Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/ExpandMemCmp.cpp
Warning:line 430, column 60
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ExpandMemCmp.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/ExpandMemCmp.cpp
1//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass tries to expand memcmp() calls into optimally-sized loads and
10// compares for the target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/Statistic.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/DomTreeUpdater.h"
17#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
18#include "llvm/Analysis/ProfileSummaryInfo.h"
19#include "llvm/Analysis/TargetLibraryInfo.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/InitializePasses.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/Transforms/Utils/SizeOpts.h"
32
33using namespace llvm;
34
35#define DEBUG_TYPE"expandmemcmp" "expandmemcmp"
36
37STATISTIC(NumMemCmpCalls, "Number of memcmp calls")static llvm::Statistic NumMemCmpCalls = {"expandmemcmp", "NumMemCmpCalls"
, "Number of memcmp calls"}
;
38STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size")static llvm::Statistic NumMemCmpNotConstant = {"expandmemcmp"
, "NumMemCmpNotConstant", "Number of memcmp calls without constant size"
}
;
39STATISTIC(NumMemCmpGreaterThanMax,static llvm::Statistic NumMemCmpGreaterThanMax = {"expandmemcmp"
, "NumMemCmpGreaterThanMax", "Number of memcmp calls with size greater than max size"
}
40 "Number of memcmp calls with size greater than max size")static llvm::Statistic NumMemCmpGreaterThanMax = {"expandmemcmp"
, "NumMemCmpGreaterThanMax", "Number of memcmp calls with size greater than max size"
}
;
41STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls")static llvm::Statistic NumMemCmpInlined = {"expandmemcmp", "NumMemCmpInlined"
, "Number of inlined memcmp calls"}
;
42
43static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
44 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
45 cl::desc("The number of loads per basic block for inline expansion of "
46 "memcmp that is only being compared against zero."));
47
48static cl::opt<unsigned> MaxLoadsPerMemcmp(
49 "max-loads-per-memcmp", cl::Hidden,
50 cl::desc("Set maximum number of loads used in expanded memcmp"));
51
52static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
53 "max-loads-per-memcmp-opt-size", cl::Hidden,
54 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
55
56namespace {
57
58
59// This class provides helper functions to expand a memcmp library call into an
60// inline expansion.
61class MemCmpExpansion {
62 struct ResultBlock {
63 BasicBlock *BB = nullptr;
64 PHINode *PhiSrc1 = nullptr;
65 PHINode *PhiSrc2 = nullptr;
66
67 ResultBlock() = default;
68 };
69
70 CallInst *const CI;
71 ResultBlock ResBlock;
72 const uint64_t Size;
73 unsigned MaxLoadSize;
74 uint64_t NumLoadsNonOneByte;
75 const uint64_t NumLoadsPerBlockForZeroCmp;
76 std::vector<BasicBlock *> LoadCmpBlocks;
77 BasicBlock *EndBlock;
78 PHINode *PhiRes;
79 const bool IsUsedForZeroCmp;
80 const DataLayout &DL;
81 DomTreeUpdater *DTU;
82 IRBuilder<> Builder;
83 // Represents the decomposition in blocks of the expansion. For example,
84 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
85 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
86 struct LoadEntry {
87 LoadEntry(unsigned LoadSize, uint64_t Offset)
88 : LoadSize(LoadSize), Offset(Offset) {
89 }
90
91 // The size of the load for this block, in bytes.
92 unsigned LoadSize;
93 // The offset of this load from the base pointer, in bytes.
