File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp |
Warning: | line 198, column 28 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===----------------- LoopRotationUtils.cpp -----------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file provides utilities to convert a loop into a loop with bottom test. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "llvm/Transforms/Utils/LoopRotationUtils.h" | |||
14 | #include "llvm/ADT/Statistic.h" | |||
15 | #include "llvm/Analysis/AssumptionCache.h" | |||
16 | #include "llvm/Analysis/BasicAliasAnalysis.h" | |||
17 | #include "llvm/Analysis/CodeMetrics.h" | |||
18 | #include "llvm/Analysis/DomTreeUpdater.h" | |||
19 | #include "llvm/Analysis/GlobalsModRef.h" | |||
20 | #include "llvm/Analysis/InstructionSimplify.h" | |||
21 | #include "llvm/Analysis/LoopPass.h" | |||
22 | #include "llvm/Analysis/MemorySSA.h" | |||
23 | #include "llvm/Analysis/MemorySSAUpdater.h" | |||
24 | #include "llvm/Analysis/ScalarEvolution.h" | |||
25 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | |||
26 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
27 | #include "llvm/Analysis/ValueTracking.h" | |||
28 | #include "llvm/IR/CFG.h" | |||
29 | #include "llvm/IR/DebugInfo.h" | |||
30 | #include "llvm/IR/Dominators.h" | |||
31 | #include "llvm/IR/Function.h" | |||
32 | #include "llvm/IR/IntrinsicInst.h" | |||
33 | #include "llvm/IR/Module.h" | |||
34 | #include "llvm/Support/CommandLine.h" | |||
35 | #include "llvm/Support/Debug.h" | |||
36 | #include "llvm/Support/raw_ostream.h" | |||
37 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
38 | #include "llvm/Transforms/Utils/Cloning.h" | |||
39 | #include "llvm/Transforms/Utils/Local.h" | |||
40 | #include "llvm/Transforms/Utils/LoopUtils.h" | |||
41 | #include "llvm/Transforms/Utils/SSAUpdater.h" | |||
42 | #include "llvm/Transforms/Utils/ValueMapper.h" | |||
43 | using namespace llvm; | |||
44 | ||||
45 | #define DEBUG_TYPE"loop-rotate" "loop-rotate" | |||
46 | ||||
47 | STATISTIC(NumNotRotatedDueToHeaderSize,static llvm::Statistic NumNotRotatedDueToHeaderSize = {"loop-rotate" , "NumNotRotatedDueToHeaderSize", "Number of loops not rotated due to the header size" } | |||
48 | "Number of loops not rotated due to the header size")static llvm::Statistic NumNotRotatedDueToHeaderSize = {"loop-rotate" , "NumNotRotatedDueToHeaderSize", "Number of loops not rotated due to the header size" }; | |||
49 | STATISTIC(NumInstrsHoisted,static llvm::Statistic NumInstrsHoisted = {"loop-rotate", "NumInstrsHoisted" , "Number of instructions hoisted into loop preheader"} | |||
50 | "Number of instructions hoisted into loop preheader")static llvm::Statistic NumInstrsHoisted = {"loop-rotate", "NumInstrsHoisted" , "Number of instructions hoisted into loop preheader"}; | |||
51 | STATISTIC(NumInstrsDuplicated,static llvm::Statistic NumInstrsDuplicated = {"loop-rotate", "NumInstrsDuplicated" , "Number of instructions cloned into loop preheader"} | |||
52 | "Number of instructions cloned into loop preheader")static llvm::Statistic NumInstrsDuplicated = {"loop-rotate", "NumInstrsDuplicated" , "Number of instructions cloned into loop preheader"}; | |||
53 | STATISTIC(NumRotated, "Number of loops rotated")static llvm::Statistic NumRotated = {"loop-rotate", "NumRotated" , "Number of loops rotated"}; | |||
54 | ||||
55 | static cl::opt<bool> | |||
56 | MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, | |||
57 | cl::desc("Allow loop rotation multiple times in order to reach " | |||
58 | "a better latch exit")); | |||
59 | ||||
60 | namespace { | |||
61 | /// A simple loop rotation transformation. | |||
62 | class LoopRotate { | |||
63 | const unsigned MaxHeaderSize; | |||
64 | LoopInfo *LI; | |||
65 | const TargetTransformInfo *TTI; | |||
66 | AssumptionCache *AC; | |||
67 | DominatorTree *DT; | |||
68 | ScalarEvolution *SE; | |||
69 | MemorySSAUpdater *MSSAU; | |||
70 | const SimplifyQuery &SQ; | |||
71 | bool RotationOnly; | |||
72 | bool IsUtilMode; | |||
73 | bool PrepareForLTO; | |||
74 | ||||
75 | public: | |||
76 | LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, | |||
77 | const TargetTransformInfo *TTI, AssumptionCache *AC, | |||
78 | DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, | |||
79 | const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, | |||
80 | bool PrepareForLTO) | |||
81 | : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), | |||
82 | MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), | |||
83 | IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} | |||
84 | bool processLoop(Loop *L); | |||
85 | ||||
86 | private: | |||
87 | bool rotateLoop(Loop *L, bool SimplifiedLatch); | |||
88 | bool simplifyLoopLatch(Loop *L); | |||
89 | }; | |||
90 | } // end anonymous namespace | |||
91 | ||||
92 | /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not | |||
93 | /// previously exist in the map, and the value was inserted. | |||
94 | static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { | |||
95 | bool Inserted = VM.insert({K, V}).second; | |||
