Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1173, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/LICM.cpp
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/SetOperations.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/GuardUtils.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/Loads.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopIterator.h"
54#include "llvm/Analysis/LoopPass.h"
55#include "llvm/Analysis/MemoryBuiltins.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/MustExecute.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62#include "llvm/Analysis/TargetLibraryInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfoMetadata.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/IntrinsicInst.h"
72#include "llvm/IR/LLVMContext.h"
73#include "llvm/IR/Metadata.h"
74#include "llvm/IR/PatternMatch.h"
75#include "llvm/IR/PredIteratorCache.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Scalar/LoopPassManager.h"
82#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/LoopUtils.h"
86#include "llvm/Transforms/Utils/SSAUpdater.h"
87#include <algorithm>
88#include <utility>
89using namespace llvm;
90
91#define DEBUG_TYPE"licm" "licm"
92
93STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
94STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
95STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
96STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
97STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
98STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
99STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
100
101/// Memory promotion is enabled by default.
102static cl::opt<bool>
103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104 cl::desc("Disable memory promotion in LICM pass"));
105
106static cl::opt<bool> ControlFlowHoisting(
107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109
110static cl::opt<unsigned> HoistSinkColdnessThreshold(
111 "licm-coldness-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113 "block for LICM to be considered beneficial"));
114
115static cl::opt<uint32_t> MaxNumUsesTraversed(
116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117 cl::desc("Max num uses visited for identifying load "
118 "invariance in loop using invariant start (default = 8)"));
119
120// Default value of zero implies we use the regular alias set tracker mechanism
121// instead of the cross product using AA to identify aliasing of the memory
122// location we are interested in.
123static cl::opt<int>
124LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
125 cl::desc("How many instruction to cross product using AA"));
126
127// Experimental option to allow imprecision in LICM in pathological cases, in
128// exchange for faster compile. This is to be removed if MemorySSA starts to
129// address the same issue. This flag applies only when LICM uses MemorySSA
130// instead on AliasSetTracker. LICM calls MemorySSAWalker's
131// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
132// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
133// which may not be precise, since optimizeUses is capped. The result is
134// correct, but we may not get as "far up" as possible to get which access is
135// clobbering the one queried.
136cl::opt<unsigned> llvm::SetLicmMssaOptCap(
137 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
138 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
139 "for faster compile. Caps the MemorySSA clobbering calls."));
140
141// Experimentally, memory promotion carries less importance than sinking and
142// hoisting. Limit when we do promotion when using MemorySSA, in order to save
143// compile time.
144cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
145 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
146 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
147 "effect. When MSSA in LICM is enabled, then this is the maximum "
148 "number of accesses allowed to be present in a loop in order to "
149 "enable memory promotion."));
150
151static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
152static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
153 const LoopSafetyInfo *SafetyInfo,
154 TargetTransformInfo *TTI, bool &FreeInLoop);
155static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
156 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
157 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
158 OptimizationRemarkEmitter *ORE);
159static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
160 BlockFrequencyInfo *BFI, const Loop *CurLoop,
161 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
162 OptimizationRemarkEmitter *ORE);
163static bool isSafeToExecuteUnconditionally(Instruction &Inst,
164 const DominatorTree *DT,
165 const TargetLibraryInfo *TLI,
166 const Loop *CurLoop,
167 const LoopSafetyInfo *SafetyInfo,
168 OptimizationRemarkEmitter *ORE,
169 const Instruction *CtxI = nullptr);
170static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
171 AliasSetTracker *CurAST, Loop *CurLoop,
172 AAResults *AA);
173static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
174 Loop *CurLoop, Instruction &I,
175 SinkAndHoistLICMFlags &Flags);
176static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
177 MemoryUse &MU);
178static Instruction *cloneInstructionInExitBlock(
179 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
180 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
181
182static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
183 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
184
185static void moveInstructionBefore(Instruction &I, Instruction &Dest,
186 ICFLoopSafetyInfo &SafetyInfo,
187 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
188
189static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
190 function_ref<void(Instruction *)> Fn);
191static SmallVector<SmallSetVector<Value *, 8>, 0>
192collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
193
194namespace {
195struct LoopInvariantCodeMotion {
196 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
197 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
198 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
199 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
200
201 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
202 unsigned LicmMssaNoAccForPromotionCap)
203 : LicmMssaOptCap(LicmMssaOptCap),
204 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
205
206private:
207 unsigned LicmMssaOptCap;
208 unsigned LicmMssaNoAccForPromotionCap;
209
210 std::unique_ptr<AliasSetTracker>
211 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
212};
213
214struct LegacyLICMPass : public LoopPass {
215 static char ID; // Pass identification, replacement for typeid
216 LegacyLICMPass(
217 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
218 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
219 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
220 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
221 }
222
223 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
224 if (skipLoop(L))
225 return false;
226
227 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { } while (false)
228 << L->getHeader()->getNameOrAsOperand() << "\n")do { } while (false);
229
230 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
231 MemorySSA *MSSA = EnableMSSALoopDependency
232 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
233 : nullptr;
234 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
235 BlockFrequencyInfo *BFI =
236 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
237 : nullptr;
238 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
239 // pass. Function analyses need to be preserved across loop transformations
240 // but ORE cannot be preserved (see comment before the pass definition).
241 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
242 return LICM.runOnLoop(
243 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
244 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
245 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
246 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
247 *L->getHeader()->getParent()),
248 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
249 *L->getHeader()->getParent()),
250 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
251 }
252
253 /// This transformation requires natural loop information & requires that
254 /// loop preheaders be inserted into the CFG...
255 ///
256 void getAnalysisUsage(AnalysisUsage &AU) const override {
257 AU.addPreserved<DominatorTreeWrapperPass>();
258 AU.addPreserved<LoopInfoWrapperPass>();
259 AU.addRequired<TargetLibraryInfoWrapperPass>();
260 if (EnableMSSALoopDependency) {
261 AU.addRequired<MemorySSAWrapperPass>();
262 AU.addPreserved<MemorySSAWrapperPass>();
263 }
264 AU.addRequired<TargetTransformInfoWrapperPass>();
265 getLoopAnalysisUsage(AU);
266 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
267 AU.addPreserved<LazyBlockFrequencyInfoPass>();
268 AU.addPreserved<LazyBranchProbabilityInfoPass>();
269 }
270
271private:
272 LoopInvariantCodeMotion LICM;
273};
274} // namespace
275
276PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
277 LoopStandardAnalysisResults &AR, LPMUpdater &) {
278 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
279 // pass. Function analyses need to be preserved across loop transformations
280 // but ORE cannot be preserved (see comment before the pass definition).
281 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
282
283 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
284 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
285 &AR.SE, AR.MSSA, &ORE))
286 return PreservedAnalyses::all();
287
288 auto PA = getLoopPassPreservedAnalyses();
289
290 PA.preserve<DominatorTreeAnalysis>();
291 PA.preserve<LoopAnalysis>();
292 if (AR.MSSA)
293 PA.preserve<MemorySSAAnalysis>();
294
295 return PA;
296}
297
298PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
299 LoopStandardAnalysisResults &AR,
300 LPMUpdater &) {
301 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
302 // pass. Function analyses need to be preserved across loop transformations
303 // but ORE cannot be preserved (see comment before the pass definition).
304 OptimizationRemarkEmitter ORE(LN.getParent());
305
306 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
307
308 Loop &OutermostLoop = LN.getOutermostLoop();
309 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
310 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
311
312 if (!Changed)
313 return PreservedAnalyses::all();
314
315 auto PA = getLoopPassPreservedAnalyses();
316
317 PA.preserve<DominatorTreeAnalysis>();
318 PA.preserve<LoopAnalysis>();
319 if (AR.MSSA)
320 PA.preserve<MemorySSAAnalysis>();
321
322 return PA;
323}
324
325char LegacyLICMPass::ID = 0;
326INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
327 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
328INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
329INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
330INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
331INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
332INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
333INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
334 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
335
336Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
337Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
338 unsigned LicmMssaNoAccForPromotionCap) {
339 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
340}
341
342llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
343 MemorySSA *MSSA)
344 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
345 IsSink, L, MSSA) {}
346
347llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
348 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
349 Loop *L, MemorySSA *MSSA)
350 : LicmMssaOptCap(LicmMssaOptCap),
351 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
352 IsSink(IsSink) {
353 assert(((L != nullptr) == (MSSA != nullptr)) &&((void)0)
354 "Unexpected values for SinkAndHoistLICMFlags")((void)0);
355 if (!MSSA)
356 return;
357
358 unsigned AccessCapCount = 0;
359 for (auto *BB : L->getBlocks())
360 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
361 for (const auto &MA : *Accesses) {
362 (void)MA;
363 ++AccessCapCount;
364 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
365 NoOfMemAccTooLarge = true;
366 return;
367 }
368 }
369}
370
371/// Hoist expressions out of the specified loop. Note, alias info for inner
372/// loop is not preserved so it is not a good idea to run LICM multiple
373/// times on one loop.
374bool LoopInvariantCodeMotion::runOnLoop(
375 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
376 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
377 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
378 bool LoopNestMode) {
379 bool Changed = false;
380
381 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((void)0);
382
383 // If this loop has metadata indicating that LICM is not to be performed then
384 // just exit.
385 if (hasDisableLICMTransformsHint(L)) {
386 return false;
387 }
388
389 std::unique_ptr<AliasSetTracker> CurAST;
390 std::unique_ptr<MemorySSAUpdater> MSSAU;
391 std::unique_ptr<SinkAndHoistLICMFlags> Flags;
392
393 // Don't sink stores from loops with coroutine suspend instructions.
394 // LICM would sink instructions into the default destination of
395 // the coroutine switch. The default destination of the switch is to
396 // handle the case where the coroutine is suspended, by which point the
397 // coroutine frame may have been destroyed. No instruction can be sunk there.
398 // FIXME: This would unfortunately hurt the performance of coroutines, however
399 // there is currently no general solution for this. Similar issues could also
400 // potentially happen in other passes where instructions are being moved
401 // across that edge.
402 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
403 return llvm::any_of(*BB, [](Instruction &I) {
404 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
405 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
406 });
407 });
408
409 if (!MSSA) {
410 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { } while (false);
411 CurAST = collectAliasInfoForLoop(L, LI, AA);
412 Flags = std::make_unique<SinkAndHoistLICMFlags>(
413 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
414 } else {
415 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { } while (false);
416 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
417 Flags = std::make_unique<SinkAndHoistLICMFlags>(
418 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
419 }
420
421 // Get the preheader block to move instructions into...
