File: | src/gnu/usr.bin/cvs/lib/regex.c |
Warning: | line 5277, column 6 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Extended regular expression matching and search library, version | |||
2 | 0.12. (Implements POSIX draft P10003.2/D11.2, except for | |||
3 | internationalization features.) | |||
4 | ||||
5 | Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. | |||
6 | ||||
7 | This program is free software; you can redistribute it and/or modify | |||
8 | it under the terms of the GNU General Public License as published by | |||
9 | the Free Software Foundation; either version 2, or (at your option) | |||
10 | any later version. | |||
11 | ||||
12 | This program is distributed in the hope that it will be useful, | |||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
15 | GNU General Public License for more details. | |||
16 | ||||
17 | You should have received a copy of the GNU General Public License | |||
18 | along with this program; if not, write to the Free Software | |||
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, | |||
20 | USA. */ | |||
21 | ||||
22 | /* AIX requires this to be the first thing in the file. */ | |||
23 | #if defined (_AIX) && !defined (REGEX_MALLOC1) | |||
24 | #pragma alloca | |||
25 | #endif | |||
26 | ||||
27 | #undef _GNU_SOURCE | |||
28 | #define _GNU_SOURCE | |||
29 | ||||
30 | #ifdef emacs | |||
31 | /* Converts the pointer to the char to BEG-based offset from the start. */ | |||
32 | #define PTR_TO_OFFSET(d)0 \ | |||
33 | POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING(dend == end_match_1) \ | |||
34 | ? (d) - string1 : (d) - (string2 - size1)) | |||
35 | #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object))) | |||
36 | #else | |||
37 | #define PTR_TO_OFFSET(d)0 0 | |||
38 | #endif | |||
39 | ||||
40 | #ifdef HAVE_CONFIG_H1 | |||
41 | #include <config.h> | |||
42 | #endif | |||
43 | ||||
44 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ | |||
45 | #include <sys/types.h> | |||
46 | ||||
47 | /* This is for other GNU distributions with internationalized messages. */ | |||
48 | #if HAVE_LIBINTL_H || defined (_LIBC) | |||
49 | # include <libintl.h> | |||
50 | #else | |||
51 | # define gettext(msgid)(msgid) (msgid) | |||
52 | #endif | |||
53 | ||||
54 | #ifndef gettext_noop | |||
55 | /* This define is so xgettext can find the internationalizable | |||
56 | strings. */ | |||
57 | #define gettext_noop(String)String String | |||
58 | #endif | |||
59 | ||||
60 | /* The `emacs' switch turns on certain matching commands | |||
61 | that make sense only in Emacs. */ | |||
62 | #ifdef emacs | |||
63 | ||||
64 | #include "lisp.h" | |||
65 | #include "buffer.h" | |||
66 | ||||
67 | /* Make syntax table lookup grant data in gl_state. */ | |||
68 | #define SYNTAX_ENTRY_VIA_PROPERTY | |||
69 | ||||
70 | #include "syntax.h" | |||
71 | #include "charset.h" | |||
72 | #include "category.h" | |||
73 | ||||
74 | #define malloc xmalloc | |||
75 | #define realloc xrealloc | |||
76 | #define free xfree | |||
77 | ||||
78 | #else /* not emacs */ | |||
79 | ||||
80 | /* If we are not linking with Emacs proper, | |||
81 | we can't use the relocating allocator | |||
82 | even if config.h says that we can. */ | |||
83 | #undef REL_ALLOC | |||
84 | ||||
85 | #if defined (STDC_HEADERS1) || defined (_LIBC) | |||
86 | #include <stdlib.h> | |||
87 | #else | |||
88 | char *malloc (); | |||
89 | char *realloc (); | |||
90 | #endif | |||
91 | ||||
92 | /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. | |||
93 | If nothing else has been done, use the method below. */ | |||
94 | #ifdef INHIBIT_STRING_HEADER | |||
95 | #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) | |||
96 | #if !defined (bzero) && !defined (bcopy) | |||
97 | #undef INHIBIT_STRING_HEADER | |||
98 | #endif | |||
99 | #endif | |||
100 | #endif | |||
101 | ||||
102 | /* This is the normal way of making sure we have a bcopy and a bzero. | |||
103 | This is used in most programs--a few other programs avoid this | |||
104 | by defining INHIBIT_STRING_HEADER. */ | |||
105 | #ifndef INHIBIT_STRING_HEADER | |||
106 | #if defined (HAVE_STRING_H1) || defined (STDC_HEADERS1) || defined (_LIBC) | |||
107 | #include <string.h> | |||
108 | #ifndef bcmp | |||
109 | #define bcmp(s1, s2, n)memcmp ((s1), (s2), (n)) memcmp ((s1), (s2), (n)) | |||
110 | #endif | |||
111 | #ifndef bcopy | |||
112 | #define bcopy(s, d, n)memcpy ((d), (s), (n)) memcpy ((d), (s), (n)) | |||
113 | #endif | |||
114 | #ifndef bzero | |||
115 | #define bzero(s, n)memset ((s), 0, (n)) memset ((s), 0, (n)) | |||
116 | #endif | |||
117 | #else | |||
118 | #include <strings.h> | |||
119 | #endif | |||
120 | #endif | |||
121 | ||||
122 | /* Define the syntax stuff for \<, \>, etc. */ | |||
123 | ||||
124 | /* This must be nonzero for the wordchar and notwordchar pattern | |||
125 | commands in re_match_2. */ | |||
126 | #ifndef Sword1 | |||
127 | #define Sword1 1 | |||
128 | #endif | |||
129 | ||||
130 | #ifdef SWITCH_ENUM_BUG | |||
131 | #define SWITCH_ENUM_CAST(x)(x) ((int)(x)) | |||
132 | #else | |||
133 | #define SWITCH_ENUM_CAST(x)(x) (x) | |||
134 | #endif | |||
135 | ||||
136 | #ifdef SYNTAX_TABLE | |||
137 | ||||
138 | extern char *re_syntax_table; | |||
139 | ||||
140 | #else /* not SYNTAX_TABLE */ | |||
141 | ||||
142 | /* How many characters in the character set. */ | |||
143 | #define CHAR_SET_SIZE256 256 | |||
144 | ||||
145 | static char re_syntax_table[CHAR_SET_SIZE256]; | |||
146 | ||||
147 | static void | |||
148 | init_syntax_once () | |||
149 | { | |||
150 | register int c; | |||
151 | static int done = 0; | |||
152 | ||||
153 | if (done) | |||
154 | return; | |||
155 | ||||
156 | bzero (re_syntax_table, sizeof re_syntax_table)memset ((re_syntax_table), 0, (sizeof re_syntax_table)); | |||
157 | ||||
158 | for (c = 'a'; c <= 'z'; c++) | |||
159 | re_syntax_table[c] = Sword1; | |||
160 | ||||
161 | for (c = 'A'; c <= 'Z'; c++) | |||
162 | re_syntax_table[c] = Sword1; | |||
163 | ||||
164 | for (c = '0'; c <= '9'; c++) | |||
165 | re_syntax_table[c] = Sword1; | |||
166 | ||||
167 | re_syntax_table['_'] = Sword1; | |||
168 | ||||
169 | done = 1; | |||
170 | } | |||
171 | ||||
172 | #endif /* not SYNTAX_TABLE */ | |||
173 | ||||
174 | #define SYNTAX(c)re_syntax_table[c] re_syntax_table[c] | |||
175 | ||||
176 | /* Dummy macros for non-Emacs environments. */ | |||
177 | #define BASE_LEADING_CODE_P(c)(0) (0) | |||
178 | #define WORD_BOUNDARY_P(c1, c2)(0) (0) | |||
179 | #define CHAR_HEAD_P(p)(1) (1) | |||
180 | #define SINGLE_BYTE_CHAR_P(c)(1) (1) | |||
181 | #define SAME_CHARSET_P(c1, c2)(1) (1) | |||
182 | #define MULTIBYTE_FORM_LENGTH(p, s)(1) (1) | |||
183 | #define STRING_CHAR(p, s)(*(p)) (*(p)) | |||
184 | #define STRING_CHAR_AND_LENGTH(p, s, actual_len)((actual_len) = 1, *(p)) ((actual_len) = 1, *(p)) | |||
185 | #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2)(c = ((p) == (end1) ? *(str2) : *(p))) \ | |||
186 | (c = ((p) == (end1) ? *(str2) : *(p))) | |||
187 | #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2)(c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) \ | |||
188 | (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) | |||
189 | #endif /* not emacs */ | |||
190 | ||||
191 | /* Get the interface, including the syntax bits. */ | |||
192 | #include "regex.h" | |||
193 | ||||
194 | /* isalpha etc. are used for the character classes. */ | |||
195 | #include <ctype.h> | |||
196 | ||||
197 | /* Jim Meyering writes: | |||
198 | ||||
199 | "... Some ctype macros are valid only for character codes that | |||
200 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | |||
201 | using /bin/cc or gcc but without giving an ansi option). So, all | |||
202 | ctype uses should be through macros like ISPRINT... If | |||
203 | STDC_HEADERS is defined, then autoconf has verified that the ctype | |||
204 | macros don't need to be guarded with references to isascii. ... | |||
205 | Defining isascii to 1 should let any compiler worth its salt | |||
206 | eliminate the && through constant folding." */ | |||
207 | ||||
208 | #if defined (STDC_HEADERS1) || (!defined (isascii) && !defined (HAVE_ISASCII)) | |||
209 | #define ISASCII(c)1 1 | |||
210 | #else | |||
211 | #define ISASCII(c)1 isascii(c) | |||
212 | #endif | |||
213 | ||||
214 | #ifdef isblank | |||
215 | #define ISBLANK(c)((c) == ' ' || (c) == '\t') (ISASCII (c)1 && isblank (c)) | |||
216 | #else | |||
217 | #define ISBLANK(c)((c) == ' ' || (c) == '\t') ((c) == ' ' || (c) == '\t') | |||
218 | #endif | |||
219 | #ifdef isgraph | |||
220 | #define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isgraph (c)) | |||
221 | #else | |||
222 | #define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isprint (c) && !isspace (c)) | |||
223 | #endif | |||
224 | ||||
225 | #define ISPRINT(c)(1 && isprint (c)) (ISASCII (c)1 && isprint (c)) | |||
226 | #define ISDIGIT(c)(1 && isdigit (c)) (ISASCII (c)1 && isdigit (c)) | |||
227 | #define ISALNUM(c)(1 && isalnum (c)) (ISASCII (c)1 && isalnum (c)) | |||
228 | #define ISALPHA(c)(1 && isalpha (c)) (ISASCII (c)1 && isalpha (c)) | |||
229 | #define ISCNTRL(c)(1 && iscntrl (c)) (ISASCII (c)1 && iscntrl (c)) | |||
230 | #define ISLOWER(c)(1 && islower (c)) (ISASCII (c)1 && islower (c)) | |||
231 | #define ISPUNCT(c)(1 && ispunct (c)) (ISASCII (c)1 && ispunct (c)) | |||
232 | #define ISSPACE(c)(1 && isspace (c)) (ISASCII (c)1 && isspace (c)) | |||
233 | #define ISUPPER(c)(1 && isupper (c)) (ISASCII (c)1 && isupper (c)) | |||
234 | #define ISXDIGIT(c)(1 && isxdigit (c)) (ISASCII (c)1 && isxdigit (c)) | |||
235 | ||||
236 | #ifndef NULL((void *)0) | |||
237 | #define NULL((void *)0) (void *)0 | |||
238 | #endif | |||
239 | ||||
240 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | |||
241 | since ours (we hope) works properly with all combinations of | |||
242 | machines, compilers, `char' and `unsigned char' argument types. | |||
243 | (Per Bothner suggested the basic approach.) */ | |||
244 | #undef SIGN_EXTEND_CHAR | |||
245 | #if __STDC__1 | |||
246 | #define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((signed char) (c)) | |||
247 | #else /* not __STDC__ */ | |||
248 | /* As in Harbison and Steele. */ | |||
249 | #define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((((unsigned char) (c)) ^ 128) - 128) | |||
250 | #endif | |||
251 | ||||
252 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | |||
253 | use `alloca' instead of `malloc'. This is because using malloc in | |||
254 | re_search* or re_match* could cause memory leaks when C-g is used in | |||
255 | Emacs; also, malloc is slower and causes storage fragmentation. On | |||
256 | the other hand, malloc is more portable, and easier to debug. | |||
257 | ||||
258 | Because we sometimes use alloca, some routines have to be macros, | |||
259 | not functions -- `alloca'-allocated space disappears at the end of the | |||
260 | function it is called in. */ | |||
261 | ||||
262 | #ifdef REGEX_MALLOC1 | |||
263 | ||||
264 | #define REGEX_ALLOCATEmalloc malloc | |||
265 | #define REGEX_REALLOCATE(source, osize, nsize)realloc (source, nsize) realloc (source, nsize) | |||
266 | #define REGEX_FREEfree free | |||
267 | ||||
268 | #else /* not REGEX_MALLOC */ | |||
269 | ||||
270 | /* Emacs already defines alloca, sometimes. */ | |||
271 | #ifndef alloca | |||
272 | ||||
273 | /* Make alloca work the best possible way. */ | |||
274 | #ifdef __GNUC__4 | |||
275 | #define alloca __builtin_alloca | |||
276 | #else /* not __GNUC__ */ | |||
277 | #if HAVE_ALLOCA_H | |||
278 | #include <alloca.h> | |||
279 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ | |||
280 | #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ | |||
281 | #ifndef _AIX /* Already did AIX, up at the top. */ | |||
282 | char *alloca ()__builtin_alloca(); | |||
283 | #endif /* not _AIX */ | |||
284 | #endif | |||
285 | #endif /* not HAVE_ALLOCA_H */ | |||
286 | #endif /* not __GNUC__ */ | |||
287 | ||||
288 | #endif /* not alloca */ | |||
289 | ||||
290 | #define REGEX_ALLOCATEmalloc alloca | |||
291 | ||||
292 | /* Assumes a `char *destination' variable. */ | |||
293 | #define REGEX_REALLOCATE(source, osize, nsize)realloc (source, nsize) \ | |||
294 | (destination = (char *) alloca (nsize)__builtin_alloca(nsize), \ | |||
295 | bcopy (source, destination, osize)memcpy ((destination), (source), (osize)), \ | |||
296 | destination) | |||
297 | ||||
298 | /* No need to do anything to free, after alloca. */ | |||
299 | #define REGEX_FREEfree(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ | |||
300 | ||||
301 | #endif /* not REGEX_MALLOC */ | |||
302 | ||||
303 | /* Define how to allocate the failure stack. */ | |||
304 | ||||
305 | #if defined (REL_ALLOC) && defined (REGEX_MALLOC1) | |||
306 | ||||
307 | #define REGEX_ALLOCATE_STACKmalloc(size) \ | |||
308 | r_alloc (&failure_stack_ptr, (size)) | |||
309 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) \ | |||
310 | r_re_alloc (&failure_stack_ptr, (nsize)) | |||
311 | #define REGEX_FREE_STACKfree(ptr) \ | |||
312 | r_alloc_free (&failure_stack_ptr) | |||
313 | ||||
314 | #else /* not using relocating allocator */ | |||
315 | ||||
316 | #ifdef REGEX_MALLOC1 | |||
317 | ||||
318 | #define REGEX_ALLOCATE_STACKmalloc malloc | |||
319 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) realloc (source, nsize) | |||
320 | #define REGEX_FREE_STACKfree free | |||
321 | ||||
322 | #else /* not REGEX_MALLOC */ | |||
323 | ||||
324 | #define REGEX_ALLOCATE_STACKmalloc alloca | |||
325 | ||||
326 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) \ | |||
327 | REGEX_REALLOCATE (source, osize, nsize)realloc (source, nsize) | |||
328 | /* No need to explicitly free anything. */ | |||
329 | #define REGEX_FREE_STACKfree(arg) | |||
330 | ||||
331 | #endif /* not REGEX_MALLOC */ | |||
332 | #endif /* not using relocating allocator */ | |||
333 | ||||
334 | ||||
335 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | |||
336 | `string1' or just past its end. This works if PTR is NULL, which is | |||
337 | a good thing. */ | |||
338 | #define FIRST_STRING_P(ptr)(size1 && string1 <= (ptr) && (ptr) <= string1 + size1) \ | |||
339 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | |||
340 | ||||
341 | /* (Re)Allocate N items of type T using malloc, or fail. */ | |||
342 | #define TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) malloc ((n) * sizeof (t))) | |||
343 | #define RETALLOC(addr, n, t)((addr) = (t *) realloc (addr, (n) * sizeof (t))) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | |||
344 | #define RETALLOC_IF(addr, n, t)if (addr) (((addr)) = (t *) realloc ((addr), ((n)) * sizeof ( t))); else (addr) = ((t *) malloc (((n)) * sizeof (t))) \ | |||
345 | if (addr) RETALLOC((addr), (n), t)(((addr)) = (t *) realloc ((addr), ((n)) * sizeof (t))); else (addr) = TALLOC ((n), t)((t *) malloc (((n)) * sizeof (t))) | |||
346 | #define REGEX_TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) REGEX_ALLOCATEmalloc ((n) * sizeof (t))) | |||
347 | ||||
348 | #define BYTEWIDTH8 8 /* In bits. */ | |||
349 | ||||
350 | #define STREQ(s1, s2)((strcmp (s1, s2) == 0)) ((strcmp (s1, s2) == 0)) | |||
351 | ||||
352 | #undef MAX | |||
353 | #undef MIN | |||
354 | #define MAX(a, b)((a) > (b) ? (a) : (b)) ((a) > (b) ? (a) : (b)) | |||
355 | #define MIN(a, b)((a) < (b) ? (a) : (b)) ((a) < (b) ? (a) : (b)) | |||
356 | ||||
357 | typedef char boolean; | |||
358 | #define false0 0 | |||
359 | #define true1 1 | |||
360 | ||||
361 | static int re_match_2_internal (); | |||
362 | ||||
363 | /* These are the command codes that appear in compiled regular | |||
364 | expressions. Some opcodes are followed by argument bytes. A | |||
365 | command code can specify any interpretation whatsoever for its | |||
366 | arguments. Zero bytes may appear in the compiled regular expression. */ | |||
367 | ||||
368 | typedef enum | |||
369 | { | |||
370 | no_op = 0, | |||
371 | ||||
372 | /* Succeed right away--no more backtracking. */ | |||
373 | succeed, | |||
374 | ||||
375 | /* Followed by one byte giving n, then by n literal bytes. */ | |||
376 | exactn, | |||
377 | ||||
378 | /* Matches any (more or less) character. */ | |||
379 | anychar, | |||
380 | ||||
381 | /* Matches any one char belonging to specified set. First | |||
382 | following byte is number of bitmap bytes. Then come bytes | |||
383 | for a bitmap saying which chars are in. Bits in each byte | |||
384 | are ordered low-bit-first. A character is in the set if its | |||
385 | bit is 1. A character too large to have a bit in the map is | |||
386 | automatically not in the set. */ | |||
387 | charset, | |||
388 | ||||
389 | /* Same parameters as charset, but match any character that is | |||
390 | not one of those specified. */ | |||
391 | charset_not, | |||
392 | ||||
393 | /* Start remembering the text that is matched, for storing in a | |||
394 | register. Followed by one byte with the register number, in | |||
395 | the range 0 to one less than the pattern buffer's re_nsub | |||
396 | field. Then followed by one byte with the number of groups | |||
397 | inner to this one. (This last has to be part of the | |||
398 | start_memory only because we need it in the on_failure_jump | |||
399 | of re_match_2.) */ | |||
400 | start_memory, | |||
401 | ||||
402 | /* Stop remembering the text that is matched and store it in a | |||
403 | memory register. Followed by one byte with the register | |||
404 | number, in the range 0 to one less than `re_nsub' in the | |||
405 | pattern buffer, and one byte with the number of inner groups, | |||
406 | just like `start_memory'. (We need the number of inner | |||
407 | groups here because we don't have any easy way of finding the | |||
408 | corresponding start_memory when we're at a stop_memory.) */ | |||
409 | stop_memory, | |||
410 | ||||
411 | /* Match a duplicate of something remembered. Followed by one | |||
412 | byte containing the register number. */ | |||
413 | duplicate, | |||
414 | ||||
415 | /* Fail unless at beginning of line. */ | |||
416 | begline, | |||
417 | ||||
418 | /* Fail unless at end of line. */ | |||
419 | endline, | |||
420 | ||||
421 | /* Succeeds if at beginning of buffer (if emacs) or at beginning | |||
422 | of string to be matched (if not). */ | |||
423 | begbuf, | |||
424 | ||||
425 | /* Analogously, for end of buffer/string. */ | |||
426 | endbuf, | |||
427 | ||||
428 | /* Followed by two byte relative address to which to jump. */ | |||
429 | jump, | |||
430 | ||||
431 | /* Same as jump, but marks the end of an alternative. */ | |||
432 | jump_past_alt, | |||
433 | ||||
434 | /* Followed by two-byte relative address of place to resume at | |||
435 | in case of failure. */ | |||
436 | on_failure_jump, | |||
437 | ||||
438 | /* Like on_failure_jump, but pushes a placeholder instead of the | |||
439 | current string position when executed. */ | |||
440 | on_failure_keep_string_jump, | |||
441 | ||||
442 | /* Throw away latest failure point and then jump to following | |||
443 | two-byte relative address. */ | |||
444 | pop_failure_jump, | |||
445 | ||||
446 | /* Change to pop_failure_jump if know won't have to backtrack to | |||
447 | match; otherwise change to jump. This is used to jump | |||
448 | back to the beginning of a repeat. If what follows this jump | |||
449 | clearly won't match what the repeat does, such that we can be | |||
450 | sure that there is no use backtracking out of repetitions | |||
451 | already matched, then we change it to a pop_failure_jump. | |||
452 | Followed by two-byte address. */ | |||
453 | maybe_pop_jump, | |||
454 | ||||
455 | /* Jump to following two-byte address, and push a dummy failure | |||
456 | point. This failure point will be thrown away if an attempt | |||
457 | is made to use it for a failure. A `+' construct makes this | |||
458 | before the first repeat. Also used as an intermediary kind | |||
459 | of jump when compiling an alternative. */ | |||
460 | dummy_failure_jump, | |||
461 | ||||
462 | /* Push a dummy failure point and continue. Used at the end of | |||
463 | alternatives. */ | |||
464 | push_dummy_failure, | |||
465 | ||||
466 | /* Followed by two-byte relative address and two-byte number n. | |||
467 | After matching N times, jump to the address upon failure. */ | |||
468 | succeed_n, | |||
469 | ||||
470 | /* Followed by two-byte relative address, and two-byte number n. | |||
471 | Jump to the address N times, then fail. */ | |||
472 | jump_n, | |||
473 | ||||
474 | /* Set the following two-byte relative address to the | |||
475 | subsequent two-byte number. The address *includes* the two | |||
476 | bytes of number. */ | |||
477 | set_number_at, | |||
478 | ||||
479 | wordchar, /* Matches any word-constituent character. */ | |||
480 | notwordchar, /* Matches any char that is not a word-constituent. */ | |||
481 | ||||
482 | wordbeg, /* Succeeds if at word beginning. */ | |||
483 | wordend, /* Succeeds if at word end. */ | |||
484 | ||||
485 | wordbound, /* Succeeds if at a word boundary. */ | |||
486 | notwordbound /* Succeeds if not at a word boundary. */ | |||
487 | ||||
488 | #ifdef emacs | |||
489 | ,before_dot, /* Succeeds if before point. */ | |||
490 | at_dot, /* Succeeds if at point. */ | |||
491 | after_dot, /* Succeeds if after point. */ | |||
492 | ||||
493 | /* Matches any character whose syntax is specified. Followed by | |||
494 | a byte which contains a syntax code, e.g., Sword. */ | |||
495 | syntaxspec, | |||
496 | ||||
497 | /* Matches any character whose syntax is not that specified. */ | |||
498 | notsyntaxspec, | |||
499 | ||||
500 | /* Matches any character whose category-set contains the specified | |||
501 | category. The operator is followed by a byte which contains a | |||
502 | category code (mnemonic ASCII character). */ | |||
503 | categoryspec, | |||
504 | ||||
505 | /* Matches any character whose category-set does not contain the | |||
506 | specified category. The operator is followed by a byte which | |||
507 | contains the category code (mnemonic ASCII character). */ | |||
508 | notcategoryspec | |||
509 | #endif /* emacs */ | |||
510 | } re_opcode_t; | |||
511 | ||||
512 | /* Common operations on the compiled pattern. */ | |||
513 | ||||
514 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | |||
515 | ||||
516 | #define STORE_NUMBER(destination, number)do { (destination)[0] = (number) & 0377; (destination)[1] = (number) >> 8; } while (0) \ | |||
517 | do { \ | |||
518 | (destination)[0] = (number) & 0377; \ | |||
519 | (destination)[1] = (number) >> 8; \ | |||
520 | } while (0) | |||
521 | ||||
522 | /* Same as STORE_NUMBER, except increment DESTINATION to | |||
523 | the byte after where the number is stored. Therefore, DESTINATION | |||
524 | must be an lvalue. */ | |||
525 | ||||
526 | #define STORE_NUMBER_AND_INCR(destination, number)do { do { (destination)[0] = (number) & 0377; (destination )[1] = (number) >> 8; } while (0); (destination) += 2; } while (0) \ | |||
527 | do { \ | |||
528 | STORE_NUMBER (destination, number)do { (destination)[0] = (number) & 0377; (destination)[1] = (number) >> 8; } while (0); \ | |||
529 | (destination) += 2; \ | |||
530 | } while (0) | |||
531 | ||||
532 | /* Put into DESTINATION a number stored in two contiguous bytes starting | |||
533 | at SOURCE. */ | |||
534 | ||||
535 | #define EXTRACT_NUMBER(destination, source)do { (destination) = *(source) & 0377; (destination) += ( (signed char) (*((source) + 1))) << 8; } while (0) \ | |||
536 | do { \ | |||
537 | (destination) = *(source) & 0377; \ | |||
538 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1))((signed char) (*((source) + 1))) << 8; \ | |||
539 | } while (0) | |||
540 | ||||
541 | #ifdef DEBUG | |||
542 | static void | |||
543 | extract_number (dest, source) | |||
544 | int *dest; | |||
545 | unsigned char *source; | |||
546 | { | |||
547 | int temp = SIGN_EXTEND_CHAR (*(source + 1))((signed char) (*(source + 1))); | |||
548 | *dest = *source & 0377; | |||
549 | *dest += temp << 8; | |||
550 | } | |||
551 | ||||
552 | #ifndef EXTRACT_MACROS /* To debug the macros. */ | |||
553 | #undef EXTRACT_NUMBER | |||
554 | #define EXTRACT_NUMBER(dest, src)do { (dest) = *(src) & 0377; (dest) += ((signed char) (*( (src) + 1))) << 8; } while (0) extract_number (&dest, src) | |||
555 | #endif /* not EXTRACT_MACROS */ | |||
556 | ||||
557 | #endif /* DEBUG */ | |||
558 | ||||
559 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | |||
560 | SOURCE must be an lvalue. */ | |||
561 | ||||
562 | #define EXTRACT_NUMBER_AND_INCR(destination, source)do { do { (destination) = *(source) & 0377; (destination) += ((signed char) (*((source) + 1))) << 8; } while (0) ; (source) += 2; } while (0) \ | |||
563 | do { \ | |||
564 | EXTRACT_NUMBER (destination, source)do { (destination) = *(source) & 0377; (destination) += ( (signed char) (*((source) + 1))) << 8; } while (0); \ | |||
565 | (source) += 2; \ | |||
566 | } while (0) | |||
567 | ||||
568 | #ifdef DEBUG | |||
569 | static void | |||
570 | extract_number_and_incr (destination, source) | |||
571 | int *destination; | |||
572 | unsigned char **source; | |||
573 | { | |||
574 | extract_number (destination, *source); | |||
575 | *source += 2; | |||
576 | } | |||
577 | ||||
578 | #ifndef EXTRACT_MACROS | |||
579 | #undef EXTRACT_NUMBER_AND_INCR | |||
580 | #define EXTRACT_NUMBER_AND_INCR(dest, src)do { do { (dest) = *(src) & 0377; (dest) += ((signed char ) (*((src) + 1))) << 8; } while (0); (src) += 2; } while (0) \ | |||
581 | extract_number_and_incr (&dest, &src) | |||
582 | #endif /* not EXTRACT_MACROS */ | |||
583 | ||||
584 | #endif /* DEBUG */ | |||
585 | ||||
586 | /* Store a multibyte character in three contiguous bytes starting | |||
587 | DESTINATION, and increment DESTINATION to the byte after where the | |||
588 | character is stored. Therefore, DESTINATION must be an lvalue. */ | |||
589 | ||||
590 | #define STORE_CHARACTER_AND_INCR(destination, character)do { (destination)[0] = (character) & 0377; (destination) [1] = ((character) >> 8) & 0377; (destination)[2] = (character) >> 16; (destination) += 3; } while (0) \ | |||
591 | do { \ | |||
592 | (destination)[0] = (character) & 0377; \ | |||
593 | (destination)[1] = ((character) >> 8) & 0377; \ | |||
594 | (destination)[2] = (character) >> 16; \ | |||
595 | (destination) += 3; \ | |||
596 | } while (0) | |||
597 | ||||
598 | /* Put into DESTINATION a character stored in three contiguous bytes | |||
599 | starting at SOURCE. */ | |||
600 | ||||
601 | #define EXTRACT_CHARACTER(destination, source)do { (destination) = ((source)[0] | ((source)[1] << 8) | ((source)[2] << 16)); } while (0) \ | |||
602 | do { \ | |||
603 | (destination) = ((source)[0] \ | |||
604 | | ((source)[1] << 8) \ | |||
605 | | ((source)[2] << 16)); \ | |||
606 | } while (0) | |||
607 | ||||
608 | ||||
609 | /* Macros for charset. */ | |||
610 | ||||
611 | /* Size of bitmap of charset P in bytes. P is a start of charset, | |||
612 | i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */ | |||
613 | #define CHARSET_BITMAP_SIZE(p)((p)[1] & 0x7F) ((p)[1] & 0x7F) | |||
614 | ||||
615 | /* Nonzero if charset P has range table. */ | |||
616 | #define CHARSET_RANGE_TABLE_EXISTS_P(p)((p)[1] & 0x80) ((p)[1] & 0x80) | |||
617 | ||||
618 | /* Return the address of range table of charset P. But not the start | |||
619 | of table itself, but the before where the number of ranges is | |||
620 | stored. `2 +' means to skip re_opcode_t and size of bitmap. */ | |||
621 | #define CHARSET_RANGE_TABLE(p)(&(p)[2 + ((p)[1] & 0x7F)]) (&(p)[2 + CHARSET_BITMAP_SIZE (p)((p)[1] & 0x7F)]) | |||
622 | ||||
623 | /* Test if C is listed in the bitmap of charset P. */ | |||
624 | #define CHARSET_LOOKUP_BITMAP(p, c)((c) < ((p)[1] & 0x7F) * 8 && (p)[2 + (c) / 8] & (1 << ((c) % 8))) \ | |||
625 | ((c) < CHARSET_BITMAP_SIZE (p)((p)[1] & 0x7F) * BYTEWIDTH8 \ | |||