94 uint64_t Offset;
95 };
96 using LoadEntryVector = SmallVector<LoadEntry, 8>;
97 LoadEntryVector LoadSequence;
98
99 void createLoadCmpBlocks();
100 void createResultBlock();
101 void setupResultBlockPHINodes();
102 void setupEndBlockPHINodes();
103 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
104 void emitLoadCompareBlock(unsigned BlockIndex);
105 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
106 unsigned &LoadIndex);
107 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
108 void emitMemCmpResultBlock();
109 Value *getMemCmpExpansionZeroCase();
110 Value *getMemCmpEqZeroOneBlock();
111 Value *getMemCmpOneBlock();
112 struct LoadPair {
113 Value *Lhs = nullptr;
114 Value *Rhs = nullptr;
115 };
116 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
117 unsigned OffsetBytes);
118
119 static LoadEntryVector
120 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
121 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
122 static LoadEntryVector
123 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
124 unsigned MaxNumLoads,
125 unsigned &NumLoadsNonOneByte);
126
127public:
128 MemCmpExpansion(CallInst *CI, uint64_t Size,
129 const TargetTransformInfo::MemCmpExpansionOptions &Options,
130 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
131 DomTreeUpdater *DTU);
132
133 unsigned getNumBlocks();
134 uint64_t getNumLoads() const { return LoadSequence.size(); }
135
136 Value *getMemCmpExpansion();
137};
138
139MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
140 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
141 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
142 NumLoadsNonOneByte = 0;
143 LoadEntryVector LoadSequence;
144 uint64_t Offset = 0;
145 while (Size && !LoadSizes.empty()) {
146 const unsigned LoadSize = LoadSizes.front();
147 const uint64_t NumLoadsForThisSize = Size / LoadSize;
148 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
149 // Do not expand if the total number of loads is larger than what the
150 // target allows. Note that it's important that we exit before completing
151 // the expansion to avoid using a ton of memory to store the expansion for
152 // large sizes.
153 return {};
154 }
155 if (NumLoadsForThisSize > 0) {
156 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
157 LoadSequence.push_back({LoadSize, Offset});
158 Offset += LoadSize;
159 }
160 if (LoadSize > 1)
161 ++NumLoadsNonOneByte;
162 Size = Size % LoadSize;
163 }
164 LoadSizes = LoadSizes.drop_front();
165 }
166 return LoadSequence;
167}
168
169MemCmpExpansion::LoadEntryVector
170MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
171 const unsigned MaxLoadSize,
172 const unsigned MaxNumLoads,
173 unsigned &NumLoadsNonOneByte) {
174 // These are already handled by the greedy approach.
175 if (Size < 2 || MaxLoadSize < 2)
176 return {};
177
178 // We try to do as many non-overlapping loads as possible starting from the
179 // beginning.
180 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
181 assert(NumNonOverlappingLoads && "there must be at least one load")((void)0);
182 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
183 // an overlapping load.
184 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
185 // Bail if we do not need an overloapping store, this is already handled by
186 // the greedy approach.
187 if (Size == 0)
188 return {};
189 // Bail if the number of loads (non-overlapping + potential overlapping one)
190 // is larger than the max allowed.
191 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
192 return {};
193
194 // Add non-overlapping loads.
195 LoadEntryVector LoadSequence;
196 uint64_t Offset = 0;
197 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
198 LoadSequence.push_back({MaxLoadSize, Offset});
199 Offset += MaxLoadSize;
200 }
201
202 // Add the last overlapping load.
203 assert(Size > 0 && Size < MaxLoadSize && "broken invariant")((void)0);
204 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
205 NumLoadsNonOneByte = 1;
206 return LoadSequence;
207}
208
209// Initialize the basic block structure required for expansion of memcmp call
210// with given maximum load size and memcmp size parameter.
211// This structure includes:
212// 1. A list of load compare blocks - LoadCmpBlocks.
213// 2. An EndBlock, split from original instruction point, which is the block to
214// return from.
215// 3. ResultBlock, block to branch to for early exit when a
216// LoadCmpBlock finds a difference.
217MemCmpExpansion::MemCmpExpansion(
218 CallInst *const CI, uint64_t Size,
219 const TargetTransformInfo::MemCmpExpansionOptions &Options,
220 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
221 DomTreeUpdater *DTU)
222 : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
223 NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
224 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
225 Builder(CI) {
226 assert(Size > 0 && "zero blocks")((void)0);
227 // Scale the max size down if the target can load more bytes than we need.
