Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExceptionSpec.cpp
Warning:line 386, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExceptionSpec.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaExceptionSpec.cpp
1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ exception specification testing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/ASTMutationListener.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/StmtObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/Diagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallString.h"
24
25namespace clang {
26
27static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28{
29 if (const PointerType *PtrTy = T->getAs<PointerType>())
30 T = PtrTy->getPointeeType();
31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32 T = RefTy->getPointeeType();
33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34 T = MPTy->getPointeeType();
35 return T->getAs<FunctionProtoType>();
36}
37
38/// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
39/// member swap function then tries to call std::swap unqualified from the
40/// exception specification of that function. This function detects whether
41/// we're in such a case and turns off delay-parsing of exception
42/// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
43/// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
44bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
45 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
46
47 // All the problem cases are member functions named "swap" within class
48 // templates declared directly within namespace std or std::__debug or
49 // std::__profile.
50 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
51 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
52 return false;
53
54 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
55 if (!ND)
56 return false;
57
58 bool IsInStd = ND->isStdNamespace();
59 if (!IsInStd) {
60 // This isn't a direct member of namespace std, but it might still be
61 // libstdc++'s std::__debug::array or std::__profile::array.
62 IdentifierInfo *II = ND->getIdentifier();
63 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
64 !ND->isInStdNamespace())
65 return false;
66 }
67
68 // Only apply this hack within a system header.
69 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
70 return false;
71
72 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
73 .Case("array", true)
74 .Case("pair", IsInStd)
75 .Case("priority_queue", IsInStd)
76 .Case("stack", IsInStd)
77 .Case("queue", IsInStd)
78 .Default(false);
79}
80
81ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
82 Expr *NoexceptExpr,
83 ExceptionSpecificationType &EST) {
84 // FIXME: This is bogus, a noexcept expression is not a condition.
85 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
86 if (Converted.isInvalid()) {
87 EST = EST_NoexceptFalse;
88
89 // Fill in an expression of 'false' as a fixup.
90 auto *BoolExpr = new (Context)
91 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
92 llvm::APSInt Value{1};
93 Value = 0;
94 return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
95 }
96
97 if (Converted.get()->isValueDependent()) {
98 EST = EST_DependentNoexcept;
99 return Converted;
100 }
101
102 llvm::APSInt Result;
103 Converted = VerifyIntegerConstantExpression(
104 Converted.get(), &Result, diag::err_noexcept_needs_constant_expression);
105 if (!Converted.isInvalid())
106 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
107 return Converted;
108}
109
110/// CheckSpecifiedExceptionType - Check if the given type is valid in an
111/// exception specification. Incomplete types, or pointers to incomplete types
112/// other than void are not allowed.
113///
114/// \param[in,out] T The exception type. This will be decayed to a pointer type
115/// when the input is an array or a function type.
116bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
117 // C++11 [except.spec]p2:
118 // A type cv T, "array of T", or "function returning T" denoted
119 // in an exception-specification is adjusted to type T, "pointer to T", or
120 // "pointer to function returning T", respectively.
121 //
122 // We also apply this rule in C++98.
123 if (T->isArrayType())
124 T = Context.getArrayDecayedType(T);
125 else if (T->isFunctionType())
126 T = Context.getPointerType(T);
127
128 int Kind = 0;
129 QualType PointeeT = T;
130 if (const PointerType *PT = T->getAs<PointerType>()) {
131 PointeeT = PT->getPointeeType();
132 Kind = 1;
133
134 // cv void* is explicitly permitted, despite being a pointer to an
135 // incomplete type.
136 if (PointeeT->isVoidType())
137 return false;
138 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
139 PointeeT = RT->getPointeeType();
140 Kind = 2;
141
142 if (RT->isRValueReferenceType()) {
143 // C++11 [except.spec]p2:
144 // A type denoted in an exception-specification shall not denote [...]
145 // an rvalue reference type.
146 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
147 << T << Range;
148 return true;
149 }
150 }
151
152 // C++11 [except.spec]p2:
153 // A type denoted in an exception-specification shall not denote an
154 // incomplete type other than a class currently being defined [...].
155 // A type denoted in an exception-specification shall not denote a
156 // pointer or reference to an incomplete type, other than (cv) void* or a
157 // pointer or reference to a class currently being defined.
158 // In Microsoft mode, downgrade this to a warning.
159 unsigned DiagID = diag::err_incomplete_in_exception_spec;
160 bool ReturnValueOnError = true;
161 if (getLangOpts().MSVCCompat) {
162 DiagID = diag::ext_incomplete_in_exception_spec;
163 ReturnValueOnError = false;
164 }
165 if (!(PointeeT->isRecordType() &&
166 PointeeT->castAs<RecordType>()->isBeingDefined()) &&
167 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
168 return ReturnValueOnError;
169
170 // The MSVC compatibility mode doesn't extend to sizeless types,
171 // so diagnose them separately.
172 if (PointeeT->isSizelessType() && Kind != 1) {
173 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
174 << (Kind == 2 ? 1 : 0) << PointeeT << Range;
175 return true;
176 }
177
178 return false;
179}
180
181/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
182/// to member to a function with an exception specification. This means that
183/// it is invalid to add another level of indirection.
184bool Sema::CheckDistantExceptionSpec(QualType T) {
185 // C++17 removes this rule in favor of putting exception specifications into
186 // the type system.
187 if (getLangOpts().CPlusPlus17)
188 return false;
189
190 if (const PointerType *PT = T->getAs<PointerType>())
191 T = PT->getPointeeType();
192 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
193 T = PT->getPointeeType();
194 else
195 return false;
196
197 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
198 if (!FnT)
199 return false;
200
201 return FnT->hasExceptionSpec();
202}
203
204const FunctionProtoType *
205Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
206 if (FPT->getExceptionSpecType() == EST_Unparsed) {
207 Diag(Loc, diag::err_exception_spec_not_parsed);
208 return nullptr;
209 }
210
211 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
212 return FPT;
213
214 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
215 const FunctionProtoType *SourceFPT =
216 SourceDecl->getType()->castAs<FunctionProtoType>();
217
218 // If the exception specification has already been resolved, just return it.
219 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
220 return SourceFPT;
221
222 // Compute or instantiate the exception specification now.
223 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
224 EvaluateImplicitExceptionSpec(Loc, SourceDecl);
225 else
226 InstantiateExceptionSpec(Loc, SourceDecl);
227
228 const FunctionProtoType *Proto =
229 SourceDecl->getType()->castAs<FunctionProtoType>();
230 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
231 Diag(Loc, diag::err_exception_spec_not_parsed);
232 Proto = nullptr;
233 }
234 return Proto;
235}
236
237void
238Sema::UpdateExceptionSpec(FunctionDecl *FD,
239 const FunctionProtoType::ExceptionSpecInfo &ESI) {
240 // If we've fully resolved the exception specification, notify listeners.