626 | && (p)[2 + (c) / BYTEWIDTH8] & (1 << ((c) % BYTEWIDTH8))) | |||
627 | ||||
628 | /* Return the address of end of RANGE_TABLE. COUNT is number of | |||
629 | ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2' | |||
630 | is start of range and end of range. `* 3' is size of each start | |||
631 | and end. */ | |||
632 | #define CHARSET_RANGE_TABLE_END(range_table, count)((range_table) + (count) * 2 * 3) \ | |||
633 | ((range_table) + (count) * 2 * 3) | |||
634 | ||||
635 | /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in. | |||
636 | COUNT is number of ranges in RANGE_TABLE. */ | |||
637 | #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= (c) && (c) <= range_end) { (not) = !(not); break; } } } while (0) \ | |||
638 | do \ | |||
639 | { \ | |||
640 | int range_start, range_end; \ | |||
641 | unsigned char *p; \ | |||
642 | unsigned char *range_table_end \ | |||
643 | = CHARSET_RANGE_TABLE_END ((range_table), (count))(((range_table)) + ((count)) * 2 * 3); \ | |||
644 | \ | |||
645 | for (p = (range_table); p < range_table_end; p += 2 * 3) \ | |||
646 | { \ | |||
647 | EXTRACT_CHARACTER (range_start, p)do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); \ | |||
648 | EXTRACT_CHARACTER (range_end, p + 3)do { (range_end) = ((p + 3)[0] | ((p + 3)[1] << 8) | (( p + 3)[2] << 16)); } while (0); \ | |||
649 | \ | |||
650 | if (range_start <= (c) && (c) <= range_end) \ | |||
651 | { \ | |||
652 | (not) = !(not); \ | |||
653 | break; \ | |||
654 | } \ | |||
655 | } \ | |||
656 | } \ | |||
657 | while (0) | |||
658 | ||||
659 | /* Test if C is in range table of CHARSET. The flag NOT is negated if | |||
660 | C is listed in it. */ | |||
661 | #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)do { int count; unsigned char *range_table = (&(charset)[ 2 + ((charset)[1] & 0x7F)]); do { do { (count) = *(range_table ) & 0377; (count) += ((signed char) (*((range_table) + 1) )) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= ((c)) && ((c)) <= range_end) { ( (not)) = !((not)); break; } } } while (0); } while (0) \ | |||
662 | do \ | |||
663 | { \ | |||
664 | /* Number of ranges in range table. */ \ | |||
665 | int count; \ | |||
666 | unsigned char *range_table = CHARSET_RANGE_TABLE (charset)(&(charset)[2 + ((charset)[1] & 0x7F)]); \ | |||
667 | \ | |||
668 | EXTRACT_NUMBER_AND_INCR (count, range_table)do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table ) += 2; } while (0); \ | |||
669 | CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= ((c)) && ((c)) <= range_end) { ( (not)) = !((not)); break; } } } while (0); \ | |||
670 | } \ | |||
671 | while (0) | |||
672 | ||||
673 | /* If DEBUG is defined, Regex prints many voluminous messages about what | |||
674 | it is doing (if the variable `debug' is nonzero). If linked with the | |||
675 | main program in `iregex.c', you can enter patterns and strings | |||
676 | interactively. And if linked with the main program in `main.c' and | |||
677 | the other test files, you can run the already-written tests. */ | |||
678 | ||||
679 | #ifdef DEBUG | |||
680 | ||||
681 | /* We use standard I/O for debugging. */ | |||
682 | #include <stdio.h> | |||
683 | ||||
684 | /* It is useful to test things that ``must'' be true when debugging. */ | |||
685 | #include <assert.h> | |||
686 | ||||
687 | static int debug = 0; | |||
688 | ||||
689 | #define DEBUG_STATEMENT(e) e | |||
690 | #define DEBUG_PRINT1(x) if (debug) printf (x) | |||
691 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | |||
692 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | |||
693 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | |||
694 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | |||
695 | if (debug) print_partial_compiled_pattern (s, e) | |||
696 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |||
697 | if (debug) print_double_string (w, s1, sz1, s2, sz2) | |||
698 | ||||
699 | ||||
700 | /* Print the fastmap in human-readable form. */ | |||
701 | ||||
702 | void | |||
703 | print_fastmap (fastmap) | |||
704 | char *fastmap; | |||
705 | { | |||
706 | unsigned was_a_range = 0; | |||
707 | unsigned i = 0; | |||
708 | ||||
709 | while (i < (1 << BYTEWIDTH8)) | |||
710 | { | |||
711 | if (fastmap[i++]) | |||
712 | { | |||
713 | was_a_range = 0; | |||
714 | putchar (i - 1); | |||
715 | while (i < (1 << BYTEWIDTH8) && fastmap[i]) | |||
716 | { | |||
717 | was_a_range = 1; | |||
718 | i++; | |||
719 | } | |||
720 | if (was_a_range) | |||
721 | { | |||
722 | printf ("-"); | |||
723 | putchar (i - 1); | |||
724 | } | |||
725 | } | |||
726 | } | |||
727 | putchar ('\n'); | |||
728 | } | |||
729 | ||||
730 | ||||
731 | /* Print a compiled pattern string in human-readable form, starting at | |||
732 | the START pointer into it and ending just before the pointer END. */ | |||
733 | ||||
734 | void | |||
735 | print_partial_compiled_pattern (start, end) | |||
736 | unsigned char *start; | |||
737 | unsigned char *end; | |||
738 | { | |||
739 | int mcnt, mcnt2; | |||
740 | unsigned char *p = start; | |||
741 | unsigned char *pend = end; | |||
742 | ||||
743 | if (start == NULL((void *)0)) | |||
744 | { | |||
745 | printf ("(null)\n"); | |||
746 | return; | |||
747 | } | |||
748 | ||||
749 | /* Loop over pattern commands. */ | |||
750 | while (p < pend) | |||
751 | { | |||
752 | printf ("%d:\t", p - start); | |||
753 | ||||
754 | switch ((re_opcode_t) *p++) | |||
755 | { | |||
756 | case no_op: | |||
757 | printf ("/no_op"); | |||
758 | break; | |||
759 | ||||
760 | case exactn: | |||
761 | mcnt = *p++; | |||
762 | printf ("/exactn/%d", mcnt); | |||
763 | do | |||
764 | { | |||
765 | putchar ('/'); | |||
766 | putchar (*p++); | |||
767 | } | |||
768 | while (--mcnt); | |||
769 | break; | |||
770 | ||||
771 | case start_memory: | |||
772 | mcnt = *p++; | |||
773 | printf ("/start_memory/%d/%d", mcnt, *p++); | |||
774 | break; | |||
775 | ||||
776 | case stop_memory: | |||
777 | mcnt = *p++; | |||
778 | printf ("/stop_memory/%d/%d", mcnt, *p++); | |||
779 | break; | |||
780 | ||||
781 | case duplicate: | |||
782 | printf ("/duplicate/%d", *p++); | |||
783 | break; | |||
784 | ||||
785 | case anychar: | |||
786 | printf ("/anychar"); | |||
787 | break; | |||
788 | ||||
789 | case charset: | |||
790 | case charset_not: | |||
791 | { | |||
792 | register int c, last = -100; | |||
793 | register int in_range = 0; | |||
794 | ||||
795 | printf ("/charset [%s", | |||
796 | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | |||
797 | ||||
798 | assert (p + *p < pend); | |||
799 | ||||
800 | for (c = 0; c < 256; c++) | |||
801 | if (c / 8 < *p | |||
802 | && (p[1 + (c/8)] & (1 << (c % 8)))) | |||
803 | { | |||
804 | /* Are we starting a range? */ | |||
805 | if (last + 1 == c && ! in_range) | |||
806 | { | |||
807 | putchar ('-'); | |||
808 | in_range = 1; | |||
809 | } | |||
810 | /* Have we broken a range? */ | |||
811 | else if (last + 1 != c && in_range) | |||
812 | { | |||
813 | putchar (last); | |||
814 | in_range = 0; | |||
815 | } | |||
816 | ||||
817 | if (! in_range) | |||
818 | putchar (c); | |||
819 | ||||
820 | last = c; | |||
821 | } | |||
822 | ||||
823 | if (in_range) | |||
824 | putchar (last); | |||
825 | ||||
826 | putchar (']'); | |||
827 | ||||
828 | p += 1 + *p; | |||
829 | } | |||
830 | break; | |||
831 | ||||
832 | case begline: | |||
833 | printf ("/begline"); | |||
834 | break; | |||
835 | ||||
836 | case endline: | |||
837 | printf ("/endline"); | |||
838 | break; | |||
839 | ||||
840 | case on_failure_jump: | |||
841 | extract_number_and_incr (&mcnt, &p); | |||
842 | printf ("/on_failure_jump to %d", p + mcnt - start); | |||
843 | break; | |||
844 | ||||
845 | case on_failure_keep_string_jump: | |||
846 | extract_number_and_incr (&mcnt, &p); | |||
847 | printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | |||
848 | break; | |||
849 | ||||
850 | case dummy_failure_jump: | |||
851 | extract_number_and_incr (&mcnt, &p); | |||
852 | printf ("/dummy_failure_jump to %d", p + mcnt - start); | |||
853 | break; | |||
854 | ||||
855 | case push_dummy_failure: | |||
856 | printf ("/push_dummy_failure"); | |||
857 | break; | |||
858 | ||||
859 | case maybe_pop_jump: | |||
860 | extract_number_and_incr (&mcnt, &p); | |||
861 | printf ("/maybe_pop_jump to %d", p + mcnt - start); | |||
862 | break; | |||
863 | ||||
864 | case pop_failure_jump: | |||
865 | extract_number_and_incr (&mcnt, &p); | |||
866 | printf ("/pop_failure_jump to %d", p + mcnt - start); | |||
867 | break; | |||
868 | ||||
869 | case jump_past_alt: | |||
870 | extract_number_and_incr (&mcnt, &p); | |||
871 | printf ("/jump_past_alt to %d", p + mcnt - start); | |||
872 | break; | |||
873 | ||||
874 | case jump: | |||
875 | extract_number_and_incr (&mcnt, &p); | |||
876 | printf ("/jump to %d", p + mcnt - start); | |||
877 | break; | |||
878 | ||||
879 | case succeed_n: | |||
880 | extract_number_and_incr (&mcnt, &p); | |||
881 | extract_number_and_incr (&mcnt2, &p); | |||
882 | printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); | |||
883 | break; | |||
884 | ||||
885 | case jump_n: | |||
886 | extract_number_and_incr (&mcnt, &p); | |||
887 | extract_number_and_incr (&mcnt2, &p); | |||
888 | printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); | |||
889 | break; | |||
890 | ||||
891 | case set_number_at: | |||
892 | extract_number_and_incr (&mcnt, &p); | |||
893 | extract_number_and_incr (&mcnt2, &p); | |||
894 | printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); | |||
895 | break; | |||
896 | ||||
897 | case wordbound: | |||
898 | printf ("/wordbound"); | |||
899 | break; | |||
900 | ||||
901 | case notwordbound: | |||
902 | printf ("/notwordbound"); | |||
903 | break; | |||
904 | ||||
905 | case wordbeg: | |||
906 | printf ("/wordbeg"); | |||
907 | break; | |||
908 | ||||
909 | case wordend: | |||
910 | printf ("/wordend"); | |||
911 | ||||
912 | #ifdef emacs | |||
913 | case before_dot: | |||
914 | printf ("/before_dot"); | |||
915 | break; | |||
916 | ||||
917 | case at_dot: | |||
918 | printf ("/at_dot"); | |||
919 | break; | |||
920 | ||||
921 | case after_dot: | |||
922 | printf ("/after_dot"); | |||
923 | break; | |||
924 | ||||
925 | case syntaxspec: | |||
926 | printf ("/syntaxspec"); | |||
927 | mcnt = *p++; | |||
928 | printf ("/%d", mcnt); | |||
929 | break; | |||
930 | ||||
931 | case notsyntaxspec: | |||
932 | printf ("/notsyntaxspec"); | |||
933 | mcnt = *p++; | |||
934 | printf ("/%d", mcnt); | |||
935 | break; | |||
936 | #endif /* emacs */ | |||
937 | ||||
938 | case wordchar: | |||
939 | printf ("/wordchar"); | |||
940 | break; | |||
941 | ||||
942 | case notwordchar: | |||
943 | printf ("/notwordchar"); | |||
944 | break; | |||
945 | ||||
946 | case begbuf: | |||
947 | printf ("/begbuf"); | |||
948 | break; | |||
949 | ||||
950 | case endbuf: | |||
951 | printf ("/endbuf"); | |||
952 | break; | |||
953 | ||||
954 | default: | |||
955 | printf ("?%d", *(p-1)); | |||
956 | } | |||
957 | ||||
958 | putchar ('\n'); | |||
959 | } | |||
960 | ||||
961 | printf ("%d:\tend of pattern.\n", p - start); | |||
962 | } | |||
963 | ||||
964 | ||||
965 | void | |||
966 | print_compiled_pattern (bufp) | |||
967 | struct re_pattern_buffer *bufp; | |||
968 | { | |||
969 | unsigned char *buffer = bufp->buffer; | |||
970 | ||||
971 | print_partial_compiled_pattern (buffer, buffer + bufp->used); | |||
972 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); | |||
973 | ||||
974 | if (bufp->fastmap_accurate && bufp->fastmap) | |||
975 | { | |||
976 | printf ("fastmap: "); | |||
977 | print_fastmap (bufp->fastmap); | |||
978 | } | |||
979 | ||||
980 | printf ("re_nsub: %d\t", bufp->re_nsub); | |||
981 | printf ("regs_alloc: %d\t", bufp->regs_allocated); | |||
982 | printf ("can_be_null: %d\t", bufp->can_be_null); | |||
983 | printf ("newline_anchor: %d\n", bufp->newline_anchor); | |||
984 | printf ("no_sub: %d\t", bufp->no_sub); | |||
985 | printf ("not_bol: %d\t", bufp->not_bol); | |||
986 | printf ("not_eol: %d\t", bufp->not_eol); | |||
987 | printf ("syntax: %d\n", bufp->syntax); | |||
988 | /* Perhaps we should print the translate table? */ | |||
989 | } | |||
990 | ||||
991 | ||||
992 | void | |||
993 | print_double_string (where, string1, size1, string2, size2) | |||
994 | const char *where; | |||
995 | const char *string1; | |||
996 | const char *string2; | |||
997 | int size1; | |||
998 | int size2; | |||
999 | { | |||
1000 | unsigned this_char; | |||
1001 | ||||
1002 | if (where == NULL((void *)0)) | |||
1003 | printf ("(null)"); | |||
1004 | else | |||
1005 | { | |||
1006 | if (FIRST_STRING_P (where)(size1 && string1 <= (where) && (where) <= string1 + size1)) | |||
1007 | { | |||
1008 | for (this_char = where - string1; this_char < size1; this_char++) | |||
1009 | putchar (string1[this_char]); | |||
1010 | ||||
1011 | where = string2; | |||
1012 | } | |||
1013 | ||||
1014 | for (this_char = where - string2; this_char < size2; this_char++) | |||
1015 | putchar (string2[this_char]); | |||
1016 | } | |||
1017 | } | |||
1018 | ||||
1019 | #else /* not DEBUG */ | |||
1020 | ||||
1021 | #undef assert | |||
1022 | #define assert(e) | |||
1023 | ||||
1024 | #define DEBUG_STATEMENT(e) | |||
1025 | #define DEBUG_PRINT1(x) | |||
1026 | #define DEBUG_PRINT2(x1, x2) | |||
1027 | #define DEBUG_PRINT3(x1, x2, x3) | |||
1028 | #define DEBUG_PRINT4(x1, x2, x3, x4) | |||
1029 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | |||
1030 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |||
1031 | ||||
1032 | #endif /* not DEBUG */ | |||
1033 | ||||
1034 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | |||
1035 | also be assigned to arbitrarily: each pattern buffer stores its own | |||
1036 | syntax, so it can be changed between regex compilations. */ | |||
1037 | /* This has no initializer because initialized variables in Emacs | |||
1038 | become read-only after dumping. */ | |||
1039 | reg_syntax_t re_syntax_options; | |||
1040 | ||||
1041 | ||||
1042 | /* Specify the precise syntax of regexps for compilation. This provides | |||
1043 | for compatibility for various utilities which historically have | |||
1044 | different, incompatible syntaxes. | |||
1045 | ||||
1046 | The argument SYNTAX is a bit mask comprised of the various bits | |||
1047 | defined in regex.h. We return the old syntax. */ | |||
1048 | ||||
1049 | reg_syntax_t | |||
1050 | re_set_syntax (syntax) | |||
1051 | reg_syntax_t syntax; | |||
1052 | { | |||
1053 | reg_syntax_t ret = re_syntax_options; | |||
1054 | ||||
1055 | re_syntax_options = syntax; | |||
1056 | return ret; | |||
1057 | } | |||
1058 | ||||
1059 | /* This table gives an error message for each of the error codes listed | |||
1060 | in regex.h. Obviously the order here has to be same as there. | |||
1061 | POSIX doesn't require that we do anything for REG_NOERROR, | |||
1062 | but why not be nice? */ | |||
1063 | ||||
1064 | static const char *re_error_msgid[] = | |||
1065 | { | |||
1066 | gettext_noop ("Success")"Success", /* REG_NOERROR */ | |||
1067 | gettext_noop ("No match")"No match", /* REG_NOMATCH */ | |||
1068 | gettext_noop ("Invalid regular expression")"Invalid regular expression", /* REG_BADPAT */ | |||
1069 | gettext_noop ("Invalid collation character")"Invalid collation character", /* REG_ECOLLATE */ | |||
1070 | gettext_noop ("Invalid character class name")"Invalid character class name", /* REG_ECTYPE */ | |||
1071 | gettext_noop ("Trailing backslash")"Trailing backslash", /* REG_EESCAPE */ | |||
1072 | gettext_noop ("Invalid back reference")"Invalid back reference", /* REG_ESUBREG */ | |||
1073 | gettext_noop ("Unmatched [ or [^")"Unmatched [ or [^", /* REG_EBRACK */ | |||
1074 | gettext_noop ("Unmatched ( or \\(")"Unmatched ( or \\(", /* REG_EPAREN */ | |||
1075 | gettext_noop ("Unmatched \\{")"Unmatched \\{", /* REG_EBRACE */ | |||
1076 | gettext_noop ("Invalid content of \\{\\}")"Invalid content of \\{\\}", /* REG_BADBR */ | |||
1077 | gettext_noop ("Invalid range end")"Invalid range end", /* REG_ERANGE */ | |||
1078 | gettext_noop ("Memory exhausted")"Memory exhausted", /* REG_ESPACE */ | |||
1079 | gettext_noop ("Invalid preceding regular expression")"Invalid preceding regular expression", /* REG_BADRPT */ | |||
1080 | gettext_noop ("Premature end of regular expression")"Premature end of regular expression", /* REG_EEND */ | |||
1081 | gettext_noop ("Regular expression too big")"Regular expression too big", /* REG_ESIZE */ | |||
1082 | gettext_noop ("Unmatched ) or \\)")"Unmatched ) or \\)", /* REG_ERPAREN */ | |||
1083 | }; | |||
1084 | ||||
1085 | /* Avoiding alloca during matching, to placate r_alloc. */ | |||
1086 | ||||
1087 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | |||
1088 | searching and matching functions should not call alloca. On some | |||
1089 | systems, alloca is implemented in terms of malloc, and if we're | |||
1090 | using the relocating allocator routines, then malloc could cause a | |||
1091 | relocation, which might (if the strings being searched are in the | |||
1092 | ralloc heap) shift the data out from underneath the regexp | |||
1093 | routines. | |||
1094 | ||||
1095 | Here's another reason to avoid allocation: Emacs | |||
1096 | processes input from X in a signal handler; processing X input may | |||
1097 | call malloc; if input arrives while a matching routine is calling | |||
1098 | malloc, then we're scrod. But Emacs can't just block input while | |||
1099 | calling matching routines; then we don't notice interrupts when | |||
1100 | they come in. So, Emacs blocks input around all regexp calls | |||
1101 | except the matching calls, which it leaves unprotected, in the | |||
1102 | faith that they will not malloc. */ | |||
1103 | ||||
1104 | /* Normally, this is fine. */ | |||
1105 | #define MATCH_MAY_ALLOCATE | |||
1106 | ||||
1107 | /* When using GNU C, we are not REALLY using the C alloca, no matter | |||
1108 | what config.h may say. So don't take precautions for it. */ | |||
1109 | #ifdef __GNUC__4 | |||
1110 | #undef C_ALLOCA | |||
1111 | #endif | |||
1112 | ||||
1113 | /* The match routines may not allocate if (1) they would do it with malloc | |||
1114 | and (2) it's not safe for them to use malloc. | |||
1115 | Note that if REL_ALLOC is defined, matching would not use malloc for the | |||
1116 | failure stack, but we would still use it for the register vectors; | |||
1117 | so REL_ALLOC should not affect this. */ | |||
1118 | #if (defined (C_ALLOCA) || defined (REGEX_MALLOC1)) && defined (emacs) | |||
1119 | #undef MATCH_MAY_ALLOCATE | |||
1120 | #endif | |||
1121 | ||||
1122 | ||||
1123 | /* Failure stack declarations and macros; both re_compile_fastmap and | |||
1124 | re_match_2 use a failure stack. These have to be macros because of | |||
1125 | REGEX_ALLOCATE_STACK. */ | |||
1126 | ||||
1127 | ||||
1128 | /* Approximate number of failure points for which to initially allocate space | |||
1129 | when matching. If this number is exceeded, we allocate more | |||
1130 | space, so it is not a hard limit. */ | |||
1131 | #ifndef INIT_FAILURE_ALLOC20 | |||
1132 | #define INIT_FAILURE_ALLOC20 20 | |||
1133 | #endif | |||
1134 | ||||
1135 | /* Roughly the maximum number of failure points on the stack. Would be | |||
1136 | exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed. | |||
1137 | This is a variable only so users of regex can assign to it; we never | |||
1138 | change it ourselves. */ | |||
1139 | #if defined (MATCH_MAY_ALLOCATE) | |||
1140 | /* Note that 4400 is enough to cause a crash on Alpha OSF/1, | |||
1141 | whose default stack limit is 2mb. In order for a larger | |||
1142 | value to work reliably, you have to try to make it accord | |||
1143 | with the process stack limit. */ | |||
1144 | int re_max_failures = 40000; | |||
1145 | #else | |||
1146 | int re_max_failures = 4000; | |||
1147 | #endif | |||
1148 | ||||
1149 | union fail_stack_elt | |||
1150 | { | |||
1151 | unsigned char *pointer; | |||
1152 | int integer; | |||
1153 | }; | |||
1154 | ||||
1155 | typedef union fail_stack_elt fail_stack_elt_t; | |||
1156 | ||||
1157 | typedef struct | |||
1158 | { | |||
1159 | fail_stack_elt_t *stack; | |||
1160 | unsigned size; | |||
1161 | unsigned avail; /* Offset of next open position. */ | |||
1162 | } fail_stack_type; | |||
1163 | ||||
1164 | #define FAIL_STACK_EMPTY()(fail_stack.avail == 0) (fail_stack.avail == 0) | |||
1165 | #define FAIL_STACK_PTR_EMPTY()(fail_stack_ptr->avail == 0) (fail_stack_ptr->avail == 0) | |||
1166 | #define FAIL_STACK_FULL()(fail_stack.avail == fail_stack.size) (fail_stack.avail == fail_stack.size) | |||
1167 | ||||
1168 | ||||
1169 | /* Define macros to initialize and free the failure stack. | |||
1170 | Do `return -2' if the alloc fails. */ | |||
1171 | ||||
1172 | #ifdef MATCH_MAY_ALLOCATE | |||
1173 | #define INIT_FAIL_STACK()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0) \ | |||
1174 | do { \ | |||
1175 | fail_stack.stack = (fail_stack_elt_t *) \ | |||
1176 | REGEX_ALLOCATE_STACKmalloc (INIT_FAILURE_ALLOC20 * TYPICAL_FAILURE_SIZE20 \ | |||
1177 | * sizeof (fail_stack_elt_t)); \ | |||
1178 | \ | |||
1179 | if (fail_stack.stack == NULL((void *)0)) \ | |||
1180 | return -2; \ | |||
1181 | \ | |||
1182 | fail_stack.size = INIT_FAILURE_ALLOC20; \ | |||
1183 | fail_stack.avail = 0; \ | |||
1184 | } while (0) | |||
1185 | ||||
1186 | #define RESET_FAIL_STACK()free (fail_stack.stack) REGEX_FREE_STACKfree (fail_stack.stack) | |||
1187 | #else | |||
1188 | #define INIT_FAIL_STACK()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0) \ | |||
1189 | do { \ | |||
1190 | fail_stack.avail = 0; \ | |||
1191 | } while (0) | |||
1192 | ||||
1193 | #define RESET_FAIL_STACK()free (fail_stack.stack) | |||
1194 | #endif | |||
1195 | ||||
1196 | ||||
1197 | /* Double the size of FAIL_STACK, up to a limit | |||
1198 | which allows approximately `re_max_failures' items. | |||
1199 | ||||
1200 | Return 1 if succeeds, and 0 if either ran out of memory | |||
1201 | allocating space for it or it was already too large. | |||
1202 | ||||
1203 | REGEX_REALLOCATE_STACK requires `destination' be declared. */ | |||
1204 | ||||
1205 | /* Factor to increase the failure stack size by | |||
1206 | when we increase it. | |||
1207 | This used to be 2, but 2 was too wasteful | |||
1208 | because the old discarded stacks added up to as much space | |||
1209 | were as ultimate, maximum-size stack. */ | |||
1210 | #define FAIL_STACK_GROWTH_FACTOR4 4 | |||
1211 | ||||
1212 | #define GROW_FAIL_STACK(fail_stack)(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1))) \ | |||
1213 | (((fail_stack).size * sizeof (fail_stack_elt_t) \ | |||
1214 | >= re_max_failures * TYPICAL_FAILURE_SIZE20) \ | |||
1215 | ? 0 \ | |||
1216 | : ((fail_stack).stack \ | |||
1217 | = (fail_stack_elt_t *) \ | |||
1218 | REGEX_REALLOCATE_STACK ((fail_stack).stack, \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
1219 | (fail_stack).size * sizeof (fail_stack_elt_t), \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
1220 | MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
1221 | ((fail_stack).size * sizeof (fail_stack_elt_t) \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
1222 | * FAIL_STACK_GROWTH_FACTOR)))realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))), \ | |||
1223 | \ | |||
1224 | (fail_stack).stack == NULL((void *)0) \ | |||
1225 | ? 0 \ | |||
1226 | : ((fail_stack).size \ | |||
1227 | = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) | |||
1228 | ((fail_stack).size * sizeof (fail_stack_elt_t) \((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) | |||
1229 | * FAIL_STACK_GROWTH_FACTOR))((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) \ | |||
1230 | / sizeof (fail_stack_elt_t)), \ | |||
1231 | 1))) | |||
1232 | ||||
1233 | ||||
1234 | /* Push pointer POINTER on FAIL_STACK. | |||
1235 | Return 1 if was able to do so and 0 if ran out of memory allocating | |||
1236 | space to do so. */ | |||
1237 | #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)(((fail_stack.avail == fail_stack.size) && !(((FAIL_STACK ).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20 ) ? 0 : ((FAIL_STACK).stack = (fail_stack_elt_t *) realloc (( FAIL_STACK).stack, ((re_max_failures * 20) < (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4))) ), (FAIL_STACK).stack == ((void *)0) ? 0 : ((FAIL_STACK).size = (((re_max_failures * 20) < (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) ? 0 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, 1)) \ | |||
1238 | ((FAIL_STACK_FULL ()(fail_stack.avail == fail_stack.size) \ | |||
1239 | && !GROW_FAIL_STACK (FAIL_STACK)(((FAIL_STACK).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((FAIL_STACK).stack = (fail_stack_elt_t *) realloc ((FAIL_STACK).stack, ((re_max_failures * 20) < (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4))) ), (FAIL_STACK).stack == ((void *)0) ? 0 : ((FAIL_STACK).size = (((re_max_failures * 20) < (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) \ | |||
1240 | ? 0 \ | |||
1241 | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | |||
1242 | 1)) | |||
1243 | ||||
1244 | /* Push a pointer value onto the failure stack. | |||
1245 | Assumes the variable `fail_stack'. Probably should only | |||
1246 | be called from within `PUSH_FAILURE_POINT'. */ | |||
1247 | #define PUSH_FAILURE_POINTER(item)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) \ | |||
1248 | fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | |||
1249 | ||||
1250 | /* This pushes an integer-valued item onto the failure stack. | |||
1251 | Assumes the variable `fail_stack'. Probably should only | |||
1252 | be called from within `PUSH_FAILURE_POINT'. */ | |||
1253 | #define PUSH_FAILURE_INT(item)fail_stack.stack[fail_stack.avail++].integer = (item) \ | |||
1254 | fail_stack.stack[fail_stack.avail++].integer = (item) | |||
1255 | ||||
1256 | /* Push a fail_stack_elt_t value onto the failure stack. | |||
1257 | Assumes the variable `fail_stack'. Probably should only | |||
1258 | be called from within `PUSH_FAILURE_POINT'. */ | |||
1259 | #define PUSH_FAILURE_ELT(item)fail_stack.stack[fail_stack.avail++] = (item) \ | |||
1260 | fail_stack.stack[fail_stack.avail++] = (item) | |||
1261 | ||||
1262 | /* These three POP... operations complement the three PUSH... operations. | |||
1263 | All assume that `fail_stack' is nonempty. */ | |||
1264 | #define POP_FAILURE_POINTER()fail_stack.stack[--fail_stack.avail].pointer fail_stack.stack[--fail_stack.avail].pointer | |||
1265 | #define POP_FAILURE_INT()fail_stack.stack[--fail_stack.avail].integer fail_stack.stack[--fail_stack.avail].integer | |||
1266 | #define POP_FAILURE_ELT()fail_stack.stack[--fail_stack.avail] fail_stack.stack[--fail_stack.avail] | |||
1267 | ||||
1268 | /* Used to omit pushing failure point id's when we're not debugging. */ | |||
1269 | #ifdef DEBUG | |||
1270 | #define DEBUG_PUSH PUSH_FAILURE_INT | |||
1271 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer | |||
1272 | #else | |||
1273 | #define DEBUG_PUSH(item) | |||
1274 | #define DEBUG_POP(item_addr) | |||
1275 | #endif | |||
1276 | ||||
1277 | ||||
1278 | /* Push the information about the state we will need | |||
1279 | if we ever fail back to it. | |||
1280 | ||||
1281 | Requires variables fail_stack, regstart, regend, reg_info, and | |||
1282 | num_regs be declared. GROW_FAIL_STACK requires `destination' be | |||
1283 | declared. | |||
1284 | ||||
1285 | Does `return FAILURE_CODE' if runs out of memory. */ | |||
1286 | ||||
1287 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return failure_code; ; ; } ; if (1) for (this_reg = lowest_active_reg ; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (regstart [this_reg]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack .stack[fail_stack.avail++] = (reg_info[this_reg].word); } ; fail_stack .stack[fail_stack.avail++].integer = (lowest_active_reg); ; fail_stack .stack[fail_stack.avail++].integer = (highest_active_reg); ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (pattern_place); ; ; ; fail_stack.stack[fail_stack.avail++ ].pointer = (unsigned char *) (string_place); ; ; } while (0) \ | |||
