Bug Summary

File:src/usr.bin/ssh/ssh-keyscan/../umac.c
Warning:line 515, column 9
Value stored to 'k8' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name umac128.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/usr.bin/ssh/ssh-keyscan/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/usr.bin/ssh/ssh-keyscan/.. -D WITH_OPENSSL -D WITH_ZLIB -D ENABLE_PKCS11 -D HAVE_DLOPEN -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -fdebug-compilation-dir=/usr/src/usr.bin/ssh/ssh-keyscan/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/usr.bin/ssh/ssh-keyscan/../umac128.c
1/* $OpenBSD: umac.c,v 1.22 2022/01/01 05:55:06 jsg Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#ifndef UMAC_OUTPUT_LEN16
56#define UMAC_OUTPUT_LEN16 8 /* Alowable: 4, 8, 12, 16 */
57#endif
58/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
59/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
60/* #define SSE2 0 Is SSE2 is available? */
61/* #define RUN_TESTS 0 Run basic correctness/speed tests */
62/* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */
63
64/* ---------------------------------------------------------------------- */
65/* -- Global Includes --------------------------------------------------- */
66/* ---------------------------------------------------------------------- */
67
68#include <sys/types.h>
69#include <endian.h>
70#include <string.h>
71#include <stdarg.h>
72#include <stdio.h>
73#include <stdlib.h>
74#include <stddef.h>
75
76#include "xmalloc.h"
77#include "umac.h"
78#include "misc.h"
79
80/* ---------------------------------------------------------------------- */
81/* --- Primitive Data Types --- */
82/* ---------------------------------------------------------------------- */
83
84/* The following assumptions may need change on your system */
85typedef u_int8_t UINT8; /* 1 byte */
86typedef u_int16_t UINT16; /* 2 byte */
87typedef u_int32_t UINT32; /* 4 byte */
88typedef u_int64_t UINT64; /* 8 bytes */
89typedef unsigned int UWORD; /* Register */
90
91/* ---------------------------------------------------------------------- */
92/* --- Constants -------------------------------------------------------- */
93/* ---------------------------------------------------------------------- */
94
95#define UMAC_KEY_LEN16 16 /* UMAC takes 16 bytes of external key */
96
97/* Message "words" are read from memory in an endian-specific manner. */
98/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
99/* be set true if the host computer is little-endian. */
100
101#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
102#define __LITTLE_ENDIAN__1 1
103#else
104#define __LITTLE_ENDIAN__1 0
105#endif
106
107/* ---------------------------------------------------------------------- */
108/* ---------------------------------------------------------------------- */
109/* ----- Architecture Specific ------------------------------------------ */
110/* ---------------------------------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112
113
114/* ---------------------------------------------------------------------- */
115/* ---------------------------------------------------------------------- */
116/* ----- Primitive Routines --------------------------------------------- */
117/* ---------------------------------------------------------------------- */
118/* ---------------------------------------------------------------------- */
119
120
121/* ---------------------------------------------------------------------- */
122/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
123/* ---------------------------------------------------------------------- */
124
125#define MUL64(a,b)((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
126
127/* ---------------------------------------------------------------------- */
128/* --- Endian Conversion --- Forcing assembly on some platforms */
129/* ---------------------------------------------------------------------- */
130
131/* The following definitions use the above reversal-primitives to do the right
132 * thing on endian specific load and stores.
133 */
134
135#if BYTE_ORDER1234 == LITTLE_ENDIAN1234
136#define LOAD_UINT32_REVERSED(p)get_u32(p) get_u32(p)
137#define STORE_UINT32_REVERSED(p,v)put_u32(p,v) put_u32(p,v)
138#else
139#define LOAD_UINT32_REVERSED(p)get_u32(p) get_u32_le(p)
140#define STORE_UINT32_REVERSED(p,v)put_u32(p,v) put_u32_le(p,v)
141#endif
142
143#define LOAD_UINT32_LITTLE(p)(get_u32_le(p)) (get_u32_le(p))
144#define STORE_UINT32_BIG(p,v)put_u32(p, v) put_u32(p, v)
145
146
147
148/* ---------------------------------------------------------------------- */
149/* ---------------------------------------------------------------------- */
150/* ----- Begin KDF & PDF Section ---------------------------------------- */
151/* ---------------------------------------------------------------------- */
152/* ---------------------------------------------------------------------- */
153
154/* UMAC uses AES with 16 byte block and key lengths */
155#define AES_BLOCK_LEN16 16
156
157#ifdef WITH_OPENSSL1
158#include <openssl/aes.h>
159typedef AES_KEY aes_int_key[1];
160#define aes_encryption(in,out,int_key)AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key
)
\
161 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
162#define aes_key_setup(key,int_key)AES_set_encrypt_key((const u_char *)(key),16*8,int_key) \
163 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN16*8,int_key)
164#else
165#include "rijndael.h"
166#define AES_ROUNDS ((UMAC_KEY_LEN16 / 4) + 6)
167typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
168#define aes_encryption(in,out,int_key)AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key
)
\
169 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
170#define aes_key_setup(key,int_key)AES_set_encrypt_key((const u_char *)(key),16*8,int_key) \
171 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
172 UMAC_KEY_LEN16*8)
173#endif
174
175/* The user-supplied UMAC key is stretched using AES in a counter
176 * mode to supply all random bits needed by UMAC. The kdf function takes
177 * an AES internal key representation 'key' and writes a stream of
178 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
179 * 'ndx' causes a distinct byte stream.