96 | assert(Inserted)((void)0); | |||
97 | (void)Inserted; | |||
98 | } | |||
99 | /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the | |||
100 | /// old header into the preheader. If there were uses of the values produced by | |||
101 | /// these instruction that were outside of the loop, we have to insert PHI nodes | |||
102 | /// to merge the two values. Do this now. | |||
103 | static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, | |||
104 | BasicBlock *OrigPreheader, | |||
105 | ValueToValueMapTy &ValueMap, | |||
106 | SmallVectorImpl<PHINode*> *InsertedPHIs) { | |||
107 | // Remove PHI node entries that are no longer live. | |||
108 | BasicBlock::iterator I, E = OrigHeader->end(); | |||
109 | for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) | |||
110 | PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); | |||
111 | ||||
112 | // Now fix up users of the instructions in OrigHeader, inserting PHI nodes | |||
113 | // as necessary. | |||
114 | SSAUpdater SSA(InsertedPHIs); | |||
115 | for (I = OrigHeader->begin(); I != E; ++I) { | |||
116 | Value *OrigHeaderVal = &*I; | |||
117 | ||||
118 | // If there are no uses of the value (e.g. because it returns void), there | |||
119 | // is nothing to rewrite. | |||
120 | if (OrigHeaderVal->use_empty()) | |||
121 | continue; | |||
122 | ||||
123 | Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); | |||
124 | ||||
125 | // The value now exits in two versions: the initial value in the preheader | |||
126 | // and the loop "next" value in the original header. | |||
127 | SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); | |||
128 | SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); | |||
129 | SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); | |||
130 | ||||
131 | // Visit each use of the OrigHeader instruction. | |||
132 | for (Value::use_iterator UI = OrigHeaderVal->use_begin(), | |||
133 | UE = OrigHeaderVal->use_end(); | |||
134 | UI != UE;) { | |||
135 | // Grab the use before incrementing the iterator. | |||
136 | Use &U = *UI; | |||
137 | ||||
138 | // Increment the iterator before removing the use from the list. | |||
139 | ++UI; | |||
140 | ||||
141 | // SSAUpdater can't handle a non-PHI use in the same block as an | |||
142 | // earlier def. We can easily handle those cases manually. | |||
143 | Instruction *UserInst = cast<Instruction>(U.getUser()); | |||
144 | if (!isa<PHINode>(UserInst)) { | |||
145 | BasicBlock *UserBB = UserInst->getParent(); | |||
146 | ||||
147 | // The original users in the OrigHeader are already using the | |||
148 | // original definitions. | |||
149 | if (UserBB == OrigHeader) | |||
150 | continue; | |||
151 | ||||
152 | // Users in the OrigPreHeader need to use the value to which the | |||
153 | // original definitions are mapped. | |||
154 | if (UserBB == OrigPreheader) { | |||
155 | U = OrigPreHeaderVal; | |||
156 | continue; | |||
157 | } | |||
158 | } | |||
159 | ||||
160 | // Anything else can be handled by SSAUpdater. | |||
161 | SSA.RewriteUse(U); | |||
162 | } | |||
163 | ||||
164 | // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug | |||
165 | // intrinsics. | |||
166 | SmallVector<DbgValueInst *, 1> DbgValues; | |||
167 | llvm::findDbgValues(DbgValues, OrigHeaderVal); | |||
168 | for (auto &DbgValue : DbgValues) { | |||
169 | // The original users in the OrigHeader are already using the original | |||
170 | // definitions. | |||
171 | BasicBlock *UserBB = DbgValue->getParent(); | |||
172 | if (UserBB == OrigHeader) | |||
173 | continue; | |||
174 | ||||
175 | // Users in the OrigPreHeader need to use the value to which the | |||
176 | // original definitions are mapped and anything else can be handled by | |||
177 | // the SSAUpdater. To avoid adding PHINodes, check if the value is | |||
178 | // available in UserBB, if not substitute undef. | |||
179 | Value *NewVal; | |||
180 | if (UserBB == OrigPreheader) | |||
181 | NewVal = OrigPreHeaderVal; | |||
182 | else if (SSA.HasValueForBlock(UserBB)) | |||
183 | NewVal = SSA.GetValueInMiddleOfBlock(UserBB); | |||
184 | else | |||
185 | NewVal = UndefValue::get(OrigHeaderVal->getType()); | |||
186 | DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); | |||
187 | } | |||
188 | } | |||
189 | } | |||
190 | ||||
191 | // Assuming both header and latch are exiting, look for a phi which is only | |||
192 | // used outside the loop (via a LCSSA phi) in the exit from the header. | |||
193 | // This means that rotating the loop can remove the phi. | |||
194 | static bool profitableToRotateLoopExitingLatch(Loop *L) { | |||
195 | BasicBlock *Header = L->getHeader(); | |||
196 | BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); | |||
197 | assert(BI && BI->isConditional() && "need header with conditional exit")((void)0); | |||
198 | BasicBlock *HeaderExit = BI->getSuccessor(0); | |||
| ||||
199 | if (L->contains(HeaderExit)) | |||
200 | HeaderExit = BI->getSuccessor(1); | |||
201 | ||||
202 | for (auto &Phi : Header->phis()) { | |||