1288 | do { \ | |||
1289 | char *destination; \ | |||
1290 | /* Must be int, so when we don't save any registers, the arithmetic \ | |||
1291 | of 0 + -1 isn't done as unsigned. */ \ | |||
1292 | int this_reg; \ | |||
1293 | \ | |||
1294 | DEBUG_STATEMENT (failure_id++); \ | |||
1295 | DEBUG_STATEMENT (nfailure_points_pushed++); \ | |||
1296 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | |||
1297 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | |||
1298 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | |||
1299 | \ | |||
1300 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | |||
1301 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | |||
1302 | \ | |||
1303 | /* Ensure we have enough space allocated for what we will push. */ \ | |||
1304 | while (REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) < NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) \ | |||
1305 | { \ | |||
1306 | if (!GROW_FAIL_STACK (fail_stack)(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) \ | |||
1307 | return failure_code; \ | |||
1308 | \ | |||
1309 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | |||
1310 | (fail_stack).size); \ | |||
1311 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | |||
1312 | } \ | |||
1313 | \ | |||
1314 | /* Push the info, starting with the registers. */ \ | |||
1315 | DEBUG_PRINT1 ("\n"); \ | |||
1316 | \ | |||
1317 | if (1) \ | |||
1318 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | |||
1319 | this_reg++) \ | |||
1320 | { \ | |||
1321 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | |||
1322 | DEBUG_STATEMENT (num_regs_pushed++); \ | |||
1323 | \ | |||
1324 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | |||
1325 | PUSH_FAILURE_POINTER (regstart[this_reg])fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg]); \ | |||
1326 | \ | |||
1327 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | |||
1328 | PUSH_FAILURE_POINTER (regend[this_reg])fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); \ | |||
1329 | \ | |||
1330 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | |||
1331 | DEBUG_PRINT2 (" match_null=%d", \ | |||
1332 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | |||
1333 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | |||
1334 | DEBUG_PRINT2 (" matched_something=%d", \ | |||
1335 | MATCHED_SOMETHING (reg_info[this_reg])); \ | |||
1336 | DEBUG_PRINT2 (" ever_matched=%d", \ | |||
1337 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | |||
1338 | DEBUG_PRINT1 ("\n"); \ | |||
1339 | PUSH_FAILURE_ELT (reg_info[this_reg].word)fail_stack.stack[fail_stack.avail++] = (reg_info[this_reg].word ); \ | |||
1340 | } \ | |||
1341 | \ | |||
1342 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | |||
1343 | PUSH_FAILURE_INT (lowest_active_reg)fail_stack.stack[fail_stack.avail++].integer = (lowest_active_reg ); \ | |||
1344 | \ | |||
1345 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | |||
1346 | PUSH_FAILURE_INT (highest_active_reg)fail_stack.stack[fail_stack.avail++].integer = (highest_active_reg ); \ | |||
1347 | \ | |||
1348 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | |||
1349 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | |||
1350 | PUSH_FAILURE_POINTER (pattern_place)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (pattern_place); \ | |||
1351 | \ | |||
1352 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | |||
1353 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | |||
1354 | size2); \ | |||
1355 | DEBUG_PRINT1 ("'\n"); \ | |||
1356 | PUSH_FAILURE_POINTER (string_place)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (string_place); \ | |||
1357 | \ | |||
1358 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | |||
1359 | DEBUG_PUSH (failure_id); \ | |||
1360 | } while (0) | |||
1361 | ||||
1362 | /* This is the number of items that are pushed and popped on the stack | |||
1363 | for each register. */ | |||
1364 | #define NUM_REG_ITEMS3 3 | |||
1365 | ||||
1366 | /* Individual items aside from the registers. */ | |||
1367 | #ifdef DEBUG | |||
1368 | #define NUM_NONREG_ITEMS4 5 /* Includes failure point id. */ | |||
1369 | #else | |||
1370 | #define NUM_NONREG_ITEMS4 4 | |||
1371 | #endif | |||
1372 | ||||
1373 | /* Estimate the size of data pushed by a typical failure stack entry. | |||
1374 | An estimate is all we need, because all we use this for | |||
1375 | is to choose a limit for how big to make the failure stack. */ | |||
1376 | ||||
1377 | #define TYPICAL_FAILURE_SIZE20 20 | |||
1378 | ||||
1379 | /* This is how many items we actually use for a failure point. | |||
1380 | It depends on the regexp. */ | |||
1381 | #define NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4) \ | |||
1382 | (((0 \ | |||
1383 | ? 0 : highest_active_reg - lowest_active_reg + 1) \ | |||
1384 | * NUM_REG_ITEMS3) \ | |||
1385 | + NUM_NONREG_ITEMS4) | |||
1386 | ||||
1387 | /* How many items can still be added to the stack without overflowing it. */ | |||
1388 | #define REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) ((fail_stack).size - (fail_stack).avail) | |||
1389 | ||||
1390 | ||||
1391 | /* Pops what PUSH_FAIL_STACK pushes. | |||
1392 | ||||
1393 | We restore into the parameters, all of which should be lvalues: | |||
1394 | STR -- the saved data position. | |||
1395 | PAT -- the saved pattern position. | |||
1396 | LOW_REG, HIGH_REG -- the highest and lowest active registers. | |||
1397 | REGSTART, REGEND -- arrays of string positions. | |||
1398 | REG_INFO -- array of information about each subexpression. | |||
1399 | ||||
1400 | Also assumes the variables `fail_stack' and (if debugging), `bufp', | |||
1401 | `pend', `string1', `size1', `string2', and `size2'. */ | |||
1402 | ||||
1403 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info){ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) str = (const char *) string_temp ; ; ; ; pat = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; high_reg = (unsigned) fail_stack.stack[-- fail_stack.avail].integer; ; low_reg = (unsigned) fail_stack. stack[--fail_stack.avail].integer; ; if (1) for (this_reg = high_reg ; this_reg >= low_reg; this_reg--) { ; reg_info[this_reg]. word = fail_stack.stack[--fail_stack.avail]; ; regend[this_reg ] = (const char *) fail_stack.stack[--fail_stack.avail].pointer ; ; regstart[this_reg] = (const char *) fail_stack.stack[--fail_stack .avail].pointer; ; } else { for (this_reg = highest_active_reg ; this_reg > high_reg; this_reg--) { reg_info[this_reg].word .integer = 0; regend[this_reg] = 0; regstart[this_reg] = 0; } highest_active_reg = high_reg; } set_regs_matched_done = 0; ; }\ | |||
1404 | { \ | |||
1405 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | |||
1406 | int this_reg; \ | |||
1407 | const unsigned char *string_temp; \ | |||
1408 | \ | |||
1409 | assert (!FAIL_STACK_EMPTY ()); \ | |||
1410 | \ | |||
1411 | /* Remove failure points and point to how many regs pushed. */ \ | |||
1412 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | |||
1413 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | |||
1414 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | |||
1415 | \ | |||
1416 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | |||
1417 | \ | |||
1418 | DEBUG_POP (&failure_id); \ | |||
1419 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | |||
1420 | \ | |||
1421 | /* If the saved string location is NULL, it came from an \ | |||
1422 | on_failure_keep_string_jump opcode, and we want to throw away the \ | |||
1423 | saved NULL, thus retaining our current position in the string. */ \ | |||
1424 | string_temp = POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
1425 | if (string_temp != NULL((void *)0)) \ | |||
1426 | str = (const char *) string_temp; \ | |||
1427 | \ | |||
1428 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | |||
1429 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | |||
1430 | DEBUG_PRINT1 ("'\n"); \ | |||
1431 | \ | |||
1432 | pat = (unsigned char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
1433 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ | |||
1434 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | |||
1435 | \ | |||
1436 | /* Restore register info. */ \ | |||
1437 | high_reg = (unsigned) POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer; \ | |||
1438 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ | |||
1439 | \ | |||
1440 | low_reg = (unsigned) POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer; \ | |||
1441 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | |||
1442 | \ | |||
1443 | if (1) \ | |||
1444 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | |||
1445 | { \ | |||
1446 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | |||
1447 | \ | |||
1448 | reg_info[this_reg].word = POP_FAILURE_ELT ()fail_stack.stack[--fail_stack.avail]; \ | |||
1449 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | |||
1450 | \ | |||
1451 | regend[this_reg] = (const char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
1452 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | |||
1453 | \ | |||
1454 | regstart[this_reg] = (const char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
1455 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | |||
1456 | } \ | |||
1457 | else \ | |||
1458 | { \ | |||
1459 | for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ | |||
1460 | { \ | |||
1461 | reg_info[this_reg].word.integer = 0; \ | |||
1462 | regend[this_reg] = 0; \ | |||
1463 | regstart[this_reg] = 0; \ | |||
1464 | } \ | |||
1465 | highest_active_reg = high_reg; \ | |||
1466 | } \ | |||
1467 | \ | |||
1468 | set_regs_matched_done = 0; \ | |||
1469 | DEBUG_STATEMENT (nfailure_points_popped++); \ | |||
1470 | } /* POP_FAILURE_POINT */ | |||
1471 | ||||
1472 | ||||
1473 | ||||
1474 | /* Structure for per-register (a.k.a. per-group) information. | |||
1475 | Other register information, such as the | |||
1476 | starting and ending positions (which are addresses), and the list of | |||
1477 | inner groups (which is a bits list) are maintained in separate | |||
1478 | variables. | |||
1479 | ||||
1480 | We are making a (strictly speaking) nonportable assumption here: that | |||
1481 | the compiler will pack our bit fields into something that fits into | |||
1482 | the type of `word', i.e., is something that fits into one item on the | |||
1483 | failure stack. */ | |||
1484 | ||||
1485 | typedef union | |||
1486 | { | |||
1487 | fail_stack_elt_t word; | |||
1488 | struct | |||
1489 | { | |||
1490 | /* This field is one if this group can match the empty string, | |||
1491 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | |||
1492 | #define MATCH_NULL_UNSET_VALUE3 3 | |||
1493 | unsigned match_null_string_p : 2; | |||
1494 | unsigned is_active : 1; | |||
1495 | unsigned matched_something : 1; | |||
1496 | unsigned ever_matched_something : 1; | |||
1497 | } bits; | |||
1498 | } register_info_type; | |||
1499 | ||||
1500 | #define REG_MATCH_NULL_STRING_P(R)((R).bits.match_null_string_p) ((R).bits.match_null_string_p) | |||
1501 | #define IS_ACTIVE(R)((R).bits.is_active) ((R).bits.is_active) | |||
1502 | #define MATCHED_SOMETHING(R)((R).bits.matched_something) ((R).bits.matched_something) | |||
1503 | #define EVER_MATCHED_SOMETHING(R)((R).bits.ever_matched_something) ((R).bits.ever_matched_something) | |||
1504 | ||||
1505 | ||||
1506 | /* Call this when have matched a real character; it sets `matched' flags | |||
1507 | for the subexpressions which we are currently inside. Also records | |||
1508 | that those subexprs have matched. */ | |||
1509 | #define SET_REGS_MATCHED()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0) \ | |||
1510 | do \ | |||
1511 | { \ | |||
1512 | if (!set_regs_matched_done) \ | |||
1513 | { \ | |||
1514 | unsigned r; \ | |||
1515 | set_regs_matched_done = 1; \ | |||
1516 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | |||
1517 | { \ | |||
1518 | MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.matched_something) \ | |||
1519 | = EVER_MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.ever_matched_something) \ | |||
1520 | = 1; \ | |||
1521 | } \ | |||
1522 | } \ | |||
1523 | } \ | |||
1524 | while (0) | |||
1525 | ||||
1526 | /* Registers are set to a sentinel when they haven't yet matched. */ | |||
1527 | static char reg_unset_dummy; | |||
1528 | #define REG_UNSET_VALUE(®_unset_dummy) (®_unset_dummy) | |||
1529 | #define REG_UNSET(e)((e) == (®_unset_dummy)) ((e) == REG_UNSET_VALUE(®_unset_dummy)) | |||
1530 | ||||
1531 | /* Subroutine declarations and macros for regex_compile. */ | |||
1532 | ||||
1533 | static void store_op1 (), store_op2 (); | |||
1534 | static void insert_op1 (), insert_op2 (); | |||
1535 | static boolean at_begline_loc_p (), at_endline_loc_p (); | |||
1536 | static boolean group_in_compile_stack (); | |||
1537 | static reg_errcode_t compile_range (); | |||
1538 | ||||
1539 | /* Fetch the next character in the uncompiled pattern---translating it | |||
1540 | if necessary. Also cast from a signed character in the constant | |||
1541 | string passed to us by the user to an unsigned char that we can use | |||
1542 | as an array index (in, e.g., `translate'). */ | |||
1543 | #ifndef PATFETCH | |||
1544 | #define PATFETCH(c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0) \ | |||
1545 | do {if (p == pend) return REG_EEND; \ | |||
1546 | c = (unsigned char) *p++; \ | |||
1547 | if (RE_TRANSLATE_P (translate)(translate)) c = RE_TRANSLATE (translate, c)((translate)[c]); \ | |||
1548 | } while (0) | |||
1549 | #endif | |||
1550 | ||||
1551 | /* Fetch the next character in the uncompiled pattern, with no | |||
1552 | translation. */ | |||
1553 | #define PATFETCH_RAW(c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0) \ | |||
1554 | do {if (p == pend) return REG_EEND; \ | |||
1555 | c = (unsigned char) *p++; \ | |||
1556 | } while (0) | |||
1557 | ||||
1558 | /* Go backwards one character in the pattern. */ | |||
1559 | #define PATUNFETCHp-- p-- | |||
1560 | ||||
1561 | ||||
1562 | /* If `translate' is non-null, return translate[D], else just D. We | |||
1563 | cast the subscript to translate because some data is declared as | |||
1564 | `char *', to avoid warnings when a string constant is passed. But | |||
1565 | when we use a character as a subscript we must make it unsigned. */ | |||
1566 | #ifndef TRANSLATE | |||
1567 | #define TRANSLATE(d)((translate) ? (unsigned) ((translate)[(unsigned) (d)]) : (d) ) \ | |||
1568 | (RE_TRANSLATE_P (translate)(translate) \ | |||
1569 | ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d))((translate)[(unsigned) (d)]) : (d)) | |||
1570 | #endif | |||
1571 | ||||
1572 | ||||
1573 | /* Macros for outputting the compiled pattern into `buffer'. */ | |||
1574 | ||||
1575 | /* If the buffer isn't allocated when it comes in, use this. */ | |||
1576 | #define INIT_BUF_SIZE32 32 | |||
1577 | ||||
1578 | /* Make sure we have at least N more bytes of space in buffer. */ | |||
1579 | #define GET_BUFFER_SPACE(n)while (b - bufp->buffer + (n) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0) \ | |||
1580 | while (b - bufp->buffer + (n) > bufp->allocated) \ | |||
1581 | EXTEND_BUFFER ()do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0) | |||
1582 | ||||
1583 | /* Make sure we have one more byte of buffer space and then add C to it. */ | |||
1584 | #define BUF_PUSH(c)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c ); } while (0) \ | |||
1585 | do { \ | |||
1586 | GET_BUFFER_SPACE (1)while (b - bufp->buffer + (1) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
1587 | *b++ = (unsigned char) (c); \ | |||
1588 | } while (0) | |||
1589 | ||||
1590 | ||||
1591 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | |||
1592 | #define BUF_PUSH_2(c1, c2)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c1 ); *b++ = (unsigned char) (c2); } while (0) \ | |||
1593 | do { \ | |||
1594 | GET_BUFFER_SPACE (2)while (b - bufp->buffer + (2) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
1595 | *b++ = (unsigned char) (c1); \ | |||
1596 | *b++ = (unsigned char) (c2); \ | |||
1597 | } while (0) | |||
1598 | ||||
1599 | ||||
1600 | /* As with BUF_PUSH_2, except for three bytes. */ | |||
1601 | #define BUF_PUSH_3(c1, c2, c3)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c1 ); *b++ = (unsigned char) (c2); *b++ = (unsigned char) (c3); } while (0) \ | |||
1602 | do { \ | |||
1603 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
1604 | *b++ = (unsigned char) (c1); \ | |||
1605 | *b++ = (unsigned char) (c2); \ | |||
1606 | *b++ = (unsigned char) (c3); \ | |||
1607 | } while (0) | |||
1608 | ||||
1609 | ||||
1610 | /* Store a jump with opcode OP at LOC to location TO. We store a | |||
1611 | relative address offset by the three bytes the jump itself occupies. */ | |||
1612 | #define STORE_JUMP(op, loc, to)store_op1 (op, loc, (to) - (loc) - 3) \ | |||
1613 | store_op1 (op, loc, (to) - (loc) - 3) | |||
1614 | ||||
1615 | /* Likewise, for a two-argument jump. */ | |||
1616 | #define STORE_JUMP2(op, loc, to, arg)store_op2 (op, loc, (to) - (loc) - 3, arg) \ | |||
1617 | store_op2 (op, loc, (to) - (loc) - 3, arg) | |||
1618 | ||||
1619 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | |||
1620 | #define INSERT_JUMP(op, loc, to)insert_op1 (op, loc, (to) - (loc) - 3, b) \ | |||
1621 | insert_op1 (op, loc, (to) - (loc) - 3, b) | |||
1622 | ||||
1623 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | |||
1624 | #define INSERT_JUMP2(op, loc, to, arg)insert_op2 (op, loc, (to) - (loc) - 3, arg, b) \ | |||
1625 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | |||
1626 | ||||
1627 | ||||
1628 | /* This is not an arbitrary limit: the arguments which represent offsets | |||
1629 | into the pattern are two bytes long. So if 2^16 bytes turns out to | |||
1630 | be too small, many things would have to change. */ | |||
1631 | #define MAX_BUF_SIZE(1L << 16) (1L << 16) | |||
1632 | ||||
1633 | ||||
1634 | /* Extend the buffer by twice its current size via realloc and | |||
1635 | reset the pointers that pointed into the old block to point to the | |||
1636 | correct places in the new one. If extending the buffer results in it | |||
1637 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | |||
1638 | #define EXTEND_BUFFER()do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0) \ | |||
1639 | do { \ | |||
1640 | unsigned char *old_buffer = bufp->buffer; \ | |||
1641 | if (bufp->allocated == MAX_BUF_SIZE(1L << 16)) \ | |||
1642 | return REG_ESIZE; \ | |||
1643 | bufp->allocated <<= 1; \ | |||
1644 | if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \ | |||
1645 | bufp->allocated = MAX_BUF_SIZE(1L << 16); \ | |||
1646 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | |||
1647 | if (bufp->buffer == NULL((void *)0)) \ | |||
1648 | return REG_ESPACE; \ | |||
1649 | /* If the buffer moved, move all the pointers into it. */ \ | |||
1650 | if (old_buffer != bufp->buffer) \ | |||
1651 | { \ | |||
1652 | b = (b - old_buffer) + bufp->buffer; \ | |||
1653 | begalt = (begalt - old_buffer) + bufp->buffer; \ | |||
1654 | if (fixup_alt_jump) \ | |||
1655 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | |||
1656 | if (laststart) \ | |||
1657 | laststart = (laststart - old_buffer) + bufp->buffer; \ | |||
1658 | if (pending_exact) \ | |||
1659 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | |||
1660 | } \ | |||
1661 | } while (0) | |||
1662 | ||||
1663 | ||||
1664 | /* Since we have one byte reserved for the register number argument to | |||
1665 | {start,stop}_memory, the maximum number of groups we can report | |||
1666 | things about is what fits in that byte. */ | |||
1667 | #define MAX_REGNUM255 255 | |||
1668 | ||||
1669 | /* But patterns can have more than `MAX_REGNUM' registers. We just | |||
1670 | ignore the excess. */ | |||
1671 | typedef unsigned regnum_t; | |||
1672 | ||||
1673 | ||||
1674 | /* Macros for the compile stack. */ | |||
1675 | ||||
1676 | /* Since offsets can go either forwards or backwards, this type needs to | |||
1677 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | |||
1678 | typedef int pattern_offset_t; | |||
1679 | ||||
1680 | typedef struct | |||
1681 | { | |||
1682 | pattern_offset_t begalt_offset; | |||
1683 | pattern_offset_t fixup_alt_jump; | |||
1684 | pattern_offset_t inner_group_offset; | |||
1685 | pattern_offset_t laststart_offset; | |||
1686 | regnum_t regnum; | |||
1687 | } compile_stack_elt_t; | |||
1688 | ||||
1689 | ||||
1690 | typedef struct | |||
1691 | { | |||
1692 | compile_stack_elt_t *stack; | |||
1693 | unsigned size; | |||
1694 | unsigned avail; /* Offset of next open position. */ | |||
1695 | } compile_stack_type; | |||
1696 | ||||
1697 | ||||
1698 | #define INIT_COMPILE_STACK_SIZE32 32 | |||
1699 | ||||
1700 | #define COMPILE_STACK_EMPTY(compile_stack.avail == 0) (compile_stack.avail == 0) | |||
1701 | #define COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size) (compile_stack.avail == compile_stack.size) | |||
1702 | ||||
1703 | /* The next available element. */ | |||
1704 | #define COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]) (compile_stack.stack[compile_stack.avail]) | |||
1705 | ||||
1706 | ||||
1707 | /* Structure to manage work area for range table. */ | |||
1708 | struct range_table_work_area | |||
1709 | { | |||
1710 | int *table; /* actual work area. */ | |||
1711 | int allocated; /* allocated size for work area in bytes. */ | |||
1712 | int used; /* actually used size in words. */ | |||
1713 | }; | |||
1714 | ||||
1715 | /* Make sure that WORK_AREA can hold more N multibyte characters. */ | |||
1716 | #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)do { if (((work_area).used + (n)) * sizeof (int) > (work_area ).allocated) { (work_area).allocated += 16 * sizeof (int); if ((work_area).table) (work_area).table = (int *) realloc ((work_area ).table, (work_area).allocated); else (work_area).table = (int *) malloc ((work_area).allocated); if ((work_area).table == 0 ) do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); } } while (0) \ | |||
1717 | do { \ | |||
1718 | if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \ | |||
1719 | { \ | |||
1720 | (work_area).allocated += 16 * sizeof (int); \ | |||
1721 | if ((work_area).table) \ | |||
1722 | (work_area).table \ | |||
1723 | = (int *) realloc ((work_area).table, (work_area).allocated); \ | |||
1724 | else \ | |||
1725 | (work_area).table \ | |||
1726 | = (int *) malloc ((work_area).allocated); \ | |||
1727 | if ((work_area).table == 0) \ | |||
1728 | FREE_STACK_RETURN (REG_ESPACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); \ | |||
1729 | } \ | |||
1730 | } while (0) | |||
1731 | ||||
1732 | /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */ | |||
1733 | #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)do { do { if ((((work_area)).used + (2)) * sizeof (int) > ( (work_area)).allocated) { ((work_area)).allocated += 16 * sizeof (int); if (((work_area)).table) ((work_area)).table = (int * ) realloc (((work_area)).table, ((work_area)).allocated); else ((work_area)).table = (int *) malloc (((work_area)).allocated ); if (((work_area)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (work_area).table[(work_area).used++] = (range_start); ( work_area).table[(work_area).used++] = (range_end); } while ( 0) \ | |||
1734 | do { \ | |||
1735 | EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2)do { if ((((work_area)).used + (2)) * sizeof (int) > ((work_area )).allocated) { ((work_area)).allocated += 16 * sizeof (int); if (((work_area)).table) ((work_area)).table = (int *) realloc (((work_area)).table, ((work_area)).allocated); else ((work_area )).table = (int *) malloc (((work_area)).allocated); if (((work_area )).table == 0) do { do { if ((range_table_work).table) free ( (range_table_work).table); } while (0); free (compile_stack.stack ); return REG_ESPACE; } while (0); } } while (0); \ | |||
1736 | (work_area).table[(work_area).used++] = (range_start); \ | |||
1737 | (work_area).table[(work_area).used++] = (range_end); \ | |||
1738 | } while (0) | |||
1739 | ||||
1740 | /* Free allocated memory for WORK_AREA. */ | |||
1741 | #define FREE_RANGE_TABLE_WORK_AREA(work_area)do { if ((work_area).table) free ((work_area).table); } while (0) \ | |||
1742 | do { \ | |||
1743 | if ((work_area).table) \ | |||
1744 | free ((work_area).table); \ | |||
1745 | } while (0) | |||
1746 | ||||
1747 | #define CLEAR_RANGE_TABLE_WORK_USED(work_area)((work_area).used = 0) ((work_area).used = 0) | |||
1748 | #define RANGE_TABLE_WORK_USED(work_area)((work_area).used) ((work_area).used) | |||
1749 | #define RANGE_TABLE_WORK_ELT(work_area, i)((work_area).table[i]) ((work_area).table[i]) | |||
1750 | ||||
1751 | ||||
1752 | /* Set the bit for character C in a list. */ | |||
1753 | #define SET_LIST_BIT(c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char) c) % 8)) \ | |||
1754 | (b[((unsigned char) (c)) / BYTEWIDTH8] \ | |||
1755 | |= 1 << (((unsigned char) c) % BYTEWIDTH8)) | |||
1756 | ||||
1757 | ||||
1758 | /* Get the next unsigned number in the uncompiled pattern. */ | |||
1759 | #define GET_UNSIGNED_NUMBER(num){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (num < 0) num = 0; num = num * 10 + c - '0'; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate )) c = ((translate)[c]); } while (0); } } } \ | |||
1760 | { if (p != pend) \ | |||
1761 | { \ | |||
1762 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); \ | |||
1763 | while (ISDIGIT (c)(1 && isdigit (c))) \ | |||
1764 | { \ | |||
1765 | if (num < 0) \ | |||
1766 | num = 0; \ | |||
1767 | num = num * 10 + c - '0'; \ | |||
1768 | if (p == pend) \ | |||
1769 | break; \ | |||
1770 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); \ | |||
1771 | } \ | |||
1772 | } \ | |||
1773 | } | |||
1774 | ||||
1775 | #define CHAR_CLASS_MAX_LENGTH6 6 /* Namely, `xdigit'. */ | |||
1776 | ||||
1777 | #define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper" ) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string , "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp (string, "xdigit") == 0)) || ((strcmp (string, "space") == 0 )) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct" ) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string , "cntrl") == 0)) || ((strcmp (string, "blank") == 0))) \ | |||
1778 | (STREQ (string, "alpha")((strcmp (string, "alpha") == 0)) || STREQ (string, "upper")((strcmp (string, "upper") == 0)) \ | |||
1779 | || STREQ (string, "lower")((strcmp (string, "lower") == 0)) || STREQ (string, "digit")((strcmp (string, "digit") == 0)) \ | |||
1780 | || STREQ (string, "alnum")((strcmp (string, "alnum") == 0)) || STREQ (string, "xdigit")((strcmp (string, "xdigit") == 0)) \ | |||
1781 | || STREQ (string, "space")((strcmp (string, "space") == 0)) || STREQ (string, "print")((strcmp (string, "print") == 0)) \ | |||
1782 | || STREQ (string, "punct")((strcmp (string, "punct") == 0)) || STREQ (string, "graph")((strcmp (string, "graph") == 0)) \ | |||
1783 | || STREQ (string, "cntrl")((strcmp (string, "cntrl") == 0)) || STREQ (string, "blank")((strcmp (string, "blank") == 0))) | |||
1784 | ||||
1785 | #ifndef MATCH_MAY_ALLOCATE | |||
1786 | ||||
1787 | /* If we cannot allocate large objects within re_match_2_internal, | |||
1788 | we make the fail stack and register vectors global. | |||
1789 | The fail stack, we grow to the maximum size when a regexp | |||
1790 | is compiled. | |||
1791 | The register vectors, we adjust in size each time we | |||
1792 | compile a regexp, according to the number of registers it needs. */ | |||
1793 | ||||
1794 | static fail_stack_type fail_stack; | |||
1795 | ||||
