File: | src/usr.sbin/ospfd/kroute.c |
Warning: | line 1586, column 4 Value stored to 'okr' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: kroute.c,v 1.114 2020/08/20 03:09:28 jmatthew Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2004 Esben Norby <norby@openbsd.org> |
5 | * Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org> |
6 | * |
7 | * Permission to use, copy, modify, and distribute this software for any |
8 | * purpose with or without fee is hereby granted, provided that the above |
9 | * copyright notice and this permission notice appear in all copies. |
10 | * |
11 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
12 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
13 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
14 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
15 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
16 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
17 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
18 | */ |
19 | |
20 | #include <sys/types.h> |
21 | #include <sys/socket.h> |
22 | #include <sys/sysctl.h> |
23 | #include <sys/tree.h> |
24 | #include <sys/uio.h> |
25 | #include <netinet/in.h> |
26 | #include <arpa/inet.h> |
27 | #include <net/if.h> |
28 | #include <net/if_dl.h> |
29 | #include <net/if_types.h> |
30 | #include <net/route.h> |
31 | #include <err.h> |
32 | #include <errno(*__errno()).h> |
33 | #include <fcntl.h> |
34 | #include <stdio.h> |
35 | #include <stdlib.h> |
36 | #include <string.h> |
37 | #include <unistd.h> |
38 | #include <limits.h> |
39 | |
40 | #include "ospfd.h" |
41 | #include "log.h" |
42 | |
43 | struct { |
44 | u_int32_t rtseq; |
45 | pid_t pid; |
46 | int fib_sync; |
47 | int fib_serial; |
48 | u_int8_t fib_prio; |
49 | int fd; |
50 | struct event ev; |
51 | struct event reload; |
52 | u_int rdomain; |
53 | #define KR_RELOAD_IDLE0 0 |
54 | #define KR_RELOAD_FETCH1 1 |
55 | #define KR_RELOAD_HOLD2 2 |
56 | int reload_state; |
57 | } kr_state; |
58 | |
59 | struct kroute_node { |
60 | RB_ENTRY(kroute_node)struct { struct kroute_node *rbe_left; struct kroute_node *rbe_right ; struct kroute_node *rbe_parent; int rbe_color; } entry; |
61 | struct kroute_node *next; |
62 | struct kroute r; |
63 | int serial; |
64 | }; |
65 | |
66 | struct kif_node { |
67 | RB_ENTRY(kif_node)struct { struct kif_node *rbe_left; struct kif_node *rbe_right ; struct kif_node *rbe_parent; int rbe_color; } entry; |
68 | TAILQ_HEAD(, kif_addr)struct { struct kif_addr *tqh_first; struct kif_addr **tqh_last ; } addrs; |
69 | struct kif k; |
70 | }; |
71 | |
72 | void kr_redist_remove(struct kroute_node *, struct kroute_node *); |
73 | int kr_redist_eval(struct kroute *, struct kroute *); |
74 | void kr_redistribute(struct kroute_node *); |
75 | int kroute_compare(struct kroute_node *, struct kroute_node *); |
76 | int kif_compare(struct kif_node *, struct kif_node *); |
77 | int kr_change_fib(struct kroute_node *, struct kroute *, int, int); |
78 | int kr_delete_fib(struct kroute_node *); |
79 | |
80 | struct kroute_node *kroute_find(in_addr_t, u_int8_t, u_int8_t); |
81 | struct kroute_node *kroute_matchgw(struct kroute_node *, struct in_addr); |
82 | int kroute_insert(struct kroute_node *); |
83 | int kroute_remove(struct kroute_node *); |
84 | void kroute_clear(void); |
85 | |
86 | struct kif_node *kif_find(u_short); |
87 | struct kif_node *kif_insert(u_short); |
88 | int kif_remove(struct kif_node *); |
89 | struct kif *kif_update(u_short, int, struct if_data *, |
90 | struct sockaddr_dl *); |
91 | int kif_validate(u_short); |
92 | |
93 | struct kroute_node *kroute_match(in_addr_t); |
94 | |
95 | int protect_lo(void); |
96 | u_int8_t prefixlen_classful(in_addr_t); |
97 | void get_rtaddrs(int, struct sockaddr *, struct sockaddr **); |
98 | void if_change(u_short, int, struct if_data *, struct sockaddr_dl *); |
99 | void if_newaddr(u_short, struct sockaddr_in *, struct sockaddr_in *, |
100 | struct sockaddr_in *); |
101 | void if_deladdr(u_short, struct sockaddr_in *, struct sockaddr_in *, |
102 | struct sockaddr_in *); |
103 | void if_announce(void *); |
104 | |
105 | int send_rtmsg(int, int, struct kroute *); |
106 | int dispatch_rtmsg(void); |
107 | int fetchtable(void); |
108 | int fetchifs(u_short); |
109 | int rtmsg_process(char *, size_t); |
110 | void kr_fib_reload_timer(int, short, void *); |
111 | void kr_fib_reload_arm_timer(int); |
112 | |
113 | RB_HEAD(kroute_tree, kroute_node)struct kroute_tree { struct kroute_node *rbh_root; } krt = RB_INITIALIZER(&krt){ ((void*)0) }; |
114 | RB_PROTOTYPE(kroute_tree, kroute_node, entry, kroute_compare)void kroute_tree_RB_INSERT_COLOR(struct kroute_tree *, struct kroute_node *); void kroute_tree_RB_REMOVE_COLOR(struct kroute_tree *, struct kroute_node *, struct kroute_node *); struct kroute_node *kroute_tree_RB_REMOVE(struct kroute_tree *, struct kroute_node *); struct kroute_node *kroute_tree_RB_INSERT(struct kroute_tree *, struct kroute_node *); struct kroute_node *kroute_tree_RB_FIND (struct kroute_tree *, struct kroute_node *); struct kroute_node *kroute_tree_RB_NFIND(struct kroute_tree *, struct kroute_node *); struct kroute_node *kroute_tree_RB_NEXT(struct kroute_node *); struct kroute_node *kroute_tree_RB_PREV(struct kroute_node *); struct kroute_node *kroute_tree_RB_MINMAX(struct kroute_tree *, int); |
115 | RB_GENERATE(kroute_tree, kroute_node, entry, kroute_compare)void kroute_tree_RB_INSERT_COLOR(struct kroute_tree *head, struct kroute_node *elm) { struct kroute_node *parent, *gparent, *tmp ; while ((parent = (elm)->entry.rbe_parent) && (parent )->entry.rbe_color == 1) { gparent = (parent)->entry.rbe_parent ; if (parent == (gparent)->entry.rbe_left) { tmp = (gparent )->entry.rbe_right; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry .rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0 ); elm = gparent; continue; } if ((parent)->entry.rbe_right == elm) { do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_left; if (((gparent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } else { tmp = (gparent)-> entry.rbe_left; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry. rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0) ; elm = gparent; continue; } if ((parent)->entry.rbe_left == elm) { do { (tmp) = (parent)->entry.rbe_left; if (((parent )->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)-> entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_right ; if (((gparent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } } (head->rbh_root)-> entry.rbe_color = 0; } void kroute_tree_RB_REMOVE_COLOR(struct kroute_tree *head, struct kroute_node *parent, struct kroute_node *elm) { struct kroute_node *tmp; while ((elm == ((void*)0) || (elm)->entry.rbe_color == 0) && elm != (head)-> rbh_root) { if ((parent)->entry.rbe_left == elm) { tmp = ( parent)->entry.rbe_right; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry. rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_right ; if (((parent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (parent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_right ; } if (((tmp)->entry.rbe_left == ((void*)0) || ((tmp)-> entry.rbe_left)->entry.rbe_color == 0) && ((tmp)-> entry.rbe_right == ((void*)0) || ((tmp)->entry.rbe_right)-> entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp )->entry.rbe_right == ((void*)0) || ((tmp)->entry.rbe_right )->entry.rbe_color == 0) { struct kroute_node *oleft; if ( (oleft = (tmp)->entry.rbe_left)) (oleft)->entry.rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oleft) = (tmp)-> entry.rbe_left; if (((tmp)->entry.rbe_left = (oleft)->entry .rbe_right)) { ((oleft)->entry.rbe_right)->entry.rbe_parent = (tmp); } do {} while (0); if (((oleft)->entry.rbe_parent = (tmp)->entry.rbe_parent)) { if ((tmp) == ((tmp)->entry .rbe_parent)->entry.rbe_left) ((tmp)->entry.rbe_parent) ->entry.rbe_left = (oleft); else ((tmp)->entry.rbe_parent )->entry.rbe_right = (oleft); } else (head)->rbh_root = (oleft); (oleft)->entry.rbe_right = (tmp); (tmp)->entry .rbe_parent = (oleft); do {} while (0); if (((oleft)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_right; } (tmp)->entry.rbe_color = (parent)->entry .rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry .rbe_right) ((tmp)->entry.rbe_right)->entry.rbe_color = 0; do { (tmp) = (parent)->entry.rbe_right; if (((parent)-> entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)->entry .rbe_left)->entry.rbe_parent = (parent); } do {} while (0) ; if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); elm = (head)->rbh_root; break; } } else { tmp = (parent)->entry.rbe_left; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry .rbe_color = 1; } while (0); do { (tmp) = (parent)->entry. rbe_left; if (((parent)->entry.rbe_left = (tmp)->entry. rbe_right)) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent)) { if ((parent) == ((parent )->entry.rbe_parent)->entry.rbe_left) ((parent)->entry .rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry .rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry.rbe_right = (parent); (parent)-> entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_left; } if (((tmp)->entry.rbe_left == ((void*)0) || ((tmp)->entry.rbe_left)->entry.rbe_color == 0) && ((tmp)->entry.rbe_right == ((void*)0) || ((tmp)->entry .rbe_right)->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp)->entry.rbe_left == ((void*)0) || ((tmp)->entry .rbe_left)->entry.rbe_color == 0) { struct kroute_node *oright ; if ((oright = (tmp)->entry.rbe_right)) (oright)->entry .rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oright) = (tmp)->entry.rbe_right; if (((tmp)->entry.rbe_right = ( oright)->entry.rbe_left)) { ((oright)->entry.rbe_left)-> entry.rbe_parent = (tmp); } do {} while (0); if (((oright)-> entry.rbe_parent = (tmp)->entry.rbe_parent)) { if ((tmp) == ((tmp)->entry.rbe_parent)->entry.rbe_left) ((tmp)-> entry.rbe_parent)->entry.rbe_left = (oright); else ((tmp)-> entry.rbe_parent)->entry.rbe_right = (oright); } else (head )->rbh_root = (oright); (oright)->entry.rbe_left = (tmp ); (tmp)->entry.rbe_parent = (oright); do {} while (0); if (((oright)->entry.rbe_parent)) do {} while (0); } while ( 0); tmp = (parent)->entry.rbe_left; } (tmp)->entry.rbe_color = (parent)->entry.rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry.rbe_left) ((tmp)->entry.rbe_left )->entry.rbe_color = 0; do { (tmp) = (parent)->entry.rbe_left ; if (((parent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); elm = (head)->rbh_root; break ; } } } if (elm) (elm)->entry.rbe_color = 0; } struct kroute_node * kroute_tree_RB_REMOVE(struct kroute_tree *head, struct kroute_node *elm) { struct kroute_node *child, *parent, *old = elm; int color ; if ((elm)->entry.rbe_left == ((void*)0)) child = (elm)-> entry.rbe_right; else if ((elm)->entry.rbe_right == ((void *)0)) child = (elm)->entry.rbe_left; else { struct kroute_node *left; elm = (elm)->entry.rbe_right; while ((left = (elm) ->entry.rbe_left)) elm = left; child = (elm)->entry.rbe_right ; parent = (elm)->entry.rbe_parent; color = (elm)->entry .rbe_color; if (child) (child)->entry.rbe_parent = parent; if (parent) { if ((parent)->entry.rbe_left == elm) (parent )->entry.rbe_left = child; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child ; if ((elm)->entry.rbe_parent == old) parent = elm; (elm)-> entry = (old)->entry; if ((old)->entry.rbe_parent) { if (((old)->entry.rbe_parent)->entry.rbe_left == old) ((old )->entry.rbe_parent)->entry.rbe_left = elm; else ((old) ->entry.rbe_parent)->entry.rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; ((old)->entry.rbe_left )->entry.rbe_parent = elm; if ((old)->entry.rbe_right) ( (old)->entry.rbe_right)->entry.rbe_parent = elm; if (parent ) { left = parent; do { do {} while (0); } while ((left = (left )->entry.rbe_parent)); } goto color; } parent = (elm)-> entry.rbe_parent; color = (elm)->entry.rbe_color; if (child ) (child)->entry.rbe_parent = parent; if (parent) { if ((parent )->entry.rbe_left == elm) (parent)->entry.rbe_left = child ; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child; color: if (color == 0) kroute_tree_RB_REMOVE_COLOR (head, parent, child); return (old); } struct kroute_node * kroute_tree_RB_INSERT (struct kroute_tree *head, struct kroute_node *elm) { struct kroute_node *tmp; struct kroute_node *parent = ((void*)0); int comp = 0; tmp = (head)->rbh_root; while (tmp) { parent = tmp; comp = (kroute_compare)(elm, parent); if (comp < 0) tmp = (tmp)-> entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry.rbe_right ; else return (tmp); } do { (elm)->entry.rbe_parent = parent ; (elm)->entry.rbe_left = (elm)->entry.rbe_right = ((void *)0); (elm)->entry.rbe_color = 1; } while (0); if (parent != ((void*)0)) { if (comp < 0) (parent)->entry.rbe_left = elm; else (parent)->entry.rbe_right = elm; do {} while (0 ); } else (head)->rbh_root = elm; kroute_tree_RB_INSERT_COLOR (head, elm); return (((void*)0)); } struct kroute_node * kroute_tree_RB_FIND (struct kroute_tree *head, struct kroute_node *elm) { struct kroute_node *tmp = (head)->rbh_root; int comp; while (tmp) { comp = kroute_compare (elm, tmp); if (comp < 0) tmp = (tmp)->entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (((void*)0)); } struct kroute_node * kroute_tree_RB_NFIND (struct kroute_tree *head, struct kroute_node *elm) { struct kroute_node *tmp = (head)->rbh_root; struct kroute_node *res = ((void *)0); int comp; while (tmp) { comp = kroute_compare(elm, tmp) ; if (comp < 0) { res = tmp; tmp = (tmp)->entry.rbe_left ; } else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (res); } struct kroute_node * kroute_tree_RB_NEXT (struct kroute_node *elm) { if ((elm)->entry.rbe_right) { elm = (elm)->entry.rbe_right; while ((elm)->entry.rbe_left ) elm = (elm)->entry.rbe_left; } else { if ((elm)->entry .rbe_parent && (elm == ((elm)->entry.rbe_parent)-> entry.rbe_left)) elm = (elm)->entry.rbe_parent; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry .rbe_parent)->entry.rbe_right)) elm = (elm)->entry.rbe_parent ; elm = (elm)->entry.rbe_parent; } } return (elm); } struct kroute_node * kroute_tree_RB_PREV(struct kroute_node *elm) { if ((elm)->entry.rbe_left) { elm = (elm)->entry.rbe_left ; while ((elm)->entry.rbe_right) elm = (elm)->entry.rbe_right ; } else { if ((elm)->entry.rbe_parent && (elm == ( (elm)->entry.rbe_parent)->entry.rbe_right)) elm = (elm) ->entry.rbe_parent; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left )) elm = (elm)->entry.rbe_parent; elm = (elm)->entry.rbe_parent ; } } return (elm); } struct kroute_node * kroute_tree_RB_MINMAX (struct kroute_tree *head, int val) { struct kroute_node *tmp = (head)->rbh_root; struct kroute_node *parent = ((void*) 0); while (tmp) { parent = tmp; if (val < 0) tmp = (tmp)-> entry.rbe_left; else tmp = (tmp)->entry.rbe_right; } return (parent); } |
116 | |
117 | RB_HEAD(kif_tree, kif_node)struct kif_tree { struct kif_node *rbh_root; } kit = RB_INITIALIZER(&kit){ ((void*)0) }; |
118 | RB_PROTOTYPE(kif_tree, kif_node, entry, kif_compare)void kif_tree_RB_INSERT_COLOR(struct kif_tree *, struct kif_node *); void kif_tree_RB_REMOVE_COLOR(struct kif_tree *, struct kif_node *, struct kif_node *); struct kif_node *kif_tree_RB_REMOVE(struct kif_tree *, struct kif_node *); struct kif_node *kif_tree_RB_INSERT (struct kif_tree *, struct kif_node *); struct kif_node *kif_tree_RB_FIND (struct kif_tree *, struct kif_node *); struct kif_node *kif_tree_RB_NFIND (struct kif_tree *, struct kif_node *); struct kif_node *kif_tree_RB_NEXT (struct kif_node *); struct kif_node *kif_tree_RB_PREV(struct kif_node *); struct kif_node *kif_tree_RB_MINMAX(struct kif_tree *, int); |
119 | RB_GENERATE(kif_tree, kif_node, entry, kif_compare)void kif_tree_RB_INSERT_COLOR(struct kif_tree *head, struct kif_node *elm) { struct kif_node *parent, *gparent, *tmp; while ((parent = (elm)->entry.rbe_parent) && (parent)->entry. rbe_color == 1) { gparent = (parent)->entry.rbe_parent; if (parent == (gparent)->entry.rbe_left) { tmp = (gparent)-> entry.rbe_right; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry .rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0 ); elm = gparent; continue; } if ((parent)->entry.rbe_right == elm) { do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_left; if (((gparent)->entry.rbe_left = (tmp)->entry.rbe_right )) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } else { tmp = (gparent)-> entry.rbe_left; if (tmp && (tmp)->entry.rbe_color == 1) { (tmp)->entry.rbe_color = 0; do { (parent)->entry. rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0) ; elm = gparent; continue; } if ((parent)->entry.rbe_left == elm) { do { (tmp) = (parent)->entry.rbe_left; if (((parent )->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)-> entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); tmp = parent; parent = elm; elm = tmp; } do { (parent)->entry.rbe_color = 0; (gparent)->entry.rbe_color = 1; } while (0); do { (tmp) = (gparent)->entry.rbe_right ; if (((gparent)->entry.rbe_right = (tmp)->entry.rbe_left )) { ((tmp)->entry.rbe_left)->entry.rbe_parent = (gparent ); } do {} while (0); if (((tmp)->entry.rbe_parent = (gparent )->entry.rbe_parent)) { if ((gparent) == ((gparent)->entry .rbe_parent)->entry.rbe_left) ((gparent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((gparent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_left = (gparent); (gparent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); } } (head->rbh_root)-> entry.rbe_color = 0; } void kif_tree_RB_REMOVE_COLOR(struct kif_tree *head, struct kif_node *parent, struct kif_node *elm) { struct kif_node *tmp; while ((elm == ((void*)0) || (elm)->entry. rbe_color == 0) && elm != (head)->rbh_root) { if ( (parent)->entry.rbe_left == elm) { tmp = (parent)->entry .rbe_right; if ((tmp)->entry.rbe_color == 1) { do { (tmp)-> entry.rbe_color = 0; (parent)->entry.rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_right; if (((parent )->entry.rbe_right = (tmp)->entry.rbe_left)) { ((tmp)-> entry.rbe_left)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while ( 0); } while (0); tmp = (parent)->entry.rbe_right; } if ((( tmp)->entry.rbe_left == ((void*)0) || ((tmp)->entry.rbe_left )->entry.rbe_color == 0) && ((tmp)->entry.rbe_right == ((void*)0) || ((tmp)->entry.rbe_right)->entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp)->entry.rbe_right == ((void*)0) || ((tmp)->entry.rbe_right)->entry.rbe_color == 0) { struct kif_node *oleft; if ((oleft = (tmp)->entry .rbe_left)) (oleft)->entry.rbe_color = 0; (tmp)->entry. rbe_color = 1; do { (oleft) = (tmp)->entry.rbe_left; if (( (tmp)->entry.rbe_left = (oleft)->entry.rbe_right)) { (( oleft)->entry.rbe_right)->entry.rbe_parent = (tmp); } do {} while (0); if (((oleft)->entry.rbe_parent = (tmp)-> entry.rbe_parent)) { if ((tmp) == ((tmp)->entry.rbe_parent )->entry.rbe_left) ((tmp)->entry.rbe_parent)->entry. rbe_left = (oleft); else ((tmp)->entry.rbe_parent)->entry .rbe_right = (oleft); } else (head)->rbh_root = (oleft); ( oleft)->entry.rbe_right = (tmp); (tmp)->entry.rbe_parent = (oleft); do {} while (0); if (((oleft)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_right ; } (tmp)->entry.rbe_color = (parent)->entry.rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry.rbe_right ) ((tmp)->entry.rbe_right)->entry.rbe_color = 0; do { ( tmp) = (parent)->entry.rbe_right; if (((parent)->entry. rbe_right = (tmp)->entry.rbe_left)) { ((tmp)->entry.rbe_left )->entry.rbe_parent = (parent); } do {} while (0); if (((tmp )->entry.rbe_parent = (parent)->entry.rbe_parent)) { if ((parent) == ((parent)->entry.rbe_parent)->entry.rbe_left ) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = ( tmp); } else (head)->rbh_root = (tmp); (tmp)->entry.rbe_left = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); elm = (head)->rbh_root; break; } } else { tmp = (parent )->entry.rbe_left; if ((tmp)->entry.rbe_color == 1) { do { (tmp)->entry.rbe_color = 0; (parent)->entry.rbe_color = 1; } while (0); do { (tmp) = (parent)->entry.rbe_left; if (((parent)->entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)->entry.rbe_right)->entry.rbe_parent = (parent); } do {} while (0); if (((tmp)->entry.rbe_parent = (parent )->entry.rbe_parent)) { if ((parent) == ((parent)->entry .rbe_parent)->entry.rbe_left) ((parent)->entry.rbe_parent )->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent )->entry.rbe_right = (tmp); } else (head)->rbh_root = ( tmp); (tmp)->entry.rbe_right = (parent); (parent)->entry .rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent )) do {} while (0); } while (0); tmp = (parent)->entry.rbe_left ; } if (((tmp)->entry.rbe_left == ((void*)0) || ((tmp)-> entry.rbe_left)->entry.rbe_color == 0) && ((tmp)-> entry.rbe_right == ((void*)0) || ((tmp)->entry.rbe_right)-> entry.rbe_color == 0)) { (tmp)->entry.rbe_color = 1; elm = parent; parent = (elm)->entry.rbe_parent; } else { if ((tmp )->entry.rbe_left == ((void*)0) || ((tmp)->entry.rbe_left )->entry.rbe_color == 0) { struct kif_node *oright; if ((oright = (tmp)->entry.rbe_right)) (oright)->entry.rbe_color = 0; (tmp)->entry.rbe_color = 1; do { (oright) = (tmp)-> entry.rbe_right; if (((tmp)->entry.rbe_right = (oright)-> entry.rbe_left)) { ((oright)->entry.rbe_left)->entry.rbe_parent = (tmp); } do {} while (0); if (((oright)->entry.rbe_parent = (tmp)->entry.rbe_parent)) { if ((tmp) == ((tmp)->entry .rbe_parent)->entry.rbe_left) ((tmp)->entry.rbe_parent) ->entry.rbe_left = (oright); else ((tmp)->entry.rbe_parent )->entry.rbe_right = (oright); } else (head)->rbh_root = (oright); (oright)->entry.rbe_left = (tmp); (tmp)->entry .rbe_parent = (oright); do {} while (0); if (((oright)->entry .rbe_parent)) do {} while (0); } while (0); tmp = (parent)-> entry.rbe_left; } (tmp)->entry.rbe_color = (parent)->entry .rbe_color; (parent)->entry.rbe_color = 0; if ((tmp)->entry .rbe_left) ((tmp)->entry.rbe_left)->entry.rbe_color = 0 ; do { (tmp) = (parent)->entry.rbe_left; if (((parent)-> entry.rbe_left = (tmp)->entry.rbe_right)) { ((tmp)->entry .rbe_right)->entry.rbe_parent = (parent); } do {} while (0 ); if (((tmp)->entry.rbe_parent = (parent)->entry.rbe_parent )) { if ((parent) == ((parent)->entry.rbe_parent)->entry .rbe_left) ((parent)->entry.rbe_parent)->entry.rbe_left = (tmp); else ((parent)->entry.rbe_parent)->entry.rbe_right = (tmp); } else (head)->rbh_root = (tmp); (tmp)->entry .rbe_right = (parent); (parent)->entry.rbe_parent = (tmp); do {} while (0); if (((tmp)->entry.rbe_parent)) do {} while (0); } while (0); elm = (head)->rbh_root; break; } } } if (elm) (elm)->entry.rbe_color = 0; } struct kif_node * kif_tree_RB_REMOVE (struct kif_tree *head, struct kif_node *elm) { struct kif_node *child, *parent, *old = elm; int color; if ((elm)->entry. rbe_left == ((void*)0)) child = (elm)->entry.rbe_right; else if ((elm)->entry.rbe_right == ((void*)0)) child = (elm)-> entry.rbe_left; else { struct kif_node *left; elm = (elm)-> entry.rbe_right; while ((left = (elm)->entry.rbe_left)) elm = left; child = (elm)->entry.rbe_right; parent = (elm)-> entry.rbe_parent; color = (elm)->entry.rbe_color; if (child ) (child)->entry.rbe_parent = parent; if (parent) { if ((parent )->entry.rbe_left == elm) (parent)->entry.rbe_left = child ; else (parent)->entry.rbe_right = child; do {} while (0); } else (head)->rbh_root = child; if ((elm)->entry.rbe_parent == old) parent = elm; (elm)->entry = (old)->entry; if ( (old)->entry.rbe_parent) { if (((old)->entry.rbe_parent )->entry.rbe_left == old) ((old)->entry.rbe_parent)-> entry.rbe_left = elm; else ((old)->entry.rbe_parent)->entry .rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; ((old)->entry.rbe_left)->entry.rbe_parent = elm ; if ((old)->entry.rbe_right) ((old)->entry.rbe_right)-> entry.rbe_parent = elm; if (parent) { left = parent; do { do { } while (0); } while ((left = (left)->entry.rbe_parent)); } goto color; } parent = (elm)->entry.rbe_parent; color = ( elm)->entry.rbe_color; if (child) (child)->entry.rbe_parent = parent; if (parent) { if ((parent)->entry.rbe_left == elm ) (parent)->entry.rbe_left = child; else (parent)->entry .rbe_right = child; do {} while (0); } else (head)->rbh_root = child; color: if (color == 0) kif_tree_RB_REMOVE_COLOR(head , parent, child); return (old); } struct kif_node * kif_tree_RB_INSERT (struct kif_tree *head, struct kif_node *elm) { struct kif_node *tmp; struct kif_node *parent = ((void*)0); int comp = 0; tmp = (head)->rbh_root; while (tmp) { parent = tmp; comp = (kif_compare )(elm, parent); if (comp < 0) tmp = (tmp)->entry.rbe_left ; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } do { (elm)->entry.rbe_parent = parent; (elm )->entry.rbe_left = (elm)->entry.rbe_right = ((void*)0) ; (elm)->entry.rbe_color = 1; } while (0); if (parent != ( (void*)0)) { if (comp < 0) (parent)->entry.rbe_left = elm ; else (parent)->entry.rbe_right = elm; do {} while (0); } else (head)->rbh_root = elm; kif_tree_RB_INSERT_COLOR(head , elm); return (((void*)0)); } struct kif_node * kif_tree_RB_FIND (struct kif_tree *head, struct kif_node *elm) { struct kif_node *tmp = (head)->rbh_root; int comp; while (tmp) { comp = kif_compare (elm, tmp); if (comp < 0) tmp = (tmp)->entry.rbe_left; else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (((void*)0)); } struct kif_node * kif_tree_RB_NFIND (struct kif_tree *head, struct kif_node *elm) { struct kif_node *tmp = (head)->rbh_root; struct kif_node *res = ((void*)0 ); int comp; while (tmp) { comp = kif_compare(elm, tmp); if ( comp < 0) { res = tmp; tmp = (tmp)->entry.rbe_left; } else if (comp > 0) tmp = (tmp)->entry.rbe_right; else return (tmp); } return (res); } struct kif_node * kif_tree_RB_NEXT( struct kif_node *elm) { if ((elm)->entry.rbe_right) { elm = (elm)->entry.rbe_right; while ((elm)->entry.rbe_left) elm = (elm)->entry.rbe_left; } else { if ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left )) elm = (elm)->entry.rbe_parent; else { while ((elm)-> entry.rbe_parent && (elm == ((elm)->entry.rbe_parent )->entry.rbe_right)) elm = (elm)->entry.rbe_parent; elm = (elm)->entry.rbe_parent; } } return (elm); } struct kif_node * kif_tree_RB_PREV(struct kif_node *elm) { if ((elm)->entry .rbe_left) { elm = (elm)->entry.rbe_left; while ((elm)-> entry.rbe_right) elm = (elm)->entry.rbe_right; } else { if ((elm)->entry.rbe_parent && (elm == ((elm)->entry .rbe_parent)->entry.rbe_right)) elm = (elm)->entry.rbe_parent ; else { while ((elm)->entry.rbe_parent && (elm == ((elm)->entry.rbe_parent)->entry.rbe_left)) elm = (elm )->entry.rbe_parent; elm = (elm)->entry.rbe_parent; } } return (elm); } struct kif_node * kif_tree_RB_MINMAX(struct kif_tree *head, int val) { struct kif_node *tmp = (head)->rbh_root ; struct kif_node *parent = ((void*)0); while (tmp) { parent = tmp; if (val < 0) tmp = (tmp)->entry.rbe_left; else tmp = (tmp)->entry.rbe_right; } return (parent); } |
120 | |
121 | int |
122 | kif_init(void) |
123 | { |
124 | if (fetchifs(0) == -1) |
125 | return (-1); |
126 | |
127 | return (0); |
128 | } |
129 | |
130 | int |
131 | kr_init(int fs, u_int rdomain, int redis_label_or_prefix, u_int8_t fib_prio) |
132 | { |
133 | int opt = 0, rcvbuf, default_rcvbuf; |
134 | socklen_t optlen; |
135 | int filter_prio = fib_prio; |
136 | int filter_flags = RTF_LLINFO0x400 | RTF_BROADCAST0x400000; |
137 | |
138 | kr_state.fib_sync = fs; |
139 | kr_state.rdomain = rdomain; |
140 | kr_state.fib_prio = fib_prio; |
141 | |
142 | if ((kr_state.fd = socket(AF_ROUTE17, |
143 | SOCK_RAW3 | SOCK_CLOEXEC0x8000 | SOCK_NONBLOCK0x4000, AF_INET2)) == -1) { |
144 | log_warn("kr_init: socket"); |
145 | return (-1); |
146 | } |
147 | |
148 | /* not interested in my own messages */ |
149 | if (setsockopt(kr_state.fd, SOL_SOCKET0xffff, SO_USELOOPBACK0x0040, |
150 | &opt, sizeof(opt)) == -1) |
151 | log_warn("kr_init: setsockopt"); /* not fatal */ |
152 | |
153 | if (redis_label_or_prefix) { |
154 | filter_prio = 0; |
155 | log_info("%s: priority filter disabled", __func__); |
156 | } else |
157 | log_debug("%s: priority filter enabled", __func__); |
158 | |
159 | if (setsockopt(kr_state.fd, AF_ROUTE17, ROUTE_PRIOFILTER3, &filter_prio, |
160 | sizeof(filter_prio)) == -1) { |
161 | log_warn("%s: setsockopt AF_ROUTE ROUTE_PRIOFILTER", __func__); |
162 | /* not fatal */ |
163 | } |
164 | if (setsockopt(kr_state.fd, AF_ROUTE17, ROUTE_FLAGFILTER4, &filter_flags, |
165 | sizeof(filter_flags)) == -1) { |
166 | log_warn("%s: setsockopt AF_ROUTE ROUTE_FLAGFILTER", __func__); |
167 | /* not fatal */ |
168 | } |
169 | |
170 | /* grow receive buffer, don't wanna miss messages */ |
171 | optlen = sizeof(default_rcvbuf); |
172 | if (getsockopt(kr_state.fd, SOL_SOCKET0xffff, SO_RCVBUF0x1002, |
173 | &default_rcvbuf, &optlen) == -1) |
174 | log_warn("kr_init getsockopt SOL_SOCKET SO_RCVBUF"); |
175 | else |
176 | for (rcvbuf = MAX_RTSOCK_BUF(2 * 1024 * 1024); |
177 | rcvbuf > default_rcvbuf && |
178 | setsockopt(kr_state.fd, SOL_SOCKET0xffff, SO_RCVBUF0x1002, |
179 | &rcvbuf, sizeof(rcvbuf)) == -1 && errno(*__errno()) == ENOBUFS55; |
180 | rcvbuf /= 2) |
181 | ; /* nothing */ |
182 | |
183 | kr_state.pid = getpid(); |
184 | kr_state.rtseq = 1; |
185 | |
186 | if (fetchtable() == -1) |
187 | return (-1); |
188 | |
189 | if (protect_lo() == -1) |
190 | return (-1); |
191 | |
192 | event_set(&kr_state.ev, kr_state.fd, EV_READ0x02 | EV_PERSIST0x10, |
193 | kr_dispatch_msg, NULL((void*)0)); |
194 | event_add(&kr_state.ev, NULL((void*)0)); |
195 | |
