Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 653, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/ScopeExit.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/StringExtras.h"
45#include <map>
46#include <set>
47
48using namespace clang;
49
50//===----------------------------------------------------------------------===//
51// CheckDefaultArgumentVisitor
52//===----------------------------------------------------------------------===//
53
54namespace {
55/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56/// the default argument of a parameter to determine whether it
57/// contains any ill-formed subexpressions. For example, this will
58/// diagnose the use of local variables or parameters within the
59/// default argument expression.
60class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65public:
66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74};
75
76/// VisitExpr - Visit all of the children of this expression.
77bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82}
83
84/// VisitDeclRefExpr - Visit a reference to a declaration, to
85/// determine whether this declaration can be used in the default
86/// argument expression.
87bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121}
122
123/// VisitCXXThisExpr - Visit a C++ "this" expression.
124bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131}
132
133bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?")((void)0);
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146}
147
148bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156}
157} // namespace
158
159void
160Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here")__builtin_unreachable();
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(__builtin_unreachable()
214 "should not generate implicit declarations for dependent cases")__builtin_unreachable();
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.")((void)0);
219 assert(ComputedEST != EST_None &&((void)0)
220 "Shouldn't collect exceptions when throw-all is guaranteed.")((void)0);
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226}
227
228void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255}
256
257ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258 SourceLocation EqualLoc) {
259 if (RequireCompleteType(Param->getLocation(), Param->getType(),
260 diag::err_typecheck_decl_incomplete_type))
261 return true;
262
263 // C++ [dcl.fct.default]p5
264 // A default argument expression is implicitly converted (clause
265 // 4) to the parameter type. The default argument expression has
266 // the same semantic constraints as the initializer expression in
267 // a declaration of a variable of the parameter type, using the
268 // copy-initialization semantics (8.5).
269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270 Param);
271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272 EqualLoc);
273 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275 if (Result.isInvalid())
276 return true;
277 Arg = Result.getAs<Expr>();
278
279 CheckCompletedExpr(Arg, EqualLoc);
280 Arg = MaybeCreateExprWithCleanups(Arg);
281
282 return Arg;
283}
284
285void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286 SourceLocation EqualLoc) {
287 // Add the default argument to the parameter
288 Param->setDefaultArg(Arg);
289
290 // We have already instantiated this parameter; provide each of the
291 // instantiations with the uninstantiated default argument.
292 UnparsedDefaultArgInstantiationsMap::iterator InstPos
293 = UnparsedDefaultArgInstantiations.find(Param);
294 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297
298 // We're done tracking this parameter's instantiations.
299 UnparsedDefaultArgInstantiations.erase(InstPos);
300 }
301}
302
303/// ActOnParamDefaultArgument - Check whether the default argument
304/// provided for a function parameter is well-formed. If so, attach it
305/// to the parameter declaration.
306void
307Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308 Expr *DefaultArg) {
309 if (!param || !DefaultArg)
310 return;
311
312 ParmVarDecl *Param = cast<ParmVarDecl>(param);
313 UnparsedDefaultArgLocs.erase(Param);
314
315 auto Fail = [&] {
316 Param->setInvalidDecl();
317 Param->setDefaultArg(new (Context) OpaqueValueExpr(
318 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
319 };
320
321 // Default arguments are only permitted in C++
322 if (!getLangOpts().CPlusPlus) {
323 Diag(EqualLoc, diag::err_param_default_argument)
324 << DefaultArg->getSourceRange();
325 return Fail();
326 }
327
328 // Check for unexpanded parameter packs.
329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330 return Fail();
331 }
332
333 // C++11 [dcl.fct.default]p3
334 // A default argument expression [...] shall not be specified for a
335 // parameter pack.
336 if (Param->isParameterPack()) {
337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338 << DefaultArg->getSourceRange();
339 // Recover by discarding the default argument.
340 Param->setDefaultArg(nullptr);
341 return;
342 }
343
344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345 if (Result.isInvalid())
346 return Fail();
347
348 DefaultArg = Result.getAs<Expr>();
349
350 // Check that the default argument is well-formed
351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352 if (DefaultArgChecker.Visit(DefaultArg))
353 return Fail();
354
355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356}
357
358/// ActOnParamUnparsedDefaultArgument - We've seen a default
359/// argument for a function parameter, but we can't parse it yet
360/// because we're inside a class definition. Note that this default
361/// argument will be parsed later.
362void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363 SourceLocation EqualLoc,
364 SourceLocation ArgLoc) {
365 if (!param)
366 return;
367
368 ParmVarDecl *Param = cast<ParmVarDecl>(param);
369 Param->setUnparsedDefaultArg();
370 UnparsedDefaultArgLocs[Param] = ArgLoc;
371}
372
373/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374/// the default argument for the parameter param failed.
375void Sema::ActOnParamDefaultArgumentError(Decl *param,
376 SourceLocation EqualLoc) {
377 if (!param)
378 return;
379
380 ParmVarDecl *Param = cast<ParmVarDecl>(param);
381 Param->setInvalidDecl();
382 UnparsedDefaultArgLocs.erase(Param);
383 Param->setDefaultArg(new (Context) OpaqueValueExpr(
384 EqualLoc, Param->getType().getNonReferenceType(), VK_PRValue));
385}
386
387/// CheckExtraCXXDefaultArguments - Check for any extra default
388/// arguments in the declarator, which is not a function declaration
389/// or definition and therefore is not permitted to have default
390/// arguments. This routine should be invoked for every declarator
391/// that is not a function declaration or definition.
392void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
393 // C++ [dcl.fct.default]p3
394 // A default argument expression shall be specified only in the
395 // parameter-declaration-clause of a function declaration or in a
396 // template-parameter (14.1). It shall not be specified for a
397 // parameter pack. If it is specified in a
398 // parameter-declaration-clause, it shall not occur within a
399 // declarator or abstract-declarator of a parameter-declaration.
400 bool MightBeFunction = D.isFunctionDeclarationContext();
401 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
402 DeclaratorChunk &chunk = D.getTypeObject(i);
403 if (chunk.Kind == DeclaratorChunk::Function) {
404 if (MightBeFunction) {
405 // This is a function declaration. It can have default arguments, but
406 // keep looking in case its return type is a function type with default
407 // arguments.
408 MightBeFunction = false;
409 continue;
410 }
411 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
412 ++argIdx) {
413 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
414 if (Param->hasUnparsedDefaultArg()) {
415 std::unique_ptr<CachedTokens> Toks =
416 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
417 SourceRange SR;
418 if (Toks->size() > 1)
419 SR = SourceRange((*Toks)[1].getLocation(),
420 Toks->back().getLocation());
421 else
422 SR = UnparsedDefaultArgLocs[Param];
423 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
424 << SR;
425 } else if (Param->getDefaultArg()) {
426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427 << Param->getDefaultArg()->getSourceRange();
428 Param->setDefaultArg(nullptr);
429 }
430 }
431 } else if (chunk.Kind != DeclaratorChunk::Paren) {
432 MightBeFunction = false;
433 }
434 }
435}
436
437static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
438 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
439 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
440 });
441}
442
443/// MergeCXXFunctionDecl - Merge two declarations of the same C++
444/// function, once we already know that they have the same
445/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
446/// error, false otherwise.
447bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
448 Scope *S) {
449 bool Invalid = false;
450
451 // The declaration context corresponding to the scope is the semantic
452 // parent, unless this is a local function declaration, in which case
453 // it is that surrounding function.
454 DeclContext *ScopeDC = New->isLocalExternDecl()
1
Assuming the condition is false
2
'?' condition is false
455 ? New->getLexicalDeclContext()
456 : New->getDeclContext();
457
458 // Find the previous declaration for the purpose of default arguments.
459 FunctionDecl *PrevForDefaultArgs = Old;
460 for (/**/; PrevForDefaultArgs;
3
Assuming pointer value is null
4
Loop condition is false. Execution continues on line 508
461 // Don't bother looking back past the latest decl if this is a local
462 // extern declaration; nothing else could work.
463 PrevForDefaultArgs = New->isLocalExternDecl()
464 ? nullptr
465 : PrevForDefaultArgs->getPreviousDecl()) {
466 // Ignore hidden declarations.
467 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
468 continue;
469
470 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
471 !New->isCXXClassMember()) {
472 // Ignore default arguments of old decl if they are not in
473 // the same scope and this is not an out-of-line definition of
474 // a member function.
475 continue;
476 }
477
478 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
479 // If only one of these is a local function declaration, then they are
480 // declared in different scopes, even though isDeclInScope may think
481 // they're in the same scope. (If both are local, the scope check is
482 // sufficient, and if neither is local, then they are in the same scope.)
483 continue;
484 }
485
486 // We found the right previous declaration.
487 break;
488 }
489
490 // C++ [dcl.fct.default]p4:
491 // For non-template functions, default arguments can be added in
492 // later declarations of a function in the same
493 // scope. Declarations in different scopes have completely
494 // distinct sets of default arguments. That is, declarations in
495 // inner scopes do not acquire default arguments from
496 // declarations in outer scopes, and vice versa. In a given
497 // function declaration, all parameters subsequent to a
498 // parameter with a default argument shall have default
499 // arguments supplied in this or previous declarations. A
500 // default argument shall not be redefined by a later
501 // declaration (not even to the same value).
502 //
503 // C++ [dcl.fct.default]p6:
504 // Except for member functions of class templates, the default arguments
505 // in a member function definition that appears outside of the class
506 // definition are added to the set of default arguments provided by the
507 // member function declaration in the class definition.
508 for (unsigned p = 0, NumParams = PrevForDefaultArgs
4.1
'PrevForDefaultArgs' is null
5
'?' condition is false
6
Loop condition is false. Execution continues on line 636
509 ? PrevForDefaultArgs->getNumParams() 510 : 0; 511 p < NumParams; ++p) { 512 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 513 ParmVarDecl *NewParam = New->getParamDecl(p); 514 515 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 516 bool NewParamHasDfl = NewParam->hasDefaultArg(); 517 518 if (OldParamHasDfl && NewParamHasDfl) { 519 unsigned DiagDefaultParamID = 520 diag::err_param_default_argument_redefinition; 521 522 // MSVC accepts that default parameters be redefined for member functions 523 // of template class. The new default parameter's value is ignored. 524 Invalid = true; 525 if (getLangOpts().MicrosoftExt) { 526 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 527 if (MD && MD->getParent()->getDescribedClassTemplate()) { 528 // Merge the old default argument into the new parameter. 529 NewParam->setHasInheritedDefaultArg(); 530 if (OldParam->hasUninstantiatedDefaultArg()) 531 NewParam->setUninstantiatedDefaultArg( 532 OldParam->getUninstantiatedDefaultArg()); 533 else 534 NewParam->setDefaultArg(OldParam->getInit()); 535 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 536 Invalid = false; 537 } 538 } 539 540 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 541 // hint here. Alternatively, we could walk the type-source information 542 // for NewParam to find the last source location in the type... but it 543 // isn't worth the effort right now. This is the kind of test case that 544 // is hard to get right: 545 // int f(int); 546 // void g(int (*fp)(int) = f); 547 // void g(int (*fp)(int) = &f); 548 Diag(NewParam->getLocation(), DiagDefaultParamID) 549 << NewParam->getDefaultArgRange(); 550 551 // Look for the function declaration where the default argument was 552 // actually written, which may be a declaration prior to Old. 553 for (auto Older = PrevForDefaultArgs; 554 OldParam->hasInheritedDefaultArg(); /**/) { 555 Older = Older->getPreviousDecl(); 556 OldParam = Older->getParamDecl(p); 557 } 558 559 Diag(OldParam->getLocation(), diag::note_previous_definition) 560 << OldParam->getDefaultArgRange(); 561 } else if (OldParamHasDfl) { 562 // Merge the old default argument into the new parameter unless the new 563 // function is a friend declaration in a template class. In the latter 564 // case the default arguments will be inherited when the friend 565 // declaration will be instantiated. 566 if (New->getFriendObjectKind() == Decl::FOK_None || 567 !New->getLexicalDeclContext()->isDependentContext()) { 568 // It's important to use getInit() here; getDefaultArg() 569 // strips off any top-level ExprWithCleanups. 570 NewParam->setHasInheritedDefaultArg(); 571 if (OldParam->hasUnparsedDefaultArg()) 572 NewParam->setUnparsedDefaultArg(); 573 else if (OldParam->hasUninstantiatedDefaultArg()) 574 NewParam->setUninstantiatedDefaultArg( 575 OldParam->getUninstantiatedDefaultArg()); 576 else 577 NewParam->setDefaultArg(OldParam->getInit()); 578 } 579 } else if (NewParamHasDfl) { 580 if (New->getDescribedFunctionTemplate()) { 581 // Paragraph 4, quoted above, only applies to non-template functions. 582 Diag(NewParam->getLocation(), 583 diag::err_param_default_argument_template_redecl) 584 << NewParam->getDefaultArgRange(); 585 Diag(PrevForDefaultArgs->getLocation(), 586 diag::note_template_prev_declaration) 587 << false; 588 } else if (New->getTemplateSpecializationKind() 589 != TSK_ImplicitInstantiation && 590 New->getTemplateSpecializationKind() != TSK_Undeclared) { 591 // C++ [temp.expr.spec]p21: 592 // Default function arguments shall not be specified in a declaration 593 // or a definition for one of the following explicit specializations: 594 // - the explicit specialization of a function template; 595 // - the explicit specialization of a member function template; 596 // - the explicit specialization of a member function of a class 597 // template where the class template specialization to which the 598 // member function specialization belongs is implicitly 599 // instantiated. 600 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 601 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 602 << New->getDeclName() 603 << NewParam->getDefaultArgRange(); 604 } else if (New->getDeclContext()->isDependentContext()) { 605 // C++ [dcl.fct.default]p6 (DR217): 606 // Default arguments for a member function of a class template shall 607 // be specified on the initial declaration of the member function 608 // within the class template. 609 // 610 // Reading the tea leaves a bit in DR217 and its reference to DR205 611 // leads me to the conclusion that one cannot add default function 612 // arguments for an out-of-line definition of a member function of a 613 // dependent type. 614 int WhichKind = 2; 615 if (CXXRecordDecl *Record 616 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 617 if (Record->getDescribedClassTemplate()) 618 WhichKind = 0; 619 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 620 WhichKind = 1; 621 else 622 WhichKind = 2; 623 } 624 625 Diag(NewParam->getLocation(), 626 diag::err_param_default_argument_member_template_redecl) 627 << WhichKind 628 << NewParam->getDefaultArgRange(); 629 } 630 } 631 } 632 633 // DR1344: If a default argument is added outside a class definition and that 634 // default argument makes the function a special member function, the program 635 // is ill-formed. This can only happen for constructors. 636 if (isa<CXXConstructorDecl>(New) &&
7
Assuming 'New' is not a 'CXXConstructorDecl'
637 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 638 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 639 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 640 if (NewSM != OldSM) { 641 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 642 assert(NewParam->hasDefaultArg())((void)0); 643 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 644 << NewParam->getDefaultArgRange() << NewSM; 645 Diag(Old->getLocation(), diag::note_previous_declaration); 646 } 647 } 648 649 const FunctionDecl *Def; 650 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 651 // template has a constexpr specifier then all its declarations shall 652 // contain the constexpr specifier. 653 if (New->getConstexprKind() != Old->getConstexprKind()) {
8
Called C++ object pointer is null
654 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 655 << New << static_cast<int>(New->getConstexprKind()) 656 << static_cast<int>(Old->getConstexprKind()); 657 Diag(Old->getLocation(), diag::note_previous_declaration); 658 Invalid = true; 659 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 660 Old->isDefined(Def) && 661 // If a friend function is inlined but does not have 'inline' 662 // specifier, it is a definition. Do not report attribute conflict 663 // in this case, redefinition will be diagnosed later. 664 (New->isInlineSpecified() || 665 New->getFriendObjectKind() == Decl::FOK_None)) { 666 // C++11 [dcl.fcn.spec]p4: 667 // If the definition of a function appears in a translation unit before its 668 // first declaration as inline, the program is ill-formed. 669 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 670 Diag(Def->getLocation(), diag::note_previous_definition); 671 Invalid = true; 672 } 673 674 // C++17 [temp.deduct.guide]p3: 675 // Two deduction guide declarations in the same translation unit 676 // for the same class template shall not have equivalent 677 // parameter-declaration-clauses. 678 if (isa<CXXDeductionGuideDecl>(New) && 679 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 680 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 681 Diag(Old->getLocation(), diag::note_previous_declaration); 682 } 683 684 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 685 // argument expression, that declaration shall be a definition and shall be 686 // the only declaration of the function or function template in the 687 // translation unit. 688 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 689 functionDeclHasDefaultArgument(Old)) { 690 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 691 Diag(Old->getLocation(), diag::note_previous_declaration); 692 Invalid = true; 693 } 694 695 // C++11 [temp.friend]p4 (DR329): 696 // When a function is defined in a friend function declaration in a class 697 // template, the function is instantiated when the function is odr-used. 698 // The same restrictions on multiple declarations and definitions that 699 // apply to non-template function declarations and definitions also apply 700 // to these implicit definitions. 701 const FunctionDecl *OldDefinition = nullptr; 702 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 703 Old->isDefined(OldDefinition, true)) 704 CheckForFunctionRedefinition(New, OldDefinition); 705 706 return Invalid; 707} 708 709NamedDecl * 710Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 711 MultiTemplateParamsArg TemplateParamLists) { 712 assert(D.isDecompositionDeclarator())((void)0); 713 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 714 715 // The syntax only allows a decomposition declarator as a simple-declaration, 716 // a for-range-declaration, or a condition in Clang, but we parse it in more 717 // cases than that. 718 if (!D.mayHaveDecompositionDeclarator()) { 719 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 720 << Decomp.getSourceRange(); 721 return nullptr; 722 } 723 724 if (!TemplateParamLists.empty()) { 725 // FIXME: There's no rule against this, but there are also no rules that 726 // would actually make it usable, so we reject it for now. 727 Diag(TemplateParamLists.front()->getTemplateLoc(), 728 diag::err_decomp_decl_template); 729 return nullptr; 730 } 731 732 Diag(Decomp.getLSquareLoc(), 733 !getLangOpts().CPlusPlus17 734 ? diag::ext_decomp_decl 735 : D.getContext() == DeclaratorContext::Condition 736 ? diag::ext_decomp_decl_cond 737 : diag::warn_cxx14_compat_decomp_decl) 738 << Decomp.getSourceRange(); 739 740 // The semantic context is always just the current context. 741 DeclContext *const DC = CurContext; 742 743 // C++17 [dcl.dcl]/8: 744 // The decl-specifier-seq shall contain only the type-specifier auto 745 // and cv-qualifiers. 746 // C++2a [dcl.dcl]/8: 747 // If decl-specifier-seq contains any decl-specifier other than static, 748 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 749 auto &DS = D.getDeclSpec(); 750 { 751 SmallVector<StringRef, 8> BadSpecifiers; 752 SmallVector<SourceLocation, 8> BadSpecifierLocs; 753 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 754 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 755 if (auto SCS = DS.getStorageClassSpec()) { 756 if (SCS == DeclSpec::SCS_static) { 757 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 758 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 759 } else { 760 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 761 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 762 } 763 } 764 if (auto TSCS = DS.getThreadStorageClassSpec()) { 765 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 766 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 767 } 768 if (DS.hasConstexprSpecifier()) { 769 BadSpecifiers.push_back( 770 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 771 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 772 } 773 if (DS.isInlineSpecified()) { 774 BadSpecifiers.push_back("inline"); 775 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 776 } 777 if (!BadSpecifiers.empty()) { 778 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 779 Err << (int)BadSpecifiers.size() 780 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 781 // Don't add FixItHints to remove the specifiers; we do still respect 782 // them when building the underlying variable. 783 for (auto Loc : BadSpecifierLocs) 784 Err << SourceRange(Loc, Loc); 785 } else if (!CPlusPlus20Specifiers.empty()) { 786 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 787 getLangOpts().CPlusPlus20 788 ? diag::warn_cxx17_compat_decomp_decl_spec 789 : diag::ext_decomp_decl_spec); 790 Warn << (int)CPlusPlus20Specifiers.size() 791 << llvm::join(CPlusPlus20Specifiers.begin(), 792 CPlusPlus20Specifiers.end(), " "); 793 for (auto Loc : CPlusPlus20SpecifierLocs) 794 Warn << SourceRange(Loc, Loc); 795 } 796 // We can't recover from it being declared as a typedef. 797 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 798 return nullptr; 799 } 800 801 // C++2a [dcl.struct.bind]p1: 802 // A cv that includes volatile is deprecated 803 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 804 getLangOpts().CPlusPlus20) 805 Diag(DS.getVolatileSpecLoc(), 806 diag::warn_deprecated_volatile_structured_binding); 807 808 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 809 QualType R = TInfo->getType(); 810 811 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 812 UPPC_DeclarationType)) 813 D.setInvalidType(); 814 815 // The syntax only allows a single ref-qualifier prior to the decomposition 816 // declarator. No other declarator chunks are permitted. Also check the type 817 // specifier here. 818 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 819 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 820 (D.getNumTypeObjects() == 1 && 821 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 822 Diag(Decomp.getLSquareLoc(), 823 (D.hasGroupingParens() || 824 (D.getNumTypeObjects() && 825 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 826 ? diag::err_decomp_decl_parens 827 : diag::err_decomp_decl_type) 828 << R; 829 830 // In most cases, there's no actual problem with an explicitly-specified 831 // type, but a function type won't work here, and ActOnVariableDeclarator 832 // shouldn't be called for such a type. 833 if (R->isFunctionType()) 834 D.setInvalidType(); 835 } 836 837 // Build the BindingDecls. 838 SmallVector<BindingDecl*, 8> Bindings; 839 840 // Build the BindingDecls. 841 for (auto &B : D.getDecompositionDeclarator().bindings()) { 842 // Check for name conflicts. 843 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 844 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 845 ForVisibleRedeclaration); 846 LookupName(Previous, S, 847 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 848 849 // It's not permitted to shadow a template parameter name. 850 if (Previous.isSingleResult() && 851 Previous.getFoundDecl()->isTemplateParameter()) { 852 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 853 Previous.getFoundDecl()); 854 Previous.clear(); 855 } 856 857 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name); 858 859 // Find the shadowed declaration before filtering for scope. 