228 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
229 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
230 LoadSizes = LoadSizes.drop_front();
231 }
232 assert(!LoadSizes.empty() && "cannot load Size bytes")((void)0);
233 MaxLoadSize = LoadSizes.front();
234 // Compute the decomposition.
235 unsigned GreedyNumLoadsNonOneByte = 0;
236 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
237 GreedyNumLoadsNonOneByte);
238 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
239 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant")((void)0);
240 // If we allow overlapping loads and the load sequence is not already optimal,
241 // use overlapping loads.
242 if (Options.AllowOverlappingLoads &&
243 (LoadSequence.empty() || LoadSequence.size() > 2)) {
244 unsigned OverlappingNumLoadsNonOneByte = 0;
245 auto OverlappingLoads = computeOverlappingLoadSequence(
246 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
247 if (!OverlappingLoads.empty() &&
248 (LoadSequence.empty() ||
249 OverlappingLoads.size() < LoadSequence.size())) {
250 LoadSequence = OverlappingLoads;
251 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
252 }
253 }
254 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant")((void)0);
255}
256
257unsigned MemCmpExpansion::getNumBlocks() {
258 if (IsUsedForZeroCmp)
259 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
260 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
261 return getNumLoads();
262}
263
264void MemCmpExpansion::createLoadCmpBlocks() {
265 for (unsigned i = 0; i < getNumBlocks(); i++) {
266 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
267 EndBlock->getParent(), EndBlock);
268 LoadCmpBlocks.push_back(BB);
269 }
270}
271
272void MemCmpExpansion::createResultBlock() {
273 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
274 EndBlock->getParent(), EndBlock);
275}
276
277MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
278 bool NeedsBSwap,
279 Type *CmpSizeType,
280 unsigned OffsetBytes) {
281 // Get the memory source at offset `OffsetBytes`.
282 Value *LhsSource = CI->getArgOperand(0);
283 Value *RhsSource = CI->getArgOperand(1);
284 Align LhsAlign = LhsSource->getPointerAlignment(DL);
285 Align RhsAlign = RhsSource->getPointerAlignment(DL);
286 if (OffsetBytes > 0) {
287 auto *ByteType = Type::getInt8Ty(CI->getContext());
288 LhsSource = Builder.CreateConstGEP1_64(
289 ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
290 OffsetBytes);
291 RhsSource = Builder.CreateConstGEP1_64(
292 ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
293 OffsetBytes);
294 LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
295 RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
296 }
297 LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
298 RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
299
300 // Create a constant or a load from the source.
301 Value *Lhs = nullptr;
302 if (auto *C = dyn_cast<Constant>(LhsSource))
303 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
304 if (!Lhs)
305 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
306
307 Value *Rhs = nullptr;
308 if (auto *C = dyn_cast<Constant>(RhsSource))
309 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
310 if (!Rhs)
311 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
312
313 // Swap bytes if required.
314 if (NeedsBSwap) {
315 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
316 Intrinsic::bswap, LoadSizeType);
317 Lhs = Builder.CreateCall(Bswap, Lhs);
318 Rhs = Builder.CreateCall(Bswap, Rhs);
319 }
320
321 // Zero extend if required.
322 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
323 Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
324 Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
325 }
326 return {Lhs, Rhs};
327}
328
329// This function creates the IR instructions for loading and comparing 1 byte.
330// It loads 1 byte from each source of the memcmp parameters with the given
331// GEPIndex. It then subtracts the two loaded values and adds this result to the
332// final phi node for selecting the memcmp result.
333void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
334 unsigned OffsetBytes) {
335 BasicBlock *BB = LoadCmpBlocks[BlockIndex];
336 Builder.SetInsertPoint(BB);
337 const LoadPair Loads =
338 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
339 Type::getInt32Ty(CI->getContext()), OffsetBytes);
340 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
341
342 PhiRes->addIncoming(Diff, BB);
343
344 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
345 // Early exit branch if difference found to EndBlock. Otherwise, continue to
346 // next LoadCmpBlock,
347 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
348 ConstantInt::get(Diff->getType(), 0));
349 BranchInst *CmpBr =
350 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
351 if (DTU)
352 DTU->applyUpdates(
353 {{DominatorTree::Insert, BB, EndBlock},
354 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
355 Builder.Insert(CmpBr);
356 } else {
357 // The last block has an unconditional branch to EndBlock.