203 | // Look for uses of this phi in the loop/via exits other than the header. | |||
204 | if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { | |||
205 | return cast<Instruction>(U)->getParent() != HeaderExit; | |||
206 | })) | |||
207 | continue; | |||
208 | return true; | |||
209 | } | |||
210 | return false; | |||
211 | } | |||
212 | ||||
213 | // Check that latch exit is deoptimizing (which means - very unlikely to happen) | |||
214 | // and there is another exit from the loop which is non-deoptimizing. | |||
215 | // If we rotate latch to that exit our loop has a better chance of being fully | |||
216 | // canonical. | |||
217 | // | |||
218 | // It can give false positives in some rare cases. | |||
219 | static bool canRotateDeoptimizingLatchExit(Loop *L) { | |||
220 | BasicBlock *Latch = L->getLoopLatch(); | |||
221 | assert(Latch && "need latch")((void)0); | |||
222 | BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); | |||
223 | // Need normal exiting latch. | |||
224 | if (!BI || !BI->isConditional()) | |||
225 | return false; | |||
226 | ||||
227 | BasicBlock *Exit = BI->getSuccessor(1); | |||
228 | if (L->contains(Exit)) | |||
229 | Exit = BI->getSuccessor(0); | |||
230 | ||||
231 | // Latch exit is non-deoptimizing, no need to rotate. | |||
232 | if (!Exit->getPostdominatingDeoptimizeCall()) | |||
233 | return false; | |||
234 | ||||
235 | SmallVector<BasicBlock *, 4> Exits; | |||
236 | L->getUniqueExitBlocks(Exits); | |||
237 | if (!Exits.empty()) { | |||
238 | // There is at least one non-deoptimizing exit. | |||
239 | // | |||
240 | // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, | |||
241 | // as it can conservatively return false for deoptimizing exits with | |||
242 | // complex enough control flow down to deoptimize call. | |||
243 | // | |||
244 | // That means here we can report success for a case where | |||
245 | // all exits are deoptimizing but one of them has complex enough | |||
246 | // control flow (e.g. with loops). | |||
247 | // | |||
248 | // That should be a very rare case and false positives for this function | |||
249 | // have compile-time effect only. | |||
250 | return any_of(Exits, [](const BasicBlock *BB) { | |||
251 | return !BB->getPostdominatingDeoptimizeCall(); | |||
252 | }); | |||
253 | } | |||
254 | return false; | |||
255 | } | |||
256 | ||||
257 | /// Rotate loop LP. Return true if the loop is rotated. | |||
258 | /// | |||
259 | /// \param SimplifiedLatch is true if the latch was just folded into the final | |||
260 | /// loop exit. In this case we may want to rotate even though the new latch is | |||
261 | /// now an exiting branch. This rotation would have happened had the latch not | |||
262 | /// been simplified. However, if SimplifiedLatch is false, then we avoid | |||
263 | /// rotating loops in which the latch exits to avoid excessive or endless | |||
264 | /// rotation. LoopRotate should be repeatable and converge to a canonical | |||
265 | /// form. This property is satisfied because simplifying the loop latch can only | |||
266 | /// happen once across multiple invocations of the LoopRotate pass. | |||
267 | /// | |||
268 | /// If -loop-rotate-multi is enabled we can do multiple rotations in one go | |||
269 | /// so to reach a suitable (non-deoptimizing) exit. | |||
270 | bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { | |||
271 | // If the loop has only one block then there is not much to rotate. | |||
272 | if (L->getBlocks().size() == 1) | |||
| ||||
273 | return false; | |||
274 | ||||
275 | bool Rotated = false; | |||
276 | do { | |||
277 | BasicBlock *OrigHeader = L->getHeader(); | |||
278 | BasicBlock *OrigLatch = L->getLoopLatch(); | |||
279 | ||||
280 | BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); | |||
281 | if (!BI
| |||
282 | return Rotated; | |||
283 | ||||
284 | // If the loop header is not one of the loop exiting blocks then | |||
285 | // either this loop is already rotated or it is not | |||
286 | // suitable for loop rotation transformations. | |||
287 | if (!L->isLoopExiting(OrigHeader)) | |||
288 | return Rotated; | |||
289 | ||||
290 | // If the loop latch already contains a branch that leaves the loop then the | |||
291 | // loop is already rotated. | |||
292 | if (!OrigLatch) | |||
293 | return Rotated; | |||
294 | ||||
295 | // Rotate if either the loop latch does *not* exit the loop, or if the loop | |||
296 | // latch was just simplified. Or if we think it will be profitable. | |||
297 | if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && | |||
298 | !profitableToRotateLoopExitingLatch(L) && | |||
299 | !canRotateDeoptimizingLatchExit(L)) | |||
300 | return Rotated; | |||
301 | ||||
302 | // Check size of original header and reject loop if it is very big or we can't | |||
303 | // duplicate blocks inside it. | |||
304 | { | |||
305 | SmallPtrSet<const Value *, 32> EphValues; | |||
306 | CodeMetrics::collectEphemeralValues(L, AC, EphValues); | |||
307 | ||||
308 | CodeMetrics Metrics; | |||