860 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 861 ? getShadowedDeclaration(BD, Previous) 862 : nullptr; 863 864 bool ConsiderLinkage = DC->isFunctionOrMethod() && 865 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 866 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 867 /*AllowInlineNamespace*/false); 868 869 if (!Previous.empty()) { 870 auto *Old = Previous.getRepresentativeDecl(); 871 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 872 Diag(Old->getLocation(), diag::note_previous_definition); 873 } else if (ShadowedDecl && !D.isRedeclaration()) { 874 CheckShadow(BD, ShadowedDecl, Previous); 875 } 876 PushOnScopeChains(BD, S, true); 877 Bindings.push_back(BD); 878 ParsingInitForAutoVars.insert(BD); 879 } 880 881 // There are no prior lookup results for the variable itself, because it 882 // is unnamed. 883 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 884 Decomp.getLSquareLoc()); 885 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 886 ForVisibleRedeclaration); 887 888 // Build the variable that holds the non-decomposed object. 889 bool AddToScope = true; 890 NamedDecl *New = 891 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 892 MultiTemplateParamsArg(), AddToScope, Bindings); 893 if (AddToScope) { 894 S->AddDecl(New); 895 CurContext->addHiddenDecl(New); 896 } 897 898 if (isInOpenMPDeclareTargetContext()) 899 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 900 901 return New; 902} 903 904static bool checkSimpleDecomposition( 905 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 906 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType, 907 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 908 if ((int64_t)Bindings.size() != NumElems) { 909 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 910 << DecompType << (unsigned)Bindings.size() 911 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) 912 << toString(NumElems, 10) << (NumElems < Bindings.size()); 913 return true; 914 } 915 916 unsigned I = 0; 917 for (auto *B : Bindings) { 918 SourceLocation Loc = B->getLocation(); 919 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 920 if (E.isInvalid()) 921 return true; 922 E = GetInit(Loc, E.get(), I++); 923 if (E.isInvalid()) 924 return true; 925 B->setBinding(ElemType, E.get()); 926 } 927 928 return false; 929} 930 931static bool checkArrayLikeDecomposition(Sema &S, 932 ArrayRef<BindingDecl *> Bindings, 933 ValueDecl *Src, QualType DecompType, 934 const llvm::APSInt &NumElems, 935 QualType ElemType) { 936 return checkSimpleDecomposition( 937 S, Bindings, Src, DecompType, NumElems, ElemType, 938 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 939 ExprResult E = S.ActOnIntegerConstant(Loc, I); 940 if (E.isInvalid()) 941 return ExprError(); 942 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 943 }); 944} 945 946static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 947 ValueDecl *Src, QualType DecompType, 948 const ConstantArrayType *CAT) { 949 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 950 llvm::APSInt(CAT->getSize()), 951 CAT->getElementType()); 952} 953 954static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 955 ValueDecl *Src, QualType DecompType, 956 const VectorType *VT) { 957 return checkArrayLikeDecomposition( 958 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 959 S.Context.getQualifiedType(VT->getElementType(), 960 DecompType.getQualifiers())); 961} 962 963static bool checkComplexDecomposition(Sema &S, 964 ArrayRef<BindingDecl *> Bindings, 965 ValueDecl *Src, QualType DecompType, 966 const ComplexType *CT) { 967 return checkSimpleDecomposition( 968 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 969 S.Context.getQualifiedType(CT->getElementType(), 970 DecompType.getQualifiers()), 971 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 972 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 973 }); 974} 975 976static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 977 TemplateArgumentListInfo &Args, 978 const TemplateParameterList *Params) { 979 SmallString<128> SS; 980 llvm::raw_svector_ostream OS(SS); 981 bool First = true; 982 unsigned I = 0; 983 for (auto &Arg : Args.arguments()) { 984 if (!First) 985 OS << ", "; 986 Arg.getArgument().print( 987 PrintingPolicy, OS, 988 TemplateParameterList::shouldIncludeTypeForArgument(Params, I)); 989 First = false; 990 I++; 991 } 992 return std::string(OS.str()); 993} 994 995static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 996 SourceLocation Loc, StringRef Trait, 997 TemplateArgumentListInfo &Args, 998 unsigned DiagID) { 999 auto DiagnoseMissing = [&] { 1000 if (DiagID) 1001 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1002 Args, /*Params*/ nullptr); 1003 return true; 1004 }; 1005 1006 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1007 NamespaceDecl *Std = S.getStdNamespace(); 1008 if (!Std) 1009 return DiagnoseMissing(); 1010 1011 // Look up the trait itself, within namespace std. We can diagnose various 1012 // problems with this lookup even if we've been asked to not diagnose a 1013 // missing specialization, because this can only fail if the user has been 1014 // declaring their own names in namespace std or we don't support the 1015 // standard library implementation in use. 1016 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1017 Loc, Sema::LookupOrdinaryName); 1018 if (!S.LookupQualifiedName(Result, Std)) 1019 return DiagnoseMissing(); 1020 if (Result.isAmbiguous()) 1021 return true; 1022 1023 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1024 if (!TraitTD) { 1025 Result.suppressDiagnostics(); 1026 NamedDecl *Found = *Result.begin(); 1027 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1028 S.Diag(Found->getLocation(), diag::note_declared_at); 1029 return true; 1030 } 1031 1032 // Build the template-id. 1033 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1034 if (TraitTy.isNull()) 1035 return true; 1036 if (!S.isCompleteType(Loc, TraitTy)) { 1037 if (DiagID) 1038 S.RequireCompleteType( 1039 Loc, TraitTy, DiagID, 1040 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1041 TraitTD->getTemplateParameters())); 1042 return true; 1043 } 1044 1045 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1046 assert(RD && "specialization of class template is not a class?")((void)0); 1047 1048 // Look up the member of the trait type. 1049 S.LookupQualifiedName(TraitMemberLookup, RD); 1050 return TraitMemberLookup.isAmbiguous(); 1051} 1052 1053static TemplateArgumentLoc 1054getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1055 uint64_t I) { 1056 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1057 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1058} 1059 1060static TemplateArgumentLoc 1061getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1062 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1063} 1064 1065namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1066 1067static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1068 llvm::APSInt &Size) { 1069 EnterExpressionEvaluationContext ContextRAII( 1070 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1071 1072 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1073 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1074 1075 // Form template argument list for tuple_size<T>. 1076 TemplateArgumentListInfo Args(Loc, Loc); 1077 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1078 1079 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1080 // it's not tuple-like. 1081 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1082 R.empty()) 1083 return IsTupleLike::NotTupleLike; 1084 1085 // If we get this far, we've committed to the tuple interpretation, but 1086 // we can still fail if there actually isn't a usable ::value. 1087 1088 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1089 LookupResult &R; 1090 TemplateArgumentListInfo &Args; 1091 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1092 : R(R), Args(Args) {} 1093 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1094 SourceLocation Loc) override { 1095 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1096 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1097 /*Params*/ nullptr); 1098 } 1099 } Diagnoser(R, Args); 1100 1101 ExprResult E = 1102 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1103 if (E.isInvalid()) 1104 return IsTupleLike::Error; 1105 1106 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1107 if (E.isInvalid()) 1108 return IsTupleLike::Error; 1109 1110 return IsTupleLike::TupleLike; 1111} 1112 1113/// \return std::tuple_element<I, T>::type. 1114static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1115 unsigned I, QualType T) { 1116 // Form template argument list for tuple_element<I, T>. 1117 TemplateArgumentListInfo Args(Loc, Loc); 1118 Args.addArgument( 1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1120 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1121 1122 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1123 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1124 if (lookupStdTypeTraitMember( 1125 S, R, Loc, "tuple_element", Args, 1126 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1127 return QualType(); 1128 1129 auto *TD = R.getAsSingle<TypeDecl>(); 1130 if (!TD) { 1131 R.suppressDiagnostics(); 1132 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1133 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1134 /*Params*/ nullptr); 1135 if (!R.empty()) 1136 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1137 return QualType(); 1138 } 1139 1140 return S.Context.getTypeDeclType(TD); 1141} 1142 1143namespace { 1144struct InitializingBinding { 1145 Sema &S; 1146 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1147 Sema::CodeSynthesisContext Ctx; 1148 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1149 Ctx.PointOfInstantiation = BD->getLocation(); 1150 Ctx.Entity = BD; 1151 S.pushCodeSynthesisContext(Ctx); 1152 } 1153 ~InitializingBinding() { 1154 S.popCodeSynthesisContext(); 1155 } 1156}; 1157} 1158 1159static bool checkTupleLikeDecomposition(Sema &S, 1160 ArrayRef<BindingDecl *> Bindings, 1161 VarDecl *Src, QualType DecompType, 1162 const llvm::APSInt &TupleSize) { 1163 if ((int64_t)Bindings.size() != TupleSize) { 1164 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1165 << DecompType << (unsigned)Bindings.size() 1166 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) 1167 << toString(TupleSize, 10) << (TupleSize < Bindings.size()); 1168 return true; 1169 } 1170 1171 if (Bindings.empty()) 1172 return false; 1173 1174 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1175 1176 // [dcl.decomp]p3: 1177 // The unqualified-id get is looked up in the scope of E by class member 1178 // access lookup ... 1179 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1180 bool UseMemberGet = false; 1181 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1182 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1183 S.LookupQualifiedName(MemberGet, RD); 1184 if (MemberGet.isAmbiguous()) 1185 return true; 1186 // ... and if that finds at least one declaration that is a function 1187 // template whose first template parameter is a non-type parameter ... 1188 for (NamedDecl *D : MemberGet) { 1189 if (FunctionTemplateDecl *FTD = 1190 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1191 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1192 if (TPL->size() != 0 && 1193 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1194 // ... the initializer is e.get<i>(). 1195 UseMemberGet = true; 1196 break; 1197 } 1198 } 1199 } 1200 } 1201 1202 unsigned I = 0; 1203 for (auto *B : Bindings) { 1204 InitializingBinding InitContext(S, B); 1205 SourceLocation Loc = B->getLocation(); 1206 1207 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1208 if (E.isInvalid()) 1209 return true; 1210 1211 // e is an lvalue if the type of the entity is an lvalue reference and 1212 // an xvalue otherwise 1213 if (!Src->getType()->isLValueReferenceType()) 1214 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1215 E.get(), nullptr, VK_XValue, 1216 FPOptionsOverride()); 1217 1218 TemplateArgumentListInfo Args(Loc, Loc); 1219 Args.addArgument( 1220 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1221 1222 if (UseMemberGet) { 1223 // if [lookup of member get] finds at least one declaration, the 1224 // initializer is e.get<i-1>(). 1225 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1226 CXXScopeSpec(), SourceLocation(), nullptr, 1227 MemberGet, &Args, nullptr); 1228 if (E.isInvalid()) 1229 return true; 1230 1231 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc); 1232 } else { 1233 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1234 // in the associated namespaces. 1235 Expr *Get = UnresolvedLookupExpr::Create( 1236 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1237 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args, 1238 UnresolvedSetIterator(), UnresolvedSetIterator()); 1239 1240 Expr *Arg = E.get(); 1241 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1242 } 1243 if (E.isInvalid()) 1244 return true; 1245 Expr *Init = E.get(); 1246 1247 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1248 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1249 if (T.isNull()) 1250 return true; 1251 1252 // each vi is a variable of type "reference to T" initialized with the 1253 // initializer, where the reference is an lvalue reference if the 1254 // initializer is an lvalue and an rvalue reference otherwise 1255 QualType RefType = 1256 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1257 if (RefType.isNull()) 1258 return true; 1259 auto *RefVD = VarDecl::Create( 1260 S.Context, Src->getDeclContext(), Loc, Loc, 1261 B->getDeclName().getAsIdentifierInfo(), RefType, 1262 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1263 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1264 RefVD->setTSCSpec(Src->getTSCSpec()); 1265 RefVD->setImplicit(); 1266 if (Src->isInlineSpecified()) 1267 RefVD->setInlineSpecified(); 1268 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1269 1270 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1271 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1272 InitializationSequence Seq(S, Entity, Kind, Init); 1273 E = Seq.Perform(S, Entity, Kind, Init); 1274 if (E.isInvalid()) 1275 return true; 1276 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1277 if (E.isInvalid()) 1278 return true; 1279 RefVD->setInit(E.get()); 1280 S.CheckCompleteVariableDeclaration(RefVD); 1281 1282 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1283 DeclarationNameInfo(B->getDeclName(), Loc), 1284 RefVD); 1285 if (E.isInvalid()) 1286 return true; 1287 1288 B->setBinding(T, E.get()); 1289 I++; 1290 } 1291 1292 return false; 1293} 1294 1295/// Find the base class to decompose in a built-in decomposition of a class type. 1296/// This base class search is, unfortunately, not quite like any other that we 1297/// perform anywhere else in C++. 1298static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1299 const CXXRecordDecl *RD, 1300 CXXCastPath &BasePath) { 1301 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1302 CXXBasePath &Path) { 1303 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1304 }; 1305 1306 const CXXRecordDecl *ClassWithFields = nullptr; 1307 AccessSpecifier AS = AS_public; 1308 if (RD->hasDirectFields()) 1309 // [dcl.decomp]p4: 1310 // Otherwise, all of E's non-static data members shall be public direct 1311 // members of E ... 1312 ClassWithFields = RD; 1313 else { 1314 // ... or of ... 1315 CXXBasePaths Paths; 1316 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1317 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1318 // If no classes have fields, just decompose RD itself. (This will work 1319 // if and only if zero bindings were provided.) 1320 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1321 } 1322 1323 CXXBasePath *BestPath = nullptr; 1324 for (auto &P : Paths) { 1325 if (!BestPath) 1326 BestPath = &P; 1327 else if (!S.Context.hasSameType(P.back().Base->getType(), 1328 BestPath->back().Base->getType())) { 1329 // ... the same ... 1330 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1331 << false << RD << BestPath->back().Base->getType() 1332 << P.back().Base->getType(); 1333 return DeclAccessPair(); 1334 } else if (P.Access < BestPath->Access) { 1335 BestPath = &P; 1336 } 1337 } 1338 1339 // ... unambiguous ... 1340 QualType BaseType = BestPath->back().Base->getType(); 1341 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1342 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1343 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1344 return DeclAccessPair(); 1345 } 1346 1347 // ... [accessible, implied by other rules] base class of E. 1348 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1349 *BestPath, diag::err_decomp_decl_inaccessible_base); 1350 AS = BestPath->Access; 1351 1352 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1353 S.BuildBasePathArray(Paths, BasePath); 1354 } 1355 1356 // The above search did not check whether the selected class itself has base 1357 // classes with fields, so check that now. 1358 CXXBasePaths Paths; 1359 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1360 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1361 << (ClassWithFields == RD) << RD << ClassWithFields 1362 << Paths.front().back().Base->getType(); 1363 return DeclAccessPair(); 1364 } 1365 1366 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1367} 1368 1369static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1370 ValueDecl *Src, QualType DecompType, 1371 const CXXRecordDecl *OrigRD) { 1372 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1373 diag::err_incomplete_type)) 1374 return true; 1375 1376 CXXCastPath BasePath; 1377 DeclAccessPair BasePair = 1378 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1379 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1380 if (!RD) 1381 return true; 1382 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1383 DecompType.getQualifiers()); 1384 1385 auto DiagnoseBadNumberOfBindings = [&]() -> bool { 1386 unsigned NumFields = 1387 std::count_if(RD->field_begin(), RD->field_end(), 1388 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); }); 1389 assert(Bindings.size() != NumFields)((void)0); 1390 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1391 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields 1392 << (NumFields < Bindings.size()); 1393 return true; 1394 }; 1395 1396 // all of E's non-static data members shall be [...] well-formed 1397 // when named as e.name in the context of the structured binding, 1398 // E shall not have an anonymous union member, ... 1399 unsigned I = 0; 1400 for (auto *FD : RD->fields()) { 1401 if (FD->isUnnamedBitfield()) 1402 continue; 1403 1404 // All the non-static data members are required to be nameable, so they 1405 // must all have names. 1406 if (!FD->getDeclName()) { 1407 if (RD->isLambda()) { 1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1409 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1410 return true; 1411 } 1412 1413 if (FD->isAnonymousStructOrUnion()) { 1414 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1415 << DecompType << FD->getType()->isUnionType(); 1416 S.Diag(FD->getLocation(), diag::note_declared_at); 1417 return true; 1418 } 1419 1420 // FIXME: Are there any other ways we could have an anonymous member? 1421 } 1422 1423 // We have a real field to bind. 1424 if (I >= Bindings.size()) 1425 return DiagnoseBadNumberOfBindings(); 1426 auto *B = Bindings[I++]; 1427 SourceLocation Loc = B->getLocation(); 1428 1429 // The field must be accessible in the context of the structured binding. 1430 // We already checked that the base class is accessible. 1431 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1432 // const_cast here. 1433 S.CheckStructuredBindingMemberAccess( 1434 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1435 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1436 BasePair.getAccess(), FD->getAccess()))); 1437 1438 // Initialize the binding to Src.FD. 1439 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1440 if (E.isInvalid()) 1441 return true; 1442 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1443 VK_LValue, &BasePath); 1444 if (E.isInvalid()) 1445 return true; 1446 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1447 CXXScopeSpec(), FD, 1448 DeclAccessPair::make(FD, FD->getAccess()), 1449 DeclarationNameInfo(FD->getDeclName(), Loc)); 1450 if (E.isInvalid()) 1451 return true; 1452 1453 // If the type of the member is T, the referenced type is cv T, where cv is 1454 // the cv-qualification of the decomposition expression. 1455 // 1456 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1457 // 'const' to the type of the field. 1458 Qualifiers Q = DecompType.getQualifiers(); 1459 if (FD->isMutable()) 1460 Q.removeConst(); 1461 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1462 } 1463 1464 if (I != Bindings.size()) 1465 return DiagnoseBadNumberOfBindings(); 1466 1467 return false; 1468} 1469 1470void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1471 QualType DecompType = DD->getType(); 1472 1473 // If the type of the decomposition is dependent, then so is the type of 1474 // each binding. 1475 if (DecompType->isDependentType()) { 1476 for (auto *B : DD->bindings()) 1477 B->setType(Context.DependentTy); 1478 return; 1479 } 1480 1481 DecompType = DecompType.getNonReferenceType(); 1482 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1483 1484 // C++1z [dcl.decomp]/2: 1485 // If E is an array type [...] 1486 // As an extension, we also support decomposition of built-in complex and 1487 // vector types. 1488 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1489 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1490 DD->setInvalidDecl(); 1491 return; 1492 } 1493 if (auto *VT = DecompType->getAs<VectorType>()) { 1494 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1495 DD->setInvalidDecl(); 1496 return; 1497 } 1498 if (auto *CT = DecompType->getAs<ComplexType>()) { 1499 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1500 DD->setInvalidDecl(); 1501 return; 1502 } 1503 1504 // C++1z [dcl.decomp]/3: 1505 // if the expression std::tuple_size<E>::value is a well-formed integral 1506 // constant expression, [...] 1507 llvm::APSInt TupleSize(32); 1508 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1509 case IsTupleLike::Error: 1510 DD->setInvalidDecl(); 1511 return; 1512 1513 case IsTupleLike::TupleLike: 1514 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1515 DD->setInvalidDecl(); 1516 return; 1517 1518 case IsTupleLike::NotTupleLike: 1519 break; 1520 } 1521 1522 // C++1z [dcl.dcl]/8: 1523 // [E shall be of array or non-union class type] 1524 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1525 if (!RD || RD->isUnion()) { 1526 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1527 << DD << !RD << DecompType; 1528 DD->setInvalidDecl(); 1529 return; 1530 } 1531 1532 // C++1z [dcl.decomp]/4: 1533 // all of E's non-static data members shall be [...] direct members of 1534 // E or of the same unambiguous public base class of E, ... 1535 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1536 DD->setInvalidDecl(); 1537} 1538 1539/// Merge the exception specifications of two variable declarations. 1540/// 1541/// This is called when there's a redeclaration of a VarDecl. The function 1542/// checks if the redeclaration might have an exception specification and 1543/// validates compatibility and merges the specs if necessary. 1544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1545 // Shortcut if exceptions are disabled. 1546 if (!getLangOpts().CXXExceptions) 1547 return; 1548 1549 assert(Context.hasSameType(New->getType(), Old->getType()) &&((void)0) 1550 "Should only be called if types are otherwise the same.")((void)0); 1551 1552 QualType NewType = New->getType(); 1553 QualType OldType = Old->getType(); 1554 1555 // We're only interested in pointers and references to functions, as well 1556 // as pointers to member functions. 1557 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1558 NewType = R->getPointeeType(); 1559 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1560 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1561 NewType = P->getPointeeType(); 1562 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1563 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1564 NewType = M->getPointeeType(); 1565 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1566 } 1567 1568 if (!NewType->isFunctionProtoType()) 1569 return; 1570 1571 // There's lots of special cases for functions. For function pointers, system 1572 // libraries are hopefully not as broken so that we don't need these 1573 // workarounds. 1574 if (CheckEquivalentExceptionSpec( 1575 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1576 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1577 New->setInvalidDecl(); 1578 } 1579} 1580 1581/// CheckCXXDefaultArguments - Verify that the default arguments for a 1582/// function declaration are well-formed according to C++ 1583/// [dcl.fct.default]. 1584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1585 unsigned NumParams = FD->getNumParams(); 1586 unsigned ParamIdx = 0; 1587 1588 // This checking doesn't make sense for explicit specializations; their 1589 // default arguments are determined by the declaration we're specializing, 1590 // not by FD. 1591 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1592 return; 1593 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1594 if (FTD->isMemberSpecialization()) 1595 return; 1596 1597 // Find first parameter with a default argument 1598 for (; ParamIdx < NumParams; ++ParamIdx) { 1599 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1600 if (Param->hasDefaultArg()) 1601 break; 1602 } 1603 1604 // C++20 [dcl.fct.default]p4: 1605 // In a given function declaration, each parameter subsequent to a parameter 1606 // with a default argument shall have a default argument supplied in this or 1607 // a previous declaration, unless the parameter was expanded from a 1608 // parameter pack, or shall be a function parameter pack. 1609 for (; ParamIdx < NumParams; ++ParamIdx) { 1610 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1611 if (!Param->hasDefaultArg() && !Param->isParameterPack() && 1612 !