File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h |
Warning: | line 2570, column 17 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- ValueTracking.cpp - Walk computations to compute properties --------===// | ||||||||
2 | // | ||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
6 | // | ||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||
8 | // | ||||||||
9 | // This file contains routines that help analyze properties that chains of | ||||||||
10 | // computations have. | ||||||||
11 | // | ||||||||
12 | //===----------------------------------------------------------------------===// | ||||||||
13 | |||||||||
14 | #include "llvm/Analysis/ValueTracking.h" | ||||||||
15 | #include "llvm/ADT/APFloat.h" | ||||||||
16 | #include "llvm/ADT/APInt.h" | ||||||||
17 | #include "llvm/ADT/ArrayRef.h" | ||||||||
18 | #include "llvm/ADT/None.h" | ||||||||
19 | #include "llvm/ADT/Optional.h" | ||||||||
20 | #include "llvm/ADT/STLExtras.h" | ||||||||
21 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||
22 | #include "llvm/ADT/SmallSet.h" | ||||||||
23 | #include "llvm/ADT/SmallVector.h" | ||||||||
24 | #include "llvm/ADT/StringRef.h" | ||||||||
25 | #include "llvm/ADT/iterator_range.h" | ||||||||
26 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||||
27 | #include "llvm/Analysis/AssumeBundleQueries.h" | ||||||||
28 | #include "llvm/Analysis/AssumptionCache.h" | ||||||||
29 | #include "llvm/Analysis/EHPersonalities.h" | ||||||||
30 | #include "llvm/Analysis/GuardUtils.h" | ||||||||
31 | #include "llvm/Analysis/InstructionSimplify.h" | ||||||||
32 | #include "llvm/Analysis/Loads.h" | ||||||||
33 | #include "llvm/Analysis/LoopInfo.h" | ||||||||
34 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | ||||||||
35 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||
36 | #include "llvm/IR/Argument.h" | ||||||||
37 | #include "llvm/IR/Attributes.h" | ||||||||
38 | #include "llvm/IR/BasicBlock.h" | ||||||||
39 | #include "llvm/IR/Constant.h" | ||||||||
40 | #include "llvm/IR/ConstantRange.h" | ||||||||
41 | #include "llvm/IR/Constants.h" | ||||||||
42 | #include "llvm/IR/DerivedTypes.h" | ||||||||
43 | #include "llvm/IR/DiagnosticInfo.h" | ||||||||
44 | #include "llvm/IR/Dominators.h" | ||||||||
45 | #include "llvm/IR/Function.h" | ||||||||
46 | #include "llvm/IR/GetElementPtrTypeIterator.h" | ||||||||
47 | #include "llvm/IR/GlobalAlias.h" | ||||||||
48 | #include "llvm/IR/GlobalValue.h" | ||||||||
49 | #include "llvm/IR/GlobalVariable.h" | ||||||||
50 | #include "llvm/IR/InstrTypes.h" | ||||||||
51 | #include "llvm/IR/Instruction.h" | ||||||||
52 | #include "llvm/IR/Instructions.h" | ||||||||
53 | #include "llvm/IR/IntrinsicInst.h" | ||||||||
54 | #include "llvm/IR/Intrinsics.h" | ||||||||
55 | #include "llvm/IR/IntrinsicsAArch64.h" | ||||||||
56 | #include "llvm/IR/IntrinsicsRISCV.h" | ||||||||
57 | #include "llvm/IR/IntrinsicsX86.h" | ||||||||
58 | #include "llvm/IR/LLVMContext.h" | ||||||||
59 | #include "llvm/IR/Metadata.h" | ||||||||
60 | #include "llvm/IR/Module.h" | ||||||||
61 | #include "llvm/IR/Operator.h" | ||||||||
62 | #include "llvm/IR/PatternMatch.h" | ||||||||
63 | #include "llvm/IR/Type.h" | ||||||||
64 | #include "llvm/IR/User.h" | ||||||||
65 | #include "llvm/IR/Value.h" | ||||||||
66 | #include "llvm/Support/Casting.h" | ||||||||
67 | #include "llvm/Support/CommandLine.h" | ||||||||
68 | #include "llvm/Support/Compiler.h" | ||||||||
69 | #include "llvm/Support/ErrorHandling.h" | ||||||||
70 | #include "llvm/Support/KnownBits.h" | ||||||||
71 | #include "llvm/Support/MathExtras.h" | ||||||||
72 | #include <algorithm> | ||||||||
73 | #include <array> | ||||||||
74 | #include <cassert> | ||||||||
75 | #include <cstdint> | ||||||||
76 | #include <iterator> | ||||||||
77 | #include <utility> | ||||||||
78 | |||||||||
79 | using namespace llvm; | ||||||||
80 | using namespace llvm::PatternMatch; | ||||||||
81 | |||||||||
82 | // Controls the number of uses of the value searched for possible | ||||||||
83 | // dominating comparisons. | ||||||||
84 | static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", | ||||||||
85 | cl::Hidden, cl::init(20)); | ||||||||
86 | |||||||||
87 | /// Returns the bitwidth of the given scalar or pointer type. For vector types, | ||||||||
88 | /// returns the element type's bitwidth. | ||||||||
89 | static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { | ||||||||
90 | if (unsigned BitWidth = Ty->getScalarSizeInBits()) | ||||||||
91 | return BitWidth; | ||||||||
92 | |||||||||
93 | return DL.getPointerTypeSizeInBits(Ty); | ||||||||
94 | } | ||||||||
95 | |||||||||
96 | namespace { | ||||||||
97 | |||||||||
98 | // Simplifying using an assume can only be done in a particular control-flow | ||||||||
99 | // context (the context instruction provides that context). If an assume and | ||||||||
100 | // the context instruction are not in the same block then the DT helps in | ||||||||
101 | // figuring out if we can use it. | ||||||||
102 | struct Query { | ||||||||
103 | const DataLayout &DL; | ||||||||
104 | AssumptionCache *AC; | ||||||||
105 | const Instruction *CxtI; | ||||||||
106 | const DominatorTree *DT; | ||||||||
107 | |||||||||
108 | // Unlike the other analyses, this may be a nullptr because not all clients | ||||||||
109 | // provide it currently. | ||||||||
110 | OptimizationRemarkEmitter *ORE; | ||||||||
111 | |||||||||
112 | /// If true, it is safe to use metadata during simplification. | ||||||||
113 | InstrInfoQuery IIQ; | ||||||||
114 | |||||||||
115 | Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, | ||||||||
116 | const DominatorTree *DT, bool UseInstrInfo, | ||||||||
117 | OptimizationRemarkEmitter *ORE = nullptr) | ||||||||
118 | : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} | ||||||||
119 | }; | ||||||||
120 | |||||||||
121 | } // end anonymous namespace | ||||||||
122 | |||||||||
123 | // Given the provided Value and, potentially, a context instruction, return | ||||||||
124 | // the preferred context instruction (if any). | ||||||||
125 | static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { | ||||||||
126 | // If we've been provided with a context instruction, then use that (provided | ||||||||
127 | // it has been inserted). | ||||||||
128 | if (CxtI && CxtI->getParent()) | ||||||||
129 | return CxtI; | ||||||||
130 | |||||||||
131 | // If the value is really an already-inserted instruction, then use that. | ||||||||
132 | CxtI = dyn_cast<Instruction>(V); | ||||||||
133 | if (CxtI && CxtI->getParent()) | ||||||||
134 | return CxtI; | ||||||||
135 | |||||||||
136 | return nullptr; | ||||||||
137 | } | ||||||||
138 | |||||||||
139 | static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { | ||||||||
140 | // If we've been provided with a context instruction, then use that (provided | ||||||||
141 | // it has been inserted). | ||||||||
142 | if (CxtI && CxtI->getParent()) | ||||||||
143 | return CxtI; | ||||||||
144 | |||||||||
145 | // If the value is really an already-inserted instruction, then use that. | ||||||||
146 | CxtI = dyn_cast<Instruction>(V1); | ||||||||
147 | if (CxtI && CxtI->getParent()) | ||||||||
148 | return CxtI; | ||||||||
149 | |||||||||
150 | CxtI = dyn_cast<Instruction>(V2); | ||||||||
151 | if (CxtI && CxtI->getParent()) | ||||||||
152 | return CxtI; | ||||||||
153 | |||||||||
154 | return nullptr; | ||||||||
155 | } | ||||||||
156 | |||||||||
157 | static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, | ||||||||
158 | const APInt &DemandedElts, | ||||||||
159 | APInt &DemandedLHS, APInt &DemandedRHS) { | ||||||||
160 | // The length of scalable vectors is unknown at compile time, thus we | ||||||||
161 | // cannot check their values | ||||||||
162 | if (isa<ScalableVectorType>(Shuf->getType())) | ||||||||
163 | return false; | ||||||||
164 | |||||||||
165 | int NumElts = | ||||||||
166 | cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); | ||||||||
167 | int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); | ||||||||
168 | DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); | ||||||||
169 | if (DemandedElts.isNullValue()) | ||||||||
170 | return true; | ||||||||
171 | // Simple case of a shuffle with zeroinitializer. | ||||||||
172 | if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { | ||||||||
173 | DemandedLHS.setBit(0); | ||||||||
174 | return true; | ||||||||
175 | } | ||||||||
176 | for (int i = 0; i != NumMaskElts; ++i) { | ||||||||
177 | if (!DemandedElts[i]) | ||||||||
178 | continue; | ||||||||
179 | int M = Shuf->getMaskValue(i); | ||||||||
180 | assert(M < (NumElts * 2) && "Invalid shuffle mask constant")((void)0); | ||||||||
181 | |||||||||
182 | // For undef elements, we don't know anything about the common state of | ||||||||
183 | // the shuffle result. | ||||||||
184 | if (M == -1) | ||||||||
185 | return false; | ||||||||
186 | if (M < NumElts) | ||||||||
187 | DemandedLHS.setBit(M % NumElts); | ||||||||
188 | else | ||||||||
189 | DemandedRHS.setBit(M % NumElts); | ||||||||
190 | } | ||||||||
191 | |||||||||
192 | return true; | ||||||||
193 | } | ||||||||
194 | |||||||||
195 | static void computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
196 | KnownBits &Known, unsigned Depth, const Query &Q); | ||||||||
197 | |||||||||
198 | static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, | ||||||||
199 | const Query &Q) { | ||||||||
200 | // FIXME: We currently have no way to represent the DemandedElts of a scalable | ||||||||
201 | // vector | ||||||||
202 | if (isa<ScalableVectorType>(V->getType())) { | ||||||||
203 | Known.resetAll(); | ||||||||
204 | return; | ||||||||
205 | } | ||||||||
206 | |||||||||
207 | auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); | ||||||||
208 | APInt DemandedElts = | ||||||||
209 | FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); | ||||||||
210 | computeKnownBits(V, DemandedElts, Known, Depth, Q); | ||||||||
211 | } | ||||||||
212 | |||||||||
213 | void llvm::computeKnownBits(const Value *V, KnownBits &Known, | ||||||||
214 | const DataLayout &DL, unsigned Depth, | ||||||||
215 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
216 | const DominatorTree *DT, | ||||||||
217 | OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { | ||||||||
218 | ::computeKnownBits(V, Known, Depth, | ||||||||
219 | Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); | ||||||||
220 | } | ||||||||
221 | |||||||||
222 | void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
223 | KnownBits &Known, const DataLayout &DL, | ||||||||
224 | unsigned Depth, AssumptionCache *AC, | ||||||||
225 | const Instruction *CxtI, const DominatorTree *DT, | ||||||||
226 | OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { | ||||||||
227 | ::computeKnownBits(V, DemandedElts, Known, Depth, | ||||||||
228 | Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); | ||||||||
229 | } | ||||||||
230 | |||||||||
231 | static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
232 | unsigned Depth, const Query &Q); | ||||||||
233 | |||||||||
234 | static KnownBits computeKnownBits(const Value *V, unsigned Depth, | ||||||||
235 | const Query &Q); | ||||||||
236 | |||||||||
237 | KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, | ||||||||
238 | unsigned Depth, AssumptionCache *AC, | ||||||||
239 | const Instruction *CxtI, | ||||||||
240 | const DominatorTree *DT, | ||||||||
241 | OptimizationRemarkEmitter *ORE, | ||||||||
242 | bool UseInstrInfo) { | ||||||||
243 | return ::computeKnownBits( | ||||||||
244 | V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); | ||||||||
245 | } | ||||||||
246 | |||||||||
247 | KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
248 | const DataLayout &DL, unsigned Depth, | ||||||||
249 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
250 | const DominatorTree *DT, | ||||||||
251 | OptimizationRemarkEmitter *ORE, | ||||||||
252 | bool UseInstrInfo) { | ||||||||
253 | return ::computeKnownBits( | ||||||||
254 | V, DemandedElts, Depth, | ||||||||
255 | Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); | ||||||||
256 | } | ||||||||
257 | |||||||||
258 | bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, | ||||||||
259 | const DataLayout &DL, AssumptionCache *AC, | ||||||||
260 | const Instruction *CxtI, const DominatorTree *DT, | ||||||||
261 | bool UseInstrInfo) { | ||||||||
262 | assert(LHS->getType() == RHS->getType() &&((void)0) | ||||||||
263 | "LHS and RHS should have the same type")((void)0); | ||||||||
264 | assert(LHS->getType()->isIntOrIntVectorTy() &&((void)0) | ||||||||
265 | "LHS and RHS should be integers")((void)0); | ||||||||
266 | // Look for an inverted mask: (X & ~M) op (Y & M). | ||||||||
267 | Value *M; | ||||||||
268 | if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && | ||||||||
269 | match(RHS, m_c_And(m_Specific(M), m_Value()))) | ||||||||
270 | return true; | ||||||||
271 | if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && | ||||||||
272 | match(LHS, m_c_And(m_Specific(M), m_Value()))) | ||||||||
273 | return true; | ||||||||
274 | IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); | ||||||||
275 | KnownBits LHSKnown(IT->getBitWidth()); | ||||||||
276 | KnownBits RHSKnown(IT->getBitWidth()); | ||||||||
277 | computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); | ||||||||
278 | computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); | ||||||||
279 | return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); | ||||||||
280 | } | ||||||||
281 | |||||||||
282 | bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { | ||||||||
283 | for (const User *U : CxtI->users()) { | ||||||||
284 | if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) | ||||||||
285 | if (IC->isEquality()) | ||||||||
286 | if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) | ||||||||
287 | if (C->isNullValue()) | ||||||||
288 | continue; | ||||||||
289 | return false; | ||||||||
290 | } | ||||||||
291 | return true; | ||||||||
292 | } | ||||||||
293 | |||||||||
294 | static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, | ||||||||
295 | const Query &Q); | ||||||||
296 | |||||||||
297 | bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, | ||||||||
298 | bool OrZero, unsigned Depth, | ||||||||
299 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
300 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
301 | return ::isKnownToBeAPowerOfTwo( | ||||||||
302 | V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); | ||||||||
303 | } | ||||||||
304 | |||||||||
305 | static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, | ||||||||
306 | unsigned Depth, const Query &Q); | ||||||||
307 | |||||||||
308 | static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); | ||||||||
309 | |||||||||
310 | bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, | ||||||||
311 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
312 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
313 | return ::isKnownNonZero(V, Depth, | ||||||||
314 | Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); | ||||||||
315 | } | ||||||||
316 | |||||||||
317 | bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, | ||||||||
318 | unsigned Depth, AssumptionCache *AC, | ||||||||
319 | const Instruction *CxtI, const DominatorTree *DT, | ||||||||
320 | bool UseInstrInfo) { | ||||||||
321 | KnownBits Known = | ||||||||
322 | computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); | ||||||||
323 | return Known.isNonNegative(); | ||||||||
324 | } | ||||||||
325 | |||||||||
326 | bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, | ||||||||
327 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
328 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
329 | if (auto *CI = dyn_cast<ConstantInt>(V)) | ||||||||
330 | return CI->getValue().isStrictlyPositive(); | ||||||||
331 | |||||||||
332 | // TODO: We'd doing two recursive queries here. We should factor this such | ||||||||
333 | // that only a single query is needed. | ||||||||
334 | return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && | ||||||||
335 | isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); | ||||||||
336 | } | ||||||||
337 | |||||||||
338 | bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, | ||||||||
339 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
340 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
341 | KnownBits Known = | ||||||||
342 | computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); | ||||||||
343 | return Known.isNegative(); | ||||||||
344 | } | ||||||||
345 | |||||||||
346 | static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, | ||||||||
347 | const Query &Q); | ||||||||
348 | |||||||||
349 | bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, | ||||||||
350 | const DataLayout &DL, AssumptionCache *AC, | ||||||||
351 | const Instruction *CxtI, const DominatorTree *DT, | ||||||||
352 | bool UseInstrInfo) { | ||||||||
353 | return ::isKnownNonEqual(V1, V2, 0, | ||||||||
354 | Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, | ||||||||
355 | UseInstrInfo, /*ORE=*/nullptr)); | ||||||||
356 | } | ||||||||
357 | |||||||||
358 | static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, | ||||||||
359 | const Query &Q); | ||||||||
360 | |||||||||
361 | bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, | ||||||||
362 | const DataLayout &DL, unsigned Depth, | ||||||||
363 | AssumptionCache *AC, const Instruction *CxtI, | ||||||||
364 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
365 | return ::MaskedValueIsZero( | ||||||||
366 | V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); | ||||||||
367 | } | ||||||||
368 | |||||||||
369 | static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, | ||||||||
370 | unsigned Depth, const Query &Q); | ||||||||
371 | |||||||||
372 | static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, | ||||||||
373 | const Query &Q) { | ||||||||
374 | // FIXME: We currently have no way to represent the DemandedElts of a scalable | ||||||||
375 | // vector | ||||||||
376 | if (isa<ScalableVectorType>(V->getType())) | ||||||||
377 | return 1; | ||||||||
378 | |||||||||
379 | auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); | ||||||||
380 | APInt DemandedElts = | ||||||||
381 | FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); | ||||||||
382 | return ComputeNumSignBits(V, DemandedElts, Depth, Q); | ||||||||
383 | } | ||||||||
384 | |||||||||
385 | unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, | ||||||||
386 | unsigned Depth, AssumptionCache *AC, | ||||||||
387 | const Instruction *CxtI, | ||||||||
388 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
389 | return ::ComputeNumSignBits( | ||||||||
390 | V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); | ||||||||
391 | } | ||||||||
392 | |||||||||
393 | static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, | ||||||||
394 | bool NSW, const APInt &DemandedElts, | ||||||||
395 | KnownBits &KnownOut, KnownBits &Known2, | ||||||||
396 | unsigned Depth, const Query &Q) { | ||||||||
397 | computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); | ||||||||
398 | |||||||||
399 | // If one operand is unknown and we have no nowrap information, | ||||||||
400 | // the result will be unknown independently of the second operand. | ||||||||
401 | if (KnownOut.isUnknown() && !NSW) | ||||||||
402 | return; | ||||||||
403 | |||||||||
404 | computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); | ||||||||
405 | KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); | ||||||||
406 | } | ||||||||
407 | |||||||||
408 | static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, | ||||||||
409 | const APInt &DemandedElts, KnownBits &Known, | ||||||||
410 | KnownBits &Known2, unsigned Depth, | ||||||||
411 | const Query &Q) { | ||||||||
412 | computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); | ||||||||
413 | computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); | ||||||||
414 | |||||||||
415 | bool isKnownNegative = false; | ||||||||
416 | bool isKnownNonNegative = false; | ||||||||
417 | // If the multiplication is known not to overflow, compute the sign bit. | ||||||||
418 | if (NSW) { | ||||||||
419 | if (Op0 == Op1) { | ||||||||
420 | // The product of a number with itself is non-negative. | ||||||||
421 | isKnownNonNegative = true; | ||||||||
422 | } else { | ||||||||
423 | bool isKnownNonNegativeOp1 = Known.isNonNegative(); | ||||||||
424 | bool isKnownNonNegativeOp0 = Known2.isNonNegative(); | ||||||||
425 | bool isKnownNegativeOp1 = Known.isNegative(); | ||||||||
426 | bool isKnownNegativeOp0 = Known2.isNegative(); | ||||||||
427 | // The product of two numbers with the same sign is non-negative. | ||||||||
428 | isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || | ||||||||
429 | (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); | ||||||||
430 | // The product of a negative number and a non-negative number is either | ||||||||
431 | // negative or zero. | ||||||||
432 | if (!isKnownNonNegative) | ||||||||
433 | isKnownNegative = | ||||||||
434 | (isKnownNegativeOp1 && isKnownNonNegativeOp0 && | ||||||||
435 | Known2.isNonZero()) || | ||||||||
436 | (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); | ||||||||
437 | } | ||||||||
438 | } | ||||||||
439 | |||||||||
440 | Known = KnownBits::mul(Known, Known2); | ||||||||
441 | |||||||||
442 | // Only make use of no-wrap flags if we failed to compute the sign bit | ||||||||
443 | // directly. This matters if the multiplication always overflows, in | ||||||||
444 | // which case we prefer to follow the result of the direct computation, | ||||||||
445 | // though as the program is invoking undefined behaviour we can choose | ||||||||
446 | // whatever we like here. | ||||||||
447 | if (isKnownNonNegative && !Known.isNegative()) | ||||||||
448 | Known.makeNonNegative(); | ||||||||
449 | else if (isKnownNegative && !Known.isNonNegative()) | ||||||||
450 | Known.makeNegative(); | ||||||||
451 | } | ||||||||
452 | |||||||||
453 | void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, | ||||||||
454 | KnownBits &Known) { | ||||||||
455 | unsigned BitWidth = Known.getBitWidth(); | ||||||||
456 | unsigned NumRanges = Ranges.getNumOperands() / 2; | ||||||||
457 | assert(NumRanges >= 1)((void)0); | ||||||||
458 | |||||||||
459 | Known.Zero.setAllBits(); | ||||||||
460 | Known.One.setAllBits(); | ||||||||
461 | |||||||||
462 | for (unsigned i = 0; i < NumRanges; ++i) { | ||||||||
463 | ConstantInt *Lower = | ||||||||
464 | mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); | ||||||||
465 | ConstantInt *Upper = | ||||||||
466 | mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); | ||||||||
467 | ConstantRange Range(Lower->getValue(), Upper->getValue()); | ||||||||
468 | |||||||||
469 | // The first CommonPrefixBits of all values in Range are equal. | ||||||||
470 | unsigned CommonPrefixBits = | ||||||||
471 | (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); | ||||||||
472 | APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); | ||||||||
473 | APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); | ||||||||
474 | Known.One &= UnsignedMax & Mask; | ||||||||
475 | Known.Zero &= ~UnsignedMax & Mask; | ||||||||
476 | } | ||||||||
477 | } | ||||||||
478 | |||||||||
479 | static bool isEphemeralValueOf(const Instruction *I, const Value *E) { | ||||||||
480 | SmallVector<const Value *, 16> WorkSet(1, I); | ||||||||
481 | SmallPtrSet<const Value *, 32> Visited; | ||||||||
482 | SmallPtrSet<const Value *, 16> EphValues; | ||||||||
483 | |||||||||
484 | // The instruction defining an assumption's condition itself is always | ||||||||
485 | // considered ephemeral to that assumption (even if it has other | ||||||||
486 | // non-ephemeral users). See r246696's test case for an example. | ||||||||
487 | if (is_contained(I->operands(), E)) | ||||||||
488 | return true; | ||||||||
489 | |||||||||
490 | while (!WorkSet.empty()) { | ||||||||
491 | const Value *V = WorkSet.pop_back_val(); | ||||||||
492 | if (!Visited.insert(V).second) | ||||||||
493 | continue; | ||||||||
494 | |||||||||
495 | // If all uses of this value are ephemeral, then so is this value. | ||||||||
496 | if (llvm::all_of(V->users(), [&](const User *U) { | ||||||||
497 | return EphValues.count(U); | ||||||||
498 | })) { | ||||||||
499 | if (V == E) | ||||||||
500 | return true; | ||||||||
501 | |||||||||
502 | if (V == I || isSafeToSpeculativelyExecute(V)) { | ||||||||
503 | EphValues.insert(V); | ||||||||
504 | if (const User *U = dyn_cast<User>(V)) | ||||||||
505 | append_range(WorkSet, U->operands()); | ||||||||
506 | } | ||||||||
507 | } | ||||||||
508 | } | ||||||||
509 | |||||||||
510 | return false; | ||||||||
511 | } | ||||||||
512 | |||||||||
513 | // Is this an intrinsic that cannot be speculated but also cannot trap? | ||||||||
514 | bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { | ||||||||
515 | if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) | ||||||||
516 | return CI->isAssumeLikeIntrinsic(); | ||||||||
517 | |||||||||
518 | return false; | ||||||||
519 | } | ||||||||
520 | |||||||||
521 | bool llvm::isValidAssumeForContext(const Instruction *Inv, | ||||||||
522 | const Instruction *CxtI, | ||||||||
523 | const DominatorTree *DT) { | ||||||||
524 | // There are two restrictions on the use of an assume: | ||||||||
525 | // 1. The assume must dominate the context (or the control flow must | ||||||||
526 | // reach the assume whenever it reaches the context). | ||||||||
527 | // 2. The context must not be in the assume's set of ephemeral values | ||||||||
528 | // (otherwise we will use the assume to prove that the condition | ||||||||
529 | // feeding the assume is trivially true, thus causing the removal of | ||||||||
530 | // the assume). | ||||||||
531 | |||||||||
532 | if (Inv->getParent() == CxtI->getParent()) { | ||||||||
533 | // If Inv and CtxI are in the same block, check if the assume (Inv) is first | ||||||||
534 | // in the BB. | ||||||||
535 | if (Inv->comesBefore(CxtI)) | ||||||||
536 | return true; | ||||||||
537 | |||||||||
538 | // Don't let an assume affect itself - this would cause the problems | ||||||||
539 | // `isEphemeralValueOf` is trying to prevent, and it would also make | ||||||||
540 | // the loop below go out of bounds. | ||||||||
541 | if (Inv == CxtI) | ||||||||
542 | return false; | ||||||||
543 | |||||||||
544 | // The context comes first, but they're both in the same block. | ||||||||
545 | // Make sure there is nothing in between that might interrupt | ||||||||
546 | // the control flow, not even CxtI itself. | ||||||||
547 | // We limit the scan distance between the assume and its context instruction | ||||||||
548 | // to avoid a compile-time explosion. This limit is chosen arbitrarily, so | ||||||||
549 | // it can be adjusted if needed (could be turned into a cl::opt). | ||||||||
550 | unsigned ScanLimit = 15; | ||||||||
551 | for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) | ||||||||
552 | if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) | ||||||||
553 | return false; | ||||||||
554 | |||||||||
555 | return !isEphemeralValueOf(Inv, CxtI); | ||||||||
556 | } | ||||||||
557 | |||||||||
558 | // Inv and CxtI are in different blocks. | ||||||||
559 | if (DT) { | ||||||||
560 | if (DT->dominates(Inv, CxtI)) | ||||||||
561 | return true; | ||||||||
562 | } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { | ||||||||
563 | // We don't have a DT, but this trivially dominates. | ||||||||
564 | return true; | ||||||||
565 | } | ||||||||
566 | |||||||||
567 | return false; | ||||||||
568 | } | ||||||||
569 | |||||||||
570 | static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { | ||||||||
571 | // v u> y implies v != 0. | ||||||||
572 | if (Pred == ICmpInst::ICMP_UGT) | ||||||||
573 | return true; | ||||||||
574 | |||||||||
575 | // Special-case v != 0 to also handle v != null. | ||||||||
576 | if (Pred == ICmpInst::ICMP_NE) | ||||||||
577 | return match(RHS, m_Zero()); | ||||||||
578 | |||||||||
579 | // All other predicates - rely on generic ConstantRange handling. | ||||||||
580 | const APInt *C; | ||||||||
581 | if (!match(RHS, m_APInt(C))) | ||||||||
582 | return false; | ||||||||
583 | |||||||||
584 | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); | ||||||||
585 | return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); | ||||||||
586 | } | ||||||||
587 | |||||||||
588 | static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { | ||||||||
589 | // Use of assumptions is context-sensitive. If we don't have a context, we | ||||||||
590 | // cannot use them! | ||||||||
591 | if (!Q.AC || !Q.CxtI) | ||||||||
592 | return false; | ||||||||
593 | |||||||||
594 | if (Q.CxtI && V->getType()->isPointerTy()) { | ||||||||
595 | SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; | ||||||||
596 | if (!NullPointerIsDefined(Q.CxtI->getFunction(), | ||||||||
597 | V->getType()->getPointerAddressSpace())) | ||||||||
598 | AttrKinds.push_back(Attribute::Dereferenceable); | ||||||||
599 | |||||||||
600 | if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) | ||||||||
601 | return true; | ||||||||
602 | } | ||||||||
603 | |||||||||
604 | for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { | ||||||||
605 | if (!AssumeVH) | ||||||||
606 | continue; | ||||||||
607 | CallInst *I = cast<CallInst>(AssumeVH); | ||||||||
608 | assert(I->getFunction() == Q.CxtI->getFunction() &&((void)0) | ||||||||
609 | "Got assumption for the wrong function!")((void)0); | ||||||||
610 | |||||||||
611 | // Warning: This loop can end up being somewhat performance sensitive. | ||||||||
612 | // We're running this loop for once for each value queried resulting in a | ||||||||
613 | // runtime of ~O(#assumes * #values). | ||||||||
614 | |||||||||
615 | assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&((void)0) | ||||||||
616 | "must be an assume intrinsic")((void)0); | ||||||||
617 | |||||||||
618 | Value *RHS; | ||||||||
619 | CmpInst::Predicate Pred; | ||||||||
620 | auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); | ||||||||
621 | if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) | ||||||||
622 | return false; | ||||||||
623 | |||||||||
624 | if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) | ||||||||
625 | return true; | ||||||||
626 | } | ||||||||
627 | |||||||||
628 | return false; | ||||||||
629 | } | ||||||||
630 | |||||||||
631 | static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, | ||||||||
632 | unsigned Depth, const Query &Q) { | ||||||||
633 | // Use of assumptions is context-sensitive. If we don't have a context, we | ||||||||
634 | // cannot use them! | ||||||||
635 | if (!Q.AC || !Q.CxtI) | ||||||||
636 | return; | ||||||||
637 | |||||||||
638 | unsigned BitWidth = Known.getBitWidth(); | ||||||||
639 | |||||||||
640 | // Refine Known set if the pointer alignment is set by assume bundles. | ||||||||
641 | if (V->getType()->isPointerTy()) { | ||||||||
642 | if (RetainedKnowledge RK = getKnowledgeValidInContext( | ||||||||
643 | V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { | ||||||||
644 | Known.Zero.setLowBits(Log2_32(RK.ArgValue)); | ||||||||
645 | } | ||||||||
646 | } | ||||||||
647 | |||||||||
648 | // Note that the patterns below need to be kept in sync with the code | ||||||||
649 | // in AssumptionCache::updateAffectedValues. | ||||||||
650 | |||||||||
651 | for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { | ||||||||
652 | if (!AssumeVH) | ||||||||
653 | continue; | ||||||||
654 | CallInst *I = cast<CallInst>(AssumeVH); | ||||||||
655 | assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&((void)0) | ||||||||
656 | "Got assumption for the wrong function!")((void)0); | ||||||||
657 | |||||||||
658 | // Warning: This loop can end up being somewhat performance sensitive. | ||||||||
659 | // We're running this loop for once for each value queried resulting in a | ||||||||
660 | // runtime of ~O(#assumes * #values). | ||||||||
661 | |||||||||
662 | assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&((void)0) | ||||||||
663 | "must be an assume intrinsic")((void)0); | ||||||||
664 | |||||||||
665 | Value *Arg = I->getArgOperand(0); | ||||||||
666 | |||||||||
667 | if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
668 | assert(BitWidth == 1 && "assume operand is not i1?")((void)0); | ||||||||
669 | Known.setAllOnes(); | ||||||||
670 | return; | ||||||||
671 | } | ||||||||
672 | if (match(Arg, m_Not(m_Specific(V))) && | ||||||||
673 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
674 | assert(BitWidth == 1 && "assume operand is not i1?")((void)0); | ||||||||
675 | Known.setAllZero(); | ||||||||
676 | return; | ||||||||
677 | } | ||||||||
678 | |||||||||
679 | // The remaining tests are all recursive, so bail out if we hit the limit. | ||||||||
680 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
681 | continue; | ||||||||
682 | |||||||||
683 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); | ||||||||
684 | if (!Cmp) | ||||||||
685 | continue; | ||||||||
686 | |||||||||
687 | // We are attempting to compute known bits for the operands of an assume. | ||||||||
688 | // Do not try to use other assumptions for those recursive calls because | ||||||||
689 | // that can lead to mutual recursion and a compile-time explosion. | ||||||||
690 | // An example of the mutual recursion: computeKnownBits can call | ||||||||
691 | // isKnownNonZero which calls computeKnownBitsFromAssume (this function) | ||||||||
692 | // and so on. | ||||||||
693 | Query QueryNoAC = Q; | ||||||||
694 | QueryNoAC.AC = nullptr; | ||||||||
695 | |||||||||
696 | // Note that ptrtoint may change the bitwidth. | ||||||||
697 | Value *A, *B; | ||||||||
698 | auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); | ||||||||
699 | |||||||||
700 | CmpInst::Predicate Pred; | ||||||||
701 | uint64_t C; | ||||||||
702 | switch (Cmp->getPredicate()) { | ||||||||
703 | default: | ||||||||
704 | break; | ||||||||
705 | case ICmpInst::ICMP_EQ: | ||||||||
706 | // assume(v = a) | ||||||||
707 | if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
708 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
709 | KnownBits RHSKnown = | ||||||||
710 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
711 | Known.Zero |= RHSKnown.Zero; | ||||||||
712 | Known.One |= RHSKnown.One; | ||||||||
713 | // assume(v & b = a) | ||||||||
714 | } else if (match(Cmp, | ||||||||
715 | m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && | ||||||||
716 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
717 | KnownBits RHSKnown = | ||||||||
718 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
719 | KnownBits MaskKnown = | ||||||||
720 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
721 | |||||||||
722 | // For those bits in the mask that are known to be one, we can propagate | ||||||||
723 | // known bits from the RHS to V. | ||||||||
724 | Known.Zero |= RHSKnown.Zero & MaskKnown.One; | ||||||||
725 | Known.One |= RHSKnown.One & MaskKnown.One; | ||||||||
726 | // assume(~(v & b) = a) | ||||||||
727 | } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), | ||||||||
728 | m_Value(A))) && | ||||||||
729 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
730 | KnownBits RHSKnown = | ||||||||
731 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
732 | KnownBits MaskKnown = | ||||||||
733 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
734 | |||||||||
735 | // For those bits in the mask that are known to be one, we can propagate | ||||||||
736 | // inverted known bits from the RHS to V. | ||||||||
737 | Known.Zero |= RHSKnown.One & MaskKnown.One; | ||||||||
738 | Known.One |= RHSKnown.Zero & MaskKnown.One; | ||||||||
739 | // assume(v | b = a) | ||||||||
740 | } else if (match(Cmp, | ||||||||
741 | m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && | ||||||||
742 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
743 | KnownBits RHSKnown = | ||||||||
744 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
745 | KnownBits BKnown = | ||||||||
746 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
747 | |||||||||
748 | // For those bits in B that are known to be zero, we can propagate known | ||||||||
749 | // bits from the RHS to V. | ||||||||
750 | Known.Zero |= RHSKnown.Zero & BKnown.Zero; | ||||||||
751 | Known.One |= RHSKnown.One & BKnown.Zero; | ||||||||
752 | // assume(~(v | b) = a) | ||||||||
753 | } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), | ||||||||
754 | m_Value(A))) && | ||||||||
755 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
756 | KnownBits RHSKnown = | ||||||||
757 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
758 | KnownBits BKnown = | ||||||||
759 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
760 | |||||||||
761 | // For those bits in B that are known to be zero, we can propagate | ||||||||
762 | // inverted known bits from the RHS to V. | ||||||||
763 | Known.Zero |= RHSKnown.One & BKnown.Zero; | ||||||||
764 | Known.One |= RHSKnown.Zero & BKnown.Zero; | ||||||||
765 | // assume(v ^ b = a) | ||||||||
766 | } else if (match(Cmp, | ||||||||
767 | m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && | ||||||||
768 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
769 | KnownBits RHSKnown = | ||||||||
770 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
771 | KnownBits BKnown = | ||||||||
772 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
773 | |||||||||
774 | // For those bits in B that are known to be zero, we can propagate known | ||||||||
775 | // bits from the RHS to V. For those bits in B that are known to be one, | ||||||||
776 | // we can propagate inverted known bits from the RHS to V. | ||||||||
777 | Known.Zero |= RHSKnown.Zero & BKnown.Zero; | ||||||||
778 | Known.One |= RHSKnown.One & BKnown.Zero; | ||||||||
779 | Known.Zero |= RHSKnown.One & BKnown.One; | ||||||||
780 | Known.One |= RHSKnown.Zero & BKnown.One; | ||||||||
781 | // assume(~(v ^ b) = a) | ||||||||
782 | } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), | ||||||||
783 | m_Value(A))) && | ||||||||
784 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
785 | KnownBits RHSKnown = | ||||||||
786 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
787 | KnownBits BKnown = | ||||||||
788 | computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
789 | |||||||||
790 | // For those bits in B that are known to be zero, we can propagate | ||||||||
791 | // inverted known bits from the RHS to V. For those bits in B that are | ||||||||
792 | // known to be one, we can propagate known bits from the RHS to V. | ||||||||
793 | Known.Zero |= RHSKnown.One & BKnown.Zero; | ||||||||
794 | Known.One |= RHSKnown.Zero & BKnown.Zero; | ||||||||
795 | Known.Zero |= RHSKnown.Zero & BKnown.One; | ||||||||
796 | Known.One |= RHSKnown.One & BKnown.One; | ||||||||
797 | // assume(v << c = a) | ||||||||
798 | } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), | ||||||||
799 | m_Value(A))) && | ||||||||
800 | isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { | ||||||||
801 | KnownBits RHSKnown = | ||||||||
802 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
803 | |||||||||
804 | // For those bits in RHS that are known, we can propagate them to known | ||||||||
805 | // bits in V shifted to the right by C. | ||||||||
806 | RHSKnown.Zero.lshrInPlace(C); | ||||||||
807 | Known.Zero |= RHSKnown.Zero; | ||||||||
808 | RHSKnown.One.lshrInPlace(C); | ||||||||
809 | Known.One |= RHSKnown.One; | ||||||||
810 | // assume(~(v << c) = a) | ||||||||
811 | } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), | ||||||||
812 | m_Value(A))) && | ||||||||
813 | isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { | ||||||||
814 | KnownBits RHSKnown = | ||||||||
815 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
816 | // For those bits in RHS that are known, we can propagate them inverted | ||||||||
817 | // to known bits in V shifted to the right by C. | ||||||||
818 | RHSKnown.One.lshrInPlace(C); | ||||||||
819 | Known.Zero |= RHSKnown.One; | ||||||||
820 | RHSKnown.Zero.lshrInPlace(C); | ||||||||
821 | Known.One |= RHSKnown.Zero; | ||||||||
822 | // assume(v >> c = a) | ||||||||
823 | } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), | ||||||||
824 | m_Value(A))) && | ||||||||
825 | isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { | ||||||||
826 | KnownBits RHSKnown = | ||||||||
827 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
828 | // For those bits in RHS that are known, we can propagate them to known | ||||||||
829 | // bits in V shifted to the right by C. | ||||||||
830 | Known.Zero |= RHSKnown.Zero << C; | ||||||||
831 | Known.One |= RHSKnown.One << C; | ||||||||
832 | // assume(~(v >> c) = a) | ||||||||
833 | } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), | ||||||||
834 | m_Value(A))) && | ||||||||
835 | isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { | ||||||||
836 | KnownBits RHSKnown = | ||||||||
837 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
838 | // For those bits in RHS that are known, we can propagate them inverted | ||||||||
839 | // to known bits in V shifted to the right by C. | ||||||||
840 | Known.Zero |= RHSKnown.One << C; | ||||||||
841 | Known.One |= RHSKnown.Zero << C; | ||||||||
842 | } | ||||||||
843 | break; | ||||||||
844 | case ICmpInst::ICMP_SGE: | ||||||||
845 | // assume(v >=_s c) where c is non-negative | ||||||||
846 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
847 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
848 | KnownBits RHSKnown = | ||||||||
849 | computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
850 | |||||||||
851 | if (RHSKnown.isNonNegative()) { | ||||||||
852 | // We know that the sign bit is zero. | ||||||||
853 | Known.makeNonNegative(); | ||||||||
854 | } | ||||||||
855 | } | ||||||||
856 | break; | ||||||||
857 | case ICmpInst::ICMP_SGT: | ||||||||
858 | // assume(v >_s c) where c is at least -1. | ||||||||
859 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
860 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
861 | KnownBits RHSKnown = | ||||||||
862 | computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
863 | |||||||||
864 | if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { | ||||||||
865 | // We know that the sign bit is zero. | ||||||||
866 | Known.makeNonNegative(); | ||||||||
867 | } | ||||||||
868 | } | ||||||||
869 | break; | ||||||||
870 | case ICmpInst::ICMP_SLE: | ||||||||
871 | // assume(v <=_s c) where c is negative | ||||||||
872 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
873 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
874 | KnownBits RHSKnown = | ||||||||
875 | computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
876 | |||||||||
877 | if (RHSKnown.isNegative()) { | ||||||||
878 | // We know that the sign bit is one. | ||||||||
879 | Known.makeNegative(); | ||||||||
880 | } | ||||||||
881 | } | ||||||||
882 | break; | ||||||||
883 | case ICmpInst::ICMP_SLT: | ||||||||
884 | // assume(v <_s c) where c is non-positive | ||||||||
885 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
886 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
887 | KnownBits RHSKnown = | ||||||||
888 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
889 | |||||||||
890 | if (RHSKnown.isZero() || RHSKnown.isNegative()) { | ||||||||
891 | // We know that the sign bit is one. | ||||||||
892 | Known.makeNegative(); | ||||||||
893 | } | ||||||||
894 | } | ||||||||
895 | break; | ||||||||
896 | case ICmpInst::ICMP_ULE: | ||||||||
897 | // assume(v <=_u c) | ||||||||
898 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
899 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
900 | KnownBits RHSKnown = | ||||||||
901 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
902 | |||||||||
903 | // Whatever high bits in c are zero are known to be zero. | ||||||||
904 | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); | ||||||||
905 | } | ||||||||
906 | break; | ||||||||
907 | case ICmpInst::ICMP_ULT: | ||||||||
908 | // assume(v <_u c) | ||||||||
909 | if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && | ||||||||
910 | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | ||||||||
911 | KnownBits RHSKnown = | ||||||||
912 | computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); | ||||||||
913 | |||||||||
914 | // If the RHS is known zero, then this assumption must be wrong (nothing | ||||||||
915 | // is unsigned less than zero). Signal a conflict and get out of here. | ||||||||
916 | if (RHSKnown.isZero()) { | ||||||||
917 | Known.Zero.setAllBits(); | ||||||||
918 | Known.One.setAllBits(); | ||||||||
919 | break; | ||||||||
920 | } | ||||||||
921 | |||||||||
922 | // Whatever high bits in c are zero are known to be zero (if c is a power | ||||||||
923 | // of 2, then one more). | ||||||||
924 | if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) | ||||||||
925 | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); | ||||||||
926 | else | ||||||||
927 | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); | ||||||||
928 | } | ||||||||
929 | break; | ||||||||
930 | } | ||||||||
931 | } | ||||||||
932 | |||||||||
933 | // If assumptions conflict with each other or previous known bits, then we | ||||||||
934 | // have a logical fallacy. It's possible that the assumption is not reachable, | ||||||||
935 | // so this isn't a real bug. On the other hand, the program may have undefined | ||||||||
936 | // behavior, or we might have a bug in the compiler. We can't assert/crash, so | ||||||||
937 | // clear out the known bits, try to warn the user, and hope for the best. | ||||||||
938 | if (Known.Zero.intersects(Known.One)) { | ||||||||
939 | Known.resetAll(); | ||||||||
940 | |||||||||
941 | if (Q.ORE) | ||||||||
942 | Q.ORE->emit([&]() { | ||||||||
943 | auto *CxtI = const_cast<Instruction *>(Q.CxtI); | ||||||||
944 | return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", | ||||||||
945 | CxtI) | ||||||||
946 | << "Detected conflicting code assumptions. Program may " | ||||||||
947 | "have undefined behavior, or compiler may have " | ||||||||
948 | "internal error."; | ||||||||
949 | }); | ||||||||
950 | } | ||||||||
951 | } | ||||||||
952 | |||||||||
953 | /// Compute known bits from a shift operator, including those with a | ||||||||
954 | /// non-constant shift amount. Known is the output of this function. Known2 is a | ||||||||
955 | /// pre-allocated temporary with the same bit width as Known and on return | ||||||||
956 | /// contains the known bit of the shift value source. KF is an | ||||||||
957 | /// operator-specific function that, given the known-bits and a shift amount, | ||||||||
958 | /// compute the implied known-bits of the shift operator's result respectively | ||||||||
959 | /// for that shift amount. The results from calling KF are conservatively | ||||||||
960 | /// combined for all permitted shift amounts. | ||||||||
961 | static void computeKnownBitsFromShiftOperator( | ||||||||
962 | const Operator *I, const APInt &DemandedElts, KnownBits &Known, | ||||||||
963 | KnownBits &Known2, unsigned Depth, const Query &Q, | ||||||||
964 | function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { | ||||||||
965 | unsigned BitWidth = Known.getBitWidth(); | ||||||||
966 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
967 | computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); | ||||||||
968 | |||||||||
969 | // Note: We cannot use Known.Zero.getLimitedValue() here, because if | ||||||||
970 | // BitWidth > 64 and any upper bits are known, we'll end up returning the | ||||||||
971 | // limit value (which implies all bits are known). | ||||||||
972 | uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); | ||||||||
973 | uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); | ||||||||
974 | bool ShiftAmtIsConstant = Known.isConstant(); | ||||||||
975 | bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); | ||||||||
976 | |||||||||
977 | if (ShiftAmtIsConstant) { | ||||||||
978 | Known = KF(Known2, Known); | ||||||||
979 | |||||||||
980 | // If the known bits conflict, this must be an overflowing left shift, so | ||||||||
981 | // the shift result is poison. We can return anything we want. Choose 0 for | ||||||||
982 | // the best folding opportunity. | ||||||||
983 | if (Known.hasConflict()) | ||||||||
984 | Known.setAllZero(); | ||||||||
985 | |||||||||
986 | return; | ||||||||
987 | } | ||||||||
988 | |||||||||
989 | // If the shift amount could be greater than or equal to the bit-width of the | ||||||||
990 | // LHS, the value could be poison, but bail out because the check below is | ||||||||
991 | // expensive. | ||||||||
992 | // TODO: Should we just carry on? | ||||||||
993 | if (MaxShiftAmtIsOutOfRange) { | ||||||||
994 | Known.resetAll(); | ||||||||
995 | return; | ||||||||
996 | } | ||||||||
997 | |||||||||
998 | // It would be more-clearly correct to use the two temporaries for this | ||||||||
999 | // calculation. Reusing the APInts here to prevent unnecessary allocations. | ||||||||
1000 | Known.resetAll(); | ||||||||
1001 | |||||||||
1002 | // If we know the shifter operand is nonzero, we can sometimes infer more | ||||||||
1003 | // known bits. However this is expensive to compute, so be lazy about it and | ||||||||
1004 | // only compute it when absolutely necessary. | ||||||||
1005 | Optional<bool> ShifterOperandIsNonZero; | ||||||||
1006 | |||||||||
1007 | // Early exit if we can't constrain any well-defined shift amount. | ||||||||
1008 | if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && | ||||||||
1009 | !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { | ||||||||
1010 | ShifterOperandIsNonZero = | ||||||||
1011 | isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); | ||||||||
1012 | if (!*ShifterOperandIsNonZero) | ||||||||
1013 | return; | ||||||||
1014 | } | ||||||||
1015 | |||||||||
1016 | Known.Zero.setAllBits(); | ||||||||
1017 | Known.One.setAllBits(); | ||||||||
1018 | for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { | ||||||||
1019 | // Combine the shifted known input bits only for those shift amounts | ||||||||
1020 | // compatible with its known constraints. | ||||||||
1021 | if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) | ||||||||
1022 | continue; | ||||||||
1023 | if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) | ||||||||
1024 | continue; | ||||||||
1025 | // If we know the shifter is nonzero, we may be able to infer more known | ||||||||
1026 | // bits. This check is sunk down as far as possible to avoid the expensive | ||||||||
1027 | // call to isKnownNonZero if the cheaper checks above fail. | ||||||||
1028 | if (ShiftAmt == 0) { | ||||||||
1029 | if (!ShifterOperandIsNonZero.hasValue()) | ||||||||
1030 | ShifterOperandIsNonZero = | ||||||||
1031 | isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); | ||||||||
1032 | if (*ShifterOperandIsNonZero) | ||||||||
1033 | continue; | ||||||||
1034 | } | ||||||||
1035 | |||||||||
1036 | Known = KnownBits::commonBits( | ||||||||
1037 | Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); | ||||||||
1038 | } | ||||||||
1039 | |||||||||
1040 | // If the known bits conflict, the result is poison. Return a 0 and hope the | ||||||||
1041 | // caller can further optimize that. | ||||||||
1042 | if (Known.hasConflict()) | ||||||||
1043 | Known.setAllZero(); | ||||||||
1044 | } | ||||||||
1045 | |||||||||
1046 | static void computeKnownBitsFromOperator(const Operator *I, | ||||||||
1047 | const APInt &DemandedElts, | ||||||||
1048 | KnownBits &Known, unsigned Depth, | ||||||||
1049 | const Query &Q) { | ||||||||
1050 | unsigned BitWidth = Known.getBitWidth(); | ||||||||
1051 | |||||||||
1052 | KnownBits Known2(BitWidth); | ||||||||
1053 | switch (I->getOpcode()) { | ||||||||
1054 | default: break; | ||||||||
1055 | case Instruction::Load: | ||||||||
1056 | if (MDNode *MD = | ||||||||
1057 | Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) | ||||||||
1058 | computeKnownBitsFromRangeMetadata(*MD, Known); | ||||||||
1059 | break; | ||||||||
1060 | case Instruction::And: { | ||||||||
1061 | // If either the LHS or the RHS are Zero, the result is zero. | ||||||||
1062 | computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); | ||||||||
1063 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
1064 | |||||||||
1065 | Known &= Known2; | ||||||||
1066 | |||||||||
1067 | // and(x, add (x, -1)) is a common idiom that always clears the low bit; | ||||||||
1068 | // here we handle the more general case of adding any odd number by | ||||||||
1069 | // matching the form add(x, add(x, y)) where y is odd. | ||||||||
1070 | // TODO: This could be generalized to clearing any bit set in y where the | ||||||||
1071 | // following bit is known to be unset in y. | ||||||||
1072 | Value *X = nullptr, *Y = nullptr; | ||||||||
1073 | if (!Known.Zero[0] && !Known.One[0] && | ||||||||
1074 | match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { | ||||||||
1075 | Known2.resetAll(); | ||||||||
1076 | computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); | ||||||||
1077 | if (Known2.countMinTrailingOnes() > 0) | ||||||||
1078 | Known.Zero.setBit(0); | ||||||||
1079 | } | ||||||||
1080 | break; | ||||||||
1081 | } | ||||||||
1082 | case Instruction::Or: | ||||||||
1083 | computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); | ||||||||
1084 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
1085 | |||||||||
1086 | Known |= Known2; | ||||||||
1087 | break; | ||||||||
1088 | case Instruction::Xor: | ||||||||
1089 | computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); | ||||||||
1090 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
1091 | |||||||||
1092 | Known ^= Known2; | ||||||||
1093 | break; | ||||||||
1094 | case Instruction::Mul: { | ||||||||
1095 | bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); | ||||||||
1096 | computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, | ||||||||
1097 | Known, Known2, Depth, Q); | ||||||||
1098 | break; | ||||||||
1099 | } | ||||||||
1100 | case Instruction::UDiv: { | ||||||||
1101 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1102 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1103 | Known = KnownBits::udiv(Known, Known2); | ||||||||
1104 | break; | ||||||||
1105 | } | ||||||||
1106 | case Instruction::Select: { | ||||||||
1107 | const Value *LHS = nullptr, *RHS = nullptr; | ||||||||
1108 | SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; | ||||||||
1109 | if (SelectPatternResult::isMinOrMax(SPF)) { | ||||||||
1110 | computeKnownBits(RHS, Known, Depth + 1, Q); | ||||||||
1111 | computeKnownBits(LHS, Known2, Depth + 1, Q); | ||||||||
1112 | switch (SPF) { | ||||||||
1113 | default: | ||||||||
1114 | llvm_unreachable("Unhandled select pattern flavor!")__builtin_unreachable(); | ||||||||
1115 | case SPF_SMAX: | ||||||||
1116 | Known = KnownBits::smax(Known, Known2); | ||||||||
1117 | break; | ||||||||
1118 | case SPF_SMIN: | ||||||||
1119 | Known = KnownBits::smin(Known, Known2); | ||||||||
1120 | break; | ||||||||
1121 | case SPF_UMAX: | ||||||||
1122 | Known = KnownBits::umax(Known, Known2); | ||||||||
1123 | break; | ||||||||
1124 | case SPF_UMIN: | ||||||||
1125 | Known = KnownBits::umin(Known, Known2); | ||||||||
1126 | break; | ||||||||
1127 | } | ||||||||
1128 | break; | ||||||||
1129 | } | ||||||||
1130 | |||||||||
1131 | computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); | ||||||||
1132 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1133 | |||||||||
1134 | // Only known if known in both the LHS and RHS. | ||||||||
1135 | Known = KnownBits::commonBits(Known, Known2); | ||||||||
1136 | |||||||||
1137 | if (SPF == SPF_ABS) { | ||||||||
1138 | // RHS from matchSelectPattern returns the negation part of abs pattern. | ||||||||
1139 | // If the negate has an NSW flag we can assume the sign bit of the result | ||||||||
1140 | // will be 0 because that makes abs(INT_MIN) undefined. | ||||||||
1141 | if (match(RHS, m_Neg(m_Specific(LHS))) && | ||||||||
1142 | Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) | ||||||||
1143 | Known.Zero.setSignBit(); | ||||||||
1144 | } | ||||||||
1145 | |||||||||
1146 | break; | ||||||||
1147 | } | ||||||||
1148 | case Instruction::FPTrunc: | ||||||||
1149 | case Instruction::FPExt: | ||||||||
1150 | case Instruction::FPToUI: | ||||||||
1151 | case Instruction::FPToSI: | ||||||||
1152 | case Instruction::SIToFP: | ||||||||
1153 | case Instruction::UIToFP: | ||||||||
1154 | break; // Can't work with floating point. | ||||||||
1155 | case Instruction::PtrToInt: | ||||||||
1156 | case Instruction::IntToPtr: | ||||||||
1157 | // Fall through and handle them the same as zext/trunc. | ||||||||
1158 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||
1159 | case Instruction::ZExt: | ||||||||
1160 | case Instruction::Trunc: { | ||||||||
1161 | Type *SrcTy = I->getOperand(0)->getType(); | ||||||||
1162 | |||||||||
1163 | unsigned SrcBitWidth; | ||||||||
1164 | // Note that we handle pointer operands here because of inttoptr/ptrtoint | ||||||||
1165 | // which fall through here. | ||||||||
1166 | Type *ScalarTy = SrcTy->getScalarType(); | ||||||||
1167 | SrcBitWidth = ScalarTy->isPointerTy() ? | ||||||||
1168 | Q.DL.getPointerTypeSizeInBits(ScalarTy) : | ||||||||
1169 | Q.DL.getTypeSizeInBits(ScalarTy); | ||||||||
1170 | |||||||||
1171 | assert(SrcBitWidth && "SrcBitWidth can't be zero")((void)0); | ||||||||
1172 | Known = Known.anyextOrTrunc(SrcBitWidth); | ||||||||
1173 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1174 | Known = Known.zextOrTrunc(BitWidth); | ||||||||
1175 | break; | ||||||||
1176 | } | ||||||||
1177 | case Instruction::BitCast: { | ||||||||
1178 | Type *SrcTy = I->getOperand(0)->getType(); | ||||||||
1179 | if (SrcTy->isIntOrPtrTy() && | ||||||||
1180 | // TODO: For now, not handling conversions like: | ||||||||
1181 | // (bitcast i64 %x to <2 x i32>) | ||||||||
1182 | !I->getType()->isVectorTy()) { | ||||||||
1183 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1184 | break; | ||||||||
1185 | } | ||||||||
1186 | |||||||||
1187 | // Handle cast from vector integer type to scalar or vector integer. | ||||||||
1188 | auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); | ||||||||
1189 | if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || | ||||||||
1190 | !I->getType()->isIntOrIntVectorTy()) | ||||||||
1191 | break; | ||||||||
1192 | |||||||||
1193 | // Look through a cast from narrow vector elements to wider type. | ||||||||
1194 | // Examples: v4i32 -> v2i64, v3i8 -> v24 | ||||||||
1195 | unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); | ||||||||
1196 | if (BitWidth % SubBitWidth == 0) { | ||||||||
1197 | // Known bits are automatically intersected across demanded elements of a | ||||||||
1198 | // vector. So for example, if a bit is computed as known zero, it must be | ||||||||
1199 | // zero across all demanded elements of the vector. | ||||||||
1200 | // | ||||||||
1201 | // For this bitcast, each demanded element of the output is sub-divided | ||||||||
1202 | // across a set of smaller vector elements in the source vector. To get | ||||||||
1203 | // the known bits for an entire element of the output, compute the known | ||||||||
1204 | // bits for each sub-element sequentially. This is done by shifting the | ||||||||
1205 | // one-set-bit demanded elements parameter across the sub-elements for | ||||||||
1206 | // consecutive calls to computeKnownBits. We are using the demanded | ||||||||
1207 | // elements parameter as a mask operator. | ||||||||
1208 | // | ||||||||
1209 | // The known bits of each sub-element are then inserted into place | ||||||||
1210 | // (dependent on endian) to form the full result of known bits. | ||||||||
1211 | unsigned NumElts = DemandedElts.getBitWidth(); | ||||||||
1212 | unsigned SubScale = BitWidth / SubBitWidth; | ||||||||
1213 | APInt SubDemandedElts = APInt::getNullValue(NumElts * SubScale); | ||||||||
1214 | for (unsigned i = 0; i != NumElts; ++i) { | ||||||||
1215 | if (DemandedElts[i]) | ||||||||
1216 | SubDemandedElts.setBit(i * SubScale); | ||||||||
1217 | } | ||||||||
1218 | |||||||||
1219 | KnownBits KnownSrc(SubBitWidth); | ||||||||
1220 | for (unsigned i = 0; i != SubScale; ++i) { | ||||||||
1221 | computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, | ||||||||
1222 | Depth + 1, Q); | ||||||||
1223 | unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; | ||||||||
1224 | Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); | ||||||||
1225 | } | ||||||||
1226 | } | ||||||||
1227 | break; | ||||||||
1228 | } | ||||||||
1229 | case Instruction::SExt: { | ||||||||
1230 | // Compute the bits in the result that are not present in the input. | ||||||||
1231 | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); | ||||||||
1232 | |||||||||
1233 | Known = Known.trunc(SrcBitWidth); | ||||||||
1234 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1235 | // If the sign bit of the input is known set or clear, then we know the | ||||||||
1236 | // top bits of the result. | ||||||||
1237 | Known = Known.sext(BitWidth); | ||||||||
1238 | break; | ||||||||
1239 | } | ||||||||
1240 | case Instruction::Shl: { | ||||||||
1241 | bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); | ||||||||
1242 | auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { | ||||||||
1243 | KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); | ||||||||
1244 | // If this shift has "nsw" keyword, then the result is either a poison | ||||||||
1245 | // value or has the same sign bit as the first operand. | ||||||||
1246 | if (NSW) { | ||||||||
1247 | if (KnownVal.Zero.isSignBitSet()) | ||||||||
1248 | Result.Zero.setSignBit(); | ||||||||
1249 | if (KnownVal.One.isSignBitSet()) | ||||||||
1250 | Result.One.setSignBit(); | ||||||||
1251 | } | ||||||||
1252 | return Result; | ||||||||
1253 | }; | ||||||||
1254 | computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, | ||||||||
1255 | KF); | ||||||||
1256 | // Trailing zeros of a right-shifted constant never decrease. | ||||||||
1257 | const APInt *C; | ||||||||
1258 | if (match(I->getOperand(0), m_APInt(C))) | ||||||||
1259 | Known.Zero.setLowBits(C->countTrailingZeros()); | ||||||||
1260 | break; | ||||||||
1261 | } | ||||||||
1262 | case Instruction::LShr: { | ||||||||
1263 | auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { | ||||||||
1264 | return KnownBits::lshr(KnownVal, KnownAmt); | ||||||||
1265 | }; | ||||||||
1266 | computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, | ||||||||
1267 | KF); | ||||||||
1268 | // Leading zeros of a left-shifted constant never decrease. | ||||||||
1269 | const APInt *C; | ||||||||
1270 | if (match(I->getOperand(0), m_APInt(C))) | ||||||||
1271 | Known.Zero.setHighBits(C->countLeadingZeros()); | ||||||||
1272 | break; | ||||||||
1273 | } | ||||||||
1274 | case Instruction::AShr: { | ||||||||
1275 | auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { | ||||||||
1276 | return KnownBits::ashr(KnownVal, KnownAmt); | ||||||||
1277 | }; | ||||||||
1278 | computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, | ||||||||
1279 | KF); | ||||||||
1280 | break; | ||||||||
1281 | } | ||||||||
1282 | case Instruction::Sub: { | ||||||||
1283 | bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); | ||||||||
1284 | computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, | ||||||||
1285 | DemandedElts, Known, Known2, Depth, Q); | ||||||||
1286 | break; | ||||||||
1287 | } | ||||||||
1288 | case Instruction::Add: { | ||||||||
1289 | bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); | ||||||||
1290 | computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, | ||||||||
1291 | DemandedElts, Known, Known2, Depth, Q); | ||||||||
1292 | break; | ||||||||
1293 | } | ||||||||
1294 | case Instruction::SRem: | ||||||||
1295 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1296 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1297 | Known = KnownBits::srem(Known, Known2); | ||||||||
1298 | break; | ||||||||
1299 | |||||||||
1300 | case Instruction::URem: | ||||||||
1301 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1302 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1303 | Known = KnownBits::urem(Known, Known2); | ||||||||
1304 | break; | ||||||||
1305 | case Instruction::Alloca: | ||||||||
1306 | Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); | ||||||||
1307 | break; | ||||||||
1308 | case Instruction::GetElementPtr: { | ||||||||
1309 | // Analyze all of the subscripts of this getelementptr instruction | ||||||||
1310 | // to determine if we can prove known low zero bits. | ||||||||
1311 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1312 | // Accumulate the constant indices in a separate variable | ||||||||
1313 | // to minimize the number of calls to computeForAddSub. | ||||||||
1314 | APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); | ||||||||
1315 | |||||||||
1316 | gep_type_iterator GTI = gep_type_begin(I); | ||||||||
1317 | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { | ||||||||
1318 | // TrailZ can only become smaller, short-circuit if we hit zero. | ||||||||
1319 | if (Known.isUnknown()) | ||||||||
1320 | break; | ||||||||
1321 | |||||||||
1322 | Value *Index = I->getOperand(i); | ||||||||
1323 | |||||||||
1324 | // Handle case when index is zero. | ||||||||
1325 | Constant *CIndex = dyn_cast<Constant>(Index); | ||||||||
1326 | if (CIndex && CIndex->isZeroValue()) | ||||||||
1327 | continue; | ||||||||
1328 | |||||||||
1329 | if (StructType *STy = GTI.getStructTypeOrNull()) { | ||||||||
1330 | // Handle struct member offset arithmetic. | ||||||||
1331 | |||||||||
1332 | assert(CIndex &&((void)0) | ||||||||
1333 | "Access to structure field must be known at compile time")((void)0); | ||||||||
1334 | |||||||||
1335 | if (CIndex->getType()->isVectorTy()) | ||||||||
1336 | Index = CIndex->getSplatValue(); | ||||||||
1337 | |||||||||
1338 | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); | ||||||||
1339 | const StructLayout *SL = Q.DL.getStructLayout(STy); | ||||||||
1340 | uint64_t Offset = SL->getElementOffset(Idx); | ||||||||
1341 | AccConstIndices += Offset; | ||||||||
1342 | continue; | ||||||||
1343 | } | ||||||||
1344 | |||||||||
1345 | // Handle array index arithmetic. | ||||||||
1346 | Type *IndexedTy = GTI.getIndexedType(); | ||||||||
1347 | if (!IndexedTy->isSized()) { | ||||||||
1348 | Known.resetAll(); | ||||||||
1349 | break; | ||||||||
1350 | } | ||||||||
1351 | |||||||||
1352 | unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); | ||||||||
1353 | KnownBits IndexBits(IndexBitWidth); | ||||||||
1354 | computeKnownBits(Index, IndexBits, Depth + 1, Q); | ||||||||
1355 | TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); | ||||||||
1356 | uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); | ||||||||
1357 | KnownBits ScalingFactor(IndexBitWidth); | ||||||||
1358 | // Multiply by current sizeof type. | ||||||||
1359 | // &A[i] == A + i * sizeof(*A[i]). | ||||||||
1360 | if (IndexTypeSize.isScalable()) { | ||||||||
1361 | // For scalable types the only thing we know about sizeof is | ||||||||
1362 | // that this is a multiple of the minimum size. | ||||||||
1363 | ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); | ||||||||
1364 | } else if (IndexBits.isConstant()) { | ||||||||
1365 | APInt IndexConst = IndexBits.getConstant(); | ||||||||
1366 | APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); | ||||||||
1367 | IndexConst *= ScalingFactor; | ||||||||
1368 | AccConstIndices += IndexConst.sextOrTrunc(BitWidth); | ||||||||
1369 | continue; | ||||||||
1370 | } else { | ||||||||
1371 | ScalingFactor = | ||||||||
1372 | KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); | ||||||||
1373 | } | ||||||||
1374 | IndexBits = KnownBits::mul(IndexBits, ScalingFactor); | ||||||||
1375 | |||||||||
1376 | // If the offsets have a different width from the pointer, according | ||||||||
1377 | // to the language reference we need to sign-extend or truncate them | ||||||||
1378 | // to the width of the pointer. | ||||||||
1379 | IndexBits = IndexBits.sextOrTrunc(BitWidth); | ||||||||
1380 | |||||||||
1381 | // Note that inbounds does *not* guarantee nsw for the addition, as only | ||||||||
1382 | // the offset is signed, while the base address is unsigned. | ||||||||
1383 | Known = KnownBits::computeForAddSub( | ||||||||
1384 | /*Add=*/true, /*NSW=*/false, Known, IndexBits); | ||||||||
1385 | } | ||||||||
1386 | if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { | ||||||||
1387 | KnownBits Index = KnownBits::makeConstant(AccConstIndices); | ||||||||
1388 | Known = KnownBits::computeForAddSub( | ||||||||
1389 | /*Add=*/true, /*NSW=*/false, Known, Index); | ||||||||
1390 | } | ||||||||
1391 | break; | ||||||||
1392 | } | ||||||||
1393 | case Instruction::PHI: { | ||||||||
1394 | const PHINode *P = cast<PHINode>(I); | ||||||||
1395 | BinaryOperator *BO = nullptr; | ||||||||
1396 | Value *R = nullptr, *L = nullptr; | ||||||||
1397 | if (matchSimpleRecurrence(P, BO, R, L)) { | ||||||||
1398 | // Handle the case of a simple two-predecessor recurrence PHI. | ||||||||
1399 | // There's a lot more that could theoretically be done here, but | ||||||||
1400 | // this is sufficient to catch some interesting cases. | ||||||||
1401 | unsigned Opcode = BO->getOpcode(); | ||||||||
1402 | |||||||||
1403 | // If this is a shift recurrence, we know the bits being shifted in. | ||||||||
1404 | // We can combine that with information about the start value of the | ||||||||
1405 | // recurrence to conclude facts about the result. | ||||||||
1406 | if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || | ||||||||
1407 | Opcode == Instruction::Shl) && | ||||||||
1408 | BO->getOperand(0) == I) { | ||||||||
1409 | |||||||||
1410 | // We have matched a recurrence of the form: | ||||||||
1411 | // %iv = [R, %entry], [%iv.next, %backedge] | ||||||||
1412 | // %iv.next = shift_op %iv, L | ||||||||
1413 | |||||||||
1414 | // Recurse with the phi context to avoid concern about whether facts | ||||||||
1415 | // inferred hold at original context instruction. TODO: It may be | ||||||||
1416 | // correct to use the original context. IF warranted, explore and | ||||||||
1417 | // add sufficient tests to cover. | ||||||||
1418 | Query RecQ = Q; | ||||||||
1419 | RecQ.CxtI = P; | ||||||||
1420 | computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); | ||||||||
1421 | switch (Opcode) { | ||||||||
1422 | case Instruction::Shl: | ||||||||
1423 | // A shl recurrence will only increase the tailing zeros | ||||||||
1424 | Known.Zero.setLowBits(Known2.countMinTrailingZeros()); | ||||||||
1425 | break; | ||||||||
1426 | case Instruction::LShr: | ||||||||
1427 | // A lshr recurrence will preserve the leading zeros of the | ||||||||
1428 | // start value | ||||||||
1429 | Known.Zero.setHighBits(Known2.countMinLeadingZeros()); | ||||||||
1430 | break; | ||||||||
1431 | case Instruction::AShr: | ||||||||
1432 | // An ashr recurrence will extend the initial sign bit | ||||||||
1433 | Known.Zero.setHighBits(Known2.countMinLeadingZeros()); | ||||||||
1434 | Known.One.setHighBits(Known2.countMinLeadingOnes()); | ||||||||
1435 | break; | ||||||||
1436 | }; | ||||||||
1437 | } | ||||||||
1438 | |||||||||
1439 | // Check for operations that have the property that if | ||||||||
1440 | // both their operands have low zero bits, the result | ||||||||
1441 | // will have low zero bits. | ||||||||
1442 | if (Opcode == Instruction::Add || | ||||||||
1443 | Opcode == Instruction::Sub || | ||||||||
1444 | Opcode == Instruction::And || | ||||||||
1445 | Opcode == Instruction::Or || | ||||||||
1446 | Opcode == Instruction::Mul) { | ||||||||
1447 | // Change the context instruction to the "edge" that flows into the | ||||||||
1448 | // phi. This is important because that is where the value is actually | ||||||||
1449 | // "evaluated" even though it is used later somewhere else. (see also | ||||||||
1450 | // D69571). | ||||||||
1451 | Query RecQ = Q; | ||||||||
1452 | |||||||||
1453 | unsigned OpNum = P->getOperand(0) == R ? 0 : 1; | ||||||||
1454 | Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); | ||||||||
1455 | Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); | ||||||||
1456 | |||||||||
1457 | // Ok, we have a PHI of the form L op= R. Check for low | ||||||||