358 BranchInst *CmpBr = BranchInst::Create(EndBlock);
359 if (DTU)
360 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
361 Builder.Insert(CmpBr);
362 }
363}
364
365/// Generate an equality comparison for one or more pairs of loaded values.
366/// This is used in the case where the memcmp() call is compared equal or not
367/// equal to zero.
368Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
369 unsigned &LoadIndex) {
370 assert(LoadIndex < getNumLoads() &&((void)0)
371 "getCompareLoadPairs() called with no remaining loads")((void)0);
372 std::vector<Value *> XorList, OrList;
373 Value *Diff = nullptr;
5
'Diff' initialized to a null pointer value
374
375 const unsigned NumLoads =
376 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
377
378 // For a single-block expansion, start inserting before the memcmp call.
379 if (LoadCmpBlocks.empty())
6
Assuming the condition is false
7
Taking false branch
380 Builder.SetInsertPoint(CI);
381 else
382 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
383
384 Value *Cmp = nullptr;
385 // If we have multiple loads per block, we need to generate a composite
386 // comparison using xor+or. The type for the combinations is the largest load
387 // type.
388 IntegerType *const MaxLoadType =
389 NumLoads == 1 ? nullptr
8
Assuming 'NumLoads' is not equal to 1
9
'?' condition is false
390 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
391 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
10
Assuming 'i' is >= 'NumLoads'
11
Loop condition is false. Execution continues on line 409
392 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
393 const LoadPair Loads = getLoadPair(
394 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
395 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
396
397 if (NumLoads != 1) {
398 // If we have multiple loads per block, we need to generate a composite
399 // comparison using xor+or.
400 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
401 Diff = Builder.CreateZExt(Diff, MaxLoadType);
402 XorList.push_back(Diff);
403 } else {
404 // If there's only one load per block, we just compare the loaded values.
405 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
406 }
407 }
408
409 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
410 std::vector<Value *> OutList;
411 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
412 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
413 OutList.push_back(Or);
414 }
415 if (InList.size() % 2 != 0)
416 OutList.push_back(InList.back());
417 return OutList;
418 };
419
420 if (!Cmp
11.1
'Cmp' is null
) {
12
Taking true branch
421 // Pairwise OR the XOR results.
422 OrList = pairWiseOr(XorList);
423
424 // Pairwise OR the OR results until one result left.
425 while (OrList.size() != 1) {
13
Assuming the condition is false
14
Loop condition is false. Execution continues on line 429
426 OrList = pairWiseOr(OrList);
427 }
428
429 assert(Diff && "Failed to find comparison diff")((void)0);
430 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
15
Called C++ object pointer is null
431 }
432
433 return Cmp;
434}
435
436void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
437 unsigned &LoadIndex) {
438 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
4
Calling 'MemCmpExpansion::getCompareLoadPairs'
439
440 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
441 ? EndBlock
442 : LoadCmpBlocks[BlockIndex + 1];
443 // Early exit branch if difference found to ResultBlock. Otherwise,
444 // continue to next LoadCmpBlock or EndBlock.
445 BasicBlock *BB = Builder.GetInsertBlock();
446 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
447 Builder.Insert(CmpBr);
448 if (DTU)
449 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
450 {DominatorTree::Insert, BB, NextBB}});
451
452 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
453 // since early exit to ResultBlock was not taken (no difference was found in
454 // any of the bytes).
455 if (BlockIndex == LoadCmpBlocks.size() - 1) {
456 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
457 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
458 }
459}
460
461// This function creates the IR intructions for loading and comparing using the
462// given LoadSize. It loads the number of bytes specified by LoadSize from each
463// source of the memcmp parameters. It then does a subtract to see if there was
464// a difference in the loaded values. If a difference is found, it branches
465// with an early exit to the ResultBlock for calculating which source was
466// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
467// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
468// a special case through emitLoadCompareByteBlock. The special handling can
469// simply subtract the loaded values and add it to the result phi node.