180 */
181static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
182{
183 UINT8 in_buf[AES_BLOCK_LEN16] = {0};
184 UINT8 out_buf[AES_BLOCK_LEN16];
185 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
186 int i;
187
188 /* Setup the initial value */
189 in_buf[AES_BLOCK_LEN16-9] = ndx;
190 in_buf[AES_BLOCK_LEN16-1] = i = 1;
191
192 while (nbytes >= AES_BLOCK_LEN16) {
193 aes_encryption(in_buf, out_buf, key)AES_encrypt((u_char *)(in_buf),(u_char *)(out_buf),(AES_KEY *
)key)
;
194 memcpy(dst_buf,out_buf,AES_BLOCK_LEN16);
195 in_buf[AES_BLOCK_LEN16-1] = ++i;
196 nbytes -= AES_BLOCK_LEN16;
197 dst_buf += AES_BLOCK_LEN16;
198 }
199 if (nbytes) {
200 aes_encryption(in_buf, out_buf, key)AES_encrypt((u_char *)(in_buf),(u_char *)(out_buf),(AES_KEY *
)key)
;
201 memcpy(dst_buf,out_buf,nbytes);
202 }
203 explicit_bzero(in_buf, sizeof(in_buf));
204 explicit_bzero(out_buf, sizeof(out_buf));
205}
206
207/* The final UHASH result is XOR'd with the output of a pseudorandom
208 * function. Here, we use AES to generate random output and
209 * xor the appropriate bytes depending on the last bits of nonce.
210 * This scheme is optimized for sequential, increasing big-endian nonces.
211 */
212
213typedef struct {
214 UINT8 cache[AES_BLOCK_LEN16]; /* Previous AES output is saved */
215 UINT8 nonce[AES_BLOCK_LEN16]; /* The AES input making above cache */
216 aes_int_key prf_key; /* Expanded AES key for PDF */
217} pdf_ctx;
218
219static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
220{
221 UINT8 buf[UMAC_KEY_LEN16];
222
223 kdf(buf, prf_key, 0, UMAC_KEY_LEN16);
224 aes_key_setup(buf, pc->prf_key)AES_set_encrypt_key((const u_char *)(buf),16*8,pc->prf_key
)
;
225
226 /* Initialize pdf and cache */
227 memset(pc->nonce, 0, sizeof(pc->nonce));
228 aes_encryption(pc->nonce, pc->cache, pc->prf_key)AES_encrypt((u_char *)(pc->nonce),(u_char *)(pc->cache)
,(AES_KEY *)pc->prf_key)
;
229 explicit_bzero(buf, sizeof(buf));
230}
231
232static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
233{
234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235 * of the AES output. If last time around we returned the ndx-1st
236 * element, then we may have the result in the cache already.
237 */
238
239#if (UMAC_OUTPUT_LEN16 == 4)
240#define LOW_BIT_MASK0 3
241#elif (UMAC_OUTPUT_LEN16 == 8)
242#define LOW_BIT_MASK0 1
243#elif (UMAC_OUTPUT_LEN16 > 8)
244#define LOW_BIT_MASK0 0
245#endif
246 union {
247 UINT8 tmp_nonce_lo[4];
248 UINT32 align;
249 } t;
250#if LOW_BIT_MASK0 != 0
251 int ndx = nonce[7] & LOW_BIT_MASK0;
252#endif
253 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
254 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK0; /* zero last bit */
255
256 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
257 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
258 {
259 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
260 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
261 aes_encryption(pc->nonce, pc->cache, pc->prf_key)AES_encrypt((u_char *)(pc->nonce),(u_char *)(pc->cache)
,(AES_KEY *)pc->prf_key)
;
262 }
263
264#if (UMAC_OUTPUT_LEN16 == 4)
265 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
266#elif (UMAC_OUTPUT_LEN16 == 8)
267 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
268#elif (UMAC_OUTPUT_LEN16 == 12)
269 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
270 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
271#elif (UMAC_OUTPUT_LEN16 == 16)
272 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
274#endif
275}
276
277/* ---------------------------------------------------------------------- */
278/* ---------------------------------------------------------------------- */
279/* ----- Begin NH Hash Section ------------------------------------------ */
280/* ---------------------------------------------------------------------- */
281/* ---------------------------------------------------------------------- */
282
283/* The NH-based hash functions used in UMAC are described in the UMAC paper
284 * and specification, both of which can be found at the UMAC website.
285 * The interface to this implementation has two
286 * versions, one expects the entire message being hashed to be passed
287 * in a single buffer and returns the hash result immediately. The second
288 * allows the message to be passed in a sequence of buffers. In the
289 * multiple-buffer interface, the client calls the routine nh_update() as
290 * many times as necessary. When there is no more data to be fed to the
291 * hash, the client calls nh_final() which calculates the hash output.
292 * Before beginning another hash calculation the nh_reset() routine
293 * must be called. The single-buffer routine, nh(), is equivalent to
294 * the sequence of calls nh_update() and nh_final(); however it is
295 * optimized and should be preferred whenever the multiple-buffer interface
296 * is not necessary. When using either interface, it is the client's
297 * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
298 *
299 * The routine nh_init() initializes the nh_ctx data structure and
300 * must be called once, before any other PDF routine.
301 */
302
303 /* The "nh_aux" routines do the actual NH hashing work. They
304 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
305 * produce output for all STREAMS NH iterations in one call,
306 * allowing the parallel implementation of the streams.
307 */
308
309#define STREAMS(16 / 4) (UMAC_OUTPUT_LEN16 / 4) /* Number of times hash is applied */
310#define L1_KEY_LEN1024 1024 /* Internal key bytes */
311#define L1_KEY_SHIFT16 16 /* Toeplitz key shift between streams */
312#define L1_PAD_BOUNDARY32 32 /* pad message to boundary multiple */
313#define ALLOC_BOUNDARY16 16 /* Keep buffers aligned to this */
314#define HASH_BUF_BYTES64 64 /* nh_aux_hb buffer multiple */
315
316typedef struct {
317 UINT8 nh_key [L1_KEY_LEN1024 + L1_KEY_SHIFT16 * (STREAMS(16 / 4) - 1)]; /* NH Key */
318 UINT8 data [HASH_BUF_BYTES64]; /* Incoming data buffer */
319 int next_data_empty; /* Bookkeeping variable for data buffer. */
320 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */
321 UINT64 state[STREAMS(16 / 4)]; /* on-line state */
322} nh_ctx;
323
324
325#if (UMAC_OUTPUT_LEN16 == 4)
326
327static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
328/* NH hashing primitive. Previous (partial) hash result is loaded and
329* then stored via hp pointer. The length of the data pointed at by "dp",
330* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
331* is expected to be endian compensated in memory at key setup.
