7UL,
277 0xbefa4fa4UL
278};
279
280/* Initial hash value H for SHA-384 */
281static const u_int64_t sha384_initial_hash_value[8] = {
282 0xcbbb9d5dc1059ed8ULL,
283 0x629a292a367cd507ULL,
284 0x9159015a3070dd17ULL,
285 0x152fecd8f70e5939ULL,
286 0x67332667ffc00b31ULL,
287 0x8eb44a8768581511ULL,
288 0xdb0c2e0d64f98fa7ULL,
289 0x47b5481dbefa4fa4ULL
290};
291
292/* Initial hash value H for SHA-512-256 */
293static const u_int64_t sha512_256_initial_hash_value[8] = {
294 0x22312194fc2bf72cULL,
295 0x9f555fa3c84c64c2ULL,
296 0x2393b86b6f53b151ULL,
297 0x963877195940eabdULL,
298 0x96283ee2a88effe3ULL,
299 0xbe5e1e2553863992ULL,
300 0x2b0199fc2c85b8aaULL,
301 0x0eb72ddc81c52ca2ULL
302};
303
304/*** SHA-224: *********************************************************/
305void
306SHA224Init(SHA2_CTX *context)
307{
308 memcpy(context->state.st32, sha224_initial_hash_value,
309 sizeof(sha224_initial_hash_value));
310 memset(context->buffer, 0, sizeof(context->buffer));
311 context->bitcount[0] = 0;
312}
313
314__weak_alias(SHA224Transform, SHA256Transform)__asm__(".weak " "SHA224Transform" " ; " "SHA224Transform" " = "
"SHA256Transform")
;
315__weak_alias(SHA224Update, SHA256Update)__asm__(".weak " "SHA224Update" " ; " "SHA224Update" " = " "SHA256Update"
)
;
316__weak_alias(SHA224Pad, SHA256Pad)__asm__(".weak " "SHA224Pad" " ; " "SHA224Pad" " = " "SHA256Pad"
)
;
317
318void
319SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH28], SHA2_CTX *context)
320{
321 SHA224Pad(context);
322
323#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
324 int i;
325
326 /* Convert TO host byte order */
327 for (i = 0; i < 7; i++)
328 BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >>
24; (digest + i * 4)[1] = (context->state.st32[i]) >>
16; (digest + i * 4)[2] = (context->state.st32[i]) >>
8; (digest + i * 4)[3] = (context->state.st32[i]); } while
(0)
;
329#else
330 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH28);
331#endif
332 explicit_bzero(context, sizeof(*context));
333}
334#endif /* !defined(SHA2_SMALL) */
335
336/*** SHA-256: *********************************************************/
337void
338SHA256Init(SHA2_CTX *context)
339{
340 memcpy(context->state.st32, sha256_initial_hash_value,
341 sizeof(sha256_initial_hash_value));
342 memset(context->buffer, 0, sizeof(context->buffer));
343 context->bitcount[0] = 0;
344}
345
346#ifdef SHA2_UNROLL_TRANSFORM
347
348/* Unrolled SHA-256 round macros: */
349
350#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
351 BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2]
<< 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t
)(data)[0] << 24); } while(0)
; \
352 data += 4; \
353 T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ (
((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ (
((((e))) >> (25)) | ((((e))) << (32 - (25)))))
+ Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; \
354 (d) += T1; \
355 (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ (
((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ (
((((a))) >> (22)) | ((((a))) << (32 - (22)))))
+ Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c
))))
; \
356 j++; \
357} while(0)
358
359#define ROUND256(a,b,c,d,e,f,g,h) do { \
360 s0 = W256[(j+1)&0x0f]; \
361 s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ (((
(s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0
)) >> (3)))
; \
362 s1 = W256[(j+14)&0x0f]; \
363 s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ (
(((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ (((
s1)) >> (10)))
; \
364 T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ (
((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ (
((((e))) >> (25)) | ((((e))) << (32 - (25)))))
+ Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \
365 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
366 (d) += T1; \
367 (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ (
((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ (
((((a))) >> (22)) | ((((a))) << (32 - (22)))))
+ Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c
))))
; \
368 j++; \
369} while(0)