422 BasicBlock *Preheader = L->getLoopPreheader();
423
424 // Compute loop safety information.
425 ICFLoopSafetyInfo SafetyInfo;
426 SafetyInfo.computeLoopSafetyInfo(L);
427
428 // We want to visit all of the instructions in this loop... that are not parts
429 // of our subloops (they have already had their invariants hoisted out of
430 // their loop, into this loop, so there is no need to process the BODIES of
431 // the subloops).
432 //
433 // Traverse the body of the loop in depth first order on the dominator tree so
434 // that we are guaranteed to see definitions before we see uses. This allows
435 // us to sink instructions in one pass, without iteration. After sinking
436 // instructions, we perform another pass to hoist them out of the loop.
437 if (L->hasDedicatedExits())
438 Changed |=
439 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
440 CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
441 Flags->setIsSink(false);
442 if (Preheader)
443 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
444 CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
445 *Flags.get(), ORE, LoopNestMode);
446
447 // Now that all loop invariants have been removed from the loop, promote any
448 // memory references to scalars that we can.
449 // Don't sink stores from loops without dedicated block exits. Exits
450 // containing indirect branches are not transformed by loop simplify,
451 // make sure we catch that. An additional load may be generated in the
452 // preheader for SSA updater, so also avoid sinking when no preheader
453 // is available.
454 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
455 !Flags->tooManyMemoryAccesses() && !HasCoroSuspendInst) {
456 // Figure out the loop exits and their insertion points
457 SmallVector<BasicBlock *, 8> ExitBlocks;
458 L->getUniqueExitBlocks(ExitBlocks);
459
460 // We can't insert into a catchswitch.
461 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
462 return isa<CatchSwitchInst>(Exit->getTerminator());
463 });
464
465 if (!HasCatchSwitch) {
466 SmallVector<Instruction *, 8> InsertPts;
467 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
468 InsertPts.reserve(ExitBlocks.size());
469 if (MSSAU)
470 MSSAInsertPts.reserve(ExitBlocks.size());
471 for (BasicBlock *ExitBlock : ExitBlocks) {
472 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
473 if (MSSAU)
474 MSSAInsertPts.push_back(nullptr);
475 }
476
477 PredIteratorCache PIC;
478
479 bool Promoted = false;
480 if (CurAST.get()) {
481 // Loop over all of the alias sets in the tracker object.
482 for (AliasSet &AS : *CurAST) {
483 // We can promote this alias set if it has a store, if it is a "Must"
484 // alias set, if the pointer is loop invariant, and if we are not
485 // eliminating any volatile loads or stores.
486 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
487 !L->isLoopInvariant(AS.begin()->getValue()))
488 continue;
489
490 assert(((void)0)
491 !AS.empty() &&((void)0)
492 "Must alias set should have at least one pointer element in it!")((void)0);
493
494 SmallSetVector<Value *, 8> PointerMustAliases;
495 for (const auto &ASI : AS)
496 PointerMustAliases.insert(ASI.getValue());
497
498 Promoted |= promoteLoopAccessesToScalars(
499 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
500 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
501 }
502 } else {
503 // Promoting one set of accesses may make the pointers for another set
504 // loop invariant, so run this in a loop (with the MaybePromotable set
505 // decreasing in size over time).
506 bool LocalPromoted;
507 do {
508 LocalPromoted = false;
509 for (const SmallSetVector<Value *, 8> &PointerMustAliases :
510 collectPromotionCandidates(MSSA, AA, L)) {
511 LocalPromoted |= promoteLoopAccessesToScalars(
512 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
513 LI, DT, TLI, L, /*AST*/nullptr, MSSAU.get(), &SafetyInfo, ORE);
514 }
515 Promoted |= LocalPromoted;
516 } while (LocalPromoted);
517 }
518
519 // Once we have promoted values across the loop body we have to
520 // recursively reform LCSSA as any nested loop may now have values defined
521 // within the loop used in the outer loop.
522 // FIXME: This is really heavy handed. It would be a bit better to use an
523 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
524 // it as it went.
525 if (Promoted)
526 formLCSSARecursively(*L, *DT, LI, SE);
527
528 Changed |= Promoted;
529 }
530 }
531
532 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
533 // specifically moving instructions across the loop boundary and so it is
534 // especially in need of sanity checking here.
535 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((void)0);
536 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&((void)0)
537 "Parent loop not left in LCSSA form after LICM!")((void)0);
538
539 if (MSSAU.get() && VerifyMemorySSA)
540 MSSAU->getMemorySSA()->verifyMemorySSA();
541
542 if (Changed && SE)
543 SE->forgetLoopDispositions(L);
544 return Changed;
545}
546
547/// Walk the specified region of the CFG (defined by all blocks dominated by
548/// the specified block, and that are in the current loop) in reverse depth
549/// first order w.r.t the DominatorTree. This allows us to visit uses before
550/// definitions, allowing us to sink a loop body in one pass without iteration.
551///
552bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
553 DominatorTree *DT, BlockFrequencyInfo *BFI,
554 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
555 Loop *CurLoop, AliasSetTracker *CurAST,
556 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
557 SinkAndHoistLICMFlags &Flags,
558 OptimizationRemarkEmitter *ORE) {
559
560 // Verify inputs.
561 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((void)0)
562 CurLoop != nullptr && SafetyInfo != nullptr &&((void)0)
563 "Unexpected input to sinkRegion.")((void)0);
564 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0)
565 "Either AliasSetTracker or MemorySSA should be initialized.")((void)0);
566
567 // We want to visit children before parents. We will enque all the parents
568 // before their children in the worklist and process the worklist in reverse
569 // order.
570 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
571
572 bool Changed = false;
573 for (DomTreeNode *DTN : reverse(Worklist)) {
574 BasicBlock *BB = DTN->getBlock();
575 // Only need to process the contents of this block if it is not part of a
576 // subloop (which would already have been processed).
577 if (inSubLoop(BB, CurLoop, LI))
578 continue;
579
580 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
581 Instruction &I = *--II;
582
583 // The instruction is not used in the loop if it is dead. In this case,
584 // we just delete it instead of sinking it.
585 if (isInstructionTriviallyDead(&I, TLI)) {
586 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { } while (false);
587 salvageKnowledge(&I);
588 salvageDebugInfo(I);
589 ++II;
590 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
591 Changed = true;
592 continue;
593 }
594
595 // Check to see if we can sink this instruction to the exit blocks
596 // of the loop. We can do this if the all users of the instruction are
597 // outside of the loop. In this case, it doesn't even matter if the
598 // operands of the instruction are loop invariant.
599 //
600 bool FreeInLoop = false;
601 if (!I.mayHaveSideEffects() &&
602 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
603 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
604 ORE)) {
605 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
606 if (!FreeInLoop) {
607 ++II;
608 salvageDebugInfo(I);
609 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
610 }
611 Changed = true;
612 }
613 }
614 }
615 }
616 if (MSSAU && VerifyMemorySSA)
617 MSSAU->getMemorySSA()->verifyMemorySSA();
618 return Changed;
619}
620
621namespace {
622// This is a helper class for hoistRegion to make it able to hoist control flow
623// in order to be able to hoist phis. The way this works is that we initially
624// start hoisting to the loop preheader, and when we see a loop invariant branch
625// we make note of this. When we then come to hoist an instruction that's
626// conditional on such a branch we duplicate the branch and the relevant control
627// flow, then hoist the instruction into the block corresponding to its original
628// block in the duplicated control flow.
629class ControlFlowHoister {
630private:
631 // Information about the loop we are hoisting from
632 LoopInfo *LI;
633 DominatorTree *DT;
634 Loop *CurLoop;
635 MemorySSAUpdater *MSSAU;
636
637 // A map of blocks in the loop to the block their instructions will be hoisted
638 // to.
639 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
640
641 // The branches that we can hoist, mapped to the block that marks a
642 // convergence point of their control flow.
643 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
644
645public:
646 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
647 MemorySSAUpdater *MSSAU)
648 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
649
650 void registerPossiblyHoistableBranch(BranchInst *BI) {
651 // We can only hoist conditional branches with loop invariant operands.
652 if (!ControlFlowHoisting || !BI->isConditional() ||
653 !CurLoop->hasLoopInvariantOperands(BI))
654 return;
655
656 // The branch destinations need to be in the loop, and we don't gain
657 // anything by duplicating conditional branches with duplicate successors,
658 // as it's essentially the same as an unconditional branch.
659 BasicBlock *TrueDest = BI->getSuccessor(0);
660 BasicBlock *FalseDest = BI->getSuccessor(1);
661 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
662 TrueDest == FalseDest)
663 return;
664
665 // We can hoist BI if one branch destination is the successor of the other,
666 // or both have common successor which we check by seeing if the
667 // intersection of their successors is non-empty.
668 // TODO: This could be expanded to allowing branches where both ends
669 // eventually converge to a single block.
670 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
671 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
672 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
673 BasicBlock *CommonSucc = nullptr;
674 if (TrueDestSucc.count(FalseDest)) {
675 CommonSucc = FalseDest;
676 } else if (FalseDestSucc.count(TrueDest)) {
677 CommonSucc = TrueDest;
678 } else {
679 set_intersect(TrueDestSucc, FalseDestSucc);
680 // If there's one common successor use that.
681 if (TrueDestSucc.size() == 1)
682 CommonSucc = *TrueDestSucc.begin();
683 // If there's more than one pick whichever appears first in the block list
684 // (we can't use the value returned by TrueDestSucc.begin() as it's
685 // unpredicatable which element gets returned).
686 else if (!TrueDestSucc.empty()) {
687 Function *F = TrueDest->getParent();
688 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
689 auto It = llvm::find_if(*F, IsSucc);
690 assert(It != F->end() && "Could not find successor in function")((void)0);
691 CommonSucc = &*It;
692 }
693 }
694 // The common successor has to be dominated by the branch, as otherwise
695 // there will be some other path to the successor that will not be
696 // controlled by this branch so any phi we hoist would be controlled by the
697 // wrong condition. This also takes care of avoiding hoisting of loop back
698 // edges.