470void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
471 // There is one load per block in this case, BlockIndex == LoadIndex.
472 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
473
474 if (CurLoadEntry.LoadSize == 1) {
475 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
476 return;
477 }
478
479 Type *LoadSizeType =
480 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
481 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
482 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type")((void)0);
483
484 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
485
486 const LoadPair Loads =
487 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
488 CurLoadEntry.Offset);
489
490 // Add the loaded values to the phi nodes for calculating memcmp result only
491 // if result is not used in a zero equality.
492 if (!IsUsedForZeroCmp) {
493 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
494 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
495 }
496
497 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
498 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
499 ? EndBlock
500 : LoadCmpBlocks[BlockIndex + 1];
501 // Early exit branch if difference found to ResultBlock. Otherwise, continue
502 // to next LoadCmpBlock or EndBlock.
503 BasicBlock *BB = Builder.GetInsertBlock();
504 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
505 Builder.Insert(CmpBr);
506 if (DTU)
507 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
508 {DominatorTree::Insert, BB, ResBlock.BB}});
509
510 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
511 // since early exit to ResultBlock was not taken (no difference was found in
512 // any of the bytes).
513 if (BlockIndex == LoadCmpBlocks.size() - 1) {
514 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
515 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
516 }
517}
518
519// This function populates the ResultBlock with a sequence to calculate the
520// memcmp result. It compares the two loaded source values and returns -1 if
521// src1 < src2 and 1 if src1 > src2.
522void MemCmpExpansion::emitMemCmpResultBlock() {
523 // Special case: if memcmp result is used in a zero equality, result does not
524 // need to be calculated and can simply return 1.
525 if (IsUsedForZeroCmp) {
526 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
527 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
528 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
529 PhiRes->addIncoming(Res, ResBlock.BB);
530 BranchInst *NewBr = BranchInst::Create(EndBlock);
531 Builder.Insert(NewBr);
532 if (DTU)
533 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
534 return;
535 }
536 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
537 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
538
539 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
540 ResBlock.PhiSrc2);
541
542 Value *Res =
543 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
544 ConstantInt::get(Builder.getInt32Ty(), 1));
545
546 PhiRes->addIncoming(Res, ResBlock.BB);
547 BranchInst *NewBr = BranchInst::Create(EndBlock);
548 Builder.Insert(NewBr);
549 if (DTU)
550 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
551}
552
553void MemCmpExpansion::setupResultBlockPHINodes() {
554 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
555 Builder.SetInsertPoint(ResBlock.BB);
556 // Note: this assumes one load per block.
557 ResBlock.PhiSrc1 =
558 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
559 ResBlock.PhiSrc2 =
560 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
561}
562
563void MemCmpExpansion::setupEndBlockPHINodes() {
564 Builder.SetInsertPoint(&EndBlock->front());
565 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
566}
567
568Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
569 unsigned LoadIndex = 0;
570 // This loop populates each of the LoadCmpBlocks with the IR sequence to
571 // handle multiple loads per block.
572 for (unsigned I = 0; I < getNumBlocks(); ++I) {
1
Assuming the condition is true
2
Loop condition is true. Entering loop body
573 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
3
Calling 'MemCmpExpansion::emitLoadCompareBlockMultipleLoads'
574 }
575
576 emitMemCmpResultBlock();
577 return PhiRes;
578}
579
580/// A memcmp expansion that compares equality with 0 and only has one block of
581/// load and compare can bypass the compare, branch, and phi IR that is required
582/// in the general case.
583Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
584 unsigned LoadIndex = 0;
585 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
586 assert(LoadIndex == getNumLoads() && "some entries were not consumed")((void)0);
587 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
588}
589
590/// A memcmp expansion that only has one block of load and compare can bypass
591/// the compare, branch, and phi IR that is required in the general case.
592Value *MemCmpExpansion::getMemCmpOneBlock() {
593 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
594 bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
595
596 // The i8 and i16 cases don't need compares. We zext the loaded values and
597 // subtract them to get the suitable negative, zero, or positive i32 result.