370
371void
372SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64])
373{
374 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
375 u_int32_t T1, W256[16];
376 int j;
377
378 /* Initialize registers with the prev. intermediate value */
379 a = state[0];
380 b = state[1];
381 c = state[2];
382 d = state[3];
383 e = state[4];
384 f = state[5];
385 g = state[6];
386 h = state[7];
387
388 j = 0;
389 do {
390 /* Rounds 0 to 15 (unrolled): */
391 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
392 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
393 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
394 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
395 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
396 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
397 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
398 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
399 } while (j < 16);
400
401 /* Now for the remaining rounds up to 63: */
402 do {
403 ROUND256(a,b,c,d,e,f,g,h);
404 ROUND256(h,a,b,c,d,e,f,g);
405 ROUND256(g,h,a,b,c,d,e,f);
406 ROUND256(f,g,h,a,b,c,d,e);
407 ROUND256(e,f,g,h,a,b,c,d);
408 ROUND256(d,e,f,g,h,a,b,c);
409 ROUND256(c,d,e,f,g,h,a,b);
410 ROUND256(b,c,d,e,f,g,h,a);
411 } while (j < 64);
412
413 /* Compute the current intermediate hash value */
414 state[0] += a;
415 state[1] += b;
416 state[2] += c;
417 state[3] += d;
418 state[4] += e;
419 state[5] += f;
420 state[6] += g;
421 state[7] += h;
422
423 /* Clean up */
424 a = b = c = d = e = f = g = h = T1 = 0;
425}
426
427#else /* SHA2_UNROLL_TRANSFORM */
428
429void
430SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64])
431{
432 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
433 u_int32_t T1, T2, W256[16];
434 int j;
435
436 /* Initialize registers with the prev. intermediate value */
437 a = state[0];
438 b = state[1];
439 c = state[2];
440 d = state[3];
441 e = state[4];
442 f = state[5];
443 g = state[6];
444 h = state[7];
445
446 j = 0;
447 do {
448 BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2]
<< 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t
)(data)[0] << 24); } while(0)
;
449 data += 4;
450 /* Apply the SHA-256 compression function to update a..h */
451 T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e
)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >>
(25)) | (((e)) << (32 - (25)))))
+ Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j];
452 T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a
)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >>
(22)) | (((a)) << (32 - (22)))))
+ Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));
453 h = g;
454 g = f;
455 f = e;
456 e = d + T1;
457 d = c;
458 c = b;
459 b = a;
460 a = T1 + T2;
461
462 j++;
463 } while (j < 16);
464
465 do {
466 /* Part of the message block expansion: */
467 s0 = W256[(j+1)&0x0f];
468 s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ (((
(s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0
)) >> (3)))
;
469 s1 = W256[(j+14)&0x0f];
470 s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ (
(((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ (((
s1)) >> (10)))
;
471
472 /* Apply the SHA-256 compression function to update a..h */
473 T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e
)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >>
(25)) | (((e)) << (32 - (25)))))
+ Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] +
474 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
475 T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a
)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >>
(22)) | (((a)) << (32 - (22)))))
+ Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));
476 h = g;
477 g = f;
478 f = e;
479 e = d + T1;
480 d = c;
481 c = b;
482 b = a;
483 a = T1 + T2;
484
485 j++;
486 } while (j < 64);
487
488 /* Compute the current intermediate hash value */
489 state[0] += a;
490 state[1] += b;
491 state[2] += c;
492 state[3] += d;
493 state[4] += e;
494 state[5] += f;
495 state[6] += g;
496 state[7] += h;
497
498 /* Clean up */