241 if (!isUnresolvedExceptionSpec(ESI.Type))
242 if (auto *Listener = getASTMutationListener())
243 Listener->ResolvedExceptionSpec(FD);
244
245 for (FunctionDecl *Redecl : FD->redecls())
246 Context.adjustExceptionSpec(Redecl, ESI);
247}
248
249static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
250 auto *MD = dyn_cast<CXXMethodDecl>(FD);
5
Assuming 'FD' is not a 'CXXMethodDecl'
10
Assuming 'FD' is not a 'CXXMethodDecl'
251 if (!MD
5.1
'MD' is null
10.1
'MD' is null
)
6
Taking true branch
11
Taking true branch
252 return false;
7
Returning zero, which participates in a condition later
12
Returning zero, which participates in a condition later
253
254 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
255 return EST == EST_Unparsed ||
256 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
257}
258
259static bool CheckEquivalentExceptionSpecImpl(
260 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
261 const FunctionProtoType *Old, SourceLocation OldLoc,
262 const FunctionProtoType *New, SourceLocation NewLoc,
263 bool *MissingExceptionSpecification = nullptr,
264 bool *MissingEmptyExceptionSpecification = nullptr,
265 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
266
267/// Determine whether a function has an implicitly-generated exception
268/// specification.
269static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
270 if (!isa<CXXDestructorDecl>(Decl) &&
271 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
272 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
273 return false;
274
275 // For a function that the user didn't declare:
276 // - if this is a destructor, its exception specification is implicit.
277 // - if this is 'operator delete' or 'operator delete[]', the exception
278 // specification is as-if an explicit exception specification was given
279 // (per [basic.stc.dynamic]p2).
280 if (!Decl->getTypeSourceInfo())
281 return isa<CXXDestructorDecl>(Decl);
282
283 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
284 return !Ty->hasExceptionSpec();
285}
286
287bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
288 // Just completely ignore this under -fno-exceptions prior to C++17.
289 // In C++17 onwards, the exception specification is part of the type and
290 // we will diagnose mismatches anyway, so it's better to check for them here.
291 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
1
Assuming field 'CXXExceptions' is not equal to 0
292 return false;
293
294 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
295 bool IsOperatorNew = OO
1.1
'OO' is not equal to OO_New
== OO_New || OO == OO_Array_New;
296 bool MissingExceptionSpecification = false;
297 bool MissingEmptyExceptionSpecification = false;
298
299 unsigned DiagID = diag::err_mismatched_exception_spec;
300 bool ReturnValueOnError = true;
301 if (getLangOpts().MSVCCompat) {
2
Assuming field 'MSVCCompat' is 0
3
Taking false branch
302 DiagID = diag::ext_mismatched_exception_spec;
303 ReturnValueOnError = false;
304 }
305
306 // If we're befriending a member function of a class that's currently being
307 // defined, we might not be able to work out its exception specification yet.
308 // If not, defer the check until later.
309 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
4
Calling 'exceptionSpecNotKnownYet'
8
Returning from 'exceptionSpecNotKnownYet'
9
Calling 'exceptionSpecNotKnownYet'
13
Returning from 'exceptionSpecNotKnownYet'
14
Taking false branch
310 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
311 return false;
312 }
313
314 // Check the types as written: they must match before any exception
315 // specification adjustment is applied.
316 if (!CheckEquivalentExceptionSpecImpl(
17
Assuming the condition is false
18
Taking false branch
317 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
318 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
15
Assuming the object is not a 'FunctionProtoType'
319 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
16
Assuming the object is not a 'FunctionProtoType'
320 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
321 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
322 // C++11 [except.spec]p4 [DR1492]:
323 // If a declaration of a function has an implicit
324 // exception-specification, other declarations of the function shall
325 // not specify an exception-specification.
326 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
327 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
328 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
329 << hasImplicitExceptionSpec(Old);
330 if (Old->getLocation().isValid())
331 Diag(Old->getLocation(), diag::note_previous_declaration);
332 }
333 return false;
334 }
335
336 // The failure was something other than an missing exception
337 // specification; return an error, except in MS mode where this is a warning.
338 if (!MissingExceptionSpecification)
19
Assuming 'MissingExceptionSpecification' is true
20
Taking false branch
339 return ReturnValueOnError;
340
341 const FunctionProtoType *NewProto =
22
'NewProto' initialized here
342 New->getType()->castAs<FunctionProtoType>();
21
The object is a 'FunctionProtoType'
343
344 // The new function declaration is only missing an empty exception
345 // specification "throw()". If the throw() specification came from a
346 // function in a system header that has C linkage, just add an empty
347 // exception specification to the "new" declaration. Note that C library
348 // implementations are permitted to add these nothrow exception
349 // specifications.
350 //
351 // Likewise if the old function is a builtin.
352 if (MissingEmptyExceptionSpecification && NewProto &&
23
Assuming 'MissingEmptyExceptionSpecification' is true
24
Assuming 'NewProto' is null
25
Assuming pointer value is null
26
Taking false branch
353 (Old->getLocation().isInvalid() ||
354 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
355 Old->getBuiltinID()) &&
356 Old->isExternC()) {
357 New->setType(Context.getFunctionType(
358 NewProto->getReturnType(), NewProto->getParamTypes(),
359 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
360 return false;
361 }
362
363 const FunctionProtoType *OldProto =
364 Old->getType()->castAs<FunctionProtoType>();
27
The object is a 'FunctionProtoType'
365
366 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
367 if (ESI.Type == EST_Dynamic) {
28
Assuming field 'Type' is not equal to EST_Dynamic
29
Taking false branch
368 // FIXME: What if the exceptions are described in terms of the old
369 // prototype's parameters?
370 ESI.Exceptions = OldProto->exceptions();
371 }
372
373 if (ESI.Type == EST_NoexceptFalse)
30
Assuming field 'Type' is not equal to EST_NoexceptFalse
31
Taking false branch
374 ESI.Type = EST_None;
375 if (ESI.Type == EST_NoexceptTrue)
32
Assuming field 'Type' is not equal to EST_NoexceptTrue
33
Taking false branch
376 ESI.Type = EST_BasicNoexcept;
377
378 // For dependent noexcept, we can't just take the expression from the old
379 // prototype. It likely contains references to the old prototype's parameters.
380 if (ESI.Type == EST_DependentNoexcept) {
34
Assuming field 'Type' is not equal to EST_DependentNoexcept
35
Taking false branch
381 New->setInvalidDecl();
382 } else {
383 // Update the type of the function with the appropriate exception
384 // specification.
385 New->setType(Context.getFunctionType(
386 NewProto->getReturnType(), NewProto->getParamTypes(),
36
Called C++ object pointer is null
387 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
388 }
389
390 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) {
391 // Allow missing exception specifications in redeclarations as an extension.
392 DiagID = diag::ext_ms_missing_exception_specification;
393 ReturnValueOnError = false;
394 } else if (New->isReplaceableGlobalAllocationFunction() &&
395 ESI.Type != EST_DependentNoexcept) {
396 // Allow missing exception specifications in redeclarations as an extension,
397 // when declaring a replaceable global allocation function.
398 DiagID = diag::ext_missing_exception_specification;
399 ReturnValueOnError = false;
400 } else if (ESI.Type == EST_NoThrow) {
401 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
402 // common omission.