(CurrentInstantiationScope && 1613 CurrentInstantiationScope->isLocalPackExpansion(Param))) { 1614 if (Param->isInvalidDecl()) 1615 /* We already complained about this parameter. */; 1616 else if (Param->getIdentifier()) 1617 Diag(Param->getLocation(), 1618 diag::err_param_default_argument_missing_name) 1619 << Param->getIdentifier(); 1620 else 1621 Diag(Param->getLocation(), 1622 diag::err_param_default_argument_missing); 1623 } 1624 } 1625} 1626 1627/// Check that the given type is a literal type. Issue a diagnostic if not, 1628/// if Kind is Diagnose. 1629/// \return \c true if a problem has been found (and optionally diagnosed). 1630template <typename... Ts> 1631static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1632 SourceLocation Loc, QualType T, unsigned DiagID, 1633 Ts &&...DiagArgs) { 1634 if (T->isDependentType()) 1635 return false; 1636 1637 switch (Kind) { 1638 case Sema::CheckConstexprKind::Diagnose: 1639 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1640 std::forward<Ts>(DiagArgs)...); 1641 1642 case Sema::CheckConstexprKind::CheckValid: 1643 return !T->isLiteralType(SemaRef.Context); 1644 } 1645 1646 llvm_unreachable("unknown CheckConstexprKind")__builtin_unreachable(); 1647} 1648 1649/// Determine whether a destructor cannot be constexpr due to 1650static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1651 const CXXDestructorDecl *DD, 1652 Sema::CheckConstexprKind Kind) { 1653 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1654 const CXXRecordDecl *RD = 1655 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1656 if (!RD || RD->hasConstexprDestructor()) 1657 return true; 1658 1659 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1660 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1661 << static_cast<int>(DD->getConstexprKind()) << !FD 1662 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1663 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1664 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1665 } 1666 return false; 1667 }; 1668 1669 const CXXRecordDecl *RD = DD->getParent(); 1670 for (const CXXBaseSpecifier &B : RD->bases()) 1671 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1672 return false; 1673 for (const FieldDecl *FD : RD->fields()) 1674 if (!Check(FD->getLocation(), FD->getType(), FD)) 1675 return false; 1676 return true; 1677} 1678 1679/// Check whether a function's parameter types are all literal types. If so, 1680/// return true. If not, produce a suitable diagnostic and return false. 1681static bool CheckConstexprParameterTypes(Sema &SemaRef, 1682 const FunctionDecl *FD, 1683 Sema::CheckConstexprKind Kind) { 1684 unsigned ArgIndex = 0; 1685 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1686 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1687 e = FT->param_type_end(); 1688 i != e; ++i, ++ArgIndex) { 1689 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1690 SourceLocation ParamLoc = PD->getLocation(); 1691 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1692 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1693 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1694 FD->isConsteval())) 1695 return false; 1696 } 1697 return true; 1698} 1699 1700/// Check whether a function's return type is a literal type. If so, return 1701/// true. If not, produce a suitable diagnostic and return false. 1702static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1703 Sema::CheckConstexprKind Kind) { 1704 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1705 diag::err_constexpr_non_literal_return, 1706 FD->isConsteval())) 1707 return false; 1708 return true; 1709} 1710 1711/// Get diagnostic %select index for tag kind for 1712/// record diagnostic message. 1713/// WARNING: Indexes apply to particular diagnostics only! 1714/// 1715/// \returns diagnostic %select index. 1716static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1717 switch (Tag) { 1718 case TTK_Struct: return 0; 1719 case TTK_Interface: return 1; 1720 case TTK_Class: return 2; 1721 default: llvm_unreachable("Invalid tag kind for record diagnostic!")__builtin_unreachable(); 1722 } 1723} 1724 1725static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1726 Stmt *Body, 1727 Sema::CheckConstexprKind Kind); 1728 1729// Check whether a function declaration satisfies the requirements of a 1730// constexpr function definition or a constexpr constructor definition. If so, 1731// return true. If not, produce appropriate diagnostics (unless asked not to by 1732// Kind) and return false. 1733// 1734// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. 1735bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1736 CheckConstexprKind Kind) { 1737 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1738 if (MD && MD->isInstance()) { 1739 // C++11 [dcl.constexpr]p4: 1740 // The definition of a constexpr constructor shall satisfy the following 1741 // constraints: 1742 // - the class shall not have any virtual base classes; 1743 // 1744 // FIXME: This only applies to constructors and destructors, not arbitrary 1745 // member functions. 1746 const CXXRecordDecl *RD = MD->getParent(); 1747 if (RD->getNumVBases()) { 1748 if (Kind == CheckConstexprKind::CheckValid) 1749 return false; 1750 1751 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1752 << isa<CXXConstructorDecl>(NewFD) 1753 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1754 for (const auto &I : RD->vbases()) 1755 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1756 << I.getSourceRange(); 1757 return false; 1758 } 1759 } 1760 1761 if (!isa<CXXConstructorDecl>(NewFD)) { 1762 // C++11 [dcl.constexpr]p3: 1763 // The definition of a constexpr function shall satisfy the following 1764 // constraints: 1765 // - it shall not be virtual; (removed in C++20) 1766 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1767 if (Method && Method->isVirtual()) { 1768 if (getLangOpts().CPlusPlus20) { 1769 if (Kind == CheckConstexprKind::Diagnose) 1770 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1771 } else { 1772 if (Kind == CheckConstexprKind::CheckValid) 1773 return false; 1774 1775 Method = Method->getCanonicalDecl(); 1776 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1777 1778 // If it's not obvious why this function is virtual, find an overridden 1779 // function which uses the 'virtual' keyword. 1780 const CXXMethodDecl *WrittenVirtual = Method; 1781 while (!WrittenVirtual->isVirtualAsWritten()) 1782 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1783 if (WrittenVirtual != Method) 1784 Diag(WrittenVirtual->getLocation(), 1785 diag::note_overridden_virtual_function); 1786 return false; 1787 } 1788 } 1789 1790 // - its return type shall be a literal type; 1791 if (!CheckConstexprReturnType(*this, NewFD, Kind)) 1792 return false; 1793 } 1794 1795 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1796 // A destructor can be constexpr only if the defaulted destructor could be; 1797 // we don't need to check the members and bases if we already know they all 1798 // have constexpr destructors. 1799 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1800 if (Kind == CheckConstexprKind::CheckValid) 1801 return false; 1802 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1803 return false; 1804 } 1805 } 1806 1807 // - each of its parameter types shall be a literal type; 1808 if (!CheckConstexprParameterTypes(*this, NewFD, Kind)) 1809 return false; 1810 1811 Stmt *Body = NewFD->getBody(); 1812 assert(Body &&((void)0) 1813 "CheckConstexprFunctionDefinition called on function with no body")((void)0); 1814 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1815} 1816 1817/// Check the given declaration statement is legal within a constexpr function 1818/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1819/// 1820/// \return true if the body is OK (maybe only as an extension), false if we 1821/// have diagnosed a problem. 1822static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1823 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1824 Sema::CheckConstexprKind Kind) { 1825 // C++11 [dcl.constexpr]p3 and p4: 1826 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1827 // contain only 1828 for (const auto *DclIt : DS->decls()) { 1829 switch (DclIt->getKind()) { 1830 case Decl::StaticAssert: 1831 case Decl::Using: 1832 case Decl::UsingShadow: 1833 case Decl::UsingDirective: 1834 case Decl::UnresolvedUsingTypename: 1835 case Decl::UnresolvedUsingValue: 1836 case Decl::UsingEnum: 1837 // - static_assert-declarations 1838 // - using-declarations, 1839 // - using-directives, 1840 // - using-enum-declaration 1841 continue; 1842 1843 case Decl::Typedef: 1844 case Decl::TypeAlias: { 1845 // - typedef declarations and alias-declarations that do not define 1846 // classes or enumerations, 1847 const auto *TN = cast<TypedefNameDecl>(DclIt); 1848 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1849 // Don't allow variably-modified types in constexpr functions. 1850 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1851 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1852 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1853 << TL.getSourceRange() << TL.getType() 1854 << isa<CXXConstructorDecl>(Dcl); 1855 } 1856 return false; 1857 } 1858 continue; 1859 } 1860 1861 case Decl::Enum: 1862 case Decl::CXXRecord: 1863 // C++1y allows types to be defined, not just declared. 1864 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1865 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1866 SemaRef.Diag(DS->getBeginLoc(), 1867 SemaRef.getLangOpts().CPlusPlus14 1868 ? diag::warn_cxx11_compat_constexpr_type_definition 1869 : diag::ext_constexpr_type_definition) 1870 << isa<CXXConstructorDecl>(Dcl); 1871 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1872 return false; 1873 } 1874 } 1875 continue; 1876 1877 case Decl::EnumConstant: 1878 case Decl::IndirectField: 1879 case Decl::ParmVar: 1880 // These can only appear with other declarations which are banned in 1881 // C++11 and permitted in C++1y, so ignore them. 1882 continue; 1883 1884 case Decl::Var: 1885 case Decl::Decomposition: { 1886 // C++1y [dcl.constexpr]p3 allows anything except: 1887 // a definition of a variable of non-literal type or of static or 1888 // thread storage duration or [before C++2a] for which no 1889 // initialization is performed. 1890 const auto *VD = cast<VarDecl>(DclIt); 1891 if (VD->isThisDeclarationADefinition()) { 1892 if (VD->isStaticLocal()) { 1893 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1894 SemaRef.Diag(VD->getLocation(), 1895 diag::err_constexpr_local_var_static) 1896 << isa<CXXConstructorDecl>(Dcl) 1897 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 1898 } 1899 return false; 1900 } 1901 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 1902 diag::err_constexpr_local_var_non_literal_type, 1903 isa<CXXConstructorDecl>(Dcl))) 1904 return false; 1905 if (!VD->getType()->isDependentType() && 1906 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 1907 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1908 SemaRef.Diag( 1909 VD->getLocation(), 1910 SemaRef.getLangOpts().CPlusPlus20 1911 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 1912 : diag::ext_constexpr_local_var_no_init) 1913 << isa<CXXConstructorDecl>(Dcl); 1914 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 1915 return false; 1916 } 1917 continue; 1918 } 1919 } 1920 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1921 SemaRef.Diag(VD->getLocation(), 1922 SemaRef.getLangOpts().CPlusPlus14 1923 ? diag::warn_cxx11_compat_constexpr_local_var 1924 : diag::ext_constexpr_local_var) 1925 << isa<CXXConstructorDecl>(Dcl); 1926 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1927 return false; 1928 } 1929 continue; 1930 } 1931 1932 case Decl::NamespaceAlias: 1933 case Decl::Function: 1934 // These are disallowed in C++11 and permitted in C++1y. Allow them 1935 // everywhere as an extension. 1936 if (!Cxx1yLoc.isValid()) 1937 Cxx1yLoc = DS->getBeginLoc(); 1938 continue; 1939 1940 default: 1941 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1942 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 1943 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 1944 } 1945 return false; 1946 } 1947 } 1948 1949 return true; 1950} 1951 1952/// Check that the given field is initialized within a constexpr constructor. 1953/// 1954/// \param Dcl The constexpr constructor being checked. 1955/// \param Field The field being checked. This may be a member of an anonymous 1956/// struct or union nested within the class being checked. 1957/// \param Inits All declarations, including anonymous struct/union members and 1958/// indirect members, for which any initialization was provided. 1959/// \param Diagnosed Whether we've emitted the error message yet. Used to attach 1960/// multiple notes for different members to the same error. 1961/// \param Kind Whether we're diagnosing a constructor as written or determining 1962/// whether the formal requirements are satisfied. 1963/// \return \c false if we're checking for validity and the constructor does 1964/// not satisfy the requirements on a constexpr constructor. 1965static bool CheckConstexprCtorInitializer(Sema &SemaRef, 1966 const FunctionDecl *Dcl, 1967 FieldDecl *Field, 1968 llvm::SmallSet<Decl*, 16> &Inits, 1969 bool &Diagnosed, 1970 Sema::CheckConstexprKind Kind) { 1971 // In C++20 onwards, there's nothing to check for validity. 1972 if (Kind == Sema::CheckConstexprKind::CheckValid && 1973 SemaRef.getLangOpts().CPlusPlus20) 1974 return true; 1975 1976 if (Field->isInvalidDecl()) 1977 return true; 1978 1979 if (Field->isUnnamedBitfield()) 1980 return true; 1981 1982 // Anonymous unions with no variant members and empty anonymous structs do not 1983 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 1984 // indirect fields don't need initializing. 1985 if (Field->isAnonymousStructOrUnion() && 1986 (Field->getType()->isUnionType() 1987 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 1988 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 1989 return true; 1990 1991 if (!Inits.count(Field)) { 1992 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1993 if (!Diagnosed) { 1994 SemaRef.Diag(Dcl->getLocation(), 1995 SemaRef.getLangOpts().CPlusPlus20 1996 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 1997 : diag::ext_constexpr_ctor_missing_init); 1998 Diagnosed = true; 1999 } 2000 SemaRef.Diag(Field->getLocation(), 2001 diag::note_constexpr_ctor_missing_init); 2002 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2003 return false; 2004 } 2005 } else if (Field->isAnonymousStructOrUnion()) { 2006 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2007 for (auto *I : RD->fields()) 2008 // If an anonymous union contains an anonymous struct of which any member 2009 // is initialized, all members must be initialized. 2010 if (!RD->isUnion() || Inits.count(I)) 2011 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2012 Kind)) 2013 return false; 2014 } 2015 return true; 2016} 2017 2018/// Check the provided statement is allowed in a constexpr function 2019/// definition. 2020static bool 2021CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2022 SmallVectorImpl<SourceLocation> &ReturnStmts, 2023 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2024 Sema::CheckConstexprKind Kind) { 2025 // - its function-body shall be [...] a compound-statement that contains only 2026 switch (S->getStmtClass()) { 2027 case Stmt::NullStmtClass: 2028 // - null statements, 2029 return true; 2030 2031 case Stmt::DeclStmtClass: 2032 // - static_assert-declarations 2033 // - using-declarations, 2034 // - using-directives, 2035 // - typedef declarations and alias-declarations that do not define 2036 // classes or enumerations, 2037 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2038 return false; 2039 return true; 2040 2041 case Stmt::ReturnStmtClass: 2042 // - and exactly one return statement; 2043 if (isa<CXXConstructorDecl>(Dcl)) { 2044 // C++1y allows return statements in constexpr constructors. 2045 if (!Cxx1yLoc.isValid()) 2046 Cxx1yLoc = S->getBeginLoc(); 2047 return true; 2048 } 2049 2050 ReturnStmts.push_back(S->getBeginLoc()); 2051 return true; 2052 2053 case Stmt::CompoundStmtClass: { 2054 // C++1y allows compound-statements. 2055 if (!Cxx1yLoc.isValid()) 2056 Cxx1yLoc = S->getBeginLoc(); 2057 2058 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2059 for (auto *BodyIt : CompStmt->body()) { 2060 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2061 Cxx1yLoc, Cxx2aLoc, Kind)) 2062 return false; 2063 } 2064 return true; 2065 } 2066 2067 case Stmt::AttributedStmtClass: 2068 if (!Cxx1yLoc.isValid()) 2069 Cxx1yLoc = S->getBeginLoc(); 2070 return true; 2071 2072 case Stmt::IfStmtClass: { 2073 // C++1y allows if-statements. 2074 if (!Cxx1yLoc.isValid()) 2075 Cxx1yLoc = S->getBeginLoc(); 2076 2077 IfStmt *If = cast<IfStmt>(S); 2078 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2079 Cxx1yLoc, Cxx2aLoc, Kind)) 2080 return false; 2081 if (If->getElse() && 2082 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2083 Cxx1yLoc, Cxx2aLoc, Kind)) 2084 return false; 2085 return true; 2086 } 2087 2088 case Stmt::WhileStmtClass: 2089 case Stmt::DoStmtClass: 2090 case Stmt::ForStmtClass: 2091 case Stmt::CXXForRangeStmtClass: 2092 case Stmt::ContinueStmtClass: 2093 // C++1y allows all of these. We don't allow them as extensions in C++11, 2094 // because they don't make sense without variable mutation. 2095 if (!SemaRef.getLangOpts().CPlusPlus14) 2096 break; 2097 if (!Cxx1yLoc.isValid()) 2098 Cxx1yLoc = S->getBeginLoc(); 2099 for (Stmt *SubStmt : S->children()) 2100 if (SubStmt && 2101 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2102 Cxx1yLoc, Cxx2aLoc, Kind)) 2103 return false; 2104 return true; 2105 2106 case Stmt::SwitchStmtClass: 2107 case Stmt::CaseStmtClass: 2108 case Stmt::DefaultStmtClass: 2109 case Stmt::BreakStmtClass: 2110 // C++1y allows switch-statements, and since they don't need variable 2111 // mutation, we can reasonably allow them in C++11 as an extension. 2112 if (!Cxx1yLoc.isValid()) 2113 Cxx1yLoc = S->getBeginLoc(); 2114 for (Stmt *SubStmt : S->children()) 2115 if (SubStmt && 2116 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2117 Cxx1yLoc, Cxx2aLoc, Kind)) 2118 return false; 2119 return true; 2120 2121 case Stmt::GCCAsmStmtClass: 2122 case Stmt::MSAsmStmtClass: 2123 // C++2a allows inline assembly statements. 2124 case Stmt::CXXTryStmtClass: 2125 if (Cxx2aLoc.isInvalid()) 2126 Cxx2aLoc = S->getBeginLoc(); 2127 for (Stmt *SubStmt : S->children()) { 2128 if (SubStmt && 2129 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2130 Cxx1yLoc, Cxx2aLoc, Kind)) 2131 return false; 2132 } 2133 return true; 2134 2135 case Stmt::CXXCatchStmtClass: 2136 // Do not bother checking the language mode (already covered by the 2137 // try block check). 2138 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, 2139 cast<CXXCatchStmt>(S)->getHandlerBlock(), 2140 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind)) 2141 return false; 2142 return true; 2143 2144 default: 2145 if (!isa<Expr>(S)) 2146 break; 2147 2148 // C++1y allows expression-statements. 2149 if (!Cxx1yLoc.isValid()) 2150 Cxx1yLoc = S->getBeginLoc(); 2151 return true; 2152 } 2153 2154 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2155 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2156 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2157 } 2158 return false; 2159} 2160 2161/// Check the body for the given constexpr function declaration only contains 2162/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2163/// 2164/// \return true if the body is OK, false if we have found or diagnosed a 2165/// problem. 2166static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2167 Stmt *Body, 2168 Sema::CheckConstexprKind Kind) { 2169 SmallVector<SourceLocation, 4> ReturnStmts; 2170 2171 if (isa<CXXTryStmt>(Body)) { 2172 // C++11 [dcl.constexpr]p3: 2173 // The definition of a constexpr function shall satisfy the following 2174 // constraints: [...] 2175 // - its function-body shall be = delete, = default, or a 2176 // compound-statement 2177 // 2178 // C++11 [dcl.constexpr]p4: 2179 // In the definition of a constexpr constructor, [...] 2180 // - its function-body shall not be a function-try-block; 2181 // 2182 // This restriction is lifted in C++2a, as long as inner statements also 2183 // apply the general constexpr rules. 2184 switch (Kind) { 2185 case Sema::CheckConstexprKind::CheckValid: 2186 if (!SemaRef.getLangOpts().CPlusPlus20) 2187 return false; 2188 break; 2189 2190 case Sema::CheckConstexprKind::Diagnose: 2191 SemaRef.Diag(Body->getBeginLoc(), 2192 !SemaRef.getLangOpts().CPlusPlus20 2193 ? diag::ext_constexpr_function_try_block_cxx20 2194 : diag::warn_cxx17_compat_constexpr_function_try_block) 2195 << isa<CXXConstructorDecl>(Dcl); 2196 break; 2197 } 2198 } 2199 2200 // - its function-body shall be [...] a compound-statement that contains only 2201 // [... list of cases ...] 2202 // 2203 // Note that walking the children here is enough to properly check for 2204 // CompoundStmt and CXXTryStmt body. 2205 SourceLocation Cxx1yLoc, Cxx2aLoc; 2206 for (Stmt *SubStmt : Body->children()) { 2207 if (SubStmt && 2208 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2209 Cxx1yLoc, Cxx2aLoc, Kind)) 2210 return false; 2211 } 2212 2213 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2214 // If this is only valid as an extension, report that we don't satisfy the 2215 // constraints of the current language. 2216 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2217 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2218 return false; 2219 } else if (Cxx2aLoc.isValid()) { 2220 SemaRef.Diag(Cxx2aLoc, 2221 SemaRef.getLangOpts().CPlusPlus20 2222 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2223 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2224 << isa<CXXConstructorDecl>(Dcl); 2225 } else if (Cxx1yLoc.isValid()) { 2226 SemaRef.Diag(Cxx1yLoc, 2227 SemaRef.getLangOpts().CPlusPlus14 2228 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2229 : diag::ext_constexpr_body_invalid_stmt) 2230 << isa<CXXConstructorDecl>(Dcl); 2231 } 2232 2233 if (const CXXConstructorDecl *Constructor 2234 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2235 const CXXRecordDecl *RD = Constructor->getParent(); 2236 // DR1359: 2237 // - every non-variant non-static data member and base class sub-object 2238 // shall be initialized; 2239 // DR1460: 2240 // - if the class is a union having variant members, exactly one of them 2241 // shall be initialized; 2242 if (RD->isUnion()) { 2243 if (Constructor->getNumCtorInitializers() == 0 && 2244 RD->hasVariantMembers()) { 2245 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2246 SemaRef.Diag( 2247 Dcl->getLocation(), 2248 SemaRef.getLangOpts().CPlusPlus20 2249 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2250 : diag::ext_constexpr_union_ctor_no_init); 2251 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2252 return false; 2253 } 2254 } 2255 } else if (!Constructor->isDependentContext() && 2256 !Constructor->isDelegatingConstructor()) { 2257 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((void)0); 2258 2259 // Skip detailed checking if we have enough initializers, and we would 2260 // allow at most one initializer per member. 2261 bool AnyAnonStructUnionMembers = false; 2262 unsigned Fields = 0; 2263 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2264 E = RD->field_end(); I != E; ++I, ++Fields) { 2265 if (I->isAnonymousStructOrUnion()) { 2266 AnyAnonStructUnionMembers = true; 2267 break; 2268 } 2269 } 2270 // DR1460: 2271 // - if the class is a union-like class, but is not a union, for each of 2272 // its anonymous union members having variant members, exactly one of 2273 // them shall be initialized; 2274 if (AnyAnonStructUnionMembers || 2275 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2276 // Check initialization of non-static data members. Base classes are 2277 // always initialized so do not need to be checked. Dependent bases 2278 // might not have initializers in the member initializer list. 2279 llvm::SmallSet<Decl*, 16> Inits; 2280 for (const auto *I: Constructor->inits()) { 2281 if (FieldDecl *FD = I->getMember()) 2282 Inits.insert(FD); 2283 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2284 Inits.insert(ID->chain_begin(), ID->chain_end()); 2285 } 2286 2287 bool Diagnosed = false; 2288 for (auto *I : RD->fields()) 2289 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2290 Kind)) 2291 return false; 2292 } 2293 } 2294 } else { 2295 if (ReturnStmts.empty()) { 2296 // C++1y doesn't require constexpr functions to contain a 'return' 2297 // statement. We still do, unless the return type might be void, because 2298 // otherwise if there's no return statement, the function cannot 2299 // be used in a core constant expression. 2300 bool OK = SemaRef.getLangOpts().CPlusPlus14 && 2301 (Dcl->getReturnType()->isVoidType() || 2302 Dcl->getReturnType()->isDependentType()); 2303 switch (Kind) { 2304 case Sema::CheckConstexprKind::Diagnose: 2305 SemaRef.Diag(Dcl->getLocation(), 2306 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2307 : diag::err_constexpr_body_no_return) 2308 << Dcl->isConsteval(); 2309 if (!OK) 2310 return false; 2311 break; 2312 2313 case Sema::CheckConstexprKind::CheckValid: 2314 // The formal requirements don't include this rule in C++14, even 2315 // though the "must be able to produce a constant expression" rules 2316 // still imply it in some cases. 2317 if (!SemaRef.getLangOpts().CPlusPlus14) 2318 return false; 2319 break; 2320 } 2321 } else if (ReturnStmts.size() > 1) { 2322 switch (Kind) { 2323 case Sema::CheckConstexprKind::Diagnose: 2324 SemaRef.Diag( 2325 ReturnStmts.back(), 2326 SemaRef.getLangOpts().CPlusPlus14 2327 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2328 : diag::ext_constexpr_body_multiple_return); 2329 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2330 SemaRef.Diag(ReturnStmts[I], 2331 diag::note_constexpr_body_previous_return); 2332 break; 2333 2334 case Sema::CheckConstexprKind::CheckValid: 2335 if (!SemaRef.getLangOpts().CPlusPlus14) 2336 return false; 2337 break; 2338 } 2339 } 2340 } 2341 2342 // C++11 [dcl.constexpr]p5: 2343 // if no function argument values exist such that the function invocation 2344 // substitution would produce a constant expression, the program is 2345 // ill-formed; no diagnostic required. 2346 // C++11 [dcl.constexpr]p3: 2347 // - every constructor call and implicit conversion used in initializing the 2348 // return value shall be one of those allowed in a constant expression. 2349 // C++11 [dcl.constexpr]p4: 2350 // - every constructor involved in initializing non-static data members and 2351 // base class sub-objects shall be a constexpr constructor. 