309 | Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); | |||
310 | if (Metrics.notDuplicatable) { | |||
311 | LLVM_DEBUG(do { } while (false) | |||
312 | dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"do { } while (false) | |||
313 | << " instructions: ";do { } while (false) | |||
314 | L->dump())do { } while (false); | |||
315 | return Rotated; | |||
316 | } | |||
317 | if (Metrics.convergent) { | |||
318 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "do { } while (false) | |||
319 | "instructions: ";do { } while (false) | |||
320 | L->dump())do { } while (false); | |||
321 | return Rotated; | |||
322 | } | |||
323 | if (Metrics.NumInsts > MaxHeaderSize) { | |||
324 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "do { } while (false) | |||
325 | << Metrics.NumInstsdo { } while (false) | |||
326 | << " instructions, which is more than the threshold ("do { } while (false) | |||
327 | << MaxHeaderSize << " instructions): ";do { } while (false) | |||
328 | L->dump())do { } while (false); | |||
329 | ++NumNotRotatedDueToHeaderSize; | |||
330 | return Rotated; | |||
331 | } | |||
332 | ||||
333 | // When preparing for LTO, avoid rotating loops with calls that could be | |||
334 | // inlined during the LTO stage. | |||
335 | if (PrepareForLTO && Metrics.NumInlineCandidates > 0) | |||
336 | return Rotated; | |||
337 | } | |||
338 | ||||
339 | // Now, this loop is suitable for rotation. | |||
340 | BasicBlock *OrigPreheader = L->getLoopPreheader(); | |||
341 | ||||
342 | // If the loop could not be converted to canonical form, it must have an | |||
343 | // indirectbr in it, just give up. | |||
344 | if (!OrigPreheader || !L->hasDedicatedExits()) | |||
345 | return Rotated; | |||
346 | ||||
347 | // Anything ScalarEvolution may know about this loop or the PHI nodes | |||
348 | // in its header will soon be invalidated. We should also invalidate | |||
349 | // all outer loops because insertion and deletion of blocks that happens | |||
350 | // during the rotation may violate invariants related to backedge taken | |||
351 | // infos in them. | |||
352 | if (SE) | |||
353 | SE->forgetTopmostLoop(L); | |||
354 | ||||
355 | LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump())do { } while (false); | |||
356 | if (MSSAU && VerifyMemorySSA) | |||
357 | MSSAU->getMemorySSA()->verifyMemorySSA(); | |||
358 | ||||
359 | // Find new Loop header. NewHeader is a Header's one and only successor | |||
360 | // that is inside loop. Header's other successor is outside the | |||
361 | // loop. Otherwise loop is not suitable for rotation. | |||
362 | BasicBlock *Exit = BI->getSuccessor(0); | |||
363 | BasicBlock *NewHeader = BI->getSuccessor(1); | |||
364 | if (L->contains(Exit)) | |||
365 | std::swap(Exit, NewHeader); | |||
366 | assert(NewHeader && "Unable to determine new loop header")((void)0); | |||
367 | assert(L->contains(NewHeader) && !L->contains(Exit) &&((void)0) | |||
368 | "Unable to determine loop header and exit blocks")((void)0); | |||
369 | ||||
370 | // This code assumes that the new header has exactly one predecessor. | |||
371 | // Remove any single-entry PHI nodes in it. | |||
372 | assert(NewHeader->getSinglePredecessor() &&((void)0) | |||
373 | "New header doesn't have one pred!")((void)0); | |||
374 | FoldSingleEntryPHINodes(NewHeader); | |||
375 | ||||
376 | // Begin by walking OrigHeader and populating ValueMap with an entry for | |||
377 | // each Instruction. | |||
378 | BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); | |||
379 | ValueToValueMapTy ValueMap, ValueMapMSSA; | |||
380 | ||||
381 | // For PHI nodes, the value available in OldPreHeader is just the | |||
382 | // incoming value from OldPreHeader. | |||
383 | for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) | |||
384 | InsertNewValueIntoMap(ValueMap, PN, | |||
385 | PN->getIncomingValueForBlock(OrigPreheader)); | |||
386 | ||||
387 | // For the rest of the instructions, either hoist to the OrigPreheader if | |||
388 | // possible or create a clone in the OldPreHeader if not. | |||
389 | Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); | |||
390 | ||||
391 | // Record all debug intrinsics preceding LoopEntryBranch to avoid | |||
392 | // duplication. | |||
393 | using DbgIntrinsicHash = | |||
394 | std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; | |||
395 | auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { | |||
396 | auto VarLocOps = D->location_ops(); | |||
397 | return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), | |||
398 | D->getVariable()}, | |||
399 | D->getExpression()}; | |||
400 | }; | |||
401 | SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; | |||
402 | for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); | |||
403 | I != E; ++I) { | |||
404 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) | |||
405 | DbgIntrinsics.insert(makeHash(DII)); | |||
406 | else | |||
407 | break; | |||
408 | } | |||
409 | ||||
410 | // Remember the local noalias scope declarations in the header. After the | |||