403 DiagID = diag::ext_missing_exception_specification;
404 ReturnValueOnError = false;
405 } else {
406 DiagID = diag::err_missing_exception_specification;
407 ReturnValueOnError = true;
408 }
409
410 // Warn about the lack of exception specification.
411 SmallString<128> ExceptionSpecString;
412 llvm::raw_svector_ostream OS(ExceptionSpecString);
413 switch (OldProto->getExceptionSpecType()) {
414 case EST_DynamicNone:
415 OS << "throw()";
416 break;
417
418 case EST_Dynamic: {
419 OS << "throw(";
420 bool OnFirstException = true;
421 for (const auto &E : OldProto->exceptions()) {
422 if (OnFirstException)
423 OnFirstException = false;
424 else
425 OS << ", ";
426
427 OS << E.getAsString(getPrintingPolicy());
428 }
429 OS << ")";
430 break;
431 }
432
433 case EST_BasicNoexcept:
434 OS << "noexcept";
435 break;
436
437 case EST_DependentNoexcept:
438 case EST_NoexceptFalse:
439 case EST_NoexceptTrue:
440 OS << "noexcept(";
441 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr")((void)0);
442 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
443 OS << ")";
444 break;
445 case EST_NoThrow:
446 OS <<"__attribute__((nothrow))";
447 break;
448 case EST_None:
449 case EST_MSAny:
450 case EST_Unevaluated:
451 case EST_Uninstantiated:
452 case EST_Unparsed:
453 llvm_unreachable("This spec type is compatible with none.")__builtin_unreachable();
454 }
455
456 SourceLocation FixItLoc;
457 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
458 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
459 // FIXME: Preserve enough information so that we can produce a correct fixit
460 // location when there is a trailing return type.
461 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
462 if (!FTLoc.getTypePtr()->hasTrailingReturn())
463 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
464 }
465
466 if (FixItLoc.isInvalid())
467 Diag(New->getLocation(), DiagID)
468 << New << OS.str();
469 else {
470 Diag(New->getLocation(), DiagID)
471 << New << OS.str()
472 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
473 }
474
475 if (Old->getLocation().isValid())
476 Diag(Old->getLocation(), diag::note_previous_declaration);
477
478 return ReturnValueOnError;
479}
480
481/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
482/// exception specifications. Exception specifications are equivalent if
483/// they allow exactly the same set of exception types. It does not matter how
484/// that is achieved. See C++ [except.spec]p2.
485bool Sema::CheckEquivalentExceptionSpec(
486 const FunctionProtoType *Old, SourceLocation OldLoc,
487 const FunctionProtoType *New, SourceLocation NewLoc) {
488 if (!getLangOpts().CXXExceptions)
489 return false;
490
491 unsigned DiagID = diag::err_mismatched_exception_spec;
492 if (getLangOpts().MSVCCompat)
493 DiagID = diag::ext_mismatched_exception_spec;
494 bool Result = CheckEquivalentExceptionSpecImpl(
495 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
496 Old, OldLoc, New, NewLoc);
497
498 // In Microsoft mode, mismatching exception specifications just cause a warning.
499 if (getLangOpts().MSVCCompat)
500 return false;
501 return Result;
502}
503
504/// CheckEquivalentExceptionSpec - Check if the two types have compatible
505/// exception specifications. See C++ [except.spec]p3.
506///
507/// \return \c false if the exception specifications match, \c true if there is
508/// a problem. If \c true is returned, either a diagnostic has already been
509/// produced or \c *MissingExceptionSpecification is set to \c true.
510static bool CheckEquivalentExceptionSpecImpl(
511 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
512 const FunctionProtoType *Old, SourceLocation OldLoc,
513 const FunctionProtoType *New, SourceLocation NewLoc,
514 bool *MissingExceptionSpecification,
515 bool *MissingEmptyExceptionSpecification,
516 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
517 if (MissingExceptionSpecification)
518 *MissingExceptionSpecification = false;
519
520 if (MissingEmptyExceptionSpecification)
521 *MissingEmptyExceptionSpecification = false;
522
523 Old = S.ResolveExceptionSpec(NewLoc, Old);
524 if (!Old)
525 return false;
526 New = S.ResolveExceptionSpec(NewLoc, New);
527 if (!New)
528 return false;
529
530 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
531 // - both are non-throwing, regardless of their form,
532 // - both have the form noexcept(constant-expression) and the constant-
533 // expressions are equivalent,
534 // - both are dynamic-exception-specifications that have the same set of
535 // adjusted types.
536 //
537 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
538 // of the form throw(), noexcept, or noexcept(constant-expression) where the
539 // constant-expression yields true.
540 //
541 // C++0x [except.spec]p4: If any declaration of a function has an exception-
542 // specifier that is not a noexcept-specification allowing all exceptions,
543 // all declarations [...] of that function shall have a compatible
544 // exception-specification.
545 //
546 // That last point basically means that noexcept(false) matches no spec.
547 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
548
549 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
550 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
551
552 assert(!isUnresolvedExceptionSpec(OldEST) &&((void)0)
553 !isUnresolvedExceptionSpec(NewEST) &&((void)0)
554 "Shouldn't see unknown exception specifications here")((void)0);
555
556 CanThrowResult OldCanThrow = Old->canThrow();
557 CanThrowResult NewCanThrow = New->canThrow();
558
559 // Any non-throwing specifications are compatible.
560 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
561 return false;
562
563 // Any throws-anything specifications are usually compatible.
564 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
565 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
566 // The exception is that the absence of an exception specification only
567 // matches noexcept(false) for functions, as described above.
568 if (!AllowNoexceptAllMatchWithNoSpec &&
569 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
570 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
571 // This is the disallowed case.
572 } else {
573 return false;
574 }
575 }
576
577 // C++14 [except.spec]p3:
578 // Two exception-specifications are compatible if [...] both have the form
579 // noexcept(constant-expression) and the constant-expressions are equivalent
580 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
581 llvm::FoldingSetNodeID OldFSN, NewFSN;
582 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
583 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
584 if (OldFSN == NewFSN)
585 return false;
586 }
587
588 // Dynamic exception specifications with the same set of adjusted types
589 // are compatible.
590 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
591 bool Success = true;
592 // Both have a dynamic exception spec. Collect the first set, then compare
593 // to the second.
594 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
595 for (const auto &I : Old->exceptions())
596 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
597
598 for (const auto &I : New->exceptions()) {
599 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
600 if (OldTypes.count(TypePtr))
601 NewTypes.insert(TypePtr);
602 else {
603 Success = false;
604 break;
605 }
606 }
607
608 if (Success && OldTypes.size() == NewTypes.size())
609 return false;
610 }
611
612 // As a special compatibility feature, under C++0x we accept no spec and
613 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
614 // This is because the implicit declaration changed, but old code would break.
615 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
616 const FunctionProtoType *WithExceptions = nullptr;
617 if (OldEST == EST_None && NewEST == EST_Dynamic)
618 WithExceptions = New;
619 else if (OldEST == EST_Dynamic && NewEST == EST_None)
620 WithExceptions = Old;
621 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
622 // One has no spec, the other throw(something). If that something is
623 // std::bad_alloc, all conditions are met.