196 | kr_state.reload_state = KR_RELOAD_IDLE0; |
197 | evtimer_set(&kr_state.reload, kr_fib_reload_timer, NULL)event_set(&kr_state.reload, -1, 0, kr_fib_reload_timer, ( (void*)0)); |
198 | |
199 | return (0); |
200 | } |
201 | |
202 | int |
203 | kr_change_fib(struct kroute_node *kr, struct kroute *kroute, int krcount, |
204 | int action) |
205 | { |
206 | int i; |
207 | struct kroute_node *kn, *nkn; |
208 | |
209 | if (action == RTM_ADD0x1) { |
210 | /* |
211 | * First remove all stale multipath routes. |
212 | * This step must be skipped when the action is RTM_CHANGE |
213 | * because it is already a single path route that will be |
214 | * changed. |
215 | */ |
216 | for (kn = kr; kn != NULL((void*)0); kn = nkn) { |
217 | for (i = 0; i < krcount; i++) { |
218 | if (kn->r.nexthop.s_addr == |
219 | kroute[i].nexthop.s_addr) |
220 | break; |
221 | } |
222 | nkn = kn->next; |
223 | if (i == krcount) { |
224 | /* stale route */ |
225 | if (kr_delete_fib(kn) == -1) |
226 | log_warnx("kr_delete_fib failed"); |
227 | /* |
228 | * if head element was removed we need to adjust |
229 | * the head |
230 | */ |
231 | if (kr == kn) |
232 | kr = nkn; |
233 | } |
234 | } |
235 | } |
236 | |
237 | /* |
238 | * now add or change the route |
239 | */ |
240 | for (i = 0; i < krcount; i++) { |
241 | /* nexthop within 127/8 -> ignore silently */ |
242 | if ((kroute[i].nexthop.s_addr & htonl(IN_CLASSA_NET)(__uint32_t)(__builtin_constant_p(((u_int32_t)(0xff000000))) ? (__uint32_t)(((__uint32_t)(((u_int32_t)(0xff000000))) & 0xff ) << 24 | ((__uint32_t)(((u_int32_t)(0xff000000))) & 0xff00) << 8 | ((__uint32_t)(((u_int32_t)(0xff000000)) ) & 0xff0000) >> 8 | ((__uint32_t)(((u_int32_t)(0xff000000 ))) & 0xff000000) >> 24) : __swap32md(((u_int32_t)( 0xff000000))))) == |
243 | htonl(INADDR_LOOPBACK & IN_CLASSA_NET)(__uint32_t)(__builtin_constant_p(((u_int32_t)(0x7f000001)) & ((u_int32_t)(0xff000000))) ? (__uint32_t)(((__uint32_t)(((u_int32_t )(0x7f000001)) & ((u_int32_t)(0xff000000))) & 0xff) << 24 | ((__uint32_t)(((u_int32_t)(0x7f000001)) & ((u_int32_t )(0xff000000))) & 0xff00) << 8 | ((__uint32_t)(((u_int32_t )(0x7f000001)) & ((u_int32_t)(0xff000000))) & 0xff0000 ) >> 8 | ((__uint32_t)(((u_int32_t)(0x7f000001)) & ( (u_int32_t)(0xff000000))) & 0xff000000) >> 24) : __swap32md (((u_int32_t)(0x7f000001)) & ((u_int32_t)(0xff000000))))) |
244 | continue; |
245 | |
246 | if (action == RTM_ADD0x1 && kr) { |
247 | for (kn = kr; kn != NULL((void*)0); kn = kn->next) { |
248 | if (kn->r.nexthop.s_addr == |
249 | kroute[i].nexthop.s_addr) |
250 | break; |
251 | } |
252 | |
253 | if (kn != NULL((void*)0)) |
254 | /* nexthop already present, skip it */ |
255 | continue; |
256 | } else |
257 | /* modify first entry */ |
258 | kn = kr; |
259 | |
260 | /* send update */ |
261 | if (send_rtmsg(kr_state.fd, action, &kroute[i]) == -1) |
262 | return (-1); |
263 | |
264 | /* create new entry unless we are changing the first entry */ |
265 | if (action == RTM_ADD0x1) |
266 | if ((kn = calloc(1, sizeof(*kn))) == NULL((void*)0)) |
267 | fatal(NULL((void*)0)); |
268 | |
269 | kn->r.prefix.s_addr = kroute[i].prefix.s_addr; |
270 | kn->r.prefixlen = kroute[i].prefixlen; |
271 | kn->r.nexthop.s_addr = kroute[i].nexthop.s_addr; |
272 | kn->r.flags = kroute[i].flags | F_OSPFD_INSERTED0x0001; |
273 | kn->r.priority = kr_state.fib_prio; |
274 | kn->r.ext_tag = kroute[i].ext_tag; |
275 | rtlabel_unref(kn->r.rtlabel); /* for RTM_CHANGE */ |
276 | kn->r.rtlabel = kroute[i].rtlabel; |
277 | |
278 | if (action == RTM_ADD0x1) |
279 | if (kroute_insert(kn) == -1) { |
280 | log_debug("kr_update_fib: cannot insert %s", |
281 | inet_ntoa(kn->r.nexthop)); |
282 | free(kn); |
283 | } |
284 | action = RTM_ADD0x1; |
285 | } |
286 | return (0); |
287 | } |
288 | |
289 | int |
290 | kr_change(struct kroute *kroute, int krcount) |
291 | { |
292 | struct kroute_node *kr; |
293 | int action = RTM_ADD0x1; |
294 | |
295 | kroute->rtlabel = rtlabel_tag2id(kroute->ext_tag); |
296 | |
297 | kr = kroute_find(kroute->prefix.s_addr, kroute->prefixlen, |
298 | kr_state.fib_prio); |
299 | if (kr != NULL((void*)0) && kr->next == NULL((void*)0) && krcount == 1) |
300 | /* single path OSPF route */ |
301 | action = RTM_CHANGE0x3; |
302 | |
303 | return (kr_change_fib(kr, kroute, krcount, action)); |
304 | } |
305 | |
306 | int |
307 | kr_delete_fib(struct kroute_node *kr) |
308 | { |
309 | if (kr->r.priority != kr_state.fib_prio) |
310 | log_warn("kr_delete_fib: %s/%d has wrong priority %d", |
311 | inet_ntoa(kr->r.prefix), kr->r.prefixlen, kr->r.priority); |
312 | |
313 | if (send_rtmsg(kr_state.fd, RTM_DELETE0x2, &kr->r) == -1) |
314 | return (-1); |
315 | |
316 | if (kroute_remove(kr) == -1) |
317 | return (-1); |
318 | |
319 | return (0); |
320 | } |
321 | |
322 | int |
323 | kr_delete(struct kroute *kroute) |
324 | { |
325 | struct kroute_node *kr, *nkr; |
326 | |
327 | if ((kr = kroute_find(kroute->prefix.s_addr, kroute->prefixlen, |
328 | kr_state.fib_prio)) == NULL((void*)0)) |
329 | return (0); |
330 | |
331 | while (kr != NULL((void*)0)) { |
332 | nkr = kr->next; |
333 | if (kr_delete_fib(kr) == -1) |
334 | return (-1); |
335 | kr = nkr; |
336 | } |
337 | return (0); |
338 | } |
339 | |
340 | void |
341 | kr_shutdown(void) |
342 | { |
343 | kr_fib_decouple(); |
344 | kroute_clear(); |
345 | kif_clear(); |
346 | } |
347 | |
348 | void |
349 | kr_fib_couple(void) |
350 | { |
351 | struct kroute_node *kr; |
352 | struct kroute_node *kn; |
353 | |
354 | if (kr_state.fib_sync == 1) /* already coupled */ |
355 | return; |
356 | |
357 | kr_state.fib_sync = 1; |
358 | |
359 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) |
360 | if (kr->r.priority == kr_state.fib_prio) |
361 | for (kn = kr; kn != NULL((void*)0); kn = kn->next) |
362 | send_rtmsg(kr_state.fd, RTM_ADD0x1, &kn->r); |
363 | |
364 | log_info("kernel routing table coupled"); |
365 | } |
366 | |
367 | void |
368 | kr_fib_decouple(void) |
369 | { |
370 | struct kroute_node *kr; |
371 | struct kroute_node *kn; |
372 | |
373 | if (kr_state.fib_sync == 0) /* already decoupled */ |
374 | return; |
375 | |
376 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) |
377 | if (kr->r.priority == kr_state.fib_prio) |
378 | for (kn = kr; kn != NULL((void*)0); kn = kn->next) |
379 | send_rtmsg(kr_state.fd, RTM_DELETE0x2, &kn->r); |
380 | |
381 | kr_state.fib_sync = 0; |
382 | |
383 | log_info("kernel routing table decoupled"); |
384 | } |
385 | |
386 | void |
387 | kr_fib_reload_timer(int fd, short event, void *bula) |
388 | { |
389 | if (kr_state.reload_state == KR_RELOAD_FETCH1) { |
390 | kr_fib_reload(); |
391 | kr_state.reload_state = KR_RELOAD_HOLD2; |
392 | kr_fib_reload_arm_timer(KR_RELOAD_HOLD_TIMER5000); |
393 | } else { |
394 | kr_state.reload_state = KR_RELOAD_IDLE0; |
395 | } |
396 | } |
397 | |
398 | void |
399 | kr_fib_reload_arm_timer(int delay) |
400 | { |
401 | struct timeval tv; |
402 | |
403 | timerclear(&tv)(&tv)->tv_sec = (&tv)->tv_usec = 0; |
404 | tv.tv_sec = delay / 1000; |
405 | tv.tv_usec = (delay % 1000) * 1000; |
406 | |
407 | if (evtimer_add(&kr_state.reload, &tv)event_add(&kr_state.reload, &tv) == -1) |
408 | fatal("add_reload_timer"); |
409 | } |
410 | |
411 | void |
412 | kr_fib_reload() |
413 | { |
414 | struct kroute_node *krn, *kr, *kn; |
415 | |
416 | log_info("reloading interface list and routing table"); |
417 | |
418 | kr_state.fib_serial++; |
419 | |
420 | if (fetchifs(0) == -1 || fetchtable() == -1) |
421 | return; |
422 | |
423 | for (kr = RB_MIN(kroute_tree, &krt)kroute_tree_RB_MINMAX(&krt, -1); kr != NULL((void*)0); kr = krn) { |
424 | krn = RB_NEXT(kroute_tree, &krt, kr)kroute_tree_RB_NEXT(kr); |
425 | |
426 | do { |
427 | kn = kr->next; |
428 | |
429 | if (kr->serial != kr_state.fib_serial) { |
430 | if (kr->r.priority == kr_state.fib_prio) { |
431 | kr->serial = kr_state.fib_serial; |
432 | if (send_rtmsg(kr_state.fd, |
433 | RTM_ADD0x1, &kr->r) != 0) |
434 | break; |
435 | } else |
436 | kroute_remove(kr); |
437 | } |
438 | |
439 | } while ((kr = kn) != NULL((void*)0)); |
440 | } |
441 | } |
442 | |
443 | void |
444 | kr_fib_update_prio(u_int8_t fib_prio) |
445 | { |
446 | struct kroute_node *kr; |
447 | |
448 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) |
449 | if ((kr->r.flags & F_OSPFD_INSERTED0x0001)) |
450 | kr->r.priority = fib_prio; |
451 | |
452 | log_info("fib priority changed from %hhu to %hhu", |
453 | kr_state.fib_prio, fib_prio); |
454 | |
455 | kr_state.fib_prio = fib_prio; |
456 | } |
457 | |
458 | /* ARGSUSED */ |
459 | void |
460 | kr_dispatch_msg(int fd, short event, void *bula) |
461 | { |
462 | /* XXX this is stupid */ |
463 | if (dispatch_rtmsg() == -1) |
464 | event_loopexit(NULL((void*)0)); |
465 | } |
466 | |
467 | void |
468 | kr_show_route(struct imsg *imsg) |
469 | { |
470 | struct kroute_node *kr; |
471 | struct kroute_node *kn; |
472 | int flags; |
473 | struct in_addr addr; |
474 | |
475 | switch (imsg->hdr.type) { |
476 | case IMSG_CTL_KROUTE: |
477 | if (imsg->hdr.len != IMSG_HEADER_SIZEsizeof(struct imsg_hdr) + sizeof(flags)) { |
478 | log_warnx("kr_show_route: wrong imsg len"); |
479 | return; |
480 | } |
481 | memcpy(&flags, imsg->data, sizeof(flags)); |
482 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) |
483 | if (!flags || kr->r.flags & flags) { |
484 | kn = kr; |
485 | do { |
486 | main_imsg_compose_ospfe(IMSG_CTL_KROUTE, |
487 | imsg->hdr.pid, |
488 | &kn->r, sizeof(kn->r)); |
489 | } while ((kn = kn->next) != NULL((void*)0)); |
490 | } |
491 | break; |
492 | case IMSG_CTL_KROUTE_ADDR: |
493 | if (imsg->hdr.len != IMSG_HEADER_SIZEsizeof(struct imsg_hdr) + |
494 | sizeof(struct in_addr)) { |
495 | log_warnx("kr_show_route: wrong imsg len"); |
496 | return; |
497 | } |
498 | memcpy(&addr, imsg->data, sizeof(addr)); |
499 | kr = NULL((void*)0); |