1458 | // zero bits. | ||||||||
1459 | RecQ.CxtI = RInst; | ||||||||
1460 | computeKnownBits(R, Known2, Depth + 1, RecQ); | ||||||||
1461 | |||||||||
1462 | // We need to take the minimum number of known bits | ||||||||
1463 | KnownBits Known3(BitWidth); | ||||||||
1464 | RecQ.CxtI = LInst; | ||||||||
1465 | computeKnownBits(L, Known3, Depth + 1, RecQ); | ||||||||
1466 | |||||||||
1467 | Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), | ||||||||
1468 | Known3.countMinTrailingZeros())); | ||||||||
1469 | |||||||||
1470 | auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); | ||||||||
1471 | if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { | ||||||||
1472 | // If initial value of recurrence is nonnegative, and we are adding | ||||||||
1473 | // a nonnegative number with nsw, the result can only be nonnegative | ||||||||
1474 | // or poison value regardless of the number of times we execute the | ||||||||
1475 | // add in phi recurrence. If initial value is negative and we are | ||||||||
1476 | // adding a negative number with nsw, the result can only be | ||||||||
1477 | // negative or poison value. Similar arguments apply to sub and mul. | ||||||||
1478 | // | ||||||||
1479 | // (add non-negative, non-negative) --> non-negative | ||||||||
1480 | // (add negative, negative) --> negative | ||||||||
1481 | if (Opcode == Instruction::Add) { | ||||||||
1482 | if (Known2.isNonNegative() && Known3.isNonNegative()) | ||||||||
1483 | Known.makeNonNegative(); | ||||||||
1484 | else if (Known2.isNegative() && Known3.isNegative()) | ||||||||
1485 | Known.makeNegative(); | ||||||||
1486 | } | ||||||||
1487 | |||||||||
1488 | // (sub nsw non-negative, negative) --> non-negative | ||||||||
1489 | // (sub nsw negative, non-negative) --> negative | ||||||||
1490 | else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { | ||||||||
1491 | if (Known2.isNonNegative() && Known3.isNegative()) | ||||||||
1492 | Known.makeNonNegative(); | ||||||||
1493 | else if (Known2.isNegative() && Known3.isNonNegative()) | ||||||||
1494 | Known.makeNegative(); | ||||||||
1495 | } | ||||||||
1496 | |||||||||
1497 | // (mul nsw non-negative, non-negative) --> non-negative | ||||||||
1498 | else if (Opcode == Instruction::Mul && Known2.isNonNegative() && | ||||||||
1499 | Known3.isNonNegative()) | ||||||||
1500 | Known.makeNonNegative(); | ||||||||
1501 | } | ||||||||
1502 | |||||||||
1503 | break; | ||||||||
1504 | } | ||||||||
1505 | } | ||||||||
1506 | |||||||||
1507 | // Unreachable blocks may have zero-operand PHI nodes. | ||||||||
1508 | if (P->getNumIncomingValues() == 0) | ||||||||
1509 | break; | ||||||||
1510 | |||||||||
1511 | // Otherwise take the unions of the known bit sets of the operands, | ||||||||
1512 | // taking conservative care to avoid excessive recursion. | ||||||||
1513 | if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { | ||||||||
1514 | // Skip if every incoming value references to ourself. | ||||||||
1515 | if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) | ||||||||
1516 | break; | ||||||||
1517 | |||||||||
1518 | Known.Zero.setAllBits(); | ||||||||
1519 | Known.One.setAllBits(); | ||||||||
1520 | for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { | ||||||||
1521 | Value *IncValue = P->getIncomingValue(u); | ||||||||
1522 | // Skip direct self references. | ||||||||
1523 | if (IncValue == P) continue; | ||||||||
1524 | |||||||||
1525 | // Change the context instruction to the "edge" that flows into the | ||||||||
1526 | // phi. This is important because that is where the value is actually | ||||||||
1527 | // "evaluated" even though it is used later somewhere else. (see also | ||||||||
1528 | // D69571). | ||||||||
1529 | Query RecQ = Q; | ||||||||
1530 | RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); | ||||||||
1531 | |||||||||
1532 | Known2 = KnownBits(BitWidth); | ||||||||
1533 | // Recurse, but cap the recursion to one level, because we don't | ||||||||
1534 | // want to waste time spinning around in loops. | ||||||||
1535 | computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); | ||||||||
1536 | Known = KnownBits::commonBits(Known, Known2); | ||||||||
1537 | // If all bits have been ruled out, there's no need to check | ||||||||
1538 | // more operands. | ||||||||
1539 | if (Known.isUnknown()) | ||||||||
1540 | break; | ||||||||
1541 | } | ||||||||
1542 | } | ||||||||
1543 | break; | ||||||||
1544 | } | ||||||||
1545 | case Instruction::Call: | ||||||||
1546 | case Instruction::Invoke: | ||||||||
1547 | // If range metadata is attached to this call, set known bits from that, | ||||||||
1548 | // and then intersect with known bits based on other properties of the | ||||||||
1549 | // function. | ||||||||
1550 | if (MDNode *MD = | ||||||||
1551 | Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) | ||||||||
1552 | computeKnownBitsFromRangeMetadata(*MD, Known); | ||||||||
1553 | if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { | ||||||||
1554 | computeKnownBits(RV, Known2, Depth + 1, Q); | ||||||||
1555 | Known.Zero |= Known2.Zero; | ||||||||
1556 | Known.One |= Known2.One; | ||||||||
1557 | } | ||||||||
1558 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | ||||||||
1559 | switch (II->getIntrinsicID()) { | ||||||||
1560 | default: break; | ||||||||
1561 | case Intrinsic::abs: { | ||||||||
1562 | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | ||||||||
1563 | bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); | ||||||||
1564 | Known = Known2.abs(IntMinIsPoison); | ||||||||
1565 | break; | ||||||||
1566 | } | ||||||||
1567 | case Intrinsic::bitreverse: | ||||||||
1568 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
1569 | Known.Zero |= Known2.Zero.reverseBits(); | ||||||||
1570 | Known.One |= Known2.One.reverseBits(); | ||||||||
1571 | break; | ||||||||
1572 | case Intrinsic::bswap: | ||||||||
1573 | computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); | ||||||||
1574 | Known.Zero |= Known2.Zero.byteSwap(); | ||||||||
1575 | Known.One |= Known2.One.byteSwap(); | ||||||||
1576 | break; | ||||||||
1577 | case Intrinsic::ctlz: { | ||||||||
1578 | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | ||||||||
1579 | // If we have a known 1, its position is our upper bound. | ||||||||
1580 | unsigned PossibleLZ = Known2.countMaxLeadingZeros(); | ||||||||
1581 | // If this call is undefined for 0, the result will be less than 2^n. | ||||||||
1582 | if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) | ||||||||
1583 | PossibleLZ = std::min(PossibleLZ, BitWidth - 1); | ||||||||
1584 | unsigned LowBits = Log2_32(PossibleLZ)+1; | ||||||||
1585 | Known.Zero.setBitsFrom(LowBits); | ||||||||
1586 | break; | ||||||||
1587 | } | ||||||||
1588 | case Intrinsic::cttz: { | ||||||||
1589 | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | ||||||||
1590 | // If we have a known 1, its position is our upper bound. | ||||||||
1591 | unsigned PossibleTZ = Known2.countMaxTrailingZeros(); | ||||||||
1592 | // If this call is undefined for 0, the result will be less than 2^n. | ||||||||
1593 | if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) | ||||||||
1594 | PossibleTZ = std::min(PossibleTZ, BitWidth - 1); | ||||||||
1595 | unsigned LowBits = Log2_32(PossibleTZ)+1; | ||||||||
1596 | Known.Zero.setBitsFrom(LowBits); | ||||||||
1597 | break; | ||||||||
1598 | } | ||||||||
1599 | case Intrinsic::ctpop: { | ||||||||
1600 | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | ||||||||
1601 | // We can bound the space the count needs. Also, bits known to be zero | ||||||||
1602 | // can't contribute to the population. | ||||||||
1603 | unsigned BitsPossiblySet = Known2.countMaxPopulation(); | ||||||||
1604 | unsigned LowBits = Log2_32(BitsPossiblySet)+1; | ||||||||
1605 | Known.Zero.setBitsFrom(LowBits); | ||||||||
1606 | // TODO: we could bound KnownOne using the lower bound on the number | ||||||||
1607 | // of bits which might be set provided by popcnt KnownOne2. | ||||||||
1608 | break; | ||||||||
1609 | } | ||||||||
1610 | case Intrinsic::fshr: | ||||||||
1611 | case Intrinsic::fshl: { | ||||||||
1612 | const APInt *SA; | ||||||||
1613 | if (!match(I->getOperand(2), m_APInt(SA))) | ||||||||
1614 | break; | ||||||||
1615 | |||||||||
1616 | // Normalize to funnel shift left. | ||||||||
1617 | uint64_t ShiftAmt = SA->urem(BitWidth); | ||||||||
1618 | if (II->getIntrinsicID() == Intrinsic::fshr) | ||||||||
1619 | ShiftAmt = BitWidth - ShiftAmt; | ||||||||
1620 | |||||||||
1621 | KnownBits Known3(BitWidth); | ||||||||
1622 | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | ||||||||
1623 | computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); | ||||||||
1624 | |||||||||
1625 | Known.Zero = | ||||||||
1626 | Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); | ||||||||
1627 | Known.One = | ||||||||
1628 | Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); | ||||||||
1629 | break; | ||||||||
1630 | } | ||||||||
1631 | case Intrinsic::uadd_sat: | ||||||||
1632 | case Intrinsic::usub_sat: { | ||||||||
1633 | bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; | ||||||||
1634 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1635 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1636 | |||||||||
1637 | // Add: Leading ones of either operand are preserved. | ||||||||
1638 | // Sub: Leading zeros of LHS and leading ones of RHS are preserved | ||||||||
1639 | // as leading zeros in the result. | ||||||||
1640 | unsigned LeadingKnown; | ||||||||
1641 | if (IsAdd) | ||||||||
1642 | LeadingKnown = std::max(Known.countMinLeadingOnes(), | ||||||||
1643 | Known2.countMinLeadingOnes()); | ||||||||
1644 | else | ||||||||
1645 | LeadingKnown = std::max(Known.countMinLeadingZeros(), | ||||||||
1646 | Known2.countMinLeadingOnes()); | ||||||||
1647 | |||||||||
1648 | Known = KnownBits::computeForAddSub( | ||||||||
1649 | IsAdd, /* NSW */ false, Known, Known2); | ||||||||
1650 | |||||||||
1651 | // We select between the operation result and all-ones/zero | ||||||||
1652 | // respectively, so we can preserve known ones/zeros. | ||||||||
1653 | if (IsAdd) { | ||||||||
1654 | Known.One.setHighBits(LeadingKnown); | ||||||||
1655 | Known.Zero.clearAllBits(); | ||||||||
1656 | } else { | ||||||||
1657 | Known.Zero.setHighBits(LeadingKnown); | ||||||||
1658 | Known.One.clearAllBits(); | ||||||||
1659 | } | ||||||||
1660 | break; | ||||||||
1661 | } | ||||||||
1662 | case Intrinsic::umin: | ||||||||
1663 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1664 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1665 | Known = KnownBits::umin(Known, Known2); | ||||||||
1666 | break; | ||||||||
1667 | case Intrinsic::umax: | ||||||||
1668 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1669 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1670 | Known = KnownBits::umax(Known, Known2); | ||||||||
1671 | break; | ||||||||
1672 | case Intrinsic::smin: | ||||||||
1673 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1674 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1675 | Known = KnownBits::smin(Known, Known2); | ||||||||
1676 | break; | ||||||||
1677 | case Intrinsic::smax: | ||||||||
1678 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1679 | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | ||||||||
1680 | Known = KnownBits::smax(Known, Known2); | ||||||||
1681 | break; | ||||||||
1682 | case Intrinsic::x86_sse42_crc32_64_64: | ||||||||
1683 | Known.Zero.setBitsFrom(32); | ||||||||
1684 | break; | ||||||||
1685 | case Intrinsic::riscv_vsetvli: | ||||||||
1686 | case Intrinsic::riscv_vsetvlimax: | ||||||||
1687 | // Assume that VL output is positive and would fit in an int32_t. | ||||||||
1688 | // TODO: VLEN might be capped at 16 bits in a future V spec update. | ||||||||
1689 | if (BitWidth >= 32) | ||||||||
1690 | Known.Zero.setBitsFrom(31); | ||||||||
1691 | break; | ||||||||
1692 | } | ||||||||
1693 | } | ||||||||
1694 | break; | ||||||||
1695 | case Instruction::ShuffleVector: { | ||||||||
1696 | auto *Shuf = dyn_cast<ShuffleVectorInst>(I); | ||||||||
1697 | // FIXME: Do we need to handle ConstantExpr involving shufflevectors? | ||||||||
1698 | if (!Shuf) { | ||||||||
1699 | Known.resetAll(); | ||||||||
1700 | return; | ||||||||
1701 | } | ||||||||
1702 | // For undef elements, we don't know anything about the common state of | ||||||||
1703 | // the shuffle result. | ||||||||
1704 | APInt DemandedLHS, DemandedRHS; | ||||||||
1705 | if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { | ||||||||
1706 | Known.resetAll(); | ||||||||
1707 | return; | ||||||||
1708 | } | ||||||||
1709 | Known.One.setAllBits(); | ||||||||
1710 | Known.Zero.setAllBits(); | ||||||||
1711 | if (!!DemandedLHS) { | ||||||||
1712 | const Value *LHS = Shuf->getOperand(0); | ||||||||
1713 | computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); | ||||||||
1714 | // If we don't know any bits, early out. | ||||||||
1715 | if (Known.isUnknown()) | ||||||||
1716 | break; | ||||||||
1717 | } | ||||||||
1718 | if (!!DemandedRHS) { | ||||||||
1719 | const Value *RHS = Shuf->getOperand(1); | ||||||||
1720 | computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); | ||||||||
1721 | Known = KnownBits::commonBits(Known, Known2); | ||||||||
1722 | } | ||||||||
1723 | break; | ||||||||
1724 | } | ||||||||
1725 | case Instruction::InsertElement: { | ||||||||
1726 | const Value *Vec = I->getOperand(0); | ||||||||
1727 | const Value *Elt = I->getOperand(1); | ||||||||
1728 | auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); | ||||||||
1729 | // Early out if the index is non-constant or out-of-range. | ||||||||
1730 | unsigned NumElts = DemandedElts.getBitWidth(); | ||||||||
1731 | if (!CIdx || CIdx->getValue().uge(NumElts)) { | ||||||||
1732 | Known.resetAll(); | ||||||||
1733 | return; | ||||||||
1734 | } | ||||||||
1735 | Known.One.setAllBits(); | ||||||||
1736 | Known.Zero.setAllBits(); | ||||||||
1737 | unsigned EltIdx = CIdx->getZExtValue(); | ||||||||
1738 | // Do we demand the inserted element? | ||||||||
1739 | if (DemandedElts[EltIdx]) { | ||||||||
1740 | computeKnownBits(Elt, Known, Depth + 1, Q); | ||||||||
1741 | // If we don't know any bits, early out. | ||||||||
1742 | if (Known.isUnknown()) | ||||||||
1743 | break; | ||||||||
1744 | } | ||||||||
1745 | // We don't need the base vector element that has been inserted. | ||||||||
1746 | APInt DemandedVecElts = DemandedElts; | ||||||||
1747 | DemandedVecElts.clearBit(EltIdx); | ||||||||
1748 | if (!!DemandedVecElts) { | ||||||||
1749 | computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); | ||||||||
1750 | Known = KnownBits::commonBits(Known, Known2); | ||||||||
1751 | } | ||||||||
1752 | break; | ||||||||
1753 | } | ||||||||
1754 | case Instruction::ExtractElement: { | ||||||||
1755 | // Look through extract element. If the index is non-constant or | ||||||||
1756 | // out-of-range demand all elements, otherwise just the extracted element. | ||||||||
1757 | const Value *Vec = I->getOperand(0); | ||||||||
1758 | const Value *Idx = I->getOperand(1); | ||||||||
1759 | auto *CIdx = dyn_cast<ConstantInt>(Idx); | ||||||||
1760 | if (isa<ScalableVectorType>(Vec->getType())) { | ||||||||
1761 | // FIXME: there's probably *something* we can do with scalable vectors | ||||||||
1762 | Known.resetAll(); | ||||||||
1763 | break; | ||||||||
1764 | } | ||||||||
1765 | unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); | ||||||||
1766 | APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); | ||||||||
1767 | if (CIdx && CIdx->getValue().ult(NumElts)) | ||||||||
1768 | DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); | ||||||||
1769 | computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); | ||||||||
1770 | break; | ||||||||
1771 | } | ||||||||
1772 | case Instruction::ExtractValue: | ||||||||
1773 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { | ||||||||
1774 | const ExtractValueInst *EVI = cast<ExtractValueInst>(I); | ||||||||
1775 | if (EVI->getNumIndices() != 1) break; | ||||||||
1776 | if (EVI->getIndices()[0] == 0) { | ||||||||
1777 | switch (II->getIntrinsicID()) { | ||||||||
1778 | default: break; | ||||||||
1779 | case Intrinsic::uadd_with_overflow: | ||||||||
1780 | case Intrinsic::sadd_with_overflow: | ||||||||
1781 | computeKnownBitsAddSub(true, II->getArgOperand(0), | ||||||||
1782 | II->getArgOperand(1), false, DemandedElts, | ||||||||
1783 | Known, Known2, Depth, Q); | ||||||||
1784 | break; | ||||||||
1785 | case Intrinsic::usub_with_overflow: | ||||||||
1786 | case Intrinsic::ssub_with_overflow: | ||||||||
1787 | computeKnownBitsAddSub(false, II->getArgOperand(0), | ||||||||
1788 | II->getArgOperand(1), false, DemandedElts, | ||||||||
1789 | Known, Known2, Depth, Q); | ||||||||
1790 | break; | ||||||||
1791 | case Intrinsic::umul_with_overflow: | ||||||||
1792 | case Intrinsic::smul_with_overflow: | ||||||||
1793 | computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, | ||||||||
1794 | DemandedElts, Known, Known2, Depth, Q); | ||||||||
1795 | break; | ||||||||
1796 | } | ||||||||
1797 | } | ||||||||
1798 | } | ||||||||
1799 | break; | ||||||||
1800 | case Instruction::Freeze: | ||||||||
1801 | if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, | ||||||||
1802 | Depth + 1)) | ||||||||
1803 | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | ||||||||
1804 | break; | ||||||||
1805 | } | ||||||||
1806 | } | ||||||||
1807 | |||||||||
1808 | /// Determine which bits of V are known to be either zero or one and return | ||||||||
1809 | /// them. | ||||||||
1810 | KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
1811 | unsigned Depth, const Query &Q) { | ||||||||
1812 | KnownBits Known(getBitWidth(V->getType(), Q.DL)); | ||||||||
1813 | computeKnownBits(V, DemandedElts, Known, Depth, Q); | ||||||||
1814 | return Known; | ||||||||
1815 | } | ||||||||
1816 | |||||||||
1817 | /// Determine which bits of V are known to be either zero or one and return | ||||||||
1818 | /// them. | ||||||||
1819 | KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { | ||||||||
1820 | KnownBits Known(getBitWidth(V->getType(), Q.DL)); | ||||||||
1821 | computeKnownBits(V, Known, Depth, Q); | ||||||||
1822 | return Known; | ||||||||
1823 | } | ||||||||
1824 | |||||||||
1825 | /// Determine which bits of V are known to be either zero or one and return | ||||||||
1826 | /// them in the Known bit set. | ||||||||
1827 | /// | ||||||||
1828 | /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that | ||||||||
1829 | /// we cannot optimize based on the assumption that it is zero without changing | ||||||||
1830 | /// it to be an explicit zero. If we don't change it to zero, other code could | ||||||||
1831 | /// optimized based on the contradictory assumption that it is non-zero. | ||||||||
1832 | /// Because instcombine aggressively folds operations with undef args anyway, | ||||||||
1833 | /// this won't lose us code quality. | ||||||||
1834 | /// | ||||||||
1835 | /// This function is defined on values with integer type, values with pointer | ||||||||
1836 | /// type, and vectors of integers. In the case | ||||||||
1837 | /// where V is a vector, known zero, and known one values are the | ||||||||
1838 | /// same width as the vector element, and the bit is set only if it is true | ||||||||
1839 | /// for all of the demanded elements in the vector specified by DemandedElts. | ||||||||
1840 | void computeKnownBits(const Value *V, const APInt &DemandedElts, | ||||||||
1841 | KnownBits &Known, unsigned Depth, const Query &Q) { | ||||||||
1842 | if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { | ||||||||
1843 | // No demanded elts or V is a scalable vector, better to assume we don't | ||||||||
1844 | // know anything. | ||||||||
1845 | Known.resetAll(); | ||||||||
1846 | return; | ||||||||
1847 | } | ||||||||
1848 | |||||||||
1849 | assert(V && "No Value?")((void)0); | ||||||||
1850 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")((void)0); | ||||||||
1851 | |||||||||
1852 | #ifndef NDEBUG1 | ||||||||
1853 | Type *Ty = V->getType(); | ||||||||
1854 | unsigned BitWidth = Known.getBitWidth(); | ||||||||
1855 | |||||||||
1856 | assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&((void)0) | ||||||||
1857 | "Not integer or pointer type!")((void)0); | ||||||||
1858 | |||||||||
1859 | if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { | ||||||||
1860 | assert(((void)0) | ||||||||
1861 | FVTy->getNumElements() == DemandedElts.getBitWidth() &&((void)0) | ||||||||
1862 | "DemandedElt width should equal the fixed vector number of elements")((void)0); | ||||||||
1863 | } else { | ||||||||
1864 | assert(DemandedElts == APInt(1, 1) &&((void)0) | ||||||||
1865 | "DemandedElt width should be 1 for scalars")((void)0); | ||||||||
1866 | } | ||||||||
1867 | |||||||||
1868 | Type *ScalarTy = Ty->getScalarType(); | ||||||||
1869 | if (ScalarTy->isPointerTy()) { | ||||||||
1870 | assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&((void)0) | ||||||||
1871 | "V and Known should have same BitWidth")((void)0); | ||||||||
1872 | } else { | ||||||||
1873 | assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&((void)0) | ||||||||
1874 | "V and Known should have same BitWidth")((void)0); | ||||||||
1875 | } | ||||||||
1876 | #endif | ||||||||
1877 | |||||||||
1878 | const APInt *C; | ||||||||
1879 | if (match(V, m_APInt(C))) { | ||||||||
1880 | // We know all of the bits for a scalar constant or a splat vector constant! | ||||||||
1881 | Known = KnownBits::makeConstant(*C); | ||||||||
1882 | return; | ||||||||
1883 | } | ||||||||
1884 | // Null and aggregate-zero are all-zeros. | ||||||||
1885 | if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { | ||||||||
1886 | Known.setAllZero(); | ||||||||
1887 | return; | ||||||||
1888 | } | ||||||||
1889 | // Handle a constant vector by taking the intersection of the known bits of | ||||||||
1890 | // each element. | ||||||||
1891 | if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { | ||||||||
1892 | // We know that CDV must be a vector of integers. Take the intersection of | ||||||||
1893 | // each element. | ||||||||
1894 | Known.Zero.setAllBits(); Known.One.setAllBits(); | ||||||||
1895 | for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { | ||||||||
1896 | if (!DemandedElts[i]) | ||||||||
1897 | continue; | ||||||||
1898 | APInt Elt = CDV->getElementAsAPInt(i); | ||||||||
1899 | Known.Zero &= ~Elt; | ||||||||
1900 | Known.One &= Elt; | ||||||||
1901 | } | ||||||||
1902 | return; | ||||||||
1903 | } | ||||||||
1904 | |||||||||
1905 | if (const auto *CV = dyn_cast<ConstantVector>(V)) { | ||||||||
1906 | // We know that CV must be a vector of integers. Take the intersection of | ||||||||
1907 | // each element. | ||||||||
1908 | Known.Zero.setAllBits(); Known.One.setAllBits(); | ||||||||
1909 | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { | ||||||||
1910 | if (!DemandedElts[i]) | ||||||||
1911 | continue; | ||||||||
1912 | Constant *Element = CV->getAggregateElement(i); | ||||||||
1913 | auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); | ||||||||
1914 | if (!ElementCI) { | ||||||||
1915 | Known.resetAll(); | ||||||||
1916 | return; | ||||||||
1917 | } | ||||||||
1918 | const APInt &Elt = ElementCI->getValue(); | ||||||||
1919 | Known.Zero &= ~Elt; | ||||||||
1920 | Known.One &= Elt; | ||||||||
1921 | } | ||||||||
1922 | return; | ||||||||
1923 | } | ||||||||
1924 | |||||||||
1925 | // Start out not knowing anything. | ||||||||
1926 | Known.resetAll(); | ||||||||
1927 | |||||||||
1928 | // We can't imply anything about undefs. | ||||||||
1929 | if (isa<UndefValue>(V)) | ||||||||
1930 | return; | ||||||||
1931 | |||||||||
1932 | // There's no point in looking through other users of ConstantData for | ||||||||
1933 | // assumptions. Confirm that we've handled them all. | ||||||||
1934 | assert(!isa<ConstantData>(V) && "Unhandled constant data!")((void)0); | ||||||||
1935 | |||||||||
1936 | // All recursive calls that increase depth must come after this. | ||||||||
1937 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
1938 | return; | ||||||||
1939 | |||||||||
1940 | // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has | ||||||||
1941 | // the bits of its aliasee. | ||||||||
1942 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | ||||||||
1943 | if (!GA->isInterposable()) | ||||||||
1944 | computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); | ||||||||
1945 | return; | ||||||||
1946 | } | ||||||||
1947 | |||||||||
1948 | if (const Operator *I = dyn_cast<Operator>(V)) | ||||||||
1949 | computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); | ||||||||
1950 | |||||||||
1951 | // Aligned pointers have trailing zeros - refine Known.Zero set | ||||||||
1952 | if (isa<PointerType>(V->getType())) { | ||||||||
1953 | Align Alignment = V->getPointerAlignment(Q.DL); | ||||||||
1954 | Known.Zero.setLowBits(Log2(Alignment)); | ||||||||
1955 | } | ||||||||
1956 | |||||||||
1957 | // computeKnownBitsFromAssume strictly refines Known. | ||||||||
1958 | // Therefore, we run them after computeKnownBitsFromOperator. | ||||||||
1959 | |||||||||
1960 | // Check whether a nearby assume intrinsic can determine some known bits. | ||||||||
1961 | computeKnownBitsFromAssume(V, Known, Depth, Q); | ||||||||
1962 | |||||||||
1963 | assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?")((void)0); | ||||||||
1964 | } | ||||||||
1965 | |||||||||
1966 | /// Return true if the given value is known to have exactly one | ||||||||
1967 | /// bit set when defined. For vectors return true if every element is known to | ||||||||
1968 | /// be a power of two when defined. Supports values with integer or pointer | ||||||||
1969 | /// types and vectors of integers. | ||||||||
1970 | bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, | ||||||||
1971 | const Query &Q) { | ||||||||
1972 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")((void)0); | ||||||||
1973 | |||||||||
1974 | // Attempt to match against constants. | ||||||||
1975 | if (OrZero && match(V, m_Power2OrZero())) | ||||||||
1976 | return true; | ||||||||
1977 | if (match(V, m_Power2())) | ||||||||
1978 | return true; | ||||||||
1979 | |||||||||
1980 | // 1 << X is clearly a power of two if the one is not shifted off the end. If | ||||||||
1981 | // it is shifted off the end then the result is undefined. | ||||||||
1982 | if (match(V, m_Shl(m_One(), m_Value()))) | ||||||||
1983 | return true; | ||||||||
1984 | |||||||||
1985 | // (signmask) >>l X is clearly a power of two if the one is not shifted off | ||||||||
1986 | // the bottom. If it is shifted off the bottom then the result is undefined. | ||||||||
1987 | if (match(V, m_LShr(m_SignMask(), m_Value()))) | ||||||||
1988 | return true; | ||||||||
1989 | |||||||||
1990 | // The remaining tests are all recursive, so bail out if we hit the limit. | ||||||||
1991 | if (Depth++ == MaxAnalysisRecursionDepth) | ||||||||
1992 | return false; | ||||||||
1993 | |||||||||
1994 | Value *X = nullptr, *Y = nullptr; | ||||||||
1995 | // A shift left or a logical shift right of a power of two is a power of two | ||||||||
1996 | // or zero. | ||||||||
1997 | if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || | ||||||||
1998 | match(V, m_LShr(m_Value(X), m_Value())))) | ||||||||
1999 | return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); | ||||||||
2000 | |||||||||
2001 | if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) | ||||||||
2002 | return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); | ||||||||
2003 | |||||||||
2004 | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) | ||||||||
2005 | return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && | ||||||||
2006 | isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); | ||||||||
2007 | |||||||||
2008 | // Peek through min/max. | ||||||||
2009 | if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { | ||||||||
2010 | return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && | ||||||||
2011 | isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); | ||||||||
2012 | } | ||||||||
2013 | |||||||||
2014 | if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { | ||||||||
2015 | // A power of two and'd with anything is a power of two or zero. | ||||||||
2016 | if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || | ||||||||
2017 | isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) | ||||||||
2018 | return true; | ||||||||
2019 | // X & (-X) is always a power of two or zero. | ||||||||
2020 | if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) | ||||||||
2021 | return true; | ||||||||
2022 | return false; | ||||||||
2023 | } | ||||||||
2024 | |||||||||
2025 | // Adding a power-of-two or zero to the same power-of-two or zero yields | ||||||||
2026 | // either the original power-of-two, a larger power-of-two or zero. | ||||||||
2027 | if (match(V, m_Add(m_Value(X), m_Value(Y)))) { | ||||||||
2028 | const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); | ||||||||
2029 | if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || | ||||||||
2030 | Q.IIQ.hasNoSignedWrap(VOBO)) { | ||||||||
2031 | if (match(X, m_And(m_Specific(Y), m_Value())) || | ||||||||
2032 | match(X, m_And(m_Value(), m_Specific(Y)))) | ||||||||
2033 | if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) | ||||||||
2034 | return true; | ||||||||
2035 | if (match(Y, m_And(m_Specific(X), m_Value())) || | ||||||||
2036 | match(Y, m_And(m_Value(), m_Specific(X)))) | ||||||||
2037 | if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) | ||||||||
2038 | return true; | ||||||||
2039 | |||||||||
2040 | unsigned BitWidth = V->getType()->getScalarSizeInBits(); | ||||||||
2041 | KnownBits LHSBits(BitWidth); | ||||||||
2042 | computeKnownBits(X, LHSBits, Depth, Q); | ||||||||
2043 | |||||||||
2044 | KnownBits RHSBits(BitWidth); | ||||||||
2045 | computeKnownBits(Y, RHSBits, Depth, Q); | ||||||||
2046 | // If i8 V is a power of two or zero: | ||||||||
2047 | // ZeroBits: 1 1 1 0 1 1 1 1 | ||||||||
2048 | // ~ZeroBits: 0 0 0 1 0 0 0 0 | ||||||||
2049 | if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) | ||||||||
2050 | // If OrZero isn't set, we cannot give back a zero result. | ||||||||
2051 | // Make sure either the LHS or RHS has a bit set. | ||||||||
2052 | if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) | ||||||||
2053 | return true; | ||||||||
2054 | } | ||||||||
2055 | } | ||||||||
2056 | |||||||||
2057 | // An exact divide or right shift can only shift off zero bits, so the result | ||||||||
2058 | // is a power of two only if the first operand is a power of two and not | ||||||||
2059 | // copying a sign bit (sdiv int_min, 2). | ||||||||
2060 | if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || | ||||||||
2061 | match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { | ||||||||
2062 | return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, | ||||||||
2063 | Depth, Q); | ||||||||
2064 | } | ||||||||
2065 | |||||||||
2066 | return false; | ||||||||
2067 | } | ||||||||
2068 | |||||||||
2069 | /// Test whether a GEP's result is known to be non-null. | ||||||||
2070 | /// | ||||||||
2071 | /// Uses properties inherent in a GEP to try to determine whether it is known | ||||||||
2072 | /// to be non-null. | ||||||||
2073 | /// | ||||||||
2074 | /// Currently this routine does not support vector GEPs. | ||||||||
2075 | static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, | ||||||||
2076 | const Query &Q) { | ||||||||
2077 | const Function *F = nullptr; | ||||||||
2078 | if (const Instruction *I = dyn_cast<Instruction>(GEP)) | ||||||||
2079 | F = I->getFunction(); | ||||||||
2080 | |||||||||
2081 | if (!GEP->isInBounds() || | ||||||||
2082 | NullPointerIsDefined(F, GEP->getPointerAddressSpace())) | ||||||||
2083 | return false; | ||||||||
2084 | |||||||||
2085 | // FIXME: Support vector-GEPs. | ||||||||
2086 | assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP")((void)0); | ||||||||
2087 | |||||||||
2088 | // If the base pointer is non-null, we cannot walk to a null address with an | ||||||||
2089 | // inbounds GEP in address space zero. | ||||||||
2090 | if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) | ||||||||
2091 | return true; | ||||||||
2092 | |||||||||
2093 | // Walk the GEP operands and see if any operand introduces a non-zero offset. | ||||||||
2094 | // If so, then the GEP cannot produce a null pointer, as doing so would | ||||||||
2095 | // inherently violate the inbounds contract within address space zero. | ||||||||
2096 | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | ||||||||
2097 | GTI != GTE; ++GTI) { | ||||||||
2098 | // Struct types are easy -- they must always be indexed by a constant. | ||||||||
2099 | if (StructType *STy = GTI.getStructTypeOrNull()) { | ||||||||
2100 | ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); | ||||||||
2101 | unsigned ElementIdx = OpC->getZExtValue(); | ||||||||
2102 | const StructLayout *SL = Q.DL.getStructLayout(STy); | ||||||||
2103 | uint64_t ElementOffset = SL->getElementOffset(ElementIdx); | ||||||||
2104 | if (ElementOffset > 0) | ||||||||
2105 | return true; | ||||||||
2106 | continue; | ||||||||
2107 | } | ||||||||
2108 | |||||||||
2109 | // If we have a zero-sized type, the index doesn't matter. Keep looping. | ||||||||
2110 | if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) | ||||||||
2111 | continue; | ||||||||
2112 | |||||||||
2113 | // Fast path the constant operand case both for efficiency and so we don't | ||||||||
2114 | // increment Depth when just zipping down an all-constant GEP. | ||||||||
2115 | if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { | ||||||||
2116 | if (!OpC->isZero()) | ||||||||
2117 | return true; | ||||||||
2118 | continue; | ||||||||
2119 | } | ||||||||
2120 | |||||||||
2121 | // We post-increment Depth here because while isKnownNonZero increments it | ||||||||
2122 | // as well, when we pop back up that increment won't persist. We don't want | ||||||||
2123 | // to recurse 10k times just because we have 10k GEP operands. We don't | ||||||||
2124 | // bail completely out because we want to handle constant GEPs regardless | ||||||||
2125 | // of depth. | ||||||||
2126 | if (Depth++ >= MaxAnalysisRecursionDepth) | ||||||||
2127 | continue; | ||||||||
2128 | |||||||||
2129 | if (isKnownNonZero(GTI.getOperand(), Depth, Q)) | ||||||||
2130 | return true; | ||||||||
2131 | } | ||||||||
2132 | |||||||||
2133 | return false; | ||||||||
2134 | } | ||||||||
2135 | |||||||||
2136 | static bool isKnownNonNullFromDominatingCondition(const Value *V, | ||||||||
2137 | const Instruction *CtxI, | ||||||||
2138 | const DominatorTree *DT) { | ||||||||
2139 | if (isa<Constant>(V)) | ||||||||
2140 | return false; | ||||||||
2141 | |||||||||
2142 | if (!CtxI || !DT) | ||||||||
2143 | return false; | ||||||||
2144 | |||||||||
2145 | unsigned NumUsesExplored = 0; | ||||||||
2146 | for (auto *U : V->users()) { | ||||||||
2147 | // Avoid massive lists | ||||||||
2148 | if (NumUsesExplored >= DomConditionsMaxUses) | ||||||||
2149 | break; | ||||||||
2150 | NumUsesExplored++; | ||||||||
2151 | |||||||||
2152 | // If the value is used as an argument to a call or invoke, then argument | ||||||||
2153 | // attributes may provide an answer about null-ness. | ||||||||
2154 | if (const auto *CB = dyn_cast<CallBase>(U)) | ||||||||
2155 | if (auto *CalledFunc = CB->getCalledFunction()) | ||||||||
2156 | for (const Argument &Arg : CalledFunc->args()) | ||||||||
2157 | if (CB->getArgOperand(Arg.getArgNo()) == V && | ||||||||
2158 | Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && | ||||||||
2159 | DT->dominates(CB, CtxI)) | ||||||||
2160 | return true; | ||||||||
2161 | |||||||||
2162 | // If the value is used as a load/store, then the pointer must be non null. | ||||||||
2163 | if (V == getLoadStorePointerOperand(U)) { | ||||||||
2164 | const Instruction *I = cast<Instruction>(U); | ||||||||
2165 | if (!NullPointerIsDefined(I->getFunction(), | ||||||||
2166 | V->getType()->getPointerAddressSpace()) && | ||||||||
2167 | DT->dominates(I, CtxI)) | ||||||||
2168 | return true; | ||||||||
2169 | } | ||||||||
2170 | |||||||||
2171 | // Consider only compare instructions uniquely controlling a branch | ||||||||
2172 | Value *RHS; | ||||||||
2173 | CmpInst::Predicate Pred; | ||||||||
2174 | if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) | ||||||||
2175 | continue; | ||||||||
2176 | |||||||||
2177 | bool NonNullIfTrue; | ||||||||
2178 | if (cmpExcludesZero(Pred, RHS)) | ||||||||
2179 | NonNullIfTrue = true; | ||||||||
2180 | else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) | ||||||||
2181 | NonNullIfTrue = false; | ||||||||
2182 | else | ||||||||
2183 | continue; | ||||||||
2184 | |||||||||
2185 | SmallVector<const User *, 4> WorkList; | ||||||||
2186 | SmallPtrSet<const User *, 4> Visited; | ||||||||
2187 | for (auto *CmpU : U->users()) { | ||||||||
2188 | assert(WorkList.empty() && "Should be!")((void)0); | ||||||||
2189 | if (Visited.insert(CmpU).second) | ||||||||
2190 | WorkList.push_back(CmpU); | ||||||||
2191 | |||||||||
2192 | while (!WorkList.empty()) { | ||||||||
2193 | auto *Curr = WorkList.pop_back_val(); | ||||||||
2194 | |||||||||
2195 | // If a user is an AND, add all its users to the work list. We only | ||||||||
2196 | // propagate "pred != null" condition through AND because it is only | ||||||||
2197 | // correct to assume that all conditions of AND are met in true branch. | ||||||||
2198 | // TODO: Support similar logic of OR and EQ predicate? | ||||||||
2199 | if (NonNullIfTrue) | ||||||||
2200 | if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { | ||||||||
2201 | for (auto *CurrU : Curr->users()) | ||||||||
2202 | if (Visited.insert(CurrU).second) | ||||||||
2203 | WorkList.push_back(CurrU); | ||||||||
2204 | continue; | ||||||||
2205 | } | ||||||||
2206 | |||||||||
2207 | if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { | ||||||||
2208 | assert(BI->isConditional() && "uses a comparison!")((void)0); | ||||||||
2209 | |||||||||
2210 | BasicBlock *NonNullSuccessor = | ||||||||
2211 | BI->getSuccessor(NonNullIfTrue ? 0 : 1); | ||||||||
2212 | BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); | ||||||||
2213 | if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) | ||||||||
2214 | return true; | ||||||||
2215 | } else if (NonNullIfTrue && isGuard(Curr) && | ||||||||
2216 | DT->dominates(cast<Instruction>(Curr), CtxI)) { | ||||||||
2217 | return true; | ||||||||
2218 | } | ||||||||
2219 | } | ||||||||
2220 | } | ||||||||
2221 | } | ||||||||
2222 | |||||||||
2223 | return false; | ||||||||
2224 | } | ||||||||
2225 | |||||||||
2226 | /// Does the 'Range' metadata (which must be a valid MD_range operand list) | ||||||||
2227 | /// ensure that the value it's attached to is never Value? 'RangeType' is | ||||||||
2228 | /// is the type of the value described by the range. | ||||||||
2229 | static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { | ||||||||
2230 | const unsigned NumRanges = Ranges->getNumOperands() / 2; | ||||||||
2231 | assert(NumRanges >= 1)((void)0); | ||||||||
2232 | for (unsigned i = 0; i < NumRanges; ++i) { | ||||||||
2233 | ConstantInt *Lower = | ||||||||
2234 | mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); | ||||||||
2235 | ConstantInt *Upper = | ||||||||
2236 | mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); | ||||||||
2237 | ConstantRange Range(Lower->getValue(), Upper->getValue()); | ||||||||
2238 | if (Range.contains(Value)) | ||||||||
2239 | return false; | ||||||||
2240 | } | ||||||||
2241 | return true; | ||||||||
2242 | } | ||||||||
2243 | |||||||||
2244 | /// Try to detect a recurrence that monotonically increases/decreases from a | ||||||||
2245 | /// non-zero starting value. These are common as induction variables. | ||||||||
2246 | static bool isNonZeroRecurrence(const PHINode *PN) { | ||||||||
2247 | BinaryOperator *BO = nullptr; | ||||||||
2248 | Value *Start = nullptr, *Step = nullptr; | ||||||||
2249 | const APInt *StartC, *StepC; | ||||||||
2250 | if (!matchSimpleRecurrence(PN, BO, Start, Step) || | ||||||||
2251 | !match(Start, m_APInt(StartC)) || StartC->isNullValue()) | ||||||||
2252 | return false; | ||||||||
2253 | |||||||||
2254 | switch (BO->getOpcode()) { | ||||||||
2255 | case Instruction::Add: | ||||||||
2256 | // Starting from non-zero and stepping away from zero can never wrap back | ||||||||
2257 | // to zero. | ||||||||
2258 | return BO->hasNoUnsignedWrap() || | ||||||||
2259 | (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && | ||||||||
2260 | StartC->isNegative() == StepC->isNegative()); | ||||||||
2261 | case Instruction::Mul: | ||||||||
2262 | return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && | ||||||||
2263 | match(Step, m_APInt(StepC)) && !StepC->isNullValue(); | ||||||||
2264 | case Instruction::Shl: | ||||||||
2265 | return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); | ||||||||
2266 | case Instruction::AShr: | ||||||||
2267 | case Instruction::LShr: | ||||||||
2268 | return BO->isExact(); | ||||||||
2269 | default: | ||||||||
2270 | return false; | ||||||||
2271 | } | ||||||||
2272 | } | ||||||||
2273 | |||||||||
2274 | /// Return true if the given value is known to be non-zero when defined. For | ||||||||
2275 | /// vectors, return true if every demanded element is known to be non-zero when | ||||||||
2276 | /// defined. For pointers, if the context instruction and dominator tree are | ||||||||
2277 | /// specified, perform context-sensitive analysis and return true if the | ||||||||
2278 | /// pointer couldn't possibly be null at the specified instruction. | ||||||||
2279 | /// Supports values with integer or pointer type and vectors of integers. | ||||||||
2280 | bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, | ||||||||
2281 | const Query &Q) { | ||||||||
2282 | // FIXME: We currently have no way to represent the DemandedElts of a scalable | ||||||||
2283 | // vector | ||||||||
2284 | if (isa<ScalableVectorType>(V->getType())) | ||||||||
2285 | return false; | ||||||||
2286 | |||||||||
2287 | if (auto *C = dyn_cast<Constant>(V)) { | ||||||||
2288 | if (C->isNullValue()) | ||||||||
2289 | return false; | ||||||||
2290 | if (isa<ConstantInt>(C)) | ||||||||
2291 | // Must be non-zero due to null test above. | ||||||||
2292 | return true; | ||||||||
2293 | |||||||||
2294 | if (auto *CE = dyn_cast<ConstantExpr>(C)) { | ||||||||
2295 | // See the comment for IntToPtr/PtrToInt instructions below. | ||||||||
2296 | if (CE->getOpcode() == Instruction::IntToPtr || | ||||||||
2297 | CE->getOpcode() == Instruction::PtrToInt) | ||||||||
2298 | if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) | ||||||||
2299 | .getFixedSize() <= | ||||||||
2300 | Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) | ||||||||
2301 | return isKnownNonZero(CE->getOperand(0), Depth, Q); | ||||||||
2302 | } | ||||||||
2303 | |||||||||
2304 | // For constant vectors, check that all elements are undefined or known | ||||||||
2305 | // non-zero to determine that the whole vector is known non-zero. | ||||||||
2306 | if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { | ||||||||
2307 | for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { | ||||||||
2308 | if (!DemandedElts[i]) | ||||||||
2309 | continue; | ||||||||
2310 | Constant *Elt = C->getAggregateElement(i); | ||||||||
2311 | if (!Elt || Elt->isNullValue()) | ||||||||
2312 | return false; | ||||||||
2313 | if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) | ||||||||
2314 | return false; | ||||||||
2315 | } | ||||||||
2316 | return true; | ||||||||
2317 | } | ||||||||
2318 | |||||||||
2319 | // A global variable in address space 0 is non null unless extern weak | ||||||||
2320 | // or an absolute symbol reference. Other address spaces may have null as a | ||||||||
2321 | // valid address for a global, so we can't assume anything. | ||||||||
2322 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | ||||||||
2323 | if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && | ||||||||
2324 | GV->getType()->getAddressSpace() == 0) | ||||||||
2325 | return true; | ||||||||
2326 | } else | ||||||||
2327 | return false; | ||||||||
2328 | } | ||||||||
2329 | |||||||||
2330 | if (auto *I = dyn_cast<Instruction>(V)) { | ||||||||
2331 | if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { | ||||||||
2332 | // If the possible ranges don't contain zero, then the value is | ||||||||
2333 | // definitely non-zero. | ||||||||
2334 | if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { | ||||||||
2335 | const APInt ZeroValue(Ty->getBitWidth(), 0); | ||||||||
2336 | if (rangeMetadataExcludesValue(Ranges, ZeroValue)) | ||||||||
2337 | return true; | ||||||||
2338 | } | ||||||||
2339 | } | ||||||||
2340 | } | ||||||||
2341 | |||||||||
2342 | if (isKnownNonZeroFromAssume(V, Q)) | ||||||||
2343 | return true; | ||||||||
2344 | |||||||||
2345 | // Some of the tests below are recursive, so bail out if we hit the limit. | ||||||||
2346 | if (Depth++ >= MaxAnalysisRecursionDepth) | ||||||||
2347 | return false; | ||||||||
2348 | |||||||||
2349 | // Check for pointer simplifications. | ||||||||
2350 | |||||||||
2351 | if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { | ||||||||
2352 | // Alloca never returns null, malloc might. | ||||||||
2353 | if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) | ||||||||
2354 | return true; | ||||||||
2355 | |||||||||
2356 | // A byval, inalloca may not be null in a non-default addres space. A | ||||||||
2357 | // nonnull argument is assumed never 0. | ||||||||
2358 | if (const Argument *A = dyn_cast<Argument>(V)) { | ||||||||
2359 | if (((A->hasPassPointeeByValueCopyAttr() && | ||||||||
2360 | !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || | ||||||||
2361 | A->hasNonNullAttr())) | ||||||||
2362 | return true; | ||||||||
2363 | } | ||||||||
2364 | |||||||||
2365 | // A Load tagged with nonnull metadata is never null. | ||||||||
2366 | if (const LoadInst *LI = dyn_cast<LoadInst>(V)) | ||||||||
2367 | if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) | ||||||||
2368 | return true; | ||||||||
2369 | |||||||||
2370 | if (const auto *Call = dyn_cast<CallBase>(V)) { | ||||||||
2371 | if (Call->isReturnNonNull()) | ||||||||
2372 | return true; | ||||||||
2373 | if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) | ||||||||
2374 | return isKnownNonZero(RP, Depth, Q); | ||||||||
2375 | } | ||||||||
2376 | } | ||||||||
2377 | |||||||||
2378 | if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) | ||||||||
2379 | return true; | ||||||||
2380 | |||||||||
2381 | // Check for recursive pointer simplifications. | ||||||||
2382 | if (V->getType()->isPointerTy()) { | ||||||||
2383 | // Look through bitcast operations, GEPs, and int2ptr instructions as they | ||||||||
2384 | // do not alter the value, or at least not the nullness property of the | ||||||||
2385 | // value, e.g., int2ptr is allowed to zero/sign extend the value. | ||||||||
2386 | // | ||||||||
2387 | // Note that we have to take special care to avoid looking through | ||||||||
2388 | // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well | ||||||||
2389 | // as casts that can alter the value, e.g., AddrSpaceCasts. | ||||||||
2390 | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) | ||||||||
2391 | return isGEPKnownNonNull(GEP, Depth, Q); | ||||||||
2392 | |||||||||
2393 | if (auto *BCO = dyn_cast<BitCastOperator>(V)) | ||||||||
2394 | return isKnownNonZero(BCO->getOperand(0), Depth, Q); | ||||||||
2395 | |||||||||
2396 | if (auto *I2P = dyn_cast<IntToPtrInst>(V)) | ||||||||
2397 | if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= | ||||||||
2398 | Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) | ||||||||
2399 | return isKnownNonZero(I2P->getOperand(0), Depth, Q); | ||||||||
2400 | } | ||||||||
2401 | |||||||||
2402 | // Similar to int2ptr above, we can look through ptr2int here if the cast | ||||||||
2403 | // is a no-op or an extend and not a truncate. | ||||||||
2404 | if (auto *P2I = dyn_cast<PtrToIntInst>(V)) | ||||||||
2405 | if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= | ||||||||
2406 | Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) | ||||||||
2407 | return isKnownNonZero(P2I->getOperand(0), Depth, Q); | ||||||||
2408 | |||||||||
2409 | unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); | ||||||||
2410 | |||||||||
2411 | // X | Y != 0 if X != 0 or Y != 0. | ||||||||
2412 | Value *X = nullptr, *Y = nullptr; | ||||||||
2413 | if (match(V, m_Or(m_Value(X), m_Value(Y)))) | ||||||||
2414 | return isKnownNonZero(X, DemandedElts, Depth, Q) || | ||||||||
2415 | isKnownNonZero(Y, DemandedElts, Depth, Q); | ||||||||
2416 | |||||||||
2417 | // ext X != 0 if X != 0. | ||||||||
2418 | if (isa<SExtInst>(V) || isa<ZExtInst>(V)) | ||||||||
2419 | return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); | ||||||||
2420 | |||||||||
2421 | // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined | ||||||||
2422 | // if the lowest bit is shifted off the end. | ||||||||
2423 | if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { | ||||||||
2424 | // shl nuw can't remove any non-zero bits. | ||||||||
2425 | const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); | ||||||||
2426 | if (Q.IIQ.hasNoUnsignedWrap(BO)) | ||||||||
2427 | return isKnownNonZero(X, Depth, Q); | ||||||||
2428 | |||||||||
2429 | KnownBits Known(BitWidth); | ||||||||
2430 | computeKnownBits(X, DemandedElts, Known, Depth, Q); | ||||||||
2431 | if (Known.One[0]) | ||||||||
2432 | return true; | ||||||||
2433 | } | ||||||||
2434 | // shr X, Y != 0 if X is negative. Note that the value of the shift is not | ||||||||
2435 | // defined if the sign bit is shifted off the end. | ||||||||
2436 | else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { | ||||||||
2437 | // shr exact can only shift out zero bits. | ||||||||
2438 | const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); | ||||||||
2439 | if (BO->isExact()) | ||||||||
2440 | return isKnownNonZero(X, Depth, Q); | ||||||||
2441 | |||||||||
2442 | KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); | ||||||||
2443 | if (Known.isNegative()) | ||||||||
2444 | return true; | ||||||||
2445 | |||||||||
2446 | // If the shifter operand is a constant, and all of the bits shifted | ||||||||
2447 | // out are known to be zero, and X is known non-zero then at least one | ||||||||
2448 | // non-zero bit must remain. | ||||||||
2449 | if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { | ||||||||
2450 | auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); | ||||||||
2451 | // Is there a known one in the portion not shifted out? | ||||||||
2452 | if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) | ||||||||
2453 | return true; | ||||||||
2454 | // Are all the bits to be shifted out known zero? | ||||||||
2455 | if (Known.countMinTrailingZeros() >= ShiftVal) | ||||||||
2456 | return isKnownNonZero(X, DemandedElts, Depth, Q); | ||||||||
2457 | } | ||||||||
2458 | } | ||||||||
2459 | // div exact can only produce a zero if the dividend is zero. | ||||||||
2460 | else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { | ||||||||
2461 | return isKnownNonZero(X, DemandedElts, Depth, Q); | ||||||||
2462 | } | ||||||||
2463 | // X + Y. | ||||||||
2464 | else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { | ||||||||
2465 | KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); | ||||||||
2466 | KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); | ||||||||
2467 | |||||||||
2468 | // If X and Y are both non-negative (as signed values) then their sum is not | ||||||||
2469 | // zero unless both X and Y are zero. | ||||||||
2470 | if (XKnown.isNonNegative() && YKnown.isNonNegative()) | ||||||||
2471 | if (isKnownNonZero(X, DemandedElts, Depth, Q) || | ||||||||
2472 | isKnownNonZero(Y, DemandedElts, Depth, Q)) | ||||||||
2473 | return true; | ||||||||
2474 | |||||||||
2475 | // If X and Y are both negative (as signed values) then their sum is not | ||||||||
2476 | // zero unless both X and Y equal INT_MIN. | ||||||||
2477 | if (XKnown.isNegative() && YKnown.isNegative()) { | ||||||||
2478 | APInt Mask = APInt::getSignedMaxValue(BitWidth); | ||||||||
2479 | // The sign bit of X is set. If some other bit is set then X is not equal | ||||||||
2480 | // to INT_MIN. | ||||||||
2481 | if (XKnown.One.intersects(Mask)) | ||||||||
2482 | return true; | ||||||||
2483 | // The sign bit of Y is set. If some other bit is set then Y is not equal | ||||||||
2484 | // to INT_MIN. | ||||||||
2485 | if (YKnown.One.intersects(Mask)) | ||||||||
2486 | return true; | ||||||||
2487 | } | ||||||||
2488 | |||||||||
2489 | // The sum of a non-negative number and a power of two is not zero. | ||||||||
2490 | if (XKnown.isNonNegative() && | ||||||||
2491 | isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) | ||||||||
2492 | return true; | ||||||||
2493 | if (YKnown.isNonNegative() && | ||||||||
2494 | isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) | ||||||||
2495 | return true; | ||||||||
2496 | } | ||||||||
2497 | // X * Y. | ||||||||
2498 | else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { | ||||||||
2499 | const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); | ||||||||
2500 | // If X and Y are non-zero then so is X * Y as long as the multiplication | ||||||||
2501 | // does not overflow. | ||||||||
2502 | if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && | ||||||||
2503 | isKnownNonZero(X, DemandedElts, Depth, Q) && | ||||||||
2504 | isKnownNonZero(Y, DemandedElts, Depth, Q)) | ||||||||
2505 | return true; | ||||||||
2506 | } | ||||||||
2507 | // (C ? X : Y) != 0 if X != 0 and Y != 0. | ||||||||
2508 | else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { | ||||||||
2509 | if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && | ||||||||
2510 | isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) | ||||||||
2511 | return true; | ||||||||
2512 | } | ||||||||
2513 | // PHI | ||||||||
2514 | else if (const PHINode *PN = dyn_cast<PHINode>(V)) { | ||||||||
2515 | if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) | ||||||||
2516 | return true; | ||||||||
2517 | |||||||||
2518 | // Check if all incoming values are non-zero using recursion. | ||||||||
2519 | Query RecQ = Q; | ||||||||
2520 | unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); | ||||||||
2521 | return llvm::all_of(PN->operands(), [&](const Use &U) { | ||||||||
2522 | if (U.get() == PN) | ||||||||
2523 | return true; | ||||||||
2524 | RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); | ||||||||
2525 | return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); | ||||||||
2526 | }); | ||||||||
2527 | } | ||||||||
2528 | // ExtractElement | ||||||||
2529 | else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { | ||||||||
2530 | const Value *Vec = EEI->getVectorOperand(); | ||||||||
2531 | const Value *Idx = EEI->getIndexOperand(); | ||||||||
2532 | auto *CIdx = dyn_cast<ConstantInt>(Idx); | ||||||||
2533 | if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { | ||||||||
2534 | unsigned NumElts = VecTy->getNumElements(); | ||||||||
2535 | APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); | ||||||||
2536 | if (CIdx && CIdx->getValue().ult(NumElts)) | ||||||||
2537 | DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); | ||||||||
2538 | return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); | ||||||||
2539 | } | ||||||||
2540 | } | ||||||||
2541 | // Freeze | ||||||||
2542 | else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { | ||||||||
2543 | auto *Op = FI->getOperand(0); | ||||||||
2544 | if (isKnownNonZero(Op, Depth, Q) && | ||||||||
2545 | isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) | ||||||||
2546 | return true; | ||||||||
2547 | } | ||||||||
2548 | |||||||||
2549 | KnownBits Known(BitWidth); | ||||||||
2550 | computeKnownBits(V, DemandedElts, Known, Depth, Q); | ||||||||
2551 | return Known.One != 0; | ||||||||
2552 | } | ||||||||
2553 | |||||||||
2554 | bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { | ||||||||
2555 | // FIXME: We currently have no way to represent the DemandedElts of a scalable | ||||||||
2556 | // vector | ||||||||
2557 | if (isa<ScalableVectorType>(V->getType())) | ||||||||
2558 | return false; | ||||||||
2559 | |||||||||
2560 | auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); | ||||||||
2561 | APInt DemandedElts = | ||||||||
2562 | FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); | ||||||||
2563 | return isKnownNonZero(V, DemandedElts, Depth, Q); | ||||||||
2564 | } | ||||||||
2565 | |||||||||
2566 | /// If the pair of operators are the same invertible function, return the | ||||||||
2567 | /// the operands of the function corresponding to each input. Otherwise, | ||||||||
2568 | /// return None. An invertible function is one that is 1-to-1 and maps | ||||||||
2569 | /// every input value to exactly one output value. This is equivalent to | ||||||||
2570 | /// saying that Op1 and Op2 are equal exactly when the specified pair of | ||||||||
2571 | /// operands are equal, (except that Op1 and Op2 may be poison more often.) | ||||||||
2572 | static Optional<std::pair<Value*, Value*>> | ||||||||
2573 | getInvertibleOperands(const Operator *Op1, | ||||||||
2574 | const Operator *Op2) { | ||||||||
2575 | if (Op1->getOpcode() != Op2->getOpcode()) | ||||||||
2576 | return None; | ||||||||
2577 | |||||||||
2578 | auto getOperands = [&](unsigned OpNum) -> auto { | ||||||||
2579 | return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); | ||||||||
2580 | }; | ||||||||
2581 | |||||||||
2582 | switch (Op1->getOpcode()) { | ||||||||
2583 | default: | ||||||||
2584 | break; | ||||||||
2585 | case Instruction::Add: | ||||||||
2586 | case Instruction::Sub: | ||||||||
2587 | if (Op1->getOperand(0) == Op2->getOperand(0)) | ||||||||
2588 | return getOperands(1); | ||||||||
2589 | if (Op1->getOperand(1) == Op2->getOperand(1)) | ||||||||
2590 | return getOperands(0); | ||||||||
2591 | break; | ||||||||
2592 | case Instruction::Mul: { | ||||||||
2593 | // invertible if A * B == (A * B) mod 2^N where A, and B are integers | ||||||||
2594 | // and N is the bitwdith. The nsw case is non-obvious, but proven by | ||||||||
2595 | // alive2: https://alive2.llvm.org/ce/z/Z6D5qK | ||||||||
2596 | auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); | ||||||||
2597 | auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); | ||||||||
2598 | if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && | ||||||||
2599 | (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) | ||||||||
2600 | break; | ||||||||
2601 | |||||||||
2602 | // Assume operand order has been canonicalized | ||||||||
2603 | if (Op1->getOperand(1) == Op2->getOperand(1) && | ||||||||
2604 | isa<ConstantInt>(Op1->getOperand(1)) && | ||||||||
2605 | !cast<ConstantInt>(Op1->getOperand(1))->isZero()) | ||||||||
2606 | return getOperands(0); | ||||||||
2607 | break; | ||||||||
2608 | } | ||||||||
2609 | case Instruction::Shl: { | ||||||||
2610 | // Same as multiplies, with the difference that we don't need to check | ||||||||
2611 | // for a non-zero multiply. Shifts always multiply by non-zero. | ||||||||
2612 | auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); | ||||||||
2613 | auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); | ||||||||
2614 | if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && | ||||||||
2615 | (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) | ||||||||
2616 | break; | ||||||||
2617 | |||||||||
2618 | if (Op1->getOperand(1) == Op2->getOperand(1)) | ||||||||
2619 | return getOperands(0); | ||||||||
2620 | break; | ||||||||
2621 | } | ||||||||
2622 | case Instruction::AShr: | ||||||||
2623 | case Instruction::LShr: { | ||||||||
2624 | auto *PEO1 = cast<PossiblyExactOperator>(Op1); | ||||||||
2625 | auto *PEO2 = cast<PossiblyExactOperator>(Op2); | ||||||||
2626 | if (!PEO1->isExact() || !PEO2->isExact()) | ||||||||
2627 | break; | ||||||||
2628 | |||||||||
2629 | if (Op1->getOperand(1) == Op2->getOperand(1)) | ||||||||
2630 | return getOperands(0); | ||||||||
2631 | break; | ||||||||
2632 | } | ||||||||
2633 | case Instruction::SExt: | ||||||||
2634 | case Instruction::ZExt: | ||||||||
2635 | if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) | ||||||||
2636 | return getOperands(0); | ||||||||
2637 | break; | ||||||||
2638 | case Instruction::PHI: { | ||||||||
2639 | const PHINode *PN1 = cast<PHINode>(Op1); | ||||||||
2640 | const PHINode *PN2 = cast<PHINode>(Op2); | ||||||||
2641 | |||||||||
2642 | // If PN1 and PN2 are both recurrences, can we prove the entire recurrences | ||||||||
2643 | // are a single invertible function of the start values? Note that repeated | ||||||||
2644 | // application of an invertible function is also invertible | ||||||||
2645 | BinaryOperator *BO1 = nullptr; | ||||||||
2646 | Value *Start1 = nullptr, *Step1 = nullptr; | ||||||||
2647 | BinaryOperator *BO2 = nullptr; | ||||||||
2648 | Value *Start2 = nullptr, *Step2 = nullptr; | ||||||||
2649 | if (PN1->getParent() != PN2->getParent() || | ||||||||
2650 | !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || | ||||||||
2651 | !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) | ||||||||
2652 | break; | ||||||||
2653 | |||||||||
2654 | auto Values = getInvertibleOperands(cast<Operator>(BO1), | ||||||||
2655 | cast<Operator>(BO2)); | ||||||||
2656 | if (!Values) | ||||||||
2657 | break; | ||||||||
2658 | |||||||||
2659 | // We have to be careful of mutually defined recurrences here. Ex: | ||||||||
2660 | // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V | ||||||||
2661 | // * X_i = Y_i = X_(i-1) OP Y_(i-1) | ||||||||
2662 | // The invertibility of these is complicated, and not worth reasoning | ||||||||
2663 | // about (yet?). | ||||||||
2664 | if (Values->first != PN1 || Values->second != PN2) | ||||||||
2665 | break; | ||||||||
2666 | |||||||||
2667 | return std::make_pair(Start1, Start2); | ||||||||
2668 | } | ||||||||
2669 | } | ||||||||
2670 | return None; | ||||||||
2671 | } | ||||||||
2672 | |||||||||
2673 | /// Return true if V2 == V1 + X, where X is known non-zero. | ||||||||
2674 | static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, | ||||||||
2675 | const Query &Q) { | ||||||||
2676 | const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); | ||||||||
2677 | if (!BO || BO->getOpcode() != Instruction::Add) | ||||||||
2678 | return false; | ||||||||
2679 | Value *Op = nullptr; | ||||||||
2680 | if (V2 == BO->getOperand(0)) | ||||||||
2681 | Op = BO->getOperand(1); | ||||||||
2682 | else if (V2 == BO->getOperand(1)) | ||||||||
2683 | Op = BO->getOperand(0); | ||||||||
2684 | else | ||||||||
2685 | return false; | ||||||||
2686 | return isKnownNonZero(Op, Depth + 1, Q); | ||||||||
2687 | } | ||||||||
2688 | |||||||||
2689 | /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and | ||||||||
2690 | /// the multiplication is nuw or nsw. | ||||||||
2691 | static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, | ||||||||
2692 | const Query &Q) { | ||||||||
2693 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { | ||||||||
2694 | const APInt *C; | ||||||||
2695 | return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && | ||||||||
2696 | (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && | ||||||||
2697 | !C->isNullValue() && !C->isOneValue() && | ||||||||
2698 | isKnownNonZero(V1, Depth + 1, Q); | ||||||||
2699 | } | ||||||||
2700 | return false; | ||||||||
2701 | } | ||||||||
2702 | |||||||||
2703 | /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and | ||||||||
2704 | /// the shift is nuw or nsw. | ||||||||
2705 | static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, | ||||||||
2706 | const Query &Q) { | ||||||||
2707 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { | ||||||||
2708 | const APInt *C; | ||||||||
2709 | return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && | ||||||||
2710 | (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && | ||||||||
2711 | !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); | ||||||||
2712 | } | ||||||||
2713 | return false; | ||||||||
2714 | } | ||||||||
2715 | |||||||||
2716 | static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, | ||||||||
2717 | unsigned Depth, const Query &Q) { | ||||||||
2718 | // Check two PHIs are in same block. | ||||||||
2719 | if (PN1->getParent() != PN2->getParent()) | ||||||||
2720 | return false; | ||||||||
2721 | |||||||||
2722 | SmallPtrSet<const BasicBlock *, 8> VisitedBBs; | ||||||||
2723 | bool UsedFullRecursion = false; | ||||||||
2724 | for (const BasicBlock *IncomBB : PN1->blocks()) { | ||||||||
2725 | if (!VisitedBBs.insert(IncomBB).second) | ||||||||
2726 | continue; // Don't reprocess blocks that we have dealt with already. | ||||||||
2727 | const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); | ||||||||
2728 | const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); | ||||||||
2729 | const APInt *C1, *C2; | ||||||||
2730 | if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) | ||||||||
2731 | continue; | ||||||||
2732 | |||||||||
2733 | // Only one pair of phi operands is allowed for full recursion. | ||||||||
2734 | if (UsedFullRecursion) | ||||||||
2735 | return false; | ||||||||
2736 | |||||||||
2737 | Query RecQ = Q; | ||||||||
2738 | RecQ.CxtI = IncomBB->getTerminator(); | ||||||||
2739 | if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) | ||||||||
2740 | return false; | ||||||||
2741 | UsedFullRecursion = true; | ||||||||
2742 | } | ||||||||
2743 | return true; | ||||||||
2744 | } | ||||||||
2745 | |||||||||
2746 | /// Return true if it is known that V1 != V2. | ||||||||
2747 | static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, | ||||||||
2748 | const Query &Q) { | ||||||||
2749 | if (V1 == V2) | ||||||||
2750 | return false; | ||||||||
2751 | if (V1->getType() != V2->getType()) | ||||||||
2752 | // We can't look through casts yet. | ||||||||
2753 | return false; | ||||||||
2754 | |||||||||
2755 | if (Depth >= MaxAnalysisRecursionDepth) | ||||||||
2756 | return false; | ||||||||
2757 | |||||||||
2758 | // See if we can recurse through (exactly one of) our operands. This | ||||||||
2759 | // requires our operation be 1-to-1 and map every input value to exactly | ||||||||
2760 | // one output value. Such an operation is invertible. | ||||||||
2761 | auto *O1 = dyn_cast<Operator>(V1); | ||||||||
2762 | auto *O2 = dyn_cast<Operator>(V2); | ||||||||
2763 | if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { | ||||||||
2764 | if (auto Values = getInvertibleOperands(O1, O2)) | ||||||||
2765 | return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); | ||||||||
2766 | |||||||||
2767 | if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { | ||||||||
2768 | const PHINode *PN2 = cast<PHINode>(V2); | ||||||||
2769 | // FIXME: This is missing a generalization to handle the case where one is | ||||||||
2770 | // a PHI and another one isn't. | ||||||||
2771 | if (isNonEqualPHIs(PN1, PN2, Depth, Q)) | ||||||||
2772 | return true; | ||||||||
2773 | }; | ||||||||
2774 | } | ||||||||
2775 | |||||||||
2776 | if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) | ||||||||
2777 | return true; | ||||||||
2778 | |||||||||
2779 | if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) | ||||||||
2780 | return true; | ||||||||
2781 | |||||||||
2782 | if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) | ||||||||
2783 | return true; | ||||||||
2784 | |||||||||
2785 | if (V1->getType()->isIntOrIntVectorTy()) { | ||||||||
2786 | // Are any known bits in V1 contradictory to known bits in V2? If V1 | ||||||||
2787 | // has a known zero where V2 has a known one, they must not be equal. | ||||||||
2788 | KnownBits Known1 = computeKnownBits(V1, Depth, Q); | ||||||||
2789 | KnownBits Known2 = computeKnownBits(V2, Depth, Q); | ||||||||
2790 | |||||||||
2791 | if (Known1.Zero.intersects(Known2.One) || | ||||||||
2792 | Known2.Zero.intersects(Known1.One)) | ||||||||
2793 | return true; | ||||||||
2794 | } | ||||||||
2795 | return false; | ||||||||
2796 | } | ||||||||
2797 | |||||||||
2798 | /// Return true if 'V & Mask' is known to be zero. We use this predicate to | ||||||||
2799 | /// simplify operations downstream. Mask is known to be zero for bits that V | ||||||||
2800 | /// cannot have. | ||||||||
2801 | /// | ||||||||
2802 | /// This function is defined on values with integer type, values with pointer | ||||||||
2803 | /// type, and vectors of integers. In the case | ||||||||
2804 | /// where V is a vector, the mask, known zero, and known one values are the | ||||||||
2805 | /// same width as the vector element, and the bit is set only if it is true | ||||||||
2806 | /// for all of the elements in the vector. | ||||||||
2807 | bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, | ||||||||
2808 | const Query &Q) { | ||||||||
2809 | KnownBits Known(Mask.getBitWidth()); | ||||||||
2810 | computeKnownBits(V, Known, Depth, Q); | ||||||||
2811 | return Mask.isSubsetOf(Known.Zero); | ||||||||
2812 | } | ||||||||
2813 | |||||||||
2814 | // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). | ||||||||
2815 | // Returns the input and lower/upper bounds. | ||||||||
2816 | static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, | ||||||||
2817 | const APInt *&CLow, const APInt *&CHigh) { | ||||||||
2818 | assert(isa<Operator>(Select) &&((void)0) | ||||||||
2819 | cast<Operator>(Select)->getOpcode() == Instruction::Select &&((void)0) | ||||||||
2820 | "Input should be a Select!")((void)0); | ||||||||
2821 | |||||||||
2822 | const Value *LHS = nullptr, *RHS = nullptr; | ||||||||
2823 | SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; | ||||||||
2824 | if (SPF != SPF_SMAX && SPF != SPF_SMIN) | ||||||||
2825 | return false; | ||||||||
2826 | |||||||||
2827 | if (!match(RHS, m_APInt(CLow))) | ||||||||
2828 | return false; | ||||||||
2829 | |||||||||
2830 | const Value *LHS2 = nullptr, *RHS2 = nullptr; | ||||||||
2831 | SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; | ||||||||
2832 | if (getInverseMinMaxFlavor(SPF) != SPF2) | ||||||||
2833 | return false; | ||||||||
2834 | |||||||||
2835 | if (!match(RHS2, m_APInt(CHigh))) | ||||||||
2836 | return false; | ||||||||
2837 | |||||||||
2838 | if (SPF == SPF_SMIN) | ||||||||
2839 | std::swap(CLow, CHigh); | ||||||||
2840 | |||||||||
2841 | In = LHS2; | ||||||||
2842 | return CLow->sle(*CHigh); | ||||||||
2843 | } | ||||||||
2844 | |||||||||
2845 | /// For vector constants, loop over the elements and find the constant with the | ||||||||
2846 | /// minimum number of sign bits. Return 0 if the value is not a vector constant | ||||||||
2847 | /// or if any element was not analyzed; otherwise, return the count for the | ||||||||
2848 | /// element with the minimum number of sign bits. | ||||||||
2849 | static unsigned computeNumSignBitsVectorConstant(const Value *V, | ||||||||
2850 | const APInt &DemandedElts, | ||||||||
2851 | unsigned TyBits) { | ||||||||
2852 | const auto *CV = dyn_cast<Constant>(V); | ||||||||
2853 | if (!CV || !isa<FixedVectorType>(CV->getType())) | ||||||||
2854 | return 0; | ||||||||
2855 | |||||||||
2856 | unsigned MinSignBits = TyBits; | ||||||||
2857 | unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); | ||||||||
2858 | for (unsigned i = 0; i != NumElts; ++i) { | ||||||||
2859 | if (!DemandedElts[i]) | ||||||||
2860 | continue; | ||||||||
2861 | // If we find a non-ConstantInt, bail out. | ||||||||
2862 | auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); | ||||||||
2863 | if (!Elt) | ||||||||
2864 | return 0; | ||||||||
2865 | |||||||||
2866 | MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); | ||||||||
2867 | } | ||||||||
2868 | |||||||||
2869 | return MinSignBits; | ||||||||
2870 | } | ||||||||
2871 | |||||||||
2872 | static unsigned ComputeNumSignBitsImpl(const Value *V, | ||||||||
2873 | const APInt &DemandedElts, | ||||||||
2874 | unsigned Depth, const Query &Q); | ||||||||
2875 | |||||||||
2876 | static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, | ||||||||
2877 | unsigned Depth, const Query &Q) { | ||||||||
2878 | unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); | ||||||||
2879 | assert(Result > 0 && "At least one sign bit needs to be present!")((void)0); | ||||||||
2880 | return Result; | ||||||||
2881 | } | ||||||||
2882 | |||||||||
