Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1142, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstrEmitter.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp

1//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the Emit routines for the SelectionDAG class, which creates
10// MachineInstrs based on the decisions of the SelectionDAG instruction
11// selection.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstrEmitter.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/MachineConstantPool.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/StackMaps.h"
24#include "llvm/CodeGen/TargetInstrInfo.h"
25#include "llvm/CodeGen/TargetLowering.h"
26#include "llvm/CodeGen/TargetSubtargetInfo.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/PseudoProbe.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetMachine.h"
34using namespace llvm;
35
36#define DEBUG_TYPE"instr-emitter" "instr-emitter"
37
38/// MinRCSize - Smallest register class we allow when constraining virtual
39/// registers. If satisfying all register class constraints would require
40/// using a smaller register class, emit a COPY to a new virtual register
41/// instead.
42const unsigned MinRCSize = 4;
43
44/// CountResults - The results of target nodes have register or immediate
45/// operands first, then an optional chain, and optional glue operands (which do
46/// not go into the resulting MachineInstr).
47unsigned InstrEmitter::CountResults(SDNode *Node) {
48 unsigned N = Node->getNumValues();
49 while (N && Node->getValueType(N - 1) == MVT::Glue)
50 --N;
51 if (N && Node->getValueType(N - 1) == MVT::Other)
52 --N; // Skip over chain result.
53 return N;
54}
55
56/// countOperands - The inputs to target nodes have any actual inputs first,
57/// followed by an optional chain operand, then an optional glue operand.
58/// Compute the number of actual operands that will go into the resulting
59/// MachineInstr.
60///
61/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62/// the chain and glue. These operands may be implicit on the machine instr.
63static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
64 unsigned &NumImpUses) {
65 unsigned N = Node->getNumOperands();
66 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
67 --N;
68 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
69 --N; // Ignore chain if it exists.
70
71 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72 NumImpUses = N - NumExpUses;
73 for (unsigned I = N; I > NumExpUses; --I) {
74 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
75 continue;
76 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
77 if (Register::isPhysicalRegister(RN->getReg()))
78 continue;
79 NumImpUses = N - I;
80 break;
81 }
82
83 return N;
84}
85
86/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87/// implicit physical register output.
88void InstrEmitter::
89EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
90 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
91 Register VRBase;
92 if (SrcReg.isVirtual()) {
93 // Just use the input register directly!
94 SDValue Op(Node, ResNo);
95 if (IsClone)
96 VRBaseMap.erase(Op);
97 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
98 (void)isNew; // Silence compiler warning.
99 assert(isNew && "Node emitted out of order - early")((void)0);
100 return;
101 }
102
103 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104 // the CopyToReg'd destination register instead of creating a new vreg.
105 bool MatchReg = true;
106 const TargetRegisterClass *UseRC = nullptr;
107 MVT VT = Node->getSimpleValueType(ResNo);
108
109 // Stick to the preferred register classes for legal types.
110 if (TLI->isTypeLegal(VT))
111 UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
112
113 if (!IsClone && !IsCloned)
114 for (SDNode *User : Node->uses()) {
115 bool Match = true;
116 if (User->getOpcode() == ISD::CopyToReg &&
117 User->getOperand(2).getNode() == Node &&
118 User->getOperand(2).getResNo() == ResNo) {
119 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120 if (DestReg.isVirtual()) {
121 VRBase = DestReg;
122 Match = false;
123 } else if (DestReg != SrcReg)
124 Match = false;
125 } else {
126 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
127 SDValue Op = User->getOperand(i);
128 if (Op.getNode() != Node || Op.getResNo() != ResNo)
129 continue;
130 MVT VT = Node->getSimpleValueType(Op.getResNo());
131 if (VT == MVT::Other || VT == MVT::Glue)
132 continue;
133 Match = false;
134 if (User->isMachineOpcode()) {
135 const MCInstrDesc &II = TII->get(User->getMachineOpcode());
136 const TargetRegisterClass *RC = nullptr;
137 if (i+II.getNumDefs() < II.getNumOperands()) {
138 RC = TRI->getAllocatableClass(
139 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
140 }
141 if (!UseRC)
142 UseRC = RC;
143 else if (RC) {
144 const TargetRegisterClass *ComRC =
145 TRI->getCommonSubClass(UseRC, RC);
146 // If multiple uses expect disjoint register classes, we emit
147 // copies in AddRegisterOperand.
148 if (ComRC)
149 UseRC = ComRC;
150 }
151 }
152 }
153 }
154 MatchReg &= Match;
155 if (VRBase)
156 break;
157 }
158
159 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
160 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
161
162 // Figure out the register class to create for the destreg.
163 if (VRBase) {
164 DstRC = MRI->getRegClass(VRBase);
165 } else if (UseRC) {
166 assert(TRI->isTypeLegalForClass(*UseRC, VT) &&((void)0)
167 "Incompatible phys register def and uses!")((void)0);
168 DstRC = UseRC;
169 } else
170 DstRC = SrcRC;
171
172 // If all uses are reading from the src physical register and copying the
173 // register is either impossible or very expensive, then don't create a copy.
174 if (MatchReg && SrcRC->getCopyCost() < 0) {
175 VRBase = SrcReg;
176 } else {
177 // Create the reg, emit the copy.
178 VRBase = MRI->createVirtualRegister(DstRC);
179 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
180 VRBase).addReg(SrcReg);
181 }
182
183 SDValue Op(Node, ResNo);
184 if (IsClone)
185 VRBaseMap.erase(Op);
186 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
187 (void)isNew; // Silence compiler warning.
188 assert(isNew && "Node emitted out of order - early")((void)0);
189}
190
191void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
192 MachineInstrBuilder &MIB,
193 const MCInstrDesc &II,
194 bool IsClone, bool IsCloned,
195 DenseMap<SDValue, Register> &VRBaseMap) {
196 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&((void)0)
197 "IMPLICIT_DEF should have been handled as a special case elsewhere!")((void)0);
198
199 unsigned NumResults = CountResults(Node);
200 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
201 II.isVariadic() && II.variadicOpsAreDefs();
202 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
203 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
204 NumVRegs = NumResults;
205 for (unsigned i = 0; i < NumVRegs; ++i) {
206 // If the specific node value is only used by a CopyToReg and the dest reg
207 // is a vreg in the same register class, use the CopyToReg'd destination
208 // register instead of creating a new vreg.
209 Register VRBase;
210 const TargetRegisterClass *RC =
211 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
212 // Always let the value type influence the used register class. The
213 // constraints on the instruction may be too lax to represent the value
214 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
215 // the 32-bit float super-class (X86::FR32).
216 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
217 const TargetRegisterClass *VTRC = TLI->getRegClassFor(
218 Node->getSimpleValueType(i),
219 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
220 if (RC)
221 VTRC = TRI->getCommonSubClass(RC, VTRC);
222 if (VTRC)
223 RC = VTRC;
224 }
225
226 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
227 // Optional def must be a physical register.
228 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
229 assert(VRBase.isPhysical())((void)0);
230 MIB.addReg(VRBase, RegState::Define);
231 }
232
233 if (!VRBase && !IsClone && !IsCloned)
234 for (SDNode *User : Node->uses()) {
235 if (User->getOpcode() == ISD::CopyToReg &&
236 User->getOperand(2).getNode() == Node &&
237 User->getOperand(2).getResNo() == i) {
238 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
239 if (Register::isVirtualRegister(Reg)) {
240 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
241 if (RegRC == RC) {
242 VRBase = Reg;
243 MIB.addReg(VRBase, RegState::Define);
244 break;
245 }
246 }
247 }
248 }
249
250 // Create the result registers for this node and add the result regs to
251 // the machine instruction.
252 if (VRBase == 0) {
253 assert(RC && "Isn't a register operand!")((void)0);
254 VRBase = MRI->createVirtualRegister(RC);
255 MIB.addReg(VRBase, RegState::Define);
256 }
257
258 // If this def corresponds to a result of the SDNode insert the VRBase into
259 // the lookup map.
260 if (i < NumResults) {
261 SDValue Op(Node, i);
262 if (IsClone)
263 VRBaseMap.erase(Op);
264 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
265 (void)isNew; // Silence compiler warning.
266 assert(isNew && "Node emitted out of order - early")((void)0);
267 }
268 }
269}
270
271/// getVR - Return the virtual register corresponding to the specified result
272/// of the specified node.
273Register InstrEmitter::getVR(SDValue Op,
274 DenseMap<SDValue, Register> &VRBaseMap) {
275 if (Op.isMachineOpcode() &&
6
Calling 'SDValue::isMachineOpcode'
276 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
277 // Add an IMPLICIT_DEF instruction before every use.
278 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
279 // does not include operand register class info.
280 const TargetRegisterClass *RC = TLI->getRegClassFor(
281 Op.getSimpleValueType(), Op.getNode()->isDivergent());
282 Register VReg = MRI->createVirtualRegister(RC);
283 BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
284 TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
285 return VReg;
286 }
287
288 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
289 assert(I != VRBaseMap.end() && "Node emitted out of order - late")((void)0);
290 return I->second;
291}
292
293
294/// AddRegisterOperand - Add the specified register as an operand to the
295/// specified machine instr. Insert register copies if the register is
296/// not in the required register class.
297void
298InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
299 SDValue Op,
300 unsigned IIOpNum,
301 const MCInstrDesc *II,
302 DenseMap<SDValue, Register> &VRBaseMap,
303 bool IsDebug, bool IsClone, bool IsCloned) {
304 assert(Op.getValueType() != MVT::Other &&((void)0)
305 Op.getValueType() != MVT::Glue &&((void)0)
306 "Chain and glue operands should occur at end of operand list!")((void)0);
307 // Get/emit the operand.
308 Register VReg = getVR(Op, VRBaseMap);
309
310 const MCInstrDesc &MCID = MIB->getDesc();
311 bool isOptDef = IIOpNum < MCID.getNumOperands() &&
312 MCID.OpInfo[IIOpNum].isOptionalDef();
313
314 // If the instruction requires a register in a different class, create
315 // a new virtual register and copy the value into it, but first attempt to
316 // shrink VReg's register class within reason. For example, if VReg == GR32
317 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
318 if (II) {
319 const TargetRegisterClass *OpRC = nullptr;
320 if (IIOpNum < II->getNumOperands())
321 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
322
323 if (OpRC) {
324 const TargetRegisterClass *ConstrainedRC
325 = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
326 if (!ConstrainedRC) {
327 OpRC = TRI->getAllocatableClass(OpRC);
328 assert(OpRC && "Constraints cannot be fulfilled for allocation")((void)0);
329 Register NewVReg = MRI->createVirtualRegister(OpRC);
330 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
331 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
332 VReg = NewVReg;
333 } else {
334 assert(ConstrainedRC->isAllocatable() &&((void)0)
335 "Constraining an allocatable VReg produced an unallocatable class?")((void)0);
336 }
337 }
338 }
339
340 // If this value has only one use, that use is a kill. This is a
341 // conservative approximation. InstrEmitter does trivial coalescing
342 // with CopyFromReg nodes, so don't emit kill flags for them.
343 // Avoid kill flags on Schedule cloned nodes, since there will be
344 // multiple uses.
345 // Tied operands are never killed, so we need to check that. And that
346 // means we need to determine the index of the operand.