2352 // 2353 // Note that this rule is distinct from the "requirements for a constexpr 2354 // function", so is not checked in CheckValid mode. 2355 SmallVector<PartialDiagnosticAt, 8> Diags; 2356 if (Kind == Sema::CheckConstexprKind::Diagnose && 2357 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2358 SemaRef.Diag(Dcl->getLocation(), 2359 diag::ext_constexpr_function_never_constant_expr) 2360 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2361 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2362 SemaRef.Diag(Diags[I].first, Diags[I].second); 2363 // Don't return false here: we allow this for compatibility in 2364 // system headers. 2365 } 2366 2367 return true; 2368} 2369 2370/// Get the class that is directly named by the current context. This is the 2371/// class for which an unqualified-id in this scope could name a constructor 2372/// or destructor. 2373/// 2374/// If the scope specifier denotes a class, this will be that class. 2375/// If the scope specifier is empty, this will be the class whose 2376/// member-specification we are currently within. Otherwise, there 2377/// is no such class. 2378CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2379 assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); 2380 2381 if (SS && SS->isInvalid()) 2382 return nullptr; 2383 2384 if (SS && SS->isNotEmpty()) { 2385 DeclContext *DC = computeDeclContext(*SS, true); 2386 return dyn_cast_or_null<CXXRecordDecl>(DC); 2387 } 2388 2389 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2390} 2391 2392/// isCurrentClassName - Determine whether the identifier II is the 2393/// name of the class type currently being defined. In the case of 2394/// nested classes, this will only return true if II is the name of 2395/// the innermost class. 2396bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2397 const CXXScopeSpec *SS) { 2398 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2399 return CurDecl && &II == CurDecl->getIdentifier(); 2400} 2401 2402/// Determine whether the identifier II is a typo for the name of 2403/// the class type currently being defined. If so, update it to the identifier 2404/// that should have been used. 2405bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2406 assert(getLangOpts().CPlusPlus && "No class names in C!")((void)0); 2407 2408 if (!getLangOpts().SpellChecking) 2409 return false; 2410 2411 CXXRecordDecl *CurDecl; 2412 if (SS && SS->isSet() && !SS->isInvalid()) { 2413 DeclContext *DC = computeDeclContext(*SS, true); 2414 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2415 } else 2416 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2417 2418 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2419 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2420 < II->getLength()) { 2421 II = CurDecl->getIdentifier(); 2422 return true; 2423 } 2424 2425 return false; 2426} 2427 2428/// Determine whether the given class is a base class of the given 2429/// class, including looking at dependent bases. 2430static bool findCircularInheritance(const CXXRecordDecl *Class, 2431 const CXXRecordDecl *Current) { 2432 SmallVector<const CXXRecordDecl*, 8> Queue; 2433 2434 Class = Class->getCanonicalDecl(); 2435 while (true) { 2436 for (const auto &I : Current->bases()) { 2437 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 2438 if (!Base) 2439 continue; 2440 2441 Base = Base->getDefinition(); 2442 if (!Base) 2443 continue; 2444 2445 if (Base->getCanonicalDecl() == Class) 2446 return true; 2447 2448 Queue.push_back(Base); 2449 } 2450 2451 if (Queue.empty()) 2452 return false; 2453 2454 Current = Queue.pop_back_val(); 2455 } 2456 2457 return false; 2458} 2459 2460/// Check the validity of a C++ base class specifier. 2461/// 2462/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics 2463/// and returns NULL otherwise. 2464CXXBaseSpecifier * 2465Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2466 SourceRange SpecifierRange, 2467 bool Virtual, AccessSpecifier Access, 2468 TypeSourceInfo *TInfo, 2469 SourceLocation EllipsisLoc) { 2470 QualType BaseType = TInfo->getType(); 2471 if (BaseType->containsErrors()) { 2472 // Already emitted a diagnostic when parsing the error type. 2473 return nullptr; 2474 } 2475 // C++ [class.union]p1: 2476 // A union shall not have base classes. 2477 if (Class->isUnion()) { 2478 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2479 << SpecifierRange; 2480 return nullptr; 2481 } 2482 2483 if (EllipsisLoc.isValid() && 2484 !TInfo->getType()->containsUnexpandedParameterPack()) { 2485 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2486 << TInfo->getTypeLoc().getSourceRange(); 2487 EllipsisLoc = SourceLocation(); 2488 } 2489 2490 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2491 2492 if (BaseType->isDependentType()) { 2493 // Make sure that we don't have circular inheritance among our dependent 2494 // bases. For non-dependent bases, the check for completeness below handles 2495 // this. 2496 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) { 2497 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() || 2498 ((BaseDecl = BaseDecl->getDefinition()) && 2499 findCircularInheritance(Class, BaseDecl))) { 2500 Diag(BaseLoc, diag::err_circular_inheritance) 2501 << BaseType << Context.getTypeDeclType(Class); 2502 2503 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl()) 2504 Diag(BaseDecl->getLocation(), diag::note_previous_decl) 2505 << BaseType; 2506 2507 return nullptr; 2508 } 2509 } 2510 2511 // Make sure that we don't make an ill-formed AST where the type of the 2512 // Class is non-dependent and its attached base class specifier is an 2513 // dependent type, which violates invariants in many clang code paths (e.g. 2514 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2515 // explicitly mark the Class decl invalid. The diagnostic was already 2516 // emitted. 2517 if (!Class->getTypeForDecl()->isDependentType()) 2518 Class->setInvalidDecl(); 2519 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2520 Class->getTagKind() == TTK_Class, 2521 Access, TInfo, EllipsisLoc); 2522 } 2523 2524 // Base specifiers must be record types. 2525 if (!BaseType->isRecordType()) { 2526 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2527 return nullptr; 2528 } 2529 2530 // C++ [class.union]p1: 2531 // A union shall not be used as a base class. 2532 if (BaseType->isUnionType()) { 2533 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2534 return nullptr; 2535 } 2536 2537 // For the MS ABI, propagate DLL attributes to base class templates. 2538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2539 if (Attr *ClassAttr = getDLLAttr(Class)) { 2540 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 2541 BaseType->getAsCXXRecordDecl())) { 2542 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate, 2543 BaseLoc); 2544 } 2545 } 2546 } 2547 2548 // C++ [class.derived]p2: 2549 // The class-name in a base-specifier shall not be an incompletely 2550 // defined class. 2551 if (RequireCompleteType(BaseLoc, BaseType, 2552 diag::err_incomplete_base_class, SpecifierRange)) { 2553 Class->setInvalidDecl(); 2554 return nullptr; 2555 } 2556 2557 // If the base class is polymorphic or isn't empty, the new one is/isn't, too. 2558 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl(); 2559 assert(BaseDecl && "Record type has no declaration")((void)0); 2560 BaseDecl = BaseDecl->getDefinition(); 2561 assert(BaseDecl && "Base type is not incomplete, but has no definition")((void)0); 2562 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); 2563 assert(CXXBaseDecl && "Base type is not a C++ type")((void)0); 2564 2565 // Microsoft docs say: 2566 // "If a base-class has a code_seg attribute, derived classes must have the 2567 // same attribute." 2568 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>(); 2569 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2570 if ((DerivedCSA || BaseCSA) && 2571 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) { 2572 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2573 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here) 2574 << CXXBaseDecl; 2575 return nullptr; 2576 } 2577 2578 // A class which contains a flexible array member is not suitable for use as a 2579 // base class: 2580 // - If the layout determines that a base comes before another base, 2581 // the flexible array member would index into the subsequent base. 2582 // - If the layout determines that base comes before the derived class, 2583 // the flexible array member would index into the derived class. 2584 if (CXXBaseDecl->hasFlexibleArrayMember()) { 2585 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2586 << CXXBaseDecl->getDeclName(); 2587 return nullptr; 2588 } 2589 2590 // C++ [class]p3: 2591 // If a class is marked final and it appears as a base-type-specifier in 2592 // base-clause, the program is ill-formed. 2593 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) { 2594 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2595 << CXXBaseDecl->getDeclName() 2596 << FA->isSpelledAsSealed(); 2597 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at) 2598 << CXXBaseDecl->getDeclName() << FA->getRange(); 2599 return nullptr; 2600 } 2601 2602 if (BaseDecl->isInvalidDecl()) 2603 Class->setInvalidDecl(); 2604 2605 // Create the base specifier. 2606 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, 2607 Class->getTagKind() == TTK_Class, 2608 Access, TInfo, EllipsisLoc); 2609} 2610 2611/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is 2612/// one entry in the base class list of a class specifier, for 2613/// example: 2614/// class foo : public bar, virtual private baz { 2615/// 'public bar' and 'virtual private baz' are each base-specifiers. 2616BaseResult 2617Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2618 ParsedAttributes &Attributes, 2619 bool Virtual, AccessSpecifier Access, 2620 ParsedType basetype, SourceLocation BaseLoc, 2621 SourceLocation EllipsisLoc) { 2622 if (!classdecl) 2623 return true; 2624 2625 AdjustDeclIfTemplate(classdecl); 2626 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2627 if (!Class) 2628 return true; 2629 2630 // We haven't yet attached the base specifiers. 2631 Class->setIsParsingBaseSpecifiers(); 2632 2633 // We do not support any C++11 attributes on base-specifiers yet. 2634 // Diagnose any attributes we see. 2635 for (const ParsedAttr &AL : Attributes) { 2636 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2637 continue; 2638 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute 2639 ? (unsigned)diag::warn_unknown_attribute_ignored 2640 : (unsigned)diag::err_base_specifier_attribute) 2641 << AL << AL.getRange(); 2642 } 2643 2644 TypeSourceInfo *TInfo = nullptr; 2645 GetTypeFromParser(basetype, &TInfo); 2646 2647 if (EllipsisLoc.isInvalid() && 2648 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2649 UPPC_BaseType)) 2650 return true; 2651 2652 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2653 Virtual, Access, TInfo, 2654 EllipsisLoc)) 2655 return BaseSpec; 2656 else 2657 Class->setInvalidDecl(); 2658 2659 return true; 2660} 2661 2662/// Use small set to collect indirect bases. As this is only used 2663/// locally, there's no need to abstract the small size parameter. 2664typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2665 2666/// Recursively add the bases of Type. Don't add Type itself. 2667static void 2668NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2669 const QualType &Type) 2670{ 2671 // Even though the incoming type is a base, it might not be 2672 // a class -- it could be a template parm, for instance. 2673 if (auto Rec = Type->getAs<RecordType>()) { 2674 auto Decl = Rec->getAsCXXRecordDecl(); 2675 2676 // Iterate over its bases. 2677 for (const auto &BaseSpec : Decl->bases()) { 2678 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2679 .getUnqualifiedType(); 2680 if (Set.insert(Base).second) 2681 // If we've not already seen it, recurse. 2682 NoteIndirectBases(Context, Set, Base); 2683 } 2684 } 2685} 2686 2687/// Performs the actual work of attaching the given base class 2688/// specifiers to a C++ class. 2689bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2690 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2691 if (Bases.empty()) 2692 return false; 2693 2694 // Used to keep track of which base types we have already seen, so 2695 // that we can properly diagnose redundant direct base types. Note 2696 // that the key is always the unqualified canonical type of the base 2697 // class. 2698 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2699 2700 // Used to track indirect bases so we can see if a direct base is 2701 // ambiguous. 2702 IndirectBaseSet IndirectBaseTypes; 2703 2704 // Copy non-redundant base specifiers into permanent storage. 2705 unsigned NumGoodBases = 0; 2706 bool Invalid = false; 2707 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2708 QualType NewBaseType 2709 = Context.getCanonicalType(Bases[idx]->getType()); 2710 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2711 2712 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2713 if (KnownBase) { 2714 // C++ [class.mi]p3: 2715 // A class shall not be specified as a direct base class of a 2716 // derived class more than once. 2717 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2718 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2719 2720 // Delete the duplicate base class specifier; we're going to 2721 // overwrite its pointer later. 2722 Context.Deallocate(Bases[idx]); 2723 2724 Invalid = true; 2725 } else { 2726 // Okay, add this new base class. 2727 KnownBase = Bases[idx]; 2728 Bases[NumGoodBases++] = Bases[idx]; 2729 2730 // Note this base's direct & indirect bases, if there could be ambiguity. 2731 if (Bases.size() > 1) 2732 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2733 2734 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2735 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2736 if (Class->isInterface() && 2737 (!RD->isInterfaceLike() || 2738 KnownBase->getAccessSpecifier() != AS_public)) { 2739 // The Microsoft extension __interface does not permit bases that 2740 // are not themselves public interfaces. 2741 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2742 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2743 << RD->getSourceRange(); 2744 Invalid = true; 2745 } 2746 if (RD->hasAttr<WeakAttr>()) 2747 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2748 } 2749 } 2750 } 2751 2752 // Attach the remaining base class specifiers to the derived class. 2753 Class->setBases(Bases.data(), NumGoodBases); 2754 2755 // Check that the only base classes that are duplicate are virtual. 2756 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2757 // Check whether this direct base is inaccessible due to ambiguity. 2758 QualType BaseType = Bases[idx]->getType(); 2759 2760 // Skip all dependent types in templates being used as base specifiers. 2761 // Checks below assume that the base specifier is a CXXRecord. 2762 if (BaseType->isDependentType()) 2763 continue; 2764 2765 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2766 .getUnqualifiedType(); 2767 2768 if (IndirectBaseTypes.count(CanonicalBase)) { 2769 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2770 /*DetectVirtual=*/true); 2771 bool found 2772 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2773 assert(found)((void)0); 2774 (void)found; 2775 2776 if (Paths.isAmbiguous(CanonicalBase)) 2777 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2778 << BaseType << getAmbiguousPathsDisplayString(Paths) 2779 << Bases[idx]->getSourceRange(); 2780 else 2781 assert(Bases[idx]->isVirtual())((void)0); 2782 } 2783 2784 // Delete the base class specifier, since its data has been copied 2785 // into the CXXRecordDecl. 2786 Context.Deallocate(Bases[idx]); 2787 } 2788 2789 return Invalid; 2790} 2791 2792/// ActOnBaseSpecifiers - Attach the given base specifiers to the 2793/// class, after checking whether there are any duplicate base 2794/// classes. 2795void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2796 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2797 if (!ClassDecl || Bases.empty()) 2798 return; 2799 2800 AdjustDeclIfTemplate(ClassDecl); 2801 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2802} 2803 2804/// Determine whether the type \p Derived is a C++ class that is 2805/// derived from the type \p Base. 2806bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2807 if (!getLangOpts().CPlusPlus) 2808 return false; 2809 2810 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2811 if (!DerivedRD) 2812 return false; 2813 2814 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2815 if (!BaseRD) 2816 return false; 2817 2818 // If either the base or the derived type is invalid, don't try to 2819 // check whether one is derived from the other. 2820 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 2821 return false; 2822 2823 // FIXME: In a modules build, do we need the entire path to be visible for us 2824 // to be able to use the inheritance relationship? 2825 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2826 return false; 2827 2828 return DerivedRD->isDerivedFrom(BaseRD); 2829} 2830 2831/// Determine whether the type \p Derived is a C++ class that is 2832/// derived from the type \p Base. 2833bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 2834 CXXBasePaths &Paths) { 2835 if (!getLangOpts().CPlusPlus) 2836 return false; 2837 2838 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 2839 if (!DerivedRD) 2840 return false; 2841 2842 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 2843 if (!BaseRD) 2844 return false; 2845 2846 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 2847 return false; 2848 2849 return DerivedRD->isDerivedFrom(BaseRD, Paths); 2850} 2851 2852static void BuildBasePathArray(const CXXBasePath &Path, 2853 CXXCastPath &BasePathArray) { 2854 // We first go backward and check if we have a virtual base. 2855 // FIXME: It would be better if CXXBasePath had the base specifier for 2856 // the nearest virtual base. 2857 unsigned Start = 0; 2858 for (unsigned I = Path.size(); I != 0; --I) { 2859 if (Path[I - 1].Base->isVirtual()) { 2860 Start = I - 1; 2861 break; 2862 } 2863 } 2864 2865 // Now add all bases. 2866 for (unsigned I = Start, E = Path.size(); I != E; ++I) 2867 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 2868} 2869 2870 2871void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 2872 CXXCastPath &BasePathArray) { 2873 assert(BasePathArray.empty() && "Base path array must be empty!")((void)0); 2874 assert(Paths.isRecordingPaths() && "Must record paths!")((void)0); 2875 return ::BuildBasePathArray(Paths.front(), BasePathArray); 2876} 2877/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base 2878/// conversion (where Derived and Base are class types) is 2879/// well-formed, meaning that the conversion is unambiguous (and 2880/// that all of the base classes are accessible). Returns true 2881/// and emits a diagnostic if the code is ill-formed, returns false 2882/// otherwise. Loc is the location where this routine should point to 2883/// if there is an error, and Range is the source range to highlight 2884/// if there is an error. 2885/// 2886/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the 2887/// diagnostic for the respective type of error will be suppressed, but the 2888/// check for ill-formed code will still be performed. 2889bool 2890Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2891 unsigned InaccessibleBaseID, 2892 unsigned AmbiguousBaseConvID, 2893 SourceLocation Loc, SourceRange Range, 2894 DeclarationName Name, 2895 CXXCastPath *BasePath, 2896 bool IgnoreAccess) { 2897 // First, determine whether the path from Derived to Base is 2898 // ambiguous. This is slightly more expensive than checking whether 2899 // the Derived to Base conversion exists, because here we need to 2900 // explore multiple paths to determine if there is an ambiguity. 2901 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2902 /*DetectVirtual=*/false); 2903 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2904 if (!DerivationOkay) 2905 return true; 2906 2907 const CXXBasePath *Path = nullptr; 2908 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 2909 Path = &Paths.front(); 2910 2911 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 2912 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 2913 // user to access such bases. 2914 if (!Path && getLangOpts().MSVCCompat) { 2915 for (const CXXBasePath &PossiblePath : Paths) { 2916 if (PossiblePath.size() == 1) { 2917 Path = &PossiblePath; 2918 if (AmbiguousBaseConvID) 2919 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 2920 << Base << Derived << Range; 2921 break; 2922 } 2923 } 2924 } 2925 2926 if (Path) { 2927 if (!IgnoreAccess) { 2928 // Check that the base class can be accessed. 2929 switch ( 2930 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 2931 case AR_inaccessible: 2932 return true; 2933 case AR_accessible: 2934 case AR_dependent: 2935 case AR_delayed: 2936 break; 2937 } 2938 } 2939 2940 // Build a base path if necessary. 2941 if (BasePath) 2942 ::BuildBasePathArray(*Path, *BasePath); 2943 return false; 2944 } 2945 2946 if (AmbiguousBaseConvID) { 2947 // We know that the derived-to-base conversion is ambiguous, and 2948 // we're going to produce a diagnostic. Perform the derived-to-base 2949 // search just one more time to compute all of the possible paths so 2950 // that we can print them out. This is more expensive than any of 2951 // the previous derived-to-base checks we've done, but at this point 2952 // performance isn't as much of an issue. 2953 Paths.clear(); 2954 Paths.setRecordingPaths(true); 2955 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 2956 assert(StillOkay && "Can only be used with a derived-to-base conversion")((void)0); 2957 (void)StillOkay; 2958 2959 // Build up a textual representation of the ambiguous paths, e.g., 2960 // D -> B -> A, that will be used to illustrate the ambiguous 2961 // conversions in the diagnostic. We only print one of the paths 2962 // to each base class subobject. 2963 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2964 2965 Diag(Loc, AmbiguousBaseConvID) 2966 << Derived << Base << PathDisplayStr << Range << Name; 2967 } 2968 return true; 2969} 2970 2971bool 2972Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 2973 SourceLocation Loc, SourceRange Range, 2974 CXXCastPath *BasePath, 2975 bool IgnoreAccess) { 2976 return CheckDerivedToBaseConversion( 2977 Derived, Base, diag::err_upcast_to_inaccessible_base, 2978 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 2979 BasePath, IgnoreAccess); 2980} 2981 2982 2983/// Builds a string representing ambiguous paths from a 2984/// specific derived class to different subobjects of the same base 2985/// class. 2986/// 2987/// This function builds a string that can be used in error messages 2988/// to show the different paths that one can take through the 2989/// inheritance hierarchy to go from the derived class to different 2990/// subobjects of a base class. The result looks something like this: 2991/// @code 2992/// struct D -> struct B -> struct A 2993/// struct D -> struct C -> struct A 2994/// @endcode 2995std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 2996 std::string PathDisplayStr; 2997 std::set<unsigned> DisplayedPaths; 2998 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 2999 Path != Paths.end(); ++Path) { 3000 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3001 // We haven't displayed a path to this particular base 3002 // class subobject yet. 3003 PathDisplayStr += "\n "; 3004 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3005 for (CXXBasePath::const_iterator Element = Path->begin(); 3006 Element != Path->end(); ++Element) 3007 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3008 } 3009 } 3010 3011 return PathDisplayStr; 3012} 3013 3014//===----------------------------------------------------------------------===// 3015// C++ class member Handling 3016//===----------------------------------------------------------------------===// 3017 3018/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. 3019bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3020 SourceLocation ColonLoc, 3021 const ParsedAttributesView &Attrs) { 3022 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((void)0); 3023 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3024 ASLoc, ColonLoc); 3025 CurContext->addHiddenDecl(ASDecl); 3026 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3027} 3028 3029/// CheckOverrideControl - Check C++11 override control semantics. 3030void Sema::CheckOverrideControl(NamedDecl *D) { 3031 if (D->isInvalidDecl()) 3032 return; 3033 3034 // We only care about "override" and "final" declarations. 3035 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3036 return; 3037 3038 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3039 3040 // We can't check dependent instance methods. 3041 if (MD && MD->isInstance() && 3042 (MD->getParent()->hasAnyDependentBases() || 3043 MD->getType()->isDependentType())) 3044 return; 3045 3046 if (MD && !MD->isVirtual()) { 3047 // If we have a non-virtual method, check if if hides a virtual method. 3048 // (In that case, it's most likely the method has the wrong type.) 3049 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3050 FindHiddenVirtualMethods(MD, OverloadedMethods); 3051 3052 if (!OverloadedMethods.empty()) { 3053 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3054 Diag(OA->getLocation(), 3055 diag::override_keyword_hides_virtual_member_function) 3056 << "override" << (OverloadedMethods.size() > 1); 3057 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3058 Diag(FA->getLocation(), 3059 diag::override_keyword_hides_virtual_member_function) 3060 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3061 << (OverloadedMethods.size() > 1); 3062 } 3063 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3064 MD->setInvalidDecl(); 3065 return; 3066 } 3067 // Fall through into the general case diagnostic. 