598 if (Size < 4) {
599 const LoadPair Loads =
600 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
601 /*Offset*/ 0);
602 return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
603 }
604
605 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
606 /*Offset*/ 0);
607 // The result of memcmp is negative, zero, or positive, so produce that by
608 // subtracting 2 extended compare bits: sub (ugt, ult).
609 // If a target prefers to use selects to get -1/0/1, they should be able
610 // to transform this later. The inverse transform (going from selects to math)
611 // may not be possible in the DAG because the selects got converted into
612 // branches before we got there.
613 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
614 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
615 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
616 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
617 return Builder.CreateSub(ZextUGT, ZextULT);
618}
619
620// This function expands the memcmp call into an inline expansion and returns
621// the memcmp result.
622Value *MemCmpExpansion::getMemCmpExpansion() {
623 // Create the basic block framework for a multi-block expansion.
624 if (getNumBlocks() != 1) {
625 BasicBlock *StartBlock = CI->getParent();
626 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
627 /*MSSAU=*/nullptr, "endblock");
628 setupEndBlockPHINodes();
629 createResultBlock();
630
631 // If return value of memcmp is not used in a zero equality, we need to
632 // calculate which source was larger. The calculation requires the
633 // two loaded source values of each load compare block.
634 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
635 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
636
637 // Create the number of required load compare basic blocks.
638 createLoadCmpBlocks();
639
640 // Update the terminator added by SplitBlock to branch to the first
641 // LoadCmpBlock.
642 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
643 if (DTU)
644 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
645 {DominatorTree::Delete, StartBlock, EndBlock}});
646 }
647
648 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
649
650 if (IsUsedForZeroCmp)
651 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
652 : getMemCmpExpansionZeroCase();
653
654 if (getNumBlocks() == 1)
655 return getMemCmpOneBlock();
656
657 for (unsigned I = 0; I < getNumBlocks(); ++I) {
658 emitLoadCompareBlock(I);
659 }
660
661 emitMemCmpResultBlock();
662 return PhiRes;
663}
664
665// This function checks to see if an expansion of memcmp can be generated.
666// It checks for constant compare size that is less than the max inline size.
667// If an expansion cannot occur, returns false to leave as a library call.
668// Otherwise, the library call is replaced with a new IR instruction sequence.
669/// We want to transform:
670/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
671/// To:
672/// loadbb:
673/// %0 = bitcast i32* %buffer2 to i8*
674/// %1 = bitcast i32* %buffer1 to i8*
675/// %2 = bitcast i8* %1 to i64*
676/// %3 = bitcast i8* %0 to i64*
677/// %4 = load i64, i64* %2
678/// %5 = load i64, i64* %3
679/// %6 = call i64 @llvm.bswap.i64(i64 %4)
680/// %7 = call i64 @llvm.bswap.i64(i64 %5)
681/// %8 = sub i64 %6, %7
682/// %9 = icmp ne i64 %8, 0
683/// br i1 %9, label %res_block, label %loadbb1
684/// res_block: ; preds = %loadbb2,
685/// %loadbb1, %loadbb
686/// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
687/// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
688/// %10 = icmp ult i64 %phi.src1, %phi.src2
689/// %11 = select i1 %10, i32 -1, i32 1
690/// br label %endblock
691/// loadbb1: ; preds = %loadbb
692/// %12 = bitcast i32* %buffer2 to i8*
693/// %13 = bitcast i32* %buffer1 to i8*
694/// %14 = bitcast i8* %13 to i32*
695/// %15 = bitcast i8* %12 to i32*
696/// %16 = getelementptr i32, i32* %14, i32 2
697/// %17 = getelementptr i32, i32* %15, i32 2
698/// %18 = load i32, i32* %16
699/// %19 = load i32, i32* %17
700/// %20 = call i32 @llvm.bswap.i32(i32 %18)
701/// %21 = call i32 @llvm.bswap.i32(i32 %19)
702/// %22 = zext i32 %20 to i64
703/// %23 = zext i32 %21 to i64
704/// %24 = sub i64 %22, %23
705/// %25 = icmp ne i64 %24, 0
706/// br i1 %25, label %res_block, label %loadbb2
707/// loadbb2: ; preds = %loadbb1
708/// %26 = bitcast i32* %buffer2 to i8*
709/// %27 = bitcast i32* %buffer1 to i8*
710/// %28 = bitcast i8* %27 to i16*
711/// %29 = bitcast i8* %26 to i16*