699 // TODO: In some cases this could be relaxed if the successor is dominated
700 // by another block that's been hoisted and we can guarantee that the
701 // control flow has been replicated exactly.
702 if (CommonSucc && DT->dominates(BI, CommonSucc))
703 HoistableBranches[BI] = CommonSucc;
704 }
705
706 bool canHoistPHI(PHINode *PN) {
707 // The phi must have loop invariant operands.
708 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
709 return false;
710 // We can hoist phis if the block they are in is the target of hoistable
711 // branches which cover all of the predecessors of the block.
712 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
713 BasicBlock *BB = PN->getParent();
714 for (BasicBlock *PredBB : predecessors(BB))
715 PredecessorBlocks.insert(PredBB);
716 // If we have less predecessor blocks than predecessors then the phi will
717 // have more than one incoming value for the same block which we can't
718 // handle.
719 // TODO: This could be handled be erasing some of the duplicate incoming
720 // values.
721 if (PredecessorBlocks.size() != pred_size(BB))
722 return false;
723 for (auto &Pair : HoistableBranches) {
724 if (Pair.second == BB) {
725 // Which blocks are predecessors via this branch depends on if the
726 // branch is triangle-like or diamond-like.
727 if (Pair.first->getSuccessor(0) == BB) {
728 PredecessorBlocks.erase(Pair.first->getParent());
729 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
730 } else if (Pair.first->getSuccessor(1) == BB) {
731 PredecessorBlocks.erase(Pair.first->getParent());
732 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
733 } else {
734 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
735 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
736 }
737 }
738 }
739 // PredecessorBlocks will now be empty if for every predecessor of BB we
740 // found a hoistable branch source.
741 return PredecessorBlocks.empty();
742 }
743
744 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
745 if (!ControlFlowHoisting)
746 return CurLoop->getLoopPreheader();
747 // If BB has already been hoisted, return that
748 if (HoistDestinationMap.count(BB))
749 return HoistDestinationMap[BB];
750
751 // Check if this block is conditional based on a pending branch
752 auto HasBBAsSuccessor =
753 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
754 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
755 Pair.first->getSuccessor(1) == BB);
756 };
757 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
758
759 // If not involved in a pending branch, hoist to preheader
760 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
761 if (It == HoistableBranches.end()) {
762 LLVM_DEBUG(dbgs() << "LICM using "do { } while (false)
763 << InitialPreheader->getNameOrAsOperand()do { } while (false)
764 << " as hoist destination for "do { } while (false)
765 << BB->getNameOrAsOperand() << "\n")do { } while (false);
766 HoistDestinationMap[BB] = InitialPreheader;
767 return InitialPreheader;
768 }
769 BranchInst *BI = It->first;
770 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((void)0)
771 HoistableBranches.end() &&((void)0)
772 "BB is expected to be the target of at most one branch")((void)0);
773
774 LLVMContext &C = BB->getContext();
775 BasicBlock *TrueDest = BI->getSuccessor(0);
776 BasicBlock *FalseDest = BI->getSuccessor(1);
777 BasicBlock *CommonSucc = HoistableBranches[BI];
778 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
779
780 // Create hoisted versions of blocks that currently don't have them
781 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
782 if (HoistDestinationMap.count(Orig))
783 return HoistDestinationMap[Orig];
784 BasicBlock *New =
785 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
786 HoistDestinationMap[Orig] = New;
787 DT->addNewBlock(New, HoistTarget);
788 if (CurLoop->getParentLoop())
789 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
790 ++NumCreatedBlocks;
791 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { } while (false)
792 << " as hoist destination for " << Orig->getName()do { } while (false)
793 << "\n")do { } while (false);
794 return New;
795 };
796 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
797 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
798 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
799
800 // Link up these blocks with branches.
801 if (!HoistCommonSucc->getTerminator()) {
802 // The new common successor we've generated will branch to whatever that
803 // hoist target branched to.
804 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
805 assert(TargetSucc && "Expected hoist target to have a single successor")((void)0);
806 HoistCommonSucc->moveBefore(TargetSucc);
807 BranchInst::Create(TargetSucc, HoistCommonSucc);
808 }
809 if (!HoistTrueDest->getTerminator()) {
810 HoistTrueDest->moveBefore(HoistCommonSucc);
811 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
812 }
813 if (!HoistFalseDest->getTerminator()) {
814 HoistFalseDest->moveBefore(HoistCommonSucc);
815 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
816 }
817
818 // If BI is being cloned to what was originally the preheader then
819 // HoistCommonSucc will now be the new preheader.
820 if (HoistTarget == InitialPreheader) {
821 // Phis in the loop header now need to use the new preheader.
822 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
823 if (MSSAU)
824 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
825 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
826 // The new preheader dominates the loop header.
827 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
828 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
829 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
830 // The preheader hoist destination is now the new preheader, with the
831 // exception of the hoist destination of this branch.
832 for (auto &Pair : HoistDestinationMap)
833 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
834 Pair.second = HoistCommonSucc;
835 }
836
837 // Now finally clone BI.
838 ReplaceInstWithInst(
839 HoistTarget->getTerminator(),
840 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
841 ++NumClonedBranches;
842
843 assert(CurLoop->getLoopPreheader() &&((void)0)
844 "Hoisting blocks should not have destroyed preheader")((void)0);
845 return HoistDestinationMap[BB];
846 }
847};
848} // namespace
849
850// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
851// only worthwhile if the destination block is actually colder than current
852// block.
853static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
854 OptimizationRemarkEmitter *ORE,
855 BlockFrequencyInfo *BFI) {
856 // Check block frequency only when runtime profile is available
857 // to avoid pathological cases. With static profile, lean towards
858 // hosting because it helps canonicalize the loop for vectorizer.
859 if (!DstBlock->getParent()->hasProfileData())
860 return true;
861
862 if (!HoistSinkColdnessThreshold || !BFI)
863 return true;
864
865 BasicBlock *SrcBlock = I.getParent();
866 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
867 BFI->getBlockFreq(SrcBlock).getFrequency()) {
868 ORE->emit([&]() {
869 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
870 << "failed to sink or hoist instruction because containing block "
871 "has lower frequency than destination block";
872 });
873 return false;
874 }
875
876 return true;
877}
878
879/// Walk the specified region of the CFG (defined by all blocks dominated by
880/// the specified block, and that are in the current loop) in depth first
881/// order w.r.t the DominatorTree. This allows us to visit definitions before
882/// uses, allowing us to hoist a loop body in one pass without iteration.
883///
884bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
885 DominatorTree *DT, BlockFrequencyInfo *BFI,
886 TargetLibraryInfo *TLI, Loop *CurLoop,
887 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
888 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
889 SinkAndHoistLICMFlags &Flags,
890 OptimizationRemarkEmitter *ORE, bool LoopNestMode) {
891 // Verify inputs.
892 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((void)0)
893 CurLoop != nullptr && SafetyInfo != nullptr &&((void)0)
894 "Unexpected input to hoistRegion.")((void)0);
895 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0)
896 "Either AliasSetTracker or MemorySSA should be initialized.")((void)0);
897
898 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
899
900 // Keep track of instructions that have been hoisted, as they may need to be
901 // re-hoisted if they end up not dominating all of their uses.
902 SmallVector<Instruction *, 16> HoistedInstructions;
903
904 // For PHI hoisting to work we need to hoist blocks before their successors.
905 // We can do this by iterating through the blocks in the loop in reverse
906 // post-order.
907 LoopBlocksRPO Worklist(CurLoop);
908 Worklist.perform(LI);
909 bool Changed = false;
910 for (BasicBlock *BB : Worklist) {
911 // Only need to process the contents of this block if it is not part of a
912 // subloop (which would already have been processed).
913 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
914 continue;
915
916 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
917 Instruction &I = *II++;
918 // Try constant folding this instruction. If all the operands are
919 // constants, it is technically hoistable, but it would be better to
920 // just fold it.
921 if (Constant *C = ConstantFoldInstruction(
922 &I, I.getModule()->getDataLayout(), TLI)) {
923 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { } while (false)
924 << '\n')do { } while (false);
925 if (CurAST)
926 CurAST->copyValue(&I, C);
927 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
928 I.replaceAllUsesWith(C);
929 if (isInstructionTriviallyDead(&I, TLI))
930 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
931 Changed = true;
932 continue;
933 }
934
935 // Try hoisting the instruction out to the preheader. We can only do
936 // this if all of the operands of the instruction are loop invariant and
937 // if it is safe to hoist the instruction. We also check block frequency
938 // to make sure instruction only gets hoisted into colder blocks.
939 // TODO: It may be safe to hoist if we are hoisting to a conditional block
940 // and we have accurately duplicated the control flow from the loop header
941 // to that block.
942 if (CurLoop->hasLoopInvariantOperands(&I) &&
943 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
944 ORE) &&
945 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
946 isSafeToExecuteUnconditionally(
947 I, DT, TLI, CurLoop, SafetyInfo, ORE,
948 CurLoop->getLoopPreheader()->getTerminator())) {
949 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
950 MSSAU, SE, ORE);
951 HoistedInstructions.push_back(&I);
952 Changed = true;
953 continue;
954 }
955
956 // Attempt to remove floating point division out of the loop by
957 // converting it to a reciprocal multiplication.
958 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
959 CurLoop->isLoopInvariant(I.getOperand(1))) {
960 auto Divisor = I.getOperand(1);
961 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
962 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
963 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
964 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
965 ReciprocalDivisor->insertBefore(&I);
966
967 auto Product =
968 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
969 Product->setFastMathFlags(I.getFastMathFlags());
970 SafetyInfo->insertInstructionTo(Product, I.getParent());
971 Product->insertAfter(&I);
972 I.replaceAllUsesWith(Product);
973 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
974
975 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
976 SafetyInfo, MSSAU, SE, ORE);
977 HoistedInstructions.push_back(ReciprocalDivisor);
978 Changed = true;
979 continue;
980 }
981
982 auto IsInvariantStart = [&](Instruction &I) {
983 using namespace PatternMatch;
984 return I.use_empty() &&
985 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
986 };
987 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
988 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
989 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
990 };
991 if ((IsInvariantStart(I) || isGuard(&I)) &&
992 CurLoop->hasLoopInvariantOperands(&I) &&
993 MustExecuteWithoutWritesBefore(I)) {
994 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
995 MSSAU, SE, ORE);
996 HoistedInstructions.push_back(&I);
997 Changed = true;
998 continue;
999 }
1000
1001 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1002 if (CFH.canHoistPHI(PN)) {
1003 // Redirect incoming blocks first to ensure that we create hoisted
1004 // versions of those blocks before we hoist the phi.