3068 // FIXME: We might want to attempt typo correction here. 3069 } 3070 3071 if (!MD || !MD->isVirtual()) { 3072 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3073 Diag(OA->getLocation(), 3074 diag::override_keyword_only_allowed_on_virtual_member_functions) 3075 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3076 D->dropAttr<OverrideAttr>(); 3077 } 3078 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3079 Diag(FA->getLocation(), 3080 diag::override_keyword_only_allowed_on_virtual_member_functions) 3081 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3082 << FixItHint::CreateRemoval(FA->getLocation()); 3083 D->dropAttr<FinalAttr>(); 3084 } 3085 return; 3086 } 3087 3088 // C++11 [class.virtual]p5: 3089 // If a function is marked with the virt-specifier override and 3090 // does not override a member function of a base class, the program is 3091 // ill-formed. 3092 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3093 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3094 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3095 << MD->getDeclName(); 3096} 3097 3098void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3099 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3100 return; 3101 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3102 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3103 return; 3104 3105 SourceLocation Loc = MD->getLocation(); 3106 SourceLocation SpellingLoc = Loc; 3107 if (getSourceManager().isMacroArgExpansion(Loc)) 3108 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3109 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3110 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3111 return; 3112 3113 if (MD->size_overridden_methods() > 0) { 3114 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3115 unsigned DiagID = 3116 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3117 ? DiagInconsistent 3118 : DiagSuggest; 3119 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3120 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3121 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3122 }; 3123 if (isa<CXXDestructorDecl>(MD)) 3124 EmitDiag( 3125 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3126 diag::warn_suggest_destructor_marked_not_override_overriding); 3127 else 3128 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3129 diag::warn_suggest_function_marked_not_override_overriding); 3130 } 3131} 3132 3133/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 3134/// function overrides a virtual member function marked 'final', according to 3135/// C++11 [class.virtual]p4. 3136bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3137 const CXXMethodDecl *Old) { 3138 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3139 if (!FA) 3140 return false; 3141 3142 Diag(New->getLocation(), diag::err_final_function_overridden) 3143 << New->getDeclName() 3144 << FA->isSpelledAsSealed(); 3145 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3146 return true; 3147} 3148 3149static bool InitializationHasSideEffects(const FieldDecl &FD) { 3150 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3151 // FIXME: Destruction of ObjC lifetime types has side-effects. 3152 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3153 return !RD->isCompleteDefinition() || 3154 !RD->hasTrivialDefaultConstructor() || 3155 !RD->hasTrivialDestructor(); 3156 return false; 3157} 3158 3159static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) { 3160 ParsedAttributesView::const_iterator Itr = 3161 llvm::find_if(list, [](const ParsedAttr &AL) { 3162 return AL.isDeclspecPropertyAttribute(); 3163 }); 3164 if (Itr != list.end()) 3165 return &*Itr; 3166 return nullptr; 3167} 3168 3169// Check if there is a field shadowing. 3170void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3171 DeclarationName FieldName, 3172 const CXXRecordDecl *RD, 3173 bool DeclIsField) { 3174 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3175 return; 3176 3177 // To record a shadowed field in a base 3178 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3179 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3180 CXXBasePath &Path) { 3181 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3182 // Record an ambiguous path directly 3183 if (Bases.find(Base) != Bases.end()) 3184 return true; 3185 for (const auto Field : Base->lookup(FieldName)) { 3186 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3187 Field->getAccess() != AS_private) { 3188 assert(Field->getAccess() != AS_none)((void)0); 3189 assert(Bases.find(Base) == Bases.end())((void)0); 3190 Bases[Base] = Field; 3191 return true; 3192 } 3193 } 3194 return false; 3195 }; 3196 3197 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3198 /*DetectVirtual=*/true); 3199 if (!RD->lookupInBases(FieldShadowed, Paths)) 3200 return; 3201 3202 for (const auto &P : Paths) { 3203 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3204 auto It = Bases.find(Base); 3205 // Skip duplicated bases 3206 if (It == Bases.end()) 3207 continue; 3208 auto BaseField = It->second; 3209 assert(BaseField->getAccess() != AS_private)((void)0); 3210 if (AS_none != 3211 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3212 Diag(Loc, diag::warn_shadow_field) 3213 << FieldName << RD << Base << DeclIsField; 3214 Diag(BaseField->getLocation(), diag::note_shadow_field); 3215 Bases.erase(It); 3216 } 3217 } 3218} 3219 3220/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member 3221/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the 3222/// bitfield width if there is one, 'InitExpr' specifies the initializer if 3223/// one has been parsed, and 'InitStyle' is set if an in-class initializer is 3224/// present (but parsing it has been deferred). 3225NamedDecl * 3226Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3227 MultiTemplateParamsArg TemplateParameterLists, 3228 Expr *BW, const VirtSpecifiers &VS, 3229 InClassInitStyle InitStyle) { 3230 const DeclSpec &DS = D.getDeclSpec(); 3231 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3232 DeclarationName Name = NameInfo.getName(); 3233 SourceLocation Loc = NameInfo.getLoc(); 3234 3235 // For anonymous bitfields, the location should point to the type. 3236 if (Loc.isInvalid()) 3237 Loc = D.getBeginLoc(); 3238 3239 Expr *BitWidth = static_cast<Expr*>(BW); 3240 3241 assert(isa<CXXRecordDecl>(CurContext))((void)0); 3242 assert(!DS.isFriendSpecified())((void)0); 3243 3244 bool isFunc = D.isDeclarationOfFunction(); 3245 const ParsedAttr *MSPropertyAttr = 3246 getMSPropertyAttr(D.getDeclSpec().getAttributes()); 3247 3248 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3249 // The Microsoft extension __interface only permits public member functions 3250 // and prohibits constructors, destructors, operators, non-public member 3251 // functions, static methods and data members. 3252 unsigned InvalidDecl; 3253 bool ShowDeclName = true; 3254 if (!isFunc && 3255 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3256 InvalidDecl = 0; 3257 else if (!isFunc) 3258 InvalidDecl = 1; 3259 else if (AS != AS_public) 3260 InvalidDecl = 2; 3261 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3262 InvalidDecl = 3; 3263 else switch (Name.getNameKind()) { 3264 case DeclarationName::CXXConstructorName: 3265 InvalidDecl = 4; 3266 ShowDeclName = false; 3267 break; 3268 3269 case DeclarationName::CXXDestructorName: 3270 InvalidDecl = 5; 3271 ShowDeclName = false; 3272 break; 3273 3274 case DeclarationName::CXXOperatorName: 3275 case DeclarationName::CXXConversionFunctionName: 3276 InvalidDecl = 6; 3277 break; 3278 3279 default: 3280 InvalidDecl = 0; 3281 break; 3282 } 3283 3284 if (InvalidDecl) { 3285 if (ShowDeclName) 3286 Diag(Loc, diag::err_invalid_member_in_interface) 3287 << (InvalidDecl-1) << Name; 3288 else 3289 Diag(Loc, diag::err_invalid_member_in_interface) 3290 << (InvalidDecl-1) << ""; 3291 return nullptr; 3292 } 3293 } 3294 3295 // C++ 9.2p6: A member shall not be declared to have automatic storage 3296 // duration (auto, register) or with the extern storage-class-specifier. 3297 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3298 // data members and cannot be applied to names declared const or static, 3299 // and cannot be applied to reference members. 3300 switch (DS.getStorageClassSpec()) { 3301 case DeclSpec::SCS_unspecified: 3302 case DeclSpec::SCS_typedef: 3303 case DeclSpec::SCS_static: 3304 break; 3305 case DeclSpec::SCS_mutable: 3306 if (isFunc) { 3307 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3308 3309 // FIXME: It would be nicer if the keyword was ignored only for this 3310 // declarator. Otherwise we could get follow-up errors. 3311 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3312 } 3313 break; 3314 default: 3315 Diag(DS.getStorageClassSpecLoc(), 3316 diag::err_storageclass_invalid_for_member); 3317 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3318 break; 3319 } 3320 3321 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3322 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3323 !isFunc); 3324 3325 if (DS.hasConstexprSpecifier() && isInstField) { 3326 SemaDiagnosticBuilder B = 3327 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3328 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3329 if (InitStyle == ICIS_NoInit) { 3330 B << 0 << 0; 3331 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3332 B << FixItHint::CreateRemoval(ConstexprLoc); 3333 else { 3334 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3335 D.getMutableDeclSpec().ClearConstexprSpec(); 3336 const char *PrevSpec; 3337 unsigned DiagID; 3338 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3339 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3340 (void)Failed; 3341 assert(!Failed && "Making a constexpr member const shouldn't fail")((void)0); 3342 } 3343 } else { 3344 B << 1; 3345 const char *PrevSpec; 3346 unsigned DiagID; 3347 if (D.getMutableDeclSpec().SetStorageClassSpec( 3348 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3349 Context.getPrintingPolicy())) { 3350 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((void)0) 3351 "This is the only DeclSpec that should fail to be applied")((void)0); 3352 B << 1; 3353 } else { 3354 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3355 isInstField = false; 3356 } 3357 } 3358 } 3359 3360 NamedDecl *Member; 3361 if (isInstField) { 3362 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3363 3364 // Data members must have identifiers for names. 3365 if (!Name.isIdentifier()) { 3366 Diag(Loc, diag::err_bad_variable_name) 3367 << Name; 3368 return nullptr; 3369 } 3370 3371 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3372 3373 // Member field could not be with "template" keyword. 3374 // So TemplateParameterLists should be empty in this case. 3375 if (TemplateParameterLists.size()) { 3376 TemplateParameterList* TemplateParams = TemplateParameterLists[0]; 3377 if (TemplateParams->size()) { 3378 // There is no such thing as a member field template. 3379 Diag(D.getIdentifierLoc(), diag::err_template_member) 3380 << II 3381 << SourceRange(TemplateParams->getTemplateLoc(), 3382 TemplateParams->getRAngleLoc()); 3383 } else { 3384 // There is an extraneous 'template<>' for this member. 3385 Diag(TemplateParams->getTemplateLoc(), 3386 diag::err_template_member_noparams) 3387 << II 3388 << SourceRange(TemplateParams->getTemplateLoc(), 3389 TemplateParams->getRAngleLoc()); 3390 } 3391 return nullptr; 3392 } 3393 3394 if (SS.isSet() && !SS.isInvalid()) { 3395 // The user provided a superfluous scope specifier inside a class 3396 // definition: 3397 // 3398 // class X { 3399 // int X::member; 3400 // }; 3401 if (DeclContext *DC = computeDeclContext(SS, false)) 3402 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3403 D.getName().getKind() == 3404 UnqualifiedIdKind::IK_TemplateId); 3405 else 3406 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3407 << Name << SS.getRange(); 3408 3409 SS.clear(); 3410 } 3411 3412 if (MSPropertyAttr) { 3413 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3414 BitWidth, InitStyle, AS, *MSPropertyAttr); 3415 if (!Member) 3416 return nullptr; 3417 isInstField = false; 3418 } else { 3419 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3420 BitWidth, InitStyle, AS); 3421 if (!Member) 3422 return nullptr; 3423 } 3424 3425 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3426 } else { 3427 Member = HandleDeclarator(S, D, TemplateParameterLists); 3428 if (!Member) 3429 return nullptr; 3430 3431 // Non-instance-fields can't have a bitfield. 3432 if (BitWidth) { 3433 if (Member->isInvalidDecl()) { 3434 // don't emit another diagnostic. 3435 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3436 // C++ 9.6p3: A bit-field shall not be a static member. 3437 // "static member 'A' cannot be a bit-field" 3438 Diag(Loc, diag::err_static_not_bitfield) 3439 << Name << BitWidth->getSourceRange(); 3440 } else if (isa<TypedefDecl>(Member)) { 3441 // "typedef member 'x' cannot be a bit-field" 3442 Diag(Loc, diag::err_typedef_not_bitfield) 3443 << Name << BitWidth->getSourceRange(); 3444 } else { 3445 // A function typedef ("typedef int f(); f a;"). 3446 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3447 Diag(Loc, diag::err_not_integral_type_bitfield) 3448 << Name << cast<ValueDecl>(Member)->getType() 3449 << BitWidth->getSourceRange(); 3450 } 3451 3452 BitWidth = nullptr; 3453 Member->setInvalidDecl(); 3454 } 3455 3456 NamedDecl *NonTemplateMember = Member; 3457 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3458 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3459 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3460 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3461 3462 Member->setAccess(AS); 3463 3464 // If we have declared a member function template or static data member 3465 // template, set the access of the templated declaration as well. 3466 if (NonTemplateMember != Member) 3467 NonTemplateMember->setAccess(AS); 3468 3469 // C++ [temp.deduct.guide]p3: 3470 // A deduction guide [...] for a member class template [shall be 3471 // declared] with the same access [as the template]. 3472 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3473 auto *TD = DG->getDeducedTemplate(); 3474 // Access specifiers are only meaningful if both the template and the 3475 // deduction guide are from the same scope. 3476 if (AS != TD->getAccess() && 3477 TD->getDeclContext()->getRedeclContext()->Equals( 3478 DG->getDeclContext()->getRedeclContext())) { 3479 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3480 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3481 << TD->getAccess(); 3482 const AccessSpecDecl *LastAccessSpec = nullptr; 3483 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3484 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3485 LastAccessSpec = AccessSpec; 3486 } 3487 assert(LastAccessSpec && "differing access with no access specifier")((void)0); 3488 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3489 << AS; 3490 } 3491 } 3492 } 3493 3494 if (VS.isOverrideSpecified()) 3495 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(), 3496 AttributeCommonInfo::AS_Keyword)); 3497 if (VS.isFinalSpecified()) 3498 Member->addAttr(FinalAttr::Create( 3499 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword, 3500 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed()))); 3501 3502 if (VS.getLastLocation().isValid()) { 3503 // Update the end location of a method that has a virt-specifiers. 3504 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3505 MD->setRangeEnd(VS.getLastLocation()); 3506 } 3507 3508 CheckOverrideControl(Member); 3509 3510 assert((Name || isInstField) && "No identifier for non-field ?")((void)0); 3511 3512 if (isInstField) { 3513 FieldDecl *FD = cast<FieldDecl>(Member); 3514 FieldCollector->Add(FD); 3515 3516 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) { 3517 // Remember all explicit private FieldDecls that have a name, no side 3518 // effects and are not part of a dependent type declaration. 3519 if (!FD->isImplicit() && FD->getDeclName() && 3520 FD->getAccess() == AS_private && 3521 !FD->hasAttr<UnusedAttr>() && 3522 !FD->getParent()->isDependentContext() && 3523 !InitializationHasSideEffects(*FD)) 3524 UnusedPrivateFields.insert(FD); 3525 } 3526 } 3527 3528 return Member; 3529} 3530 3531namespace { 3532 class UninitializedFieldVisitor 3533 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3534 Sema &S; 3535 // List of Decls to generate a warning on. Also remove Decls that become 3536 // initialized. 3537 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3538 // List of base classes of the record. Classes are removed after their 3539 // initializers. 3540 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3541 // Vector of decls to be removed from the Decl set prior to visiting the 3542 // nodes. These Decls may have been initialized in the prior initializer. 3543 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3544 // If non-null, add a note to the warning pointing back to the constructor. 3545 const CXXConstructorDecl *Constructor; 3546 // Variables to hold state when processing an initializer list. When 3547 // InitList is true, special case initialization of FieldDecls matching 3548 // InitListFieldDecl. 3549 bool InitList; 3550 FieldDecl *InitListFieldDecl; 3551 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3552 3553 public: 3554 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3555 UninitializedFieldVisitor(Sema &S, 3556 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3557 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3558 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3559 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3560 3561 // Returns true if the use of ME is not an uninitialized use. 3562 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3563 bool CheckReferenceOnly) { 3564 llvm::SmallVector<FieldDecl*, 4> Fields; 3565 bool ReferenceField = false; 3566 while (ME) { 3567 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3568 if (!FD) 3569 return false; 3570 Fields.push_back(FD); 3571 if (FD->getType()->isReferenceType()) 3572 ReferenceField = true; 3573 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3574 } 3575 3576 // Binding a reference to an uninitialized field is not an 3577 // uninitialized use. 3578 if (CheckReferenceOnly && !ReferenceField) 3579 return true; 3580 3581 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3582 // Discard the first field since it is the field decl that is being 3583 // initialized. 3584 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) { 3585 UsedFieldIndex.push_back((*I)->getFieldIndex()); 3586 } 3587 3588 for (auto UsedIter = UsedFieldIndex.begin(), 3589 UsedEnd = UsedFieldIndex.end(), 3590 OrigIter = InitFieldIndex.begin(), 3591 OrigEnd = InitFieldIndex.end(); 3592 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3593 if (*UsedIter < *OrigIter) 3594 return true; 3595 if (*UsedIter > *OrigIter) 3596 break; 3597 } 3598 3599 return false; 3600 } 3601 3602 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3603 bool AddressOf) { 3604 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3605 return; 3606 3607 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3608 // or union. 3609 MemberExpr *FieldME = ME; 3610 3611 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3612 3613 Expr *Base = ME; 3614 while (MemberExpr *SubME = 3615 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3616 3617 if (isa<VarDecl>(SubME->getMemberDecl())) 3618 return; 3619 3620 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3621 if (!FD->isAnonymousStructOrUnion()) 3622 FieldME = SubME; 3623 3624 if (!FieldME->getType().isPODType(S.Context)) 3625 AllPODFields = false; 3626 3627 Base = SubME->getBase(); 3628 } 3629 3630 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3631 Visit(Base); 3632 return; 3633 } 3634 3635 if (AddressOf && AllPODFields) 3636 return; 3637 3638 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3639 3640 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3641 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3642 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3643 } 3644 3645 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3646 QualType T = BaseCast->getType(); 3647 if (T->isPointerType() && 3648 BaseClasses.count(T->getPointeeType())) { 3649 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3650 << T->getPointeeType() << FoundVD; 3651 } 3652 } 3653 } 3654 3655 if (!Decls.count(FoundVD)) 3656 return; 3657 3658 const bool IsReference = FoundVD->getType()->isReferenceType(); 3659 3660 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3661 // Special checking for initializer lists. 3662 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3663 return; 3664 } 3665 } else { 3666 // Prevent double warnings on use of unbounded references. 3667 if (CheckReferenceOnly && !IsReference) 3668 return; 3669 } 3670 3671 unsigned diag = IsReference 3672 ? diag::warn_reference_field_is_uninit 3673 : diag::warn_field_is_uninit; 3674 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3675 if (Constructor) 3676 S.Diag(Constructor->getLocation(), 3677 diag::note_uninit_in_this_constructor) 3678 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3679 3680 } 3681 3682 void HandleValue(Expr *E, bool AddressOf) { 3683 E = E->IgnoreParens(); 3684 3685 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3686 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3687 AddressOf /*AddressOf*/); 3688 return; 3689 } 3690 3691 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3692 Visit(CO->getCond()); 3693 HandleValue(CO->getTrueExpr(), AddressOf); 3694 HandleValue(CO->getFalseExpr(), AddressOf); 3695 return; 3696 } 3697 3698 if (BinaryConditionalOperator *BCO = 3699 dyn_cast<BinaryConditionalOperator>(E)) { 3700 Visit(BCO->getCond()); 3701 HandleValue(BCO->getFalseExpr(), AddressOf); 3702 return; 3703 } 3704 3705 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3706 HandleValue(OVE->getSourceExpr(), AddressOf); 3707 return; 3708 } 3709 3710 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3711 switch (BO->getOpcode()) { 3712 default: 3713 break; 3714 case(BO_PtrMemD): 3715 case(BO_PtrMemI): 3716 HandleValue(BO->getLHS(), AddressOf); 3717 Visit(BO->getRHS()); 3718 return; 3719 case(BO_Comma): 3720 Visit(BO->getLHS()); 3721 HandleValue(BO->getRHS(), AddressOf); 3722 return; 3723 } 3724 } 3725 3726 Visit(E); 3727 } 3728 3729 void CheckInitListExpr(InitListExpr *ILE) { 3730 InitFieldIndex.push_back(0); 3731 for (auto Child : ILE->children()) { 3732 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3733 CheckInitListExpr(SubList); 3734 } else { 3735 Visit(Child); 3736 } 3737 ++InitFieldIndex.back(); 3738 } 3739 InitFieldIndex.pop_back(); 3740 } 3741 3742 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3743 FieldDecl *Field, const Type *BaseClass) { 3744 // Remove Decls that may have been initialized in the previous 3745 // initializer. 3746 for (ValueDecl* VD : DeclsToRemove) 3747 Decls.erase(VD); 3748 DeclsToRemove.clear(); 3749 3750 Constructor = FieldConstructor; 3751 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3752 3753 if (ILE && Field) { 3754 InitList = true; 3755 InitListFieldDecl = Field; 3756 InitFieldIndex.clear(); 3757 CheckInitListExpr(ILE); 3758 } else { 3759 InitList = false; 3760 Visit(E); 3761 } 3762 3763 if (Field) 3764 Decls.erase(Field); 3765 if (BaseClass) 3766 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3767 } 3768 3769 void VisitMemberExpr(MemberExpr *ME) { 3770 // All uses of unbounded reference fields will warn. 3771 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3772 } 3773 3774 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3775 if (E->getCastKind() == CK_LValueToRValue) { 3776 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3777 return; 3778 } 3779 3780 Inherited::VisitImplicitCastExpr(E); 3781 } 3782 3783 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3784 if (E->getConstructor()->isCopyConstructor()) { 3785 Expr *ArgExpr = E->getArg(0); 3786 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3787 if (ILE->getNumInits() == 1) 3788 ArgExpr = ILE->getInit(0); 3789 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3790 if (ICE->getCastKind() == CK_NoOp) 3791 ArgExpr = ICE->getSubExpr(); 3792 HandleValue(ArgExpr, false /*AddressOf*/); 3793 return; 3794 } 3795 Inherited::VisitCXXConstructExpr(E); 3796 } 3797 3798 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3799 Expr *Callee = E->getCallee(); 3800 if (isa<MemberExpr>(Callee)) { 3801 HandleValue(Callee, false /*AddressOf*/); 3802 for (auto Arg : E->arguments()) 3803 Visit(Arg); 3804 return; 3805 } 3806 3807 Inherited::VisitCXXMemberCallExpr(E); 3808 } 3809 3810 void VisitCallExpr(CallExpr *E) { 3811 // Treat std::move as a use. 3812 if (E->isCallToStdMove()) { 3813 HandleValue(E->getArg(0), /*AddressOf=*/false); 3814 return; 3815 } 3816 3817 Inherited::VisitCallExpr(E); 3818 } 3819 3820 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3821 Expr *Callee = E->getCallee(); 3822 3823 if (isa<UnresolvedLookupExpr>(Callee)) 3824 return Inherited::VisitCXXOperatorCallExpr(E); 3825 3826 Visit(Callee); 3827 for (auto Arg : E->arguments()) 3828 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3829 } 3830 3831 void VisitBinaryOperator(BinaryOperator *E) { 3832 // If a field assignment is detected, remove the field from the 3833 // uninitiailized field set. 3834 if (E->getOpcode() == BO_Assign) 3835 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3836 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3837 if (!FD->getType()->isReferenceType()) 3838 DeclsToRemove.push_back(FD); 3839 3840 if (E->isCompoundAssignmentOp()) { 3841 HandleValue(E->getLHS(), false /*AddressOf*/); 3842 Visit(E->getRHS()); 3843 return; 3844 } 3845 3846 Inherited::VisitBinaryOperator(E); 3847 } 3848 3849 void VisitUnaryOperator(UnaryOperator *E) { 3850 if (E->isIncrementDecrementOp()) { 3851 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3852 return; 3853 } 3854 if (E->getOpcode() == UO_AddrOf) { 3855 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 3856 HandleValue(ME->getBase(), true /*AddressOf*/); 3857 return; 3858 } 3859 } 3860 3861 Inherited::VisitUnaryOperator(E); 3862 } 3863 }; 3864 3865 // Diagnose value-uses of fields to initialize themselves, e.g. 3866 // foo(foo) 3867 // where foo is not also a parameter to the constructor. 3868 // Also diagnose across field uninitialized use such as 3869 // x(y), y(x) 3870 // TODO: implement -Wuninitialized and fold this into that framework. 3871 static void DiagnoseUninitializedFields( 3872 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 3873 3874 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 3875 Constructor->getLocation())) { 3876 return; 3877 } 3878 3879 if (Constructor->isInvalidDecl()) 3880 return; 3881 3882 const CXXRecordDecl *RD = Constructor->getParent(); 3883 3884 if (RD->isDependentContext()) 3885 return; 3886 3887 // Holds fields that are uninitialized. 