1796 | /* Size with which the following vectors are currently allocated. | |||
1797 | That is so we can make them bigger as needed, | |||
1798 | but never make them smaller. */ | |||
1799 | static int regs_allocated_size; | |||
1800 | ||||
1801 | static const char ** regstart, ** regend; | |||
1802 | static const char ** old_regstart, ** old_regend; | |||
1803 | static const char **best_regstart, **best_regend; | |||
1804 | static register_info_type *reg_info; | |||
1805 | static const char **reg_dummy; | |||
1806 | static register_info_type *reg_info_dummy; | |||
1807 | ||||
1808 | /* Make the register vectors big enough for NUM_REGS registers, | |||
1809 | but don't make them smaller. */ | |||
1810 | ||||
1811 | static | |||
1812 | regex_grow_registers (num_regs) | |||
1813 | int num_regs; | |||
1814 | { | |||
1815 | if (num_regs > regs_allocated_size) | |||
1816 | { | |||
1817 | RETALLOC_IF (regstart, num_regs, const char *)if (regstart) (((regstart)) = (const char * *) realloc ((regstart ), ((num_regs)) * sizeof (const char *))); else (regstart) = ( (const char * *) malloc (((num_regs)) * sizeof (const char *) )); | |||
1818 | RETALLOC_IF (regend, num_regs, const char *)if (regend) (((regend)) = (const char * *) realloc ((regend), ((num_regs)) * sizeof (const char *))); else (regend) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
1819 | RETALLOC_IF (old_regstart, num_regs, const char *)if (old_regstart) (((old_regstart)) = (const char * *) realloc ((old_regstart), ((num_regs)) * sizeof (const char *))); else (old_regstart) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
1820 | RETALLOC_IF (old_regend, num_regs, const char *)if (old_regend) (((old_regend)) = (const char * *) realloc (( old_regend), ((num_regs)) * sizeof (const char *))); else (old_regend ) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
1821 | RETALLOC_IF (best_regstart, num_regs, const char *)if (best_regstart) (((best_regstart)) = (const char * *) realloc ((best_regstart), ((num_regs)) * sizeof (const char *))); else (best_regstart) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
1822 | RETALLOC_IF (best_regend, num_regs, const char *)if (best_regend) (((best_regend)) = (const char * *) realloc ( (best_regend), ((num_regs)) * sizeof (const char *))); else ( best_regend) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
1823 | RETALLOC_IF (reg_info, num_regs, register_info_type)if (reg_info) (((reg_info)) = (register_info_type *) realloc ( (reg_info), ((num_regs)) * sizeof (register_info_type))); else (reg_info) = ((register_info_type *) malloc (((num_regs)) * sizeof (register_info_type))); | |||
1824 | RETALLOC_IF (reg_dummy, num_regs, const char *)if (reg_dummy) (((reg_dummy)) = (const char * *) realloc ((reg_dummy ), ((num_regs)) * sizeof (const char *))); else (reg_dummy) = ((const char * *) malloc (((num_regs)) * sizeof (const char * ))); | |||
1825 | RETALLOC_IF (reg_info_dummy, num_regs, register_info_type)if (reg_info_dummy) (((reg_info_dummy)) = (register_info_type *) realloc ((reg_info_dummy), ((num_regs)) * sizeof (register_info_type ))); else (reg_info_dummy) = ((register_info_type *) malloc ( ((num_regs)) * sizeof (register_info_type))); | |||
1826 | ||||
1827 | regs_allocated_size = num_regs; | |||
1828 | } | |||
1829 | } | |||
1830 | ||||
1831 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
1832 | ||||
1833 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | |||
1834 | Returns one of error codes defined in `regex.h', or zero for success. | |||
1835 | ||||
1836 | Assumes the `allocated' (and perhaps `buffer') and `translate' | |||
1837 | fields are set in BUFP on entry. | |||
1838 | ||||
1839 | If it succeeds, results are put in BUFP (if it returns an error, the | |||
1840 | contents of BUFP are undefined): | |||
1841 | `buffer' is the compiled pattern; | |||
1842 | `syntax' is set to SYNTAX; | |||
1843 | `used' is set to the length of the compiled pattern; | |||
1844 | `fastmap_accurate' is zero; | |||
1845 | `re_nsub' is the number of subexpressions in PATTERN; | |||
1846 | `not_bol' and `not_eol' are zero; | |||
1847 | ||||
1848 | The `fastmap' and `newline_anchor' fields are neither | |||
1849 | examined nor set. */ | |||
1850 | ||||
1851 | /* Return, freeing storage we allocated. */ | |||
1852 | #define FREE_STACK_RETURN(value)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return value ; } while (0) \ | |||
1853 | do { \ | |||
1854 | FREE_RANGE_TABLE_WORK_AREA (range_table_work)do { if ((range_table_work).table) free ((range_table_work).table ); } while (0); \ | |||
1855 | free (compile_stack.stack); \ | |||
1856 | return value; \ | |||
1857 | } while (0) | |||
1858 | ||||
1859 | static reg_errcode_t | |||
1860 | regex_compile (pattern, size, syntax, bufp) | |||
1861 | const char *pattern; | |||
1862 | int size; | |||
1863 | reg_syntax_t syntax; | |||
1864 | struct re_pattern_buffer *bufp; | |||
1865 | { | |||
1866 | /* We fetch characters from PATTERN here. Even though PATTERN is | |||
1867 | `char *' (i.e., signed), we declare these variables as unsigned, so | |||
1868 | they can be reliably used as array indices. */ | |||
1869 | register unsigned int c, c1; | |||
1870 | ||||
1871 | /* A random temporary spot in PATTERN. */ | |||
1872 | const char *p1; | |||
1873 | ||||
1874 | /* Points to the end of the buffer, where we should append. */ | |||
1875 | register unsigned char *b; | |||
1876 | ||||
1877 | /* Keeps track of unclosed groups. */ | |||
1878 | compile_stack_type compile_stack; | |||
1879 | ||||
1880 | /* Points to the current (ending) position in the pattern. */ | |||
1881 | #ifdef AIX | |||
1882 | /* `const' makes AIX compiler fail. */ | |||
1883 | char *p = pattern; | |||
1884 | #else | |||
1885 | const char *p = pattern; | |||
1886 | #endif | |||
1887 | const char *pend = pattern + size; | |||
1888 | ||||
1889 | /* How to translate the characters in the pattern. */ | |||
1890 | RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
1891 | ||||
1892 | /* Address of the count-byte of the most recently inserted `exactn' | |||
1893 | command. This makes it possible to tell if a new exact-match | |||
1894 | character can be added to that command or if the character requires | |||
1895 | a new `exactn' command. */ | |||
1896 | unsigned char *pending_exact = 0; | |||
1897 | ||||
1898 | /* Address of start of the most recently finished expression. | |||
1899 | This tells, e.g., postfix * where to find the start of its | |||
1900 | operand. Reset at the beginning of groups and alternatives. */ | |||
1901 | unsigned char *laststart = 0; | |||
1902 | ||||
1903 | /* Address of beginning of regexp, or inside of last group. */ | |||
1904 | unsigned char *begalt; | |||
1905 | ||||
1906 | /* Place in the uncompiled pattern (i.e., the {) to | |||
1907 | which to go back if the interval is invalid. */ | |||
1908 | const char *beg_interval; | |||
1909 | ||||
1910 | /* Address of the place where a forward jump should go to the end of | |||
1911 | the containing expression. Each alternative of an `or' -- except the | |||
1912 | last -- ends with a forward jump of this sort. */ | |||
1913 | unsigned char *fixup_alt_jump = 0; | |||
1914 | ||||
1915 | /* Counts open-groups as they are encountered. Remembered for the | |||
1916 | matching close-group on the compile stack, so the same register | |||
1917 | number is put in the stop_memory as the start_memory. */ | |||
1918 | regnum_t regnum = 0; | |||
1919 | ||||
1920 | /* Work area for range table of charset. */ | |||
1921 | struct range_table_work_area range_table_work; | |||
1922 | ||||
1923 | #ifdef DEBUG | |||
1924 | DEBUG_PRINT1 ("\nCompiling pattern: "); | |||
1925 | if (debug) | |||
1926 | { | |||
1927 | unsigned debug_count; | |||
1928 | ||||
1929 | for (debug_count = 0; debug_count < size; debug_count++) | |||
1930 | putchar (pattern[debug_count]); | |||
1931 | putchar ('\n'); | |||
1932 | } | |||
1933 | #endif /* DEBUG */ | |||
1934 | ||||
1935 | /* Initialize the compile stack. */ | |||
1936 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t)((compile_stack_elt_t *) malloc ((32) * sizeof (compile_stack_elt_t ))); | |||
1937 | if (compile_stack.stack == NULL((void *)0)) | |||
1938 | return REG_ESPACE; | |||
1939 | ||||
1940 | compile_stack.size = INIT_COMPILE_STACK_SIZE32; | |||
1941 | compile_stack.avail = 0; | |||
1942 | ||||
1943 | range_table_work.table = 0; | |||
1944 | range_table_work.allocated = 0; | |||
1945 | ||||
1946 | /* Initialize the pattern buffer. */ | |||
1947 | bufp->syntax = syntax; | |||
1948 | bufp->fastmap_accurate = 0; | |||
1949 | bufp->not_bol = bufp->not_eol = 0; | |||
1950 | ||||
1951 | /* Set `used' to zero, so that if we return an error, the pattern | |||
1952 | printer (for debugging) will think there's no pattern. We reset it | |||
1953 | at the end. */ | |||
1954 | bufp->used = 0; | |||
1955 | ||||
1956 | /* Always count groups, whether or not bufp->no_sub is set. */ | |||
1957 | bufp->re_nsub = 0; | |||
1958 | ||||
1959 | #ifdef emacs | |||
1960 | /* bufp->multibyte is set before regex_compile is called, so don't alter | |||
1961 | it. */ | |||
1962 | #else /* not emacs */ | |||
1963 | /* Nothing is recognized as a multibyte character. */ | |||
1964 | bufp->multibyte = 0; | |||
1965 | #endif | |||
1966 | ||||
1967 | #if !defined (emacs) && !defined (SYNTAX_TABLE) | |||
1968 | /* Initialize the syntax table. */ | |||
1969 | init_syntax_once (); | |||
1970 | #endif | |||
1971 | ||||
1972 | if (bufp->allocated == 0) | |||
1973 | { | |||
1974 | if (bufp->buffer) | |||
1975 | { /* If zero allocated, but buffer is non-null, try to realloc | |||
1976 | enough space. This loses if buffer's address is bogus, but | |||
1977 | that is the user's responsibility. */ | |||
1978 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char)((bufp->buffer) = (unsigned char *) realloc (bufp->buffer , (32) * sizeof (unsigned char))); | |||
1979 | } | |||
1980 | else | |||
1981 | { /* Caller did not allocate a buffer. Do it for them. */ | |||
1982 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char)((unsigned char *) malloc ((32) * sizeof (unsigned char))); | |||
1983 | } | |||
1984 | if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); | |||
1985 | ||||
1986 | bufp->allocated = INIT_BUF_SIZE32; | |||
1987 | } | |||
1988 | ||||
1989 | begalt = b = bufp->buffer; | |||
1990 | ||||
1991 | /* Loop through the uncompiled pattern until we're at the end. */ | |||
1992 | while (p != pend) | |||
1993 | { | |||
1994 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
1995 | ||||
1996 | switch (c) | |||
1997 | { | |||
1998 | case '^': | |||
1999 | { | |||
2000 | if ( /* If at start of pattern, it's an operator. */ | |||
2001 | p == pattern + 1 | |||
2002 | /* If context independent, it's an operator. */ | |||
2003 | || syntax & RE_CONTEXT_INDEP_ANCHORS((((1) << 1) << 1) << 1) | |||
2004 | /* Otherwise, depends on what's come before. */ | |||
2005 | || at_begline_loc_p (pattern, p, syntax)) | |||
2006 | BUF_PUSH (begline)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (begline ); } while (0); | |||
2007 | else | |||
2008 | goto normal_char; | |||
2009 | } | |||
2010 | break; | |||
2011 | ||||
2012 | ||||
2013 | case '$': | |||
2014 | { | |||
2015 | if ( /* If at end of pattern, it's an operator. */ | |||
2016 | p == pend | |||
2017 | /* If context independent, it's an operator. */ | |||
2018 | || syntax & RE_CONTEXT_INDEP_ANCHORS((((1) << 1) << 1) << 1) | |||
2019 | /* Otherwise, depends on what's next. */ | |||
2020 | || at_endline_loc_p (p, pend, syntax)) | |||
2021 | BUF_PUSH (endline)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (endline ); } while (0); | |||
2022 | else | |||
2023 | goto normal_char; | |||
2024 | } | |||
2025 | break; | |||
2026 | ||||
2027 | ||||
2028 | case '+': | |||
2029 | case '?': | |||
2030 | if ((syntax & RE_BK_PLUS_QM((1) << 1)) | |||
2031 | || (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2032 | goto normal_char; | |||
2033 | handle_plus: | |||
2034 | case '*': | |||
2035 | /* If there is no previous pattern... */ | |||
2036 | if (!laststart) | |||
2037 | { | |||
2038 | if (syntax & RE_CONTEXT_INVALID_OPS((((((1) << 1) << 1) << 1) << 1) << 1)) | |||
2039 | FREE_STACK_RETURN (REG_BADRPT)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADRPT ; } while (0); | |||
2040 | else if (!(syntax & RE_CONTEXT_INDEP_OPS(((((1) << 1) << 1) << 1) << 1))) | |||
2041 | goto normal_char; | |||
2042 | } | |||
2043 | ||||
2044 | { | |||
2045 | /* Are we optimizing this jump? */ | |||
2046 | boolean keep_string_p = false0; | |||
2047 | ||||
2048 | /* 1 means zero (many) matches is allowed. */ | |||
2049 | char zero_times_ok = 0, many_times_ok = 0; | |||
2050 | ||||
2051 | /* If there is a sequence of repetition chars, collapse it | |||
2052 | down to just one (the right one). We can't combine | |||
2053 | interval operators with these because of, e.g., `a{2}*', | |||
2054 | which should only match an even number of `a's. */ | |||
2055 | ||||
2056 | for (;;) | |||
2057 | { | |||
2058 | zero_times_ok |= c != '+'; | |||
2059 | many_times_ok |= c != '?'; | |||
2060 | ||||
2061 | if (p == pend) | |||
2062 | break; | |||
2063 | ||||
2064 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2065 | ||||
2066 | if (c == '*' | |||
2067 | || (!(syntax & RE_BK_PLUS_QM((1) << 1)) && (c == '+' || c == '?'))) | |||
2068 | ; | |||
2069 | ||||
2070 | else if (syntax & RE_BK_PLUS_QM((1) << 1) && c == '\\') | |||
2071 | { | |||
2072 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
2073 | ||||
2074 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
2075 | if (!(c1 == '+' || c1 == '?')) | |||
2076 | { | |||
2077 | PATUNFETCHp--; | |||
2078 | PATUNFETCHp--; | |||
2079 | break; | |||
2080 | } | |||
2081 | ||||
2082 | c = c1; | |||
2083 | } | |||
2084 | else | |||
2085 | { | |||
2086 | PATUNFETCHp--; | |||
2087 | break; | |||
2088 | } | |||
2089 | ||||
2090 | /* If we get here, we found another repeat character. */ | |||
2091 | } | |||
2092 | ||||
2093 | /* Star, etc. applied to an empty pattern is equivalent | |||
2094 | to an empty pattern. */ | |||
2095 | if (!laststart) | |||
2096 | break; | |||
2097 | ||||
2098 | /* Now we know whether or not zero matches is allowed | |||
2099 | and also whether or not two or more matches is allowed. */ | |||
2100 | if (many_times_ok) | |||
2101 | { /* More than one repetition is allowed, so put in at the | |||
2102 | end a backward relative jump from `b' to before the next | |||
2103 | jump we're going to put in below (which jumps from | |||
2104 | laststart to after this jump). | |||
2105 | ||||
2106 | But if we are at the `*' in the exact sequence `.*\n', | |||
2107 | insert an unconditional jump backwards to the ., | |||
2108 | instead of the beginning of the loop. This way we only | |||
2109 | push a failure point once, instead of every time | |||
2110 | through the loop. */ | |||
2111 | assert (p - 1 > pattern); | |||
2112 | ||||
2113 | /* Allocate the space for the jump. */ | |||
2114 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2115 | ||||
2116 | /* We know we are not at the first character of the pattern, | |||
2117 | because laststart was nonzero. And we've already | |||
2118 | incremented `p', by the way, to be the character after | |||
2119 | the `*'. Do we have to do something analogous here | |||
2120 | for null bytes, because of RE_DOT_NOT_NULL? */ | |||
2121 | if (TRANSLATE ((unsigned char)*(p - 2))((translate) ? (unsigned) ((translate)[(unsigned) ((unsigned char )*(p - 2))]) : ((unsigned char)*(p - 2))) == TRANSLATE ('.')((translate) ? (unsigned) ((translate)[(unsigned) ('.')]) : ( '.')) | |||
2122 | && zero_times_ok | |||
2123 | && p < pend | |||
2124 | && TRANSLATE ((unsigned char)*p)((translate) ? (unsigned) ((translate)[(unsigned) ((unsigned char )*p)]) : ((unsigned char)*p)) == TRANSLATE ('\n')((translate) ? (unsigned) ((translate)[(unsigned) ('\n')]) : ( '\n')) | |||
2125 | && !(syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2126 | { /* We have .*\n. */ | |||
2127 | STORE_JUMP (jump, b, laststart)store_op1 (jump, b, (laststart) - (b) - 3); | |||
2128 | keep_string_p = true1; | |||
2129 | } | |||
2130 | else | |||
2131 | /* Anything else. */ | |||
2132 | STORE_JUMP (maybe_pop_jump, b, laststart - 3)store_op1 (maybe_pop_jump, b, (laststart - 3) - (b) - 3); | |||
2133 | ||||
2134 | /* We've added more stuff to the buffer. */ | |||
2135 | b += 3; | |||
2136 | } | |||
2137 | ||||
2138 | /* On failure, jump from laststart to b + 3, which will be the | |||
2139 | end of the buffer after this jump is inserted. */ | |||
2140 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2141 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jumpinsert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b) | |||
2142 | : on_failure_jump,insert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b) | |||
2143 | laststart, b + 3)insert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b); | |||
2144 | pending_exact = 0; | |||
2145 | b += 3; | |||
2146 | ||||
2147 | if (!zero_times_ok) | |||
2148 | { | |||
2149 | /* At least one repetition is required, so insert a | |||
2150 | `dummy_failure_jump' before the initial | |||
2151 | `on_failure_jump' instruction of the loop. This | |||
2152 | effects a skip over that instruction the first time | |||
2153 | we hit that loop. */ | |||
2154 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2155 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6)insert_op1 (dummy_failure_jump, laststart, (laststart + 6) - ( laststart) - 3, b); | |||
2156 | b += 3; | |||
2157 | } | |||
2158 | } | |||
2159 | break; | |||
2160 | ||||
2161 | ||||
2162 | case '.': | |||
2163 | laststart = b; | |||
2164 | BUF_PUSH (anychar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (anychar ); } while (0); | |||
2165 | break; | |||
2166 | ||||
2167 | ||||
2168 | case '[': | |||
2169 | { | |||
2170 | CLEAR_RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used = 0); | |||
2171 | ||||
2172 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
2173 | ||||
2174 | /* Ensure that we have enough space to push a charset: the | |||
2175 | opcode, the length count, and the bitset; 34 bytes in all. */ | |||
2176 | GET_BUFFER_SPACE (34)while (b - bufp->buffer + (34) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
2177 | ||||
2178 | laststart = b; | |||
2179 | ||||
2180 | /* We test `*p == '^' twice, instead of using an if | |||
2181 | statement, so we only need one BUF_PUSH. */ | |||
2182 | BUF_PUSH (*p == '^' ? charset_not : charset)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (* p == '^' ? charset_not : charset); } while (0); | |||
2183 | if (*p == '^') | |||
2184 | p++; | |||
2185 | ||||
2186 | /* Remember the first position in the bracket expression. */ | |||
2187 | p1 = p; | |||
2188 | ||||
2189 | /* Push the number of bytes in the bitmap. */ | |||
2190 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (( 1 << 8) / 8); } while (0); | |||
2191 | ||||
2192 | /* Clear the whole map. */ | |||
2193 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH)memset ((b), 0, ((1 << 8) / 8)); | |||
2194 | ||||
2195 | /* charset_not matches newline according to a syntax bit. */ | |||
2196 | if ((re_opcode_t) b[-2] == charset_not | |||
2197 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE(((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2198 | SET_LIST_BIT ('\n')(b[((unsigned char) ('\n')) / 8] |= 1 << (((unsigned char ) '\n') % 8)); | |||
2199 | ||||
2200 | /* Read in characters and ranges, setting map bits. */ | |||
2201 | for (;;) | |||
2202 | { | |||
2203 | int len; | |||
2204 | boolean escaped_char = false0; | |||
2205 | ||||
2206 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
2207 | ||||
2208 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2209 | ||||
2210 | /* \ might escape characters inside [...] and [^...]. */ | |||
2211 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS(1)) && c == '\\') | |||
2212 | { | |||
2213 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
2214 | ||||
2215 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2216 | escaped_char = true1; | |||
2217 | } | |||
2218 | else | |||
2219 | { | |||
2220 | /* Could be the end of the bracket expression. If it's | |||
2221 | not (i.e., when the bracket expression is `[]' so | |||
2222 | far), the ']' character bit gets set way below. */ | |||
2223 | if (c == ']' && p != p1 + 1) | |||
2224 | break; | |||
2225 | } | |||
2226 | ||||
2227 | /* If C indicates start of multibyte char, get the | |||
2228 | actual character code in C, and set the pattern | |||
2229 | pointer P to the next character boundary. */ | |||
2230 | if (bufp->multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
2231 | { | |||
2232 | PATUNFETCHp--; | |||
2233 | c = STRING_CHAR_AND_LENGTH (p, pend - p, len)((len) = 1, *(p)); | |||
2234 | p += len; | |||
2235 | } | |||
2236 | /* What should we do for the character which is | |||
2237 | greater than 0x7F, but not BASE_LEADING_CODE_P? | |||
2238 | XXX */ | |||
2239 | ||||
2240 | /* See if we're at the beginning of a possible character | |||
2241 | class. */ | |||
2242 | ||||
2243 | else if (!escaped_char && | |||
2244 | syntax & RE_CHAR_CLASSES(((1) << 1) << 1) && c == '[' && *p == ':') | |||
2245 | { | |||
2246 | /* Leave room for the null. */ | |||
2247 | char str[CHAR_CLASS_MAX_LENGTH6 + 1]; | |||
2248 | ||||
2249 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2250 | c1 = 0; | |||
2251 | ||||
2252 | /* If pattern is `[[:'. */ | |||
2253 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
2254 | ||||
2255 | for (;;) | |||
2256 | { | |||
2257 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2258 | if (c == ':' || c == ']' || p == pend | |||
2259 | || c1 == CHAR_CLASS_MAX_LENGTH6) | |||
2260 | break; | |||
2261 | str[c1++] = c; | |||
2262 | } | |||
2263 | str[c1] = '\0'; | |||
2264 | ||||
2265 | /* If isn't a word bracketed by `[:' and `:]': | |||
2266 | undo the ending character, the letters, and | |||
2267 | leave the leading `:' and `[' (but set bits for | |||
2268 | them). */ | |||
2269 | if (c == ':' && *p == ']') | |||
2270 | { | |||
2271 | int ch; | |||
2272 | boolean is_alnum = STREQ (str, "alnum")((strcmp (str, "alnum") == 0)); | |||
2273 | boolean is_alpha = STREQ (str, "alpha")((strcmp (str, "alpha") == 0)); | |||
2274 | boolean is_blank = STREQ (str, "blank")((strcmp (str, "blank") == 0)); | |||
2275 | boolean is_cntrl = STREQ (str, "cntrl")((strcmp (str, "cntrl") == 0)); | |||
2276 | boolean is_digit = STREQ (str, "digit")((strcmp (str, "digit") == 0)); | |||
2277 | boolean is_graph = STREQ (str, "graph")((strcmp (str, "graph") == 0)); | |||
2278 | boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0)); | |||
2279 | boolean is_print = STREQ (str, "print")((strcmp (str, "print") == 0)); | |||
2280 | boolean is_punct = STREQ (str, "punct")((strcmp (str, "punct") == 0)); | |||
2281 | boolean is_space = STREQ (str, "space")((strcmp (str, "space") == 0)); | |||
2282 | boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0)); | |||
2283 | boolean is_xdigit = STREQ (str, "xdigit")((strcmp (str, "xdigit") == 0)); | |||
2284 | ||||
2285 | if (!IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") == 0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit" ) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit" ) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print" ) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph" ) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank" ) == 0)))) | |||
2286 | FREE_STACK_RETURN (REG_ECTYPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ECTYPE ; } while (0); | |||
2287 | ||||
2288 | /* Throw away the ] at the end of the character | |||
2289 | class. */ | |||
2290 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2291 | ||||
2292 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
2293 | ||||
2294 | for (ch = 0; ch < 1 << BYTEWIDTH8; ch++) | |||
2295 | { | |||
2296 | int translated = TRANSLATE (ch)((translate) ? (unsigned) ((translate)[(unsigned) (ch)]) : (ch )); | |||
2297 | /* This was split into 3 if's to | |||
2298 | avoid an arbitrary limit in some compiler. */ | |||
2299 | if ( (is_alnum && ISALNUM (ch)(1 && isalnum (ch))) | |||
2300 | || (is_alpha && ISALPHA (ch)(1 && isalpha (ch))) | |||
2301 | || (is_blank && ISBLANK (ch)((ch) == ' ' || (ch) == '\t')) | |||
2302 | || (is_cntrl && ISCNTRL (ch)(1 && iscntrl (ch)))) | |||
2303 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
2304 | if ( (is_digit && ISDIGIT (ch)(1 && isdigit (ch))) | |||
2305 | || (is_graph && ISGRAPH (ch)(1 && isprint (ch) && !isspace (ch))) | |||
2306 | || (is_lower && ISLOWER (ch)(1 && islower (ch))) | |||
2307 | || (is_print && ISPRINT (ch)(1 && isprint (ch)))) | |||
2308 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
2309 | if ( (is_punct && ISPUNCT (ch)(1 && ispunct (ch))) | |||
2310 | || (is_space && ISSPACE (ch)(1 && isspace (ch))) | |||
2311 | || (is_upper && ISUPPER (ch)(1 && isupper (ch))) | |||
2312 | || (is_xdigit && ISXDIGIT (ch)(1 && isxdigit (ch)))) | |||
2313 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
2314 | } | |||
2315 | ||||
2316 | /* Repeat the loop. */ | |||
2317 | continue; | |||
2318 | } | |||
2319 | else | |||
2320 | { | |||
2321 | c1++; | |||
2322 | while (c1--) | |||
2323 | PATUNFETCHp--; | |||
2324 | SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char ) '[') % 8)); | |||
2325 | ||||
2326 | /* Because the `:' may starts the range, we | |||
2327 | can't simply set bit and repeat the loop. | |||
2328 | Instead, just set it to C and handle below. */ | |||
2329 | c = ':'; | |||
2330 | } | |||
2331 | } | |||
2332 | ||||
2333 | if (p < pend && p[0] == '-' && p[1] != ']') | |||
2334 | { | |||
2335 | ||||
2336 | /* Discard the `-'. */ | |||
2337 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
2338 | ||||
2339 | /* Fetch the character which ends the range. */ | |||
2340 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
2341 | if (bufp->multibyte && BASE_LEADING_CODE_P (c1)(0)) | |||
2342 | { | |||
2343 | PATUNFETCHp--; | |||
2344 | c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len)((len) = 1, *(p)); | |||
2345 | p += len; | |||
2346 | } | |||
2347 | ||||
2348 | if (SINGLE_BYTE_CHAR_P (c)(1) | |||
2349 | && ! SINGLE_BYTE_CHAR_P (c1)(1)) | |||
2350 | { | |||
2351 | /* Handle a range such as \177-\377 in multibyte mode. | |||
2352 | Split that into two ranges,, | |||
2353 | the low one ending at 0237, and the high one | |||
2354 | starting at ...040. */ | |||
2355 | int c1_base = (c1 & ~0177) | 040; | |||
2356 | SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1)do { do { if ((((range_table_work)).used + (2)) * sizeof (int ) > ((range_table_work)).allocated) { ((range_table_work)) .allocated += 16 * sizeof (int); if (((range_table_work)).table ) ((range_table_work)).table = (int *) realloc (((range_table_work )).table, ((range_table_work)).allocated); else ((range_table_work )).table = (int *) malloc (((range_table_work)).allocated); if (((range_table_work)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (range_table_work).table[(range_table_work).used++] = ( c); (range_table_work).table[(range_table_work).used++] = (c1 ); } while (0); | |||
2357 | c1 = 0237; | |||
2358 | } | |||
2359 | else if (!SAME_CHARSET_P (c, c1)(1)) | |||
2360 | FREE_STACK_RETURN (REG_ERANGE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERANGE ; } while (0); | |||
2361 | } | |||
2362 | else | |||
2363 | /* Range from C to C. */ | |||
2364 | c1 = c; | |||
2365 | ||||
2366 | /* Set the range ... */ | |||
2367 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
2368 | /* ... into bitmap. */ | |||
2369 | { | |||
2370 | unsigned this_char; | |||
2371 | int range_start = c, range_end = c1; | |||
2372 | ||||
2373 | /* If the start is after the end, the range is empty. */ | |||
2374 | if (range_start > range_end) | |||