1005 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
1006 PN->setIncomingBlock(
1007 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
1008 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
1009 MSSAU, SE, ORE);
1010 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((void)0);
1011 Changed = true;
1012 continue;
1013 }
1014 }
1015
1016 // Remember possibly hoistable branches so we can actually hoist them
1017 // later if needed.
1018 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
1019 CFH.registerPossiblyHoistableBranch(BI);
1020 }
1021 }
1022
1023 // If we hoisted instructions to a conditional block they may not dominate
1024 // their uses that weren't hoisted (such as phis where some operands are not
1025 // loop invariant). If so make them unconditional by moving them to their
1026 // immediate dominator. We iterate through the instructions in reverse order
1027 // which ensures that when we rehoist an instruction we rehoist its operands,
1028 // and also keep track of where in the block we are rehoisting to to make sure
1029 // that we rehoist instructions before the instructions that use them.
1030 Instruction *HoistPoint = nullptr;
1031 if (ControlFlowHoisting) {
1032 for (Instruction *I : reverse(HoistedInstructions)) {
1033 if (!llvm::all_of(I->uses(),
1034 [&](Use &U) { return DT->dominates(I, U); })) {
1035 BasicBlock *Dominator =
1036 DT->getNode(I->getParent())->getIDom()->getBlock();
1037 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1038 if (HoistPoint)
1039 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((void)0)
1040 "New hoist point expected to dominate old hoist point")((void)0);
1041 HoistPoint = Dominator->getTerminator();
1042 }
1043 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { } while (false)
1044 << HoistPoint->getParent()->getNameOrAsOperand()do { } while (false)
1045 << ": " << *I << "\n")do { } while (false);
1046 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1047 HoistPoint = I;
1048 Changed = true;
1049 }
1050 }
1051 }
1052 if (MSSAU && VerifyMemorySSA)
1053 MSSAU->getMemorySSA()->verifyMemorySSA();
1054
1055 // Now that we've finished hoisting make sure that LI and DT are still
1056 // valid.
1057#ifdef EXPENSIVE_CHECKS
1058 if (Changed) {
1059 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((void)0)
1060 "Dominator tree verification failed")((void)0);
1061 LI->verify(*DT);
1062 }
1063#endif
1064
1065 return Changed;
1066}
1067
1068// Return true if LI is invariant within scope of the loop. LI is invariant if
1069// CurLoop is dominated by an invariant.start representing the same memory
1070// location and size as the memory location LI loads from, and also the
1071// invariant.start has no uses.
1072static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1073 Loop *CurLoop) {
1074 Value *Addr = LI->getOperand(0);
1075 const DataLayout &DL = LI->getModule()->getDataLayout();
1076 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1077
1078 // It is not currently possible for clang to generate an invariant.start
1079 // intrinsic with scalable vector types because we don't support thread local
1080 // sizeless types and we don't permit sizeless types in structs or classes.
1081 // Furthermore, even if support is added for this in future the intrinsic
1082 // itself is defined to have a size of -1 for variable sized objects. This
1083 // makes it impossible to verify if the intrinsic envelops our region of
1084 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1085 // types would have a -1 parameter, but the former is clearly double the size
1086 // of the latter.
1087 if (LocSizeInBits.isScalable())
1088 return false;
1089
1090 // if the type is i8 addrspace(x)*, we know this is the type of
1091 // llvm.invariant.start operand
1092 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1093 LI->getPointerAddressSpace());
1094 unsigned BitcastsVisited = 0;
1095 // Look through bitcasts until we reach the i8* type (this is invariant.start
1096 // operand type).
1097 while (Addr->getType() != PtrInt8Ty) {
1098 auto *BC = dyn_cast<BitCastInst>(Addr);
1099 // Avoid traversing high number of bitcast uses.
1100 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1101 return false;
1102 Addr = BC->getOperand(0);
1103 }
1104
1105 unsigned UsesVisited = 0;
1106 // Traverse all uses of the load operand value, to see if invariant.start is
1107 // one of the uses, and whether it dominates the load instruction.
1108 for (auto *U : Addr->users()) {
1109 // Avoid traversing for Load operand with high number of users.
1110 if (++UsesVisited > MaxNumUsesTraversed)
1111 return false;
1112 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1113 // If there are escaping uses of invariant.start instruction, the load maybe
1114 // non-invariant.
1115 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1116 !II->use_empty())
1117 continue;
1118 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1119 // The intrinsic supports having a -1 argument for variable sized objects
1120 // so we should check for that here.
1121 if (InvariantSize->isNegative())
1122 continue;
1123 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1124 // Confirm the invariant.start location size contains the load operand size
1125 // in bits. Also, the invariant.start should dominate the load, and we
1126 // should not hoist the load out of a loop that contains this dominating
1127 // invariant.start.
1128 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1129 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1130 return true;
1131 }
1132
1133 return false;
1134}
1135
1136namespace {
1137/// Return true if-and-only-if we know how to (mechanically) both hoist and
1138/// sink a given instruction out of a loop. Does not address legality
1139/// concerns such as aliasing or speculation safety.
1140bool isHoistableAndSinkableInst(Instruction &I) {
1141 // Only these instructions are hoistable/sinkable.
1142 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is a 'LoadInst'
3
Returning the value 1, which participates in a condition later
1143 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1144 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1145 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1146 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1147 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1148 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1149}
1150/// Return true if all of the alias sets within this AST are known not to
1151/// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1152bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1153 const Loop *L) {
1154 if (CurAST) {
1155 for (AliasSet &AS : *CurAST) {
1156 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1157 return false;
1158 }
1159 }
1160 return true;
1161 } else { /*MSSAU*/
1162 for (auto *BB : L->getBlocks())
1163 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1164 return false;
1165 return true;
1166 }
1167}
1168
1169/// Return true if I is the only Instruction with a MemoryAccess in L.
1170bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1171 const MemorySSAUpdater *MSSAU) {
1172 for (auto *BB : L->getBlocks())
19
Assuming '__begin1' is not equal to '__end1'
1173 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
20
Called C++ object pointer is null
1174 int NotAPhi = 0;
1175 for (const auto &Acc : *Accs) {
1176 if (isa<MemoryPhi>(&Acc))
1177 continue;
1178 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1179 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1180 return false;
1181 }
1182 }
1183 return true;
1184}
1185}
1186
1187bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1188 Loop *CurLoop, AliasSetTracker *CurAST,
1189 MemorySSAUpdater *MSSAU,
1190 bool TargetExecutesOncePerLoop,
1191 SinkAndHoistLICMFlags *Flags,
1192 OptimizationRemarkEmitter *ORE) {
1193 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0)
1194 "Either AliasSetTracker or MemorySSA should be initialized.")((void)0);
1195
1196 // If we don't understand the instruction, bail early.
1197 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
4
Returning from 'isHoistableAndSinkableInst'
5
Taking false branch
1198 return false;
1199
1200 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
6
Assuming 'MSSAU' is null
7
'?' condition is false
1201 if (MSSA
7.1
'MSSA' is null
)
8
Taking false branch
1202 assert(Flags != nullptr && "Flags cannot be null.")((void)0);
1203
1204 // Loads have extra constraints we have to verify before we can hoist them.
1205 if (LoadInst *LI
9.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
9
Assuming the object is not a 'LoadInst'
10
Taking false branch
1206 if (!LI->isUnordered())
1207 return false; // Don't sink/hoist volatile or ordered atomic loads!
1208
1209 // Loads from constant memory are always safe to move, even if they end up
1210 // in the same alias set as something that ends up being modified.
1211 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1212 return true;
1213 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1214 return true;
1215
1216 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1217 return false; // Don't risk duplicating unordered loads
1218
1219 // This checks for an invariant.start dominating the load.
1220 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1221 return true;
1222
1223 bool Invalidated;
1224 if (CurAST)
1225 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1226 CurLoop, AA);
1227 else
1228 Invalidated = pointerInvalidatedByLoopWithMSSA(
1229 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1230 // Check loop-invariant address because this may also be a sinkable load
1231 // whose address is not necessarily loop-invariant.
1232 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1233 ORE->emit([&]() {
1234 return OptimizationRemarkMissed(
1235 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1236 << "failed to move load with loop-invariant address "
1237 "because the loop may invalidate its value";
1238 });
1239
1240 return !Invalidated;
1241 } else if (CallInst *CI
11.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
11
Assuming the object is not a 'CallInst'
12
Taking false branch
1242 // Don't sink or hoist dbg info; it's legal, but not useful.
1243 if (isa<DbgInfoIntrinsic>(I))
1244 return false;
1245
1246 // Don't sink calls which can throw.
1247 if (CI->mayThrow())
1248 return false;
1249
1250 // Convergent attribute has been used on operations that involve
1251 // inter-thread communication which results are implicitly affected by the
1252 // enclosing control flows. It is not safe to hoist or sink such operations
1253 // across control flow.
1254 if (CI->isConvergent())
1255 return false;
1256
1257 using namespace PatternMatch;
1258 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1259 // Assumes don't actually alias anything or throw
1260 return true;
1261
1262 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1263 // Widenable conditions don't actually alias anything or throw
1264 return true;
1265
1266 // Handle simple cases by querying alias analysis.
1267 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1268 if (Behavior == FMRB_DoesNotAccessMemory)
1269 return true;
1270 if (AAResults::onlyReadsMemory(Behavior)) {
1271 // A readonly argmemonly function only reads from memory pointed to by
1272 // it's arguments with arbitrary offsets. If we can prove there are no
1273 // writes to this memory in the loop, we can hoist or sink.
1274 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1275 // TODO: expand to writeable arguments
1276 for (Value *Op : CI->arg_operands())
1277 if (Op->getType()->isPointerTy()) {
1278 bool Invalidated;
1279 if (CurAST)
1280 Invalidated = pointerInvalidatedByLoop(
1281 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1282 else
1283 Invalidated = pointerInvalidatedByLoopWithMSSA(
1284 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1285 *Flags);
1286 if (Invalidated)
1287 return false;
1288 }
1289 return true;
1290 }
1291
1292 // If this call only reads from memory and there are no writes to memory
1293 // in the loop, we can hoist or sink the call as appropriate.