411 | // rotation, they must be duplicated and the scope must be cloned. This | |||
412 | // avoids unwanted interaction across iterations. | |||
413 | SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; | |||
414 | for (Instruction &I : *OrigHeader) | |||
415 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) | |||
416 | NoAliasDeclInstructions.push_back(Decl); | |||
417 | ||||
418 | while (I != E) { | |||
419 | Instruction *Inst = &*I++; | |||
420 | ||||
421 | // If the instruction's operands are invariant and it doesn't read or write | |||
422 | // memory, then it is safe to hoist. Doing this doesn't change the order of | |||
423 | // execution in the preheader, but does prevent the instruction from | |||
424 | // executing in each iteration of the loop. This means it is safe to hoist | |||
425 | // something that might trap, but isn't safe to hoist something that reads | |||
426 | // memory (without proving that the loop doesn't write). | |||
427 | if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && | |||
428 | !Inst->mayWriteToMemory() && !Inst->isTerminator() && | |||
429 | !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { | |||
430 | Inst->moveBefore(LoopEntryBranch); | |||
431 | ++NumInstrsHoisted; | |||
432 | continue; | |||
433 | } | |||
434 | ||||
435 | // Otherwise, create a duplicate of the instruction. | |||
436 | Instruction *C = Inst->clone(); | |||
437 | ++NumInstrsDuplicated; | |||
438 | ||||
439 | // Eagerly remap the operands of the instruction. | |||
440 | RemapInstruction(C, ValueMap, | |||
441 | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | |||
442 | ||||
443 | // Avoid inserting the same intrinsic twice. | |||
444 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) | |||
445 | if (DbgIntrinsics.count(makeHash(DII))) { | |||
446 | C->deleteValue(); | |||
447 | continue; | |||
448 | } | |||
449 | ||||
450 | // With the operands remapped, see if the instruction constant folds or is | |||
451 | // otherwise simplifyable. This commonly occurs because the entry from PHI | |||
452 | // nodes allows icmps and other instructions to fold. | |||
453 | Value *V = SimplifyInstruction(C, SQ); | |||
454 | if (V && LI->replacementPreservesLCSSAForm(C, V)) { | |||
455 | // If so, then delete the temporary instruction and stick the folded value | |||
456 | // in the map. | |||
457 | InsertNewValueIntoMap(ValueMap, Inst, V); | |||
458 | if (!C->mayHaveSideEffects()) { | |||
459 | C->deleteValue(); | |||
460 | C = nullptr; | |||
461 | } | |||
462 | } else { | |||
463 | InsertNewValueIntoMap(ValueMap, Inst, C); | |||
464 | } | |||
465 | if (C) { | |||
466 | // Otherwise, stick the new instruction into the new block! | |||
467 | C->setName(Inst->getName()); | |||
468 | C->insertBefore(LoopEntryBranch); | |||
469 | ||||
470 | if (auto *II = dyn_cast<AssumeInst>(C)) | |||
471 | AC->registerAssumption(II); | |||
472 | // MemorySSA cares whether the cloned instruction was inserted or not, and | |||
473 | // not whether it can be remapped to a simplified value. | |||
474 | if (MSSAU) | |||
475 | InsertNewValueIntoMap(ValueMapMSSA, Inst, C); | |||
476 | } | |||
477 | } | |||
478 | ||||
479 | if (!NoAliasDeclInstructions.empty()) { | |||
480 | // There are noalias scope declarations: | |||
481 | // (general): | |||
482 | // Original: OrigPre { OrigHeader NewHeader ... Latch } | |||
483 | // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } | |||
484 | // | |||
485 | // with D: llvm.experimental.noalias.scope.decl, | |||
486 | // U: !noalias or !alias.scope depending on D | |||
487 | // ... { D U1 U2 } can transform into: | |||
488 | // (0) : ... { D U1 U2 } // no relevant rotation for this part | |||
489 | // (1) : ... D' { U1 U2 D } // D is part of OrigHeader | |||
490 | // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader | |||
491 | // | |||
492 | // We now want to transform: | |||
493 | // (1) -> : ... D' { D U1 U2 D'' } | |||
494 | // (2) -> : ... D' U1' { D U2 D'' U1'' } | |||
495 | // D: original llvm.experimental.noalias.scope.decl | |||
496 | // D', U1': duplicate with replaced scopes | |||
497 | // D'', U1'': different duplicate with replaced scopes | |||
498 | // This ensures a safe fallback to 'may_alias' introduced by the rotate, | |||
499 | // as U1'' and U1' scopes will not be compatible wrt to the local restrict | |||
500 | ||||
501 | // Clone the llvm.experimental.noalias.decl again for the NewHeader. | |||
502 | Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); | |||
503 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { | |||
504 | LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:"do { } while (false) | |||
505 | << *NAD << "\n")do { } while (false); | |||
506 | Instruction *NewNAD = NAD->clone(); | |||
507 | NewNAD->insertBefore(NewHeaderInsertionPoint); | |||
508 | } | |||
509 | ||||
510 | // Scopes must now be duplicated, once for OrigHeader and once for | |||
511 | // OrigPreHeader'. | |||
512 | { | |||
513 | auto &Context = NewHeader->getContext(); | |||
514 | ||||
515 | SmallVector<MDNode *, 8> NoAliasDeclScopes; | |||
