Bug Summary

File:src/gnu/usr.bin/binutils/gdb/dwarf2read.c
Warning:line 8701, column 22
The left expression of the compound assignment is an uninitialized value. The computed value will also be garbage

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name dwarf2read.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -resource-dir /usr/local/lib/clang/13.0.0 -D PIE_DEFAULT=1 -I . -I /usr/src/gnu/usr.bin/binutils/gdb -I /usr/src/gnu/usr.bin/binutils/gdb/config -D LOCALEDIR="/usr/share/locale" -D HAVE_CONFIG_H -I /usr/src/gnu/usr.bin/binutils/gdb/../include/opcode -I ../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../include -I ../intl -I /usr/src/gnu/usr.bin/binutils/gdb/../intl -D MI_OUT=1 -D TUI=1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -fcommon -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31#include "defs.h"
32#include "bfd.h"
33#include "symtab.h"
34#include "gdbtypes.h"
35#include "objfiles.h"
36#include "elf/dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "expression.h"
40#include "filenames.h" /* for DOSish file names */
41#include "macrotab.h"
42#include "language.h"
43#include "complaints.h"
44#include "bcache.h"
45#include "dwarf2expr.h"
46#include "dwarf2loc.h"
47#include "cp-support.h"
48#include "hashtab.h"
49#include "command.h"
50#include "gdbcmd.h"
51
52#include <fcntl.h>
53#include "gdb_string.h"
54#include "gdb_assert.h"
55#include <sys/types.h>
56
57/* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71#ifndef DWARF2_REG_TO_REGNUM
72#define DWARF2_REG_TO_REGNUM(REG)(gdbarch_dwarf2_reg_to_regnum (current_gdbarch, REG)) (REG)
73#endif
74
75#if 0
76/* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88_COMP_UNIT_HEADER;
89#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90#endif
91
92/* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105_PUBNAMES_HEADER;
106#define _ACTUAL_PUBNAMES_HEADER_SIZE13 13
107
108/* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121_ARANGES_HEADER;
122#define _ACTUAL_ARANGES_HEADER_SIZE12 12
123
124/* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145_STATEMENT_PROLOGUE;
146
147static const struct objfile_data *dwarf2_objfile_data_key;
148
149struct dwarf2_per_objfile
150{
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183};
184
185static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187static asection *dwarf_info_section;
188static asection *dwarf_abbrev_section;
189static asection *dwarf_line_section;
190static asection *dwarf_pubnames_section;
191static asection *dwarf_aranges_section;
192static asection *dwarf_loc_section;
193static asection *dwarf_macinfo_section;
194static asection *dwarf_str_section;
195static asection *dwarf_ranges_section;
196asection *dwarf_frame_section;
197asection *dwarf_eh_frame_section;
198
199/* names of the debugging sections */
200
201#define INFO_SECTION".debug_info" ".debug_info"
202#define ABBREV_SECTION".debug_abbrev" ".debug_abbrev"
203#define LINE_SECTION".debug_line" ".debug_line"
204#define PUBNAMES_SECTION".debug_pubnames" ".debug_pubnames"
205#define ARANGES_SECTION".debug_aranges" ".debug_aranges"
206#define LOC_SECTION".debug_loc" ".debug_loc"
207#define MACINFO_SECTION".debug_macinfo" ".debug_macinfo"
208#define STR_SECTION".debug_str" ".debug_str"
209#define RANGES_SECTION".debug_ranges" ".debug_ranges"
210#define FRAME_SECTION".debug_frame" ".debug_frame"
211#define EH_FRAME_SECTION".eh_frame" ".eh_frame"
212
213/* local data types */
214
215/* We hold several abbreviation tables in memory at the same time. */
216#ifndef ABBREV_HASH_SIZE121
217#define ABBREV_HASH_SIZE121 121
218#endif
219
220/* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222struct comp_unit_head
223{
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256};
257
258/* Fixed size for the DIE hash table. */
259#ifndef REF_HASH_SIZE1021
260#define REF_HASH_SIZE1021 1021
261#endif
262
263/* Internal state when decoding a particular compilation unit. */
264struct dwarf2_cu
265{
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS29]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE1021];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353};
354
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361struct dwarf2_per_cu_data
362{
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384};
385
386/* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389struct line_header
390{
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429};
430
431/* When we construct a partial symbol table entry we only
432 need this much information. */
433struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag)enum dwarf_tag tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493/* This data structure holds the information of an abbrev. */
494struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510/* This data structure holds a complete die structure. */
511struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532/* Attributes have a name and a value */
533struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548struct function_range
549{
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554};
555
556/* Get at parts of an attribute structure */
557
558#define DW_STRING(attr)((attr)->u.str) ((attr)->u.str)
559#define DW_UNSND(attr)((attr)->u.unsnd) ((attr)->u.unsnd)
560#define DW_BLOCK(attr)((attr)->u.blk) ((attr)->u.blk)
561#define DW_SND(attr)((attr)->u.snd) ((attr)->u.snd)
562#define DW_ADDR(attr)((attr)->u.addr) ((attr)->u.addr)
563
564/* Blocks are a bunch of untyped bytes. */
565struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571#ifndef ATTR_ALLOC_CHUNK4
572#define ATTR_ALLOC_CHUNK4 4
573#endif
574
575/* Allocate fields for structs, unions and enums in this size. */
576#ifndef DW_FIELD_ALLOC_CHUNK4
577#define DW_FIELD_ALLOC_CHUNK4 4
578#endif
579
580/* A zeroed version of a partial die for initialization purposes. */
581static struct partial_die_info zeroed_partial_die;
582
583/* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595static int bits_per_byte = 8;
596
597/* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645/* One item on the queue of compilation units to read in full symbols
646 for. */
647struct dwarf2_queue_item
648{
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651};
652
653/* The current queue. */
654static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656/* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661static int dwarf2_max_cache_age = 5;
662
663/* Various complaints about symbol reading that don't abort the process */
664
665static void
666dwarf2_statement_list_fits_in_line_number_section_complaint (void)
667{
668 complaint (&symfile_complaints,
669 "statement list doesn't fit in .debug_line section");
670}
671
672static void
673dwarf2_complex_location_expr_complaint (void)
674{
675 complaint (&symfile_complaints, "location expression too complex");
676}
677
678static void
679dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
680 int arg3)
681{
682 complaint (&symfile_complaints,
683 "const value length mismatch for '%s', got %d, expected %d", arg1,
684 arg2, arg3);
685}
686
687static void
688dwarf2_macros_too_long_complaint (void)
689{
690 complaint (&symfile_complaints,
691 "macro info runs off end of `.debug_macinfo' section");
692}
693
694static void
695dwarf2_macro_malformed_definition_complaint (const char *arg1)
696{
697 complaint (&symfile_complaints,
698 "macro debug info contains a malformed macro definition:\n`%s'",
699 arg1);
700}
701
702static void
703dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
704{
705 complaint (&symfile_complaints,
706 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
707}
708
709/* local function prototypes */
710
711static void dwarf2_locate_sections (bfd *, asection *, void *);
712
713#if 0
714static void dwarf2_build_psymtabs_easy (struct objfile *, int);
715#endif
716
717static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
718 struct objfile *);
719
720static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
721 struct partial_die_info *,
722 struct partial_symtab *);
723
724static void dwarf2_build_psymtabs_hard (struct objfile *, int);
725
726static void scan_partial_symbols (struct partial_die_info *,
727 CORE_ADDR *, CORE_ADDR *,
728 struct dwarf2_cu *);
729
730static void add_partial_symbol (struct partial_die_info *,
731 struct dwarf2_cu *);
732
733static int pdi_needs_namespace (enum dwarf_tag tag);
734
735static void add_partial_namespace (struct partial_die_info *pdi,
736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
737 struct dwarf2_cu *cu);
738
739static void add_partial_enumeration (struct partial_die_info *enum_pdi,
740 struct dwarf2_cu *cu);
741
742static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
743 char *info_ptr,
744 bfd *abfd,
745 struct dwarf2_cu *cu);
746
747static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
748
749static void psymtab_to_symtab_1 (struct partial_symtab *);
750
751char *dwarf2_read_section (struct objfile *, asection *);
752
753static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
754
755static void dwarf2_free_abbrev_table (void *);
756
757static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
758
759static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
760 struct dwarf2_cu *);
761
762static struct partial_die_info *load_partial_dies (bfd *, char *, int,
763 struct dwarf2_cu *);
764
765static char *read_partial_die (struct partial_die_info *,
766 struct abbrev_info *abbrev, unsigned int,
767 bfd *, char *, struct dwarf2_cu *);
768
769static struct partial_die_info *find_partial_die (unsigned long,
770 struct dwarf2_cu *);
771
772static void fixup_partial_die (struct partial_die_info *,
773 struct dwarf2_cu *);
774
775static char *read_full_die (struct die_info **, bfd *, char *,
776 struct dwarf2_cu *, int *);
777
778static char *read_attribute (struct attribute *, struct attr_abbrev *,
779 bfd *, char *, struct dwarf2_cu *);
780
781static char *read_attribute_value (struct attribute *, unsigned,
782 bfd *, char *, struct dwarf2_cu *);
783
784static unsigned int read_1_byte (bfd *, char *);
785
786static int read_1_signed_byte (bfd *, char *);
787
788static unsigned int read_2_bytes (bfd *, char *);
789
790static unsigned int read_4_bytes (bfd *, char *);
791
792static unsigned long read_8_bytes (bfd *, char *);
793
794static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
795 int *bytes_read);
796
797static LONGESTlong read_initial_length (bfd *, char *,
798 struct comp_unit_head *, int *bytes_read);
799
800static LONGESTlong read_offset (bfd *, char *, const struct comp_unit_head *,
801 int *bytes_read);
802
803static char *read_n_bytes (bfd *, char *, unsigned int);
804
805static char *read_string (bfd *, char *, unsigned int *);
806
807static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
808 unsigned int *);
809
810static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
811
812static long read_signed_leb128 (bfd *, char *, unsigned int *);
813
814static char *skip_leb128 (bfd *, char *);
815
816static void set_cu_language (unsigned int, struct dwarf2_cu *);
817
818static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
819 struct dwarf2_cu *);
820
821static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
822 struct dwarf2_cu *cu);
823
824static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
825
826static struct die_info *die_specification (struct die_info *die,
827 struct dwarf2_cu *);
828
829static void free_line_header (struct line_header *lh);
830
831static void add_file_name (struct line_header *, char *, unsigned int,
832 unsigned int, unsigned int);
833
834static struct line_header *(dwarf_decode_line_header
835 (unsigned int offset,
836 bfd *abfd, struct dwarf2_cu *cu));
837
838static void dwarf_decode_lines (struct line_header *, char *, bfd *,
839 struct dwarf2_cu *, struct partial_symtab *);
840
841static void dwarf2_start_subfile (char *, char *);
842
843static struct symbol *new_symbol (struct die_info *, struct type *,
844 struct dwarf2_cu *);
845
846static void dwarf2_const_value (struct attribute *, struct symbol *,
847 struct dwarf2_cu *);
848
849static void dwarf2_const_value_data (struct attribute *attr,
850 struct symbol *sym,
851 int bits);
852
853static struct type *die_type (struct die_info *, struct dwarf2_cu *);
854
855static struct type *die_containing_type (struct die_info *,
856 struct dwarf2_cu *);
857
858static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
859
860static void read_type_die (struct die_info *, struct dwarf2_cu *);
861
862static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
863
864static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
865 struct dwarf2_cu *);
866
867static void read_typedef (struct die_info *, struct dwarf2_cu *);
868
869static void read_base_type (struct die_info *, struct dwarf2_cu *);
870
871static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
872
873static void read_file_scope (struct die_info *, struct dwarf2_cu *);
874
875static void read_func_scope (struct die_info *, struct dwarf2_cu *);
876
877static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
878
879static int dwarf2_get_pc_bounds (struct die_info *,
880 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
881
882static void get_scope_pc_bounds (struct die_info *,
883 CORE_ADDR *, CORE_ADDR *,
884 struct dwarf2_cu *);
885
886static void dwarf2_add_field (struct field_info *, struct die_info *,
887 struct dwarf2_cu *);
888
889static void dwarf2_attach_fields_to_type (struct field_info *,
890 struct type *, struct dwarf2_cu *);
891
892static void dwarf2_add_member_fn (struct field_info *,
893 struct die_info *, struct type *,
894 struct dwarf2_cu *);
895
896static void dwarf2_attach_fn_fields_to_type (struct field_info *,
897 struct type *, struct dwarf2_cu *);
898
899static void read_structure_type (struct die_info *, struct dwarf2_cu *);
900
901static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
902
903static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
904
905static void read_common_block (struct die_info *, struct dwarf2_cu *);
906
907static void read_namespace (struct die_info *die, struct dwarf2_cu *);
908
909static const char *namespace_name (struct die_info *die,
910 int *is_anonymous, struct dwarf2_cu *);
911
912static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
913
914static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
915
916static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
917
918static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
919
920static void read_array_type (struct die_info *, struct dwarf2_cu *);
921
922static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
923 struct dwarf2_cu *);
924
925static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
926
927static void read_tag_ptr_to_member_type (struct die_info *,
928 struct dwarf2_cu *);
929
930static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
931
932static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
933
934static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
935
936static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
937
938static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
939
940static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
941
942static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
943 struct dwarf2_cu *,
944 char **new_info_ptr,
945 struct die_info *parent);
946
947static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
948 struct dwarf2_cu *,
949 char **new_info_ptr,
950 struct die_info *parent);
951
952static void free_die_list (struct die_info *);
953
954static void process_die (struct die_info *, struct dwarf2_cu *);
955
956static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
957
958static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
959
960static struct die_info *dwarf2_extension (struct die_info *die,
961 struct dwarf2_cu *);
962
963static char *dwarf_tag_name (unsigned int);
964
965static char *dwarf_attr_name (unsigned int);
966
967static char *dwarf_form_name (unsigned int);
968
969static char *dwarf_stack_op_name (unsigned int);
970
971static char *dwarf_bool_name (unsigned int);
972
973static char *dwarf_type_encoding_name (unsigned int);
974
975#if 0
976static char *dwarf_cfi_name (unsigned int);
977
978struct die_info *copy_die (struct die_info *);
979#endif
980
981static struct die_info *sibling_die (struct die_info *);
982
983static void dump_die (struct die_info *);
984
985static void dump_die_list (struct die_info *);
986
987static void store_in_ref_table (unsigned int, struct die_info *,
988 struct dwarf2_cu *);
989
990static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
991 struct dwarf2_cu *);
992
993static int dwarf2_get_attr_constant_value (struct attribute *, int);
994
995static struct die_info *follow_die_ref (struct die_info *,
996 struct attribute *,
997 struct dwarf2_cu *);
998
999static struct type *dwarf2_fundamental_type (struct objfile *, int,
1000 struct dwarf2_cu *);
1001
1002/* memory allocation interface */
1003
1004static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1005
1006static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1007
1008static struct die_info *dwarf_alloc_die (void);
1009
1010static void initialize_cu_func_list (struct dwarf2_cu *);
1011
1012static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1013 struct dwarf2_cu *);
1014
1015static void dwarf_decode_macros (struct line_header *, unsigned int,
1016 char *, bfd *, struct dwarf2_cu *);
1017
1018static int attr_form_is_block (struct attribute *);
1019
1020static void
1021dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1022 struct dwarf2_cu *cu);
1023
1024static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1025 struct dwarf2_cu *cu);
1026
1027static void free_stack_comp_unit (void *);
1028
1029static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1030
1031static void dummy_obstack_deallocate (void *object, void *data);
1032
1033static hashval_t partial_die_hash (const void *item);
1034
1035static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1036
1037static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1038 (unsigned long offset, struct objfile *objfile);
1039
1040static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1041 (unsigned long offset, struct objfile *objfile);
1042
1043static void free_one_comp_unit (void *);
1044
1045static void free_cached_comp_units (void *);
1046
1047static void age_cached_comp_units (void);
1048
1049static void free_one_cached_comp_unit (void *);
1050
1051static void set_die_type (struct die_info *, struct type *,
1052 struct dwarf2_cu *);
1053
1054static void reset_die_and_siblings_types (struct die_info *,
1055 struct dwarf2_cu *);
1056
1057static void create_all_comp_units (struct objfile *);
1058
1059static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1060
1061static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
1066static void dwarf2_mark (struct dwarf2_cu *);
1067
1068static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
1070/* Try to locate the sections we need for DWARF 2 debugging
1071 information and return true if we have enough to do something. */
1072
1073int
1074dwarf2_has_info (struct objfile *objfile)
1075{
1076 struct dwarf2_per_objfile *data;
1077
1078 /* Initialize per-objfile state. */
1079 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (*data))); if (__o->chunk_limit - __o->next_free
< __len) _obstack_newchunk (__o, __len); ((__o)->next_free
+= (__len)); (void) 0; }); __extension__ ({ struct obstack *
__o1 = (__h); void *value; value = (void *) __o1->object_base
; if (__o1->next_free == value) __o1->maybe_empty_object
= 1; __o1->next_free = (((((__o1->next_free) - (char *
) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask
)) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk
> __o1->chunk_limit - (char *)__o1->chunk) __o1->
next_free = __o1->chunk_limit; __o1->object_base = __o1
->next_free; value; }); })
;
1080 memset (data, 0, sizeof (*data));
1081 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1082 dwarf2_per_objfile = data;
1083
1084 dwarf_info_section = 0;
1085 dwarf_abbrev_section = 0;
1086 dwarf_line_section = 0;
1087 dwarf_str_section = 0;
1088 dwarf_macinfo_section = 0;
1089 dwarf_frame_section = 0;
1090 dwarf_eh_frame_section = 0;
1091 dwarf_ranges_section = 0;
1092 dwarf_loc_section = 0;
1093
1094 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL((void*)0));
1095 return (dwarf_info_section != NULL((void*)0) && dwarf_abbrev_section != NULL((void*)0));
1096}
1097
1098/* This function is mapped across the sections and remembers the
1099 offset and size of each of the debugging sections we are interested
1100 in. */
1101
1102static void
1103dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1104{
1105 if (strcmp (sectp->name, INFO_SECTION".debug_info") == 0)
1106 {
1107 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1108 dwarf_info_section = sectp;
1109 }
1110 else if (strcmp (sectp->name, ABBREV_SECTION".debug_abbrev") == 0)
1111 {
1112 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1113 dwarf_abbrev_section = sectp;
1114 }
1115 else if (strcmp (sectp->name, LINE_SECTION".debug_line") == 0)
1116 {
1117 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1118 dwarf_line_section = sectp;
1119 }
1120 else if (strcmp (sectp->name, PUBNAMES_SECTION".debug_pubnames") == 0)
1121 {
1122 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1123 dwarf_pubnames_section = sectp;
1124 }
1125 else if (strcmp (sectp->name, ARANGES_SECTION".debug_aranges") == 0)
1126 {
1127 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1128 dwarf_aranges_section = sectp;
1129 }
1130 else if (strcmp (sectp->name, LOC_SECTION".debug_loc") == 0)
1131 {
1132 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1133 dwarf_loc_section = sectp;
1134 }
1135 else if (strcmp (sectp->name, MACINFO_SECTION".debug_macinfo") == 0)
1136 {
1137 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1138 dwarf_macinfo_section = sectp;
1139 }
1140 else if (strcmp (sectp->name, STR_SECTION".debug_str") == 0)
1141 {
1142 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1143 dwarf_str_section = sectp;
1144 }
1145 else if (strcmp (sectp->name, FRAME_SECTION".debug_frame") == 0)
1146 {
1147 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1148 dwarf_frame_section = sectp;
1149 }
1150 else if (strcmp (sectp->name, EH_FRAME_SECTION".eh_frame") == 0)
1151 {
1152 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp)((sectp)->flags + 0);
1153 if (aflag & SEC_HAS_CONTENTS0x200)
1154 {
1155 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1156 dwarf_eh_frame_section = sectp;
1157 }
1158 }
1159 else if (strcmp (sectp->name, RANGES_SECTION".debug_ranges") == 0)
1160 {
1161 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp)((sectp)->_raw_size);
1162 dwarf_ranges_section = sectp;
1163 }
1164}
1165
1166/* Build a partial symbol table. */
1167
1168void
1169dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1170{
1171 /* We definitely need the .debug_info and .debug_abbrev sections */
1172
1173 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1174 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1175
1176 if (dwarf_line_section)
1177 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1178 else
1179 dwarf2_per_objfile->line_buffer = NULL((void*)0);
1180
1181 if (dwarf_str_section)
1182 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1183 else
1184 dwarf2_per_objfile->str_buffer = NULL((void*)0);
1185
1186 if (dwarf_macinfo_section)
1187 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1188 dwarf_macinfo_section);
1189 else
1190 dwarf2_per_objfile->macinfo_buffer = NULL((void*)0);
1191
1192 if (dwarf_ranges_section)
1193 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1194 else
1195 dwarf2_per_objfile->ranges_buffer = NULL((void*)0);
1196
1197 if (dwarf_loc_section)
1198 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1199 else
1200 dwarf2_per_objfile->loc_buffer = NULL((void*)0);
1201
1202 if (mainline
1203 || (objfile->global_psymbols.size == 0
1204 && objfile->static_psymbols.size == 0))
1205 {
1206 init_psymbol_list (objfile, 1024);
1207 }
1208
1209#if 0
1210 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1211 {
1212 /* Things are significantly easier if we have .debug_aranges and
1213 .debug_pubnames sections */
1214
1215 dwarf2_build_psymtabs_easy (objfile, mainline);
1216 }
1217 else
1218#endif
1219 /* only test this case for now */
1220 {
1221 /* In this case we have to work a bit harder */
1222 dwarf2_build_psymtabs_hard (objfile, mainline);
1223 }
1224}
1225
1226#if 0
1227/* Build the partial symbol table from the information in the
1228 .debug_pubnames and .debug_aranges sections. */
1229
1230static void
1231dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1232{
1233 bfd *abfd = objfile->obfd;
1234 char *aranges_buffer, *pubnames_buffer;
1235 char *aranges_ptr, *pubnames_ptr;
1236 unsigned int entry_length, version, info_offset, info_size;
1237
1238 pubnames_buffer = dwarf2_read_section (objfile,
1239 dwarf_pubnames_section);
1240 pubnames_ptr = pubnames_buffer;
1241 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1242 {
1243 struct comp_unit_head cu_header;
1244 int bytes_read;
1245
1246 cu_header.initial_length_size = 0;
1247 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1248 &bytes_read);
1249 pubnames_ptr += bytes_read;
1250 version = read_1_byte (abfd, pubnames_ptr);
1251 pubnames_ptr += 1;
1252 info_offset = read_4_bytes (abfd, pubnames_ptr);
1253 pubnames_ptr += 4;
1254 info_size = read_4_bytes (abfd, pubnames_ptr);
1255 pubnames_ptr += 4;
1256 }
1257
1258 aranges_buffer = dwarf2_read_section (objfile,
1259 dwarf_aranges_section);
1260
1261}
1262#endif
1263
1264/* Read in the comp unit header information from the debug_info at
1265 info_ptr. */
1266
1267static char *
1268read_comp_unit_head (struct comp_unit_head *cu_header,
1269 char *info_ptr, bfd *abfd)
1270{
1271 int signed_addr;
1272 int bytes_read;
1273
1274 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1275 &bytes_read);
1276 info_ptr += bytes_read;
1277 cu_header->version = read_2_bytes (abfd, info_ptr);
1278 info_ptr += 2;
1279 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1280 &bytes_read);
1281 info_ptr += bytes_read;
1282 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1283 info_ptr += 1;
1284 signed_addr = bfd_get_sign_extend_vma (abfd);
1285 if (signed_addr < 0)
1286 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", __LINE__1286,
1287 "read_comp_unit_head: dwarf from non elf file");
1288 cu_header->signed_addr_p = signed_addr;
1289 return info_ptr;
1290}
1291
1292static char *
1293partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1294 bfd *abfd)
1295{
1296 char *beg_of_comp_unit = info_ptr;
1297
1298 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1299
1300 if (header->version != 2)
1301 error ("Dwarf Error: wrong version in compilation unit header "
1302 "(is %d, should be %d) [in module %s]", header->version,
1303 2, bfd_get_filename (abfd)((char *) (abfd)->filename));
1304
1305 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1306 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1307 "(offset 0x%lx + 6) [in module %s]",
1308 (long) header->abbrev_offset,
1309 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1310 bfd_get_filename (abfd)((char *) (abfd)->filename));
1311
1312 if (beg_of_comp_unit + header->length + header->initial_length_size
1313 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1314 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1315 "(offset 0x%lx + 0) [in module %s]",
1316 (long) header->length,
1317 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1318 bfd_get_filename (abfd)((char *) (abfd)->filename));
1319
1320 return info_ptr;
1321}
1322
1323/* Allocate a new partial symtab for file named NAME and mark this new
1324 partial symtab as being an include of PST. */
1325
1326static void
1327dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1328 struct objfile *objfile)
1329{
1330 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1331
1332 subpst->section_offsets = pst->section_offsets;
1333 subpst->textlow = 0;
1334 subpst->texthigh = 0;
1335
1336 subpst->dependencies = (struct partial_symtab **)
1337 obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_symtab *))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
1338 sizeof (struct partial_symtab *))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_symtab *))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
;
1339 subpst->dependencies[0] = pst;
1340 subpst->number_of_dependencies = 1;
1341
1342 subpst->globals_offset = 0;
1343 subpst->n_global_syms = 0;
1344 subpst->statics_offset = 0;
1345 subpst->n_static_syms = 0;
1346 subpst->symtab = NULL((void*)0);
1347 subpst->read_symtab = pst->read_symtab;
1348 subpst->readin = 0;
1349
1350 /* No private part is necessary for include psymtabs. This property
1351 can be used to differentiate between such include psymtabs and
1352 the regular ones. */
1353 subpst->read_symtab_private = NULL((void*)0);
1354}
1355
1356/* Read the Line Number Program data and extract the list of files
1357 included by the source file represented by PST. Build an include
1358 partial symtab for each of these included files.