624 QualType Exception = *WithExceptions->exception_begin();
625 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
626 IdentifierInfo* Name = ExRecord->getIdentifier();
627 if (Name && Name->getName() == "bad_alloc") {
628 // It's called bad_alloc, but is it in std?
629 if (ExRecord->isInStdNamespace()) {
630 return false;
631 }
632 }
633 }
634 }
635 }
636
637 // If the caller wants to handle the case that the new function is
638 // incompatible due to a missing exception specification, let it.
639 if (MissingExceptionSpecification && OldEST != EST_None &&
640 NewEST == EST_None) {
641 // The old type has an exception specification of some sort, but
642 // the new type does not.
643 *MissingExceptionSpecification = true;
644
645 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
646 // The old type has a throw() or noexcept(true) exception specification
647 // and the new type has no exception specification, and the caller asked
648 // to handle this itself.
649 *MissingEmptyExceptionSpecification = true;
650 }
651
652 return true;
653 }
654
655 S.Diag(NewLoc, DiagID);
656 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
657 S.Diag(OldLoc, NoteID);
658 return true;
659}
660
661bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
662 const PartialDiagnostic &NoteID,
663 const FunctionProtoType *Old,
664 SourceLocation OldLoc,
665 const FunctionProtoType *New,
666 SourceLocation NewLoc) {
667 if (!getLangOpts().CXXExceptions)
668 return false;
669 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
670 New, NewLoc);
671}
672
673bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
674 // [except.handle]p3:
675 // A handler is a match for an exception object of type E if:
676
677 // HandlerType must be ExceptionType or derived from it, or pointer or
678 // reference to such types.
679 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
680 if (RefTy)
681 HandlerType = RefTy->getPointeeType();
682
683 // -- the handler is of type cv T or cv T& and E and T are the same type
684 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
685 return true;
686
687 // FIXME: ObjC pointer types?
688 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
689 if (RefTy && (!HandlerType.isConstQualified() ||
690 HandlerType.isVolatileQualified()))
691 return false;
692
693 // -- the handler is of type cv T or const T& where T is a pointer or
694 // pointer to member type and E is std::nullptr_t
695 if (ExceptionType->isNullPtrType())
696 return true;
697
698 // -- the handler is of type cv T or const T& where T is a pointer or
699 // pointer to member type and E is a pointer or pointer to member type
700 // that can be converted to T by one or more of
701 // -- a qualification conversion
702 // -- a function pointer conversion
703 bool LifetimeConv;
704 QualType Result;
705 // FIXME: Should we treat the exception as catchable if a lifetime
706 // conversion is required?
707 if (IsQualificationConversion(ExceptionType, HandlerType, false,
708 LifetimeConv) ||
709 IsFunctionConversion(ExceptionType, HandlerType, Result))
710 return true;
711
712 // -- a standard pointer conversion [...]
713 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
714 return false;
715
716 // Handle the "qualification conversion" portion.
717 Qualifiers EQuals, HQuals;
718 ExceptionType = Context.getUnqualifiedArrayType(
719 ExceptionType->getPointeeType(), EQuals);
720 HandlerType = Context.getUnqualifiedArrayType(
721 HandlerType->getPointeeType(), HQuals);
722 if (!HQuals.compatiblyIncludes(EQuals))
723 return false;
724
725 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
726 return true;
727
728 // The only remaining case is a derived-to-base conversion.
729 }
730
731 // -- the handler is of type cg T or cv T& and T is an unambiguous public
732 // base class of E
733 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
734 return false;
735 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
736 /*DetectVirtual=*/false);
737 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
738 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
739 return false;
740
741 // Do this check from a context without privileges.
742 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
743 Paths.front(),
744 /*Diagnostic*/ 0,
745 /*ForceCheck*/ true,
746 /*ForceUnprivileged*/ true)) {
747 case AR_accessible: return true;
748 case AR_inaccessible: return false;
749 case AR_dependent:
750 llvm_unreachable("access check dependent for unprivileged context")__builtin_unreachable();
751 case AR_delayed:
752 llvm_unreachable("access check delayed in non-declaration")__builtin_unreachable();
753 }
754 llvm_unreachable("unexpected access check result")__builtin_unreachable();
755}
756
757/// CheckExceptionSpecSubset - Check whether the second function type's
758/// exception specification is a subset (or equivalent) of the first function
759/// type. This is used by override and pointer assignment checks.
760bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
761 const PartialDiagnostic &NestedDiagID,
762 const PartialDiagnostic &NoteID,
763 const PartialDiagnostic &NoThrowDiagID,
764 const FunctionProtoType *Superset,
765 SourceLocation SuperLoc,
766 const FunctionProtoType *Subset,
767 SourceLocation SubLoc) {
768
769 // Just auto-succeed under -fno-exceptions.
770 if (!getLangOpts().CXXExceptions)
771 return false;
772
773 // FIXME: As usual, we could be more specific in our error messages, but
774 // that better waits until we've got types with source locations.
775
776 if (!SubLoc.isValid())
777 SubLoc = SuperLoc;
778
779 // Resolve the exception specifications, if needed.
780 Superset = ResolveExceptionSpec(SuperLoc, Superset);
781 if (!Superset)
782 return false;
783 Subset = ResolveExceptionSpec(SubLoc, Subset);
784 if (!Subset)
785 return false;
786
787 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
788 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
789 assert(!isUnresolvedExceptionSpec(SuperEST) &&((void)0)
790 !isUnresolvedExceptionSpec(SubEST) &&((void)0)
791 "Shouldn't see unknown exception specifications here")((void)0);
792
793 // If there are dependent noexcept specs, assume everything is fine. Unlike
794 // with the equivalency check, this is safe in this case, because we don't
795 // want to merge declarations. Checks after instantiation will catch any
796 // omissions we make here.
797 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
798 return false;
799
800 CanThrowResult SuperCanThrow = Superset->canThrow();
801 CanThrowResult SubCanThrow = Subset->canThrow();
802
803 // If the superset contains everything or the subset contains nothing, we're
804 // done.
805 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
806 SubCanThrow == CT_Cannot)
807 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
808 Subset, SubLoc);
809
810 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
811 // some cases.
812 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
813 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
814 Diag(SubLoc, NoThrowDiagID);
815 if (NoteID.getDiagID() != 0)
816 Diag(SuperLoc, NoteID);
817 return true;
818 }
819
820 // If the subset contains everything or the superset contains nothing, we've
821 // failed.
822 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
823 SuperCanThrow == CT_Cannot) {
824 Diag(SubLoc, DiagID);
825 if (NoteID.getDiagID() != 0)
826 Diag(SuperLoc, NoteID);
827 return true;
828 }
829
830 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&((void)0)
831 "Exception spec subset: non-dynamic case slipped through.")((void)0);
832
833 // Neither contains everything or nothing. Do a proper comparison.
834 for (QualType SubI : Subset->exceptions()) {
835 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
836 SubI = RefTy->getPointeeType();
837
838 // Make sure it's in the superset.