516 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) | |||
517 | NoAliasDeclScopes.push_back(NAD->getScopeList()); | |||
518 | ||||
519 | LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n")do { } while (false); | |||
520 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, | |||
521 | "h.rot"); | |||
522 | LLVM_DEBUG(OrigHeader->dump())do { } while (false); | |||
523 | ||||
524 | // Keep the compile time impact low by only adapting the inserted block | |||
525 | // of instructions in the OrigPreHeader. This might result in slightly | |||
526 | // more aliasing between these instructions and those that were already | |||
527 | // present, but it will be much faster when the original PreHeader is | |||
528 | // large. | |||
529 | LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n")do { } while (false); | |||
530 | auto *FirstDecl = | |||
531 | cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); | |||
532 | auto *LastInst = &OrigPreheader->back(); | |||
533 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, | |||
534 | Context, "pre.rot"); | |||
535 | LLVM_DEBUG(OrigPreheader->dump())do { } while (false); | |||
536 | ||||
537 | LLVM_DEBUG(dbgs() << " Updated NewHeader:\n")do { } while (false); | |||
538 | LLVM_DEBUG(NewHeader->dump())do { } while (false); | |||
539 | } | |||
540 | } | |||
541 | ||||
542 | // Along with all the other instructions, we just cloned OrigHeader's | |||
543 | // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's | |||
544 | // successors by duplicating their incoming values for OrigHeader. | |||
545 | for (BasicBlock *SuccBB : successors(OrigHeader)) | |||
546 | for (BasicBlock::iterator BI = SuccBB->begin(); | |||
547 | PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | |||
548 | PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); | |||
549 | ||||
550 | // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove | |||
551 | // OrigPreHeader's old terminator (the original branch into the loop), and | |||
552 | // remove the corresponding incoming values from the PHI nodes in OrigHeader. | |||
553 | LoopEntryBranch->eraseFromParent(); | |||
554 | ||||
555 | // Update MemorySSA before the rewrite call below changes the 1:1 | |||
556 | // instruction:cloned_instruction_or_value mapping. | |||
557 | if (MSSAU) { | |||
558 | InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); | |||
559 | MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, | |||
560 | ValueMapMSSA); | |||
561 | } | |||
562 | ||||
563 | SmallVector<PHINode*, 2> InsertedPHIs; | |||
564 | // If there were any uses of instructions in the duplicated block outside the | |||
565 | // loop, update them, inserting PHI nodes as required | |||
566 | RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, | |||
567 | &InsertedPHIs); | |||
568 | ||||
569 | // Attach dbg.value intrinsics to the new phis if that phi uses a value that | |||
570 | // previously had debug metadata attached. This keeps the debug info | |||
571 | // up-to-date in the loop body. | |||
572 | if (!InsertedPHIs.empty()) | |||
573 | insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); | |||
574 | ||||
575 | // NewHeader is now the header of the loop. | |||
576 | L->moveToHeader(NewHeader); | |||
577 | assert(L->getHeader() == NewHeader && "Latch block is our new header")((void)0); | |||
578 | ||||
579 | // Inform DT about changes to the CFG. | |||
580 | if (DT) { | |||
581 | // The OrigPreheader branches to the NewHeader and Exit now. Then, inform | |||
582 | // the DT about the removed edge to the OrigHeader (that got removed). | |||
583 | SmallVector<DominatorTree::UpdateType, 3> Updates; | |||
584 | Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); | |||
585 | Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); | |||
586 | Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); | |||
587 | ||||
588 | if (MSSAU) { | |||
589 | MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); | |||
590 | if (VerifyMemorySSA) | |||
591 | MSSAU->getMemorySSA()->verifyMemorySSA(); | |||
592 | } else { | |||
593 | DT->applyUpdates(Updates); | |||
594 | } | |||
595 | } | |||
596 | ||||
597 | // At this point, we've finished our major CFG changes. As part of cloning | |||
598 | // the loop into the preheader we've simplified instructions and the | |||
599 | // duplicated conditional branch may now be branching on a constant. If it is | |||
600 | // branching on a constant and if that constant means that we enter the loop, | |||
601 | // then we fold away the cond branch to an uncond branch. This simplifies the | |||
602 | // loop in cases important for nested loops, and it also means we don't have | |||
603 | // to split as many edges. | |||
604 | BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); | |||
605 | assert(PHBI->isConditional() && "Should be clone of BI condbr!")((void)0); | |||
606 | if (!isa<ConstantInt>(PHBI->getCondition()) || | |||
607 | PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != | |||
608 | NewHeader) { | |||