347 bool isKill = Op.hasOneUse() &&
348 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
349 !IsDebug &&
350 !(IsClone || IsCloned);
351 if (isKill) {
352 unsigned Idx = MIB->getNumOperands();
353 while (Idx > 0 &&
354 MIB->getOperand(Idx-1).isReg() &&
355 MIB->getOperand(Idx-1).isImplicit())
356 --Idx;
357 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
358 if (isTied)
359 isKill = false;
360 }
361
362 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
363 getDebugRegState(IsDebug));
364}
365
366/// AddOperand - Add the specified operand to the specified machine instr. II
367/// specifies the instruction information for the node, and IIOpNum is the
368/// operand number (in the II) that we are adding.
369void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
370 SDValue Op,
371 unsigned IIOpNum,
372 const MCInstrDesc *II,
373 DenseMap<SDValue, Register> &VRBaseMap,
374 bool IsDebug, bool IsClone, bool IsCloned) {
375 if (Op.isMachineOpcode()) {
376 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
377 IsDebug, IsClone, IsCloned);
378 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
379 MIB.addImm(C->getSExtValue());
380 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
381 MIB.addFPImm(F->getConstantFPValue());
382 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
383 Register VReg = R->getReg();
384 MVT OpVT = Op.getSimpleValueType();
385 const TargetRegisterClass *IIRC =
386 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
387 : nullptr;
388 const TargetRegisterClass *OpRC =
389 TLI->isTypeLegal(OpVT)
390 ? TLI->getRegClassFor(OpVT,
391 Op.getNode()->isDivergent() ||
392 (IIRC && TRI->isDivergentRegClass(IIRC)))
393 : nullptr;
394
395 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
396 Register NewVReg = MRI->createVirtualRegister(IIRC);
397 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
398 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
399 VReg = NewVReg;
400 }
401 // Turn additional physreg operands into implicit uses on non-variadic
402 // instructions. This is used by call and return instructions passing
403 // arguments in registers.
404 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
405 MIB.addReg(VReg, getImplRegState(Imp));
406 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
407 MIB.addRegMask(RM->getRegMask());
408 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
409 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
410 TGA->getTargetFlags());
411 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
412 MIB.addMBB(BBNode->getBasicBlock());
413 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
414 MIB.addFrameIndex(FI->getIndex());
415 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
416 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
417 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
418 int Offset = CP->getOffset();
419 Align Alignment = CP->getAlign();
420
421 unsigned Idx;
422 MachineConstantPool *MCP = MF->getConstantPool();
423 if (CP->isMachineConstantPoolEntry())
424 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
425 else
426 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
427 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
428 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
429 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
430 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
431 MIB.addSym(SymNode->getMCSymbol());
432 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
433 MIB.addBlockAddress(BA->getBlockAddress(),
434 BA->getOffset(),
435 BA->getTargetFlags());
436 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
437 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
438 } else {
439 assert(Op.getValueType() != MVT::Other &&((void)0)
440 Op.getValueType() != MVT::Glue &&((void)0)
441 "Chain and glue operands should occur at end of operand list!")((void)0);
442 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
443 IsDebug, IsClone, IsCloned);
444 }
445}
446
447Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
448 MVT VT, bool isDivergent, const DebugLoc &DL) {
449 const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
450 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
451
452 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
453 // within reason.
454 if (RC && RC != VRC)
455 RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
456
457 // VReg has been adjusted. It can be used with SubIdx operands now.
458 if (RC)
459 return VReg;
460
461 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
462 // register instead.
463 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
464 assert(RC && "No legal register class for VT supports that SubIdx")((void)0);
465 Register NewReg = MRI->createVirtualRegister(RC);
466 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
467 .addReg(VReg);
468 return NewReg;
469}
470
471/// EmitSubregNode - Generate machine code for subreg nodes.
472///
473void InstrEmitter::EmitSubregNode(SDNode *Node,
474 DenseMap<SDValue, Register> &VRBaseMap,
475 bool IsClone, bool IsCloned) {
476 Register VRBase;
477 unsigned Opc = Node->getMachineOpcode();
478
479 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
480 // the CopyToReg'd destination register instead of creating a new vreg.
481 for (SDNode *User : Node->uses()) {
482 if (User->getOpcode() == ISD::CopyToReg &&
483 User->getOperand(2).getNode() == Node) {
484 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
485 if (DestReg.isVirtual()) {
486 VRBase = DestReg;
487 break;
488 }
489 }
490 }
491
492 if (Opc == TargetOpcode::EXTRACT_SUBREG) {
493 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
494 // constraints on the %dst register, COPY can target all legal register
495 // classes.
496 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
497 const TargetRegisterClass *TRC =
498 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
499
500 Register Reg;
501 MachineInstr *DefMI;
502 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
503 if (R && Register::isPhysicalRegister(R->getReg())) {
504 Reg = R->getReg();
505 DefMI = nullptr;
506 } else {
507 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
508 DefMI = MRI->getVRegDef(Reg);
509 }
510
511 Register SrcReg, DstReg;
512 unsigned DefSubIdx;
513 if (DefMI &&
514 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
515 SubIdx == DefSubIdx &&
516 TRC == MRI->getRegClass(SrcReg)) {
517 // Optimize these:
518 // r1025 = s/zext r1024, 4
519 // r1026 = extract_subreg r1025, 4
520 // to a copy
521 // r1026 = copy r1024
522 VRBase = MRI->createVirtualRegister(TRC);
523 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
524 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
525 MRI->clearKillFlags(SrcReg);
526 } else {
527 // Reg may not support a SubIdx sub-register, and we may need to
528 // constrain its register class or issue a COPY to a compatible register
529 // class.
530 if (Reg.isVirtual())
531 Reg = ConstrainForSubReg(Reg, SubIdx,
532 Node->getOperand(0).getSimpleValueType(),
533 Node->isDivergent(), Node->getDebugLoc());
534 // Create the destreg if it is missing.
535 if (!VRBase)
536 VRBase = MRI->createVirtualRegister(TRC);
537
538 // Create the extract_subreg machine instruction.
539 MachineInstrBuilder CopyMI =
540 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
541 TII->get(TargetOpcode::COPY), VRBase);
542 if (Reg.isVirtual())
543 CopyMI.addReg(Reg, 0, SubIdx);
544 else
545 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
546 }
547 } else if (Opc == TargetOpcode::INSERT_SUBREG ||
548 Opc == TargetOpcode::SUBREG_TO_REG) {
549 SDValue N0 = Node->getOperand(0);
550 SDValue N1 = Node->getOperand(1);
551 SDValue N2 = Node->getOperand(2);
552 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
553
554 // Figure out the register class to create for the destreg. It should be
555 // the largest legal register class supporting SubIdx sub-registers.
556 // RegisterCoalescer will constrain it further if it decides to eliminate
557 // the INSERT_SUBREG instruction.
558 //
559 // %dst = INSERT_SUBREG %src, %sub, SubIdx
560 //
561 // is lowered by TwoAddressInstructionPass to:
562 //
563 // %dst = COPY %src
564 // %dst:SubIdx = COPY %sub
565 //
566 // There is no constraint on the %src register class.
567 //
568 const TargetRegisterClass *SRC =
569 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
570 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
571 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG")((void)0);
572
573 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
574 VRBase = MRI->createVirtualRegister(SRC);
575
576 // Create the insert_subreg or subreg_to_reg machine instruction.
577 MachineInstrBuilder MIB =
578 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
579
580 // If creating a subreg_to_reg, then the first input operand
581 // is an implicit value immediate, otherwise it's a register
582 if (Opc == TargetOpcode::SUBREG_TO_REG) {
583 const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
584 MIB.addImm(SD->getZExtValue());
585 } else
586 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
587 IsClone, IsCloned);
588 // Add the subregister being inserted
589 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
590 IsClone, IsCloned);
591 MIB.addImm(SubIdx);
592 MBB->insert(InsertPos, MIB);
593 } else
594 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg")__builtin_unreachable();
595
596 SDValue Op(Node, 0);
597 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
598 (void)isNew; // Silence compiler warning.
599 assert(isNew && "Node emitted out of order - early")((void)0);
600}
601
602/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
603/// COPY_TO_REGCLASS is just a normal copy, except that the destination
604/// register is constrained to be in a particular register class.
605///
606void
607InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
608 DenseMap<SDValue, Register> &VRBaseMap) {
609 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
610
611 // Create the new VReg in the destination class and emit a copy.
612 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
613 const TargetRegisterClass *DstRC =
614 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
615 Register NewVReg = MRI->createVirtualRegister(DstRC);
616 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
617 NewVReg).addReg(VReg);
618
619 SDValue Op(Node, 0);
620 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
621 (void)isNew; // Silence compiler warning.
622 assert(isNew && "Node emitted out of order - early")((void)0);
623}
624
625/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
626///
627void InstrEmitter::EmitRegSequence(SDNode *Node,
628 DenseMap<SDValue, Register> &VRBaseMap,
629 bool IsClone, bool IsCloned) {
630 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
631 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
632 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
633 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
634 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
635 unsigned NumOps = Node->getNumOperands();
636 // If the input pattern has a chain, then the root of the corresponding
637 // output pattern will get a chain as well. This can happen to be a
638 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
639 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
640 --NumOps; // Ignore chain if it exists.
641
642 assert((NumOps & 1) == 1 &&((void)0)
643 "REG_SEQUENCE must have an odd number of operands!")((void)0);
644 for (unsigned i = 1; i != NumOps; ++i) {
645 SDValue Op = Node->getOperand(i);
646 if ((i & 1) == 0) {
647 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
648 // Skip physical registers as they don't have a vreg to get and we'll
649 // insert copies for them in TwoAddressInstructionPass anyway.
650 if (!R || !Register::isPhysicalRegister(R->getReg())) {
651 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
652 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
653 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
654 const TargetRegisterClass *SRC =
655 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
656 if (SRC && SRC != RC) {
657 MRI->setRegClass(NewVReg, SRC);
658 RC = SRC;
659 }
660 }
661 }
662 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
663 IsClone, IsCloned);
664 }
665
666 MBB->insert(InsertPos, MIB);
667 SDValue Op(Node, 0);
668 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
669 (void)isNew; // Silence compiler warning.
670 assert(isNew && "Node emitted out of order - early")((void)0);
671}
672
673/// EmitDbgValue - Generate machine instruction for a dbg_value node.
674///
675MachineInstr *
676InstrEmitter::EmitDbgValue(SDDbgValue *SD,
677 DenseMap<SDValue, Register> &VRBaseMap) {
678 MDNode *Var = SD->getVariable();
679 MDNode *Expr = SD->getExpression();
680 DebugLoc DL = SD->getDebugLoc();
681 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&((void)0)
682 "Expected inlined-at fields to agree")((void)0);
683
684 SD->setIsEmitted();
685
686 ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
687 assert(!LocationOps.empty() && "dbg_value with no location operands?")((void)0);
688
689 if (SD->isInvalidated())
690 return EmitDbgNoLocation(SD);
691
692 // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
693 if (SD->isVariadic()) {
694 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
695 const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
696 // Build the DBG_VALUE_LIST instruction base.
697 auto MIB = BuildMI(*MF, DL, DbgValDesc);
698 MIB.addMetadata(Var);
699 MIB.addMetadata(Expr);
700 AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
701 return &*MIB;
702 }
703
704 // Attempt to produce a DBG_INSTR_REF if we've been asked to.
705 // We currently exclude the possibility of instruction references for
706 // variadic nodes; if at some point we enable them, this should be moved
707 // above the variadic block.