2883 | /// Return the number of times the sign bit of the register is replicated into | ||||||||
2884 | /// the other bits. We know that at least 1 bit is always equal to the sign bit | ||||||||
2885 | /// (itself), but other cases can give us information. For example, immediately | ||||||||
2886 | /// after an "ashr X, 2", we know that the top 3 bits are all equal to each | ||||||||
2887 | /// other, so we return 3. For vectors, return the number of sign bits for the | ||||||||
2888 | /// vector element with the minimum number of known sign bits of the demanded | ||||||||
2889 | /// elements in the vector specified by DemandedElts. | ||||||||
2890 | static unsigned ComputeNumSignBitsImpl(const Value *V, | ||||||||
2891 | const APInt &DemandedElts, | ||||||||
2892 | unsigned Depth, const Query &Q) { | ||||||||
2893 | Type *Ty = V->getType(); | ||||||||
2894 | |||||||||
2895 | // FIXME: We currently have no way to represent the DemandedElts of a scalable | ||||||||
2896 | // vector | ||||||||
2897 | if (isa<ScalableVectorType>(Ty)) | ||||||||
2898 | return 1; | ||||||||
2899 | |||||||||
2900 | #ifndef NDEBUG1 | ||||||||
2901 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")((void)0); | ||||||||
2902 | |||||||||
2903 | if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { | ||||||||
2904 | assert(((void)0) | ||||||||
2905 | FVTy->getNumElements() == DemandedElts.getBitWidth() &&((void)0) | ||||||||
2906 | "DemandedElt width should equal the fixed vector number of elements")((void)0); | ||||||||
2907 | } else { | ||||||||
2908 | assert(DemandedElts == APInt(1, 1) &&((void)0) | ||||||||
2909 | "DemandedElt width should be 1 for scalars")((void)0); | ||||||||
2910 | } | ||||||||
2911 | #endif | ||||||||
2912 | |||||||||
2913 | // We return the minimum number of sign bits that are guaranteed to be present | ||||||||
2914 | // in V, so for undef we have to conservatively return 1. We don't have the | ||||||||
2915 | // same behavior for poison though -- that's a FIXME today. | ||||||||
2916 | |||||||||
2917 | Type *ScalarTy = Ty->getScalarType(); | ||||||||
2918 | unsigned TyBits = ScalarTy->isPointerTy() ? | ||||||||
2919 | Q.DL.getPointerTypeSizeInBits(ScalarTy) : | ||||||||
2920 | Q.DL.getTypeSizeInBits(ScalarTy); | ||||||||
2921 | |||||||||
2922 | unsigned Tmp, Tmp2; | ||||||||
2923 | unsigned FirstAnswer = 1; | ||||||||
2924 | |||||||||
2925 | // Note that ConstantInt is handled by the general computeKnownBits case | ||||||||
2926 | // below. | ||||||||
2927 | |||||||||
2928 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
2929 | return 1; | ||||||||
2930 | |||||||||
2931 | if (auto *U = dyn_cast<Operator>(V)) { | ||||||||
2932 | switch (Operator::getOpcode(V)) { | ||||||||
2933 | default: break; | ||||||||
2934 | case Instruction::SExt: | ||||||||
2935 | Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); | ||||||||
2936 | return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; | ||||||||
2937 | |||||||||
2938 | case Instruction::SDiv: { | ||||||||
2939 | const APInt *Denominator; | ||||||||
2940 | // sdiv X, C -> adds log(C) sign bits. | ||||||||
2941 | if (match(U->getOperand(1), m_APInt(Denominator))) { | ||||||||
2942 | |||||||||
2943 | // Ignore non-positive denominator. | ||||||||
2944 | if (!Denominator->isStrictlyPositive()) | ||||||||
2945 | break; | ||||||||
2946 | |||||||||
2947 | // Calculate the incoming numerator bits. | ||||||||
2948 | unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
2949 | |||||||||
2950 | // Add floor(log(C)) bits to the numerator bits. | ||||||||
2951 | return std::min(TyBits, NumBits + Denominator->logBase2()); | ||||||||
2952 | } | ||||||||
2953 | break; | ||||||||
2954 | } | ||||||||
2955 | |||||||||
2956 | case Instruction::SRem: { | ||||||||
2957 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
2958 | |||||||||
2959 | const APInt *Denominator; | ||||||||
2960 | // srem X, C -> we know that the result is within [-C+1,C) when C is a | ||||||||
2961 | // positive constant. This let us put a lower bound on the number of sign | ||||||||
2962 | // bits. | ||||||||
2963 | if (match(U->getOperand(1), m_APInt(Denominator))) { | ||||||||
2964 | |||||||||
2965 | // Ignore non-positive denominator. | ||||||||
2966 | if (Denominator->isStrictlyPositive()) { | ||||||||
2967 | // Calculate the leading sign bit constraints by examining the | ||||||||
2968 | // denominator. Given that the denominator is positive, there are two | ||||||||
2969 | // cases: | ||||||||
2970 | // | ||||||||
2971 | // 1. The numerator is positive. The result range is [0,C) and | ||||||||
2972 | // [0,C) u< (1 << ceilLogBase2(C)). | ||||||||
2973 | // | ||||||||
2974 | // 2. The numerator is negative. Then the result range is (-C,0] and | ||||||||
2975 | // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). | ||||||||
2976 | // | ||||||||
2977 | // Thus a lower bound on the number of sign bits is `TyBits - | ||||||||
2978 | // ceilLogBase2(C)`. | ||||||||
2979 | |||||||||
2980 | unsigned ResBits = TyBits - Denominator->ceilLogBase2(); | ||||||||
2981 | Tmp = std::max(Tmp, ResBits); | ||||||||
2982 | } | ||||||||
2983 | } | ||||||||
2984 | return Tmp; | ||||||||
2985 | } | ||||||||
2986 | |||||||||
2987 | case Instruction::AShr: { | ||||||||
2988 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
2989 | // ashr X, C -> adds C sign bits. Vectors too. | ||||||||
2990 | const APInt *ShAmt; | ||||||||
2991 | if (match(U->getOperand(1), m_APInt(ShAmt))) { | ||||||||
2992 | if (ShAmt->uge(TyBits)) | ||||||||
2993 | break; // Bad shift. | ||||||||
2994 | unsigned ShAmtLimited = ShAmt->getZExtValue(); | ||||||||
2995 | Tmp += ShAmtLimited; | ||||||||
2996 | if (Tmp > TyBits) Tmp = TyBits; | ||||||||
2997 | } | ||||||||
2998 | return Tmp; | ||||||||
2999 | } | ||||||||
3000 | case Instruction::Shl: { | ||||||||
3001 | const APInt *ShAmt; | ||||||||
3002 | if (match(U->getOperand(1), m_APInt(ShAmt))) { | ||||||||
3003 | // shl destroys sign bits. | ||||||||
3004 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3005 | if (ShAmt->uge(TyBits) || // Bad shift. | ||||||||
3006 | ShAmt->uge(Tmp)) break; // Shifted all sign bits out. | ||||||||
3007 | Tmp2 = ShAmt->getZExtValue(); | ||||||||
3008 | return Tmp - Tmp2; | ||||||||
3009 | } | ||||||||
3010 | break; | ||||||||
3011 | } | ||||||||
3012 | case Instruction::And: | ||||||||
3013 | case Instruction::Or: | ||||||||
3014 | case Instruction::Xor: // NOT is handled here. | ||||||||
3015 | // Logical binary ops preserve the number of sign bits at the worst. | ||||||||
3016 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3017 | if (Tmp != 1) { | ||||||||
3018 | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | ||||||||
3019 | FirstAnswer = std::min(Tmp, Tmp2); | ||||||||
3020 | // We computed what we know about the sign bits as our first | ||||||||
3021 | // answer. Now proceed to the generic code that uses | ||||||||
3022 | // computeKnownBits, and pick whichever answer is better. | ||||||||
3023 | } | ||||||||
3024 | break; | ||||||||
3025 | |||||||||
3026 | case Instruction::Select: { | ||||||||
3027 | // If we have a clamp pattern, we know that the number of sign bits will | ||||||||
3028 | // be the minimum of the clamp min/max range. | ||||||||
3029 | const Value *X; | ||||||||
3030 | const APInt *CLow, *CHigh; | ||||||||
3031 | if (isSignedMinMaxClamp(U, X, CLow, CHigh)) | ||||||||
3032 | return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); | ||||||||
3033 | |||||||||
3034 | Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | ||||||||
3035 | if (Tmp == 1) break; | ||||||||
3036 | Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); | ||||||||
3037 | return std::min(Tmp, Tmp2); | ||||||||
3038 | } | ||||||||
3039 | |||||||||
3040 | case Instruction::Add: | ||||||||
3041 | // Add can have at most one carry bit. Thus we know that the output | ||||||||
3042 | // is, at worst, one more bit than the inputs. | ||||||||
3043 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3044 | if (Tmp == 1) break; | ||||||||
3045 | |||||||||
3046 | // Special case decrementing a value (ADD X, -1): | ||||||||
3047 | if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) | ||||||||
3048 | if (CRHS->isAllOnesValue()) { | ||||||||
3049 | KnownBits Known(TyBits); | ||||||||
3050 | computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); | ||||||||
3051 | |||||||||
3052 | // If the input is known to be 0 or 1, the output is 0/-1, which is | ||||||||
3053 | // all sign bits set. | ||||||||
3054 | if ((Known.Zero | 1).isAllOnesValue()) | ||||||||
3055 | return TyBits; | ||||||||
3056 | |||||||||
3057 | // If we are subtracting one from a positive number, there is no carry | ||||||||
3058 | // out of the result. | ||||||||
3059 | if (Known.isNonNegative()) | ||||||||
3060 | return Tmp; | ||||||||
3061 | } | ||||||||
3062 | |||||||||
3063 | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | ||||||||
3064 | if (Tmp2 == 1) break; | ||||||||
3065 | return std::min(Tmp, Tmp2) - 1; | ||||||||
3066 | |||||||||
3067 | case Instruction::Sub: | ||||||||
3068 | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | ||||||||
3069 | if (Tmp2 == 1) break; | ||||||||
3070 | |||||||||
3071 | // Handle NEG. | ||||||||
3072 | if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) | ||||||||
3073 | if (CLHS->isNullValue()) { | ||||||||
3074 | KnownBits Known(TyBits); | ||||||||
3075 | computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); | ||||||||
3076 | // If the input is known to be 0 or 1, the output is 0/-1, which is | ||||||||
3077 | // all sign bits set. | ||||||||
3078 | if ((Known.Zero | 1).isAllOnesValue()) | ||||||||
3079 | return TyBits; | ||||||||
3080 | |||||||||
3081 | // If the input is known to be positive (the sign bit is known clear), | ||||||||
3082 | // the output of the NEG has the same number of sign bits as the | ||||||||
3083 | // input. | ||||||||
3084 | if (Known.isNonNegative()) | ||||||||
3085 | return Tmp2; | ||||||||
3086 | |||||||||
3087 | // Otherwise, we treat this like a SUB. | ||||||||
3088 | } | ||||||||
3089 | |||||||||
3090 | // Sub can have at most one carry bit. Thus we know that the output | ||||||||
3091 | // is, at worst, one more bit than the inputs. | ||||||||
3092 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3093 | if (Tmp == 1) break; | ||||||||
3094 | return std::min(Tmp, Tmp2) - 1; | ||||||||
3095 | |||||||||
3096 | case Instruction::Mul: { | ||||||||
3097 | // The output of the Mul can be at most twice the valid bits in the | ||||||||
3098 | // inputs. | ||||||||
3099 | unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3100 | if (SignBitsOp0 == 1) break; | ||||||||
3101 | unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | ||||||||
3102 | if (SignBitsOp1 == 1) break; | ||||||||
3103 | unsigned OutValidBits = | ||||||||
3104 | (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); | ||||||||
3105 | return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; | ||||||||
3106 | } | ||||||||
3107 | |||||||||
3108 | case Instruction::PHI: { | ||||||||
3109 | const PHINode *PN = cast<PHINode>(U); | ||||||||
3110 | unsigned NumIncomingValues = PN->getNumIncomingValues(); | ||||||||
3111 | // Don't analyze large in-degree PHIs. | ||||||||
3112 | if (NumIncomingValues > 4) break; | ||||||||
3113 | // Unreachable blocks may have zero-operand PHI nodes. | ||||||||
3114 | if (NumIncomingValues == 0) break; | ||||||||
3115 | |||||||||
3116 | // Take the minimum of all incoming values. This can't infinitely loop | ||||||||
3117 | // because of our depth threshold. | ||||||||
3118 | Query RecQ = Q; | ||||||||
3119 | Tmp = TyBits; | ||||||||
3120 | for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { | ||||||||
3121 | if (Tmp == 1) return Tmp; | ||||||||
3122 | RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); | ||||||||
3123 | Tmp = std::min( | ||||||||
3124 | Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); | ||||||||
3125 | } | ||||||||
3126 | return Tmp; | ||||||||
3127 | } | ||||||||
3128 | |||||||||
3129 | case Instruction::Trunc: | ||||||||
3130 | // FIXME: it's tricky to do anything useful for this, but it is an | ||||||||
3131 | // important case for targets like X86. | ||||||||
3132 | break; | ||||||||
3133 | |||||||||
3134 | case Instruction::ExtractElement: | ||||||||
3135 | // Look through extract element. At the moment we keep this simple and | ||||||||
3136 | // skip tracking the specific element. But at least we might find | ||||||||
3137 | // information valid for all elements of the vector (for example if vector | ||||||||
3138 | // is sign extended, shifted, etc). | ||||||||
3139 | return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3140 | |||||||||
3141 | case Instruction::ShuffleVector: { | ||||||||
3142 | // Collect the minimum number of sign bits that are shared by every vector | ||||||||
3143 | // element referenced by the shuffle. | ||||||||
3144 | auto *Shuf = dyn_cast<ShuffleVectorInst>(U); | ||||||||
3145 | if (!Shuf) { | ||||||||
3146 | // FIXME: Add support for shufflevector constant expressions. | ||||||||
3147 | return 1; | ||||||||
3148 | } | ||||||||
3149 | APInt DemandedLHS, DemandedRHS; | ||||||||
3150 | // For undef elements, we don't know anything about the common state of | ||||||||
3151 | // the shuffle result. | ||||||||
3152 | if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) | ||||||||
3153 | return 1; | ||||||||
3154 | Tmp = std::numeric_limits<unsigned>::max(); | ||||||||
3155 | if (!!DemandedLHS) { | ||||||||
3156 | const Value *LHS = Shuf->getOperand(0); | ||||||||
3157 | Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); | ||||||||
3158 | } | ||||||||
3159 | // If we don't know anything, early out and try computeKnownBits | ||||||||
3160 | // fall-back. | ||||||||
3161 | if (Tmp == 1) | ||||||||
3162 | break; | ||||||||
3163 | if (!!DemandedRHS) { | ||||||||
3164 | const Value *RHS = Shuf->getOperand(1); | ||||||||
3165 | Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); | ||||||||
3166 | Tmp = std::min(Tmp, Tmp2); | ||||||||
3167 | } | ||||||||
3168 | // If we don't know anything, early out and try computeKnownBits | ||||||||
3169 | // fall-back. | ||||||||
3170 | if (Tmp == 1) | ||||||||
3171 | break; | ||||||||
3172 | assert(Tmp <= TyBits && "Failed to determine minimum sign bits")((void)0); | ||||||||
3173 | return Tmp; | ||||||||
3174 | } | ||||||||
3175 | case Instruction::Call: { | ||||||||
3176 | if (const auto *II = dyn_cast<IntrinsicInst>(U)) { | ||||||||
3177 | switch (II->getIntrinsicID()) { | ||||||||
3178 | default: break; | ||||||||
3179 | case Intrinsic::abs: | ||||||||
3180 | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | ||||||||
3181 | if (Tmp == 1) break; | ||||||||
3182 | |||||||||
3183 | // Absolute value reduces number of sign bits by at most 1. | ||||||||
3184 | return Tmp - 1; | ||||||||
3185 | } | ||||||||
3186 | } | ||||||||
3187 | } | ||||||||
3188 | } | ||||||||
3189 | } | ||||||||
3190 | |||||||||
3191 | // Finally, if we can prove that the top bits of the result are 0's or 1's, | ||||||||
3192 | // use this information. | ||||||||
3193 | |||||||||
3194 | // If we can examine all elements of a vector constant successfully, we're | ||||||||
3195 | // done (we can't do any better than that). If not, keep trying. | ||||||||
3196 | if (unsigned VecSignBits = | ||||||||
3197 | computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) | ||||||||
3198 | return VecSignBits; | ||||||||
3199 | |||||||||
3200 | KnownBits Known(TyBits); | ||||||||
3201 | computeKnownBits(V, DemandedElts, Known, Depth, Q); | ||||||||
3202 | |||||||||
3203 | // If we know that the sign bit is either zero or one, determine the number of | ||||||||
3204 | // identical bits in the top of the input value. | ||||||||
3205 | return std::max(FirstAnswer, Known.countMinSignBits()); | ||||||||
3206 | } | ||||||||
3207 | |||||||||
3208 | /// This function computes the integer multiple of Base that equals V. | ||||||||
3209 | /// If successful, it returns true and returns the multiple in | ||||||||
3210 | /// Multiple. If unsuccessful, it returns false. It looks | ||||||||
3211 | /// through SExt instructions only if LookThroughSExt is true. | ||||||||
3212 | bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, | ||||||||
3213 | bool LookThroughSExt, unsigned Depth) { | ||||||||
3214 | assert(V && "No Value?")((void)0); | ||||||||
3215 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth")((void)0); | ||||||||
3216 | assert(V->getType()->isIntegerTy() && "Not integer or pointer type!")((void)0); | ||||||||
3217 | |||||||||
3218 | Type *T = V->getType(); | ||||||||
3219 | |||||||||
3220 | ConstantInt *CI = dyn_cast<ConstantInt>(V); | ||||||||
3221 | |||||||||
3222 | if (Base == 0) | ||||||||
3223 | return false; | ||||||||
3224 | |||||||||
3225 | if (Base == 1) { | ||||||||
3226 | Multiple = V; | ||||||||
3227 | return true; | ||||||||
3228 | } | ||||||||
3229 | |||||||||
3230 | ConstantExpr *CO = dyn_cast<ConstantExpr>(V); | ||||||||
3231 | Constant *BaseVal = ConstantInt::get(T, Base); | ||||||||
3232 | if (CO && CO == BaseVal) { | ||||||||
3233 | // Multiple is 1. | ||||||||
3234 | Multiple = ConstantInt::get(T, 1); | ||||||||
3235 | return true; | ||||||||
3236 | } | ||||||||
3237 | |||||||||
3238 | if (CI && CI->getZExtValue() % Base == 0) { | ||||||||
3239 | Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); | ||||||||
3240 | return true; | ||||||||
3241 | } | ||||||||
3242 | |||||||||
3243 | if (Depth == MaxAnalysisRecursionDepth) return false; | ||||||||
3244 | |||||||||
3245 | Operator *I = dyn_cast<Operator>(V); | ||||||||
3246 | if (!I) return false; | ||||||||
3247 | |||||||||
3248 | switch (I->getOpcode()) { | ||||||||
3249 | default: break; | ||||||||
3250 | case Instruction::SExt: | ||||||||
3251 | if (!LookThroughSExt) return false; | ||||||||
3252 | // otherwise fall through to ZExt | ||||||||
3253 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||
3254 | case Instruction::ZExt: | ||||||||
3255 | return ComputeMultiple(I->getOperand(0), Base, Multiple, | ||||||||
3256 | LookThroughSExt, Depth+1); | ||||||||
3257 | case Instruction::Shl: | ||||||||
3258 | case Instruction::Mul: { | ||||||||
3259 | Value *Op0 = I->getOperand(0); | ||||||||
3260 | Value *Op1 = I->getOperand(1); | ||||||||
3261 | |||||||||
3262 | if (I->getOpcode() == Instruction::Shl) { | ||||||||
3263 | ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); | ||||||||
3264 | if (!Op1CI) return false; | ||||||||
3265 | // Turn Op0 << Op1 into Op0 * 2^Op1 | ||||||||
3266 | APInt Op1Int = Op1CI->getValue(); | ||||||||
3267 | uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); | ||||||||
3268 | APInt API(Op1Int.getBitWidth(), 0); | ||||||||
3269 | API.setBit(BitToSet); | ||||||||
3270 | Op1 = ConstantInt::get(V->getContext(), API); | ||||||||
3271 | } | ||||||||
3272 | |||||||||
3273 | Value *Mul0 = nullptr; | ||||||||
3274 | if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { | ||||||||
3275 | if (Constant *Op1C = dyn_cast<Constant>(Op1)) | ||||||||
3276 | if (Constant *MulC = dyn_cast<Constant>(Mul0)) { | ||||||||
3277 | if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < | ||||||||
3278 | MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) | ||||||||
3279 | Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); | ||||||||
3280 | if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > | ||||||||
3281 | MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) | ||||||||
3282 | MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); | ||||||||
3283 | |||||||||
3284 | // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) | ||||||||
3285 | Multiple = ConstantExpr::getMul(MulC, Op1C); | ||||||||
3286 | return true; | ||||||||
3287 | } | ||||||||
3288 | |||||||||
3289 | if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) | ||||||||
3290 | if (Mul0CI->getValue() == 1) { | ||||||||
3291 | // V == Base * Op1, so return Op1 | ||||||||
3292 | Multiple = Op1; | ||||||||
3293 | return true; | ||||||||
3294 | } | ||||||||
3295 | } | ||||||||
3296 | |||||||||
3297 | Value *Mul1 = nullptr; | ||||||||
3298 | if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { | ||||||||
3299 | if (Constant *Op0C = dyn_cast<Constant>(Op0)) | ||||||||
3300 | if (Constant *MulC = dyn_cast<Constant>(Mul1)) { | ||||||||
3301 | if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < | ||||||||
3302 | MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) | ||||||||
3303 | Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); | ||||||||
3304 | if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > | ||||||||
3305 | MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) | ||||||||
3306 | MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); | ||||||||
3307 | |||||||||
3308 | // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) | ||||||||
3309 | Multiple = ConstantExpr::getMul(MulC, Op0C); | ||||||||
3310 | return true; | ||||||||
3311 | } | ||||||||
3312 | |||||||||
3313 | if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) | ||||||||
3314 | if (Mul1CI->getValue() == 1) { | ||||||||
3315 | // V == Base * Op0, so return Op0 | ||||||||
3316 | Multiple = Op0; | ||||||||
3317 | return true; | ||||||||
3318 | } | ||||||||
3319 | } | ||||||||
3320 | } | ||||||||
3321 | } | ||||||||
3322 | |||||||||
3323 | // We could not determine if V is a multiple of Base. | ||||||||
3324 | return false; | ||||||||
3325 | } | ||||||||
3326 | |||||||||
3327 | Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, | ||||||||
3328 | const TargetLibraryInfo *TLI) { | ||||||||
3329 | const Function *F = CB.getCalledFunction(); | ||||||||
3330 | if (!F) | ||||||||
3331 | return Intrinsic::not_intrinsic; | ||||||||
3332 | |||||||||
3333 | if (F->isIntrinsic()) | ||||||||
3334 | return F->getIntrinsicID(); | ||||||||
3335 | |||||||||
3336 | // We are going to infer semantics of a library function based on mapping it | ||||||||
3337 | // to an LLVM intrinsic. Check that the library function is available from | ||||||||
3338 | // this callbase and in this environment. | ||||||||
3339 | LibFunc Func; | ||||||||
3340 | if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || | ||||||||
3341 | !CB.onlyReadsMemory()) | ||||||||
3342 | return Intrinsic::not_intrinsic; | ||||||||
3343 | |||||||||
3344 | switch (Func) { | ||||||||
3345 | default: | ||||||||
3346 | break; | ||||||||
3347 | case LibFunc_sin: | ||||||||
3348 | case LibFunc_sinf: | ||||||||
3349 | case LibFunc_sinl: | ||||||||
3350 | return Intrinsic::sin; | ||||||||
3351 | case LibFunc_cos: | ||||||||
3352 | case LibFunc_cosf: | ||||||||
3353 | case LibFunc_cosl: | ||||||||
3354 | return Intrinsic::cos; | ||||||||
3355 | case LibFunc_exp: | ||||||||
3356 | case LibFunc_expf: | ||||||||
3357 | case LibFunc_expl: | ||||||||
3358 | return Intrinsic::exp; | ||||||||
3359 | case LibFunc_exp2: | ||||||||
3360 | case LibFunc_exp2f: | ||||||||
3361 | case LibFunc_exp2l: | ||||||||
3362 | return Intrinsic::exp2; | ||||||||
3363 | case LibFunc_log: | ||||||||
3364 | case LibFunc_logf: | ||||||||
3365 | case LibFunc_logl: | ||||||||
3366 | return Intrinsic::log; | ||||||||
3367 | case LibFunc_log10: | ||||||||
3368 | case LibFunc_log10f: | ||||||||
3369 | case LibFunc_log10l: | ||||||||
3370 | return Intrinsic::log10; | ||||||||
3371 | case LibFunc_log2: | ||||||||
3372 | case LibFunc_log2f: | ||||||||
3373 | case LibFunc_log2l: | ||||||||
3374 | return Intrinsic::log2; | ||||||||
3375 | case LibFunc_fabs: | ||||||||
3376 | case LibFunc_fabsf: | ||||||||
3377 | case LibFunc_fabsl: | ||||||||
3378 | return Intrinsic::fabs; | ||||||||
3379 | case LibFunc_fmin: | ||||||||
3380 | case LibFunc_fminf: | ||||||||
3381 | case LibFunc_fminl: | ||||||||
3382 | return Intrinsic::minnum; | ||||||||
3383 | case LibFunc_fmax: | ||||||||
3384 | case LibFunc_fmaxf: | ||||||||
3385 | case LibFunc_fmaxl: | ||||||||
3386 | return Intrinsic::maxnum; | ||||||||
3387 | case LibFunc_copysign: | ||||||||
3388 | case LibFunc_copysignf: | ||||||||
3389 | case LibFunc_copysignl: | ||||||||
3390 | return Intrinsic::copysign; | ||||||||
3391 | case LibFunc_floor: | ||||||||
3392 | case LibFunc_floorf: | ||||||||
3393 | case LibFunc_floorl: | ||||||||
3394 | return Intrinsic::floor; | ||||||||
3395 | case LibFunc_ceil: | ||||||||
3396 | case LibFunc_ceilf: | ||||||||
3397 | case LibFunc_ceill: | ||||||||
3398 | return Intrinsic::ceil; | ||||||||
3399 | case LibFunc_trunc: | ||||||||
3400 | case LibFunc_truncf: | ||||||||
3401 | case LibFunc_truncl: | ||||||||
3402 | return Intrinsic::trunc; | ||||||||
3403 | case LibFunc_rint: | ||||||||
3404 | case LibFunc_rintf: | ||||||||
3405 | case LibFunc_rintl: | ||||||||
3406 | return Intrinsic::rint; | ||||||||
3407 | case LibFunc_nearbyint: | ||||||||
3408 | case LibFunc_nearbyintf: | ||||||||
3409 | case LibFunc_nearbyintl: | ||||||||
3410 | return Intrinsic::nearbyint; | ||||||||
3411 | case LibFunc_round: | ||||||||
3412 | case LibFunc_roundf: | ||||||||
3413 | case LibFunc_roundl: | ||||||||
3414 | return Intrinsic::round; | ||||||||
3415 | case LibFunc_roundeven: | ||||||||
3416 | case LibFunc_roundevenf: | ||||||||
3417 | case LibFunc_roundevenl: | ||||||||
3418 | return Intrinsic::roundeven; | ||||||||
3419 | case LibFunc_pow: | ||||||||
3420 | case LibFunc_powf: | ||||||||
3421 | case LibFunc_powl: | ||||||||
3422 | return Intrinsic::pow; | ||||||||
3423 | case LibFunc_sqrt: | ||||||||
3424 | case LibFunc_sqrtf: | ||||||||
3425 | case LibFunc_sqrtl: | ||||||||
3426 | return Intrinsic::sqrt; | ||||||||
3427 | } | ||||||||
3428 | |||||||||
3429 | return Intrinsic::not_intrinsic; | ||||||||
3430 | } | ||||||||
3431 | |||||||||
3432 | /// Return true if we can prove that the specified FP value is never equal to | ||||||||
3433 | /// -0.0. | ||||||||
3434 | /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee | ||||||||
3435 | /// that a value is not -0.0. It only guarantees that -0.0 may be treated | ||||||||
3436 | /// the same as +0.0 in floating-point ops. | ||||||||
3437 | /// | ||||||||
3438 | /// NOTE: this function will need to be revisited when we support non-default | ||||||||
3439 | /// rounding modes! | ||||||||
3440 | bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, | ||||||||
3441 | unsigned Depth) { | ||||||||
3442 | if (auto *CFP = dyn_cast<ConstantFP>(V)) | ||||||||
3443 | return !CFP->getValueAPF().isNegZero(); | ||||||||
3444 | |||||||||
3445 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
3446 | return false; | ||||||||
3447 | |||||||||
3448 | auto *Op = dyn_cast<Operator>(V); | ||||||||
3449 | if (!Op) | ||||||||
3450 | return false; | ||||||||
3451 | |||||||||
3452 | // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. | ||||||||
3453 | if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) | ||||||||
3454 | return true; | ||||||||
3455 | |||||||||
3456 | // sitofp and uitofp turn into +0.0 for zero. | ||||||||
3457 | if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) | ||||||||
3458 | return true; | ||||||||
3459 | |||||||||
3460 | if (auto *Call = dyn_cast<CallInst>(Op)) { | ||||||||
3461 | Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); | ||||||||
3462 | switch (IID) { | ||||||||
3463 | default: | ||||||||
3464 | break; | ||||||||
3465 | // sqrt(-0.0) = -0.0, no other negative results are possible. | ||||||||
3466 | case Intrinsic::sqrt: | ||||||||
3467 | case Intrinsic::canonicalize: | ||||||||
3468 | return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); | ||||||||
3469 | // fabs(x) != -0.0 | ||||||||
3470 | case Intrinsic::fabs: | ||||||||
3471 | return true; | ||||||||
3472 | } | ||||||||
3473 | } | ||||||||
3474 | |||||||||
3475 | return false; | ||||||||
3476 | } | ||||||||
3477 | |||||||||
3478 | /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a | ||||||||
3479 | /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign | ||||||||
3480 | /// bit despite comparing equal. | ||||||||
3481 | static bool cannotBeOrderedLessThanZeroImpl(const Value *V, | ||||||||
3482 | const TargetLibraryInfo *TLI, | ||||||||
3483 | bool SignBitOnly, | ||||||||
3484 | unsigned Depth) { | ||||||||
3485 | // TODO: This function does not do the right thing when SignBitOnly is true | ||||||||
3486 | // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform | ||||||||
3487 | // which flips the sign bits of NaNs. See | ||||||||
3488 | // https://llvm.org/bugs/show_bug.cgi?id=31702. | ||||||||
3489 | |||||||||
3490 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | ||||||||
3491 | return !CFP->getValueAPF().isNegative() || | ||||||||
3492 | (!SignBitOnly && CFP->getValueAPF().isZero()); | ||||||||
3493 | } | ||||||||
3494 | |||||||||
3495 | // Handle vector of constants. | ||||||||
3496 | if (auto *CV = dyn_cast<Constant>(V)) { | ||||||||
3497 | if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { | ||||||||
3498 | unsigned NumElts = CVFVTy->getNumElements(); | ||||||||
3499 | for (unsigned i = 0; i != NumElts; ++i) { | ||||||||
3500 | auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); | ||||||||
3501 | if (!CFP) | ||||||||
3502 | return false; | ||||||||
3503 | if (CFP->getValueAPF().isNegative() && | ||||||||
3504 | (SignBitOnly || !CFP->getValueAPF().isZero())) | ||||||||
3505 | return false; | ||||||||
3506 | } | ||||||||
3507 | |||||||||
3508 | // All non-negative ConstantFPs. | ||||||||
3509 | return true; | ||||||||
3510 | } | ||||||||
3511 | } | ||||||||
3512 | |||||||||
3513 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
3514 | return false; | ||||||||
3515 | |||||||||
3516 | const Operator *I = dyn_cast<Operator>(V); | ||||||||
3517 | if (!I) | ||||||||
3518 | return false; | ||||||||
3519 | |||||||||
3520 | switch (I->getOpcode()) { | ||||||||
3521 | default: | ||||||||
3522 | break; | ||||||||
3523 | // Unsigned integers are always nonnegative. | ||||||||
3524 | case Instruction::UIToFP: | ||||||||
3525 | return true; | ||||||||
3526 | case Instruction::FMul: | ||||||||
3527 | case Instruction::FDiv: | ||||||||
3528 | // X * X is always non-negative or a NaN. | ||||||||
3529 | // X / X is always exactly 1.0 or a NaN. | ||||||||
3530 | if (I->getOperand(0) == I->getOperand(1) && | ||||||||
3531 | (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) | ||||||||
3532 | return true; | ||||||||
3533 | |||||||||
3534 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||
3535 | case Instruction::FAdd: | ||||||||
3536 | case Instruction::FRem: | ||||||||
3537 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3538 | Depth + 1) && | ||||||||
3539 | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | ||||||||
3540 | Depth + 1); | ||||||||
3541 | case Instruction::Select: | ||||||||
3542 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | ||||||||
3543 | Depth + 1) && | ||||||||
3544 | cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, | ||||||||
3545 | Depth + 1); | ||||||||
3546 | case Instruction::FPExt: | ||||||||
3547 | case Instruction::FPTrunc: | ||||||||
3548 | // Widening/narrowing never change sign. | ||||||||
3549 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3550 | Depth + 1); | ||||||||
3551 | case Instruction::ExtractElement: | ||||||||
3552 | // Look through extract element. At the moment we keep this simple and skip | ||||||||
3553 | // tracking the specific element. But at least we might find information | ||||||||
3554 | // valid for all elements of the vector. | ||||||||
3555 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3556 | Depth + 1); | ||||||||
3557 | case Instruction::Call: | ||||||||
3558 | const auto *CI = cast<CallInst>(I); | ||||||||
3559 | Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); | ||||||||
3560 | switch (IID) { | ||||||||
3561 | default: | ||||||||
3562 | break; | ||||||||
3563 | case Intrinsic::maxnum: { | ||||||||
3564 | Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); | ||||||||
3565 | auto isPositiveNum = [&](Value *V) { | ||||||||
3566 | if (SignBitOnly) { | ||||||||
3567 | // With SignBitOnly, this is tricky because the result of | ||||||||
3568 | // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is | ||||||||
3569 | // a constant strictly greater than 0.0. | ||||||||
3570 | const APFloat *C; | ||||||||
3571 | return match(V, m_APFloat(C)) && | ||||||||
3572 | *C > APFloat::getZero(C->getSemantics()); | ||||||||
3573 | } | ||||||||
3574 | |||||||||
3575 | // -0.0 compares equal to 0.0, so if this operand is at least -0.0, | ||||||||
3576 | // maxnum can't be ordered-less-than-zero. | ||||||||
3577 | return isKnownNeverNaN(V, TLI) && | ||||||||
3578 | cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); | ||||||||
3579 | }; | ||||||||
3580 | |||||||||
3581 | // TODO: This could be improved. We could also check that neither operand | ||||||||
3582 | // has its sign bit set (and at least 1 is not-NAN?). | ||||||||
3583 | return isPositiveNum(V0) || isPositiveNum(V1); | ||||||||
3584 | } | ||||||||
3585 | |||||||||
3586 | case Intrinsic::maximum: | ||||||||
3587 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3588 | Depth + 1) || | ||||||||
3589 | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | ||||||||
3590 | Depth + 1); | ||||||||
3591 | case Intrinsic::minnum: | ||||||||
3592 | case Intrinsic::minimum: | ||||||||
3593 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3594 | Depth + 1) && | ||||||||
3595 | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | ||||||||
3596 | Depth + 1); | ||||||||
3597 | case Intrinsic::exp: | ||||||||
3598 | case Intrinsic::exp2: | ||||||||
3599 | case Intrinsic::fabs: | ||||||||
3600 | return true; | ||||||||
3601 | |||||||||
3602 | case Intrinsic::sqrt: | ||||||||
3603 | // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. | ||||||||
3604 | if (!SignBitOnly) | ||||||||
3605 | return true; | ||||||||
3606 | return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || | ||||||||
3607 | CannotBeNegativeZero(CI->getOperand(0), TLI)); | ||||||||
3608 | |||||||||
3609 | case Intrinsic::powi: | ||||||||
3610 | if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { | ||||||||
3611 | // powi(x,n) is non-negative if n is even. | ||||||||
3612 | if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) | ||||||||
3613 | return true; | ||||||||
3614 | } | ||||||||
3615 | // TODO: This is not correct. Given that exp is an integer, here are the | ||||||||
3616 | // ways that pow can return a negative value: | ||||||||
3617 | // | ||||||||
3618 | // pow(x, exp) --> negative if exp is odd and x is negative. | ||||||||
3619 | // pow(-0, exp) --> -inf if exp is negative odd. | ||||||||
3620 | // pow(-0, exp) --> -0 if exp is positive odd. | ||||||||
3621 | // pow(-inf, exp) --> -0 if exp is negative odd. | ||||||||
3622 | // pow(-inf, exp) --> -inf if exp is positive odd. | ||||||||
3623 | // | ||||||||
3624 | // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, | ||||||||
3625 | // but we must return false if x == -0. Unfortunately we do not currently | ||||||||
3626 | // have a way of expressing this constraint. See details in | ||||||||
3627 | // https://llvm.org/bugs/show_bug.cgi?id=31702. | ||||||||
3628 | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | ||||||||
3629 | Depth + 1); | ||||||||
3630 | |||||||||
3631 | case Intrinsic::fma: | ||||||||
3632 | case Intrinsic::fmuladd: | ||||||||
3633 | // x*x+y is non-negative if y is non-negative. | ||||||||
3634 | return I->getOperand(0) == I->getOperand(1) && | ||||||||
3635 | (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && | ||||||||
3636 | cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, | ||||||||
3637 | Depth + 1); | ||||||||
3638 | } | ||||||||
3639 | break; | ||||||||
3640 | } | ||||||||
3641 | return false; | ||||||||
3642 | } | ||||||||
3643 | |||||||||
3644 | bool llvm::CannotBeOrderedLessThanZero(const Value *V, | ||||||||
3645 | const TargetLibraryInfo *TLI) { | ||||||||
3646 | return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); | ||||||||
3647 | } | ||||||||
3648 | |||||||||
3649 | bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { | ||||||||
3650 | return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); | ||||||||
3651 | } | ||||||||
3652 | |||||||||
3653 | bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, | ||||||||
3654 | unsigned Depth) { | ||||||||
3655 | assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type")((void)0); | ||||||||
3656 | |||||||||
3657 | // If we're told that infinities won't happen, assume they won't. | ||||||||
3658 | if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) | ||||||||
3659 | if (FPMathOp->hasNoInfs()) | ||||||||
3660 | return true; | ||||||||
3661 | |||||||||
3662 | // Handle scalar constants. | ||||||||
3663 | if (auto *CFP = dyn_cast<ConstantFP>(V)) | ||||||||
3664 | return !CFP->isInfinity(); | ||||||||
3665 | |||||||||
3666 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
3667 | return false; | ||||||||
3668 | |||||||||
3669 | if (auto *Inst = dyn_cast<Instruction>(V)) { | ||||||||
3670 | switch (Inst->getOpcode()) { | ||||||||
3671 | case Instruction::Select: { | ||||||||
3672 | return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && | ||||||||
3673 | isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); | ||||||||
3674 | } | ||||||||
3675 | case Instruction::SIToFP: | ||||||||
3676 | case Instruction::UIToFP: { | ||||||||
3677 | // Get width of largest magnitude integer (remove a bit if signed). | ||||||||
3678 | // This still works for a signed minimum value because the largest FP | ||||||||
3679 | // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). | ||||||||
3680 | int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); | ||||||||
3681 | if (Inst->getOpcode() == Instruction::SIToFP) | ||||||||
3682 | --IntSize; | ||||||||
3683 | |||||||||
3684 | // If the exponent of the largest finite FP value can hold the largest | ||||||||
3685 | // integer, the result of the cast must be finite. | ||||||||
3686 | Type *FPTy = Inst->getType()->getScalarType(); | ||||||||
3687 | return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; | ||||||||
3688 | } | ||||||||
3689 | default: | ||||||||
3690 | break; | ||||||||
3691 | } | ||||||||
3692 | } | ||||||||
3693 | |||||||||
3694 | // try to handle fixed width vector constants | ||||||||
3695 | auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); | ||||||||
3696 | if (VFVTy && isa<Constant>(V)) { | ||||||||
3697 | // For vectors, verify that each element is not infinity. | ||||||||
3698 | unsigned NumElts = VFVTy->getNumElements(); | ||||||||
3699 | for (unsigned i = 0; i != NumElts; ++i) { | ||||||||
3700 | Constant *Elt = cast<Constant>(V)->getAggregateElement(i); | ||||||||
3701 | if (!Elt) | ||||||||
3702 | return false; | ||||||||
3703 | if (isa<UndefValue>(Elt)) | ||||||||
3704 | continue; | ||||||||
3705 | auto *CElt = dyn_cast<ConstantFP>(Elt); | ||||||||
3706 | if (!CElt || CElt->isInfinity()) | ||||||||
3707 | return false; | ||||||||
3708 | } | ||||||||
3709 | // All elements were confirmed non-infinity or undefined. | ||||||||
3710 | return true; | ||||||||
3711 | } | ||||||||
3712 | |||||||||
3713 | // was not able to prove that V never contains infinity | ||||||||
3714 | return false; | ||||||||
3715 | } | ||||||||
3716 | |||||||||
3717 | bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, | ||||||||
3718 | unsigned Depth) { | ||||||||
3719 | assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type")((void)0); | ||||||||
3720 | |||||||||
3721 | // If we're told that NaNs won't happen, assume they won't. | ||||||||
3722 | if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) | ||||||||
3723 | if (FPMathOp->hasNoNaNs()) | ||||||||
3724 | return true; | ||||||||
3725 | |||||||||
3726 | // Handle scalar constants. | ||||||||
3727 | if (auto *CFP = dyn_cast<ConstantFP>(V)) | ||||||||
3728 | return !CFP->isNaN(); | ||||||||
3729 | |||||||||
3730 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
3731 | return false; | ||||||||
3732 | |||||||||
3733 | if (auto *Inst = dyn_cast<Instruction>(V)) { | ||||||||
3734 | switch (Inst->getOpcode()) { | ||||||||
3735 | case Instruction::FAdd: | ||||||||
3736 | case Instruction::FSub: | ||||||||
3737 | // Adding positive and negative infinity produces NaN. | ||||||||
3738 | return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && | ||||||||
3739 | isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && | ||||||||
3740 | (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || | ||||||||
3741 | isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); | ||||||||
3742 | |||||||||
3743 | case Instruction::FMul: | ||||||||
3744 | // Zero multiplied with infinity produces NaN. | ||||||||
3745 | // FIXME: If neither side can be zero fmul never produces NaN. | ||||||||
3746 | return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && | ||||||||
3747 | isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && | ||||||||
3748 | isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && | ||||||||
3749 | isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); | ||||||||
3750 | |||||||||
3751 | case Instruction::FDiv: | ||||||||
3752 | case Instruction::FRem: | ||||||||
3753 | // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. | ||||||||
3754 | return false; | ||||||||
3755 | |||||||||
3756 | case Instruction::Select: { | ||||||||
3757 | return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && | ||||||||
3758 | isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); | ||||||||
3759 | } | ||||||||
3760 | case Instruction::SIToFP: | ||||||||
3761 | case Instruction::UIToFP: | ||||||||
3762 | return true; | ||||||||
3763 | case Instruction::FPTrunc: | ||||||||
3764 | case Instruction::FPExt: | ||||||||
3765 | return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); | ||||||||
3766 | default: | ||||||||
3767 | break; | ||||||||
3768 | } | ||||||||
3769 | } | ||||||||
3770 | |||||||||
3771 | if (const auto *II = dyn_cast<IntrinsicInst>(V)) { | ||||||||
3772 | switch (II->getIntrinsicID()) { | ||||||||
3773 | case Intrinsic::canonicalize: | ||||||||
3774 | case Intrinsic::fabs: | ||||||||
3775 | case Intrinsic::copysign: | ||||||||
3776 | case Intrinsic::exp: | ||||||||
3777 | case Intrinsic::exp2: | ||||||||
3778 | case Intrinsic::floor: | ||||||||
3779 | case Intrinsic::ceil: | ||||||||
3780 | case Intrinsic::trunc: | ||||||||
3781 | case Intrinsic::rint: | ||||||||
3782 | case Intrinsic::nearbyint: | ||||||||
3783 | case Intrinsic::round: | ||||||||
3784 | case Intrinsic::roundeven: | ||||||||
3785 | return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); | ||||||||
3786 | case Intrinsic::sqrt: | ||||||||
3787 | return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && | ||||||||
3788 | CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); | ||||||||
3789 | case Intrinsic::minnum: | ||||||||
3790 | case Intrinsic::maxnum: | ||||||||
3791 | // If either operand is not NaN, the result is not NaN. | ||||||||
3792 | return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || | ||||||||
3793 | isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); | ||||||||
3794 | default: | ||||||||
3795 | return false; | ||||||||
3796 | } | ||||||||
3797 | } | ||||||||
3798 | |||||||||
3799 | // Try to handle fixed width vector constants | ||||||||
3800 | auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); | ||||||||
3801 | if (VFVTy && isa<Constant>(V)) { | ||||||||
3802 | // For vectors, verify that each element is not NaN. | ||||||||
3803 | unsigned NumElts = VFVTy->getNumElements(); | ||||||||
3804 | for (unsigned i = 0; i != NumElts; ++i) { | ||||||||
3805 | Constant *Elt = cast<Constant>(V)->getAggregateElement(i); | ||||||||
3806 | if (!Elt) | ||||||||
3807 | return false; | ||||||||
3808 | if (isa<UndefValue>(Elt)) | ||||||||
3809 | continue; | ||||||||
3810 | auto *CElt = dyn_cast<ConstantFP>(Elt); | ||||||||
3811 | if (!CElt || CElt->isNaN()) | ||||||||
3812 | return false; | ||||||||
3813 | } | ||||||||
3814 | // All elements were confirmed not-NaN or undefined. | ||||||||
3815 | return true; | ||||||||
3816 | } | ||||||||
3817 | |||||||||
3818 | // Was not able to prove that V never contains NaN | ||||||||
3819 | return false; | ||||||||
3820 | } | ||||||||
3821 | |||||||||
3822 | Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { | ||||||||
3823 | |||||||||
3824 | // All byte-wide stores are splatable, even of arbitrary variables. | ||||||||
3825 | if (V->getType()->isIntegerTy(8)) | ||||||||
3826 | return V; | ||||||||
3827 | |||||||||
3828 | LLVMContext &Ctx = V->getContext(); | ||||||||
3829 | |||||||||
3830 | // Undef don't care. | ||||||||
3831 | auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); | ||||||||
3832 | if (isa<UndefValue>(V)) | ||||||||
3833 | return UndefInt8; | ||||||||
3834 | |||||||||
3835 | // Return Undef for zero-sized type. | ||||||||
3836 | if (!DL.getTypeStoreSize(V->getType()).isNonZero()) | ||||||||
3837 | return UndefInt8; | ||||||||
3838 | |||||||||
3839 | Constant *C = dyn_cast<Constant>(V); | ||||||||
3840 | if (!C) { | ||||||||
3841 | // Conceptually, we could handle things like: | ||||||||
3842 | // %a = zext i8 %X to i16 | ||||||||
3843 | // %b = shl i16 %a, 8 | ||||||||
3844 | // %c = or i16 %a, %b | ||||||||
3845 | // but until there is an example that actually needs this, it doesn't seem | ||||||||
3846 | // worth worrying about. | ||||||||
3847 | return nullptr; | ||||||||
3848 | } | ||||||||
3849 | |||||||||
3850 | // Handle 'null' ConstantArrayZero etc. | ||||||||
3851 | if (C->isNullValue()) | ||||||||
3852 | return Constant::getNullValue(Type::getInt8Ty(Ctx)); | ||||||||
3853 | |||||||||
3854 | // Constant floating-point values can be handled as integer values if the | ||||||||
3855 | // corresponding integer value is "byteable". An important case is 0.0. | ||||||||
3856 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | ||||||||
3857 | Type *Ty = nullptr; | ||||||||
3858 | if (CFP->getType()->isHalfTy()) | ||||||||
3859 | Ty = Type::getInt16Ty(Ctx); | ||||||||
3860 | else if (CFP->getType()->isFloatTy()) | ||||||||
3861 | Ty = Type::getInt32Ty(Ctx); | ||||||||
3862 | else if (CFP->getType()->isDoubleTy()) | ||||||||
3863 | Ty = Type::getInt64Ty(Ctx); | ||||||||
3864 | // Don't handle long double formats, which have strange constraints. | ||||||||
3865 | return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) | ||||||||
3866 | : nullptr; | ||||||||
3867 | } | ||||||||
3868 | |||||||||
3869 | // We can handle constant integers that are multiple of 8 bits. | ||||||||
3870 | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { | ||||||||
3871 | if (CI->getBitWidth() % 8 == 0) { | ||||||||
3872 | assert(CI->getBitWidth() > 8 && "8 bits should be handled above!")((void)0); | ||||||||
3873 | if (!CI->getValue().isSplat(8)) | ||||||||
3874 | return nullptr; | ||||||||
3875 | return ConstantInt::get(Ctx, CI->getValue().trunc(8)); | ||||||||
3876 | } | ||||||||
3877 | } | ||||||||
3878 | |||||||||
3879 | if (auto *CE = dyn_cast<ConstantExpr>(C)) { | ||||||||
3880 | if (CE->getOpcode() == Instruction::IntToPtr) { | ||||||||
3881 | if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { | ||||||||
3882 | unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); | ||||||||
3883 | return isBytewiseValue( | ||||||||
3884 | ConstantExpr::getIntegerCast(CE->getOperand(0), | ||||||||
3885 | Type::getIntNTy(Ctx, BitWidth), false), | ||||||||
3886 | DL); | ||||||||
3887 | } | ||||||||
3888 | } | ||||||||
3889 | } | ||||||||
3890 | |||||||||
3891 | auto Merge = [&](Value *LHS, Value *RHS) -> Value * { | ||||||||
3892 | if (LHS == RHS) | ||||||||
3893 | return LHS; | ||||||||
3894 | if (!LHS || !RHS) | ||||||||
3895 | return nullptr; | ||||||||
3896 | if (LHS == UndefInt8) | ||||||||
3897 | return RHS; | ||||||||
3898 | if (RHS == UndefInt8) | ||||||||
3899 | return LHS; | ||||||||
3900 | return nullptr; | ||||||||
3901 | }; | ||||||||
3902 | |||||||||
3903 | if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { | ||||||||
3904 | Value *Val = UndefInt8; | ||||||||
3905 | for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) | ||||||||
3906 | if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) | ||||||||
3907 | return nullptr; | ||||||||
3908 | return Val; | ||||||||
3909 | } | ||||||||
3910 | |||||||||
3911 | if (isa<ConstantAggregate>(C)) { | ||||||||
3912 | Value *Val = UndefInt8; | ||||||||
3913 | for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) | ||||||||
3914 | if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) | ||||||||
3915 | return nullptr; | ||||||||
3916 | return Val; | ||||||||
3917 | } | ||||||||
3918 | |||||||||
3919 | // Don't try to handle the handful of other constants. | ||||||||
3920 | return nullptr; | ||||||||
3921 | } | ||||||||
3922 | |||||||||
3923 | // This is the recursive version of BuildSubAggregate. It takes a few different | ||||||||
3924 | // arguments. Idxs is the index within the nested struct From that we are | ||||||||
3925 | // looking at now (which is of type IndexedType). IdxSkip is the number of | ||||||||
3926 | // indices from Idxs that should be left out when inserting into the resulting | ||||||||
3927 | // struct. To is the result struct built so far, new insertvalue instructions | ||||||||
3928 | // build on that. | ||||||||
3929 | static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, | ||||||||
3930 | SmallVectorImpl<unsigned> &Idxs, | ||||||||
3931 | unsigned IdxSkip, | ||||||||
3932 | Instruction *InsertBefore) { | ||||||||
3933 | StructType *STy = dyn_cast<StructType>(IndexedType); | ||||||||
| |||||||||
3934 | if (STy
| ||||||||
3935 | // Save the original To argument so we can modify it | ||||||||
3936 | Value *OrigTo = To; | ||||||||
3937 | // General case, the type indexed by Idxs is a struct | ||||||||
3938 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | ||||||||
3939 | // Process each struct element recursively | ||||||||
3940 | Idxs.push_back(i); | ||||||||
3941 | Value *PrevTo = To; | ||||||||
3942 | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, | ||||||||
3943 | InsertBefore); | ||||||||
3944 | Idxs.pop_back(); | ||||||||
3945 | if (!To) { | ||||||||
3946 | // Couldn't find any inserted value for this index? Cleanup | ||||||||
3947 | while (PrevTo != OrigTo) { | ||||||||
3948 | InsertValueInst* Del = cast<InsertValueInst>(PrevTo); | ||||||||
3949 | PrevTo = Del->getAggregateOperand(); | ||||||||
3950 | Del->eraseFromParent(); | ||||||||
3951 | } | ||||||||
3952 | // Stop processing elements | ||||||||
3953 | break; | ||||||||
3954 | } | ||||||||
3955 | } | ||||||||
3956 | // If we successfully found a value for each of our subaggregates | ||||||||
3957 | if (To) | ||||||||
3958 | return To; | ||||||||
3959 | } | ||||||||
3960 | // Base case, the type indexed by SourceIdxs is not a struct, or not all of | ||||||||
3961 | // the struct's elements had a value that was inserted directly. In the latter | ||||||||
3962 | // case, perhaps we can't determine each of the subelements individually, but | ||||||||
3963 | // we might be able to find the complete struct somewhere. | ||||||||
3964 | |||||||||
3965 | // Find the value that is at that particular spot | ||||||||
3966 | Value *V = FindInsertedValue(From, Idxs); | ||||||||
3967 | |||||||||
3968 | if (!V) | ||||||||
3969 | return nullptr; | ||||||||
3970 | |||||||||
3971 | // Insert the value in the new (sub) aggregate | ||||||||
3972 | return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), | ||||||||
3973 | "tmp", InsertBefore); | ||||||||
3974 | } | ||||||||
3975 | |||||||||
3976 | // This helper takes a nested struct and extracts a part of it (which is again a | ||||||||
3977 | // struct) into a new value. For example, given the struct: | ||||||||
3978 | // { a, { b, { c, d }, e } } | ||||||||
3979 | // and the indices "1, 1" this returns | ||||||||
3980 | // { c, d }. | ||||||||
3981 | // | ||||||||
3982 | // It does this by inserting an insertvalue for each element in the resulting | ||||||||
3983 | // struct, as opposed to just inserting a single struct. This will only work if | ||||||||
3984 | // each of the elements of the substruct are known (ie, inserted into From by an | ||||||||
3985 | // insertvalue instruction somewhere). | ||||||||
3986 | // | ||||||||
3987 | // All inserted insertvalue instructions are inserted before InsertBefore | ||||||||
3988 | static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, | ||||||||
3989 | Instruction *InsertBefore) { | ||||||||
3990 | assert(InsertBefore && "Must have someplace to insert!")((void)0); | ||||||||
3991 | Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), | ||||||||
3992 | idx_range); | ||||||||
3993 | Value *To = UndefValue::get(IndexedType); | ||||||||
3994 | SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); | ||||||||
3995 | unsigned IdxSkip = Idxs.size(); | ||||||||
3996 | |||||||||
3997 | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); | ||||||||
3998 | } | ||||||||
3999 | |||||||||
4000 | /// Given an aggregate and a sequence of indices, see if the scalar value | ||||||||
4001 | /// indexed is already around as a register, for example if it was inserted | ||||||||
4002 | /// directly into the aggregate. | ||||||||
4003 | /// | ||||||||
4004 | /// If InsertBefore is not null, this function will duplicate (modified) | ||||||||
4005 | /// insertvalues when a part of a nested struct is extracted. | ||||||||
4006 | Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, | ||||||||
4007 | Instruction *InsertBefore) { | ||||||||
4008 | // Nothing to index? Just return V then (this is useful at the end of our | ||||||||
4009 | // recursion). | ||||||||
4010 | if (idx_range.empty()) | ||||||||
4011 | return V; | ||||||||
4012 | // We have indices, so V should have an indexable type. | ||||||||
4013 | assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&((void)0) | ||||||||
4014 | "Not looking at a struct or array?")((void)0); | ||||||||
4015 | assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&((void)0) | ||||||||
4016 | "Invalid indices for type?")((void)0); | ||||||||
4017 | |||||||||
4018 | if (Constant *C = dyn_cast<Constant>(V)) { | ||||||||
4019 | C = C->getAggregateElement(idx_range[0]); | ||||||||
4020 | if (!C) return nullptr; | ||||||||
4021 | return FindInsertedValue(C, idx_range.slice(1), InsertBefore); | ||||||||
4022 | } | ||||||||
4023 | |||||||||
4024 | if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { | ||||||||
4025 | // Loop the indices for the insertvalue instruction in parallel with the | ||||||||
4026 | // requested indices | ||||||||
4027 | const unsigned *req_idx = idx_range.begin(); | ||||||||
4028 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); | ||||||||
4029 | i != e; ++i, ++req_idx) { | ||||||||
4030 | if (req_idx == idx_range.end()) { | ||||||||
4031 | // We can't handle this without inserting insertvalues | ||||||||
4032 | if (!InsertBefore) | ||||||||
4033 | return nullptr; | ||||||||
4034 | |||||||||
4035 | // The requested index identifies a part of a nested aggregate. Handle | ||||||||
4036 | // this specially. For example, | ||||||||
4037 | // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 | ||||||||
4038 | // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 | ||||||||
4039 | // %C = extractvalue {i32, { i32, i32 } } %B, 1 | ||||||||
4040 | // This can be changed into | ||||||||
4041 | // %A = insertvalue {i32, i32 } undef, i32 10, 0 | ||||||||
4042 | // %C = insertvalue {i32, i32 } %A, i32 11, 1 | ||||||||
4043 | // which allows the unused 0,0 element from the nested struct to be | ||||||||
4044 | // removed. | ||||||||
4045 | return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), | ||||||||
4046 | InsertBefore); | ||||||||
4047 | } | ||||||||
4048 | |||||||||
4049 | // This insert value inserts something else than what we are looking for. | ||||||||
4050 | // See if the (aggregate) value inserted into has the value we are | ||||||||
4051 | // looking for, then. | ||||||||
4052 | if (*req_idx != *i) | ||||||||
4053 | return FindInsertedValue(I->getAggregateOperand(), idx_range, | ||||||||
4054 | InsertBefore); | ||||||||
4055 | } | ||||||||
4056 | // If we end up here, the indices of the insertvalue match with those | ||||||||
4057 | // requested (though possibly only partially). Now we recursively look at | ||||||||
4058 | // the inserted value, passing any remaining indices. | ||||||||
4059 | return FindInsertedValue(I->getInsertedValueOperand(), | ||||||||
4060 | makeArrayRef(req_idx, idx_range.end()), | ||||||||
4061 | InsertBefore); | ||||||||
4062 | } | ||||||||
4063 | |||||||||
4064 | if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { | ||||||||
4065 | // If we're extracting a value from an aggregate that was extracted from | ||||||||
4066 | // something else, we can extract from that something else directly instead. | ||||||||
4067 | // However, we will need to chain I's indices with the requested indices. | ||||||||
4068 | |||||||||
4069 | // Calculate the number of indices required | ||||||||
4070 | unsigned size = I->getNumIndices() + idx_range.size(); | ||||||||
4071 | // Allocate some space to put the new indices in | ||||||||
4072 | SmallVector<unsigned, 5> Idxs; | ||||||||
4073 | Idxs.reserve(size); | ||||||||
4074 | // Add indices from the extract value instruction | ||||||||
4075 | Idxs.append(I->idx_begin(), I->idx_end()); | ||||||||
4076 | |||||||||
4077 | // Add requested indices | ||||||||
4078 | Idxs.append(idx_range.begin(), idx_range.end()); | ||||||||
4079 | |||||||||
4080 | assert(Idxs.size() == size((void)0) | ||||||||
4081 | && "Number of indices added not correct?")((void)0); | ||||||||
4082 | |||||||||
4083 | return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); | ||||||||
4084 | } | ||||||||
4085 | // Otherwise, we don't know (such as, extracting from a function return value | ||||||||
4086 | // or load instruction) | ||||||||
4087 | return nullptr; | ||||||||
4088 | } | ||||||||
4089 | |||||||||
4090 | bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, | ||||||||
4091 | unsigned CharSize) { | ||||||||
4092 | // Make sure the GEP has exactly three arguments. | ||||||||
4093 | if (GEP->getNumOperands() != 3) | ||||||||
4094 | return false; | ||||||||
4095 | |||||||||
4096 | // Make sure the index-ee is a pointer to array of \p CharSize integers. | ||||||||
4097 | // CharSize. | ||||||||
4098 | ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); | ||||||||
4099 | if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) | ||||||||
4100 | return false; | ||||||||
4101 | |||||||||
4102 | // Check to make sure that the first operand of the GEP is an integer and | ||||||||
4103 | // has value 0 so that we are sure we're indexing into the initializer. | ||||||||
4104 | const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); | ||||||||
4105 | if (!FirstIdx || !FirstIdx->isZero()) | ||||||||
4106 | return false; | ||||||||
4107 | |||||||||
4108 | return true; | ||||||||
4109 | } | ||||||||
4110 | |||||||||
4111 | bool llvm::getConstantDataArrayInfo(const Value *V, | ||||||||
4112 | ConstantDataArraySlice &Slice, | ||||||||
4113 | unsigned ElementSize, uint64_t Offset) { | ||||||||
4114 | assert(V)((void)0); | ||||||||
4115 | |||||||||
4116 | // Look through bitcast instructions and geps. | ||||||||
4117 | V = V->stripPointerCasts(); | ||||||||
4118 | |||||||||
4119 | // If the value is a GEP instruction or constant expression, treat it as an | ||||||||
4120 | // offset. | ||||||||
4121 | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | ||||||||
4122 | // The GEP operator should be based on a pointer to string constant, and is | ||||||||
4123 | // indexing into the string constant. | ||||||||
4124 | if (!isGEPBasedOnPointerToString(GEP, ElementSize)) | ||||||||
4125 | return false; | ||||||||
4126 | |||||||||
4127 | // If the second index isn't a ConstantInt, then this is a variable index | ||||||||
4128 | // into the array. If this occurs, we can't say anything meaningful about | ||||||||
4129 | // the string. | ||||||||
4130 | uint64_t StartIdx = 0; | ||||||||
4131 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) | ||||||||
4132 | StartIdx = CI->getZExtValue(); | ||||||||
4133 | else | ||||||||
4134 | return false; | ||||||||
4135 | return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, | ||||||||
4136 | StartIdx + Offset); | ||||||||
4137 | } | ||||||||
4138 | |||||||||
4139 | // The GEP instruction, constant or instruction, must reference a global | ||||||||
4140 | // variable that is a constant and is initialized. The referenced constant | ||||||||
4141 | // initializer is the array that we'll use for optimization. | ||||||||
4142 | const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | ||||||||
4143 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) | ||||||||
4144 | return false; | ||||||||
4145 | |||||||||
4146 | const ConstantDataArray *Array; | ||||||||
4147 | ArrayType *ArrayTy; | ||||||||
4148 | if (GV->getInitializer()->isNullValue()) { | ||||||||
4149 | Type *GVTy = GV->getValueType(); | ||||||||
4150 | if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { | ||||||||
4151 | // A zeroinitializer for the array; there is no ConstantDataArray. | ||||||||
4152 | Array = nullptr; | ||||||||
4153 | } else { | ||||||||
4154 | const DataLayout &DL = GV->getParent()->getDataLayout(); | ||||||||
4155 | uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); | ||||||||
4156 | uint64_t Length = SizeInBytes / (ElementSize / 8); | ||||||||
4157 | if (Length <= Offset) | ||||||||
4158 | return false; | ||||||||
4159 | |||||||||
4160 | Slice.Array = nullptr; | ||||||||
4161 | Slice.Offset = 0; | ||||||||
4162 | Slice.Length = Length - Offset; | ||||||||
4163 | return true; | ||||||||
4164 | } | ||||||||
4165 | } else { | ||||||||
4166 | // This must be a ConstantDataArray. | ||||||||
4167 | Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); | ||||||||
4168 | if (!Array) | ||||||||
4169 | return false; | ||||||||
4170 | ArrayTy = Array->getType(); | ||||||||
4171 | } | ||||||||
4172 | if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) | ||||||||
4173 | return false; | ||||||||
4174 | |||||||||
4175 | uint64_t NumElts = ArrayTy->getArrayNumElements(); | ||||||||
4176 | if (Offset > NumElts) | ||||||||
4177 | return false; | ||||||||
4178 | |||||||||
4179 | Slice.Array = Array; | ||||||||
4180 | Slice.Offset = Offset; | ||||||||
4181 | Slice.Length = NumElts - Offset; | ||||||||
4182 | return true; | ||||||||
4183 | } | ||||||||
4184 | |||||||||
4185 | /// This function computes the length of a null-terminated C string pointed to | ||||||||
4186 | /// by V. If successful, it returns true and returns the string in Str. | ||||||||
4187 | /// If unsuccessful, it returns false. | ||||||||
4188 | bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, | ||||||||
4189 | uint64_t Offset, bool TrimAtNul) { | ||||||||
4190 | ConstantDataArraySlice Slice; | ||||||||
4191 | if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) | ||||||||
4192 | return false; | ||||||||
4193 | |||||||||
4194 | if (Slice.Array == nullptr) { | ||||||||
4195 | if (TrimAtNul) { | ||||||||
4196 | Str = StringRef(); | ||||||||
4197 | return true; | ||||||||
4198 | } | ||||||||
4199 | if (Slice.Length == 1) { | ||||||||
4200 | Str = StringRef("", 1); | ||||||||
4201 | return true; | ||||||||
4202 | } | ||||||||
4203 | // We cannot instantiate a StringRef as we do not have an appropriate string | ||||||||
4204 | // of 0s at hand. | ||||||||
4205 | return false; | ||||||||
4206 | } | ||||||||
4207 | |||||||||
4208 | // Start out with the entire array in the StringRef. | ||||||||
4209 | Str = Slice.Array->getAsString(); | ||||||||
4210 | // Skip over 'offset' bytes. | ||||||||
4211 | Str = Str.substr(Slice.Offset); | ||||||||
4212 | |||||||||
4213 | if (TrimAtNul) { | ||||||||
4214 | // Trim off the \0 and anything after it. If the array is not nul | ||||||||
4215 | // terminated, we just return the whole end of string. The client may know | ||||||||
4216 | // some other way that the string is length-bound. | ||||||||
4217 | Str = Str.substr(0, Str.find('\0')); | ||||||||
4218 | } | ||||||||
4219 | return true; | ||||||||
4220 | } | ||||||||
4221 | |||||||||
4222 | // These next two are very similar to the above, but also look through PHI | ||||||||
4223 | // nodes. | ||||||||
4224 | // TODO: See if we can integrate these two together. | ||||||||
4225 | |||||||||
4226 | /// If we can compute the length of the string pointed to by | ||||||||
4227 | /// the specified pointer, return 'len+1'. If we can't, return 0. | ||||||||
4228 | static uint64_t GetStringLengthH(const Value *V, | ||||||||
4229 | SmallPtrSetImpl<const PHINode*> &PHIs, | ||||||||
4230 | unsigned CharSize) { | ||||||||
4231 | // Look through noop bitcast instructions. | ||||||||
4232 | V = V->stripPointerCasts(); | ||||||||
4233 | |||||||||
4234 | // If this is a PHI node, there are two cases: either we have already seen it | ||||||||
4235 | // or we haven't. | ||||||||
4236 | if (const PHINode *PN = dyn_cast<PHINode>(V)) { | ||||||||
4237 | if (!PHIs.insert(PN).second) | ||||||||
4238 | return ~0ULL; // already in the set. | ||||||||
4239 | |||||||||
4240 | // If it was new, see if all the input strings are the same length. | ||||||||
4241 | uint64_t LenSoFar = ~0ULL; | ||||||||
4242 | for (Value *IncValue : PN->incoming_values()) { | ||||||||
4243 | uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); | ||||||||
4244 | if (Len == 0) return 0; // Unknown length -> unknown. | ||||||||
4245 | |||||||||
4246 | if (Len == ~0ULL) continue; | ||||||||
4247 | |||||||||
4248 | if (Len != LenSoFar && LenSoFar != ~0ULL) | ||||||||
4249 | return 0; // Disagree -> unknown. | ||||||||
4250 | LenSoFar = Len; | ||||||||
4251 | } | ||||||||
4252 | |||||||||
4253 | // Success, all agree. | ||||||||
4254 | return LenSoFar; | ||||||||
4255 | } | ||||||||
4256 | |||||||||
4257 | // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) | ||||||||
4258 | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { | ||||||||
4259 | uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); | ||||||||
4260 | if (Len1 == 0) return 0; | ||||||||
4261 | uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); | ||||||||
4262 | if (Len2 == 0) return 0; | ||||||||
4263 | if (Len1 == ~0ULL) return Len2; | ||||||||
4264 | if (Len2 == ~0ULL) return Len1; | ||||||||
4265 | if (Len1 != Len2) return 0; | ||||||||
4266 | return Len1; | ||||||||
4267 | } | ||||||||
4268 | |||||||||
4269 | // Otherwise, see if we can read the string. | ||||||||
4270 | ConstantDataArraySlice Slice; | ||||||||
4271 | if (!getConstantDataArrayInfo(V, Slice, CharSize)) | ||||||||
4272 | return 0; | ||||||||
4273 | |||||||||
4274 | if (Slice.Array == nullptr) | ||||||||
4275 | return 1; | ||||||||
4276 | |||||||||
4277 | // Search for nul characters | ||||||||
4278 | unsigned NullIndex = 0; | ||||||||
4279 | for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { | ||||||||
4280 | if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) | ||||||||
4281 | break; | ||||||||
4282 | } | ||||||||
4283 | |||||||||
4284 | return NullIndex + 1; | ||||||||
4285 | } | ||||||||
4286 | |||||||||
4287 | /// If we can compute the length of the string pointed to by | ||||||||
4288 | /// the specified pointer, return 'len+1'. If we can't, return 0. | ||||||||
4289 | uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { | ||||||||
4290 | if (!V->getType()->isPointerTy()) | ||||||||
4291 | return 0; | ||||||||
4292 | |||||||||
4293 | SmallPtrSet<const PHINode*, 32> PHIs; | ||||||||
4294 | uint64_t Len = GetStringLengthH(V, PHIs, CharSize); | ||||||||
4295 | // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return | ||||||||
4296 | // an empty string as a length. | ||||||||
4297 | return Len == ~0ULL ? 1 : Len; | ||||||||
4298 | } | ||||||||
4299 | |||||||||
4300 | const Value * | ||||||||
4301 | llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, | ||||||||
4302 | bool MustPreserveNullness) { | ||||||||
4303 | assert(Call &&((void)0) | ||||||||
4304 | "getArgumentAliasingToReturnedPointer only works on nonnull calls")((void)0); | ||||||||
4305 | if (const Value *RV = Call->getReturnedArgOperand()) | ||||||||
4306 | return RV; | ||||||||
4307 | // This can be used only as a aliasing property. | ||||||||
4308 | if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( | ||||||||
4309 | Call, MustPreserveNullness)) | ||||||||
4310 | return Call->getArgOperand(0); | ||||||||
4311 | return nullptr; | ||||||||
4312 | } | ||||||||
4313 | |||||||||
4314 | bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( | ||||||||
4315 | const CallBase *Call, bool MustPreserveNullness) { | ||||||||
4316 | switch (Call->getIntrinsicID()) { | ||||||||
4317 | case Intrinsic::launder_invariant_group: | ||||||||
4318 | case Intrinsic::strip_invariant_group: | ||||||||
4319 | case Intrinsic::aarch64_irg: | ||||||||
4320 | case Intrinsic::aarch64_tagp: | ||||||||
4321 | return true; | ||||||||
4322 | case Intrinsic::ptrmask: | ||||||||
4323 | return !MustPreserveNullness; | ||||||||
4324 | default: | ||||||||
4325 | return false; | ||||||||
4326 | } | ||||||||
4327 | } | ||||||||
4328 | |||||||||
4329 | /// \p PN defines a loop-variant pointer to an object. Check if the | ||||||||
4330 | /// previous iteration of the loop was referring to the same object as \p PN. | ||||||||
4331 | static bool isSameUnderlyingObjectInLoop(const PHINode *PN, | ||||||||
4332 | const LoopInfo *LI) { | ||||||||
4333 | // Find the loop-defined value. | ||||||||
4334 | Loop *L = LI->getLoopFor(PN->getParent()); | ||||||||
4335 | if (PN->getNumIncomingValues() != 2) | ||||||||
4336 | return true; | ||||||||
4337 | |||||||||
4338 | // Find the value from previous iteration. | ||||||||
4339 | auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); | ||||||||
4340 | if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) | ||||||||
4341 | PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); | ||||||||
4342 | if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) | ||||||||
4343 | return true; | ||||||||
4344 | |||||||||
4345 | // If a new pointer is loaded in the loop, the pointer references a different | ||||||||
4346 | // object in every iteration. E.g.: | ||||||||
4347 | // for (i) | ||||||||
4348 | // int *p = a[i]; | ||||||||
4349 | // ... | ||||||||
4350 | if (auto *Load = dyn_cast<LoadInst>(PrevValue)) | ||||||||
4351 | if (!L->isLoopInvariant(Load->getPointerOperand())) | ||||||||
4352 | return false; | ||||||||
4353 | return true; | ||||||||
4354 | } | ||||||||
4355 | |||||||||
4356 | const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { | ||||||||
4357 | if (!V->getType()->isPointerTy()) | ||||||||
4358 | return V; | ||||||||
4359 | for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { | ||||||||
4360 | if (auto *GEP = dyn_cast<GEPOperator>(V)) { | ||||||||
4361 | V = GEP->getPointerOperand(); | ||||||||
4362 | } else if (Operator::getOpcode(V) == Instruction::BitCast || | ||||||||
4363 | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { | ||||||||
4364 | V = cast<Operator>(V)->getOperand(0); | ||||||||
4365 | if (!V->getType()->isPointerTy()) | ||||||||
4366 | return V; | ||||||||
4367 | } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { | ||||||||
4368 | if (GA->isInterposable()) | ||||||||
4369 | return V; | ||||||||
4370 | V = GA->getAliasee(); | ||||||||
4371 | } else { | ||||||||
4372 | if (auto *PHI = dyn_cast<PHINode>(V)) { | ||||||||
4373 | // Look through single-arg phi nodes created by LCSSA. | ||||||||
4374 | if (PHI->getNumIncomingValues() == 1) { | ||||||||
4375 | V = PHI->getIncomingValue(0); | ||||||||
4376 | continue; | ||||||||
4377 | } | ||||||||
4378 | } else if (auto *Call = dyn_cast<CallBase>(V)) { | ||||||||
4379 | // CaptureTracking can know about special capturing properties of some | ||||||||
4380 | // intrinsics like launder.invariant.group, that can't be expressed with | ||||||||
4381 | // the attributes, but have properties like returning aliasing pointer. | ||||||||
4382 | // Because some analysis may assume that nocaptured pointer is not | ||||||||
4383 | // returned from some special intrinsic (because function would have to | ||||||||
4384 | // be marked with returns attribute), it is crucial to use this function | ||||||||
4385 | // because it should be in sync with CaptureTracking. Not using it may | ||||||||