3888 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 3889 3890 // At the beginning, all fields are uninitialized. 3891 for (auto *I : RD->decls()) { 3892 if (auto *FD = dyn_cast<FieldDecl>(I)) { 3893 UninitializedFields.insert(FD); 3894 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 3895 UninitializedFields.insert(IFD->getAnonField()); 3896 } 3897 } 3898 3899 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 3900 for (auto I : RD->bases()) 3901 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 3902 3903 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3904 return; 3905 3906 UninitializedFieldVisitor UninitializedChecker(SemaRef, 3907 UninitializedFields, 3908 UninitializedBaseClasses); 3909 3910 for (const auto *FieldInit : Constructor->inits()) { 3911 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 3912 break; 3913 3914 Expr *InitExpr = FieldInit->getInit(); 3915 if (!InitExpr) 3916 continue; 3917 3918 if (CXXDefaultInitExpr *Default = 3919 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 3920 InitExpr = Default->getExpr(); 3921 if (!InitExpr) 3922 continue; 3923 // In class initializers will point to the constructor. 3924 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 3925 FieldInit->getAnyMember(), 3926 FieldInit->getBaseClass()); 3927 } else { 3928 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 3929 FieldInit->getAnyMember(), 3930 FieldInit->getBaseClass()); 3931 } 3932 } 3933 } 3934} // namespace 3935 3936/// Enter a new C++ default initializer scope. After calling this, the 3937/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if 3938/// parsing or instantiating the initializer failed. 3939void Sema::ActOnStartCXXInClassMemberInitializer() { 3940 // Create a synthetic function scope to represent the call to the constructor 3941 // that notionally surrounds a use of this initializer. 3942 PushFunctionScope(); 3943} 3944 3945void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 3946 if (!D.isFunctionDeclarator()) 3947 return; 3948 auto &FTI = D.getFunctionTypeInfo(); 3949 if (!FTI.Params) 3950 return; 3951 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 3952 FTI.NumParams)) { 3953 auto *ParamDecl = cast<NamedDecl>(Param.Param); 3954 if (ParamDecl->getDeclName()) 3955 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 3956 } 3957} 3958 3959ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 3960 return ActOnRequiresClause(ConstraintExpr); 3961} 3962 3963ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 3964 if (ConstraintExpr.isInvalid()) 3965 return ExprError(); 3966 3967 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 3968 if (ConstraintExpr.isInvalid()) 3969 return ExprError(); 3970 3971 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 3972 UPPC_RequiresClause)) 3973 return ExprError(); 3974 3975 return ConstraintExpr; 3976} 3977 3978/// This is invoked after parsing an in-class initializer for a 3979/// non-static C++ class member, and after instantiating an in-class initializer 3980/// in a class template. Such actions are deferred until the class is complete. 3981void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 3982 SourceLocation InitLoc, 3983 Expr *InitExpr) { 3984 // Pop the notional constructor scope we created earlier. 3985 PopFunctionScopeInfo(nullptr, D); 3986 3987 FieldDecl *FD = dyn_cast<FieldDecl>(D); 3988 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&((void)0) 3989 "must set init style when field is created")((void)0); 3990 3991 if (!InitExpr) { 3992 D->setInvalidDecl(); 3993 if (FD) 3994 FD->removeInClassInitializer(); 3995 return; 3996 } 3997 3998 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { 3999 FD->setInvalidDecl(); 4000 FD->removeInClassInitializer(); 4001 return; 4002 } 4003 4004 ExprResult Init = InitExpr; 4005 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { 4006 InitializedEntity Entity = 4007 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4008 InitializationKind Kind = 4009 FD->getInClassInitStyle() == ICIS_ListInit 4010 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4011 InitExpr->getBeginLoc(), 4012 InitExpr->getEndLoc()) 4013 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4014 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4015 Init = Seq.Perform(*this, Entity, Kind, InitExpr); 4016 if (Init.isInvalid()) { 4017 FD->setInvalidDecl(); 4018 return; 4019 } 4020 } 4021 4022 // C++11 [class.base.init]p7: 4023 // The initialization of each base and member constitutes a 4024 // full-expression. 4025 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false); 4026 if (Init.isInvalid()) { 4027 FD->setInvalidDecl(); 4028 return; 4029 } 4030 4031 InitExpr = Init.get(); 4032 4033 FD->setInClassInitializer(InitExpr); 4034} 4035 4036/// Find the direct and/or virtual base specifiers that 4037/// correspond to the given base type, for use in base initialization 4038/// within a constructor. 4039static bool FindBaseInitializer(Sema &SemaRef, 4040 CXXRecordDecl *ClassDecl, 4041 QualType BaseType, 4042 const CXXBaseSpecifier *&DirectBaseSpec, 4043 const CXXBaseSpecifier *&VirtualBaseSpec) { 4044 // First, check for a direct base class. 4045 DirectBaseSpec = nullptr; 4046 for (const auto &Base : ClassDecl->bases()) { 4047 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4048 // We found a direct base of this type. That's what we're 4049 // initializing. 4050 DirectBaseSpec = &Base; 4051 break; 4052 } 4053 } 4054 4055 // Check for a virtual base class. 4056 // FIXME: We might be able to short-circuit this if we know in advance that 4057 // there are no virtual bases. 4058 VirtualBaseSpec = nullptr; 4059 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4060 // We haven't found a base yet; search the class hierarchy for a 4061 // virtual base class. 4062 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4063 /*DetectVirtual=*/false); 4064 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4065 SemaRef.Context.getTypeDeclType(ClassDecl), 4066 BaseType, Paths)) { 4067 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4068 Path != Paths.end(); ++Path) { 4069 if (Path->back().Base->isVirtual()) { 4070 VirtualBaseSpec = Path->back().Base; 4071 break; 4072 } 4073 } 4074 } 4075 } 4076 4077 return DirectBaseSpec || VirtualBaseSpec; 4078} 4079 4080/// Handle a C++ member initializer using braced-init-list syntax. 4081MemInitResult 4082Sema::ActOnMemInitializer(Decl *ConstructorD, 4083 Scope *S, 4084 CXXScopeSpec &SS, 4085 IdentifierInfo *MemberOrBase, 4086 ParsedType TemplateTypeTy, 4087 const DeclSpec &DS, 4088 SourceLocation IdLoc, 4089 Expr *InitList, 4090 SourceLocation EllipsisLoc) { 4091 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4092 DS, IdLoc, InitList, 4093 EllipsisLoc); 4094} 4095 4096/// Handle a C++ member initializer using parentheses syntax. 4097MemInitResult 4098Sema::ActOnMemInitializer(Decl *ConstructorD, 4099 Scope *S, 4100 CXXScopeSpec &SS, 4101 IdentifierInfo *MemberOrBase, 4102 ParsedType TemplateTypeTy, 4103 const DeclSpec &DS, 4104 SourceLocation IdLoc, 4105 SourceLocation LParenLoc, 4106 ArrayRef<Expr *> Args, 4107 SourceLocation RParenLoc, 4108 SourceLocation EllipsisLoc) { 4109 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4110 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4111 DS, IdLoc, List, EllipsisLoc); 4112} 4113 4114namespace { 4115 4116// Callback to only accept typo corrections that can be a valid C++ member 4117// intializer: either a non-static field member or a base class. 4118class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4119public: 4120 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4121 : ClassDecl(ClassDecl) {} 4122 4123 bool ValidateCandidate(const TypoCorrection &candidate) override { 4124 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4125 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4126 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4127 return isa<TypeDecl>(ND); 4128 } 4129 return false; 4130 } 4131 4132 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4133 return std::make_unique<MemInitializerValidatorCCC>(*this); 4134 } 4135 4136private: 4137 CXXRecordDecl *ClassDecl; 4138}; 4139 4140} 4141 4142ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4143 CXXScopeSpec &SS, 4144 ParsedType TemplateTypeTy, 4145 IdentifierInfo *MemberOrBase) { 4146 if (SS.getScopeRep() || TemplateTypeTy) 4147 return nullptr; 4148 for (auto *D : ClassDecl->lookup(MemberOrBase)) 4149 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) 4150 return cast<ValueDecl>(D); 4151 return nullptr; 4152} 4153 4154/// Handle a C++ member initializer. 4155MemInitResult 4156Sema::BuildMemInitializer(Decl *ConstructorD, 4157 Scope *S, 4158 CXXScopeSpec &SS, 4159 IdentifierInfo *MemberOrBase, 4160 ParsedType TemplateTypeTy, 4161 const DeclSpec &DS, 4162 SourceLocation IdLoc, 4163 Expr *Init, 4164 SourceLocation EllipsisLoc) { 4165 ExprResult Res = CorrectDelayedTyposInExpr(Init); 4166 if (!Res.isUsable()) 4167 return true; 4168 Init = Res.get(); 4169 4170 if (!ConstructorD) 4171 return true; 4172 4173 AdjustDeclIfTemplate(ConstructorD); 4174 4175 CXXConstructorDecl *Constructor 4176 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4177 if (!Constructor) { 4178 // The user wrote a constructor initializer on a function that is 4179 // not a C++ constructor. Ignore the error for now, because we may 4180 // have more member initializers coming; we'll diagnose it just 4181 // once in ActOnMemInitializers. 4182 return true; 4183 } 4184 4185 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4186 4187 // C++ [class.base.init]p2: 4188 // Names in a mem-initializer-id are looked up in the scope of the 4189 // constructor's class and, if not found in that scope, are looked 4190 // up in the scope containing the constructor's definition. 4191 // [Note: if the constructor's class contains a member with the 4192 // same name as a direct or virtual base class of the class, a 4193 // mem-initializer-id naming the member or base class and composed 4194 // of a single identifier refers to the class member. A 4195 // mem-initializer-id for the hidden base class may be specified 4196 // using a qualified name. ] 4197 4198 // Look for a member, first. 4199 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4200 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4201 if (EllipsisLoc.isValid()) 4202 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4203 << MemberOrBase 4204 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4205 4206 return BuildMemberInitializer(Member, Init, IdLoc); 4207 } 4208 // It didn't name a member, so see if it names a class. 4209 QualType BaseType; 4210 TypeSourceInfo *TInfo = nullptr; 4211 4212 if (TemplateTypeTy) { 4213 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4214 if (BaseType.isNull()) 4215 return true; 4216 } else if (DS.getTypeSpecType() == TST_decltype) { 4217 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 4218 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4219 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4220 return true; 4221 } else { 4222 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4223 LookupParsedName(R, S, &SS); 4224 4225 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4226 if (!TyD) { 4227 if (R.isAmbiguous()) return true; 4228 4229 // We don't want access-control diagnostics here. 4230 R.suppressDiagnostics(); 4231 4232 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4233 bool NotUnknownSpecialization = false; 4234 DeclContext *DC = computeDeclContext(SS, false); 4235 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4236 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4237 4238 if (!NotUnknownSpecialization) { 4239 // When the scope specifier can refer to a member of an unknown 4240 // specialization, we take it as a type name. 4241 BaseType = CheckTypenameType(ETK_None, SourceLocation(), 4242 SS.getWithLocInContext(Context), 4243 *MemberOrBase, IdLoc); 4244 if (BaseType.isNull()) 4245 return true; 4246 4247 TInfo = Context.CreateTypeSourceInfo(BaseType); 4248 DependentNameTypeLoc TL = 4249 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4250 if (!TL.isNull()) { 4251 TL.setNameLoc(IdLoc); 4252 TL.setElaboratedKeywordLoc(SourceLocation()); 4253 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4254 } 4255 4256 R.clear(); 4257 R.setLookupName(MemberOrBase); 4258 } 4259 } 4260 4261 // If no results were found, try to correct typos. 4262 TypoCorrection Corr; 4263 MemInitializerValidatorCCC CCC(ClassDecl); 4264 if (R.empty() && BaseType.isNull() && 4265 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4266 CCC, CTK_ErrorRecovery, ClassDecl))) { 4267 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4268 // We have found a non-static data member with a similar 4269 // name to what was typed; complain and initialize that 4270 // member. 4271 diagnoseTypo(Corr, 4272 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4273 << MemberOrBase << true); 4274 return BuildMemberInitializer(Member, Init, IdLoc); 4275 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4276 const CXXBaseSpecifier *DirectBaseSpec; 4277 const CXXBaseSpecifier *VirtualBaseSpec; 4278 if (FindBaseInitializer(*this, ClassDecl, 4279 Context.getTypeDeclType(Type), 4280 DirectBaseSpec, VirtualBaseSpec)) { 4281 // We have found a direct or virtual base class with a 4282 // similar name to what was typed; complain and initialize 4283 // that base class. 4284 diagnoseTypo(Corr, 4285 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4286 << MemberOrBase << false, 4287 PDiag() /*Suppress note, we provide our own.*/); 4288 4289 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4290 : VirtualBaseSpec; 4291 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4292 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4293 4294 TyD = Type; 4295 } 4296 } 4297 } 4298 4299 if (!TyD && BaseType.isNull()) { 4300 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4301 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4302 return true; 4303 } 4304 } 4305 4306 if (BaseType.isNull()) { 4307 BaseType = Context.getTypeDeclType(TyD); 4308 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4309 if (SS.isSet()) { 4310 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(), 4311 BaseType); 4312 TInfo = Context.CreateTypeSourceInfo(BaseType); 4313 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4314 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4315 TL.setElaboratedKeywordLoc(SourceLocation()); 4316 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4317 } 4318 } 4319 } 4320 4321 if (!TInfo) 4322 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4323 4324 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4325} 4326 4327MemInitResult 4328Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4329 SourceLocation IdLoc) { 4330 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4331 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4332 assert((DirectMember || IndirectMember) &&((void)0) 4333 "Member must be a FieldDecl or IndirectFieldDecl")((void)0); 4334 4335 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4336 return true; 4337 4338 if (Member->isInvalidDecl()) 4339 return true; 4340 4341 MultiExprArg Args; 4342 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4343 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4344 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4345 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4346 } else { 4347 // Template instantiation doesn't reconstruct ParenListExprs for us. 4348 Args = Init; 4349 } 4350 4351 SourceRange InitRange = Init->getSourceRange(); 4352 4353 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4354 // Can't check initialization for a member of dependent type or when 4355 // any of the arguments are type-dependent expressions. 4356 DiscardCleanupsInEvaluationContext(); 4357 } else { 4358 bool InitList = false; 4359 if (isa<InitListExpr>(Init)) { 4360 InitList = true; 4361 Args = Init; 4362 } 4363 4364 // Initialize the member. 4365 InitializedEntity MemberEntity = 4366 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4367 : InitializedEntity::InitializeMember(IndirectMember, 4368 nullptr); 4369 InitializationKind Kind = 4370 InitList ? InitializationKind::CreateDirectList( 4371 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4372 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4373 InitRange.getEnd()); 4374 4375 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4376 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4377 nullptr); 4378 if (MemberInit.isInvalid()) 4379 return true; 4380 4381 // C++11 [class.base.init]p7: 4382 // The initialization of each base and member constitutes a 4383 // full-expression. 4384 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4385 /*DiscardedValue*/ false); 4386 if (MemberInit.isInvalid()) 4387 return true; 4388 4389 Init = MemberInit.get(); 4390 } 4391 4392 if (DirectMember) { 4393 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4394 InitRange.getBegin(), Init, 4395 InitRange.getEnd()); 4396 } else { 4397 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4398 InitRange.getBegin(), Init, 4399 InitRange.getEnd()); 4400 } 4401} 4402 4403MemInitResult 4404Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4405 CXXRecordDecl *ClassDecl) { 4406 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4407 if (!LangOpts.CPlusPlus11) 4408 return Diag(NameLoc, diag::err_delegating_ctor) 4409 << TInfo->getTypeLoc().getLocalSourceRange(); 4410 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4411 4412 bool InitList = true; 4413 MultiExprArg Args = Init; 4414 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4415 InitList = false; 4416 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4417 } 4418 4419 SourceRange InitRange = Init->getSourceRange(); 4420 // Initialize the object. 4421 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4422 QualType(ClassDecl->getTypeForDecl(), 0)); 4423 InitializationKind Kind = 4424 InitList ? InitializationKind::CreateDirectList( 4425 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4426 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4427 InitRange.getEnd()); 4428 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4429 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4430 Args, nullptr); 4431 if (DelegationInit.isInvalid()) 4432 return true; 4433 4434 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((void)0) 4435 "Delegating constructor with no target?")((void)0); 4436 4437 // C++11 [class.base.init]p7: 4438 // The initialization of each base and member constitutes a 4439 // full-expression. 4440 DelegationInit = ActOnFinishFullExpr( 4441 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4442 if (DelegationInit.isInvalid()) 4443 return true; 4444 4445 // If we are in a dependent context, template instantiation will 4446 // perform this type-checking again. Just save the arguments that we 4447 // received in a ParenListExpr. 4448 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4449 // of the information that we have about the base 4450 // initializer. However, deconstructing the ASTs is a dicey process, 4451 // and this approach is far more likely to get the corner cases right. 4452 if (CurContext->isDependentContext()) 4453 DelegationInit = Init; 4454 4455 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4456 DelegationInit.getAs<Expr>(), 4457 InitRange.getEnd()); 4458} 4459 4460MemInitResult 4461Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4462 Expr *Init, CXXRecordDecl *ClassDecl, 4463 SourceLocation EllipsisLoc) { 4464 SourceLocation BaseLoc 4465 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); 4466 4467 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4468 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4469 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4470 4471 // C++ [class.base.init]p2: 4472 // [...] Unless the mem-initializer-id names a nonstatic data 4473 // member of the constructor's class or a direct or virtual base 4474 // of that class, the mem-initializer is ill-formed. A 4475 // mem-initializer-list can initialize a base class using any 4476 // name that denotes that base class type. 4477 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); 4478 4479 SourceRange InitRange = Init->getSourceRange(); 4480 if (EllipsisLoc.isValid()) { 4481 // This is a pack expansion. 4482 if (!BaseType->containsUnexpandedParameterPack()) { 4483 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4484 << SourceRange(BaseLoc, InitRange.getEnd()); 4485 4486 EllipsisLoc = SourceLocation(); 4487 } 4488 } else { 4489 // Check for any unexpanded parameter packs. 4490 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4491 return true; 4492 4493 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4494 return true; 4495 } 4496 4497 // Check for direct and virtual base classes. 4498 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4499 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4500 if (!Dependent) { 4501 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4502 BaseType)) 4503 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4504 4505 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4506 VirtualBaseSpec); 4507 4508 // C++ [base.class.init]p2: 4509 // Unless the mem-initializer-id names a nonstatic data member of the 4510 // constructor's class or a direct or virtual base of that class, the 4511 // mem-initializer is ill-formed. 4512 if (!DirectBaseSpec && !VirtualBaseSpec) { 4513 // If the class has any dependent bases, then it's possible that 4514 // one of those types will resolve to the same type as 4515 // BaseType. Therefore, just treat this as a dependent base 4516 // class initialization. FIXME: Should we try to check the 4517 // initialization anyway? It seems odd. 4518 if (ClassDecl->hasAnyDependentBases()) 4519 Dependent = true; 4520 else 4521 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4522 << BaseType << Context.getTypeDeclType(ClassDecl) 4523 << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4524 } 4525 } 4526 4527 if (Dependent) { 4528 DiscardCleanupsInEvaluationContext(); 4529 4530 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4531 /*IsVirtual=*/false, 4532 InitRange.getBegin(), Init, 4533 InitRange.getEnd(), EllipsisLoc); 4534 } 4535 4536 // C++ [base.class.init]p2: 4537 // If a mem-initializer-id is ambiguous because it designates both 4538 // a direct non-virtual base class and an inherited virtual base 4539 // class, the mem-initializer is ill-formed. 4540 if (DirectBaseSpec && VirtualBaseSpec) 4541 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4542 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4543 4544 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4545 if (!BaseSpec) 4546 BaseSpec = VirtualBaseSpec; 4547 4548 // Initialize the base. 4549 bool InitList = true; 4550 MultiExprArg Args = Init; 4551 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4552 InitList = false; 4553 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4554 } 4555 4556 InitializedEntity BaseEntity = 4557 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4558 InitializationKind Kind = 4559 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4560 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4561 InitRange.getEnd()); 4562 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4563 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4564 if (BaseInit.isInvalid()) 4565 return true; 4566 4567 // C++11 [class.base.init]p7: 4568 // The initialization of each base and member constitutes a 4569 // full-expression. 4570 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4571 /*DiscardedValue*/ false); 4572 if (BaseInit.isInvalid()) 4573 return true; 4574 4575 // If we are in a dependent context, template instantiation will 4576 // perform this type-checking again. Just save the arguments that we 4577 // received in a ParenListExpr. 4578 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4579 // of the information that we have about the base 4580 // initializer. However, deconstructing the ASTs is a dicey process, 4581 // and this approach is far more likely to get the corner cases right. 4582 if (CurContext->isDependentContext()) 4583 BaseInit = Init; 4584 4585 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4586 BaseSpec->isVirtual(), 4587 InitRange.getBegin(), 4588 BaseInit.getAs<Expr>(), 4589 InitRange.getEnd(), EllipsisLoc); 4590} 4591 4592// Create a static_cast\<T&&>(expr). 4593static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) { 4594 if (T.isNull()) T = E->getType(); 4595 QualType TargetType = SemaRef.BuildReferenceType( 4596 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName()); 4597 SourceLocation ExprLoc = E->getBeginLoc(); 4598 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4599 TargetType, ExprLoc); 4600 4601 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4602 SourceRange(ExprLoc, ExprLoc), 4603 E->getSourceRange()).get(); 4604} 4605 4606/// ImplicitInitializerKind - How an implicit base or member initializer should 4607/// initialize its base or member. 4608enum ImplicitInitializerKind { 4609 IIK_Default, 4610 IIK_Copy, 4611 IIK_Move, 4612 IIK_Inherit 4613}; 4614 4615static bool 4616BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4617 ImplicitInitializerKind ImplicitInitKind, 4618 CXXBaseSpecifier *BaseSpec, 4619 bool IsInheritedVirtualBase, 4620 CXXCtorInitializer *&CXXBaseInit) { 4621 InitializedEntity InitEntity 4622 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4623 IsInheritedVirtualBase); 4624 4625 ExprResult BaseInit; 4626 4627 switch (ImplicitInitKind) { 4628 case IIK_Inherit: 4629 case IIK_Default: { 4630 InitializationKind InitKind 4631 = InitializationKind::CreateDefault(Constructor->getLocation()); 4632 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4633 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4634 break; 4635 } 4636 4637 case IIK_Move: 4638 case IIK_Copy: { 4639 bool Moving = ImplicitInitKind == IIK_Move; 4640 ParmVarDecl *Param = Constructor->getParamDecl(0); 4641 QualType ParamType = Param->getType().getNonReferenceType(); 4642 4643 Expr *CopyCtorArg = 4644 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4645 SourceLocation(), Param, false, 4646 Constructor->getLocation(), ParamType, 4647 VK_LValue, nullptr); 4648 4649 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4650 4651 // Cast to the base class to avoid ambiguities. 