1359
1360 This procedure assumes that there *is* a Line Number Program in
1361 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1362 before calling this procedure. */
1363
1364static void
1365dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1366 struct partial_die_info *pdi,
1367 struct partial_symtab *pst)
1368{
1369 struct objfile *objfile = cu->objfile;
1370 bfd *abfd = objfile->obfd;
1371 struct line_header *lh;
1372
1373 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1374 if (lh == NULL((void*)0))
1375 return; /* No linetable, so no includes. */
1376
1377 dwarf_decode_lines (lh, NULL((void*)0), abfd, cu, pst);
1378
1379 free_line_header (lh);
1380}
1381
1382
1383/* Build the partial symbol table by doing a quick pass through the
1384 .debug_info and .debug_abbrev sections. */
1385
1386static void
1387dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1388{
1389 /* Instead of reading this into a big buffer, we should probably use
1390 mmap() on architectures that support it. (FIXME) */
1391 bfd *abfd = objfile->obfd;
1392 char *info_ptr;
1393 char *beg_of_comp_unit;
1394 struct partial_die_info comp_unit_die;
1395 struct partial_symtab *pst;
1396 struct cleanup *back_to;
1397 CORE_ADDR lowpc, highpc, baseaddr;
1398
1399 info_ptr = dwarf2_per_objfile->info_buffer;
1400
1401 /* Any cached compilation units will be linked by the per-objfile
1402 read_in_chain. Make sure to free them when we're done. */
1403 back_to = make_cleanup (free_cached_comp_units, NULL((void*)0));
1404
1405 create_all_comp_units (objfile);
1406
1407 /* Since the objects we're extracting from .debug_info vary in
1408 length, only the individual functions to extract them (like
1409 read_comp_unit_head and load_partial_die) can really know whether
1410 the buffer is large enough to hold another complete object.
1411
1412 At the moment, they don't actually check that. If .debug_info
1413 holds just one extra byte after the last compilation unit's dies,
1414 then read_comp_unit_head will happily read off the end of the
1415 buffer. read_partial_die is similarly casual. Those functions
1416 should be fixed.
1417
1418 For this loop condition, simply checking whether there's any data
1419 left at all should be sufficient. */
1420 while (info_ptr < (dwarf2_per_objfile->info_buffer
1421 + dwarf2_per_objfile->info_size))
1422 {
1423 struct cleanup *back_to_inner;
1424 struct dwarf2_cu cu;
1425 struct abbrev_info *abbrev;
1426 unsigned int bytes_read;
1427 struct dwarf2_per_cu_data *this_cu;
1428
1429 beg_of_comp_unit = info_ptr;
1430
1431 memset (&cu, 0, sizeof (cu));
1432
1433 obstack_init (&cu.comp_unit_obstack)_obstack_begin ((&cu.comp_unit_obstack), 0, 0, (void *(*)
(long)) xmalloc, (void (*) (void *)) xfree)
;
1434
1435 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1436
1437 cu.objfile = objfile;
1438 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1439
1440 /* Complete the cu_header */
1441 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1442 cu.header.first_die_ptr = info_ptr;
1443 cu.header.cu_head_ptr = beg_of_comp_unit;
1444
1445 cu.list_in_scope = &file_symbols;
1446
1447 /* Read the abbrevs for this compilation unit into a table */
1448 dwarf2_read_abbrevs (abfd, &cu);
1449 make_cleanup (dwarf2_free_abbrev_table, &cu);
1450
1451 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1452
1453 /* Read the compilation unit die */
1454 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1455 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1456 abfd, info_ptr, &cu);
1457
1458 /* Set the language we're debugging */
1459 set_cu_language (comp_unit_die.language, &cu);
1460
1461 /* Allocate a new partial symbol table structure */
1462 pst = start_psymtab_common (objfile, objfile->section_offsets,
1463 comp_unit_die.name ? comp_unit_die.name : "",
1464 comp_unit_die.lowpc,
1465 objfile->global_psymbols.next,
1466 objfile->static_psymbols.next);
1467
1468 if (comp_unit_die.dirname)
1469 pst->dirname = xstrdup (comp_unit_die.dirname);
1470
1471 pst->read_symtab_private = (char *) this_cu;
1472
1473 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1473, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1473, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1473, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
1474
1475 /* Store the function that reads in the rest of the symbol table */
1476 pst->read_symtab = dwarf2_psymtab_to_symtab;
1477
1478 /* If this compilation unit was already read in, free the
1479 cached copy in order to read it in again. This is
1480 necessary because we skipped some symbols when we first
1481 read in the compilation unit (see load_partial_dies).
1482 This problem could be avoided, but the benefit is
1483 unclear. */
1484 if (this_cu->cu != NULL((void*)0))
1485 free_one_cached_comp_unit (this_cu->cu);
1486
1487 cu.per_cu = this_cu;
1488
1489 /* Note that this is a pointer to our stack frame, being
1490 added to a global data structure. It will be cleaned up
1491 in free_stack_comp_unit when we finish with this
1492 compilation unit. */
1493 this_cu->cu = &cu;
1494
1495 this_cu->psymtab = pst;
1496
1497 /* Check if comp unit has_children.
1498 If so, read the rest of the partial symbols from this comp unit.
1499 If not, there's no more debug_info for this comp unit. */
1500 if (comp_unit_die.has_children)
1501 {
1502 struct partial_die_info *first_die;
1503
1504 lowpc = ((CORE_ADDR) -1);
1505 highpc = ((CORE_ADDR) 0);
1506
1507 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1508
1509 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1510
1511 /* If we didn't find a lowpc, set it to highpc to avoid
1512 complaints from `maint check'. */
1513 if (lowpc == ((CORE_ADDR) -1))
1514 lowpc = highpc;
1515
1516 /* If the compilation unit didn't have an explicit address range,
1517 then use the information extracted from its child dies. */
1518 if (! comp_unit_die.has_pc_info)
1519 {
1520 comp_unit_die.lowpc = lowpc;
1521 comp_unit_die.highpc = highpc;
1522 }
1523 }
1524 pst->textlow = comp_unit_die.lowpc + baseaddr;
1525 pst->texthigh = comp_unit_die.highpc + baseaddr;
1526
1527 pst->n_global_syms = objfile->global_psymbols.next -
1528 (objfile->global_psymbols.list + pst->globals_offset);
1529 pst->n_static_syms = objfile->static_psymbols.next -
1530 (objfile->static_psymbols.list + pst->statics_offset);
1531 sort_pst_symbols (pst);
1532
1533 /* If there is already a psymtab or symtab for a file of this
1534 name, remove it. (If there is a symtab, more drastic things
1535 also happen.) This happens in VxWorks. */
1536 free_named_symtabs (pst->filename);
1537
1538 info_ptr = beg_of_comp_unit + cu.header.length
1539 + cu.header.initial_length_size;
1540
1541 if (comp_unit_die.has_stmt_list)
1542 {
1543 /* Get the list of files included in the current compilation unit,
1544 and build a psymtab for each of them. */
1545 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1546 }
1547
1548 do_cleanups (back_to_inner);
1549 }
1550 do_cleanups (back_to);
1551}
1552
1553/* Load the DIEs for a secondary CU into memory. */
1554
1555static void
1556load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1557{
1558 bfd *abfd = objfile->obfd;
1559 char *info_ptr, *beg_of_comp_unit;
1560 struct partial_die_info comp_unit_die;
1561 struct dwarf2_cu *cu;
1562 struct abbrev_info *abbrev;
1563 unsigned int bytes_read;
1564 struct cleanup *back_to;
1565
1566 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1567 beg_of_comp_unit = info_ptr;
1568
1569 cu = xmalloc (sizeof (struct dwarf2_cu));
1570 memset (cu, 0, sizeof (struct dwarf2_cu));
1571
1572 obstack_init (&cu->comp_unit_obstack)_obstack_begin ((&cu->comp_unit_obstack), 0, 0, (void *
(*) (long)) xmalloc, (void (*) (void *)) xfree)
;
1573
1574 cu->objfile = objfile;
1575 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1576
1577 /* Complete the cu_header. */
1578 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1579 cu->header.first_die_ptr = info_ptr;
1580 cu->header.cu_head_ptr = beg_of_comp_unit;
1581
1582 /* Read the abbrevs for this compilation unit into a table. */
1583 dwarf2_read_abbrevs (abfd, cu);
1584 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1585
1586 /* Read the compilation unit die. */
1587 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1588 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1589 abfd, info_ptr, cu);
1590
1591 /* Set the language we're debugging. */
1592 set_cu_language (comp_unit_die.language, cu);
1593
1594 /* Link this compilation unit into the compilation unit tree. */
1595 this_cu->cu = cu;
1596 cu->per_cu = this_cu;
1597
1598 /* Check if comp unit has_children.
1599 If so, read the rest of the partial symbols from this comp unit.
1600 If not, there's no more debug_info for this comp unit. */
1601 if (comp_unit_die.has_children)
1602 load_partial_dies (abfd, info_ptr, 0, cu);
1603
1604 do_cleanups (back_to);
1605}
1606
1607/* Create a list of all compilation units in OBJFILE. We do this only
1608 if an inter-comp-unit reference is found; presumably if there is one,
1609 there will be many, and one will occur early in the .debug_info section.
1610 So there's no point in building this list incrementally. */
1611
1612static void
1613create_all_comp_units (struct objfile *objfile)
1614{
1615 int n_allocated;
1616 int n_comp_units;
1617 struct dwarf2_per_cu_data **all_comp_units;
1618 char *info_ptr = dwarf2_per_objfile->info_buffer;
1619
1620 n_comp_units = 0;
1621 n_allocated = 10;
1622 all_comp_units = xmalloc (n_allocated
1623 * sizeof (struct dwarf2_per_cu_data *));
1624
1625 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1626 {
1627 struct comp_unit_head cu_header;
1628 char *beg_of_comp_unit;
1629 struct dwarf2_per_cu_data *this_cu;
1630 unsigned long offset;
1631 int bytes_read;
1632
1633 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1634
1635 /* Read just enough information to find out where the next
1636 compilation unit is. */
1637 cu_header.initial_length_size = 0;
1638 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1639 &cu_header, &bytes_read);
1640
1641 /* Save the compilation unit for later lookup. */
1642 this_cu = obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct dwarf2_per_cu_data))); if (__o->chunk_limit
- __o->next_free < __len) _obstack_newchunk (__o, __len
); ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
1643 sizeof (struct dwarf2_per_cu_data))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct dwarf2_per_cu_data))); if (__o->chunk_limit
- __o->next_free < __len) _obstack_newchunk (__o, __len
); ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
;
1644 memset (this_cu, 0, sizeof (*this_cu));
1645 this_cu->offset = offset;
1646 this_cu->length = cu_header.length + cu_header.initial_length_size;
1647
1648 if (n_comp_units == n_allocated)
1649 {
1650 n_allocated *= 2;
1651 all_comp_units = xrealloc (all_comp_units,
1652 n_allocated
1653 * sizeof (struct dwarf2_per_cu_data *));
1654 }
1655 all_comp_units[n_comp_units++] = this_cu;
1656
1657 info_ptr = info_ptr + this_cu->length;
1658 }
1659
1660 dwarf2_per_objfile->all_comp_units
1661 = obstack_alloc (&objfile->objfile_obstack,__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(n_comp_units * sizeof (struct dwarf2_per_cu_data *))); if (__o
->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); })
1662 n_comp_units * sizeof (struct dwarf2_per_cu_data *))__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(n_comp_units * sizeof (struct dwarf2_per_cu_data *))); if (__o
->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); })
;
1663 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1664 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1665 xfree (all_comp_units);
1666 dwarf2_per_objfile->n_comp_units = n_comp_units;
1667}
1668
1669/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1670 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1671 in CU. */
1672
1673static void
1674scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1675 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1676{
1677 struct objfile *objfile = cu->objfile;
1678 bfd *abfd = objfile->obfd;
1679 struct partial_die_info *pdi;
1680
1681 /* Now, march along the PDI's, descending into ones which have
1682 interesting children but skipping the children of the other ones,
1683 until we reach the end of the compilation unit. */
1684
1685 pdi = first_die;
1686
1687 while (pdi != NULL((void*)0))
1688 {
1689 fixup_partial_die (pdi, cu);
1690
1691 /* Anonymous namespaces have no name but have interesting
1692 children, so we need to look at them. Ditto for anonymous
1693 enums. */
1694
1695 if (pdi->name != NULL((void*)0) || pdi->tag == DW_TAG_namespace
1696 || pdi->tag == DW_TAG_enumeration_type)
1697 {
1698 switch (pdi->tag)
1699 {
1700 case DW_TAG_subprogram:
1701 if (pdi->has_pc_info)
1702 {
1703 if (pdi->lowpc < *lowpc)
1704 {
1705 *lowpc = pdi->lowpc;
1706 }
1707 if (pdi->highpc > *highpc)
1708 {
1709 *highpc = pdi->highpc;
1710 }
1711 if (!pdi->is_declaration)
1712 {
1713 add_partial_symbol (pdi, cu);
1714 }
1715 }
1716 break;
1717 case DW_TAG_variable:
1718 case DW_TAG_typedef:
1719 case DW_TAG_union_type:
1720 if (!pdi->is_declaration)
1721 {
1722 add_partial_symbol (pdi, cu);
1723 }
1724 break;
1725 case DW_TAG_class_type:
1726 case DW_TAG_structure_type:
1727 if (!pdi->is_declaration)
1728 {
1729 add_partial_symbol (pdi, cu);
1730 }
1731 break;
1732 case DW_TAG_enumeration_type:
1733 if (!pdi->is_declaration)
1734 add_partial_enumeration (pdi, cu);
1735 break;
1736 case DW_TAG_base_type:
1737 case DW_TAG_subrange_type:
1738 /* File scope base type definitions are added to the partial
1739 symbol table. */
1740 add_partial_symbol (pdi, cu);
1741 break;
1742 case DW_TAG_namespace:
1743 add_partial_namespace (pdi, lowpc, highpc, cu);
1744 break;
1745 default:
1746 break;
1747 }
1748 }
1749
1750 /* If the die has a sibling, skip to the sibling. */
1751
1752 pdi = pdi->die_sibling;
1753 }
1754}
1755
1756/* Functions used to compute the fully scoped name of a partial DIE.
1757
1758 Normally, this is simple. For C++, the parent DIE's fully scoped
1759 name is concatenated with "::" and the partial DIE's name. For
1760 Java, the same thing occurs except that "." is used instead of "::".
1761 Enumerators are an exception; they use the scope of their parent
1762 enumeration type, i.e. the name of the enumeration type is not
1763 prepended to the enumerator.
1764
1765 There are two complexities. One is DW_AT_specification; in this
1766 case "parent" means the parent of the target of the specification,
1767 instead of the direct parent of the DIE. The other is compilers
1768 which do not emit DW_TAG_namespace; in this case we try to guess
1769 the fully qualified name of structure types from their members'
1770 linkage names. This must be done using the DIE's children rather
1771 than the children of any DW_AT_specification target. We only need
1772 to do this for structures at the top level, i.e. if the target of
1773 any DW_AT_specification (if any; otherwise the DIE itself) does not
1774 have a parent. */
1775
1776/* Compute the scope prefix associated with PDI's parent, in
1777 compilation unit CU. The result will be allocated on CU's
1778 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1779 field. NULL is returned if no prefix is necessary. */
1780static char *
1781partial_die_parent_scope (struct partial_die_info *pdi,
1782 struct dwarf2_cu *cu)
1783{
1784 char *grandparent_scope;
1785 struct partial_die_info *parent, *real_pdi;
1786
1787 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1788 then this means the parent of the specification DIE. */
1789
1790 real_pdi = pdi;
1791 while (real_pdi->has_specification)
1792 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1793
1794 parent = real_pdi->die_parent;
1795 if (parent == NULL((void*)0))
1796 return NULL((void*)0);
1797
1798 if (parent->scope_set)
1799 return parent->scope;
1800
1801 fixup_partial_die (parent, cu);
1802
1803 grandparent_scope = partial_die_parent_scope (parent, cu);
1804
1805 if (parent->tag == DW_TAG_namespace
1806 || parent->tag == DW_TAG_structure_type
1807 || parent->tag == DW_TAG_class_type
1808 || parent->tag == DW_TAG_union_type)
1809 {
1810 if (grandparent_scope == NULL((void*)0))
1811 parent->scope = parent->name;
1812 else
1813 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1814 parent->name, cu);
1815 }
1816 else if (parent->tag == DW_TAG_enumeration_type)
1817 /* Enumerators should not get the name of the enumeration as a prefix. */
1818 parent->scope = grandparent_scope;
1819 else
1820 {
1821 /* FIXME drow/2004-04-01: What should we be doing with
1822 function-local names? For partial symbols, we should probably be
1823 ignoring them. */
1824 complaint (&symfile_complaints,
1825 "unhandled containing DIE tag %d for DIE at %d",
1826 parent->tag, pdi->offset);
1827 parent->scope = grandparent_scope;
1828 }
1829
1830 parent->scope_set = 1;
1831 return parent->scope;
1832}
1833
1834/* Return the fully scoped name associated with PDI, from compilation unit
1835 CU. The result will be allocated with malloc. */
1836static char *
1837partial_die_full_name (struct partial_die_info *pdi,
1838 struct dwarf2_cu *cu)
1839{
1840 char *parent_scope;
1841
1842 parent_scope = partial_die_parent_scope (pdi, cu);
1843 if (parent_scope == NULL((void*)0))
1844 return NULL((void*)0);
1845 else
1846 return typename_concat (NULL((void*)0), parent_scope, pdi->name, cu);
1847}
1848
1849static void
1850add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1851{
1852 struct objfile *objfile = cu->objfile;
1853 CORE_ADDR addr = 0;
1854 char *actual_name;
1855 const char *my_prefix;
1856 const struct partial_symbol *psym = NULL((void*)0);
1857 CORE_ADDR baseaddr;
1858 int built_actual_name = 0;
1859
1860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1860, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1860, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 1860, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
1861
1862 actual_name = NULL((void*)0);
1863
1864 if (pdi_needs_namespace (pdi->tag))
1865 {
1866 actual_name = partial_die_full_name (pdi, cu);
1867 if (actual_name)
1868 built_actual_name = 1;
1869 }
1870
1871 if (actual_name == NULL((void*)0))
1872 actual_name = pdi->name;
1873
1874 switch (pdi->tag)
1875 {
1876 case DW_TAG_subprogram:
1877 if (pdi->is_external)
1878 {
1879 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1880 mst_text, objfile); */
1881 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1882 VAR_DOMAIN, LOC_BLOCK,
1883 &objfile->global_psymbols,
1884 0, pdi->lowpc + baseaddr,
1885 cu->language, objfile);
1886 }
1887 else
1888 {
1889 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1890 mst_file_text, objfile); */
1891 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1892 VAR_DOMAIN, LOC_BLOCK,
1893 &objfile->static_psymbols,
1894 0, pdi->lowpc + baseaddr,
1895 cu->language, objfile);
1896 }
1897 break;
1898 case DW_TAG_variable:
1899 if (pdi->is_external)
1900 {
1901 /* Global Variable.
1902 Don't enter into the minimal symbol tables as there is
1903 a minimal symbol table entry from the ELF symbols already.
1904 Enter into partial symbol table if it has a location
1905 descriptor or a type.
1906 If the location descriptor is missing, new_symbol will create
1907 a LOC_UNRESOLVED symbol, the address of the variable will then
1908 be determined from the minimal symbol table whenever the variable
1909 is referenced.