4386 | // cause weird miscompilations where 2 aliasing pointers are assumed to | ||||||||
4387 | // noalias. | ||||||||
4388 | if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { | ||||||||
4389 | V = RP; | ||||||||
4390 | continue; | ||||||||
4391 | } | ||||||||
4392 | } | ||||||||
4393 | |||||||||
4394 | return V; | ||||||||
4395 | } | ||||||||
4396 | assert(V->getType()->isPointerTy() && "Unexpected operand type!")((void)0); | ||||||||
4397 | } | ||||||||
4398 | return V; | ||||||||
4399 | } | ||||||||
4400 | |||||||||
4401 | void llvm::getUnderlyingObjects(const Value *V, | ||||||||
4402 | SmallVectorImpl<const Value *> &Objects, | ||||||||
4403 | LoopInfo *LI, unsigned MaxLookup) { | ||||||||
4404 | SmallPtrSet<const Value *, 4> Visited; | ||||||||
4405 | SmallVector<const Value *, 4> Worklist; | ||||||||
4406 | Worklist.push_back(V); | ||||||||
4407 | do { | ||||||||
4408 | const Value *P = Worklist.pop_back_val(); | ||||||||
4409 | P = getUnderlyingObject(P, MaxLookup); | ||||||||
4410 | |||||||||
4411 | if (!Visited.insert(P).second) | ||||||||
4412 | continue; | ||||||||
4413 | |||||||||
4414 | if (auto *SI = dyn_cast<SelectInst>(P)) { | ||||||||
4415 | Worklist.push_back(SI->getTrueValue()); | ||||||||
4416 | Worklist.push_back(SI->getFalseValue()); | ||||||||
4417 | continue; | ||||||||
4418 | } | ||||||||
4419 | |||||||||
4420 | if (auto *PN = dyn_cast<PHINode>(P)) { | ||||||||
4421 | // If this PHI changes the underlying object in every iteration of the | ||||||||
4422 | // loop, don't look through it. Consider: | ||||||||
4423 | // int **A; | ||||||||
4424 | // for (i) { | ||||||||
4425 | // Prev = Curr; // Prev = PHI (Prev_0, Curr) | ||||||||
4426 | // Curr = A[i]; | ||||||||
4427 | // *Prev, *Curr; | ||||||||
4428 | // | ||||||||
4429 | // Prev is tracking Curr one iteration behind so they refer to different | ||||||||
4430 | // underlying objects. | ||||||||
4431 | if (!LI || !LI->isLoopHeader(PN->getParent()) || | ||||||||
4432 | isSameUnderlyingObjectInLoop(PN, LI)) | ||||||||
4433 | append_range(Worklist, PN->incoming_values()); | ||||||||
4434 | continue; | ||||||||
4435 | } | ||||||||
4436 | |||||||||
4437 | Objects.push_back(P); | ||||||||
4438 | } while (!Worklist.empty()); | ||||||||
4439 | } | ||||||||
4440 | |||||||||
4441 | /// This is the function that does the work of looking through basic | ||||||||
4442 | /// ptrtoint+arithmetic+inttoptr sequences. | ||||||||
4443 | static const Value *getUnderlyingObjectFromInt(const Value *V) { | ||||||||
4444 | do { | ||||||||
4445 | if (const Operator *U = dyn_cast<Operator>(V)) { | ||||||||
4446 | // If we find a ptrtoint, we can transfer control back to the | ||||||||
4447 | // regular getUnderlyingObjectFromInt. | ||||||||
4448 | if (U->getOpcode() == Instruction::PtrToInt) | ||||||||
4449 | return U->getOperand(0); | ||||||||
4450 | // If we find an add of a constant, a multiplied value, or a phi, it's | ||||||||
4451 | // likely that the other operand will lead us to the base | ||||||||
4452 | // object. We don't have to worry about the case where the | ||||||||
4453 | // object address is somehow being computed by the multiply, | ||||||||
4454 | // because our callers only care when the result is an | ||||||||
4455 | // identifiable object. | ||||||||
4456 | if (U->getOpcode() != Instruction::Add || | ||||||||
4457 | (!isa<ConstantInt>(U->getOperand(1)) && | ||||||||
4458 | Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && | ||||||||
4459 | !isa<PHINode>(U->getOperand(1)))) | ||||||||
4460 | return V; | ||||||||
4461 | V = U->getOperand(0); | ||||||||
4462 | } else { | ||||||||
4463 | return V; | ||||||||
4464 | } | ||||||||
4465 | assert(V->getType()->isIntegerTy() && "Unexpected operand type!")((void)0); | ||||||||
4466 | } while (true); | ||||||||
4467 | } | ||||||||
4468 | |||||||||
4469 | /// This is a wrapper around getUnderlyingObjects and adds support for basic | ||||||||
4470 | /// ptrtoint+arithmetic+inttoptr sequences. | ||||||||
4471 | /// It returns false if unidentified object is found in getUnderlyingObjects. | ||||||||
4472 | bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, | ||||||||
4473 | SmallVectorImpl<Value *> &Objects) { | ||||||||
4474 | SmallPtrSet<const Value *, 16> Visited; | ||||||||
4475 | SmallVector<const Value *, 4> Working(1, V); | ||||||||
4476 | do { | ||||||||
4477 | V = Working.pop_back_val(); | ||||||||
4478 | |||||||||
4479 | SmallVector<const Value *, 4> Objs; | ||||||||
4480 | getUnderlyingObjects(V, Objs); | ||||||||
4481 | |||||||||
4482 | for (const Value *V : Objs) { | ||||||||
4483 | if (!Visited.insert(V).second) | ||||||||
4484 | continue; | ||||||||
4485 | if (Operator::getOpcode(V) == Instruction::IntToPtr) { | ||||||||
4486 | const Value *O = | ||||||||
4487 | getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); | ||||||||
4488 | if (O->getType()->isPointerTy()) { | ||||||||
4489 | Working.push_back(O); | ||||||||
4490 | continue; | ||||||||
4491 | } | ||||||||
4492 | } | ||||||||
4493 | // If getUnderlyingObjects fails to find an identifiable object, | ||||||||
4494 | // getUnderlyingObjectsForCodeGen also fails for safety. | ||||||||
4495 | if (!isIdentifiedObject(V)) { | ||||||||
4496 | Objects.clear(); | ||||||||
4497 | return false; | ||||||||
4498 | } | ||||||||
4499 | Objects.push_back(const_cast<Value *>(V)); | ||||||||
4500 | } | ||||||||
4501 | } while (!Working.empty()); | ||||||||
4502 | return true; | ||||||||
4503 | } | ||||||||
4504 | |||||||||
4505 | AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { | ||||||||
4506 | AllocaInst *Result = nullptr; | ||||||||
4507 | SmallPtrSet<Value *, 4> Visited; | ||||||||
4508 | SmallVector<Value *, 4> Worklist; | ||||||||
4509 | |||||||||
4510 | auto AddWork = [&](Value *V) { | ||||||||
4511 | if (Visited.insert(V).second) | ||||||||
4512 | Worklist.push_back(V); | ||||||||
4513 | }; | ||||||||
4514 | |||||||||
4515 | AddWork(V); | ||||||||
4516 | do { | ||||||||
4517 | V = Worklist.pop_back_val(); | ||||||||
4518 | assert(Visited.count(V))((void)0); | ||||||||
4519 | |||||||||
4520 | if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | ||||||||
4521 | if (Result && Result != AI) | ||||||||
4522 | return nullptr; | ||||||||
4523 | Result = AI; | ||||||||
4524 | } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | ||||||||
4525 | AddWork(CI->getOperand(0)); | ||||||||
4526 | } else if (PHINode *PN = dyn_cast<PHINode>(V)) { | ||||||||
4527 | for (Value *IncValue : PN->incoming_values()) | ||||||||
4528 | AddWork(IncValue); | ||||||||
4529 | } else if (auto *SI = dyn_cast<SelectInst>(V)) { | ||||||||
4530 | AddWork(SI->getTrueValue()); | ||||||||
4531 | AddWork(SI->getFalseValue()); | ||||||||
4532 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { | ||||||||
4533 | if (OffsetZero && !GEP->hasAllZeroIndices()) | ||||||||
4534 | return nullptr; | ||||||||
4535 | AddWork(GEP->getPointerOperand()); | ||||||||
4536 | } else { | ||||||||
4537 | return nullptr; | ||||||||
4538 | } | ||||||||
4539 | } while (!Worklist.empty()); | ||||||||
4540 | |||||||||
4541 | return Result; | ||||||||
4542 | } | ||||||||
4543 | |||||||||
4544 | static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( | ||||||||
4545 | const Value *V, bool AllowLifetime, bool AllowDroppable) { | ||||||||
4546 | for (const User *U : V->users()) { | ||||||||
4547 | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | ||||||||
4548 | if (!II) | ||||||||
4549 | return false; | ||||||||
4550 | |||||||||
4551 | if (AllowLifetime && II->isLifetimeStartOrEnd()) | ||||||||
4552 | continue; | ||||||||
4553 | |||||||||
4554 | if (AllowDroppable && II->isDroppable()) | ||||||||
4555 | continue; | ||||||||
4556 | |||||||||
4557 | return false; | ||||||||
4558 | } | ||||||||
4559 | return true; | ||||||||
4560 | } | ||||||||
4561 | |||||||||
4562 | bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { | ||||||||
4563 | return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( | ||||||||
4564 | V, /* AllowLifetime */ true, /* AllowDroppable */ false); | ||||||||
4565 | } | ||||||||
4566 | bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { | ||||||||
4567 | return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( | ||||||||
4568 | V, /* AllowLifetime */ true, /* AllowDroppable */ true); | ||||||||
4569 | } | ||||||||
4570 | |||||||||
4571 | bool llvm::mustSuppressSpeculation(const LoadInst &LI) { | ||||||||
4572 | if (!LI.isUnordered()) | ||||||||
4573 | return true; | ||||||||
4574 | const Function &F = *LI.getFunction(); | ||||||||
4575 | // Speculative load may create a race that did not exist in the source. | ||||||||
4576 | return F.hasFnAttribute(Attribute::SanitizeThread) || | ||||||||
4577 | // Speculative load may load data from dirty regions. | ||||||||
4578 | F.hasFnAttribute(Attribute::SanitizeAddress) || | ||||||||
4579 | F.hasFnAttribute(Attribute::SanitizeHWAddress); | ||||||||
4580 | } | ||||||||
4581 | |||||||||
4582 | |||||||||
4583 | bool llvm::isSafeToSpeculativelyExecute(const Value *V, | ||||||||
4584 | const Instruction *CtxI, | ||||||||
4585 | const DominatorTree *DT, | ||||||||
4586 | const TargetLibraryInfo *TLI) { | ||||||||
4587 | const Operator *Inst = dyn_cast<Operator>(V); | ||||||||
4588 | if (!Inst) | ||||||||
4589 | return false; | ||||||||
4590 | |||||||||
4591 | for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) | ||||||||
4592 | if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) | ||||||||
4593 | if (C->canTrap()) | ||||||||
4594 | return false; | ||||||||
4595 | |||||||||
4596 | switch (Inst->getOpcode()) { | ||||||||
4597 | default: | ||||||||
4598 | return true; | ||||||||
4599 | case Instruction::UDiv: | ||||||||
4600 | case Instruction::URem: { | ||||||||
4601 | // x / y is undefined if y == 0. | ||||||||
4602 | const APInt *V; | ||||||||
4603 | if (match(Inst->getOperand(1), m_APInt(V))) | ||||||||
4604 | return *V != 0; | ||||||||
4605 | return false; | ||||||||
4606 | } | ||||||||
4607 | case Instruction::SDiv: | ||||||||
4608 | case Instruction::SRem: { | ||||||||
4609 | // x / y is undefined if y == 0 or x == INT_MIN and y == -1 | ||||||||
4610 | const APInt *Numerator, *Denominator; | ||||||||
4611 | if (!match(Inst->getOperand(1), m_APInt(Denominator))) | ||||||||
4612 | return false; | ||||||||
4613 | // We cannot hoist this division if the denominator is 0. | ||||||||
4614 | if (*Denominator == 0) | ||||||||
4615 | return false; | ||||||||
4616 | // It's safe to hoist if the denominator is not 0 or -1. | ||||||||
4617 | if (!Denominator->isAllOnesValue()) | ||||||||
4618 | return true; | ||||||||
4619 | // At this point we know that the denominator is -1. It is safe to hoist as | ||||||||
4620 | // long we know that the numerator is not INT_MIN. | ||||||||
4621 | if (match(Inst->getOperand(0), m_APInt(Numerator))) | ||||||||
4622 | return !Numerator->isMinSignedValue(); | ||||||||
4623 | // The numerator *might* be MinSignedValue. | ||||||||
4624 | return false; | ||||||||
4625 | } | ||||||||
4626 | case Instruction::Load: { | ||||||||
4627 | const LoadInst *LI = cast<LoadInst>(Inst); | ||||||||
4628 | if (mustSuppressSpeculation(*LI)) | ||||||||
4629 | return false; | ||||||||
4630 | const DataLayout &DL = LI->getModule()->getDataLayout(); | ||||||||
4631 | return isDereferenceableAndAlignedPointer( | ||||||||
4632 | LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), | ||||||||
4633 | DL, CtxI, DT, TLI); | ||||||||
4634 | } | ||||||||
4635 | case Instruction::Call: { | ||||||||
4636 | auto *CI = cast<const CallInst>(Inst); | ||||||||
4637 | const Function *Callee = CI->getCalledFunction(); | ||||||||
4638 | |||||||||
4639 | // The called function could have undefined behavior or side-effects, even | ||||||||
4640 | // if marked readnone nounwind. | ||||||||
4641 | return Callee && Callee->isSpeculatable(); | ||||||||
4642 | } | ||||||||
4643 | case Instruction::VAArg: | ||||||||
4644 | case Instruction::Alloca: | ||||||||
4645 | case Instruction::Invoke: | ||||||||
4646 | case Instruction::CallBr: | ||||||||
4647 | case Instruction::PHI: | ||||||||
4648 | case Instruction::Store: | ||||||||
4649 | case Instruction::Ret: | ||||||||
4650 | case Instruction::Br: | ||||||||
4651 | case Instruction::IndirectBr: | ||||||||
4652 | case Instruction::Switch: | ||||||||
4653 | case Instruction::Unreachable: | ||||||||
4654 | case Instruction::Fence: | ||||||||
4655 | case Instruction::AtomicRMW: | ||||||||
4656 | case Instruction::AtomicCmpXchg: | ||||||||
4657 | case Instruction::LandingPad: | ||||||||
4658 | case Instruction::Resume: | ||||||||
4659 | case Instruction::CatchSwitch: | ||||||||
4660 | case Instruction::CatchPad: | ||||||||
4661 | case Instruction::CatchRet: | ||||||||
4662 | case Instruction::CleanupPad: | ||||||||
4663 | case Instruction::CleanupRet: | ||||||||
4664 | return false; // Misc instructions which have effects | ||||||||
4665 | } | ||||||||
4666 | } | ||||||||
4667 | |||||||||
4668 | bool llvm::mayBeMemoryDependent(const Instruction &I) { | ||||||||
4669 | return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); | ||||||||
4670 | } | ||||||||
4671 | |||||||||
4672 | /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. | ||||||||
4673 | static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { | ||||||||
4674 | switch (OR) { | ||||||||
4675 | case ConstantRange::OverflowResult::MayOverflow: | ||||||||
4676 | return OverflowResult::MayOverflow; | ||||||||
4677 | case ConstantRange::OverflowResult::AlwaysOverflowsLow: | ||||||||
4678 | return OverflowResult::AlwaysOverflowsLow; | ||||||||
4679 | case ConstantRange::OverflowResult::AlwaysOverflowsHigh: | ||||||||
4680 | return OverflowResult::AlwaysOverflowsHigh; | ||||||||
4681 | case ConstantRange::OverflowResult::NeverOverflows: | ||||||||
4682 | return OverflowResult::NeverOverflows; | ||||||||
4683 | } | ||||||||
4684 | llvm_unreachable("Unknown OverflowResult")__builtin_unreachable(); | ||||||||
4685 | } | ||||||||
4686 | |||||||||
4687 | /// Combine constant ranges from computeConstantRange() and computeKnownBits(). | ||||||||
4688 | static ConstantRange computeConstantRangeIncludingKnownBits( | ||||||||
4689 | const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, | ||||||||
4690 | AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, | ||||||||
4691 | OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { | ||||||||
4692 | KnownBits Known = computeKnownBits( | ||||||||
4693 | V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); | ||||||||
4694 | ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); | ||||||||
4695 | ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); | ||||||||
4696 | ConstantRange::PreferredRangeType RangeType = | ||||||||
4697 | ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; | ||||||||
4698 | return CR1.intersectWith(CR2, RangeType); | ||||||||
4699 | } | ||||||||
4700 | |||||||||
4701 | OverflowResult llvm::computeOverflowForUnsignedMul( | ||||||||
4702 | const Value *LHS, const Value *RHS, const DataLayout &DL, | ||||||||
4703 | AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, | ||||||||
4704 | bool UseInstrInfo) { | ||||||||
4705 | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4706 | nullptr, UseInstrInfo); | ||||||||
4707 | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4708 | nullptr, UseInstrInfo); | ||||||||
4709 | ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); | ||||||||
4710 | ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); | ||||||||
4711 | return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); | ||||||||
4712 | } | ||||||||
4713 | |||||||||
4714 | OverflowResult | ||||||||
4715 | llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, | ||||||||
4716 | const DataLayout &DL, AssumptionCache *AC, | ||||||||
4717 | const Instruction *CxtI, | ||||||||
4718 | const DominatorTree *DT, bool UseInstrInfo) { | ||||||||
4719 | // Multiplying n * m significant bits yields a result of n + m significant | ||||||||
4720 | // bits. If the total number of significant bits does not exceed the | ||||||||
4721 | // result bit width (minus 1), there is no overflow. | ||||||||
4722 | // This means if we have enough leading sign bits in the operands | ||||||||
4723 | // we can guarantee that the result does not overflow. | ||||||||
4724 | // Ref: "Hacker's Delight" by Henry Warren | ||||||||
4725 | unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); | ||||||||
4726 | |||||||||
4727 | // Note that underestimating the number of sign bits gives a more | ||||||||
4728 | // conservative answer. | ||||||||
4729 | unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + | ||||||||
4730 | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); | ||||||||
4731 | |||||||||
4732 | // First handle the easy case: if we have enough sign bits there's | ||||||||
4733 | // definitely no overflow. | ||||||||
4734 | if (SignBits > BitWidth + 1) | ||||||||
4735 | return OverflowResult::NeverOverflows; | ||||||||
4736 | |||||||||
4737 | // There are two ambiguous cases where there can be no overflow: | ||||||||
4738 | // SignBits == BitWidth + 1 and | ||||||||
4739 | // SignBits == BitWidth | ||||||||
4740 | // The second case is difficult to check, therefore we only handle the | ||||||||
4741 | // first case. | ||||||||
4742 | if (SignBits == BitWidth + 1) { | ||||||||
4743 | // It overflows only when both arguments are negative and the true | ||||||||
4744 | // product is exactly the minimum negative number. | ||||||||
4745 | // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 | ||||||||
4746 | // For simplicity we just check if at least one side is not negative. | ||||||||
4747 | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4748 | nullptr, UseInstrInfo); | ||||||||
4749 | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4750 | nullptr, UseInstrInfo); | ||||||||
4751 | if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) | ||||||||
4752 | return OverflowResult::NeverOverflows; | ||||||||
4753 | } | ||||||||
4754 | return OverflowResult::MayOverflow; | ||||||||
4755 | } | ||||||||
4756 | |||||||||
4757 | OverflowResult llvm::computeOverflowForUnsignedAdd( | ||||||||
4758 | const Value *LHS, const Value *RHS, const DataLayout &DL, | ||||||||
4759 | AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, | ||||||||
4760 | bool UseInstrInfo) { | ||||||||
4761 | ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4762 | LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4763 | nullptr, UseInstrInfo); | ||||||||
4764 | ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4765 | RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, | ||||||||
4766 | nullptr, UseInstrInfo); | ||||||||
4767 | return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); | ||||||||
4768 | } | ||||||||
4769 | |||||||||
4770 | static OverflowResult computeOverflowForSignedAdd(const Value *LHS, | ||||||||
4771 | const Value *RHS, | ||||||||
4772 | const AddOperator *Add, | ||||||||
4773 | const DataLayout &DL, | ||||||||
4774 | AssumptionCache *AC, | ||||||||
4775 | const Instruction *CxtI, | ||||||||
4776 | const DominatorTree *DT) { | ||||||||
4777 | if (Add && Add->hasNoSignedWrap()) { | ||||||||
4778 | return OverflowResult::NeverOverflows; | ||||||||
4779 | } | ||||||||
4780 | |||||||||
4781 | // If LHS and RHS each have at least two sign bits, the addition will look | ||||||||
4782 | // like | ||||||||
4783 | // | ||||||||
4784 | // XX..... + | ||||||||
4785 | // YY..... | ||||||||
4786 | // | ||||||||
4787 | // If the carry into the most significant position is 0, X and Y can't both | ||||||||
4788 | // be 1 and therefore the carry out of the addition is also 0. | ||||||||
4789 | // | ||||||||
4790 | // If the carry into the most significant position is 1, X and Y can't both | ||||||||
4791 | // be 0 and therefore the carry out of the addition is also 1. | ||||||||
4792 | // | ||||||||
4793 | // Since the carry into the most significant position is always equal to | ||||||||
4794 | // the carry out of the addition, there is no signed overflow. | ||||||||
4795 | if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && | ||||||||
4796 | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) | ||||||||
4797 | return OverflowResult::NeverOverflows; | ||||||||
4798 | |||||||||
4799 | ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4800 | LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4801 | ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4802 | RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4803 | OverflowResult OR = | ||||||||
4804 | mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); | ||||||||
4805 | if (OR != OverflowResult::MayOverflow) | ||||||||
4806 | return OR; | ||||||||
4807 | |||||||||
4808 | // The remaining code needs Add to be available. Early returns if not so. | ||||||||
4809 | if (!Add) | ||||||||
4810 | return OverflowResult::MayOverflow; | ||||||||
4811 | |||||||||
4812 | // If the sign of Add is the same as at least one of the operands, this add | ||||||||
4813 | // CANNOT overflow. If this can be determined from the known bits of the | ||||||||
4814 | // operands the above signedAddMayOverflow() check will have already done so. | ||||||||
4815 | // The only other way to improve on the known bits is from an assumption, so | ||||||||
4816 | // call computeKnownBitsFromAssume() directly. | ||||||||
4817 | bool LHSOrRHSKnownNonNegative = | ||||||||
4818 | (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); | ||||||||
4819 | bool LHSOrRHSKnownNegative = | ||||||||
4820 | (LHSRange.isAllNegative() || RHSRange.isAllNegative()); | ||||||||
4821 | if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { | ||||||||
4822 | KnownBits AddKnown(LHSRange.getBitWidth()); | ||||||||
4823 | computeKnownBitsFromAssume( | ||||||||
4824 | Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); | ||||||||
4825 | if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || | ||||||||
4826 | (AddKnown.isNegative() && LHSOrRHSKnownNegative)) | ||||||||
4827 | return OverflowResult::NeverOverflows; | ||||||||
4828 | } | ||||||||
4829 | |||||||||
4830 | return OverflowResult::MayOverflow; | ||||||||
4831 | } | ||||||||
4832 | |||||||||
4833 | OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, | ||||||||
4834 | const Value *RHS, | ||||||||
4835 | const DataLayout &DL, | ||||||||
4836 | AssumptionCache *AC, | ||||||||
4837 | const Instruction *CxtI, | ||||||||
4838 | const DominatorTree *DT) { | ||||||||
4839 | // Checking for conditions implied by dominating conditions may be expensive. | ||||||||
4840 | // Limit it to usub_with_overflow calls for now. | ||||||||
4841 | if (match(CxtI, | ||||||||
4842 | m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) | ||||||||
4843 | if (auto C = | ||||||||
4844 | isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { | ||||||||
4845 | if (*C) | ||||||||
4846 | return OverflowResult::NeverOverflows; | ||||||||
4847 | return OverflowResult::AlwaysOverflowsLow; | ||||||||
4848 | } | ||||||||
4849 | ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4850 | LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4851 | ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4852 | RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4853 | return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); | ||||||||
4854 | } | ||||||||
4855 | |||||||||
4856 | OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, | ||||||||
4857 | const Value *RHS, | ||||||||
4858 | const DataLayout &DL, | ||||||||
4859 | AssumptionCache *AC, | ||||||||
4860 | const Instruction *CxtI, | ||||||||
4861 | const DominatorTree *DT) { | ||||||||
4862 | // If LHS and RHS each have at least two sign bits, the subtraction | ||||||||
4863 | // cannot overflow. | ||||||||
4864 | if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && | ||||||||
4865 | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) | ||||||||
4866 | return OverflowResult::NeverOverflows; | ||||||||
4867 | |||||||||
4868 | ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4869 | LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4870 | ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( | ||||||||
4871 | RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); | ||||||||
4872 | return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); | ||||||||
4873 | } | ||||||||
4874 | |||||||||
4875 | bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, | ||||||||
4876 | const DominatorTree &DT) { | ||||||||
4877 | SmallVector<const BranchInst *, 2> GuardingBranches; | ||||||||
4878 | SmallVector<const ExtractValueInst *, 2> Results; | ||||||||
4879 | |||||||||
4880 | for (const User *U : WO->users()) { | ||||||||
4881 | if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { | ||||||||
4882 | assert(EVI->getNumIndices() == 1 && "Obvious from CI's type")((void)0); | ||||||||
4883 | |||||||||
4884 | if (EVI->getIndices()[0] == 0) | ||||||||
4885 | Results.push_back(EVI); | ||||||||
4886 | else { | ||||||||
4887 | assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type")((void)0); | ||||||||
4888 | |||||||||
4889 | for (const auto *U : EVI->users()) | ||||||||
4890 | if (const auto *B = dyn_cast<BranchInst>(U)) { | ||||||||
4891 | assert(B->isConditional() && "How else is it using an i1?")((void)0); | ||||||||
4892 | GuardingBranches.push_back(B); | ||||||||
4893 | } | ||||||||
4894 | } | ||||||||
4895 | } else { | ||||||||
4896 | // We are using the aggregate directly in a way we don't want to analyze | ||||||||
4897 | // here (storing it to a global, say). | ||||||||
4898 | return false; | ||||||||
4899 | } | ||||||||
4900 | } | ||||||||
4901 | |||||||||
4902 | auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { | ||||||||
4903 | BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); | ||||||||
4904 | if (!NoWrapEdge.isSingleEdge()) | ||||||||
4905 | return false; | ||||||||
4906 | |||||||||
4907 | // Check if all users of the add are provably no-wrap. | ||||||||
4908 | for (const auto *Result : Results) { | ||||||||
4909 | // If the extractvalue itself is not executed on overflow, the we don't | ||||||||
4910 | // need to check each use separately, since domination is transitive. | ||||||||
4911 | if (DT.dominates(NoWrapEdge, Result->getParent())) | ||||||||
4912 | continue; | ||||||||
4913 | |||||||||
4914 | for (auto &RU : Result->uses()) | ||||||||
4915 | if (!DT.dominates(NoWrapEdge, RU)) | ||||||||
4916 | return false; | ||||||||
4917 | } | ||||||||
4918 | |||||||||
4919 | return true; | ||||||||
4920 | }; | ||||||||
4921 | |||||||||
4922 | return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); | ||||||||
4923 | } | ||||||||
4924 | |||||||||
4925 | static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { | ||||||||
4926 | // See whether I has flags that may create poison | ||||||||
4927 | if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { | ||||||||
4928 | if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) | ||||||||
4929 | return true; | ||||||||
4930 | } | ||||||||
4931 | if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) | ||||||||
4932 | if (ExactOp->isExact()) | ||||||||
4933 | return true; | ||||||||
4934 | if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { | ||||||||
4935 | auto FMF = FP->getFastMathFlags(); | ||||||||
4936 | if (FMF.noNaNs() || FMF.noInfs()) | ||||||||
4937 | return true; | ||||||||
4938 | } | ||||||||
4939 | |||||||||
4940 | unsigned Opcode = Op->getOpcode(); | ||||||||
4941 | |||||||||
4942 | // Check whether opcode is a poison/undef-generating operation | ||||||||
4943 | switch (Opcode) { | ||||||||
4944 | case Instruction::Shl: | ||||||||
4945 | case Instruction::AShr: | ||||||||
4946 | case Instruction::LShr: { | ||||||||
4947 | // Shifts return poison if shiftwidth is larger than the bitwidth. | ||||||||
4948 | if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { | ||||||||
4949 | SmallVector<Constant *, 4> ShiftAmounts; | ||||||||
4950 | if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { | ||||||||
4951 | unsigned NumElts = FVTy->getNumElements(); | ||||||||
4952 | for (unsigned i = 0; i < NumElts; ++i) | ||||||||
4953 | ShiftAmounts.push_back(C->getAggregateElement(i)); | ||||||||
4954 | } else if (isa<ScalableVectorType>(C->getType())) | ||||||||
4955 | return true; // Can't tell, just return true to be safe | ||||||||
4956 | else | ||||||||
4957 | ShiftAmounts.push_back(C); | ||||||||
4958 | |||||||||
4959 | bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { | ||||||||
4960 | auto *CI = dyn_cast_or_null<ConstantInt>(C); | ||||||||
4961 | return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); | ||||||||
4962 | }); | ||||||||
4963 | return !Safe; | ||||||||
4964 | } | ||||||||
4965 | return true; | ||||||||
4966 | } | ||||||||
4967 | case Instruction::FPToSI: | ||||||||
4968 | case Instruction::FPToUI: | ||||||||
4969 | // fptosi/ui yields poison if the resulting value does not fit in the | ||||||||
4970 | // destination type. | ||||||||
4971 | return true; | ||||||||
4972 | case Instruction::Call: | ||||||||
4973 | if (auto *II = dyn_cast<IntrinsicInst>(Op)) { | ||||||||
4974 | switch (II->getIntrinsicID()) { | ||||||||
4975 | // TODO: Add more intrinsics. | ||||||||
4976 | case Intrinsic::ctpop: | ||||||||
4977 | case Intrinsic::sadd_with_overflow: | ||||||||
4978 | case Intrinsic::ssub_with_overflow: | ||||||||
4979 | case Intrinsic::smul_with_overflow: | ||||||||
4980 | case Intrinsic::uadd_with_overflow: | ||||||||
4981 | case Intrinsic::usub_with_overflow: | ||||||||
4982 | case Intrinsic::umul_with_overflow: | ||||||||
4983 | return false; | ||||||||
4984 | } | ||||||||
4985 | } | ||||||||
4986 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||||
4987 | case Instruction::CallBr: | ||||||||
4988 | case Instruction::Invoke: { | ||||||||
4989 | const auto *CB = cast<CallBase>(Op); | ||||||||
4990 | return !CB->hasRetAttr(Attribute::NoUndef); | ||||||||
4991 | } | ||||||||
4992 | case Instruction::InsertElement: | ||||||||
4993 | case Instruction::ExtractElement: { | ||||||||
4994 | // If index exceeds the length of the vector, it returns poison | ||||||||
4995 | auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); | ||||||||
4996 | unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; | ||||||||
4997 | auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); | ||||||||
4998 | if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) | ||||||||
4999 | return true; | ||||||||
5000 | return false; | ||||||||
5001 | } | ||||||||
5002 | case Instruction::ShuffleVector: { | ||||||||
5003 | // shufflevector may return undef. | ||||||||
5004 | if (PoisonOnly) | ||||||||
5005 | return false; | ||||||||
5006 | ArrayRef<int> Mask = isa<ConstantExpr>(Op) | ||||||||
5007 | ? cast<ConstantExpr>(Op)->getShuffleMask() | ||||||||
5008 | : cast<ShuffleVectorInst>(Op)->getShuffleMask(); | ||||||||
5009 | return is_contained(Mask, UndefMaskElem); | ||||||||
5010 | } | ||||||||
5011 | case Instruction::FNeg: | ||||||||
5012 | case Instruction::PHI: | ||||||||
5013 | case Instruction::Select: | ||||||||
5014 | case Instruction::URem: | ||||||||
5015 | case Instruction::SRem: | ||||||||
5016 | case Instruction::ExtractValue: | ||||||||
5017 | case Instruction::InsertValue: | ||||||||
5018 | case Instruction::Freeze: | ||||||||
5019 | case Instruction::ICmp: | ||||||||
5020 | case Instruction::FCmp: | ||||||||
5021 | return false; | ||||||||
5022 | case Instruction::GetElementPtr: { | ||||||||
5023 | const auto *GEP = cast<GEPOperator>(Op); | ||||||||
5024 | return GEP->isInBounds(); | ||||||||
5025 | } | ||||||||
5026 | default: { | ||||||||
5027 | const auto *CE = dyn_cast<ConstantExpr>(Op); | ||||||||
5028 | if (isa<CastInst>(Op) || (CE && CE->isCast())) | ||||||||
5029 | return false; | ||||||||
5030 | else if (Instruction::isBinaryOp(Opcode)) | ||||||||
5031 | return false; | ||||||||
5032 | // Be conservative and return true. | ||||||||
5033 | return true; | ||||||||
5034 | } | ||||||||
5035 | } | ||||||||
5036 | } | ||||||||
5037 | |||||||||
5038 | bool llvm::canCreateUndefOrPoison(const Operator *Op) { | ||||||||
5039 | return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); | ||||||||
5040 | } | ||||||||
5041 | |||||||||
5042 | bool llvm::canCreatePoison(const Operator *Op) { | ||||||||
5043 | return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); | ||||||||
5044 | } | ||||||||
5045 | |||||||||
5046 | static bool directlyImpliesPoison(const Value *ValAssumedPoison, | ||||||||
5047 | const Value *V, unsigned Depth) { | ||||||||
5048 | if (ValAssumedPoison == V) | ||||||||
5049 | return true; | ||||||||
5050 | |||||||||
5051 | const unsigned MaxDepth = 2; | ||||||||
5052 | if (Depth >= MaxDepth) | ||||||||
5053 | return false; | ||||||||
5054 | |||||||||
5055 | if (const auto *I = dyn_cast<Instruction>(V)) { | ||||||||
5056 | if (propagatesPoison(cast<Operator>(I))) | ||||||||
5057 | return any_of(I->operands(), [=](const Value *Op) { | ||||||||
5058 | return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); | ||||||||
5059 | }); | ||||||||
5060 | |||||||||
5061 | // 'select ValAssumedPoison, _, _' is poison. | ||||||||
5062 | if (const auto *SI = dyn_cast<SelectInst>(I)) | ||||||||
5063 | return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), | ||||||||
5064 | Depth + 1); | ||||||||
5065 | // V = extractvalue V0, idx | ||||||||
5066 | // V2 = extractvalue V0, idx2 | ||||||||
5067 | // V0's elements are all poison or not. (e.g., add_with_overflow) | ||||||||
5068 | const WithOverflowInst *II; | ||||||||
5069 | if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && | ||||||||
5070 | (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || | ||||||||
5071 | llvm::is_contained(II->arg_operands(), ValAssumedPoison))) | ||||||||
5072 | return true; | ||||||||
5073 | } | ||||||||
5074 | return false; | ||||||||
5075 | } | ||||||||
5076 | |||||||||
5077 | static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, | ||||||||
5078 | unsigned Depth) { | ||||||||
5079 | if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) | ||||||||
5080 | return true; | ||||||||
5081 | |||||||||
5082 | if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) | ||||||||
5083 | return true; | ||||||||
5084 | |||||||||
5085 | const unsigned MaxDepth = 2; | ||||||||
5086 | if (Depth >= MaxDepth) | ||||||||
5087 | return false; | ||||||||
5088 | |||||||||
5089 | const auto *I = dyn_cast<Instruction>(ValAssumedPoison); | ||||||||
5090 | if (I && !canCreatePoison(cast<Operator>(I))) { | ||||||||
5091 | return all_of(I->operands(), [=](const Value *Op) { | ||||||||
5092 | return impliesPoison(Op, V, Depth + 1); | ||||||||
5093 | }); | ||||||||
5094 | } | ||||||||
5095 | return false; | ||||||||
5096 | } | ||||||||
5097 | |||||||||
5098 | bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { | ||||||||
5099 | return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); | ||||||||
5100 | } | ||||||||
5101 | |||||||||
5102 | static bool programUndefinedIfUndefOrPoison(const Value *V, | ||||||||
5103 | bool PoisonOnly); | ||||||||
5104 | |||||||||
5105 | static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, | ||||||||
5106 | AssumptionCache *AC, | ||||||||
5107 | const Instruction *CtxI, | ||||||||
5108 | const DominatorTree *DT, | ||||||||
5109 | unsigned Depth, bool PoisonOnly) { | ||||||||
5110 | if (Depth >= MaxAnalysisRecursionDepth) | ||||||||
5111 | return false; | ||||||||
5112 | |||||||||
5113 | if (isa<MetadataAsValue>(V)) | ||||||||
5114 | return false; | ||||||||
5115 | |||||||||
5116 | if (const auto *A = dyn_cast<Argument>(V)) { | ||||||||
5117 | if (A->hasAttribute(Attribute::NoUndef)) | ||||||||
5118 | return true; | ||||||||
5119 | } | ||||||||
5120 | |||||||||
5121 | if (auto *C = dyn_cast<Constant>(V)) { | ||||||||
5122 | if (isa<UndefValue>(C)) | ||||||||
5123 | return PoisonOnly && !isa<PoisonValue>(C); | ||||||||
5124 | |||||||||
5125 | if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || | ||||||||
5126 | isa<ConstantPointerNull>(C) || isa<Function>(C)) | ||||||||
5127 | return true; | ||||||||
5128 | |||||||||
5129 | if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) | ||||||||
5130 | return (PoisonOnly ? !C->containsPoisonElement() | ||||||||
5131 | : !C->containsUndefOrPoisonElement()) && | ||||||||
5132 | !C->containsConstantExpression(); | ||||||||
5133 | } | ||||||||
5134 | |||||||||
5135 | // Strip cast operations from a pointer value. | ||||||||
5136 | // Note that stripPointerCastsSameRepresentation can strip off getelementptr | ||||||||
5137 | // inbounds with zero offset. To guarantee that the result isn't poison, the | ||||||||
5138 | // stripped pointer is checked as it has to be pointing into an allocated | ||||||||
5139 | // object or be null `null` to ensure `inbounds` getelement pointers with a | ||||||||
5140 | // zero offset could not produce poison. | ||||||||
5141 | // It can strip off addrspacecast that do not change bit representation as | ||||||||
5142 | // well. We believe that such addrspacecast is equivalent to no-op. | ||||||||
5143 | auto *StrippedV = V->stripPointerCastsSameRepresentation(); | ||||||||
5144 | if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || | ||||||||
5145 | isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) | ||||||||
5146 | return true; | ||||||||
5147 | |||||||||
5148 | auto OpCheck = [&](const Value *V) { | ||||||||
5149 | return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, | ||||||||
5150 | PoisonOnly); | ||||||||
5151 | }; | ||||||||
5152 | |||||||||
5153 | if (auto *Opr = dyn_cast<Operator>(V)) { | ||||||||
5154 | // If the value is a freeze instruction, then it can never | ||||||||
5155 | // be undef or poison. | ||||||||
5156 | if (isa<FreezeInst>(V)) | ||||||||
5157 | return true; | ||||||||
5158 | |||||||||
5159 | if (const auto *CB = dyn_cast<CallBase>(V)) { | ||||||||
5160 | if (CB->hasRetAttr(Attribute::NoUndef)) | ||||||||
5161 | return true; | ||||||||
5162 | } | ||||||||
5163 | |||||||||
5164 | if (const auto *PN = dyn_cast<PHINode>(V)) { | ||||||||
5165 | unsigned Num = PN->getNumIncomingValues(); | ||||||||
5166 | bool IsWellDefined = true; | ||||||||
5167 | for (unsigned i = 0; i < Num; ++i) { | ||||||||
5168 | auto *TI = PN->getIncomingBlock(i)->getTerminator(); | ||||||||
5169 | if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, | ||||||||
5170 | DT, Depth + 1, PoisonOnly)) { | ||||||||
5171 | IsWellDefined = false; | ||||||||
5172 | break; | ||||||||
5173 | } | ||||||||
5174 | } | ||||||||
5175 | if (IsWellDefined) | ||||||||
5176 | return true; | ||||||||
5177 | } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) | ||||||||
5178 | return true; | ||||||||
5179 | } | ||||||||
5180 | |||||||||
5181 | if (auto *I = dyn_cast<LoadInst>(V)) | ||||||||
5182 | if (I->getMetadata(LLVMContext::MD_noundef)) | ||||||||
5183 | return true; | ||||||||
5184 | |||||||||
5185 | if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) | ||||||||
5186 | return true; | ||||||||
5187 | |||||||||
5188 | // CxtI may be null or a cloned instruction. | ||||||||
5189 | if (!CtxI || !CtxI->getParent() || !DT) | ||||||||
5190 | return false; | ||||||||
5191 | |||||||||
5192 | auto *DNode = DT->getNode(CtxI->getParent()); | ||||||||
5193 | if (!DNode) | ||||||||
5194 | // Unreachable block | ||||||||
5195 | return false; | ||||||||
5196 | |||||||||
5197 | // If V is used as a branch condition before reaching CtxI, V cannot be | ||||||||
5198 | // undef or poison. | ||||||||
5199 | // br V, BB1, BB2 | ||||||||
5200 | // BB1: | ||||||||
5201 | // CtxI ; V cannot be undef or poison here | ||||||||
5202 | auto *Dominator = DNode->getIDom(); | ||||||||
5203 | while (Dominator) { | ||||||||
5204 | auto *TI = Dominator->getBlock()->getTerminator(); | ||||||||
5205 | |||||||||
5206 | Value *Cond = nullptr; | ||||||||
5207 | if (auto BI = dyn_cast<BranchInst>(TI)) { | ||||||||
5208 | if (BI->isConditional()) | ||||||||
5209 | Cond = BI->getCondition(); | ||||||||
5210 | } else if (auto SI = dyn_cast<SwitchInst>(TI)) { | ||||||||
5211 | Cond = SI->getCondition(); | ||||||||
5212 | } | ||||||||
5213 | |||||||||
5214 | if (Cond) { | ||||||||
5215 | if (Cond == V) | ||||||||
5216 | return true; | ||||||||
5217 | else if (PoisonOnly && isa<Operator>(Cond)) { | ||||||||
5218 | // For poison, we can analyze further | ||||||||
5219 | auto *Opr = cast<Operator>(Cond); | ||||||||
5220 | if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) | ||||||||
5221 | return true; | ||||||||
5222 | } | ||||||||
5223 | } | ||||||||
5224 | |||||||||
5225 | Dominator = Dominator->getIDom(); | ||||||||
5226 | } | ||||||||
5227 | |||||||||
5228 | SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; | ||||||||
5229 | if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) | ||||||||
5230 | return true; | ||||||||
5231 | |||||||||
5232 | return false; | ||||||||
5233 | } | ||||||||
5234 | |||||||||
5235 | bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, | ||||||||
5236 | const Instruction *CtxI, | ||||||||
5237 | const DominatorTree *DT, | ||||||||
5238 | unsigned Depth) { | ||||||||
5239 | return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); | ||||||||
5240 | } | ||||||||
5241 | |||||||||
5242 | bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, | ||||||||
5243 | const Instruction *CtxI, | ||||||||
5244 | const DominatorTree *DT, unsigned Depth) { | ||||||||
5245 | return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); | ||||||||
5246 | } | ||||||||
5247 | |||||||||
5248 | OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, | ||||||||
5249 | const DataLayout &DL, | ||||||||
5250 | AssumptionCache *AC, | ||||||||
5251 | const Instruction *CxtI, | ||||||||
5252 | const DominatorTree *DT) { | ||||||||
5253 | return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), | ||||||||
5254 | Add, DL, AC, CxtI, DT); | ||||||||
5255 | } | ||||||||
5256 | |||||||||
5257 | OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, | ||||||||
5258 | const Value *RHS, | ||||||||
5259 | const DataLayout &DL, | ||||||||
5260 | AssumptionCache *AC, | ||||||||
5261 | const Instruction *CxtI, | ||||||||
5262 | const DominatorTree *DT) { | ||||||||
5263 | return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); | ||||||||
5264 | } | ||||||||
5265 | |||||||||
5266 | bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { | ||||||||
5267 | // Note: An atomic operation isn't guaranteed to return in a reasonable amount | ||||||||
5268 | // of time because it's possible for another thread to interfere with it for an | ||||||||
5269 | // arbitrary length of time, but programs aren't allowed to rely on that. | ||||||||
5270 | |||||||||
5271 | // If there is no successor, then execution can't transfer to it. | ||||||||
5272 | if (isa<ReturnInst>(I)) | ||||||||
5273 | return false; | ||||||||
5274 | if (isa<UnreachableInst>(I)) | ||||||||
5275 | return false; | ||||||||
5276 | |||||||||
5277 | // Note: Do not add new checks here; instead, change Instruction::mayThrow or | ||||||||
5278 | // Instruction::willReturn. | ||||||||
5279 | // | ||||||||
5280 | // FIXME: Move this check into Instruction::willReturn. | ||||||||
5281 | if (isa<CatchPadInst>(I)) { | ||||||||
5282 | switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { | ||||||||
5283 | default: | ||||||||
5284 | // A catchpad may invoke exception object constructors and such, which | ||||||||
5285 | // in some languages can be arbitrary code, so be conservative by default. | ||||||||
5286 | return false; | ||||||||
5287 | case EHPersonality::CoreCLR: | ||||||||
5288 | // For CoreCLR, it just involves a type test. | ||||||||
5289 | return true; | ||||||||
5290 | } | ||||||||
5291 | } | ||||||||
5292 | |||||||||
5293 | // An instruction that returns without throwing must transfer control flow | ||||||||
5294 | // to a successor. | ||||||||
5295 | return !I->mayThrow() && I->willReturn(); | ||||||||
5296 | } | ||||||||
5297 | |||||||||
5298 | bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { | ||||||||
5299 | // TODO: This is slightly conservative for invoke instruction since exiting | ||||||||
5300 | // via an exception *is* normal control for them. | ||||||||
5301 | for (const Instruction &I : *BB) | ||||||||
5302 | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | ||||||||
5303 | return false; | ||||||||
5304 | return true; | ||||||||
5305 | } | ||||||||
5306 | |||||||||
5307 | bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, | ||||||||
5308 | const Loop *L) { | ||||||||
5309 | // The loop header is guaranteed to be executed for every iteration. | ||||||||
5310 | // | ||||||||
5311 | // FIXME: Relax this constraint to cover all basic blocks that are | ||||||||
5312 | // guaranteed to be executed at every iteration. | ||||||||
5313 | if (I->getParent() != L->getHeader()) return false; | ||||||||
5314 | |||||||||
5315 | for (const Instruction &LI : *L->getHeader()) { | ||||||||
5316 | if (&LI == I) return true; | ||||||||
5317 | if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; | ||||||||
5318 | } | ||||||||
5319 | llvm_unreachable("Instruction not contained in its own parent basic block.")__builtin_unreachable(); | ||||||||
5320 | } | ||||||||
5321 | |||||||||
5322 | bool llvm::propagatesPoison(const Operator *I) { | ||||||||
5323 | switch (I->getOpcode()) { | ||||||||
5324 | case Instruction::Freeze: | ||||||||
5325 | case Instruction::Select: | ||||||||
5326 | case Instruction::PHI: | ||||||||
5327 | case Instruction::Invoke: | ||||||||
5328 | return false; | ||||||||
5329 | case Instruction::Call: | ||||||||
5330 | if (auto *II = dyn_cast<IntrinsicInst>(I)) { | ||||||||
5331 | switch (II->getIntrinsicID()) { | ||||||||
5332 | // TODO: Add more intrinsics. | ||||||||
5333 | case Intrinsic::sadd_with_overflow: | ||||||||
5334 | case Intrinsic::ssub_with_overflow: | ||||||||
5335 | case Intrinsic::smul_with_overflow: | ||||||||
5336 | case Intrinsic::uadd_with_overflow: | ||||||||
5337 | case Intrinsic::usub_with_overflow: | ||||||||
5338 | case Intrinsic::umul_with_overflow: | ||||||||
5339 | // If an input is a vector containing a poison element, the | ||||||||
5340 | // two output vectors (calculated results, overflow bits)' | ||||||||
5341 | // corresponding lanes are poison. | ||||||||
5342 | return true; | ||||||||
5343 | case Intrinsic::ctpop: | ||||||||
5344 | return true; | ||||||||
5345 | } | ||||||||
5346 | } | ||||||||
5347 | return false; | ||||||||
5348 | case Instruction::ICmp: | ||||||||
5349 | case Instruction::FCmp: | ||||||||
5350 | case Instruction::GetElementPtr: | ||||||||
5351 | return true; | ||||||||
5352 | default: | ||||||||
5353 | if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) | ||||||||
5354 | return true; | ||||||||
5355 | |||||||||
5356 | // Be conservative and return false. | ||||||||
5357 | return false; | ||||||||
5358 | } | ||||||||
5359 | } | ||||||||
5360 | |||||||||
5361 | void llvm::getGuaranteedWellDefinedOps( | ||||||||
5362 | const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { | ||||||||
5363 | switch (I->getOpcode()) { | ||||||||
5364 | case Instruction::Store: | ||||||||
5365 | Operands.insert(cast<StoreInst>(I)->getPointerOperand()); | ||||||||
5366 | break; | ||||||||
5367 | |||||||||
5368 | case Instruction::Load: | ||||||||
5369 | Operands.insert(cast<LoadInst>(I)->getPointerOperand()); | ||||||||
5370 | break; | ||||||||
5371 | |||||||||
5372 | // Since dereferenceable attribute imply noundef, atomic operations | ||||||||
5373 | // also implicitly have noundef pointers too | ||||||||
5374 | case Instruction::AtomicCmpXchg: | ||||||||
5375 | Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); | ||||||||
5376 | break; | ||||||||
5377 | |||||||||
5378 | case Instruction::AtomicRMW: | ||||||||
5379 | Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); | ||||||||
5380 | break; | ||||||||
5381 | |||||||||
5382 | case Instruction::Call: | ||||||||
5383 | case Instruction::Invoke: { | ||||||||
5384 | const CallBase *CB = cast<CallBase>(I); | ||||||||
5385 | if (CB->isIndirectCall()) | ||||||||
5386 | Operands.insert(CB->getCalledOperand()); | ||||||||
5387 | for (unsigned i = 0; i < CB->arg_size(); ++i) { | ||||||||
5388 | if (CB->paramHasAttr(i, Attribute::NoUndef) || | ||||||||
5389 | CB->paramHasAttr(i, Attribute::Dereferenceable)) | ||||||||
5390 | Operands.insert(CB->getArgOperand(i)); | ||||||||
5391 | } | ||||||||
5392 | break; | ||||||||
5393 | } | ||||||||
5394 | |||||||||
5395 | default: | ||||||||
5396 | break; | ||||||||
5397 | } | ||||||||
5398 | } | ||||||||
5399 | |||||||||
5400 | void llvm::getGuaranteedNonPoisonOps(const Instruction *I, | ||||||||
5401 | SmallPtrSetImpl<const Value *> &Operands) { | ||||||||
5402 | getGuaranteedWellDefinedOps(I, Operands); | ||||||||
5403 | switch (I->getOpcode()) { | ||||||||
5404 | // Divisors of these operations are allowed to be partially undef. | ||||||||
5405 | case Instruction::UDiv: | ||||||||
5406 | case Instruction::SDiv: | ||||||||
5407 | case Instruction::URem: | ||||||||
5408 | case Instruction::SRem: | ||||||||
5409 | Operands.insert(I->getOperand(1)); | ||||||||
5410 | break; | ||||||||
5411 | |||||||||
5412 | default: | ||||||||
5413 | break; | ||||||||
5414 | } | ||||||||
5415 | } | ||||||||
5416 | |||||||||
5417 | bool llvm::mustTriggerUB(const Instruction *I, | ||||||||
5418 | const SmallSet<const Value *, 16>& KnownPoison) { | ||||||||
5419 | SmallPtrSet<const Value *, 4> NonPoisonOps; | ||||||||
5420 | getGuaranteedNonPoisonOps(I, NonPoisonOps); | ||||||||
5421 | |||||||||
5422 | for (const auto *V : NonPoisonOps) | ||||||||
5423 | if (KnownPoison.count(V)) | ||||||||
5424 | return true; | ||||||||
5425 | |||||||||
5426 | return false; | ||||||||
5427 | } | ||||||||
5428 | |||||||||
5429 | static bool programUndefinedIfUndefOrPoison(const Value *V, | ||||||||
5430 | bool PoisonOnly) { | ||||||||
5431 | // We currently only look for uses of values within the same basic | ||||||||
5432 | // block, as that makes it easier to guarantee that the uses will be | ||||||||
5433 | // executed given that Inst is executed. | ||||||||
5434 | // | ||||||||
5435 | // FIXME: Expand this to consider uses beyond the same basic block. To do | ||||||||
5436 | // this, look out for the distinction between post-dominance and strong | ||||||||
5437 | // post-dominance. | ||||||||
5438 | const BasicBlock *BB = nullptr; | ||||||||
5439 | BasicBlock::const_iterator Begin; | ||||||||
5440 | if (const auto *Inst = dyn_cast<Instruction>(V)) { | ||||||||
5441 | BB = Inst->getParent(); | ||||||||
5442 | Begin = Inst->getIterator(); | ||||||||
5443 | Begin++; | ||||||||
5444 | } else if (const auto *Arg = dyn_cast<Argument>(V)) { | ||||||||
5445 | BB = &Arg->getParent()->getEntryBlock(); | ||||||||
5446 | Begin = BB->begin(); | ||||||||
5447 | } else { | ||||||||
5448 | return false; | ||||||||
5449 | } | ||||||||
5450 | |||||||||
5451 | // Limit number of instructions we look at, to avoid scanning through large | ||||||||
5452 | // blocks. The current limit is chosen arbitrarily. | ||||||||
5453 | unsigned ScanLimit = 32; | ||||||||
5454 | BasicBlock::const_iterator End = BB->end(); | ||||||||
5455 | |||||||||
5456 | if (!PoisonOnly) { | ||||||||
5457 | // Since undef does not propagate eagerly, be conservative & just check | ||||||||
5458 | // whether a value is directly passed to an instruction that must take | ||||||||
5459 | // well-defined operands. | ||||||||
5460 | |||||||||
5461 | for (auto &I : make_range(Begin, End)) { | ||||||||
5462 | if (isa<DbgInfoIntrinsic>(I)) | ||||||||
5463 | continue; | ||||||||
5464 | if (--ScanLimit == 0) | ||||||||
5465 | break; | ||||||||
5466 | |||||||||
5467 | SmallPtrSet<const Value *, 4> WellDefinedOps; | ||||||||
5468 | getGuaranteedWellDefinedOps(&I, WellDefinedOps); | ||||||||
5469 | if (WellDefinedOps.contains(V)) | ||||||||
5470 | return true; | ||||||||
5471 | |||||||||
5472 | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | ||||||||
5473 | break; | ||||||||
5474 | } | ||||||||
5475 | return false; | ||||||||
5476 | } | ||||||||
5477 | |||||||||
5478 | // Set of instructions that we have proved will yield poison if Inst | ||||||||
5479 | // does. | ||||||||
5480 | SmallSet<const Value *, 16> YieldsPoison; | ||||||||
5481 | SmallSet<const BasicBlock *, 4> Visited; | ||||||||
5482 | |||||||||
5483 | YieldsPoison.insert(V); | ||||||||
5484 | auto Propagate = [&](const User *User) { | ||||||||
5485 | if (propagatesPoison(cast<Operator>(User))) | ||||||||
5486 | YieldsPoison.insert(User); | ||||||||
5487 | }; | ||||||||
5488 | for_each(V->users(), Propagate); | ||||||||
5489 | Visited.insert(BB); | ||||||||
5490 | |||||||||
5491 | while (true) { | ||||||||
5492 | for (auto &I : make_range(Begin, End)) { | ||||||||
5493 | if (isa<DbgInfoIntrinsic>(I)) | ||||||||
5494 | continue; | ||||||||
5495 | if (--ScanLimit == 0) | ||||||||
5496 | return false; | ||||||||
5497 | if (mustTriggerUB(&I, YieldsPoison)) | ||||||||
5498 | return true; | ||||||||
5499 | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | ||||||||
5500 | return false; | ||||||||
5501 | |||||||||
5502 | // Mark poison that propagates from I through uses of I. | ||||||||
5503 | if (YieldsPoison.count(&I)) | ||||||||
5504 | for_each(I.users(), Propagate); | ||||||||
5505 | } | ||||||||
5506 | |||||||||
5507 | BB = BB->getSingleSuccessor(); | ||||||||
5508 | if (!BB || !Visited.insert(BB).second) | ||||||||
5509 | break; | ||||||||
5510 | |||||||||
5511 | Begin = BB->getFirstNonPHI()->getIterator(); | ||||||||
5512 | End = BB->end(); | ||||||||
5513 | } | ||||||||
5514 | return false; | ||||||||
5515 | } | ||||||||
5516 | |||||||||
5517 | bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { | ||||||||
5518 | return ::programUndefinedIfUndefOrPoison(Inst, false); | ||||||||
5519 | } | ||||||||
5520 | |||||||||
5521 | bool llvm::programUndefinedIfPoison(const Instruction *Inst) { | ||||||||
5522 | return ::programUndefinedIfUndefOrPoison(Inst, true); | ||||||||
5523 | } | ||||||||
5524 | |||||||||
5525 | static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { | ||||||||
5526 | if (FMF.noNaNs()) | ||||||||
5527 | return true; | ||||||||
5528 | |||||||||
5529 | if (auto *C = dyn_cast<ConstantFP>(V)) | ||||||||
5530 | return !C->isNaN(); | ||||||||
5531 | |||||||||
5532 | if (auto *C = dyn_cast<ConstantDataVector>(V)) { | ||||||||
5533 | if (!C->getElementType()->isFloatingPointTy()) | ||||||||
5534 | return false; | ||||||||
5535 | for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { | ||||||||
5536 | if (C->getElementAsAPFloat(I).isNaN()) | ||||||||
5537 | return false; | ||||||||
5538 | } | ||||||||
5539 | return true; | ||||||||
5540 | } | ||||||||
5541 | |||||||||
5542 | if (isa<ConstantAggregateZero>(V)) | ||||||||
5543 | return true; | ||||||||
5544 | |||||||||
5545 | return false; | ||||||||
5546 | } | ||||||||
5547 | |||||||||
5548 | static bool isKnownNonZero(const Value *V) { | ||||||||
5549 | if (auto *C = dyn_cast<ConstantFP>(V)) | ||||||||
5550 | return !C->isZero(); | ||||||||
5551 | |||||||||
5552 | if (auto *C = dyn_cast<ConstantDataVector>(V)) { | ||||||||
5553 | if (!C->getElementType()->isFloatingPointTy()) | ||||||||
5554 | return false; | ||||||||
5555 | for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { | ||||||||
5556 | if (C->getElementAsAPFloat(I).isZero()) | ||||||||
5557 | return false; | ||||||||
5558 | } | ||||||||
5559 | return true; | ||||||||
5560 | } | ||||||||
5561 | |||||||||
5562 | return false; | ||||||||
5563 | } | ||||||||
5564 | |||||||||
5565 | /// Match clamp pattern for float types without care about NaNs or signed zeros. | ||||||||
5566 | /// Given non-min/max outer cmp/select from the clamp pattern this | ||||||||
5567 | /// function recognizes if it can be substitued by a "canonical" min/max | ||||||||
5568 | /// pattern. | ||||||||
5569 | static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, | ||||||||
5570 | Value *CmpLHS, Value *CmpRHS, | ||||||||
5571 | Value *TrueVal, Value *FalseVal, | ||||||||
5572 | Value *&LHS, Value *&RHS) { | ||||||||
5573 | // Try to match | ||||||||
5574 | // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) | ||||||||
5575 | // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) | ||||||||
5576 | // and return description of the outer Max/Min. | ||||||||
5577 | |||||||||
5578 | // First, check if select has inverse order: | ||||||||
5579 | if (CmpRHS == FalseVal) { | ||||||||
5580 | std::swap(TrueVal, FalseVal); | ||||||||
5581 | Pred = CmpInst::getInversePredicate(Pred); | ||||||||
5582 | } | ||||||||
5583 | |||||||||
5584 | // Assume success now. If there's no match, callers should not use these anyway. | ||||||||
5585 | LHS = TrueVal; | ||||||||
5586 | RHS = FalseVal; | ||||||||
5587 | |||||||||
5588 | const APFloat *FC1; | ||||||||
5589 | if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) | ||||||||
5590 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5591 | |||||||||
5592 | const APFloat *FC2; | ||||||||
5593 | switch (Pred) { | ||||||||
5594 | case CmpInst::FCMP_OLT: | ||||||||
5595 | case CmpInst::FCMP_OLE: | ||||||||
5596 | case CmpInst::FCMP_ULT: | ||||||||
5597 | case CmpInst::FCMP_ULE: | ||||||||
5598 | if (match(FalseVal, | ||||||||
5599 | m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), | ||||||||
5600 | m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && | ||||||||
5601 | *FC1 < *FC2) | ||||||||
5602 | return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; | ||||||||
5603 | break; | ||||||||
5604 | case CmpInst::FCMP_OGT: | ||||||||
5605 | case CmpInst::FCMP_OGE: | ||||||||
5606 | case CmpInst::FCMP_UGT: | ||||||||
5607 | case CmpInst::FCMP_UGE: | ||||||||
5608 | if (match(FalseVal, | ||||||||
5609 | m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), | ||||||||
5610 | m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && | ||||||||
5611 | *FC1 > *FC2) | ||||||||
5612 | return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; | ||||||||
5613 | break; | ||||||||
5614 | default: | ||||||||
5615 | break; | ||||||||
5616 | } | ||||||||
5617 | |||||||||
5618 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5619 | } | ||||||||
5620 | |||||||||
5621 | /// Recognize variations of: | ||||||||
5622 | /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) | ||||||||
5623 | static SelectPatternResult matchClamp(CmpInst::Predicate Pred, | ||||||||
5624 | Value *CmpLHS, Value *CmpRHS, | ||||||||
5625 | Value *TrueVal, Value *FalseVal) { | ||||||||
5626 | // Swap the select operands and predicate to match the patterns below. | ||||||||
5627 | if (CmpRHS != TrueVal) { | ||||||||
5628 | Pred = ICmpInst::getSwappedPredicate(Pred); | ||||||||
5629 | std::swap(TrueVal, FalseVal); | ||||||||
5630 | } | ||||||||
5631 | const APInt *C1; | ||||||||
5632 | if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { | ||||||||
5633 | const APInt *C2; | ||||||||
5634 | // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) | ||||||||
5635 | if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && | ||||||||
5636 | C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) | ||||||||
5637 | return {SPF_SMAX, SPNB_NA, false}; | ||||||||
5638 | |||||||||
5639 | // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) | ||||||||
5640 | if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && | ||||||||
5641 | C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) | ||||||||
5642 | return {SPF_SMIN, SPNB_NA, false}; | ||||||||
5643 | |||||||||
5644 | // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) | ||||||||
5645 | if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && | ||||||||
5646 | C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) | ||||||||
5647 | return {SPF_UMAX, SPNB_NA, false}; | ||||||||
5648 | |||||||||
5649 | // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) | ||||||||
5650 | if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && | ||||||||
5651 | C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) | ||||||||
5652 | return {SPF_UMIN, SPNB_NA, false}; | ||||||||
5653 | } | ||||||||
5654 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5655 | } | ||||||||
5656 | |||||||||
5657 | /// Recognize variations of: | ||||||||
5658 | /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) | ||||||||
5659 | static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, | ||||||||
5660 | Value *CmpLHS, Value *CmpRHS, | ||||||||
5661 | Value *TVal, Value *FVal, | ||||||||
5662 | unsigned Depth) { | ||||||||
5663 | // TODO: Allow FP min/max with nnan/nsz. | ||||||||
5664 | assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison")((void)0); | ||||||||
5665 | |||||||||
5666 | Value *A = nullptr, *B = nullptr; | ||||||||
5667 | SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); | ||||||||
5668 | if (!SelectPatternResult::isMinOrMax(L.Flavor)) | ||||||||
5669 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5670 | |||||||||
5671 | Value *C = nullptr, *D = nullptr; | ||||||||
5672 | SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); | ||||||||
5673 | if (L.Flavor != R.Flavor) | ||||||||
5674 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5675 | |||||||||
5676 | // We have something like: x Pred y ? min(a, b) : min(c, d). | ||||||||
5677 | // Try to match the compare to the min/max operations of the select operands. | ||||||||
5678 | // First, make sure we have the right compare predicate. | ||||||||
5679 | switch (L.Flavor) { | ||||||||
5680 | case SPF_SMIN: | ||||||||
5681 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { | ||||||||
5682 | Pred = ICmpInst::getSwappedPredicate(Pred); | ||||||||
5683 | std::swap(CmpLHS, CmpRHS); | ||||||||
5684 | } | ||||||||
5685 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) | ||||||||
5686 | break; | ||||||||
5687 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5688 | case SPF_SMAX: | ||||||||
5689 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { | ||||||||
5690 | Pred = ICmpInst::getSwappedPredicate(Pred); | ||||||||
5691 | std::swap(CmpLHS, CmpRHS); | ||||||||
5692 | } | ||||||||
5693 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) | ||||||||
5694 | break; | ||||||||
5695 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5696 | case SPF_UMIN: | ||||||||
5697 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { | ||||||||
5698 | Pred = ICmpInst::getSwappedPredicate(Pred); | ||||||||
5699 | std::swap(CmpLHS, CmpRHS); | ||||||||
5700 | } | ||||||||
5701 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) | ||||||||
5702 | break; | ||||||||
5703 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5704 | case SPF_UMAX: | ||||||||
5705 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { | ||||||||
5706 | Pred = ICmpInst::getSwappedPredicate(Pred); | ||||||||
5707 | std::swap(CmpLHS, CmpRHS); | ||||||||
5708 | } | ||||||||
5709 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) | ||||||||
5710 | break; | ||||||||
5711 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5712 | default: | ||||||||
5713 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5714 | } | ||||||||
5715 | |||||||||
5716 | // If there is a common operand in the already matched min/max and the other | ||||||||
5717 | // min/max operands match the compare operands (either directly or inverted), | ||||||||
5718 | // then this is min/max of the same flavor. | ||||||||
5719 | |||||||||
5720 | // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) | ||||||||
5721 | // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) | ||||||||
5722 | if (D == B) { | ||||||||
5723 | if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && | ||||||||
5724 | match(A, m_Not(m_Specific(CmpRHS))))) | ||||||||
5725 | return {L.Flavor, SPNB_NA, false}; | ||||||||
5726 | } | ||||||||
5727 | // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) | ||||||||
5728 | // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) | ||||||||
5729 | if (C == B) { | ||||||||
5730 | if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && | ||||||||
5731 | match(A, m_Not(m_Specific(CmpRHS))))) | ||||||||
5732 | return {L.Flavor, SPNB_NA, false}; | ||||||||
5733 | } | ||||||||
5734 | // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) | ||||||||
5735 | // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) | ||||||||
5736 | if (D == A) { | ||||||||
5737 | if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && | ||||||||
5738 | match(B, m_Not(m_Specific(CmpRHS))))) | ||||||||
5739 | return {L.Flavor, SPNB_NA, false}; | ||||||||
5740 | } | ||||||||
5741 | // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) | ||||||||
5742 | // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) | ||||||||
5743 | if (C == A) { | ||||||||
5744 | if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && | ||||||||
5745 | match(B, m_Not(m_Specific(CmpRHS))))) | ||||||||
5746 | return {L.Flavor, SPNB_NA, false}; | ||||||||
5747 | } | ||||||||
5748 | |||||||||
5749 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5750 | } | ||||||||
5751 | |||||||||
5752 | /// If the input value is the result of a 'not' op, constant integer, or vector | ||||||||
5753 | /// splat of a constant integer, return the bitwise-not source value. | ||||||||
5754 | /// TODO: This could be extended to handle non-splat vector integer constants. | ||||||||
5755 | static Value *getNotValue(Value *V) { | ||||||||
5756 | Value *NotV; | ||||||||
5757 | if (match(V, m_Not(m_Value(NotV)))) | ||||||||
5758 | return NotV; | ||||||||
5759 | |||||||||
5760 | const APInt *C; | ||||||||
5761 | if (match(V, m_APInt(C))) | ||||||||
5762 | return ConstantInt::get(V->getType(), ~(*C)); | ||||||||
5763 | |||||||||
5764 | return nullptr; | ||||||||
5765 | } | ||||||||
5766 | |||||||||
5767 | /// Match non-obvious integer minimum and maximum sequences. | ||||||||
5768 | static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, | ||||||||
5769 | Value *CmpLHS, Value *CmpRHS, | ||||||||
5770 | Value *TrueVal, Value *FalseVal, | ||||||||
5771 | Value *&LHS, Value *&RHS, | ||||||||
5772 | unsigned Depth) { | ||||||||
5773 | // Assume success. If there's no match, callers should not use these anyway. | ||||||||
5774 | LHS = TrueVal; | ||||||||
5775 | RHS = FalseVal; | ||||||||
5776 | |||||||||
5777 | SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); | ||||||||
5778 | if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) | ||||||||
5779 | return SPR; | ||||||||
5780 | |||||||||
5781 | SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); | ||||||||
5782 | if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) | ||||||||
5783 | return SPR; | ||||||||
5784 | |||||||||
5785 | // Look through 'not' ops to find disguised min/max. | ||||||||
5786 | // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) | ||||||||
5787 | // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) | ||||||||
5788 | if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { | ||||||||
5789 | switch (Pred) { | ||||||||
5790 | case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; | ||||||||
5791 | case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; | ||||||||
5792 | case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; | ||||||||
5793 | case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; | ||||||||
5794 | default: break; | ||||||||
5795 | } | ||||||||
5796 | } | ||||||||
5797 | |||||||||
5798 | // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) | ||||||||
5799 | // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) | ||||||||
5800 | if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { | ||||||||
5801 | switch (Pred) { | ||||||||
5802 | case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; | ||||||||
5803 | case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; | ||||||||
5804 | case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; | ||||||||
5805 | case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; | ||||||||
5806 | default: break; | ||||||||
5807 | } | ||||||||
5808 | } | ||||||||
5809 | |||||||||
5810 | if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) | ||||||||
5811 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5812 | |||||||||
5813 | // Z = X -nsw Y | ||||||||
5814 | // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) | ||||||||
5815 | // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) | ||||||||
5816 | if (match(TrueVal, m_Zero()) && | ||||||||
5817 | match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) | ||||||||
5818 | return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; | ||||||||
5819 | |||||||||
5820 | // Z = X -nsw Y | ||||||||
5821 | // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) | ||||||||
5822 | // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) | ||||||||
5823 | if (match(FalseVal, m_Zero()) && | ||||||||
5824 | match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) | ||||||||
5825 | return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; | ||||||||
5826 | |||||||||
5827 | const APInt *C1; | ||||||||
5828 | if (!match(CmpRHS, m_APInt(C1))) | ||||||||
5829 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5830 | |||||||||
5831 | // An unsigned min/max can be written with a signed compare. | ||||||||
5832 | const APInt *C2; | ||||||||
5833 | if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || | ||||||||
5834 | (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { | ||||||||
5835 | // Is the sign bit set? | ||||||||
5836 | // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX | ||||||||
5837 | // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN | ||||||||
5838 | if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && | ||||||||
5839 | C2->isMaxSignedValue()) | ||||||||
5840 | return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; | ||||||||
5841 | |||||||||
5842 | // Is the sign bit clear? | ||||||||
5843 | // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX | ||||||||
5844 | // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN | ||||||||
5845 | if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && | ||||||||
5846 | C2->isMinSignedValue()) | ||||||||
5847 | return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; | ||||||||
5848 | } | ||||||||
5849 | |||||||||
5850 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5851 | } | ||||||||
5852 | |||||||||
5853 | bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { | ||||||||
5854 | assert(X && Y && "Invalid operand")((void)0); | ||||||||
5855 | |||||||||
5856 | // X = sub (0, Y) || X = sub nsw (0, Y) | ||||||||
5857 | if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || | ||||||||
5858 | (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) | ||||||||
5859 | return true; | ||||||||
5860 | |||||||||
5861 | // Y = sub (0, X) || Y = sub nsw (0, X) | ||||||||
5862 | if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || | ||||||||
5863 | (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) | ||||||||
5864 | return true; | ||||||||
5865 | |||||||||
5866 | // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) | ||||||||
5867 | Value *A, *B; | ||||||||
5868 | return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && | ||||||||
5869 | match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || | ||||||||
5870 | (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && | ||||||||
5871 | match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); | ||||||||
5872 | } | ||||||||
5873 | |||||||||
5874 | static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, | ||||||||
5875 | FastMathFlags FMF, | ||||||||
5876 | Value *CmpLHS, Value *CmpRHS, | ||||||||
5877 | Value *TrueVal, Value *FalseVal, | ||||||||
5878 | Value *&LHS, Value *&RHS, | ||||||||
5879 | unsigned Depth) { | ||||||||
5880 | if (CmpInst::isFPPredicate(Pred)) { | ||||||||
5881 | // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one | ||||||||
5882 | // 0.0 operand, set the compare's 0.0 operands to that same value for the | ||||||||
5883 | // purpose of identifying min/max. Disregard vector constants with undefined | ||||||||
5884 | // elements because those can not be back-propagated for analysis. | ||||||||
5885 | Value *OutputZeroVal = nullptr; | ||||||||
5886 | if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && | ||||||||
5887 | !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) | ||||||||
5888 | OutputZeroVal = TrueVal; | ||||||||
5889 | else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && | ||||||||