500 | kr = kroute_match(addr.s_addr); |
501 | if (kr != NULL((void*)0)) |
502 | main_imsg_compose_ospfe(IMSG_CTL_KROUTE, imsg->hdr.pid, |
503 | &kr->r, sizeof(kr->r)); |
504 | break; |
505 | default: |
506 | log_debug("kr_show_route: error handling imsg"); |
507 | break; |
508 | } |
509 | |
510 | main_imsg_compose_ospfe(IMSG_CTL_END, imsg->hdr.pid, NULL((void*)0), 0); |
511 | } |
512 | |
513 | void |
514 | kr_ifinfo(char *ifname, pid_t pid) |
515 | { |
516 | struct kif_node *kif; |
517 | |
518 | RB_FOREACH(kif, kif_tree, &kit)for ((kif) = kif_tree_RB_MINMAX(&kit, -1); (kif) != ((void *)0); (kif) = kif_tree_RB_NEXT(kif)) |
519 | if (ifname == NULL((void*)0) || !strcmp(ifname, kif->k.ifname)) { |
520 | main_imsg_compose_ospfe(IMSG_CTL_IFINFO, |
521 | pid, &kif->k, sizeof(kif->k)); |
522 | } |
523 | |
524 | main_imsg_compose_ospfe(IMSG_CTL_END, pid, NULL((void*)0), 0); |
525 | } |
526 | |
527 | void |
528 | kr_redist_remove(struct kroute_node *kh, struct kroute_node *kn) |
529 | { |
530 | struct kroute *kr; |
531 | |
532 | /* was the route redistributed? */ |
533 | if ((kn->r.flags & F_REDISTRIBUTED0x0100) == 0) |
534 | return; |
535 | |
536 | /* remove redistributed flag */ |
537 | kn->r.flags &= ~F_REDISTRIBUTED0x0100; |
538 | kr = &kn->r; |
539 | |
540 | /* probably inform the RDE (check if no other path is redistributed) */ |
541 | for (kn = kh; kn; kn = kn->next) |
542 | if (kn->r.flags & F_REDISTRIBUTED0x0100) |
543 | break; |
544 | |
545 | if (kn == NULL((void*)0)) |
546 | main_imsg_compose_rde(IMSG_NETWORK_DEL, 0, kr, |
547 | sizeof(struct kroute)); |
548 | } |
549 | |
550 | int |
551 | kr_redist_eval(struct kroute *kr, struct kroute *new_kr) |
552 | { |
553 | u_int32_t a, metric = 0; |
554 | |
555 | /* Only non-ospfd routes are considered for redistribution. */ |
556 | if (!(kr->flags & F_KERNEL0x0002)) |
557 | goto dont_redistribute; |
558 | |
559 | /* Dynamic routes are not redistributable. */ |
560 | if (kr->flags & F_DYNAMIC0x0010) |
561 | goto dont_redistribute; |
562 | |
563 | /* interface is not up and running so don't announce */ |
564 | if (kr->flags & F_DOWN0x0020) |
565 | goto dont_redistribute; |
566 | |
567 | /* |
568 | * We consider the loopback net, multicast and experimental addresses |
569 | * as not redistributable. |
570 | */ |
571 | a = ntohl(kr->prefix.s_addr)(__uint32_t)(__builtin_constant_p(kr->prefix.s_addr) ? (__uint32_t )(((__uint32_t)(kr->prefix.s_addr) & 0xff) << 24 | ((__uint32_t)(kr->prefix.s_addr) & 0xff00) << 8 | ((__uint32_t)(kr->prefix.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(kr->prefix.s_addr) & 0xff000000) >> 24) : __swap32md(kr->prefix.s_addr)); |
572 | if (IN_MULTICAST(a)(((u_int32_t)(a) & ((u_int32_t)(0xf0000000))) == ((u_int32_t )(0xe0000000))) || IN_BADCLASS(a)(((u_int32_t)(a) & ((u_int32_t)(0xf0000000))) == ((u_int32_t )(0xf0000000))) || |
573 | (a >> IN_CLASSA_NSHIFT24) == IN_LOOPBACKNET127) |
574 | goto dont_redistribute; |
575 | /* |
576 | * Consider networks with nexthop loopback as not redistributable |
577 | * unless it is a reject or blackhole route. |
578 | */ |
579 | if (kr->nexthop.s_addr == htonl(INADDR_LOOPBACK)(__uint32_t)(__builtin_constant_p(((u_int32_t)(0x7f000001))) ? (__uint32_t)(((__uint32_t)(((u_int32_t)(0x7f000001))) & 0xff ) << 24 | ((__uint32_t)(((u_int32_t)(0x7f000001))) & 0xff00) << 8 | ((__uint32_t)(((u_int32_t)(0x7f000001)) ) & 0xff0000) >> 8 | ((__uint32_t)(((u_int32_t)(0x7f000001 ))) & 0xff000000) >> 24) : __swap32md(((u_int32_t)( 0x7f000001)))) && |
580 | !(kr->flags & (F_BLACKHOLE0x0080|F_REJECT0x0040))) |
581 | goto dont_redistribute; |
582 | |
583 | /* Should we redistribute this route? */ |
584 | if (!ospf_redistribute(kr, &metric)) |
585 | goto dont_redistribute; |
586 | |
587 | /* prefix should be redistributed */ |
588 | kr->flags |= F_REDISTRIBUTED0x0100; |
589 | /* |
590 | * only one of all multipath routes can be redistributed so |
591 | * redistribute the best one. |
592 | */ |
593 | if (new_kr->metric > metric) { |
594 | *new_kr = *kr; |
595 | new_kr->metric = metric; |
596 | } |
597 | |
598 | return (1); |
599 | |
600 | dont_redistribute: |
601 | /* was the route redistributed? */ |
602 | if ((kr->flags & F_REDISTRIBUTED0x0100) == 0) |
603 | return (0); |
604 | |
605 | kr->flags &= ~F_REDISTRIBUTED0x0100; |
606 | return (1); |
607 | } |
608 | |
609 | void |
610 | kr_redistribute(struct kroute_node *kh) |
611 | { |
612 | struct kroute_node *kn; |
613 | struct kroute kr; |
614 | int redistribute = 0; |
615 | |
616 | /* only the highest prio route can be redistributed */ |
617 | if (kroute_find(kh->r.prefix.s_addr, kh->r.prefixlen, RTP_ANY64) != kh) |
618 | return; |
619 | |
620 | bzero(&kr, sizeof(kr)); |
621 | kr.metric = UINT_MAX(2147483647 *2U +1U); |
622 | for (kn = kh; kn; kn = kn->next) |
623 | if (kr_redist_eval(&kn->r, &kr)) |
624 | redistribute = 1; |
625 | |
626 | if (!redistribute) |
627 | return; |
628 | |
629 | if (kr.flags & F_REDISTRIBUTED0x0100) { |
630 | main_imsg_compose_rde(IMSG_NETWORK_ADD, 0, &kr, |
631 | sizeof(struct kroute)); |
632 | } else { |
633 | kr = kh->r; |
634 | main_imsg_compose_rde(IMSG_NETWORK_DEL, 0, &kr, |
635 | sizeof(struct kroute)); |
636 | } |
637 | } |
638 | |
639 | void |
640 | kr_reload(int redis_label_or_prefix) |
641 | { |
642 | struct kroute_node *kr, *kn; |
643 | u_int32_t dummy; |
644 | int r; |
645 | int filter_prio = kr_state.fib_prio; |
646 | |
647 | /* update the priority filter */ |
648 | if (redis_label_or_prefix) { |
649 | filter_prio = 0; |
650 | log_info("%s: priority filter disabled", __func__); |
651 | } else |
652 | log_debug("%s: priority filter enabled", __func__); |
653 | |
654 | if (setsockopt(kr_state.fd, AF_ROUTE17, ROUTE_PRIOFILTER3, &filter_prio, |
655 | sizeof(filter_prio)) == -1) { |
656 | log_warn("%s: setsockopt AF_ROUTE ROUTE_PRIOFILTER", __func__); |
657 | /* not fatal */ |
658 | } |
659 | |
660 | /* update redistribute lists */ |
661 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) { |
662 | for (kn = kr; kn; kn = kn->next) { |
663 | r = ospf_redistribute(&kn->r, &dummy); |
664 | /* |
665 | * if it is redistributed, redistribute again metric |
666 | * may have changed. |
667 | */ |
668 | if ((kn->r.flags & F_REDISTRIBUTED0x0100 && !r) || r) |
669 | break; |
670 | } |
671 | if (kn) { |
672 | /* |
673 | * kr_redistribute copes with removes and RDE with |
674 | * duplicates |
675 | */ |
676 | kr_redistribute(kr); |
677 | } |
678 | } |
679 | } |
680 | |
681 | /* rb-tree compare */ |
682 | int |
683 | kroute_compare(struct kroute_node *a, struct kroute_node *b) |
684 | { |
685 | if (ntohl(a->r.prefix.s_addr)(__uint32_t)(__builtin_constant_p(a->r.prefix.s_addr) ? (__uint32_t )(((__uint32_t)(a->r.prefix.s_addr) & 0xff) << 24 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff000000) >> 24) : __swap32md(a->r.prefix.s_addr)) < ntohl(b->r.prefix.s_addr)(__uint32_t)(__builtin_constant_p(b->r.prefix.s_addr) ? (__uint32_t )(((__uint32_t)(b->r.prefix.s_addr) & 0xff) << 24 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff000000) >> 24) : __swap32md(b->r.prefix.s_addr))) |
686 | return (-1); |
687 | if (ntohl(a->r.prefix.s_addr)(__uint32_t)(__builtin_constant_p(a->r.prefix.s_addr) ? (__uint32_t )(((__uint32_t)(a->r.prefix.s_addr) & 0xff) << 24 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff00) << 8 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(a->r.prefix.s_addr) & 0xff000000) >> 24) : __swap32md(a->r.prefix.s_addr)) > ntohl(b->r.prefix.s_addr)(__uint32_t)(__builtin_constant_p(b->r.prefix.s_addr) ? (__uint32_t )(((__uint32_t)(b->r.prefix.s_addr) & 0xff) << 24 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff00) << 8 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff0000) >> 8 | ((__uint32_t)(b->r.prefix.s_addr) & 0xff000000) >> 24) : __swap32md(b->r.prefix.s_addr))) |
688 | return (1); |
689 | if (a->r.prefixlen < b->r.prefixlen) |
690 | return (-1); |
691 | if (a->r.prefixlen > b->r.prefixlen) |
692 | return (1); |
693 | |
694 | /* if the priority is RTP_ANY finish on the first address hit */ |
695 | if (a->r.priority == RTP_ANY64 || b->r.priority == RTP_ANY64) |
696 | return (0); |
697 | if (a->r.priority < b->r.priority) |
698 | return (-1); |
699 | if (a->r.priority > b->r.priority) |
700 | return (1); |
701 | return (0); |
702 | } |
703 | |
704 | int |
705 | kif_compare(struct kif_node *a, struct kif_node *b) |
706 | { |
707 | return (b->k.ifindex - a->k.ifindex); |
708 | } |
709 | |
710 | /* tree management */ |
711 | struct kroute_node * |
712 | kroute_find(in_addr_t prefix, u_int8_t prefixlen, u_int8_t prio) |
713 | { |
714 | struct kroute_node s; |
715 | struct kroute_node *kn, *tmp; |
716 | |
717 | s.r.prefix.s_addr = prefix; |
718 | s.r.prefixlen = prefixlen; |
719 | s.r.priority = prio; |
720 | |
721 | kn = RB_FIND(kroute_tree, &krt, &s)kroute_tree_RB_FIND(&krt, &s); |
722 | if (kn && prio == RTP_ANY64) { |
723 | tmp = RB_PREV(kroute_tree, &krt, kn)kroute_tree_RB_PREV(kn); |
724 | while (tmp) { |
725 | if (kroute_compare(&s, tmp) == 0) |
726 | kn = tmp; |
727 | else |
728 | break; |
729 | tmp = RB_PREV(kroute_tree, &krt, kn)kroute_tree_RB_PREV(kn); |
730 | } |
731 | } |
732 | return (kn); |
733 | } |
734 | |
735 | struct kroute_node * |
736 | kroute_matchgw(struct kroute_node *kr, struct in_addr nh) |
737 | { |
738 | in_addr_t nexthop; |
739 | |
740 | nexthop = nh.s_addr; |
741 | |
742 | while (kr) { |
743 | if (kr->r.nexthop.s_addr == nexthop) |
744 | return (kr); |
745 | kr = kr->next; |
746 | } |
747 | |
748 | return (NULL((void*)0)); |
749 | } |
750 | |
751 | int |
752 | kroute_insert(struct kroute_node *kr) |
753 | { |
754 | struct kroute_node *krm, *krh; |
755 | |
756 | kr->serial = kr_state.fib_serial; |
757 | |
758 | if ((krh = RB_INSERT(kroute_tree, &krt, kr)kroute_tree_RB_INSERT(&krt, kr)) != NULL((void*)0)) { |