1910 The address for the partial symbol table entry is not
1911 used by GDB, but it comes in handy for debugging partial symbol
1912 table building. */
1913
1914 if (pdi->locdesc)
1915 addr = decode_locdesc (pdi->locdesc, cu);
1916 if (pdi->locdesc || pdi->has_type)
1917 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1918 VAR_DOMAIN, LOC_STATIC,
1919 &objfile->global_psymbols,
1920 0, addr + baseaddr,
1921 cu->language, objfile);
1922 }
1923 else
1924 {
1925 /* Static Variable. Skip symbols without location descriptors. */
1926 if (pdi->locdesc == NULL((void*)0))
1927 return;
1928 addr = decode_locdesc (pdi->locdesc, cu);
1929 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1930 mst_file_data, objfile); */
1931 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1932 VAR_DOMAIN, LOC_STATIC,
1933 &objfile->static_psymbols,
1934 0, addr + baseaddr,
1935 cu->language, objfile);
1936 }
1937 break;
1938 case DW_TAG_typedef:
1939 case DW_TAG_base_type:
1940 case DW_TAG_subrange_type:
1941 add_psymbol_to_list (actual_name, strlen (actual_name),
1942 VAR_DOMAIN, LOC_TYPEDEF,
1943 &objfile->static_psymbols,
1944 0, (CORE_ADDR) 0, cu->language, objfile);
1945 break;
1946 case DW_TAG_namespace:
1947 add_psymbol_to_list (actual_name, strlen (actual_name),
1948 VAR_DOMAIN, LOC_TYPEDEF,
1949 &objfile->global_psymbols,
1950 0, (CORE_ADDR) 0, cu->language, objfile);
1951 break;
1952 case DW_TAG_class_type:
1953 case DW_TAG_structure_type:
1954 case DW_TAG_union_type:
1955 case DW_TAG_enumeration_type:
1956 /* Skip aggregate types without children, these are external
1957 references. */
1958 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1959 static vs. global. */
1960 if (pdi->has_children == 0)
1961 return;
1962 add_psymbol_to_list (actual_name, strlen (actual_name),
1963 STRUCT_DOMAIN, LOC_TYPEDEF,
1964 (cu->language == language_cplus
1965 || cu->language == language_java)
1966 ? &objfile->global_psymbols
1967 : &objfile->static_psymbols,
1968 0, (CORE_ADDR) 0, cu->language, objfile);
1969
1970 if (cu->language == language_cplus
1971 || cu->language == language_java)
1972 {
1973 /* For C++ and Java, these implicitly act as typedefs as well. */
1974 add_psymbol_to_list (actual_name, strlen (actual_name),
1975 VAR_DOMAIN, LOC_TYPEDEF,
1976 &objfile->global_psymbols,
1977 0, (CORE_ADDR) 0, cu->language, objfile);
1978 }
1979 break;
1980 case DW_TAG_enumerator:
1981 add_psymbol_to_list (actual_name, strlen (actual_name),
1982 VAR_DOMAIN, LOC_CONST,
1983 (cu->language == language_cplus
1984 || cu->language == language_java)
1985 ? &objfile->global_psymbols
1986 : &objfile->static_psymbols,
1987 0, (CORE_ADDR) 0, cu->language, objfile);
1988 break;
1989 default:
1990 break;
1991 }
1992
1993 /* Check to see if we should scan the name for possible namespace
1994 info. Only do this if this is C++, if we don't have namespace
1995 debugging info in the file, if the psym is of an appropriate type
1996 (otherwise we'll have psym == NULL), and if we actually had a
1997 mangled name to begin with. */
1998
1999 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2000 cases which do not set PSYM above? */
2001
2002 if (cu->language == language_cplus
2003 && cu->has_namespace_info == 0
2004 && psym != NULL((void*)0)
2005 && SYMBOL_CPLUS_DEMANGLED_NAME (psym)(psym)->ginfo.language_specific.cplus_specific.demangled_name != NULL((void*)0))
2006 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym)(psym)->ginfo.language_specific.cplus_specific.demangled_name,
2007 objfile);
2008
2009 if (built_actual_name)
2010 xfree (actual_name);
2011}
2012
2013/* Determine whether a die of type TAG living in a C++ class or
2014 namespace needs to have the name of the scope prepended to the
2015 name listed in the die. */
2016
2017static int
2018pdi_needs_namespace (enum dwarf_tag tag)
2019{
2020 switch (tag)
2021 {
2022 case DW_TAG_namespace:
2023 case DW_TAG_typedef:
2024 case DW_TAG_class_type:
2025 case DW_TAG_structure_type:
2026 case DW_TAG_union_type:
2027 case DW_TAG_enumeration_type:
2028 case DW_TAG_enumerator:
2029 return 1;
2030 default:
2031 return 0;
2032 }
2033}
2034
2035/* Read a partial die corresponding to a namespace; also, add a symbol
2036 corresponding to that namespace to the symbol table. NAMESPACE is
2037 the name of the enclosing namespace. */
2038
2039static void
2040add_partial_namespace (struct partial_die_info *pdi,
2041 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2042 struct dwarf2_cu *cu)
2043{
2044 struct objfile *objfile = cu->objfile;
2045
2046 /* Add a symbol for the namespace. */
2047
2048 add_partial_symbol (pdi, cu);
2049
2050 /* Now scan partial symbols in that namespace. */
2051
2052 if (pdi->has_children)
2053 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2054}
2055
2056/* See if we can figure out if the class lives in a namespace. We do
2057 this by looking for a member function; its demangled name will
2058 contain namespace info, if there is any. */
2059
2060static void
2061guess_structure_name (struct partial_die_info *struct_pdi,
2062 struct dwarf2_cu *cu)
2063{
2064 if ((cu->language == language_cplus
2065 || cu->language == language_java)
2066 && cu->has_namespace_info == 0
2067 && struct_pdi->has_children)
2068 {
2069 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2070 what template types look like, because the demangler
2071 frequently doesn't give the same name as the debug info. We
2072 could fix this by only using the demangled name to get the
2073 prefix (but see comment in read_structure_type). */
2074
2075 struct partial_die_info *child_pdi = struct_pdi->die_child;
2076 struct partial_die_info *real_pdi;
2077
2078 /* If this DIE (this DIE's specification, if any) has a parent, then
2079 we should not do this. We'll prepend the parent's fully qualified
2080 name when we create the partial symbol. */
2081
2082 real_pdi = struct_pdi;
2083 while (real_pdi->has_specification)
2084 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2085
2086 if (real_pdi->die_parent != NULL((void*)0))
2087 return;
2088
2089 while (child_pdi != NULL((void*)0))
2090 {
2091 if (child_pdi->tag == DW_TAG_subprogram)
2092 {
2093 char *actual_class_name
2094 = language_class_name_from_physname (cu->language_defn,
2095 child_pdi->name);
2096 if (actual_class_name != NULL((void*)0))
2097 {
2098 struct_pdi->name
2099 = obsavestring (actual_class_name,
2100 strlen (actual_class_name),
2101 &cu->comp_unit_obstack);
2102 xfree (actual_class_name);
2103 }
2104 break;
2105 }
2106
2107 child_pdi = child_pdi->die_sibling;
2108 }
2109 }
2110}
2111
2112/* Read a partial die corresponding to an enumeration type. */
2113
2114static void
2115add_partial_enumeration (struct partial_die_info *enum_pdi,
2116 struct dwarf2_cu *cu)
2117{
2118 struct objfile *objfile = cu->objfile;
2119 bfd *abfd = objfile->obfd;
2120 struct partial_die_info *pdi;
2121
2122 if (enum_pdi->name != NULL((void*)0))
2123 add_partial_symbol (enum_pdi, cu);
2124
2125 pdi = enum_pdi->die_child;
2126 while (pdi)
2127 {
2128 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL((void*)0))
2129 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
2130 else
2131 add_partial_symbol (pdi, cu);
2132 pdi = pdi->die_sibling;
2133 }
2134}
2135
2136/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2137 Return the corresponding abbrev, or NULL if the number is zero (indicating
2138 an empty DIE). In either case *BYTES_READ will be set to the length of
2139 the initial number. */
2140
2141static struct abbrev_info *
2142peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2143{
2144 bfd *abfd = cu->objfile->obfd;
2145 unsigned int abbrev_number;
2146 struct abbrev_info *abbrev;
2147
2148 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2149
2150 if (abbrev_number == 0)
2151 return NULL((void*)0);
2152
2153 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2154 if (!abbrev)
2155 {
2156 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
2157 bfd_get_filename (abfd)((char *) (abfd)->filename));
2158 }
2159
2160 return abbrev;
2161}
2162
2163/* Scan the debug information for CU starting at INFO_PTR. Returns a
2164 pointer to the end of a series of DIEs, terminated by an empty
2165 DIE. Any children of the skipped DIEs will also be skipped. */
2166
2167static char *
2168skip_children (char *info_ptr, struct dwarf2_cu *cu)
2169{
2170 struct abbrev_info *abbrev;
2171 unsigned int bytes_read;
2172
2173 while (1)
2174 {
2175 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2176 if (abbrev == NULL((void*)0))
2177 return info_ptr + bytes_read;
2178 else
2179 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2180 }
2181}
2182
2183/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2184 should point just after the initial uleb128 of a DIE, and the
2185 abbrev corresponding to that skipped uleb128 should be passed in
2186 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2187 children. */
2188
2189static char *
2190skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2191 struct dwarf2_cu *cu)
2192{
2193 unsigned int bytes_read;
2194 struct attribute attr;
2195 bfd *abfd = cu->objfile->obfd;
2196 unsigned int form, i;
2197
2198 for (i = 0; i < abbrev->num_attrs; i++)
2199 {
2200 /* The only abbrev we care about is DW_AT_sibling. */
2201 if (abbrev->attrs[i].name == DW_AT_sibling)
2202 {
2203 read_attribute (&attr, &abbrev->attrs[i],
2204 abfd, info_ptr, cu);
2205 if (attr.form == DW_FORM_ref_addr)
2206 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
2207 else
2208 return dwarf2_per_objfile->info_buffer
2209 + dwarf2_get_ref_die_offset (&attr, cu);
2210 }
2211
2212 /* If it isn't DW_AT_sibling, skip this attribute. */
2213 form = abbrev->attrs[i].form;
2214 skip_attribute:
2215 switch (form)
2216 {
2217 case DW_FORM_addr:
2218 case DW_FORM_ref_addr:
2219 info_ptr += cu->header.addr_size;
2220 break;
2221 case DW_FORM_data1:
2222 case DW_FORM_ref1:
2223 case DW_FORM_flag:
2224 info_ptr += 1;
2225 break;
2226 case DW_FORM_data2:
2227 case DW_FORM_ref2:
2228 info_ptr += 2;
2229 break;
2230 case DW_FORM_data4:
2231 case DW_FORM_ref4:
2232 info_ptr += 4;
2233 break;
2234 case DW_FORM_data8:
2235 case DW_FORM_ref8:
2236 info_ptr += 8;
2237 break;
2238 case DW_FORM_string:
2239 read_string (abfd, info_ptr, &bytes_read);
2240 info_ptr += bytes_read;
2241 break;
2242 case DW_FORM_strp:
2243 info_ptr += cu->header.offset_size;
2244 break;
2245 case DW_FORM_block:
2246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2247 info_ptr += bytes_read;
2248 break;
2249 case DW_FORM_block1:
2250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2251 break;
2252 case DW_FORM_block2:
2253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2254 break;
2255 case DW_FORM_block4:
2256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2257 break;
2258 case DW_FORM_sdata:
2259 case DW_FORM_udata:
2260 case DW_FORM_ref_udata:
2261 info_ptr = skip_leb128 (abfd, info_ptr);
2262 break;
2263 case DW_FORM_indirect:
2264 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2265 info_ptr += bytes_read;
2266 /* We need to continue parsing from here, so just go back to
2267 the top. */
2268 goto skip_attribute;
2269
2270 default:
2271 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2272 dwarf_form_name (form),
2273 bfd_get_filename (abfd)((char *) (abfd)->filename));
2274 }
2275 }
2276
2277 if (abbrev->has_children)
2278 return skip_children (info_ptr, cu);
2279 else
2280 return info_ptr;
2281}
2282
2283/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2284 the next DIE after ORIG_PDI. */
2285
2286static char *
2287locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2288 bfd *abfd, struct dwarf2_cu *cu)
2289{
2290 /* Do we know the sibling already? */
2291
2292 if (orig_pdi->sibling)
2293 return orig_pdi->sibling;
2294
2295 /* Are there any children to deal with? */
2296
2297 if (!orig_pdi->has_children)
2298 return info_ptr;
2299
2300 /* Skip the children the long way. */
2301
2302 return skip_children (info_ptr, cu);
2303}
2304
2305/* Expand this partial symbol table into a full symbol table. */
2306
2307static void
2308dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2309{
2310 /* FIXME: This is barely more than a stub. */
2311 if (pst != NULL((void*)0))
2312 {
2313 if (pst->readin)
2314 {
2315 warning ("bug: psymtab for %s is already read in.", pst->filename);
2316 }
2317 else
2318 {
2319 if (info_verbose)
2320 {
2321 printf_filtered ("Reading in symbols for %s...", pst->filename);
2322 gdb_flush (gdb_stdout);
2323 }
2324
2325 /* Restore our global data. */
2326 dwarf2_per_objfile = objfile_data (pst->objfile,
2327 dwarf2_objfile_data_key);
2328
2329 psymtab_to_symtab_1 (pst);
2330
2331 /* Finish up the debug error message. */
2332 if (info_verbose)
2333 printf_filtered ("done.\n");
2334 }
2335 }
2336}
2337
2338/* Add PER_CU to the queue. */
2339
2340static void
2341queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2342{
2343 struct dwarf2_queue_item *item;
2344
2345 per_cu->queued = 1;
2346 item = xmalloc (sizeof (*item));
2347 item->per_cu = per_cu;
2348 item->next = NULL((void*)0);
2349
2350 if (dwarf2_queue == NULL((void*)0))
2351 dwarf2_queue = item;
2352 else
2353 dwarf2_queue_tail->next = item;
2354
2355 dwarf2_queue_tail = item;
2356}
2357
2358/* Process the queue. */
2359
2360static void
2361process_queue (struct objfile *objfile)
2362{
2363 struct dwarf2_queue_item *item, *next_item;
2364
2365 /* Initially, there is just one item on the queue. Load its DIEs,
2366 and the DIEs of any other compilation units it requires,
2367 transitively. */
2368
2369 for (item = dwarf2_queue; item != NULL((void*)0); item = item->next)
2370 {
2371 /* Read in this compilation unit. This may add new items to
2372 the end of the queue. */
2373 load_full_comp_unit (item->per_cu);
2374
2375 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2376 dwarf2_per_objfile->read_in_chain = item->per_cu;
2377
2378 /* If this compilation unit has already had full symbols created,
2379 reset the TYPE fields in each DIE. */
2380 if (item->per_cu->psymtab->readin)
2381 reset_die_and_siblings_types (item->per_cu->cu->dies,
2382 item->per_cu->cu);
2383 }
2384
2385 /* Now everything left on the queue needs to be read in. Process
2386 them, one at a time, removing from the queue as we finish. */
2387 for (item = dwarf2_queue; item != NULL((void*)0); dwarf2_queue = item = next_item)
2388 {
2389 if (!item->per_cu->psymtab->readin)
2390 process_full_comp_unit (item->per_cu);
2391
2392 item->per_cu->queued = 0;
2393 next_item = item->next;
2394 xfree (item);
2395 }
2396
2397 dwarf2_queue_tail = NULL((void*)0);
2398}
2399
2400/* Free all allocated queue entries. This function only releases anything if
2401 an error was thrown; if the queue was processed then it would have been
2402 freed as we went along. */
2403
2404static void
2405dwarf2_release_queue (void *dummy)
2406{
2407 struct dwarf2_queue_item *item, *last;
2408
2409 item = dwarf2_queue;
2410 while (item)
2411 {
2412 /* Anything still marked queued is likely to be in an
2413 inconsistent state, so discard it. */
2414 if (item->per_cu->queued)
2415 {
2416 if (item->per_cu->cu != NULL((void*)0))
2417 free_one_cached_comp_unit (item->per_cu->cu);
2418 item->per_cu->queued = 0;
2419 }
2420
2421 last = item;
2422 item = item->next;
2423 xfree (last);
2424 }
2425
2426 dwarf2_queue = dwarf2_queue_tail = NULL((void*)0);
2427}
2428
2429/* Read in full symbols for PST, and anything it depends on. */
2430
2431static void
2432psymtab_to_symtab_1 (struct partial_symtab *pst)
2433{
2434 struct dwarf2_per_cu_data *per_cu;
2435 struct cleanup *back_to;
2436 int i;
2437
2438 for (i = 0; i < pst->number_of_dependencies; i++)
2439 if (!pst->dependencies[i]->readin)
2440 {
2441 /* Inform about additional files that need to be read in. */
2442 if (info_verbose)
2443 {
2444 fputs_filtered (" ", gdb_stdout);
2445 wrap_here ("");
2446 fputs_filtered ("and ", gdb_stdout);
2447 wrap_here ("");
2448 printf_filtered ("%s...", pst->dependencies[i]->filename);
2449 wrap_here (""); /* Flush output */
2450 gdb_flush (gdb_stdout);
2451 }
2452 psymtab_to_symtab_1 (pst->dependencies[i]);
2453 }
2454
2455 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2456
2457 if (per_cu == NULL((void*)0))
2458 {
2459 /* It's an include file, no symbols to read for it.
2460 Everything is in the parent symtab. */
2461 pst->readin = 1;
2462 return;
2463 }
2464
2465 back_to = make_cleanup (dwarf2_release_queue, NULL((void*)0));
2466
2467 queue_comp_unit (per_cu);
2468
2469 process_queue (pst->objfile);
2470
2471 /* Age the cache, releasing compilation units that have not
2472 been used recently. */
2473 age_cached_comp_units ();
2474
2475 do_cleanups (back_to);
2476}
2477
2478/* Load the DIEs associated with PST and PER_CU into memory. */
2479
2480static struct dwarf2_cu *
2481load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2482{
2483 struct partial_symtab *pst = per_cu->psymtab;
2484 bfd *abfd = pst->objfile->obfd;
2485 struct dwarf2_cu *cu;
2486 unsigned long offset;
2487 char *info_ptr;
2488 struct cleanup *back_to, *free_cu_cleanup;
2489 struct attribute *attr;
2490 CORE_ADDR baseaddr;
2491
2492 /* Set local variables from the partial symbol table info. */
2493 offset = per_cu->offset;
2494
2495 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2496
2497 cu = xmalloc (sizeof (struct dwarf2_cu));
2498 memset (cu, 0, sizeof (struct dwarf2_cu));
2499
2500 /* If an error occurs while loading, release our storage. */
2501 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2502
2503 cu->objfile = pst->objfile;
2504
2505 /* read in the comp_unit header */
2506 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2507
2508 /* Read the abbrevs for this compilation unit */
2509 dwarf2_read_abbrevs (abfd, cu);
2510 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2511
2512 cu->header.offset = offset;
2513
2514 cu->per_cu = per_cu;
2515 per_cu->cu = cu;
2516
2517 /* We use this obstack for block values in dwarf_alloc_block. */
2518 obstack_init (&cu->comp_unit_obstack)_obstack_begin ((&cu->comp_unit_obstack), 0, 0, (void *
(*) (long)) xmalloc, (void (*) (void *)) xfree)
;
2519
2520 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2521
2522 /* We try not to read any attributes in this function, because not
2523 all objfiles needed for references have been loaded yet, and symbol
2524 table processing isn't initialized. But we have to set the CU language,
2525 or we won't be able to build types correctly. */
2526 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2527 if (attr)
2528 set_cu_language (DW_UNSND (attr)((attr)->u.unsnd), cu);
2529 else
2530 set_cu_language (language_minimal, cu);
2531
2532 do_cleanups (back_to);
2533
2534 /* We've successfully allocated this compilation unit. Let our caller
2535 clean it up when finished with it. */
2536 discard_cleanups (free_cu_cleanup);
2537
2538 return cu;
2539}
2540
2541/* Generate full symbol information for PST and CU, whose DIEs have
2542 already been loaded into memory. */
2543
2544static void
2545process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2546{
2547 struct partial_symtab *pst = per_cu->psymtab;
2548 struct dwarf2_cu *cu = per_cu->cu;
2549 struct objfile *objfile = pst->objfile;
2550 bfd *abfd = objfile->obfd;
2551 CORE_ADDR lowpc, highpc;
2552 struct symtab *symtab;
2553 struct cleanup *back_to;
2554 struct attribute *attr;
2555 CORE_ADDR baseaddr;
2556
2557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2557, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2557, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2557, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
2558
2559 /* We're in the global namespace. */
2560 processing_current_prefix = "";
2561
2562 buildsym_init ();
2563 back_to = make_cleanup (really_free_pendings, NULL((void*)0));
2564
2565 cu->list_in_scope = &file_symbols;
2566
2567 /* Find the base address of the compilation unit for range lists and
2568 location lists. It will normally be specified by DW_AT_low_pc.
2569 In DWARF-3 draft 4, the base address could be overridden by
2570 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2571 compilation units with discontinuous ranges. */
2572
2573 cu->header.base_known = 0;
2574 cu->header.base_address = 0;
2575
2576 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2577 if (attr)
2578 {
2579 cu->header.base_address = DW_ADDR (attr)((attr)->u.addr);
2580 cu->header.base_known = 1;
2581 }
2582 else
2583 {
2584 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2585 if (attr)
2586 {
2587 cu->header.base_address = DW_ADDR (attr)((attr)->u.addr);
2588 cu->header.base_known = 1;
2589 }
2590 }
2591
2592 /* Do line number decoding in read_file_scope () */
2593 process_die (cu->dies, cu);
2594
2595 /* Some compilers don't define a DW_AT_high_pc attribute for the
2596 compilation unit. If the DW_AT_high_pc is missing, synthesize
2597 it, by scanning the DIE's below the compilation unit. */
2598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2599
2600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile)((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2600, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)
);
2601
2602 /* Set symtab language to language from DW_AT_language.
2603 If the compilation is from a C file generated by language preprocessors,
2604 do not set the language if it was already deduced by start_subfile. */
2605 if (symtab != NULL((void*)0)
2606 && !(cu->language == language_c && symtab->language != language_c))
2607 {
2608 symtab->language = cu->language;
2609 }
2610 pst->symtab = symtab;
2611 pst->readin = 1;
2612
2613 do_cleanups (back_to);
2614}
2615
2616/* Process a die and its children. */
2617
2618static void
2619process_die (struct die_info *die, struct dwarf2_cu *cu)
2620{
2621 switch (die->tag)
9
Control jumps to 'case DW_TAG_common_block:' at line 2688
2622 {
2623 case DW_TAG_padding:
2624 break;
2625 case DW_TAG_compile_unit:
2626 read_file_scope (die, cu);
2627 break;
2628 case DW_TAG_subprogram:
2629 read_subroutine_type (die, cu);
2630 read_func_scope (die, cu);
2631 break;
2632 case DW_TAG_inlined_subroutine:
2633 /* FIXME: These are ignored for now.
2634 They could be used to set breakpoints on all inlined instances
2635 of a function and make GDB `next' properly over inlined functions. */
2636 break;
2637 case DW_TAG_lexical_block:
2638 case DW_TAG_try_block:
2639 case DW_TAG_catch_block:
2640 read_lexical_block_scope (die, cu);
2641 break;
2642 case DW_TAG_class_type:
2643 case DW_TAG_structure_type:
2644 case DW_TAG_union_type:
2645 read_structure_type (die, cu);
2646 process_structure_scope (die, cu);
2647 break;
2648 case DW_TAG_enumeration_type:
2649 read_enumeration_type (die, cu);
2650 process_enumeration_scope (die, cu);
2651 break;
2652
2653 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2654 a symbol or process any children. Therefore it doesn't do anything
2655 that won't be done on-demand by read_type_die. */
2656 case DW_TAG_subroutine_type:
2657 read_subroutine_type (die, cu);
2658 break;
2659 case DW_TAG_array_type:
2660 read_array_type (die, cu);
2661 break;
2662 case DW_TAG_pointer_type:
2663 read_tag_pointer_type (die, cu);
2664 break;
2665 case DW_TAG_ptr_to_member_type:
2666 read_tag_ptr_to_member_type (die, cu);
2667 break;
2668 case DW_TAG_reference_type:
2669 read_tag_reference_type (die, cu);
2670 break;
2671 case DW_TAG_string_type:
2672 read_tag_string_type (die, cu);
2673 break;
2674 /* END FIXME */
2675
2676 case DW_TAG_base_type:
2677 read_base_type (die, cu);
2678 /* Add a typedef symbol for the type definition, if it has a
2679 DW_AT_name. */
2680 new_symbol (die, die->type, cu);
2681 break;
2682 case DW_TAG_subrange_type:
2683 read_subrange_type (die, cu);
2684 /* Add a typedef symbol for the type definition, if it has a
2685 DW_AT_name. */
2686 new_symbol (die, die->type, cu);
2687 break;
2688 case DW_TAG_common_block:
2689 read_common_block (die, cu);
10
Calling 'read_common_block'
2690 break;
2691 case DW_TAG_common_inclusion:
2692 break;
2693 case DW_TAG_namespace:
2694 processing_has_namespace_info = 1;
2695 read_namespace (die, cu);
2696 break;
2697 case DW_TAG_imported_declaration:
2698 case DW_TAG_imported_module:
2699 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2700 information contained in these. DW_TAG_imported_declaration
2701 dies shouldn't have children; DW_TAG_imported_module dies
2702 shouldn't in the C++ case, but conceivably could in the
2703 Fortran case, so we'll have to replace this gdb_assert if
2704 Fortran compilers start generating that info. */
2705 processing_has_namespace_info = 1;
2706 gdb_assert (die->child == NULL)((void) ((die->child == ((void*)0)) ? 0 : (internal_error (
"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", 2706, "%s: Assertion `%s' failed."