332*/
333{
334 UINT64 h;
335 UWORD c = dlen / 32;
336 UINT32 *k = (UINT32 *)kp;
337 const UINT32 *d = (const UINT32 *)dp;
338 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
339 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
340
341 h = *((UINT64 *)hp);
342 do {
343 d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1));
344 d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3));
345 d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5));
346 d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7));
347 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
348 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
349 h += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 +
d4))))
;
350 h += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 +
d5))))
;
351 h += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 +
d6))))
;
352 h += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 +
d7))))
;
353
354 d += 8;
355 k += 8;
356 } while (--c);
357 *((UINT64 *)hp) = h;
358}
359
360#elif (UMAC_OUTPUT_LEN16 == 8)
361
362static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
363/* Same as previous nh_aux, but two streams are handled in one pass,
364 * reading and writing 16 bytes of hash-state per call.
365 */
366{
367 UINT64 h1,h2;
368 UWORD c = dlen / 32;
369 UINT32 *k = (UINT32 *)kp;
370 const UINT32 *d = (const UINT32 *)dp;
371 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
372 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
373 k8,k9,k10,k11;
374
375 h1 = *((UINT64 *)hp);
376 h2 = *((UINT64 *)hp + 1);
377 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
378 do {
379 d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1));
380 d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3));
381 d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5));
382 d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7));
383 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
384 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
385
386 h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 +
d4))))
;
387 h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 +
d4))))
;
388
389 h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 +
d5))))
;
390 h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 +
d5))))
;
391
392 h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 +
d6))))
;
393 h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10
+ d6))))
;
394
395 h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 +
d7))))
;
396 h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11
+ d7))))
;
397
398 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
399
400 d += 8;
401 k += 8;
402 } while (--c);
403 ((UINT64 *)hp)[0] = h1;
404 ((UINT64 *)hp)[1] = h2;
405}
406
407#elif (UMAC_OUTPUT_LEN16 == 12)
408
409static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
410/* Same as previous nh_aux, but two streams are handled in one pass,
411 * reading and writing 24 bytes of hash-state per call.
412*/
413{
414 UINT64 h1,h2,h3;
415 UWORD c = dlen / 32;
416 UINT32 *k = (UINT32 *)kp;
417 const UINT32 *d = (const UINT32 *)dp;
418 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
419 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
420 k8,k9,k10,k11,k12,k13,k14,k15;
421
422 h1 = *((UINT64 *)hp);
423 h2 = *((UINT64 *)hp + 1);
424 h3 = *((UINT64 *)hp + 2);
425 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
426 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
427 do {
428 d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1));
429 d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3));
430 d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5));
431 d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7));
432 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
433 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
434
435 h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 +
d4))))
;
436 h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 +
d4))))
;
437 h3 += MUL64((k8 + d0), (k12 + d4))((UINT64)((UINT64)(UINT32)((k8 + d0)) * (UINT64)(UINT32)((k12
+ d4))))
;
438
439 h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 +
d5))))
;
440 h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 +
d5))))
;
441 h3 += MUL64((k9 + d1), (k13 + d5))((UINT64)((UINT64)(UINT32)((k9 + d1)) * (UINT64)(UINT32)((k13
+ d5))))
;
442
443 h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 +
d6))))
;
444 h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10
+ d6))))
;
445 h3 += MUL64((k10 + d2), (k14 + d6))((UINT64)((UINT64)(UINT32)((k10 + d2)) * (UINT64)(UINT32)((k14
+ d6))))
;
446
447 h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 +
d7))))
;
448 h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11
+ d7))))
;
449 h3 += MUL64((k11 + d3), (k15 + d7))((UINT64)((UINT64)(UINT32)((k11 + d3)) * (UINT64)(UINT32)((k15
+ d7))))
;
450
451 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
452 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
453
454 d += 8;
455 k += 8;
456 } while (--c);
457 ((UINT64 *)hp)[0] = h1;
458 ((UINT64 *)hp)[1] = h2;
459 ((UINT64 *)hp)[2] = h3;
460}
461
462#elif (UMAC_OUTPUT_LEN16 == 16)
463
464static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
465/* Same as previous nh_aux, but two streams are handled in one pass,
466 * reading and writing 24 bytes of hash-state per call.