712/// %30 = getelementptr i16, i16* %28, i16 6
713/// %31 = getelementptr i16, i16* %29, i16 6
714/// %32 = load i16, i16* %30
715/// %33 = load i16, i16* %31
716/// %34 = call i16 @llvm.bswap.i16(i16 %32)
717/// %35 = call i16 @llvm.bswap.i16(i16 %33)
718/// %36 = zext i16 %34 to i64
719/// %37 = zext i16 %35 to i64
720/// %38 = sub i64 %36, %37
721/// %39 = icmp ne i64 %38, 0
722/// br i1 %39, label %res_block, label %loadbb3
723/// loadbb3: ; preds = %loadbb2
724/// %40 = bitcast i32* %buffer2 to i8*
725/// %41 = bitcast i32* %buffer1 to i8*
726/// %42 = getelementptr i8, i8* %41, i8 14
727/// %43 = getelementptr i8, i8* %40, i8 14
728/// %44 = load i8, i8* %42
729/// %45 = load i8, i8* %43
730/// %46 = zext i8 %44 to i32
731/// %47 = zext i8 %45 to i32
732/// %48 = sub i32 %46, %47
733/// br label %endblock
734/// endblock: ; preds = %res_block,
735/// %loadbb3
736/// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
737/// ret i32 %phi.res
738static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
739 const TargetLowering *TLI, const DataLayout *DL,
740 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
741 DomTreeUpdater *DTU) {
742 NumMemCmpCalls++;
743
744 // Early exit from expansion if -Oz.
745 if (CI->getFunction()->hasMinSize())
746 return false;
747
748 // Early exit from expansion if size is not a constant.
749 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
750 if (!SizeCast) {
751 NumMemCmpNotConstant++;
752 return false;
753 }
754 const uint64_t SizeVal = SizeCast->getZExtValue();
755
756 if (SizeVal == 0) {
757 return false;
758 }
759 // TTI call to check if target would like to expand memcmp. Also, get the
760 // available load sizes.
761 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
762 bool OptForSize = CI->getFunction()->hasOptSize() ||
763 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
764 auto Options = TTI->enableMemCmpExpansion(OptForSize,
765 IsUsedForZeroCmp);
766 if (!Options) return false;
767
768 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
769 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
770
771 if (OptForSize &&
772 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
773 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
774
775 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
776 Options.MaxNumLoads = MaxLoadsPerMemcmp;
777
778 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
779
780 // Don't expand if this will require more loads than desired by the target.
781 if (Expansion.getNumLoads() == 0) {
782 NumMemCmpGreaterThanMax++;
783 return false;
784 }
785
786 NumMemCmpInlined++;
787
788 Value *Res = Expansion.getMemCmpExpansion();
789
790 // Replace call with result of expansion and erase call.
791 CI->replaceAllUsesWith(Res);
792 CI->eraseFromParent();
793
794 return true;
795}
796
797class ExpandMemCmpPass : public FunctionPass {
798public:
799 static char ID;
800
801 ExpandMemCmpPass() : FunctionPass(ID) {
802 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
803 }
804
805 bool runOnFunction(Function &F) override {
806 if (skipFunction(F)) return false;
807
808 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
809 if (!TPC) {
810 return false;
811 }
812 const TargetLowering* TL =
813 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
814
815 const TargetLibraryInfo *TLI =
816 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
817 const TargetTransformInfo *TTI =
818 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
819 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
820 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
821 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
822 nullptr;
823 DominatorTree *DT = nullptr;
824 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
825 DT = &DTWP->getDomTree();
826 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
827 return !PA.areAllPreserved();
828 }
829
830private:
831 void getAnalysisUsage(AnalysisUsage &AU) const override {
832 AU.addRequired<TargetLibraryInfoWrapperPass>();
833 AU.addRequired<TargetTransformInfoWrapperPass>();
834 AU.addRequired<ProfileSummaryInfoWrapperPass>();
835 AU.addPreserved<DominatorTreeWrapperPass>();
836 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
837 FunctionPass::getAnalysisUsage(AU);
838 }
839
840 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
841 const TargetTransformInfo *TTI,
842 const TargetLowering *TL, ProfileSummaryInfo *PSI,
843 BlockFrequencyInfo *BFI, DominatorTree *DT);
844 // Returns true if a change was made.