, __PRETTY_FUNCTION__, "die->child == NULL"), 0)))
;
2707 break;
2708 default:
2709 new_symbol (die, NULL((void*)0), cu);
2710 break;
2711 }
2712}
2713
2714static void
2715initialize_cu_func_list (struct dwarf2_cu *cu)
2716{
2717 cu->first_fn = cu->last_fn = cu->cached_fn = NULL((void*)0);
2718}
2719
2720static void
2721read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2722{
2723 struct objfile *objfile = cu->objfile;
2724 struct comp_unit_head *cu_header = &cu->header;
2725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2726 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2727 CORE_ADDR highpc = ((CORE_ADDR) 0);
2728 struct attribute *attr;
2729 char *name = "<unknown>";
2730 char *comp_dir = NULL((void*)0);
2731 struct die_info *child_die;
2732 bfd *abfd = objfile->obfd;
2733 struct line_header *line_header = 0;
2734 CORE_ADDR baseaddr;
2735
2736 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2736, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2736, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2736, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
2737
2738 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2739
2740 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2741 from finish_block. */
2742 if (lowpc == ((CORE_ADDR) -1))
2743 lowpc = highpc;
2744 lowpc += baseaddr;
2745 highpc += baseaddr;
2746
2747 attr = dwarf2_attr (die, DW_AT_name, cu);
2748 if (attr)
2749 {
2750 name = DW_STRING (attr)((attr)->u.str);
2751 }
2752 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2753 if (attr)
2754 {
2755 comp_dir = DW_STRING (attr)((attr)->u.str);
2756 if (comp_dir)
2757 {
2758 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2759 directory, get rid of it. */
2760 char *cp = strchr (comp_dir, ':');
2761
2762 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2763 comp_dir = cp + 1;
2764 }
2765 }
2766
2767 attr = dwarf2_attr (die, DW_AT_language, cu);
2768 if (attr)
2769 {
2770 set_cu_language (DW_UNSND (attr)((attr)->u.unsnd), cu);
2771 }
2772
2773 attr = dwarf2_attr (die, DW_AT_producer, cu);
2774 if (attr)
2775 cu->producer = DW_STRING (attr)((attr)->u.str);
2776
2777 /* We assume that we're processing GCC output. */
2778 processing_gcc_compilation = 2;
2779#if 0
2780 /* FIXME:Do something here. */
2781 if (dip->at_producer != NULL((void*)0))
2782 {
2783 handle_producer (dip->at_producer);
2784 }
2785#endif
2786
2787 /* The compilation unit may be in a different language or objfile,
2788 zero out all remembered fundamental types. */
2789 memset (cu->ftypes, 0, FT_NUM_MEMBERS29 * sizeof (struct type *));
2790
2791 start_symtab (name, comp_dir, lowpc);
2792 record_debugformat ("DWARF 2");
2793
2794 initialize_cu_func_list (cu);
2795
2796 /* Process all dies in compilation unit. */
2797 if (die->child != NULL((void*)0))
2798 {
2799 child_die = die->child;
2800 while (child_die && child_die->tag)
2801 {
2802 process_die (child_die, cu);
2803 child_die = sibling_die (child_die);
2804 }
2805 }
2806
2807 /* Decode line number information if present. */
2808 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2809 if (attr)
2810 {
2811 unsigned int line_offset = DW_UNSND (attr)((attr)->u.unsnd);
2812 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2813 if (line_header)
2814 {
2815 make_cleanup ((make_cleanup_ftype *) free_line_header,
2816 (void *) line_header);
2817 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL((void*)0));
2818 }
2819 }
2820
2821 /* Decode macro information, if present. Dwarf 2 macro information
2822 refers to information in the line number info statement program
2823 header, so we can only read it if we've read the header
2824 successfully. */
2825 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2826 if (attr && line_header)
2827 {
2828 unsigned int macro_offset = DW_UNSND (attr)((attr)->u.unsnd);
2829 dwarf_decode_macros (line_header, macro_offset,
2830 comp_dir, abfd, cu);
2831 }
2832 do_cleanups (back_to);
2833}
2834
2835static void
2836add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2837 struct dwarf2_cu *cu)
2838{
2839 struct function_range *thisfn;
2840
2841 thisfn = (struct function_range *)
2842 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range))__extension__ ({ struct obstack *__h = (&cu->comp_unit_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct function_range))); if (__o->chunk_limit - __o
->next_free < __len) _obstack_newchunk (__o, __len); ((
__o)->next_free += (__len)); (void) 0; }); __extension__ (
{ struct obstack *__o1 = (__h); void *value; value = (void *)
__o1->object_base; if (__o1->next_free == value) __o1->
maybe_empty_object = 1; __o1->next_free = (((((__o1->next_free
) - (char *) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask
)) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk
> __o1->chunk_limit - (char *)__o1->chunk) __o1->
next_free = __o1->chunk_limit; __o1->object_base = __o1
->next_free; value; }); })
;
2843 thisfn->name = name;
2844 thisfn->lowpc = lowpc;
2845 thisfn->highpc = highpc;
2846 thisfn->seen_line = 0;
2847 thisfn->next = NULL((void*)0);
2848
2849 if (cu->last_fn == NULL((void*)0))
2850 cu->first_fn = thisfn;
2851 else
2852 cu->last_fn->next = thisfn;
2853
2854 cu->last_fn = thisfn;
2855}
2856
2857static void
2858read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2859{
2860 struct objfile *objfile = cu->objfile;
2861 struct context_stack *new;
2862 CORE_ADDR lowpc;
2863 CORE_ADDR highpc;
2864 struct die_info *child_die;
2865 struct attribute *attr;
2866 char *name;
2867 const char *previous_prefix = processing_current_prefix;
2868 struct cleanup *back_to = NULL((void*)0);
2869 CORE_ADDR baseaddr;
2870
2871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2871, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2871, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2871, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
2872
2873 name = dwarf2_linkage_name (die, cu);
2874
2875 /* Ignore functions with missing or empty names and functions with
2876 missing or invalid low and high pc attributes. */
2877 if (name == NULL((void*)0) || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2878 return;
2879
2880 if (cu->language == language_cplus
2881 || cu->language == language_java)
2882 {
2883 struct die_info *spec_die = die_specification (die, cu);
2884
2885 /* NOTE: carlton/2004-01-23: We have to be careful in the
2886 presence of DW_AT_specification. For example, with GCC 3.4,
2887 given the code
2888
2889 namespace N {
2890 void foo() {
2891 // Definition of N::foo.
2892 }
2893 }
2894
2895 then we'll have a tree of DIEs like this:
2896
2897 1: DW_TAG_compile_unit
2898 2: DW_TAG_namespace // N
2899 3: DW_TAG_subprogram // declaration of N::foo
2900 4: DW_TAG_subprogram // definition of N::foo
2901 DW_AT_specification // refers to die #3
2902
2903 Thus, when processing die #4, we have to pretend that we're
2904 in the context of its DW_AT_specification, namely the contex
2905 of die #3. */
2906
2907 if (spec_die != NULL((void*)0))
2908 {
2909 char *specification_prefix = determine_prefix (spec_die, cu);
2910 processing_current_prefix = specification_prefix;
2911 back_to = make_cleanup (xfree, specification_prefix);
2912 }
2913 }
2914
2915 lowpc += baseaddr;
2916 highpc += baseaddr;
2917
2918 /* Record the function range for dwarf_decode_lines. */
2919 add_to_cu_func_list (name, lowpc, highpc, cu);
2920
2921 new = push_context (0, lowpc);
2922 new->name = new_symbol (die, die->type, cu);
2923
2924 /* If there is a location expression for DW_AT_frame_base, record
2925 it. */
2926 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2927 if (attr)
2928 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2929 expression is being recorded directly in the function's symbol
2930 and not in a separate frame-base object. I guess this hack is
2931 to avoid adding some sort of frame-base adjunct/annex to the
2932 function's symbol :-(. The problem with doing this is that it
2933 results in a function symbol with a location expression that
2934 has nothing to do with the location of the function, ouch! The
2935 relationship should be: a function's symbol has-a frame base; a
2936 frame-base has-a location expression. */
2937 dwarf2_symbol_mark_computed (attr, new->name, cu);
2938
2939 cu->list_in_scope = &local_symbols;
2940
2941 if (die->child != NULL((void*)0))
2942 {
2943 child_die = die->child;
2944 while (child_die && child_die->tag)
2945 {
2946 process_die (child_die, cu);
2947 child_die = sibling_die (child_die);
2948 }
2949 }
2950
2951 new = pop_context ();
2952 /* Make a block for the local symbols within. */
2953 finish_block (new->name, &local_symbols, new->old_blocks,
2954 lowpc, highpc, objfile);
2955
2956 /* In C++, we can have functions nested inside functions (e.g., when
2957 a function declares a class that has methods). This means that
2958 when we finish processing a function scope, we may need to go
2959 back to building a containing block's symbol lists. */
2960 local_symbols = new->locals;
2961 param_symbols = new->params;
2962
2963 /* If we've finished processing a top-level function, subsequent
2964 symbols go in the file symbol list. */
2965 if (outermost_context_p ()(context_stack_depth == 0))
2966 cu->list_in_scope = &file_symbols;
2967
2968 processing_current_prefix = previous_prefix;
2969 if (back_to != NULL((void*)0))
2970 do_cleanups (back_to);
2971}
2972
2973/* Process all the DIES contained within a lexical block scope. Start
2974 a new scope, process the dies, and then close the scope. */
2975
2976static void
2977read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2978{
2979 struct objfile *objfile = cu->objfile;
2980 struct context_stack *new;
2981 CORE_ADDR lowpc, highpc;
2982 struct die_info *child_die;
2983 CORE_ADDR baseaddr;
2984
2985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile))((((objfile->sect_index_text == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2985, "sect_index_text not initialized"), -1) : objfile->
sect_index_text) == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2985, "Section index is uninitialized"), -1) : objfile->
section_offsets->offsets[((objfile->sect_index_text == -
1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 2985, "sect_index_text not initialized"), -1) : objfile->
sect_index_text)])
;
2986
2987 /* Ignore blocks with missing or invalid low and high pc attributes. */
2988 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2989 as multiple lexical blocks? Handling children in a sane way would
2990 be nasty. Might be easier to properly extend generic blocks to
2991 describe ranges. */
2992 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2993 return;
2994 lowpc += baseaddr;
2995 highpc += baseaddr;
2996
2997 push_context (0, lowpc);
2998 if (die->child != NULL((void*)0))
2999 {
3000 child_die = die->child;
3001 while (child_die && child_die->tag)
3002 {
3003 process_die (child_die, cu);
3004 child_die = sibling_die (child_die);
3005 }
3006 }
3007 new = pop_context ();
3008
3009 if (local_symbols != NULL((void*)0))
3010 {
3011 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3012 highpc, objfile);
3013 }
3014 local_symbols = new->locals;
3015}
3016
3017/* Get low and high pc attributes from a die. Return 1 if the attributes
3018 are present and valid, otherwise, return 0. Return -1 if the range is
3019 discontinuous, i.e. derived from DW_AT_ranges information. */
3020static int
3021dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3022 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3023{
3024 struct objfile *objfile = cu->objfile;
3025 struct comp_unit_head *cu_header = &cu->header;
3026 struct attribute *attr;
3027 bfd *obfd = objfile->obfd;
3028 CORE_ADDR low = 0;
3029 CORE_ADDR high = 0;
3030 int ret = 0;
3031
3032 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3033 if (attr)
3034 {
3035 high = DW_ADDR (attr)((attr)->u.addr);
3036 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3037 if (attr)
3038 low = DW_ADDR (attr)((attr)->u.addr);
3039 else
3040 /* Found high w/o low attribute. */
3041 return 0;
3042
3043 /* Found consecutive range of addresses. */
3044 ret = 1;
3045 }
3046 else
3047 {
3048 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3049 if (attr != NULL((void*)0))
3050 {
3051 unsigned int addr_size = cu_header->addr_size;
3052 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3053 /* Value of the DW_AT_ranges attribute is the offset in the
3054 .debug_ranges section. */
3055 unsigned int offset = DW_UNSND (attr)((attr)->u.unsnd);
3056 /* Base address selection entry. */
3057 CORE_ADDR base;
3058 int found_base;
3059 int dummy;
3060 char *buffer;
3061 CORE_ADDR marker;
3062 int low_set;
3063
3064 found_base = cu_header->base_known;
3065 base = cu_header->base_address;
3066
3067 if (offset >= dwarf2_per_objfile->ranges_size)
3068 {
3069 complaint (&symfile_complaints,
3070 "Offset %d out of bounds for DW_AT_ranges attribute",
3071 offset);
3072 return 0;
3073 }
3074 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3075
3076 /* Read in the largest possible address. */
3077 marker = read_address (obfd, buffer, cu, &dummy);
3078 if ((marker & mask) == mask)
3079 {
3080 /* If we found the largest possible address, then
3081 read the base address. */
3082 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3083 buffer += 2 * addr_size;
3084 offset += 2 * addr_size;
3085 found_base = 1;
3086 }
3087
3088 low_set = 0;
3089
3090 while (1)
3091 {
3092 CORE_ADDR range_beginning, range_end;
3093
3094 range_beginning = read_address (obfd, buffer, cu, &dummy);
3095 buffer += addr_size;
3096 range_end = read_address (obfd, buffer, cu, &dummy);
3097 buffer += addr_size;
3098 offset += 2 * addr_size;
3099
3100 /* An end of list marker is a pair of zero addresses. */
3101 if (range_beginning == 0 && range_end == 0)
3102 /* Found the end of list entry. */
3103 break;
3104
3105 /* Each base address selection entry is a pair of 2 values.
3106 The first is the largest possible address, the second is
3107 the base address. Check for a base address here. */
3108 if ((range_beginning & mask) == mask)
3109 {
3110 /* If we found the largest possible address, then
3111 read the base address. */
3112 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3113 found_base = 1;
3114 continue;
3115 }
3116
3117 if (!found_base)
3118 {
3119 /* We have no valid base address for the ranges
3120 data. */
3121 complaint (&symfile_complaints,
3122 "Invalid .debug_ranges data (no base address)");
3123 return 0;
3124 }
3125
3126 range_beginning += base;
3127 range_end += base;
3128
3129 /* FIXME: This is recording everything as a low-high
3130 segment of consecutive addresses. We should have a
3131 data structure for discontiguous block ranges
3132 instead. */
3133 if (! low_set)
3134 {
3135 low = range_beginning;
3136 high = range_end;
3137 low_set = 1;
3138 }
3139 else
3140 {
3141 if (range_beginning < low)
3142 low = range_beginning;
3143 if (range_end > high)
3144 high = range_end;
3145 }
3146 }
3147
3148 if (! low_set)
3149 /* If the first entry is an end-of-list marker, the range
3150 describes an empty scope, i.e. no instructions. */
3151 return 0;
3152
3153 ret = -1;
3154 }
3155 }
3156
3157 if (high < low)
3158 return 0;
3159
3160 /* When using the GNU linker, .gnu.linkonce. sections are used to
3161 eliminate duplicate copies of functions and vtables and such.
3162 The linker will arbitrarily choose one and discard the others.
3163 The AT_*_pc values for such functions refer to local labels in
3164 these sections. If the section from that file was discarded, the
3165 labels are not in the output, so the relocs get a value of 0.
3166 If this is a discarded function, mark the pc bounds as invalid,
3167 so that GDB will ignore it. */
3168 if (low == 0 && (bfd_get_file_flags (obfd)((obfd)->flags) & HAS_RELOC0x01) == 0)
3169 return 0;
3170
3171 *lowpc = low;
3172 *highpc = high;
3173 return ret;
3174}
3175
3176/* Get the low and high pc's represented by the scope DIE, and store
3177 them in *LOWPC and *HIGHPC. If the correct values can't be
3178 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3179
3180static void
3181get_scope_pc_bounds (struct die_info *die,
3182 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3183 struct dwarf2_cu *cu)
3184{
3185 CORE_ADDR best_low = (CORE_ADDR) -1;
3186 CORE_ADDR best_high = (CORE_ADDR) 0;
3187 CORE_ADDR current_low, current_high;
3188
3189 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3190 {
3191 best_low = current_low;
3192 best_high = current_high;
3193 }
3194 else
3195 {
3196 struct die_info *child = die->child;
3197
3198 while (child && child->tag)
3199 {
3200 switch (child->tag) {
3201 case DW_TAG_subprogram:
3202 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3203 {
3204 best_low = min (best_low, current_low)((best_low) < (current_low) ? (best_low) : (current_low));
3205 best_high = max (best_high, current_high)((best_high) > (current_high) ? (best_high) : (current_high
))
;
3206 }
3207 break;
3208 case DW_TAG_namespace:
3209 /* FIXME: carlton/2004-01-16: Should we do this for
3210 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3211 that current GCC's always emit the DIEs corresponding
3212 to definitions of methods of classes as children of a
3213 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3214 the DIEs giving the declarations, which could be
3215 anywhere). But I don't see any reason why the
3216 standards says that they have to be there. */
3217 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3218
3219 if (current_low != ((CORE_ADDR) -1))
3220 {
3221 best_low = min (best_low, current_low)((best_low) < (current_low) ? (best_low) : (current_low));
3222 best_high = max (best_high, current_high)((best_high) > (current_high) ? (best_high) : (current_high
))
;
3223 }
3224 break;
3225 default:
3226 /* Ignore. */
3227 break;
3228 }
3229
3230 child = sibling_die (child);
3231 }
3232 }
3233
3234 *lowpc = best_low;
3235 *highpc = best_high;
3236}
3237
3238/* Add an aggregate field to the field list. */
3239
3240static void
3241dwarf2_add_field (struct field_info *fip, struct die_info *die,
3242 struct dwarf2_cu *cu)
3243{
3244 struct objfile *objfile = cu->objfile;
3245 struct nextfield *new_field;
3246 struct attribute *attr;
3247 struct field *fp;
3248 char *fieldname = "";
3249
3250 /* Allocate a new field list entry and link it in. */
3251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3252 make_cleanup (xfree, new_field);
3253 memset (new_field, 0, sizeof (struct nextfield));
3254 new_field->next = fip->fields;
3255 fip->fields = new_field;
3256 fip->nfields++;
3257
3258 /* Handle accessibility and virtuality of field.
3259 The default accessibility for members is public, the default
3260 accessibility for inheritance is private. */
3261 if (die->tag != DW_TAG_inheritance)
3262 new_field->accessibility = DW_ACCESS_public;
3263 else
3264 new_field->accessibility = DW_ACCESS_private;
3265 new_field->virtuality = DW_VIRTUALITY_none;
3266
3267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3268 if (attr)
3269 new_field->accessibility = DW_UNSND (attr)((attr)->u.unsnd);
3270 if (new_field->accessibility != DW_ACCESS_public)
3271 fip->non_public_fields = 1;
3272 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3273 if (attr)
3274 new_field->virtuality = DW_UNSND (attr)((attr)->u.unsnd);
3275
3276 fp = &new_field->field;
3277
3278 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3279 {
3280 /* Data member other than a C++ static data member. */
3281
3282 /* Get type of field. */
3283 fp->type = die_type (die, cu);
3284
3285 FIELD_STATIC_KIND (*fp)((*fp).static_kind) = 0;
3286
3287 /* Get bit size of field (zero if none). */
3288 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3289 if (attr)
3290 {
3291 FIELD_BITSIZE (*fp)((*fp).bitsize) = DW_UNSND (attr)((attr)->u.unsnd);
3292 }
3293 else
3294 {
3295 FIELD_BITSIZE (*fp)((*fp).bitsize) = 0;
3296 }
3297
3298 /* Get bit offset of field. */
3299 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3300 if (attr)
3301 {
3302 FIELD_BITPOS (*fp)((*fp).loc.bitpos) =
3303 decode_locdesc (DW_BLOCK (attr)((attr)->u.blk), cu) * bits_per_byte;
3304 }
3305 else
3306 FIELD_BITPOS (*fp)((*fp).loc.bitpos) = 0;
3307 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3308 if (attr)
3309 {
3310 if (BITS_BIG_ENDIAN((gdbarch_byte_order (current_gdbarch)) == BFD_ENDIAN_BIG))
3311 {
3312 /* For big endian bits, the DW_AT_bit_offset gives the
3313 additional bit offset from the MSB of the containing
3314 anonymous object to the MSB of the field. We don't
3315 have to do anything special since we don't need to
3316 know the size of the anonymous object. */
3317 FIELD_BITPOS (*fp)((*fp).loc.bitpos) += DW_UNSND (attr)((attr)->u.unsnd);
3318 }
3319 else
3320 {
3321 /* For little endian bits, compute the bit offset to the
3322 MSB of the anonymous object, subtract off the number of
3323 bits from the MSB of the field to the MSB of the
3324 object, and then subtract off the number of bits of
3325 the field itself. The result is the bit offset of
3326 the LSB of the field. */
3327 int anonymous_size;
3328 int bit_offset = DW_UNSND (attr)((attr)->u.unsnd);
3329
3330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3331 if (attr)
3332 {
3333 /* The size of the anonymous object containing
3334 the bit field is explicit, so use the
3335 indicated size (in bytes). */
3336 anonymous_size = DW_UNSND (attr)((attr)->u.unsnd);
3337 }
3338 else
3339 {
3340 /* The size of the anonymous object containing
3341 the bit field must be inferred from the type
3342 attribute of the data member containing the
3343 bit field. */
3344 anonymous_size = TYPE_LENGTH (fp->type)(fp->type)->length;
3345 }
3346 FIELD_BITPOS (*fp)((*fp).loc.bitpos) += anonymous_size * bits_per_byte
3347 - bit_offset - FIELD_BITSIZE (*fp)((*fp).bitsize);
3348 }
3349 }
3350
3351 /* Get name of field. */
3352 attr = dwarf2_attr (die, DW_AT_name, cu);
3353 if (attr && DW_STRING (attr)((attr)->u.str))
3354 fieldname = DW_STRING (attr)((attr)->u.str);
3355
3356 /* The name is already allocated along with this objfile, so we don't
3357 need to duplicate it for the type. */
3358 fp->name = fieldname;
3359
3360 /* Change accessibility for artificial fields (e.g. virtual table
3361 pointer or virtual base class pointer) to private. */
3362 if (dwarf2_attr (die, DW_AT_artificial, cu))
3363 {
3364 new_field->accessibility = DW_ACCESS_private;
3365 fip->non_public_fields = 1;
3366 }
3367 }
3368 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3369 {
3370 /* C++ static member. */
3371
3372 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3373 is a declaration, but all versions of G++ as of this writing
3374 (so through at least 3.2.1) incorrectly generate
3375 DW_TAG_variable tags. */
3376
3377 char *physname;
3378
3379 /* Get name of field. */
3380 attr = dwarf2_attr (die, DW_AT_name, cu);
3381 if (attr && DW_STRING (attr)((attr)->u.str))
3382 fieldname = DW_STRING (attr)((attr)->u.str);
3383 else
3384 return;
3385
3386 /* Get physical name. */
3387 physname = dwarf2_linkage_name (die, cu);
3388
3389 /* The name is already allocated along with this objfile, so we don't
3390 need to duplicate it for the type. */
3391 SET_FIELD_PHYSNAME (*fp, physname ? physname : "")((*fp).static_kind = 1, ((*fp).loc.physname) = (physname ? physname
: ""))
;
3392 FIELD_TYPE (*fp)((*fp).type) = die_type (die, cu);
3393 FIELD_NAME (*fp)((*fp).name) = fieldname;
3394 }
3395 else if (die->tag == DW_TAG_inheritance)
3396 {
3397 /* C++ base class field. */
3398 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3399 if (attr)
3400 FIELD_BITPOS (*fp)((*fp).loc.bitpos) = (decode_locdesc (DW_BLOCK (attr)((attr)->u.blk), cu)
3401 * bits_per_byte);
3402 FIELD_BITSIZE (*fp)((*fp).bitsize) = 0;
3403 FIELD_STATIC_KIND (*fp)((*fp).static_kind) = 0;
3404 FIELD_TYPE (*fp)((*fp).type) = die_type (die, cu);
3405 FIELD_NAME (*fp)((*fp).name) = type_name_no_tag (fp->type);
3406 fip->nbaseclasses++;
3407 }
3408}
3409
3410/* Create the vector of fields, and attach it to the type. */
3411
3412static void
3413dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3414 struct dwarf2_cu *cu)
3415{
3416 int nfields = fip->nfields;
3417
3418 /* Record the field count, allocate space for the array of fields,
3419 and create blank accessibility bitfields if necessary. */
3420 TYPE_NFIELDS (type)(type)->main_type->nfields = nfields;
3421 TYPE_FIELDS (type)(type)->main_type->fields = (struct field *)
3422 TYPE_ALLOC (type, sizeof (struct field) * nfields)((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((sizeof (struct field) * nfields)); if
(__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(sizeof (struct field) * nfields))
;
3423 memset (TYPE_FIELDS (type)(type)->main_type->fields, 0, sizeof (struct field) * nfields);
3424
3425 if (fip->non_public_fields)
3426 {
3427 ALLOCATE_CPLUS_STRUCT_TYPE (type)allocate_cplus_struct_type (type);
3428
3429 TYPE_FIELD_PRIVATE_BITS (type)(type)->main_type->type_specific.cplus_stuff->private_field_bits =
3430 (B_TYPEunsigned char *) TYPE_ALLOC (type, B_BYTES (nfields))((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((( 1 + ((nfields)>>3) ))); if (__o
->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(( 1 + ((nfields)>>3) )))
;
3431 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields)memset (((type)->main_type->type_specific.cplus_stuff->
private_field_bits), 0, ( 1 + ((nfields)>>3) ))
;
3432
3433 TYPE_FIELD_PROTECTED_BITS (type)(type)->main_type->type_specific.cplus_stuff->protected_field_bits =
3434 (B_TYPEunsigned char *) TYPE_ALLOC (type, B_BYTES (nfields))((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((( 1 + ((nfields)>>3) ))); if (__o
->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(( 1 + ((nfields)>>3) )))
;
3435 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields)memset (((type)->main_type->type_specific.cplus_stuff->
protected_field_bits), 0, ( 1 + ((nfields)>>3) ))
;
3436
3437 TYPE_FIELD_IGNORE_BITS (type)(type)->main_type->type_specific.cplus_stuff->ignore_field_bits =
3438 (B_TYPEunsigned char *) TYPE_ALLOC (type, B_BYTES (nfields))((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((( 1 + ((nfields)>>3) ))); if (__o
->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(( 1 + ((nfields)>>3) )))
;
3439 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields)memset (((type)->main_type->type_specific.cplus_stuff->
ignore_field_bits), 0, ( 1 + ((nfields)>>3) ))
;
3440 }
3441
3442 /* If the type has baseclasses, allocate and clear a bit vector for
3443 TYPE_FIELD_VIRTUAL_BITS. */
3444 if (fip->nbaseclasses)
3445 {
3446 int num_bytes = B_BYTES (fip->nbaseclasses)( 1 + ((fip->nbaseclasses)>>3) );
3447 char *pointer;
3448
3449 ALLOCATE_CPLUS_STRUCT_TYPE (type)allocate_cplus_struct_type (type);
3450 pointer = (char *) TYPE_ALLOC (type, num_bytes)((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((num_bytes)); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); }) : xmalloc (num_bytes
))
;
3451 TYPE_FIELD_VIRTUAL_BITS (type)(type)->main_type->type_specific.cplus_stuff->virtual_field_bits = (B_TYPEunsigned char *) pointer;
3452 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses)memset (((type)->main_type->type_specific.cplus_stuff->
virtual_field_bits), 0, ( 1 + ((fip->nbaseclasses)>>
3) ))
;
3453 TYPE_N_BASECLASSES (type)(type)->main_type->type_specific.cplus_stuff->n_baseclasses = fip->nbaseclasses;
3454 }
3455
3456 /* Copy the saved-up fields into the field vector. Start from the head
3457 of the list, adding to the tail of the field array, so that they end
3458 up in the same order in the array in which they were added to the list. */
3459 while (nfields-- > 0)
3460 {
3461 TYPE_FIELD (type, nfields)(type)->main_type->fields[nfields] = fip->fields->field;
3462 switch (fip->fields->accessibility)
3463 {
3464 case DW_ACCESS_private:
3465 SET_TYPE_FIELD_PRIVATE (type, nfields)(((type)->main_type->type_specific.cplus_stuff->private_field_bits
)[((nfields))>>3] |= (1 << (((nfields))&7)))
;
3466 break;
3467
3468 case DW_ACCESS_protected:
3469 SET_TYPE_FIELD_PROTECTED (type, nfields)(((type)->main_type->type_specific.cplus_stuff->protected_field_bits
)[((nfields))>>3] |= (1 << (((nfields))&7)))
;
3470 break;
3471
3472 case DW_ACCESS_public:
3473 break;
3474
3475 default:
3476 /* Unknown accessibility. Complain and treat it as public. */
3477 {
3478 complaint (&symfile_complaints, "unsupported accessibility %d",
3479 fip->fields->accessibility);
3480 }
3481 break;
3482 }
3483 if (nfields < fip->nbaseclasses)
3484 {
3485 switch (fip->fields->virtuality)
3486 {
3487 case DW_VIRTUALITY_virtual:
3488 case DW_VIRTUALITY_pure_virtual:
3489 SET_TYPE_FIELD_VIRTUAL (type, nfields)(((type)->main_type->type_specific.cplus_stuff->virtual_field_bits
)[((nfields))>>3] |= (1 << (((nfields))&7)))
;
3490 break;
3491 }
3492 }
3493 fip->fields = fip->fields->next;
3494 }
3495}
3496
3497/* Add a member function to the proper fieldlist. */
3498
3499static void
3500dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3501 struct type *type, struct dwarf2_cu *cu)
3502{
3503 struct objfile *objfile = cu->objfile;
3504 struct attribute *attr;
3505 struct fnfieldlist *flp;
3506 int i;
3507 struct fn_field *fnp;
3508 char *fieldname;
3509 char *physname;
3510 struct nextfnfield *new_fnfield;
3511
3512 /* Get name of member function. */
3513 attr = dwarf2_attr (die, DW_AT_name, cu);
3514 if (attr && DW_STRING (attr)((attr)->u.str))
3515 fieldname = DW_STRING (attr)((attr)->u.str);
3516 else
3517 return;
3518
3519 /* Get the mangled name. */
3520 physname = dwarf2_linkage_name (die, cu);
3521
3522 /* Look up member function name in fieldlist. */
3523 for (i = 0; i < fip->nfnfields; i++)
3524 {
3525 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3526 break;
3527 }
3528
3529 /* Create new list element if necessary. */
3530 if (i < fip->nfnfields)
3531 flp = &fip->fnfieldlists[i];
3532 else
3533 {
3534 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK4) == 0)
3535 {
3536 fip->fnfieldlists = (struct fnfieldlist *)
3537 xrealloc (fip->fnfieldlists,
3538 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK4)
3539 * sizeof (struct fnfieldlist));
3540 if (fip->nfnfields == 0)
3541 make_cleanup (free_current_contents, &fip->fnfieldlists);
3542 }
3543 flp = &fip->fnfieldlists[fip->nfnfields];
3544 flp->name = fieldname;
3545 flp->length = 0;
3546 flp->head = NULL((void*)0);
3547 fip->nfnfields++;
3548 }
3549
3550 /* Create a new member function field and chain it to the field list
3551 entry. */
3552 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3553 make_cleanup (xfree, new_fnfield);
3554 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3555 new_fnfield->next = flp->head;
3556 flp->head = new_fnfield;
3557 flp->length++;
3558
3559 /* Fill in the member function field info. */
3560 fnp = &new_fnfield->fnfield;
3561 /* The name is already allocated along with this objfile, so we don't
3562 need to duplicate it for the type. */
3563 fnp->physname = physname ? physname : "";
3564 fnp->type = alloc_type (objfile);
3565 if (die->type && TYPE_CODE (die->type)(die->type)->main_type->code == TYPE_CODE_FUNC)
3566 {
3567 int nparams = TYPE_NFIELDS (die->type)(die->type)->main_type->nfields;
3568
3569 /* TYPE is the domain of this method, and DIE->TYPE is the type
3570 of the method itself (TYPE_CODE_METHOD). */
3571 smash_to_method_type (fnp->type, type,
3572 TYPE_TARGET_TYPE (die->type)(die->type)->main_type->target_type,
3573 TYPE_FIELDS (die->type)(die->type)->main_type->fields,
3574 TYPE_NFIELDS (die->type)(die->type)->main_type->nfields,
3575 TYPE_VARARGS (die->type)((die->type)->main_type->flags & (1 << 11)
)
);
3576
3577 /* Handle static member functions.