708 if (EmitDebugInstrRefs)
709 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
710 return InstrRef;
711
712 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
713}
714
715void InstrEmitter::AddDbgValueLocationOps(
716 MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
717 ArrayRef<SDDbgOperand> LocationOps,
718 DenseMap<SDValue, Register> &VRBaseMap) {
719 for (const SDDbgOperand &Op : LocationOps) {
720 switch (Op.getKind()) {
721 case SDDbgOperand::FRAMEIX:
722 MIB.addFrameIndex(Op.getFrameIx());
723 break;
724 case SDDbgOperand::VREG:
725 MIB.addReg(Op.getVReg(), RegState::Debug);
726 break;
727 case SDDbgOperand::SDNODE: {
728 SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
729 // It's possible we replaced this SDNode with other(s) and therefore
730 // didn't generate code for it. It's better to catch these cases where
731 // they happen and transfer the debug info, but trying to guarantee that
732 // in all cases would be very fragile; this is a safeguard for any
733 // that were missed.
734 if (VRBaseMap.count(V) == 0)
735 MIB.addReg(0U); // undef
736 else
737 AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
738 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
739 } break;
740 case SDDbgOperand::CONST: {
741 const Value *V = Op.getConst();
742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
743 if (CI->getBitWidth() > 64)
744 MIB.addCImm(CI);
745 else
746 MIB.addImm(CI->getSExtValue());
747 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
748 MIB.addFPImm(CF);
749 } else if (isa<ConstantPointerNull>(V)) {
750 // Note: This assumes that all nullptr constants are zero-valued.
751 MIB.addImm(0);
752 } else {
753 // Could be an Undef. In any case insert an Undef so we can see what we
754 // dropped.
755 MIB.addReg(0U);
756 }
757 } break;
758 }
759 }
760}
761
762MachineInstr *
763InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
764 DenseMap<SDValue, Register> &VRBaseMap) {
765 assert(!SD->isVariadic())((void)0);
766 SDDbgOperand DbgOperand = SD->getLocationOps()[0];
767 MDNode *Var = SD->getVariable();
768 MDNode *Expr = SD->getExpression();
769 DebugLoc DL = SD->getDebugLoc();
770 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
771
772 // Handle variable locations that don't actually depend on the instructions
773 // in the program: constants and stack locations.
774 if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
775 DbgOperand.getKind() == SDDbgOperand::CONST)
776 return EmitDbgValueFromSingleOp(SD, VRBaseMap);
777
778 // It may not be immediately possible to identify the MachineInstr that
779 // defines a VReg, it can depend for example on the order blocks are
780 // emitted in. When this happens, or when further analysis is needed later,
781 // produce an instruction like this:
782 //
783 // DBG_INSTR_REF %0:gr64, 0, !123, !456
784 //
785 // i.e., point the instruction at the vreg, and patch it up later in
786 // MachineFunction::finalizeDebugInstrRefs.
787 auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
788 auto MIB = BuildMI(*MF, DL, RefII);
789 MIB.addReg(VReg);
790 MIB.addImm(0);
791 MIB.addMetadata(Var);
792 MIB.addMetadata(Expr);
793 return MIB;
794 };
795
796 // Try to find both the defined register and the instruction defining it.
797 MachineInstr *DefMI = nullptr;
798 unsigned VReg;
799
800 if (DbgOperand.getKind() == SDDbgOperand::VREG) {
801 VReg = DbgOperand.getVReg();
802
803 // No definition means that block hasn't been emitted yet. Leave a vreg
804 // reference to be fixed later.
805 if (!MRI->hasOneDef(VReg))
806 return EmitHalfDoneInstrRef(VReg);
807
808 DefMI = &*MRI->def_instr_begin(VReg);
809 } else {
810 assert(DbgOperand.getKind() == SDDbgOperand::SDNODE)((void)0);
811 // Look up the corresponding VReg for the given SDNode, if any.
812 SDNode *Node = DbgOperand.getSDNode();
813 SDValue Op = SDValue(Node, DbgOperand.getResNo());
814 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
815 // No VReg -> produce a DBG_VALUE $noreg instead.
816 if (I==VRBaseMap.end())
817 return EmitDbgNoLocation(SD);
818
819 // Try to pick out a defining instruction at this point.
820 VReg = getVR(Op, VRBaseMap);
821
822 // Again, if there's no instruction defining the VReg right now, fix it up
823 // later.
824 if (!MRI->hasOneDef(VReg))
825 return EmitHalfDoneInstrRef(VReg);
826
827 DefMI = &*MRI->def_instr_begin(VReg);
828 }
829
830 // Avoid copy like instructions: they don't define values, only move them.
831 // Leave a virtual-register reference until it can be fixed up later, to find
832 // the underlying value definition.
833 if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
834 return EmitHalfDoneInstrRef(VReg);
835
836 auto MIB = BuildMI(*MF, DL, RefII);
837
838 // Find the operand number which defines the specified VReg.
839 unsigned OperandIdx = 0;
840 for (const auto &MO : DefMI->operands()) {
841 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
842 break;
843 ++OperandIdx;
844 }
845 assert(OperandIdx < DefMI->getNumOperands())((void)0);
846
847 // Make the DBG_INSTR_REF refer to that instruction, and that operand.
848 unsigned InstrNum = DefMI->getDebugInstrNum();
849 MIB.addImm(InstrNum);
850 MIB.addImm(OperandIdx);
851 MIB.addMetadata(Var);
852 MIB.addMetadata(Expr);
853 return &*MIB;
854}
855
856MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
857 // An invalidated SDNode must generate an undef DBG_VALUE: although the
858 // original value is no longer computed, earlier DBG_VALUEs live ranges
859 // must not leak into later code.
860 MDNode *Var = SD->getVariable();
861 MDNode *Expr = SD->getExpression();
862 DebugLoc DL = SD->getDebugLoc();
863 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
864 MIB.addReg(0U);
865 MIB.addReg(0U, RegState::Debug);
866 MIB.addMetadata(Var);
867 MIB.addMetadata(Expr);
868 return &*MIB;
869}
870
871MachineInstr *
872InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
873 DenseMap<SDValue, Register> &VRBaseMap) {
874 MDNode *Var = SD->getVariable();
875 MDNode *Expr = SD->getExpression();
876 DebugLoc DL = SD->getDebugLoc();
877 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
878
879 assert(SD->getLocationOps().size() == 1 &&((void)0)
880 "Non variadic dbg_value should have only one location op")((void)0);
881
882 // Emit non-variadic dbg_value nodes as DBG_VALUE.
883 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
884 auto MIB = BuildMI(*MF, DL, II);
885 AddDbgValueLocationOps(MIB, II, SD->getLocationOps(), VRBaseMap);
886
887 if (SD->isIndirect())
888 MIB.addImm(0U);
889 else
890 MIB.addReg(0U, RegState::Debug);
891
892 return MIB.addMetadata(Var).addMetadata(Expr);
893}
894
895MachineInstr *
896InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
897 MDNode *Label = SD->getLabel();
898 DebugLoc DL = SD->getDebugLoc();
899 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&((void)0)
900 "Expected inlined-at fields to agree")((void)0);
901
902 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
903 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
904 MIB.addMetadata(Label);
905
906 return &*MIB;
907}
908
909/// EmitMachineNode - Generate machine code for a target-specific node and
910/// needed dependencies.
911///
912void InstrEmitter::
913EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
914 DenseMap<SDValue, Register> &VRBaseMap) {
915 unsigned Opc = Node->getMachineOpcode();
916
917 // Handle subreg insert/extract specially
918 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
919 Opc == TargetOpcode::INSERT_SUBREG ||
920 Opc == TargetOpcode::SUBREG_TO_REG) {
921 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
922 return;
923 }
924
925 // Handle COPY_TO_REGCLASS specially.
926 if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
927 EmitCopyToRegClassNode(Node, VRBaseMap);
928 return;
929 }
930
931 // Handle REG_SEQUENCE specially.
932 if (Opc == TargetOpcode::REG_SEQUENCE) {
933 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
934 return;
935 }
936
937 if (Opc == TargetOpcode::IMPLICIT_DEF)
938 // We want a unique VR for each IMPLICIT_DEF use.
939 return;
940
941 const MCInstrDesc &II = TII->get(Opc);
942 unsigned NumResults = CountResults(Node);
943 unsigned NumDefs = II.getNumDefs();
944 const MCPhysReg *ScratchRegs = nullptr;
945
946 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
947 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
948 // Stackmaps do not have arguments and do not preserve their calling
949 // convention. However, to simplify runtime support, they clobber the same
950 // scratch registers as AnyRegCC.
951 unsigned CC = CallingConv::AnyReg;
952 if (Opc == TargetOpcode::PATCHPOINT) {
953 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
954 NumDefs = NumResults;
955 }
956 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
957 } else if (Opc == TargetOpcode::STATEPOINT) {
958 NumDefs = NumResults;
959 }
960
961 unsigned NumImpUses = 0;
962 unsigned NodeOperands =
963 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
964 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
965 II.isVariadic() && II.variadicOpsAreDefs();
966 bool HasPhysRegOuts = NumResults > NumDefs &&
967 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
968#ifndef NDEBUG1
969 unsigned NumMIOperands = NodeOperands + NumResults;
970 if (II.isVariadic())
971 assert(NumMIOperands >= II.getNumOperands() &&((void)0)
972 "Too few operands for a variadic node!")((void)0);
973 else
974 assert(NumMIOperands >= II.getNumOperands() &&((void)0)
975 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +((void)0)
976 NumImpUses &&((void)0)
977 "#operands for dag node doesn't match .td file!")((void)0);
978#endif
979
980 // Create the new machine instruction.
981 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
982
983 // Add result register values for things that are defined by this
984 // instruction.
985 if (NumResults) {
986 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
987
988 // Transfer any IR flags from the SDNode to the MachineInstr
989 MachineInstr *MI = MIB.getInstr();
990 const SDNodeFlags Flags = Node->getFlags();
991 if (Flags.hasNoSignedZeros())
992 MI->setFlag(MachineInstr::MIFlag::FmNsz);
993
994 if (Flags.hasAllowReciprocal())
995 MI->setFlag(MachineInstr::MIFlag::FmArcp);
996
997 if (Flags.hasNoNaNs())
998 MI->setFlag(MachineInstr::MIFlag::FmNoNans);
999
1000 if (Flags.hasNoInfs())
1001 MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1002
1003 if (Flags.hasAllowContract())
1004 MI->setFlag(MachineInstr::MIFlag::FmContract);
1005
1006 if (Flags.hasApproximateFuncs())
1007 MI->setFlag(MachineInstr::MIFlag::FmAfn);
1008
1009 if (Flags.hasAllowReassociation())
1010 MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1011
1012 if (Flags.hasNoUnsignedWrap())
1013 MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1014
1015 if (Flags.hasNoSignedWrap())
1016 MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1017
1018 if (Flags.hasExact())
1019 MI->setFlag(MachineInstr::MIFlag::IsExact);
1020
1021 if (Flags.hasNoFPExcept())
1022 MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1023 }
1024
1025 // Emit all of the actual operands of this instruction, adding them to the
1026 // instruction as appropriate.
1027 bool HasOptPRefs = NumDefs > NumResults;
1028 assert((!HasOptPRefs || !HasPhysRegOuts) &&((void)0)
1029 "Unable to cope with optional defs and phys regs defs!")((void)0);
1030 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1031 for (unsigned i = NumSkip; i != NodeOperands; ++i)
1032 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1033 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1034
1035 // Add scratch registers as implicit def and early clobber
1036 if (ScratchRegs)
1037 for (unsigned i = 0; ScratchRegs[i]; ++i)
1038 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1039 RegState::EarlyClobber);
1040
1041 // Set the memory reference descriptions of this instruction now that it is
1042 // part of the function.
1043 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1044
1045 // Insert the instruction into position in the block. This needs to
1046 // happen before any custom inserter hook is called so that the
1047 // hook knows where in the block to insert the replacement code.