1294 if (isReadOnly(CurAST, MSSAU, CurLoop))
1295 return true;
1296 }
1297
1298 // FIXME: This should use mod/ref information to see if we can hoist or
1299 // sink the call.
1300
1301 return false;
1302 } else if (auto *FI
13.1
'FI' is non-null
= dyn_cast<FenceInst>(&I)) {
13
Assuming the object is a 'FenceInst'
14
Taking true branch
1303 // Fences alias (most) everything to provide ordering. For the moment,
1304 // just give up if there are any other memory operations in the loop.
1305 if (CurAST) {
15
Assuming 'CurAST' is null
16
Taking false branch
1306 auto Begin = CurAST->begin();
1307 assert(Begin != CurAST->end() && "must contain FI")((void)0);
1308 if (std::next(Begin) != CurAST->end())
1309 // constant memory for instance, TODO: handle better
1310 return false;
1311 auto *UniqueI = Begin->getUniqueInstruction();
1312 if (!UniqueI)
1313 // other memory op, give up
1314 return false;
1315 (void)FI; // suppress unused variable warning
1316 assert(UniqueI == FI && "AS must contain FI")((void)0);
1317 return true;
1318 } else // MSSAU
1319 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
17
Passing null pointer value via 3rd parameter 'MSSAU'
18
Calling 'isOnlyMemoryAccess'
1320 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1321 if (!SI->isUnordered())
1322 return false; // Don't sink/hoist volatile or ordered atomic store!
1323
1324 // We can only hoist a store that we can prove writes a value which is not
1325 // read or overwritten within the loop. For those cases, we fallback to
1326 // load store promotion instead. TODO: We can extend this to cases where
1327 // there is exactly one write to the location and that write dominates an
1328 // arbitrary number of reads in the loop.
1329 if (CurAST) {
1330 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1331
1332 if (AS.isRef() || !AS.isMustAlias())
1333 // Quick exit test, handled by the full path below as well.
1334 return false;
1335 auto *UniqueI = AS.getUniqueInstruction();
1336 if (!UniqueI)
1337 // other memory op, give up
1338 return false;
1339 assert(UniqueI == SI && "AS must contain SI")((void)0);
1340 return true;
1341 } else { // MSSAU
1342 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1343 return true;
1344 // If there are more accesses than the Promotion cap or no "quota" to
1345 // check clobber, then give up as we're not walking a list that long.
1346 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1347 return false;
1348 // If there are interfering Uses (i.e. their defining access is in the
1349 // loop), or ordered loads (stored as Defs!), don't move this store.
1350 // Could do better here, but this is conservatively correct.
1351 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1352 // moving accesses. Can also extend to dominating uses.
1353 auto *SIMD = MSSA->getMemoryAccess(SI);
1354 for (auto *BB : CurLoop->getBlocks())
1355 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1356 for (const auto &MA : *Accesses)
1357 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1358 auto *MD = MU->getDefiningAccess();
1359 if (!MSSA->isLiveOnEntryDef(MD) &&
1360 CurLoop->contains(MD->getBlock()))
1361 return false;
1362 // Disable hoisting past potentially interfering loads. Optimized
1363 // Uses may point to an access outside the loop, as getClobbering
1364 // checks the previous iteration when walking the backedge.
1365 // FIXME: More precise: no Uses that alias SI.
1366 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1367 return false;
1368 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1369 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1370 (void)LI; // Silence warning.
1371 assert(!LI->isUnordered() && "Expected unordered load")((void)0);
1372 return false;
1373 }
1374 // Any call, while it may not be clobbering SI, it may be a use.
1375 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1376 // Check if the call may read from the memory location written
1377 // to by SI. Check CI's attributes and arguments; the number of
1378 // such checks performed is limited above by NoOfMemAccTooLarge.
1379 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1380 if (isModOrRefSet(MRI))
1381 return false;
1382 }
1383 }
1384 }
1385 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1386 Flags->incrementClobberingCalls();
1387 // If there are no clobbering Defs in the loop, store is safe to hoist.
1388 return MSSA->isLiveOnEntryDef(Source) ||
1389 !CurLoop->contains(Source->getBlock());
1390 }
1391 }
1392
1393 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((void)0);
1394
1395 // We've established mechanical ability and aliasing, it's up to the caller
1396 // to check fault safety
1397 return true;
1398}
1399
1400/// Returns true if a PHINode is a trivially replaceable with an
1401/// Instruction.
1402/// This is true when all incoming values are that instruction.
1403/// This pattern occurs most often with LCSSA PHI nodes.
1404///
1405static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1406 for (const Value *IncValue : PN.incoming_values())
1407 if (IncValue != &I)
1408 return false;
1409
1410 return true;
1411}
1412
1413/// Return true if the instruction is free in the loop.
1414static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1415 const TargetTransformInfo *TTI) {
1416
1417 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1418 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1419 TargetTransformInfo::TCC_Free)
1420 return false;
1421 // For a GEP, we cannot simply use getUserCost because currently it
1422 // optimistically assume that a GEP will fold into addressing mode
1423 // regardless of its users.
1424 const BasicBlock *BB = GEP->getParent();
1425 for (const User *U : GEP->users()) {
1426 const Instruction *UI = cast<Instruction>(U);
1427 if (CurLoop->contains(UI) &&
1428 (BB != UI->getParent() ||
1429 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1430 return false;
1431 }
1432 return true;
1433 } else
1434 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1435 TargetTransformInfo::TCC_Free;
1436}
1437
1438/// Return true if the only users of this instruction are outside of
1439/// the loop. If this is true, we can sink the instruction to the exit
1440/// blocks of the loop.
1441///
1442/// We also return true if the instruction could be folded away in lowering.
1443/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1444static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1445 const LoopSafetyInfo *SafetyInfo,
1446 TargetTransformInfo *TTI, bool &FreeInLoop) {
1447 const auto &BlockColors = SafetyInfo->getBlockColors();
1448 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1449 for (const User *U : I.users()) {
1450 const Instruction *UI = cast<Instruction>(U);
1451 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1452 const BasicBlock *BB = PN->getParent();
1453 // We cannot sink uses in catchswitches.
1454 if (isa<CatchSwitchInst>(BB->getTerminator()))
1455 return false;
1456
1457 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1458 // phi use is too muddled.
1459 if (isa<CallInst>(I))
1460 if (!BlockColors.empty() &&
1461 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1462 return false;
1463 }
1464
1465 if (CurLoop->contains(UI)) {
1466 if (IsFree) {
1467 FreeInLoop = true;
1468 continue;
1469 }
1470 return false;
1471 }
1472 }
1473 return true;
1474}
1475
1476static Instruction *cloneInstructionInExitBlock(
1477 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1478 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1479 Instruction *New;
1480 if (auto *CI = dyn_cast<CallInst>(&I)) {
1481 const auto &BlockColors = SafetyInfo->getBlockColors();
1482
1483 // Sinking call-sites need to be handled differently from other
1484 // instructions. The cloned call-site needs a funclet bundle operand
1485 // appropriate for its location in the CFG.
1486 SmallVector<OperandBundleDef, 1> OpBundles;
1487 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1488 BundleIdx != BundleEnd; ++BundleIdx) {
1489 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1490 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1491 continue;
1492
1493 OpBundles.emplace_back(Bundle);
1494 }
1495
1496 if (!BlockColors.empty()) {
1497 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1498 assert(CV.size() == 1 && "non-unique color for exit block!")((void)0);
1499 BasicBlock *BBColor = CV.front();
1500 Instruction *EHPad = BBColor->getFirstNonPHI();
1501 if (EHPad->isEHPad())
1502 OpBundles.emplace_back("funclet", EHPad);
1503 }
1504
1505 New = CallInst::Create(CI, OpBundles);
1506 } else {
1507 New = I.clone();
1508 }
1509
1510 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1511 if (!I.getName().empty())
1512 New->setName(I.getName() + ".le");
1513
1514 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1515 // Create a new MemoryAccess and let MemorySSA set its defining access.
1516 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1517 New, nullptr, New->getParent(), MemorySSA::Beginning);
1518 if (NewMemAcc) {
1519 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1520 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1521 else {
1522 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1523 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1524 }
1525 }
1526 }
1527
1528 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1529 // this is particularly cheap because we can rip off the PHI node that we're
1530 // replacing for the number and blocks of the predecessors.
1531 // OPT: If this shows up in a profile, we can instead finish sinking all
1532 // invariant instructions, and then walk their operands to re-establish
1533 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1534 // sinking bottom-up.
1535 for (Use &Op : New->operands())
1536 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1537 auto *OInst = cast<Instruction>(Op.get());
1538 PHINode *OpPN =
1539 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1540 OInst->getName() + ".lcssa", &ExitBlock.front());
1541 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1542 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1543 Op = OpPN;
1544 }
1545 return New;
1546}
1547
1548static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1549 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1550 if (AST)
1551 AST->deleteValue(&I);
1552 if (MSSAU)
1553 MSSAU->removeMemoryAccess(&I);
1554 SafetyInfo.removeInstruction(&I);
1555 I.eraseFromParent();
1556}
1557
1558static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1559 ICFLoopSafetyInfo &SafetyInfo,
1560 MemorySSAUpdater *MSSAU,
1561 ScalarEvolution *SE) {
1562 SafetyInfo.removeInstruction(&I);
1563 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1564 I.moveBefore(&Dest);
1565 if (MSSAU)
1566 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1567 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1568 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1569 MemorySSA::BeforeTerminator);
1570 if (SE)
1571 SE->forgetValue(&I);
1572}
1573
1574static Instruction *sinkThroughTriviallyReplaceablePHI(
1575 PHINode *TPN, Instruction *I, LoopInfo *LI,
1576 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1577 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1578 MemorySSAUpdater *MSSAU) {
1579 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((void)0)
1580 "Expect only trivially replaceable PHI")((void)0);
1581 BasicBlock *ExitBlock = TPN->getParent();
1582 Instruction *New;
1583 auto It = SunkCopies.find(ExitBlock);
1584 if (It != SunkCopies.end())
1585 New = It->second;
1586 else
1587 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1588 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1589 return New;
1590}
1591
1592static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1593 BasicBlock *BB = PN->getParent();
1594 if (!BB->canSplitPredecessors())
1595 return false;
1596 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1597 // it require updating BlockColors for all offspring blocks accordingly. By
1598 // skipping such corner case, we can make updating BlockColors after splitting
1599 // predecessor fairly simple.