5890 | !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) | ||||||||
5891 | OutputZeroVal = FalseVal; | ||||||||
5892 | |||||||||
5893 | if (OutputZeroVal) { | ||||||||
5894 | if (match(CmpLHS, m_AnyZeroFP())) | ||||||||
5895 | CmpLHS = OutputZeroVal; | ||||||||
5896 | if (match(CmpRHS, m_AnyZeroFP())) | ||||||||
5897 | CmpRHS = OutputZeroVal; | ||||||||
5898 | } | ||||||||
5899 | } | ||||||||
5900 | |||||||||
5901 | LHS = CmpLHS; | ||||||||
5902 | RHS = CmpRHS; | ||||||||
5903 | |||||||||
5904 | // Signed zero may return inconsistent results between implementations. | ||||||||
5905 | // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 | ||||||||
5906 | // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) | ||||||||
5907 | // Therefore, we behave conservatively and only proceed if at least one of the | ||||||||
5908 | // operands is known to not be zero or if we don't care about signed zero. | ||||||||
5909 | switch (Pred) { | ||||||||
5910 | default: break; | ||||||||
5911 | // FIXME: Include OGT/OLT/UGT/ULT. | ||||||||
5912 | case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: | ||||||||
5913 | case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: | ||||||||
5914 | if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && | ||||||||
5915 | !isKnownNonZero(CmpRHS)) | ||||||||
5916 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5917 | } | ||||||||
5918 | |||||||||
5919 | SelectPatternNaNBehavior NaNBehavior = SPNB_NA; | ||||||||
5920 | bool Ordered = false; | ||||||||
5921 | |||||||||
5922 | // When given one NaN and one non-NaN input: | ||||||||
5923 | // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. | ||||||||
5924 | // - A simple C99 (a < b ? a : b) construction will return 'b' (as the | ||||||||
5925 | // ordered comparison fails), which could be NaN or non-NaN. | ||||||||
5926 | // so here we discover exactly what NaN behavior is required/accepted. | ||||||||
5927 | if (CmpInst::isFPPredicate(Pred)) { | ||||||||
5928 | bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); | ||||||||
5929 | bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); | ||||||||
5930 | |||||||||
5931 | if (LHSSafe && RHSSafe) { | ||||||||
5932 | // Both operands are known non-NaN. | ||||||||
5933 | NaNBehavior = SPNB_RETURNS_ANY; | ||||||||
5934 | } else if (CmpInst::isOrdered(Pred)) { | ||||||||
5935 | // An ordered comparison will return false when given a NaN, so it | ||||||||
5936 | // returns the RHS. | ||||||||
5937 | Ordered = true; | ||||||||
5938 | if (LHSSafe) | ||||||||
5939 | // LHS is non-NaN, so if RHS is NaN then NaN will be returned. | ||||||||
5940 | NaNBehavior = SPNB_RETURNS_NAN; | ||||||||
5941 | else if (RHSSafe) | ||||||||
5942 | NaNBehavior = SPNB_RETURNS_OTHER; | ||||||||
5943 | else | ||||||||
5944 | // Completely unsafe. | ||||||||
5945 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5946 | } else { | ||||||||
5947 | Ordered = false; | ||||||||
5948 | // An unordered comparison will return true when given a NaN, so it | ||||||||
5949 | // returns the LHS. | ||||||||
5950 | if (LHSSafe) | ||||||||
5951 | // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. | ||||||||
5952 | NaNBehavior = SPNB_RETURNS_OTHER; | ||||||||
5953 | else if (RHSSafe) | ||||||||
5954 | NaNBehavior = SPNB_RETURNS_NAN; | ||||||||
5955 | else | ||||||||
5956 | // Completely unsafe. | ||||||||
5957 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
5958 | } | ||||||||
5959 | } | ||||||||
5960 | |||||||||
5961 | if (TrueVal == CmpRHS && FalseVal == CmpLHS) { | ||||||||
5962 | std::swap(CmpLHS, CmpRHS); | ||||||||
5963 | Pred = CmpInst::getSwappedPredicate(Pred); | ||||||||
5964 | if (NaNBehavior == SPNB_RETURNS_NAN) | ||||||||
5965 | NaNBehavior = SPNB_RETURNS_OTHER; | ||||||||
5966 | else if (NaNBehavior == SPNB_RETURNS_OTHER) | ||||||||
5967 | NaNBehavior = SPNB_RETURNS_NAN; | ||||||||
5968 | Ordered = !Ordered; | ||||||||
5969 | } | ||||||||
5970 | |||||||||
5971 | // ([if]cmp X, Y) ? X : Y | ||||||||
5972 | if (TrueVal == CmpLHS && FalseVal == CmpRHS) { | ||||||||
5973 | switch (Pred) { | ||||||||
5974 | default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. | ||||||||
5975 | case ICmpInst::ICMP_UGT: | ||||||||
5976 | case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; | ||||||||
5977 | case ICmpInst::ICMP_SGT: | ||||||||
5978 | case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; | ||||||||
5979 | case ICmpInst::ICMP_ULT: | ||||||||
5980 | case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; | ||||||||
5981 | case ICmpInst::ICMP_SLT: | ||||||||
5982 | case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; | ||||||||
5983 | case FCmpInst::FCMP_UGT: | ||||||||
5984 | case FCmpInst::FCMP_UGE: | ||||||||
5985 | case FCmpInst::FCMP_OGT: | ||||||||
5986 | case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; | ||||||||
5987 | case FCmpInst::FCMP_ULT: | ||||||||
5988 | case FCmpInst::FCMP_ULE: | ||||||||
5989 | case FCmpInst::FCMP_OLT: | ||||||||
5990 | case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; | ||||||||
5991 | } | ||||||||
5992 | } | ||||||||
5993 | |||||||||
5994 | if (isKnownNegation(TrueVal, FalseVal)) { | ||||||||
5995 | // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can | ||||||||
5996 | // match against either LHS or sext(LHS). | ||||||||
5997 | auto MaybeSExtCmpLHS = | ||||||||
5998 | m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); | ||||||||
5999 | auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); | ||||||||
6000 | auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); | ||||||||
6001 | if (match(TrueVal, MaybeSExtCmpLHS)) { | ||||||||
6002 | // Set the return values. If the compare uses the negated value (-X >s 0), | ||||||||
6003 | // swap the return values because the negated value is always 'RHS'. | ||||||||
6004 | LHS = TrueVal; | ||||||||
6005 | RHS = FalseVal; | ||||||||
6006 | if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) | ||||||||
6007 | std::swap(LHS, RHS); | ||||||||
6008 | |||||||||
6009 | // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) | ||||||||
6010 | // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) | ||||||||
6011 | if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) | ||||||||
6012 | return {SPF_ABS, SPNB_NA, false}; | ||||||||
6013 | |||||||||
6014 | // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) | ||||||||
6015 | if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) | ||||||||
6016 | return {SPF_ABS, SPNB_NA, false}; | ||||||||
6017 | |||||||||
6018 | // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) | ||||||||
6019 | // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) | ||||||||
6020 | if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) | ||||||||
6021 | return {SPF_NABS, SPNB_NA, false}; | ||||||||
6022 | } | ||||||||
6023 | else if (match(FalseVal, MaybeSExtCmpLHS)) { | ||||||||
6024 | // Set the return values. If the compare uses the negated value (-X >s 0), | ||||||||
6025 | // swap the return values because the negated value is always 'RHS'. | ||||||||
6026 | LHS = FalseVal; | ||||||||
6027 | RHS = TrueVal; | ||||||||
6028 | if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) | ||||||||
6029 | std::swap(LHS, RHS); | ||||||||
6030 | |||||||||
6031 | // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) | ||||||||
6032 | // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) | ||||||||
6033 | if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) | ||||||||
6034 | return {SPF_NABS, SPNB_NA, false}; | ||||||||
6035 | |||||||||
6036 | // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) | ||||||||
6037 | // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) | ||||||||
6038 | if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) | ||||||||
6039 | return {SPF_ABS, SPNB_NA, false}; | ||||||||
6040 | } | ||||||||
6041 | } | ||||||||
6042 | |||||||||
6043 | if (CmpInst::isIntPredicate(Pred)) | ||||||||
6044 | return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); | ||||||||
6045 | |||||||||
6046 | // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar | ||||||||
6047 | // may return either -0.0 or 0.0, so fcmp/select pair has stricter | ||||||||
6048 | // semantics than minNum. Be conservative in such case. | ||||||||
6049 | if (NaNBehavior != SPNB_RETURNS_ANY || | ||||||||
6050 | (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && | ||||||||
6051 | !isKnownNonZero(CmpRHS))) | ||||||||
6052 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
6053 | |||||||||
6054 | return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); | ||||||||
6055 | } | ||||||||
6056 | |||||||||
6057 | /// Helps to match a select pattern in case of a type mismatch. | ||||||||
6058 | /// | ||||||||
6059 | /// The function processes the case when type of true and false values of a | ||||||||
6060 | /// select instruction differs from type of the cmp instruction operands because | ||||||||
6061 | /// of a cast instruction. The function checks if it is legal to move the cast | ||||||||
6062 | /// operation after "select". If yes, it returns the new second value of | ||||||||
6063 | /// "select" (with the assumption that cast is moved): | ||||||||
6064 | /// 1. As operand of cast instruction when both values of "select" are same cast | ||||||||
6065 | /// instructions. | ||||||||
6066 | /// 2. As restored constant (by applying reverse cast operation) when the first | ||||||||
6067 | /// value of the "select" is a cast operation and the second value is a | ||||||||
6068 | /// constant. | ||||||||
6069 | /// NOTE: We return only the new second value because the first value could be | ||||||||
6070 | /// accessed as operand of cast instruction. | ||||||||
6071 | static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, | ||||||||
6072 | Instruction::CastOps *CastOp) { | ||||||||
6073 | auto *Cast1 = dyn_cast<CastInst>(V1); | ||||||||
6074 | if (!Cast1) | ||||||||
6075 | return nullptr; | ||||||||
6076 | |||||||||
6077 | *CastOp = Cast1->getOpcode(); | ||||||||
6078 | Type *SrcTy = Cast1->getSrcTy(); | ||||||||
6079 | if (auto *Cast2 = dyn_cast<CastInst>(V2)) { | ||||||||
6080 | // If V1 and V2 are both the same cast from the same type, look through V1. | ||||||||
6081 | if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) | ||||||||
6082 | return Cast2->getOperand(0); | ||||||||
6083 | return nullptr; | ||||||||
6084 | } | ||||||||
6085 | |||||||||
6086 | auto *C = dyn_cast<Constant>(V2); | ||||||||
6087 | if (!C) | ||||||||
6088 | return nullptr; | ||||||||
6089 | |||||||||
6090 | Constant *CastedTo = nullptr; | ||||||||
6091 | switch (*CastOp) { | ||||||||
6092 | case Instruction::ZExt: | ||||||||
6093 | if (CmpI->isUnsigned()) | ||||||||
6094 | CastedTo = ConstantExpr::getTrunc(C, SrcTy); | ||||||||
6095 | break; | ||||||||
6096 | case Instruction::SExt: | ||||||||
6097 | if (CmpI->isSigned()) | ||||||||
6098 | CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); | ||||||||
6099 | break; | ||||||||
6100 | case Instruction::Trunc: | ||||||||
6101 | Constant *CmpConst; | ||||||||
6102 | if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && | ||||||||
6103 | CmpConst->getType() == SrcTy) { | ||||||||
6104 | // Here we have the following case: | ||||||||
6105 | // | ||||||||
6106 | // %cond = cmp iN %x, CmpConst | ||||||||
6107 | // %tr = trunc iN %x to iK | ||||||||
6108 | // %narrowsel = select i1 %cond, iK %t, iK C | ||||||||
6109 | // | ||||||||
6110 | // We can always move trunc after select operation: | ||||||||
6111 | // | ||||||||
6112 | // %cond = cmp iN %x, CmpConst | ||||||||
6113 | // %widesel = select i1 %cond, iN %x, iN CmpConst | ||||||||
6114 | // %tr = trunc iN %widesel to iK | ||||||||
6115 | // | ||||||||
6116 | // Note that C could be extended in any way because we don't care about | ||||||||
6117 | // upper bits after truncation. It can't be abs pattern, because it would | ||||||||
6118 | // look like: | ||||||||
6119 | // | ||||||||
6120 | // select i1 %cond, x, -x. | ||||||||
6121 | // | ||||||||
6122 | // So only min/max pattern could be matched. Such match requires widened C | ||||||||
6123 | // == CmpConst. That is why set widened C = CmpConst, condition trunc | ||||||||
6124 | // CmpConst == C is checked below. | ||||||||
6125 | CastedTo = CmpConst; | ||||||||
6126 | } else { | ||||||||
6127 | CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); | ||||||||
6128 | } | ||||||||
6129 | break; | ||||||||
6130 | case Instruction::FPTrunc: | ||||||||
6131 | CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); | ||||||||
6132 | break; | ||||||||
6133 | case Instruction::FPExt: | ||||||||
6134 | CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); | ||||||||
6135 | break; | ||||||||
6136 | case Instruction::FPToUI: | ||||||||
6137 | CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); | ||||||||
6138 | break; | ||||||||
6139 | case Instruction::FPToSI: | ||||||||
6140 | CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); | ||||||||
6141 | break; | ||||||||
6142 | case Instruction::UIToFP: | ||||||||
6143 | CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); | ||||||||
6144 | break; | ||||||||
6145 | case Instruction::SIToFP: | ||||||||
6146 | CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); | ||||||||
6147 | break; | ||||||||
6148 | default: | ||||||||
6149 | break; | ||||||||
6150 | } | ||||||||
6151 | |||||||||
6152 | if (!CastedTo) | ||||||||
6153 | return nullptr; | ||||||||
6154 | |||||||||
6155 | // Make sure the cast doesn't lose any information. | ||||||||
6156 | Constant *CastedBack = | ||||||||
6157 | ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); | ||||||||
6158 | if (CastedBack != C) | ||||||||
6159 | return nullptr; | ||||||||
6160 | |||||||||
6161 | return CastedTo; | ||||||||
6162 | } | ||||||||
6163 | |||||||||
6164 | SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, | ||||||||
6165 | Instruction::CastOps *CastOp, | ||||||||
6166 | unsigned Depth) { | ||||||||
6167 | if (Depth >= MaxAnalysisRecursionDepth) | ||||||||
6168 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
6169 | |||||||||
6170 | SelectInst *SI = dyn_cast<SelectInst>(V); | ||||||||
6171 | if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
6172 | |||||||||
6173 | CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); | ||||||||
6174 | if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
6175 | |||||||||
6176 | Value *TrueVal = SI->getTrueValue(); | ||||||||
6177 | Value *FalseVal = SI->getFalseValue(); | ||||||||
6178 | |||||||||
6179 | return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, | ||||||||
6180 | CastOp, Depth); | ||||||||
6181 | } | ||||||||
6182 | |||||||||
6183 | SelectPatternResult llvm::matchDecomposedSelectPattern( | ||||||||
6184 | CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, | ||||||||
6185 | Instruction::CastOps *CastOp, unsigned Depth) { | ||||||||
6186 | CmpInst::Predicate Pred = CmpI->getPredicate(); | ||||||||
6187 | Value *CmpLHS = CmpI->getOperand(0); | ||||||||
6188 | Value *CmpRHS = CmpI->getOperand(1); | ||||||||
6189 | FastMathFlags FMF; | ||||||||
6190 | if (isa<FPMathOperator>(CmpI)) | ||||||||
6191 | FMF = CmpI->getFastMathFlags(); | ||||||||
6192 | |||||||||
6193 | // Bail out early. | ||||||||
6194 | if (CmpI->isEquality()) | ||||||||
6195 | return {SPF_UNKNOWN, SPNB_NA, false}; | ||||||||
6196 | |||||||||
6197 | // Deal with type mismatches. | ||||||||
6198 | if (CastOp && CmpLHS->getType() != TrueVal->getType()) { | ||||||||
6199 | if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { | ||||||||
6200 | // If this is a potential fmin/fmax with a cast to integer, then ignore | ||||||||
6201 | // -0.0 because there is no corresponding integer value. | ||||||||
6202 | if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) | ||||||||
6203 | FMF.setNoSignedZeros(); | ||||||||
6204 | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, | ||||||||
6205 | cast<CastInst>(TrueVal)->getOperand(0), C, | ||||||||
6206 | LHS, RHS, Depth); | ||||||||
6207 | } | ||||||||
6208 | if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { | ||||||||
6209 | // If this is a potential fmin/fmax with a cast to integer, then ignore | ||||||||
6210 | // -0.0 because there is no corresponding integer value. | ||||||||
6211 | if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) | ||||||||
6212 | FMF.setNoSignedZeros(); | ||||||||
6213 | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, | ||||||||
6214 | C, cast<CastInst>(FalseVal)->getOperand(0), | ||||||||
6215 | LHS, RHS, Depth); | ||||||||
6216 | } | ||||||||
6217 | } | ||||||||
6218 | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, | ||||||||
6219 | LHS, RHS, Depth); | ||||||||
6220 | } | ||||||||
6221 | |||||||||
6222 | CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { | ||||||||
6223 | if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; | ||||||||
6224 | if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; | ||||||||
6225 | if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; | ||||||||
6226 | if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; | ||||||||
6227 | if (SPF == SPF_FMINNUM) | ||||||||
6228 | return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; | ||||||||
6229 | if (SPF == SPF_FMAXNUM) | ||||||||
6230 | return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; | ||||||||
6231 | llvm_unreachable("unhandled!")__builtin_unreachable(); | ||||||||
6232 | } | ||||||||
6233 | |||||||||
6234 | SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { | ||||||||
6235 | if (SPF == SPF_SMIN) return SPF_SMAX; | ||||||||
6236 | if (SPF == SPF_UMIN) return SPF_UMAX; | ||||||||
6237 | if (SPF == SPF_SMAX) return SPF_SMIN; | ||||||||
6238 | if (SPF == SPF_UMAX) return SPF_UMIN; | ||||||||
6239 | llvm_unreachable("unhandled!")__builtin_unreachable(); | ||||||||
6240 | } | ||||||||
6241 | |||||||||
6242 | Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { | ||||||||
6243 | switch (MinMaxID) { | ||||||||
6244 | case Intrinsic::smax: return Intrinsic::smin; | ||||||||
6245 | case Intrinsic::smin: return Intrinsic::smax; | ||||||||
6246 | case Intrinsic::umax: return Intrinsic::umin; | ||||||||
6247 | case Intrinsic::umin: return Intrinsic::umax; | ||||||||
6248 | default: llvm_unreachable("Unexpected intrinsic")__builtin_unreachable(); | ||||||||
6249 | } | ||||||||
6250 | } | ||||||||
6251 | |||||||||
6252 | CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { | ||||||||
6253 | return getMinMaxPred(getInverseMinMaxFlavor(SPF)); | ||||||||
6254 | } | ||||||||
6255 | |||||||||
6256 | APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { | ||||||||
6257 | switch (SPF) { | ||||||||
6258 | case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); | ||||||||
6259 | case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); | ||||||||
6260 | case SPF_UMAX: return APInt::getMaxValue(BitWidth); | ||||||||
6261 | case SPF_UMIN: return APInt::getMinValue(BitWidth); | ||||||||
6262 | default: llvm_unreachable("Unexpected flavor")__builtin_unreachable(); | ||||||||
6263 | } | ||||||||
6264 | } | ||||||||
6265 | |||||||||
6266 | std::pair<Intrinsic::ID, bool> | ||||||||
6267 | llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { | ||||||||
6268 | // Check if VL contains select instructions that can be folded into a min/max | ||||||||
6269 | // vector intrinsic and return the intrinsic if it is possible. | ||||||||
6270 | // TODO: Support floating point min/max. | ||||||||
6271 | bool AllCmpSingleUse = true; | ||||||||
6272 | SelectPatternResult SelectPattern; | ||||||||
6273 | SelectPattern.Flavor = SPF_UNKNOWN; | ||||||||
6274 | if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { | ||||||||
6275 | Value *LHS, *RHS; | ||||||||
6276 | auto CurrentPattern = matchSelectPattern(I, LHS, RHS); | ||||||||
6277 | if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || | ||||||||
6278 | CurrentPattern.Flavor == SPF_FMINNUM || | ||||||||
6279 | CurrentPattern.Flavor == SPF_FMAXNUM || | ||||||||
6280 | !I->getType()->isIntOrIntVectorTy()) | ||||||||
6281 | return false; | ||||||||
6282 | if (SelectPattern.Flavor != SPF_UNKNOWN && | ||||||||
6283 | SelectPattern.Flavor != CurrentPattern.Flavor) | ||||||||
6284 | return false; | ||||||||
6285 | SelectPattern = CurrentPattern; | ||||||||
6286 | AllCmpSingleUse &= | ||||||||
6287 | match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); | ||||||||
6288 | return true; | ||||||||
6289 | })) { | ||||||||
6290 | switch (SelectPattern.Flavor) { | ||||||||
6291 | case SPF_SMIN: | ||||||||
6292 | return {Intrinsic::smin, AllCmpSingleUse}; | ||||||||
6293 | case SPF_UMIN: | ||||||||
6294 | return {Intrinsic::umin, AllCmpSingleUse}; | ||||||||
6295 | case SPF_SMAX: | ||||||||
6296 | return {Intrinsic::smax, AllCmpSingleUse}; | ||||||||
6297 | case SPF_UMAX: | ||||||||
6298 | return {Intrinsic::umax, AllCmpSingleUse}; | ||||||||
6299 | default: | ||||||||
6300 | llvm_unreachable("unexpected select pattern flavor")__builtin_unreachable(); | ||||||||
6301 | } | ||||||||
6302 | } | ||||||||
6303 | return {Intrinsic::not_intrinsic, false}; | ||||||||
6304 | } | ||||||||
6305 | |||||||||
6306 | bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, | ||||||||
6307 | Value *&Start, Value *&Step) { | ||||||||
6308 | // Handle the case of a simple two-predecessor recurrence PHI. | ||||||||
6309 | // There's a lot more that could theoretically be done here, but | ||||||||
6310 | // this is sufficient to catch some interesting cases. | ||||||||
6311 | if (P->getNumIncomingValues() != 2) | ||||||||
6312 | return false; | ||||||||
6313 | |||||||||
6314 | for (unsigned i = 0; i != 2; ++i) { | ||||||||
6315 | Value *L = P->getIncomingValue(i); | ||||||||
6316 | Value *R = P->getIncomingValue(!i); | ||||||||
6317 | Operator *LU = dyn_cast<Operator>(L); | ||||||||
6318 | if (!LU) | ||||||||
6319 | continue; | ||||||||
6320 | unsigned Opcode = LU->getOpcode(); | ||||||||
6321 | |||||||||
6322 | switch (Opcode) { | ||||||||
6323 | default: | ||||||||
6324 | continue; | ||||||||
6325 | // TODO: Expand list -- xor, div, gep, uaddo, etc.. | ||||||||
6326 | case Instruction::LShr: | ||||||||
6327 | case Instruction::AShr: | ||||||||
6328 | case Instruction::Shl: | ||||||||
6329 | case Instruction::Add: | ||||||||
6330 | case Instruction::Sub: | ||||||||
6331 | case Instruction::And: | ||||||||
6332 | case Instruction::Or: | ||||||||
6333 | case Instruction::Mul: { | ||||||||
6334 | Value *LL = LU->getOperand(0); | ||||||||
6335 | Value *LR = LU->getOperand(1); | ||||||||
6336 | // Find a recurrence. | ||||||||
6337 | if (LL == P) | ||||||||
6338 | L = LR; | ||||||||
6339 | else if (LR == P) | ||||||||
6340 | L = LL; | ||||||||
6341 | else | ||||||||
6342 | continue; // Check for recurrence with L and R flipped. | ||||||||
6343 | |||||||||
6344 | break; // Match! | ||||||||
6345 | } | ||||||||
6346 | }; | ||||||||
6347 | |||||||||
6348 | // We have matched a recurrence of the form: | ||||||||
6349 | // %iv = [R, %entry], [%iv.next, %backedge] | ||||||||
6350 | // %iv.next = binop %iv, L | ||||||||
6351 | // OR | ||||||||
6352 | // %iv = [R, %entry], [%iv.next, %backedge] | ||||||||
6353 | // %iv.next = binop L, %iv | ||||||||
6354 | BO = cast<BinaryOperator>(LU); | ||||||||
6355 | Start = R; | ||||||||
6356 | Step = L; | ||||||||
6357 | return true; | ||||||||
6358 | } | ||||||||
6359 | return false; | ||||||||
6360 | } | ||||||||
6361 | |||||||||
6362 | bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, | ||||||||
6363 | Value *&Start, Value *&Step) { | ||||||||
6364 | BinaryOperator *BO = nullptr; | ||||||||
6365 | P = dyn_cast<PHINode>(I->getOperand(0)); | ||||||||
6366 | if (!P) | ||||||||
6367 | P = dyn_cast<PHINode>(I->getOperand(1)); | ||||||||
6368 | return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; | ||||||||
6369 | } | ||||||||
6370 | |||||||||
6371 | /// Return true if "icmp Pred LHS RHS" is always true. | ||||||||
6372 | static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, | ||||||||
6373 | const Value *RHS, const DataLayout &DL, | ||||||||
6374 | unsigned Depth) { | ||||||||
6375 | assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!")((void)0); | ||||||||
6376 | if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) | ||||||||
6377 | return true; | ||||||||
6378 | |||||||||
6379 | switch (Pred) { | ||||||||
6380 | default: | ||||||||
6381 | return false; | ||||||||
6382 | |||||||||
6383 | case CmpInst::ICMP_SLE: { | ||||||||
6384 | const APInt *C; | ||||||||
6385 | |||||||||
6386 | // LHS s<= LHS +_{nsw} C if C >= 0 | ||||||||
6387 | if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) | ||||||||
6388 | return !C->isNegative(); | ||||||||
6389 | return false; | ||||||||
6390 | } | ||||||||
6391 | |||||||||
6392 | case CmpInst::ICMP_ULE: { | ||||||||
6393 | const APInt *C; | ||||||||
6394 | |||||||||
6395 | // LHS u<= LHS +_{nuw} C for any C | ||||||||
6396 | if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) | ||||||||
6397 | return true; | ||||||||
6398 | |||||||||
6399 | // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) | ||||||||
6400 | auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, | ||||||||
6401 | const Value *&X, | ||||||||
6402 | const APInt *&CA, const APInt *&CB) { | ||||||||
6403 | if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && | ||||||||
6404 | match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) | ||||||||
6405 | return true; | ||||||||
6406 | |||||||||
6407 | // If X & C == 0 then (X | C) == X +_{nuw} C | ||||||||
6408 | if (match(A, m_Or(m_Value(X), m_APInt(CA))) && | ||||||||
6409 | match(B, m_Or(m_Specific(X), m_APInt(CB)))) { | ||||||||
6410 | KnownBits Known(CA->getBitWidth()); | ||||||||
6411 | computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, | ||||||||
6412 | /*CxtI*/ nullptr, /*DT*/ nullptr); | ||||||||
6413 | if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) | ||||||||
6414 | return true; | ||||||||
6415 | } | ||||||||
6416 | |||||||||
6417 | return false; | ||||||||
6418 | }; | ||||||||
6419 | |||||||||
6420 | const Value *X; | ||||||||
6421 | const APInt *CLHS, *CRHS; | ||||||||
6422 | if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) | ||||||||
6423 | return CLHS->ule(*CRHS); | ||||||||
6424 | |||||||||
6425 | return false; | ||||||||
6426 | } | ||||||||
6427 | } | ||||||||
6428 | } | ||||||||
6429 | |||||||||
6430 | /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred | ||||||||
6431 | /// ALHS ARHS" is true. Otherwise, return None. | ||||||||
6432 | static Optional<bool> | ||||||||
6433 | isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, | ||||||||
6434 | const Value *ARHS, const Value *BLHS, const Value *BRHS, | ||||||||
6435 | const DataLayout &DL, unsigned Depth) { | ||||||||
6436 | switch (Pred) { | ||||||||
6437 | default: | ||||||||
6438 | return None; | ||||||||
6439 | |||||||||
6440 | case CmpInst::ICMP_SLT: | ||||||||
6441 | case CmpInst::ICMP_SLE: | ||||||||
6442 | if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && | ||||||||
6443 | isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) | ||||||||
6444 | return true; | ||||||||
6445 | return None; | ||||||||
6446 | |||||||||
6447 | case CmpInst::ICMP_ULT: | ||||||||
6448 | case CmpInst::ICMP_ULE: | ||||||||
6449 | if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && | ||||||||
6450 | isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) | ||||||||
6451 | return true; | ||||||||
6452 | return None; | ||||||||
6453 | } | ||||||||
6454 | } | ||||||||
6455 | |||||||||
6456 | /// Return true if the operands of the two compares match. IsSwappedOps is true | ||||||||
6457 | /// when the operands match, but are swapped. | ||||||||
6458 | static bool isMatchingOps(const Value *ALHS, const Value *ARHS, | ||||||||
6459 | const Value *BLHS, const Value *BRHS, | ||||||||
6460 | bool &IsSwappedOps) { | ||||||||
6461 | |||||||||
6462 | bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); | ||||||||
6463 | IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); | ||||||||
6464 | return IsMatchingOps || IsSwappedOps; | ||||||||
6465 | } | ||||||||
6466 | |||||||||
6467 | /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. | ||||||||
6468 | /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. | ||||||||
6469 | /// Otherwise, return None if we can't infer anything. | ||||||||
6470 | static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, | ||||||||
6471 | CmpInst::Predicate BPred, | ||||||||
6472 | bool AreSwappedOps) { | ||||||||
6473 | // Canonicalize the predicate as if the operands were not commuted. | ||||||||
6474 | if (AreSwappedOps) | ||||||||
6475 | BPred = ICmpInst::getSwappedPredicate(BPred); | ||||||||
6476 | |||||||||
6477 | if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) | ||||||||
6478 | return true; | ||||||||
6479 | if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) | ||||||||
6480 | return false; | ||||||||
6481 | |||||||||
6482 | return None; | ||||||||
6483 | } | ||||||||
6484 | |||||||||
6485 | /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. | ||||||||
6486 | /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. | ||||||||
6487 | /// Otherwise, return None if we can't infer anything. | ||||||||
6488 | static Optional<bool> | ||||||||
6489 | isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, | ||||||||
6490 | const ConstantInt *C1, | ||||||||
6491 | CmpInst::Predicate BPred, | ||||||||
6492 | const ConstantInt *C2) { | ||||||||
6493 | ConstantRange DomCR = | ||||||||
6494 | ConstantRange::makeExactICmpRegion(APred, C1->getValue()); | ||||||||
6495 | ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); | ||||||||
6496 | ConstantRange Intersection = DomCR.intersectWith(CR); | ||||||||
6497 | ConstantRange Difference = DomCR.difference(CR); | ||||||||
6498 | if (Intersection.isEmptySet()) | ||||||||
6499 | return false; | ||||||||
6500 | if (Difference.isEmptySet()) | ||||||||
6501 | return true; | ||||||||
6502 | return None; | ||||||||
6503 | } | ||||||||
6504 | |||||||||
6505 | /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is | ||||||||
6506 | /// false. Otherwise, return None if we can't infer anything. | ||||||||
6507 | static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, | ||||||||
6508 | CmpInst::Predicate BPred, | ||||||||
6509 | const Value *BLHS, const Value *BRHS, | ||||||||
6510 | const DataLayout &DL, bool LHSIsTrue, | ||||||||
6511 | unsigned Depth) { | ||||||||
6512 | Value *ALHS = LHS->getOperand(0); | ||||||||
6513 | Value *ARHS = LHS->getOperand(1); | ||||||||
6514 | |||||||||
6515 | // The rest of the logic assumes the LHS condition is true. If that's not the | ||||||||
6516 | // case, invert the predicate to make it so. | ||||||||
6517 | CmpInst::Predicate APred = | ||||||||
6518 | LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); | ||||||||
6519 | |||||||||
6520 | // Can we infer anything when the two compares have matching operands? | ||||||||
6521 | bool AreSwappedOps; | ||||||||
6522 | if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { | ||||||||
6523 | if (Optional<bool> Implication = isImpliedCondMatchingOperands( | ||||||||
6524 | APred, BPred, AreSwappedOps)) | ||||||||
6525 | return Implication; | ||||||||
6526 | // No amount of additional analysis will infer the second condition, so | ||||||||
6527 | // early exit. | ||||||||
6528 | return None; | ||||||||
6529 | } | ||||||||
6530 | |||||||||
6531 | // Can we infer anything when the LHS operands match and the RHS operands are | ||||||||
6532 | // constants (not necessarily matching)? | ||||||||
6533 | if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { | ||||||||
6534 | if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( | ||||||||
6535 | APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) | ||||||||
6536 | return Implication; | ||||||||
6537 | // No amount of additional analysis will infer the second condition, so | ||||||||
6538 | // early exit. | ||||||||
6539 | return None; | ||||||||
6540 | } | ||||||||
6541 | |||||||||
6542 | if (APred == BPred) | ||||||||
6543 | return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); | ||||||||
6544 | return None; | ||||||||
6545 | } | ||||||||
6546 | |||||||||
6547 | /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is | ||||||||
6548 | /// false. Otherwise, return None if we can't infer anything. We expect the | ||||||||
6549 | /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. | ||||||||
6550 | static Optional<bool> | ||||||||
6551 | isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, | ||||||||
6552 | const Value *RHSOp0, const Value *RHSOp1, | ||||||||
6553 | const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { | ||||||||
6554 | // The LHS must be an 'or', 'and', or a 'select' instruction. | ||||||||
6555 | assert((LHS->getOpcode() == Instruction::And ||((void)0) | ||||||||
6556 | LHS->getOpcode() == Instruction::Or ||((void)0) | ||||||||
6557 | LHS->getOpcode() == Instruction::Select) &&((void)0) | ||||||||
6558 | "Expected LHS to be 'and', 'or', or 'select'.")((void)0); | ||||||||
6559 | |||||||||
6560 | assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit")((void)0); | ||||||||
6561 | |||||||||
6562 | // If the result of an 'or' is false, then we know both legs of the 'or' are | ||||||||
6563 | // false. Similarly, if the result of an 'and' is true, then we know both | ||||||||
6564 | // legs of the 'and' are true. | ||||||||
6565 | const Value *ALHS, *ARHS; | ||||||||
6566 | if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || | ||||||||
6567 | (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { | ||||||||
6568 | // FIXME: Make this non-recursion. | ||||||||
6569 | if (Optional<bool> Implication = isImpliedCondition( | ||||||||
6570 | ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) | ||||||||
6571 | return Implication; | ||||||||
6572 | if (Optional<bool> Implication = isImpliedCondition( | ||||||||
6573 | ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) | ||||||||
6574 | return Implication; | ||||||||
6575 | return None; | ||||||||
6576 | } | ||||||||
6577 | return None; | ||||||||
6578 | } | ||||||||
6579 | |||||||||
6580 | Optional<bool> | ||||||||
6581 | llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, | ||||||||
6582 | const Value *RHSOp0, const Value *RHSOp1, | ||||||||
6583 | const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { | ||||||||
6584 | // Bail out when we hit the limit. | ||||||||
6585 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
6586 | return None; | ||||||||
6587 | |||||||||
6588 | // A mismatch occurs when we compare a scalar cmp to a vector cmp, for | ||||||||
6589 | // example. | ||||||||
6590 | if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) | ||||||||
6591 | return None; | ||||||||
6592 | |||||||||
6593 | Type *OpTy = LHS->getType(); | ||||||||
6594 | assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!")((void)0); | ||||||||
6595 | |||||||||
6596 | // FIXME: Extending the code below to handle vectors. | ||||||||
6597 | if (OpTy->isVectorTy()) | ||||||||
6598 | return None; | ||||||||
6599 | |||||||||
6600 | assert(OpTy->isIntegerTy(1) && "implied by above")((void)0); | ||||||||
6601 | |||||||||
6602 | // Both LHS and RHS are icmps. | ||||||||
6603 | const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); | ||||||||
6604 | if (LHSCmp) | ||||||||
6605 | return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, | ||||||||
6606 | Depth); | ||||||||
6607 | |||||||||
6608 | /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect | ||||||||
6609 | /// the RHS to be an icmp. | ||||||||
6610 | /// FIXME: Add support for and/or/select on the RHS. | ||||||||
6611 | if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { | ||||||||
6612 | if ((LHSI->getOpcode() == Instruction::And || | ||||||||
6613 | LHSI->getOpcode() == Instruction::Or || | ||||||||
6614 | LHSI->getOpcode() == Instruction::Select)) | ||||||||
6615 | return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, | ||||||||
6616 | Depth); | ||||||||
6617 | } | ||||||||
6618 | return None; | ||||||||
6619 | } | ||||||||
6620 | |||||||||
6621 | Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, | ||||||||
6622 | const DataLayout &DL, bool LHSIsTrue, | ||||||||
6623 | unsigned Depth) { | ||||||||
6624 | // LHS ==> RHS by definition | ||||||||
6625 | if (LHS == RHS) | ||||||||
6626 | return LHSIsTrue; | ||||||||
6627 | |||||||||
6628 | const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); | ||||||||
6629 | if (RHSCmp) | ||||||||
6630 | return isImpliedCondition(LHS, RHSCmp->getPredicate(), | ||||||||
6631 | RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, | ||||||||
6632 | LHSIsTrue, Depth); | ||||||||
6633 | return None; | ||||||||
6634 | } | ||||||||
6635 | |||||||||
6636 | // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch | ||||||||
6637 | // condition dominating ContextI or nullptr, if no condition is found. | ||||||||
6638 | static std::pair<Value *, bool> | ||||||||
6639 | getDomPredecessorCondition(const Instruction *ContextI) { | ||||||||
6640 | if (!ContextI || !ContextI->getParent()) | ||||||||
6641 | return {nullptr, false}; | ||||||||
6642 | |||||||||
6643 | // TODO: This is a poor/cheap way to determine dominance. Should we use a | ||||||||
6644 | // dominator tree (eg, from a SimplifyQuery) instead? | ||||||||
6645 | const BasicBlock *ContextBB = ContextI->getParent(); | ||||||||
6646 | const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); | ||||||||
6647 | if (!PredBB) | ||||||||
6648 | return {nullptr, false}; | ||||||||
6649 | |||||||||
6650 | // We need a conditional branch in the predecessor. | ||||||||
6651 | Value *PredCond; | ||||||||
6652 | BasicBlock *TrueBB, *FalseBB; | ||||||||
6653 | if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) | ||||||||
6654 | return {nullptr, false}; | ||||||||
6655 | |||||||||
6656 | // The branch should get simplified. Don't bother simplifying this condition. | ||||||||
6657 | if (TrueBB == FalseBB) | ||||||||
6658 | return {nullptr, false}; | ||||||||
6659 | |||||||||
6660 | assert((TrueBB == ContextBB || FalseBB == ContextBB) &&((void)0) | ||||||||
6661 | "Predecessor block does not point to successor?")((void)0); | ||||||||
6662 | |||||||||
6663 | // Is this condition implied by the predecessor condition? | ||||||||
6664 | return {PredCond, TrueBB == ContextBB}; | ||||||||
6665 | } | ||||||||
6666 | |||||||||
6667 | Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, | ||||||||
6668 | const Instruction *ContextI, | ||||||||
6669 | const DataLayout &DL) { | ||||||||
6670 | assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool")((void)0); | ||||||||
6671 | auto PredCond = getDomPredecessorCondition(ContextI); | ||||||||
6672 | if (PredCond.first) | ||||||||
6673 | return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); | ||||||||
6674 | return None; | ||||||||
6675 | } | ||||||||
6676 | |||||||||
6677 | Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, | ||||||||
6678 | const Value *LHS, const Value *RHS, | ||||||||
6679 | const Instruction *ContextI, | ||||||||
6680 | const DataLayout &DL) { | ||||||||
6681 | auto PredCond = getDomPredecessorCondition(ContextI); | ||||||||
6682 | if (PredCond.first) | ||||||||
6683 | return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, | ||||||||
6684 | PredCond.second); | ||||||||
6685 | return None; | ||||||||
6686 | } | ||||||||
6687 | |||||||||
6688 | static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, | ||||||||
6689 | APInt &Upper, const InstrInfoQuery &IIQ) { | ||||||||
6690 | unsigned Width = Lower.getBitWidth(); | ||||||||
6691 | const APInt *C; | ||||||||
6692 | switch (BO.getOpcode()) { | ||||||||
6693 | case Instruction::Add: | ||||||||
6694 | if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { | ||||||||
6695 | // FIXME: If we have both nuw and nsw, we should reduce the range further. | ||||||||
6696 | if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { | ||||||||
6697 | // 'add nuw x, C' produces [C, UINT_MAX]. | ||||||||
6698 | Lower = *C; | ||||||||
6699 | } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { | ||||||||
6700 | if (C->isNegative()) { | ||||||||
6701 | // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. | ||||||||
6702 | Lower = APInt::getSignedMinValue(Width); | ||||||||
6703 | Upper = APInt::getSignedMaxValue(Width) + *C + 1; | ||||||||
6704 | } else { | ||||||||
6705 | // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. | ||||||||
6706 | Lower = APInt::getSignedMinValue(Width) + *C; | ||||||||
6707 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6708 | } | ||||||||
6709 | } | ||||||||
6710 | } | ||||||||
6711 | break; | ||||||||
6712 | |||||||||
6713 | case Instruction::And: | ||||||||
6714 | if (match(BO.getOperand(1), m_APInt(C))) | ||||||||
6715 | // 'and x, C' produces [0, C]. | ||||||||
6716 | Upper = *C + 1; | ||||||||
6717 | break; | ||||||||
6718 | |||||||||
6719 | case Instruction::Or: | ||||||||
6720 | if (match(BO.getOperand(1), m_APInt(C))) | ||||||||
6721 | // 'or x, C' produces [C, UINT_MAX]. | ||||||||
6722 | Lower = *C; | ||||||||
6723 | break; | ||||||||
6724 | |||||||||
6725 | case Instruction::AShr: | ||||||||
6726 | if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { | ||||||||
6727 | // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. | ||||||||
6728 | Lower = APInt::getSignedMinValue(Width).ashr(*C); | ||||||||
6729 | Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; | ||||||||
6730 | } else if (match(BO.getOperand(0), m_APInt(C))) { | ||||||||
6731 | unsigned ShiftAmount = Width - 1; | ||||||||
6732 | if (!C->isNullValue() && IIQ.isExact(&BO)) | ||||||||
6733 | ShiftAmount = C->countTrailingZeros(); | ||||||||
6734 | if (C->isNegative()) { | ||||||||
6735 | // 'ashr C, x' produces [C, C >> (Width-1)] | ||||||||
6736 | Lower = *C; | ||||||||
6737 | Upper = C->ashr(ShiftAmount) + 1; | ||||||||
6738 | } else { | ||||||||
6739 | // 'ashr C, x' produces [C >> (Width-1), C] | ||||||||
6740 | Lower = C->ashr(ShiftAmount); | ||||||||
6741 | Upper = *C + 1; | ||||||||
6742 | } | ||||||||
6743 | } | ||||||||
6744 | break; | ||||||||
6745 | |||||||||
6746 | case Instruction::LShr: | ||||||||
6747 | if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { | ||||||||
6748 | // 'lshr x, C' produces [0, UINT_MAX >> C]. | ||||||||
6749 | Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; | ||||||||
6750 | } else if (match(BO.getOperand(0), m_APInt(C))) { | ||||||||
6751 | // 'lshr C, x' produces [C >> (Width-1), C]. | ||||||||
6752 | unsigned ShiftAmount = Width - 1; | ||||||||
6753 | if (!C->isNullValue() && IIQ.isExact(&BO)) | ||||||||
6754 | ShiftAmount = C->countTrailingZeros(); | ||||||||
6755 | Lower = C->lshr(ShiftAmount); | ||||||||
6756 | Upper = *C + 1; | ||||||||
6757 | } | ||||||||
6758 | break; | ||||||||
6759 | |||||||||
6760 | case Instruction::Shl: | ||||||||
6761 | if (match(BO.getOperand(0), m_APInt(C))) { | ||||||||
6762 | if (IIQ.hasNoUnsignedWrap(&BO)) { | ||||||||
6763 | // 'shl nuw C, x' produces [C, C << CLZ(C)] | ||||||||
6764 | Lower = *C; | ||||||||
6765 | Upper = Lower.shl(Lower.countLeadingZeros()) + 1; | ||||||||
6766 | } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? | ||||||||
6767 | if (C->isNegative()) { | ||||||||
6768 | // 'shl nsw C, x' produces [C << CLO(C)-1, C] | ||||||||
6769 | unsigned ShiftAmount = C->countLeadingOnes() - 1; | ||||||||
6770 | Lower = C->shl(ShiftAmount); | ||||||||
6771 | Upper = *C + 1; | ||||||||
6772 | } else { | ||||||||
6773 | // 'shl nsw C, x' produces [C, C << CLZ(C)-1] | ||||||||
6774 | unsigned ShiftAmount = C->countLeadingZeros() - 1; | ||||||||
6775 | Lower = *C; | ||||||||
6776 | Upper = C->shl(ShiftAmount) + 1; | ||||||||
6777 | } | ||||||||
6778 | } | ||||||||
6779 | } | ||||||||
6780 | break; | ||||||||
6781 | |||||||||
6782 | case Instruction::SDiv: | ||||||||
6783 | if (match(BO.getOperand(1), m_APInt(C))) { | ||||||||
6784 | APInt IntMin = APInt::getSignedMinValue(Width); | ||||||||
6785 | APInt IntMax = APInt::getSignedMaxValue(Width); | ||||||||
6786 | if (C->isAllOnesValue()) { | ||||||||
6787 | // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] | ||||||||
6788 | // where C != -1 and C != 0 and C != 1 | ||||||||
6789 | Lower = IntMin + 1; | ||||||||
6790 | Upper = IntMax + 1; | ||||||||
6791 | } else if (C->countLeadingZeros() < Width - 1) { | ||||||||
6792 | // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] | ||||||||
6793 | // where C != -1 and C != 0 and C != 1 | ||||||||
6794 | Lower = IntMin.sdiv(*C); | ||||||||
6795 | Upper = IntMax.sdiv(*C); | ||||||||
6796 | if (Lower.sgt(Upper)) | ||||||||
6797 | std::swap(Lower, Upper); | ||||||||
6798 | Upper = Upper + 1; | ||||||||
6799 | assert(Upper != Lower && "Upper part of range has wrapped!")((void)0); | ||||||||
6800 | } | ||||||||
6801 | } else if (match(BO.getOperand(0), m_APInt(C))) { | ||||||||
6802 | if (C->isMinSignedValue()) { | ||||||||
6803 | // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. | ||||||||
6804 | Lower = *C; | ||||||||
6805 | Upper = Lower.lshr(1) + 1; | ||||||||
6806 | } else { | ||||||||
6807 | // 'sdiv C, x' produces [-|C|, |C|]. | ||||||||
6808 | Upper = C->abs() + 1; | ||||||||
6809 | Lower = (-Upper) + 1; | ||||||||
6810 | } | ||||||||
6811 | } | ||||||||
6812 | break; | ||||||||
6813 | |||||||||
6814 | case Instruction::UDiv: | ||||||||
6815 | if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { | ||||||||
6816 | // 'udiv x, C' produces [0, UINT_MAX / C]. | ||||||||
6817 | Upper = APInt::getMaxValue(Width).udiv(*C) + 1; | ||||||||
6818 | } else if (match(BO.getOperand(0), m_APInt(C))) { | ||||||||
6819 | // 'udiv C, x' produces [0, C]. | ||||||||
6820 | Upper = *C + 1; | ||||||||
6821 | } | ||||||||
6822 | break; | ||||||||
6823 | |||||||||
6824 | case Instruction::SRem: | ||||||||
6825 | if (match(BO.getOperand(1), m_APInt(C))) { | ||||||||
6826 | // 'srem x, C' produces (-|C|, |C|). | ||||||||
6827 | Upper = C->abs(); | ||||||||
6828 | Lower = (-Upper) + 1; | ||||||||
6829 | } | ||||||||
6830 | break; | ||||||||
6831 | |||||||||
6832 | case Instruction::URem: | ||||||||
6833 | if (match(BO.getOperand(1), m_APInt(C))) | ||||||||
6834 | // 'urem x, C' produces [0, C). | ||||||||
6835 | Upper = *C; | ||||||||
6836 | break; | ||||||||
6837 | |||||||||
6838 | default: | ||||||||
6839 | break; | ||||||||
6840 | } | ||||||||
6841 | } | ||||||||
6842 | |||||||||
6843 | static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, | ||||||||
6844 | APInt &Upper) { | ||||||||
6845 | unsigned Width = Lower.getBitWidth(); | ||||||||
6846 | const APInt *C; | ||||||||
6847 | switch (II.getIntrinsicID()) { | ||||||||
6848 | case Intrinsic::ctpop: | ||||||||
6849 | case Intrinsic::ctlz: | ||||||||
6850 | case Intrinsic::cttz: | ||||||||
6851 | // Maximum of set/clear bits is the bit width. | ||||||||
6852 | assert(Lower == 0 && "Expected lower bound to be zero")((void)0); | ||||||||
6853 | Upper = Width + 1; | ||||||||
6854 | break; | ||||||||
6855 | case Intrinsic::uadd_sat: | ||||||||
6856 | // uadd.sat(x, C) produces [C, UINT_MAX]. | ||||||||
6857 | if (match(II.getOperand(0), m_APInt(C)) || | ||||||||
6858 | match(II.getOperand(1), m_APInt(C))) | ||||||||
6859 | Lower = *C; | ||||||||
6860 | break; | ||||||||
6861 | case Intrinsic::sadd_sat: | ||||||||
6862 | if (match(II.getOperand(0), m_APInt(C)) || | ||||||||
6863 | match(II.getOperand(1), m_APInt(C))) { | ||||||||
6864 | if (C->isNegative()) { | ||||||||
6865 | // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. | ||||||||
6866 | Lower = APInt::getSignedMinValue(Width); | ||||||||
6867 | Upper = APInt::getSignedMaxValue(Width) + *C + 1; | ||||||||
6868 | } else { | ||||||||
6869 | // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. | ||||||||
6870 | Lower = APInt::getSignedMinValue(Width) + *C; | ||||||||
6871 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6872 | } | ||||||||
6873 | } | ||||||||
6874 | break; | ||||||||
6875 | case Intrinsic::usub_sat: | ||||||||
6876 | // usub.sat(C, x) produces [0, C]. | ||||||||
6877 | if (match(II.getOperand(0), m_APInt(C))) | ||||||||
6878 | Upper = *C + 1; | ||||||||
6879 | // usub.sat(x, C) produces [0, UINT_MAX - C]. | ||||||||
6880 | else if (match(II.getOperand(1), m_APInt(C))) | ||||||||
6881 | Upper = APInt::getMaxValue(Width) - *C + 1; | ||||||||
6882 | break; | ||||||||
6883 | case Intrinsic::ssub_sat: | ||||||||
6884 | if (match(II.getOperand(0), m_APInt(C))) { | ||||||||
6885 | if (C->isNegative()) { | ||||||||
6886 | // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. | ||||||||
6887 | Lower = APInt::getSignedMinValue(Width); | ||||||||
6888 | Upper = *C - APInt::getSignedMinValue(Width) + 1; | ||||||||
6889 | } else { | ||||||||
6890 | // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. | ||||||||
6891 | Lower = *C - APInt::getSignedMaxValue(Width); | ||||||||
6892 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6893 | } | ||||||||
6894 | } else if (match(II.getOperand(1), m_APInt(C))) { | ||||||||
6895 | if (C->isNegative()) { | ||||||||
6896 | // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: | ||||||||
6897 | Lower = APInt::getSignedMinValue(Width) - *C; | ||||||||
6898 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6899 | } else { | ||||||||
6900 | // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. | ||||||||
6901 | Lower = APInt::getSignedMinValue(Width); | ||||||||
6902 | Upper = APInt::getSignedMaxValue(Width) - *C + 1; | ||||||||
6903 | } | ||||||||
6904 | } | ||||||||
6905 | break; | ||||||||
6906 | case Intrinsic::umin: | ||||||||
6907 | case Intrinsic::umax: | ||||||||
6908 | case Intrinsic::smin: | ||||||||
6909 | case Intrinsic::smax: | ||||||||
6910 | if (!match(II.getOperand(0), m_APInt(C)) && | ||||||||
6911 | !match(II.getOperand(1), m_APInt(C))) | ||||||||
6912 | break; | ||||||||
6913 | |||||||||
6914 | switch (II.getIntrinsicID()) { | ||||||||
6915 | case Intrinsic::umin: | ||||||||
6916 | Upper = *C + 1; | ||||||||
6917 | break; | ||||||||
6918 | case Intrinsic::umax: | ||||||||
6919 | Lower = *C; | ||||||||
6920 | break; | ||||||||
6921 | case Intrinsic::smin: | ||||||||
6922 | Lower = APInt::getSignedMinValue(Width); | ||||||||
6923 | Upper = *C + 1; | ||||||||
6924 | break; | ||||||||
6925 | case Intrinsic::smax: | ||||||||
6926 | Lower = *C; | ||||||||
6927 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6928 | break; | ||||||||
6929 | default: | ||||||||
6930 | llvm_unreachable("Must be min/max intrinsic")__builtin_unreachable(); | ||||||||
6931 | } | ||||||||
6932 | break; | ||||||||
6933 | case Intrinsic::abs: | ||||||||
6934 | // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], | ||||||||
6935 | // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. | ||||||||
6936 | if (match(II.getOperand(1), m_One())) | ||||||||
6937 | Upper = APInt::getSignedMaxValue(Width) + 1; | ||||||||
6938 | else | ||||||||
6939 | Upper = APInt::getSignedMinValue(Width) + 1; | ||||||||
6940 | break; | ||||||||
6941 | default: | ||||||||
6942 | break; | ||||||||
6943 | } | ||||||||
6944 | } | ||||||||
6945 | |||||||||
6946 | static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, | ||||||||
6947 | APInt &Upper, const InstrInfoQuery &IIQ) { | ||||||||
6948 | const Value *LHS = nullptr, *RHS = nullptr; | ||||||||
6949 | SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); | ||||||||
6950 | if (R.Flavor == SPF_UNKNOWN) | ||||||||
6951 | return; | ||||||||
6952 | |||||||||
6953 | unsigned BitWidth = SI.getType()->getScalarSizeInBits(); | ||||||||
6954 | |||||||||
6955 | if (R.Flavor == SelectPatternFlavor::SPF_ABS) { | ||||||||
6956 | // If the negation part of the abs (in RHS) has the NSW flag, | ||||||||
6957 | // then the result of abs(X) is [0..SIGNED_MAX], | ||||||||
6958 | // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. | ||||||||
6959 | Lower = APInt::getNullValue(BitWidth); | ||||||||
6960 | if (match(RHS, m_Neg(m_Specific(LHS))) && | ||||||||
6961 | IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) | ||||||||
6962 | Upper = APInt::getSignedMaxValue(BitWidth) + 1; | ||||||||
6963 | else | ||||||||
6964 | Upper = APInt::getSignedMinValue(BitWidth) + 1; | ||||||||
6965 | return; | ||||||||
6966 | } | ||||||||
6967 | |||||||||
6968 | if (R.Flavor == SelectPatternFlavor::SPF_NABS) { | ||||||||
6969 | // The result of -abs(X) is <= 0. | ||||||||
6970 | Lower = APInt::getSignedMinValue(BitWidth); | ||||||||
6971 | Upper = APInt(BitWidth, 1); | ||||||||
6972 | return; | ||||||||
6973 | } | ||||||||
6974 | |||||||||
6975 | const APInt *C; | ||||||||
6976 | if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) | ||||||||
6977 | return; | ||||||||
6978 | |||||||||
6979 | switch (R.Flavor) { | ||||||||
6980 | case SPF_UMIN: | ||||||||
6981 | Upper = *C + 1; | ||||||||
6982 | break; | ||||||||
6983 | case SPF_UMAX: | ||||||||
6984 | Lower = *C; | ||||||||
6985 | break; | ||||||||
6986 | case SPF_SMIN: | ||||||||
6987 | Lower = APInt::getSignedMinValue(BitWidth); | ||||||||
6988 | Upper = *C + 1; | ||||||||
6989 | break; | ||||||||
6990 | case SPF_SMAX: | ||||||||
6991 | Lower = *C; | ||||||||
6992 | Upper = APInt::getSignedMaxValue(BitWidth) + 1; | ||||||||
6993 | break; | ||||||||
6994 | default: | ||||||||
6995 | break; | ||||||||
6996 | } | ||||||||
6997 | } | ||||||||
6998 | |||||||||
6999 | ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, | ||||||||
7000 | AssumptionCache *AC, | ||||||||
7001 | const Instruction *CtxI, | ||||||||
7002 | unsigned Depth) { | ||||||||
7003 | assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction")((void)0); | ||||||||
7004 | |||||||||
7005 | if (Depth == MaxAnalysisRecursionDepth) | ||||||||
7006 | return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); | ||||||||
7007 | |||||||||
7008 | const APInt *C; | ||||||||
7009 | if (match(V, m_APInt(C))) | ||||||||
7010 | return ConstantRange(*C); | ||||||||
7011 | |||||||||
7012 | InstrInfoQuery IIQ(UseInstrInfo); | ||||||||
7013 | unsigned BitWidth = V->getType()->getScalarSizeInBits(); | ||||||||
7014 | APInt Lower = APInt(BitWidth, 0); | ||||||||
7015 | APInt Upper = APInt(BitWidth, 0); | ||||||||
7016 | if (auto *BO = dyn_cast<BinaryOperator>(V)) | ||||||||
7017 | setLimitsForBinOp(*BO, Lower, Upper, IIQ); | ||||||||
7018 | else if (auto *II = dyn_cast<IntrinsicInst>(V)) | ||||||||
7019 | setLimitsForIntrinsic(*II, Lower, Upper); | ||||||||
7020 | else if (auto *SI = dyn_cast<SelectInst>(V)) | ||||||||
7021 | setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); | ||||||||
7022 | |||||||||
7023 | ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); | ||||||||
7024 | |||||||||
7025 | if (auto *I = dyn_cast<Instruction>(V)) | ||||||||
7026 | if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) | ||||||||
7027 | CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); | ||||||||
7028 | |||||||||
7029 | if (CtxI && AC) { | ||||||||
7030 | // Try to restrict the range based on information from assumptions. | ||||||||
7031 | for (auto &AssumeVH : AC->assumptionsFor(V)) { | ||||||||
7032 | if (!AssumeVH) | ||||||||
7033 | continue; | ||||||||
7034 | CallInst *I = cast<CallInst>(AssumeVH); | ||||||||
7035 | assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&((void)0) | ||||||||
7036 | "Got assumption for the wrong function!")((void)0); | ||||||||
7037 | assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&((void)0) | ||||||||
7038 | "must be an assume intrinsic")((void)0); | ||||||||
7039 | |||||||||
7040 | if (!isValidAssumeForContext(I, CtxI, nullptr)) | ||||||||
7041 | continue; | ||||||||
7042 | Value *Arg = I->getArgOperand(0); | ||||||||
7043 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); | ||||||||
7044 | // Currently we just use information from comparisons. | ||||||||
7045 | if (!Cmp || Cmp->getOperand(0) != V) | ||||||||
7046 | continue; | ||||||||
7047 | ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, | ||||||||
7048 | AC, I, Depth + 1); | ||||||||
7049 | CR = CR.intersectWith( | ||||||||
7050 | ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); | ||||||||
7051 | } | ||||||||
7052 | } | ||||||||
7053 | |||||||||
7054 | return CR; | ||||||||
7055 | } | ||||||||
7056 | |||||||||
7057 | static Optional<int64_t> | ||||||||
7058 | getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { | ||||||||
7059 | // Skip over the first indices. | ||||||||
7060 | gep_type_iterator GTI = gep_type_begin(GEP); | ||||||||
7061 | for (unsigned i = 1; i != Idx; ++i, ++GTI) | ||||||||
7062 | /*skip along*/; | ||||||||
7063 | |||||||||
7064 | // Compute the offset implied by the rest of the indices. | ||||||||
7065 | int64_t Offset = 0; | ||||||||
7066 | for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { | ||||||||
7067 | ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); | ||||||||
7068 | if (!OpC) | ||||||||
7069 | return None; | ||||||||
7070 | if (OpC->isZero()) | ||||||||
7071 | continue; // No offset. | ||||||||
7072 | |||||||||
7073 | // Handle struct indices, which add their field offset to the pointer. | ||||||||
7074 | if (StructType *STy = GTI.getStructTypeOrNull()) { | ||||||||
7075 | Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); | ||||||||
7076 | continue; | ||||||||
7077 | } | ||||||||
7078 | |||||||||
7079 | // Otherwise, we have a sequential type like an array or fixed-length | ||||||||
7080 | // vector. Multiply the index by the ElementSize. | ||||||||
7081 | TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); | ||||||||
7082 | if (Size.isScalable()) | ||||||||
7083 | return None; | ||||||||
7084 | Offset += Size.getFixedSize() * OpC->getSExtValue(); | ||||||||
7085 | } | ||||||||
7086 | |||||||||
7087 | return Offset; | ||||||||
7088 | } | ||||||||
7089 | |||||||||
7090 | Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, | ||||||||
7091 | const DataLayout &DL) { | ||||||||
7092 | Ptr1 = Ptr1->stripPointerCasts(); | ||||||||
7093 | Ptr2 = Ptr2->stripPointerCasts(); | ||||||||
7094 | |||||||||
7095 | // Handle the trivial case first. | ||||||||
7096 | if (Ptr1 == Ptr2) { | ||||||||
7097 | return 0; | ||||||||
7098 | } | ||||||||
7099 | |||||||||
7100 | const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); | ||||||||
7101 | const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); | ||||||||
7102 | |||||||||
7103 | // If one pointer is a GEP see if the GEP is a constant offset from the base, | ||||||||
7104 | // as in "P" and "gep P, 1". | ||||||||
7105 | // Also do this iteratively to handle the the following case: | ||||||||
7106 | // Ptr_t1 = GEP Ptr1, c1 | ||||||||
7107 | // Ptr_t2 = GEP Ptr_t1, c2 | ||||||||
7108 | // Ptr2 = GEP Ptr_t2, c3 | ||||||||
7109 | // where we will return c1+c2+c3. | ||||||||
7110 | // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base | ||||||||
7111 | // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases | ||||||||
7112 | // are the same, and return the difference between offsets. | ||||||||
7113 | auto getOffsetFromBase = [&DL](const GEPOperator *GEP, | ||||||||
7114 | const Value *Ptr) -> Optional<int64_t> { | ||||||||
7115 | const GEPOperator *GEP_T = GEP; | ||||||||
7116 | int64_t OffsetVal = 0; | ||||||||
7117 | bool HasSameBase = false; | ||||||||
7118 | while (GEP_T) { | ||||||||
7119 | auto Offset = getOffsetFromIndex(GEP_T, 1, DL); | ||||||||
7120 | if (!Offset) | ||||||||
7121 | return None; | ||||||||
7122 | OffsetVal += *Offset; | ||||||||
7123 | auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); | ||||||||
7124 | if (Op0 == Ptr) { | ||||||||
7125 | HasSameBase = true; | ||||||||
7126 | break; | ||||||||
7127 | } | ||||||||
7128 | GEP_T = dyn_cast<GEPOperator>(Op0); | ||||||||
7129 | } | ||||||||
7130 | if (!HasSameBase) | ||||||||
7131 | return None; | ||||||||
7132 | return OffsetVal; | ||||||||
7133 | }; | ||||||||
7134 | |||||||||
7135 | if (GEP1) { | ||||||||
7136 | auto Offset = getOffsetFromBase(GEP1, Ptr2); | ||||||||
7137 | if (Offset) | ||||||||
7138 | return -*Offset; | ||||||||
7139 | } | ||||||||
7140 | if (GEP2) { | ||||||||
7141 | auto Offset = getOffsetFromBase(GEP2, Ptr1); | ||||||||
7142 | if (Offset) | ||||||||
7143 | return Offset; | ||||||||
7144 | } | ||||||||
7145 | |||||||||
7146 | // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical | ||||||||
7147 | // base. After that base, they may have some number of common (and | ||||||||
7148 | // potentially variable) indices. After that they handle some constant | ||||||||
7149 | // offset, which determines their offset from each other. At this point, we | ||||||||
7150 | // handle no other case. | ||||||||
7151 | if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) | ||||||||
7152 | return None; | ||||||||
7153 | |||||||||
7154 | // Skip any common indices and track the GEP types. | ||||||||
7155 | unsigned Idx = 1; | ||||||||
7156 | for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) | ||||||||
7157 | if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) | ||||||||
7158 | break; | ||||||||
7159 | |||||||||
7160 | auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); | ||||||||
7161 | auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); | ||||||||
7162 | if (!Offset1 || !Offset2) | ||||||||
7163 | return None; | ||||||||
7164 | return *Offset2 - *Offset1; | ||||||||
7165 | } |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file exposes the class definitions of all of the subclasses of the | |||
10 | // Instruction class. This is meant to be an easy way to get access to all | |||
11 | // instruction subclasses. | |||
12 | // | |||
13 | //===----------------------------------------------------------------------===// | |||
14 | ||||
15 | #ifndef LLVM_IR_INSTRUCTIONS_H | |||
16 | #define LLVM_IR_INSTRUCTIONS_H | |||
17 | ||||
18 | #include "llvm/ADT/ArrayRef.h" | |||
19 | #include "llvm/ADT/Bitfields.h" | |||
20 | #include "llvm/ADT/MapVector.h" | |||
21 | #include "llvm/ADT/None.h" | |||
22 | #include "llvm/ADT/STLExtras.h" | |||
23 | #include "llvm/ADT/SmallVector.h" | |||
24 | #include "llvm/ADT/StringRef.h" | |||
25 | #include "llvm/ADT/Twine.h" | |||
26 | #include "llvm/ADT/iterator.h" | |||
27 | #include "llvm/ADT/iterator_range.h" | |||
28 | #include "llvm/IR/Attributes.h" | |||
29 | #include "llvm/IR/BasicBlock.h" | |||
30 | #include "llvm/IR/CallingConv.h" | |||
31 | #include "llvm/IR/CFG.h" | |||
32 | #include "llvm/IR/Constant.h" | |||
33 | #include "llvm/IR/DerivedTypes.h" | |||
34 | #include "llvm/IR/Function.h" | |||
35 | #include "llvm/IR/InstrTypes.h" | |||
36 | #include "llvm/IR/Instruction.h" | |||
37 | #include "llvm/IR/OperandTraits.h" | |||
38 | #include "llvm/IR/Type.h" | |||
39 | #include "llvm/IR/Use.h" | |||
40 | #include "llvm/IR/User.h" | |||
41 | #include "llvm/IR/Value.h" | |||
42 | #include "llvm/Support/AtomicOrdering.h" | |||
43 | #include "llvm/Support/Casting.h" | |||
44 | #include "llvm/Support/ErrorHandling.h" | |||
45 | #include <cassert> | |||
46 | #include <cstddef> | |||
47 | #include <cstdint> | |||
48 | #include <iterator> | |||
49 | ||||
50 | namespace llvm { | |||
51 | ||||
52 | class APInt; | |||
53 | class ConstantInt; | |||
54 | class DataLayout; | |||
55 | class LLVMContext; | |||
56 | ||||
57 | //===----------------------------------------------------------------------===// | |||
58 | // AllocaInst Class | |||
59 | //===----------------------------------------------------------------------===// | |||
60 | ||||
61 | /// an instruction to allocate memory on the stack | |||
62 | class AllocaInst : public UnaryInstruction { | |||
63 | Type *AllocatedType; | |||
64 | ||||
65 | using AlignmentField = AlignmentBitfieldElementT<0>; | |||
66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; | |||
67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; | |||
68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, | |||
69 | SwiftErrorField>(), | |||
70 | "Bitfields must be contiguous"); | |||
71 | ||||
72 | protected: | |||
73 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
74 | friend class Instruction; | |||
75 | ||||
76 | AllocaInst *cloneImpl() const; | |||
77 | ||||
78 | public: | |||
79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | |||
80 | const Twine &Name, Instruction *InsertBefore); | |||
81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | |||
82 | const Twine &Name, BasicBlock *InsertAtEnd); | |||
83 | ||||
84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, | |||
85 | Instruction *InsertBefore); | |||
86 | AllocaInst(Type *Ty, unsigned AddrSpace, | |||
87 | const Twine &Name, BasicBlock *InsertAtEnd); | |||
88 | ||||
89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, | |||
90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); | |||
91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, | |||
92 | const Twine &Name, BasicBlock *InsertAtEnd); | |||
93 | ||||
94 | /// Return true if there is an allocation size parameter to the allocation | |||
95 | /// instruction that is not 1. | |||
96 | bool isArrayAllocation() const; | |||
97 | ||||
98 | /// Get the number of elements allocated. For a simple allocation of a single | |||
99 | /// element, this will return a constant 1 value. | |||
100 | const Value *getArraySize() const { return getOperand(0); } | |||
101 | Value *getArraySize() { return getOperand(0); } | |||
102 | ||||
103 | /// Overload to return most specific pointer type. | |||
104 | PointerType *getType() const { | |||
105 | return cast<PointerType>(Instruction::getType()); | |||
106 | } | |||
107 | ||||
108 | /// Get allocation size in bits. Returns None if size can't be determined, | |||
109 | /// e.g. in case of a VLA. | |||
110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; | |||
111 | ||||
112 | /// Return the type that is being allocated by the instruction. | |||
113 | Type *getAllocatedType() const { return AllocatedType; } | |||
114 | /// for use only in special circumstances that need to generically | |||
115 | /// transform a whole instruction (eg: IR linking and vectorization). | |||
116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } | |||
117 | ||||
118 | /// Return the alignment of the memory that is being allocated by the | |||
119 | /// instruction. | |||
120 | Align getAlign() const { | |||
121 | return Align(1ULL << getSubclassData<AlignmentField>()); | |||
122 | } | |||
123 | ||||
124 | void setAlignment(Align Align) { | |||
125 | setSubclassData<AlignmentField>(Log2(Align)); | |||
126 | } | |||
127 | ||||
128 | // FIXME: Remove this one transition to Align is over. | |||
129 | unsigned getAlignment() const { return getAlign().value(); } | |||
130 | ||||
131 | /// Return true if this alloca is in the entry block of the function and is a | |||
132 | /// constant size. If so, the code generator will fold it into the | |||
133 | /// prolog/epilog code, so it is basically free. | |||
134 | bool isStaticAlloca() const; | |||
135 | ||||
136 | /// Return true if this alloca is used as an inalloca argument to a call. Such | |||
137 | /// allocas are never considered static even if they are in the entry block. | |||
138 | bool isUsedWithInAlloca() const { | |||
139 | return getSubclassData<UsedWithInAllocaField>(); | |||
140 | } | |||
141 | ||||
142 | /// Specify whether this alloca is used to represent the arguments to a call. | |||
143 | void setUsedWithInAlloca(bool V) { | |||
144 | setSubclassData<UsedWithInAllocaField>(V); | |||
145 | } | |||
146 | ||||
147 | /// Return true if this alloca is used as a swifterror argument to a call. | |||
148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } | |||
149 | /// Specify whether this alloca is used to represent a swifterror. | |||
150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } | |||
151 | ||||
152 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
153 | static bool classof(const Instruction *I) { | |||
154 | return (I->getOpcode() == Instruction::Alloca); | |||
155 | } | |||
156 | static bool classof(const Value *V) { | |||
157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
158 | } | |||
159 | ||||
160 | private: | |||
161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
162 | // method so that subclasses cannot accidentally use it. | |||
163 | template <typename Bitfield> | |||
164 | void setSubclassData(typename Bitfield::Type Value) { | |||
165 | Instruction::setSubclassData<Bitfield>(Value); | |||
166 | } | |||
167 | }; | |||
168 | ||||
169 | //===----------------------------------------------------------------------===// | |||
170 | // LoadInst Class | |||
171 | //===----------------------------------------------------------------------===// | |||
172 | ||||
173 | /// An instruction for reading from memory. This uses the SubclassData field in | |||
174 | /// Value to store whether or not the load is volatile. | |||
175 | class LoadInst : public UnaryInstruction { | |||
176 | using VolatileField = BoolBitfieldElementT<0>; | |||
177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; | |||
178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; | |||
179 | static_assert( | |||
180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), | |||
181 | "Bitfields must be contiguous"); | |||
182 | ||||
183 | void AssertOK(); | |||
184 | ||||
185 | protected: | |||
186 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
187 | friend class Instruction; | |||
188 | ||||
189 | LoadInst *cloneImpl() const; | |||
190 | ||||
191 | public: | |||
192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, | |||
193 | Instruction *InsertBefore); | |||
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
196 | Instruction *InsertBefore); | |||
197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
198 | BasicBlock *InsertAtEnd); | |||
199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
200 | Align Align, Instruction *InsertBefore = nullptr); | |||
201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
202 | Align Align, BasicBlock *InsertAtEnd); | |||
203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
204 | Align Align, AtomicOrdering Order, | |||
205 | SyncScope::ID SSID = SyncScope::System, | |||
206 | Instruction *InsertBefore = nullptr); | |||
207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, | |||
208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, | |||
209 | BasicBlock *InsertAtEnd); | |||
210 | ||||
211 | /// Return true if this is a load from a volatile memory location. | |||
212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } | |||
213 | ||||
214 | /// Specify whether this is a volatile load or not. | |||
215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } | |||
216 | ||||
217 | /// Return the alignment of the access that is being performed. | |||
218 | /// FIXME: Remove this function once transition to Align is over. | |||
219 | /// Use getAlign() instead. | |||
220 | unsigned getAlignment() const { return getAlign().value(); } | |||
221 | ||||
222 | /// Return the alignment of the access that is being performed. | |||
223 | Align getAlign() const { | |||
224 | return Align(1ULL << (getSubclassData<AlignmentField>())); | |||
225 | } | |||
226 | ||||
227 | void setAlignment(Align Align) { | |||
228 | setSubclassData<AlignmentField>(Log2(Align)); | |||
229 | } | |||
230 | ||||
231 | /// Returns the ordering constraint of this load instruction. | |||
232 | AtomicOrdering getOrdering() const { | |||
233 | return getSubclassData<OrderingField>(); | |||
234 | } | |||
235 | /// Sets the ordering constraint of this load instruction. May not be Release | |||
236 | /// or AcquireRelease. | |||
237 | void setOrdering(AtomicOrdering Ordering) { | |||
238 | setSubclassData<OrderingField>(Ordering); | |||
239 | } | |||
240 | ||||
241 | /// Returns the synchronization scope ID of this load instruction. | |||
242 | SyncScope::ID getSyncScopeID() const { | |||
243 | return SSID; | |||
244 | } | |||
245 | ||||
246 | /// Sets the synchronization scope ID of this load instruction. | |||
247 | void setSyncScopeID(SyncScope::ID SSID) { | |||
248 | this->SSID = SSID; | |||
249 | } | |||
250 | ||||
251 | /// Sets the ordering constraint and the synchronization scope ID of this load | |||
252 | /// instruction. | |||
253 | void setAtomic(AtomicOrdering Ordering, | |||
254 | SyncScope::ID SSID = SyncScope::System) { | |||
255 | setOrdering(Ordering); | |||
256 | setSyncScopeID(SSID); | |||
257 | } | |||
258 | ||||
259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } | |||
260 | ||||
261 | bool isUnordered() const { | |||