839 bool Contained = false;
840 for (QualType SuperI : Superset->exceptions()) {
841 // [except.spec]p5:
842 // the target entity shall allow at least the exceptions allowed by the
843 // source
844 //
845 // We interpret this as meaning that a handler for some target type would
846 // catch an exception of each source type.
847 if (handlerCanCatch(SuperI, SubI)) {
848 Contained = true;
849 break;
850 }
851 }
852 if (!Contained) {
853 Diag(SubLoc, DiagID);
854 if (NoteID.getDiagID() != 0)
855 Diag(SuperLoc, NoteID);
856 return true;
857 }
858 }
859 // We've run half the gauntlet.
860 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
861 Subset, SubLoc);
862}
863
864static bool
865CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
866 const PartialDiagnostic &NoteID, QualType Target,
867 SourceLocation TargetLoc, QualType Source,
868 SourceLocation SourceLoc) {
869 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
870 if (!TFunc)
871 return false;
872 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
873 if (!SFunc)
874 return false;
875
876 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
877 SFunc, SourceLoc);
878}
879
880/// CheckParamExceptionSpec - Check if the parameter and return types of the
881/// two functions have equivalent exception specs. This is part of the
882/// assignment and override compatibility check. We do not check the parameters
883/// of parameter function pointers recursively, as no sane programmer would
884/// even be able to write such a function type.
885bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
886 const PartialDiagnostic &NoteID,
887 const FunctionProtoType *Target,
888 SourceLocation TargetLoc,
889 const FunctionProtoType *Source,
890 SourceLocation SourceLoc) {
891 auto RetDiag = DiagID;
892 RetDiag << 0;
893 if (CheckSpecForTypesEquivalent(
894 *this, RetDiag, PDiag(),
895 Target->getReturnType(), TargetLoc, Source->getReturnType(),
896 SourceLoc))
897 return true;
898
899 // We shouldn't even be testing this unless the arguments are otherwise
900 // compatible.
901 assert(Target->getNumParams() == Source->getNumParams() &&((void)0)
902 "Functions have different argument counts.")((void)0);
903 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
904 auto ParamDiag = DiagID;
905 ParamDiag << 1;
906 if (CheckSpecForTypesEquivalent(
907 *this, ParamDiag, PDiag(),
908 Target->getParamType(i), TargetLoc, Source->getParamType(i),
909 SourceLoc))
910 return true;
911 }
912 return false;
913}
914
915bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
916 // First we check for applicability.
917 // Target type must be a function, function pointer or function reference.
918 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
919 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
920 return false;
921
922 // SourceType must be a function or function pointer.
923 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
924 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
925 return false;
926
927 unsigned DiagID = diag::err_incompatible_exception_specs;
928 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
929 // This is not an error in C++17 onwards, unless the noexceptness doesn't
930 // match, but in that case we have a full-on type mismatch, not just a
931 // type sugar mismatch.
932 if (getLangOpts().CPlusPlus17) {
933 DiagID = diag::warn_incompatible_exception_specs;
934 NestedDiagID = diag::warn_deep_exception_specs_differ;
935 }
936
937 // Now we've got the correct types on both sides, check their compatibility.
938 // This means that the source of the conversion can only throw a subset of
939 // the exceptions of the target, and any exception specs on arguments or
940 // return types must be equivalent.
941 //
942 // FIXME: If there is a nested dependent exception specification, we should
943 // not be checking it here. This is fine:
944 // template<typename T> void f() {
945 // void (*p)(void (*) throw(T));
946 // void (*q)(void (*) throw(int)) = p;
947 // }
948 // ... because it might be instantiated with T=int.
949 return CheckExceptionSpecSubset(
950 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
951 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
952 !getLangOpts().CPlusPlus17;
953}
954
955bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
956 const CXXMethodDecl *Old) {
957 // If the new exception specification hasn't been parsed yet, skip the check.
958 // We'll get called again once it's been parsed.
959 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
960 EST_Unparsed)
961 return false;
962
963 // Don't check uninstantiated template destructors at all. We can only
964 // synthesize correct specs after the template is instantiated.
965 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
966 return false;
967
968 // If the old exception specification hasn't been parsed yet, or the new
969 // exception specification can't be computed yet, remember that we need to
970 // perform this check when we get to the end of the outermost
971 // lexically-surrounding class.
972 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
973 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
974 return false;
975 }
976
977 unsigned DiagID = diag::err_override_exception_spec;
978 if (getLangOpts().MSVCCompat)
979 DiagID = diag::ext_override_exception_spec;
980 return CheckExceptionSpecSubset(PDiag(DiagID),
981 PDiag(diag::err_deep_exception_specs_differ),
982 PDiag(diag::note_overridden_virtual_function),
983 PDiag(diag::ext_override_exception_spec),
984 Old->getType()->castAs<FunctionProtoType>(),
985 Old->getLocation(),
986 New->getType()->castAs<FunctionProtoType>(),
987 New->getLocation());
988}
989
990static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
991 CanThrowResult R = CT_Cannot;
992 for (const Stmt *SubStmt : S->children()) {
993 if (!SubStmt)
994 continue;
995 R = mergeCanThrow(R, Self.canThrow(SubStmt));
996 if (R == CT_Can)
997 break;
998 }
999 return R;
1000}
1001
1002CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1003 SourceLocation Loc) {
1004 // As an extension, we assume that __attribute__((nothrow)) functions don't
1005 // throw.
1006 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1007 return CT_Cannot;
1008
1009 QualType T;
1010
1011 // In C++1z, just look at the function type of the callee.
1012 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1013 E = cast<CallExpr>(E)->getCallee();
1014 T = E->getType();
1015 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1016 // Sadly we don't preserve the actual type as part of the "bound member"
1017 // placeholder, so we need to reconstruct it.
1018 E = E->IgnoreParenImpCasts();
1019
1020 // Could be a call to a pointer-to-member or a plain member access.
1021 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1022 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI)((void)0);
1023 T = Op->getRHS()->getType()
1024 ->castAs<MemberPointerType>()->getPointeeType();
1025 } else {
1026 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1027 }
1028 }
1029 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1030 T = VD->getType();
1031 else
1032 // If we have no clue what we're calling, assume the worst.
1033 return CT_Can;
1034
1035 const FunctionProtoType *FT;
1036 if ((FT = T->getAs<FunctionProtoType>())) {
1037 } else if (const PointerType *PT = T->getAs<PointerType>())
1038 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1039 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1040 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1041 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1042 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1043 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1044 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1045
1046 if (!FT)
1047 return CT_Can;
1048
1049 if (Loc.isValid() || (Loc.isInvalid() && E))
1050 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1051 if (!FT)
1052 return CT_Can;
1053
1054 return FT->canThrow();
1055}
1056
1057static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1058 CanThrowResult CT = CT_Cannot;
1059
1060 // Initialization might throw.
1061 if (!VD->isUsableInConstantExpressions(Self.Context))
1062 if (const Expr *Init = VD->getInit())
1063 CT = mergeCanThrow(CT, Self.canThrow(Init));
1064
1065 // Destructor might throw.
1066 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1067 if (auto *RD =
1068 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1069 if (auto *Dtor = RD->getDestructor()) {
1070 CT = mergeCanThrow(
1071 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1072 }
1073 }
1074 }
1075
1076 // If this is a decomposition declaration, bindings might throw.