1048 MBB->insert(InsertPos, MIB);
1049
1050 // The MachineInstr may also define physregs instead of virtregs. These
1051 // physreg values can reach other instructions in different ways:
1052 //
1053 // 1. When there is a use of a Node value beyond the explicitly defined
1054 // virtual registers, we emit a CopyFromReg for one of the implicitly
1055 // defined physregs. This only happens when HasPhysRegOuts is true.
1056 //
1057 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1058 //
1059 // 3. A glued instruction may implicitly use a physreg.
1060 //
1061 // 4. A glued instruction may use a RegisterSDNode operand.
1062 //
1063 // Collect all the used physreg defs, and make sure that any unused physreg
1064 // defs are marked as dead.
1065 SmallVector<Register, 8> UsedRegs;
1066
1067 // Additional results must be physical register defs.
1068 if (HasPhysRegOuts) {
1069 for (unsigned i = NumDefs; i < NumResults; ++i) {
1070 Register Reg = II.getImplicitDefs()[i - NumDefs];
1071 if (!Node->hasAnyUseOfValue(i))
1072 continue;
1073 // This implicitly defined physreg has a use.
1074 UsedRegs.push_back(Reg);
1075 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1076 }
1077 }
1078
1079 // Scan the glue chain for any used physregs.
1080 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1081 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1082 if (F->getOpcode() == ISD::CopyFromReg) {
1083 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1084 continue;
1085 } else if (F->getOpcode() == ISD::CopyToReg) {
1086 // Skip CopyToReg nodes that are internal to the glue chain.
1087 continue;
1088 }
1089 // Collect declared implicit uses.
1090 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1091 UsedRegs.append(MCID.getImplicitUses(),
1092 MCID.getImplicitUses() + MCID.getNumImplicitUses());
1093 // In addition to declared implicit uses, we must also check for
1094 // direct RegisterSDNode operands.
1095 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1096 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1097 Register Reg = R->getReg();
1098 if (Reg.isPhysical())
1099 UsedRegs.push_back(Reg);
1100 }
1101 }
1102 }
1103
1104 // Finally mark unused registers as dead.
1105 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1106 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1107
1108 // STATEPOINT is too 'dynamic' to have meaningful machine description.
1109 // We have to manually tie operands.
1110 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1111 assert(!HasPhysRegOuts && "STATEPOINT mishandled")((void)0);
1112 MachineInstr *MI = MIB;
1113 unsigned Def = 0;
1114 int First = StatepointOpers(MI).getFirstGCPtrIdx();
1115 assert(First > 0 && "Statepoint has Defs but no GC ptr list")((void)0);
1116 unsigned Use = (unsigned)First;
1117 while (Def < NumDefs) {
1118 if (MI->getOperand(Use).isReg())
1119 MI->tieOperands(Def++, Use);
1120 Use = StackMaps::getNextMetaArgIdx(MI, Use);
1121 }
1122 }
1123
1124 // Run post-isel target hook to adjust this instruction if needed.
1125 if (II.hasPostISelHook())
1126 TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1127}
1128
1129/// EmitSpecialNode - Generate machine code for a target-independent node and
1130/// needed dependencies.
1131void InstrEmitter::
1132EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1133 DenseMap<SDValue, Register> &VRBaseMap) {
1134 switch (Node->getOpcode()) {
1
Control jumps to 'case CopyToReg:' at line 1145
1135 default:
1136#ifndef NDEBUG1
1137 Node->dump();
1138#endif
1139 llvm_unreachable("This target-independent node should have been selected!")__builtin_unreachable();
1140 case ISD::EntryToken:
1141 llvm_unreachable("EntryToken should have been excluded from the schedule!")__builtin_unreachable();
1142 case ISD::MERGE_VALUES:
1143 case ISD::TokenFactor: // fall thru
1144 break;
1145 case ISD::CopyToReg: {
1146 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1147 SDValue SrcVal = Node->getOperand(2);
1148 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1149 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1150 // Instead building a COPY to that vreg destination, build an
1151 // IMPLICIT_DEF instruction instead.
1152 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1153 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1154 break;
1155 }
1156 Register SrcReg;
1157 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
2
Assuming 'R' is null
3
Taking false branch
1158 SrcReg = R->getReg();
1159 else
1160 SrcReg = getVR(SrcVal, VRBaseMap);
4
The value of 'SrcVal' is assigned to 'Op.Node'
5
Calling 'InstrEmitter::getVR'
1161
1162 if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1163 break;
1164
1165 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1166 DestReg).addReg(SrcReg);
1167 break;
1168 }
1169 case ISD::CopyFromReg: {
1170 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1171 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1172 break;
1173 }
1174 case ISD::EH_LABEL:
1175 case ISD::ANNOTATION_LABEL: {
1176 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1177 ? TargetOpcode::EH_LABEL
1178 : TargetOpcode::ANNOTATION_LABEL;
1179 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1180 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1181 TII->get(Opc)).addSym(S);
1182 break;
1183 }
1184
1185 case ISD::LIFETIME_START:
1186 case ISD::LIFETIME_END: {
1187 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1188 ? TargetOpcode::LIFETIME_START
1189 : TargetOpcode::LIFETIME_END;
1190 auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1191 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1192 .addFrameIndex(FI->getIndex());
1193 break;
1194 }
1195
1196 case ISD::PSEUDO_PROBE: {
1197 unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1198 auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1199 auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1200 auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1201
1202 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1203 .addImm(Guid)
1204 .addImm(Index)
1205 .addImm((uint8_t)PseudoProbeType::Block)
1206 .addImm(Attr);
1207 break;
1208 }
1209
1210 case ISD::INLINEASM:
1211 case ISD::INLINEASM_BR: {
1212 unsigned NumOps = Node->getNumOperands();
1213 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1214 --NumOps; // Ignore the glue operand.
1215
1216 // Create the inline asm machine instruction.
1217 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1218 ? TargetOpcode::INLINEASM_BR
1219 : TargetOpcode::INLINEASM;
1220 MachineInstrBuilder MIB =
1221 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1222
1223 // Add the asm string as an external symbol operand.
1224 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1225 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1226 MIB.addExternalSymbol(AsmStr);
1227
1228 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1229 // bits.
1230 int64_t ExtraInfo =
1231 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1232 getZExtValue();
1233 MIB.addImm(ExtraInfo);
1234
1235 // Remember to operand index of the group flags.
1236 SmallVector<unsigned, 8> GroupIdx;
1237
1238 // Remember registers that are part of early-clobber defs.
1239 SmallVector<unsigned, 8> ECRegs;
1240
1241 // Add all of the operand registers to the instruction.
1242 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1243 unsigned Flags =
1244 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1245 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1246
1247 GroupIdx.push_back(MIB->getNumOperands());
1248 MIB.addImm(Flags);
1249 ++i; // Skip the ID value.
1250
1251 switch (InlineAsm::getKind(Flags)) {
1252 default: llvm_unreachable("Bad flags!")__builtin_unreachable();
1253 case InlineAsm::Kind_RegDef:
1254 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1255 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1256 // FIXME: Add dead flags for physical and virtual registers defined.
1257 // For now, mark physical register defs as implicit to help fast
1258 // regalloc. This makes inline asm look a lot like calls.
1259 MIB.addReg(Reg,
1260 RegState::Define |
1261 getImplRegState(Register::isPhysicalRegister(Reg)));
1262 }
1263 break;
1264 case InlineAsm::Kind_RegDefEarlyClobber:
1265 case InlineAsm::Kind_Clobber:
1266 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1267 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1268 MIB.addReg(Reg,
1269 RegState::Define | RegState::EarlyClobber |
1270 getImplRegState(Register::isPhysicalRegister(Reg)));
1271 ECRegs.push_back(Reg);
1272 }
1273 break;
1274 case InlineAsm::Kind_RegUse: // Use of register.
1275 case InlineAsm::Kind_Imm: // Immediate.
1276 case InlineAsm::Kind_Mem: // Addressing mode.
1277 // The addressing mode has been selected, just add all of the
1278 // operands to the machine instruction.
1279 for (unsigned j = 0; j != NumVals; ++j, ++i)
1280 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1281 /*IsDebug=*/false, IsClone, IsCloned);
1282
1283 // Manually set isTied bits.
1284 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1285 unsigned DefGroup = 0;
1286 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1287 unsigned DefIdx = GroupIdx[DefGroup] + 1;
1288 unsigned UseIdx = GroupIdx.back() + 1;
1289 for (unsigned j = 0; j != NumVals; ++j)
1290 MIB->tieOperands(DefIdx + j, UseIdx + j);
1291 }
1292 }
1293 break;
1294 }
1295 }
1296
1297 // GCC inline assembly allows input operands to also be early-clobber
1298 // output operands (so long as the operand is written only after it's
1299 // used), but this does not match the semantics of our early-clobber flag.
1300 // If an early-clobber operand register is also an input operand register,
1301 // then remove the early-clobber flag.
1302 for (unsigned Reg : ECRegs) {
1303 if (MIB->readsRegister(Reg, TRI)) {
1304 MachineOperand *MO =
1305 MIB->findRegisterDefOperand(Reg, false, false, TRI);
1306 assert(MO && "No def operand for clobbered register?")((void)0);
1307 MO->setIsEarlyClobber(false);
1308 }
1309 }
1310
1311 // Get the mdnode from the asm if it exists and add it to the instruction.
1312 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1313 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1314 if (MD)
1315 MIB.addMetadata(MD);
1316
1317 MBB->insert(InsertPos, MIB);
1318 break;
1319 }
1320 }
1321}
1322
1323/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1324/// at the given position in the given block.
1325InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1326 MachineBasicBlock::iterator insertpos)
1327 : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1328 TII(MF->getSubtarget().getInstrInfo()),
1329 TRI(MF->getSubtarget().getRegisterInfo()),
1330 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1331 InsertPos(insertpos) {
1332 EmitDebugInstrRefs = TM.Options.ValueTrackingVariableLocations;
1333}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__clang__1))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")((void)0);
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")((void)0);
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")((void)0);
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")((void)0);
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")((void)0);
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")((void)0);
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((void)0);
1061 assert(NumValues == VTs.NumVTs &&((void)0)
1062 "NumValues wasn't wide enough for its operands!")((void)0);
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")((void)0);
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&((void)0)
1105 "Invalid result number for the given node!")((void)0);
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")((void)0);
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
7
Called C++ object pointer is null
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 // FIXME: Remove once transition to getAlign is over.
1266 unsigned getAlignment() const { return MMO->getAlign().value(); }
1267
1268 /// Return the SubclassData value, without HasDebugValue. This contains an
1269 /// encoding of the volatile flag, as well as bits used by subclasses. This
1270 /// function should only be used to compute a FoldingSetNodeID value.
1271 /// The HasDebugValue bit is masked out because CSE map needs to match
1272 /// nodes with debug info with nodes without debug info. Same is about
1273 /// isDivergent bit.
1274 unsigned getRawSubclassData() const {
1275 uint16_t Data;
1276 union {
1277 char RawSDNodeBits[sizeof(uint16_t)];
1278 SDNodeBitfields SDNodeBits;
1279 };
1280 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1281 SDNodeBits.HasDebugValue = 0;
1282 SDNodeBits.IsDivergent = false;
1283 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1284 return Data;
1285 }
1286
1287 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1288 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1289 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1290 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1291
1292 // Returns the offset from the location of the access.
1293 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1294
1295 /// Returns the AA info that describes the dereference.
1296 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1297
1298 /// Returns the Ranges that describes the dereference.
1299 const MDNode *getRanges() const { return MMO->getRanges(); }
1300
1301 /// Returns the synchronization scope ID for this memory operation.