499 a = b = c = d = e = f = g = h = T1 = T2 = 0;
500}
501
502#endif /* SHA2_UNROLL_TRANSFORM */
503
504void
505SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
506{
507 size_t freespace, usedspace;
508
509 /* Calling with no data is valid (we do nothing) */
510 if (len == 0)
511 return;
512
513 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64;
514 if (usedspace > 0) {
515 /* Calculate how much free space is available in the buffer */
516 freespace = SHA256_BLOCK_LENGTH64 - usedspace;
517
518 if (len >= freespace) {
519 /* Fill the buffer completely and process it */
520 memcpy(&context->buffer[usedspace], data, freespace);
521 context->bitcount[0] += freespace << 3;
522 len -= freespace;
523 data += freespace;
524 SHA256Transform(context->state.st32, context->buffer);
525 } else {
526 /* The buffer is not yet full */
527 memcpy(&context->buffer[usedspace], data, len);
528 context->bitcount[0] += len << 3;
529 /* Clean up: */
530 usedspace = freespace = 0;
531 return;
532 }
533 }
534 while (len >= SHA256_BLOCK_LENGTH64) {
535 /* Process as many complete blocks as we can */
536 SHA256Transform(context->state.st32, data);
537 context->bitcount[0] += SHA256_BLOCK_LENGTH64 << 3;
538 len -= SHA256_BLOCK_LENGTH64;
539 data += SHA256_BLOCK_LENGTH64;
540 }
541 if (len > 0) {
542 /* There's left-overs, so save 'em */
543 memcpy(context->buffer, data, len);
544 context->bitcount[0] += len << 3;
545 }
546 /* Clean up: */
547 usedspace = freespace = 0;
548}
549
550void
551SHA256Pad(SHA2_CTX *context)
552{
553 unsigned int usedspace;
554
555 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64;
556 if (usedspace > 0) {
557 /* Begin padding with a 1 bit: */
558 context->buffer[usedspace++] = 0x80;
559
560 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) {
561 /* Set-up for the last transform: */
562 memset(&context->buffer[usedspace], 0,
563 SHA256_SHORT_BLOCK_LENGTH(64 - 8) - usedspace);
564 } else {
565 if (usedspace < SHA256_BLOCK_LENGTH64) {
566 memset(&context->buffer[usedspace], 0,
567 SHA256_BLOCK_LENGTH64 - usedspace);
568 }
569 /* Do second-to-last transform: */
570 SHA256Transform(context->state.st32, context->buffer);
571
572 /* Prepare for last transform: */
573 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8));
574 }
575 } else {
576 /* Set-up for the last transform: */
577 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8));
578
579 /* Begin padding with a 1 bit: */
580 *context->buffer = 0x80;
581 }
582 /* Store the length of input data (in bits) in big endian format: */
583 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],do { (&context->buffer[(64 - 8)])[0] = (context->bitcount
[0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context
->bitcount[0]) >> 48; (&context->buffer[(64 -
8)])[2] = (context->bitcount[0]) >> 40; (&context
->buffer[(64 - 8)])[3] = (context->bitcount[0]) >>
32; (&context->buffer[(64 - 8)])[4] = (context->bitcount
[0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context
->bitcount[0]) >> 16; (&context->buffer[(64 -
8)])[6] = (context->bitcount[0]) >> 8; (&context
->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while
(0)
584 context->bitcount[0])do { (&context->buffer[(64 - 8)])[0] = (context->bitcount
[0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context
->bitcount[0]) >> 48; (&context->buffer[(64 -
8)])[2] = (context->bitcount[0]) >> 40; (&context
->buffer[(64 - 8)])[3] = (context->bitcount[0]) >>
32; (&context->buffer[(64 - 8)])[4] = (context->bitcount
[0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context
->bitcount[0]) >> 16; (&context->buffer[(64 -
8)])[6] = (context->bitcount[0]) >> 8; (&context
->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while
(0)
;
585
586 /* Final transform: */
587 SHA256Transform(context->state.st32, context->buffer);
588
589 /* Clean up: */
590 usedspace = 0;
591}
592
593void
594SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH32], SHA2_CTX *context)
595{
596 SHA256Pad(context);
597
598#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
599 int i;
600
601 /* Convert TO host byte order */
602 for (i = 0; i < 8; i++)