2375 | { | |||
2376 | if (syntax & RE_NO_EMPTY_RANGES(((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2377 | FREE_STACK_RETURN (REG_ERANGE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERANGE ; } while (0); | |||
2378 | /* Else, repeat the loop. */ | |||
2379 | } | |||
2380 | else | |||
2381 | { | |||
2382 | for (this_char = range_start; this_char <= range_end; | |||
2383 | this_char++) | |||
2384 | SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (((translate) ? (unsigned) ((translate)[( unsigned) (this_char)]) : (this_char)))) / 8] |= 1 << ( ((unsigned char) ((translate) ? (unsigned) ((translate)[(unsigned ) (this_char)]) : (this_char))) % 8)); | |||
2385 | } | |||
2386 | } | |||
2387 | else | |||
2388 | /* ... into range table. */ | |||
2389 | SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1)do { do { if ((((range_table_work)).used + (2)) * sizeof (int ) > ((range_table_work)).allocated) { ((range_table_work)) .allocated += 16 * sizeof (int); if (((range_table_work)).table ) ((range_table_work)).table = (int *) realloc (((range_table_work )).table, ((range_table_work)).allocated); else ((range_table_work )).table = (int *) malloc (((range_table_work)).allocated); if (((range_table_work)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (range_table_work).table[(range_table_work).used++] = ( c); (range_table_work).table[(range_table_work).used++] = (c1 ); } while (0); | |||
2390 | } | |||
2391 | ||||
2392 | /* Discard any (non)matching list bytes that are all 0 at the | |||
2393 | end of the map. Decrease the map-length byte too. */ | |||
2394 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | |||
2395 | b[-1]--; | |||
2396 | b += b[-1]; | |||
2397 | ||||
2398 | /* Build real range table from work area. */ | |||
2399 | if (RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used)) | |||
2400 | { | |||
2401 | int i; | |||
2402 | int used = RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used); | |||
2403 | ||||
2404 | /* Allocate space for COUNT + RANGE_TABLE. Needs two | |||
2405 | bytes for COUNT and three bytes for each character. */ | |||
2406 | GET_BUFFER_SPACE (2 + used * 3)while (b - bufp->buffer + (2 + used * 3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
2407 | ||||
2408 | /* Indicate the existence of range table. */ | |||
2409 | laststart[1] |= 0x80; | |||
2410 | ||||
2411 | STORE_NUMBER_AND_INCR (b, used / 2)do { do { (b)[0] = (used / 2) & 0377; (b)[1] = (used / 2) >> 8; } while (0); (b) += 2; } while (0); | |||
2412 | for (i = 0; i < used; i++) | |||
2413 | STORE_CHARACTER_AND_INCRdo { (b)[0] = (((range_table_work).table[i])) & 0377; (b) [1] = ((((range_table_work).table[i])) >> 8) & 0377 ; (b)[2] = (((range_table_work).table[i])) >> 16; (b) += 3; } while (0) | |||
2414 | (b, RANGE_TABLE_WORK_ELT (range_table_work, i))do { (b)[0] = (((range_table_work).table[i])) & 0377; (b) [1] = ((((range_table_work).table[i])) >> 8) & 0377 ; (b)[2] = (((range_table_work).table[i])) >> 16; (b) += 3; } while (0); | |||
2415 | } | |||
2416 | } | |||
2417 | break; | |||
2418 | ||||
2419 | ||||
2420 | case '(': | |||
2421 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
2422 | goto handle_open; | |||
2423 | else | |||
2424 | goto normal_char; | |||
2425 | ||||
2426 | ||||
2427 | case ')': | |||
2428 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
2429 | goto handle_close; | |||
2430 | else | |||
2431 | goto normal_char; | |||
2432 | ||||
2433 | ||||
2434 | case '\n': | |||
2435 | if (syntax & RE_NEWLINE_ALT((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2436 | goto handle_alt; | |||
2437 | else | |||
2438 | goto normal_char; | |||
2439 | ||||
2440 | ||||
2441 | case '|': | |||
2442 | if (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2443 | goto handle_alt; | |||
2444 | else | |||
2445 | goto normal_char; | |||
2446 | ||||
2447 | ||||
2448 | case '{': | |||
2449 | if (syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) && syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2450 | goto handle_interval; | |||
2451 | else | |||
2452 | goto normal_char; | |||
2453 | ||||
2454 | ||||
2455 | case '\\': | |||
2456 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
2457 | ||||
2458 | /* Do not translate the character after the \, so that we can | |||
2459 | distinguish, e.g., \B from \b, even if we normally would | |||
2460 | translate, e.g., B to b. */ | |||
2461 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
2462 | ||||
2463 | switch (c) | |||
2464 | { | |||
2465 | case '(': | |||
2466 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
2467 | goto normal_backslash; | |||
2468 | ||||
2469 | handle_open: | |||
2470 | bufp->re_nsub++; | |||
2471 | regnum++; | |||
2472 | ||||
2473 | if (COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size)) | |||
2474 | { | |||
2475 | RETALLOC (compile_stack.stack, compile_stack.size << 1,((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack .stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t ))) | |||
2476 | compile_stack_elt_t)((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack .stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t ))); | |||
2477 | if (compile_stack.stack == NULL((void *)0)) return REG_ESPACE; | |||
2478 | ||||
2479 | compile_stack.size <<= 1; | |||
2480 | } | |||
2481 | ||||
2482 | /* These are the values to restore when we hit end of this | |||
2483 | group. They are all relative offsets, so that if the | |||
2484 | whole pattern moves because of realloc, they will still | |||
2485 | be valid. */ | |||
2486 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset = begalt - bufp->buffer; | |||
2487 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump | |||
2488 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | |||
2489 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset = b - bufp->buffer; | |||
2490 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum = regnum; | |||
2491 | ||||
2492 | /* We will eventually replace the 0 with the number of | |||
2493 | groups inner to this one. But do not push a | |||
2494 | start_memory for groups beyond the last one we can | |||
2495 | represent in the compiled pattern. */ | |||
2496 | if (regnum <= MAX_REGNUM255) | |||
2497 | { | |||
2498 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset = b - bufp->buffer + 2; | |||
2499 | BUF_PUSH_3 (start_memory, regnum, 0)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (start_memory ); *b++ = (unsigned char) (regnum); *b++ = (unsigned char) (0 ); } while (0); | |||
2500 | } | |||
2501 | ||||
2502 | compile_stack.avail++; | |||
2503 | ||||
2504 | fixup_alt_jump = 0; | |||
2505 | laststart = 0; | |||
2506 | begalt = b; | |||
2507 | /* If we've reached MAX_REGNUM groups, then this open | |||
2508 | won't actually generate any code, so we'll have to | |||
2509 | clear pending_exact explicitly. */ | |||
2510 | pending_exact = 0; | |||
2511 | break; | |||
2512 | ||||
2513 | ||||
2514 | case ')': | |||
2515 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) goto normal_backslash; | |||
2516 | ||||
2517 | if (COMPILE_STACK_EMPTY(compile_stack.avail == 0)) { | |||
2518 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2519 | goto normal_backslash; | |||
2520 | else | |||
2521 | FREE_STACK_RETURN (REG_ERPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERPAREN ; } while (0); | |||
2522 | } | |||
2523 | ||||
2524 | handle_close: | |||
2525 | if (fixup_alt_jump) | |||
2526 | { /* Push a dummy failure point at the end of the | |||
2527 | alternative for a possible future | |||
2528 | `pop_failure_jump' to pop. See comments at | |||
2529 | `push_dummy_failure' in `re_match_2'. */ | |||
2530 | BUF_PUSH (push_dummy_failure)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (push_dummy_failure ); } while (0); | |||
2531 | ||||
2532 | /* We allocated space for this jump when we assigned | |||
2533 | to `fixup_alt_jump', in the `handle_alt' case below. */ | |||
2534 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1)store_op1 (jump_past_alt, fixup_alt_jump, (b - 1) - (fixup_alt_jump ) - 3); | |||
2535 | } | |||
2536 | ||||
2537 | /* See similar code for backslashed left paren above. */ | |||
2538 | if (COMPILE_STACK_EMPTY(compile_stack.avail == 0)) { | |||
2539 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2540 | goto normal_char; | |||
2541 | else | |||
2542 | FREE_STACK_RETURN (REG_ERPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERPAREN ; } while (0); | |||
2543 | } | |||
2544 | ||||
2545 | /* Since we just checked for an empty stack above, this | |||
2546 | ``can't happen''. */ | |||
2547 | assert (compile_stack.avail != 0); | |||
2548 | { | |||
2549 | /* We don't just want to restore into `regnum', because | |||
2550 | later groups should continue to be numbered higher, | |||
2551 | as in `(ab)c(de)' -- the second group is #2. */ | |||
2552 | regnum_t this_group_regnum; | |||
2553 | ||||
2554 | compile_stack.avail--; | |||
2555 | begalt = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset; | |||
2556 | fixup_alt_jump | |||
2557 | = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump | |||
2558 | ? bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump - 1 | |||
2559 | : 0; | |||
2560 | laststart = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset; | |||
2561 | this_group_regnum = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum; | |||
2562 | /* If we've reached MAX_REGNUM groups, then this open | |||
2563 | won't actually generate any code, so we'll have to | |||
2564 | clear pending_exact explicitly. */ | |||
2565 | pending_exact = 0; | |||
2566 | ||||
2567 | /* We're at the end of the group, so now we know how many | |||
2568 | groups were inside this one. */ | |||
2569 | if (this_group_regnum <= MAX_REGNUM255) | |||
2570 | { | |||
2571 | unsigned char *inner_group_loc | |||
2572 | = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset; | |||
2573 | ||||
2574 | *inner_group_loc = regnum - this_group_regnum; | |||
2575 | BUF_PUSH_3 (stop_memory, this_group_regnum,do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (stop_memory ); *b++ = (unsigned char) (this_group_regnum); *b++ = (unsigned char) (regnum - this_group_regnum); } while (0) | |||
2576 | regnum - this_group_regnum)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (stop_memory ); *b++ = (unsigned char) (this_group_regnum); *b++ = (unsigned char) (regnum - this_group_regnum); } while (0); | |||
2577 | } | |||
2578 | } | |||
2579 | break; | |||
2580 | ||||
2581 | ||||
2582 | case '|': /* `\|'. */ | |||
2583 | if (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) || syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2584 | goto normal_backslash; | |||
2585 | handle_alt: | |||
2586 | if (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2587 | goto normal_char; | |||
2588 | ||||
2589 | /* Insert before the previous alternative a jump which | |||
2590 | jumps to this alternative if the former fails. */ | |||
2591 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2592 | INSERT_JUMP (on_failure_jump, begalt, b + 6)insert_op1 (on_failure_jump, begalt, (b + 6) - (begalt) - 3, b ); | |||
2593 | pending_exact = 0; | |||
2594 | b += 3; | |||
2595 | ||||
2596 | /* The alternative before this one has a jump after it | |||
2597 | which gets executed if it gets matched. Adjust that | |||
2598 | jump so it will jump to this alternative's analogous | |||
2599 | jump (put in below, which in turn will jump to the next | |||
2600 | (if any) alternative's such jump, etc.). The last such | |||
2601 | jump jumps to the correct final destination. A picture: | |||
2602 | _____ _____ | |||
2603 | | | | | | |||
2604 | | v | v | |||
2605 | a | b | c | |||
2606 | ||||
2607 | If we are at `b', then fixup_alt_jump right now points to a | |||
2608 | three-byte space after `a'. We'll put in the jump, set | |||
2609 | fixup_alt_jump to right after `b', and leave behind three | |||
2610 | bytes which we'll fill in when we get to after `c'. */ | |||
2611 | ||||
2612 | if (fixup_alt_jump) | |||
2613 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b)store_op1 (jump_past_alt, fixup_alt_jump, (b) - (fixup_alt_jump ) - 3); | |||
2614 | ||||
2615 | /* Mark and leave space for a jump after this alternative, | |||
2616 | to be filled in later either by next alternative or | |||
2617 | when know we're at the end of a series of alternatives. */ | |||
2618 | fixup_alt_jump = b; | |||
2619 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2620 | b += 3; | |||
2621 | ||||
2622 | laststart = 0; | |||
2623 | begalt = b; | |||
2624 | break; | |||
2625 | ||||
2626 | ||||
2627 | case '{': | |||
2628 | /* If \{ is a literal. */ | |||
2629 | if (!(syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2630 | /* If we're at `\{' and it's not the open-interval | |||
2631 | operator. */ | |||
2632 | || ((syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) && (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2633 | || (p - 2 == pattern && p == pend)) | |||
2634 | goto normal_backslash; | |||
2635 | ||||
2636 | handle_interval: | |||
2637 | { | |||
2638 | /* If got here, then the syntax allows intervals. */ | |||
2639 | ||||
2640 | /* At least (most) this many matches must be made. */ | |||
2641 | int lower_bound = -1, upper_bound = -1; | |||
2642 | ||||
2643 | beg_interval = p - 1; | |||
2644 | ||||
2645 | if (p == pend) | |||
2646 | { | |||
2647 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2648 | goto unfetch_interval; | |||
2649 | else | |||
2650 | FREE_STACK_RETURN (REG_EBRACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACE ; } while (0); | |||
2651 | } | |||
2652 | ||||
2653 | GET_UNSIGNED_NUMBER (lower_bound){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (lower_bound < 0) lower_bound = 0; lower_bound = lower_bound * 10 + c - '0' ; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c] ); } while (0); } } }; | |||
2654 | ||||
2655 | if (c == ',') | |||
2656 | { | |||
2657 | GET_UNSIGNED_NUMBER (upper_bound){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (upper_bound < 0) upper_bound = 0; upper_bound = upper_bound * 10 + c - '0' ; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c] ); } while (0); } } }; | |||
2658 | if (upper_bound < 0) upper_bound = RE_DUP_MAX((1 << 15) - 1); | |||
2659 | } | |||
2660 | else | |||
2661 | /* Interval such as `{1}' => match exactly once. */ | |||
2662 | upper_bound = lower_bound; | |||
2663 | ||||
2664 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX((1 << 15) - 1) | |||
2665 | || lower_bound > upper_bound) | |||
2666 | { | |||
2667 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2668 | goto unfetch_interval; | |||
2669 | else | |||
2670 | FREE_STACK_RETURN (REG_BADBR)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADBR ; } while (0); | |||
2671 | } | |||
2672 | ||||
2673 | if (!(syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2674 | { | |||
2675 | if (c != '\\') FREE_STACK_RETURN (REG_EBRACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACE ; } while (0); | |||
2676 | ||||
2677 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2678 | } | |||
2679 | ||||
2680 | if (c != '}') | |||
2681 | { | |||
2682 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2683 | goto unfetch_interval; | |||
2684 | else | |||
2685 | FREE_STACK_RETURN (REG_BADBR)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADBR ; } while (0); | |||
2686 | } | |||
2687 | ||||
2688 | /* We just parsed a valid interval. */ | |||
2689 | ||||
2690 | /* If it's invalid to have no preceding re. */ | |||
2691 | if (!laststart) | |||
2692 | { | |||
2693 | if (syntax & RE_CONTEXT_INVALID_OPS((((((1) << 1) << 1) << 1) << 1) << 1)) | |||
2694 | FREE_STACK_RETURN (REG_BADRPT)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADRPT ; } while (0); | |||
2695 | else if (syntax & RE_CONTEXT_INDEP_OPS(((((1) << 1) << 1) << 1) << 1)) | |||
2696 | laststart = b; | |||
2697 | else | |||
2698 | goto unfetch_interval; | |||
2699 | } | |||
2700 | ||||
2701 | /* If the upper bound is zero, don't want to succeed at | |||
2702 | all; jump from `laststart' to `b + 3', which will be | |||
2703 | the end of the buffer after we insert the jump. */ | |||
2704 | if (upper_bound == 0) | |||
2705 | { | |||
2706 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
2707 | INSERT_JUMP (jump, laststart, b + 3)insert_op1 (jump, laststart, (b + 3) - (laststart) - 3, b); | |||
2708 | b += 3; | |||
2709 | } | |||
2710 | ||||
2711 | /* Otherwise, we have a nontrivial interval. When | |||
2712 | we're all done, the pattern will look like: | |||
2713 | set_number_at <jump count> <upper bound> | |||
2714 | set_number_at <succeed_n count> <lower bound> | |||
2715 | succeed_n <after jump addr> <succeed_n count> | |||
2716 | <body of loop> | |||
2717 | jump_n <succeed_n addr> <jump count> | |||
2718 | (The upper bound and `jump_n' are omitted if | |||
2719 | `upper_bound' is 1, though.) */ | |||
2720 | else | |||
2721 | { /* If the upper bound is > 1, we need to insert | |||
2722 | more at the end of the loop. */ | |||
2723 | unsigned nbytes = 10 + (upper_bound > 1) * 10; | |||
2724 | ||||
2725 | GET_BUFFER_SPACE (nbytes)while (b - bufp->buffer + (nbytes) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
2726 | ||||
2727 | /* Initialize lower bound of the `succeed_n', even | |||
2728 | though it will be set during matching by its | |||
2729 | attendant `set_number_at' (inserted next), | |||
2730 | because `re_compile_fastmap' needs to know. | |||
2731 | Jump to the `jump_n' we might insert below. */ | |||
2732 | INSERT_JUMP2 (succeed_n, laststart,insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b) | |||
2733 | b + 5 + (upper_bound > 1) * 5,insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b) | |||
2734 | lower_bound)insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b); | |||
2735 | b += 5; | |||
2736 | ||||
2737 | /* Code to initialize the lower bound. Insert | |||
2738 | before the `succeed_n'. The `5' is the last two | |||
2739 | bytes of this `set_number_at', plus 3 bytes of | |||
2740 | the following `succeed_n'. */ | |||
2741 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); | |||
2742 | b += 5; | |||
2743 | ||||
2744 | if (upper_bound > 1) | |||
2745 | { /* More than one repetition is allowed, so | |||
2746 | append a backward jump to the `succeed_n' | |||
2747 | that starts this interval. | |||
2748 | ||||
2749 | When we've reached this during matching, | |||
2750 | we'll have matched the interval once, so | |||
2751 | jump back only `upper_bound - 1' times. */ | |||
2752 | STORE_JUMP2 (jump_n, b, laststart + 5,store_op2 (jump_n, b, (laststart + 5) - (b) - 3, upper_bound - 1) | |||
2753 | upper_bound - 1)store_op2 (jump_n, b, (laststart + 5) - (b) - 3, upper_bound - 1); | |||
2754 | b += 5; | |||
2755 | ||||
2756 | /* The location we want to set is the second | |||
2757 | parameter of the `jump_n'; that is `b-2' as | |||
2758 | an absolute address. `laststart' will be | |||
2759 | the `set_number_at' we're about to insert; | |||
2760 | `laststart+3' the number to set, the source | |||
2761 | for the relative address. But we are | |||
2762 | inserting into the middle of the pattern -- | |||
2763 | so everything is getting moved up by 5. | |||
2764 | Conclusion: (b - 2) - (laststart + 3) + 5, | |||
2765 | i.e., b - laststart. | |||
2766 | ||||
2767 | We insert this at the beginning of the loop | |||
2768 | so that if we fail during matching, we'll | |||
2769 | reinitialize the bounds. */ | |||
2770 | insert_op2 (set_number_at, laststart, b - laststart, | |||
2771 | upper_bound - 1, b); | |||
2772 | b += 5; | |||
2773 | } | |||
2774 | } | |||
2775 | pending_exact = 0; | |||
2776 | beg_interval = NULL((void *)0); | |||
2777 | } | |||
2778 | break; | |||
2779 | ||||
2780 | unfetch_interval: | |||
2781 | /* If an invalid interval, match the characters as literals. */ | |||
2782 | assert (beg_interval); | |||
2783 | p = beg_interval; | |||
2784 | beg_interval = NULL((void *)0); | |||
2785 | ||||
2786 | /* normal_char and normal_backslash need `c'. */ | |||
2787 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2788 | ||||
2789 | if (!(syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
2790 | { | |||
2791 | if (p > pattern && p[-1] == '\\') | |||
2792 | goto normal_backslash; | |||
2793 | } | |||
2794 | goto normal_char; | |||
2795 | ||||
2796 | #ifdef emacs | |||
2797 | /* There is no way to specify the before_dot and after_dot | |||
2798 | operators. rms says this is ok. --karl */ | |||
2799 | case '=': | |||
2800 | BUF_PUSH (at_dot)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (at_dot ); } while (0); | |||
2801 | break; | |||
2802 | ||||
2803 | case 's': | |||
2804 | laststart = b; | |||
2805 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2806 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c])do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (syntaxspec ); *b++ = (unsigned char) (syntax_spec_code[c]); } while (0); | |||
2807 | break; | |||
2808 | ||||
2809 | case 'S': | |||
2810 | laststart = b; | |||
2811 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
2812 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c])do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notsyntaxspec ); *b++ = (unsigned char) (syntax_spec_code[c]); } while (0); | |||
2813 | break; | |||
2814 | ||||
2815 | case 'c': | |||
2816 | laststart = b; | |||
2817 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
2818 | BUF_PUSH_2 (categoryspec, c)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (categoryspec ); *b++ = (unsigned char) (c); } while (0); | |||
2819 | break; | |||
2820 | ||||
2821 | case 'C': | |||
2822 | laststart = b; | |||
2823 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
2824 | BUF_PUSH_2 (notcategoryspec, c)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notcategoryspec ); *b++ = (unsigned char) (c); } while (0); | |||
2825 | break; | |||
2826 | #endif /* emacs */ | |||
2827 | ||||
2828 | ||||
2829 | case 'w': | |||
2830 | laststart = b; | |||
2831 | BUF_PUSH (wordchar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordchar ); } while (0); | |||
2832 | break; | |||
2833 | ||||
2834 | ||||
2835 | case 'W': | |||
2836 | laststart = b; | |||
2837 | BUF_PUSH (notwordchar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notwordchar ); } while (0); | |||
2838 | break; | |||
2839 | ||||
2840 | ||||
2841 | case '<': | |||
2842 | BUF_PUSH (wordbeg)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordbeg ); } while (0); | |||
2843 | break; | |||
2844 | ||||
2845 | case '>': | |||
2846 | BUF_PUSH (wordend)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordend ); } while (0); | |||
2847 | break; | |||
2848 | ||||
2849 | case 'b': | |||
2850 | BUF_PUSH (wordbound)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordbound ); } while (0); | |||
2851 | break; | |||
2852 | ||||
2853 | case 'B': | |||
2854 | BUF_PUSH (notwordbound)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notwordbound ); } while (0); | |||
2855 | break; | |||
2856 | ||||
2857 | case '`': | |||
2858 | BUF_PUSH (begbuf)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (begbuf ); } while (0); | |||
2859 | break; | |||
2860 | ||||
2861 | case '\'': | |||
2862 | BUF_PUSH (endbuf)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (endbuf ); } while (0); | |||
2863 | break; | |||
2864 | ||||
2865 | case '1': case '2': case '3': case '4': case '5': | |||
2866 | case '6': case '7': case '8': case '9': | |||
2867 | if (syntax & RE_NO_BK_REFS(((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1)) | |||
2868 | goto normal_char; | |||
2869 | ||||
2870 | c1 = c - '0'; | |||
2871 | ||||
2872 | if (c1 > regnum) | |||
2873 | FREE_STACK_RETURN (REG_ESUBREG)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESUBREG ; } while (0); | |||
2874 | ||||
2875 | /* Can't back reference to a subexpression if inside of it. */ | |||
2876 | if (group_in_compile_stack (compile_stack, c1)) | |||
2877 | goto normal_char; | |||
2878 | ||||
2879 | laststart = b; | |||
2880 | BUF_PUSH_2 (duplicate, c1)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (duplicate ); *b++ = (unsigned char) (c1); } while (0); | |||
2881 | break; | |||
2882 | ||||
2883 | ||||
2884 | case '+': | |||
2885 | case '?': | |||
2886 | if (syntax & RE_BK_PLUS_QM((1) << 1)) | |||
2887 | goto handle_plus; | |||
2888 | else | |||
2889 | goto normal_backslash; | |||
2890 | ||||
2891 | default: | |||
2892 | normal_backslash: | |||
2893 | /* You might think it would be useful for \ to mean | |||
2894 | not to translate; but if we don't translate it | |||
2895 | it will never match anything. */ | |||
2896 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); | |||
2897 | goto normal_char; | |||
2898 | } | |||
2899 | break; | |||
2900 | ||||
2901 | ||||
2902 | default: | |||
2903 | /* Expects the character in `c'. */ | |||
2904 | normal_char: | |||
2905 | p1 = p - 1; /* P1 points the head of C. */ | |||
2906 | #ifdef emacs | |||
2907 | if (bufp->multibyte) | |||
2908 | { | |||
2909 | c = STRING_CHAR (p1, pend - p1)(*(p1)); | |||
2910 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); | |||
2911 | /* Set P to the next character boundary. */ | |||
2912 | p += MULTIBYTE_FORM_LENGTH (p1, pend - p1)(1) - 1; | |||
2913 | } | |||
2914 | #endif | |||
2915 | /* If no exactn currently being built. */ | |||
2916 | if (!pending_exact | |||
2917 | ||||
2918 | /* If last exactn not at current position. */ | |||
2919 | || pending_exact + *pending_exact + 1 != b | |||
2920 | ||||
2921 | /* We have only one byte following the exactn for the count. */ | |||
2922 | || *pending_exact >= (1 << BYTEWIDTH8) - (p - p1) | |||
2923 | ||||
2924 | /* If followed by a repetition operator. */ | |||
2925 | || (p != pend && (*p == '*' || *p == '^')) | |||
2926 | || ((syntax & RE_BK_PLUS_QM((1) << 1)) | |||
2927 | ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') | |||
2928 | : p != pend && (*p == '+' || *p == '?')) | |||
2929 | || ((syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2930 | && ((syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2931 | ? p != pend && *p == '{' | |||
2932 | : p + 1 < pend && p[0] == '\\' && p[1] == '{'))) | |||
2933 | { | |||
2934 | /* Start building a new exactn. */ | |||
2935 | ||||
2936 | laststart = b; | |||
2937 | ||||
2938 | BUF_PUSH_2 (exactn, 0)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (exactn ); *b++ = (unsigned char) (0); } while (0); | |||
2939 | pending_exact = b - 1; | |||
2940 | } | |||
2941 | ||||
2942 | #ifdef emacs | |||
2943 | if (! SINGLE_BYTE_CHAR_P (c)(1)) | |||
2944 | { | |||
2945 | unsigned char work[4], *str; | |||
2946 | int i = CHAR_STRING (c, work, str); | |||
2947 | int j; | |||
2948 | for (j = 0; j < i; j++) | |||
2949 | { | |||
2950 | BUF_PUSH (str[j])do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (str [j]); } while (0); | |||
2951 | (*pending_exact)++; | |||
2952 | } | |||
2953 | } | |||
2954 | else | |||
2955 | #endif | |||
2956 | { | |||
2957 | BUF_PUSH (c)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c ); } while (0); | |||
2958 | (*pending_exact)++; | |||
2959 | } | |||
2960 | break; | |||
2961 | } /* switch (c) */ | |||
2962 | } /* while p != pend */ | |||
2963 | ||||
2964 | ||||
2965 | /* Through the pattern now. */ | |||
2966 | ||||
2967 | if (fixup_alt_jump) | |||
2968 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b)store_op1 (jump_past_alt, fixup_alt_jump, (b) - (fixup_alt_jump ) - 3); | |||
2969 | ||||
2970 | if (!COMPILE_STACK_EMPTY(compile_stack.avail == 0)) | |||
2971 | FREE_STACK_RETURN (REG_EPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EPAREN ; } while (0); | |||
2972 | ||||
2973 | /* If we don't want backtracking, force success | |||
2974 | the first time we reach the end of the compiled pattern. */ | |||