467*/
468{
469 UINT64 h1,h2,h3,h4;
470 UWORD c = dlen / 32;
471 UINT32 *k = (UINT32 *)kp;
472 const UINT32 *d = (const UINT32 *)dp;
473 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
474 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
475 k8,k9,k10,k11,k12,k13,k14,k15,
476 k16,k17,k18,k19;
477
478 h1 = *((UINT64 *)hp);
479 h2 = *((UINT64 *)hp + 1);
480 h3 = *((UINT64 *)hp + 2);
481 h4 = *((UINT64 *)hp + 3);
482 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
483 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
484 do {
485 d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1));
486 d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3));
487 d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5));
488 d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7));
489 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
490 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
491 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
492
493 h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 +
d4))))
;
494 h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 +
d4))))
;
495 h3 += MUL64((k8 + d0), (k12 + d4))((UINT64)((UINT64)(UINT32)((k8 + d0)) * (UINT64)(UINT32)((k12
+ d4))))
;
496 h4 += MUL64((k12 + d0), (k16 + d4))((UINT64)((UINT64)(UINT32)((k12 + d0)) * (UINT64)(UINT32)((k16
+ d4))))
;
497
498 h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 +
d5))))
;
499 h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 +
d5))))
;
500 h3 += MUL64((k9 + d1), (k13 + d5))((UINT64)((UINT64)(UINT32)((k9 + d1)) * (UINT64)(UINT32)((k13
+ d5))))
;
501 h4 += MUL64((k13 + d1), (k17 + d5))((UINT64)((UINT64)(UINT32)((k13 + d1)) * (UINT64)(UINT32)((k17
+ d5))))
;
502
503 h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 +
d6))))
;
504 h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10
+ d6))))
;
505 h3 += MUL64((k10 + d2), (k14 + d6))((UINT64)((UINT64)(UINT32)((k10 + d2)) * (UINT64)(UINT32)((k14
+ d6))))
;
506 h4 += MUL64((k14 + d2), (k18 + d6))((UINT64)((UINT64)(UINT32)((k14 + d2)) * (UINT64)(UINT32)((k18
+ d6))))
;
507
508 h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 +
d7))))
;
509 h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11
+ d7))))
;
510 h3 += MUL64((k11 + d3), (k15 + d7))((UINT64)((UINT64)(UINT32)((k11 + d3)) * (UINT64)(UINT32)((k15
+ d7))))
;
511 h4 += MUL64((k15 + d3), (k19 + d7))((UINT64)((UINT64)(UINT32)((k15 + d3)) * (UINT64)(UINT32)((k19
+ d7))))
;
512
513 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
514 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
515 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
Value stored to 'k8' is never read
516
517 d += 8;
518 k += 8;
519 } while (--c);
520 ((UINT64 *)hp)[0] = h1;
521 ((UINT64 *)hp)[1] = h2;
522 ((UINT64 *)hp)[2] = h3;
523 ((UINT64 *)hp)[3] = h4;
524}
525
526/* ---------------------------------------------------------------------- */
527#endif /* UMAC_OUTPUT_LENGTH */
528/* ---------------------------------------------------------------------- */
529
530
531/* ---------------------------------------------------------------------- */
532
533static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
534/* This function is a wrapper for the primitive NH hash functions. It takes
535 * as argument "hc" the current hash context and a buffer which must be a
536 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
537 * appropriately according to how much message has been hashed already.
538 */
539{
540 UINT8 *key;
541
542 key = hc->nh_key + hc->bytes_hashed;
543 nh_aux(key, buf, hc->state, nbytes);
544}
545
546/* ---------------------------------------------------------------------- */
547
548#if (__LITTLE_ENDIAN__1)
549static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
550/* We endian convert the keys on little-endian computers to */
551/* compensate for the lack of big-endian memory reads during hashing. */
552{
553 UWORD iters = num_bytes / bpw;
554 if (bpw == 4) {
555 UINT32 *p = (UINT32 *)buf;
556 do {
557 *p = LOAD_UINT32_REVERSED(p)get_u32(p);
558 p++;
559 } while (--iters);
560 } else if (bpw == 8) {
561 UINT32 *p = (UINT32 *)buf;
562 UINT32 t;
563 do {
564 t = LOAD_UINT32_REVERSED(p+1)get_u32(p+1);
565 p[1] = LOAD_UINT32_REVERSED(p)get_u32(p);
566 p[0] = t;
567 p += 2;
568 } while (--iters);
569 }
570}
571#define endian_convert_if_le(x,y,z)endian_convert((x),(y),(z)) endian_convert((x),(y),(z))
572#else
573#define endian_convert_if_le(x,y,z)endian_convert((x),(y),(z)) do{}while(0) /* Do nothing */
574#endif
575
576/* ---------------------------------------------------------------------- */
577
578static void nh_reset(nh_ctx *hc)
579/* Reset nh_ctx to ready for hashing of new data */
580{
581 hc->bytes_hashed = 0;
582 hc->next_data_empty = 0;
583 hc->state[0] = 0;
584#if (UMAC_OUTPUT_LEN16 >= 8)
585 hc->state[1] = 0;
586#endif
587#if (UMAC_OUTPUT_LEN16 >= 12)
588 hc->state[2] = 0;
589#endif
590#if (UMAC_OUTPUT_LEN16 == 16)
591 hc->state[3] = 0;
592#endif
593
594}
595
596/* ---------------------------------------------------------------------- */
597
598static void nh_init(nh_ctx *hc, aes_int_key prf_key)
599/* Generate nh_key, endian convert and reset to be ready for hashing. */
600{
601 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
602 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key))endian_convert((hc->nh_key),(4),(sizeof(hc->nh_key)));
603 nh_reset(hc);
604}
605
606/* ---------------------------------------------------------------------- */
607
608static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
609/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
610/* even multiple of HASH_BUF_BYTES. */
611{
612 UINT32 i,j;
613
614 j = hc->next_data_empty;
615 if ((j + nbytes) >= HASH_BUF_BYTES64) {
616 if (j) {
617 i = HASH_BUF_BYTES64 - j;
618 memcpy(hc->data+j, buf, i);
619 nh_transform(hc,hc->data,HASH_BUF_BYTES64);
620 nbytes -= i;
621 buf += i;
622 hc->bytes_hashed += HASH_BUF_BYTES64;
623 }
624 if (nbytes >= HASH_BUF_BYTES64) {
625 i = nbytes & ~(HASH_BUF_BYTES64 - 1);
626 nh_transform(hc, buf, i);
627 nbytes -= i;
628 buf += i;
629 hc->bytes_hashed += i;
630 }
631 j = 0;
632 }
633 memcpy(hc->data + j, buf, nbytes);
634 hc->next_data_empty = j + nbytes;
635}
636
637/* ---------------------------------------------------------------------- */
638
639static void zero_pad(UINT8 *p, int nbytes)
640{
641/* Write "nbytes" of zeroes, beginning at "p" */
642 if (nbytes >= (int)sizeof(UWORD)) {
643 while ((ptrdiff_t)p % sizeof(UWORD)) {
644 *p = 0;
645 nbytes--;
646 p++;
647 }
648 while (nbytes >= (int)sizeof(UWORD)) {
649 *(UWORD *)p = 0;
650 nbytes -= sizeof(UWORD);
651 p += sizeof(UWORD);
652 }
653 }
654 while (nbytes) {
655 *p = 0;
656 nbytes--;
657 p++;
658 }
659}
660
661/* ---------------------------------------------------------------------- */
662
663static void nh_final(nh_ctx *hc, UINT8 *result)
664/* After passing some number of data buffers to nh_update() for integration
665 * into an NH context, nh_final is called to produce a hash result. If any
666 * bytes are in the buffer hc->data, incorporate them into the
667 * NH context. Finally, add into the NH accumulation "state" the total number
668 * of bits hashed. The resulting numbers are written to the buffer "result".