759 | /* |
760 | * Multipath route, add at end of list. |
761 | */ |
762 | krm = krh; |
763 | while (krm->next != NULL((void*)0)) |
764 | krm = krm->next; |
765 | krm->next = kr; |
766 | kr->next = NULL((void*)0); /* to be sure */ |
767 | } else |
768 | krh = kr; |
769 | |
770 | if (!(kr->r.flags & F_KERNEL0x0002)) { |
771 | /* don't validate or redistribute ospf route */ |
772 | kr->r.flags &= ~F_DOWN0x0020; |
773 | return (0); |
774 | } |
775 | |
776 | if (kif_validate(kr->r.ifindex)) |
777 | kr->r.flags &= ~F_DOWN0x0020; |
778 | else |
779 | kr->r.flags |= F_DOWN0x0020; |
780 | |
781 | kr_redistribute(krh); |
782 | return (0); |
783 | } |
784 | |
785 | int |
786 | kroute_remove(struct kroute_node *kr) |
787 | { |
788 | struct kroute_node *krm; |
789 | |
790 | if ((krm = RB_FIND(kroute_tree, &krt, kr)kroute_tree_RB_FIND(&krt, kr)) == NULL((void*)0)) { |
791 | log_warnx("kroute_remove failed to find %s/%u", |
792 | inet_ntoa(kr->r.prefix), kr->r.prefixlen); |
793 | return (-1); |
794 | } |
795 | |
796 | if (krm == kr) { |
797 | /* head element */ |
798 | if (RB_REMOVE(kroute_tree, &krt, kr)kroute_tree_RB_REMOVE(&krt, kr) == NULL((void*)0)) { |
799 | log_warnx("kroute_remove failed for %s/%u", |
800 | inet_ntoa(kr->r.prefix), kr->r.prefixlen); |
801 | return (-1); |
802 | } |
803 | if (kr->next != NULL((void*)0)) { |
804 | if (RB_INSERT(kroute_tree, &krt, kr->next)kroute_tree_RB_INSERT(&krt, kr->next) != NULL((void*)0)) { |
805 | log_warnx("kroute_remove failed to add %s/%u", |
806 | inet_ntoa(kr->r.prefix), kr->r.prefixlen); |
807 | return (-1); |
808 | } |
809 | } |
810 | } else { |
811 | /* somewhere in the list */ |
812 | while (krm->next != kr && krm->next != NULL((void*)0)) |
813 | krm = krm->next; |
814 | if (krm->next == NULL((void*)0)) { |
815 | log_warnx("kroute_remove multipath list corrupted " |
816 | "for %s/%u", inet_ntoa(kr->r.prefix), |
817 | kr->r.prefixlen); |
818 | return (-1); |
819 | } |
820 | krm->next = kr->next; |
821 | } |
822 | |
823 | kr_redist_remove(krm, kr); |
824 | rtlabel_unref(kr->r.rtlabel); |
825 | |
826 | free(kr); |
827 | return (0); |
828 | } |
829 | |
830 | void |
831 | kroute_clear(void) |
832 | { |
833 | struct kroute_node *kr; |
834 | |
835 | while ((kr = RB_MIN(kroute_tree, &krt)kroute_tree_RB_MINMAX(&krt, -1)) != NULL((void*)0)) |
836 | kroute_remove(kr); |
837 | } |
838 | |
839 | struct kif_node * |
840 | kif_find(u_short ifindex) |
841 | { |
842 | struct kif_node s; |
843 | |
844 | bzero(&s, sizeof(s)); |
845 | s.k.ifindex = ifindex; |
846 | |
847 | return (RB_FIND(kif_tree, &kit, &s)kif_tree_RB_FIND(&kit, &s)); |
848 | } |
849 | |
850 | struct kif * |
851 | kif_findname(char *ifname, struct in_addr addr, struct kif_addr **kap) |
852 | { |
853 | struct kif_node *kif; |
854 | struct kif_addr *ka; |
855 | |
856 | RB_FOREACH(kif, kif_tree, &kit)for ((kif) = kif_tree_RB_MINMAX(&kit, -1); (kif) != ((void *)0); (kif) = kif_tree_RB_NEXT(kif)) |
857 | if (!strcmp(ifname, kif->k.ifname)) { |
858 | ka = TAILQ_FIRST(&kif->addrs)((&kif->addrs)->tqh_first); |
859 | if (addr.s_addr != 0) { |
860 | TAILQ_FOREACH(ka, &kif->addrs, entry)for((ka) = ((&kif->addrs)->tqh_first); (ka) != ((void *)0); (ka) = ((ka)->entry.tqe_next)) { |
861 | if (addr.s_addr == ka->addr.s_addr) |
862 | break; |
863 | } |
864 | } |
865 | if (kap != NULL((void*)0)) |
866 | *kap = ka; |
867 | return (&kif->k); |
868 | } |
869 | |
870 | return (NULL((void*)0)); |
871 | } |
872 | |
873 | struct kif_node * |
874 | kif_insert(u_short ifindex) |
875 | { |
876 | struct kif_node *kif; |
877 | |
878 | if ((kif = calloc(1, sizeof(struct kif_node))) == NULL((void*)0)) |
879 | return (NULL((void*)0)); |
880 | |
881 | kif->k.ifindex = ifindex; |
882 | TAILQ_INIT(&kif->addrs)do { (&kif->addrs)->tqh_first = ((void*)0); (&kif ->addrs)->tqh_last = &(&kif->addrs)->tqh_first ; } while (0); |
883 | |
884 | if (RB_INSERT(kif_tree, &kit, kif)kif_tree_RB_INSERT(&kit, kif) != NULL((void*)0)) |
885 | fatalx("kif_insert: RB_INSERT"); |
886 | |
887 | return (kif); |
888 | } |
889 | |
890 | int |
891 | kif_remove(struct kif_node *kif) |
892 | { |
893 | struct kif_addr *ka; |
894 | |
895 | if (RB_REMOVE(kif_tree, &kit, kif)kif_tree_RB_REMOVE(&kit, kif) == NULL((void*)0)) { |
896 | log_warnx("RB_REMOVE(kif_tree, &kit, kif)"); |
897 | return (-1); |
898 | } |
899 | |
900 | while ((ka = TAILQ_FIRST(&kif->addrs)((&kif->addrs)->tqh_first)) != NULL((void*)0)) { |
901 | TAILQ_REMOVE(&kif->addrs, ka, entry)do { if (((ka)->entry.tqe_next) != ((void*)0)) (ka)->entry .tqe_next->entry.tqe_prev = (ka)->entry.tqe_prev; else ( &kif->addrs)->tqh_last = (ka)->entry.tqe_prev; * (ka)->entry.tqe_prev = (ka)->entry.tqe_next; ; ; } while (0); |
902 | free(ka); |
903 | } |
904 | free(kif); |
905 | return (0); |
906 | } |
907 | |
908 | void |
909 | kif_clear(void) |
910 | { |
911 | struct kif_node *kif; |
912 | |
913 | while ((kif = RB_MIN(kif_tree, &kit)kif_tree_RB_MINMAX(&kit, -1)) != NULL((void*)0)) |
914 | kif_remove(kif); |
915 | } |
916 | |
917 | struct kif * |
918 | kif_update(u_short ifindex, int flags, struct if_data *ifd, |
919 | struct sockaddr_dl *sdl) |
920 | { |
921 | struct kif_node *kif; |
922 | |
923 | if ((kif = kif_find(ifindex)) == NULL((void*)0)) { |
924 | if ((kif = kif_insert(ifindex)) == NULL((void*)0)) |
925 | return (NULL((void*)0)); |
926 | kif->k.nh_reachable = (flags & IFF_UP0x1) && |
927 | LINK_STATE_IS_UP(ifd->ifi_link_state)((ifd->ifi_link_state) >= 4 || (ifd->ifi_link_state) == 0); |
928 | } |
929 | |
930 | kif->k.flags = flags; |
931 | kif->k.link_state = ifd->ifi_link_state; |
932 | kif->k.if_type = ifd->ifi_type; |
933 | kif->k.baudrate = ifd->ifi_baudrate; |
934 | kif->k.mtu = ifd->ifi_mtu; |
935 | kif->k.rdomain = ifd->ifi_rdomain; |
936 | |
937 | if (sdl && sdl->sdl_family == AF_LINK18) { |
938 | if (sdl->sdl_nlen >= sizeof(kif->k.ifname)) |
939 | memcpy(kif->k.ifname, sdl->sdl_data, |
940 | sizeof(kif->k.ifname) - 1); |
941 | else if (sdl->sdl_nlen > 0) |
942 | memcpy(kif->k.ifname, sdl->sdl_data, |
943 | sdl->sdl_nlen); |
944 | /* string already terminated via calloc() */ |
945 | } |
946 | |
947 | return (&kif->k); |
948 | } |
949 | |
950 | int |
951 | kif_validate(u_short ifindex) |
952 | { |
953 | struct kif_node *kif; |
954 | |
955 | if ((kif = kif_find(ifindex)) == NULL((void*)0)) { |
956 | log_warnx("interface with index %u not found", ifindex); |
957 | return (1); |
958 | } |
959 | |
960 | return (kif->k.nh_reachable); |
961 | } |
962 | |
963 | struct kroute_node * |
964 | kroute_match(in_addr_t key) |
965 | { |
966 | int i; |
967 | struct kroute_node *kr; |
968 | |
969 | /* we will never match the default route */ |
970 | for (i = 32; i > 0; i--) |
971 | if ((kr = kroute_find(key & prefixlen2mask(i), i, |
972 | RTP_ANY64)) != NULL((void*)0)) |
973 | return (kr); |
974 | |
975 | /* if we don't have a match yet, try to find a default route */ |
976 | if ((kr = kroute_find(0, 0, RTP_ANY64)) != NULL((void*)0)) |
977 | return (kr); |
978 | |
979 | return (NULL((void*)0)); |
980 | } |
981 | |
982 | /* misc */ |
983 | int |
984 | protect_lo(void) |
985 | { |
986 | struct kroute_node *kr; |
987 | |
988 | /* special protection for 127/8 */ |
989 | if ((kr = calloc(1, sizeof(struct kroute_node))) == NULL((void*)0)) { |
990 | log_warn("protect_lo"); |
991 | return (-1); |
992 | } |
993 | kr->r.prefix.s_addr = htonl(INADDR_LOOPBACK & IN_CLASSA_NET)(__uint32_t)(__builtin_constant_p(((u_int32_t)(0x7f000001)) & ((u_int32_t)(0xff000000))) ? (__uint32_t)(((__uint32_t)(((u_int32_t )(0x7f000001)) & ((u_int32_t)(0xff000000))) & 0xff) << 24 | ((__uint32_t)(((u_int32_t)(0x7f000001)) & ((u_int32_t )(0xff000000))) & 0xff00) << 8 | ((__uint32_t)(((u_int32_t )(0x7f000001)) & ((u_int32_t)(0xff000000))) & 0xff0000 ) >> 8 | ((__uint32_t)(((u_int32_t)(0x7f000001)) & ( (u_int32_t)(0xff000000))) & 0xff000000) >> 24) : __swap32md (((u_int32_t)(0x7f000001)) & ((u_int32_t)(0xff000000)))); |
994 | kr->r.prefixlen = 8; |
995 | kr->r.flags = F_KERNEL0x0002|F_CONNECTED0x0004; |
996 | |
997 | if (RB_INSERT(kroute_tree, &krt, kr)kroute_tree_RB_INSERT(&krt, kr) != NULL((void*)0)) |
998 | free(kr); /* kernel route already there, no problem */ |
999 | |
1000 | return (0); |
1001 | } |
1002 | |
1003 | u_int8_t |
1004 | prefixlen_classful(in_addr_t ina) |
1005 | { |
1006 | /* it hurt to write this. */ |
1007 | |
1008 | if (ina >= 0xf0000000U) /* class E */ |
1009 | return (32); |
1010 | else if (ina >= 0xe0000000U) /* class D */ |
1011 | return (4); |
1012 | else if (ina >= 0xc0000000U) /* class C */ |
1013 | return (24); |
1014 | else if (ina >= 0x80000000U) /* class B */ |
1015 | return (16); |
1016 | else /* class A */ |
1017 | return (8); |
1018 | } |
1019 | |
1020 | u_int8_t |
1021 | mask2prefixlen(in_addr_t ina) |
1022 | { |
1023 | if (ina == 0) |
1024 | return (0); |
1025 | else |
1026 | return (33 - ffs(ntohl(ina)(__uint32_t)(__builtin_constant_p(ina) ? (__uint32_t)(((__uint32_t )(ina) & 0xff) << 24 | ((__uint32_t)(ina) & 0xff00 ) << 8 | ((__uint32_t)(ina) & 0xff0000) >> 8 | ((__uint32_t)(ina) & 0xff000000) >> 24) : __swap32md (ina)))); |
1027 | } |
1028 | |
1029 | in_addr_t |
1030 | prefixlen2mask(u_int8_t prefixlen) |
1031 | { |
1032 | if (prefixlen == 0) |
1033 | return (0); |
1034 | |
1035 | return (htonl(0xffffffff << (32 - prefixlen))(__uint32_t)(__builtin_constant_p(0xffffffff << (32 - prefixlen )) ? (__uint32_t)(((__uint32_t)(0xffffffff << (32 - prefixlen )) & 0xff) << 24 | ((__uint32_t)(0xffffffff << (32 - prefixlen)) & 0xff00) << 8 | ((__uint32_t)(0xffffffff << (32 - prefixlen)) & 0xff0000) >> 8 | ((__uint32_t )(0xffffffff << (32 - prefixlen)) & 0xff000000) >> 24) : __swap32md(0xffffffff << (32 - prefixlen)))); |
1036 | } |
1037 | |
1038 | #define ROUNDUP(a)((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof (long)) \ |