1302 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1303
1304 /// Return the atomic ordering requirements for this memory operation. For
1305 /// cmpxchg atomic operations, return the atomic ordering requirements when
1306 /// store occurs.
1307 AtomicOrdering getSuccessOrdering() const {
1308 return MMO->getSuccessOrdering();
1309 }
1310
1311 /// Return a single atomic ordering that is at least as strong as both the
1312 /// success and failure orderings for an atomic operation. (For operations
1313 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1314 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1315
1316 /// Return true if the memory operation ordering is Unordered or higher.
1317 bool isAtomic() const { return MMO->isAtomic(); }
1318
1319 /// Returns true if the memory operation doesn't imply any ordering
1320 /// constraints on surrounding memory operations beyond the normal memory
1321 /// aliasing rules.
1322 bool isUnordered() const { return MMO->isUnordered(); }
1323
1324 /// Returns true if the memory operation is neither atomic or volatile.
1325 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1326
1327 /// Return the type of the in-memory value.
1328 EVT getMemoryVT() const { return MemoryVT; }
1329
1330 /// Return a MachineMemOperand object describing the memory
1331 /// reference performed by operation.
1332 MachineMemOperand *getMemOperand() const { return MMO; }
1333
1334 const MachinePointerInfo &getPointerInfo() const {
1335 return MMO->getPointerInfo();
1336 }
1337
1338 /// Return the address space for the associated pointer
1339 unsigned getAddressSpace() const {
1340 return getPointerInfo().getAddrSpace();
1341 }
1342
1343 /// Update this MemSDNode's MachineMemOperand information
1344 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1345 /// This must only be used when the new alignment applies to all users of
1346 /// this MachineMemOperand.
1347 void refineAlignment(const MachineMemOperand *NewMMO) {
1348 MMO->refineAlignment(NewMMO);
1349 }
1350
1351 const SDValue &getChain() const { return getOperand(0); }
1352
1353 const SDValue &getBasePtr() const {
1354 switch (getOpcode()) {
1355 case ISD::STORE:
1356 case ISD::MSTORE:
1357 return getOperand(2);
1358 case ISD::MGATHER:
1359 case ISD::MSCATTER:
1360 return getOperand(3);
1361 default:
1362 return getOperand(1);
1363 }
1364 }
1365
1366 // Methods to support isa and dyn_cast
1367 static bool classof(const SDNode *N) {
1368 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1369 // with either an intrinsic or a target opcode.
1370 switch (N->getOpcode()) {
1371 case ISD::LOAD:
1372 case ISD::STORE:
1373 case ISD::PREFETCH:
1374 case ISD::ATOMIC_CMP_SWAP:
1375 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1376 case ISD::ATOMIC_SWAP:
1377 case ISD::ATOMIC_LOAD_ADD:
1378 case ISD::ATOMIC_LOAD_SUB:
1379 case ISD::ATOMIC_LOAD_AND:
1380 case ISD::ATOMIC_LOAD_CLR:
1381 case ISD::ATOMIC_LOAD_OR:
1382 case ISD::ATOMIC_LOAD_XOR:
1383 case ISD::ATOMIC_LOAD_NAND:
1384 case ISD::ATOMIC_LOAD_MIN:
1385 case ISD::ATOMIC_LOAD_MAX:
1386 case ISD::ATOMIC_LOAD_UMIN:
1387 case ISD::ATOMIC_LOAD_UMAX:
1388 case ISD::ATOMIC_LOAD_FADD:
1389 case ISD::ATOMIC_LOAD_FSUB:
1390 case ISD::ATOMIC_LOAD:
1391 case ISD::ATOMIC_STORE:
1392 case ISD::MLOAD:
1393 case ISD::MSTORE:
1394 case ISD::MGATHER:
1395 case ISD::MSCATTER:
1396 return true;
1397 default:
1398 return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1399 }
1400 }
1401};
1402
1403/// This is an SDNode representing atomic operations.
1404class AtomicSDNode : public MemSDNode {
1405public:
1406 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1407 EVT MemVT, MachineMemOperand *MMO)
1408 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1409 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||((void)0)
1410 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")((void)0);
1411 }
1412
1413 const SDValue &getBasePtr() const { return getOperand(1); }
1414 const SDValue &getVal() const { return getOperand(2); }
1415
1416 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1417 /// otherwise.
1418 bool isCompareAndSwap() const {
1419 unsigned Op = getOpcode();
1420 return Op == ISD::ATOMIC_CMP_SWAP ||
1421 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1422 }
1423
1424 /// For cmpxchg atomic operations, return the atomic ordering requirements
1425 /// when store does not occur.
1426 AtomicOrdering getFailureOrdering() const {
1427 assert(isCompareAndSwap() && "Must be cmpxchg operation")((void)0);
1428 return MMO->getFailureOrdering();
1429 }
1430
1431 // Methods to support isa and dyn_cast
1432 static bool classof(const SDNode *N) {
1433 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1434 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1435 N->getOpcode() == ISD::ATOMIC_SWAP ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1444 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1445 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1446 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1447 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1448 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1449 N->getOpcode() == ISD::ATOMIC_LOAD ||
1450 N->getOpcode() == ISD::ATOMIC_STORE;
1451 }
1452};
1453
1454/// This SDNode is used for target intrinsics that touch
1455/// memory and need an associated MachineMemOperand. Its opcode may be
1456/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1457/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1458class MemIntrinsicSDNode : public MemSDNode {
1459public:
1460 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1461 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1462 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1463 SDNodeBits.IsMemIntrinsic = true;
1464 }
1465
1466 // Methods to support isa and dyn_cast
1467 static bool classof(const SDNode *N) {
1468 // We lower some target intrinsics to their target opcode
1469 // early a node with a target opcode can be of this class
1470 return N->isMemIntrinsic() ||
1471 N->getOpcode() == ISD::PREFETCH ||
1472 N->isTargetMemoryOpcode();
1473 }
1474};
1475
1476/// This SDNode is used to implement the code generator
1477/// support for the llvm IR shufflevector instruction. It combines elements
1478/// from two input vectors into a new input vector, with the selection and
1479/// ordering of elements determined by an array of integers, referred to as
1480/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1481/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1482/// An index of -1 is treated as undef, such that the code generator may put
1483/// any value in the corresponding element of the result.
1484class ShuffleVectorSDNode : public SDNode {
1485 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1486 // is freed when the SelectionDAG object is destroyed.
1487 const int *Mask;
1488
1489protected:
1490 friend class SelectionDAG;
1491
1492 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1493 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1494
1495public:
1496 ArrayRef<int> getMask() const {
1497 EVT VT = getValueType(0);
1498 return makeArrayRef(Mask, VT.getVectorNumElements());
1499 }
1500
1501 int getMaskElt(unsigned Idx) const {
1502 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")((void)0);
1503 return Mask[Idx];
1504 }
1505
1506 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1507
1508 int getSplatIndex() const {
1509 assert(isSplat() && "Cannot get splat index for non-splat!")((void)0);
1510 EVT VT = getValueType(0);
1511 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1512 if (Mask[i] >= 0)
1513 return Mask[i];
1514
1515 // We can choose any index value here and be correct because all elements
1516 // are undefined. Return 0 for better potential for callers to simplify.
1517 return 0;
1518 }
1519
1520 static bool isSplatMask(const int *Mask, EVT VT);
1521
1522 /// Change values in a shuffle permute mask assuming
1523 /// the two vector operands have swapped position.
1524 static void commuteMask(MutableArrayRef<int> Mask) {
1525 unsigned NumElems = Mask.size();
1526 for (unsigned i = 0; i != NumElems; ++i) {
1527 int idx = Mask[i];
1528 if (idx < 0)
1529 continue;
1530 else if (idx < (int)NumElems)
1531 Mask[i] = idx + NumElems;
1532 else
1533 Mask[i] = idx - NumElems;
1534 }
1535 }
1536
1537 static bool classof(const SDNode *N) {
1538 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1539 }
1540};
1541
1542class ConstantSDNode : public SDNode {
1543 friend class SelectionDAG;
1544
1545 const ConstantInt *Value;
1546
1547 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1548 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1549 getSDVTList(VT)),
1550 Value(val) {
1551 ConstantSDNodeBits.IsOpaque = isOpaque;
1552 }
1553
1554public:
1555 const ConstantInt *getConstantIntValue() const { return Value; }
1556 const APInt &getAPIntValue() const { return Value->getValue(); }
1557 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1558 int64_t getSExtValue() const { return Value->getSExtValue(); }
1559 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) {
1560 return Value->getLimitedValue(Limit);
1561 }
1562 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1563 Align getAlignValue() const { return Value->getAlignValue(); }
1564
1565 bool isOne() const { return Value->isOne(); }
1566 bool isNullValue() const { return Value->isZero(); }
1567 bool isAllOnesValue() const { return Value->isMinusOne(); }
1568 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1569 bool isMinSignedValue() const { return Value->isMinValue(true); }
1570
1571 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1572
1573 static bool classof(const SDNode *N) {
1574 return N->getOpcode() == ISD::Constant ||
1575 N->getOpcode() == ISD::TargetConstant;
1576 }
1577};
1578
1579uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1580 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1581}
1582
1583const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1584 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1585}
1586
1587class ConstantFPSDNode : public SDNode {
1588 friend class SelectionDAG;
1589
1590 const ConstantFP *Value;
1591
1592 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1593 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1594 DebugLoc(), getSDVTList(VT)),
1595 Value(val) {}
1596
1597public:
1598 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1599 const ConstantFP *getConstantFPValue() const { return Value; }
1600
1601 /// Return true if the value is positive or negative zero.
1602 bool isZero() const { return Value->isZero(); }
1603
1604 /// Return true if the value is a NaN.
1605 bool isNaN() const { return Value->isNaN(); }
1606
1607 /// Return true if the value is an infinity
1608 bool isInfinity() const { return Value->isInfinity(); }
1609
1610 /// Return true if the value is negative.
1611 bool isNegative() const { return Value->isNegative(); }
1612
1613 /// We don't rely on operator== working on double values, as
1614 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1615 /// As such, this method can be used to do an exact bit-for-bit comparison of
1616 /// two floating point values.
1617
1618 /// We leave the version with the double argument here because it's just so
1619 /// convenient to write "2.0" and the like. Without this function we'd
1620 /// have to duplicate its logic everywhere it's called.
1621 bool isExactlyValue(double V) const {
1622 return Value->getValueAPF().isExactlyValue(V);
1623 }
1624 bool isExactlyValue(const APFloat& V) const;
1625
1626 static bool isValueValidForType(EVT VT, const APFloat& Val);
1627
1628 static bool classof(const SDNode *N) {
1629 return N->getOpcode() == ISD::ConstantFP ||
1630 N->getOpcode() == ISD::TargetConstantFP;
1631 }
1632};
1633
1634/// Returns true if \p V is a constant integer zero.
1635bool isNullConstant(SDValue V);
1636
1637/// Returns true if \p V is an FP constant with a value of positive zero.
1638bool isNullFPConstant(SDValue V);
1639
1640/// Returns true if \p V is an integer constant with all bits set.
1641bool isAllOnesConstant(SDValue V);
1642
1643/// Returns true if \p V is a constant integer one.
1644bool isOneConstant(SDValue V);
1645
1646/// Return the non-bitcasted source operand of \p V if it exists.
1647/// If \p V is not a bitcasted value, it is returned as-is.
1648SDValue peekThroughBitcasts(SDValue V);
1649
1650/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1651/// If \p V is not a bitcasted one-use value, it is returned as-is.
1652SDValue peekThroughOneUseBitcasts(SDValue V);
1653
1654/// Return the non-extracted vector source operand of \p V if it exists.