609 | // The conditional branch can't be folded, handle the general case. | |||
610 | // Split edges as necessary to preserve LoopSimplify form. | |||
611 | ||||
612 | // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and | |||
613 | // thus is not a preheader anymore. | |||
614 | // Split the edge to form a real preheader. | |||
615 | BasicBlock *NewPH = SplitCriticalEdge( | |||
616 | OrigPreheader, NewHeader, | |||
617 | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); | |||
618 | NewPH->setName(NewHeader->getName() + ".lr.ph"); | |||
619 | ||||
620 | // Preserve canonical loop form, which means that 'Exit' should have only | |||
621 | // one predecessor. Note that Exit could be an exit block for multiple | |||
622 | // nested loops, causing both of the edges to now be critical and need to | |||
623 | // be split. | |||
624 | SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); | |||
625 | bool SplitLatchEdge = false; | |||
626 | for (BasicBlock *ExitPred : ExitPreds) { | |||
627 | // We only need to split loop exit edges. | |||
628 | Loop *PredLoop = LI->getLoopFor(ExitPred); | |||
629 | if (!PredLoop || PredLoop->contains(Exit) || | |||
630 | ExitPred->getTerminator()->isIndirectTerminator()) | |||
631 | continue; | |||
632 | SplitLatchEdge |= L->getLoopLatch() == ExitPred; | |||
633 | BasicBlock *ExitSplit = SplitCriticalEdge( | |||
634 | ExitPred, Exit, | |||
635 | CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); | |||
636 | ExitSplit->moveBefore(Exit); | |||
637 | } | |||
638 | assert(SplitLatchEdge &&((void)0) | |||
639 | "Despite splitting all preds, failed to split latch exit?")((void)0); | |||
640 | (void)SplitLatchEdge; | |||
641 | } else { | |||
642 | // We can fold the conditional branch in the preheader, this makes things | |||
643 | // simpler. The first step is to remove the extra edge to the Exit block. | |||
644 | Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); | |||
645 | BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); | |||
646 | NewBI->setDebugLoc(PHBI->getDebugLoc()); | |||
647 | PHBI->eraseFromParent(); | |||
648 | ||||
649 | // With our CFG finalized, update DomTree if it is available. | |||
650 | if (DT) DT->deleteEdge(OrigPreheader, Exit); | |||
651 | ||||
652 | // Update MSSA too, if available. | |||
653 | if (MSSAU) | |||
654 | MSSAU->removeEdge(OrigPreheader, Exit); | |||
655 | } | |||
656 | ||||
657 | assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation")((void)0); | |||
658 | assert(L->getLoopLatch() && "Invalid loop latch after loop rotation")((void)0); | |||
659 | ||||
660 | if (MSSAU && VerifyMemorySSA) | |||
661 | MSSAU->getMemorySSA()->verifyMemorySSA(); | |||
662 | ||||
663 | // Now that the CFG and DomTree are in a consistent state again, try to merge | |||
664 | // the OrigHeader block into OrigLatch. This will succeed if they are | |||
665 | // connected by an unconditional branch. This is just a cleanup so the | |||
666 | // emitted code isn't too gross in this common case. | |||
667 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
668 | BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); | |||
669 | bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); | |||
670 | if (DidMerge) | |||
671 | RemoveRedundantDbgInstrs(PredBB); | |||
672 | ||||
673 | if (MSSAU && VerifyMemorySSA) | |||
674 | MSSAU->getMemorySSA()->verifyMemorySSA(); | |||
675 | ||||
676 | LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump())do { } while (false); | |||
677 | ||||
678 | ++NumRotated; | |||
679 | ||||
680 | Rotated = true; | |||
681 | SimplifiedLatch = false; | |||
682 | ||||
683 | // Check that new latch is a deoptimizing exit and then repeat rotation if possible. | |||
684 | // Deoptimizing latch exit is not a generally typical case, so we just loop over. | |||
685 | // TODO: if it becomes a performance bottleneck extend rotation algorithm | |||
686 | // to handle multiple rotations in one go. | |||
687 | } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); | |||
688 | ||||
689 | ||||
690 | return true; | |||
691 | } | |||
692 | ||||
693 | /// Determine whether the instructions in this range may be safely and cheaply | |||
694 | /// speculated. This is not an important enough situation to develop complex | |||
695 | /// heuristics. We handle a single arithmetic instruction along with any type | |||
696 | /// conversions. | |||
697 | static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, | |||
698 | BasicBlock::iterator End, Loop *L) { | |||
699 | bool seenIncrement = false; | |||
700 | bool MultiExitLoop = false; | |||
701 | ||||
702 | if (!L->getExitingBlock()) | |||
703 | MultiExitLoop = true; | |||
704 | ||||
705 | for (BasicBlock::iterator I = Begin; I != End; ++I) { | |||
706 | ||||
707 | if (!isSafeToSpeculativelyExecute(&*I)) | |||
708 | return false; | |||
709 | ||||
710 | if (isa<DbgInfoIntrinsic>(I)) | |||
711 | continue; | |||
712 | ||||
713 | switch (I->getOpcode()) { | |||
714 | default: | |||
715 | return false; | |||
716 | case Instruction::GetElementPtr: | |||