669 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
670 */
671{
672 int nh_len, nbits;
673
674 if (hc->next_data_empty != 0) {
675 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY32 - 1)) &
676 ~(L1_PAD_BOUNDARY32 - 1));
677 zero_pad(hc->data + hc->next_data_empty,
678 nh_len - hc->next_data_empty);
679 nh_transform(hc, hc->data, nh_len);
680 hc->bytes_hashed += hc->next_data_empty;
681 } else if (hc->bytes_hashed == 0) {
682 nh_len = L1_PAD_BOUNDARY32;
683 zero_pad(hc->data, L1_PAD_BOUNDARY32);
684 nh_transform(hc, hc->data, nh_len);
685 }
686
687 nbits = (hc->bytes_hashed << 3);
688 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
689#if (UMAC_OUTPUT_LEN16 >= 8)
690 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
691#endif
692#if (UMAC_OUTPUT_LEN16 >= 12)
693 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
694#endif
695#if (UMAC_OUTPUT_LEN16 == 16)
696 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
697#endif
698 nh_reset(hc);
699}
700
701/* ---------------------------------------------------------------------- */
702
703static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
704 UINT32 unpadded_len, UINT8 *result)
705/* All-in-one nh_update() and nh_final() equivalent.
706 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
707 * well aligned
708 */
709{
710 UINT32 nbits;
711
712 /* Initialize the hash state */
713 nbits = (unpadded_len << 3);
714
715 ((UINT64 *)result)[0] = nbits;
716#if (UMAC_OUTPUT_LEN16 >= 8)
717 ((UINT64 *)result)[1] = nbits;
718#endif
719#if (UMAC_OUTPUT_LEN16 >= 12)
720 ((UINT64 *)result)[2] = nbits;
721#endif
722#if (UMAC_OUTPUT_LEN16 == 16)
723 ((UINT64 *)result)[3] = nbits;
724#endif
725
726 nh_aux(hc->nh_key, buf, result, padded_len);
727}
728
729/* ---------------------------------------------------------------------- */
730/* ---------------------------------------------------------------------- */
731/* ----- Begin UHASH Section -------------------------------------------- */
732/* ---------------------------------------------------------------------- */
733/* ---------------------------------------------------------------------- */
734
735/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
736 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
737 * unless the initial data to be hashed is short. After the polynomial-
738 * layer, an inner-product hash is used to produce the final UHASH output.
739 *
740 * UHASH provides two interfaces, one all-at-once and another where data
741 * buffers are presented sequentially. In the sequential interface, the
742 * UHASH client calls the routine uhash_update() as many times as necessary.
743 * When there is no more data to be fed to UHASH, the client calls
744 * uhash_final() which
745 * calculates the UHASH output. Before beginning another UHASH calculation
746 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
747 * uhash(), is equivalent to the sequence of calls uhash_update() and
748 * uhash_final(); however it is optimized and should be
749 * used whenever the sequential interface is not necessary.
750 *
751 * The routine uhash_init() initializes the uhash_ctx data structure and
752 * must be called once, before any other UHASH routine.
753 */
754
755/* ---------------------------------------------------------------------- */
756/* ----- Constants and uhash_ctx ---------------------------------------- */
757/* ---------------------------------------------------------------------- */
758
759/* ---------------------------------------------------------------------- */
760/* ----- Poly hash and Inner-Product hash Constants --------------------- */
761/* ---------------------------------------------------------------------- */
762
763/* Primes and masks */
764#define p36((UINT64)0x0000000FFFFFFFFBull) ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
765#define p64((UINT64)0xFFFFFFFFFFFFFFC5ull) ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
766#define m36((UINT64)0x0000000FFFFFFFFFull) ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
767
768
769/* ---------------------------------------------------------------------- */
770
771typedef struct uhash_ctx {
772 nh_ctx hash; /* Hash context for L1 NH hash */
773 UINT64 poly_key_8[STREAMS(16 / 4)]; /* p64 poly keys */
774 UINT64 poly_accum[STREAMS(16 / 4)]; /* poly hash result */
775 UINT64 ip_keys[STREAMS(16 / 4)*4]; /* Inner-product keys */
776 UINT32 ip_trans[STREAMS(16 / 4)]; /* Inner-product translation */
777 UINT32 msg_len; /* Total length of data passed */
778 /* to uhash */
779} uhash_ctx;
780typedef struct uhash_ctx *uhash_ctx_t;
781
782/* ---------------------------------------------------------------------- */
783
784
785/* The polynomial hashes use Horner's rule to evaluate a polynomial one
786 * word at a time. As described in the specification, poly32 and poly64
787 * require keys from special domains. The following implementations exploit
788 * the special domains to avoid overflow. The results are not guaranteed to
789 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
790 * patches any errant values.