1655/// If \p V is not an extracted subvector, it is returned as-is.
1656SDValue peekThroughExtractSubvectors(SDValue V);
1657
1658/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1659/// constant is canonicalized to be operand 1.
1660bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1661
1662/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1663ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1664 bool AllowTruncation = false);
1665
1666/// Returns the SDNode if it is a demanded constant splat BuildVector or
1667/// constant int.
1668ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1669 bool AllowUndefs = false,
1670 bool AllowTruncation = false);
1671
1672/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1673ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1674
1675/// Returns the SDNode if it is a demanded constant splat BuildVector or
1676/// constant float.
1677ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1678 bool AllowUndefs = false);
1679
1680/// Return true if the value is a constant 0 integer or a splatted vector of
1681/// a constant 0 integer (with no undefs by default).
1682/// Build vector implicit truncation is not an issue for null values.
1683bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1684
1685/// Return true if the value is a constant 1 integer or a splatted vector of a
1686/// constant 1 integer (with no undefs).
1687/// Does not permit build vector implicit truncation.
1688bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1689
1690/// Return true if the value is a constant -1 integer or a splatted vector of a
1691/// constant -1 integer (with no undefs).
1692/// Does not permit build vector implicit truncation.
1693bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1694
1695/// Return true if \p V is either a integer or FP constant.
1696inline bool isIntOrFPConstant(SDValue V) {
1697 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1698}
1699
1700class GlobalAddressSDNode : public SDNode {
1701 friend class SelectionDAG;
1702
1703 const GlobalValue *TheGlobal;
1704 int64_t Offset;
1705 unsigned TargetFlags;
1706
1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708 const GlobalValue *GA, EVT VT, int64_t o,
1709 unsigned TF);
1710
1711public:
1712 const GlobalValue *getGlobal() const { return TheGlobal; }
1713 int64_t getOffset() const { return Offset; }
1714 unsigned getTargetFlags() const { return TargetFlags; }
1715 // Return the address space this GlobalAddress belongs to.
1716 unsigned getAddressSpace() const;
1717
1718 static bool classof(const SDNode *N) {
1719 return N->getOpcode() == ISD::GlobalAddress ||
1720 N->getOpcode() == ISD::TargetGlobalAddress ||
1721 N->getOpcode() == ISD::GlobalTLSAddress ||
1722 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723 }
1724};
1725
1726class FrameIndexSDNode : public SDNode {
1727 friend class SelectionDAG;
1728
1729 int FI;
1730
1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734 }
1735
1736public:
1737 int getIndex() const { return FI; }
1738
1739 static bool classof(const SDNode *N) {
1740 return N->getOpcode() == ISD::FrameIndex ||
1741 N->getOpcode() == ISD::TargetFrameIndex;
1742 }
1743};
1744
1745/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746/// the offet and size that are started/ended in the underlying FrameIndex.
1747class LifetimeSDNode : public SDNode {
1748 friend class SelectionDAG;
1749 int64_t Size;
1750 int64_t Offset; // -1 if offset is unknown.
1751
1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753 SDVTList VTs, int64_t Size, int64_t Offset)
1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755public:
1756 int64_t getFrameIndex() const {
1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758 }
1759
1760 bool hasOffset() const { return Offset >= 0; }
1761 int64_t getOffset() const {
1762 assert(hasOffset() && "offset is unknown")((void)0);
1763 return Offset;
1764 }
1765 int64_t getSize() const {
1766 assert(hasOffset() && "offset is unknown")((void)0);
1767 return Size;
1768 }
1769
1770 // Methods to support isa and dyn_cast
1771 static bool classof(const SDNode *N) {
1772 return N->getOpcode() == ISD::LIFETIME_START ||
1773 N->getOpcode() == ISD::LIFETIME_END;
1774 }
1775};
1776
1777/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1778/// the index of the basic block being probed. A pseudo probe serves as a place
1779/// holder and will be removed at the end of compilation. It does not have any
1780/// operand because we do not want the instruction selection to deal with any.
1781class PseudoProbeSDNode : public SDNode {
1782 friend class SelectionDAG;
1783 uint64_t Guid;
1784 uint64_t Index;
1785 uint32_t Attributes;
1786
1787 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1788 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1789 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1790 Attributes(Attr) {}
1791
1792public:
1793 uint64_t getGuid() const { return Guid; }
1794 uint64_t getIndex() const { return Index; }
1795 uint32_t getAttributes() const { return Attributes; }
1796
1797 // Methods to support isa and dyn_cast
1798 static bool classof(const SDNode *N) {
1799 return N->getOpcode() == ISD::PSEUDO_PROBE;
1800 }
1801};
1802
1803class JumpTableSDNode : public SDNode {
1804 friend class SelectionDAG;
1805
1806 int JTI;
1807 unsigned TargetFlags;
1808
1809 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1810 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1811 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1812 }
1813
1814public:
1815 int getIndex() const { return JTI; }
1816 unsigned getTargetFlags() const { return TargetFlags; }
1817
1818 static bool classof(const SDNode *N) {
1819 return N->getOpcode() == ISD::JumpTable ||
1820 N->getOpcode() == ISD::TargetJumpTable;
1821 }
1822};
1823
1824class ConstantPoolSDNode : public SDNode {
1825 friend class SelectionDAG;
1826
1827 union {
1828 const Constant *ConstVal;
1829 MachineConstantPoolValue *MachineCPVal;
1830 } Val;
1831 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1832 Align Alignment; // Minimum alignment requirement of CP.
1833 unsigned TargetFlags;
1834
1835 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1836 Align Alignment, unsigned TF)
1837 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1838 DebugLoc(), getSDVTList(VT)),
1839 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1840 assert(Offset >= 0 && "Offset is too large")((void)0);
1841 Val.ConstVal = c;
1842 }
1843
1844 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1845 Align Alignment, unsigned TF)
1846 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1847 DebugLoc(), getSDVTList(VT)),
1848 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1849 assert(Offset >= 0 && "Offset is too large")((void)0);
1850 Val.MachineCPVal = v;
1851 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1852 }
1853
1854public:
1855 bool isMachineConstantPoolEntry() const {
1856 return Offset < 0;
1857 }
1858
1859 const Constant *getConstVal() const {
1860 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1861 return Val.ConstVal;
1862 }
1863
1864 MachineConstantPoolValue *getMachineCPVal() const {
1865 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1866 return Val.MachineCPVal;
1867 }
1868
1869 int getOffset() const {
1870 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1871 }
1872
1873 // Return the alignment of this constant pool object, which is either 0 (for
1874 // default alignment) or the desired value.
1875 Align getAlign() const { return Alignment; }
1876 unsigned getTargetFlags() const { return TargetFlags; }
1877
1878 Type *getType() const;
1879
1880 static bool classof(const SDNode *N) {
1881 return N->getOpcode() == ISD::ConstantPool ||
1882 N->getOpcode() == ISD::TargetConstantPool;
1883 }
1884};
1885
1886/// Completely target-dependent object reference.
1887class TargetIndexSDNode : public SDNode {
1888 friend class SelectionDAG;
1889
1890 unsigned TargetFlags;
1891 int Index;
1892 int64_t Offset;
1893
1894public:
1895 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1896 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1897 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1898
1899 unsigned getTargetFlags() const { return TargetFlags; }
1900 int getIndex() const { return Index; }
1901 int64_t getOffset() const { return Offset; }
1902
1903 static bool classof(const SDNode *N) {
1904 return N->getOpcode() == ISD::TargetIndex;
1905 }
1906};
1907
1908class BasicBlockSDNode : public SDNode {
1909 friend class SelectionDAG;
1910
1911 MachineBasicBlock *MBB;
1912
1913 /// Debug info is meaningful and potentially useful here, but we create
1914 /// blocks out of order when they're jumped to, which makes it a bit
1915 /// harder. Let's see if we need it first.
1916 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1917 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1918 {}
1919
1920public:
1921 MachineBasicBlock *getBasicBlock() const { return MBB; }
1922
1923 static bool classof(const SDNode *N) {
1924 return N->getOpcode() == ISD::BasicBlock;
1925 }
1926};
1927
1928/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1929class BuildVectorSDNode : public SDNode {
1930public:
1931 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1932 explicit BuildVectorSDNode() = delete;
1933
1934 /// Check if this is a constant splat, and if so, find the
1935 /// smallest element size that splats the vector. If MinSplatBits is
1936 /// nonzero, the element size must be at least that large. Note that the
1937 /// splat element may be the entire vector (i.e., a one element vector).
1938 /// Returns the splat element value in SplatValue. Any undefined bits in
1939 /// that value are zero, and the corresponding bits in the SplatUndef mask
1940 /// are set. The SplatBitSize value is set to the splat element size in
1941 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1942 /// undefined. isBigEndian describes the endianness of the target.
1943 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1944 unsigned &SplatBitSize, bool &HasAnyUndefs,
1945 unsigned MinSplatBits = 0,
1946 bool isBigEndian = false) const;
1947
1948 /// Returns the demanded splatted value or a null value if this is not a
1949 /// splat.
1950 ///
1951 /// The DemandedElts mask indicates the elements that must be in the splat.
1952 /// If passed a non-null UndefElements bitvector, it will resize it to match
1953 /// the vector width and set the bits where elements are undef.
1954 SDValue getSplatValue(const APInt &DemandedElts,
1955 BitVector *UndefElements = nullptr) const;
1956
1957 /// Returns the splatted value or a null value if this is not a splat.
1958 ///
1959 /// If passed a non-null UndefElements bitvector, it will resize it to match
1960 /// the vector width and set the bits where elements are undef.
1961 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1962
1963 /// Find the shortest repeating sequence of values in the build vector.
1964 ///
1965 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1966 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1967 ///
1968 /// Currently this must be a power-of-2 build vector.
1969 /// The DemandedElts mask indicates the elements that must be present,
1970 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1971 /// non-null UndefElements bitvector, it will resize it to match the original
1972 /// vector width and set the bits where elements are undef. If result is
1973 /// false, Sequence will be empty.
1974 bool getRepeatedSequence(const APInt &DemandedElts,
1975 SmallVectorImpl<SDValue> &Sequence,
1976 BitVector *UndefElements = nullptr) const;
1977
1978 /// Find the shortest repeating sequence of values in the build vector.
1979 ///
1980 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1981 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1982 ///
1983 /// Currently this must be a power-of-2 build vector.
1984 /// If passed a non-null UndefElements bitvector, it will resize it to match
1985 /// the original vector width and set the bits where elements are undef.
1986 /// If result is false, Sequence will be empty.
1987 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1988 BitVector *UndefElements = nullptr) const;
1989
1990 /// Returns the demanded splatted constant or null if this is not a constant
1991 /// splat.
1992 ///
1993 /// The DemandedElts mask indicates the elements that must be in the splat.
1994 /// If passed a non-null UndefElements bitvector, it will resize it to match
1995 /// the vector width and set the bits where elements are undef.
1996 ConstantSDNode *
1997 getConstantSplatNode(const APInt &DemandedElts,
1998 BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the splatted constant or null if this is not a constant
2001 /// splat.
2002 ///
2003 /// If passed a non-null UndefElements bitvector, it will resize it to match
2004 /// the vector width and set the bits where elements are undef.
2005 ConstantSDNode *
2006 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2007
2008 /// Returns the demanded splatted constant FP or null if this is not a
2009 /// constant FP splat.
2010 ///
2011 /// The DemandedElts mask indicates the elements that must be in the splat.
2012 /// If passed a non-null UndefElements bitvector, it will resize it to match
2013 /// the vector width and set the bits where elements are undef.