2975 | if (syntax & RE_NO_POSIX_BACKTRACKING(((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
2976 | BUF_PUSH (succeed)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (succeed ); } while (0); | |||
2977 | ||||
2978 | free (compile_stack.stack); | |||
2979 | ||||
2980 | /* We have succeeded; set the length of the buffer. */ | |||
2981 | bufp->used = b - bufp->buffer; | |||
2982 | ||||
2983 | #ifdef DEBUG | |||
2984 | if (debug) | |||
2985 | { | |||
2986 | DEBUG_PRINT1 ("\nCompiled pattern: \n"); | |||
2987 | print_compiled_pattern (bufp); | |||
2988 | } | |||
2989 | #endif /* DEBUG */ | |||
2990 | ||||
2991 | #ifndef MATCH_MAY_ALLOCATE | |||
2992 | /* Initialize the failure stack to the largest possible stack. This | |||
2993 | isn't necessary unless we're trying to avoid calling alloca in | |||
2994 | the search and match routines. */ | |||
2995 | { | |||
2996 | int num_regs = bufp->re_nsub + 1; | |||
2997 | ||||
2998 | if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE20) | |||
2999 | { | |||
3000 | fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE20; | |||
3001 | ||||
3002 | #ifdef emacs | |||
3003 | if (! fail_stack.stack) | |||
3004 | fail_stack.stack | |||
3005 | = (fail_stack_elt_t *) xmalloc (fail_stack.size | |||
3006 | * sizeof (fail_stack_elt_t)); | |||
3007 | else | |||
3008 | fail_stack.stack | |||
3009 | = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | |||
3010 | (fail_stack.size | |||
3011 | * sizeof (fail_stack_elt_t))); | |||
3012 | #else /* not emacs */ | |||
3013 | if (! fail_stack.stack) | |||
3014 | fail_stack.stack | |||
3015 | = (fail_stack_elt_t *) malloc (fail_stack.size | |||
3016 | * sizeof (fail_stack_elt_t)); | |||
3017 | else | |||
3018 | fail_stack.stack | |||
3019 | = (fail_stack_elt_t *) realloc (fail_stack.stack, | |||
3020 | (fail_stack.size | |||
3021 | * sizeof (fail_stack_elt_t))); | |||
3022 | #endif /* not emacs */ | |||
3023 | } | |||
3024 | ||||
3025 | regex_grow_registers (num_regs); | |||
3026 | } | |||
3027 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
3028 | ||||
3029 | return REG_NOERROR; | |||
3030 | } /* regex_compile */ | |||
3031 | ||||
3032 | /* Subroutines for `regex_compile'. */ | |||
3033 | ||||
3034 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ | |||
3035 | ||||
3036 | static void | |||
3037 | store_op1 (op, loc, arg) | |||
3038 | re_opcode_t op; | |||
3039 | unsigned char *loc; | |||
3040 | int arg; | |||
3041 | { | |||
3042 | *loc = (unsigned char) op; | |||
3043 | STORE_NUMBER (loc + 1, arg)do { (loc + 1)[0] = (arg) & 0377; (loc + 1)[1] = (arg) >> 8; } while (0); | |||
3044 | } | |||
3045 | ||||
3046 | ||||
3047 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | |||
3048 | ||||
3049 | static void | |||
3050 | store_op2 (op, loc, arg1, arg2) | |||
3051 | re_opcode_t op; | |||
3052 | unsigned char *loc; | |||
3053 | int arg1, arg2; | |||
3054 | { | |||
3055 | *loc = (unsigned char) op; | |||
3056 | STORE_NUMBER (loc + 1, arg1)do { (loc + 1)[0] = (arg1) & 0377; (loc + 1)[1] = (arg1) >> 8; } while (0); | |||
3057 | STORE_NUMBER (loc + 3, arg2)do { (loc + 3)[0] = (arg2) & 0377; (loc + 3)[1] = (arg2) >> 8; } while (0); | |||
3058 | } | |||
3059 | ||||
3060 | ||||
3061 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | |||
3062 | for OP followed by two-byte integer parameter ARG. */ | |||
3063 | ||||
3064 | static void | |||
3065 | insert_op1 (op, loc, arg, end) | |||
3066 | re_opcode_t op; | |||
3067 | unsigned char *loc; | |||
3068 | int arg; | |||
3069 | unsigned char *end; | |||
3070 | { | |||
3071 | register unsigned char *pfrom = end; | |||
3072 | register unsigned char *pto = end + 3; | |||
3073 | ||||
3074 | while (pfrom != loc) | |||
3075 | *--pto = *--pfrom; | |||
3076 | ||||
3077 | store_op1 (op, loc, arg); | |||
3078 | } | |||
3079 | ||||
3080 | ||||
3081 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | |||
3082 | ||||
3083 | static void | |||
3084 | insert_op2 (op, loc, arg1, arg2, end) | |||
3085 | re_opcode_t op; | |||
3086 | unsigned char *loc; | |||
3087 | int arg1, arg2; | |||
3088 | unsigned char *end; | |||
3089 | { | |||
3090 | register unsigned char *pfrom = end; | |||
3091 | register unsigned char *pto = end + 5; | |||
3092 | ||||
3093 | while (pfrom != loc) | |||
3094 | *--pto = *--pfrom; | |||
3095 | ||||
3096 | store_op2 (op, loc, arg1, arg2); | |||
3097 | } | |||
3098 | ||||
3099 | ||||
3100 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes | |||
3101 | after an alternative or a begin-subexpression. We assume there is at | |||
3102 | least one character before the ^. */ | |||
3103 | ||||
3104 | static boolean | |||
3105 | at_begline_loc_p (pattern, p, syntax) | |||
3106 | const char *pattern, *p; | |||
3107 | reg_syntax_t syntax; | |||
3108 | { | |||
3109 | const char *prev = p - 2; | |||
3110 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | |||
3111 | ||||
3112 | return | |||
3113 | /* After a subexpression? */ | |||
3114 | (*prev == '(' && (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) || prev_prev_backslash)) | |||
3115 | /* After an alternative? */ | |||
3116 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) || prev_prev_backslash)); | |||
3117 | } | |||
3118 | ||||
3119 | ||||
3120 | /* The dual of at_begline_loc_p. This one is for $. We assume there is | |||
3121 | at least one character after the $, i.e., `P < PEND'. */ | |||
3122 | ||||
3123 | static boolean | |||
3124 | at_endline_loc_p (p, pend, syntax) | |||
3125 | const char *p, *pend; | |||
3126 | int syntax; | |||
3127 | { | |||
3128 | const char *next = p; | |||
3129 | boolean next_backslash = *next == '\\'; | |||
3130 | const char *next_next = p + 1 < pend ? p + 1 : 0; | |||
3131 | ||||
3132 | return | |||
3133 | /* Before a subexpression? */ | |||
3134 | (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) ? *next == ')' | |||
3135 | : next_backslash && next_next && *next_next == ')') | |||
3136 | /* Before an alternative? */ | |||
3137 | || (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) ? *next == '|' | |||
3138 | : next_backslash && next_next && *next_next == '|'); | |||
3139 | } | |||
3140 | ||||
3141 | ||||
3142 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | |||
3143 | false if it's not. */ | |||
3144 | ||||
3145 | static boolean | |||
3146 | group_in_compile_stack (compile_stack, regnum) | |||
3147 | compile_stack_type compile_stack; | |||
3148 | regnum_t regnum; | |||
3149 | { | |||
3150 | int this_element; | |||
3151 | ||||
3152 | for (this_element = compile_stack.avail - 1; | |||
3153 | this_element >= 0; | |||
3154 | this_element--) | |||
3155 | if (compile_stack.stack[this_element].regnum == regnum) | |||
3156 | return true1; | |||
3157 | ||||
3158 | return false0; | |||
3159 | } | |||
3160 | ||||
3161 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | |||
3162 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | |||
3163 | characters can start a string that matches the pattern. This fastmap | |||
3164 | is used by re_search to skip quickly over impossible starting points. | |||
3165 | ||||
3166 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | |||
3167 | area as BUFP->fastmap. | |||
3168 | ||||
3169 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | |||
3170 | the pattern buffer. | |||
3171 | ||||
3172 | Returns 0 if we succeed, -2 if an internal error. */ | |||
3173 | ||||
3174 | int | |||
3175 | re_compile_fastmap (bufp) | |||
3176 | struct re_pattern_buffer *bufp; | |||
3177 | { | |||
3178 | int i, j, k; | |||
3179 | #ifdef MATCH_MAY_ALLOCATE | |||
3180 | fail_stack_type fail_stack; | |||
3181 | #endif | |||
3182 | #ifndef REGEX_MALLOC1 | |||
3183 | char *destination; | |||
3184 | #endif | |||
3185 | /* We don't push any register information onto the failure stack. */ | |||
3186 | unsigned num_regs = 0; | |||
3187 | ||||
3188 | register char *fastmap = bufp->fastmap; | |||
3189 | unsigned char *pattern = bufp->buffer; | |||
3190 | unsigned long size = bufp->used; | |||
3191 | unsigned char *p = pattern; | |||
3192 | register unsigned char *pend = pattern + size; | |||
3193 | ||||
3194 | /* This holds the pointer to the failure stack, when | |||
3195 | it is allocated relocatably. */ | |||
3196 | fail_stack_elt_t *failure_stack_ptr; | |||
3197 | ||||
3198 | /* Assume that each path through the pattern can be null until | |||
3199 | proven otherwise. We set this false at the bottom of switch | |||
3200 | statement, to which we get only if a particular path doesn't | |||
3201 | match the empty string. */ | |||
3202 | boolean path_can_be_null = true1; | |||
3203 | ||||
3204 | /* We aren't doing a `succeed_n' to begin with. */ | |||
3205 | boolean succeed_n_p = false0; | |||
3206 | ||||
3207 | /* If all elements for base leading-codes in fastmap is set, this | |||
3208 | flag is set true. */ | |||
3209 | boolean match_any_multibyte_characters = false0; | |||
3210 | ||||
3211 | /* Maximum code of simple (single byte) character. */ | |||
3212 | int simple_char_max; | |||
3213 | ||||
3214 | assert (fastmap != NULL && p != NULL); | |||
3215 | ||||
3216 | INIT_FAIL_STACK ()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0); | |||
3217 | bzero (fastmap, 1 << BYTEWIDTH)memset ((fastmap), 0, (1 << 8)); /* Assume nothing's valid. */ | |||
3218 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ | |||
3219 | bufp->can_be_null = 0; | |||
3220 | ||||
3221 | while (1) | |||
3222 | { | |||
3223 | if (p == pend || *p == succeed) | |||
3224 | { | |||
3225 | /* We have reached the (effective) end of pattern. */ | |||
3226 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)) | |||
3227 | { | |||
3228 | bufp->can_be_null |= path_can_be_null; | |||
3229 | ||||
3230 | /* Reset for next path. */ | |||
3231 | path_can_be_null = true1; | |||
3232 | ||||
3233 | p = fail_stack.stack[--fail_stack.avail].pointer; | |||
3234 | ||||
3235 | continue; | |||
3236 | } | |||
3237 | else | |||
3238 | break; | |||
3239 | } | |||
3240 | ||||
3241 | /* We should never be about to go beyond the end of the pattern. */ | |||
3242 | assert (p < pend); | |||
3243 | ||||
3244 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++)) | |||
3245 | { | |||
3246 | ||||
3247 | /* I guess the idea here is to simply not bother with a fastmap | |||
3248 | if a backreference is used, since it's too hard to figure out | |||
3249 | the fastmap for the corresponding group. Setting | |||
3250 | `can_be_null' stops `re_search_2' from using the fastmap, so | |||
3251 | that is all we do. */ | |||
3252 | case duplicate: | |||
3253 | bufp->can_be_null = 1; | |||
3254 | goto done; | |||
3255 | ||||
3256 | ||||
3257 | /* Following are the cases which match a character. These end | |||
3258 | with `break'. */ | |||
3259 | ||||
3260 | case exactn: | |||
3261 | fastmap[p[1]] = 1; | |||
3262 | break; | |||
3263 | ||||
3264 | ||||
3265 | #ifndef emacs | |||
3266 | case charset: | |||
3267 | for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--) | |||
3268 | if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))) | |||
3269 | fastmap[j] = 1; | |||
3270 | break; | |||
3271 | ||||
3272 | ||||
3273 | case charset_not: | |||
3274 | /* Chars beyond end of map must be allowed. */ | |||
3275 | for (j = *p * BYTEWIDTH8; j < (1 << BYTEWIDTH8); j++) | |||
3276 | fastmap[j] = 1; | |||
3277 | ||||
3278 | for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--) | |||
3279 | if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))) | |||
3280 | fastmap[j] = 1; | |||
3281 | break; | |||
3282 | ||||
3283 | ||||
3284 | case wordchar: | |||
3285 | for (j = 0; j < (1 << BYTEWIDTH8); j++) | |||
3286 | if (SYNTAX (j)re_syntax_table[j] == Sword1) | |||
3287 | fastmap[j] = 1; | |||
3288 | break; | |||
3289 | ||||
3290 | ||||
3291 | case notwordchar: | |||
3292 | for (j = 0; j < (1 << BYTEWIDTH8); j++) | |||
3293 | if (SYNTAX (j)re_syntax_table[j] != Sword1) | |||
3294 | fastmap[j] = 1; | |||
3295 | break; | |||
3296 | #else /* emacs */ | |||
3297 | case charset: | |||
3298 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8 - 1, p++; | |||
3299 | j >= 0; j--) | |||
3300 | if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))) | |||
3301 | fastmap[j] = 1; | |||
3302 | ||||
3303 | if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])((&p[-2])[1] & 0x80) | |||
3304 | && match_any_multibyte_characters == false0) | |||
3305 | { | |||
3306 | /* Set fastmap[I] 1 where I is a base leading code of each | |||
3307 | multibyte character in the range table. */ | |||
3308 | int c, count; | |||
3309 | ||||
3310 | /* Make P points the range table. */ | |||
3311 | p += CHARSET_BITMAP_SIZE (&p[-2])((&p[-2])[1] & 0x7F); | |||
3312 | ||||
3313 | /* Extract the number of ranges in range table into | |||
3314 | COUNT. */ | |||
3315 | EXTRACT_NUMBER_AND_INCR (count, p)do { do { (count) = *(p) & 0377; (count) += ((signed char ) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0 ); | |||
3316 | for (; count > 0; count--, p += 2 * 3) /* XXX */ | |||
3317 | { | |||
3318 | /* Extract the start of each range. */ | |||
3319 | EXTRACT_CHARACTER (c, p)do { (c) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16 )); } while (0); | |||
3320 | j = CHAR_CHARSET (c); | |||
3321 | fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1; | |||
3322 | } | |||
3323 | } | |||
3324 | break; | |||
3325 | ||||
3326 | ||||
3327 | case charset_not: | |||
3328 | /* Chars beyond end of bitmap are possible matches. | |||
3329 | All the single-byte codes can occur in multibyte buffers. | |||
3330 | So any that are not listed in the charset | |||
3331 | are possible matches, even in multibyte buffers. */ | |||
3332 | simple_char_max = (1 << BYTEWIDTH8); | |||
3333 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8; | |||
3334 | j < simple_char_max; j++) | |||
3335 | fastmap[j] = 1; | |||
3336 | ||||
3337 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8 - 1, p++; | |||
3338 | j >= 0; j--) | |||
3339 | if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))) | |||
3340 | fastmap[j] = 1; | |||
3341 | ||||
3342 | if (bufp->multibyte) | |||
3343 | /* Any character set can possibly contain a character | |||
3344 | which doesn't match the specified set of characters. */ | |||
3345 | { | |||
3346 | set_fastmap_for_multibyte_characters: | |||
3347 | if (match_any_multibyte_characters == false0) | |||
3348 | { | |||
3349 | for (j = 0x80; j < 0xA0; j++) /* XXX */ | |||
3350 | if (BASE_LEADING_CODE_P (j)(0)) | |||
3351 | fastmap[j] = 1; | |||
3352 | match_any_multibyte_characters = true1; | |||
3353 | } | |||
3354 | } | |||
3355 | break; | |||
3356 | ||||
3357 | ||||
3358 | case wordchar: | |||
3359 | /* All the single-byte codes can occur in multibyte buffers, | |||
3360 | and they may have word syntax. So do consider them. */ | |||
3361 | simple_char_max = (1 << BYTEWIDTH8); | |||
3362 | for (j = 0; j < simple_char_max; j++) | |||
3363 | if (SYNTAX (j)re_syntax_table[j] == Sword1) | |||
3364 | fastmap[j] = 1; | |||
3365 | ||||
3366 | if (bufp->multibyte) | |||
3367 | /* Any character set can possibly contain a character | |||
3368 | whose syntax is `Sword'. */ | |||
3369 | goto set_fastmap_for_multibyte_characters; | |||
3370 | break; | |||
3371 | ||||
3372 | ||||
3373 | case notwordchar: | |||
3374 | /* All the single-byte codes can occur in multibyte buffers, | |||
3375 | and they may not have word syntax. So do consider them. */ | |||
3376 | simple_char_max = (1 << BYTEWIDTH8); | |||
3377 | for (j = 0; j < simple_char_max; j++) | |||
3378 | if (SYNTAX (j)re_syntax_table[j] != Sword1) | |||
3379 | fastmap[j] = 1; | |||
3380 | ||||
3381 | if (bufp->multibyte) | |||
3382 | /* Any character set can possibly contain a character | |||
3383 | whose syntax is not `Sword'. */ | |||
3384 | goto set_fastmap_for_multibyte_characters; | |||
3385 | break; | |||
3386 | #endif | |||
3387 | ||||
3388 | case anychar: | |||
3389 | { | |||
3390 | int fastmap_newline = fastmap['\n']; | |||
3391 | ||||
3392 | /* `.' matches anything, except perhaps newline. | |||
3393 | Even in a multibyte buffer, it should match any | |||
3394 | conceivable byte value for the fastmap. */ | |||
3395 | if (bufp->multibyte) | |||
3396 | match_any_multibyte_characters = true1; | |||
3397 | ||||
3398 | simple_char_max = (1 << BYTEWIDTH8); | |||
3399 | for (j = 0; j < simple_char_max; j++) | |||
3400 | fastmap[j] = 1; | |||
3401 | ||||
3402 | /* ... except perhaps newline. */ | |||
3403 | if (!(bufp->syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
3404 | fastmap['\n'] = fastmap_newline; | |||
3405 | ||||
3406 | /* Return if we have already set `can_be_null'; if we have, | |||
3407 | then the fastmap is irrelevant. Something's wrong here. */ | |||
3408 | else if (bufp->can_be_null) | |||
3409 | goto done; | |||
3410 | ||||
3411 | /* Otherwise, have to check alternative paths. */ | |||
3412 | break; | |||
3413 | } | |||
3414 | ||||
3415 | #ifdef emacs | |||
3416 | case wordbound: | |||
3417 | case notwordbound: | |||
3418 | case wordbeg: | |||
3419 | case wordend: | |||
3420 | case notsyntaxspec: | |||
3421 | case syntaxspec: | |||
3422 | /* This match depends on text properties. These end with | |||
3423 | aborting optimizations. */ | |||
3424 | bufp->can_be_null = 1; | |||
3425 | goto done; | |||
3426 | #if 0 | |||
3427 | k = *p++; | |||
3428 | simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH8); | |||
3429 | for (j = 0; j < simple_char_max; j++) | |||
3430 | if (SYNTAX (j)re_syntax_table[j] == (enum syntaxcode) k) | |||
3431 | fastmap[j] = 1; | |||
3432 | ||||
3433 | if (bufp->multibyte) | |||
3434 | /* Any character set can possibly contain a character | |||
3435 | whose syntax is K. */ | |||
3436 | goto set_fastmap_for_multibyte_characters; | |||
3437 | break; | |||
3438 | ||||
3439 | case notsyntaxspec: | |||
3440 | k = *p++; | |||
3441 | simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH8); | |||
3442 | for (j = 0; j < simple_char_max; j++) | |||
3443 | if (SYNTAX (j)re_syntax_table[j] != (enum syntaxcode) k) | |||
3444 | fastmap[j] = 1; | |||
3445 | ||||
3446 | if (bufp->multibyte) | |||
3447 | /* Any character set can possibly contain a character | |||
3448 | whose syntax is not K. */ | |||
3449 | goto set_fastmap_for_multibyte_characters; | |||
3450 | break; | |||
3451 | #endif | |||
3452 | ||||
3453 | ||||
3454 | case categoryspec: | |||
3455 | k = *p++; | |||
3456 | simple_char_max = (1 << BYTEWIDTH8); | |||
3457 | for (j = 0; j < simple_char_max; j++) | |||
3458 | if (CHAR_HAS_CATEGORY (j, k)) | |||
3459 | fastmap[j] = 1; | |||
3460 | ||||
3461 | if (bufp->multibyte) | |||
3462 | /* Any character set can possibly contain a character | |||
3463 | whose category is K. */ | |||
3464 | goto set_fastmap_for_multibyte_characters; | |||
3465 | break; | |||
3466 | ||||
3467 | ||||
3468 | case notcategoryspec: | |||
3469 | k = *p++; | |||
3470 | simple_char_max = (1 << BYTEWIDTH8); | |||
3471 | for (j = 0; j < simple_char_max; j++) | |||
3472 | if (!CHAR_HAS_CATEGORY (j, k)) | |||
3473 | fastmap[j] = 1; | |||
3474 | ||||
3475 | if (bufp->multibyte) | |||
3476 | /* Any character set can possibly contain a character | |||
3477 | whose category is not K. */ | |||
3478 | goto set_fastmap_for_multibyte_characters; | |||
3479 | break; | |||
3480 | ||||
3481 | /* All cases after this match the empty string. These end with | |||
3482 | `continue'. */ | |||
3483 | ||||
3484 | ||||
3485 | case before_dot: | |||
3486 | case at_dot: | |||
3487 | case after_dot: | |||
3488 | continue; | |||
3489 | #endif /* emacs */ | |||
3490 | ||||
3491 | ||||
3492 | case no_op: | |||
3493 | case begline: | |||
3494 | case endline: | |||
3495 | case begbuf: | |||
3496 | case endbuf: | |||
3497 | #ifndef emacs | |||
3498 | case wordbound: | |||
3499 | case notwordbound: | |||
3500 | case wordbeg: | |||
3501 | case wordend: | |||
3502 | #endif | |||
3503 | case push_dummy_failure: | |||
3504 | continue; | |||
3505 | ||||
3506 | ||||
3507 | case jump_n: | |||
3508 | case pop_failure_jump: | |||
3509 | case maybe_pop_jump: | |||
3510 | case jump: | |||
3511 | case jump_past_alt: | |||
3512 | case dummy_failure_jump: | |||
3513 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
3514 | p += j; | |||
3515 | if (j > 0) | |||
3516 | continue; | |||
3517 | ||||
3518 | /* Jump backward implies we just went through the body of a | |||
3519 | loop and matched nothing. Opcode jumped to should be | |||
3520 | `on_failure_jump' or `succeed_n'. Just treat it like an | |||
3521 | ordinary jump. For a * loop, it has pushed its failure | |||
3522 | point already; if so, discard that as redundant. */ | |||
3523 | if ((re_opcode_t) *p != on_failure_jump | |||
3524 | && (re_opcode_t) *p != succeed_n) | |||
3525 | continue; | |||
3526 | ||||
3527 | p++; | |||
3528 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
3529 | p += j; | |||
3530 | ||||
3531 | /* If what's on the stack is where we are now, pop it. */ | |||
3532 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0) | |||
3533 | && fail_stack.stack[fail_stack.avail - 1].pointer == p) | |||
3534 | fail_stack.avail--; | |||
3535 | ||||
3536 | continue; | |||
3537 | ||||
3538 | ||||
3539 | case on_failure_jump: | |||
3540 | case on_failure_keep_string_jump: | |||
3541 | handle_on_failure_jump: | |||
3542 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
3543 | ||||
3544 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | |||
3545 | end of the pattern. We don't want to push such a point, | |||
3546 | since when we restore it above, entering the switch will | |||
3547 | increment `p' past the end of the pattern. We don't need | |||
3548 | to push such a point since we obviously won't find any more | |||
3549 | fastmap entries beyond `pend'. Such a pattern can match | |||
3550 | the null string, though. */ | |||
3551 | if (p + j < pend) | |||
3552 | { | |||
3553 | if (!PUSH_PATTERN_OP (p + j, fail_stack)(((fail_stack.avail == fail_stack.size) && !(((fail_stack ).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20 ) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc (( fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) ? 0 : ((fail_stack).stack[(fail_stack).avail++].pointer = p + j, 1))) | |||
3554 | { | |||
3555 | RESET_FAIL_STACK ()free (fail_stack.stack); | |||
3556 | return -2; | |||
3557 | } | |||
3558 | } | |||
3559 | else | |||
3560 | bufp->can_be_null = 1; | |||
3561 | ||||
3562 | if (succeed_n_p) | |||
3563 | { | |||
3564 | EXTRACT_NUMBER_AND_INCR (k, p)do { do { (k) = *(p) & 0377; (k) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); /* Skip the n. */ | |||
3565 | succeed_n_p = false0; | |||
3566 | } | |||
3567 | ||||
3568 | continue; | |||
3569 | ||||
3570 | ||||
3571 | case succeed_n: | |||
3572 | /* Get to the number of times to succeed. */ | |||
3573 | p += 2; | |||
3574 | ||||
3575 | /* Increment p past the n for when k != 0. */ | |||
3576 | EXTRACT_NUMBER_AND_INCR (k, p)do { do { (k) = *(p) & 0377; (k) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
3577 | if (k == 0) | |||
3578 | { | |||
3579 | p -= 4; | |||
3580 | succeed_n_p = true1; /* Spaghetti code alert. */ | |||
3581 | goto handle_on_failure_jump; | |||
3582 | } | |||
3583 | continue; | |||
3584 | ||||
3585 | ||||
3586 | case set_number_at: | |||
3587 | p += 4; | |||
3588 | continue; | |||
3589 | ||||
3590 | ||||
3591 | case start_memory: | |||
3592 | case stop_memory: | |||
3593 | p += 2; | |||
3594 | continue; | |||
3595 | ||||
3596 | ||||
3597 | default: | |||
3598 | abort (); /* We have listed all the cases. */ | |||
3599 | } /* switch *p++ */ | |||
3600 | ||||
3601 | /* Getting here means we have found the possible starting | |||
3602 | characters for one path of the pattern -- and that the empty | |||
3603 | string does not match. We need not follow this path further. | |||
3604 | Instead, look at the next alternative (remembered on the | |||
3605 | stack), or quit if no more. The test at the top of the loop | |||
3606 | does these things. */ | |||
3607 | path_can_be_null = false0; | |||
3608 | p = pend; | |||
3609 | } /* while p */ | |||
3610 | ||||
3611 | /* Set `can_be_null' for the last path (also the first path, if the | |||
3612 | pattern is empty). */ | |||
3613 | bufp->can_be_null |= path_can_be_null; | |||
3614 | ||||
3615 | done: | |||
3616 | RESET_FAIL_STACK ()free (fail_stack.stack); | |||
3617 | return 0; | |||
3618 | } /* re_compile_fastmap */ | |||
3619 | ||||
3620 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | |||
3621 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | |||
3622 | this memory for recording register information. STARTS and ENDS | |||
3623 | must be allocated using the malloc library routine, and must each | |||
3624 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | |||
3625 | ||||
3626 | If NUM_REGS == 0, then subsequent matches should allocate their own | |||
3627 | register data. | |||
3628 | ||||
3629 | Unless this function is called, the first search or match using | |||
3630 | PATTERN_BUFFER will allocate its own register data, without | |||
3631 | freeing the old data. */ | |||
3632 | ||||
3633 | void | |||
3634 | re_set_registers (bufp, regs, num_regs, starts, ends) | |||
3635 | struct re_pattern_buffer *bufp; | |||
3636 | struct re_registers *regs; | |||
3637 | unsigned num_regs; | |||
3638 | regoff_t *starts, *ends; | |||
3639 | { | |||
3640 | if (num_regs) | |||
3641 | { | |||
3642 | bufp->regs_allocated = REGS_REALLOCATE1; | |||
3643 | regs->num_regs = num_regs; | |||
3644 | regs->start = starts; | |||
3645 | regs->end = ends; | |||
3646 | } | |||
3647 | else | |||
3648 | { | |||
3649 | bufp->regs_allocated = REGS_UNALLOCATED0; | |||
3650 | regs->num_regs = 0; | |||
3651 | regs->start = regs->end = (regoff_t *) 0; | |||
3652 | } | |||
3653 | } | |||
3654 | ||||
3655 | /* Searching routines. */ | |||
3656 | ||||
3657 | /* Like re_search_2, below, but only one string is specified, and | |||
3658 | doesn't let you say where to stop matching. */ | |||
3659 | ||||
3660 | int | |||
3661 | re_search (bufp, string, size, startpos, range, regs) | |||
3662 | struct re_pattern_buffer *bufp; | |||
3663 | const char *string; | |||
3664 | int size, startpos, range; | |||
3665 | struct re_registers *regs; | |||
3666 | { | |||
3667 | return re_search_2 (bufp, NULL((void *)0), 0, string, size, startpos, range, | |||
3668 | regs, size); | |||
3669 | } | |||
3670 | ||||
3671 | /* End address of virtual concatenation of string. */ | |||
3672 | #define STOP_ADDR_VSTRING(P)(((P) >= size1 ? string2 + size2 : string1 + size1)) \ | |||
3673 | (((P) >= size1 ? string2 + size2 : string1 + size1)) | |||
3674 | ||||
3675 | /* Address of POS in the concatenation of virtual string. */ | |||
3676 | #define POS_ADDR_VSTRING(POS)(((POS) >= size1 ? string2 - size1 : string1) + (POS)) \ | |||
3677 | (((POS) >= size1 ? string2 - size1 : string1) + (POS)) | |||
3678 | ||||
3679 | /* Using the compiled pattern in BUFP->buffer, first tries to match the | |||
3680 | virtual concatenation of STRING1 and STRING2, starting first at index | |||
3681 | STARTPOS, then at STARTPOS + 1, and so on. | |||
3682 | ||||
3683 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | |||
3684 | ||||
3685 | RANGE is how far to scan while trying to match. RANGE = 0 means try | |||
3686 | only at STARTPOS; in general, the last start tried is STARTPOS + | |||
3687 | RANGE. | |||
3688 | ||||
3689 | In REGS, return the indices of the virtual concatenation of STRING1 | |||
3690 | and STRING2 that matched the entire BUFP->buffer and its contained | |||
3691 | subexpressions. | |||
3692 | ||||
3693 | Do not consider matching one past the index STOP in the virtual | |||
3694 | concatenation of STRING1 and STRING2. | |||
3695 | ||||
3696 | We return either the position in the strings at which the match was | |||
3697 | found, -1 if no match, or -2 if error (such as failure | |||
3698 | stack overflow). */ | |||
3699 | ||||
3700 | int | |||
3701 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | |||