3578 Dwarf2 has no clean way to discern C++ static and non-static
3579 member functions. G++ helps GDB by marking the first
3580 parameter for non-static member functions (which is the
3581 this pointer) as artificial. We obtain this information
3582 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3583 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0)(((die->type)->main_type->fields[0]).artificial) == 0)
3584 fnp->voffset = VOFFSET_STATIC1;
3585 }
3586 else
3587 complaint (&symfile_complaints, "member function type missing for '%s'",
3588 physname);
3589
3590 /* Get fcontext from DW_AT_containing_type if present. */
3591 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL((void*)0))
3592 fnp->fcontext = die_containing_type (die, cu);
3593
3594 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3595 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3596
3597 /* Get accessibility. */
3598 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3599 if (attr)
3600 {
3601 switch (DW_UNSND (attr)((attr)->u.unsnd))
3602 {
3603 case DW_ACCESS_private:
3604 fnp->is_private = 1;
3605 break;
3606 case DW_ACCESS_protected:
3607 fnp->is_protected = 1;
3608 break;
3609 }
3610 }
3611
3612 /* Check for artificial methods. */
3613 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3614 if (attr && DW_UNSND (attr)((attr)->u.unsnd) != 0)
3615 fnp->is_artificial = 1;
3616
3617 /* Get index in virtual function table if it is a virtual member function. */
3618 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3619 if (attr)
3620 {
3621 /* Support the .debug_loc offsets */
3622 if (attr_form_is_block (attr))
3623 {
3624 fnp->voffset = decode_locdesc (DW_BLOCK (attr)((attr)->u.blk), cu) + 2;
3625 }
3626 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3627 {
3628 dwarf2_complex_location_expr_complaint ();
3629 }
3630 else
3631 {
3632 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3633 fieldname);
3634 }
3635 }
3636}
3637
3638/* Create the vector of member function fields, and attach it to the type. */
3639
3640static void
3641dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3642 struct dwarf2_cu *cu)
3643{
3644 struct fnfieldlist *flp;
3645 int total_length = 0;
3646 int i;
3647
3648 ALLOCATE_CPLUS_STRUCT_TYPE (type)allocate_cplus_struct_type (type);
3649 TYPE_FN_FIELDLISTS (type)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists = (struct fn_fieldlist *)
3650 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields)((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((sizeof (struct fn_fieldlist) * fip->
nfnfields)); if (__o->chunk_limit - __o->next_free <
__len) _obstack_newchunk (__o, __len); ((__o)->next_free +=
(__len)); (void) 0; }); __extension__ ({ struct obstack *__o1
= (__h); void *value; value = (void *) __o1->object_base;
if (__o1->next_free == value) __o1->maybe_empty_object
= 1; __o1->next_free = (((((__o1->next_free) - (char *
) 0)+__o1->alignment_mask) & ~ (__o1->alignment_mask
)) + (char *) 0); if (__o1->next_free - (char *)__o1->chunk
> __o1->chunk_limit - (char *)__o1->chunk) __o1->
next_free = __o1->chunk_limit; __o1->object_base = __o1
->next_free; value; }); }) : xmalloc (sizeof (struct fn_fieldlist
) * fip->nfnfields))
;
3651
3652 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3653 {
3654 struct nextfnfield *nfp = flp->head;
3655 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists
[i]
;
3656 int k;
3657
3658 TYPE_FN_FIELDLIST_NAME (type, i)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists
[i].name
= flp->name;
3659 TYPE_FN_FIELDLIST_LENGTH (type, i)(type)->main_type->type_specific.cplus_stuff->fn_fieldlists
[i].length
= flp->length;
3660 fn_flp->fn_fields = (struct fn_field *)
3661 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length)((type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(type)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((sizeof (struct fn_field) * flp->length
)); if (__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(sizeof (struct fn_field) * flp->length))
;
3662 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3663 fn_flp->fn_fields[k] = nfp->fnfield;
3664
3665 total_length += flp->length;
3666 }
3667
3668 TYPE_NFN_FIELDS (type)(type)->main_type->type_specific.cplus_stuff->nfn_fields = fip->nfnfields;
3669 TYPE_NFN_FIELDS_TOTAL (type)(type)->main_type->type_specific.cplus_stuff->nfn_fields_total = total_length;
3670}
3671
3672
3673/* Returns non-zero if NAME is the name of a vtable member in CU's
3674 language, zero otherwise. */
3675static int
3676is_vtable_name (const char *name, struct dwarf2_cu *cu)
3677{
3678 static const char vptr[] = "_vptr";
3679 static const char vtable[] = "vtable";
3680
3681 /* Look for the C++ and Java forms of the vtable. */
3682 if ((cu->language == language_java
3683 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3684 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3685 && is_cplus_marker (name[sizeof (vptr) - 1])))
3686 return 1;
3687
3688 return 0;
3689}
3690
3691
3692/* Called when we find the DIE that starts a structure or union scope
3693 (definition) to process all dies that define the members of the
3694 structure or union.
3695
3696 NOTE: we need to call struct_type regardless of whether or not the
3697 DIE has an at_name attribute, since it might be an anonymous
3698 structure or union. This gets the type entered into our set of
3699 user defined types.
3700
3701 However, if the structure is incomplete (an opaque struct/union)
3702 then suppress creating a symbol table entry for it since gdb only
3703 wants to find the one with the complete definition. Note that if
3704 it is complete, we just call new_symbol, which does it's own
3705 checking about whether the struct/union is anonymous or not (and
3706 suppresses creating a symbol table entry itself). */
3707
3708static void
3709read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3710{
3711 struct objfile *objfile = cu->objfile;
3712 struct type *type;
3713 struct attribute *attr;
3714 const char *previous_prefix = processing_current_prefix;
3715 struct cleanup *back_to = NULL((void*)0);
3716
3717 if (die->type)
3718 return;
3719
3720 type = alloc_type (objfile);
3721
3722 INIT_CPLUS_SPECIFIC (type)((type)->main_type->type_specific.cplus_stuff=(struct cplus_struct_type
*)&cplus_struct_default)
;
3723 attr = dwarf2_attr (die, DW_AT_name, cu);
3724 if (attr && DW_STRING (attr)((attr)->u.str))
3725 {
3726 if (cu->language == language_cplus
3727 || cu->language == language_java)
3728 {
3729 char *new_prefix = determine_class_name (die, cu);
3730 TYPE_TAG_NAME (type)(type)->main_type->tag_name = obsavestring (new_prefix,
3731 strlen (new_prefix),
3732 &objfile->objfile_obstack);
3733 back_to = make_cleanup (xfree, new_prefix);
3734 processing_current_prefix = new_prefix;
3735 }
3736 else
3737 {
3738 /* The name is already allocated along with this objfile, so
3739 we don't need to duplicate it for the type. */
3740 TYPE_TAG_NAME (type)(type)->main_type->tag_name = DW_STRING (attr)((attr)->u.str);
3741 }
3742 }
3743
3744 if (die->tag == DW_TAG_structure_type)
3745 {
3746 TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_STRUCT;
3747 }
3748 else if (die->tag == DW_TAG_union_type)
3749 {
3750 TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_UNION;
3751 }
3752 else
3753 {
3754 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3755 in gdbtypes.h. */
3756 TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_CLASSTYPE_CODE_STRUCT;
3757 }
3758
3759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3760 if (attr)
3761 {
3762 TYPE_LENGTH (type)(type)->length = DW_UNSND (attr)((attr)->u.unsnd);
3763 }
3764 else
3765 {
3766 TYPE_LENGTH (type)(type)->length = 0;
3767 }
3768
3769 if (die_is_declaration (die, cu))
3770 TYPE_FLAGS (type)(type)->main_type->flags |= TYPE_FLAG_STUB(1 << 2);
3771
3772 /* We need to add the type field to the die immediately so we don't
3773 infinitely recurse when dealing with pointers to the structure
3774 type within the structure itself. */
3775 set_die_type (die, type, cu);
3776
3777 if (die->child != NULL((void*)0) && ! die_is_declaration (die, cu))
3778 {
3779 struct field_info fi;
3780 struct die_info *child_die;
3781 struct cleanup *back_to = make_cleanup (null_cleanup, NULL((void*)0));
3782
3783 memset (&fi, 0, sizeof (struct field_info));
3784
3785 child_die = die->child;
3786
3787 while (child_die && child_die->tag)
3788 {
3789 if (child_die->tag == DW_TAG_member
3790 || child_die->tag == DW_TAG_variable)
3791 {
3792 /* NOTE: carlton/2002-11-05: A C++ static data member
3793 should be a DW_TAG_member that is a declaration, but
3794 all versions of G++ as of this writing (so through at
3795 least 3.2.1) incorrectly generate DW_TAG_variable
3796 tags for them instead. */
3797 dwarf2_add_field (&fi, child_die, cu);
3798 }
3799 else if (child_die->tag == DW_TAG_subprogram)
3800 {
3801 /* C++ member function. */
3802 read_type_die (child_die, cu);
3803 dwarf2_add_member_fn (&fi, child_die, type, cu);
3804 }
3805 else if (child_die->tag == DW_TAG_inheritance)
3806 {
3807 /* C++ base class field. */
3808 dwarf2_add_field (&fi, child_die, cu);
3809 }
3810 child_die = sibling_die (child_die);
3811 }
3812
3813 /* Attach fields and member functions to the type. */
3814 if (fi.nfields)
3815 dwarf2_attach_fields_to_type (&fi, type, cu);
3816 if (fi.nfnfields)
3817 {
3818 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3819
3820 /* Get the type which refers to the base class (possibly this
3821 class itself) which contains the vtable pointer for the current
3822 class from the DW_AT_containing_type attribute. */
3823
3824 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL((void*)0))
3825 {
3826 struct type *t = die_containing_type (die, cu);
3827
3828 TYPE_VPTR_BASETYPE (type)(type)->main_type->vptr_basetype = t;
3829 if (type == t)
3830 {
3831 int i;
3832
3833 /* Our own class provides vtbl ptr. */
3834 for (i = TYPE_NFIELDS (t)(t)->main_type->nfields - 1;
3835 i >= TYPE_N_BASECLASSES (t)(t)->main_type->type_specific.cplus_stuff->n_baseclasses;
3836 --i)
3837 {
3838 char *fieldname = TYPE_FIELD_NAME (t, i)(((t)->main_type->fields[i]).name);
3839
3840 if (is_vtable_name (fieldname, cu))
3841 {
3842 TYPE_VPTR_FIELDNO (type)(type)->main_type->vptr_fieldno = i;
3843 break;
3844 }
3845 }
3846
3847 /* Complain if virtual function table field not found. */
3848 if (i < TYPE_N_BASECLASSES (t)(t)->main_type->type_specific.cplus_stuff->n_baseclasses)
3849 complaint (&symfile_complaints,
3850 "virtual function table pointer not found when defining class '%s'",
3851 TYPE_TAG_NAME (type)(type)->main_type->tag_name ? TYPE_TAG_NAME (type)(type)->main_type->tag_name :
3852 "");
3853 }
3854 else
3855 {
3856 TYPE_VPTR_FIELDNO (type)(type)->main_type->vptr_fieldno = TYPE_VPTR_FIELDNO (t)(t)->main_type->vptr_fieldno;
3857 }
3858 }
3859 }
3860
3861 do_cleanups (back_to);
3862 }
3863
3864 processing_current_prefix = previous_prefix;
3865 if (back_to != NULL((void*)0))
3866 do_cleanups (back_to);
3867}
3868
3869static void
3870process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3871{
3872 struct objfile *objfile = cu->objfile;
3873 const char *previous_prefix = processing_current_prefix;
3874 struct die_info *child_die = die->child;
3875
3876 if (TYPE_TAG_NAME (die->type)(die->type)->main_type->tag_name != NULL((void*)0))
3877 processing_current_prefix = TYPE_TAG_NAME (die->type)(die->type)->main_type->tag_name;
3878
3879 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3880 snapshots) has been known to create a die giving a declaration
3881 for a class that has, as a child, a die giving a definition for a
3882 nested class. So we have to process our children even if the
3883 current die is a declaration. Normally, of course, a declaration
3884 won't have any children at all. */
3885
3886 while (child_die != NULL((void*)0) && child_die->tag)
3887 {
3888 if (child_die->tag == DW_TAG_member
3889 || child_die->tag == DW_TAG_variable
3890 || child_die->tag == DW_TAG_inheritance)
3891 {
3892 /* Do nothing. */
3893 }
3894 else
3895 process_die (child_die, cu);
3896
3897 child_die = sibling_die (child_die);
3898 }
3899
3900 if (die->child != NULL((void*)0) && ! die_is_declaration (die, cu))
3901 new_symbol (die, die->type, cu);
3902
3903 processing_current_prefix = previous_prefix;
3904}
3905
3906/* Given a DW_AT_enumeration_type die, set its type. We do not
3907 complete the type's fields yet, or create any symbols. */
3908
3909static void
3910read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3911{
3912 struct objfile *objfile = cu->objfile;
3913 struct type *type;
3914 struct attribute *attr;
3915
3916 if (die->type)
3917 return;
3918
3919 type = alloc_type (objfile);
3920
3921 TYPE_CODE (type)(type)->main_type->code = TYPE_CODE_ENUM;
3922 attr = dwarf2_attr (die, DW_AT_name, cu);
3923 if (attr && DW_STRING (attr)((attr)->u.str))
3924 {
3925 char *name = DW_STRING (attr)((attr)->u.str);
3926
3927 if (processing_has_namespace_info)
3928 {
3929 TYPE_TAG_NAME (type)(type)->main_type->tag_name = typename_concat (&objfile->objfile_obstack,
3930 processing_current_prefix,
3931 name, cu);
3932 }
3933 else
3934 {
3935 /* The name is already allocated along with this objfile, so
3936 we don't need to duplicate it for the type. */
3937 TYPE_TAG_NAME (type)(type)->main_type->tag_name = name;
3938 }
3939 }
3940
3941 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3942 if (attr)
3943 {
3944 TYPE_LENGTH (type)(type)->length = DW_UNSND (attr)((attr)->u.unsnd);
3945 }
3946 else
3947 {
3948 TYPE_LENGTH (type)(type)->length = 0;
3949 }
3950
3951 set_die_type (die, type, cu);
3952}
3953
3954/* Determine the name of the type represented by DIE, which should be
3955 a named C++ or Java compound type. Return the name in question; the caller
3956 is responsible for xfree()'ing it. */
3957
3958static char *
3959determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3960{
3961 struct cleanup *back_to = NULL((void*)0);
3962 struct die_info *spec_die = die_specification (die, cu);
3963 char *new_prefix = NULL((void*)0);
3964
3965 /* If this is the definition of a class that is declared by another
3966 die, then processing_current_prefix may not be accurate; see
3967 read_func_scope for a similar example. */
3968 if (spec_die != NULL((void*)0))
3969 {
3970 char *specification_prefix = determine_prefix (spec_die, cu);
3971 processing_current_prefix = specification_prefix;
3972 back_to = make_cleanup (xfree, specification_prefix);
3973 }
3974
3975 /* If we don't have namespace debug info, guess the name by trying
3976 to demangle the names of members, just like we did in
3977 guess_structure_name. */
3978 if (!processing_has_namespace_info)
3979 {
3980 struct die_info *child;
3981
3982 for (child = die->child;
3983 child != NULL((void*)0) && child->tag != 0;
3984 child = sibling_die (child))
3985 {
3986 if (child->tag == DW_TAG_subprogram)
3987 {
3988 new_prefix
3989 = language_class_name_from_physname (cu->language_defn,
3990 dwarf2_linkage_name
3991 (child, cu));
3992
3993 if (new_prefix != NULL((void*)0))
3994 break;
3995 }
3996 }
3997 }
3998
3999 if (new_prefix == NULL((void*)0))
4000 {
4001 const char *name = dwarf2_name (die, cu);
4002 new_prefix = typename_concat (NULL((void*)0), processing_current_prefix,
4003 name ? name : "<<anonymous>>",
4004 cu);
4005 }
4006
4007 if (back_to != NULL((void*)0))
4008 do_cleanups (back_to);
4009
4010 return new_prefix;
4011}
4012
4013/* Given a pointer to a die which begins an enumeration, process all
4014 the dies that define the members of the enumeration, and create the
4015 symbol for the enumeration type.