2014 ConstantFPSDNode *
2015 getConstantFPSplatNode(const APInt &DemandedElts,
2016 BitVector *UndefElements = nullptr) const;
2017
2018 /// Returns the splatted constant FP or null if this is not a constant
2019 /// FP splat.
2020 ///
2021 /// If passed a non-null UndefElements bitvector, it will resize it to match
2022 /// the vector width and set the bits where elements are undef.
2023 ConstantFPSDNode *
2024 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2025
2026 /// If this is a constant FP splat and the splatted constant FP is an
2027 /// exact power or 2, return the log base 2 integer value. Otherwise,
2028 /// return -1.
2029 ///
2030 /// The BitWidth specifies the necessary bit precision.
2031 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2032 uint32_t BitWidth) const;
2033
2034 bool isConstant() const;
2035
2036 static bool classof(const SDNode *N) {
2037 return N->getOpcode() == ISD::BUILD_VECTOR;
2038 }
2039};
2040
2041/// An SDNode that holds an arbitrary LLVM IR Value. This is
2042/// used when the SelectionDAG needs to make a simple reference to something
2043/// in the LLVM IR representation.
2044///
2045class SrcValueSDNode : public SDNode {
2046 friend class SelectionDAG;
2047
2048 const Value *V;
2049
2050 /// Create a SrcValue for a general value.
2051 explicit SrcValueSDNode(const Value *v)
2052 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2053
2054public:
2055 /// Return the contained Value.
2056 const Value *getValue() const { return V; }
2057
2058 static bool classof(const SDNode *N) {
2059 return N->getOpcode() == ISD::SRCVALUE;
2060 }
2061};
2062
2063class MDNodeSDNode : public SDNode {
2064 friend class SelectionDAG;
2065
2066 const MDNode *MD;
2067
2068 explicit MDNodeSDNode(const MDNode *md)
2069 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2070 {}
2071
2072public:
2073 const MDNode *getMD() const { return MD; }
2074
2075 static bool classof(const SDNode *N) {
2076 return N->getOpcode() == ISD::MDNODE_SDNODE;
2077 }
2078};
2079
2080class RegisterSDNode : public SDNode {
2081 friend class SelectionDAG;
2082
2083 Register Reg;
2084
2085 RegisterSDNode(Register reg, EVT VT)
2086 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2087
2088public:
2089 Register getReg() const { return Reg; }
2090
2091 static bool classof(const SDNode *N) {
2092 return N->getOpcode() == ISD::Register;
2093 }
2094};
2095
2096class RegisterMaskSDNode : public SDNode {
2097 friend class SelectionDAG;
2098
2099 // The memory for RegMask is not owned by the node.
2100 const uint32_t *RegMask;
2101
2102 RegisterMaskSDNode(const uint32_t *mask)
2103 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2104 RegMask(mask) {}
2105
2106public:
2107 const uint32_t *getRegMask() const { return RegMask; }
2108
2109 static bool classof(const SDNode *N) {
2110 return N->getOpcode() == ISD::RegisterMask;
2111 }
2112};
2113
2114class BlockAddressSDNode : public SDNode {
2115 friend class SelectionDAG;
2116
2117 const BlockAddress *BA;
2118 int64_t Offset;
2119 unsigned TargetFlags;
2120
2121 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2122 int64_t o, unsigned Flags)
2123 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2124 BA(ba), Offset(o), TargetFlags(Flags) {}
2125
2126public:
2127 const BlockAddress *getBlockAddress() const { return BA; }
2128 int64_t getOffset() const { return Offset; }
2129 unsigned getTargetFlags() const { return TargetFlags; }
2130
2131 static bool classof(const SDNode *N) {
2132 return N->getOpcode() == ISD::BlockAddress ||
2133 N->getOpcode() == ISD::TargetBlockAddress;
2134 }
2135};
2136
2137class LabelSDNode : public SDNode {
2138 friend class SelectionDAG;
2139
2140 MCSymbol *Label;
2141
2142 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2143 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2144 assert(LabelSDNode::classof(this) && "not a label opcode")((void)0);
2145 }
2146
2147public:
2148 MCSymbol *getLabel() const { return Label; }
2149
2150 static bool classof(const SDNode *N) {
2151 return N->getOpcode() == ISD::EH_LABEL ||
2152 N->getOpcode() == ISD::ANNOTATION_LABEL;
2153 }
2154};
2155
2156class ExternalSymbolSDNode : public SDNode {
2157 friend class SelectionDAG;
2158
2159 const char *Symbol;
2160 unsigned TargetFlags;
2161
2162 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2163 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2164 DebugLoc(), getSDVTList(VT)),
2165 Symbol(Sym), TargetFlags(TF) {}
2166
2167public:
2168 const char *getSymbol() const { return Symbol; }
2169 unsigned getTargetFlags() const { return TargetFlags; }
2170
2171 static bool classof(const SDNode *N) {
2172 return N->getOpcode() == ISD::ExternalSymbol ||
2173 N->getOpcode() == ISD::TargetExternalSymbol;
2174 }
2175};
2176
2177class MCSymbolSDNode : public SDNode {
2178 friend class SelectionDAG;
2179
2180 MCSymbol *Symbol;
2181
2182 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2183 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2184
2185public:
2186 MCSymbol *getMCSymbol() const { return Symbol; }
2187
2188 static bool classof(const SDNode *N) {
2189 return N->getOpcode() == ISD::MCSymbol;
2190 }
2191};
2192
2193class CondCodeSDNode : public SDNode {
2194 friend class SelectionDAG;
2195
2196 ISD::CondCode Condition;
2197
2198 explicit CondCodeSDNode(ISD::CondCode Cond)
2199 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2200 Condition(Cond) {}
2201
2202public:
2203 ISD::CondCode get() const { return Condition; }
2204
2205 static bool classof(const SDNode *N) {
2206 return N->getOpcode() == ISD::CONDCODE;
2207 }
2208};
2209
2210/// This class is used to represent EVT's, which are used
2211/// to parameterize some operations.
2212class VTSDNode : public SDNode {
2213 friend class SelectionDAG;
2214
2215 EVT ValueType;
2216
2217 explicit VTSDNode(EVT VT)
2218 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2219 ValueType(VT) {}
2220
2221public:
2222 EVT getVT() const { return ValueType; }
2223
2224 static bool classof(const SDNode *N) {
2225 return N->getOpcode() == ISD::VALUETYPE;
2226 }
2227};
2228
2229/// Base class for LoadSDNode and StoreSDNode
2230class LSBaseSDNode : public MemSDNode {
2231public:
2232 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2233 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2234 MachineMemOperand *MMO)
2235 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2236 LSBaseSDNodeBits.AddressingMode = AM;
2237 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2238 }
2239
2240 const SDValue &getOffset() const {
2241 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2242 }
2243
2244 /// Return the addressing mode for this load or store:
2245 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2246 ISD::MemIndexedMode getAddressingMode() const {
2247 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2248 }
2249
2250 /// Return true if this is a pre/post inc/dec load/store.
2251 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2252
2253 /// Return true if this is NOT a pre/post inc/dec load/store.
2254 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2255
2256 static bool classof(const SDNode *N) {
2257 return N->getOpcode() == ISD::LOAD ||
2258 N->getOpcode() == ISD::STORE;
2259 }
2260};
2261
2262/// This class is used to represent ISD::LOAD nodes.
2263class LoadSDNode : public LSBaseSDNode {
2264 friend class SelectionDAG;
2265
2266 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2267 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2268 MachineMemOperand *MMO)
2269 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2270 LoadSDNodeBits.ExtTy = ETy;
2271 assert(readMem() && "Load MachineMemOperand is not a load!")((void)0);
2272 assert(!writeMem() && "Load MachineMemOperand is a store!")((void)0);
2273 }
2274
2275public:
2276 /// Return whether this is a plain node,
2277 /// or one of the varieties of value-extending loads.
2278 ISD::LoadExtType getExtensionType() const {
2279 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2280 }
2281
2282 const SDValue &getBasePtr() const { return getOperand(1); }
2283 const SDValue &getOffset() const { return getOperand(2); }
2284
2285 static bool classof(const SDNode *N) {
2286 return N->getOpcode() == ISD::LOAD;
2287 }
2288};
2289
2290/// This class is used to represent ISD::STORE nodes.
2291class StoreSDNode : public LSBaseSDNode {
2292 friend class SelectionDAG;
2293
2294 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2295 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2296 MachineMemOperand *MMO)
2297 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2298 StoreSDNodeBits.IsTruncating = isTrunc;
2299 assert(!readMem() && "Store MachineMemOperand is a load!")((void)0);
2300 assert(writeMem() && "Store MachineMemOperand is not a store!")((void)0);
2301 }
2302
2303public:
2304 /// Return true if the op does a truncation before store.
2305 /// For integers this is the same as doing a TRUNCATE and storing the result.
2306 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2307 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2308 void setTruncatingStore(bool Truncating) {
2309 StoreSDNodeBits.IsTruncating = Truncating;
2310 }
2311
2312 const SDValue &getValue() const { return getOperand(1); }
2313 const SDValue &getBasePtr() const { return getOperand(2); }
2314 const SDValue &getOffset() const { return getOperand(3); }
2315
2316 static bool classof(const SDNode *N) {
2317 return N->getOpcode() == ISD::STORE;
2318 }
2319};
2320
2321/// This base class is used to represent MLOAD and MSTORE nodes
2322class MaskedLoadStoreSDNode : public MemSDNode {
2323public:
2324 friend class SelectionDAG;
2325
2326 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2327 const DebugLoc &dl, SDVTList VTs,
2328 ISD::MemIndexedMode AM, EVT MemVT,
2329 MachineMemOperand *MMO)
2330 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2331 LSBaseSDNodeBits.AddressingMode = AM;
2332 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2333 }
2334
2335 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2336 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2337 // Mask is a vector of i1 elements
2338 const SDValue &getOffset() const {
2339 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2340 }
2341 const SDValue &getMask() const {
2342 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2343 }
2344
2345 /// Return the addressing mode for this load or store:
2346 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2347 ISD::MemIndexedMode getAddressingMode() const {
2348 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2349 }
2350
2351 /// Return true if this is a pre/post inc/dec load/store.
2352 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2353
2354 /// Return true if this is NOT a pre/post inc/dec load/store.
2355 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2356
2357 static bool classof(const SDNode *N) {
2358 return N->getOpcode() == ISD::MLOAD ||
2359 N->getOpcode() == ISD::MSTORE;
2360 }
2361};
2362
2363/// This class is used to represent an MLOAD node
2364class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2365public:
2366 friend class SelectionDAG;
2367
2368 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2369 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2370 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2371 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2372 LoadSDNodeBits.ExtTy = ETy;
2373 LoadSDNodeBits.IsExpanding = IsExpanding;
2374 }
2375
2376 ISD::LoadExtType getExtensionType() const {
2377 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2378 }
2379
2380 const SDValue &getBasePtr() const { return getOperand(1); }
2381 const SDValue &getOffset() const { return getOperand(2); }
2382 const SDValue &getMask() const { return getOperand(3); }
2383 const SDValue &getPassThru() const { return getOperand(4); }
2384
2385 static bool classof(const SDNode *N) {
2386 return N->getOpcode() == ISD::MLOAD;
2387 }
2388
2389 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2390};
2391
2392/// This class is used to represent an MSTORE node
2393class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2394public:
2395 friend class SelectionDAG;
2396
2397 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2398 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2399 EVT MemVT, MachineMemOperand *MMO)
2400 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2401 StoreSDNodeBits.IsTruncating = isTrunc;
2402 StoreSDNodeBits.IsCompressing = isCompressing;
2403 }
2404
2405 /// Return true if the op does a truncation before store.