1077 if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1078 for (auto *B : DD->bindings())
1079 if (auto *HD = B->getHoldingVar())
1080 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1081
1082 return CT;
1083}
1084
1085static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1086 if (DC->isTypeDependent())
1087 return CT_Dependent;
1088
1089 if (!DC->getTypeAsWritten()->isReferenceType())
1090 return CT_Cannot;
1091
1092 if (DC->getSubExpr()->isTypeDependent())
1093 return CT_Dependent;
1094
1095 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1096}
1097
1098static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1099 if (DC->isTypeOperand())
1100 return CT_Cannot;
1101
1102 Expr *Op = DC->getExprOperand();
1103 if (Op->isTypeDependent())
1104 return CT_Dependent;
1105
1106 const RecordType *RT = Op->getType()->getAs<RecordType>();
1107 if (!RT)
1108 return CT_Cannot;
1109
1110 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1111 return CT_Cannot;
1112
1113 if (Op->Classify(S.Context).isPRValue())
1114 return CT_Cannot;
1115
1116 return CT_Can;
1117}
1118
1119CanThrowResult Sema::canThrow(const Stmt *S) {
1120 // C++ [expr.unary.noexcept]p3:
1121 // [Can throw] if in a potentially-evaluated context the expression would
1122 // contain:
1123 switch (S->getStmtClass()) {
1124 case Expr::ConstantExprClass:
1125 return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1126
1127 case Expr::CXXThrowExprClass:
1128 // - a potentially evaluated throw-expression
1129 return CT_Can;
1130
1131 case Expr::CXXDynamicCastExprClass: {
1132 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1133 // where T is a reference type, that requires a run-time check
1134 auto *CE = cast<CXXDynamicCastExpr>(S);
1135 // FIXME: Properly determine whether a variably-modified type can throw.
1136 if (CE->getType()->isVariablyModifiedType())
1137 return CT_Can;
1138 CanThrowResult CT = canDynamicCastThrow(CE);
1139 if (CT == CT_Can)
1140 return CT;
1141 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1142 }
1143
1144 case Expr::CXXTypeidExprClass:
1145 // - a potentially evaluated typeid expression applied to a glvalue
1146 // expression whose type is a polymorphic class type
1147 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1148
1149 // - a potentially evaluated call to a function, member function, function
1150 // pointer, or member function pointer that does not have a non-throwing
1151 // exception-specification
1152 case Expr::CallExprClass:
1153 case Expr::CXXMemberCallExprClass:
1154 case Expr::CXXOperatorCallExprClass:
1155 case Expr::UserDefinedLiteralClass: {
1156 const CallExpr *CE = cast<CallExpr>(S);
1157 CanThrowResult CT;
1158 if (CE->isTypeDependent())
1159 CT = CT_Dependent;
1160 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1161 CT = CT_Cannot;
1162 else
1163 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1164 if (CT == CT_Can)
1165 return CT;
1166 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1167 }
1168
1169 case Expr::CXXConstructExprClass:
1170 case Expr::CXXTemporaryObjectExprClass: {
1171 auto *CE = cast<CXXConstructExpr>(S);
1172 // FIXME: Properly determine whether a variably-modified type can throw.
1173 if (CE->getType()->isVariablyModifiedType())
1174 return CT_Can;
1175 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1176 if (CT == CT_Can)
1177 return CT;
1178 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1179 }
1180
1181 case Expr::CXXInheritedCtorInitExprClass: {
1182 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1183 return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1184 }
1185
1186 case Expr::LambdaExprClass: {
1187 const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1188 CanThrowResult CT = CT_Cannot;
1189 for (LambdaExpr::const_capture_init_iterator
1190 Cap = Lambda->capture_init_begin(),
1191 CapEnd = Lambda->capture_init_end();
1192 Cap != CapEnd; ++Cap)
1193 CT = mergeCanThrow(CT, canThrow(*Cap));
1194 return CT;
1195 }
1196
1197 case Expr::CXXNewExprClass: {
1198 auto *NE = cast<CXXNewExpr>(S);
1199 CanThrowResult CT;
1200 if (NE->isTypeDependent())
1201 CT = CT_Dependent;
1202 else
1203 CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1204 if (CT == CT_Can)
1205 return CT;
1206 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1207 }
1208
1209 case Expr::CXXDeleteExprClass: {
1210 auto *DE = cast<CXXDeleteExpr>(S);
1211 CanThrowResult CT;
1212 QualType DTy = DE->getDestroyedType();
1213 if (DTy.isNull() || DTy->isDependentType()) {
1214 CT = CT_Dependent;
1215 } else {
1216 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1217 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1218 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1219 const CXXDestructorDecl *DD = RD->getDestructor();
1220 if (DD)
1221 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1222 }
1223 if (CT == CT_Can)
1224 return CT;
1225 }
1226 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1227 }
1228
1229 case Expr::CXXBindTemporaryExprClass: {
1230 auto *BTE = cast<CXXBindTemporaryExpr>(S);
1231 // The bound temporary has to be destroyed again, which might throw.
1232 CanThrowResult CT =
1233 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1234 if (CT == CT_Can)
1235 return CT;
1236 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1237 }
1238
1239 case Expr::PseudoObjectExprClass: {
1240 auto *POE = cast<PseudoObjectExpr>(S);
1241 CanThrowResult CT = CT_Cannot;
1242 for (const Expr *E : POE->semantics()) {
1243 CT = mergeCanThrow(CT, canThrow(E));
1244 if (CT == CT_Can)
1245 break;
1246 }
1247 return CT;
1248 }
1249
1250 // ObjC message sends are like function calls, but never have exception
1251 // specs.
1252 case Expr::ObjCMessageExprClass:
1253 case Expr::ObjCPropertyRefExprClass:
1254 case Expr::ObjCSubscriptRefExprClass:
1255 return CT_Can;
1256
1257 // All the ObjC literals that are implemented as calls are
1258 // potentially throwing unless we decide to close off that
1259 // possibility.
1260 case Expr::ObjCArrayLiteralClass:
1261 case Expr::ObjCDictionaryLiteralClass:
1262 case Expr::ObjCBoxedExprClass:
1263 return CT_Can;
1264
1265 // Many other things have subexpressions, so we have to test those.
1266 // Some are simple:
1267 case Expr::CoawaitExprClass:
1268 case Expr::ConditionalOperatorClass:
1269 case Expr::CoyieldExprClass:
1270 case Expr::CXXRewrittenBinaryOperatorClass:
1271 case Expr::CXXStdInitializerListExprClass:
1272 case Expr::DesignatedInitExprClass:
1273 case Expr::DesignatedInitUpdateExprClass:
1274 case Expr::ExprWithCleanupsClass:
1275 case Expr::ExtVectorElementExprClass:
1276 case Expr::InitListExprClass:
1277 case Expr::ArrayInitLoopExprClass:
1278 case Expr::MemberExprClass:
1279 case Expr::ObjCIsaExprClass:
1280 case Expr::ObjCIvarRefExprClass:
1281 case Expr::ParenExprClass:
1282 case Expr::ParenListExprClass:
1283 case Expr::ShuffleVectorExprClass:
1284 case Expr::StmtExprClass:
1285 case Expr::ConvertVectorExprClass:
1286 case Expr::VAArgExprClass:
1287 return canSubStmtsThrow(*this, S);
1288
1289 case Expr::CompoundLiteralExprClass:
1290 case Expr::CXXConstCastExprClass:
1291 case Expr::CXXAddrspaceCastExprClass:
1292 case Expr::CXXReinterpretCastExprClass:
1293 case Expr::BuiltinBitCastExprClass:
1294 // FIXME: Properly determine whether a variably-modified type can throw.