791 */
792
793static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
794{
795 UINT32 key_hi = (UINT32)(key >> 32),
796 key_lo = (UINT32)key,
797 cur_hi = (UINT32)(cur >> 32),
798 cur_lo = (UINT32)cur,
799 x_lo,
800 x_hi;
801 UINT64 X,T,res;
802
803 X = MUL64(key_hi, cur_lo)((UINT64)((UINT64)(UINT32)(key_hi) * (UINT64)(UINT32)(cur_lo)
))
+ MUL64(cur_hi, key_lo)((UINT64)((UINT64)(UINT32)(cur_hi) * (UINT64)(UINT32)(key_lo)
))
;
804 x_lo = (UINT32)X;
805 x_hi = (UINT32)(X >> 32);
806
807 res = (MUL64(key_hi, cur_hi)((UINT64)((UINT64)(UINT32)(key_hi) * (UINT64)(UINT32)(cur_hi)
))
+ x_hi) * 59 + MUL64(key_lo, cur_lo)((UINT64)((UINT64)(UINT32)(key_lo) * (UINT64)(UINT32)(cur_lo)
))
;
808
809 T = ((UINT64)x_lo << 32);
810 res += T;
811 if (res < T)
812 res += 59;
813
814 res += data;
815 if (res < data)
816 res += 59;
817
818 return res;
819}
820
821
822/* Although UMAC is specified to use a ramped polynomial hash scheme, this
823 * implementation does not handle all ramp levels. Because we don't handle
824 * the ramp up to p128 modulus in this implementation, we are limited to
825 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
826 * bytes input to UMAC per tag, ie. 16MB).
827 */
828static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
829{
830 int i;
831 UINT64 *data=(UINT64*)data_in;
832
833 for (i = 0; i < STREAMS(16 / 4); i++) {
834 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
835 hc->poly_accum[i] = poly64(hc->poly_accum[i],
836 hc->poly_key_8[i], p64((UINT64)0xFFFFFFFFFFFFFFC5ull) - 1);
837 hc->poly_accum[i] = poly64(hc->poly_accum[i],
838 hc->poly_key_8[i], (data[i] - 59));
839 } else {
840 hc->poly_accum[i] = poly64(hc->poly_accum[i],
841 hc->poly_key_8[i], data[i]);
842 }
843 }
844}
845
846
847/* ---------------------------------------------------------------------- */
848
849
850/* The final step in UHASH is an inner-product hash. The poly hash
851 * produces a result not necessarily WORD_LEN bytes long. The inner-
852 * product hash breaks the polyhash output into 16-bit chunks and
853 * multiplies each with a 36 bit key.
854 */
855
856static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
857{
858 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
859 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
860 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
861 t = t + ipkp[3] * (UINT64)(UINT16)(data);
862
863 return t;
864}
865
866static UINT32 ip_reduce_p36(UINT64 t)
867{
868/* Divisionless modular reduction */
869 UINT64 ret;
870
871 ret = (t & m36((UINT64)0x0000000FFFFFFFFFull)) + 5 * (t >> 36);
872 if (ret >= p36((UINT64)0x0000000FFFFFFFFBull))
873 ret -= p36((UINT64)0x0000000FFFFFFFFBull);
874
875 /* return least significant 32 bits */
876 return (UINT32)(ret);
877}
878
879
880/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
881 * the polyhash stage is skipped and ip_short is applied directly to the
882 * NH output.
883 */
884static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
885{
886 UINT64 t;
887 UINT64 *nhp = (UINT64 *)nh_res;
888
889 t = ip_aux(0,ahc->ip_keys, nhp[0]);
890 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0])put_u32((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[
0])
;
891#if (UMAC_OUTPUT_LEN16 >= 8)
892 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
893 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1])put_u32((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[
1])
;
894#endif
895#if (UMAC_OUTPUT_LEN16 >= 12)
896 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
897 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2])put_u32((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[
2])
;
898#endif
899#if (UMAC_OUTPUT_LEN16 == 16)
900 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
901 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3])put_u32((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[
3])
;
902#endif
903}
904
905/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
906 * the polyhash stage is not skipped and ip_long is applied to the
907 * polyhash output.
908 */
909static void ip_long(uhash_ctx_t ahc, u_char *res)
910{
911 int i;
912 UINT64 t;
913
914 for (i = 0; i < STREAMS(16 / 4); i++) {
915 /* fix polyhash output not in Z_p64 */
916 if (ahc->poly_accum[i] >= p64((UINT64)0xFFFFFFFFFFFFFFC5ull))
917 ahc->poly_accum[i] -= p64((UINT64)0xFFFFFFFFFFFFFFC5ull);
918 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
919 STORE_UINT32_BIG((UINT32 *)res+i,put_u32((UINT32 *)res+i, ip_reduce_p36(t) ^ ahc->ip_trans[
i])
920 ip_reduce_p36(t) ^ ahc->ip_trans[i])put_u32((UINT32 *)res+i, ip_reduce_p36(t) ^ ahc->ip_trans[
i])
;
921 }
922}
923
924
925/* ---------------------------------------------------------------------- */
926
927/* ---------------------------------------------------------------------- */
928
929/* Reset uhash context for next hash session */
930static int uhash_reset(uhash_ctx_t pc)
931{
932 nh_reset(&pc->hash);
933 pc->msg_len = 0;
934 pc->poly_accum[0] = 1;
935#if (UMAC_OUTPUT_LEN16 >= 8)
936 pc->poly_accum[1] = 1;
937#endif
938#if (UMAC_OUTPUT_LEN16 >= 12)
939 pc->poly_accum[2] = 1;
940#endif
941#if (UMAC_OUTPUT_LEN16 == 16)
942 pc->poly_accum[3] = 1;
943#endif
944 return 1;
945}
946
947/* ---------------------------------------------------------------------- */
948
949/* Given a pointer to the internal key needed by kdf() and a uhash context,
950 * initialize the NH context and generate keys needed for poly and inner-
951 * product hashing. All keys are endian adjusted in memory so that native
952 * loads cause correct keys to be in registers during calculation.
953 */
954static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
955{
956 int i;
957 UINT8 buf[(8*STREAMS(16 / 4)+4)*sizeof(UINT64)];
958
959 /* Zero the entire uhash context */
960 memset(ahc, 0, sizeof(uhash_ctx));
961
962 /* Initialize the L1 hash */
963 nh_init(&ahc->hash, prf_key);
964
965 /* Setup L2 hash variables */
966 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
967 for (i = 0; i < STREAMS(16 / 4); i++) {
968 /* Fill keys from the buffer, skipping bytes in the buffer not
969 * used by this implementation. Endian reverse the keys if on a
970 * little-endian computer.