603 BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >>
24; (digest + i * 4)[1] = (context->state.st32[i]) >>
16; (digest + i * 4)[2] = (context->state.st32[i]) >>
8; (digest + i * 4)[3] = (context->state.st32[i]); } while
(0)
;
604#else
605 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH32);
606#endif
607 explicit_bzero(context, sizeof(*context));
608}
609
610
611/*** SHA-512: *********************************************************/
612void
613SHA512Init(SHA2_CTX *context)
614{
615 memcpy(context->state.st64, sha512_initial_hash_value,
616 sizeof(sha512_initial_hash_value));
617 memset(context->buffer, 0, sizeof(context->buffer));
618 context->bitcount[0] = context->bitcount[1] = 0;
619}
620
621#ifdef SHA2_UNROLL_TRANSFORM
622
623/* Unrolled SHA-512 round macros: */
624
625#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
626 BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6]
<< 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t
)(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) |
((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] <<
48) | ((u_int64_t)(data)[0] << 56); } while (0)
; \
627 data += 8; \
628 T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^
(((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^
(((((e))) >> (41)) | ((((e))) << (64 - (41)))))
+ Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; \
629 (d) += T1; \
630 (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^
(((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^
(((((a))) >> (39)) | ((((a))) << (64 - (39)))))
+ Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c
))))
; \
631 j++; \
632} while(0)
633
634
635#define ROUND512(a,b,c,d,e,f,g,h) do { \
636 s0 = W512[(j+1)&0x0f]; \
637 s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ (((
(s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0))
>> (7)))
; \
638 s1 = W512[(j+14)&0x0f]; \
639 s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ (
(((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ (((
s1)) >> (6)))
; \
640 T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^
(((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^
(((((e))) >> (41)) | ((((e))) << (64 - (41)))))
+ Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \
641 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
642 (d) += T1; \
643 (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^
(((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^
(((((a))) >> (39)) | ((((a))) << (64 - (39)))))
+ Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c
))))
; \
644 j++; \
645} while(0)
646
647void
648SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128])
649{
650 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
651 u_int64_t T1, W512[16];
652 int j;
653
654 /* Initialize registers with the prev. intermediate value */
655 a = state[0];
656 b = state[1];
657 c = state[2];
658 d = state[3];
659 e = state[4];
660 f = state[5];
661 g = state[6];
662 h = state[7];
663
664 j = 0;
665 do {
666 /* Rounds 0 to 15 (unrolled): */
667 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
668 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
669 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
670 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
671 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
672 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
673 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
674 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
675 } while (j < 16);
676
677 /* Now for the remaining rounds up to 79: */
678 do {
679 ROUND512(a,b,c,d,e,f,g,h);
680 ROUND512(h,a,b,c,d,e,f,g);
681 ROUND512(g,h,a,b,c,d,e,f);
682 ROUND512(f,g,h,a,b,c,d,e);
683 ROUND512(e,f,g,h,a,b,c,d);
684 ROUND512(d,e,f,g,h,a,b,c);
685 ROUND512(c,d,e,f,g,h,a,b);
686 ROUND512(b,c,d,e,f,g,h,a);
687 } while (j < 80);
688
689 /* Compute the current intermediate hash value */
690 state[0] += a;
691 state[1] += b;
692 state[2] += c;
693 state[3] += d;
694 state[4] += e;
695 state[5] += f;
696 state[6] += g;
697 state[7] += h;
698
699 /* Clean up */