1295 if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1296 return CT_Can;
1297 return canSubStmtsThrow(*this, S);
1298
1299 // Some might be dependent for other reasons.
1300 case Expr::ArraySubscriptExprClass:
1301 case Expr::MatrixSubscriptExprClass:
1302 case Expr::OMPArraySectionExprClass:
1303 case Expr::OMPArrayShapingExprClass:
1304 case Expr::OMPIteratorExprClass:
1305 case Expr::BinaryOperatorClass:
1306 case Expr::DependentCoawaitExprClass:
1307 case Expr::CompoundAssignOperatorClass:
1308 case Expr::CStyleCastExprClass:
1309 case Expr::CXXStaticCastExprClass:
1310 case Expr::CXXFunctionalCastExprClass:
1311 case Expr::ImplicitCastExprClass:
1312 case Expr::MaterializeTemporaryExprClass:
1313 case Expr::UnaryOperatorClass: {
1314 // FIXME: Properly determine whether a variably-modified type can throw.
1315 if (auto *CE = dyn_cast<CastExpr>(S))
1316 if (CE->getType()->isVariablyModifiedType())
1317 return CT_Can;
1318 CanThrowResult CT =
1319 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1320 return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1321 }
1322
1323 case Expr::CXXDefaultArgExprClass:
1324 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1325
1326 case Expr::CXXDefaultInitExprClass:
1327 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1328
1329 case Expr::ChooseExprClass: {
1330 auto *CE = cast<ChooseExpr>(S);
1331 if (CE->isTypeDependent() || CE->isValueDependent())
1332 return CT_Dependent;
1333 return canThrow(CE->getChosenSubExpr());
1334 }
1335
1336 case Expr::GenericSelectionExprClass:
1337 if (cast<GenericSelectionExpr>(S)->isResultDependent())
1338 return CT_Dependent;
1339 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1340
1341 // Some expressions are always dependent.
1342 case Expr::CXXDependentScopeMemberExprClass:
1343 case Expr::CXXUnresolvedConstructExprClass:
1344 case Expr::DependentScopeDeclRefExprClass:
1345 case Expr::CXXFoldExprClass:
1346 case Expr::RecoveryExprClass:
1347 return CT_Dependent;
1348
1349 case Expr::AsTypeExprClass:
1350 case Expr::BinaryConditionalOperatorClass:
1351 case Expr::BlockExprClass:
1352 case Expr::CUDAKernelCallExprClass:
1353 case Expr::DeclRefExprClass:
1354 case Expr::ObjCBridgedCastExprClass:
1355 case Expr::ObjCIndirectCopyRestoreExprClass:
1356 case Expr::ObjCProtocolExprClass:
1357 case Expr::ObjCSelectorExprClass:
1358 case Expr::ObjCAvailabilityCheckExprClass:
1359 case Expr::OffsetOfExprClass:
1360 case Expr::PackExpansionExprClass:
1361 case Expr::SubstNonTypeTemplateParmExprClass:
1362 case Expr::SubstNonTypeTemplateParmPackExprClass:
1363 case Expr::FunctionParmPackExprClass:
1364 case Expr::UnaryExprOrTypeTraitExprClass:
1365 case Expr::UnresolvedLookupExprClass:
1366 case Expr::UnresolvedMemberExprClass:
1367 case Expr::TypoExprClass:
1368 // FIXME: Many of the above can throw.
1369 return CT_Cannot;
1370
1371 case Expr::AddrLabelExprClass:
1372 case Expr::ArrayTypeTraitExprClass:
1373 case Expr::AtomicExprClass:
1374 case Expr::TypeTraitExprClass:
1375 case Expr::CXXBoolLiteralExprClass:
1376 case Expr::CXXNoexceptExprClass:
1377 case Expr::CXXNullPtrLiteralExprClass:
1378 case Expr::CXXPseudoDestructorExprClass:
1379 case Expr::CXXScalarValueInitExprClass:
1380 case Expr::CXXThisExprClass:
1381 case Expr::CXXUuidofExprClass:
1382 case Expr::CharacterLiteralClass:
1383 case Expr::ExpressionTraitExprClass:
1384 case Expr::FloatingLiteralClass:
1385 case Expr::GNUNullExprClass:
1386 case Expr::ImaginaryLiteralClass:
1387 case Expr::ImplicitValueInitExprClass:
1388 case Expr::IntegerLiteralClass:
1389 case Expr::FixedPointLiteralClass:
1390 case Expr::ArrayInitIndexExprClass:
1391 case Expr::NoInitExprClass:
1392 case Expr::ObjCEncodeExprClass:
1393 case Expr::ObjCStringLiteralClass:
1394 case Expr::ObjCBoolLiteralExprClass:
1395 case Expr::OpaqueValueExprClass:
1396 case Expr::PredefinedExprClass:
1397 case Expr::SizeOfPackExprClass:
1398 case Expr::StringLiteralClass:
1399 case Expr::SourceLocExprClass:
1400 case Expr::ConceptSpecializationExprClass:
1401 case Expr::RequiresExprClass:
1402 // These expressions can never throw.
1403 return CT_Cannot;
1404
1405 case Expr::MSPropertyRefExprClass:
1406 case Expr::MSPropertySubscriptExprClass:
1407 llvm_unreachable("Invalid class for expression")__builtin_unreachable();
1408
1409 // Most statements can throw if any substatement can throw.