262 | return (getOrdering() == AtomicOrdering::NotAtomic || | |||
263 | getOrdering() == AtomicOrdering::Unordered) && | |||
264 | !isVolatile(); | |||
265 | } | |||
266 | ||||
267 | Value *getPointerOperand() { return getOperand(0); } | |||
268 | const Value *getPointerOperand() const { return getOperand(0); } | |||
269 | static unsigned getPointerOperandIndex() { return 0U; } | |||
270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } | |||
271 | ||||
272 | /// Returns the address space of the pointer operand. | |||
273 | unsigned getPointerAddressSpace() const { | |||
274 | return getPointerOperandType()->getPointerAddressSpace(); | |||
275 | } | |||
276 | ||||
277 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
278 | static bool classof(const Instruction *I) { | |||
279 | return I->getOpcode() == Instruction::Load; | |||
280 | } | |||
281 | static bool classof(const Value *V) { | |||
282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
283 | } | |||
284 | ||||
285 | private: | |||
286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
287 | // method so that subclasses cannot accidentally use it. | |||
288 | template <typename Bitfield> | |||
289 | void setSubclassData(typename Bitfield::Type Value) { | |||
290 | Instruction::setSubclassData<Bitfield>(Value); | |||
291 | } | |||
292 | ||||
293 | /// The synchronization scope ID of this load instruction. Not quite enough | |||
294 | /// room in SubClassData for everything, so synchronization scope ID gets its | |||
295 | /// own field. | |||
296 | SyncScope::ID SSID; | |||
297 | }; | |||
298 | ||||
299 | //===----------------------------------------------------------------------===// | |||
300 | // StoreInst Class | |||
301 | //===----------------------------------------------------------------------===// | |||
302 | ||||
303 | /// An instruction for storing to memory. | |||
304 | class StoreInst : public Instruction { | |||
305 | using VolatileField = BoolBitfieldElementT<0>; | |||
306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; | |||
307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; | |||
308 | static_assert( | |||
309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), | |||
310 | "Bitfields must be contiguous"); | |||
311 | ||||
312 | void AssertOK(); | |||
313 | ||||
314 | protected: | |||
315 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
316 | friend class Instruction; | |||
317 | ||||
318 | StoreInst *cloneImpl() const; | |||
319 | ||||
320 | public: | |||
321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); | |||
322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); | |||
323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); | |||
324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); | |||
325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, | |||
326 | Instruction *InsertBefore = nullptr); | |||
327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, | |||
328 | BasicBlock *InsertAtEnd); | |||
329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, | |||
330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, | |||
331 | Instruction *InsertBefore = nullptr); | |||
332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, | |||
333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); | |||
334 | ||||
335 | // allocate space for exactly two operands | |||
336 | void *operator new(size_t S) { return User::operator new(S, 2); } | |||
337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
338 | ||||
339 | /// Return true if this is a store to a volatile memory location. | |||
340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } | |||
341 | ||||
342 | /// Specify whether this is a volatile store or not. | |||
343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } | |||
344 | ||||
345 | /// Transparently provide more efficient getOperand methods. | |||
346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
347 | ||||
348 | /// Return the alignment of the access that is being performed | |||
349 | /// FIXME: Remove this function once transition to Align is over. | |||
350 | /// Use getAlign() instead. | |||
351 | unsigned getAlignment() const { return getAlign().value(); } | |||
352 | ||||
353 | Align getAlign() const { | |||
354 | return Align(1ULL << (getSubclassData<AlignmentField>())); | |||
355 | } | |||
356 | ||||
357 | void setAlignment(Align Align) { | |||
358 | setSubclassData<AlignmentField>(Log2(Align)); | |||
359 | } | |||
360 | ||||
361 | /// Returns the ordering constraint of this store instruction. | |||
362 | AtomicOrdering getOrdering() const { | |||
363 | return getSubclassData<OrderingField>(); | |||
364 | } | |||
365 | ||||
366 | /// Sets the ordering constraint of this store instruction. May not be | |||
367 | /// Acquire or AcquireRelease. | |||
368 | void setOrdering(AtomicOrdering Ordering) { | |||
369 | setSubclassData<OrderingField>(Ordering); | |||
370 | } | |||
371 | ||||
372 | /// Returns the synchronization scope ID of this store instruction. | |||
373 | SyncScope::ID getSyncScopeID() const { | |||
374 | return SSID; | |||
375 | } | |||
376 | ||||
377 | /// Sets the synchronization scope ID of this store instruction. | |||
378 | void setSyncScopeID(SyncScope::ID SSID) { | |||
379 | this->SSID = SSID; | |||
380 | } | |||
381 | ||||
382 | /// Sets the ordering constraint and the synchronization scope ID of this | |||
383 | /// store instruction. | |||
384 | void setAtomic(AtomicOrdering Ordering, | |||
385 | SyncScope::ID SSID = SyncScope::System) { | |||
386 | setOrdering(Ordering); | |||
387 | setSyncScopeID(SSID); | |||
388 | } | |||
389 | ||||
390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } | |||
391 | ||||
392 | bool isUnordered() const { | |||
393 | return (getOrdering() == AtomicOrdering::NotAtomic || | |||
394 | getOrdering() == AtomicOrdering::Unordered) && | |||
395 | !isVolatile(); | |||
396 | } | |||
397 | ||||
398 | Value *getValueOperand() { return getOperand(0); } | |||
399 | const Value *getValueOperand() const { return getOperand(0); } | |||
400 | ||||
401 | Value *getPointerOperand() { return getOperand(1); } | |||
402 | const Value *getPointerOperand() const { return getOperand(1); } | |||
403 | static unsigned getPointerOperandIndex() { return 1U; } | |||
404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } | |||
405 | ||||
406 | /// Returns the address space of the pointer operand. | |||
407 | unsigned getPointerAddressSpace() const { | |||
408 | return getPointerOperandType()->getPointerAddressSpace(); | |||
409 | } | |||
410 | ||||
411 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
412 | static bool classof(const Instruction *I) { | |||
413 | return I->getOpcode() == Instruction::Store; | |||
414 | } | |||
415 | static bool classof(const Value *V) { | |||
416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
417 | } | |||
418 | ||||
419 | private: | |||
420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
421 | // method so that subclasses cannot accidentally use it. | |||
422 | template <typename Bitfield> | |||
423 | void setSubclassData(typename Bitfield::Type Value) { | |||
424 | Instruction::setSubclassData<Bitfield>(Value); | |||
425 | } | |||
426 | ||||
427 | /// The synchronization scope ID of this store instruction. Not quite enough | |||
428 | /// room in SubClassData for everything, so synchronization scope ID gets its | |||
429 | /// own field. | |||
430 | SyncScope::ID SSID; | |||
431 | }; | |||
432 | ||||
433 | template <> | |||
434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { | |||
435 | }; | |||
436 | ||||
437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } | |||
438 | ||||
439 | //===----------------------------------------------------------------------===// | |||
440 | // FenceInst Class | |||
441 | //===----------------------------------------------------------------------===// | |||
442 | ||||
443 | /// An instruction for ordering other memory operations. | |||
444 | class FenceInst : public Instruction { | |||
445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; | |||
446 | ||||
447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); | |||
448 | ||||
449 | protected: | |||
450 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
451 | friend class Instruction; | |||
452 | ||||
453 | FenceInst *cloneImpl() const; | |||
454 | ||||
455 | public: | |||
456 | // Ordering may only be Acquire, Release, AcquireRelease, or | |||
457 | // SequentiallyConsistent. | |||
458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, | |||
459 | SyncScope::ID SSID = SyncScope::System, | |||
460 | Instruction *InsertBefore = nullptr); | |||
461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, | |||
462 | BasicBlock *InsertAtEnd); | |||
463 | ||||
464 | // allocate space for exactly zero operands | |||
465 | void *operator new(size_t S) { return User::operator new(S, 0); } | |||
466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
467 | ||||
468 | /// Returns the ordering constraint of this fence instruction. | |||
469 | AtomicOrdering getOrdering() const { | |||
470 | return getSubclassData<OrderingField>(); | |||
471 | } | |||
472 | ||||
473 | /// Sets the ordering constraint of this fence instruction. May only be | |||
474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. | |||
475 | void setOrdering(AtomicOrdering Ordering) { | |||
476 | setSubclassData<OrderingField>(Ordering); | |||
477 | } | |||
478 | ||||
479 | /// Returns the synchronization scope ID of this fence instruction. | |||
480 | SyncScope::ID getSyncScopeID() const { | |||
481 | return SSID; | |||
482 | } | |||
483 | ||||
484 | /// Sets the synchronization scope ID of this fence instruction. | |||
485 | void setSyncScopeID(SyncScope::ID SSID) { | |||
486 | this->SSID = SSID; | |||
487 | } | |||
488 | ||||
489 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
490 | static bool classof(const Instruction *I) { | |||
491 | return I->getOpcode() == Instruction::Fence; | |||
492 | } | |||
493 | static bool classof(const Value *V) { | |||
494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
495 | } | |||
496 | ||||
497 | private: | |||
498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
499 | // method so that subclasses cannot accidentally use it. | |||
500 | template <typename Bitfield> | |||
501 | void setSubclassData(typename Bitfield::Type Value) { | |||
502 | Instruction::setSubclassData<Bitfield>(Value); | |||
503 | } | |||
504 | ||||
505 | /// The synchronization scope ID of this fence instruction. Not quite enough | |||
506 | /// room in SubClassData for everything, so synchronization scope ID gets its | |||
507 | /// own field. | |||
508 | SyncScope::ID SSID; | |||
509 | }; | |||
510 | ||||
511 | //===----------------------------------------------------------------------===// | |||
512 | // AtomicCmpXchgInst Class | |||
513 | //===----------------------------------------------------------------------===// | |||
514 | ||||
515 | /// An instruction that atomically checks whether a | |||
516 | /// specified value is in a memory location, and, if it is, stores a new value | |||
517 | /// there. The value returned by this instruction is a pair containing the | |||
518 | /// original value as first element, and an i1 indicating success (true) or | |||
519 | /// failure (false) as second element. | |||
520 | /// | |||
521 | class AtomicCmpXchgInst : public Instruction { | |||
522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, | |||
523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, | |||
524 | SyncScope::ID SSID); | |||
525 | ||||
526 | template <unsigned Offset> | |||
527 | using AtomicOrderingBitfieldElement = | |||
528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, | |||
529 | AtomicOrdering::LAST>; | |||
530 | ||||
531 | protected: | |||
532 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
533 | friend class Instruction; | |||
534 | ||||
535 | AtomicCmpXchgInst *cloneImpl() const; | |||
536 | ||||
537 | public: | |||
538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, | |||
539 | AtomicOrdering SuccessOrdering, | |||
540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, | |||
541 | Instruction *InsertBefore = nullptr); | |||
542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, | |||
543 | AtomicOrdering SuccessOrdering, | |||
544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, | |||
545 | BasicBlock *InsertAtEnd); | |||
546 | ||||
547 | // allocate space for exactly three operands | |||
548 | void *operator new(size_t S) { return User::operator new(S, 3); } | |||
549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
550 | ||||
551 | using VolatileField = BoolBitfieldElementT<0>; | |||
552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; | |||
553 | using SuccessOrderingField = | |||
554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; | |||
555 | using FailureOrderingField = | |||
556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; | |||
557 | using AlignmentField = | |||
558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; | |||
559 | static_assert( | |||
560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, | |||
561 | FailureOrderingField, AlignmentField>(), | |||
562 | "Bitfields must be contiguous"); | |||
563 | ||||
564 | /// Return the alignment of the memory that is being allocated by the | |||
565 | /// instruction. | |||
566 | Align getAlign() const { | |||
567 | return Align(1ULL << getSubclassData<AlignmentField>()); | |||
568 | } | |||
569 | ||||
570 | void setAlignment(Align Align) { | |||
571 | setSubclassData<AlignmentField>(Log2(Align)); | |||
572 | } | |||
573 | ||||
574 | /// Return true if this is a cmpxchg from a volatile memory | |||
575 | /// location. | |||
576 | /// | |||
577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } | |||
578 | ||||
579 | /// Specify whether this is a volatile cmpxchg. | |||
580 | /// | |||
581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } | |||
582 | ||||
583 | /// Return true if this cmpxchg may spuriously fail. | |||
584 | bool isWeak() const { return getSubclassData<WeakField>(); } | |||
585 | ||||
586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } | |||
587 | ||||
588 | /// Transparently provide more efficient getOperand methods. | |||
589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
590 | ||||
591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { | |||
592 | return Ordering != AtomicOrdering::NotAtomic && | |||
593 | Ordering != AtomicOrdering::Unordered; | |||
594 | } | |||
595 | ||||
596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { | |||
597 | return Ordering != AtomicOrdering::NotAtomic && | |||
598 | Ordering != AtomicOrdering::Unordered && | |||
599 | Ordering != AtomicOrdering::AcquireRelease && | |||
600 | Ordering != AtomicOrdering::Release; | |||
601 | } | |||
602 | ||||
603 | /// Returns the success ordering constraint of this cmpxchg instruction. | |||
604 | AtomicOrdering getSuccessOrdering() const { | |||
605 | return getSubclassData<SuccessOrderingField>(); | |||
606 | } | |||
607 | ||||
608 | /// Sets the success ordering constraint of this cmpxchg instruction. | |||
609 | void setSuccessOrdering(AtomicOrdering Ordering) { | |||
610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) | |||
611 | "invalid CmpXchg success ordering")((void)0); | |||
612 | setSubclassData<SuccessOrderingField>(Ordering); | |||
613 | } | |||
614 | ||||
615 | /// Returns the failure ordering constraint of this cmpxchg instruction. | |||
616 | AtomicOrdering getFailureOrdering() const { | |||
617 | return getSubclassData<FailureOrderingField>(); | |||
618 | } | |||
619 | ||||
620 | /// Sets the failure ordering constraint of this cmpxchg instruction. | |||
621 | void setFailureOrdering(AtomicOrdering Ordering) { | |||
622 | assert(isValidFailureOrdering(Ordering) &&((void)0) | |||
623 | "invalid CmpXchg failure ordering")((void)0); | |||
624 | setSubclassData<FailureOrderingField>(Ordering); | |||
625 | } | |||
626 | ||||
627 | /// Returns a single ordering which is at least as strong as both the | |||
628 | /// success and failure orderings for this cmpxchg. | |||
629 | AtomicOrdering getMergedOrdering() const { | |||
630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) | |||
631 | return AtomicOrdering::SequentiallyConsistent; | |||
632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { | |||
633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) | |||
634 | return AtomicOrdering::Acquire; | |||
635 | if (getSuccessOrdering() == AtomicOrdering::Release) | |||
636 | return AtomicOrdering::AcquireRelease; | |||
637 | } | |||
638 | return getSuccessOrdering(); | |||
639 | } | |||
640 | ||||
641 | /// Returns the synchronization scope ID of this cmpxchg instruction. | |||
642 | SyncScope::ID getSyncScopeID() const { | |||
643 | return SSID; | |||
644 | } | |||
645 | ||||
646 | /// Sets the synchronization scope ID of this cmpxchg instruction. | |||
647 | void setSyncScopeID(SyncScope::ID SSID) { | |||
648 | this->SSID = SSID; | |||
649 | } | |||
650 | ||||
651 | Value *getPointerOperand() { return getOperand(0); } | |||
652 | const Value *getPointerOperand() const { return getOperand(0); } | |||
653 | static unsigned getPointerOperandIndex() { return 0U; } | |||
654 | ||||
655 | Value *getCompareOperand() { return getOperand(1); } | |||
656 | const Value *getCompareOperand() const { return getOperand(1); } | |||
657 | ||||
658 | Value *getNewValOperand() { return getOperand(2); } | |||
659 | const Value *getNewValOperand() const { return getOperand(2); } | |||
660 | ||||
661 | /// Returns the address space of the pointer operand. | |||
662 | unsigned getPointerAddressSpace() const { | |||
663 | return getPointerOperand()->getType()->getPointerAddressSpace(); | |||
664 | } | |||
665 | ||||
666 | /// Returns the strongest permitted ordering on failure, given the | |||
667 | /// desired ordering on success. | |||
668 | /// | |||
669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store | |||
670 | /// so release semantics cannot be provided. So this function drops explicit | |||
671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent | |||
672 | /// operation would remain SequentiallyConsistent. | |||
673 | static AtomicOrdering | |||
674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { | |||
675 | switch (SuccessOrdering) { | |||
676 | default: | |||
677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); | |||
678 | case AtomicOrdering::Release: | |||
679 | case AtomicOrdering::Monotonic: | |||
680 | return AtomicOrdering::Monotonic; | |||
681 | case AtomicOrdering::AcquireRelease: | |||
682 | case AtomicOrdering::Acquire: | |||
683 | return AtomicOrdering::Acquire; | |||
684 | case AtomicOrdering::SequentiallyConsistent: | |||
685 | return AtomicOrdering::SequentiallyConsistent; | |||
686 | } | |||
687 | } | |||
688 | ||||
689 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
690 | static bool classof(const Instruction *I) { | |||
691 | return I->getOpcode() == Instruction::AtomicCmpXchg; | |||
692 | } | |||
693 | static bool classof(const Value *V) { | |||
694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
695 | } | |||
696 | ||||
697 | private: | |||
698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
699 | // method so that subclasses cannot accidentally use it. | |||
700 | template <typename Bitfield> | |||
701 | void setSubclassData(typename Bitfield::Type Value) { | |||
702 | Instruction::setSubclassData<Bitfield>(Value); | |||
703 | } | |||
704 | ||||
705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite | |||
706 | /// enough room in SubClassData for everything, so synchronization scope ID | |||
707 | /// gets its own field. | |||
708 | SyncScope::ID SSID; | |||
709 | }; | |||
710 | ||||
711 | template <> | |||
712 | struct OperandTraits<AtomicCmpXchgInst> : | |||
713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { | |||
714 | }; | |||
715 | ||||
716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
717 | ||||
718 | //===----------------------------------------------------------------------===// | |||
719 | // AtomicRMWInst Class | |||
720 | //===----------------------------------------------------------------------===// | |||
721 | ||||
722 | /// an instruction that atomically reads a memory location, | |||
723 | /// combines it with another value, and then stores the result back. Returns | |||
724 | /// the old value. | |||
725 | /// | |||
726 | class AtomicRMWInst : public Instruction { | |||
727 | protected: | |||
728 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
729 | friend class Instruction; | |||
730 | ||||
731 | AtomicRMWInst *cloneImpl() const; | |||
732 | ||||
733 | public: | |||
734 | /// This enumeration lists the possible modifications atomicrmw can make. In | |||
735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, | |||
736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the | |||
737 | /// instruction. These instructions always return 'old'. | |||
738 | enum BinOp : unsigned { | |||
739 | /// *p = v | |||
740 | Xchg, | |||
741 | /// *p = old + v | |||
742 | Add, | |||
743 | /// *p = old - v | |||
744 | Sub, | |||
745 | /// *p = old & v | |||
746 | And, | |||
747 | /// *p = ~(old & v) | |||
748 | Nand, | |||
749 | /// *p = old | v | |||
750 | Or, | |||
751 | /// *p = old ^ v | |||
752 | Xor, | |||
753 | /// *p = old >signed v ? old : v | |||
754 | Max, | |||
755 | /// *p = old <signed v ? old : v | |||
756 | Min, | |||
757 | /// *p = old >unsigned v ? old : v | |||
758 | UMax, | |||
759 | /// *p = old <unsigned v ? old : v | |||
760 | UMin, | |||
761 | ||||
762 | /// *p = old + v | |||
763 | FAdd, | |||
764 | ||||
765 | /// *p = old - v | |||
766 | FSub, | |||
767 | ||||
768 | FIRST_BINOP = Xchg, | |||
769 | LAST_BINOP = FSub, | |||
770 | BAD_BINOP | |||
771 | }; | |||
772 | ||||
773 | private: | |||
774 | template <unsigned Offset> | |||
775 | using AtomicOrderingBitfieldElement = | |||
776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, | |||
777 | AtomicOrdering::LAST>; | |||
778 | ||||
779 | template <unsigned Offset> | |||
780 | using BinOpBitfieldElement = | |||
781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; | |||
782 | ||||
783 | public: | |||
784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, | |||
785 | AtomicOrdering Ordering, SyncScope::ID SSID, | |||
786 | Instruction *InsertBefore = nullptr); | |||
787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, | |||
788 | AtomicOrdering Ordering, SyncScope::ID SSID, | |||
789 | BasicBlock *InsertAtEnd); | |||
790 | ||||
791 | // allocate space for exactly two operands | |||
792 | void *operator new(size_t S) { return User::operator new(S, 2); } | |||
793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
794 | ||||
795 | using VolatileField = BoolBitfieldElementT<0>; | |||
796 | using AtomicOrderingField = | |||
797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; | |||
798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; | |||
799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; | |||
800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, | |||
801 | OperationField, AlignmentField>(), | |||
802 | "Bitfields must be contiguous"); | |||
803 | ||||
804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } | |||
805 | ||||
806 | static StringRef getOperationName(BinOp Op); | |||
807 | ||||
808 | static bool isFPOperation(BinOp Op) { | |||
809 | switch (Op) { | |||
810 | case AtomicRMWInst::FAdd: | |||
811 | case AtomicRMWInst::FSub: | |||
812 | return true; | |||
813 | default: | |||
814 | return false; | |||
815 | } | |||
816 | } | |||
817 | ||||
818 | void setOperation(BinOp Operation) { | |||
819 | setSubclassData<OperationField>(Operation); | |||
820 | } | |||
821 | ||||
822 | /// Return the alignment of the memory that is being allocated by the | |||
823 | /// instruction. | |||
824 | Align getAlign() const { | |||
825 | return Align(1ULL << getSubclassData<AlignmentField>()); | |||
826 | } | |||
827 | ||||
828 | void setAlignment(Align Align) { | |||
829 | setSubclassData<AlignmentField>(Log2(Align)); | |||
830 | } | |||
831 | ||||
832 | /// Return true if this is a RMW on a volatile memory location. | |||
833 | /// | |||
834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } | |||
835 | ||||
836 | /// Specify whether this is a volatile RMW or not. | |||
837 | /// | |||
838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } | |||
839 | ||||
840 | /// Transparently provide more efficient getOperand methods. | |||
841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
842 | ||||
843 | /// Returns the ordering constraint of this rmw instruction. | |||
844 | AtomicOrdering getOrdering() const { | |||
845 | return getSubclassData<AtomicOrderingField>(); | |||
846 | } | |||
847 | ||||
848 | /// Sets the ordering constraint of this rmw instruction. | |||
849 | void setOrdering(AtomicOrdering Ordering) { | |||
850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) | |||
851 | "atomicrmw instructions can only be atomic.")((void)0); | |||
852 | setSubclassData<AtomicOrderingField>(Ordering); | |||
853 | } | |||
854 | ||||
855 | /// Returns the synchronization scope ID of this rmw instruction. | |||
856 | SyncScope::ID getSyncScopeID() const { | |||
857 | return SSID; | |||
858 | } | |||
859 | ||||
860 | /// Sets the synchronization scope ID of this rmw instruction. | |||
861 | void setSyncScopeID(SyncScope::ID SSID) { | |||
862 | this->SSID = SSID; | |||
863 | } | |||
864 | ||||
865 | Value *getPointerOperand() { return getOperand(0); } | |||
866 | const Value *getPointerOperand() const { return getOperand(0); } | |||
867 | static unsigned getPointerOperandIndex() { return 0U; } | |||
868 | ||||
869 | Value *getValOperand() { return getOperand(1); } | |||
870 | const Value *getValOperand() const { return getOperand(1); } | |||
871 | ||||
872 | /// Returns the address space of the pointer operand. | |||
873 | unsigned getPointerAddressSpace() const { | |||
874 | return getPointerOperand()->getType()->getPointerAddressSpace(); | |||
875 | } | |||
876 | ||||
877 | bool isFloatingPointOperation() const { | |||
878 | return isFPOperation(getOperation()); | |||
879 | } | |||
880 | ||||
881 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
882 | static bool classof(const Instruction *I) { | |||
883 | return I->getOpcode() == Instruction::AtomicRMW; | |||
884 | } | |||
885 | static bool classof(const Value *V) { | |||
886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
887 | } | |||
888 | ||||
889 | private: | |||
890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, | |||
891 | AtomicOrdering Ordering, SyncScope::ID SSID); | |||
892 | ||||
893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
894 | // method so that subclasses cannot accidentally use it. | |||
895 | template <typename Bitfield> | |||
896 | void setSubclassData(typename Bitfield::Type Value) { | |||
897 | Instruction::setSubclassData<Bitfield>(Value); | |||
898 | } | |||
899 | ||||
900 | /// The synchronization scope ID of this rmw instruction. Not quite enough | |||
901 | /// room in SubClassData for everything, so synchronization scope ID gets its | |||
902 | /// own field. | |||
903 | SyncScope::ID SSID; | |||
904 | }; | |||
905 | ||||
906 | template <> | |||
907 | struct OperandTraits<AtomicRMWInst> | |||
908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { | |||
909 | }; | |||
910 | ||||
911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } | |||
912 | ||||
913 | //===----------------------------------------------------------------------===// | |||
914 | // GetElementPtrInst Class | |||
915 | //===----------------------------------------------------------------------===// | |||
916 | ||||
917 | // checkGEPType - Simple wrapper function to give a better assertion failure | |||
918 | // message on bad indexes for a gep instruction. | |||
919 | // | |||
920 | inline Type *checkGEPType(Type *Ty) { | |||
921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); | |||
922 | return Ty; | |||
923 | } | |||
924 | ||||
925 | /// an instruction for type-safe pointer arithmetic to | |||
926 | /// access elements of arrays and structs | |||
927 | /// | |||
928 | class GetElementPtrInst : public Instruction { | |||
929 | Type *SourceElementType; | |||
930 | Type *ResultElementType; | |||
931 | ||||
932 | GetElementPtrInst(const GetElementPtrInst &GEPI); | |||
933 | ||||
934 | /// Constructors - Create a getelementptr instruction with a base pointer an | |||
935 | /// list of indices. The first ctor can optionally insert before an existing | |||
936 | /// instruction, the second appends the new instruction to the specified | |||
937 | /// BasicBlock. | |||
938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, | |||
939 | ArrayRef<Value *> IdxList, unsigned Values, | |||
940 | const Twine &NameStr, Instruction *InsertBefore); | |||
941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, | |||
942 | ArrayRef<Value *> IdxList, unsigned Values, | |||
943 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
944 | ||||
945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); | |||
946 | ||||
947 | protected: | |||
948 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
949 | friend class Instruction; | |||
950 | ||||
951 | GetElementPtrInst *cloneImpl() const; | |||
952 | ||||
953 | public: | |||
954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, | |||
955 | ArrayRef<Value *> IdxList, | |||
956 | const Twine &NameStr = "", | |||
957 | Instruction *InsertBefore = nullptr) { | |||
958 | unsigned Values = 1 + unsigned(IdxList.size()); | |||
959 | assert(PointeeType && "Must specify element type")((void)0); | |||
960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) | |||
961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); | |||
962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, | |||
963 | NameStr, InsertBefore); | |||
964 | } | |||
965 | ||||
966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, | |||
967 | ArrayRef<Value *> IdxList, | |||
968 | const Twine &NameStr, | |||
969 | BasicBlock *InsertAtEnd) { | |||
970 | unsigned Values = 1 + unsigned(IdxList.size()); | |||
971 | assert(PointeeType && "Must specify element type")((void)0); | |||
972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) | |||
973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); | |||
974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, | |||
975 | NameStr, InsertAtEnd); | |||
976 | } | |||
977 | ||||
978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) | |||
979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) | |||
980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) | |||
981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { | |||
982 | return CreateInBounds( | |||
983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, | |||
984 | NameStr, InsertBefore); | |||
985 | } | |||
986 | ||||
987 | /// Create an "inbounds" getelementptr. See the documentation for the | |||
988 | /// "inbounds" flag in LangRef.html for details. | |||
989 | static GetElementPtrInst * | |||
990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, | |||
991 | const Twine &NameStr = "", | |||
992 | Instruction *InsertBefore = nullptr) { | |||
993 | GetElementPtrInst *GEP = | |||
994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); | |||
995 | GEP->setIsInBounds(true); | |||
996 | return GEP; | |||
997 | } | |||
998 | ||||
999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) | |||
1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) | |||
1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) | |||
1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
1003 | return CreateInBounds( | |||
1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, | |||
1005 | NameStr, InsertAtEnd); | |||
1006 | } | |||
1007 | ||||
1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, | |||
1009 | ArrayRef<Value *> IdxList, | |||
1010 | const Twine &NameStr, | |||
1011 | BasicBlock *InsertAtEnd) { | |||
1012 | GetElementPtrInst *GEP = | |||
1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); | |||
1014 | GEP->setIsInBounds(true); | |||
1015 | return GEP; | |||
1016 | } | |||
1017 | ||||
1018 | /// Transparently provide more efficient getOperand methods. | |||
1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
1020 | ||||
1021 | Type *getSourceElementType() const { return SourceElementType; } | |||
1022 | ||||
1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } | |||
1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } | |||
1025 | ||||
1026 | Type *getResultElementType() const { | |||
1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) | |||
1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); | |||
1029 | return ResultElementType; | |||
1030 | } | |||
1031 | ||||
1032 | /// Returns the address space of this instruction's pointer type. | |||
1033 | unsigned getAddressSpace() const { | |||
1034 | // Note that this is always the same as the pointer operand's address space | |||
1035 | // and that is cheaper to compute, so cheat here. | |||
1036 | return getPointerAddressSpace(); | |||
1037 | } | |||
1038 | ||||
1039 | /// Returns the result type of a getelementptr with the given source | |||
1040 | /// element type and indexes. | |||
1041 | /// | |||
1042 | /// Null is returned if the indices are invalid for the specified | |||
1043 | /// source element type. | |||
1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); | |||
1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); | |||
1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); | |||
1047 | ||||
1048 | /// Return the type of the element at the given index of an indexable | |||
1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". | |||
1050 | /// | |||
1051 | /// Returns null if the type can't be indexed, or the given index is not | |||
1052 | /// legal for the given type. | |||
1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); | |||
1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); | |||
1055 | ||||
1056 | inline op_iterator idx_begin() { return op_begin()+1; } | |||
1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } | |||
1058 | inline op_iterator idx_end() { return op_end(); } | |||
1059 | inline const_op_iterator idx_end() const { return op_end(); } | |||
1060 | ||||
1061 | inline iterator_range<op_iterator> indices() { | |||
1062 | return make_range(idx_begin(), idx_end()); | |||
1063 | } | |||
1064 | ||||
1065 | inline iterator_range<const_op_iterator> indices() const { | |||
1066 | return make_range(idx_begin(), idx_end()); | |||
1067 | } | |||
1068 | ||||
1069 | Value *getPointerOperand() { | |||
1070 | return getOperand(0); | |||
1071 | } | |||
1072 | const Value *getPointerOperand() const { | |||
1073 | return getOperand(0); | |||
1074 | } | |||
1075 | static unsigned getPointerOperandIndex() { | |||
1076 | return 0U; // get index for modifying correct operand. | |||
1077 | } | |||
1078 | ||||
1079 | /// Method to return the pointer operand as a | |||
1080 | /// PointerType. | |||
1081 | Type *getPointerOperandType() const { | |||
1082 | return getPointerOperand()->getType(); | |||
1083 | } | |||
1084 | ||||
1085 | /// Returns the address space of the pointer operand. | |||
1086 | unsigned getPointerAddressSpace() const { | |||
1087 | return getPointerOperandType()->getPointerAddressSpace(); | |||
1088 | } | |||
1089 | ||||
1090 | /// Returns the pointer type returned by the GEP | |||
1091 | /// instruction, which may be a vector of pointers. | |||
1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, | |||
1093 | ArrayRef<Value *> IdxList) { | |||
1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); | |||
1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); | |||
1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); | |||
1097 | Type *PtrTy = OrigPtrTy->isOpaque() | |||
1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) | |||
1099 | : PointerType::get(ResultElemTy, AddrSpace); | |||
1100 | // Vector GEP | |||
1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { | |||
1102 | ElementCount EltCount = PtrVTy->getElementCount(); | |||
1103 | return VectorType::get(PtrTy, EltCount); | |||
1104 | } | |||
1105 | for (Value *Index : IdxList) | |||
1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { | |||
1107 | ElementCount EltCount = IndexVTy->getElementCount(); | |||
1108 | return VectorType::get(PtrTy, EltCount); | |||
1109 | } | |||
1110 | // Scalar GEP | |||
1111 | return PtrTy; | |||
1112 | } | |||
1113 | ||||
1114 | unsigned getNumIndices() const { // Note: always non-negative | |||
1115 | return getNumOperands() - 1; | |||
1116 | } | |||
1117 | ||||
1118 | bool hasIndices() const { | |||
1119 | return getNumOperands() > 1; | |||
1120 | } | |||
1121 | ||||
1122 | /// Return true if all of the indices of this GEP are | |||
1123 | /// zeros. If so, the result pointer and the first operand have the same | |||
1124 | /// value, just potentially different types. | |||
1125 | bool hasAllZeroIndices() const; | |||
1126 | ||||
1127 | /// Return true if all of the indices of this GEP are | |||
1128 | /// constant integers. If so, the result pointer and the first operand have | |||
1129 | /// a constant offset between them. | |||
1130 | bool hasAllConstantIndices() const; | |||
1131 | ||||
1132 | /// Set or clear the inbounds flag on this GEP instruction. | |||
1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. | |||
1134 | void setIsInBounds(bool b = true); | |||
1135 | ||||
1136 | /// Determine whether the GEP has the inbounds flag. | |||
1137 | bool isInBounds() const; | |||
1138 | ||||
1139 | /// Accumulate the constant address offset of this GEP if possible. | |||
1140 | /// | |||
1141 | /// This routine accepts an APInt into which it will accumulate the constant | |||
1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not | |||
1143 | /// all-constant, it returns false and the value of the offset APInt is | |||
1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine | |||
1145 | /// must be at least as wide as the IntPtr type for the address space of | |||
1146 | /// the base GEP pointer. | |||
1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; | |||
1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, | |||
1149 | MapVector<Value *, APInt> &VariableOffsets, | |||
1150 | APInt &ConstantOffset) const; | |||
1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1152 | static bool classof(const Instruction *I) { | |||
1153 | return (I->getOpcode() == Instruction::GetElementPtr); | |||
1154 | } | |||
1155 | static bool classof(const Value *V) { | |||
1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1157 | } | |||
1158 | }; | |||
1159 | ||||
1160 | template <> | |||
1161 | struct OperandTraits<GetElementPtrInst> : | |||
1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { | |||
1163 | }; | |||
1164 | ||||
1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, | |||
1166 | ArrayRef<Value *> IdxList, unsigned Values, | |||
1167 | const Twine &NameStr, | |||
1168 | Instruction *InsertBefore) | |||
1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, | |||
1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, | |||
1171 | Values, InsertBefore), | |||
1172 | SourceElementType(PointeeType), | |||
1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { | |||
1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) | |||
1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); | |||
1176 | init(Ptr, IdxList, NameStr); | |||
1177 | } | |||
1178 | ||||
1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, | |||
1180 | ArrayRef<Value *> IdxList, unsigned Values, | |||
1181 | const Twine &NameStr, | |||
1182 | BasicBlock *InsertAtEnd) | |||
1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, | |||
1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, | |||
1185 | Values, InsertAtEnd), | |||
1186 | SourceElementType(PointeeType), | |||
1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { | |||
1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) | |||
1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); | |||
1190 | init(Ptr, IdxList, NameStr); | |||
1191 | } | |||
1192 | ||||
1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
1194 | ||||
1195 | //===----------------------------------------------------------------------===// | |||
1196 | // ICmpInst Class | |||
1197 | //===----------------------------------------------------------------------===// | |||
1198 | ||||
1199 | /// This instruction compares its operands according to the predicate given | |||
1200 | /// to the constructor. It only operates on integers or pointers. The operands | |||
1201 | /// must be identical types. | |||
1202 | /// Represent an integer comparison operator. | |||
1203 | class ICmpInst: public CmpInst { | |||
1204 | void AssertOK() { | |||
1205 | assert(isIntPredicate() &&((void)0) | |||
1206 | "Invalid ICmp predicate value")((void)0); | |||
1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) | |||
1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); | |||
1209 | // Check that the operands are the right type | |||
1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) | |||
1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) | |||
1212 | "Invalid operand types for ICmp instruction")((void)0); | |||
1213 | } | |||
1214 | ||||
1215 | protected: | |||
1216 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1217 | friend class Instruction; | |||
1218 | ||||
1219 | /// Clone an identical ICmpInst | |||
1220 | ICmpInst *cloneImpl() const; | |||
1221 | ||||
1222 | public: | |||
1223 | /// Constructor with insert-before-instruction semantics. | |||
1224 | ICmpInst( | |||
1225 | Instruction *InsertBefore, ///< Where to insert | |||
1226 | Predicate pred, ///< The predicate to use for the comparison | |||
1227 | Value *LHS, ///< The left-hand-side of the expression | |||
1228 | Value *RHS, ///< The right-hand-side of the expression | |||
1229 | const Twine &NameStr = "" ///< Name of the instruction | |||
1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), | |||
1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, | |||
1232 | InsertBefore) { | |||
1233 | #ifndef NDEBUG1 | |||
1234 | AssertOK(); | |||
1235 | #endif | |||
1236 | } | |||
1237 | ||||
1238 | /// Constructor with insert-at-end semantics. | |||
1239 | ICmpInst( | |||
1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. | |||
1241 | Predicate pred, ///< The predicate to use for the comparison | |||
1242 | Value *LHS, ///< The left-hand-side of the expression | |||
1243 | Value *RHS, ///< The right-hand-side of the expression | |||
1244 | const Twine &NameStr = "" ///< Name of the instruction | |||
1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), | |||
1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, | |||
1247 | &InsertAtEnd) { | |||
1248 | #ifndef NDEBUG1 | |||
1249 | AssertOK(); | |||
1250 | #endif | |||
1251 | } | |||
1252 | ||||
1253 | /// Constructor with no-insertion semantics | |||
1254 | ICmpInst( | |||
1255 | Predicate pred, ///< The predicate to use for the comparison | |||
1256 | Value *LHS, ///< The left-hand-side of the expression | |||
1257 | Value *RHS, ///< The right-hand-side of the expression | |||
1258 | const Twine &NameStr = "" ///< Name of the instruction | |||
1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), | |||
1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { | |||
1261 | #ifndef NDEBUG1 | |||
1262 | AssertOK(); | |||
1263 | #endif | |||
1264 | } | |||
1265 | ||||
1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. | |||
1267 | /// @returns the predicate that would be the result if the operand were | |||
1268 | /// regarded as signed. | |||
1269 | /// Return the signed version of the predicate | |||
1270 | Predicate getSignedPredicate() const { | |||
1271 | return getSignedPredicate(getPredicate()); | |||
1272 | } | |||
1273 | ||||
1274 | /// This is a static version that you can use without an instruction. | |||
1275 | /// Return the signed version of the predicate. | |||
1276 | static Predicate getSignedPredicate(Predicate pred); | |||
1277 | ||||
1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. | |||
1279 | /// @returns the predicate that would be the result if the operand were | |||
1280 | /// regarded as unsigned. | |||
1281 | /// Return the unsigned version of the predicate | |||
1282 | Predicate getUnsignedPredicate() const { | |||
1283 | return getUnsignedPredicate(getPredicate()); | |||
1284 | } | |||
1285 | ||||
1286 | /// This is a static version that you can use without an instruction. | |||
1287 | /// Return the unsigned version of the predicate. | |||
1288 | static Predicate getUnsignedPredicate(Predicate pred); | |||
1289 | ||||
1290 | /// Return true if this predicate is either EQ or NE. This also | |||
1291 | /// tests for commutativity. | |||
1292 | static bool isEquality(Predicate P) { | |||
1293 | return P == ICMP_EQ || P == ICMP_NE; | |||
1294 | } | |||
1295 | ||||
1296 | /// Return true if this predicate is either EQ or NE. This also | |||
1297 | /// tests for commutativity. | |||
1298 | bool isEquality() const { | |||
1299 | return isEquality(getPredicate()); | |||
1300 | } | |||
1301 | ||||
1302 | /// @returns true if the predicate of this ICmpInst is commutative | |||
1303 | /// Determine if this relation is commutative. | |||
1304 | bool isCommutative() const { return isEquality(); } | |||
1305 | ||||
1306 | /// Return true if the predicate is relational (not EQ or NE). | |||
1307 | /// | |||
1308 | bool isRelational() const { | |||
1309 | return !isEquality(); | |||
1310 | } | |||
1311 | ||||
1312 | /// Return true if the predicate is relational (not EQ or NE). | |||
1313 | /// | |||
1314 | static bool isRelational(Predicate P) { | |||
1315 | return !isEquality(P); | |||
1316 | } | |||
1317 | ||||
1318 | /// Return true if the predicate is SGT or UGT. | |||
1319 | /// | |||
1320 | static bool isGT(Predicate P) { | |||
1321 | return P == ICMP_SGT || P == ICMP_UGT; | |||
1322 | } | |||
1323 | ||||
1324 | /// Return true if the predicate is SLT or ULT. | |||
1325 | /// | |||
1326 | static bool isLT(Predicate P) { | |||
1327 | return P == ICMP_SLT || P == ICMP_ULT; | |||
1328 | } | |||
1329 | ||||
1330 | /// Return true if the predicate is SGE or UGE. | |||
1331 | /// | |||
1332 | static bool isGE(Predicate P) { | |||
1333 | return P == ICMP_SGE || P == ICMP_UGE; | |||
1334 | } | |||
1335 | ||||
1336 | /// Return true if the predicate is SLE or ULE. | |||
1337 | /// | |||
1338 | static bool isLE(Predicate P) { | |||
1339 | return P == ICMP_SLE || P == ICMP_ULE; | |||
1340 | } | |||
1341 | ||||
1342 | /// Exchange the two operands to this instruction in such a way that it does | |||
1343 | /// not modify the semantics of the instruction. The predicate value may be | |||
1344 | /// changed to retain the same result if the predicate is order dependent | |||
1345 | /// (e.g. ult). | |||
1346 | /// Swap operands and adjust predicate. | |||
1347 | void swapOperands() { | |||
1348 | setPredicate(getSwappedPredicate()); | |||
1349 | Op<0>().swap(Op<1>()); | |||
1350 | } | |||
1351 | ||||
1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1353 | static bool classof(const Instruction *I) { | |||
1354 | return I->getOpcode() == Instruction::ICmp; | |||
1355 | } | |||
1356 | static bool classof(const Value *V) { | |||
1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1358 | } | |||
1359 | }; | |||
1360 | ||||
1361 | //===----------------------------------------------------------------------===// | |||
1362 | // FCmpInst Class | |||
1363 | //===----------------------------------------------------------------------===// | |||
1364 | ||||
1365 | /// This instruction compares its operands according to the predicate given | |||
1366 | /// to the constructor. It only operates on floating point values or packed | |||
1367 | /// vectors of floating point values. The operands must be identical types. | |||
1368 | /// Represents a floating point comparison operator. | |||
1369 | class FCmpInst: public CmpInst { | |||
1370 | void AssertOK() { | |||
1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); | |||
1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) | |||
1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); | |||
1374 | // Check that the operands are the right type | |||
1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) | |||
1376 | "Invalid operand types for FCmp instruction")((void)0); | |||
1377 | } | |||
1378 | ||||
1379 | protected: | |||
1380 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1381 | friend class Instruction; | |||
1382 | ||||
1383 | /// Clone an identical FCmpInst | |||
1384 | FCmpInst *cloneImpl() const; | |||
1385 | ||||
1386 | public: | |||
1387 | /// Constructor with insert-before-instruction semantics. | |||
1388 | FCmpInst( | |||
1389 | Instruction *InsertBefore, ///< Where to insert | |||
1390 | Predicate pred, ///< The predicate to use for the comparison | |||
1391 | Value *LHS, ///< The left-hand-side of the expression | |||
1392 | Value *RHS, ///< The right-hand-side of the expression | |||
1393 | const Twine &NameStr = "" ///< Name of the instruction | |||
1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), | |||
1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, | |||
1396 | InsertBefore) { | |||
1397 | AssertOK(); | |||
1398 | } | |||
1399 | ||||
1400 | /// Constructor with insert-at-end semantics. | |||
1401 | FCmpInst( | |||
1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. | |||
1403 | Predicate pred, ///< The predicate to use for the comparison | |||
1404 | Value *LHS, ///< The left-hand-side of the expression | |||
1405 | Value *RHS, ///< The right-hand-side of the expression | |||
1406 | const Twine &NameStr = "" ///< Name of the instruction | |||
1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), | |||
1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, | |||
1409 | &InsertAtEnd) { | |||
1410 | AssertOK(); | |||
1411 | } | |||
1412 | ||||
1413 | /// Constructor with no-insertion semantics | |||
1414 | FCmpInst( | |||
1415 | Predicate Pred, ///< The predicate to use for the comparison | |||
1416 | Value *LHS, ///< The left-hand-side of the expression | |||
1417 | Value *RHS, ///< The right-hand-side of the expression | |||
1418 | const Twine &NameStr = "", ///< Name of the instruction | |||
1419 | Instruction *FlagsSource = nullptr | |||
1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, | |||
1421 | RHS, NameStr, nullptr, FlagsSource) { | |||
1422 | AssertOK(); | |||
1423 | } | |||
1424 | ||||
1425 | /// @returns true if the predicate of this instruction is EQ or NE. | |||
1426 | /// Determine if this is an equality predicate. | |||
1427 | static bool isEquality(Predicate Pred) { | |||
1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || | |||
1429 | Pred == FCMP_UNE; | |||
1430 | } | |||
1431 | ||||
1432 | /// @returns true if the predicate of this instruction is EQ or NE. | |||
1433 | /// Determine if this is an equality predicate. | |||
1434 | bool isEquality() const { return isEquality(getPredicate()); } | |||
1435 | ||||
1436 | /// @returns true if the predicate of this instruction is commutative. | |||
1437 | /// Determine if this is a commutative predicate. | |||
1438 | bool isCommutative() const { | |||
1439 | return isEquality() || | |||
1440 | getPredicate() == FCMP_FALSE || | |||
1441 | getPredicate() == FCMP_TRUE || | |||
1442 | getPredicate() == FCMP_ORD || | |||
1443 | getPredicate() == FCMP_UNO; | |||
1444 | } | |||
1445 | ||||
1446 | /// @returns true if the predicate is relational (not EQ or NE). | |||
1447 | /// Determine if this a relational predicate. | |||
1448 | bool isRelational() const { return !isEquality(); } | |||
1449 | ||||
1450 | /// Exchange the two operands to this instruction in such a way that it does | |||
1451 | /// not modify the semantics of the instruction. The predicate value may be | |||
1452 | /// changed to retain the same result if the predicate is order dependent | |||
1453 | /// (e.g. ult). | |||
1454 | /// Swap operands and adjust predicate. | |||
1455 | void swapOperands() { | |||
1456 | setPredicate(getSwappedPredicate()); | |||
1457 | Op<0>().swap(Op<1>()); | |||
1458 | } | |||
1459 | ||||
1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1461 | static bool classof(const Instruction *I) { | |||
1462 | return I->getOpcode() == Instruction::FCmp; | |||
1463 | } | |||
1464 | static bool classof(const Value *V) { | |||
1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1466 | } | |||
1467 | }; | |||
1468 | ||||
1469 | //===----------------------------------------------------------------------===// | |||
1470 | /// This class represents a function call, abstracting a target | |||
1471 | /// machine's calling convention. This class uses low bit of the SubClassData | |||
1472 | /// field to indicate whether or not this is a tail call. The rest of the bits | |||
1473 | /// hold the calling convention of the call. | |||
1474 | /// | |||
1475 | class CallInst : public CallBase { | |||
1476 | CallInst(const CallInst &CI); | |||
1477 | ||||
1478 | /// Construct a CallInst given a range of arguments. | |||
1479 | /// Construct a CallInst from a range of arguments | |||
1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, | |||
1482 | Instruction *InsertBefore); | |||
1483 | ||||
1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1485 | const Twine &NameStr, Instruction *InsertBefore) | |||
1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} | |||
1487 | ||||
1488 | /// Construct a CallInst given a range of arguments. | |||
1489 | /// Construct a CallInst from a range of arguments | |||
1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, | |||
1492 | BasicBlock *InsertAtEnd); | |||
1493 | ||||
1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, | |||
1495 | Instruction *InsertBefore); | |||
1496 | ||||
1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, | |||
1498 | BasicBlock *InsertAtEnd); | |||
1499 | ||||
1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, | |||
1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); | |||
1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); | |||
1503 | ||||
1504 | /// Compute the number of operands to allocate. | |||
1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { | |||
1506 | // We need one operand for the called function, plus the input operand | |||
1507 | // counts provided. | |||
1508 | return 1 + NumArgs + NumBundleInputs; | |||
1509 | } | |||
1510 | ||||
1511 | protected: | |||
1512 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1513 | friend class Instruction; | |||
1514 | ||||
1515 | CallInst *cloneImpl() const; | |||
1516 | ||||
1517 | public: | |||
1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", | |||
1519 | Instruction *InsertBefore = nullptr) { | |||
1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); | |||
1521 | } | |||
1522 | ||||
1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1524 | const Twine &NameStr, | |||
1525 | Instruction *InsertBefore = nullptr) { | |||
1526 | return new (ComputeNumOperands(Args.size())) | |||
1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); | |||
1528 | } | |||
1529 | ||||
1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1531 | ArrayRef<OperandBundleDef> Bundles = None, | |||
1532 | const Twine &NameStr = "", | |||
1533 | Instruction *InsertBefore = nullptr) { | |||
1534 | const int NumOperands = | |||
1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); | |||
1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
1537 | ||||
1538 | return new (NumOperands, DescriptorBytes) | |||
1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); | |||
1540 | } | |||
1541 | ||||
1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, | |||
1543 | BasicBlock *InsertAtEnd) { | |||
1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); | |||
1545 | } | |||
1546 | ||||
1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
1549 | return new (ComputeNumOperands(Args.size())) | |||
1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); | |||
1551 | } | |||
1552 | ||||
1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1554 | ArrayRef<OperandBundleDef> Bundles, | |||
1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
1556 | const int NumOperands = | |||
1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); | |||
1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
1559 | ||||
1560 | return new (NumOperands, DescriptorBytes) | |||
1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); | |||
1562 | } | |||
1563 | ||||
1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", | |||
1565 | Instruction *InsertBefore = nullptr) { | |||
1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, | |||
1567 | InsertBefore); | |||
1568 | } | |||
1569 | ||||
1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, | |||
1571 | ArrayRef<OperandBundleDef> Bundles = None, | |||
1572 | const Twine &NameStr = "", | |||
1573 | Instruction *InsertBefore = nullptr) { | |||
1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, | |||
1575 | NameStr, InsertBefore); | |||
1576 | } | |||
1577 | ||||
1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, | |||
1579 | const Twine &NameStr, | |||
1580 | Instruction *InsertBefore = nullptr) { | |||
1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, | |||
1582 | InsertBefore); | |||
1583 | } | |||
1584 | ||||
1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, | |||
1586 | BasicBlock *InsertAtEnd) { | |||
1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, | |||
1588 | InsertAtEnd); | |||
1589 | } | |||
1590 | ||||
1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, | |||
1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, | |||
1594 | InsertAtEnd); | |||
1595 | } | |||
1596 | ||||
1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, | |||
1598 | ArrayRef<OperandBundleDef> Bundles, | |||
1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, | |||
1601 | NameStr, InsertAtEnd); | |||
1602 | } | |||
1603 | ||||
1604 | /// Create a clone of \p CI with a different set of operand bundles and | |||
1605 | /// insert it before \p InsertPt. | |||
1606 | /// | |||
1607 | /// The returned call instruction is identical \p CI in every way except that | |||
1608 | /// the operand bundles for the new instruction are set to the operand bundles | |||
1609 | /// in \p Bundles. | |||
1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, | |||
1611 | Instruction *InsertPt = nullptr); | |||
1612 | ||||
1613 | /// Generate the IR for a call to malloc: | |||
1614 | /// 1. Compute the malloc call's argument as the specified type's size, | |||
1615 | /// possibly multiplied by the array size if the array size is not | |||
1616 | /// constant 1. | |||
1617 | /// 2. Call malloc with that argument. | |||
1618 | /// 3. Bitcast the result of the malloc call to the specified type. | |||
1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, | |||
1620 | Type *AllocTy, Value *AllocSize, | |||
1621 | Value *ArraySize = nullptr, | |||
1622 | Function *MallocF = nullptr, | |||
1623 | const Twine &Name = ""); | |||
1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, | |||
1625 | Type *AllocTy, Value *AllocSize, | |||
1626 | Value *ArraySize = nullptr, | |||
1627 | Function *MallocF = nullptr, | |||
1628 | const Twine &Name = ""); | |||
1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, | |||
1630 | Type *AllocTy, Value *AllocSize, | |||
1631 | Value *ArraySize = nullptr, | |||
1632 | ArrayRef<OperandBundleDef> Bundles = None, | |||
1633 | Function *MallocF = nullptr, | |||
1634 | const Twine &Name = ""); | |||
1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, | |||
1636 | Type *AllocTy, Value *AllocSize, | |||
1637 | Value *ArraySize = nullptr, | |||
1638 | ArrayRef<OperandBundleDef> Bundles = None, | |||
1639 | Function *MallocF = nullptr, | |||
1640 | const Twine &Name = ""); | |||
1641 | /// Generate the IR for a call to the builtin free function. | |||
1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); | |||
1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); | |||
1644 | static Instruction *CreateFree(Value *Source, | |||
1645 | ArrayRef<OperandBundleDef> Bundles, | |||
1646 | Instruction *InsertBefore); | |||
1647 | static Instruction *CreateFree(Value *Source, | |||
1648 | ArrayRef<OperandBundleDef> Bundles, | |||
1649 | BasicBlock *InsertAtEnd); | |||
1650 | ||||
1651 | // Note that 'musttail' implies 'tail'. | |||
1652 | enum TailCallKind : unsigned { | |||
1653 | TCK_None = 0, | |||
1654 | TCK_Tail = 1, | |||
1655 | TCK_MustTail = 2, | |||
1656 | TCK_NoTail = 3, | |||
1657 | TCK_LAST = TCK_NoTail | |||
1658 | }; | |||
1659 | ||||
1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; | |||
1661 | static_assert( | |||
1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), | |||
1663 | "Bitfields must be contiguous"); | |||
1664 | ||||
1665 | TailCallKind getTailCallKind() const { | |||
1666 | return getSubclassData<TailCallKindField>(); | |||
1667 | } | |||
1668 | ||||
1669 | bool isTailCall() const { | |||
1670 | TailCallKind Kind = getTailCallKind(); | |||
1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; | |||
1672 | } | |||
1673 | ||||
1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } | |||
1675 | ||||
1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } | |||
1677 | ||||
1678 | void setTailCallKind(TailCallKind TCK) { | |||
1679 | setSubclassData<TailCallKindField>(TCK); | |||
1680 | } | |||
1681 | ||||
1682 | void setTailCall(bool IsTc = true) { | |||
1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); | |||
1684 | } | |||
1685 | ||||
1686 | /// Return true if the call can return twice | |||
1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } | |||
1688 | void setCanReturnTwice() { | |||
1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); | |||
1690 | } | |||
1691 | ||||
1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1693 | static bool classof(const Instruction *I) { | |||
1694 | return I->getOpcode() == Instruction::Call; | |||
1695 | } | |||
1696 | static bool classof(const Value *V) { | |||
1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1698 | } | |||
1699 | ||||
1700 | /// Updates profile metadata by scaling it by \p S / \p T. | |||
1701 | void updateProfWeight(uint64_t S, uint64_t T); | |||
1702 | ||||
1703 | private: | |||
1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
1705 | // method so that subclasses cannot accidentally use it. | |||
1706 | template <typename Bitfield> | |||
1707 | void setSubclassData(typename Bitfield::Type Value) { | |||
1708 | Instruction::setSubclassData<Bitfield>(Value); | |||
1709 | } | |||
1710 | }; | |||
1711 | ||||
1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, | |||
1714 | BasicBlock *InsertAtEnd) | |||
1715 | : CallBase(Ty->getReturnType(), Instruction::Call, | |||
1716 | OperandTraits<CallBase>::op_end(this) - | |||
1717 | (Args.size() + CountBundleInputs(Bundles) + 1), | |||
1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), | |||
1719 | InsertAtEnd) { | |||
1720 | init(Ty, Func, Args, Bundles, NameStr); | |||
1721 | } | |||
1722 | ||||
1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, | |||
1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, | |||
1725 | Instruction *InsertBefore) | |||
1726 | : CallBase(Ty->getReturnType(), Instruction::Call, | |||
1727 | OperandTraits<CallBase>::op_end(this) - | |||
1728 | (Args.size() + CountBundleInputs(Bundles) + 1), | |||
1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), | |||
1730 | InsertBefore) { | |||
1731 | init(Ty, Func, Args, Bundles, NameStr); | |||
1732 | } | |||
1733 | ||||
1734 | //===----------------------------------------------------------------------===// | |||
1735 | // SelectInst Class | |||
1736 | //===----------------------------------------------------------------------===// | |||
1737 | ||||
1738 | /// This class represents the LLVM 'select' instruction. | |||
1739 | /// | |||
1740 | class SelectInst : public Instruction { | |||
1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, | |||
1742 | Instruction *InsertBefore) | |||
1743 | : Instruction(S1->getType(), Instruction::Select, | |||
1744 | &Op<0>(), 3, InsertBefore) { | |||
1745 | init(C, S1, S2); | |||
1746 | setName(NameStr); | |||
1747 | } | |||
1748 | ||||
1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, | |||
1750 | BasicBlock *InsertAtEnd) | |||
1751 | : Instruction(S1->getType(), Instruction::Select, | |||
1752 | &Op<0>(), 3, InsertAtEnd) { | |||
1753 | init(C, S1, S2); | |||
1754 | setName(NameStr); | |||
1755 | } | |||
1756 | ||||
1757 | void init(Value *C, Value *S1, Value *S2) { | |||
1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); | |||
1759 | Op<0>() = C; | |||
1760 | Op<1>() = S1; | |||
1761 | Op<2>() = S2; | |||
1762 | } | |||
1763 | ||||
1764 | protected: | |||
1765 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1766 | friend class Instruction; | |||
1767 | ||||
1768 | SelectInst *cloneImpl() const; | |||
1769 | ||||
1770 | public: | |||
1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, | |||
1772 | const Twine &NameStr = "", | |||
1773 | Instruction *InsertBefore = nullptr, | |||
1774 | Instruction *MDFrom = nullptr) { | |||
1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); | |||
1776 | if (MDFrom) | |||
1777 | Sel->copyMetadata(*MDFrom); | |||
1778 | return Sel; | |||
1779 | } | |||
1780 | ||||
1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, | |||
1782 | const Twine &NameStr, | |||
1783 | BasicBlock *InsertAtEnd) { | |||
1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); | |||
1785 | } | |||
1786 | ||||
1787 | const Value *getCondition() const { return Op<0>(); } | |||
1788 | const Value *getTrueValue() const { return Op<1>(); } | |||
1789 | const Value *getFalseValue() const { return Op<2>(); } | |||
1790 | Value *getCondition() { return Op<0>(); } | |||
1791 | Value *getTrueValue() { return Op<1>(); } | |||
1792 | Value *getFalseValue() { return Op<2>(); } | |||
1793 | ||||
1794 | void setCondition(Value *V) { Op<0>() = V; } | |||
1795 | void setTrueValue(Value *V) { Op<1>() = V; } | |||
1796 | void setFalseValue(Value *V) { Op<2>() = V; } | |||
1797 | ||||
1798 | /// Swap the true and false values of the select instruction. | |||
1799 | /// This doesn't swap prof metadata. | |||
1800 | void swapValues() { Op<1>().swap(Op<2>()); } | |||
1801 | ||||
1802 | /// Return a string if the specified operands are invalid | |||
1803 | /// for a select operation, otherwise return null. | |||
1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); | |||
1805 | ||||
1806 | /// Transparently provide more efficient getOperand methods. | |||
1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
1808 | ||||
1809 | OtherOps getOpcode() const { | |||
1810 | return static_cast<OtherOps>(Instruction::getOpcode()); | |||
1811 | } | |||
1812 | ||||
1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1814 | static bool classof(const Instruction *I) { | |||
1815 | return I->getOpcode() == Instruction::Select; | |||
1816 | } | |||
1817 | static bool classof(const Value *V) { | |||
1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1819 | } | |||
1820 | }; | |||
1821 | ||||
1822 | template <> | |||
1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { | |||
1824 | }; | |||
1825 | ||||
1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
1827 | ||||
1828 | //===----------------------------------------------------------------------===// | |||
1829 | // VAArgInst Class | |||
1830 | //===----------------------------------------------------------------------===// | |||
1831 | ||||
1832 | /// This class represents the va_arg llvm instruction, which returns | |||
1833 | /// an argument of the specified type given a va_list and increments that list | |||
1834 | /// | |||
1835 | class VAArgInst : public UnaryInstruction { | |||
1836 | protected: | |||
1837 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1838 | friend class Instruction; | |||
1839 | ||||
1840 | VAArgInst *cloneImpl() const; | |||
1841 | ||||
1842 | public: | |||
1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", | |||
1844 | Instruction *InsertBefore = nullptr) | |||
1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { | |||
1846 | setName(NameStr); | |||
1847 | } | |||
1848 | ||||
1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, | |||
1850 | BasicBlock *InsertAtEnd) | |||
1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { | |||
1852 | setName(NameStr); | |||
1853 | } | |||
1854 | ||||
1855 | Value *getPointerOperand() { return getOperand(0); } | |||
1856 | const Value *getPointerOperand() const { return getOperand(0); } | |||
1857 | static unsigned getPointerOperandIndex() { return 0U; } | |||
1858 | ||||
1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1860 | static bool classof(const Instruction *I) { | |||
1861 | return I->getOpcode() == VAArg; | |||
1862 | } | |||
1863 | static bool classof(const Value *V) { | |||
1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1865 | } | |||
1866 | }; | |||
1867 | ||||
1868 | //===----------------------------------------------------------------------===// | |||
1869 | // ExtractElementInst Class | |||
1870 | //===----------------------------------------------------------------------===// | |||
1871 | ||||
1872 | /// This instruction extracts a single (scalar) | |||
1873 | /// element from a VectorType value | |||
1874 | /// | |||
1875 | class ExtractElementInst : public Instruction { | |||
1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", | |||
1877 | Instruction *InsertBefore = nullptr); | |||
1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, | |||
1879 | BasicBlock *InsertAtEnd); | |||
1880 | ||||
1881 | protected: | |||
1882 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1883 | friend class Instruction; | |||
1884 | ||||
1885 | ExtractElementInst *cloneImpl() const; | |||
1886 | ||||
1887 | public: | |||
1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, | |||
1889 | const Twine &NameStr = "", | |||
1890 | Instruction *InsertBefore = nullptr) { | |||
1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); | |||
1892 | } | |||
1893 | ||||
1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, | |||
1895 | const Twine &NameStr, | |||
1896 | BasicBlock *InsertAtEnd) { | |||
1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); | |||
1898 | } | |||
1899 | ||||
1900 | /// Return true if an extractelement instruction can be | |||
1901 | /// formed with the specified operands. | |||
1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); | |||
1903 | ||||
1904 | Value *getVectorOperand() { return Op<0>(); } | |||
1905 | Value *getIndexOperand() { return Op<1>(); } | |||
1906 | const Value *getVectorOperand() const { return Op<0>(); } | |||
1907 | const Value *getIndexOperand() const { return Op<1>(); } | |||
1908 | ||||
1909 | VectorType *getVectorOperandType() const { | |||
1910 | return cast<VectorType>(getVectorOperand()->getType()); | |||
1911 | } | |||
1912 | ||||
1913 | /// Transparently provide more efficient getOperand methods. | |||
1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
1915 | ||||
1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1917 | static bool classof(const Instruction *I) { | |||
1918 | return I->getOpcode() == Instruction::ExtractElement; | |||
1919 | } | |||
1920 | static bool classof(const Value *V) { | |||
1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1922 | } | |||
1923 | }; | |||
1924 | ||||
1925 | template <> | |||
1926 | struct OperandTraits<ExtractElementInst> : | |||
1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { | |||
1928 | }; | |||
1929 | ||||
1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
1931 | ||||
1932 | //===----------------------------------------------------------------------===// | |||
1933 | // InsertElementInst Class | |||
1934 | //===----------------------------------------------------------------------===// | |||
1935 | ||||
1936 | /// This instruction inserts a single (scalar) | |||
1937 | /// element into a VectorType value | |||
1938 | /// | |||
1939 | class InsertElementInst : public Instruction { | |||
1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, | |||
1941 | const Twine &NameStr = "", | |||
1942 | Instruction *InsertBefore = nullptr); | |||
1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, | |||
1944 | BasicBlock *InsertAtEnd); | |||