700 a = b = c = d = e = f = g = h = T1 = 0;
701}
702
703#else /* SHA2_UNROLL_TRANSFORM */
704
705void
706SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128])
707{
708 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
709 u_int64_t T1, T2, W512[16];
710 int j;
711
712 /* Initialize registers with the prev. intermediate value */
713 a = state[0];
714 b = state[1];
715 c = state[2];
716 d = state[3];
717 e = state[4];
718 f = state[5];
719 g = state[6];
720 h = state[7];
721
722 j = 0;
723 do {
724 BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6]
<< 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t
)(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) |
((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] <<
48) | ((u_int64_t)(data)[0] << 56); } while (0)
;
725 data += 8;
726 /* Apply the SHA-512 compression function to update a..h */
727 T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ (((
(e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e))
>> (41)) | (((e)) << (64 - (41)))))
+ Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j];
728 T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ (((
(a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a))
>> (39)) | (((a)) << (64 - (39)))))
+ Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));
729 h = g;
730 g = f;
731 f = e;
732 e = d + T1;
733 d = c;
734 c = b;
735 b = a;
736 a = T1 + T2;
737
738 j++;
739 } while (j < 16);
740
741 do {
742 /* Part of the message block expansion: */
743 s0 = W512[(j+1)&0x0f];
744 s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ (((
(s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0))
>> (7)))
;
745 s1 = W512[(j+14)&0x0f];
746 s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ (
(((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ (((
s1)) >> (6)))
;
747
748 /* Apply the SHA-512 compression function to update a..h */
749 T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ (((
(e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e))
>> (41)) | (((e)) << (64 - (41)))))
+ Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] +
750 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
751 T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ (((
(a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a))
>> (39)) | (((a)) << (64 - (39)))))
+ Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));
752 h = g;
753 g = f;
754 f = e;
755 e = d + T1;
756 d = c;
757 c = b;
758 b = a;
759 a = T1 + T2;
760
761 j++;
762 } while (j < 80);
763
764 /* Compute the current intermediate hash value */
765 state[0] += a;
766 state[1] += b;
767 state[2] += c;
768 state[3] += d;
769 state[4] += e;
770 state[5] += f;
771 state[6] += g;
772 state[7] += h;
773
774 /* Clean up */
775 a = b = c = d = e = f = g = h = T1 = T2 = 0;
776}
777
778#endif /* SHA2_UNROLL_TRANSFORM */
779
780void
781SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
782{
783 size_t freespace, usedspace;
784
785 /* Calling with no data is valid (we do nothing) */
786 if (len == 0)
787 return;
788
789 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128;
790 if (usedspace > 0) {
791 /* Calculate how much free space is available in the buffer */
792 freespace = SHA512_BLOCK_LENGTH128 - usedspace;
793
794 if (len >= freespace) {
795 /* Fill the buffer completely and process it */
796 memcpy(&context->buffer[usedspace], data, freespace);
797 ADDINC128(context->bitcount, freespace << 3)do { (context->bitcount)[0] += (u_int64_t)(freespace <<
3); if ((context->bitcount)[0] < (freespace << 3
)) { (context->bitcount)[1]++; } } while (0)
;
798 len -= freespace;
799 data += freespace;
800 SHA512Transform(context->state.st64, context->buffer);
801 } else {
802 /* The buffer is not yet full */
803 memcpy(&context->buffer[usedspace], data, len);
804 ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3)
; if ((context->bitcount)[0] < (len << 3)) { (context
->bitcount)[1]++; } } while (0)
;
805 /* Clean up: */
806 usedspace = freespace = 0;
Value stored to 'usedspace' is never read
807 return;
808 }
809 }
810 while (len >= SHA512_BLOCK_LENGTH128) {