4016
4017 NOTE: We reverse the order of the element list. */
4018
4019static void
4020process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4021{
4022 struct objfile *objfile = cu->objfile;
4023 struct die_info *child_die;
4024 struct field *fields;
4025 struct attribute *attr;
4026 struct symbol *sym;
4027 int num_fields;
4028 int unsigned_enum = 1;
4029
4030 num_fields = 0;
4031 fields = NULL((void*)0);
4032 if (die->child != NULL((void*)0))
4033 {
4034 child_die = die->child;
4035 while (child_die && child_die->tag)
4036 {
4037 if (child_die->tag != DW_TAG_enumerator)
4038 {
4039 process_die (child_die, cu);
4040 }
4041 else
4042 {
4043 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4044 if (attr)
4045 {
4046 sym = new_symbol (child_die, die->type, cu);
4047 if (SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue < 0)
4048 unsigned_enum = 0;
4049
4050 if ((num_fields % DW_FIELD_ALLOC_CHUNK4) == 0)
4051 {
4052 fields = (struct field *)
4053 xrealloc (fields,
4054 (num_fields + DW_FIELD_ALLOC_CHUNK4)
4055 * sizeof (struct field));
4056 }
4057
4058 FIELD_NAME (fields[num_fields])((fields[num_fields]).name) = DEPRECATED_SYMBOL_NAME (sym)(sym)->ginfo.name;
4059 FIELD_TYPE (fields[num_fields])((fields[num_fields]).type) = NULL((void*)0);
4060 FIELD_BITPOS (fields[num_fields])((fields[num_fields]).loc.bitpos) = SYMBOL_VALUE (sym)(sym)->ginfo.value.ivalue;
4061 FIELD_BITSIZE (fields[num_fields])((fields[num_fields]).bitsize) = 0;
4062 FIELD_STATIC_KIND (fields[num_fields])((fields[num_fields]).static_kind) = 0;
4063
4064 num_fields++;
4065 }
4066 }
4067
4068 child_die = sibling_die (child_die);
4069 }
4070
4071 if (num_fields)
4072 {
4073 TYPE_NFIELDS (die->type)(die->type)->main_type->nfields = num_fields;
4074 TYPE_FIELDS (die->type)(die->type)->main_type->fields = (struct field *)
4075 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields)((die->type)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(die->type)->main_type->
objfile -> objfile_obstack); __extension__ ({ struct obstack
*__o = (__h); int __len = ((sizeof (struct field) * num_fields
)); if (__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(sizeof (struct field) * num_fields))
;
4076 memcpy (TYPE_FIELDS (die->type)(die->type)->main_type->fields, fields,
4077 sizeof (struct field) * num_fields);
4078 xfree (fields);
4079 }
4080 if (unsigned_enum)
4081 TYPE_FLAGS (die->type)(die->type)->main_type->flags |= TYPE_FLAG_UNSIGNED(1 << 0);
4082 }
4083
4084 new_symbol (die, die->type, cu);
4085}
4086
4087/* Extract all information from a DW_TAG_array_type DIE and put it in
4088 the DIE's type field. For now, this only handles one dimensional
4089 arrays. */
4090
4091static void
4092read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4093{
4094 struct objfile *objfile = cu->objfile;
4095 struct die_info *child_die;
4096 struct type *type = NULL((void*)0);
4097 struct type *element_type, *range_type, *index_type;
4098 struct type **range_types = NULL((void*)0);
4099 struct attribute *attr;
4100 int ndim = 0;
4101 struct cleanup *back_to;
4102
4103 /* Return if we've already decoded this type. */
4104 if (die->type)
4105 {
4106 return;
4107 }
4108
4109 element_type = die_type (die, cu);
4110
4111 /* Irix 6.2 native cc creates array types without children for
4112 arrays with unspecified length. */
4113 if (die->child == NULL((void*)0))
4114 {
4115 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER8, cu);
4116 range_type = create_range_type (NULL((void*)0), index_type, 0, -1);
4117 set_die_type (die, create_array_type (NULL((void*)0), element_type, range_type),
4118 cu);
4119 return;
4120 }
4121
4122 back_to = make_cleanup (null_cleanup, NULL((void*)0));
4123 child_die = die->child;
4124 while (child_die && child_die->tag)
4125 {
4126 if (child_die->tag == DW_TAG_subrange_type)
4127 {
4128 read_subrange_type (child_die, cu);
4129
4130 if (child_die->type != NULL((void*)0))
4131 {
4132 /* The range type was succesfully read. Save it for
4133 the array type creation. */
4134 if ((ndim % DW_FIELD_ALLOC_CHUNK4) == 0)
4135 {
4136 range_types = (struct type **)
4137 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK4)
4138 * sizeof (struct type *));
4139 if (ndim == 0)
4140 make_cleanup (free_current_contents, &range_types);
4141 }
4142 range_types[ndim++] = child_die->type;
4143 }
4144 }
4145 child_die = sibling_die (child_die);
4146 }
4147
4148 /* Dwarf2 dimensions are output from left to right, create the
4149 necessary array types in backwards order. */
4150
4151 type = element_type;
4152
4153 if (read_array_order (die, cu) == DW_ORD_col_major)
4154 {
4155 int i = 0;
4156 while (i < ndim)
4157 type = create_array_type (NULL((void*)0), type, range_types[i++]);
4158 }
4159 else
4160 {
4161 while (ndim-- > 0)
4162 type = create_array_type (NULL((void*)0), type, range_types[ndim]);
4163 }
4164
4165 /* Understand Dwarf2 support for vector types (like they occur on
4166 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4167 array type. This is not part of the Dwarf2/3 standard yet, but a
4168 custom vendor extension. The main difference between a regular
4169 array and the vector variant is that vectors are passed by value
4170 to functions. */
4171 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4172 if (attr)
4173 TYPE_FLAGS (type)(type)->main_type->flags |= TYPE_FLAG_VECTOR(1 << 12);
4174
4175 do_cleanups (back_to);
4176
4177 /* Install the type in the die. */
4178 set_die_type (die, type, cu);
4179}
4180
4181static enum dwarf_array_dim_ordering
4182read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4183{
4184 struct attribute *attr;
4185
4186 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4187
4188 if (attr) return DW_SND (attr)((attr)->u.snd);
4189
4190 /*
4191 GNU F77 is a special case, as at 08/2004 array type info is the
4192 opposite order to the dwarf2 specification, but data is still
4193 laid out as per normal fortran.
4194
4195 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4196 version checking.
4197 */
4198
4199 if (cu->language == language_fortran &&
4200 cu->producer && strstr (cu->producer, "GNU F77"))
4201 {
4202 return DW_ORD_row_major;
4203 }
4204
4205 switch (cu->language_defn->la_array_ordering)
4206 {
4207 case array_column_major:
4208 return DW_ORD_col_major;
4209 case array_row_major:
4210 default:
4211 return DW_ORD_row_major;
4212 };
4213}
4214
4215
4216/* First cut: install each common block member as a global variable. */
4217
4218static void
4219read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4220{
4221 struct die_info *child_die;
4222 struct attribute *attr;
4223 struct symbol *sym;
4224 CORE_ADDR base = (CORE_ADDR) 0;
4225
4226 attr = dwarf2_attr (die, DW_AT_location, cu);
4227 if (attr)
11
Assuming 'attr' is non-null
12
Taking true branch
4228 {
4229 /* Support the .debug_loc offsets */
4230 if (attr_form_is_block (attr))
13
Taking true branch
4231 {
4232 base = decode_locdesc (DW_BLOCK (attr)((attr)->u.blk), cu);
14
Calling 'decode_locdesc'
4233 }
4234 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4235 {
4236 dwarf2_complex_location_expr_complaint ();
4237 }
4238 else
4239 {
4240 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4241 "common block member");
4242 }
4243 }
4244 if (die->child != NULL((void*)0))
4245 {
4246 child_die = die->child;
4247 while (child_die && child_die->tag)
4248 {
4249 sym = new_symbol (child_die, NULL((void*)0), cu);
4250 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4251 if (attr)
4252 {
4253 SYMBOL_VALUE_ADDRESS (sym)(sym)->ginfo.value.address =
4254 base + decode_locdesc (DW_BLOCK (attr)((attr)->u.blk), cu);
4255 add_symbol_to_list (sym, &global_symbols);
4256 }
4257 child_die = sibling_die (child_die);
4258 }
4259 }
4260}
4261
4262/* Read a C++ namespace. */
4263
4264static void
4265read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4266{
4267 struct objfile *objfile = cu->objfile;
4268 const char *previous_prefix = processing_current_prefix;
4269 const char *name;
4270 int is_anonymous;
4271 struct die_info *current_die;
4272 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4273
4274 name = namespace_name (die, &is_anonymous, cu);
4275
4276 /* Now build the name of the current namespace. */
4277
4278 if (previous_prefix[0] == '\0')
1
Assuming the condition is true
2
Taking true branch
4279 {
4280 processing_current_prefix = name;
4281 }
4282 else
4283 {
4284 char *temp_name = typename_concat (NULL((void*)0), previous_prefix, name, cu);
4285 make_cleanup (xfree, temp_name);
4286 processing_current_prefix = temp_name;
4287 }
4288
4289 /* Add a symbol associated to this if we haven't seen the namespace
4290 before. Also, add a using directive if it's an anonymous
4291 namespace. */
4292
4293 if (dwarf2_extension (die, cu) == NULL((void*)0))
3
Taking true branch
4294 {
4295 struct type *type;
4296
4297 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4298 this cast will hopefully become unnecessary. */
4299 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4300 (char *) processing_current_prefix,
4301 objfile);
4302 TYPE_TAG_NAME (type)(type)->main_type->tag_name = TYPE_NAME (type)(type)->main_type->name;
4303
4304 new_symbol (die, type, cu);
4305 set_die_type (die, type, cu);
4306
4307 if (is_anonymous
3.1
'is_anonymous' is 0
)
4
Taking false branch
4308 cp_add_using_directive (processing_current_prefix,
4309 strlen (previous_prefix),
4310 strlen (processing_current_prefix));
4311 }
4312
4313 if (die->child != NULL((void*)0))
5
Assuming field 'child' is not equal to NULL
6
Taking true branch
4314 {
4315 struct die_info *child_die = die->child;
4316
4317 while (child_die
6.1
'child_die' is non-null
&& child_die->tag)
7
Loop condition is true. Entering loop body
4318 {
4319 process_die (child_die, cu);
8
Calling 'process_die'
4320 child_die = sibling_die (child_die);
4321 }
4322 }
4323
4324 processing_current_prefix = previous_prefix;
4325 do_cleanups (back_to);
4326}
4327
4328/* Return the name of the namespace represented by DIE. Set
4329 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4330 namespace. */
4331
4332static const char *
4333namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4334{
4335 struct die_info *current_die;
4336 const char *name = NULL((void*)0);
4337
4338 /* Loop through the extensions until we find a name. */
4339
4340 for (current_die = die;
4341 current_die != NULL((void*)0);
4342 current_die = dwarf2_extension (die, cu))
4343 {
4344 name = dwarf2_name (current_die, cu);
4345 if (name != NULL((void*)0))
4346 break;
4347 }
4348
4349 /* Is it an anonymous namespace? */
4350
4351 *is_anonymous = (name == NULL((void*)0));
4352 if (*is_anonymous)
4353 name = "(anonymous namespace)";
4354
4355 return name;
4356}
4357
4358/* Extract all information from a DW_TAG_pointer_type DIE and add to
4359 the user defined type vector. */
4360
4361static void
4362read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4363{
4364 struct comp_unit_head *cu_header = &cu->header;
4365 struct type *type;
4366 struct attribute *attr_byte_size;
4367 struct attribute *attr_address_class;
4368 int byte_size, addr_class;
4369
4370 if (die->type)
4371 {
4372 return;
4373 }
4374
4375 type = lookup_pointer_type (die_type (die, cu));
4376
4377 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4378 if (attr_byte_size)
4379 byte_size = DW_UNSND (attr_byte_size)((attr_byte_size)->u.unsnd);
4380 else
4381 byte_size = cu_header->addr_size;
4382
4383 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4384 if (attr_address_class)
4385 addr_class = DW_UNSND (attr_address_class)((attr_address_class)->u.unsnd);
4386 else
4387 addr_class = DW_ADDR_none0;
4388
4389 /* If the pointer size or address class is different than the
4390 default, create a type variant marked as such and set the
4391 length accordingly. */
4392 if (TYPE_LENGTH (type)(type)->length != byte_size || addr_class != DW_ADDR_none0)
4393 {
4394 if (ADDRESS_CLASS_TYPE_FLAGS_P ()(gdbarch_address_class_type_flags_p (current_gdbarch)))
4395 {
4396 int type_flags;
4397
4398 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class)(gdbarch_address_class_type_flags (current_gdbarch, byte_size
, addr_class))
;
4399 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0)((void) (((type_flags & ~((1 << 13) | (1 << 14
))) == 0) ? 0 : (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 4399, "%s: Assertion `%s' failed.", __PRETTY_FUNCTION__, "(type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0"
), 0)))
;
4400 type = make_type_with_address_space (type, type_flags);
4401 }
4402 else if (TYPE_LENGTH (type)(type)->length != byte_size)
4403 {
4404 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
4405 }
4406 else {
4407 /* Should we also complain about unhandled address classes? */
4408 }
4409 }
4410
4411 TYPE_LENGTH (type)(type)->length = byte_size;
4412 set_die_type (die, type, cu);
4413}
4414
4415/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4416 the user defined type vector. */
4417
4418static void
4419read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4420{
4421 struct objfile *objfile = cu->objfile;
4422 struct type *type;
4423 struct type *to_type;
4424 struct type *domain;
4425
4426 if (die->type)
4427 {
4428 return;
4429 }
4430
4431 type = alloc_type (objfile);
4432 to_type = die_type (die, cu);
4433 domain = die_containing_type (die, cu);
4434 smash_to_member_type (type, domain, to_type);
4435
4436 set_die_type (die, type, cu);
4437}
4438
4439/* Extract all information from a DW_TAG_reference_type DIE and add to
4440 the user defined type vector. */
4441
4442static void
4443read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4444{
4445 struct comp_unit_head *cu_header = &cu->header;
4446 struct type *type;
4447 struct attribute *attr;
4448
4449 if (die->type)
4450 {
4451 return;
4452 }
4453
4454 type = lookup_reference_type (die_type (die, cu));
4455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4456 if (attr)
4457 {
4458 TYPE_LENGTH (type)(type)->length = DW_UNSND (attr)((attr)->u.unsnd);
4459 }
4460 else
4461 {
4462 TYPE_LENGTH (type)(type)->length = cu_header->addr_size;
4463 }
4464 set_die_type (die, type, cu);
4465}
4466
4467static void
4468read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4469{
4470 struct type *base_type;
4471
4472 if (die->type)
4473 {
4474 return;
4475 }
4476
4477 base_type = die_type (die, cu);
4478 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type)((base_type)->instance_flags & (1 << 6)), base_type, 0),
4479 cu);
4480}
4481
4482static void
4483read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4484{
4485 struct type *base_type;
4486
4487 if (die->type)
4488 {
4489 return;
4490 }
4491
4492 base_type = die_type (die, cu);
4493 set_die_type (die, make_cv_type (TYPE_CONST (base_type)((base_type)->instance_flags & (1 << 5)), 1, base_type, 0),
4494 cu);
4495}
4496
4497/* Extract all information from a DW_TAG_string_type DIE and add to
4498 the user defined type vector. It isn't really a user defined type,
4499 but it behaves like one, with other DIE's using an AT_user_def_type
4500 attribute to reference it. */
4501
4502static void
4503read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4504{
4505 struct objfile *objfile = cu->objfile;
4506 struct type *type, *range_type, *index_type, *char_type;
4507 struct attribute *attr;
4508 unsigned int length;
4509
4510 if (die->type)
4511 {
4512 return;
4513 }
4514
4515 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4516 if (attr)
4517 {
4518 length = DW_UNSND (attr)((attr)->u.unsnd);
4519 }
4520 else
4521 {
4522 /* check for the DW_AT_byte_size attribute */
4523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4524 if (attr)
4525 {
4526 length = DW_UNSND (attr)((attr)->u.unsnd);
4527 }
4528 else
4529 {
4530 length = 1;
4531 }
4532 }
4533 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER8, cu);
4534 range_type = create_range_type (NULL((void*)0), index_type, 1, length);
4535 if (cu->language == language_fortran)
4536 {
4537 /* Need to create a unique string type for bounds
4538 information */
4539 type = create_string_type (0, range_type);
4540 }
4541 else
4542 {
4543 char_type = dwarf2_fundamental_type (objfile, FT_CHAR2, cu);
4544 type = create_string_type (char_type, range_type);
4545 }
4546 set_die_type (die, type, cu);
4547}
4548
4549/* Handle DIES due to C code like:
4550
4551 struct foo
4552 {
4553 int (*funcp)(int a, long l);
4554 int b;
4555 };
4556
4557 ('funcp' generates a DW_TAG_subroutine_type DIE)
4558 */
4559
4560static void
4561read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4562{
4563 struct type *type; /* Type that this function returns */
4564 struct type *ftype; /* Function that returns above type */
4565 struct attribute *attr;
4566
4567 /* Decode the type that this subroutine returns */
4568 if (die->type)
4569 {
4570 return;
4571 }
4572 type = die_type (die, cu);
4573 ftype = make_function_type (type, (struct type **) 0);
4574
4575 /* All functions in C++ and Java have prototypes. */
4576 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4577 if ((attr && (DW_UNSND (attr)((attr)->u.unsnd) != 0))
4578 || cu->language == language_cplus
4579 || cu->language == language_java)
4580 TYPE_FLAGS (ftype)(ftype)->main_type->flags |= TYPE_FLAG_PROTOTYPED(1 << 7);
4581
4582 if (die->child != NULL((void*)0))
4583 {
4584 struct die_info *child_die;
4585 int nparams = 0;
4586 int iparams = 0;
4587
4588 /* Count the number of parameters.
4589 FIXME: GDB currently ignores vararg functions, but knows about
4590 vararg member functions. */
4591 child_die = die->child;
4592 while (child_die && child_die->tag)
4593 {
4594 if (child_die->tag == DW_TAG_formal_parameter)
4595 nparams++;
4596 else if (child_die->tag == DW_TAG_unspecified_parameters)
4597 TYPE_FLAGS (ftype)(ftype)->main_type->flags |= TYPE_FLAG_VARARGS(1 << 11);
4598 child_die = sibling_die (child_die);
4599 }
4600
4601 /* Allocate storage for parameters and fill them in. */
4602 TYPE_NFIELDS (ftype)(ftype)->main_type->nfields = nparams;
4603 TYPE_FIELDS (ftype)(ftype)->main_type->fields = (struct field *)
4604 TYPE_ALLOC (ftype, nparams * sizeof (struct field))((ftype)->main_type->objfile != ((void*)0) ? __extension__
({ struct obstack *__h = (&(ftype)->main_type->objfile
-> objfile_obstack); __extension__ ({ struct obstack *__o
= (__h); int __len = ((nparams * sizeof (struct field))); if
(__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); }) : xmalloc
(nparams * sizeof (struct field)))
;
4605
4606 child_die = die->child;
4607 while (child_die && child_die->tag)
4608 {
4609 if (child_die->tag == DW_TAG_formal_parameter)
4610 {
4611 /* Dwarf2 has no clean way to discern C++ static and non-static
4612 member functions. G++ helps GDB by marking the first
4613 parameter for non-static member functions (which is the
4614 this pointer) as artificial. We pass this information
4615 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4616 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4617 if (attr)
4618 TYPE_FIELD_ARTIFICIAL (ftype, iparams)(((ftype)->main_type->fields[iparams]).artificial) = DW_UNSND (attr)((attr)->u.unsnd);
4619 else
4620 TYPE_FIELD_ARTIFICIAL (ftype, iparams)(((ftype)->main_type->fields[iparams]).artificial) = 0;
4621 TYPE_FIELD_TYPE (ftype, iparams)(((ftype)->main_type->fields[iparams]).type) = die_type (child_die, cu);
4622 iparams++;
4623 }
4624 child_die = sibling_die (child_die);
4625 }
4626 }
4627
4628 set_die_type (die, ftype, cu);
4629}
4630
4631static void
4632read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4633{
4634 struct objfile *objfile = cu->objfile;
4635 struct attribute *attr;
4636 char *name = NULL((void*)0);
4637
4638 if (!die->type)
4639 {
4640 attr = dwarf2_attr (die, DW_AT_name, cu);
4641 if (attr && DW_STRING (attr)((attr)->u.str))
4642 {
4643 name = DW_STRING (attr)((attr)->u.str);
4644 }
4645 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4646 TYPE_FLAG_TARGET_STUB(1 << 3), name, objfile),
4647 cu);
4648 TYPE_TARGET_TYPE (die->type)(die->type)->main_type->target_type = die_type (die, cu);
4649 }
4650}
4651
4652/* Find a representation of a given base type and install
4653 it in the TYPE field of the die. */
4654
4655static void
4656read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4657{
4658 struct objfile *objfile = cu->objfile;
4659 struct type *type;
4660 struct attribute *attr;
4661 int encoding = 0, size = 0;
4662
4663 /* If we've already decoded this die, this is a no-op. */
4664 if (die->type)
4665 {
4666 return;
4667 }
4668
4669 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4670 if (attr)
4671 {
4672 encoding = DW_UNSND (attr)((attr)->u.unsnd);
4673 }
4674 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4675 if (attr)
4676 {
4677 size = DW_UNSND (attr)((attr)->u.unsnd);
4678 }
4679 attr = dwarf2_attr (die, DW_AT_name, cu);
4680 if (attr && DW_STRING (attr)((attr)->u.str))
4681 {
4682 enum type_code code = TYPE_CODE_INT;
4683 int type_flags = 0;
4684
4685 switch (encoding)
4686 {
4687 case DW_ATE_address:
4688 /* Turn DW_ATE_address into a void * pointer. */
4689 code = TYPE_CODE_PTR;
4690 type_flags |= TYPE_FLAG_UNSIGNED(1 << 0);
4691 break;
4692 case DW_ATE_boolean:
4693 code = TYPE_CODE_BOOL;
4694 type_flags |= TYPE_FLAG_UNSIGNED(1 << 0);
4695 break;
4696 case DW_ATE_complex_float:
4697 code = TYPE_CODE_COMPLEX;
4698 break;
4699 case DW_ATE_float:
4700 code = TYPE_CODE_FLT;
4701 break;
4702 case DW_ATE_signed:
4703 case DW_ATE_signed_char:
4704 break;
4705 case DW_ATE_unsigned:
4706 case DW_ATE_unsigned_char:
4707 type_flags |= TYPE_FLAG_UNSIGNED(1 << 0);
4708 break;
4709 default:
4710 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4711 dwarf_type_encoding_name (encoding));
4712 break;
4713 }
4714 type = init_type (code, size, type_flags, DW_STRING (attr)((attr)->u.str), objfile);
4715 if (encoding == DW_ATE_address)
4716 TYPE_TARGET_TYPE (type)(type)->main_type->target_type = dwarf2_fundamental_type (objfile, FT_VOID0,
4717 cu);
4718 else if (encoding == DW_ATE_complex_float)
4719 {
4720 if (size == 32)
4721 TYPE_TARGET_TYPE (type)(type)->main_type->target_type
4722 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT19, cu);
4723 else if (size == 16)
4724 TYPE_TARGET_TYPE (type)(type)->main_type->target_type
4725 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT18, cu);
4726 else if (size == 8)
4727 TYPE_TARGET_TYPE (type)(type)->main_type->target_type
4728 = dwarf2_fundamental_type (objfile, FT_FLOAT17, cu);
4729 }
4730 }
4731 else
4732 {
4733 type = dwarf_base_type (encoding, size, cu);
4734 }
4735 set_die_type (die, type, cu);
4736}
4737
4738/* Read the given DW_AT_subrange DIE. */
4739
4740static void
4741read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4742{
4743 struct type *base_type;
4744 struct type *range_type;
4745 struct attribute *attr;
4746 int low = 0;
4747 int high = -1;
4748
4749 /* If we have already decoded this die, then nothing more to do. */
4750 if (die->type)
4751 return;
4752
4753 base_type = die_type (die, cu);
4754 if (base_type == NULL((void*)0))
4755 {
4756 complaint (&symfile_complaints,
4757 "DW_AT_type missing from DW_TAG_subrange_type");
4758 return;
4759 }
4760
4761 if (TYPE_CODE (base_type)(base_type)->main_type->code == TYPE_CODE_VOID)
4762 base_type = alloc_type (NULL((void*)0));
4763
4764 if (cu->language == language_fortran)
4765 {
4766 /* FORTRAN implies a lower bound of 1, if not given. */
4767 low = 1;
4768 }
4769
4770 /* FIXME: For variable sized arrays either of these could be
4771 a variable rather than a constant value. We'll allow it,
4772 but we don't know how to handle it. */
4773 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4774 if (attr)
4775 low = dwarf2_get_attr_constant_value (attr, 0);
4776
4777 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4778 if (attr)
4779 {
4780 if (attr->form == DW_FORM_block1)
4781 {
4782 /* GCC encodes arrays with unspecified or dynamic length
4783 with a DW_FORM_block1 attribute.
4784 FIXME: GDB does not yet know how to handle dynamic
4785 arrays properly, treat them as arrays with unspecified
4786 length for now.