1945 | ||||
1946 | protected: | |||
1947 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
1948 | friend class Instruction; | |||
1949 | ||||
1950 | InsertElementInst *cloneImpl() const; | |||
1951 | ||||
1952 | public: | |||
1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, | |||
1954 | const Twine &NameStr = "", | |||
1955 | Instruction *InsertBefore = nullptr) { | |||
1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); | |||
1957 | } | |||
1958 | ||||
1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, | |||
1960 | const Twine &NameStr, | |||
1961 | BasicBlock *InsertAtEnd) { | |||
1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); | |||
1963 | } | |||
1964 | ||||
1965 | /// Return true if an insertelement instruction can be | |||
1966 | /// formed with the specified operands. | |||
1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, | |||
1968 | const Value *Idx); | |||
1969 | ||||
1970 | /// Overload to return most specific vector type. | |||
1971 | /// | |||
1972 | VectorType *getType() const { | |||
1973 | return cast<VectorType>(Instruction::getType()); | |||
1974 | } | |||
1975 | ||||
1976 | /// Transparently provide more efficient getOperand methods. | |||
1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
1978 | ||||
1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
1980 | static bool classof(const Instruction *I) { | |||
1981 | return I->getOpcode() == Instruction::InsertElement; | |||
1982 | } | |||
1983 | static bool classof(const Value *V) { | |||
1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
1985 | } | |||
1986 | }; | |||
1987 | ||||
1988 | template <> | |||
1989 | struct OperandTraits<InsertElementInst> : | |||
1990 | public FixedNumOperandTraits<InsertElementInst, 3> { | |||
1991 | }; | |||
1992 | ||||
1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
1994 | ||||
1995 | //===----------------------------------------------------------------------===// | |||
1996 | // ShuffleVectorInst Class | |||
1997 | //===----------------------------------------------------------------------===// | |||
1998 | ||||
1999 | constexpr int UndefMaskElem = -1; | |||
2000 | ||||
2001 | /// This instruction constructs a fixed permutation of two | |||
2002 | /// input vectors. | |||
2003 | /// | |||
2004 | /// For each element of the result vector, the shuffle mask selects an element | |||
2005 | /// from one of the input vectors to copy to the result. Non-negative elements | |||
2006 | /// in the mask represent an index into the concatenated pair of input vectors. | |||
2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. | |||
2008 | /// | |||
2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This | |||
2010 | /// requirement may be relaxed in the future. | |||
2011 | class ShuffleVectorInst : public Instruction { | |||
2012 | SmallVector<int, 4> ShuffleMask; | |||
2013 | Constant *ShuffleMaskForBitcode; | |||
2014 | ||||
2015 | protected: | |||
2016 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2017 | friend class Instruction; | |||
2018 | ||||
2019 | ShuffleVectorInst *cloneImpl() const; | |||
2020 | ||||
2021 | public: | |||
2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, | |||
2023 | const Twine &NameStr = "", | |||
2024 | Instruction *InsertBefor = nullptr); | |||
2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, | |||
2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, | |||
2028 | const Twine &NameStr = "", | |||
2029 | Instruction *InsertBefor = nullptr); | |||
2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, | |||
2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2032 | ||||
2033 | void *operator new(size_t S) { return User::operator new(S, 2); } | |||
2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } | |||
2035 | ||||
2036 | /// Swap the operands and adjust the mask to preserve the semantics | |||
2037 | /// of the instruction. | |||
2038 | void commute(); | |||
2039 | ||||
2040 | /// Return true if a shufflevector instruction can be | |||
2041 | /// formed with the specified operands. | |||
2042 | static bool isValidOperands(const Value *V1, const Value *V2, | |||
2043 | const Value *Mask); | |||
2044 | static bool isValidOperands(const Value *V1, const Value *V2, | |||
2045 | ArrayRef<int> Mask); | |||
2046 | ||||
2047 | /// Overload to return most specific vector type. | |||
2048 | /// | |||
2049 | VectorType *getType() const { | |||
2050 | return cast<VectorType>(Instruction::getType()); | |||
2051 | } | |||
2052 | ||||
2053 | /// Transparently provide more efficient getOperand methods. | |||
2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
2055 | ||||
2056 | /// Return the shuffle mask value of this instruction for the given element | |||
2057 | /// index. Return UndefMaskElem if the element is undef. | |||
2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } | |||
2059 | ||||
2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined | |||
2061 | /// elements of the mask are returned as UndefMaskElem. | |||
2062 | static void getShuffleMask(const Constant *Mask, | |||
2063 | SmallVectorImpl<int> &Result); | |||
2064 | ||||
2065 | /// Return the mask for this instruction as a vector of integers. Undefined | |||
2066 | /// elements of the mask are returned as UndefMaskElem. | |||
2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { | |||
2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); | |||
2069 | } | |||
2070 | ||||
2071 | /// Return the mask for this instruction, for use in bitcode. | |||
2072 | /// | |||
2073 | /// TODO: This is temporary until we decide a new bitcode encoding for | |||
2074 | /// shufflevector. | |||
2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } | |||
2076 | ||||
2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, | |||
2078 | Type *ResultTy); | |||
2079 | ||||
2080 | void setShuffleMask(ArrayRef<int> Mask); | |||
2081 | ||||
2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } | |||
2083 | ||||
2084 | /// Return true if this shuffle returns a vector with a different number of | |||
2085 | /// elements than its source vectors. | |||
2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> | |||
2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> | |||
2088 | bool changesLength() const { | |||
2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) | |||
2090 | ->getElementCount() | |||
2091 | .getKnownMinValue(); | |||
2092 | unsigned NumMaskElts = ShuffleMask.size(); | |||
2093 | return NumSourceElts != NumMaskElts; | |||
2094 | } | |||
2095 | ||||
2096 | /// Return true if this shuffle returns a vector with a greater number of | |||
2097 | /// elements than its source vectors. | |||
2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> | |||
2099 | bool increasesLength() const { | |||
2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) | |||
2101 | ->getElementCount() | |||
2102 | .getKnownMinValue(); | |||
2103 | unsigned NumMaskElts = ShuffleMask.size(); | |||
2104 | return NumSourceElts < NumMaskElts; | |||
2105 | } | |||
2106 | ||||
2107 | /// Return true if this shuffle mask chooses elements from exactly one source | |||
2108 | /// vector. | |||
2109 | /// Example: <7,5,undef,7> | |||
2110 | /// This assumes that vector operands are the same length as the mask. | |||
2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); | |||
2112 | static bool isSingleSourceMask(const Constant *Mask) { | |||
2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2114 | SmallVector<int, 16> MaskAsInts; | |||
2115 | getShuffleMask(Mask, MaskAsInts); | |||
2116 | return isSingleSourceMask(MaskAsInts); | |||
2117 | } | |||
2118 | ||||
2119 | /// Return true if this shuffle chooses elements from exactly one source | |||
2120 | /// vector without changing the length of that vector. | |||
2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> | |||
2122 | /// TODO: Optionally allow length-changing shuffles. | |||
2123 | bool isSingleSource() const { | |||
2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); | |||
2125 | } | |||
2126 | ||||
2127 | /// Return true if this shuffle mask chooses elements from exactly one source | |||
2128 | /// vector without lane crossings. A shuffle using this mask is not | |||
2129 | /// necessarily a no-op because it may change the number of elements from its | |||
2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. | |||
2131 | /// Example: <undef,undef,2,3> | |||
2132 | static bool isIdentityMask(ArrayRef<int> Mask); | |||
2133 | static bool isIdentityMask(const Constant *Mask) { | |||
2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2135 | SmallVector<int, 16> MaskAsInts; | |||
2136 | getShuffleMask(Mask, MaskAsInts); | |||
2137 | return isIdentityMask(MaskAsInts); | |||
2138 | } | |||
2139 | ||||
2140 | /// Return true if this shuffle chooses elements from exactly one source | |||
2141 | /// vector without lane crossings and does not change the number of elements | |||
2142 | /// from its input vectors. | |||
2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> | |||
2144 | bool isIdentity() const { | |||
2145 | return !changesLength() && isIdentityMask(ShuffleMask); | |||
2146 | } | |||
2147 | ||||
2148 | /// Return true if this shuffle lengthens exactly one source vector with | |||
2149 | /// undefs in the high elements. | |||
2150 | bool isIdentityWithPadding() const; | |||
2151 | ||||
2152 | /// Return true if this shuffle extracts the first N elements of exactly one | |||
2153 | /// source vector. | |||
2154 | bool isIdentityWithExtract() const; | |||
2155 | ||||
2156 | /// Return true if this shuffle concatenates its 2 source vectors. This | |||
2157 | /// returns false if either input is undefined. In that case, the shuffle is | |||
2158 | /// is better classified as an identity with padding operation. | |||
2159 | bool isConcat() const; | |||
2160 | ||||
2161 | /// Return true if this shuffle mask chooses elements from its source vectors | |||
2162 | /// without lane crossings. A shuffle using this mask would be | |||
2163 | /// equivalent to a vector select with a constant condition operand. | |||
2164 | /// Example: <4,1,6,undef> | |||
2165 | /// This returns false if the mask does not choose from both input vectors. | |||
2166 | /// In that case, the shuffle is better classified as an identity shuffle. | |||
2167 | /// This assumes that vector operands are the same length as the mask | |||
2168 | /// (a length-changing shuffle can never be equivalent to a vector select). | |||
2169 | static bool isSelectMask(ArrayRef<int> Mask); | |||
2170 | static bool isSelectMask(const Constant *Mask) { | |||
2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2172 | SmallVector<int, 16> MaskAsInts; | |||
2173 | getShuffleMask(Mask, MaskAsInts); | |||
2174 | return isSelectMask(MaskAsInts); | |||
2175 | } | |||
2176 | ||||
2177 | /// Return true if this shuffle chooses elements from its source vectors | |||
2178 | /// without lane crossings and all operands have the same number of elements. | |||
2179 | /// In other words, this shuffle is equivalent to a vector select with a | |||
2180 | /// constant condition operand. | |||
2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> | |||
2182 | /// This returns false if the mask does not choose from both input vectors. | |||
2183 | /// In that case, the shuffle is better classified as an identity shuffle. | |||
2184 | /// TODO: Optionally allow length-changing shuffles. | |||
2185 | bool isSelect() const { | |||
2186 | return !changesLength() && isSelectMask(ShuffleMask); | |||
2187 | } | |||
2188 | ||||
2189 | /// Return true if this shuffle mask swaps the order of elements from exactly | |||
2190 | /// one source vector. | |||
2191 | /// Example: <7,6,undef,4> | |||
2192 | /// This assumes that vector operands are the same length as the mask. | |||
2193 | static bool isReverseMask(ArrayRef<int> Mask); | |||
2194 | static bool isReverseMask(const Constant *Mask) { | |||
2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2196 | SmallVector<int, 16> MaskAsInts; | |||
2197 | getShuffleMask(Mask, MaskAsInts); | |||
2198 | return isReverseMask(MaskAsInts); | |||
2199 | } | |||
2200 | ||||
2201 | /// Return true if this shuffle swaps the order of elements from exactly | |||
2202 | /// one source vector. | |||
2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> | |||
2204 | /// TODO: Optionally allow length-changing shuffles. | |||
2205 | bool isReverse() const { | |||
2206 | return !changesLength() && isReverseMask(ShuffleMask); | |||
2207 | } | |||
2208 | ||||
2209 | /// Return true if this shuffle mask chooses all elements with the same value | |||
2210 | /// as the first element of exactly one source vector. | |||
2211 | /// Example: <4,undef,undef,4> | |||
2212 | /// This assumes that vector operands are the same length as the mask. | |||
2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); | |||
2214 | static bool isZeroEltSplatMask(const Constant *Mask) { | |||
2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2216 | SmallVector<int, 16> MaskAsInts; | |||
2217 | getShuffleMask(Mask, MaskAsInts); | |||
2218 | return isZeroEltSplatMask(MaskAsInts); | |||
2219 | } | |||
2220 | ||||
2221 | /// Return true if all elements of this shuffle are the same value as the | |||
2222 | /// first element of exactly one source vector without changing the length | |||
2223 | /// of that vector. | |||
2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> | |||
2225 | /// TODO: Optionally allow length-changing shuffles. | |||
2226 | /// TODO: Optionally allow splats from other elements. | |||
2227 | bool isZeroEltSplat() const { | |||
2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); | |||
2229 | } | |||
2230 | ||||
2231 | /// Return true if this shuffle mask is a transpose mask. | |||
2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding | |||
2233 | /// even- or odd-numbered vector elements from two n-dimensional source | |||
2234 | /// vectors and write each result into consecutive elements of an | |||
2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete | |||
2236 | /// the transpose, one for the even elements and another for the odd elements. | |||
2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 | |||
2238 | /// instructions operate. | |||
2239 | /// | |||
2240 | /// For example, a simple 2x2 matrix can be transposed with: | |||
2241 | /// | |||
2242 | /// ; Original matrix | |||
2243 | /// m0 = < a, b > | |||
2244 | /// m1 = < c, d > | |||
2245 | /// | |||
2246 | /// ; Transposed matrix | |||
2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > | |||
2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > | |||
2249 | /// | |||
2250 | /// For matrices having greater than n columns, the resulting nx2 transposed | |||
2251 | /// matrix is stored in two result vectors such that one vector contains | |||
2252 | /// interleaved elements from all the even-numbered rows and the other vector | |||
2253 | /// contains interleaved elements from all the odd-numbered rows. For example, | |||
2254 | /// a 2x4 matrix can be transposed with: | |||
2255 | /// | |||
2256 | /// ; Original matrix | |||
2257 | /// m0 = < a, b, c, d > | |||
2258 | /// m1 = < e, f, g, h > | |||
2259 | /// | |||
2260 | /// ; Transposed matrix | |||
2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > | |||
2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > | |||
2263 | static bool isTransposeMask(ArrayRef<int> Mask); | |||
2264 | static bool isTransposeMask(const Constant *Mask) { | |||
2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2266 | SmallVector<int, 16> MaskAsInts; | |||
2267 | getShuffleMask(Mask, MaskAsInts); | |||
2268 | return isTransposeMask(MaskAsInts); | |||
2269 | } | |||
2270 | ||||
2271 | /// Return true if this shuffle transposes the elements of its inputs without | |||
2272 | /// changing the length of the vectors. This operation may also be known as a | |||
2273 | /// merge or interleave. See the description for isTransposeMask() for the | |||
2274 | /// exact specification. | |||
2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> | |||
2276 | bool isTranspose() const { | |||
2277 | return !changesLength() && isTransposeMask(ShuffleMask); | |||
2278 | } | |||
2279 | ||||
2280 | /// Return true if this shuffle mask is an extract subvector mask. | |||
2281 | /// A valid extract subvector mask returns a smaller vector from a single | |||
2282 | /// source operand. The base extraction index is returned as well. | |||
2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, | |||
2284 | int &Index); | |||
2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, | |||
2286 | int &Index) { | |||
2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); | |||
2288 | // Not possible to express a shuffle mask for a scalable vector for this | |||
2289 | // case. | |||
2290 | if (isa<ScalableVectorType>(Mask->getType())) | |||
2291 | return false; | |||
2292 | SmallVector<int, 16> MaskAsInts; | |||
2293 | getShuffleMask(Mask, MaskAsInts); | |||
2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); | |||
2295 | } | |||
2296 | ||||
2297 | /// Return true if this shuffle mask is an extract subvector mask. | |||
2298 | bool isExtractSubvectorMask(int &Index) const { | |||
2299 | // Not possible to express a shuffle mask for a scalable vector for this | |||
2300 | // case. | |||
2301 | if (isa<ScalableVectorType>(getType())) | |||
2302 | return false; | |||
2303 | ||||
2304 | int NumSrcElts = | |||
2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); | |||
2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); | |||
2307 | } | |||
2308 | ||||
2309 | /// Change values in a shuffle permute mask assuming the two vector operands | |||
2310 | /// of length InVecNumElts have swapped position. | |||
2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, | |||
2312 | unsigned InVecNumElts) { | |||
2313 | for (int &Idx : Mask) { | |||
2314 | if (Idx == -1) | |||
2315 | continue; | |||
2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; | |||
2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) | |||
2318 | "shufflevector mask index out of range")((void)0); | |||
2319 | } | |||
2320 | } | |||
2321 | ||||
2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
2323 | static bool classof(const Instruction *I) { | |||
2324 | return I->getOpcode() == Instruction::ShuffleVector; | |||
2325 | } | |||
2326 | static bool classof(const Value *V) { | |||
2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
2328 | } | |||
2329 | }; | |||
2330 | ||||
2331 | template <> | |||
2332 | struct OperandTraits<ShuffleVectorInst> | |||
2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; | |||
2334 | ||||
2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
2336 | ||||
2337 | //===----------------------------------------------------------------------===// | |||
2338 | // ExtractValueInst Class | |||
2339 | //===----------------------------------------------------------------------===// | |||
2340 | ||||
2341 | /// This instruction extracts a struct member or array | |||
2342 | /// element value from an aggregate value. | |||
2343 | /// | |||
2344 | class ExtractValueInst : public UnaryInstruction { | |||
2345 | SmallVector<unsigned, 4> Indices; | |||
2346 | ||||
2347 | ExtractValueInst(const ExtractValueInst &EVI); | |||
2348 | ||||
2349 | /// Constructors - Create a extractvalue instruction with a base aggregate | |||
2350 | /// value and a list of indices. The first ctor can optionally insert before | |||
2351 | /// an existing instruction, the second appends the new instruction to the | |||
2352 | /// specified BasicBlock. | |||
2353 | inline ExtractValueInst(Value *Agg, | |||
2354 | ArrayRef<unsigned> Idxs, | |||
2355 | const Twine &NameStr, | |||
2356 | Instruction *InsertBefore); | |||
2357 | inline ExtractValueInst(Value *Agg, | |||
2358 | ArrayRef<unsigned> Idxs, | |||
2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2360 | ||||
2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); | |||
2362 | ||||
2363 | protected: | |||
2364 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2365 | friend class Instruction; | |||
2366 | ||||
2367 | ExtractValueInst *cloneImpl() const; | |||
2368 | ||||
2369 | public: | |||
2370 | static ExtractValueInst *Create(Value *Agg, | |||
2371 | ArrayRef<unsigned> Idxs, | |||
2372 | const Twine &NameStr = "", | |||
2373 | Instruction *InsertBefore = nullptr) { | |||
2374 | return new | |||
2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); | |||
2376 | } | |||
2377 | ||||
2378 | static ExtractValueInst *Create(Value *Agg, | |||
2379 | ArrayRef<unsigned> Idxs, | |||
2380 | const Twine &NameStr, | |||
2381 | BasicBlock *InsertAtEnd) { | |||
2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); | |||
2383 | } | |||
2384 | ||||
2385 | /// Returns the type of the element that would be extracted | |||
2386 | /// with an extractvalue instruction with the specified parameters. | |||
2387 | /// | |||
2388 | /// Null is returned if the indices are invalid for the specified type. | |||
2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); | |||
2390 | ||||
2391 | using idx_iterator = const unsigned*; | |||
2392 | ||||
2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } | |||
2394 | inline idx_iterator idx_end() const { return Indices.end(); } | |||
2395 | inline iterator_range<idx_iterator> indices() const { | |||
2396 | return make_range(idx_begin(), idx_end()); | |||
2397 | } | |||
2398 | ||||
2399 | Value *getAggregateOperand() { | |||
2400 | return getOperand(0); | |||
2401 | } | |||
2402 | const Value *getAggregateOperand() const { | |||
2403 | return getOperand(0); | |||
2404 | } | |||
2405 | static unsigned getAggregateOperandIndex() { | |||
2406 | return 0U; // get index for modifying correct operand | |||
2407 | } | |||
2408 | ||||
2409 | ArrayRef<unsigned> getIndices() const { | |||
2410 | return Indices; | |||
2411 | } | |||
2412 | ||||
2413 | unsigned getNumIndices() const { | |||
2414 | return (unsigned)Indices.size(); | |||
2415 | } | |||
2416 | ||||
2417 | bool hasIndices() const { | |||
2418 | return true; | |||
2419 | } | |||
2420 | ||||
2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
2422 | static bool classof(const Instruction *I) { | |||
2423 | return I->getOpcode() == Instruction::ExtractValue; | |||
2424 | } | |||
2425 | static bool classof(const Value *V) { | |||
2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
2427 | } | |||
2428 | }; | |||
2429 | ||||
2430 | ExtractValueInst::ExtractValueInst(Value *Agg, | |||
2431 | ArrayRef<unsigned> Idxs, | |||
2432 | const Twine &NameStr, | |||
2433 | Instruction *InsertBefore) | |||
2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), | |||
2435 | ExtractValue, Agg, InsertBefore) { | |||
2436 | init(Idxs, NameStr); | |||
2437 | } | |||
2438 | ||||
2439 | ExtractValueInst::ExtractValueInst(Value *Agg, | |||
2440 | ArrayRef<unsigned> Idxs, | |||
2441 | const Twine &NameStr, | |||
2442 | BasicBlock *InsertAtEnd) | |||
2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), | |||
2444 | ExtractValue, Agg, InsertAtEnd) { | |||
2445 | init(Idxs, NameStr); | |||
2446 | } | |||
2447 | ||||
2448 | //===----------------------------------------------------------------------===// | |||
2449 | // InsertValueInst Class | |||
2450 | //===----------------------------------------------------------------------===// | |||
2451 | ||||
2452 | /// This instruction inserts a struct field of array element | |||
2453 | /// value into an aggregate value. | |||
2454 | /// | |||
2455 | class InsertValueInst : public Instruction { | |||
2456 | SmallVector<unsigned, 4> Indices; | |||
2457 | ||||
2458 | InsertValueInst(const InsertValueInst &IVI); | |||
2459 | ||||
2460 | /// Constructors - Create a insertvalue instruction with a base aggregate | |||
2461 | /// value, a value to insert, and a list of indices. The first ctor can | |||
2462 | /// optionally insert before an existing instruction, the second appends | |||
2463 | /// the new instruction to the specified BasicBlock. | |||
2464 | inline InsertValueInst(Value *Agg, Value *Val, | |||
2465 | ArrayRef<unsigned> Idxs, | |||
2466 | const Twine &NameStr, | |||
2467 | Instruction *InsertBefore); | |||
2468 | inline InsertValueInst(Value *Agg, Value *Val, | |||
2469 | ArrayRef<unsigned> Idxs, | |||
2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2471 | ||||
2472 | /// Constructors - These two constructors are convenience methods because one | |||
2473 | /// and two index insertvalue instructions are so common. | |||
2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, | |||
2475 | const Twine &NameStr = "", | |||
2476 | Instruction *InsertBefore = nullptr); | |||
2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, | |||
2478 | BasicBlock *InsertAtEnd); | |||
2479 | ||||
2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, | |||
2481 | const Twine &NameStr); | |||
2482 | ||||
2483 | protected: | |||
2484 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2485 | friend class Instruction; | |||
2486 | ||||
2487 | InsertValueInst *cloneImpl() const; | |||
2488 | ||||
2489 | public: | |||
2490 | // allocate space for exactly two operands | |||
2491 | void *operator new(size_t S) { return User::operator new(S, 2); } | |||
2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
2493 | ||||
2494 | static InsertValueInst *Create(Value *Agg, Value *Val, | |||
2495 | ArrayRef<unsigned> Idxs, | |||
2496 | const Twine &NameStr = "", | |||
2497 | Instruction *InsertBefore = nullptr) { | |||
2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); | |||
2499 | } | |||
2500 | ||||
2501 | static InsertValueInst *Create(Value *Agg, Value *Val, | |||
2502 | ArrayRef<unsigned> Idxs, | |||
2503 | const Twine &NameStr, | |||
2504 | BasicBlock *InsertAtEnd) { | |||
2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); | |||
2506 | } | |||
2507 | ||||
2508 | /// Transparently provide more efficient getOperand methods. | |||
2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
2510 | ||||
2511 | using idx_iterator = const unsigned*; | |||
2512 | ||||
2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } | |||
2514 | inline idx_iterator idx_end() const { return Indices.end(); } | |||
2515 | inline iterator_range<idx_iterator> indices() const { | |||
2516 | return make_range(idx_begin(), idx_end()); | |||
2517 | } | |||
2518 | ||||
2519 | Value *getAggregateOperand() { | |||
2520 | return getOperand(0); | |||
2521 | } | |||
2522 | const Value *getAggregateOperand() const { | |||
2523 | return getOperand(0); | |||
2524 | } | |||
2525 | static unsigned getAggregateOperandIndex() { | |||
2526 | return 0U; // get index for modifying correct operand | |||
2527 | } | |||
2528 | ||||
2529 | Value *getInsertedValueOperand() { | |||
2530 | return getOperand(1); | |||
2531 | } | |||
2532 | const Value *getInsertedValueOperand() const { | |||
2533 | return getOperand(1); | |||
2534 | } | |||
2535 | static unsigned getInsertedValueOperandIndex() { | |||
2536 | return 1U; // get index for modifying correct operand | |||
2537 | } | |||
2538 | ||||
2539 | ArrayRef<unsigned> getIndices() const { | |||
2540 | return Indices; | |||
2541 | } | |||
2542 | ||||
2543 | unsigned getNumIndices() const { | |||
2544 | return (unsigned)Indices.size(); | |||
2545 | } | |||
2546 | ||||
2547 | bool hasIndices() const { | |||
2548 | return true; | |||
2549 | } | |||
2550 | ||||
2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
2552 | static bool classof(const Instruction *I) { | |||
2553 | return I->getOpcode() == Instruction::InsertValue; | |||
2554 | } | |||
2555 | static bool classof(const Value *V) { | |||
2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
2557 | } | |||
2558 | }; | |||
2559 | ||||
2560 | template <> | |||
2561 | struct OperandTraits<InsertValueInst> : | |||
2562 | public FixedNumOperandTraits<InsertValueInst, 2> { | |||
2563 | }; | |||
2564 | ||||
2565 | InsertValueInst::InsertValueInst(Value *Agg, | |||
2566 | Value *Val, | |||
2567 | ArrayRef<unsigned> Idxs, | |||
2568 | const Twine &NameStr, | |||
2569 | Instruction *InsertBefore) | |||
2570 | : Instruction(Agg->getType(), InsertValue, | |||
| ||||
2571 | OperandTraits<InsertValueInst>::op_begin(this), | |||
2572 | 2, InsertBefore) { | |||
2573 | init(Agg, Val, Idxs, NameStr); | |||
2574 | } | |||
2575 | ||||
2576 | InsertValueInst::InsertValueInst(Value *Agg, | |||
2577 | Value *Val, | |||
2578 | ArrayRef<unsigned> Idxs, | |||
2579 | const Twine &NameStr, | |||
2580 | BasicBlock *InsertAtEnd) | |||
2581 | : Instruction(Agg->getType(), InsertValue, | |||
2582 | OperandTraits<InsertValueInst>::op_begin(this), | |||
2583 | 2, InsertAtEnd) { | |||
2584 | init(Agg, Val, Idxs, NameStr); | |||
2585 | } | |||
2586 | ||||
2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } | |||
2588 | ||||
2589 | //===----------------------------------------------------------------------===// | |||
2590 | // PHINode Class | |||
2591 | //===----------------------------------------------------------------------===// | |||
2592 | ||||
2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI | |||
2594 | // node, that can not exist in nature, but can be synthesized in a computer | |||
2595 | // scientist's overactive imagination. | |||
2596 | // | |||
2597 | class PHINode : public Instruction { | |||
2598 | /// The number of operands actually allocated. NumOperands is | |||
2599 | /// the number actually in use. | |||
2600 | unsigned ReservedSpace; | |||
2601 | ||||
2602 | PHINode(const PHINode &PN); | |||
2603 | ||||
2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, | |||
2605 | const Twine &NameStr = "", | |||
2606 | Instruction *InsertBefore = nullptr) | |||
2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), | |||
2608 | ReservedSpace(NumReservedValues) { | |||
2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); | |||
2610 | setName(NameStr); | |||
2611 | allocHungoffUses(ReservedSpace); | |||
2612 | } | |||
2613 | ||||
2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, | |||
2615 | BasicBlock *InsertAtEnd) | |||
2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), | |||
2617 | ReservedSpace(NumReservedValues) { | |||
2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); | |||
2619 | setName(NameStr); | |||
2620 | allocHungoffUses(ReservedSpace); | |||
2621 | } | |||
2622 | ||||
2623 | protected: | |||
2624 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2625 | friend class Instruction; | |||
2626 | ||||
2627 | PHINode *cloneImpl() const; | |||
2628 | ||||
2629 | // allocHungoffUses - this is more complicated than the generic | |||
2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming | |||
2631 | // values and pointers to the incoming blocks, all in one allocation. | |||
2632 | void allocHungoffUses(unsigned N) { | |||
2633 | User::allocHungoffUses(N, /* IsPhi */ true); | |||
2634 | } | |||
2635 | ||||
2636 | public: | |||
2637 | /// Constructors - NumReservedValues is a hint for the number of incoming | |||
2638 | /// edges that this phi node will have (use 0 if you really have no idea). | |||
2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, | |||
2640 | const Twine &NameStr = "", | |||
2641 | Instruction *InsertBefore = nullptr) { | |||
2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); | |||
2643 | } | |||
2644 | ||||
2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, | |||
2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); | |||
2648 | } | |||
2649 | ||||
2650 | /// Provide fast operand accessors | |||
2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
2652 | ||||
2653 | // Block iterator interface. This provides access to the list of incoming | |||
2654 | // basic blocks, which parallels the list of incoming values. | |||
2655 | ||||
2656 | using block_iterator = BasicBlock **; | |||
2657 | using const_block_iterator = BasicBlock * const *; | |||
2658 | ||||
2659 | block_iterator block_begin() { | |||
2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); | |||
2661 | } | |||
2662 | ||||
2663 | const_block_iterator block_begin() const { | |||
2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); | |||
2665 | } | |||
2666 | ||||
2667 | block_iterator block_end() { | |||
2668 | return block_begin() + getNumOperands(); | |||
2669 | } | |||
2670 | ||||
2671 | const_block_iterator block_end() const { | |||
2672 | return block_begin() + getNumOperands(); | |||
2673 | } | |||
2674 | ||||
2675 | iterator_range<block_iterator> blocks() { | |||
2676 | return make_range(block_begin(), block_end()); | |||
2677 | } | |||
2678 | ||||
2679 | iterator_range<const_block_iterator> blocks() const { | |||
2680 | return make_range(block_begin(), block_end()); | |||
2681 | } | |||
2682 | ||||
2683 | op_range incoming_values() { return operands(); } | |||
2684 | ||||
2685 | const_op_range incoming_values() const { return operands(); } | |||
2686 | ||||
2687 | /// Return the number of incoming edges | |||
2688 | /// | |||
2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } | |||
2690 | ||||
2691 | /// Return incoming value number x | |||
2692 | /// | |||
2693 | Value *getIncomingValue(unsigned i) const { | |||
2694 | return getOperand(i); | |||
2695 | } | |||
2696 | void setIncomingValue(unsigned i, Value *V) { | |||
2697 | assert(V && "PHI node got a null value!")((void)0); | |||
2698 | assert(getType() == V->getType() &&((void)0) | |||
2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); | |||
2700 | setOperand(i, V); | |||
2701 | } | |||
2702 | ||||
2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { | |||
2704 | return i; | |||
2705 | } | |||
2706 | ||||
2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { | |||
2708 | return i; | |||
2709 | } | |||
2710 | ||||
2711 | /// Return incoming basic block number @p i. | |||
2712 | /// | |||
2713 | BasicBlock *getIncomingBlock(unsigned i) const { | |||
2714 | return block_begin()[i]; | |||
2715 | } | |||
2716 | ||||
2717 | /// Return incoming basic block corresponding | |||
2718 | /// to an operand of the PHI. | |||
2719 | /// | |||
2720 | BasicBlock *getIncomingBlock(const Use &U) const { | |||
2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); | |||
2722 | return getIncomingBlock(unsigned(&U - op_begin())); | |||
2723 | } | |||
2724 | ||||
2725 | /// Return incoming basic block corresponding | |||
2726 | /// to value use iterator. | |||
2727 | /// | |||
2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { | |||
2729 | return getIncomingBlock(I.getUse()); | |||
2730 | } | |||
2731 | ||||
2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { | |||
2733 | assert(BB && "PHI node got a null basic block!")((void)0); | |||
2734 | block_begin()[i] = BB; | |||
2735 | } | |||
2736 | ||||
2737 | /// Replace every incoming basic block \p Old to basic block \p New. | |||
2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { | |||
2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); | |||
2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) | |||
2741 | if (getIncomingBlock(Op) == Old) | |||
2742 | setIncomingBlock(Op, New); | |||
2743 | } | |||
2744 | ||||
2745 | /// Add an incoming value to the end of the PHI list | |||
2746 | /// | |||
2747 | void addIncoming(Value *V, BasicBlock *BB) { | |||
2748 | if (getNumOperands() == ReservedSpace) | |||
2749 | growOperands(); // Get more space! | |||
2750 | // Initialize some new operands. | |||
2751 | setNumHungOffUseOperands(getNumOperands() + 1); | |||
2752 | setIncomingValue(getNumOperands() - 1, V); | |||
2753 | setIncomingBlock(getNumOperands() - 1, BB); | |||
2754 | } | |||
2755 | ||||
2756 | /// Remove an incoming value. This is useful if a | |||
2757 | /// predecessor basic block is deleted. The value removed is returned. | |||
2758 | /// | |||
2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty | |||
2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with | |||
2761 | /// dummy values. The only time there should be zero incoming values to a PHI | |||
2762 | /// node is when the block is dead, so this strategy is sound. | |||
2763 | /// | |||
2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); | |||
2765 | ||||
2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { | |||
2767 | int Idx = getBasicBlockIndex(BB); | |||
2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); | |||
2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); | |||
2770 | } | |||
2771 | ||||
2772 | /// Return the first index of the specified basic | |||
2773 | /// block in the value list for this PHI. Returns -1 if no instance. | |||
2774 | /// | |||
2775 | int getBasicBlockIndex(const BasicBlock *BB) const { | |||
2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | |||
2777 | if (block_begin()[i] == BB) | |||
2778 | return i; | |||
2779 | return -1; | |||
2780 | } | |||
2781 | ||||
2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { | |||
2783 | int Idx = getBasicBlockIndex(BB); | |||
2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); | |||
2785 | return getIncomingValue(Idx); | |||
2786 | } | |||
2787 | ||||
2788 | /// Set every incoming value(s) for block \p BB to \p V. | |||
2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { | |||
2790 | assert(BB && "PHI node got a null basic block!")((void)0); | |||
2791 | bool Found = false; | |||
2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) | |||
2793 | if (getIncomingBlock(Op) == BB) { | |||
2794 | Found = true; | |||
2795 | setIncomingValue(Op, V); | |||
2796 | } | |||
2797 | (void)Found; | |||
2798 | assert(Found && "Invalid basic block argument to set!")((void)0); | |||
2799 | } | |||
2800 | ||||
2801 | /// If the specified PHI node always merges together the | |||
2802 | /// same value, return the value, otherwise return null. | |||
2803 | Value *hasConstantValue() const; | |||
2804 | ||||
2805 | /// Whether the specified PHI node always merges | |||
2806 | /// together the same value, assuming undefs are equal to a unique | |||
2807 | /// non-undef value. | |||
2808 | bool hasConstantOrUndefValue() const; | |||
2809 | ||||
2810 | /// If the PHI node is complete which means all of its parent's predecessors | |||
2811 | /// have incoming value in this PHI, return true, otherwise return false. | |||
2812 | bool isComplete() const { | |||
2813 | return llvm::all_of(predecessors(getParent()), | |||
2814 | [this](const BasicBlock *Pred) { | |||
2815 | return getBasicBlockIndex(Pred) >= 0; | |||
2816 | }); | |||
2817 | } | |||
2818 | ||||
2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
2820 | static bool classof(const Instruction *I) { | |||
2821 | return I->getOpcode() == Instruction::PHI; | |||
2822 | } | |||
2823 | static bool classof(const Value *V) { | |||
2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
2825 | } | |||
2826 | ||||
2827 | private: | |||
2828 | void growOperands(); | |||
2829 | }; | |||
2830 | ||||
2831 | template <> | |||
2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { | |||
2833 | }; | |||
2834 | ||||
2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
2836 | ||||
2837 | //===----------------------------------------------------------------------===// | |||
2838 | // LandingPadInst Class | |||
2839 | //===----------------------------------------------------------------------===// | |||
2840 | ||||
2841 | //===--------------------------------------------------------------------------- | |||
2842 | /// The landingpad instruction holds all of the information | |||
2843 | /// necessary to generate correct exception handling. The landingpad instruction | |||
2844 | /// cannot be moved from the top of a landing pad block, which itself is | |||
2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the | |||
2846 | /// SubclassData field in Value to store whether or not the landingpad is a | |||
2847 | /// cleanup. | |||
2848 | /// | |||
2849 | class LandingPadInst : public Instruction { | |||
2850 | using CleanupField = BoolBitfieldElementT<0>; | |||
2851 | ||||
2852 | /// The number of operands actually allocated. NumOperands is | |||
2853 | /// the number actually in use. | |||
2854 | unsigned ReservedSpace; | |||
2855 | ||||
2856 | LandingPadInst(const LandingPadInst &LP); | |||
2857 | ||||
2858 | public: | |||
2859 | enum ClauseType { Catch, Filter }; | |||
2860 | ||||
2861 | private: | |||
2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, | |||
2863 | const Twine &NameStr, Instruction *InsertBefore); | |||
2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, | |||
2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2866 | ||||
2867 | // Allocate space for exactly zero operands. | |||
2868 | void *operator new(size_t S) { return User::operator new(S); } | |||
2869 | ||||
2870 | void growOperands(unsigned Size); | |||
2871 | void init(unsigned NumReservedValues, const Twine &NameStr); | |||
2872 | ||||
2873 | protected: | |||
2874 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2875 | friend class Instruction; | |||
2876 | ||||
2877 | LandingPadInst *cloneImpl() const; | |||
2878 | ||||
2879 | public: | |||
2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
2881 | ||||
2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming | |||
2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). | |||
2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, | |||
2885 | const Twine &NameStr = "", | |||
2886 | Instruction *InsertBefore = nullptr); | |||
2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, | |||
2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
2889 | ||||
2890 | /// Provide fast operand accessors | |||
2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
2892 | ||||
2893 | /// Return 'true' if this landingpad instruction is a | |||
2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad | |||
2895 | /// doesn't catch the exception. | |||
2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } | |||
2897 | ||||
2898 | /// Indicate that this landingpad instruction is a cleanup. | |||
2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } | |||
2900 | ||||
2901 | /// Add a catch or filter clause to the landing pad. | |||
2902 | void addClause(Constant *ClauseVal); | |||
2903 | ||||
2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to | |||
2905 | /// determine what type of clause this is. | |||
2906 | Constant *getClause(unsigned Idx) const { | |||
2907 | return cast<Constant>(getOperandList()[Idx]); | |||
2908 | } | |||
2909 | ||||
2910 | /// Return 'true' if the clause and index Idx is a catch clause. | |||
2911 | bool isCatch(unsigned Idx) const { | |||
2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); | |||
2913 | } | |||
2914 | ||||
2915 | /// Return 'true' if the clause and index Idx is a filter clause. | |||
2916 | bool isFilter(unsigned Idx) const { | |||
2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); | |||
2918 | } | |||
2919 | ||||
2920 | /// Get the number of clauses for this landing pad. | |||
2921 | unsigned getNumClauses() const { return getNumOperands(); } | |||
2922 | ||||
2923 | /// Grow the size of the operand list to accommodate the new | |||
2924 | /// number of clauses. | |||
2925 | void reserveClauses(unsigned Size) { growOperands(Size); } | |||
2926 | ||||
2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
2928 | static bool classof(const Instruction *I) { | |||
2929 | return I->getOpcode() == Instruction::LandingPad; | |||
2930 | } | |||
2931 | static bool classof(const Value *V) { | |||
2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
2933 | } | |||
2934 | }; | |||
2935 | ||||
2936 | template <> | |||
2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { | |||
2938 | }; | |||
2939 | ||||
2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } | |||
2941 | ||||
2942 | //===----------------------------------------------------------------------===// | |||
2943 | // ReturnInst Class | |||
2944 | //===----------------------------------------------------------------------===// | |||
2945 | ||||
2946 | //===--------------------------------------------------------------------------- | |||
2947 | /// Return a value (possibly void), from a function. Execution | |||
2948 | /// does not continue in this function any longer. | |||
2949 | /// | |||
2950 | class ReturnInst : public Instruction { | |||
2951 | ReturnInst(const ReturnInst &RI); | |||
2952 | ||||
2953 | private: | |||
2954 | // ReturnInst constructors: | |||
2955 | // ReturnInst() - 'ret void' instruction | |||
2956 | // ReturnInst( null) - 'ret void' instruction | |||
2957 | // ReturnInst(Value* X) - 'ret X' instruction | |||
2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I | |||
2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I | |||
2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B | |||
2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B | |||
2962 | // | |||
2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as | |||
2964 | // if it was passed NULL. | |||
2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, | |||
2966 | Instruction *InsertBefore = nullptr); | |||
2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); | |||
2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); | |||
2969 | ||||
2970 | protected: | |||
2971 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
2972 | friend class Instruction; | |||
2973 | ||||
2974 | ReturnInst *cloneImpl() const; | |||
2975 | ||||
2976 | public: | |||
2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, | |||
2978 | Instruction *InsertBefore = nullptr) { | |||
2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); | |||
2980 | } | |||
2981 | ||||
2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, | |||
2983 | BasicBlock *InsertAtEnd) { | |||
2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); | |||
2985 | } | |||
2986 | ||||
2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { | |||
2988 | return new(0) ReturnInst(C, InsertAtEnd); | |||
2989 | } | |||
2990 | ||||
2991 | /// Provide fast operand accessors | |||
2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
2993 | ||||
2994 | /// Convenience accessor. Returns null if there is no return value. | |||
2995 | Value *getReturnValue() const { | |||
2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; | |||
2997 | } | |||
2998 | ||||
2999 | unsigned getNumSuccessors() const { return 0; } | |||
3000 | ||||
3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
3002 | static bool classof(const Instruction *I) { | |||
3003 | return (I->getOpcode() == Instruction::Ret); | |||
3004 | } | |||
3005 | static bool classof(const Value *V) { | |||
3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
3007 | } | |||
3008 | ||||
3009 | private: | |||
3010 | BasicBlock *getSuccessor(unsigned idx) const { | |||
3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); | |||
3012 | } | |||
3013 | ||||
3014 | void setSuccessor(unsigned idx, BasicBlock *B) { | |||
3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); | |||
3016 | } | |||
3017 | }; | |||
3018 | ||||
3019 | template <> | |||
3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { | |||
3021 | }; | |||
3022 | ||||
3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
3024 | ||||
3025 | //===----------------------------------------------------------------------===// | |||
3026 | // BranchInst Class | |||
3027 | //===----------------------------------------------------------------------===// | |||
3028 | ||||
3029 | //===--------------------------------------------------------------------------- | |||
3030 | /// Conditional or Unconditional Branch instruction. | |||
3031 | /// | |||
3032 | class BranchInst : public Instruction { | |||
3033 | /// Ops list - Branches are strange. The operands are ordered: | |||
3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because | |||
3035 | /// they don't have to check for cond/uncond branchness. These are mostly | |||
3036 | /// accessed relative from op_end(). | |||
3037 | BranchInst(const BranchInst &BI); | |||
3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): | |||
3039 | // BranchInst(BB *B) - 'br B' | |||
3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' | |||
3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I | |||
3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I | |||
3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end | |||
3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end | |||
3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); | |||
3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, | |||
3047 | Instruction *InsertBefore = nullptr); | |||
3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); | |||
3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, | |||
3050 | BasicBlock *InsertAtEnd); | |||
3051 | ||||
3052 | void AssertOK(); | |||
3053 | ||||
3054 | protected: | |||
3055 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
3056 | friend class Instruction; | |||
3057 | ||||
3058 | BranchInst *cloneImpl() const; | |||
3059 | ||||
3060 | public: | |||
3061 | /// Iterator type that casts an operand to a basic block. | |||
3062 | /// | |||
3063 | /// This only makes sense because the successors are stored as adjacent | |||
3064 | /// operands for branch instructions. | |||
3065 | struct succ_op_iterator | |||
3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, | |||
3067 | std::random_access_iterator_tag, BasicBlock *, | |||
3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { | |||
3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} | |||
3070 | ||||
3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } | |||
3072 | BasicBlock *operator->() const { return operator*(); } | |||
3073 | }; | |||
3074 | ||||
3075 | /// The const version of `succ_op_iterator`. | |||
3076 | struct const_succ_op_iterator | |||
3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, | |||
3078 | std::random_access_iterator_tag, | |||
3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, | |||
3080 | const BasicBlock *> { | |||
3081 | explicit const_succ_op_iterator(const_value_op_iterator I) | |||
3082 | : iterator_adaptor_base(I) {} | |||
3083 | ||||
3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } | |||
3085 | const BasicBlock *operator->() const { return operator*(); } | |||
3086 | }; | |||
3087 | ||||
3088 | static BranchInst *Create(BasicBlock *IfTrue, | |||
3089 | Instruction *InsertBefore = nullptr) { | |||
3090 | return new(1) BranchInst(IfTrue, InsertBefore); | |||
3091 | } | |||
3092 | ||||
3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, | |||
3094 | Value *Cond, Instruction *InsertBefore = nullptr) { | |||
3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); | |||
3096 | } | |||
3097 | ||||
3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { | |||
3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); | |||
3100 | } | |||
3101 | ||||
3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, | |||
3103 | Value *Cond, BasicBlock *InsertAtEnd) { | |||
3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); | |||
3105 | } | |||
3106 | ||||
3107 | /// Transparently provide more efficient getOperand methods. | |||
3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
3109 | ||||
3110 | bool isUnconditional() const { return getNumOperands() == 1; } | |||
3111 | bool isConditional() const { return getNumOperands() == 3; } | |||
3112 | ||||
3113 | Value *getCondition() const { | |||
3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); | |||
3115 | return Op<-3>(); | |||
3116 | } | |||
3117 | ||||
3118 | void setCondition(Value *V) { | |||
3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); | |||
3120 | Op<-3>() = V; | |||
3121 | } | |||
3122 | ||||
3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } | |||
3124 | ||||
3125 | BasicBlock *getSuccessor(unsigned i) const { | |||
3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); | |||
3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); | |||
3128 | } | |||
3129 | ||||
3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { | |||
3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); | |||
3132 | *(&Op<-1>() - idx) = NewSucc; | |||
3133 | } | |||
3134 | ||||
3135 | /// Swap the successors of this branch instruction. | |||
3136 | /// | |||
3137 | /// Swaps the successors of the branch instruction. This also swaps any | |||
3138 | /// branch weight metadata associated with the instruction so that it | |||
3139 | /// continues to map correctly to each operand. | |||
3140 | void swapSuccessors(); | |||
3141 | ||||
3142 | iterator_range<succ_op_iterator> successors() { | |||
3143 | return make_range( | |||
3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), | |||
3145 | succ_op_iterator(value_op_end())); | |||
3146 | } | |||
3147 | ||||
3148 | iterator_range<const_succ_op_iterator> successors() const { | |||
3149 | return make_range(const_succ_op_iterator( | |||
3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), | |||
3151 | const_succ_op_iterator(value_op_end())); | |||
3152 | } | |||
3153 | ||||
3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
3155 | static bool classof(const Instruction *I) { | |||
3156 | return (I->getOpcode() == Instruction::Br); | |||
3157 | } | |||
3158 | static bool classof(const Value *V) { | |||
3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
3160 | } | |||
3161 | }; | |||
3162 | ||||
3163 | template <> | |||
3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { | |||
3165 | }; | |||
3166 | ||||
3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
3168 | ||||
3169 | //===----------------------------------------------------------------------===// | |||
3170 | // SwitchInst Class | |||
3171 | //===----------------------------------------------------------------------===// | |||
3172 | ||||
3173 | //===--------------------------------------------------------------------------- | |||
3174 | /// Multiway switch | |||
3175 | /// | |||
3176 | class SwitchInst : public Instruction { | |||
3177 | unsigned ReservedSpace; | |||
3178 | ||||
3179 | // Operand[0] = Value to switch on | |||
3180 | // Operand[1] = Default basic block destination | |||
3181 | // Operand[2n ] = Value to match | |||
3182 | // Operand[2n+1] = BasicBlock to go to on match | |||
3183 | SwitchInst(const SwitchInst &SI); | |||
3184 | ||||
3185 | /// Create a new switch instruction, specifying a value to switch on and a | |||
3186 | /// default destination. The number of additional cases can be specified here | |||
3187 | /// to make memory allocation more efficient. This constructor can also | |||
3188 | /// auto-insert before another instruction. | |||
3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, | |||
3190 | Instruction *InsertBefore); | |||
3191 | ||||
3192 | /// Create a new switch instruction, specifying a value to switch on and a | |||
3193 | /// default destination. The number of additional cases can be specified here | |||
3194 | /// to make memory allocation more efficient. This constructor also | |||
3195 | /// auto-inserts at the end of the specified BasicBlock. | |||
3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, | |||
3197 | BasicBlock *InsertAtEnd); | |||
3198 | ||||
3199 | // allocate space for exactly zero operands | |||
3200 | void *operator new(size_t S) { return User::operator new(S); } | |||
3201 | ||||
3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); | |||
3203 | void growOperands(); | |||
3204 | ||||
3205 | protected: | |||
3206 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
3207 | friend class Instruction; | |||
3208 | ||||
3209 | SwitchInst *cloneImpl() const; | |||
3210 | ||||
3211 | public: | |||
3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
3213 | ||||
3214 | // -2 | |||
3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); | |||
3216 | ||||
3217 | template <typename CaseHandleT> class CaseIteratorImpl; | |||
3218 | ||||
3219 | /// A handle to a particular switch case. It exposes a convenient interface | |||
3220 | /// to both the case value and the successor block. | |||
3221 | /// | |||
3222 | /// We define this as a template and instantiate it to form both a const and | |||
3223 | /// non-const handle. | |||
3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> | |||
3225 | class CaseHandleImpl { | |||
3226 | // Directly befriend both const and non-const iterators. | |||
3227 | friend class SwitchInst::CaseIteratorImpl< | |||
3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; | |||
3229 | ||||
3230 | protected: | |||
3231 | // Expose the switch type we're parameterized with to the iterator. | |||
3232 | using SwitchInstType = SwitchInstT; | |||
3233 | ||||
3234 | SwitchInstT *SI; | |||
3235 | ptrdiff_t Index; | |||
3236 | ||||
3237 | CaseHandleImpl() = default; | |||
3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} | |||
3239 | ||||
3240 | public: | |||
3241 | /// Resolves case value for current case. | |||
3242 | ConstantIntT *getCaseValue() const { | |||
3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) | |||
3244 | "Index out the number of cases.")((void)0); | |||
3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); | |||
3246 | } | |||
3247 | ||||
3248 | /// Resolves successor for current case. | |||
3249 | BasicBlockT *getCaseSuccessor() const { | |||
3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) | |||
3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) | |||
3252 | "Index out the number of cases.")((void)0); | |||
3253 | return SI->getSuccessor(getSuccessorIndex()); | |||
3254 | } | |||
3255 | ||||
3256 | /// Returns number of current case. | |||
3257 | unsigned getCaseIndex() const { return Index; } | |||
3258 | ||||
3259 | /// Returns successor index for current case successor. | |||
3260 | unsigned getSuccessorIndex() const { | |||
3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) | |||
3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) | |||
3263 | "Index out the number of cases.")((void)0); | |||
3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; | |||
3265 | } | |||
3266 | ||||
3267 | bool operator==(const CaseHandleImpl &RHS) const { | |||
3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); | |||
3269 | return Index == RHS.Index; | |||
3270 | } | |||
3271 | }; | |||
3272 | ||||
3273 | using ConstCaseHandle = | |||
3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; | |||
3275 | ||||
3276 | class CaseHandle | |||
3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { | |||
3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; | |||
3279 | ||||
3280 | public: | |||
3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} | |||
3282 | ||||
3283 | /// Sets the new value for current case. | |||
3284 | void setValue(ConstantInt *V) { | |||
3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) | |||
3286 | "Index out the number of cases.")((void)0); | |||
3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); | |||
3288 | } | |||
3289 | ||||
3290 | /// Sets the new successor for current case. | |||
3291 | void setSuccessor(BasicBlock *S) { | |||
3292 | SI->setSuccessor(getSuccessorIndex(), S); | |||
3293 | } | |||
3294 | }; | |||
3295 | ||||
3296 | template <typename CaseHandleT> | |||
3297 | class CaseIteratorImpl | |||
3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, | |||
3299 | std::random_access_iterator_tag, | |||
3300 | CaseHandleT> { | |||
3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; | |||
3302 | ||||
3303 | CaseHandleT Case; | |||
3304 | ||||
3305 | public: | |||
3306 | /// Default constructed iterator is in an invalid state until assigned to | |||
3307 | /// a case for a particular switch. | |||
3308 | CaseIteratorImpl() = default; | |||
3309 | ||||
3310 | /// Initializes case iterator for given SwitchInst and for given | |||
3311 | /// case number. | |||
3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} | |||
3313 | ||||
3314 | /// Initializes case iterator for given SwitchInst and for given | |||
3315 | /// successor index. | |||
3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, | |||
3317 | unsigned SuccessorIndex) { | |||
3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) | |||
3319 | "Successor index # out of range!")((void)0); | |||
3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) | |||
3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); | |||
3322 | } | |||
3323 | ||||
3324 | /// Support converting to the const variant. This will be a no-op for const | |||
3325 | /// variant. | |||
3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { | |||
3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); | |||
3328 | } | |||
3329 | ||||
3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { | |||
3331 | // Check index correctness after addition. | |||
3332 | // Note: Index == getNumCases() means end(). | |||
3333 | assert(Case.Index + N >= 0 &&((void)0) | |||
3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) | |||
3335 | "Case.Index out the number of cases.")((void)0); | |||
3336 | Case.Index += N; | |||
3337 | return *this; | |||
3338 | } | |||
3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { | |||
3340 | // Check index correctness after subtraction. | |||
3341 | // Note: Case.Index == getNumCases() means end(). | |||
3342 | assert(Case.Index - N >= 0 &&((void)0) | |||
3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) | |||
3344 | "Case.Index out the number of cases.")((void)0); | |||
3345 | Case.Index -= N; | |||
3346 | return *this; | |||
3347 | } | |||
3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { | |||
3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); | |||
3350 | return Case.Index - RHS.Case.Index; | |||
3351 | } | |||
3352 | bool operator==(const CaseIteratorImpl &RHS) const { | |||
3353 | return Case == RHS.Case; | |||
3354 | } | |||
3355 | bool operator<(const CaseIteratorImpl &RHS) const { | |||
3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); | |||
3357 | return Case.Index < RHS.Case.Index; | |||
3358 | } | |||
3359 | CaseHandleT &operator*() { return Case; } | |||
3360 | const CaseHandleT &operator*() const { return Case; } | |||
3361 | }; | |||
3362 | ||||
3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; | |||
3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; | |||
3365 | ||||
3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, | |||
3367 | unsigned NumCases, | |||
3368 | Instruction *InsertBefore = nullptr) { | |||
3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); | |||
3370 | } | |||
3371 | ||||
3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, | |||
3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { | |||
3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); | |||
3375 | } | |||
3376 | ||||
3377 | /// Provide fast operand accessors | |||
3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
3379 | ||||
3380 | // Accessor Methods for Switch stmt | |||
3381 | Value *getCondition() const { return getOperand(0); } | |||
3382 | void setCondition(Value *V) { setOperand(0, V); } | |||
3383 | ||||
3384 | BasicBlock *getDefaultDest() const { | |||
3385 | return cast<BasicBlock>(getOperand(1)); | |||
3386 | } | |||
3387 | ||||
3388 | void setDefaultDest(BasicBlock *DefaultCase) { | |||
3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); | |||
3390 | } | |||
3391 | ||||
3392 | /// Return the number of 'cases' in this switch instruction, excluding the | |||
3393 | /// default case. | |||
3394 | unsigned getNumCases() const { | |||
3395 | return getNumOperands()/2 - 1; | |||
3396 | } | |||
3397 | ||||
3398 | /// Returns a read/write iterator that points to the first case in the | |||
3399 | /// SwitchInst. | |||
3400 | CaseIt case_begin() { | |||
3401 | return CaseIt(this, 0); | |||
3402 | } | |||
3403 | ||||
3404 | /// Returns a read-only iterator that points to the first case in the | |||
3405 | /// SwitchInst. | |||
3406 | ConstCaseIt case_begin() const { | |||
3407 | return ConstCaseIt(this, 0); | |||
3408 | } | |||
3409 | ||||
3410 | /// Returns a read/write iterator that points one past the last in the | |||
3411 | /// SwitchInst. | |||
3412 | CaseIt case_end() { | |||
3413 | return CaseIt(this, getNumCases()); | |||
3414 | } | |||
3415 | ||||
3416 | /// Returns a read-only iterator that points one past the last in the | |||
3417 | /// SwitchInst. | |||
3418 | ConstCaseIt case_end() const { | |||
3419 | return ConstCaseIt(this, getNumCases()); | |||
3420 | } | |||
3421 | ||||
3422 | /// Iteration adapter for range-for loops. | |||
3423 | iterator_range<CaseIt> cases() { | |||
3424 | return make_range(case_begin(), case_end()); | |||
3425 | } | |||
3426 | ||||
3427 | /// Constant iteration adapter for range-for loops. | |||
3428 | iterator_range<ConstCaseIt> cases() const { | |||
3429 | return make_range(case_begin(), case_end()); | |||
3430 | } | |||
3431 | ||||
3432 | /// Returns an iterator that points to the default case. | |||
3433 | /// Note: this iterator allows to resolve successor only. Attempt | |||
3434 | /// to resolve case value causes an assertion. | |||
3435 | /// Also note, that increment and decrement also causes an assertion and | |||
3436 | /// makes iterator invalid. | |||
3437 | CaseIt case_default() { | |||
3438 | return CaseIt(this, DefaultPseudoIndex); | |||
3439 | } | |||
3440 | ConstCaseIt case_default() const { | |||
3441 | return ConstCaseIt(this, DefaultPseudoIndex); | |||
3442 | } | |||
3443 | ||||
3444 | /// Search all of the case values for the specified constant. If it is | |||
3445 | /// explicitly handled, return the case iterator of it, otherwise return | |||
3446 | /// default case iterator to indicate that it is handled by the default | |||
3447 | /// handler. | |||
3448 | CaseIt findCaseValue(const ConstantInt *C) { | |||
3449 | CaseIt I = llvm::find_if( | |||
3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); | |||
3451 | if (I != case_end()) | |||
3452 | return I; | |||
3453 | ||||
3454 | return case_default(); | |||
3455 | } | |||
3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { | |||
3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { | |||
3458 | return Case.getCaseValue() == C; | |||
3459 | }); | |||
3460 | if (I != case_end()) | |||
3461 | return I; | |||
3462 | ||||
3463 | return case_default(); | |||
3464 | } | |||
3465 | ||||
3466 | /// Finds the unique case value for a given successor. Returns null if the | |||
3467 | /// successor is not found, not unique, or is the default case. | |||
3468 | ConstantInt *findCaseDest(BasicBlock *BB) { | |||
3469 | if (BB == getDefaultDest()) | |||
3470 | return nullptr; | |||
3471 | ||||
3472 | ConstantInt *CI = nullptr; | |||
3473 | for (auto Case : cases()) { | |||
3474 | if (Case.getCaseSuccessor() != BB) | |||
3475 | continue; | |||
3476 | ||||
3477 | if (CI) | |||
3478 | return nullptr; // Multiple cases lead to BB. | |||
3479 | ||||
3480 | CI = Case.getCaseValue(); | |||
3481 | } | |||
3482 | ||||
3483 | return CI; | |||
3484 | } | |||
3485 | ||||
3486 | /// Add an entry to the switch instruction. | |||
3487 | /// Note: | |||
3488 | /// This action invalidates case_end(). Old case_end() iterator will | |||
3489 | /// point to the added case. | |||
3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); | |||
3491 | ||||
3492 | /// This method removes the specified case and its successor from the switch | |||
3493 | /// instruction. Note that this operation may reorder the remaining cases at | |||
3494 | /// index idx and above. | |||
3495 | /// Note: | |||
3496 | /// This action invalidates iterators for all cases following the one removed, | |||
3497 | /// including the case_end() iterator. It returns an iterator for the next | |||
3498 | /// case. | |||
3499 | CaseIt removeCase(CaseIt I); | |||
3500 | ||||
3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } | |||
3502 | BasicBlock *getSuccessor(unsigned idx) const { | |||
3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); | |||
3504 | return cast<BasicBlock>(getOperand(idx*2+1)); | |||
3505 | } | |||
3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { | |||
3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); | |||
3508 | setOperand(idx * 2 + 1, NewSucc); | |||
3509 | } | |||
3510 | ||||
3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
3512 | static bool classof(const Instruction *I) { | |||
3513 | return I->getOpcode() == Instruction::Switch; | |||
3514 | } | |||
3515 | static bool classof(const Value *V) { | |||
3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
3517 | } | |||
3518 | }; | |||
3519 | ||||
3520 | /// A wrapper class to simplify modification of SwitchInst cases along with | |||
3521 | /// their prof branch_weights metadata. | |||
3522 | class SwitchInstProfUpdateWrapper { | |||
3523 | SwitchInst &SI; | |||
3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; | |||
3525 | bool Changed = false; | |||
3526 | ||||
3527 | protected: | |||
3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); | |||
3529 | ||||
3530 | MDNode *buildProfBranchWeightsMD(); | |||
3531 | ||||
3532 | void init(); | |||
3533 | ||||
3534 | public: | |||
3535 | using CaseWeightOpt = Optional<uint32_t>; | |||
3536 | SwitchInst *operator->() { return &SI; } | |||
3537 | SwitchInst &operator*() { return SI; } | |||
3538 | operator SwitchInst *() { return &SI; } | |||
3539 | ||||
3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } | |||
3541 | ||||
3542 | ~SwitchInstProfUpdateWrapper() { | |||
3543 | if (Changed) | |||
3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); | |||
3545 | } | |||
3546 | ||||
3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove | |||
3548 | /// correspondent branch weight. | |||
3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); | |||
3550 | ||||
3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the | |||
3552 | /// specified branch weight for the added case. | |||
3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); | |||
3554 | ||||
3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark | |||
3556 | /// this object to not touch the underlying SwitchInst in destructor. | |||
3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); | |||
3558 | ||||
3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); | |||
3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); | |||
3561 | ||||
3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); | |||
3563 | }; | |||
3564 | ||||
3565 | template <> | |||
3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { | |||
3567 | }; | |||
3568 | ||||
3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
3570 | ||||
3571 | //===----------------------------------------------------------------------===// | |||
3572 | // IndirectBrInst Class | |||
3573 | //===----------------------------------------------------------------------===// | |||
3574 | ||||
3575 | //===--------------------------------------------------------------------------- | |||
3576 | /// Indirect Branch Instruction. | |||
3577 | /// | |||
3578 | class IndirectBrInst : public Instruction { | |||
3579 | unsigned ReservedSpace; | |||
3580 | ||||
3581 | // Operand[0] = Address to jump to | |||
3582 | // Operand[n+1] = n-th destination | |||
3583 | IndirectBrInst(const IndirectBrInst &IBI); | |||
3584 | ||||
3585 | /// Create a new indirectbr instruction, specifying an | |||
3586 | /// Address to jump to. The number of expected destinations can be specified | |||
3587 | /// here to make memory allocation more efficient. This constructor can also | |||
3588 | /// autoinsert before another instruction. | |||
3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); | |||
3590 | ||||
3591 | /// Create a new indirectbr instruction, specifying an | |||
3592 | /// Address to jump to. The number of expected destinations can be specified | |||
3593 | /// here to make memory allocation more efficient. This constructor also | |||
3594 | /// autoinserts at the end of the specified BasicBlock. | |||
3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); | |||
3596 | ||||
3597 | // allocate space for exactly zero operands | |||
3598 | void *operator new(size_t S) { return User::operator new(S); } | |||
3599 | ||||
3600 | void init(Value *Address, unsigned NumDests); | |||
3601 | void growOperands(); | |||
3602 | ||||
3603 | protected: | |||
3604 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
3605 | friend class Instruction; | |||
3606 | ||||
3607 | IndirectBrInst *cloneImpl() const; | |||
3608 | ||||
3609 | public: | |||
3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
3611 | ||||
3612 | /// Iterator type that casts an operand to a basic block. | |||
3613 | /// | |||
3614 | /// This only makes sense because the successors are stored as adjacent | |||