811 /* Process as many complete blocks as we can */
812 SHA512Transform(context->state.st64, data);
813 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3)do { (context->bitcount)[0] += (u_int64_t)(128 << 3)
; if ((context->bitcount)[0] < (128 << 3)) { (context
->bitcount)[1]++; } } while (0)
;
814 len -= SHA512_BLOCK_LENGTH128;
815 data += SHA512_BLOCK_LENGTH128;
816 }
817 if (len > 0) {
818 /* There's left-overs, so save 'em */
819 memcpy(context->buffer, data, len);
820 ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3)
; if ((context->bitcount)[0] < (len << 3)) { (context
->bitcount)[1]++; } } while (0)
;
821 }
822 /* Clean up: */
823 usedspace = freespace = 0;
824}
825
826void
827SHA512Pad(SHA2_CTX *context)
828{
829 unsigned int usedspace;
830
831 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128;
832 if (usedspace > 0) {
833 /* Begin padding with a 1 bit: */
834 context->buffer[usedspace++] = 0x80;
835
836 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) {
837 /* Set-up for the last transform: */
838 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16) - usedspace);
839 } else {
840 if (usedspace < SHA512_BLOCK_LENGTH128) {
841 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH128 - usedspace);
842 }
843 /* Do second-to-last transform: */
844 SHA512Transform(context->state.st64, context->buffer);
845
846 /* And set-up for the last transform: */
847 memset(context->buffer, 0, SHA512_BLOCK_LENGTH128 - 2);
848 }
849 } else {
850 /* Prepare for final transform: */
851 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16));
852
853 /* Begin padding with a 1 bit: */
854 *context->buffer = 0x80;
855 }
856 /* Store the length of input data (in bits) in big endian format: */
857 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],do { (&context->buffer[(128 - 16)])[0] = (context->
bitcount[1]) >> 56; (&context->buffer[(128 - 16)
])[1] = (context->bitcount[1]) >> 48; (&context->
buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40
; (&context->buffer[(128 - 16)])[3] = (context->bitcount
[1]) >> 32; (&context->buffer[(128 - 16)])[4] = (
context->bitcount[1]) >> 24; (&context->buffer
[(128 - 16)])[5] = (context->bitcount[1]) >> 16; (&
context->buffer[(128 - 16)])[6] = (context->bitcount[1]
) >> 8; (&context->buffer[(128 - 16)])[7] = (context
->bitcount[1]); } while (0)
858 context->bitcount[1])do { (&context->buffer[(128 - 16)])[0] = (context->
bitcount[1]) >> 56; (&context->buffer[(128 - 16)
])[1] = (context->bitcount[1]) >> 48; (&context->
buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40
; (&context->buffer[(128 - 16)])[3] = (context->bitcount
[1]) >> 32; (&context->buffer[(128 - 16)])[4] = (
context->bitcount[1]) >> 24; (&context->buffer
[(128 - 16)])[5] = (context->bitcount[1]) >> 16; (&
context->buffer[(128 - 16)])[6] = (context->bitcount[1]
) >> 8; (&context->buffer[(128 - 16)])[7] = (context
->bitcount[1]); } while (0)
;
859 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],do { (&context->buffer[(128 - 16) + 8])[0] = (context->
bitcount[0]) >> 56; (&context->buffer[(128 - 16)
+ 8])[1] = (context->bitcount[0]) >> 48; (&context
->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >>
40; (&context->buffer[(128 - 16) + 8])[3] = (context->
bitcount[0]) >> 32; (&context->buffer[(128 - 16)
+ 8])[4] = (context->bitcount[0]) >> 24; (&context
->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >>
16; (&context->buffer[(128 - 16) + 8])[6] = (context->
bitcount[0]) >> 8; (&context->buffer[(128 - 16) +
8])[7] = (context->bitcount[0]); } while (0)
860 context->bitcount[0])do { (&context->buffer[(128 - 16) + 8])[0] = (context->
bitcount[0]) >> 56; (&context->buffer[(128 - 16)
+ 8])[1] = (context->bitcount[0]) >> 48; (&context
->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >>
40; (&context->buffer[(128 - 16) + 8])[3] = (context->
bitcount[0]) >> 32; (&context->buffer[(128 - 16)
+ 8])[4] = (context->bitcount[0]) >> 24; (&context
->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >>
16; (&context->buffer[(128 - 16) + 8])[6] = (context->