1039 | ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) |
1040 | |
1041 | void |
1042 | get_rtaddrs(int addrs, struct sockaddr *sa, struct sockaddr **rti_info) |
1043 | { |
1044 | int i; |
1045 | |
1046 | for (i = 0; i < RTAX_MAX15; i++) { |
1047 | if (addrs & (1 << i)) { |
1048 | rti_info[i] = sa; |
1049 | sa = (struct sockaddr *)((char *)(sa) + |
1050 | ROUNDUP(sa->sa_len)((sa->sa_len) > 0 ? (1 + (((sa->sa_len) - 1) | (sizeof (long) - 1))) : sizeof(long))); |
1051 | } else |
1052 | rti_info[i] = NULL((void*)0); |
1053 | } |
1054 | } |
1055 | |
1056 | void |
1057 | if_change(u_short ifindex, int flags, struct if_data *ifd, |
1058 | struct sockaddr_dl *sdl) |
1059 | { |
1060 | struct kroute_node *kr, *tkr; |
1061 | struct kif *kif; |
1062 | u_int8_t reachable; |
1063 | |
1064 | if ((kif = kif_update(ifindex, flags, ifd, sdl)) == NULL((void*)0)) { |
1065 | log_warn("if_change: kif_update(%u)", ifindex); |
1066 | return; |
1067 | } |
1068 | |
1069 | /* notify ospfe about interface link state */ |
1070 | main_imsg_compose_ospfe(IMSG_IFINFO, 0, kif, sizeof(struct kif)); |
1071 | |
1072 | reachable = (kif->flags & IFF_UP0x1) && |
1073 | LINK_STATE_IS_UP(kif->link_state)((kif->link_state) >= 4 || (kif->link_state) == 0); |
1074 | |
1075 | if (reachable == kif->nh_reachable) |
1076 | return; /* nothing changed wrt nexthop validity */ |
1077 | |
1078 | kif->nh_reachable = reachable; |
1079 | |
1080 | /* update redistribute list */ |
1081 | RB_FOREACH(kr, kroute_tree, &krt)for ((kr) = kroute_tree_RB_MINMAX(&krt, -1); (kr) != ((void *)0); (kr) = kroute_tree_RB_NEXT(kr)) { |
1082 | for (tkr = kr; tkr != NULL((void*)0); tkr = tkr->next) { |
1083 | if (tkr->r.ifindex == ifindex) { |
1084 | if (reachable) |
1085 | tkr->r.flags &= ~F_DOWN0x0020; |
1086 | else |
1087 | tkr->r.flags |= F_DOWN0x0020; |
1088 | |
1089 | } |
1090 | } |
1091 | kr_redistribute(kr); |
1092 | } |
1093 | } |
1094 | |
1095 | void |
1096 | if_newaddr(u_short ifindex, struct sockaddr_in *ifa, struct sockaddr_in *mask, |
1097 | struct sockaddr_in *brd) |
1098 | { |
1099 | struct kif_node *kif; |
1100 | struct kif_addr *ka; |
1101 | struct ifaddrchange ifn; |
1102 | |
1103 | if (ifa == NULL((void*)0) || ifa->sin_family != AF_INET2) |
1104 | return; |
1105 | if ((kif = kif_find(ifindex)) == NULL((void*)0)) { |
1106 | log_warnx("if_newaddr: corresponding if %d not found", ifindex); |
1107 | return; |
1108 | } |
1109 | if ((ka = calloc(1, sizeof(struct kif_addr))) == NULL((void*)0)) |
1110 | fatal("if_newaddr"); |
1111 | ka->addr = ifa->sin_addr; |
1112 | if (mask) |
1113 | ka->mask = mask->sin_addr; |
1114 | else |
1115 | ka->mask.s_addr = INADDR_NONE((u_int32_t)(0xffffffff)); |
1116 | if (brd) |
1117 | ka->dstbrd = brd->sin_addr; |
1118 | else |
1119 | ka->dstbrd.s_addr = INADDR_NONE((u_int32_t)(0xffffffff)); |
1120 | |
1121 | TAILQ_INSERT_TAIL(&kif->addrs, ka, entry)do { (ka)->entry.tqe_next = ((void*)0); (ka)->entry.tqe_prev = (&kif->addrs)->tqh_last; *(&kif->addrs)-> tqh_last = (ka); (&kif->addrs)->tqh_last = &(ka )->entry.tqe_next; } while (0); |
1122 | |
1123 | ifn.addr = ka->addr; |
1124 | ifn.mask = ka->mask; |
1125 | ifn.dst = ka->dstbrd; |
1126 | ifn.ifindex = ifindex; |
1127 | main_imsg_compose_ospfe(IMSG_IFADDRADD, 0, &ifn, sizeof(ifn)); |
1128 | } |
1129 | |
1130 | void |
1131 | if_deladdr(u_short ifindex, struct sockaddr_in *ifa, struct sockaddr_in *mask, |
1132 | struct sockaddr_in *brd) |
1133 | { |
1134 | struct kif_node *kif; |
1135 | struct kif_addr *ka, *nka; |
1136 | struct ifaddrchange ifc; |
1137 | |
1138 | if (ifa == NULL((void*)0) || ifa->sin_family != AF_INET2) |
1139 | return; |
1140 | if ((kif = kif_find(ifindex)) == NULL((void*)0)) { |
1141 | log_warnx("if_deladdr: corresponding if %d not found", ifindex); |
1142 | return; |
1143 | } |
1144 | |
1145 | for (ka = TAILQ_FIRST(&kif->addrs)((&kif->addrs)->tqh_first); ka != NULL((void*)0); ka = nka) { |
1146 | nka = TAILQ_NEXT(ka, entry)((ka)->entry.tqe_next); |
1147 | |
1148 | if (ka->addr.s_addr == ifa->sin_addr.s_addr) { |
1149 | TAILQ_REMOVE(&kif->addrs, ka, entry)do { if (((ka)->entry.tqe_next) != ((void*)0)) (ka)->entry .tqe_next->entry.tqe_prev = (ka)->entry.tqe_prev; else ( &kif->addrs)->tqh_last = (ka)->entry.tqe_prev; * (ka)->entry.tqe_prev = (ka)->entry.tqe_next; ; ; } while (0); |
1150 | ifc.addr = ifa->sin_addr; |
1151 | ifc.ifindex = ifindex; |
1152 | main_imsg_compose_ospfe(IMSG_IFADDRDEL, 0, &ifc, |
1153 | sizeof(ifc)); |
1154 | free(ka); |
1155 | return; |
1156 | } |
1157 | } |
1158 | } |
1159 | |
1160 | void |
1161 | if_announce(void *msg) |
1162 | { |
1163 | struct if_announcemsghdr *ifan; |
1164 | struct kif_node *kif; |
1165 | |
1166 | ifan = msg; |
1167 | |
1168 | switch (ifan->ifan_what) { |
1169 | case IFAN_ARRIVAL0: |
1170 | kif = kif_insert(ifan->ifan_index); |
1171 | strlcpy(kif->k.ifname, ifan->ifan_name, sizeof(kif->k.ifname)); |
1172 | break; |
1173 | case IFAN_DEPARTURE1: |
1174 | kif = kif_find(ifan->ifan_index); |
1175 | kif_remove(kif); |
1176 | break; |
1177 | } |
1178 | } |
1179 | |
1180 | /* rtsock */ |
1181 | int |
1182 | send_rtmsg(int fd, int action, struct kroute *kroute) |
1183 | { |
1184 | struct iovec iov[5]; |
1185 | struct rt_msghdr hdr; |
1186 | struct sockaddr_in prefix; |
1187 | struct sockaddr_in nexthop; |
1188 | struct sockaddr_in mask; |
1189 | struct sockaddr_rtlabel sa_rl; |
1190 | int iovcnt = 0; |
1191 | const char *label; |
1192 | |
1193 | if (kr_state.fib_sync == 0) |
1194 | return (0); |
1195 | |
1196 | /* initialize header */ |
1197 | bzero(&hdr, sizeof(hdr)); |
1198 | hdr.rtm_version = RTM_VERSION5; |
1199 | hdr.rtm_type = action; |
1200 | hdr.rtm_priority = kr_state.fib_prio; |
1201 | hdr.rtm_tableid = kr_state.rdomain; /* rtableid */ |
1202 | if (action == RTM_CHANGE0x3) |
1203 | hdr.rtm_fmask = RTF_REJECT0x8|RTF_BLACKHOLE0x1000; |
1204 | else |
1205 | hdr.rtm_flags = RTF_MPATH0x40000; |
1206 | hdr.rtm_seq = kr_state.rtseq++; /* overflow doesn't matter */ |
1207 | hdr.rtm_msglen = sizeof(hdr); |
1208 | /* adjust iovec */ |
1209 | iov[iovcnt].iov_base = &hdr; |
1210 | iov[iovcnt++].iov_len = sizeof(hdr); |
1211 | |
1212 | bzero(&prefix, sizeof(prefix)); |
1213 | prefix.sin_len = sizeof(prefix); |
1214 | prefix.sin_family = AF_INET2; |
1215 | prefix.sin_addr.s_addr = kroute->prefix.s_addr; |
1216 | /* adjust header */ |
1217 | hdr.rtm_addrs |= RTA_DST0x1; |
1218 | hdr.rtm_msglen += sizeof(prefix); |
1219 | /* adjust iovec */ |
1220 | iov[iovcnt].iov_base = &prefix; |
1221 | iov[iovcnt++].iov_len = sizeof(prefix); |
1222 | |
1223 | if (kroute->nexthop.s_addr != 0) { |
1224 | bzero(&nexthop, sizeof(nexthop)); |
1225 | nexthop.sin_len = sizeof(nexthop); |
1226 | nexthop.sin_family = AF_INET2; |
1227 | nexthop.sin_addr.s_addr = kroute->nexthop.s_addr; |
1228 | /* adjust header */ |
1229 | hdr.rtm_flags |= RTF_GATEWAY0x2; |
1230 | hdr.rtm_addrs |= RTA_GATEWAY0x2; |
1231 | hdr.rtm_msglen += sizeof(nexthop); |
1232 | /* adjust iovec */ |
1233 | iov[iovcnt].iov_base = &nexthop; |
1234 | iov[iovcnt++].iov_len = sizeof(nexthop); |
1235 | } |
1236 | |
1237 | bzero(&mask, sizeof(mask)); |
1238 | mask.sin_len = sizeof(mask); |
1239 | mask.sin_family = AF_INET2; |
1240 | mask.sin_addr.s_addr = prefixlen2mask(kroute->prefixlen); |
1241 | /* adjust header */ |
1242 | hdr.rtm_addrs |= RTA_NETMASK0x4; |
1243 | hdr.rtm_msglen += sizeof(mask); |
1244 | /* adjust iovec */ |
1245 | iov[iovcnt].iov_base = &mask; |
1246 | iov[iovcnt++].iov_len = sizeof(mask); |
1247 | |
1248 | if (kroute->rtlabel != 0) { |
1249 | sa_rl.sr_len = sizeof(sa_rl); |
1250 | sa_rl.sr_family = AF_UNSPEC0; |
1251 | label = rtlabel_id2name(kroute->rtlabel); |
1252 | if (strlcpy(sa_rl.sr_label, label, |
1253 | sizeof(sa_rl.sr_label)) >= sizeof(sa_rl.sr_label)) { |
1254 | log_warnx("send_rtmsg: invalid rtlabel"); |
1255 | return (-1); |
1256 | } |
1257 | /* adjust header */ |
1258 | hdr.rtm_addrs |= RTA_LABEL0x400; |
1259 | hdr.rtm_msglen += sizeof(sa_rl); |
1260 | /* adjust iovec */ |
1261 | iov[iovcnt].iov_base = &sa_rl; |
1262 | iov[iovcnt++].iov_len = sizeof(sa_rl); |
1263 | } |
1264 | |
1265 | retry: |
1266 | if (writev(fd, iov, iovcnt) == -1) { |
1267 | if (errno(*__errno()) == ESRCH3) { |
1268 | if (hdr.rtm_type == RTM_CHANGE0x3) { |
1269 | hdr.rtm_type = RTM_ADD0x1; |
1270 | goto retry; |
1271 | } else if (hdr.rtm_type == RTM_DELETE0x2) { |
1272 | log_info("route %s/%u vanished before delete", |
1273 | inet_ntoa(kroute->prefix), |
1274 | kroute->prefixlen); |
1275 | return (0); |
1276 | } |
1277 | } |
1278 | log_warn("send_rtmsg: action %u, prefix %s/%u", hdr.rtm_type, |
1279 | inet_ntoa(kroute->prefix), kroute->prefixlen); |
1280 | return (0); |
1281 | } |
1282 | |
1283 | return (0); |
1284 | } |
1285 | |
1286 | int |
1287 | fetchtable(void) |
1288 | { |
1289 | size_t len; |
1290 | int mib[7]; |
1291 | char *buf; |
1292 | int rv; |
1293 | |
1294 | mib[0] = CTL_NET4; |
1295 | mib[1] = PF_ROUTE17; |
1296 | mib[2] = 0; |
1297 | mib[3] = AF_INET2; |
1298 | mib[4] = NET_RT_DUMP1; |
1299 | mib[5] = 0; |
1300 | mib[6] = kr_state.rdomain; /* rtableid */ |
1301 | |
1302 | if (sysctl(mib, 7, NULL((void*)0), &len, NULL((void*)0), 0) == -1) { |
1303 | log_warn("sysctl"); |
1304 | return (-1); |
1305 | } |
1306 | if ((buf = malloc(len)) == NULL((void*)0)) { |
1307 | log_warn("fetchtable"); |
1308 | return (-1); |
1309 | } |
1310 | if (sysctl(mib, 7, buf, &len, NULL((void*)0), 0) == -1) { |
1311 | log_warn("sysctl"); |
1312 | free(buf); |
1313 | return (-1); |
1314 | } |
1315 | |
1316 | rv = rtmsg_process(buf, len); |
1317 | free(buf); |
1318 | |
1319 | return (rv); |
1320 | } |
1321 | |
1322 | int |
1323 | fetchifs(u_short ifindex) |
1324 | { |
1325 | size_t len; |
1326 | int mib[6]; |
1327 | char *buf; |
1328 | int rv; |
1329 | |
1330 | mib[0] = CTL_NET4; |
1331 | mib[1] = PF_ROUTE17; |