1600 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1601 return false;
1602 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1603 BasicBlock *BBPred = *PI;
1604 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1605 isa<CallBrInst>(BBPred->getTerminator()))
1606 return false;
1607 }
1608 return true;
1609}
1610
1611static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1612 LoopInfo *LI, const Loop *CurLoop,
1613 LoopSafetyInfo *SafetyInfo,
1614 MemorySSAUpdater *MSSAU) {
1615#ifndef NDEBUG1
1616 SmallVector<BasicBlock *, 32> ExitBlocks;
1617 CurLoop->getUniqueExitBlocks(ExitBlocks);
1618 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1619 ExitBlocks.end());
1620#endif
1621 BasicBlock *ExitBB = PN->getParent();
1622 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((void)0);
1623
1624 // Split predecessors of the loop exit to make instructions in the loop are
1625 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1626 // loop in the canonical form where each predecessor of each exit block should
1627 // be contained within the loop. For example, this will convert the loop below
1628 // from
1629 //
1630 // LB1:
1631 // %v1 =
1632 // br %LE, %LB2
1633 // LB2:
1634 // %v2 =
1635 // br %LE, %LB1
1636 // LE:
1637 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1638 //
1639 // to
1640 //
1641 // LB1:
1642 // %v1 =
1643 // br %LE.split, %LB2
1644 // LB2:
1645 // %v2 =
1646 // br %LE.split2, %LB1
1647 // LE.split:
1648 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1649 // br %LE
1650 // LE.split2:
1651 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1652 // br %LE
1653 // LE:
1654 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1655 //
1656 const auto &BlockColors = SafetyInfo->getBlockColors();
1657 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1658 while (!PredBBs.empty()) {
1659 BasicBlock *PredBB = *PredBBs.begin();
1660 assert(CurLoop->contains(PredBB) &&((void)0)
1661 "Expect all predecessors are in the loop")((void)0);
1662 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1663 BasicBlock *NewPred = SplitBlockPredecessors(
1664 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1665 // Since we do not allow splitting EH-block with BlockColors in
1666 // canSplitPredecessors(), we can simply assign predecessor's color to
1667 // the new block.
1668 if (!BlockColors.empty())
1669 // Grab a reference to the ColorVector to be inserted before getting the
1670 // reference to the vector we are copying because inserting the new
1671 // element in BlockColors might cause the map to be reallocated.
1672 SafetyInfo->copyColors(NewPred, PredBB);
1673 }
1674 PredBBs.remove(PredBB);
1675 }
1676}
1677
1678/// When an instruction is found to only be used outside of the loop, this
1679/// function moves it to the exit blocks and patches up SSA form as needed.
1680/// This method is guaranteed to remove the original instruction from its
1681/// position, and may either delete it or move it to outside of the loop.
1682///
1683static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1684 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1685 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1686 OptimizationRemarkEmitter *ORE) {
1687 bool Changed = false;
1688 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { } while (false);
1689
1690 // Iterate over users to be ready for actual sinking. Replace users via
1691 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1692 SmallPtrSet<Instruction *, 8> VisitedUsers;
1693 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1694 auto *User = cast<Instruction>(*UI);
1695 Use &U = UI.getUse();
1696 ++UI;
1697
1698 if (VisitedUsers.count(User) || CurLoop->contains(User))
1699 continue;
1700
1701 if (!DT->isReachableFromEntry(User->getParent())) {
1702 U = UndefValue::get(I.getType());
1703 Changed = true;
1704 continue;
1705 }
1706
1707 // The user must be a PHI node.
1708 PHINode *PN = cast<PHINode>(User);
1709
1710 // Surprisingly, instructions can be used outside of loops without any
1711 // exits. This can only happen in PHI nodes if the incoming block is
1712 // unreachable.
1713 BasicBlock *BB = PN->getIncomingBlock(U);
1714 if (!DT->isReachableFromEntry(BB)) {
1715 U = UndefValue::get(I.getType());
1716 Changed = true;
1717 continue;
1718 }
1719
1720 VisitedUsers.insert(PN);
1721 if (isTriviallyReplaceablePHI(*PN, I))
1722 continue;
1723
1724 if (!canSplitPredecessors(PN, SafetyInfo))
1725 return Changed;
1726
1727 // Split predecessors of the PHI so that we can make users trivially
1728 // replaceable.
1729 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1730
1731 // Should rebuild the iterators, as they may be invalidated by
1732 // splitPredecessorsOfLoopExit().
1733 UI = I.user_begin();
1734 UE = I.user_end();
1735 }
1736
1737 if (VisitedUsers.empty())
1738 return Changed;
1739
1740 ORE->emit([&]() {
1741 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1742 << "sinking " << ore::NV("Inst", &I);
1743 });
1744 if (isa<LoadInst>(I))
1745 ++NumMovedLoads;
1746 else if (isa<CallInst>(I))
1747 ++NumMovedCalls;
1748 ++NumSunk;
1749
1750#ifndef NDEBUG1
1751 SmallVector<BasicBlock *, 32> ExitBlocks;
1752 CurLoop->getUniqueExitBlocks(ExitBlocks);
1753 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1754 ExitBlocks.end());
1755#endif
1756
1757 // Clones of this instruction. Don't create more than one per exit block!
1758 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1759
1760 // If this instruction is only used outside of the loop, then all users are
1761 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1762 // the instruction.
1763 // First check if I is worth sinking for all uses. Sink only when it is worth
1764 // across all uses.
1765 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1766 SmallVector<PHINode *, 8> ExitPNs;
1767 for (auto *UI : Users) {
1768 auto *User = cast<Instruction>(UI);
1769
1770 if (CurLoop->contains(User))
1771 continue;
1772
1773 PHINode *PN = cast<PHINode>(User);
1774 assert(ExitBlockSet.count(PN->getParent()) &&((void)0)
1775 "The LCSSA PHI is not in an exit block!")((void)0);
1776 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1777 return Changed;
1778 }
1779
1780 ExitPNs.push_back(PN);
1781 }
1782
1783 for (auto *PN : ExitPNs) {
1784
1785 // The PHI must be trivially replaceable.
1786 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1787 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1788 PN->replaceAllUsesWith(New);
1789 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1790 Changed = true;
1791 }
1792 return Changed;
1793}
1794
1795/// When an instruction is found to only use loop invariant operands that
1796/// is safe to hoist, this instruction is called to do the dirty work.
1797///
1798static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1799 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1800 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1801 OptimizationRemarkEmitter *ORE) {
1802 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { } while (false)
1803 << I << "\n")do { } while (false);
1804 ORE->emit([&]() {
1805 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1806 << ore::NV("Inst", &I);
1807 });
1808
1809 // Metadata can be dependent on conditions we are hoisting above.
1810 // Conservatively strip all metadata on the instruction unless we were
1811 // guaranteed to execute I if we entered the loop, in which case the metadata
1812 // is valid in the loop preheader.
1813 // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1814 // then moving to the preheader means we should strip attributes on the call
1815 // that can cause UB since we may be hoisting above conditions that allowed
1816 // inferring those attributes. They may not be valid at the preheader.
1817 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1818 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1819 // time in isGuaranteedToExecute if we don't actually have anything to
1820 // drop. It is a compile time optimization, not required for correctness.
1821 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1822 I.dropUndefImplyingAttrsAndUnknownMetadata();
1823
1824 if (isa<PHINode>(I))
1825 // Move the new node to the end of the phi list in the destination block.
1826 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1827 else
1828 // Move the new node to the destination block, before its terminator.
1829 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1830
1831 I.updateLocationAfterHoist();
1832
1833 if (isa<LoadInst>(I))
1834 ++NumMovedLoads;
1835 else if (isa<CallInst>(I))
1836 ++NumMovedCalls;
1837 ++NumHoisted;
1838}
1839
1840/// Only sink or hoist an instruction if it is not a trapping instruction,
1841/// or if the instruction is known not to trap when moved to the preheader.
1842/// or if it is a trapping instruction and is guaranteed to execute.
1843static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1844 const DominatorTree *DT,
1845 const TargetLibraryInfo *TLI,
1846 const Loop *CurLoop,
1847 const LoopSafetyInfo *SafetyInfo,
1848 OptimizationRemarkEmitter *ORE,
1849 const Instruction *CtxI) {
1850 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1851 return true;
1852
1853 bool GuaranteedToExecute =
1854 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1855
1856 if (!GuaranteedToExecute) {
1857 auto *LI = dyn_cast<LoadInst>(&Inst);
1858 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1859 ORE->emit([&]() {
1860 return OptimizationRemarkMissed(
1861 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1862 << "failed to hoist load with loop-invariant address "
1863 "because load is conditionally executed";
1864 });
1865 }
1866
1867 return GuaranteedToExecute;
1868}
1869
1870namespace {
1871class LoopPromoter : public LoadAndStorePromoter {
1872 Value *SomePtr; // Designated pointer to store to.
1873 const SmallSetVector<Value *, 8> &PointerMustAliases;
1874 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1875 SmallVectorImpl<Instruction *> &LoopInsertPts;
1876 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1877 PredIteratorCache &PredCache;
1878 AliasSetTracker *AST;
1879 MemorySSAUpdater *MSSAU;
1880 LoopInfo &LI;
1881 DebugLoc DL;
1882 int Alignment;
1883 bool UnorderedAtomic;
1884 AAMDNodes AATags;
1885 ICFLoopSafetyInfo &SafetyInfo;
1886
1887 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1888 // (if legal) if doing so would add an out-of-loop use to an instruction
1889 // defined in-loop.
1890 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1891 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1892 return V;
1893
1894 Instruction *I = cast<Instruction>(V);
1895 // We need to create an LCSSA PHI node for the incoming value and
1896 // store that.