845 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
846 const TargetTransformInfo *TTI, const TargetLowering *TL,
847 const DataLayout &DL, ProfileSummaryInfo *PSI,
848 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
849};
850
851bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
852 const TargetTransformInfo *TTI,
853 const TargetLowering *TL,
854 const DataLayout &DL, ProfileSummaryInfo *PSI,
855 BlockFrequencyInfo *BFI,
856 DomTreeUpdater *DTU) {
857 for (Instruction& I : BB) {
858 CallInst *CI = dyn_cast<CallInst>(&I);
859 if (!CI) {
860 continue;
861 }
862 LibFunc Func;
863 if (TLI->getLibFunc(*CI, Func) &&
864 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
865 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU)) {
866 return true;
867 }
868 }
869 return false;
870}
871
872PreservedAnalyses
873ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
874 const TargetTransformInfo *TTI,
875 const TargetLowering *TL, ProfileSummaryInfo *PSI,
876 BlockFrequencyInfo *BFI, DominatorTree *DT) {
877 Optional<DomTreeUpdater> DTU;
878 if (DT)
879 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
880
881 const DataLayout& DL = F.getParent()->getDataLayout();
882 bool MadeChanges = false;
883 for (auto BBIt = F.begin(); BBIt != F.end();) {
884 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI,
885 DTU.hasValue() ? DTU.getPointer() : nullptr)) {
886 MadeChanges = true;
887 // If changes were made, restart the function from the beginning, since
888 // the structure of the function was changed.
889 BBIt = F.begin();
890 } else {
891 ++BBIt;
892 }
893 }
894 if (MadeChanges)
895 for (BasicBlock &BB : F)
896 SimplifyInstructionsInBlock(&BB);
897 if (!MadeChanges)
898 return PreservedAnalyses::all();
899 PreservedAnalyses PA;
900 PA.preserve<DominatorTreeAnalysis>();
901 return PA;
902}
903
904} // namespace
905
906char ExpandMemCmpPass::ID = 0;
907INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",static void *initializeExpandMemCmpPassPassOnce(PassRegistry &
Registry) {
908 "Expand memcmp() to load/stores", false, false)static void *initializeExpandMemCmpPassPassOnce(PassRegistry &
Registry) {
909INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
910INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
911INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)initializeLazyBlockFrequencyInfoPassPass(Registry);
912INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry);
913INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
914INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",PassInfo *PI = new PassInfo( "Expand memcmp() to load/stores"
, "expandmemcmp", &ExpandMemCmpPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ExpandMemCmpPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeExpandMemCmpPassPassFlag; void llvm::initializeExpandMemCmpPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeExpandMemCmpPassPassFlag
, initializeExpandMemCmpPassPassOnce, std::ref(Registry)); }
915 "Expand memcmp() to load/stores", false, false)PassInfo *PI = new PassInfo( "Expand memcmp() to load/stores"
, "expandmemcmp", &ExpandMemCmpPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ExpandMemCmpPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeExpandMemCmpPassPassFlag; void llvm::initializeExpandMemCmpPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeExpandMemCmpPassPassFlag
, initializeExpandMemCmpPassPassOnce, std::ref(Registry)); }
916
917FunctionPass *llvm::createExpandMemCmpPass() {
918 return new ExpandMemCmpPass();
919}