971 */
972 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
973 endian_convert_if_le(ahc->poly_key_8+i, 8, 8)endian_convert((ahc->poly_key_8+i),(8),(8));
974 /* Mask the 64-bit keys to their special domain */
975 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
976 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
977 }
978
979 /* Setup L3-1 hash variables */
980 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
981 for (i = 0; i < STREAMS(16 / 4); i++)
982 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
983 4*sizeof(UINT64));
984 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),endian_convert((ahc->ip_keys),(sizeof(UINT64)),(sizeof(ahc
->ip_keys)))
985 sizeof(ahc->ip_keys))endian_convert((ahc->ip_keys),(sizeof(UINT64)),(sizeof(ahc
->ip_keys)))
;
986 for (i = 0; i < STREAMS(16 / 4)*4; i++)
987 ahc->ip_keys[i] %= p36((UINT64)0x0000000FFFFFFFFBull); /* Bring into Z_p36 */
988
989 /* Setup L3-2 hash variables */
990 /* Fill buffer with index 4 key */
991 kdf(ahc->ip_trans, prf_key, 4, STREAMS(16 / 4) * sizeof(UINT32));
992 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),endian_convert((ahc->ip_trans),(sizeof(UINT32)),((16 / 4) *
sizeof(UINT32)))
993 STREAMS * sizeof(UINT32))endian_convert((ahc->ip_trans),(sizeof(UINT32)),((16 / 4) *
sizeof(UINT32)))
;
994 explicit_bzero(buf, sizeof(buf));
995}
996
997/* ---------------------------------------------------------------------- */
998
999#if 0
1000static uhash_ctx_t uhash_alloc(u_char key[])
1001{
1002/* Allocate memory and force to a 16-byte boundary. */
1003 uhash_ctx_t ctx;
1004 u_char bytes_to_add;
1005 aes_int_key prf_key;
1006
1007 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY16);
1008 if (ctx) {
1009 if (ALLOC_BOUNDARY16) {
1010 bytes_to_add = ALLOC_BOUNDARY16 -
1011 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY16 -1));
1012 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1013 *((u_char *)ctx - 1) = bytes_to_add;
1014 }
1015 aes_key_setup(key,prf_key)AES_set_encrypt_key((const u_char *)(key),16*8,prf_key);
1016 uhash_init(ctx, prf_key);
1017 }
1018 return (ctx);
1019}
1020#endif
1021
1022/* ---------------------------------------------------------------------- */
1023
1024#if 0
1025static int uhash_free(uhash_ctx_t ctx)
1026{
1027/* Free memory allocated by uhash_alloc */
1028 u_char bytes_to_sub;
1029
1030 if (ctx) {
1031 if (ALLOC_BOUNDARY16) {
1032 bytes_to_sub = *((u_char *)ctx - 1);
1033 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1034 }
1035 free(ctx);
1036 }
1037 return (1);
1038}
1039#endif
1040/* ---------------------------------------------------------------------- */
1041
1042static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1043/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1044 * hash each one with NH, calling the polyhash on each NH output.
1045 */
1046{
1047 UWORD bytes_hashed, bytes_remaining;
1048 UINT64 result_buf[STREAMS(16 / 4)];
1049 UINT8 *nh_result = (UINT8 *)&result_buf;
1050
1051 if (ctx->msg_len + len <= L1_KEY_LEN1024) {
1052 nh_update(&ctx->hash, (const UINT8 *)input, len);
1053 ctx->msg_len += len;
1054 } else {
1055
1056 bytes_hashed = ctx->msg_len % L1_KEY_LEN1024;
1057 if (ctx->msg_len == L1_KEY_LEN1024)
1058 bytes_hashed = L1_KEY_LEN1024;
1059
1060 if (bytes_hashed + len >= L1_KEY_LEN1024) {
1061
1062 /* If some bytes have been passed to the hash function */
1063 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1064 /* bytes to complete the current nh_block. */
1065 if (bytes_hashed) {
1066 bytes_remaining = (L1_KEY_LEN1024 - bytes_hashed);
1067 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1068 nh_final(&ctx->hash, nh_result);
1069 ctx->msg_len += bytes_remaining;
1070 poly_hash(ctx,(UINT32 *)nh_result);
1071 len -= bytes_remaining;
1072 input += bytes_remaining;
1073 }
1074
1075 /* Hash directly from input stream if enough bytes */
1076 while (len >= L1_KEY_LEN1024) {
1077 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN1024,
1078 L1_KEY_LEN1024, nh_result);
1079 ctx->msg_len += L1_KEY_LEN1024;
1080 len -= L1_KEY_LEN1024;
1081 input += L1_KEY_LEN1024;
1082 poly_hash(ctx,(UINT32 *)nh_result);
1083 }
1084 }
1085
1086 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1087 if (len) {
1088 nh_update(&ctx->hash, (const UINT8 *)input, len);
1089 ctx->msg_len += len;
1090 }
1091 }
1092
1093 return (1);
1094}
1095
1096/* ---------------------------------------------------------------------- */
1097
1098static int uhash_final(uhash_ctx_t ctx, u_char *res)
1099/* Incorporate any pending data, pad, and generate tag */
1100{
1101 UINT64 result_buf[STREAMS(16 / 4)];
1102 UINT8 *nh_result = (UINT8 *)&result_buf;
1103
1104 if (ctx->msg_len > L1_KEY_LEN1024) {
1105 if (ctx->msg_len % L1_KEY_LEN1024) {
1106 nh_final(&ctx->hash, nh_result);
1107 poly_hash(ctx,(UINT32 *)nh_result);
1108 }
1109 ip_long(ctx, res);
1110 } else {
1111 nh_final(&ctx->hash, nh_result);
1112 ip_short(ctx,nh_result, res);
1113 }
1114 uhash_reset(ctx);
1115 return (1);
1116}
1117
1118/* ---------------------------------------------------------------------- */
1119
1120#if 0
1121static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1122/* assumes that msg is in a writable buffer of length divisible by */
1123/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1124{
1125 UINT8 nh_result[STREAMS(16 / 4)*sizeof(UINT64)];
1126 UINT32 nh_len;
1127 int extra_zeroes_needed;
1128
1129 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1130 * the polyhash.