1897 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1898 I->getName() + ".lcssa", &BB->front());
1899 for (BasicBlock *Pred : PredCache.get(BB))
1900 PN->addIncoming(I, Pred);
1901 return PN;
1902 }
1903
1904public:
1905 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1906 const SmallSetVector<Value *, 8> &PMA,
1907 SmallVectorImpl<BasicBlock *> &LEB,
1908 SmallVectorImpl<Instruction *> &LIP,
1909 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1910 AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1911 DebugLoc dl, int alignment, bool UnorderedAtomic,
1912 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1913 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1914 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1915 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1916 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1917 SafetyInfo(SafetyInfo) {}
1918
1919 bool isInstInList(Instruction *I,
1920 const SmallVectorImpl<Instruction *> &) const override {
1921 Value *Ptr;
1922 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1923 Ptr = LI->getOperand(0);
1924 else
1925 Ptr = cast<StoreInst>(I)->getPointerOperand();
1926 return PointerMustAliases.count(Ptr);
1927 }
1928
1929 void doExtraRewritesBeforeFinalDeletion() override {
1930 // Insert stores after in the loop exit blocks. Each exit block gets a
1931 // store of the live-out values that feed them. Since we've already told
1932 // the SSA updater about the defs in the loop and the preheader
1933 // definition, it is all set and we can start using it.
1934 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1935 BasicBlock *ExitBlock = LoopExitBlocks[i];
1936 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1937 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1938 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1939 Instruction *InsertPos = LoopInsertPts[i];
1940 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1941 if (UnorderedAtomic)
1942 NewSI->setOrdering(AtomicOrdering::Unordered);
1943 NewSI->setAlignment(Align(Alignment));
1944 NewSI->setDebugLoc(DL);
1945 if (AATags)
1946 NewSI->setAAMetadata(AATags);
1947
1948 if (MSSAU) {
1949 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1950 MemoryAccess *NewMemAcc;
1951 if (!MSSAInsertPoint) {
1952 NewMemAcc = MSSAU->createMemoryAccessInBB(
1953 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1954 } else {
1955 NewMemAcc =
1956 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1957 }
1958 MSSAInsertPts[i] = NewMemAcc;
1959 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1960 // FIXME: true for safety, false may still be correct.
1961 }
1962 }
1963 }
1964
1965 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1966 // Update alias analysis.
1967 if (AST)
1968 AST->copyValue(LI, V);
1969 }
1970 void instructionDeleted(Instruction *I) const override {
1971 SafetyInfo.removeInstruction(I);
1972 if (AST)
1973 AST->deleteValue(I);
1974 if (MSSAU)
1975 MSSAU->removeMemoryAccess(I);
1976 }
1977};
1978
1979bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1980 DominatorTree *DT) {
1981 // We can perform the captured-before check against any instruction in the
1982 // loop header, as the loop header is reachable from any instruction inside
1983 // the loop.
1984 // TODO: ReturnCaptures=true shouldn't be necessary here.
1985 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1986 /* StoreCaptures */ true,
1987 L->getHeader()->getTerminator(), DT);
1988}
1989
1990/// Return true iff we can prove that a caller of this function can not inspect
1991/// the contents of the provided object in a well defined program.
1992bool isKnownNonEscaping(Value *Object, const Loop *L,
1993 const TargetLibraryInfo *TLI, DominatorTree *DT) {
1994 if (isa<AllocaInst>(Object))
1995 // Since the alloca goes out of scope, we know the caller can't retain a
1996 // reference to it and be well defined. Thus, we don't need to check for
1997 // capture.
1998 return true;
1999
2000 // For all other objects we need to know that the caller can't possibly
2001 // have gotten a reference to the object. There are two components of
2002 // that:
2003 // 1) Object can't be escaped by this function. This is what
2004 // PointerMayBeCaptured checks.
2005 // 2) Object can't have been captured at definition site. For this, we
2006 // need to know the return value is noalias. At the moment, we use a
2007 // weaker condition and handle only AllocLikeFunctions (which are
2008 // known to be noalias). TODO
2009 return isAllocLikeFn(Object, TLI) &&
2010 isNotCapturedBeforeOrInLoop(Object, L, DT);
2011}
2012
2013} // namespace
2014
2015/// Try to promote memory values to scalars by sinking stores out of the
2016/// loop and moving loads to before the loop. We do this by looping over
2017/// the stores in the loop, looking for stores to Must pointers which are
2018/// loop invariant.
2019///
2020bool llvm::promoteLoopAccessesToScalars(
2021 const SmallSetVector<Value *, 8> &PointerMustAliases,
2022 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2023 SmallVectorImpl<Instruction *> &InsertPts,
2024 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
2025 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
2026 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
2027 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
2028 // Verify inputs.
2029 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((void)0)
2030 SafetyInfo != nullptr &&((void)0)
2031 "Unexpected Input to promoteLoopAccessesToScalars")((void)0);
2032
2033 Value *SomePtr = *PointerMustAliases.begin();
2034 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2035
2036 // It is not safe to promote a load/store from the loop if the load/store is
2037 // conditional. For example, turning:
2038 //
2039 // for () { if (c) *P += 1; }
2040 //
2041 // into:
2042 //
2043 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
2044 //
2045 // is not safe, because *P may only be valid to access if 'c' is true.
2046 //
2047 // The safety property divides into two parts:
2048 // p1) The memory may not be dereferenceable on entry to the loop. In this
2049 // case, we can't insert the required load in the preheader.
2050 // p2) The memory model does not allow us to insert a store along any dynamic
2051 // path which did not originally have one.
2052 //
2053 // If at least one store is guaranteed to execute, both properties are
2054 // satisfied, and promotion is legal.
2055 //
2056 // This, however, is not a necessary condition. Even if no store/load is
2057 // guaranteed to execute, we can still establish these properties.
2058 // We can establish (p1) by proving that hoisting the load into the preheader
2059 // is safe (i.e. proving dereferenceability on all paths through the loop). We
2060 // can use any access within the alias set to prove dereferenceability,
2061 // since they're all must alias.
2062 //
2063 // There are two ways establish (p2):
2064 // a) Prove the location is thread-local. In this case the memory model
2065 // requirement does not apply, and stores are safe to insert.
2066 // b) Prove a store dominates every exit block. In this case, if an exit
2067 // blocks is reached, the original dynamic path would have taken us through
2068 // the store, so inserting a store into the exit block is safe. Note that this
2069 // is different from the store being guaranteed to execute. For instance,
2070 // if an exception is thrown on the first iteration of the loop, the original
2071 // store is never executed, but the exit blocks are not executed either.
2072
2073 bool DereferenceableInPH = false;
2074 bool SafeToInsertStore = false;
2075
2076 SmallVector<Instruction *, 64> LoopUses;
2077
2078 // We start with an alignment of one and try to find instructions that allow
2079 // us to prove better alignment.
2080 Align Alignment;
2081 // Keep track of which types of access we see
2082 bool SawUnorderedAtomic = false;
2083 bool SawNotAtomic = false;
2084 AAMDNodes AATags;
2085
2086 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2087
2088 bool IsKnownThreadLocalObject = false;
2089 if (SafetyInfo->anyBlockMayThrow()) {
2090 // If a loop can throw, we have to insert a store along each unwind edge.
2091 // That said, we can't actually make the unwind edge explicit. Therefore,
2092 // we have to prove that the store is dead along the unwind edge. We do
2093 // this by proving that the caller can't have a reference to the object
2094 // after return and thus can't possibly load from the object.
2095 Value *Object = getUnderlyingObject(SomePtr);
2096 if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2097 return false;
2098 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2099 // visible to other threads if captured and used during their lifetimes.
2100 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2101 }
2102
2103 // Check that all of the pointers in the alias set have the same type. We
2104 // cannot (yet) promote a memory location that is loaded and stored in
2105 // different sizes. While we are at it, collect alignment and AA info.
2106 for (Value *ASIV : PointerMustAliases) {
2107 // Check that all of the pointers in the alias set have the same type. We
2108 // cannot (yet) promote a memory location that is loaded and stored in
2109 // different sizes.
2110 if (SomePtr->getType() != ASIV->getType())
2111 return false;
2112
2113 for (User *U : ASIV->users()) {
2114 // Ignore instructions that are outside the loop.
2115 Instruction *UI = dyn_cast<Instruction>(U);
2116 if (!UI || !CurLoop->contains(UI))
2117 continue;
2118
2119 // If there is an non-load/store instruction in the loop, we can't promote
2120 // it.
2121 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2122 if (!Load->isUnordered())
2123 return false;
2124
2125 SawUnorderedAtomic |= Load->isAtomic();
2126 SawNotAtomic |= !Load->isAtomic();
2127
2128 Align InstAlignment = Load->getAlign();
2129
2130 // Note that proving a load safe to speculate requires proving
2131 // sufficient alignment at the target location. Proving it guaranteed
2132 // to execute does as well. Thus we can increase our guaranteed
2133 // alignment as well.
2134 if (!DereferenceableInPH || (InstAlignment > Alignment))
2135 if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2136 SafetyInfo, ORE,
2137 Preheader->getTerminator())) {
2138 DereferenceableInPH = true;
2139 Alignment = std::max(Alignment, InstAlignment);
2140 }
2141 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2142 // Stores *of* the pointer are not interesting, only stores *to* the
2143 // pointer.
2144 if (UI->getOperand(1) != ASIV)
2145 continue;
2146 if (!Store->isUnordered())
2147 return false;
2148
2149 SawUnorderedAtomic |= Store->isAtomic();
2150 SawNotAtomic |= !Store->isAtomic();
2151
2152 // If the store is guaranteed to execute, both properties are satisfied.
2153 // We may want to check if a store is guaranteed to execute even if we
2154 // already know that promotion is safe, since it may have higher
2155 // alignment than any other guaranteed stores, in which case we can
2156 // raise the alignment on the promoted store.
2157 Align InstAlignment = Store->getAlign();
2158
2159 if (!DereferenceableInPH || !SafeToInsertStore ||
2160 (InstAlignment > Alignment)) {
2161 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2162 DereferenceableInPH = true;
2163 SafeToInsertStore = true;
2164 Alignment = std::max(Alignment, InstAlignment);
2165 }
2166 }
2167
2168 // If a store dominates all exit blocks, it is safe to sink.
2169 // As explained above, if an exit block was executed, a dominating
2170 // store must have been executed at least once, so we are not
2171 // introducing stores on paths that did not have them.
2172 // Note that this only looks at explicit exit blocks. If we ever
2173 // start sinking stores into unwind edges (see above), this will break.
2174 if (!SafeToInsertStore)
2175 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2176 return DT->dominates(Store->getParent(), Exit);
2177 });
2178
2179 // If the store is not guaranteed to execute, we may still get
2180 // deref info through it.
2181 if (!DereferenceableInPH) {
2182 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2183 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2184 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2185 }
2186 } else
2187 return false; // Not a load or store.
2188
2189 // Merge the AA tags.