3702 | struct re_pattern_buffer *bufp; | |||
3703 | const char *string1, *string2; | |||
3704 | int size1, size2; | |||
3705 | int startpos; | |||
3706 | int range; | |||
3707 | struct re_registers *regs; | |||
3708 | int stop; | |||
3709 | { | |||
3710 | int val; | |||
3711 | register char *fastmap = bufp->fastmap; | |||
3712 | register RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
3713 | int total_size = size1 + size2; | |||
3714 | int endpos = startpos + range; | |||
3715 | int anchored_start = 0; | |||
3716 | ||||
3717 | /* Nonzero if we have to concern multibyte character. */ | |||
3718 | int multibyte = bufp->multibyte; | |||
3719 | ||||
3720 | /* Check for out-of-range STARTPOS. */ | |||
3721 | if (startpos < 0 || startpos > total_size) | |||
3722 | return -1; | |||
3723 | ||||
3724 | /* Fix up RANGE if it might eventually take us outside | |||
3725 | the virtual concatenation of STRING1 and STRING2. | |||
3726 | Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ | |||
3727 | if (endpos < 0) | |||
3728 | range = 0 - startpos; | |||
3729 | else if (endpos > total_size) | |||
3730 | range = total_size - startpos; | |||
3731 | ||||
3732 | /* If the search isn't to be a backwards one, don't waste time in a | |||
3733 | search for a pattern anchored at beginning of buffer. */ | |||
3734 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | |||
3735 | { | |||
3736 | if (startpos > 0) | |||
3737 | return -1; | |||
3738 | else | |||
3739 | range = 0; | |||
3740 | } | |||
3741 | ||||
3742 | #ifdef emacs | |||
3743 | /* In a forward search for something that starts with \=. | |||
3744 | don't keep searching past point. */ | |||
3745 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) | |||
3746 | { | |||
3747 | range = PT_BYTE - BEGV_BYTE - startpos; | |||
3748 | if (range < 0) | |||
3749 | return -1; | |||
3750 | } | |||
3751 | #endif /* emacs */ | |||
3752 | ||||
3753 | /* Update the fastmap now if not correct already. */ | |||
3754 | if (fastmap && !bufp->fastmap_accurate) | |||
3755 | if (re_compile_fastmap (bufp) == -2) | |||
3756 | return -2; | |||
3757 | ||||
3758 | /* See whether the pattern is anchored. */ | |||
3759 | if (bufp->buffer[0] == begline) | |||
3760 | anchored_start = 1; | |||
3761 | ||||
3762 | #ifdef emacs | |||
3763 | gl_state.object = re_match_object; | |||
3764 | { | |||
3765 | int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); | |||
3766 | int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos); | |||
3767 | ||||
3768 | SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); | |||
3769 | } | |||
3770 | #endif | |||
3771 | ||||
3772 | /* Loop through the string, looking for a place to start matching. */ | |||
3773 | for (;;) | |||
3774 | { | |||
3775 | /* If the pattern is anchored, | |||
3776 | skip quickly past places we cannot match. | |||
3777 | We don't bother to treat startpos == 0 specially | |||
3778 | because that case doesn't repeat. */ | |||
3779 | if (anchored_start && startpos > 0) | |||
3780 | { | |||
3781 | if (! (bufp->newline_anchor | |||
3782 | && ((startpos <= size1 ? string1[startpos - 1] | |||
3783 | : string2[startpos - size1 - 1]) | |||
3784 | == '\n'))) | |||
3785 | goto advance; | |||
3786 | } | |||
3787 | ||||
3788 | /* If a fastmap is supplied, skip quickly over characters that | |||
3789 | cannot be the start of a match. If the pattern can match the | |||
3790 | null string, however, we don't need to skip characters; we want | |||
3791 | the first null string. */ | |||
3792 | if (fastmap && startpos < total_size && !bufp->can_be_null) | |||
3793 | { | |||
3794 | register const char *d; | |||
3795 | register unsigned int buf_ch; | |||
3796 | ||||
3797 | d = POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
3798 | ||||
3799 | if (range > 0) /* Searching forwards. */ | |||
3800 | { | |||
3801 | register int lim = 0; | |||
3802 | int irange = range; | |||
3803 | ||||
3804 | if (startpos < size1 && startpos + range >= size1) | |||
3805 | lim = range - (size1 - startpos); | |||
3806 | ||||
3807 | /* Written out as an if-else to avoid testing `translate' | |||
3808 | inside the loop. */ | |||
3809 | if (RE_TRANSLATE_P (translate)(translate)) | |||
3810 | { | |||
3811 | if (multibyte) | |||
3812 | while (range > lim) | |||
3813 | { | |||
3814 | int buf_charlen; | |||
3815 | ||||
3816 | buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,((buf_charlen) = 1, *(d)) | |||
3817 | buf_charlen)((buf_charlen) = 1, *(d)); | |||
3818 | ||||
3819 | buf_ch = RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]); | |||
3820 | if (buf_ch >= 0400 | |||
3821 | || fastmap[buf_ch]) | |||
3822 | break; | |||
3823 | ||||
3824 | range -= buf_charlen; | |||
3825 | d += buf_charlen; | |||
3826 | } | |||
3827 | else | |||
3828 | while (range > lim | |||
3829 | && !fastmap[(unsigned char) | |||
3830 | RE_TRANSLATE (translate, (unsigned char) *d)((translate)[(unsigned char) *d])]) | |||
3831 | { | |||
3832 | d++; | |||
3833 | range--; | |||
3834 | } | |||
3835 | } | |||
3836 | else | |||
3837 | while (range > lim && !fastmap[(unsigned char) *d]) | |||
3838 | { | |||
3839 | d++; | |||
3840 | range--; | |||
3841 | } | |||
3842 | ||||
3843 | startpos += irange - range; | |||
3844 | } | |||
3845 | else /* Searching backwards. */ | |||
3846 | { | |||
3847 | int room = (size1 == 0 || startpos >= size1 | |||
3848 | ? size2 + size1 - startpos | |||
3849 | : size1 - startpos); | |||
3850 | ||||
3851 | buf_ch = STRING_CHAR (d, room)(*(d)); | |||
3852 | if (RE_TRANSLATE_P (translate)(translate)) | |||
3853 | buf_ch = RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]); | |||
3854 | ||||
3855 | if (! (buf_ch >= 0400 | |||
3856 | || fastmap[buf_ch])) | |||
3857 | goto advance; | |||
3858 | } | |||
3859 | } | |||
3860 | ||||
3861 | /* If can't match the null string, and that's all we have left, fail. */ | |||
3862 | if (range >= 0 && startpos == total_size && fastmap | |||
3863 | && !bufp->can_be_null) | |||
3864 | return -1; | |||
3865 | ||||
3866 | val = re_match_2_internal (bufp, string1, size1, string2, size2, | |||
3867 | startpos, regs, stop); | |||
3868 | #ifndef REGEX_MALLOC1 | |||
3869 | #ifdef C_ALLOCA | |||
3870 | alloca (0)__builtin_alloca(0); | |||
3871 | #endif | |||
3872 | #endif | |||
3873 | ||||
3874 | if (val >= 0) | |||
3875 | return startpos; | |||
3876 | ||||
3877 | if (val == -2) | |||
3878 | return -2; | |||
3879 | ||||
3880 | advance: | |||
3881 | if (!range) | |||
3882 | break; | |||
3883 | else if (range > 0) | |||
3884 | { | |||
3885 | /* Update STARTPOS to the next character boundary. */ | |||
3886 | if (multibyte) | |||
3887 | { | |||
3888 | const unsigned char *p | |||
3889 | = (const unsigned char *) POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
3890 | const unsigned char *pend | |||
3891 | = (const unsigned char *) STOP_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 + size2 : string1 + size1) ); | |||
3892 | int len = MULTIBYTE_FORM_LENGTH (p, pend - p)(1); | |||
3893 | ||||
3894 | range -= len; | |||
3895 | if (range < 0) | |||
3896 | break; | |||
3897 | startpos += len; | |||
3898 | } | |||
3899 | else | |||
3900 | { | |||
3901 | range--; | |||
3902 | startpos++; | |||
3903 | } | |||
3904 | } | |||
3905 | else | |||
3906 | { | |||
3907 | range++; | |||
3908 | startpos--; | |||
3909 | ||||
3910 | /* Update STARTPOS to the previous character boundary. */ | |||
3911 | if (multibyte) | |||
3912 | { | |||
3913 | const unsigned char *p | |||
3914 | = (const unsigned char *) POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
3915 | int len = 0; | |||
3916 | ||||
3917 | /* Find the head of multibyte form. */ | |||
3918 | while (!CHAR_HEAD_P (*p)(1)) | |||
3919 | p--, len++; | |||
3920 | ||||
3921 | /* Adjust it. */ | |||
3922 | #if 0 /* XXX */ | |||
3923 | if (MULTIBYTE_FORM_LENGTH (p, len + 1)(1) != (len + 1)) | |||
3924 | ; | |||
3925 | else | |||
3926 | #endif | |||
3927 | { | |||
3928 | range += len; | |||
3929 | if (range > 0) | |||
3930 | break; | |||
3931 | ||||
3932 | startpos -= len; | |||
3933 | } | |||
3934 | } | |||
3935 | } | |||
3936 | } | |||
3937 | return -1; | |||
3938 | } /* re_search_2 */ | |||
3939 | ||||
3940 | /* Declarations and macros for re_match_2. */ | |||
3941 | ||||
3942 | static int bcmp_translate (); | |||
3943 | static boolean alt_match_null_string_p (), | |||
3944 | common_op_match_null_string_p (), | |||
3945 | group_match_null_string_p (); | |||
3946 | ||||
3947 | /* This converts PTR, a pointer into one of the search strings `string1' | |||
3948 | and `string2' into an offset from the beginning of that string. */ | |||
3949 | #define POINTER_TO_OFFSET(ptr)((size1 && string1 <= (ptr) && (ptr) <= string1 + size1) ? ((regoff_t) ((ptr) - string1)) : ((regoff_t ) ((ptr) - string2 + size1))) \ | |||
3950 | (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1 + size1) \ | |||
3951 | ? ((regoff_t) ((ptr) - string1)) \ | |||
3952 | : ((regoff_t) ((ptr) - string2 + size1))) | |||
3953 | ||||
3954 | /* Macros for dealing with the split strings in re_match_2. */ | |||
3955 | ||||
3956 | #define MATCHING_IN_FIRST_STRING(dend == end_match_1) (dend == end_match_1) | |||
3957 | ||||
3958 | /* Call before fetching a character with *d. This switches over to | |||
3959 | string2 if necessary. */ | |||
3960 | #define PREFETCH()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; } \ | |||
3961 | while (d == dend) \ | |||
3962 | { \ | |||
3963 | /* End of string2 => fail. */ \ | |||
3964 | if (dend == end_match_2) \ | |||
3965 | goto fail; \ | |||
3966 | /* End of string1 => advance to string2. */ \ | |||
3967 | d = string2; \ | |||
3968 | dend = end_match_2; \ | |||
3969 | } | |||
3970 | ||||
3971 | ||||
3972 | /* Test if at very beginning or at very end of the virtual concatenation | |||
3973 | of `string1' and `string2'. If only one string, it's `string2'. */ | |||
3974 | #define AT_STRINGS_BEG(d)((d) == (size1 ? string1 : string2) || !size2) ((d) == (size1 ? string1 : string2) || !size2) | |||
3975 | #define AT_STRINGS_END(d)((d) == end2) ((d) == end2) | |||
3976 | ||||
3977 | ||||
3978 | /* Test if D points to a character which is word-constituent. We have | |||
3979 | two special cases to check for: if past the end of string1, look at | |||
3980 | the first character in string2; and if before the beginning of | |||
3981 | string2, look at the last character in string1. */ | |||
3982 | #define WORDCHAR_P(d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1) \ | |||
3983 | (SYNTAX ((d) == end1 ? *string2 \re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] | |||
3984 | : (d) == string2 - 1 ? *(end1 - 1) : *(d))re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \ | |||
3985 | == Sword1) | |||
3986 | ||||
3987 | /* Disabled due to a compiler bug -- see comment at case wordbound */ | |||
3988 | ||||
3989 | /* The comment at case wordbound is following one, but we don't use | |||
3990 | AT_WORD_BOUNDARY anymore to support multibyte form. | |||
3991 | ||||
3992 | The DEC Alpha C compiler 3.x generates incorrect code for the | |||
3993 | test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of | |||
3994 | AT_WORD_BOUNDARY, so this code is disabled. Expanding the | |||
3995 | macro and introducing temporary variables works around the bug. */ | |||
3996 | ||||
3997 | #if 0 | |||
3998 | /* Test if the character before D and the one at D differ with respect | |||
3999 | to being word-constituent. */ | |||
4000 | #define AT_WORD_BOUNDARY(d) \ | |||
4001 | (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2) \ | |||
4002 | || WORDCHAR_P (d - 1)(re_syntax_table[(d - 1) == end1 ? *string2 : (d - 1) == string2 - 1 ? *(end1 - 1) : *(d - 1)] == 1) != WORDCHAR_P (d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1)) | |||
4003 | #endif | |||
4004 | ||||
4005 | /* Free everything we malloc. */ | |||
4006 | #ifdef MATCH_MAY_ALLOCATE | |||
4007 | #define FREE_VAR(var)if (var) { free (var); var = ((void *)0); } else if (var) { REGEX_FREEfree (var); var = NULL((void *)0); } else | |||
4008 | #define FREE_VARIABLES()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0) \ | |||
4009 | do { \ | |||
4010 | REGEX_FREE_STACKfree (fail_stack.stack); \ | |||
4011 | FREE_VAR (regstart)if (regstart) { free (regstart); regstart = ((void *)0); } else; \ | |||
4012 | FREE_VAR (regend)if (regend) { free (regend); regend = ((void *)0); } else; \ | |||
4013 | FREE_VAR (old_regstart)if (old_regstart) { free (old_regstart); old_regstart = ((void *)0); } else; \ | |||
4014 | FREE_VAR (old_regend)if (old_regend) { free (old_regend); old_regend = ((void *)0) ; } else; \ | |||
4015 | FREE_VAR (best_regstart)if (best_regstart) { free (best_regstart); best_regstart = (( void *)0); } else; \ | |||
4016 | FREE_VAR (best_regend)if (best_regend) { free (best_regend); best_regend = ((void * )0); } else; \ | |||
4017 | FREE_VAR (reg_info)if (reg_info) { free (reg_info); reg_info = ((void *)0); } else; \ | |||
4018 | FREE_VAR (reg_dummy)if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; \ | |||
4019 | FREE_VAR (reg_info_dummy)if (reg_info_dummy) { free (reg_info_dummy); reg_info_dummy = ((void *)0); } else; \ | |||
4020 | } while (0) | |||
4021 | #else | |||
4022 | #define FREE_VARIABLES()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0) ((void)0) /* Do nothing! But inhibit gcc warning. */ | |||
4023 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
4024 | ||||
4025 | /* These values must meet several constraints. They must not be valid | |||
4026 | register values; since we have a limit of 255 registers (because | |||
4027 | we use only one byte in the pattern for the register number), we can | |||
4028 | use numbers larger than 255. They must differ by 1, because of | |||
4029 | NUM_FAILURE_ITEMS above. And the value for the lowest register must | |||
4030 | be larger than the value for the highest register, so we do not try | |||
4031 | to actually save any registers when none are active. */ | |||
4032 | #define NO_HIGHEST_ACTIVE_REG(1 << 8) (1 << BYTEWIDTH8) | |||
4033 | #define NO_LOWEST_ACTIVE_REG((1 << 8) + 1) (NO_HIGHEST_ACTIVE_REG(1 << 8) + 1) | |||
4034 | ||||
4035 | /* Matching routines. */ | |||
4036 | ||||
4037 | #ifndef emacs /* Emacs never uses this. */ | |||
4038 | /* re_match is like re_match_2 except it takes only a single string. */ | |||
4039 | ||||
4040 | int | |||
4041 | re_match (bufp, string, size, pos, regs) | |||
4042 | struct re_pattern_buffer *bufp; | |||
4043 | const char *string; | |||
4044 | int size, pos; | |||
4045 | struct re_registers *regs; | |||
4046 | { | |||
4047 | int result = re_match_2_internal (bufp, NULL((void *)0), 0, string, size, | |||
4048 | pos, regs, size); | |||
4049 | #ifndef REGEX_MALLOC1 /* CVS */ | |||
4050 | #ifdef C_ALLOCA /* CVS */ | |||
4051 | alloca (0)__builtin_alloca(0); | |||
4052 | #endif /* CVS */ | |||
4053 | #endif /* CVS */ | |||
4054 | return result; | |||
4055 | } | |||
4056 | #endif /* not emacs */ | |||
4057 | ||||
4058 | #ifdef emacs | |||
4059 | /* In Emacs, this is the string or buffer in which we | |||
4060 | are matching. It is used for looking up syntax properties. */ | |||
4061 | Lisp_Object re_match_object; | |||
4062 | #endif | |||
4063 | ||||
4064 | /* re_match_2 matches the compiled pattern in BUFP against the | |||
4065 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | |||
4066 | and SIZE2, respectively). We start matching at POS, and stop | |||
4067 | matching at STOP. | |||
4068 | ||||
4069 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | |||
4070 | store offsets for the substring each group matched in REGS. See the | |||
4071 | documentation for exactly how many groups we fill. | |||
4072 | ||||
4073 | We return -1 if no match, -2 if an internal error (such as the | |||
4074 | failure stack overflowing). Otherwise, we return the length of the | |||
4075 | matched substring. */ | |||
4076 | ||||
4077 | int | |||
4078 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | |||
4079 | struct re_pattern_buffer *bufp; | |||
4080 | const char *string1, *string2; | |||
4081 | int size1, size2; | |||
4082 | int pos; | |||
4083 | struct re_registers *regs; | |||
4084 | int stop; | |||
4085 | { | |||
4086 | int result; | |||
4087 | ||||
4088 | #ifdef emacs | |||
4089 | int charpos; | |||
4090 | int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); | |||
4091 | gl_state.object = re_match_object; | |||
4092 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos); | |||
4093 | SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); | |||
4094 | #endif | |||
4095 | ||||
4096 | result = re_match_2_internal (bufp, string1, size1, string2, size2, | |||
4097 | pos, regs, stop); | |||
4098 | #ifndef REGEX_MALLOC1 /* CVS */ | |||
4099 | #ifdef C_ALLOCA /* CVS */ | |||
4100 | alloca (0)__builtin_alloca(0); | |||
4101 | #endif /* CVS */ | |||
4102 | #endif /* CVS */ | |||
4103 | return result; | |||
4104 | } | |||
4105 | ||||
4106 | /* This is a separate function so that we can force an alloca cleanup | |||
4107 | afterwards. */ | |||
4108 | static int | |||
4109 | re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | |||
4110 | struct re_pattern_buffer *bufp; | |||
4111 | const char *string1, *string2; | |||
4112 | int size1, size2; | |||
4113 | int pos; | |||
4114 | struct re_registers *regs; | |||
4115 | int stop; | |||
4116 | { | |||
4117 | /* General temporaries. */ | |||
4118 | int mcnt; | |||
4119 | unsigned char *p1; | |||
4120 | ||||
4121 | /* Just past the end of the corresponding string. */ | |||
4122 | const char *end1, *end2; | |||
4123 | ||||
4124 | /* Pointers into string1 and string2, just past the last characters in | |||
4125 | each to consider matching. */ | |||
4126 | const char *end_match_1, *end_match_2; | |||
4127 | ||||
4128 | /* Where we are in the data, and the end of the current string. */ | |||
4129 | const char *d, *dend; | |||
4130 | ||||
4131 | /* Where we are in the pattern, and the end of the pattern. */ | |||
4132 | unsigned char *p = bufp->buffer; | |||
4133 | register unsigned char *pend = p + bufp->used; | |||
4134 | ||||
4135 | /* Mark the opcode just after a start_memory, so we can test for an | |||
4136 | empty subpattern when we get to the stop_memory. */ | |||
4137 | unsigned char *just_past_start_mem = 0; | |||
4138 | ||||
4139 | /* We use this to map every character in the string. */ | |||
4140 | RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
4141 | ||||
4142 | /* Nonzero if we have to concern multibyte character. */ | |||
4143 | int multibyte = bufp->multibyte; | |||
4144 | ||||
4145 | /* Failure point stack. Each place that can handle a failure further | |||
4146 | down the line pushes a failure point on this stack. It consists of | |||
4147 | restart, regend, and reg_info for all registers corresponding to | |||
4148 | the subexpressions we're currently inside, plus the number of such | |||
4149 | registers, and, finally, two char *'s. The first char * is where | |||
4150 | to resume scanning the pattern; the second one is where to resume | |||
4151 | scanning the strings. If the latter is zero, the failure point is | |||
4152 | a ``dummy''; if a failure happens and the failure point is a dummy, | |||
4153 | it gets discarded and the next next one is tried. */ | |||
4154 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |||
4155 | fail_stack_type fail_stack; | |||
4156 | #endif | |||
4157 | #ifdef DEBUG | |||
4158 | static unsigned failure_id = 0; | |||
4159 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | |||
4160 | #endif | |||
4161 | ||||
4162 | /* This holds the pointer to the failure stack, when | |||
4163 | it is allocated relocatably. */ | |||
4164 | fail_stack_elt_t *failure_stack_ptr; | |||
4165 | ||||
4166 | /* We fill all the registers internally, independent of what we | |||
4167 | return, for use in backreferences. The number here includes | |||
4168 | an element for register zero. */ | |||
4169 | unsigned num_regs = bufp->re_nsub + 1; | |||
4170 | ||||
4171 | /* The currently active registers. */ | |||
4172 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
4173 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
4174 | ||||
4175 | /* Information on the contents of registers. These are pointers into | |||
4176 | the input strings; they record just what was matched (on this | |||
4177 | attempt) by a subexpression part of the pattern, that is, the | |||
4178 | regnum-th regstart pointer points to where in the pattern we began | |||
4179 | matching and the regnum-th regend points to right after where we | |||
4180 | stopped matching the regnum-th subexpression. (The zeroth register | |||
4181 | keeps track of what the whole pattern matches.) */ | |||
4182 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
4183 | const char **regstart, **regend; | |||
4184 | #endif | |||
4185 | ||||
4186 | /* If a group that's operated upon by a repetition operator fails to | |||
4187 | match anything, then the register for its start will need to be | |||
4188 | restored because it will have been set to wherever in the string we | |||
4189 | are when we last see its open-group operator. Similarly for a | |||
4190 | register's end. */ | |||
4191 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
4192 | const char **old_regstart, **old_regend; | |||
4193 | #endif | |||
4194 | ||||
4195 | /* The is_active field of reg_info helps us keep track of which (possibly | |||
4196 | nested) subexpressions we are currently in. The matched_something | |||
4197 | field of reg_info[reg_num] helps us tell whether or not we have | |||
4198 | matched any of the pattern so far this time through the reg_num-th | |||
4199 | subexpression. These two fields get reset each time through any | |||
4200 | loop their register is in. */ | |||
4201 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |||
4202 | register_info_type *reg_info; | |||
4203 | #endif | |||
4204 | ||||
4205 | /* The following record the register info as found in the above | |||
4206 | variables when we find a match better than any we've seen before. | |||
4207 | This happens as we backtrack through the failure points, which in | |||
4208 | turn happens only if we have not yet matched the entire string. */ | |||
4209 | unsigned best_regs_set = false0; | |||
4210 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
4211 | const char **best_regstart, **best_regend; | |||
4212 | #endif | |||
4213 | ||||
4214 | /* Logically, this is `best_regend[0]'. But we don't want to have to | |||
4215 | allocate space for that if we're not allocating space for anything | |||
4216 | else (see below). Also, we never need info about register 0 for | |||
4217 | any of the other register vectors, and it seems rather a kludge to | |||
4218 | treat `best_regend' differently than the rest. So we keep track of | |||
4219 | the end of the best match so far in a separate variable. We | |||
4220 | initialize this to NULL so that when we backtrack the first time | |||
4221 | and need to test it, it's not garbage. */ | |||
4222 | const char *match_end = NULL((void *)0); | |||
4223 | ||||
4224 | /* This helps SET_REGS_MATCHED avoid doing redundant work. */ | |||
4225 | int set_regs_matched_done = 0; | |||
4226 | ||||
4227 | /* Used when we pop values we don't care about. */ | |||
4228 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
4229 | const char **reg_dummy; | |||
4230 | register_info_type *reg_info_dummy; | |||
4231 | #endif | |||
4232 | ||||
4233 | #ifdef DEBUG | |||
4234 | /* Counts the total number of registers pushed. */ | |||
4235 | unsigned num_regs_pushed = 0; | |||
4236 | #endif | |||
4237 | ||||
4238 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | |||
4239 | ||||
4240 | INIT_FAIL_STACK ()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0); | |||
| ||||
4241 | ||||
4242 | #ifdef MATCH_MAY_ALLOCATE | |||
4243 | /* Do not bother to initialize all the register variables if there are | |||
4244 | no groups in the pattern, as it takes a fair amount of time. If | |||
4245 | there are groups, we include space for register 0 (the whole | |||
4246 | pattern), even though we never use it, since it simplifies the | |||
4247 | array indexing. We should fix this. */ | |||
4248 | if (bufp->re_nsub) | |||
4249 | { | |||
4250 | regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4251 | regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4252 | old_regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4253 | old_regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4254 | best_regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4255 | best_regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4256 | reg_info = REGEX_TALLOC (num_regs, register_info_type)((register_info_type *) malloc ((num_regs) * sizeof (register_info_type ))); | |||
4257 | reg_dummy = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
4258 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type)((register_info_type *) malloc ((num_regs) * sizeof (register_info_type ))); | |||
4259 | ||||
4260 | if (!(regstart && regend && old_regstart && old_regend && reg_info | |||
4261 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | |||
4262 | { | |||
4263 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
4264 | return -2; | |||
4265 | } | |||
4266 | } | |||
4267 | else | |||
4268 | { | |||
4269 | /* We must initialize all our variables to NULL, so that | |||
4270 | `FREE_VARIABLES' doesn't try to free them. */ | |||
4271 | regstart = regend = old_regstart = old_regend = best_regstart | |||
4272 | = best_regend = reg_dummy = NULL((void *)0); | |||
4273 | reg_info = reg_info_dummy = (register_info_type *) NULL((void *)0); | |||
4274 | } | |||
4275 | #endif /* MATCH_MAY_ALLOCATE */ | |||
4276 | ||||
4277 | /* The starting position is bogus. */ | |||
4278 | if (pos < 0 || pos > size1 + size2) | |||
4279 | { | |||
4280 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
4281 | return -1; | |||
4282 | } | |||
4283 | ||||
4284 | /* Initialize subexpression text positions to -1 to mark ones that no | |||
4285 | start_memory/stop_memory has been seen for. Also initialize the | |||
4286 | register information struct. */ | |||
4287 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
4288 | { | |||
4289 | regstart[mcnt] = regend[mcnt] | |||
4290 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE(®_unset_dummy); | |||
4291 | ||||
4292 | REG_MATCH_NULL_STRING_P (reg_info[mcnt])((reg_info[mcnt]).bits.match_null_string_p) = MATCH_NULL_UNSET_VALUE3; | |||
4293 | IS_ACTIVE (reg_info[mcnt])((reg_info[mcnt]).bits.is_active) = 0; | |||
4294 | MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.matched_something) = 0; | |||
4295 | EVER_MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.ever_matched_something) = 0; | |||
4296 | } | |||
4297 | ||||
4298 | /* We move `string1' into `string2' if the latter's empty -- but not if | |||
4299 | `string1' is null. */ | |||
4300 | if (size2 == 0 && string1 != NULL((void *)0)) | |||
4301 | { | |||
4302 | string2 = string1; | |||
4303 | size2 = size1; | |||
4304 | string1 = 0; | |||
4305 | size1 = 0; | |||
4306 | } | |||
4307 | end1 = string1 + size1; | |||
4308 | end2 = string2 + size2; | |||
4309 | ||||
4310 | /* Compute where to stop matching, within the two strings. */ | |||
4311 | if (stop <= size1) | |||
4312 | { | |||
4313 | end_match_1 = string1 + stop; | |||
4314 | end_match_2 = string2; | |||
4315 | } | |||
4316 | else | |||
4317 | { | |||
4318 | end_match_1 = end1; | |||
4319 | end_match_2 = string2 + stop - size1; | |||
4320 | } | |||
4321 | ||||
4322 | /* `p' scans through the pattern as `d' scans through the data. | |||
4323 | `dend' is the end of the input string that `d' points within. `d' | |||
4324 | is advanced into the following input string whenever necessary, but | |||
4325 | this happens before fetching; therefore, at the beginning of the | |||