4652 QualType ArgTy = 4653 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4654 ParamType.getQualifiers()); 4655 4656 if (Moving) { 4657 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4658 } 4659 4660 CXXCastPath BasePath; 4661 BasePath.push_back(BaseSpec); 4662 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4663 CK_UncheckedDerivedToBase, 4664 Moving ? VK_XValue : VK_LValue, 4665 &BasePath).get(); 4666 4667 InitializationKind InitKind 4668 = InitializationKind::CreateDirect(Constructor->getLocation(), 4669 SourceLocation(), SourceLocation()); 4670 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4671 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4672 break; 4673 } 4674 } 4675 4676 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4677 if (BaseInit.isInvalid()) 4678 return true; 4679 4680 CXXBaseInit = 4681 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4682 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4683 SourceLocation()), 4684 BaseSpec->isVirtual(), 4685 SourceLocation(), 4686 BaseInit.getAs<Expr>(), 4687 SourceLocation(), 4688 SourceLocation()); 4689 4690 return false; 4691} 4692 4693static bool RefersToRValueRef(Expr *MemRef) { 4694 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4695 return Referenced->getType()->isRValueReferenceType(); 4696} 4697 4698static bool 4699BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4700 ImplicitInitializerKind ImplicitInitKind, 4701 FieldDecl *Field, IndirectFieldDecl *Indirect, 4702 CXXCtorInitializer *&CXXMemberInit) { 4703 if (Field->isInvalidDecl()) 4704 return true; 4705 4706 SourceLocation Loc = Constructor->getLocation(); 4707 4708 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4709 bool Moving = ImplicitInitKind == IIK_Move; 4710 ParmVarDecl *Param = Constructor->getParamDecl(0); 4711 QualType ParamType = Param->getType().getNonReferenceType(); 4712 4713 // Suppress copying zero-width bitfields. 4714 if (Field->isZeroLengthBitField(SemaRef.Context)) 4715 return false; 4716 4717 Expr *MemberExprBase = 4718 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4719 SourceLocation(), Param, false, 4720 Loc, ParamType, VK_LValue, nullptr); 4721 4722 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4723 4724 if (Moving) { 4725 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4726 } 4727 4728 // Build a reference to this field within the parameter. 4729 CXXScopeSpec SS; 4730 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4731 Sema::LookupMemberName); 4732 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4733 : cast<ValueDecl>(Field), AS_public); 4734 MemberLookup.resolveKind(); 4735 ExprResult CtorArg 4736 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4737 ParamType, Loc, 4738 /*IsArrow=*/false, 4739 SS, 4740 /*TemplateKWLoc=*/SourceLocation(), 4741 /*FirstQualifierInScope=*/nullptr, 4742 MemberLookup, 4743 /*TemplateArgs=*/nullptr, 4744 /*S*/nullptr); 4745 if (CtorArg.isInvalid()) 4746 return true; 4747 4748 // C++11 [class.copy]p15: 4749 // - if a member m has rvalue reference type T&&, it is direct-initialized 4750 // with static_cast<T&&>(x.m); 4751 if (RefersToRValueRef(CtorArg.get())) { 4752 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4753 } 4754 4755 InitializedEntity Entity = 4756 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4757 /*Implicit*/ true) 4758 : InitializedEntity::InitializeMember(Field, nullptr, 4759 /*Implicit*/ true); 4760 4761 // Direct-initialize to use the copy constructor. 4762 InitializationKind InitKind = 4763 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4764 4765 Expr *CtorArgE = CtorArg.getAs<Expr>(); 4766 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 4767 ExprResult MemberInit = 4768 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 4769 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4770 if (MemberInit.isInvalid()) 4771 return true; 4772 4773 if (Indirect) 4774 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4775 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4776 else 4777 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 4778 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 4779 return false; 4780 } 4781 4782 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&((void)0) 4783 "Unhandled implicit init kind!")((void)0); 4784 4785 QualType FieldBaseElementType = 4786 SemaRef.Context.getBaseElementType(Field->getType()); 4787 4788 if (FieldBaseElementType->isRecordType()) { 4789 InitializedEntity InitEntity = 4790 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4791 /*Implicit*/ true) 4792 : InitializedEntity::InitializeMember(Field, nullptr, 4793 /*Implicit*/ true); 4794 InitializationKind InitKind = 4795 InitializationKind::CreateDefault(Loc); 4796 4797 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None); 4798 ExprResult MemberInit = 4799 InitSeq.Perform(SemaRef, InitEntity, InitKind, None); 4800 4801 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 4802 if (MemberInit.isInvalid()) 4803 return true; 4804 4805 if (Indirect) 4806 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4807 Indirect, Loc, 4808 Loc, 4809 MemberInit.get(), 4810 Loc); 4811 else 4812 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4813 Field, Loc, Loc, 4814 MemberInit.get(), 4815 Loc); 4816 return false; 4817 } 4818 4819 if (!Field->getParent()->isUnion()) { 4820 if (FieldBaseElementType->isReferenceType()) { 4821 SemaRef.Diag(Constructor->getLocation(), 4822 diag::err_uninitialized_member_in_ctor) 4823 << (int)Constructor->isImplicit() 4824 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4825 << 0 << Field->getDeclName(); 4826 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4827 return true; 4828 } 4829 4830 if (FieldBaseElementType.isConstQualified()) { 4831 SemaRef.Diag(Constructor->getLocation(), 4832 diag::err_uninitialized_member_in_ctor) 4833 << (int)Constructor->isImplicit() 4834 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 4835 << 1 << Field->getDeclName(); 4836 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 4837 return true; 4838 } 4839 } 4840 4841 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 4842 // ARC and Weak: 4843 // Default-initialize Objective-C pointers to NULL. 4844 CXXMemberInit 4845 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 4846 Loc, Loc, 4847 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 4848 Loc); 4849 return false; 4850 } 4851 4852 // Nothing to initialize. 4853 CXXMemberInit = nullptr; 4854 return false; 4855} 4856 4857namespace { 4858struct BaseAndFieldInfo { 4859 Sema &S; 4860 CXXConstructorDecl *Ctor; 4861 bool AnyErrorsInInits; 4862 ImplicitInitializerKind IIK; 4863 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 4864 SmallVector<CXXCtorInitializer*, 8> AllToInit; 4865 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 4866 4867 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 4868 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 4869 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 4870 if (Ctor->getInheritedConstructor()) 4871 IIK = IIK_Inherit; 4872 else if (Generated && Ctor->isCopyConstructor()) 4873 IIK = IIK_Copy; 4874 else if (Generated && Ctor->isMoveConstructor()) 4875 IIK = IIK_Move; 4876 else 4877 IIK = IIK_Default; 4878 } 4879 4880 bool isImplicitCopyOrMove() const { 4881 switch (IIK) { 4882 case IIK_Copy: 4883 case IIK_Move: 4884 return true; 4885 4886 case IIK_Default: 4887 case IIK_Inherit: 4888 return false; 4889 } 4890 4891 llvm_unreachable("Invalid ImplicitInitializerKind!")__builtin_unreachable(); 4892 } 4893 4894 bool addFieldInitializer(CXXCtorInitializer *Init) { 4895 AllToInit.push_back(Init); 4896 4897 // Check whether this initializer makes the field "used". 4898 if (Init->getInit()->HasSideEffects(S.Context)) 4899 S.UnusedPrivateFields.remove(Init->getAnyMember()); 4900 4901 return false; 4902 } 4903 4904 bool isInactiveUnionMember(FieldDecl *Field) { 4905 RecordDecl *Record = Field->getParent(); 4906 if (!Record->isUnion()) 4907 return false; 4908 4909 if (FieldDecl *Active = 4910 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 4911 return Active != Field->getCanonicalDecl(); 4912 4913 // In an implicit copy or move constructor, ignore any in-class initializer. 4914 if (isImplicitCopyOrMove()) 4915 return true; 4916 4917 // If there's no explicit initialization, the field is active only if it 4918 // has an in-class initializer... 4919 if (Field->hasInClassInitializer()) 4920 return false; 4921 // ... or it's an anonymous struct or union whose class has an in-class 4922 // initializer. 4923 if (!Field->isAnonymousStructOrUnion()) 4924 return true; 4925 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 4926 return !FieldRD->hasInClassInitializer(); 4927 } 4928 4929 /// Determine whether the given field is, or is within, a union member 4930 /// that is inactive (because there was an initializer given for a different 4931 /// member of the union, or because the union was not initialized at all). 4932 bool isWithinInactiveUnionMember(FieldDecl *Field, 4933 IndirectFieldDecl *Indirect) { 4934 if (!Indirect) 4935 return isInactiveUnionMember(Field); 4936 4937 for (auto *C : Indirect->chain()) { 4938 FieldDecl *Field = dyn_cast<FieldDecl>(C); 4939 if (Field && isInactiveUnionMember(Field)) 4940 return true; 4941 } 4942 return false; 4943 } 4944}; 4945} 4946 4947/// Determine whether the given type is an incomplete or zero-lenfgth 4948/// array type. 4949static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 4950 if (T->isIncompleteArrayType()) 4951 return true; 4952 4953 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 4954 if (!ArrayT->getSize()) 4955 return true; 4956 4957 T = ArrayT->getElementType(); 4958 } 4959 4960 return false; 4961} 4962 4963static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 4964 FieldDecl *Field, 4965 IndirectFieldDecl *Indirect = nullptr) { 4966 if (Field->isInvalidDecl()) 4967 return false; 4968 4969 // Overwhelmingly common case: we have a direct initializer for this field. 4970 if (CXXCtorInitializer *Init = 4971 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 4972 return Info.addFieldInitializer(Init); 4973 4974 // C++11 [class.base.init]p8: 4975 // if the entity is a non-static data member that has a 4976 // brace-or-equal-initializer and either 4977 // -- the constructor's class is a union and no other variant member of that 4978 // union is designated by a mem-initializer-id or 4979 // -- the constructor's class is not a union, and, if the entity is a member 4980 // of an anonymous union, no other member of that union is designated by 4981 // a mem-initializer-id, 4982 // the entity is initialized as specified in [dcl.init]. 4983 // 4984 // We also apply the same rules to handle anonymous structs within anonymous 4985 // unions. 4986 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 4987 return false; 4988 4989 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 4990 ExprResult DIE = 4991 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 4992 if (DIE.isInvalid()) 4993 return true; 4994 4995 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 4996 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 4997 4998 CXXCtorInitializer *Init; 4999 if (Indirect) 5000 Init = new (SemaRef.Context) 5001 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5002 SourceLocation(), DIE.get(), SourceLocation()); 5003 else 5004 Init = new (SemaRef.Context) 5005 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5006 SourceLocation(), DIE.get(), SourceLocation()); 5007 return Info.addFieldInitializer(Init); 5008 } 5009 5010 // Don't initialize incomplete or zero-length arrays. 5011 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5012 return false; 5013 5014 // Don't try to build an implicit initializer if there were semantic 5015 // errors in any of the initializers (and therefore we might be 5016 // missing some that the user actually wrote). 5017 if (Info.AnyErrorsInInits) 5018 return false; 5019 5020 CXXCtorInitializer *Init = nullptr; 5021 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5022 Indirect, Init)) 5023 return true; 5024 5025 if (!Init) 5026 return false; 5027 5028 return Info.addFieldInitializer(Init); 5029} 5030 5031bool 5032Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5033 CXXCtorInitializer *Initializer) { 5034 assert(Initializer->isDelegatingInitializer())((void)0); 5035 Constructor->setNumCtorInitializers(1); 5036 CXXCtorInitializer **initializer = 5037 new (Context) CXXCtorInitializer*[1]; 5038 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5039 Constructor->setCtorInitializers(initializer); 5040 5041 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5042 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5043 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5044 } 5045 5046 DelegatingCtorDecls.push_back(Constructor); 5047 5048 DiagnoseUninitializedFields(*this, Constructor); 5049 5050 return false; 5051} 5052 5053bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5054 ArrayRef<CXXCtorInitializer *> Initializers) { 5055 if (Constructor->isDependentContext()) { 5056 // Just store the initializers as written, they will be checked during 5057 // instantiation. 5058 if (!Initializers.empty()) { 5059 Constructor->setNumCtorInitializers(Initializers.size()); 5060 CXXCtorInitializer **baseOrMemberInitializers = 5061 new (Context) CXXCtorInitializer*[Initializers.size()]; 5062 memcpy(baseOrMemberInitializers, Initializers.data(), 5063 Initializers.size() * sizeof(CXXCtorInitializer*)); 5064 Constructor->setCtorInitializers(baseOrMemberInitializers); 5065 } 5066 5067 // Let template instantiation know whether we had errors. 5068 if (AnyErrors) 5069 Constructor->setInvalidDecl(); 5070 5071 return false; 5072 } 5073 5074 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5075 5076 // We need to build the initializer AST according to order of construction 5077 // and not what user specified in the Initializers list. 5078 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5079 if (!ClassDecl) 5080 return true; 5081 5082 bool HadError = false; 5083 5084 for (unsigned i = 0; i < Initializers.size(); i++) { 5085 CXXCtorInitializer *Member = Initializers[i]; 5086 5087 if (Member->isBaseInitializer()) 5088 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5089 else { 5090 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5091 5092 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5093 for (auto *C : F->chain()) { 5094 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5095 if (FD && FD->getParent()->isUnion()) 5096 Info.ActiveUnionMember.insert(std::make_pair( 5097 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5098 } 5099 } else if (FieldDecl *FD = Member->getMember()) { 5100 if (FD->getParent()->isUnion()) 5101 Info.ActiveUnionMember.insert(std::make_pair( 5102 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5103 } 5104 } 5105 } 5106 5107 // Keep track of the direct virtual bases. 5108 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5109 for (auto &I : ClassDecl->bases()) { 5110 if (I.isVirtual()) 5111 DirectVBases.insert(&I); 5112 } 5113 5114 // Push virtual bases before others. 5115 for (auto &VBase : ClassDecl->vbases()) { 5116 if (CXXCtorInitializer *Value 5117 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5118 // [class.base.init]p7, per DR257: 5119 // A mem-initializer where the mem-initializer-id names a virtual base 5120 // class is ignored during execution of a constructor of any class that 5121 // is not the most derived class. 5122 if (ClassDecl->isAbstract()) { 5123 // FIXME: Provide a fixit to remove the base specifier. This requires 5124 // tracking the location of the associated comma for a base specifier. 5125 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5126 << VBase.getType() << ClassDecl; 5127 DiagnoseAbstractType(ClassDecl); 5128 } 5129 5130 Info.AllToInit.push_back(Value); 5131 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5132 // [class.base.init]p8, per DR257: 5133 // If a given [...] base class is not named by a mem-initializer-id 5134 // [...] and the entity is not a virtual base class of an abstract 5135 // class, then [...] the entity is default-initialized. 5136 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5137 CXXCtorInitializer *CXXBaseInit; 5138 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5139 &VBase, IsInheritedVirtualBase, 5140 CXXBaseInit)) { 5141 HadError = true; 5142 continue; 5143 } 5144 5145 Info.AllToInit.push_back(CXXBaseInit); 5146 } 5147 } 5148 5149 // Non-virtual bases. 5150 for (auto &Base : ClassDecl->bases()) { 5151 // Virtuals are in the virtual base list and already constructed. 5152 if (Base.isVirtual()) 5153 continue; 5154 5155 if (CXXCtorInitializer *Value 5156 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5157 Info.AllToInit.push_back(Value); 5158 } else if (!AnyErrors) { 5159 CXXCtorInitializer *CXXBaseInit; 5160 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5161 &Base, /*IsInheritedVirtualBase=*/false, 5162 CXXBaseInit)) { 5163 HadError = true; 5164 continue; 5165 } 5166 5167 Info.AllToInit.push_back(CXXBaseInit); 5168 } 5169 } 5170 5171 // Fields. 5172 for (auto *Mem : ClassDecl->decls()) { 5173 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5174 // C++ [class.bit]p2: 5175 // A declaration for a bit-field that omits the identifier declares an 5176 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5177 // initialized. 5178 if (F->isUnnamedBitfield()) 5179 continue; 5180 5181 // If we're not generating the implicit copy/move constructor, then we'll 5182 // handle anonymous struct/union fields based on their individual 5183 // indirect fields. 5184 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5185 continue; 5186 5187 if (CollectFieldInitializer(*this, Info, F)) 5188 HadError = true; 5189 continue; 5190 } 5191 5192 // Beyond this point, we only consider default initialization. 5193 if (Info.isImplicitCopyOrMove()) 5194 continue; 5195 5196 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5197 if (F->getType()->isIncompleteArrayType()) { 5198 assert(ClassDecl->hasFlexibleArrayMember() &&((void)0) 5199 "Incomplete array type is not valid")((void)0); 5200 continue; 5201 } 5202 5203 // Initialize each field of an anonymous struct individually. 5204 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5205 HadError = true; 5206 5207 continue; 5208 } 5209 } 5210 5211 unsigned NumInitializers = Info.AllToInit.size(); 5212 if (NumInitializers > 0) { 5213 Constructor->setNumCtorInitializers(NumInitializers); 5214 CXXCtorInitializer **baseOrMemberInitializers = 5215 new (Context) CXXCtorInitializer*[NumInitializers]; 5216 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5217 NumInitializers * sizeof(CXXCtorInitializer*)); 5218 Constructor->setCtorInitializers(baseOrMemberInitializers); 5219 5220 // Constructors implicitly reference the base and member 5221 // destructors. 5222 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5223 Constructor->getParent()); 5224 } 5225 5226 return HadError; 5227} 5228 5229static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5230 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5231 const RecordDecl *RD = RT->getDecl(); 5232 if (RD->isAnonymousStructOrUnion()) { 5233 for (auto *Field : RD->fields()) 5234 PopulateKeysForFields(Field, IdealInits); 5235 return; 5236 } 5237 } 5238 IdealInits.push_back(Field->getCanonicalDecl()); 5239} 5240 5241static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5242 return Context.getCanonicalType(BaseType).getTypePtr(); 5243} 5244 5245static const void *GetKeyForMember(ASTContext &Context, 5246 CXXCtorInitializer *Member) { 5247 if (!Member->isAnyMemberInitializer()) 5248 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5249 5250 return Member->getAnyMember()->getCanonicalDecl(); 5251} 5252 5253static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5254 const CXXCtorInitializer *Previous, 5255 const CXXCtorInitializer *Current) { 5256 if (Previous->isAnyMemberInitializer()) 5257 Diag << 0 << Previous->getAnyMember(); 5258 else 5259 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5260 5261 if (Current->isAnyMemberInitializer()) 5262 Diag << 0 << Current->getAnyMember(); 5263 else 5264 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5265} 5266 5267static void DiagnoseBaseOrMemInitializerOrder( 5268 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5269 ArrayRef<CXXCtorInitializer *> Inits) { 5270 if (Constructor->getDeclContext()->isDependentContext()) 5271 return; 5272 5273 // Don't check initializers order unless the warning is enabled at the 5274 // location of at least one initializer. 5275 bool ShouldCheckOrder = false; 5276 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5277 CXXCtorInitializer *Init = Inits[InitIndex]; 5278 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5279 Init->getSourceLocation())) { 5280 ShouldCheckOrder = true; 5281 break; 5282 } 5283 } 5284 if (!ShouldCheckOrder) 5285 return; 5286 5287 // Build the list of bases and members in the order that they'll 5288 // actually be initialized. The explicit initializers should be in 5289 // this same order but may be missing things. 5290 SmallVector<const void*, 32> IdealInitKeys; 5291 5292 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5293 5294 // 1. Virtual bases. 5295 for (const auto &VBase : ClassDecl->vbases()) 5296 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5297 5298 // 2. Non-virtual bases. 5299 for (const auto &Base : ClassDecl->bases()) { 5300 if (Base.isVirtual()) 5301 continue; 5302 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5303 } 5304 5305 // 3. Direct fields. 5306 for (auto *Field : ClassDecl->fields()) { 5307 if (Field->isUnnamedBitfield()) 5308 continue; 5309 5310 PopulateKeysForFields(Field, IdealInitKeys); 5311 } 5312 5313 unsigned NumIdealInits = IdealInitKeys.size(); 5314 unsigned IdealIndex = 0; 5315 5316 // Track initializers that are in an incorrect order for either a warning or 5317 // note if multiple ones occur. 5318 SmallVector<unsigned> WarnIndexes; 5319 // Correlates the index of an initializer in the init-list to the index of 5320 // the field/base in the class. 5321 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5322 5323 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5324 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5325 5326 // Scan forward to try to find this initializer in the idealized 5327 // initializers list. 5328 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5329 if (InitKey == IdealInitKeys[IdealIndex]) 5330 break; 5331 5332 // If we didn't find this initializer, it must be because we 5333 // scanned past it on a previous iteration. That can only 5334 // happen if we're out of order; emit a warning. 5335 if (IdealIndex == NumIdealInits && InitIndex) { 5336 WarnIndexes.push_back(InitIndex); 5337 5338 // Move back to the initializer's location in the ideal list. 5339 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5340 if (InitKey == IdealInitKeys[IdealIndex]) 5341 break; 5342 5343 assert(IdealIndex < NumIdealInits &&((void)0) 5344 "initializer not found in initializer list")((void)0); 5345 } 5346 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5347 } 5348 5349 if (WarnIndexes.empty()) 5350 return; 5351 5352 // Sort based on the ideal order, first in the pair. 5353 llvm::sort(CorrelatedInitOrder, 5354 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; }); 5355 5356 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5357 // emit the diagnostic before we can try adding notes. 5358 { 5359 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5360 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5361 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5362 : diag::warn_some_initializers_out_of_order); 5363 5364 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5365 if (CorrelatedInitOrder[I].second == I) 5366 continue; 5367 // Ideally we would be using InsertFromRange here, but clang doesn't 5368 // appear to handle InsertFromRange correctly when the source range is 5369 // modified by another fix-it. 5370 D << FixItHint::CreateReplacement( 5371 Inits[I]->getSourceRange(), 5372 Lexer::getSourceText( 5373 CharSourceRange::getTokenRange( 5374 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5375 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5376 } 5377 5378 // If there is only 1 item out of order, the warning expects the name and 5379 // type of each being added to it. 5380 if (WarnIndexes.size() == 1) { 5381 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5382 Inits[WarnIndexes.front()]); 5383 return; 5384 } 5385 } 5386 // More than 1 item to warn, create notes letting the user know which ones 5387 // are bad. 5388 for (unsigned WarnIndex : WarnIndexes) { 5389 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5390 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5391 diag::note_initializer_out_of_order); 5392 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5393 D << PrevInit->getSourceRange(); 5394 } 5395} 5396 5397namespace { 5398bool CheckRedundantInit(Sema &S, 5399 CXXCtorInitializer *Init, 5400 CXXCtorInitializer *&PrevInit) { 5401 if (!PrevInit) { 5402 PrevInit = Init; 5403 return false; 5404 } 5405 5406 if (FieldDecl *Field = Init->getAnyMember()) 5407 S.Diag(Init->getSourceLocation(), 5408 diag::err_multiple_mem_initialization) 5409 << Field->getDeclName() 5410 << Init->getSourceRange(); 5411 else { 5412 const Type *BaseClass = Init->getBaseClass(); 5413 assert(BaseClass && "neither field nor base")((void)0); 5414 S.Diag(Init->getSourceLocation(), 5415 diag::err_multiple_base_initialization) 5416 << QualType(BaseClass, 0) 5417 << Init->getSourceRange(); 5418 } 5419 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5420 << 0 << PrevInit->getSourceRange(); 5421 5422 return true; 5423} 5424 5425typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5426typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5427 5428bool CheckRedundantUnionInit(Sema &S, 5429 CXXCtorInitializer *Init, 5430 RedundantUnionMap &Unions) { 5431 FieldDecl *Field = Init->getAnyMember(); 5432 RecordDecl *Parent = Field->getParent(); 5433 NamedDecl *Child = Field; 5434 5435 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5436 if (Parent->isUnion()) { 5437 UnionEntry &En = Unions[Parent]; 5438 if (En.first && En.first != Child) { 5439 S.Diag(Init->getSourceLocation(), 5440 diag::err_multiple_mem_union_initialization) 5441 << Field->getDeclName() 5442 << Init->getSourceRange(); 5443 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5444 << 0 << En.second->getSourceRange(); 5445 return true; 5446 } 5447 if (!En.first) { 5448 En.first = Child; 5449 En.second = Init; 5450 } 5451 if (!Parent->isAnonymousStructOrUnion()) 5452 return false; 5453 } 5454 5455 Child = Parent; 5456 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5457 } 5458 5459 return false; 5460} 5461} // namespace 5462 5463/// ActOnMemInitializers - Handle the member initializers for a constructor. 