717 | // GEPs are cheap if all indices are constant. | |||
718 | if (!cast<GEPOperator>(I)->hasAllConstantIndices()) | |||
719 | return false; | |||
720 | // fall-thru to increment case | |||
721 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
722 | case Instruction::Add: | |||
723 | case Instruction::Sub: | |||
724 | case Instruction::And: | |||
725 | case Instruction::Or: | |||
726 | case Instruction::Xor: | |||
727 | case Instruction::Shl: | |||
728 | case Instruction::LShr: | |||
729 | case Instruction::AShr: { | |||
730 | Value *IVOpnd = | |||
731 | !isa<Constant>(I->getOperand(0)) | |||
732 | ? I->getOperand(0) | |||
733 | : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; | |||
734 | if (!IVOpnd) | |||
735 | return false; | |||
736 | ||||
737 | // If increment operand is used outside of the loop, this speculation | |||
738 | // could cause extra live range interference. | |||
739 | if (MultiExitLoop) { | |||
740 | for (User *UseI : IVOpnd->users()) { | |||
741 | auto *UserInst = cast<Instruction>(UseI); | |||
742 | if (!L->contains(UserInst)) | |||
743 | return false; | |||
744 | } | |||
745 | } | |||
746 | ||||
747 | if (seenIncrement) | |||
748 | return false; | |||
749 | seenIncrement = true; | |||
750 | break; | |||
751 | } | |||
752 | case Instruction::Trunc: | |||
753 | case Instruction::ZExt: | |||
754 | case Instruction::SExt: | |||
755 | // ignore type conversions | |||
756 | break; | |||
757 | } | |||
758 | } | |||
759 | return true; | |||
760 | } | |||
761 | ||||
762 | /// Fold the loop tail into the loop exit by speculating the loop tail | |||
763 | /// instructions. Typically, this is a single post-increment. In the case of a | |||
764 | /// simple 2-block loop, hoisting the increment can be much better than | |||
765 | /// duplicating the entire loop header. In the case of loops with early exits, | |||
766 | /// rotation will not work anyway, but simplifyLoopLatch will put the loop in | |||
767 | /// canonical form so downstream passes can handle it. | |||
768 | /// | |||
769 | /// I don't believe this invalidates SCEV. | |||
770 | bool LoopRotate::simplifyLoopLatch(Loop *L) { | |||
771 | BasicBlock *Latch = L->getLoopLatch(); | |||
772 | if (!Latch || Latch->hasAddressTaken()) | |||
773 | return false; | |||
774 | ||||
775 | BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); | |||
776 | if (!Jmp || !Jmp->isUnconditional()) | |||
777 | return false; | |||
778 | ||||
779 | BasicBlock *LastExit = Latch->getSinglePredecessor(); | |||
780 | if (!LastExit || !L->isLoopExiting(LastExit)) | |||
781 | return false; | |||
782 | ||||
783 | BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); | |||
784 | if (!BI) | |||
785 | return false; | |||
786 | ||||
787 | if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) | |||
788 | return false; | |||
789 | ||||
790 | LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "do { } while (false) | |||
791 | << LastExit->getName() << "\n")do { } while (false); | |||
792 | ||||
793 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | |||
794 | MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, | |||
795 | /*PredecessorWithTwoSuccessors=*/true); | |||
796 | ||||
797 | if (MSSAU && VerifyMemorySSA) | |||
798 | MSSAU->getMemorySSA()->verifyMemorySSA(); | |||
799 | ||||
800 | return true; | |||
801 | } | |||
802 | ||||
803 | /// Rotate \c L, and return true if any modification was made. | |||
804 | bool LoopRotate::processLoop(Loop *L) { | |||
805 | // Save the loop metadata. | |||
806 | MDNode *LoopMD = L->getLoopID(); | |||
807 | ||||
808 | bool SimplifiedLatch = false; | |||
809 | ||||
810 | // Simplify the loop latch before attempting to rotate the header | |||
811 | // upward. Rotation may not be needed if the loop tail can be folded into the | |||
812 | // loop exit. | |||
813 | if (!RotationOnly) | |||
814 | SimplifiedLatch = simplifyLoopLatch(L); | |||
815 | ||||
816 | bool MadeChange = rotateLoop(L, SimplifiedLatch); | |||
817 | assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&((void)0) | |||
818 | "Loop latch should be exiting after loop-rotate.")((void)0); | |||
819 | ||||
820 | // Restore the loop metadata. | |||
821 | // NB! We presume LoopRotation DOESN'T ADD its own metadata. | |||
822 | if ((MadeChange || SimplifiedLatch) && LoopMD) | |||
823 | L->setLoopID(LoopMD); | |||
824 | ||||
825 | return MadeChange || SimplifiedLatch; | |||
826 | } | |||
827 | ||||
828 | ||||
829 | /// The utility to convert a loop into a loop with bottom test. | |||
830 | bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, | |||
831 | AssumptionCache *AC, DominatorTree *DT, | |||
832 | ScalarEvolution *SE, MemorySSAUpdater *MSSAU, | |||
833 | const SimplifyQuery &SQ, bool RotationOnly = true, | |||
834 | unsigned Threshold = unsigned(-1), | |||
835 | bool IsUtilMode = true, bool PrepareForLTO) { | |||
836 | LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, | |||
837 | IsUtilMode, PrepareForLTO); | |||
838 | return LR.processLoop(L); | |||
839 | } |