1332 | mib[2] = 0; |
1333 | mib[3] = AF_INET2; |
1334 | mib[4] = NET_RT_IFLIST3; |
1335 | mib[5] = ifindex; |
1336 | |
1337 | if (sysctl(mib, 6, NULL((void*)0), &len, NULL((void*)0), 0) == -1) { |
1338 | log_warn("sysctl"); |
1339 | return (-1); |
1340 | } |
1341 | if ((buf = malloc(len)) == NULL((void*)0)) { |
1342 | log_warn("fetchif"); |
1343 | return (-1); |
1344 | } |
1345 | if (sysctl(mib, 6, buf, &len, NULL((void*)0), 0) == -1) { |
1346 | log_warn("sysctl"); |
1347 | free(buf); |
1348 | return (-1); |
1349 | } |
1350 | |
1351 | rv = rtmsg_process(buf, len); |
1352 | free(buf); |
1353 | |
1354 | return (rv); |
1355 | } |
1356 | |
1357 | int |
1358 | dispatch_rtmsg(void) |
1359 | { |
1360 | char buf[RT_BUF_SIZE16384]; |
1361 | ssize_t n; |
1362 | |
1363 | if ((n = read(kr_state.fd, &buf, sizeof(buf))) == -1) { |
1364 | if (errno(*__errno()) == EAGAIN35 || errno(*__errno()) == EINTR4) |
1365 | return (0); |
1366 | log_warn("dispatch_rtmsg: read error"); |
1367 | return (-1); |
1368 | } |
1369 | |
1370 | if (n == 0) { |
1371 | log_warnx("routing socket closed"); |
1372 | return (-1); |
1373 | } |
1374 | |
1375 | return (rtmsg_process(buf, n)); |
1376 | } |
1377 | |
1378 | int |
1379 | rtmsg_process(char *buf, size_t len) |
1380 | { |
1381 | struct rt_msghdr *rtm; |
1382 | struct if_msghdr ifm; |
1383 | struct ifa_msghdr *ifam; |
1384 | struct sockaddr *sa, *rti_info[RTAX_MAX15]; |
1385 | struct sockaddr_in *sa_in; |
1386 | struct sockaddr_rtlabel *label; |
1387 | struct kroute_node *kr, *okr; |
1388 | struct in_addr prefix, nexthop; |
1389 | u_int8_t prefixlen, prio; |
1390 | int flags, mpath; |
1391 | u_short ifindex = 0; |
1392 | int rv, delay; |
1393 | |
1394 | size_t offset; |
1395 | char *next; |
1396 | |
1397 | for (offset = 0; offset < len; offset += rtm->rtm_msglen) { |
1398 | next = buf + offset; |
1399 | rtm = (struct rt_msghdr *)next; |
1400 | if (len < offset + sizeof(u_short) || |
1401 | len < offset + rtm->rtm_msglen) |
1402 | fatalx("%s: partial rtm in buffer", __func__); |
1403 | if (rtm->rtm_version != RTM_VERSION5) |
1404 | continue; |
1405 | |
1406 | prefix.s_addr = 0; |
1407 | prefixlen = 0; |
1408 | nexthop.s_addr = 0; |
1409 | mpath = 0; |
1410 | prio = 0; |
1411 | flags = F_KERNEL0x0002; |
1412 | |
1413 | sa = (struct sockaddr *)(next + rtm->rtm_hdrlen); |
1414 | get_rtaddrs(rtm->rtm_addrs, sa, rti_info); |
1415 | |
1416 | switch (rtm->rtm_type) { |
1417 | case RTM_ADD0x1: |
1418 | case RTM_GET0x4: |
1419 | case RTM_CHANGE0x3: |
1420 | case RTM_DELETE0x2: |
1421 | if (rtm->rtm_errno) /* failed attempts... */ |
1422 | continue; |
1423 | |
1424 | if (rtm->rtm_tableid != kr_state.rdomain) |
1425 | continue; |
1426 | |
1427 | if (rtm->rtm_type == RTM_GET0x4 && |
1428 | rtm->rtm_pid != kr_state.pid) |
1429 | continue; |
1430 | |
1431 | if ((sa = rti_info[RTAX_DST0]) == NULL((void*)0)) |
1432 | continue; |
1433 | |
1434 | /* Skip ARP/ND cache and broadcast routes. */ |
1435 | if (rtm->rtm_flags & (RTF_LLINFO0x400|RTF_BROADCAST0x400000)) |
1436 | continue; |
1437 | |
1438 | if (rtm->rtm_flags & RTF_MPATH0x40000) |
1439 | mpath = 1; |
1440 | prio = rtm->rtm_priority; |
1441 | flags = (prio == kr_state.fib_prio) ? |
1442 | F_OSPFD_INSERTED0x0001 : F_KERNEL0x0002; |
1443 | |
1444 | switch (sa->sa_family) { |
1445 | case AF_INET2: |
1446 | prefix.s_addr = |
1447 | ((struct sockaddr_in *)sa)->sin_addr.s_addr; |
1448 | sa_in = (struct sockaddr_in *) |
1449 | rti_info[RTAX_NETMASK2]; |
1450 | if (sa_in != NULL((void*)0)) { |
1451 | if (sa_in->sin_len != 0) |
1452 | prefixlen = mask2prefixlen( |
1453 | sa_in->sin_addr.s_addr); |
1454 | } else if (rtm->rtm_flags & RTF_HOST0x4) |
1455 | prefixlen = 32; |
1456 | else |
1457 | prefixlen = |
1458 | prefixlen_classful(prefix.s_addr); |
1459 | if (rtm->rtm_flags & RTF_STATIC0x800) |
1460 | flags |= F_STATIC0x0008; |
1461 | if (rtm->rtm_flags & RTF_BLACKHOLE0x1000) |
1462 | flags |= F_BLACKHOLE0x0080; |
1463 | if (rtm->rtm_flags & RTF_REJECT0x8) |
1464 | flags |= F_REJECT0x0040; |
1465 | if (rtm->rtm_flags & RTF_DYNAMIC0x10) |
1466 | flags |= F_DYNAMIC0x0010; |
1467 | break; |
1468 | default: |
1469 | continue; |
1470 | } |
1471 | |
1472 | ifindex = rtm->rtm_index; |
1473 | if ((sa = rti_info[RTAX_GATEWAY1]) != NULL((void*)0)) { |
1474 | switch (sa->sa_family) { |
1475 | case AF_INET2: |
1476 | if (rtm->rtm_flags & RTF_CONNECTED0x800000) |
1477 | flags |= F_CONNECTED0x0004; |
1478 | |
1479 | nexthop.s_addr = ((struct |
1480 | sockaddr_in *)sa)->sin_addr.s_addr; |
1481 | break; |
1482 | case AF_LINK18: |
1483 | /* |
1484 | * Traditional BSD connected routes have |
1485 | * a gateway of type AF_LINK. |
1486 | */ |
1487 | flags |= F_CONNECTED0x0004; |
1488 | break; |
1489 | } |
1490 | } |
1491 | } |
1492 | |
1493 | switch (rtm->rtm_type) { |
1494 | case RTM_ADD0x1: |
1495 | case RTM_GET0x4: |
1496 | case RTM_CHANGE0x3: |
1497 | if (nexthop.s_addr == 0 && !(flags & F_CONNECTED0x0004)) { |
1498 | log_warnx("no nexthop for %s/%u", |
1499 | inet_ntoa(prefix), prefixlen); |
1500 | continue; |
1501 | } |
1502 | |
1503 | if ((okr = kroute_find(prefix.s_addr, prefixlen, prio)) |
1504 | != NULL((void*)0)) { |
1505 | /* get the correct route */ |
1506 | kr = okr; |
1507 | if ((mpath || prio == kr_state.fib_prio) && |
1508 | (kr = kroute_matchgw(okr, nexthop)) == |
1509 | NULL((void*)0)) { |
1510 | log_warnx("%s: mpath route not found", |
1511 | __func__); |
1512 | /* add routes we missed out earlier */ |
1513 | goto add; |
1514 | } |
1515 | |
1516 | if (kr->r.flags & F_REDISTRIBUTED0x0100) |
1517 | flags |= F_REDISTRIBUTED0x0100; |
1518 | kr->r.nexthop.s_addr = nexthop.s_addr; |
1519 | kr->r.flags = flags; |
1520 | kr->r.ifindex = ifindex; |
1521 | |
1522 | rtlabel_unref(kr->r.rtlabel); |
1523 | kr->r.rtlabel = 0; |
1524 | kr->r.ext_tag = 0; |
1525 | if ((label = (struct sockaddr_rtlabel *) |
1526 | rti_info[RTAX_LABEL10]) != NULL((void*)0)) { |
1527 | kr->r.rtlabel = |
1528 | rtlabel_name2id(label->sr_label); |
1529 | kr->r.ext_tag = |
1530 | rtlabel_id2tag(kr->r.rtlabel); |
1531 | } |
1532 | |
1533 | if (kif_validate(kr->r.ifindex)) |
1534 | kr->r.flags &= ~F_DOWN0x0020; |
1535 | else |
1536 | kr->r.flags |= F_DOWN0x0020; |
1537 | |
1538 | /* just readd, the RDE will care */ |
1539 | kr->serial = kr_state.fib_serial; |
1540 | kr_redistribute(okr); |
1541 | } else { |
1542 | add: |
1543 | if ((kr = calloc(1, |
1544 | sizeof(struct kroute_node))) == NULL((void*)0)) { |
1545 | log_warn("%s: calloc", __func__); |
1546 | return (-1); |
1547 | } |
1548 | |
1549 | kr->r.prefix.s_addr = prefix.s_addr; |
1550 | kr->r.prefixlen = prefixlen; |
1551 | kr->r.nexthop.s_addr = nexthop.s_addr; |
1552 | kr->r.flags = flags; |
1553 | kr->r.ifindex = ifindex; |
1554 | kr->r.priority = prio; |
1555 | |
1556 | if (rtm->rtm_priority == kr_state.fib_prio) { |
1557 | log_warnx("alien OSPF route %s/%d", |
1558 | inet_ntoa(prefix), prefixlen); |
1559 | rv = send_rtmsg(kr_state.fd, |
1560 | RTM_DELETE0x2, &kr->r); |
1561 | free(kr); |
1562 | if (rv == -1) |
1563 | return (-1); |
1564 | } else { |
1565 | if ((label = (struct sockaddr_rtlabel *) |
1566 | rti_info[RTAX_LABEL10]) != NULL((void*)0)) { |
1567 | kr->r.rtlabel = |
1568 | rtlabel_name2id( |
1569 | label->sr_label); |
1570 | kr->r.ext_tag = |
1571 | rtlabel_id2tag( |
1572 | kr->r.rtlabel); |
1573 | } |
1574 | |
1575 | kroute_insert(kr); |
1576 | } |
1577 | } |
1578 | break; |
1579 | case RTM_DELETE0x2: |
1580 | if ((kr = kroute_find(prefix.s_addr, prefixlen, prio)) |
1581 | == NULL((void*)0)) |
1582 | continue; |
1583 | if (!(kr->r.flags & F_KERNEL0x0002)) |
1584 | continue; |
1585 | /* get the correct route */ |
1586 | okr = kr; |
Value stored to 'okr' is never read | |
1587 | if (mpath && |
1588 | (kr = kroute_matchgw(kr, nexthop)) == NULL((void*)0)) { |
1589 | log_warnx("%s: mpath route not found", |
1590 | __func__); |
1591 | return (-1); |
1592 | } |
1593 | if (kroute_remove(kr) == -1) |
1594 | return (-1); |
1595 | break; |
1596 | case RTM_IFINFO0xe: |
1597 | memcpy(&ifm, next, sizeof(ifm)); |
1598 | if_change(ifm.ifm_index, ifm.ifm_flags, &ifm.ifm_data, |
1599 | (struct sockaddr_dl *)rti_info[RTAX_IFP4]); |
1600 | break; |
1601 | case RTM_NEWADDR0xc: |
1602 | ifam = (struct ifa_msghdr *)rtm; |
1603 | if ((ifam->ifam_addrs & (RTA_NETMASK0x4 | RTA_IFA0x20 | |
1604 | RTA_BRD0x80)) == 0) |
1605 | break; |
1606 | |
1607 | if_newaddr(ifam->ifam_index, |
1608 | (struct sockaddr_in *)rti_info[RTAX_IFA5], |
1609 | (struct sockaddr_in *)rti_info[RTAX_NETMASK2], |
1610 | (struct sockaddr_in *)rti_info[RTAX_BRD7]); |
1611 | break; |
1612 | case RTM_DELADDR0xd: |
1613 | ifam = (struct ifa_msghdr *)rtm; |
1614 | if ((ifam->ifam_addrs & (RTA_NETMASK0x4 | RTA_IFA0x20 | |
1615 | RTA_BRD0x80)) == 0) |
1616 | break; |
1617 | |
1618 | if_deladdr(ifam->ifam_index, |
1619 | (struct sockaddr_in *)rti_info[RTAX_IFA5], |
1620 | (struct sockaddr_in *)rti_info[RTAX_NETMASK2], |
1621 | (struct sockaddr_in *)rti_info[RTAX_BRD7]); |
1622 | break; |
1623 | case RTM_IFANNOUNCE0xf: |
1624 | if_announce(next); |
1625 | break; |
1626 | case RTM_DESYNC0x10: |
1627 | /* |
1628 | * We lost some routing packets. Schedule a reload |
1629 | * of the kernel route/interface information. |
1630 | */ |
1631 | if (kr_state.reload_state == KR_RELOAD_IDLE0) { |
1632 | delay = KR_RELOAD_TIMER250; |
1633 | log_info("desync; scheduling fib reload"); |
1634 | } else { |
1635 | delay = KR_RELOAD_HOLD_TIMER5000; |
1636 | log_debug("desync during KR_RELOAD_%s", |
1637 | kr_state.reload_state == |
1638 | KR_RELOAD_FETCH1 ? "FETCH" : "HOLD"); |
1639 | } |
1640 | kr_state.reload_state = KR_RELOAD_FETCH1; |
1641 | kr_fib_reload_arm_timer(delay); |
1642 | break; |
1643 | default: |
1644 | /* ignore for now */ |
1645 | break; |
1646 | } |
1647 | } |
1648 | |
1649 | return (offset); |
1650 | } |