2190 if (LoopUses.empty()) {
2191 // On the first load/store, just take its AA tags.
2192 UI->getAAMetadata(AATags);
2193 } else if (AATags) {
2194 UI->getAAMetadata(AATags, /* Merge = */ true);
2195 }
2196
2197 LoopUses.push_back(UI);
2198 }
2199 }
2200
2201 // If we found both an unordered atomic instruction and a non-atomic memory
2202 // access, bail. We can't blindly promote non-atomic to atomic since we
2203 // might not be able to lower the result. We can't downgrade since that
2204 // would violate memory model. Also, align 0 is an error for atomics.
2205 if (SawUnorderedAtomic && SawNotAtomic)
2206 return false;
2207
2208 // If we're inserting an atomic load in the preheader, we must be able to
2209 // lower it. We're only guaranteed to be able to lower naturally aligned
2210 // atomics.
2211 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2212 if (SawUnorderedAtomic &&
2213 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2214 return false;
2215
2216 // If we couldn't prove we can hoist the load, bail.
2217 if (!DereferenceableInPH)
2218 return false;
2219
2220 // We know we can hoist the load, but don't have a guaranteed store.
2221 // Check whether the location is thread-local. If it is, then we can insert
2222 // stores along paths which originally didn't have them without violating the
2223 // memory model.
2224 if (!SafeToInsertStore) {
2225 if (IsKnownThreadLocalObject)
2226 SafeToInsertStore = true;
2227 else {
2228 Value *Object = getUnderlyingObject(SomePtr);
2229 SafeToInsertStore =
2230 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2231 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2232 }
2233 }
2234
2235 // If we've still failed to prove we can sink the store, give up.
2236 if (!SafeToInsertStore)
2237 return false;
2238
2239 // Otherwise, this is safe to promote, lets do it!
2240 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { } while (false)
2241 << '\n')do { } while (false);
2242 ORE->emit([&]() {
2243 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2244 LoopUses[0])
2245 << "Moving accesses to memory location out of the loop";
2246 });
2247 ++NumPromoted;
2248
2249 // Look at all the loop uses, and try to merge their locations.
2250 std::vector<const DILocation *> LoopUsesLocs;
2251 for (auto U : LoopUses)
2252 LoopUsesLocs.push_back(U->getDebugLoc().get());
2253 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2254
2255 // We use the SSAUpdater interface to insert phi nodes as required.
2256 SmallVector<PHINode *, 16> NewPHIs;
2257 SSAUpdater SSA(&NewPHIs);
2258 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2259 InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
2260 Alignment.value(), SawUnorderedAtomic, AATags,
2261 *SafetyInfo);
2262
2263 // Set up the preheader to have a definition of the value. It is the live-out
2264 // value from the preheader that uses in the loop will use.
2265 LoadInst *PreheaderLoad = new LoadInst(
2266 SomePtr->getType()->getPointerElementType(), SomePtr,
2267 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2268 if (SawUnorderedAtomic)
2269 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2270 PreheaderLoad->setAlignment(Alignment);
2271 PreheaderLoad->setDebugLoc(DebugLoc());
2272 if (AATags)
2273 PreheaderLoad->setAAMetadata(AATags);
2274 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2275
2276 if (MSSAU) {
2277 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2278 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2279 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2280 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2281 }
2282
2283 if (MSSAU && VerifyMemorySSA)
2284 MSSAU->getMemorySSA()->verifyMemorySSA();
2285 // Rewrite all the loads in the loop and remember all the definitions from
2286 // stores in the loop.
2287 Promoter.run(LoopUses);
2288
2289 if (MSSAU && VerifyMemorySSA)
2290 MSSAU->getMemorySSA()->verifyMemorySSA();
2291 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2292 if (PreheaderLoad->use_empty())
2293 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2294
2295 return true;
2296}
2297
2298static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2299 function_ref<void(Instruction *)> Fn) {
2300 for (const BasicBlock *BB : L->blocks())
2301 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2302 for (const auto &Access : *Accesses)
2303 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2304 Fn(MUD->getMemoryInst());
2305}
2306
2307static SmallVector<SmallSetVector<Value *, 8>, 0>
2308collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2309 AliasSetTracker AST(*AA);
2310
2311 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2312 if (const auto *SI = dyn_cast<StoreInst>(I))
2313 return L->isLoopInvariant(SI->getPointerOperand());
2314 if (const auto *LI = dyn_cast<LoadInst>(I))
2315 return L->isLoopInvariant(LI->getPointerOperand());
2316 return false;
2317 };
2318
2319 // Populate AST with potentially promotable accesses and remove them from
2320 // MaybePromotable, so they will not be checked again on the next iteration.
2321 SmallPtrSet<Value *, 16> AttemptingPromotion;
2322 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2323 if (IsPotentiallyPromotable(I)) {
2324 AttemptingPromotion.insert(I);
2325 AST.add(I);
2326 }
2327 });
2328
2329 // We're only interested in must-alias sets that contain a mod.
2330 SmallVector<const AliasSet *, 8> Sets;
2331 for (AliasSet &AS : AST)
2332 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2333 Sets.push_back(&AS);
2334
2335 if (Sets.empty())
2336 return {}; // Nothing to promote...
2337
2338 // Discard any sets for which there is an aliasing non-promotable access.
2339 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2340 if (AttemptingPromotion.contains(I))
2341 return;
2342
2343 llvm::erase_if(Sets, [&](const AliasSet *AS) {
2344 return AS->aliasesUnknownInst(I, *AA);
2345 });
2346 });
2347
2348 SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2349 for (const AliasSet *Set : Sets) {
2350 SmallSetVector<Value *, 8> PointerMustAliases;
2351 for (const auto &ASI : *Set)
2352 PointerMustAliases.insert(ASI.getValue());
2353 Result.push_back(std::move(PointerMustAliases));
2354 }
2355
2356 return Result;
2357}
2358
2359/// Returns an owning pointer to an alias set which incorporates aliasing info
2360/// from L and all subloops of L.
2361std::unique_ptr<AliasSetTracker>
2362LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2363 AAResults *AA) {
2364 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2365
2366 // Add everything from all the sub loops.
2367 for (Loop *InnerL : L->getSubLoops())
2368 for (BasicBlock *BB : InnerL->blocks())
2369 CurAST->add(*BB);
2370
2371 // And merge in this loop (without anything from inner loops).
2372 for (BasicBlock *BB : L->blocks())
2373 if (LI->getLoopFor(BB) == L)
2374 CurAST->add(*BB);
2375
2376 return CurAST;
2377}
2378
2379static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2380 AliasSetTracker *CurAST, Loop *CurLoop,
2381 AAResults *AA) {
2382 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2383 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2384
2385 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2386 return isInvalidatedAccordingToAST;
2387
2388 // Check with a diagnostic analysis if we can refine the information above.
2389 // This is to identify the limitations of using the AST.
2390 // The alias set mechanism used by LICM has a major weakness in that it
2391 // combines all things which may alias into a single set *before* asking
2392 // modref questions. As a result, a single readonly call within a loop will
2393 // collapse all loads and stores into a single alias set and report
2394 // invalidation if the loop contains any store. For example, readonly calls
2395 // with deopt states have this form and create a general alias set with all
2396 // loads and stores. In order to get any LICM in loops containing possible
2397 // deopt states we need a more precise invalidation of checking the mod ref
2398 // info of each instruction within the loop and LI. This has a complexity of
2399 // O(N^2), so currently, it is used only as a diagnostic tool since the
2400 // default value of LICMN2Threshold is zero.
2401
2402 // Don't look at nested loops.
2403 if (CurLoop->begin() != CurLoop->end())
2404 return true;
2405
2406 int N = 0;
2407 for (BasicBlock *BB : CurLoop->getBlocks())
2408 for (Instruction &I : *BB) {
2409 if (N >= LICMN2Theshold) {
2410 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { } while (false)
2411 << *(MemLoc.Ptr) << "\n")do { } while (false);
2412 return true;
2413 }
2414 N++;
2415 auto Res = AA->getModRefInfo(&I, MemLoc);
2416 if (isModSet(Res)) {
2417 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { } while (false)
2418 << *(MemLoc.Ptr) << "\n")do { } while (false);
2419 return true;
2420 }
2421 }
2422 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { } while (false);
2423 return false;
2424}
2425
2426bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2427 Loop *CurLoop, Instruction &I,
2428 SinkAndHoistLICMFlags &Flags) {
2429 // For hoisting, use the walker to determine safety
2430 if (!Flags.getIsSink()) {
2431 MemoryAccess *Source;
2432 // See declaration of SetLicmMssaOptCap for usage details.
2433 if (Flags.tooManyClobberingCalls())
2434 Source = MU->getDefiningAccess();
2435 else {
2436 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2437 Flags.incrementClobberingCalls();
2438 }
2439 return !MSSA->isLiveOnEntryDef(Source) &&
2440 CurLoop->contains(Source->getBlock());
2441 }
2442
2443 // For sinking, we'd need to check all Defs below this use. The getClobbering
2444 // call will look on the backedge of the loop, but will check aliasing with
2445 // the instructions on the previous iteration.
2446 // For example:
2447 // for (i ... )
2448 // load a[i] ( Use (LoE)
2449 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2450 // i++;
2451 // The load sees no clobbering inside the loop, as the backedge alias check
2452 // does phi translation, and will check aliasing against store a[i-1].
2453 // However sinking the load outside the loop, below the store is incorrect.
2454
2455 // For now, only sink if there are no Defs in the loop, and the existing ones
2456 // precede the use and are in the same block.
2457 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2458 // needs PostDominatorTreeAnalysis.
2459 // FIXME: More precise: no Defs that alias this Use.
2460 if (Flags.tooManyMemoryAccesses())
2461 return true;
2462 for (auto *BB : CurLoop->getBlocks())
2463 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2464 return true;
2465 // When sinking, the source block may not be part of the loop so check it.
2466 if (!CurLoop->contains(&I))
2467 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2468
2469 return false;
2470}
2471
2472bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2473 MemoryUse &MU) {
2474 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2475 for (const auto &MA : *Accesses)
2476 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2477 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2478 return true;
2479 return false;
2480}
2481
2482/// Little predicate that returns true if the specified basic block is in
2483/// a subloop of the current one, not the current one itself.
2484///
2485static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2486 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((void)0);
2487 return LI->getLoopFor(BB) != CurLoop;
2488}