5464void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5465 SourceLocation ColonLoc, 5466 ArrayRef<CXXCtorInitializer*> MemInits, 5467 bool AnyErrors) { 5468 if (!ConstructorDecl) 5469 return; 5470 5471 AdjustDeclIfTemplate(ConstructorDecl); 5472 5473 CXXConstructorDecl *Constructor 5474 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5475 5476 if (!Constructor) { 5477 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5478 return; 5479 } 5480 5481 // Mapping for the duplicate initializers check. 5482 // For member initializers, this is keyed with a FieldDecl*. 5483 // For base initializers, this is keyed with a Type*. 5484 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5485 5486 // Mapping for the inconsistent anonymous-union initializers check. 5487 RedundantUnionMap MemberUnions; 5488 5489 bool HadError = false; 5490 for (unsigned i = 0; i < MemInits.size(); i++) { 5491 CXXCtorInitializer *Init = MemInits[i]; 5492 5493 // Set the source order index. 5494 Init->setSourceOrder(i); 5495 5496 if (Init->isAnyMemberInitializer()) { 5497 const void *Key = GetKeyForMember(Context, Init); 5498 if (CheckRedundantInit(*this, Init, Members[Key]) || 5499 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5500 HadError = true; 5501 } else if (Init->isBaseInitializer()) { 5502 const void *Key = GetKeyForMember(Context, Init); 5503 if (CheckRedundantInit(*this, Init, Members[Key])) 5504 HadError = true; 5505 } else { 5506 assert(Init->isDelegatingInitializer())((void)0); 5507 // This must be the only initializer 5508 if (MemInits.size() != 1) { 5509 Diag(Init->getSourceLocation(), 5510 diag::err_delegating_initializer_alone) 5511 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5512 // We will treat this as being the only initializer. 5513 } 5514 SetDelegatingInitializer(Constructor, MemInits[i]); 5515 // Return immediately as the initializer is set. 5516 return; 5517 } 5518 } 5519 5520 if (HadError) 5521 return; 5522 5523 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5524 5525 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5526 5527 DiagnoseUninitializedFields(*this, Constructor); 5528} 5529 5530void 5531Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5532 CXXRecordDecl *ClassDecl) { 5533 // Ignore dependent contexts. Also ignore unions, since their members never 5534 // have destructors implicitly called. 5535 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5536 return; 5537 5538 // FIXME: all the access-control diagnostics are positioned on the 5539 // field/base declaration. That's probably good; that said, the 5540 // user might reasonably want to know why the destructor is being 5541 // emitted, and we currently don't say. 5542 5543 // Non-static data members. 5544 for (auto *Field : ClassDecl->fields()) { 5545 if (Field->isInvalidDecl()) 5546 continue; 5547 5548 // Don't destroy incomplete or zero-length arrays. 5549 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5550 continue; 5551 5552 QualType FieldType = Context.getBaseElementType(Field->getType()); 5553 5554 const RecordType* RT = FieldType->getAs<RecordType>(); 5555 if (!RT) 5556 continue; 5557 5558 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5559 if (FieldClassDecl->isInvalidDecl()) 5560 continue; 5561 if (FieldClassDecl->hasIrrelevantDestructor()) 5562 continue; 5563 // The destructor for an implicit anonymous union member is never invoked. 5564 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5565 continue; 5566 5567 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5568 assert(Dtor && "No dtor found for FieldClassDecl!")((void)0); 5569 CheckDestructorAccess(Field->getLocation(), Dtor, 5570 PDiag(diag::err_access_dtor_field) 5571 << Field->getDeclName() 5572 << FieldType); 5573 5574 MarkFunctionReferenced(Location, Dtor); 5575 DiagnoseUseOfDecl(Dtor, Location); 5576 } 5577 5578 // We only potentially invoke the destructors of potentially constructed 5579 // subobjects. 5580 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5581 5582 // If the destructor exists and has already been marked used in the MS ABI, 5583 // then virtual base destructors have already been checked and marked used. 5584 // Skip checking them again to avoid duplicate diagnostics. 5585 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5586 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5587 if (Dtor && Dtor->isUsed()) 5588 VisitVirtualBases = false; 5589 } 5590 5591 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5592 5593 // Bases. 5594 for (const auto &Base : ClassDecl->bases()) { 5595 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5596 if (!RT) 5597 continue; 5598 5599 // Remember direct virtual bases. 5600 if (Base.isVirtual()) { 5601 if (!VisitVirtualBases) 5602 continue; 5603 DirectVirtualBases.insert(RT); 5604 } 5605 5606 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5607 // If our base class is invalid, we probably can't get its dtor anyway. 5608 if (BaseClassDecl->isInvalidDecl()) 5609 continue; 5610 if (BaseClassDecl->hasIrrelevantDestructor()) 5611 continue; 5612 5613 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5614 assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); 5615 5616 // FIXME: caret should be on the start of the class name 5617 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5618 PDiag(diag::err_access_dtor_base) 5619 << Base.getType() << Base.getSourceRange(), 5620 Context.getTypeDeclType(ClassDecl)); 5621 5622 MarkFunctionReferenced(Location, Dtor); 5623 DiagnoseUseOfDecl(Dtor, Location); 5624 } 5625 5626 if (VisitVirtualBases) 5627 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5628 &DirectVirtualBases); 5629} 5630 5631void Sema::MarkVirtualBaseDestructorsReferenced( 5632 SourceLocation Location, CXXRecordDecl *ClassDecl, 5633 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5634 // Virtual bases. 5635 for (const auto &VBase : ClassDecl->vbases()) { 5636 // Bases are always records in a well-formed non-dependent class. 5637 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5638 5639 // Ignore already visited direct virtual bases. 5640 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5641 continue; 5642 5643 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5644 // If our base class is invalid, we probably can't get its dtor anyway. 5645 if (BaseClassDecl->isInvalidDecl()) 5646 continue; 5647 if (BaseClassDecl->hasIrrelevantDestructor()) 5648 continue; 5649 5650 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5651 assert(Dtor && "No dtor found for BaseClassDecl!")((void)0); 5652 if (CheckDestructorAccess( 5653 ClassDecl->getLocation(), Dtor, 5654 PDiag(diag::err_access_dtor_vbase) 5655 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5656 Context.getTypeDeclType(ClassDecl)) == 5657 AR_accessible) { 5658 CheckDerivedToBaseConversion( 5659 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5660 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5661 SourceRange(), DeclarationName(), nullptr); 5662 } 5663 5664 MarkFunctionReferenced(Location, Dtor); 5665 DiagnoseUseOfDecl(Dtor, Location); 5666 } 5667} 5668 5669void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5670 if (!CDtorDecl) 5671 return; 5672 5673 if (CXXConstructorDecl *Constructor 5674 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5675 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5676 DiagnoseUninitializedFields(*this, Constructor); 5677 } 5678} 5679 5680bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5681 if (!getLangOpts().CPlusPlus) 5682 return false; 5683 5684 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5685 if (!RD) 5686 return false; 5687 5688 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5689 // class template specialization here, but doing so breaks a lot of code. 5690 5691 // We can't answer whether something is abstract until it has a 5692 // definition. If it's currently being defined, we'll walk back 5693 // over all the declarations when we have a full definition. 5694 const CXXRecordDecl *Def = RD->getDefinition(); 5695 if (!Def || Def->isBeingDefined()) 5696 return false; 5697 5698 return RD->isAbstract(); 5699} 5700 5701bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5702 TypeDiagnoser &Diagnoser) { 5703 if (!isAbstractType(Loc, T)) 5704 return false; 5705 5706 T = Context.getBaseElementType(T); 5707 Diagnoser.diagnose(*this, Loc, T); 5708 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5709 return true; 5710} 5711 5712void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5713 // Check if we've already emitted the list of pure virtual functions 5714 // for this class. 5715 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5716 return; 5717 5718 // If the diagnostic is suppressed, don't emit the notes. We're only 5719 // going to emit them once, so try to attach them to a diagnostic we're 5720 // actually going to show. 5721 if (Diags.isLastDiagnosticIgnored()) 5722 return; 5723 5724 CXXFinalOverriderMap FinalOverriders; 5725 RD->getFinalOverriders(FinalOverriders); 5726 5727 // Keep a set of seen pure methods so we won't diagnose the same method 5728 // more than once. 5729 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5730 5731 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5732 MEnd = FinalOverriders.end(); 5733 M != MEnd; 5734 ++M) { 5735 for (OverridingMethods::iterator SO = M->second.begin(), 5736 SOEnd = M->second.end(); 5737 SO != SOEnd; ++SO) { 5738 // C++ [class.abstract]p4: 5739 // A class is abstract if it contains or inherits at least one 5740 // pure virtual function for which the final overrider is pure 5741 // virtual. 5742 5743 // 5744 if (SO->second.size() != 1) 5745 continue; 5746 5747 if (!SO->second.front().Method->isPure()) 5748 continue; 5749 5750 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5751 continue; 5752 5753 Diag(SO->second.front().Method->getLocation(), 5754 diag::note_pure_virtual_function) 5755 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5756 } 5757 } 5758 5759 if (!PureVirtualClassDiagSet) 5760 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 5761 PureVirtualClassDiagSet->insert(RD); 5762} 5763 5764namespace { 5765struct AbstractUsageInfo { 5766 Sema &S; 5767 CXXRecordDecl *Record; 5768 CanQualType AbstractType; 5769 bool Invalid; 5770 5771 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 5772 : S(S), Record(Record), 5773 AbstractType(S.Context.getCanonicalType( 5774 S.Context.getTypeDeclType(Record))), 5775 Invalid(false) {} 5776 5777 void DiagnoseAbstractType() { 5778 if (Invalid) return; 5779 S.DiagnoseAbstractType(Record); 5780 Invalid = true; 5781 } 5782 5783 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 5784}; 5785 5786struct CheckAbstractUsage { 5787 AbstractUsageInfo &Info; 5788 const NamedDecl *Ctx; 5789 5790 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 5791 : Info(Info), Ctx(Ctx) {} 5792 5793 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5794 switch (TL.getTypeLocClass()) { 5795#define ABSTRACT_TYPELOC(CLASS, PARENT) 5796#define TYPELOC(CLASS, PARENT) \ 5797 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 5798#include "clang/AST/TypeLocNodes.def" 5799 } 5800 } 5801 5802 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5803 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 5804 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 5805 if (!TL.getParam(I)) 5806 continue; 5807 5808 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 5809 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 5810 } 5811 } 5812 5813 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5814 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 5815 } 5816 5817 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 5818 // Visit the type parameters from a permissive context. 5819 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 5820 TemplateArgumentLoc TAL = TL.getArgLoc(I); 5821 if (TAL.getArgument().getKind() == TemplateArgument::Type) 5822 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 5823 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 5824 // TODO: other template argument types? 5825 } 5826 } 5827 5828 // Visit pointee types from a permissive context. 5829#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5830 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 5831 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 5832 } 5833 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5834 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5835 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5836 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5837 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5838 5839 /// Handle all the types we haven't given a more specific 5840 /// implementation for above. 5841 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 5842 // Every other kind of type that we haven't called out already 5843 // that has an inner type is either (1) sugar or (2) contains that 5844 // inner type in some way as a subobject. 5845 if (TypeLoc Next = TL.getNextTypeLoc()) 5846 return Visit(Next, Sel); 5847 5848 // If there's no inner type and we're in a permissive context, 5849 // don't diagnose. 5850 if (Sel == Sema::AbstractNone) return; 5851 5852 // Check whether the type matches the abstract type. 5853 QualType T = TL.getType(); 5854 if (T->isArrayType()) { 5855 Sel = Sema::AbstractArrayType; 5856 T = Info.S.Context.getBaseElementType(T); 5857 } 5858 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 5859 if (CT != Info.AbstractType) return; 5860 5861 // It matched; do some magic. 5862 if (Sel == Sema::AbstractArrayType) { 5863 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 5864 << T << TL.getSourceRange(); 5865 } else { 5866 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 5867 << Sel << T << TL.getSourceRange(); 5868 } 5869 Info.DiagnoseAbstractType(); 5870 } 5871}; 5872 5873void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 5874 Sema::AbstractDiagSelID Sel) { 5875 CheckAbstractUsage(*this, D).Visit(TL, Sel); 5876} 5877 5878} 5879 5880/// Check for invalid uses of an abstract type in a method declaration. 5881static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5882 CXXMethodDecl *MD) { 5883 // No need to do the check on definitions, which require that 5884 // the return/param types be complete. 5885 if (MD->doesThisDeclarationHaveABody()) 5886 return; 5887 5888 // For safety's sake, just ignore it if we don't have type source 5889 // information. This should never happen for non-implicit methods, 5890 // but... 5891 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 5892 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); 5893} 5894 5895/// Check for invalid uses of an abstract type within a class definition. 5896static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 5897 CXXRecordDecl *RD) { 5898 for (auto *D : RD->decls()) { 5899 if (D->isImplicit()) continue; 5900 5901 // Methods and method templates. 5902 if (isa<CXXMethodDecl>(D)) { 5903 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); 5904 } else if (isa<FunctionTemplateDecl>(D)) { 5905 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); 5906 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); 5907 5908 // Fields and static variables. 5909 } else if (isa<FieldDecl>(D)) { 5910 FieldDecl *FD = cast<FieldDecl>(D); 5911 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 5912 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 5913 } else if (isa<VarDecl>(D)) { 5914 VarDecl *VD = cast<VarDecl>(D); 5915 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 5916 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); 5917 5918 // Nested classes and class templates. 5919 } else if (isa<CXXRecordDecl>(D)) { 5920 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); 5921 } else if (isa<ClassTemplateDecl>(D)) { 5922 CheckAbstractClassUsage(Info, 5923 cast<ClassTemplateDecl>(D)->getTemplatedDecl()); 5924 } 5925 } 5926} 5927 5928static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 5929 Attr *ClassAttr = getDLLAttr(Class); 5930 if (!ClassAttr) 5931 return; 5932 5933 assert(ClassAttr->getKind() == attr::DLLExport)((void)0); 5934 5935 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 5936 5937 if (TSK == TSK_ExplicitInstantiationDeclaration) 5938 // Don't go any further if this is just an explicit instantiation 5939 // declaration. 5940 return; 5941 5942 // Add a context note to explain how we got to any diagnostics produced below. 5943 struct MarkingClassDllexported { 5944 Sema &S; 5945 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 5946 SourceLocation AttrLoc) 5947 : S(S) { 5948 Sema::CodeSynthesisContext Ctx; 5949 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 5950 Ctx.PointOfInstantiation = AttrLoc; 5951 Ctx.Entity = Class; 5952 S.pushCodeSynthesisContext(Ctx); 5953 } 5954 ~MarkingClassDllexported() { 5955 S.popCodeSynthesisContext(); 5956 } 5957 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 5958 5959 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 5960 S.MarkVTableUsed(Class->getLocation(), Class, true); 5961 5962 for (Decl *Member : Class->decls()) { 5963 // Defined static variables that are members of an exported base 5964 // class must be marked export too. 5965 auto *VD = dyn_cast<VarDecl>(Member); 5966 if (VD && Member->getAttr<DLLExportAttr>() && 5967 VD->getStorageClass() == SC_Static && 5968 TSK == TSK_ImplicitInstantiation) 5969 S.MarkVariableReferenced(VD->getLocation(), VD); 5970 5971 auto *MD = dyn_cast<CXXMethodDecl>(Member); 5972 if (!MD) 5973 continue; 5974 5975 if (Member->getAttr<DLLExportAttr>()) { 5976 if (MD->isUserProvided()) { 5977 // Instantiate non-default class member functions ... 5978 5979 // .. except for certain kinds of template specializations. 5980 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 5981 continue; 5982 5983 S.MarkFunctionReferenced(Class->getLocation(), MD); 5984 5985 // The function will be passed to the consumer when its definition is 5986 // encountered. 5987 } else if (MD->isExplicitlyDefaulted()) { 5988 // Synthesize and instantiate explicitly defaulted methods. 5989 S.MarkFunctionReferenced(Class->getLocation(), MD); 5990 5991 if (TSK != TSK_ExplicitInstantiationDefinition) { 5992 // Except for explicit instantiation defs, we will not see the 5993 // definition again later, so pass it to the consumer now. 5994 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 5995 } 5996 } else if (!MD->isTrivial() || 5997 MD->isCopyAssignmentOperator() || 5998 MD->isMoveAssignmentOperator()) { 5999 // Synthesize and instantiate non-trivial implicit methods, and the copy 6000 // and move assignment operators. The latter are exported even if they 6001 // are trivial, because the address of an operator can be taken and 6002 // should compare equal across libraries. 6003 S.MarkFunctionReferenced(Class->getLocation(), MD); 6004 6005 // There is no later point when we will see the definition of this 6006 // function, so pass it to the consumer now. 6007 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6008 } 6009 } 6010 } 6011} 6012 6013static void checkForMultipleExportedDefaultConstructors(Sema &S, 6014 CXXRecordDecl *Class) { 6015 // Only the MS ABI has default constructor closures, so we don't need to do 6016 // this semantic checking anywhere else. 6017 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6018 return; 6019 6020 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6021 for (Decl *Member : Class->decls()) { 6022 // Look for exported default constructors. 6023 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6024 if (!CD || !CD->isDefaultConstructor()) 6025 continue; 6026 auto *Attr = CD->getAttr<DLLExportAttr>(); 6027 if (!Attr) 6028 continue; 6029 6030 // If the class is non-dependent, mark the default arguments as ODR-used so 6031 // that we can properly codegen the constructor closure. 6032 if (!Class->isDependentContext()) { 6033 for (ParmVarDecl *PD : CD->parameters()) { 6034 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6035 S.DiscardCleanupsInEvaluationContext(); 6036 } 6037 } 6038 6039 if (LastExportedDefaultCtor) { 6040 S.Diag(LastExportedDefaultCtor->getLocation(), 6041 diag::err_attribute_dll_ambiguous_default_ctor) 6042 << Class; 6043 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6044 << CD->getDeclName(); 6045 return; 6046 } 6047 LastExportedDefaultCtor = CD; 6048 } 6049} 6050 6051static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6052 CXXRecordDecl *Class) { 6053 bool ErrorReported = false; 6054 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6055 ClassTemplateDecl *TD) { 6056 if (ErrorReported) 6057 return; 6058 S.Diag(TD->getLocation(), 6059 diag::err_cuda_device_builtin_surftex_cls_template) 6060 << /*surface*/ 0 << TD; 6061 ErrorReported = true; 6062 }; 6063 6064 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6065 if (!TD) { 6066 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6067 if (!SD) { 6068 S.Diag(Class->getLocation(), 6069 diag::err_cuda_device_builtin_surftex_ref_decl) 6070 << /*surface*/ 0 << Class; 6071 S.Diag(Class->getLocation(), 6072 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6073 << Class; 6074 return; 6075 } 6076 TD = SD->getSpecializedTemplate(); 6077 } 6078 6079 TemplateParameterList *Params = TD->getTemplateParameters(); 6080 unsigned N = Params->size(); 6081 6082 if (N != 2) { 6083 reportIllegalClassTemplate(S, TD); 6084 S.Diag(TD->getLocation(), 6085 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6086 << TD << 2; 6087 } 6088 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6089 reportIllegalClassTemplate(S, TD); 6090 S.Diag(TD->getLocation(), 6091 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6092 << TD << /*1st*/ 0 << /*type*/ 0; 6093 } 6094 if (N > 1) { 6095 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6096 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6097 reportIllegalClassTemplate(S, TD); 6098 S.Diag(TD->getLocation(), 6099 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6100 << TD << /*2nd*/ 1 << /*integer*/ 1; 6101 } 6102 } 6103} 6104 6105static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6106 CXXRecordDecl *Class) { 6107 bool ErrorReported = false; 6108 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6109 ClassTemplateDecl *TD) { 6110 if (ErrorReported) 6111 return; 6112 S.Diag(TD->getLocation(), 6113 diag::err_cuda_device_builtin_surftex_cls_template) 6114 << /*texture*/ 1 << TD; 6115 ErrorReported = true; 6116 }; 6117 6118 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6119 if (!TD) { 6120 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6121 if (!SD) { 6122 S.Diag(Class->getLocation(), 6123 diag::err_cuda_device_builtin_surftex_ref_decl) 6124 << /*texture*/ 1 << Class; 6125 S.Diag(Class->getLocation(), 6126 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6127 << Class; 6128 return; 6129 } 6130 TD = SD->getSpecializedTemplate(); 6131 } 6132 6133 TemplateParameterList *Params = TD->getTemplateParameters(); 6134 unsigned N = Params->size(); 6135 6136 if (N != 3) { 6137 reportIllegalClassTemplate(S, TD); 6138 S.Diag(TD->getLocation(), 6139 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6140 << TD << 3; 6141 } 6142 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6143 reportIllegalClassTemplate(S, TD); 6144 S.Diag(TD->getLocation(), 6145 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6146 << TD << /*1st*/ 0 << /*type*/ 0; 6147 } 6148 if (N > 1) { 6149 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6150 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6151 reportIllegalClassTemplate(S, TD); 6152 S.Diag(TD->getLocation(), 6153 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6154 << TD << /*2nd*/ 1 << /*integer*/ 1; 6155 } 6156 } 6157 if (N > 2) { 6158 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6159 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6160 reportIllegalClassTemplate(S, TD); 6161 S.Diag(TD->getLocation(), 6162 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6163 << TD << /*3rd*/ 2 << /*integer*/ 1; 6164 } 6165 } 6166} 6167 6168void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6169 // Mark any compiler-generated routines with the implicit code_seg attribute. 6170 for (auto *Method : Class->methods()) { 6171 if (Method->isUserProvided()) 6172 continue; 6173 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6174 Method->addAttr(A); 6175 } 6176} 6177 6178/// Check class-level dllimport/dllexport attribute. 6179void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6180 Attr *ClassAttr = getDLLAttr(Class); 6181 6182 // MSVC inherits DLL attributes to partial class template specializations. 6183 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6184 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6185 if (Attr *TemplateAttr = 6186 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6187 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6188 A->setInherited(true); 6189 ClassAttr = A; 6190 } 6191 } 6192 } 6193 6194 if (!ClassAttr) 6195 return; 6196 6197 if (!Class->isExternallyVisible()) { 6198 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6199 << Class << ClassAttr; 6200 return; 6201 } 6202 6203 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6204 !ClassAttr->isInherited()) { 6205 // Diagnose dll attributes on members of class with dll attribute. 6206 for (Decl *Member : Class->decls()) { 6207 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6208 continue; 6209 InheritableAttr *MemberAttr = getDLLAttr(Member); 6210 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6211 continue; 6212 6213 Diag(MemberAttr->getLocation(), 6214 diag::err_attribute_dll_member_of_dll_class) 6215 << MemberAttr << ClassAttr; 6216 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);