3615 | /// operands for indirectbr instructions. | |||
3616 | struct succ_op_iterator | |||
3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, | |||
3618 | std::random_access_iterator_tag, BasicBlock *, | |||
3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { | |||
3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} | |||
3621 | ||||
3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } | |||
3623 | BasicBlock *operator->() const { return operator*(); } | |||
3624 | }; | |||
3625 | ||||
3626 | /// The const version of `succ_op_iterator`. | |||
3627 | struct const_succ_op_iterator | |||
3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, | |||
3629 | std::random_access_iterator_tag, | |||
3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, | |||
3631 | const BasicBlock *> { | |||
3632 | explicit const_succ_op_iterator(const_value_op_iterator I) | |||
3633 | : iterator_adaptor_base(I) {} | |||
3634 | ||||
3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } | |||
3636 | const BasicBlock *operator->() const { return operator*(); } | |||
3637 | }; | |||
3638 | ||||
3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, | |||
3640 | Instruction *InsertBefore = nullptr) { | |||
3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); | |||
3642 | } | |||
3643 | ||||
3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, | |||
3645 | BasicBlock *InsertAtEnd) { | |||
3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); | |||
3647 | } | |||
3648 | ||||
3649 | /// Provide fast operand accessors. | |||
3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
3651 | ||||
3652 | // Accessor Methods for IndirectBrInst instruction. | |||
3653 | Value *getAddress() { return getOperand(0); } | |||
3654 | const Value *getAddress() const { return getOperand(0); } | |||
3655 | void setAddress(Value *V) { setOperand(0, V); } | |||
3656 | ||||
3657 | /// return the number of possible destinations in this | |||
3658 | /// indirectbr instruction. | |||
3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } | |||
3660 | ||||
3661 | /// Return the specified destination. | |||
3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } | |||
3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } | |||
3664 | ||||
3665 | /// Add a destination. | |||
3666 | /// | |||
3667 | void addDestination(BasicBlock *Dest); | |||
3668 | ||||
3669 | /// This method removes the specified successor from the | |||
3670 | /// indirectbr instruction. | |||
3671 | void removeDestination(unsigned i); | |||
3672 | ||||
3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } | |||
3674 | BasicBlock *getSuccessor(unsigned i) const { | |||
3675 | return cast<BasicBlock>(getOperand(i+1)); | |||
3676 | } | |||
3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { | |||
3678 | setOperand(i + 1, NewSucc); | |||
3679 | } | |||
3680 | ||||
3681 | iterator_range<succ_op_iterator> successors() { | |||
3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), | |||
3683 | succ_op_iterator(value_op_end())); | |||
3684 | } | |||
3685 | ||||
3686 | iterator_range<const_succ_op_iterator> successors() const { | |||
3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), | |||
3688 | const_succ_op_iterator(value_op_end())); | |||
3689 | } | |||
3690 | ||||
3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
3692 | static bool classof(const Instruction *I) { | |||
3693 | return I->getOpcode() == Instruction::IndirectBr; | |||
3694 | } | |||
3695 | static bool classof(const Value *V) { | |||
3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
3697 | } | |||
3698 | }; | |||
3699 | ||||
3700 | template <> | |||
3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { | |||
3702 | }; | |||
3703 | ||||
3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } | |||
3705 | ||||
3706 | //===----------------------------------------------------------------------===// | |||
3707 | // InvokeInst Class | |||
3708 | //===----------------------------------------------------------------------===// | |||
3709 | ||||
3710 | /// Invoke instruction. The SubclassData field is used to hold the | |||
3711 | /// calling convention of the call. | |||
3712 | /// | |||
3713 | class InvokeInst : public CallBase { | |||
3714 | /// The number of operands for this call beyond the called function, | |||
3715 | /// arguments, and operand bundles. | |||
3716 | static constexpr int NumExtraOperands = 2; | |||
3717 | ||||
3718 | /// The index from the end of the operand array to the normal destination. | |||
3719 | static constexpr int NormalDestOpEndIdx = -3; | |||
3720 | ||||
3721 | /// The index from the end of the operand array to the unwind destination. | |||
3722 | static constexpr int UnwindDestOpEndIdx = -2; | |||
3723 | ||||
3724 | InvokeInst(const InvokeInst &BI); | |||
3725 | ||||
3726 | /// Construct an InvokeInst given a range of arguments. | |||
3727 | /// | |||
3728 | /// Construct an InvokeInst from a range of arguments | |||
3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3730 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3732 | const Twine &NameStr, Instruction *InsertBefore); | |||
3733 | ||||
3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3735 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
3738 | ||||
3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3740 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); | |||
3742 | ||||
3743 | /// Compute the number of operands to allocate. | |||
3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { | |||
3745 | // We need one operand for the called function, plus our extra operands and | |||
3746 | // the input operand counts provided. | |||
3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; | |||
3748 | } | |||
3749 | ||||
3750 | protected: | |||
3751 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
3752 | friend class Instruction; | |||
3753 | ||||
3754 | InvokeInst *cloneImpl() const; | |||
3755 | ||||
3756 | public: | |||
3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3758 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3759 | const Twine &NameStr, | |||
3760 | Instruction *InsertBefore = nullptr) { | |||
3761 | int NumOperands = ComputeNumOperands(Args.size()); | |||
3762 | return new (NumOperands) | |||
3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, | |||
3764 | NameStr, InsertBefore); | |||
3765 | } | |||
3766 | ||||
3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3768 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3769 | ArrayRef<OperandBundleDef> Bundles = None, | |||
3770 | const Twine &NameStr = "", | |||
3771 | Instruction *InsertBefore = nullptr) { | |||
3772 | int NumOperands = | |||
3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); | |||
3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
3775 | ||||
3776 | return new (NumOperands, DescriptorBytes) | |||
3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, | |||
3778 | NameStr, InsertBefore); | |||
3779 | } | |||
3780 | ||||
3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3782 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
3784 | int NumOperands = ComputeNumOperands(Args.size()); | |||
3785 | return new (NumOperands) | |||
3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, | |||
3787 | NameStr, InsertAtEnd); | |||
3788 | } | |||
3789 | ||||
3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3791 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3792 | ArrayRef<OperandBundleDef> Bundles, | |||
3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
3794 | int NumOperands = | |||
3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); | |||
3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
3797 | ||||
3798 | return new (NumOperands, DescriptorBytes) | |||
3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, | |||
3800 | NameStr, InsertAtEnd); | |||
3801 | } | |||
3802 | ||||
3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, | |||
3804 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3805 | const Twine &NameStr, | |||
3806 | Instruction *InsertBefore = nullptr) { | |||
3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, | |||
3808 | IfException, Args, None, NameStr, InsertBefore); | |||
3809 | } | |||
3810 | ||||
3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, | |||
3812 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3813 | ArrayRef<OperandBundleDef> Bundles = None, | |||
3814 | const Twine &NameStr = "", | |||
3815 | Instruction *InsertBefore = nullptr) { | |||
3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, | |||
3817 | IfException, Args, Bundles, NameStr, InsertBefore); | |||
3818 | } | |||
3819 | ||||
3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, | |||
3821 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, | |||
3824 | IfException, Args, NameStr, InsertAtEnd); | |||
3825 | } | |||
3826 | ||||
3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, | |||
3828 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3829 | ArrayRef<OperandBundleDef> Bundles, | |||
3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, | |||
3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); | |||
3833 | } | |||
3834 | ||||
3835 | /// Create a clone of \p II with a different set of operand bundles and | |||
3836 | /// insert it before \p InsertPt. | |||
3837 | /// | |||
3838 | /// The returned invoke instruction is identical to \p II in every way except | |||
3839 | /// that the operand bundles for the new instruction are set to the operand | |||
3840 | /// bundles in \p Bundles. | |||
3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, | |||
3842 | Instruction *InsertPt = nullptr); | |||
3843 | ||||
3844 | // get*Dest - Return the destination basic blocks... | |||
3845 | BasicBlock *getNormalDest() const { | |||
3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); | |||
3847 | } | |||
3848 | BasicBlock *getUnwindDest() const { | |||
3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); | |||
3850 | } | |||
3851 | void setNormalDest(BasicBlock *B) { | |||
3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); | |||
3853 | } | |||
3854 | void setUnwindDest(BasicBlock *B) { | |||
3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); | |||
3856 | } | |||
3857 | ||||
3858 | /// Get the landingpad instruction from the landing pad | |||
3859 | /// block (the unwind destination). | |||
3860 | LandingPadInst *getLandingPadInst() const; | |||
3861 | ||||
3862 | BasicBlock *getSuccessor(unsigned i) const { | |||
3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); | |||
3864 | return i == 0 ? getNormalDest() : getUnwindDest(); | |||
3865 | } | |||
3866 | ||||
3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { | |||
3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); | |||
3869 | if (i == 0) | |||
3870 | setNormalDest(NewSucc); | |||
3871 | else | |||
3872 | setUnwindDest(NewSucc); | |||
3873 | } | |||
3874 | ||||
3875 | unsigned getNumSuccessors() const { return 2; } | |||
3876 | ||||
3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
3878 | static bool classof(const Instruction *I) { | |||
3879 | return (I->getOpcode() == Instruction::Invoke); | |||
3880 | } | |||
3881 | static bool classof(const Value *V) { | |||
3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
3883 | } | |||
3884 | ||||
3885 | private: | |||
3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
3887 | // method so that subclasses cannot accidentally use it. | |||
3888 | template <typename Bitfield> | |||
3889 | void setSubclassData(typename Bitfield::Type Value) { | |||
3890 | Instruction::setSubclassData<Bitfield>(Value); | |||
3891 | } | |||
3892 | }; | |||
3893 | ||||
3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3895 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3897 | const Twine &NameStr, Instruction *InsertBefore) | |||
3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, | |||
3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, | |||
3900 | InsertBefore) { | |||
3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); | |||
3902 | } | |||
3903 | ||||
3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, | |||
3905 | BasicBlock *IfException, ArrayRef<Value *> Args, | |||
3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) | |||
3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, | |||
3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, | |||
3910 | InsertAtEnd) { | |||
3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); | |||
3912 | } | |||
3913 | ||||
3914 | //===----------------------------------------------------------------------===// | |||
3915 | // CallBrInst Class | |||
3916 | //===----------------------------------------------------------------------===// | |||
3917 | ||||
3918 | /// CallBr instruction, tracking function calls that may not return control but | |||
3919 | /// instead transfer it to a third location. The SubclassData field is used to | |||
3920 | /// hold the calling convention of the call. | |||
3921 | /// | |||
3922 | class CallBrInst : public CallBase { | |||
3923 | ||||
3924 | unsigned NumIndirectDests; | |||
3925 | ||||
3926 | CallBrInst(const CallBrInst &BI); | |||
3927 | ||||
3928 | /// Construct a CallBrInst given a range of arguments. | |||
3929 | /// | |||
3930 | /// Construct a CallBrInst from a range of arguments | |||
3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, | |||
3932 | ArrayRef<BasicBlock *> IndirectDests, | |||
3933 | ArrayRef<Value *> Args, | |||
3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3935 | const Twine &NameStr, Instruction *InsertBefore); | |||
3936 | ||||
3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, | |||
3938 | ArrayRef<BasicBlock *> IndirectDests, | |||
3939 | ArrayRef<Value *> Args, | |||
3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
3942 | ||||
3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, | |||
3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, | |||
3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); | |||
3946 | ||||
3947 | /// Should the Indirect Destinations change, scan + update the Arg list. | |||
3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); | |||
3949 | ||||
3950 | /// Compute the number of operands to allocate. | |||
3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, | |||
3952 | int NumBundleInputs = 0) { | |||
3953 | // We need one operand for the called function, plus our extra operands and | |||
3954 | // the input operand counts provided. | |||
3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; | |||
3956 | } | |||
3957 | ||||
3958 | protected: | |||
3959 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
3960 | friend class Instruction; | |||
3961 | ||||
3962 | CallBrInst *cloneImpl() const; | |||
3963 | ||||
3964 | public: | |||
3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, | |||
3966 | BasicBlock *DefaultDest, | |||
3967 | ArrayRef<BasicBlock *> IndirectDests, | |||
3968 | ArrayRef<Value *> Args, const Twine &NameStr, | |||
3969 | Instruction *InsertBefore = nullptr) { | |||
3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); | |||
3971 | return new (NumOperands) | |||
3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, | |||
3973 | NumOperands, NameStr, InsertBefore); | |||
3974 | } | |||
3975 | ||||
3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, | |||
3977 | BasicBlock *DefaultDest, | |||
3978 | ArrayRef<BasicBlock *> IndirectDests, | |||
3979 | ArrayRef<Value *> Args, | |||
3980 | ArrayRef<OperandBundleDef> Bundles = None, | |||
3981 | const Twine &NameStr = "", | |||
3982 | Instruction *InsertBefore = nullptr) { | |||
3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), | |||
3984 | CountBundleInputs(Bundles)); | |||
3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
3986 | ||||
3987 | return new (NumOperands, DescriptorBytes) | |||
3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, | |||
3989 | NumOperands, NameStr, InsertBefore); | |||
3990 | } | |||
3991 | ||||
3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, | |||
3993 | BasicBlock *DefaultDest, | |||
3994 | ArrayRef<BasicBlock *> IndirectDests, | |||
3995 | ArrayRef<Value *> Args, const Twine &NameStr, | |||
3996 | BasicBlock *InsertAtEnd) { | |||
3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); | |||
3998 | return new (NumOperands) | |||
3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, | |||
4000 | NumOperands, NameStr, InsertAtEnd); | |||
4001 | } | |||
4002 | ||||
4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, | |||
4004 | BasicBlock *DefaultDest, | |||
4005 | ArrayRef<BasicBlock *> IndirectDests, | |||
4006 | ArrayRef<Value *> Args, | |||
4007 | ArrayRef<OperandBundleDef> Bundles, | |||
4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), | |||
4010 | CountBundleInputs(Bundles)); | |||
4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); | |||
4012 | ||||
4013 | return new (NumOperands, DescriptorBytes) | |||
4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, | |||
4015 | NumOperands, NameStr, InsertAtEnd); | |||
4016 | } | |||
4017 | ||||
4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, | |||
4019 | ArrayRef<BasicBlock *> IndirectDests, | |||
4020 | ArrayRef<Value *> Args, const Twine &NameStr, | |||
4021 | Instruction *InsertBefore = nullptr) { | |||
4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, | |||
4023 | IndirectDests, Args, NameStr, InsertBefore); | |||
4024 | } | |||
4025 | ||||
4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, | |||
4027 | ArrayRef<BasicBlock *> IndirectDests, | |||
4028 | ArrayRef<Value *> Args, | |||
4029 | ArrayRef<OperandBundleDef> Bundles = None, | |||
4030 | const Twine &NameStr = "", | |||
4031 | Instruction *InsertBefore = nullptr) { | |||
4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, | |||
4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); | |||
4034 | } | |||
4035 | ||||
4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, | |||
4037 | ArrayRef<BasicBlock *> IndirectDests, | |||
4038 | ArrayRef<Value *> Args, const Twine &NameStr, | |||
4039 | BasicBlock *InsertAtEnd) { | |||
4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, | |||
4041 | IndirectDests, Args, NameStr, InsertAtEnd); | |||
4042 | } | |||
4043 | ||||
4044 | static CallBrInst *Create(FunctionCallee Func, | |||
4045 | BasicBlock *DefaultDest, | |||
4046 | ArrayRef<BasicBlock *> IndirectDests, | |||
4047 | ArrayRef<Value *> Args, | |||
4048 | ArrayRef<OperandBundleDef> Bundles, | |||
4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, | |||
4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); | |||
4052 | } | |||
4053 | ||||
4054 | /// Create a clone of \p CBI with a different set of operand bundles and | |||
4055 | /// insert it before \p InsertPt. | |||
4056 | /// | |||
4057 | /// The returned callbr instruction is identical to \p CBI in every way | |||
4058 | /// except that the operand bundles for the new instruction are set to the | |||
4059 | /// operand bundles in \p Bundles. | |||
4060 | static CallBrInst *Create(CallBrInst *CBI, | |||
4061 | ArrayRef<OperandBundleDef> Bundles, | |||
4062 | Instruction *InsertPt = nullptr); | |||
4063 | ||||
4064 | /// Return the number of callbr indirect dest labels. | |||
4065 | /// | |||
4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } | |||
4067 | ||||
4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. | |||
4069 | /// | |||
4070 | Value *getIndirectDestLabel(unsigned i) const { | |||
4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); | |||
4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + | |||
4073 | 1); | |||
4074 | } | |||
4075 | ||||
4076 | Value *getIndirectDestLabelUse(unsigned i) const { | |||
4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); | |||
4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + | |||
4079 | 1); | |||
4080 | } | |||
4081 | ||||
4082 | // Return the destination basic blocks... | |||
4083 | BasicBlock *getDefaultDest() const { | |||
4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); | |||
4085 | } | |||
4086 | BasicBlock *getIndirectDest(unsigned i) const { | |||
4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); | |||
4088 | } | |||
4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { | |||
4090 | SmallVector<BasicBlock *, 16> IndirectDests; | |||
4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) | |||
4092 | IndirectDests.push_back(getIndirectDest(i)); | |||
4093 | return IndirectDests; | |||
4094 | } | |||
4095 | void setDefaultDest(BasicBlock *B) { | |||
4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); | |||
4097 | } | |||
4098 | void setIndirectDest(unsigned i, BasicBlock *B) { | |||
4099 | updateArgBlockAddresses(i, B); | |||
4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); | |||
4101 | } | |||
4102 | ||||
4103 | BasicBlock *getSuccessor(unsigned i) const { | |||
4104 | assert(i < getNumSuccessors() + 1 &&((void)0) | |||
4105 | "Successor # out of range for callbr!")((void)0); | |||
4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); | |||
4107 | } | |||
4108 | ||||
4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { | |||
4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) | |||
4111 | "Successor # out of range for callbr!")((void)0); | |||
4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); | |||
4113 | } | |||
4114 | ||||
4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } | |||
4116 | ||||
4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4118 | static bool classof(const Instruction *I) { | |||
4119 | return (I->getOpcode() == Instruction::CallBr); | |||
4120 | } | |||
4121 | static bool classof(const Value *V) { | |||
4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4123 | } | |||
4124 | ||||
4125 | private: | |||
4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
4127 | // method so that subclasses cannot accidentally use it. | |||
4128 | template <typename Bitfield> | |||
4129 | void setSubclassData(typename Bitfield::Type Value) { | |||
4130 | Instruction::setSubclassData<Bitfield>(Value); | |||
4131 | } | |||
4132 | }; | |||
4133 | ||||
4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, | |||
4135 | ArrayRef<BasicBlock *> IndirectDests, | |||
4136 | ArrayRef<Value *> Args, | |||
4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
4138 | const Twine &NameStr, Instruction *InsertBefore) | |||
4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, | |||
4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, | |||
4141 | InsertBefore) { | |||
4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); | |||
4143 | } | |||
4144 | ||||
4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, | |||
4146 | ArrayRef<BasicBlock *> IndirectDests, | |||
4147 | ArrayRef<Value *> Args, | |||
4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, | |||
4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) | |||
4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, | |||
4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, | |||
4152 | InsertAtEnd) { | |||
4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); | |||
4154 | } | |||
4155 | ||||
4156 | //===----------------------------------------------------------------------===// | |||
4157 | // ResumeInst Class | |||
4158 | //===----------------------------------------------------------------------===// | |||
4159 | ||||
4160 | //===--------------------------------------------------------------------------- | |||
4161 | /// Resume the propagation of an exception. | |||
4162 | /// | |||
4163 | class ResumeInst : public Instruction { | |||
4164 | ResumeInst(const ResumeInst &RI); | |||
4165 | ||||
4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); | |||
4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); | |||
4168 | ||||
4169 | protected: | |||
4170 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4171 | friend class Instruction; | |||
4172 | ||||
4173 | ResumeInst *cloneImpl() const; | |||
4174 | ||||
4175 | public: | |||
4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { | |||
4177 | return new(1) ResumeInst(Exn, InsertBefore); | |||
4178 | } | |||
4179 | ||||
4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { | |||
4181 | return new(1) ResumeInst(Exn, InsertAtEnd); | |||
4182 | } | |||
4183 | ||||
4184 | /// Provide fast operand accessors | |||
4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
4186 | ||||
4187 | /// Convenience accessor. | |||
4188 | Value *getValue() const { return Op<0>(); } | |||
4189 | ||||
4190 | unsigned getNumSuccessors() const { return 0; } | |||
4191 | ||||
4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4193 | static bool classof(const Instruction *I) { | |||
4194 | return I->getOpcode() == Instruction::Resume; | |||
4195 | } | |||
4196 | static bool classof(const Value *V) { | |||
4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4198 | } | |||
4199 | ||||
4200 | private: | |||
4201 | BasicBlock *getSuccessor(unsigned idx) const { | |||
4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); | |||
4203 | } | |||
4204 | ||||
4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { | |||
4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); | |||
4207 | } | |||
4208 | }; | |||
4209 | ||||
4210 | template <> | |||
4211 | struct OperandTraits<ResumeInst> : | |||
4212 | public FixedNumOperandTraits<ResumeInst, 1> { | |||
4213 | }; | |||
4214 | ||||
4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } | |||
4216 | ||||
4217 | //===----------------------------------------------------------------------===// | |||
4218 | // CatchSwitchInst Class | |||
4219 | //===----------------------------------------------------------------------===// | |||
4220 | class CatchSwitchInst : public Instruction { | |||
4221 | using UnwindDestField = BoolBitfieldElementT<0>; | |||
4222 | ||||
4223 | /// The number of operands actually allocated. NumOperands is | |||
4224 | /// the number actually in use. | |||
4225 | unsigned ReservedSpace; | |||
4226 | ||||
4227 | // Operand[0] = Outer scope | |||
4228 | // Operand[1] = Unwind block destination | |||
4229 | // Operand[n] = BasicBlock to go to on match | |||
4230 | CatchSwitchInst(const CatchSwitchInst &CSI); | |||
4231 | ||||
4232 | /// Create a new switch instruction, specifying a | |||
4233 | /// default destination. The number of additional handlers can be specified | |||
4234 | /// here to make memory allocation more efficient. | |||
4235 | /// This constructor can also autoinsert before another instruction. | |||
4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, | |||
4237 | unsigned NumHandlers, const Twine &NameStr, | |||
4238 | Instruction *InsertBefore); | |||
4239 | ||||
4240 | /// Create a new switch instruction, specifying a | |||
4241 | /// default destination. The number of additional handlers can be specified | |||
4242 | /// here to make memory allocation more efficient. | |||
4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. | |||
4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, | |||
4245 | unsigned NumHandlers, const Twine &NameStr, | |||
4246 | BasicBlock *InsertAtEnd); | |||
4247 | ||||
4248 | // allocate space for exactly zero operands | |||
4249 | void *operator new(size_t S) { return User::operator new(S); } | |||
4250 | ||||
4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); | |||
4252 | void growOperands(unsigned Size); | |||
4253 | ||||
4254 | protected: | |||
4255 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4256 | friend class Instruction; | |||
4257 | ||||
4258 | CatchSwitchInst *cloneImpl() const; | |||
4259 | ||||
4260 | public: | |||
4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } | |||
4262 | ||||
4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, | |||
4264 | unsigned NumHandlers, | |||
4265 | const Twine &NameStr = "", | |||
4266 | Instruction *InsertBefore = nullptr) { | |||
4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, | |||
4268 | InsertBefore); | |||
4269 | } | |||
4270 | ||||
4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, | |||
4272 | unsigned NumHandlers, const Twine &NameStr, | |||
4273 | BasicBlock *InsertAtEnd) { | |||
4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, | |||
4275 | InsertAtEnd); | |||
4276 | } | |||
4277 | ||||
4278 | /// Provide fast operand accessors | |||
4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
4280 | ||||
4281 | // Accessor Methods for CatchSwitch stmt | |||
4282 | Value *getParentPad() const { return getOperand(0); } | |||
4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } | |||
4284 | ||||
4285 | // Accessor Methods for CatchSwitch stmt | |||
4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } | |||
4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } | |||
4288 | BasicBlock *getUnwindDest() const { | |||
4289 | if (hasUnwindDest()) | |||
4290 | return cast<BasicBlock>(getOperand(1)); | |||
4291 | return nullptr; | |||
4292 | } | |||
4293 | void setUnwindDest(BasicBlock *UnwindDest) { | |||
4294 | assert(UnwindDest)((void)0); | |||
4295 | assert(hasUnwindDest())((void)0); | |||
4296 | setOperand(1, UnwindDest); | |||
4297 | } | |||
4298 | ||||
4299 | /// return the number of 'handlers' in this catchswitch | |||
4300 | /// instruction, except the default handler | |||
4301 | unsigned getNumHandlers() const { | |||
4302 | if (hasUnwindDest()) | |||
4303 | return getNumOperands() - 2; | |||
4304 | return getNumOperands() - 1; | |||
4305 | } | |||
4306 | ||||
4307 | private: | |||
4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } | |||
4309 | static const BasicBlock *handler_helper(const Value *V) { | |||
4310 | return cast<BasicBlock>(V); | |||
4311 | } | |||
4312 | ||||
4313 | public: | |||
4314 | using DerefFnTy = BasicBlock *(*)(Value *); | |||
4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; | |||
4316 | using handler_range = iterator_range<handler_iterator>; | |||
4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); | |||
4318 | using const_handler_iterator = | |||
4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; | |||
4320 | using const_handler_range = iterator_range<const_handler_iterator>; | |||
4321 | ||||
4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. | |||
4323 | handler_iterator handler_begin() { | |||
4324 | op_iterator It = op_begin() + 1; | |||
4325 | if (hasUnwindDest()) | |||
4326 | ++It; | |||
4327 | return handler_iterator(It, DerefFnTy(handler_helper)); | |||
4328 | } | |||
4329 | ||||
4330 | /// Returns an iterator that points to the first handler in the | |||
4331 | /// CatchSwitchInst. | |||
4332 | const_handler_iterator handler_begin() const { | |||
4333 | const_op_iterator It = op_begin() + 1; | |||
4334 | if (hasUnwindDest()) | |||
4335 | ++It; | |||
4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); | |||
4337 | } | |||
4338 | ||||
4339 | /// Returns a read-only iterator that points one past the last | |||
4340 | /// handler in the CatchSwitchInst. | |||
4341 | handler_iterator handler_end() { | |||
4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); | |||
4343 | } | |||
4344 | ||||
4345 | /// Returns an iterator that points one past the last handler in the | |||
4346 | /// CatchSwitchInst. | |||
4347 | const_handler_iterator handler_end() const { | |||
4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); | |||
4349 | } | |||
4350 | ||||
4351 | /// iteration adapter for range-for loops. | |||
4352 | handler_range handlers() { | |||
4353 | return make_range(handler_begin(), handler_end()); | |||
4354 | } | |||
4355 | ||||
4356 | /// iteration adapter for range-for loops. | |||
4357 | const_handler_range handlers() const { | |||
4358 | return make_range(handler_begin(), handler_end()); | |||
4359 | } | |||
4360 | ||||
4361 | /// Add an entry to the switch instruction... | |||
4362 | /// Note: | |||
4363 | /// This action invalidates handler_end(). Old handler_end() iterator will | |||
4364 | /// point to the added handler. | |||
4365 | void addHandler(BasicBlock *Dest); | |||
4366 | ||||
4367 | void removeHandler(handler_iterator HI); | |||
4368 | ||||
4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } | |||
4370 | BasicBlock *getSuccessor(unsigned Idx) const { | |||
4371 | assert(Idx < getNumSuccessors() &&((void)0) | |||
4372 | "Successor # out of range for catchswitch!")((void)0); | |||
4373 | return cast<BasicBlock>(getOperand(Idx + 1)); | |||
4374 | } | |||
4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { | |||
4376 | assert(Idx < getNumSuccessors() &&((void)0) | |||
4377 | "Successor # out of range for catchswitch!")((void)0); | |||
4378 | setOperand(Idx + 1, NewSucc); | |||
4379 | } | |||
4380 | ||||
4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4382 | static bool classof(const Instruction *I) { | |||
4383 | return I->getOpcode() == Instruction::CatchSwitch; | |||
4384 | } | |||
4385 | static bool classof(const Value *V) { | |||
4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4387 | } | |||
4388 | }; | |||
4389 | ||||
4390 | template <> | |||
4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; | |||
4392 | ||||
4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } | |||
4394 | ||||
4395 | //===----------------------------------------------------------------------===// | |||
4396 | // CleanupPadInst Class | |||
4397 | //===----------------------------------------------------------------------===// | |||
4398 | class CleanupPadInst : public FuncletPadInst { | |||
4399 | private: | |||
4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, | |||
4401 | unsigned Values, const Twine &NameStr, | |||
4402 | Instruction *InsertBefore) | |||
4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, | |||
4404 | NameStr, InsertBefore) {} | |||
4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, | |||
4406 | unsigned Values, const Twine &NameStr, | |||
4407 | BasicBlock *InsertAtEnd) | |||
4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, | |||
4409 | NameStr, InsertAtEnd) {} | |||
4410 | ||||
4411 | public: | |||
4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, | |||
4413 | const Twine &NameStr = "", | |||
4414 | Instruction *InsertBefore = nullptr) { | |||
4415 | unsigned Values = 1 + Args.size(); | |||
4416 | return new (Values) | |||
4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); | |||
4418 | } | |||
4419 | ||||
4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, | |||
4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
4422 | unsigned Values = 1 + Args.size(); | |||
4423 | return new (Values) | |||
4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); | |||
4425 | } | |||
4426 | ||||
4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4428 | static bool classof(const Instruction *I) { | |||
4429 | return I->getOpcode() == Instruction::CleanupPad; | |||
4430 | } | |||
4431 | static bool classof(const Value *V) { | |||
4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4433 | } | |||
4434 | }; | |||
4435 | ||||
4436 | //===----------------------------------------------------------------------===// | |||
4437 | // CatchPadInst Class | |||
4438 | //===----------------------------------------------------------------------===// | |||
4439 | class CatchPadInst : public FuncletPadInst { | |||
4440 | private: | |||
4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, | |||
4442 | unsigned Values, const Twine &NameStr, | |||
4443 | Instruction *InsertBefore) | |||
4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, | |||
4445 | NameStr, InsertBefore) {} | |||
4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, | |||
4447 | unsigned Values, const Twine &NameStr, | |||
4448 | BasicBlock *InsertAtEnd) | |||
4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, | |||
4450 | NameStr, InsertAtEnd) {} | |||
4451 | ||||
4452 | public: | |||
4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, | |||
4454 | const Twine &NameStr = "", | |||
4455 | Instruction *InsertBefore = nullptr) { | |||
4456 | unsigned Values = 1 + Args.size(); | |||
4457 | return new (Values) | |||
4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); | |||
4459 | } | |||
4460 | ||||
4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, | |||
4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { | |||
4463 | unsigned Values = 1 + Args.size(); | |||
4464 | return new (Values) | |||
4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); | |||
4466 | } | |||
4467 | ||||
4468 | /// Convenience accessors | |||
4469 | CatchSwitchInst *getCatchSwitch() const { | |||
4470 | return cast<CatchSwitchInst>(Op<-1>()); | |||
4471 | } | |||
4472 | void setCatchSwitch(Value *CatchSwitch) { | |||
4473 | assert(CatchSwitch)((void)0); | |||
4474 | Op<-1>() = CatchSwitch; | |||
4475 | } | |||
4476 | ||||
4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4478 | static bool classof(const Instruction *I) { | |||
4479 | return I->getOpcode() == Instruction::CatchPad; | |||
4480 | } | |||
4481 | static bool classof(const Value *V) { | |||
4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4483 | } | |||
4484 | }; | |||
4485 | ||||
4486 | //===----------------------------------------------------------------------===// | |||
4487 | // CatchReturnInst Class | |||
4488 | //===----------------------------------------------------------------------===// | |||
4489 | ||||
4490 | class CatchReturnInst : public Instruction { | |||
4491 | CatchReturnInst(const CatchReturnInst &RI); | |||
4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); | |||
4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); | |||
4494 | ||||
4495 | void init(Value *CatchPad, BasicBlock *BB); | |||
4496 | ||||
4497 | protected: | |||
4498 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4499 | friend class Instruction; | |||
4500 | ||||
4501 | CatchReturnInst *cloneImpl() const; | |||
4502 | ||||
4503 | public: | |||
4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, | |||
4505 | Instruction *InsertBefore = nullptr) { | |||
4506 | assert(CatchPad)((void)0); | |||
4507 | assert(BB)((void)0); | |||
4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); | |||
4509 | } | |||
4510 | ||||
4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, | |||
4512 | BasicBlock *InsertAtEnd) { | |||
4513 | assert(CatchPad)((void)0); | |||
4514 | assert(BB)((void)0); | |||
4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); | |||
4516 | } | |||
4517 | ||||
4518 | /// Provide fast operand accessors | |||
4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
4520 | ||||
4521 | /// Convenience accessors. | |||
4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } | |||
4523 | void setCatchPad(CatchPadInst *CatchPad) { | |||
4524 | assert(CatchPad)((void)0); | |||
4525 | Op<0>() = CatchPad; | |||
4526 | } | |||
4527 | ||||
4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } | |||
4529 | void setSuccessor(BasicBlock *NewSucc) { | |||
4530 | assert(NewSucc)((void)0); | |||
4531 | Op<1>() = NewSucc; | |||
4532 | } | |||
4533 | unsigned getNumSuccessors() const { return 1; } | |||
4534 | ||||
4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. | |||
4536 | /// The successor block is implicitly a member of this funclet. | |||
4537 | Value *getCatchSwitchParentPad() const { | |||
4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); | |||
4539 | } | |||
4540 | ||||
4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4542 | static bool classof(const Instruction *I) { | |||
4543 | return (I->getOpcode() == Instruction::CatchRet); | |||
4544 | } | |||
4545 | static bool classof(const Value *V) { | |||
4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4547 | } | |||
4548 | ||||
4549 | private: | |||
4550 | BasicBlock *getSuccessor(unsigned Idx) const { | |||
4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); | |||
4552 | return getSuccessor(); | |||
4553 | } | |||
4554 | ||||
4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { | |||
4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); | |||
4557 | setSuccessor(B); | |||
4558 | } | |||
4559 | }; | |||
4560 | ||||
4561 | template <> | |||
4562 | struct OperandTraits<CatchReturnInst> | |||
4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; | |||
4564 | ||||
4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } | |||
4566 | ||||
4567 | //===----------------------------------------------------------------------===// | |||
4568 | // CleanupReturnInst Class | |||
4569 | //===----------------------------------------------------------------------===// | |||
4570 | ||||
4571 | class CleanupReturnInst : public Instruction { | |||
4572 | using UnwindDestField = BoolBitfieldElementT<0>; | |||
4573 | ||||
4574 | private: | |||
4575 | CleanupReturnInst(const CleanupReturnInst &RI); | |||
4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, | |||
4577 | Instruction *InsertBefore = nullptr); | |||
4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, | |||
4579 | BasicBlock *InsertAtEnd); | |||
4580 | ||||
4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); | |||
4582 | ||||
4583 | protected: | |||
4584 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4585 | friend class Instruction; | |||
4586 | ||||
4587 | CleanupReturnInst *cloneImpl() const; | |||
4588 | ||||
4589 | public: | |||
4590 | static CleanupReturnInst *Create(Value *CleanupPad, | |||
4591 | BasicBlock *UnwindBB = nullptr, | |||
4592 | Instruction *InsertBefore = nullptr) { | |||
4593 | assert(CleanupPad)((void)0); | |||
4594 | unsigned Values = 1; | |||
4595 | if (UnwindBB) | |||
4596 | ++Values; | |||
4597 | return new (Values) | |||
4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); | |||
4599 | } | |||
4600 | ||||
4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, | |||
4602 | BasicBlock *InsertAtEnd) { | |||
4603 | assert(CleanupPad)((void)0); | |||
4604 | unsigned Values = 1; | |||
4605 | if (UnwindBB) | |||
4606 | ++Values; | |||
4607 | return new (Values) | |||
4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); | |||
4609 | } | |||
4610 | ||||
4611 | /// Provide fast operand accessors | |||
4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; | |||
4613 | ||||
4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } | |||
4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } | |||
4616 | ||||
4617 | /// Convenience accessor. | |||
4618 | CleanupPadInst *getCleanupPad() const { | |||
4619 | return cast<CleanupPadInst>(Op<0>()); | |||
4620 | } | |||
4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { | |||
4622 | assert(CleanupPad)((void)0); | |||
4623 | Op<0>() = CleanupPad; | |||
4624 | } | |||
4625 | ||||
4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } | |||
4627 | ||||
4628 | BasicBlock *getUnwindDest() const { | |||
4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; | |||
4630 | } | |||
4631 | void setUnwindDest(BasicBlock *NewDest) { | |||
4632 | assert(NewDest)((void)0); | |||
4633 | assert(hasUnwindDest())((void)0); | |||
4634 | Op<1>() = NewDest; | |||
4635 | } | |||
4636 | ||||
4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4638 | static bool classof(const Instruction *I) { | |||
4639 | return (I->getOpcode() == Instruction::CleanupRet); | |||
4640 | } | |||
4641 | static bool classof(const Value *V) { | |||
4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4643 | } | |||
4644 | ||||
4645 | private: | |||
4646 | BasicBlock *getSuccessor(unsigned Idx) const { | |||
4647 | assert(Idx == 0)((void)0); | |||
4648 | return getUnwindDest(); | |||
4649 | } | |||
4650 | ||||
4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { | |||
4652 | assert(Idx == 0)((void)0); | |||
4653 | setUnwindDest(B); | |||
4654 | } | |||
4655 | ||||
4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding | |||
4657 | // method so that subclasses cannot accidentally use it. | |||
4658 | template <typename Bitfield> | |||
4659 | void setSubclassData(typename Bitfield::Type Value) { | |||
4660 | Instruction::setSubclassData<Bitfield>(Value); | |||
4661 | } | |||
4662 | }; | |||
4663 | ||||
4664 | template <> | |||
4665 | struct OperandTraits<CleanupReturnInst> | |||
4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; | |||
4667 | ||||
4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } | |||
4669 | ||||
4670 | //===----------------------------------------------------------------------===// | |||
4671 | // UnreachableInst Class | |||
4672 | //===----------------------------------------------------------------------===// | |||
4673 | ||||
4674 | //===--------------------------------------------------------------------------- | |||
4675 | /// This function has undefined behavior. In particular, the | |||
4676 | /// presence of this instruction indicates some higher level knowledge that the | |||
4677 | /// end of the block cannot be reached. | |||
4678 | /// | |||
4679 | class UnreachableInst : public Instruction { | |||
4680 | protected: | |||
4681 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4682 | friend class Instruction; | |||
4683 | ||||
4684 | UnreachableInst *cloneImpl() const; | |||
4685 | ||||
4686 | public: | |||
4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); | |||
4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); | |||
4689 | ||||
4690 | // allocate space for exactly zero operands | |||
4691 | void *operator new(size_t S) { return User::operator new(S, 0); } | |||
4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } | |||
4693 | ||||
4694 | unsigned getNumSuccessors() const { return 0; } | |||
4695 | ||||
4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4697 | static bool classof(const Instruction *I) { | |||
4698 | return I->getOpcode() == Instruction::Unreachable; | |||
4699 | } | |||
4700 | static bool classof(const Value *V) { | |||
4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4702 | } | |||
4703 | ||||
4704 | private: | |||
4705 | BasicBlock *getSuccessor(unsigned idx) const { | |||
4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); | |||
4707 | } | |||
4708 | ||||
4709 | void setSuccessor(unsigned idx, BasicBlock *B) { | |||
4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); | |||
4711 | } | |||
4712 | }; | |||
4713 | ||||
4714 | //===----------------------------------------------------------------------===// | |||
4715 | // TruncInst Class | |||
4716 | //===----------------------------------------------------------------------===// | |||
4717 | ||||
4718 | /// This class represents a truncation of integer types. | |||
4719 | class TruncInst : public CastInst { | |||
4720 | protected: | |||
4721 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4722 | friend class Instruction; | |||
4723 | ||||
4724 | /// Clone an identical TruncInst | |||
4725 | TruncInst *cloneImpl() const; | |||
4726 | ||||
4727 | public: | |||
4728 | /// Constructor with insert-before-instruction semantics | |||
4729 | TruncInst( | |||
4730 | Value *S, ///< The value to be truncated | |||
4731 | Type *Ty, ///< The (smaller) type to truncate to | |||
4732 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4734 | ); | |||
4735 | ||||
4736 | /// Constructor with insert-at-end-of-block semantics | |||
4737 | TruncInst( | |||
4738 | Value *S, ///< The value to be truncated | |||
4739 | Type *Ty, ///< The (smaller) type to truncate to | |||
4740 | const Twine &NameStr, ///< A name for the new instruction | |||
4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4742 | ); | |||
4743 | ||||
4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4745 | static bool classof(const Instruction *I) { | |||
4746 | return I->getOpcode() == Trunc; | |||
4747 | } | |||
4748 | static bool classof(const Value *V) { | |||
4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4750 | } | |||
4751 | }; | |||
4752 | ||||
4753 | //===----------------------------------------------------------------------===// | |||
4754 | // ZExtInst Class | |||
4755 | //===----------------------------------------------------------------------===// | |||
4756 | ||||
4757 | /// This class represents zero extension of integer types. | |||
4758 | class ZExtInst : public CastInst { | |||
4759 | protected: | |||
4760 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4761 | friend class Instruction; | |||
4762 | ||||
4763 | /// Clone an identical ZExtInst | |||
4764 | ZExtInst *cloneImpl() const; | |||
4765 | ||||
4766 | public: | |||
4767 | /// Constructor with insert-before-instruction semantics | |||
4768 | ZExtInst( | |||
4769 | Value *S, ///< The value to be zero extended | |||
4770 | Type *Ty, ///< The type to zero extend to | |||
4771 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4773 | ); | |||
4774 | ||||
4775 | /// Constructor with insert-at-end semantics. | |||
4776 | ZExtInst( | |||
4777 | Value *S, ///< The value to be zero extended | |||
4778 | Type *Ty, ///< The type to zero extend to | |||
4779 | const Twine &NameStr, ///< A name for the new instruction | |||
4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4781 | ); | |||
4782 | ||||
4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4784 | static bool classof(const Instruction *I) { | |||
4785 | return I->getOpcode() == ZExt; | |||
4786 | } | |||
4787 | static bool classof(const Value *V) { | |||
4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4789 | } | |||
4790 | }; | |||
4791 | ||||
4792 | //===----------------------------------------------------------------------===// | |||
4793 | // SExtInst Class | |||
4794 | //===----------------------------------------------------------------------===// | |||
4795 | ||||
4796 | /// This class represents a sign extension of integer types. | |||
4797 | class SExtInst : public CastInst { | |||
4798 | protected: | |||
4799 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4800 | friend class Instruction; | |||
4801 | ||||
4802 | /// Clone an identical SExtInst | |||
4803 | SExtInst *cloneImpl() const; | |||
4804 | ||||
4805 | public: | |||
4806 | /// Constructor with insert-before-instruction semantics | |||
4807 | SExtInst( | |||
4808 | Value *S, ///< The value to be sign extended | |||
4809 | Type *Ty, ///< The type to sign extend to | |||
4810 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4812 | ); | |||
4813 | ||||
4814 | /// Constructor with insert-at-end-of-block semantics | |||
4815 | SExtInst( | |||
4816 | Value *S, ///< The value to be sign extended | |||
4817 | Type *Ty, ///< The type to sign extend to | |||
4818 | const Twine &NameStr, ///< A name for the new instruction | |||
4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4820 | ); | |||
4821 | ||||
4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4823 | static bool classof(const Instruction *I) { | |||
4824 | return I->getOpcode() == SExt; | |||
4825 | } | |||
4826 | static bool classof(const Value *V) { | |||
4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4828 | } | |||
4829 | }; | |||
4830 | ||||
4831 | //===----------------------------------------------------------------------===// | |||
4832 | // FPTruncInst Class | |||
4833 | //===----------------------------------------------------------------------===// | |||
4834 | ||||
4835 | /// This class represents a truncation of floating point types. | |||
4836 | class FPTruncInst : public CastInst { | |||
4837 | protected: | |||
4838 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4839 | friend class Instruction; | |||
4840 | ||||
4841 | /// Clone an identical FPTruncInst | |||
4842 | FPTruncInst *cloneImpl() const; | |||
4843 | ||||
4844 | public: | |||
4845 | /// Constructor with insert-before-instruction semantics | |||
4846 | FPTruncInst( | |||
4847 | Value *S, ///< The value to be truncated | |||
4848 | Type *Ty, ///< The type to truncate to | |||
4849 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4851 | ); | |||
4852 | ||||
4853 | /// Constructor with insert-before-instruction semantics | |||
4854 | FPTruncInst( | |||
4855 | Value *S, ///< The value to be truncated | |||
4856 | Type *Ty, ///< The type to truncate to | |||
4857 | const Twine &NameStr, ///< A name for the new instruction | |||
4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4859 | ); | |||
4860 | ||||
4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4862 | static bool classof(const Instruction *I) { | |||
4863 | return I->getOpcode() == FPTrunc; | |||
4864 | } | |||
4865 | static bool classof(const Value *V) { | |||
4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4867 | } | |||
4868 | }; | |||
4869 | ||||
4870 | //===----------------------------------------------------------------------===// | |||
4871 | // FPExtInst Class | |||
4872 | //===----------------------------------------------------------------------===// | |||
4873 | ||||
4874 | /// This class represents an extension of floating point types. | |||
4875 | class FPExtInst : public CastInst { | |||
4876 | protected: | |||
4877 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4878 | friend class Instruction; | |||
4879 | ||||
4880 | /// Clone an identical FPExtInst | |||
4881 | FPExtInst *cloneImpl() const; | |||
4882 | ||||
4883 | public: | |||
4884 | /// Constructor with insert-before-instruction semantics | |||
4885 | FPExtInst( | |||
4886 | Value *S, ///< The value to be extended | |||
4887 | Type *Ty, ///< The type to extend to | |||
4888 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4890 | ); | |||
4891 | ||||
4892 | /// Constructor with insert-at-end-of-block semantics | |||
4893 | FPExtInst( | |||
4894 | Value *S, ///< The value to be extended | |||
4895 | Type *Ty, ///< The type to extend to | |||
4896 | const Twine &NameStr, ///< A name for the new instruction | |||
4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4898 | ); | |||
4899 | ||||
4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4901 | static bool classof(const Instruction *I) { | |||
4902 | return I->getOpcode() == FPExt; | |||
4903 | } | |||
4904 | static bool classof(const Value *V) { | |||
4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4906 | } | |||
4907 | }; | |||
4908 | ||||
4909 | //===----------------------------------------------------------------------===// | |||
4910 | // UIToFPInst Class | |||
4911 | //===----------------------------------------------------------------------===// | |||
4912 | ||||
4913 | /// This class represents a cast unsigned integer to floating point. | |||
4914 | class UIToFPInst : public CastInst { | |||
4915 | protected: | |||
4916 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4917 | friend class Instruction; | |||
4918 | ||||
4919 | /// Clone an identical UIToFPInst | |||
4920 | UIToFPInst *cloneImpl() const; | |||
4921 | ||||
4922 | public: | |||
4923 | /// Constructor with insert-before-instruction semantics | |||
4924 | UIToFPInst( | |||
4925 | Value *S, ///< The value to be converted | |||
4926 | Type *Ty, ///< The type to convert to | |||
4927 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4929 | ); | |||
4930 | ||||
4931 | /// Constructor with insert-at-end-of-block semantics | |||
4932 | UIToFPInst( | |||
4933 | Value *S, ///< The value to be converted | |||
4934 | Type *Ty, ///< The type to convert to | |||
4935 | const Twine &NameStr, ///< A name for the new instruction | |||
4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4937 | ); | |||
4938 | ||||
4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4940 | static bool classof(const Instruction *I) { | |||
4941 | return I->getOpcode() == UIToFP; | |||
4942 | } | |||
4943 | static bool classof(const Value *V) { | |||
4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4945 | } | |||
4946 | }; | |||
4947 | ||||
4948 | //===----------------------------------------------------------------------===// | |||
4949 | // SIToFPInst Class | |||
4950 | //===----------------------------------------------------------------------===// | |||
4951 | ||||
4952 | /// This class represents a cast from signed integer to floating point. | |||
4953 | class SIToFPInst : public CastInst { | |||
4954 | protected: | |||
4955 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4956 | friend class Instruction; | |||
4957 | ||||
4958 | /// Clone an identical SIToFPInst | |||
4959 | SIToFPInst *cloneImpl() const; | |||
4960 | ||||
4961 | public: | |||
4962 | /// Constructor with insert-before-instruction semantics | |||
4963 | SIToFPInst( | |||
4964 | Value *S, ///< The value to be converted | |||
4965 | Type *Ty, ///< The type to convert to | |||
4966 | const Twine &NameStr = "", ///< A name for the new instruction | |||
4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
4968 | ); | |||
4969 | ||||
4970 | /// Constructor with insert-at-end-of-block semantics | |||
4971 | SIToFPInst( | |||
4972 | Value *S, ///< The value to be converted | |||
4973 | Type *Ty, ///< The type to convert to | |||
4974 | const Twine &NameStr, ///< A name for the new instruction | |||
4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
4976 | ); | |||
4977 | ||||
4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
4979 | static bool classof(const Instruction *I) { | |||
4980 | return I->getOpcode() == SIToFP; | |||
4981 | } | |||
4982 | static bool classof(const Value *V) { | |||
4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
4984 | } | |||
4985 | }; | |||
4986 | ||||
4987 | //===----------------------------------------------------------------------===// | |||
4988 | // FPToUIInst Class | |||
4989 | //===----------------------------------------------------------------------===// | |||
4990 | ||||
4991 | /// This class represents a cast from floating point to unsigned integer | |||
4992 | class FPToUIInst : public CastInst { | |||
4993 | protected: | |||
4994 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
4995 | friend class Instruction; | |||
4996 | ||||
4997 | /// Clone an identical FPToUIInst | |||
4998 | FPToUIInst *cloneImpl() const; | |||
4999 | ||||
5000 | public: | |||
5001 | /// Constructor with insert-before-instruction semantics | |||
5002 | FPToUIInst( | |||
5003 | Value *S, ///< The value to be converted | |||
5004 | Type *Ty, ///< The type to convert to | |||
5005 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5007 | ); | |||
5008 | ||||
5009 | /// Constructor with insert-at-end-of-block semantics | |||
5010 | FPToUIInst( | |||
5011 | Value *S, ///< The value to be converted | |||
5012 | Type *Ty, ///< The type to convert to | |||
5013 | const Twine &NameStr, ///< A name for the new instruction | |||
5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction | |||
5015 | ); | |||
5016 | ||||
5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5018 | static bool classof(const Instruction *I) { | |||
5019 | return I->getOpcode() == FPToUI; | |||
5020 | } | |||
5021 | static bool classof(const Value *V) { | |||
5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5023 | } | |||
5024 | }; | |||
5025 | ||||
5026 | //===----------------------------------------------------------------------===// | |||
5027 | // FPToSIInst Class | |||
5028 | //===----------------------------------------------------------------------===// | |||
5029 | ||||
5030 | /// This class represents a cast from floating point to signed integer. | |||
5031 | class FPToSIInst : public CastInst { | |||
5032 | protected: | |||
5033 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5034 | friend class Instruction; | |||
5035 | ||||
5036 | /// Clone an identical FPToSIInst | |||
5037 | FPToSIInst *cloneImpl() const; | |||
5038 | ||||
5039 | public: | |||
5040 | /// Constructor with insert-before-instruction semantics | |||
5041 | FPToSIInst( | |||
5042 | Value *S, ///< The value to be converted | |||
5043 | Type *Ty, ///< The type to convert to | |||
5044 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5046 | ); | |||
5047 | ||||
5048 | /// Constructor with insert-at-end-of-block semantics | |||
5049 | FPToSIInst( | |||
5050 | Value *S, ///< The value to be converted | |||
5051 | Type *Ty, ///< The type to convert to | |||
5052 | const Twine &NameStr, ///< A name for the new instruction | |||
5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
5054 | ); | |||
5055 | ||||
5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5057 | static bool classof(const Instruction *I) { | |||
5058 | return I->getOpcode() == FPToSI; | |||
5059 | } | |||
5060 | static bool classof(const Value *V) { | |||
5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5062 | } | |||
5063 | }; | |||
5064 | ||||
5065 | //===----------------------------------------------------------------------===// | |||
5066 | // IntToPtrInst Class | |||
5067 | //===----------------------------------------------------------------------===// | |||
5068 | ||||
5069 | /// This class represents a cast from an integer to a pointer. | |||
5070 | class IntToPtrInst : public CastInst { | |||
5071 | public: | |||
5072 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5073 | friend class Instruction; | |||
5074 | ||||
5075 | /// Constructor with insert-before-instruction semantics | |||
5076 | IntToPtrInst( | |||
5077 | Value *S, ///< The value to be converted | |||
5078 | Type *Ty, ///< The type to convert to | |||
5079 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5081 | ); | |||
5082 | ||||
5083 | /// Constructor with insert-at-end-of-block semantics | |||
5084 | IntToPtrInst( | |||
5085 | Value *S, ///< The value to be converted | |||
5086 | Type *Ty, ///< The type to convert to | |||
5087 | const Twine &NameStr, ///< A name for the new instruction | |||
5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
5089 | ); | |||
5090 | ||||
5091 | /// Clone an identical IntToPtrInst. | |||
5092 | IntToPtrInst *cloneImpl() const; | |||
5093 | ||||
5094 | /// Returns the address space of this instruction's pointer type. | |||
5095 | unsigned getAddressSpace() const { | |||
5096 | return getType()->getPointerAddressSpace(); | |||
5097 | } | |||
5098 | ||||
5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5100 | static bool classof(const Instruction *I) { | |||
5101 | return I->getOpcode() == IntToPtr; | |||
5102 | } | |||
5103 | static bool classof(const Value *V) { | |||
5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5105 | } | |||
5106 | }; | |||
5107 | ||||
5108 | //===----------------------------------------------------------------------===// | |||
5109 | // PtrToIntInst Class | |||
5110 | //===----------------------------------------------------------------------===// | |||
5111 | ||||
5112 | /// This class represents a cast from a pointer to an integer. | |||
5113 | class PtrToIntInst : public CastInst { | |||
5114 | protected: | |||
5115 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5116 | friend class Instruction; | |||
5117 | ||||
5118 | /// Clone an identical PtrToIntInst. | |||
5119 | PtrToIntInst *cloneImpl() const; | |||
5120 | ||||
5121 | public: | |||
5122 | /// Constructor with insert-before-instruction semantics | |||
5123 | PtrToIntInst( | |||
5124 | Value *S, ///< The value to be converted | |||
5125 | Type *Ty, ///< The type to convert to | |||
5126 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5128 | ); | |||
5129 | ||||
5130 | /// Constructor with insert-at-end-of-block semantics | |||
5131 | PtrToIntInst( | |||
5132 | Value *S, ///< The value to be converted | |||
5133 | Type *Ty, ///< The type to convert to | |||
5134 | const Twine &NameStr, ///< A name for the new instruction | |||
5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
5136 | ); | |||
5137 | ||||
5138 | /// Gets the pointer operand. | |||
5139 | Value *getPointerOperand() { return getOperand(0); } | |||
5140 | /// Gets the pointer operand. | |||
5141 | const Value *getPointerOperand() const { return getOperand(0); } | |||
5142 | /// Gets the operand index of the pointer operand. | |||
5143 | static unsigned getPointerOperandIndex() { return 0U; } | |||
5144 | ||||
5145 | /// Returns the address space of the pointer operand. | |||
5146 | unsigned getPointerAddressSpace() const { | |||
5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); | |||
5148 | } | |||
5149 | ||||
5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5151 | static bool classof(const Instruction *I) { | |||
5152 | return I->getOpcode() == PtrToInt; | |||
5153 | } | |||
5154 | static bool classof(const Value *V) { | |||
5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5156 | } | |||
5157 | }; | |||
5158 | ||||
5159 | //===----------------------------------------------------------------------===// | |||
5160 | // BitCastInst Class | |||
5161 | //===----------------------------------------------------------------------===// | |||
5162 | ||||
5163 | /// This class represents a no-op cast from one type to another. | |||
5164 | class BitCastInst : public CastInst { | |||
5165 | protected: | |||
5166 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5167 | friend class Instruction; | |||
5168 | ||||
5169 | /// Clone an identical BitCastInst. | |||
5170 | BitCastInst *cloneImpl() const; | |||
5171 | ||||
5172 | public: | |||
5173 | /// Constructor with insert-before-instruction semantics | |||
5174 | BitCastInst( | |||
5175 | Value *S, ///< The value to be casted | |||
5176 | Type *Ty, ///< The type to casted to | |||
5177 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5179 | ); | |||
5180 | ||||
5181 | /// Constructor with insert-at-end-of-block semantics | |||
5182 | BitCastInst( | |||
5183 | Value *S, ///< The value to be casted | |||
5184 | Type *Ty, ///< The type to casted to | |||
5185 | const Twine &NameStr, ///< A name for the new instruction | |||
5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
5187 | ); | |||
5188 | ||||
5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5190 | static bool classof(const Instruction *I) { | |||
5191 | return I->getOpcode() == BitCast; | |||
5192 | } | |||
5193 | static bool classof(const Value *V) { | |||
5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5195 | } | |||
5196 | }; | |||
5197 | ||||
5198 | //===----------------------------------------------------------------------===// | |||
5199 | // AddrSpaceCastInst Class | |||
5200 | //===----------------------------------------------------------------------===// | |||
5201 | ||||
5202 | /// This class represents a conversion between pointers from one address space | |||
5203 | /// to another. | |||
5204 | class AddrSpaceCastInst : public CastInst { | |||
5205 | protected: | |||
5206 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5207 | friend class Instruction; | |||
5208 | ||||
5209 | /// Clone an identical AddrSpaceCastInst. | |||
5210 | AddrSpaceCastInst *cloneImpl() const; | |||
5211 | ||||
5212 | public: | |||
5213 | /// Constructor with insert-before-instruction semantics | |||
5214 | AddrSpaceCastInst( | |||
5215 | Value *S, ///< The value to be casted | |||
5216 | Type *Ty, ///< The type to casted to | |||
5217 | const Twine &NameStr = "", ///< A name for the new instruction | |||
5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction | |||
5219 | ); | |||
5220 | ||||
5221 | /// Constructor with insert-at-end-of-block semantics | |||
5222 | AddrSpaceCastInst( | |||
5223 | Value *S, ///< The value to be casted | |||
5224 | Type *Ty, ///< The type to casted to | |||
5225 | const Twine &NameStr, ///< A name for the new instruction | |||
5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into | |||
5227 | ); | |||
5228 | ||||
5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5230 | static bool classof(const Instruction *I) { | |||
5231 | return I->getOpcode() == AddrSpaceCast; | |||
5232 | } | |||
5233 | static bool classof(const Value *V) { | |||
5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5235 | } | |||
5236 | ||||
5237 | /// Gets the pointer operand. | |||
5238 | Value *getPointerOperand() { | |||
5239 | return getOperand(0); | |||
5240 | } | |||
5241 | ||||
5242 | /// Gets the pointer operand. | |||
5243 | const Value *getPointerOperand() const { | |||
5244 | return getOperand(0); | |||
5245 | } | |||
5246 | ||||
5247 | /// Gets the operand index of the pointer operand. | |||
5248 | static unsigned getPointerOperandIndex() { | |||
5249 | return 0U; | |||
5250 | } | |||
5251 | ||||
5252 | /// Returns the address space of the pointer operand. | |||
5253 | unsigned getSrcAddressSpace() const { | |||
5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); | |||
5255 | } | |||
5256 | ||||
5257 | /// Returns the address space of the result. | |||
5258 | unsigned getDestAddressSpace() const { | |||
5259 | return getType()->getPointerAddressSpace(); | |||
5260 | } | |||
5261 | }; | |||
5262 | ||||
5263 | /// A helper function that returns the pointer operand of a load or store | |||
5264 | /// instruction. Returns nullptr if not load or store. | |||
5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { | |||
5266 | if (auto *Load = dyn_cast<LoadInst>(V)) | |||
5267 | return Load->getPointerOperand(); | |||
5268 | if (auto *Store = dyn_cast<StoreInst>(V)) | |||
5269 | return Store->getPointerOperand(); | |||
5270 | return nullptr; | |||
5271 | } | |||
5272 | inline Value *getLoadStorePointerOperand(Value *V) { | |||
5273 | return const_cast<Value *>( | |||
5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); | |||
5275 | } | |||
5276 | ||||
5277 | /// A helper function that returns the pointer operand of a load, store | |||
5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. | |||
5279 | inline const Value *getPointerOperand(const Value *V) { | |||
5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) | |||
5281 | return Ptr; | |||
5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) | |||
5283 | return Gep->getPointerOperand(); | |||
5284 | return nullptr; | |||
5285 | } | |||
5286 | inline Value *getPointerOperand(Value *V) { | |||
5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); | |||
5288 | } | |||
5289 | ||||
5290 | /// A helper function that returns the alignment of load or store instruction. | |||
5291 | inline Align getLoadStoreAlignment(Value *I) { | |||
5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) | |||
5293 | "Expected Load or Store instruction")((void)0); | |||
5294 | if (auto *LI = dyn_cast<LoadInst>(I)) | |||
5295 | return LI->getAlign(); | |||
5296 | return cast<StoreInst>(I)->getAlign(); | |||
5297 | } | |||
5298 | ||||
5299 | /// A helper function that returns the address space of the pointer operand of | |||
5300 | /// load or store instruction. | |||
5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { | |||
5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) | |||
5303 | "Expected Load or Store instruction")((void)0); | |||
5304 | if (auto *LI = dyn_cast<LoadInst>(I)) | |||
5305 | return LI->getPointerAddressSpace(); | |||
5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); | |||
5307 | } | |||
5308 | ||||
5309 | /// A helper function that returns the type of a load or store instruction. | |||
5310 | inline Type *getLoadStoreType(Value *I) { | |||
5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) | |||
5312 | "Expected Load or Store instruction")((void)0); | |||
5313 | if (auto *LI = dyn_cast<LoadInst>(I)) | |||
5314 | return LI->getType(); | |||
5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); | |||
5316 | } | |||
5317 | ||||
5318 | //===----------------------------------------------------------------------===// | |||
5319 | // FreezeInst Class | |||
5320 | //===----------------------------------------------------------------------===// | |||
5321 | ||||
5322 | /// This class represents a freeze function that returns random concrete | |||
5323 | /// value if an operand is either a poison value or an undef value | |||
5324 | class FreezeInst : public UnaryInstruction { | |||
5325 | protected: | |||
5326 | // Note: Instruction needs to be a friend here to call cloneImpl. | |||
5327 | friend class Instruction; | |||
5328 | ||||
5329 | /// Clone an identical FreezeInst | |||
5330 | FreezeInst *cloneImpl() const; | |||
5331 | ||||
5332 | public: | |||
5333 | explicit FreezeInst(Value *S, | |||
5334 | const Twine &NameStr = "", | |||
5335 | Instruction *InsertBefore = nullptr); | |||
5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); | |||
5337 | ||||
5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: | |||
5339 | static inline bool classof(const Instruction *I) { | |||
5340 | return I->getOpcode() == Freeze; | |||
5341 | } | |||
5342 | static inline bool classof(const Value *V) { | |||
5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); | |||
5344 | } | |||
5345 | }; | |||
5346 | ||||
5347 | } // end namespace llvm | |||
5348 | ||||
5349 | #endif // LLVM_IR_INSTRUCTIONS_H |