bitcount[0]) >> 8; (&context->buffer[(128 - 16) +
8])[7] = (context->bitcount[0]); } while (0)
;
861
862 /* Final transform: */
863 SHA512Transform(context->state.st64, context->buffer);
864
865 /* Clean up: */
866 usedspace = 0;
867}
868
869void
870SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH64], SHA2_CTX *context)
871{
872 SHA512Pad(context);
873
874#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
875 int i;
876
877 /* Convert TO host byte order */
878 for (i = 0; i < 8; i++)
879 BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >>
56; (digest + i * 8)[1] = (context->state.st64[i]) >>
48; (digest + i * 8)[2] = (context->state.st64[i]) >>
40; (digest + i * 8)[3] = (context->state.st64[i]) >>
32; (digest + i * 8)[4] = (context->state.st64[i]) >>
24; (digest + i * 8)[5] = (context->state.st64[i]) >>
16; (digest + i * 8)[6] = (context->state.st64[i]) >>
8; (digest + i * 8)[7] = (context->state.st64[i]); } while
(0)
;
880#else
881 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH64);
882#endif
883 explicit_bzero(context, sizeof(*context));
884}
885
886#if !defined(SHA2_SMALL)
887
888/*** SHA-384: *********************************************************/
889void
890SHA384Init(SHA2_CTX *context)
891{
892 memcpy(context->state.st64, sha384_initial_hash_value,
893 sizeof(sha384_initial_hash_value));
894 memset(context->buffer, 0, sizeof(context->buffer));
895 context->bitcount[0] = context->bitcount[1] = 0;
896}
897
898__weak_alias(SHA384Transform, SHA512Transform)__asm__(".weak " "SHA384Transform" " ; " "SHA384Transform" " = "
"SHA512Transform")
;
899__weak_alias(SHA384Update, SHA512Update)__asm__(".weak " "SHA384Update" " ; " "SHA384Update" " = " "SHA512Update"
)
;
900__weak_alias(SHA384Pad, SHA512Pad)__asm__(".weak " "SHA384Pad" " ; " "SHA384Pad" " = " "SHA512Pad"
)
;
901
902void
903SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH48], SHA2_CTX *context)
904{
905 SHA384Pad(context);
906
907#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
908 int i;
909
910 /* Convert TO host byte order */
911 for (i = 0; i < 6; i++)
912 BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >>
56; (digest + i * 8)[1] = (context->state.st64[i]) >>
48; (digest + i * 8)[2] = (context->state.st64[i]) >>
40; (digest + i * 8)[3] = (context->state.st64[i]) >>
32; (digest + i * 8)[4] = (context->state.st64[i]) >>
24; (digest + i * 8)[5] = (context->state.st64[i]) >>
16; (digest + i * 8)[6] = (context->state.st64[i]) >>
8; (digest + i * 8)[7] = (context->state.st64[i]); } while
(0)
;
913#else
914 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH48);
915#endif
916 /* Zero out state data */
917 explicit_bzero(context, sizeof(*context));
918}
919
920/*** SHA-512/256: *********************************************************/
921void
922SHA512_256Init(SHA2_CTX *context)
923{
924 memcpy(context->state.st64, sha512_256_initial_hash_value,
925 sizeof(sha512_256_initial_hash_value));
926 memset(context->buffer, 0, sizeof(context->buffer));
927 context->bitcount[0] = context->bitcount[1] = 0;
928}
929
930MAKE_CLONE(SHA512_256Transform, SHA512Transform);
931MAKE_CLONE(SHA512_256Update, SHA512Update);
932MAKE_CLONE(SHA512_256Pad, SHA512Pad);
933
934void
935SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH32], SHA2_CTX *context)
936{
937 SHA512_256Pad(context);
938
939#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
940 int i;
941
942 /* Convert TO host byte order */
943 for (i = 0; i < 4; i++)
944 BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >>
56; (digest + i * 8)[1] = (context->state.st64[i]) >>
48; (digest + i * 8)[2] = (context->state.st64[i]) >>
40; (digest + i * 8)[3] = (context->state.st64[i]) >>
32; (digest + i * 8)[4] = (context->state.st64[i]) >>
24; (digest + i * 8)[5] = (context->state.st64[i]) >>
16; (digest + i * 8)[6] = (context->state.st64[i]) >>
8; (digest + i * 8)[7] = (context->state.st64[i]); } while
(0)
;
945#else
946 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH32);
947#endif
948 /* Zero out state data */
949 explicit_bzero(context, sizeof(*context));
950}
951#endif /* !defined(SHA2_SMALL) */