4787
4788 FIXME: jimb/2003-09-22: GDB does not really know
4789 how to handle arrays of unspecified length
4790 either; we just represent them as zero-length
4791 arrays. Choose an appropriate upper bound given
4792 the lower bound we've computed above. */
4793 high = low - 1;
4794 }
4795 else
4796 high = dwarf2_get_attr_constant_value (attr, 1);
4797 }
4798
4799 range_type = create_range_type (NULL((void*)0), base_type, low, high);
4800
4801 attr = dwarf2_attr (die, DW_AT_name, cu);
4802 if (attr && DW_STRING (attr)((attr)->u.str))
4803 TYPE_NAME (range_type)(range_type)->main_type->name = DW_STRING (attr)((attr)->u.str);
4804
4805 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4806 if (attr)
4807 TYPE_LENGTH (range_type)(range_type)->length = DW_UNSND (attr)((attr)->u.unsnd);
4808
4809 set_die_type (die, range_type, cu);
4810}
4811
4812
4813/* Read a whole compilation unit into a linked list of dies. */
4814
4815static struct die_info *
4816read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4817{
4818 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL((void*)0));
4819}
4820
4821/* Read a single die and all its descendents. Set the die's sibling
4822 field to NULL; set other fields in the die correctly, and set all
4823 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4824 location of the info_ptr after reading all of those dies. PARENT
4825 is the parent of the die in question. */
4826
4827static struct die_info *
4828read_die_and_children (char *info_ptr, bfd *abfd,
4829 struct dwarf2_cu *cu,
4830 char **new_info_ptr,
4831 struct die_info *parent)
4832{
4833 struct die_info *die;
4834 char *cur_ptr;
4835 int has_children;
4836
4837 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4838 store_in_ref_table (die->offset, die, cu);
4839
4840 if (has_children)
4841 {
4842 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4843 new_info_ptr, die);
4844 }
4845 else
4846 {
4847 die->child = NULL((void*)0);
4848 *new_info_ptr = cur_ptr;
4849 }
4850
4851 die->sibling = NULL((void*)0);
4852 die->parent = parent;
4853 return die;
4854}
4855
4856/* Read a die, all of its descendents, and all of its siblings; set
4857 all of the fields of all of the dies correctly. Arguments are as
4858 in read_die_and_children. */
4859
4860static struct die_info *
4861read_die_and_siblings (char *info_ptr, bfd *abfd,
4862 struct dwarf2_cu *cu,
4863 char **new_info_ptr,
4864 struct die_info *parent)
4865{
4866 struct die_info *first_die, *last_sibling;
4867 char *cur_ptr;
4868
4869 cur_ptr = info_ptr;
4870 first_die = last_sibling = NULL((void*)0);
4871
4872 while (1)
4873 {
4874 struct die_info *die
4875 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4876
4877 if (!first_die)
4878 {
4879 first_die = die;
4880 }
4881 else
4882 {
4883 last_sibling->sibling = die;
4884 }
4885
4886 if (die->tag == 0)
4887 {
4888 *new_info_ptr = cur_ptr;
4889 return first_die;
4890 }
4891 else
4892 {
4893 last_sibling = die;
4894 }
4895 }
4896}
4897
4898/* Free a linked list of dies. */
4899
4900static void
4901free_die_list (struct die_info *dies)
4902{
4903 struct die_info *die, *next;
4904
4905 die = dies;
4906 while (die)
4907 {
4908 if (die->child != NULL((void*)0))
4909 free_die_list (die->child);
4910 next = die->sibling;
4911 xfree (die->attrs);
4912 xfree (die);
4913 die = next;
4914 }
4915}
4916
4917/* Read the contents of the section at OFFSET and of size SIZE from the
4918 object file specified by OBJFILE into the objfile_obstack and return it. */
4919
4920char *
4921dwarf2_read_section (struct objfile *objfile, asection *sectp)
4922{
4923 bfd *abfd = objfile->obfd;
4924 char *buf, *retbuf;
4925 bfd_size_type size = bfd_get_section_size (sectp)((sectp)->_raw_size);
4926
4927 if (size == 0)
4928 return NULL((void*)0);
4929
4930 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size)__extension__ ({ struct obstack *__h = (&objfile->objfile_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(size)); if (__o->chunk_limit - __o->next_free < __len
) _obstack_newchunk (__o, __len); ((__o)->next_free += (__len
)); (void) 0; }); __extension__ ({ struct obstack *__o1 = (__h
); void *value; value = (void *) __o1->object_base; if (__o1
->next_free == value) __o1->maybe_empty_object = 1; __o1
->next_free = (((((__o1->next_free) - (char *) 0)+__o1->
alignment_mask) & ~ (__o1->alignment_mask)) + (char *)
0); if (__o1->next_free - (char *)__o1->chunk > __o1
->chunk_limit - (char *)__o1->chunk) __o1->next_free
= __o1->chunk_limit; __o1->object_base = __o1->next_free
; value; }); })
;
4931 retbuf
4932 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4933 if (retbuf != NULL((void*)0))
4934 return retbuf;
4935
4936 if (bfd_seek (abfd, sectp->filepos, SEEK_SET0) != 0
4937 || bfd_bread (buf, size, abfd) != size)
4938 error ("Dwarf Error: Can't read DWARF data from '%s'",
4939 bfd_get_filename (abfd)((char *) (abfd)->filename));
4940
4941 return buf;
4942}
4943
4944/* In DWARF version 2, the description of the debugging information is
4945 stored in a separate .debug_abbrev section. Before we read any
4946 dies from a section we read in all abbreviations and install them
4947 in a hash table. This function also sets flags in CU describing
4948 the data found in the abbrev table. */
4949
4950static void
4951dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4952{
4953 struct comp_unit_head *cu_header = &cu->header;
4954 char *abbrev_ptr;
4955 struct abbrev_info *cur_abbrev;
4956 unsigned int abbrev_number, bytes_read, abbrev_name;
4957 unsigned int abbrev_form, hash_number;
4958 struct attr_abbrev *cur_attrs;
4959 unsigned int allocated_attrs;
4960
4961 /* Initialize dwarf2 abbrevs */
4962 obstack_init (&cu->abbrev_obstack)_obstack_begin ((&cu->abbrev_obstack), 0, 0, (void *(*
) (long)) xmalloc, (void (*) (void *)) xfree)
;
4963 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((121 * sizeof (struct abbrev_info *)))); if (__o->chunk_limit
- __o->next_free < __len) _obstack_newchunk (__o, __len
); ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
4964 (ABBREV_HASH_SIZE__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((121 * sizeof (struct abbrev_info *)))); if (__o->chunk_limit
- __o->next_free < __len) _obstack_newchunk (__o, __len
); ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
4965 * sizeof (struct abbrev_info *)))__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((121 * sizeof (struct abbrev_info *)))); if (__o->chunk_limit
- __o->next_free < __len) _obstack_newchunk (__o, __len
); ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
;
4966 memset (cu->dwarf2_abbrevs, 0,
4967 ABBREV_HASH_SIZE121 * sizeof (struct abbrev_info *));
4968
4969 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4970 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4971 abbrev_ptr += bytes_read;
4972
4973 allocated_attrs = ATTR_ALLOC_CHUNK4;
4974 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4975
4976 /* loop until we reach an abbrev number of 0 */
4977 while (abbrev_number)
4978 {
4979 cur_abbrev = dwarf_alloc_abbrev (cu);
4980
4981 /* read in abbrev header */
4982 cur_abbrev->number = abbrev_number;
4983 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4984 abbrev_ptr += bytes_read;
4985 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4986 abbrev_ptr += 1;
4987
4988 if (cur_abbrev->tag == DW_TAG_namespace)
4989 cu->has_namespace_info = 1;
4990
4991 /* now read in declarations */
4992 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4993 abbrev_ptr += bytes_read;
4994 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4995 abbrev_ptr += bytes_read;
4996 while (abbrev_name)
4997 {
4998 if (cur_abbrev->num_attrs == allocated_attrs)
4999 {
5000 allocated_attrs += ATTR_ALLOC_CHUNK4;
5001 cur_attrs
5002 = xrealloc (cur_attrs, (allocated_attrs
5003 * sizeof (struct attr_abbrev)));
5004 }
5005
5006 /* Record whether this compilation unit might have
5007 inter-compilation-unit references. If we don't know what form
5008 this attribute will have, then it might potentially be a
5009 DW_FORM_ref_addr, so we conservatively expect inter-CU
5010 references. */
5011
5012 if (abbrev_form == DW_FORM_ref_addr
5013 || abbrev_form == DW_FORM_indirect)
5014 cu->has_form_ref_addr = 1;
5015
5016 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5017 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5018 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5019 abbrev_ptr += bytes_read;
5020 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5021 abbrev_ptr += bytes_read;
5022 }
5023
5024 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((cur_abbrev->num_attrs * sizeof (struct attr_abbrev)))); if
(__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); })
5025 (cur_abbrev->num_attrs__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((cur_abbrev->num_attrs * sizeof (struct attr_abbrev)))); if
(__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); })
5026 * sizeof (struct attr_abbrev)))__extension__ ({ struct obstack *__h = (&cu->abbrev_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
((cur_abbrev->num_attrs * sizeof (struct attr_abbrev)))); if
(__o->chunk_limit - __o->next_free < __len) _obstack_newchunk
(__o, __len); ((__o)->next_free += (__len)); (void) 0; })
; __extension__ ({ struct obstack *__o1 = (__h); void *value;
value = (void *) __o1->object_base; if (__o1->next_free
== value) __o1->maybe_empty_object = 1; __o1->next_free
= (((((__o1->next_free) - (char *) 0)+__o1->alignment_mask
) & ~ (__o1->alignment_mask)) + (char *) 0); if (__o1->
next_free - (char *)__o1->chunk > __o1->chunk_limit -
(char *)__o1->chunk) __o1->next_free = __o1->chunk_limit
; __o1->object_base = __o1->next_free; value; }); })
;
5027 memcpy (cur_abbrev->attrs, cur_attrs,
5028 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5029
5030 hash_number = abbrev_number % ABBREV_HASH_SIZE121;
5031 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5032 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5033
5034 /* Get next abbreviation.
5035 Under Irix6 the abbreviations for a compilation unit are not
5036 always properly terminated with an abbrev number of 0.
5037 Exit loop if we encounter an abbreviation which we have
5038 already read (which means we are about to read the abbreviations
5039 for the next compile unit) or if the end of the abbreviation
5040 table is reached. */
5041 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5042 >= dwarf2_per_objfile->abbrev_size)
5043 break;
5044 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5045 abbrev_ptr += bytes_read;
5046 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL((void*)0))
5047 break;
5048 }
5049
5050 xfree (cur_attrs);
5051}
5052
5053/* Release the memory used by the abbrev table for a compilation unit. */
5054
5055static void
5056dwarf2_free_abbrev_table (void *ptr_to_cu)
5057{
5058 struct dwarf2_cu *cu = ptr_to_cu;
5059
5060 obstack_free (&cu->abbrev_obstack, NULL)__extension__ ({ struct obstack *__o = (&cu->abbrev_obstack
); void *__obj = (((void*)0)); if (__obj > (void *)__o->
chunk && __obj < (void *)__o->chunk_limit) __o->
next_free = __o->object_base = __obj; else (obstack_free) (
__o, __obj); })
;
5061 cu->dwarf2_abbrevs = NULL((void*)0);
5062}
5063
5064/* Lookup an abbrev_info structure in the abbrev hash table. */
5065
5066static struct abbrev_info *
5067dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5068{
5069 unsigned int hash_number;
5070 struct abbrev_info *abbrev;
5071
5072 hash_number = number % ABBREV_HASH_SIZE121;
5073 abbrev = cu->dwarf2_abbrevs[hash_number];
5074
5075 while (abbrev)
5076 {
5077 if (abbrev->number == number)
5078 return abbrev;
5079 else
5080 abbrev = abbrev->next;
5081 }
5082 return NULL((void*)0);
5083}
5084
5085/* Returns nonzero if TAG represents a type that we might generate a partial
5086 symbol for. */
5087
5088static int
5089is_type_tag_for_partial (int tag)
5090{
5091 switch (tag)
5092 {
5093#if 0
5094 /* Some types that would be reasonable to generate partial symbols for,
5095 that we don't at present. */
5096 case DW_TAG_array_type:
5097 case DW_TAG_file_type:
5098 case DW_TAG_ptr_to_member_type:
5099 case DW_TAG_set_type:
5100 case DW_TAG_string_type:
5101 case DW_TAG_subroutine_type:
5102#endif
5103 case DW_TAG_base_type:
5104 case DW_TAG_class_type:
5105 case DW_TAG_enumeration_type:
5106 case DW_TAG_structure_type:
5107 case DW_TAG_subrange_type:
5108 case DW_TAG_typedef:
5109 case DW_TAG_union_type:
5110 return 1;
5111 default:
5112 return 0;
5113 }
5114}
5115
5116/* Load all DIEs that are interesting for partial symbols into memory. */
5117
5118static struct partial_die_info *
5119load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5120 struct dwarf2_cu *cu)
5121{
5122 struct partial_die_info *part_die;
5123 struct partial_die_info *parent_die, *last_die, *first_die = NULL((void*)0);
5124 struct abbrev_info *abbrev;
5125 unsigned int bytes_read;
5126
5127 int nesting_level = 1;
5128
5129 parent_die = NULL((void*)0);
5130 last_die = NULL((void*)0);
5131
5132 cu->partial_dies
5133 = htab_create_alloc_ex (cu->header.length / 12,
5134 partial_die_hash,
5135 partial_die_eq,
5136 NULL((void*)0),
5137 &cu->comp_unit_obstack,
5138 hashtab_obstack_allocate,
5139 dummy_obstack_deallocate);
5140
5141 part_die = obstack_alloc (&cu->comp_unit_obstack,__extension__ ({ struct obstack *__h = (&cu->comp_unit_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_die_info))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
5142 sizeof (struct partial_die_info))__extension__ ({ struct obstack *__h = (&cu->comp_unit_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_die_info))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
;
5143
5144 while (1)
5145 {
5146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5147
5148 /* A NULL abbrev means the end of a series of children. */
5149 if (abbrev == NULL((void*)0))
5150 {
5151 if (--nesting_level == 0)
5152 {
5153 /* PART_DIE was probably the last thing allocated on the
5154 comp_unit_obstack, so we could call obstack_free
5155 here. We don't do that because the waste is small,
5156 and will be cleaned up when we're done with this
5157 compilation unit. This way, we're also more robust
5158 against other users of the comp_unit_obstack. */
5159 return first_die;
5160 }
5161 info_ptr += bytes_read;
5162 last_die = parent_die;
5163 parent_die = parent_die->die_parent;
5164 continue;
5165 }
5166
5167 /* Check whether this DIE is interesting enough to save. */
5168 if (!is_type_tag_for_partial (abbrev->tag)
5169 && abbrev->tag != DW_TAG_enumerator
5170 && abbrev->tag != DW_TAG_subprogram
5171 && abbrev->tag != DW_TAG_variable
5172 && abbrev->tag != DW_TAG_namespace)
5173 {
5174 /* Otherwise we skip to the next sibling, if any. */
5175 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5176 continue;
5177 }
5178
5179 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5180 abfd, info_ptr, cu);
5181
5182 /* This two-pass algorithm for processing partial symbols has a
5183 high cost in cache pressure. Thus, handle some simple cases
5184 here which cover the majority of C partial symbols. DIEs
5185 which neither have specification tags in them, nor could have
5186 specification tags elsewhere pointing at them, can simply be
5187 processed and discarded.
5188
5189 This segment is also optional; scan_partial_symbols and
5190 add_partial_symbol will handle these DIEs if we chain
5191 them in normally. When compilers which do not emit large
5192 quantities of duplicate debug information are more common,
5193 this code can probably be removed. */
5194
5195 /* Any complete simple types at the top level (pretty much all
5196 of them, for a language without namespaces), can be processed
5197 directly. */
5198 if (parent_die == NULL((void*)0)
5199 && part_die->has_specification == 0
5200 && part_die->is_declaration == 0
5201 && (part_die->tag == DW_TAG_typedef
5202 || part_die->tag == DW_TAG_base_type
5203 || part_die->tag == DW_TAG_subrange_type))
5204 {
5205 if (building_psymtab && part_die->name != NULL((void*)0))
5206 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5207 VAR_DOMAIN, LOC_TYPEDEF,
5208 &cu->objfile->static_psymbols,
5209 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5210 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5211 continue;
5212 }
5213
5214 /* If we're at the second level, and we're an enumerator, and
5215 our parent has no specification (meaning possibly lives in a
5216 namespace elsewhere), then we can add the partial symbol now
5217 instead of queueing it. */
5218 if (part_die->tag == DW_TAG_enumerator
5219 && parent_die != NULL((void*)0)
5220 && parent_die->die_parent == NULL((void*)0)
5221 && parent_die->tag == DW_TAG_enumeration_type
5222 && parent_die->has_specification == 0)
5223 {
5224 if (part_die->name == NULL((void*)0))
5225 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
5226 else if (building_psymtab)
5227 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5228 VAR_DOMAIN, LOC_CONST,
5229 (cu->language == language_cplus
5230 || cu->language == language_java)
5231 ? &cu->objfile->global_psymbols
5232 : &cu->objfile->static_psymbols,
5233 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5234
5235 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5236 continue;
5237 }
5238
5239 /* We'll save this DIE so link it in. */
5240 part_die->die_parent = parent_die;
5241 part_die->die_sibling = NULL((void*)0);
5242 part_die->die_child = NULL((void*)0);
5243
5244 if (last_die && last_die == parent_die)
5245 last_die->die_child = part_die;
5246 else if (last_die)
5247 last_die->die_sibling = part_die;
5248
5249 last_die = part_die;
5250
5251 if (first_die == NULL((void*)0))
5252 first_die = part_die;
5253
5254 /* Maybe add the DIE to the hash table. Not all DIEs that we
5255 find interesting need to be in the hash table, because we
5256 also have the parent/sibling/child chains; only those that we
5257 might refer to by offset later during partial symbol reading.
5258
5259 For now this means things that might have be the target of a
5260 DW_AT_specification, DW_AT_abstract_origin, or
5261 DW_AT_extension. DW_AT_extension will refer only to
5262 namespaces; DW_AT_abstract_origin refers to functions (and
5263 many things under the function DIE, but we do not recurse
5264 into function DIEs during partial symbol reading) and
5265 possibly variables as well; DW_AT_specification refers to
5266 declarations. Declarations ought to have the DW_AT_declaration
5267 flag. It happens that GCC forgets to put it in sometimes, but
5268 only for functions, not for types.
5269
5270 Adding more things than necessary to the hash table is harmless
5271 except for the performance cost. Adding too few will result in
5272 internal errors in find_partial_die. */
5273
5274 if (abbrev->tag == DW_TAG_subprogram
5275 || abbrev->tag == DW_TAG_variable
5276 || abbrev->tag == DW_TAG_namespace
5277 || part_die->is_declaration)
5278 {
5279 void **slot;
5280
5281 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5282 part_die->offset, INSERT);
5283 *slot = part_die;
5284 }
5285
5286 part_die = obstack_alloc (&cu->comp_unit_obstack,__extension__ ({ struct obstack *__h = (&cu->comp_unit_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_die_info))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
5287 sizeof (struct partial_die_info))__extension__ ({ struct obstack *__h = (&cu->comp_unit_obstack
); __extension__ ({ struct obstack *__o = (__h); int __len = (
(sizeof (struct partial_die_info))); if (__o->chunk_limit -
__o->next_free < __len) _obstack_newchunk (__o, __len)
; ((__o)->next_free += (__len)); (void) 0; }); __extension__
({ struct obstack *__o1 = (__h); void *value; value = (void *
) __o1->object_base; if (__o1->next_free == value) __o1
->maybe_empty_object = 1; __o1->next_free = (((((__o1->
next_free) - (char *) 0)+__o1->alignment_mask) & ~ (__o1
->alignment_mask)) + (char *) 0); if (__o1->next_free -
(char *)__o1->chunk > __o1->chunk_limit - (char *)__o1
->chunk) __o1->next_free = __o1->chunk_limit; __o1->
object_base = __o1->next_free; value; }); })
;
5288
5289 /* For some DIEs we want to follow their children (if any). For C
5290 we have no reason to follow the children of structures; for other
5291 languages we have to, both so that we can get at method physnames
5292 to infer fully qualified class names, and for DW_AT_specification. */
5293 if (last_die->has_children
5294 && (last_die->tag == DW_TAG_namespace
5295 || last_die->tag == DW_TAG_enumeration_type
5296 || (cu->language != language_c
5297 && (last_die->tag == DW_TAG_class_type
5298 || last_die->tag == DW_TAG_structure_type
5299 || last_die->tag == DW_TAG_union_type))))
5300 {
5301 nesting_level++;
5302 parent_die = last_die;
5303 continue;
5304 }
5305
5306 /* Otherwise we skip to the next sibling, if any. */
5307 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5308
5309 /* Back to the top, do it again. */
5310 }
5311}
5312
5313/* Read a minimal amount of information into the minimal die structure. */
5314
5315static char *
5316read_partial_die (struct partial_die_info *part_die,
5317 struct abbrev_info *abbrev,
5318 unsigned int abbrev_len, bfd *abfd,
5319 char *info_ptr, struct dwarf2_cu *cu)
5320{
5321 unsigned int bytes_read, i;
5322 struct attribute attr;
5323 int has_low_pc_attr = 0;
5324 int has_high_pc_attr = 0;
5325
5326 memset (part_die, 0, sizeof (struct partial_die_info));
5327
5328 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5329
5330 info_ptr += abbrev_len;
5331
5332 if (abbrev == NULL((void*)0))
5333 return info_ptr;
5334
5335 part_die->tag = abbrev->tag;
5336 part_die->has_children = abbrev->has_children;
5337
5338 for (i = 0; i < abbrev->num_attrs; ++i)
5339 {
5340 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5341
5342 /* Store the data if it is of an attribute we want to keep in a
5343 partial symbol table. */
5344 switch (attr.name)
5345 {
5346 case DW_AT_name:
5347
5348 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5349 if (part_die->name == NULL((void*)0))
5350 part_die->name = DW_STRING (&attr)((&attr)->u.str);
5351 break;
5352 case DW_AT_comp_dir:
5353 if (part_die->dirname == NULL((void*)0))
5354 part_die->dirname = DW_STRING (&attr)((&attr)->u.str);
5355 break;
5356 case DW_AT_MIPS_linkage_name:
5357 part_die->name = DW_STRING (&attr)((&attr)->u.str);
5358 break;
5359 case DW_AT_low_pc:
5360 has_low_pc_attr = 1;
5361 part_die->lowpc = DW_ADDR (&attr)((&attr)->u.addr);
5362 break;
5363 case DW_AT_high_pc:
5364 has_high_pc_attr = 1;
5365 part_die->highpc = DW_ADDR (&attr)((&attr)->u.addr);
5366 break;
5367 case DW_AT_location:
5368 /* Support the .debug_loc offsets */
5369 if (attr_form_is_block (&attr))
5370 {
5371 part_die->locdesc = DW_BLOCK (&attr)((&attr)->u.blk);
5372 }
5373 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5374 {
5375 dwarf2_complex_location_expr_complaint ();
5376 }
5377 else
5378 {
5379 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5380 "partial symbol information");
5381 }
5382 break;
5383 case DW_AT_language:
5384 part_die->language = DW_UNSND (&attr)((&attr)->u.unsnd);
5385 break;
5386 case DW_AT_external:
5387 part_die->is_external = DW_UNSND (&attr)((&attr)->u.unsnd);
5388 break;
5389 case DW_AT_declaration:
5390 part_die->is_declaration = DW_UNSND (&attr)((&attr)->u.unsnd);
5391 break;
5392 case DW_AT_type:
5393 part_die->has_type = 1;
5394 break;
5395 case DW_AT_abstract_origin:
5396 case DW_AT_specification:
5397 case DW_AT_extension:
5398 part_die->has_specification = 1;
5399 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5400 break;
5401 case DW_AT_sibling:
5402 /* Ignore absolute siblings, they might point outside of
5403 the current compile unit. */
5404 if (attr.form == DW_FORM_ref_addr)
5405 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
5406 else
5407 part_die->sibling = dwarf2_per_objfile->info_buffer
5408 + dwarf2_get_ref_die_offset (&attr, cu);
5409 break;
5410 case DW_AT_stmt_list:
5411 part_die->has_stmt_list = 1;
5412 part_die->line_offset = DW_UNSND (&attr)((&attr)->u.unsnd);
5413 break;
5414 default:
5415 break;
5416 }
5417 }
5418
5419 /* When using the GNU linker, .gnu.linkonce. sections are used to
5420 eliminate duplicate copies of functions and vtables and such.
5421 The linker will arbitrarily choose one and discard the others.
5422 The AT_*_pc values for such functions refer to local labels in
5423 these sections. If the section from that file was discarded, the
5424 labels are not in the output, so the relocs get a value of 0.