1410 case Stmt::AttributedStmtClass:
1411 case Stmt::BreakStmtClass:
1412 case Stmt::CapturedStmtClass:
1413 case Stmt::CaseStmtClass:
1414 case Stmt::CompoundStmtClass:
1415 case Stmt::ContinueStmtClass:
1416 case Stmt::CoreturnStmtClass:
1417 case Stmt::CoroutineBodyStmtClass:
1418 case Stmt::CXXCatchStmtClass:
1419 case Stmt::CXXForRangeStmtClass:
1420 case Stmt::DefaultStmtClass:
1421 case Stmt::DoStmtClass:
1422 case Stmt::ForStmtClass:
1423 case Stmt::GCCAsmStmtClass:
1424 case Stmt::GotoStmtClass:
1425 case Stmt::IndirectGotoStmtClass:
1426 case Stmt::LabelStmtClass:
1427 case Stmt::MSAsmStmtClass:
1428 case Stmt::MSDependentExistsStmtClass:
1429 case Stmt::NullStmtClass:
1430 case Stmt::ObjCAtCatchStmtClass:
1431 case Stmt::ObjCAtFinallyStmtClass:
1432 case Stmt::ObjCAtSynchronizedStmtClass:
1433 case Stmt::ObjCAutoreleasePoolStmtClass:
1434 case Stmt::ObjCForCollectionStmtClass:
1435 case Stmt::OMPAtomicDirectiveClass:
1436 case Stmt::OMPBarrierDirectiveClass:
1437 case Stmt::OMPCancelDirectiveClass:
1438 case Stmt::OMPCancellationPointDirectiveClass:
1439 case Stmt::OMPCriticalDirectiveClass:
1440 case Stmt::OMPDistributeDirectiveClass:
1441 case Stmt::OMPDistributeParallelForDirectiveClass:
1442 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1443 case Stmt::OMPDistributeSimdDirectiveClass:
1444 case Stmt::OMPFlushDirectiveClass:
1445 case Stmt::OMPDepobjDirectiveClass:
1446 case Stmt::OMPScanDirectiveClass:
1447 case Stmt::OMPForDirectiveClass:
1448 case Stmt::OMPForSimdDirectiveClass:
1449 case Stmt::OMPMasterDirectiveClass:
1450 case Stmt::OMPMasterTaskLoopDirectiveClass:
1451 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1452 case Stmt::OMPOrderedDirectiveClass:
1453 case Stmt::OMPCanonicalLoopClass:
1454 case Stmt::OMPParallelDirectiveClass:
1455 case Stmt::OMPParallelForDirectiveClass:
1456 case Stmt::OMPParallelForSimdDirectiveClass:
1457 case Stmt::OMPParallelMasterDirectiveClass:
1458 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1459 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1460 case Stmt::OMPParallelSectionsDirectiveClass:
1461 case Stmt::OMPSectionDirectiveClass:
1462 case Stmt::OMPSectionsDirectiveClass:
1463 case Stmt::OMPSimdDirectiveClass:
1464 case Stmt::OMPTileDirectiveClass:
1465 case Stmt::OMPUnrollDirectiveClass:
1466 case Stmt::OMPSingleDirectiveClass:
1467 case Stmt::OMPTargetDataDirectiveClass:
1468 case Stmt::OMPTargetDirectiveClass:
1469 case Stmt::OMPTargetEnterDataDirectiveClass:
1470 case Stmt::OMPTargetExitDataDirectiveClass:
1471 case Stmt::OMPTargetParallelDirectiveClass:
1472 case Stmt::OMPTargetParallelForDirectiveClass:
1473 case Stmt::OMPTargetParallelForSimdDirectiveClass:
1474 case Stmt::OMPTargetSimdDirectiveClass:
1475 case Stmt::OMPTargetTeamsDirectiveClass:
1476 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1477 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1478 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1479 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1480 case Stmt::OMPTargetUpdateDirectiveClass:
1481 case Stmt::OMPTaskDirectiveClass:
1482 case Stmt::OMPTaskgroupDirectiveClass:
1483 case Stmt::OMPTaskLoopDirectiveClass:
1484 case Stmt::OMPTaskLoopSimdDirectiveClass:
1485 case Stmt::OMPTaskwaitDirectiveClass:
1486 case Stmt::OMPTaskyieldDirectiveClass:
1487 case Stmt::OMPTeamsDirectiveClass:
1488 case Stmt::OMPTeamsDistributeDirectiveClass:
1489 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1490 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1491 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1492 case Stmt::OMPInteropDirectiveClass:
1493 case Stmt::OMPDispatchDirectiveClass:
1494 case Stmt::OMPMaskedDirectiveClass:
1495 case Stmt::ReturnStmtClass:
1496 case Stmt::SEHExceptStmtClass:
1497 case Stmt::SEHFinallyStmtClass:
1498 case Stmt::SEHLeaveStmtClass:
1499 case Stmt::SEHTryStmtClass:
1500 case Stmt::SwitchStmtClass:
1501 case Stmt::WhileStmtClass:
1502 return canSubStmtsThrow(*this, S);
1503
1504 case Stmt::DeclStmtClass: {
1505 CanThrowResult CT = CT_Cannot;
1506 for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1507 if (auto *VD = dyn_cast<VarDecl>(D))
1508 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1509
1510 // FIXME: Properly determine whether a variably-modified type can throw.
1511 if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1512 if (TND->getUnderlyingType()->isVariablyModifiedType())
1513 return CT_Can;
1514 if (auto *VD = dyn_cast<ValueDecl>(D))
1515 if (VD->getType()->isVariablyModifiedType())
1516 return CT_Can;
1517 }
1518 return CT;
1519 }
1520
1521 case Stmt::IfStmtClass: {
1522 auto *IS = cast<IfStmt>(S);
1523 CanThrowResult CT = CT_Cannot;
1524 if (const Stmt *Init = IS->getInit())
1525 CT = mergeCanThrow(CT, canThrow(Init));
1526 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1527 CT = mergeCanThrow(CT, canThrow(CondDS));
1528 CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1529
1530 // For 'if constexpr', consider only the non-discarded case.
1531 // FIXME: We should add a DiscardedStmt marker to the AST.
1532 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1533 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1534
1535 CanThrowResult Then = canThrow(IS->getThen());
1536 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1537 if (Then == Else)
1538 return mergeCanThrow(CT, Then);
1539
1540 // For a dependent 'if constexpr', the result is dependent if it depends on
1541 // the value of the condition.
1542 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1543 : mergeCanThrow(Then, Else));
1544 }
1545
1546 case Stmt::CXXTryStmtClass: {
1547 auto *TS = cast<CXXTryStmt>(S);
1548 // try /*...*/ catch (...) { H } can throw only if H can throw.
1549 // Any other try-catch can throw if any substatement can throw.
1550 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1551 if (!FinalHandler->getExceptionDecl())
1552 return canThrow(FinalHandler->getHandlerBlock());
1553 return canSubStmtsThrow(*this, S);
1554 }
1555
1556 case Stmt::ObjCAtThrowStmtClass:
1557 return CT_Can;
1558
1559 case Stmt::ObjCAtTryStmtClass: {
1560 auto *TS = cast<ObjCAtTryStmt>(S);
1561
1562 // @catch(...) need not be last in Objective-C. Walk backwards until we
1563 // see one or hit the @try.
1564 CanThrowResult CT = CT_Cannot;
1565 if (const Stmt *Finally = TS->getFinallyStmt())
1566 CT = mergeCanThrow(CT, canThrow(Finally));
1567 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1568 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1569 CT = mergeCanThrow(CT, canThrow(Catch));
1570 // If we reach a @catch(...), no earlier exceptions can escape.
1571 if (Catch->hasEllipsis())
1572 return CT;
1573 }
1574
1575 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1576 return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1577 }
1578
1579 case Stmt::SYCLUniqueStableNameExprClass:
1580 return CT_Cannot;
1581 case Stmt::NoStmtClass:
1582 llvm_unreachable("Invalid class for statement")__builtin_unreachable();
1583 }
1584 llvm_unreachable("Bogus StmtClass")__builtin_unreachable();
1585}
1586
1587} // end namespace clang