1131 */
1132 if (len <= L1_KEY_LEN1024) {
1133 if (len == 0) /* If zero length messages will not */
1134 nh_len = L1_PAD_BOUNDARY32; /* be seen, comment out this case */
1135 else
1136 nh_len = ((len + (L1_PAD_BOUNDARY32 - 1)) & ~(L1_PAD_BOUNDARY32 - 1));
1137 extra_zeroes_needed = nh_len - len;
1138 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1139 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1140 ip_short(ahc,nh_result, res);
1141 } else {
1142 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1143 * output to poly_hash().
1144 */
1145 do {
1146 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN1024, L1_KEY_LEN1024, nh_result);
1147 poly_hash(ahc,(UINT32 *)nh_result);
1148 len -= L1_KEY_LEN1024;
1149 msg += L1_KEY_LEN1024;
1150 } while (len >= L1_KEY_LEN1024);
1151 if (len) {
1152 nh_len = ((len + (L1_PAD_BOUNDARY32 - 1)) & ~(L1_PAD_BOUNDARY32 - 1));
1153 extra_zeroes_needed = nh_len - len;
1154 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1155 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1156 poly_hash(ahc,(UINT32 *)nh_result);
1157 }
1158
1159 ip_long(ahc, res);
1160 }
1161
1162 uhash_reset(ahc);
1163 return 1;
1164}
1165#endif
1166
1167/* ---------------------------------------------------------------------- */
1168/* ---------------------------------------------------------------------- */
1169/* ----- Begin UMAC Section --------------------------------------------- */
1170/* ---------------------------------------------------------------------- */
1171/* ---------------------------------------------------------------------- */
1172
1173/* The UMAC interface has two interfaces, an all-at-once interface where
1174 * the entire message to be authenticated is passed to UMAC in one buffer,
1175 * and a sequential interface where the message is presented a little at a
1176 * time. The all-at-once is more optimized than the sequential version and
1177 * should be preferred when the sequential interface is not required.
1178 */
1179struct umac_ctxumac128_ctx {
1180 uhash_ctx hash; /* Hash function for message compression */
1181 pdf_ctx pdf; /* PDF for hashed output */
1182 void *free_ptr; /* Address to free this struct via */
1183} umac_ctxumac128_ctx;
1184
1185/* ---------------------------------------------------------------------- */
1186
1187#if 0
1188int umac_reset(struct umac_ctxumac128_ctx *ctx)
1189/* Reset the hash function to begin a new authentication. */
1190{
1191 uhash_reset(&ctx->hash);
1192 return (1);
1193}
1194#endif
1195
1196/* ---------------------------------------------------------------------- */
1197
1198int umac_deleteumac128_delete(struct umac_ctxumac128_ctx *ctx)
1199/* Deallocate the ctx structure */
1200{
1201 if (ctx) {
1202 if (ALLOC_BOUNDARY16)
1203 ctx = (struct umac_ctxumac128_ctx *)ctx->free_ptr;
1204 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY16);
1205 }
1206 return (1);
1207}
1208
1209/* ---------------------------------------------------------------------- */
1210
1211struct umac_ctxumac128_ctx *umac_newumac128_new(const u_char key[])
1212/* Dynamically allocate a umac_ctx struct, initialize variables,
1213 * generate subkeys from key. Align to 16-byte boundary.
1214 */
1215{
1216 struct umac_ctxumac128_ctx *ctx, *octx;
1217 size_t bytes_to_add;
1218 aes_int_key prf_key;
1219
1220 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY16);
1221 if (ctx) {
1222 if (ALLOC_BOUNDARY16) {
1223 bytes_to_add = ALLOC_BOUNDARY16 -
1224 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY16 - 1));
1225 ctx = (struct umac_ctxumac128_ctx *)((u_char *)ctx + bytes_to_add);
1226 }
1227 ctx->free_ptr = octx;
1228 aes_key_setup(key, prf_key)AES_set_encrypt_key((const u_char *)(key),16*8,prf_key);
1229 pdf_init(&ctx->pdf, prf_key);
1230 uhash_init(&ctx->hash, prf_key);
1231 explicit_bzero(prf_key, sizeof(prf_key));
1232 }
1233
1234 return (ctx);
1235}
1236
1237/* ---------------------------------------------------------------------- */
1238
1239int umac_finalumac128_final(struct umac_ctxumac128_ctx *ctx, u_char tag[], const u_char nonce[8])
1240/* Incorporate any pending data, pad, and generate tag */
1241{
1242 uhash_final(&ctx->hash, (u_char *)tag);
1243 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1244
1245 return (1);
1246}
1247
1248/* ---------------------------------------------------------------------- */
1249
1250int umac_updateumac128_update(struct umac_ctxumac128_ctx *ctx, const u_char *input, long len)
1251/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1252/* hash each one, calling the PDF on the hashed output whenever the hash- */
1253/* output buffer is full. */
1254{
1255 uhash_update(&ctx->hash, input, len);
1256 return (1);
1257}
1258
1259/* ---------------------------------------------------------------------- */
1260
1261#if 0
1262int umac(struct umac_ctxumac128_ctx *ctx, u_char *input,
1263 long len, u_char tag[],
1264 u_char nonce[8])
1265/* All-in-one version simply calls umac_update() and umac_final(). */
1266{
1267 uhash(&ctx->hash, input, len, (u_char *)tag);
1268 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1269
1270 return (1);
1271}
1272#endif
1273
1274/* ---------------------------------------------------------------------- */
1275/* ---------------------------------------------------------------------- */
1276/* ----- End UMAC Section ----------------------------------------------- */
1277/* ---------------------------------------------------------------------- */
1278/* ---------------------------------------------------------------------- */