5425 If this is a discarded function, mark the pc bounds as invalid,
5426 so that GDB will ignore it. */
5427 if (has_low_pc_attr && has_high_pc_attr
5428 && part_die->lowpc < part_die->highpc
5429 && (part_die->lowpc != 0
5430 || (bfd_get_file_flags (abfd)((abfd)->flags) & HAS_RELOC0x01)))
5431 part_die->has_pc_info = 1;
5432 return info_ptr;
5433}
5434
5435/* Find a cached partial DIE at OFFSET in CU. */
5436
5437static struct partial_die_info *
5438find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5439{
5440 struct partial_die_info *lookup_die = NULL((void*)0);
5441 struct partial_die_info part_die;
5442
5443 part_die.offset = offset;
5444 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5445
5446 if (lookup_die == NULL((void*)0))
5447 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", __LINE__5447,
5448 "could not find partial DIE in cache\n");
5449
5450 return lookup_die;
5451}
5452
5453/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5454
5455static struct partial_die_info *
5456find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5457{
5458 struct dwarf2_per_cu_data *per_cu;
5459
5460 if (offset >= cu->header.offset
5461 && offset < cu->header.offset + cu->header.length)
5462 return find_partial_die_in_comp_unit (offset, cu);
5463
5464 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5465
5466 if (per_cu->cu == NULL((void*)0))
5467 {
5468 load_comp_unit (per_cu, cu->objfile);
5469 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5470 dwarf2_per_objfile->read_in_chain = per_cu;
5471 }
5472
5473 per_cu->cu->last_used = 0;
5474 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5475}
5476
5477/* Adjust PART_DIE before generating a symbol for it. This function
5478 may set the is_external flag or change the DIE's name. */
5479
5480static void
5481fixup_partial_die (struct partial_die_info *part_die,
5482 struct dwarf2_cu *cu)
5483{
5484 /* If we found a reference attribute and the DIE has no name, try
5485 to find a name in the referred to DIE. */
5486
5487 if (part_die->name == NULL((void*)0) && part_die->has_specification)
5488 {
5489 struct partial_die_info *spec_die;
5490
5491 spec_die = find_partial_die (part_die->spec_offset, cu);
5492
5493 fixup_partial_die (spec_die, cu);
5494
5495 if (spec_die->name)
5496 {
5497 part_die->name = spec_die->name;
5498
5499 /* Copy DW_AT_external attribute if it is set. */
5500 if (spec_die->is_external)
5501 part_die->is_external = spec_die->is_external;
5502 }
5503 }
5504
5505 /* Set default names for some unnamed DIEs. */
5506 if (part_die->name == NULL((void*)0) && (part_die->tag == DW_TAG_structure_type
5507 || part_die->tag == DW_TAG_class_type))
5508 part_die->name = "(anonymous class)";
5509
5510 if (part_die->name == NULL((void*)0) && part_die->tag == DW_TAG_namespace)
5511 part_die->name = "(anonymous namespace)";
5512
5513 if (part_die->tag == DW_TAG_structure_type
5514 || part_die->tag == DW_TAG_class_type
5515 || part_die->tag == DW_TAG_union_type)
5516 guess_structure_name (part_die, cu);
5517}
5518
5519/* Read the die from the .debug_info section buffer. Set DIEP to
5520 point to a newly allocated die with its information, except for its
5521 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5522 whether the die has children or not. */
5523
5524static char *
5525read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5526 struct dwarf2_cu *cu, int *has_children)
5527{
5528 unsigned int abbrev_number, bytes_read, i, offset;
5529 struct abbrev_info *abbrev;
5530 struct die_info *die;
5531
5532 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5533 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5534 info_ptr += bytes_read;
5535 if (!abbrev_number)
5536 {
5537 die = dwarf_alloc_die ();
5538 die->tag = 0;
5539 die->abbrev = abbrev_number;
5540 die->type = NULL((void*)0);
5541 *diep = die;
5542 *has_children = 0;
5543 return info_ptr;
5544 }
5545
5546 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5547 if (!abbrev)
5548 {
5549 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5550 abbrev_number,
5551 bfd_get_filename (abfd)((char *) (abfd)->filename));
5552 }
5553 die = dwarf_alloc_die ();
5554 die->offset = offset;
5555 die->tag = abbrev->tag;
5556 die->abbrev = abbrev_number;
5557 die->type = NULL((void*)0);
5558
5559 die->num_attrs = abbrev->num_attrs;
5560 die->attrs = (struct attribute *)
5561 xmalloc (die->num_attrs * sizeof (struct attribute));
5562
5563 for (i = 0; i < abbrev->num_attrs; ++i)
5564 {
5565 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5566 abfd, info_ptr, cu);
5567
5568 /* If this attribute is an absolute reference to a different
5569 compilation unit, make sure that compilation unit is loaded
5570 also. */
5571 if (die->attrs[i].form == DW_FORM_ref_addr
5572 && (DW_ADDR (&die->attrs[i])((&die->attrs[i])->u.addr) < cu->header.offset
5573 || (DW_ADDR (&die->attrs[i])((&die->attrs[i])->u.addr)
5574 >= cu->header.offset + cu->header.length)))
5575 {
5576 struct dwarf2_per_cu_data *per_cu;
5577 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i])((&die->attrs[i])->u.addr),
5578 cu->objfile);
5579
5580 /* Mark the dependence relation so that we don't flush PER_CU
5581 too early. */
5582 dwarf2_add_dependence (cu, per_cu);
5583
5584 /* If it's already on the queue, we have nothing to do. */
5585 if (per_cu->queued)
5586 continue;
5587
5588 /* If the compilation unit is already loaded, just mark it as
5589 used. */
5590 if (per_cu->cu != NULL((void*)0))
5591 {
5592 per_cu->cu->last_used = 0;
5593 continue;
5594 }
5595
5596 /* Add it to the queue. */
5597 queue_comp_unit (per_cu);
5598 }
5599 }
5600
5601 *diep = die;
5602 *has_children = abbrev->has_children;
5603 return info_ptr;
5604}
5605
5606/* Read an attribute value described by an attribute form. */
5607
5608static char *
5609read_attribute_value (struct attribute *attr, unsigned form,
5610 bfd *abfd, char *info_ptr,
5611 struct dwarf2_cu *cu)
5612{
5613 struct comp_unit_head *cu_header = &cu->header;
5614 unsigned int bytes_read;
5615 struct dwarf_block *blk;
5616
5617 attr->form = form;
5618 switch (form)
5619 {
5620 case DW_FORM_addr:
5621 case DW_FORM_ref_addr:
5622 DW_ADDR (attr)((attr)->u.addr) = read_address (abfd, info_ptr, cu, &bytes_read);
5623 info_ptr += bytes_read;
5624 break;
5625 case DW_FORM_block2:
5626 blk = dwarf_alloc_block (cu);
5627 blk->size = read_2_bytes (abfd, info_ptr);
5628 info_ptr += 2;
5629 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5630 info_ptr += blk->size;
5631 DW_BLOCK (attr)((attr)->u.blk) = blk;
5632 break;
5633 case DW_FORM_block4:
5634 blk = dwarf_alloc_block (cu);
5635 blk->size = read_4_bytes (abfd, info_ptr);
5636 info_ptr += 4;
5637 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5638 info_ptr += blk->size;
5639 DW_BLOCK (attr)((attr)->u.blk) = blk;
5640 break;
5641 case DW_FORM_data2:
5642 DW_UNSND (attr)((attr)->u.unsnd) = read_2_bytes (abfd, info_ptr);
5643 info_ptr += 2;
5644 break;
5645 case DW_FORM_data4:
5646 DW_UNSND (attr)((attr)->u.unsnd) = read_4_bytes (abfd, info_ptr);
5647 info_ptr += 4;
5648 break;
5649 case DW_FORM_data8:
5650 DW_UNSND (attr)((attr)->u.unsnd) = read_8_bytes (abfd, info_ptr);
5651 info_ptr += 8;
5652 break;
5653 case DW_FORM_string:
5654 DW_STRING (attr)((attr)->u.str) = read_string (abfd, info_ptr, &bytes_read);
5655 info_ptr += bytes_read;
5656 break;
5657 case DW_FORM_strp:
5658 DW_STRING (attr)((attr)->u.str) = read_indirect_string (abfd, info_ptr, cu_header,
5659 &bytes_read);
5660 info_ptr += bytes_read;
5661 break;
5662 case DW_FORM_block:
5663 blk = dwarf_alloc_block (cu);
5664 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5665 info_ptr += bytes_read;
5666 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5667 info_ptr += blk->size;
5668 DW_BLOCK (attr)((attr)->u.blk) = blk;
5669 break;
5670 case DW_FORM_block1:
5671 blk = dwarf_alloc_block (cu);
5672 blk->size = read_1_byte (abfd, info_ptr);
5673 info_ptr += 1;
5674 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5675 info_ptr += blk->size;
5676 DW_BLOCK (attr)((attr)->u.blk) = blk;
5677 break;
5678 case DW_FORM_data1:
5679 DW_UNSND (attr)((attr)->u.unsnd) = read_1_byte (abfd, info_ptr);
5680 info_ptr += 1;
5681 break;
5682 case DW_FORM_flag:
5683 DW_UNSND (attr)((attr)->u.unsnd) = read_1_byte (abfd, info_ptr);
5684 info_ptr += 1;
5685 break;
5686 case DW_FORM_sdata:
5687 DW_SND (attr)((attr)->u.snd) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5688 info_ptr += bytes_read;
5689 break;
5690 case DW_FORM_udata:
5691 DW_UNSND (attr)((attr)->u.unsnd) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5692 info_ptr += bytes_read;
5693 break;
5694 case DW_FORM_ref1:
5695 DW_ADDR (attr)((attr)->u.addr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5696 info_ptr += 1;
5697 break;
5698 case DW_FORM_ref2:
5699 DW_ADDR (attr)((attr)->u.addr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5700 info_ptr += 2;
5701 break;
5702 case DW_FORM_ref4:
5703 DW_ADDR (attr)((attr)->u.addr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5704 info_ptr += 4;
5705 break;
5706 case DW_FORM_ref8:
5707 DW_ADDR (attr)((attr)->u.addr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5708 info_ptr += 8;
5709 break;
5710 case DW_FORM_ref_udata:
5711 DW_ADDR (attr)((attr)->u.addr) = (cu->header.offset
5712 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5713 info_ptr += bytes_read;
5714 break;
5715 case DW_FORM_indirect:
5716 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5717 info_ptr += bytes_read;
5718 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5719 break;
5720 default:
5721 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5722 dwarf_form_name (form),
5723 bfd_get_filename (abfd)((char *) (abfd)->filename));
5724 }
5725 return info_ptr;
5726}
5727
5728/* Read an attribute described by an abbreviated attribute. */
5729
5730static char *
5731read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5732 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5733{
5734 attr->name = abbrev->name;
5735 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5736}
5737
5738/* read dwarf information from a buffer */
5739
5740static unsigned int
5741read_1_byte (bfd *abfd, char *buf)
5742{
5743 return bfd_get_8 (abfd, (bfd_byte *) buf)(*(unsigned char *) ((bfd_byte *) buf) & 0xff);
5744}
5745
5746static int
5747read_1_signed_byte (bfd *abfd, char *buf)
5748{
5749 return bfd_get_signed_8 (abfd, (bfd_byte *) buf)(((*(unsigned char *) ((bfd_byte *) buf) & 0xff) ^ 0x80) -
0x80)
;
5750}
5751
5752static unsigned int
5753read_2_bytes (bfd *abfd, char *buf)
5754{
5755 return bfd_get_16 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx16)) ((bfd_byte *) buf));
5756}
5757
5758static int
5759read_2_signed_bytes (bfd *abfd, char *buf)
5760{
5761 return bfd_get_signed_16 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx_signed_16)) ((bfd_byte *) buf
))
;
5762}
5763
5764static unsigned int
5765read_4_bytes (bfd *abfd, char *buf)
5766{
5767 return bfd_get_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx32)) ((bfd_byte *) buf));
5768}
5769
5770static int
5771read_4_signed_bytes (bfd *abfd, char *buf)
5772{
5773 return bfd_get_signed_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx_signed_32)) ((bfd_byte *) buf
))
;
5774}
5775
5776static unsigned long
5777read_8_bytes (bfd *abfd, char *buf)
5778{
5779 return bfd_get_64 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx64)) ((bfd_byte *) buf));
5780}
5781
5782static CORE_ADDR
5783read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5784{
5785 struct comp_unit_head *cu_header = &cu->header;
5786 CORE_ADDR retval = 0;
5787
5788 if (cu_header->signed_addr_p)
5789 {
5790 switch (cu_header->addr_size)
5791 {
5792 case 2:
5793 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx_signed_16)) ((bfd_byte *) buf
))
;
5794 break;
5795 case 4:
5796 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx_signed_32)) ((bfd_byte *) buf
))
;
5797 break;
5798 case 8:
5799 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx_signed_64)) ((bfd_byte *) buf
))
;
5800 break;
5801 default:
5802 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", __LINE__5802,
5803 "read_address: bad switch, signed [in module %s]",
5804 bfd_get_filename (abfd)((char *) (abfd)->filename));
5805 }
5806 }
5807 else
5808 {
5809 switch (cu_header->addr_size)
5810 {
5811 case 2:
5812 retval = bfd_get_16 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx16)) ((bfd_byte *) buf));
5813 break;
5814 case 4:
5815 retval = bfd_get_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx32)) ((bfd_byte *) buf));
5816 break;
5817 case 8:
5818 retval = bfd_get_64 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx64)) ((bfd_byte *) buf));
5819 break;
5820 default:
5821 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", __LINE__5821,
5822 "read_address: bad switch, unsigned [in module %s]",
5823 bfd_get_filename (abfd)((char *) (abfd)->filename));
5824 }
5825 }
5826
5827 *bytes_read = cu_header->addr_size;
5828 return retval;
5829}
5830
5831/* Read the initial length from a section. The (draft) DWARF 3
5832 specification allows the initial length to take up either 4 bytes
5833 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5834 bytes describe the length and all offsets will be 8 bytes in length
5835 instead of 4.
5836
5837 An older, non-standard 64-bit format is also handled by this
5838 function. The older format in question stores the initial length
5839 as an 8-byte quantity without an escape value. Lengths greater
5840 than 2^32 aren't very common which means that the initial 4 bytes
5841 is almost always zero. Since a length value of zero doesn't make
5842 sense for the 32-bit format, this initial zero can be considered to
5843 be an escape value which indicates the presence of the older 64-bit
5844 format. As written, the code can't detect (old format) lengths
5845 greater than 4GB. If it becomes necessary to handle lengths
5846 somewhat larger than 4GB, we could allow other small values (such
5847 as the non-sensical values of 1, 2, and 3) to also be used as
5848 escape values indicating the presence of the old format.
5849
5850 The value returned via bytes_read should be used to increment the
5851 relevant pointer after calling read_initial_length().
5852
5853 As a side effect, this function sets the fields initial_length_size
5854 and offset_size in cu_header to the values appropriate for the
5855 length field. (The format of the initial length field determines
5856 the width of file offsets to be fetched later with read_offset().)
5857
5858 [ Note: read_initial_length() and read_offset() are based on the
5859 document entitled "DWARF Debugging Information Format", revision
5860 3, draft 8, dated November 19, 2001. This document was obtained
5861 from:
5862
5863 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5864
5865 This document is only a draft and is subject to change. (So beware.)
5866
5867 Details regarding the older, non-standard 64-bit format were
5868 determined empirically by examining 64-bit ELF files produced by
5869 the SGI toolchain on an IRIX 6.5 machine.
5870
5871 - Kevin, July 16, 2002
5872 ] */
5873
5874static LONGESTlong
5875read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5876 int *bytes_read)
5877{
5878 LONGESTlong length = bfd_get_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx32)) ((bfd_byte *) buf));
5879
5880 if (length == 0xffffffff)
5881 {
5882 length = bfd_get_64 (abfd, (bfd_byte *) buf + 4)((*((abfd)->xvec->bfd_getx64)) ((bfd_byte *) buf + 4));
5883 *bytes_read = 12;
5884 }
5885 else if (length == 0)
5886 {
5887 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5888 length = bfd_get_64 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx64)) ((bfd_byte *) buf));
5889 *bytes_read = 8;
5890 }
5891 else
5892 {
5893 *bytes_read = 4;
5894 }
5895
5896 if (cu_header)
5897 {
5898 gdb_assert (cu_header->initial_length_size == 0((void) ((cu_header->initial_length_size == 0 || cu_header
->initial_length_size == 4 || cu_header->initial_length_size
== 8 || cu_header->initial_length_size == 12) ? 0 : (internal_error
("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", 5901, "%s: Assertion `%s' failed."
, __PRETTY_FUNCTION__, "cu_header->initial_length_size == 0 || cu_header->initial_length_size == 4 || cu_header->initial_length_size == 8 || cu_header->initial_length_size == 12"
), 0)))
5899 || cu_header->initial_length_size == 4((void) ((cu_header->initial_length_size == 0 || cu_header
->initial_length_size == 4 || cu_header->initial_length_size
== 8 || cu_header->initial_length_size == 12) ? 0 : (internal_error
("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", 5901, "%s: Assertion `%s' failed."
, __PRETTY_FUNCTION__, "cu_header->initial_length_size == 0 || cu_header->initial_length_size == 4 || cu_header->initial_length_size == 8 || cu_header->initial_length_size == 12"
), 0)))
5900 || cu_header->initial_length_size == 8((void) ((cu_header->initial_length_size == 0 || cu_header
->initial_length_size == 4 || cu_header->initial_length_size
== 8 || cu_header->initial_length_size == 12) ? 0 : (internal_error
("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", 5901, "%s: Assertion `%s' failed."
, __PRETTY_FUNCTION__, "cu_header->initial_length_size == 0 || cu_header->initial_length_size == 4 || cu_header->initial_length_size == 8 || cu_header->initial_length_size == 12"
), 0)))
5901 || cu_header->initial_length_size == 12)((void) ((cu_header->initial_length_size == 0 || cu_header
->initial_length_size == 4 || cu_header->initial_length_size
== 8 || cu_header->initial_length_size == 12) ? 0 : (internal_error
("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", 5901, "%s: Assertion `%s' failed."
, __PRETTY_FUNCTION__, "cu_header->initial_length_size == 0 || cu_header->initial_length_size == 4 || cu_header->initial_length_size == 8 || cu_header->initial_length_size == 12"
), 0)))
;
5902
5903 if (cu_header->initial_length_size != 0
5904 && cu_header->initial_length_size != *bytes_read)
5905 complaint (&symfile_complaints,
5906 "intermixed 32-bit and 64-bit DWARF sections");
5907
5908 cu_header->initial_length_size = *bytes_read;
5909 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5910 }
5911
5912 return length;
5913}
5914
5915/* Read an offset from the data stream. The size of the offset is
5916 given by cu_header->offset_size. */
5917
5918static LONGESTlong
5919read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5920 int *bytes_read)
5921{
5922 LONGESTlong retval = 0;
5923
5924 switch (cu_header->offset_size)
5925 {
5926 case 4:
5927 retval = bfd_get_32 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx32)) ((bfd_byte *) buf));
5928 *bytes_read = 4;
5929 break;
5930 case 8:
5931 retval = bfd_get_64 (abfd, (bfd_byte *) buf)((*((abfd)->xvec->bfd_getx64)) ((bfd_byte *) buf));
5932 *bytes_read = 8;
5933 break;
5934 default:
5935 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c", __LINE__5935,
5936 "read_offset: bad switch [in module %s]",
5937 bfd_get_filename (abfd)((char *) (abfd)->filename));
5938 }
5939
5940 return retval;
5941}
5942
5943static char *
5944read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5945{
5946 /* If the size of a host char is 8 bits, we can return a pointer
5947 to the buffer, otherwise we have to copy the data to a buffer
5948 allocated on the temporary obstack. */
5949 gdb_assert (HOST_CHAR_BIT == 8)((void) ((8 == 8) ? 0 : (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 5949, "%s: Assertion `%s' failed.", __PRETTY_FUNCTION__, "HOST_CHAR_BIT == 8"
), 0)))
;
5950 return buf;
5951}
5952
5953static char *
5954read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5955{
5956 /* If the size of a host char is 8 bits, we can return a pointer
5957 to the string, otherwise we have to copy the string to a buffer
5958 allocated on the temporary obstack. */
5959 gdb_assert (HOST_CHAR_BIT == 8)((void) ((8 == 8) ? 0 : (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 5959, "%s: Assertion `%s' failed.", __PRETTY_FUNCTION__, "HOST_CHAR_BIT == 8"
), 0)))
;
5960 if (*buf == '\0')
5961 {
5962 *bytes_read_ptr = 1;
5963 return NULL((void*)0);
5964 }
5965 *bytes_read_ptr = strlen (buf) + 1;
5966 return buf;
5967}
5968
5969static char *
5970read_indirect_string (bfd *abfd, char *buf,
5971 const struct comp_unit_head *cu_header,
5972 unsigned int *bytes_read_ptr)
5973{
5974 LONGESTlong str_offset = read_offset (abfd, buf, cu_header,
5975 (int *) bytes_read_ptr);
5976
5977 if (dwarf2_per_objfile->str_buffer == NULL((void*)0))
5978 {
5979 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5980 bfd_get_filename (abfd)((char *) (abfd)->filename));
5981 return NULL((void*)0);
5982 }
5983 if (str_offset >= dwarf2_per_objfile->str_size)
5984 {
5985 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5986 bfd_get_filename (abfd)((char *) (abfd)->filename));
5987 return NULL((void*)0);
5988 }
5989 gdb_assert (HOST_CHAR_BIT == 8)((void) ((8 == 8) ? 0 : (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/dwarf2read.c"
, 5989, "%s: Assertion `%s' failed.", __PRETTY_FUNCTION__, "HOST_CHAR_BIT == 8"
), 0)))
;
5990 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5991 return NULL((void*)0);
5992 return dwarf2_per_objfile->str_buffer + str_offset;
5993}
5994
5995static unsigned long
5996read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5997{
5998 unsigned long result;
5999 unsigned int num_read;
6000 int i, shift;
6001 unsigned char byte;
6002
6003 result = 0;
6004 shift = 0;
6005 num_read = 0;
6006 i = 0;
6007 while (1)
6008 {
6009 byte = bfd_get_8 (abfd, (bfd_byte *) buf)(*(unsigned char *) ((bfd_byte *) buf) & 0xff);
6010 buf++;
6011 num_read++;
6012 result |= ((unsigned long)(byte & 127) << shift);
6013 if ((byte & 128) == 0)
6014 {
6015 break;
6016 }
6017 shift += 7;
6018 }
6019 *bytes_read_ptr = num_read;
6020 return result;
6021}
6022
6023static long
6024read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6025{
6026 long result;
6027 int i, shift, size, num_read;
6028 unsigned char byte;
6029
6030 result = 0;
6031 shift = 0;
6032 size = 32;
6033 num_read = 0;
6034 i = 0;
6035 while (1)
6036 {
6037 byte = bfd_get_8 (abfd, (bfd_byte *) buf)(*(unsigned char *) ((bfd_byte *) buf) & 0xff);
6038 buf++;
6039 num_read++;
6040 result |= ((long)(byte & 127) << shift);
6041 shift += 7;
6042 if ((byte & 128) == 0)
6043 {
6044 break;
6045 }
6046 }
6047 if ((shift < size) && (byte & 0x40))
6048 {
6049 result |= -(1 << shift);
6050 }
6051 *bytes_read_ptr = num_read;
6052 return result;
6053}
6054
6055/* Return a pointer to just past the end of an LEB128 number in BUF. */
6056
6057static char *
6058skip_leb128 (bfd *abfd, char *buf)
6059{
6060 int byte;
6061
6062 while (1)
6063 {
6064 byte = bfd_get_8 (abfd, (bfd_byte *) buf)(*(unsigned char *) ((bfd_byte *) buf) & 0xff);
6065 buf++;
6066 if ((byte & 128) == 0)
6067 return buf;
6068 }
6069}
6070
6071static void
6072set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6073{
6074 switch (lang)
6075 {
6076 case DW_LANG_C89:
6077 case DW_LANG_C:
6078 cu->language = language_c;
6079 break;
6080 case DW_LANG_C_plus_plus:
6081 cu->language = language_cplus;
6082 break;