2406 /// For integers this is the same as doing a TRUNCATE and storing the result.
2407 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2408 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2409
2410 /// Returns true if the op does a compression to the vector before storing.
2411 /// The node contiguously stores the active elements (integers or floats)
2412 /// in src (those with their respective bit set in writemask k) to unaligned
2413 /// memory at base_addr.
2414 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2415
2416 const SDValue &getValue() const { return getOperand(1); }
2417 const SDValue &getBasePtr() const { return getOperand(2); }
2418 const SDValue &getOffset() const { return getOperand(3); }
2419 const SDValue &getMask() const { return getOperand(4); }
2420
2421 static bool classof(const SDNode *N) {
2422 return N->getOpcode() == ISD::MSTORE;
2423 }
2424};
2425
2426/// This is a base class used to represent
2427/// MGATHER and MSCATTER nodes
2428///
2429class MaskedGatherScatterSDNode : public MemSDNode {
2430public:
2431 friend class SelectionDAG;
2432
2433 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2434 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2435 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2436 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2437 LSBaseSDNodeBits.AddressingMode = IndexType;
2438 assert(getIndexType() == IndexType && "Value truncated")((void)0);
2439 }
2440
2441 /// How is Index applied to BasePtr when computing addresses.
2442 ISD::MemIndexType getIndexType() const {
2443 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2444 }
2445 void setIndexType(ISD::MemIndexType IndexType) {
2446 LSBaseSDNodeBits.AddressingMode = IndexType;
2447 }
2448 bool isIndexScaled() const {
2449 return (getIndexType() == ISD::SIGNED_SCALED) ||
2450 (getIndexType() == ISD::UNSIGNED_SCALED);
2451 }
2452 bool isIndexSigned() const {
2453 return (getIndexType() == ISD::SIGNED_SCALED) ||
2454 (getIndexType() == ISD::SIGNED_UNSCALED);
2455 }
2456
2457 // In the both nodes address is Op1, mask is Op2:
2458 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2459 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2460 // Mask is a vector of i1 elements
2461 const SDValue &getBasePtr() const { return getOperand(3); }
2462 const SDValue &getIndex() const { return getOperand(4); }
2463 const SDValue &getMask() const { return getOperand(2); }
2464 const SDValue &getScale() const { return getOperand(5); }
2465
2466 static bool classof(const SDNode *N) {
2467 return N->getOpcode() == ISD::MGATHER ||
2468 N->getOpcode() == ISD::MSCATTER;
2469 }
2470};
2471
2472/// This class is used to represent an MGATHER node
2473///
2474class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2475public:
2476 friend class SelectionDAG;
2477
2478 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2479 EVT MemVT, MachineMemOperand *MMO,
2480 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2481 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2482 IndexType) {
2483 LoadSDNodeBits.ExtTy = ETy;
2484 }
2485
2486 const SDValue &getPassThru() const { return getOperand(1); }
2487
2488 ISD::LoadExtType getExtensionType() const {
2489 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2490 }
2491
2492 static bool classof(const SDNode *N) {
2493 return N->getOpcode() == ISD::MGATHER;
2494 }
2495};
2496
2497/// This class is used to represent an MSCATTER node
2498///
2499class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2500public:
2501 friend class SelectionDAG;
2502
2503 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2504 EVT MemVT, MachineMemOperand *MMO,
2505 ISD::MemIndexType IndexType, bool IsTrunc)
2506 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2507 IndexType) {
2508 StoreSDNodeBits.IsTruncating = IsTrunc;
2509 }
2510
2511 /// Return true if the op does a truncation before store.
2512 /// For integers this is the same as doing a TRUNCATE and storing the result.
2513 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2514 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2515
2516 const SDValue &getValue() const { return getOperand(1); }
2517
2518 static bool classof(const SDNode *N) {
2519 return N->getOpcode() == ISD::MSCATTER;
2520 }
2521};
2522
2523/// An SDNode that represents everything that will be needed
2524/// to construct a MachineInstr. These nodes are created during the
2525/// instruction selection proper phase.
2526///
2527/// Note that the only supported way to set the `memoperands` is by calling the
2528/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2529/// inside the DAG rather than in the node.
2530class MachineSDNode : public SDNode {
2531private:
2532 friend class SelectionDAG;
2533
2534 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2535 : SDNode(Opc, Order, DL, VTs) {}
2536
2537 // We use a pointer union between a single `MachineMemOperand` pointer and
2538 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2539 // the number of these is zero, the single pointer variant used when the
2540 // number is one, and the array is used for larger numbers.
2541 //
2542 // The array is allocated via the `SelectionDAG`'s allocator and so will
2543 // always live until the DAG is cleaned up and doesn't require ownership here.
2544 //
2545 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2546 // subclasses aren't managed in a conforming C++ manner. See the comments on
2547 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2548 // constraint here is that these don't manage memory with their constructor or
2549 // destructor and can be initialized to a good state even if they start off
2550 // uninitialized.
2551 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2552
2553 // Note that this could be folded into the above `MemRefs` member if doing so
2554 // is advantageous at some point. We don't need to store this in most cases.
2555 // However, at the moment this doesn't appear to make the allocation any
2556 // smaller and makes the code somewhat simpler to read.
2557 int NumMemRefs = 0;
2558
2559public:
2560 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2561
2562 ArrayRef<MachineMemOperand *> memoperands() const {
2563 // Special case the common cases.
2564 if (NumMemRefs == 0)
2565 return {};
2566 if (NumMemRefs == 1)
2567 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2568
2569 // Otherwise we have an actual array.
2570 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2571 }
2572 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2573 mmo_iterator memoperands_end() const { return memoperands().end(); }
2574 bool memoperands_empty() const { return memoperands().empty(); }
2575
2576 /// Clear out the memory reference descriptor list.
2577 void clearMemRefs() {
2578 MemRefs = nullptr;
2579 NumMemRefs = 0;
2580 }
2581
2582 static bool classof(const SDNode *N) {
2583 return N->isMachineOpcode();
2584 }
2585};
2586
2587/// An SDNode that records if a register contains a value that is guaranteed to
2588/// be aligned accordingly.
2589class AssertAlignSDNode : public SDNode {
2590 Align Alignment;
2591
2592public:
2593 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2594 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2595
2596 Align getAlign() const { return Alignment; }
2597
2598 static bool classof(const SDNode *N) {
2599 return N->getOpcode() == ISD::AssertAlign;
2600 }
2601};
2602
2603class SDNodeIterator {
2604 const SDNode *Node;
2605 unsigned Operand;
2606
2607 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2608
2609public:
2610 using iterator_category = std::forward_iterator_tag;
2611 using value_type = SDNode;
2612 using difference_type = std::ptrdiff_t;
2613 using pointer = value_type *;
2614 using reference = value_type &;
2615
2616 bool operator==(const SDNodeIterator& x) const {
2617 return Operand == x.Operand;
2618 }
2619 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2620
2621 pointer operator*() const {
2622 return Node->getOperand(Operand).getNode();
2623 }
2624 pointer operator->() const { return operator*(); }
2625
2626 SDNodeIterator& operator++() { // Preincrement
2627 ++Operand;
2628 return *this;
2629 }
2630 SDNodeIterator operator++(int) { // Postincrement
2631 SDNodeIterator tmp = *this; ++*this; return tmp;
2632 }
2633 size_t operator-(SDNodeIterator Other) const {
2634 assert(Node == Other.Node &&((void)0)
2635 "Cannot compare iterators of two different nodes!")((void)0);
2636 return Operand - Other.Operand;
2637 }
2638
2639 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2640 static SDNodeIterator end (const SDNode *N) {
2641 return SDNodeIterator(N, N->getNumOperands());
2642 }
2643
2644 unsigned getOperand() const { return Operand; }
2645 const SDNode *getNode() const { return Node; }
2646};
2647
2648template <> struct GraphTraits<SDNode*> {
2649 using NodeRef = SDNode *;
2650 using ChildIteratorType = SDNodeIterator;
2651
2652 static NodeRef getEntryNode(SDNode *N) { return N; }
2653
2654 static ChildIteratorType child_begin(NodeRef N) {
2655 return SDNodeIterator::begin(N);
2656 }
2657
2658 static ChildIteratorType child_end(NodeRef N) {
2659 return SDNodeIterator::end(N);
2660 }
2661};
2662
2663/// A representation of the largest SDNode, for use in sizeof().
2664///
2665/// This needs to be a union because the largest node differs on 32 bit systems
2666/// with 4 and 8 byte pointer alignment, respectively.
2667using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2668 BlockAddressSDNode,
2669 GlobalAddressSDNode,
2670 PseudoProbeSDNode>;
2671
2672/// The SDNode class with the greatest alignment requirement.
2673using MostAlignedSDNode = GlobalAddressSDNode;
2674
2675namespace ISD {
2676
2677 /// Returns true if the specified node is a non-extending and unindexed load.
2678 inline bool isNormalLoad(const SDNode *N) {
2679 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2680 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2681 Ld->getAddressingMode() == ISD::UNINDEXED;
2682 }
2683
2684 /// Returns true if the specified node is a non-extending load.
2685 inline bool isNON_EXTLoad(const SDNode *N) {
2686 return isa<LoadSDNode>(N) &&
2687 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2688 }
2689
2690 /// Returns true if the specified node is a EXTLOAD.
2691 inline bool isEXTLoad(const SDNode *N) {
2692 return isa<LoadSDNode>(N) &&
2693 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2694 }
2695
2696 /// Returns true if the specified node is a SEXTLOAD.
2697 inline bool isSEXTLoad(const SDNode *N) {
2698 return isa<LoadSDNode>(N) &&
2699 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2700 }
2701
2702 /// Returns true if the specified node is a ZEXTLOAD.
2703 inline bool isZEXTLoad(const SDNode *N) {
2704 return isa<LoadSDNode>(N) &&
2705 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2706 }
2707
2708 /// Returns true if the specified node is an unindexed load.
2709 inline bool isUNINDEXEDLoad(const SDNode *N) {
2710 return isa<LoadSDNode>(N) &&
2711 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating
2715 /// and unindexed store.
2716 inline bool isNormalStore(const SDNode *N) {
2717 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2718 return St && !St->isTruncatingStore() &&
2719 St->getAddressingMode() == ISD::UNINDEXED;
2720 }
2721
2722 /// Returns true if the specified node is an unindexed store.
2723 inline bool isUNINDEXEDStore(const SDNode *N) {
2724 return isa<StoreSDNode>(N) &&
2725 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2726 }
2727
2728 /// Attempt to match a unary predicate against a scalar/splat constant or
2729 /// every element of a constant BUILD_VECTOR.
2730 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2731 bool matchUnaryPredicate(SDValue Op,
2732 std::function<bool(ConstantSDNode *)> Match,
2733 bool AllowUndefs = false);
2734
2735 /// Attempt to match a binary predicate against a pair of scalar/splat
2736 /// constants or every element of a pair of constant BUILD_VECTORs.
2737 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2738 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2739 bool matchBinaryPredicate(
2740 SDValue LHS, SDValue RHS,
2741 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2742 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2743
2744 /// Returns true if the specified value is the overflow result from one
2745 /// of the overflow intrinsic nodes.
2746 inline bool isOverflowIntrOpRes(SDValue Op) {
2747 unsigned Opc = Op.getOpcode();
2748 return (Op.getResNo() == 1 &&
2749 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2750 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2751 }
2752
2753} // end namespace ISD
2754
2755} // end namespace llvm
2756
2757#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H