4326 | loop, `d' can be pointing at the end of a string, but it cannot | |||
4327 | equal `string2'. */ | |||
4328 | if (size1 > 0 && pos <= size1) | |||
4329 | { | |||
4330 | d = string1 + pos; | |||
4331 | dend = end_match_1; | |||
4332 | } | |||
4333 | else | |||
4334 | { | |||
4335 | d = string2 + pos - size1; | |||
4336 | dend = end_match_2; | |||
4337 | } | |||
4338 | ||||
4339 | DEBUG_PRINT1 ("The compiled pattern is: "); | |||
4340 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | |||
4341 | DEBUG_PRINT1 ("The string to match is: `"); | |||
4342 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | |||
4343 | DEBUG_PRINT1 ("'\n"); | |||
4344 | ||||
4345 | /* This loops over pattern commands. It exits by returning from the | |||
4346 | function if the match is complete, or it drops through if the match | |||
4347 | fails at this starting point in the input data. */ | |||
4348 | for (;;) | |||
4349 | { | |||
4350 | DEBUG_PRINT2 ("\n0x%x: ", p); | |||
4351 | ||||
4352 | if (p == pend) | |||
4353 | { /* End of pattern means we might have succeeded. */ | |||
4354 | DEBUG_PRINT1 ("end of pattern ... "); | |||
4355 | ||||
4356 | /* If we haven't matched the entire string, and we want the | |||
4357 | longest match, try backtracking. */ | |||
4358 | if (d != end_match_2) | |||
4359 | { | |||
4360 | /* 1 if this match ends in the same string (string1 or string2) | |||
4361 | as the best previous match. */ | |||
4362 | boolean same_str_p = (FIRST_STRING_P (match_end)(size1 && string1 <= (match_end) && (match_end ) <= string1 + size1) | |||
4363 | == MATCHING_IN_FIRST_STRING(dend == end_match_1)); | |||
4364 | /* 1 if this match is the best seen so far. */ | |||
4365 | boolean best_match_p; | |||
4366 | ||||
4367 | /* AIX compiler got confused when this was combined | |||
4368 | with the previous declaration. */ | |||
4369 | if (same_str_p) | |||
4370 | best_match_p = d > match_end; | |||
4371 | else | |||
4372 | best_match_p = !MATCHING_IN_FIRST_STRING(dend == end_match_1); | |||
4373 | ||||
4374 | DEBUG_PRINT1 ("backtracking.\n"); | |||
4375 | ||||
4376 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)) | |||
4377 | { /* More failure points to try. */ | |||
4378 | ||||
4379 | /* If exceeds best match so far, save it. */ | |||
4380 | if (!best_regs_set || best_match_p) | |||
4381 | { | |||
4382 | best_regs_set = true1; | |||
4383 | match_end = d; | |||
4384 | ||||
4385 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | |||
4386 | ||||
4387 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
4388 | { | |||
4389 | best_regstart[mcnt] = regstart[mcnt]; | |||
4390 | best_regend[mcnt] = regend[mcnt]; | |||
4391 | } | |||
4392 | } | |||
4393 | goto fail; | |||
4394 | } | |||
4395 | ||||
4396 | /* If no failure points, don't restore garbage. And if | |||
4397 | last match is real best match, don't restore second | |||
4398 | best one. */ | |||
4399 | else if (best_regs_set && !best_match_p) | |||
4400 | { | |||
4401 | restore_best_regs: | |||
4402 | /* Restore best match. It may happen that `dend == | |||
4403 | end_match_1' while the restored d is in string2. | |||
4404 | For example, the pattern `x.*y.*z' against the | |||
4405 | strings `x-' and `y-z-', if the two strings are | |||
4406 | not consecutive in memory. */ | |||
4407 | DEBUG_PRINT1 ("Restoring best registers.\n"); | |||
4408 | ||||
4409 | d = match_end; | |||
4410 | dend = ((d >= string1 && d <= end1) | |||
4411 | ? end_match_1 : end_match_2); | |||
4412 | ||||
4413 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
4414 | { | |||
4415 | regstart[mcnt] = best_regstart[mcnt]; | |||
4416 | regend[mcnt] = best_regend[mcnt]; | |||
4417 | } | |||
4418 | } | |||
4419 | } /* d != end_match_2 */ | |||
4420 | ||||
4421 | succeed_label: | |||
4422 | DEBUG_PRINT1 ("Accepting match.\n"); | |||
4423 | ||||
4424 | /* If caller wants register contents data back, do it. */ | |||
4425 | if (regs && !bufp->no_sub) | |||
4426 | { | |||
4427 | /* Have the register data arrays been allocated? */ | |||
4428 | if (bufp->regs_allocated == REGS_UNALLOCATED0) | |||
4429 | { /* No. So allocate them with malloc. We need one | |||
4430 | extra element beyond `num_regs' for the `-1' marker | |||
4431 | GNU code uses. */ | |||
4432 | regs->num_regs = MAX (RE_NREGS, num_regs + 1)((30) > (num_regs + 1) ? (30) : (num_regs + 1)); | |||
4433 | regs->start = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t) )); | |||
4434 | regs->end = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t) )); | |||
4435 | if (regs->start == NULL((void *)0) || regs->end == NULL((void *)0)) | |||
4436 | { | |||
4437 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
4438 | return -2; | |||
4439 | } | |||
4440 | bufp->regs_allocated = REGS_REALLOCATE1; | |||
4441 | } | |||
4442 | else if (bufp->regs_allocated == REGS_REALLOCATE1) | |||
4443 | { /* Yes. If we need more elements than were already | |||
4444 | allocated, reallocate them. If we need fewer, just | |||
4445 | leave it alone. */ | |||
4446 | if (regs->num_regs < num_regs + 1) | |||
4447 | { | |||
4448 | regs->num_regs = num_regs + 1; | |||
4449 | RETALLOC (regs->start, regs->num_regs, regoff_t)((regs->start) = (regoff_t *) realloc (regs->start, (regs ->num_regs) * sizeof (regoff_t))); | |||
4450 | RETALLOC (regs->end, regs->num_regs, regoff_t)((regs->end) = (regoff_t *) realloc (regs->end, (regs-> num_regs) * sizeof (regoff_t))); | |||
4451 | if (regs->start == NULL((void *)0) || regs->end == NULL((void *)0)) | |||
4452 | { | |||
4453 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
4454 | return -2; | |||
4455 | } | |||
4456 | } | |||
4457 | } | |||
4458 | else | |||
4459 | { | |||
4460 | /* These braces fend off a "empty body in an else-statement" | |||
4461 | warning under GCC when assert expands to nothing. */ | |||
4462 | assert (bufp->regs_allocated == REGS_FIXED); | |||
4463 | } | |||
4464 | ||||
4465 | /* Convert the pointer data in `regstart' and `regend' to | |||
4466 | indices. Register zero has to be set differently, | |||
4467 | since we haven't kept track of any info for it. */ | |||
4468 | if (regs->num_regs > 0) | |||
4469 | { | |||
4470 | regs->start[0] = pos; | |||
4471 | regs->end[0] = (MATCHING_IN_FIRST_STRING(dend == end_match_1) | |||
4472 | ? ((regoff_t) (d - string1)) | |||
4473 | : ((regoff_t) (d - string2 + size1))); | |||
4474 | } | |||
4475 | ||||
4476 | /* Go through the first `min (num_regs, regs->num_regs)' | |||
4477 | registers, since that is all we initialized. */ | |||
4478 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs)((num_regs) < (regs->num_regs) ? (num_regs) : (regs-> num_regs)); mcnt++) | |||
4479 | { | |||
4480 | if (REG_UNSET (regstart[mcnt])((regstart[mcnt]) == (®_unset_dummy)) || REG_UNSET (regend[mcnt])((regend[mcnt]) == (®_unset_dummy))) | |||
4481 | regs->start[mcnt] = regs->end[mcnt] = -1; | |||
4482 | else | |||
4483 | { | |||
4484 | regs->start[mcnt] | |||
4485 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt])((size1 && string1 <= (regstart[mcnt]) && ( regstart[mcnt]) <= string1 + size1) ? ((regoff_t) ((regstart [mcnt]) - string1)) : ((regoff_t) ((regstart[mcnt]) - string2 + size1))); | |||
4486 | regs->end[mcnt] | |||
4487 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt])((size1 && string1 <= (regend[mcnt]) && (regend [mcnt]) <= string1 + size1) ? ((regoff_t) ((regend[mcnt]) - string1)) : ((regoff_t) ((regend[mcnt]) - string2 + size1))); | |||
4488 | } | |||
4489 | } | |||
4490 | ||||
4491 | /* If the regs structure we return has more elements than | |||
4492 | were in the pattern, set the extra elements to -1. If | |||
4493 | we (re)allocated the registers, this is the case, | |||
4494 | because we always allocate enough to have at least one | |||
4495 | -1 at the end. */ | |||
4496 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | |||
4497 | regs->start[mcnt] = regs->end[mcnt] = -1; | |||
4498 | } /* regs && !bufp->no_sub */ | |||
4499 | ||||
4500 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | |||
4501 | nfailure_points_pushed, nfailure_points_popped, | |||
4502 | nfailure_points_pushed - nfailure_points_popped); | |||
4503 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | |||
4504 | ||||
4505 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING(dend == end_match_1) | |||
4506 | ? string1 | |||
4507 | : string2 - size1); | |||
4508 | ||||
4509 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | |||
4510 | ||||
4511 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
4512 | return mcnt; | |||
4513 | } | |||
4514 | ||||
4515 | /* Otherwise match next pattern command. */ | |||
4516 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++)) | |||
4517 | { | |||
4518 | /* Ignore these. Used to ignore the n of succeed_n's which | |||
4519 | currently have n == 0. */ | |||
4520 | case no_op: | |||
4521 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | |||
4522 | break; | |||
4523 | ||||
4524 | case succeed: | |||
4525 | DEBUG_PRINT1 ("EXECUTING succeed.\n"); | |||
4526 | goto succeed_label; | |||
4527 | ||||
4528 | /* Match the next n pattern characters exactly. The following | |||
4529 | byte in the pattern defines n, and the n bytes after that | |||
4530 | are the characters to match. */ | |||
4531 | case exactn: | |||
4532 | mcnt = *p++; | |||
4533 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | |||
4534 | ||||
4535 | /* This is written out as an if-else so we don't waste time | |||
4536 | testing `translate' inside the loop. */ | |||
4537 | if (RE_TRANSLATE_P (translate)(translate)) | |||
4538 | { | |||
4539 | #ifdef emacs | |||
4540 | if (multibyte) | |||
4541 | do | |||
4542 | { | |||
4543 | int pat_charlen, buf_charlen; | |||
4544 | unsigned int pat_ch, buf_ch; | |||
4545 | ||||
4546 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4547 | pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen)((pat_charlen) = 1, *(p)); | |||
4548 | buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen)((buf_charlen) = 1, *(d)); | |||
4549 | ||||
4550 | if (RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]) | |||
4551 | != pat_ch) | |||
4552 | goto fail; | |||
4553 | ||||
4554 | p += pat_charlen; | |||
4555 | d += buf_charlen; | |||
4556 | mcnt -= pat_charlen; | |||
4557 | } | |||
4558 | while (mcnt > 0); | |||
4559 | else | |||
4560 | #endif /* not emacs */ | |||
4561 | do | |||
4562 | { | |||
4563 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4564 | if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)((translate)[(unsigned char) *d]) | |||
4565 | != (unsigned char) *p++) | |||
4566 | goto fail; | |||
4567 | d++; | |||
4568 | } | |||
4569 | while (--mcnt); | |||
4570 | } | |||
4571 | else | |||
4572 | { | |||
4573 | do | |||
4574 | { | |||
4575 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4576 | if (*d++ != (char) *p++) goto fail; | |||
4577 | } | |||
4578 | while (--mcnt); | |||
4579 | } | |||
4580 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
4581 | break; | |||
4582 | ||||
4583 | ||||
4584 | /* Match any character except possibly a newline or a null. */ | |||
4585 | case anychar: | |||
4586 | { | |||
4587 | int buf_charlen; | |||
4588 | unsigned int buf_ch; | |||
4589 | ||||
4590 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | |||
4591 | ||||
4592 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4593 | ||||
4594 | #ifdef emacs | |||
4595 | if (multibyte) | |||
4596 | buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen)((buf_charlen) = 1, *(d)); | |||
4597 | else | |||
4598 | #endif /* not emacs */ | |||
4599 | { | |||
4600 | buf_ch = (unsigned char) *d; | |||
4601 | buf_charlen = 1; | |||
4602 | } | |||
4603 | ||||
4604 | buf_ch = TRANSLATE (buf_ch)((translate) ? (unsigned) ((translate)[(unsigned) (buf_ch)]) : (buf_ch)); | |||
4605 | ||||
4606 | if ((!(bufp->syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
4607 | && buf_ch == '\n') | |||
4608 | || ((bufp->syntax & RE_DOT_NOT_NULL((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
4609 | && buf_ch == '\000')) | |||
4610 | goto fail; | |||
4611 | ||||
4612 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
4613 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); | |||
4614 | d += buf_charlen; | |||
4615 | } | |||
4616 | break; | |||
4617 | ||||
4618 | ||||
4619 | case charset: | |||
4620 | case charset_not: | |||
4621 | { | |||
4622 | register unsigned int c; | |||
4623 | boolean not = (re_opcode_t) *(p - 1) == charset_not; | |||
4624 | int len; | |||
4625 | ||||
4626 | /* Start of actual range_table, or end of bitmap if there is no | |||
4627 | range table. */ | |||
4628 | unsigned char *range_table; | |||
4629 | ||||
4630 | /* Nonzero if there is range table. */ | |||
4631 | int range_table_exists; | |||
4632 | ||||
4633 | /* Number of ranges of range table. Not in bytes. */ | |||
4634 | int count; | |||
4635 | ||||
4636 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | |||
4637 | ||||
4638 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4639 | c = (unsigned char) *d; | |||
4640 | ||||
4641 | range_table = CHARSET_RANGE_TABLE (&p[-1])(&(&p[-1])[2 + ((&p[-1])[1] & 0x7F)]); /* Past the bitmap. */ | |||
4642 | range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1])((&p[-1])[1] & 0x80); | |||
4643 | if (range_table_exists) | |||
4644 | EXTRACT_NUMBER_AND_INCR (count, range_table)do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table ) += 2; } while (0); | |||
4645 | else | |||
4646 | count = 0; | |||
4647 | ||||
4648 | if (multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
4649 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
4650 | ||||
4651 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
4652 | { /* Lookup bitmap. */ | |||
4653 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); /* The character to match. */ | |||
4654 | len = 1; | |||
4655 | ||||
4656 | /* Cast to `unsigned' instead of `unsigned char' in | |||
4657 | case the bit list is a full 32 bytes long. */ | |||
4658 | if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8) | |||
4659 | && p[1 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8))) | |||
4660 | not = !not; | |||
4661 | } | |||
4662 | else if (range_table_exists) | |||
4663 | CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= (c) && (c) <= range_end) { (not) = !(not); break; } } } while (0); | |||
4664 | ||||
4665 | p = CHARSET_RANGE_TABLE_END (range_table, count)((range_table) + (count) * 2 * 3); | |||
4666 | ||||
4667 | if (!not) goto fail; | |||
4668 | ||||
4669 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
4670 | d += len; | |||
4671 | break; | |||
4672 | } | |||
4673 | ||||
4674 | ||||
4675 | /* The beginning of a group is represented by start_memory. | |||
4676 | The arguments are the register number in the next byte, and the | |||
4677 | number of groups inner to this one in the next. The text | |||
4678 | matched within the group is recorded (in the internal | |||
4679 | registers data structure) under the register number. */ | |||
4680 | case start_memory: | |||
4681 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | |||
4682 | ||||
4683 | /* Find out if this group can match the empty string. */ | |||
4684 | p1 = p; /* To send to group_match_null_string_p. */ | |||
4685 | ||||
4686 | if (REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3) | |||
4687 | REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
4688 | = group_match_null_string_p (&p1, pend, reg_info); | |||
4689 | ||||
4690 | /* Save the position in the string where we were the last time | |||
4691 | we were at this open-group operator in case the group is | |||
4692 | operated upon by a repetition operator, e.g., with `(a*)*b' | |||
4693 | against `ab'; then we want to ignore where we are now in | |||
4694 | the string in case this attempt to match fails. */ | |||
4695 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
4696 | ? REG_UNSET (regstart[*p])((regstart[*p]) == (®_unset_dummy)) ? d : regstart[*p] | |||
4697 | : regstart[*p]; | |||
4698 | DEBUG_PRINT2 (" old_regstart: %d\n", | |||
4699 | POINTER_TO_OFFSET (old_regstart[*p])); | |||
4700 | ||||
4701 | regstart[*p] = d; | |||
4702 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | |||
4703 | ||||
4704 | IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 1; | |||
4705 | MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) = 0; | |||
4706 | ||||
4707 | /* Clear this whenever we change the register activity status. */ | |||
4708 | set_regs_matched_done = 0; | |||
4709 | ||||
4710 | /* This is the new highest active register. */ | |||
4711 | highest_active_reg = *p; | |||
4712 | ||||
4713 | /* If nothing was active before, this is the new lowest active | |||
4714 | register. */ | |||
4715 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG((1 << 8) + 1)) | |||
4716 | lowest_active_reg = *p; | |||
4717 | ||||
4718 | /* Move past the register number and inner group count. */ | |||
4719 | p += 2; | |||
4720 | just_past_start_mem = p; | |||
4721 | ||||
4722 | break; | |||
4723 | ||||
4724 | ||||
4725 | /* The stop_memory opcode represents the end of a group. Its | |||
4726 | arguments are the same as start_memory's: the register | |||
4727 | number, and the number of inner groups. */ | |||
4728 | case stop_memory: | |||
4729 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | |||
4730 | ||||
4731 | /* We need to save the string position the last time we were at | |||
4732 | this close-group operator in case the group is operated | |||
4733 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | |||
4734 | against `aba'; then we want to ignore where we are now in | |||
4735 | the string in case this attempt to match fails. */ | |||
4736 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
4737 | ? REG_UNSET (regend[*p])((regend[*p]) == (®_unset_dummy)) ? d : regend[*p] | |||
4738 | : regend[*p]; | |||
4739 | DEBUG_PRINT2 (" old_regend: %d\n", | |||
4740 | POINTER_TO_OFFSET (old_regend[*p])); | |||
4741 | ||||
4742 | regend[*p] = d; | |||
4743 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | |||
4744 | ||||
4745 | /* This register isn't active anymore. */ | |||
4746 | IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 0; | |||
4747 | ||||
4748 | /* Clear this whenever we change the register activity status. */ | |||
4749 | set_regs_matched_done = 0; | |||
4750 | ||||
4751 | /* If this was the only register active, nothing is active | |||
4752 | anymore. */ | |||
4753 | if (lowest_active_reg == highest_active_reg) | |||
4754 | { | |||
4755 | lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
4756 | highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
4757 | } | |||
4758 | else | |||
4759 | { /* We must scan for the new highest active register, since | |||
4760 | it isn't necessarily one less than now: consider | |||
4761 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the | |||
4762 | new highest active register is 1. */ | |||
4763 | unsigned char r = *p - 1; | |||
4764 | while (r > 0 && !IS_ACTIVE (reg_info[r])((reg_info[r]).bits.is_active)) | |||
4765 | r--; | |||
4766 | ||||
4767 | /* If we end up at register zero, that means that we saved | |||
4768 | the registers as the result of an `on_failure_jump', not | |||
4769 | a `start_memory', and we jumped to past the innermost | |||
4770 | `stop_memory'. For example, in ((.)*) we save | |||
4771 | registers 1 and 2 as a result of the *, but when we pop | |||
4772 | back to the second ), we are at the stop_memory 1. | |||
4773 | Thus, nothing is active. */ | |||
4774 | if (r == 0) | |||
4775 | { | |||
4776 | lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
4777 | highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
4778 | } | |||
4779 | else | |||
4780 | highest_active_reg = r; | |||
4781 | } | |||
4782 | ||||
4783 | /* If just failed to match something this time around with a | |||
4784 | group that's operated on by a repetition operator, try to | |||
4785 | force exit from the ``loop'', and restore the register | |||
4786 | information for this group that we had before trying this | |||
4787 | last match. */ | |||
4788 | if ((!MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) | |||
4789 | || just_past_start_mem == p - 1) | |||
4790 | && (p + 2) < pend) | |||
4791 | { | |||
4792 | boolean is_a_jump_n = false0; | |||
4793 | ||||
4794 | p1 = p + 2; | |||
4795 | mcnt = 0; | |||
4796 | switch ((re_opcode_t) *p1++) | |||
4797 | { | |||
4798 | case jump_n: | |||
4799 | is_a_jump_n = true1; | |||
4800 | case pop_failure_jump: | |||
4801 | case maybe_pop_jump: | |||
4802 | case jump: | |||
4803 | case dummy_failure_jump: | |||
4804 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
4805 | if (is_a_jump_n) | |||
4806 | p1 += 2; | |||
4807 | break; | |||
4808 | ||||
4809 | default: | |||
4810 | /* do nothing */ ; | |||
4811 | } | |||
4812 | p1 += mcnt; | |||
4813 | ||||
4814 | /* If the next operation is a jump backwards in the pattern | |||
4815 | to an on_failure_jump right before the start_memory | |||
4816 | corresponding to this stop_memory, exit from the loop | |||
4817 | by forcing a failure after pushing on the stack the | |||
4818 | on_failure_jump's jump in the pattern, and d. */ | |||
4819 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | |||
4820 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | |||
4821 | { | |||
4822 | /* If this group ever matched anything, then restore | |||
4823 | what its registers were before trying this last | |||
4824 | failed match, e.g., with `(a*)*b' against `ab' for | |||
4825 | regstart[1], and, e.g., with `((a*)*(b*)*)*' | |||
4826 | against `aba' for regend[3]. | |||
4827 | ||||
4828 | Also restore the registers for inner groups for, | |||
4829 | e.g., `((a*)(b*))*' against `aba' (register 3 would | |||
4830 | otherwise get trashed). */ | |||
4831 | ||||
4832 | if (EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something)) | |||
4833 | { | |||
4834 | unsigned r; | |||
4835 | ||||
4836 | EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something) = 0; | |||
4837 | ||||
4838 | /* Restore this and inner groups' (if any) registers. */ | |||
4839 | for (r = *p; r < *p + *(p + 1); r++) | |||
4840 | { | |||
4841 | regstart[r] = old_regstart[r]; | |||
4842 | ||||
4843 | /* xx why this test? */ | |||
4844 | if (old_regend[r] >= regstart[r]) | |||
4845 | regend[r] = old_regend[r]; | |||
4846 | } | |||
4847 | } | |||
4848 | p1++; | |||
4849 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
4850 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p1 + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (d); ; ; } while (0); | |||
4851 | ||||
4852 | goto fail; | |||
4853 | } | |||
4854 | } | |||
4855 | ||||
4856 | /* Move past the register number and the inner group count. */ | |||
4857 | p += 2; | |||
4858 | break; | |||
4859 | ||||
4860 | ||||
4861 | /* \<digit> has been turned into a `duplicate' command which is | |||
4862 | followed by the numeric value of <digit> as the register number. */ | |||
4863 | case duplicate: | |||
4864 | { | |||
4865 | register const char *d2, *dend2; | |||
4866 | int regno = *p++; /* Get which register to match against. */ | |||
4867 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | |||
4868 | ||||
4869 | /* Can't back reference a group which we've never matched. */ | |||
4870 | if (REG_UNSET (regstart[regno])((regstart[regno]) == (®_unset_dummy)) || REG_UNSET (regend[regno])((regend[regno]) == (®_unset_dummy))) | |||
4871 | goto fail; | |||
4872 | ||||
4873 | /* Where in input to try to start matching. */ | |||
4874 | d2 = regstart[regno]; | |||
4875 | ||||
4876 | /* Where to stop matching; if both the place to start and | |||
4877 | the place to stop matching are in the same string, then | |||
4878 | set to the place to stop, otherwise, for now have to use | |||
4879 | the end of the first string. */ | |||
4880 | ||||
4881 | dend2 = ((FIRST_STRING_P (regstart[regno])(size1 && string1 <= (regstart[regno]) && ( regstart[regno]) <= string1 + size1) | |||
4882 | == FIRST_STRING_P (regend[regno])(size1 && string1 <= (regend[regno]) && (regend [regno]) <= string1 + size1)) | |||
4883 | ? regend[regno] : end_match_1); | |||
4884 | for (;;) | |||
4885 | { | |||
4886 | /* If necessary, advance to next segment in register | |||
4887 | contents. */ | |||
4888 | while (d2 == dend2) | |||
4889 | { | |||
4890 | if (dend2 == end_match_2) break; | |||
4891 | if (dend2 == regend[regno]) break; | |||
4892 | ||||
4893 | /* End of string1 => advance to string2. */ | |||
4894 | d2 = string2; | |||
4895 | dend2 = regend[regno]; | |||
4896 | } | |||
4897 | /* At end of register contents => success */ | |||
4898 | if (d2 == dend2) break; | |||
4899 | ||||
4900 | /* If necessary, advance to next segment in data. */ | |||
4901 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
4902 | ||||
4903 | /* How many characters left in this segment to match. */ | |||
4904 | mcnt = dend - d; | |||
4905 | ||||
4906 | /* Want how many consecutive characters we can match in | |||
4907 | one shot, so, if necessary, adjust the count. */ | |||
4908 | if (mcnt > dend2 - d2) | |||
4909 | mcnt = dend2 - d2; | |||
4910 | ||||
4911 | /* Compare that many; failure if mismatch, else move | |||
4912 | past them. */ | |||
4913 | if (RE_TRANSLATE_P (translate)(translate) | |||
4914 | ? bcmp_translate (d, d2, mcnt, translate) | |||
4915 | : bcmp (d, d2, mcnt)memcmp ((d), (d2), (mcnt))) | |||
4916 | goto fail; | |||
4917 | d += mcnt, d2 += mcnt; | |||
4918 | ||||
4919 | /* Do this because we've match some characters. */ | |||
4920 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
4921 | } | |||
4922 | } | |||
4923 | break; | |||
4924 | ||||
4925 | ||||
4926 | /* begline matches the empty string at the beginning of the string | |||
4927 | (unless `not_bol' is set in `bufp'), and, if | |||
4928 | `newline_anchor' is set, after newlines. */ | |||
4929 | case begline: | |||
4930 | DEBUG_PRINT1 ("EXECUTING begline.\n"); | |||
4931 | ||||
4932 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
4933 | { | |||
4934 | if (!bufp->not_bol) break; | |||
4935 | } | |||
4936 | else if (d[-1] == '\n' && bufp->newline_anchor) | |||
4937 | { | |||
4938 | break; | |||
4939 | } | |||
4940 | /* In all other cases, we fail. */ | |||
4941 | goto fail; | |||
4942 | ||||
4943 | ||||
4944 | /* endline is the dual of begline. */ | |||
4945 | case endline: | |||
4946 | DEBUG_PRINT1 ("EXECUTING endline.\n"); | |||
4947 | ||||
4948 | if (AT_STRINGS_END (d)((d) == end2)) | |||
4949 | { | |||
4950 | if (!bufp->not_eol) break; | |||
4951 | } | |||
4952 | ||||
4953 | /* We have to ``prefetch'' the next character. */ | |||
4954 | else if ((d == end1 ? *string2 : *d) == '\n' | |||
4955 | && bufp->newline_anchor) | |||
4956 | { | |||
4957 | break; | |||
4958 | } | |||
4959 | goto fail; | |||
4960 | ||||
4961 | ||||
4962 | /* Match at the very beginning of the data. */ | |||
4963 | case begbuf: | |||
4964 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | |||
4965 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
4966 | break; | |||
4967 | goto fail; | |||
4968 | ||||
4969 | ||||
4970 | /* Match at the very end of the data. */ | |||
4971 | case endbuf: | |||
4972 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | |||
4973 | if (AT_STRINGS_END (d)((d) == end2)) | |||
4974 | break; | |||
4975 | goto fail; | |||
4976 | ||||
4977 | ||||
4978 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It | |||
4979 | pushes NULL as the value for the string on the stack. Then | |||
4980 | `pop_failure_point' will keep the current value for the | |||
4981 | string, instead of restoring it. To see why, consider | |||
4982 | matching `foo\nbar' against `.*\n'. The .* matches the foo; | |||
4983 | then the . fails against the \n. But the next thing we want | |||
4984 | to do is match the \n against the \n; if we restored the | |||
4985 | string value, we would be back at the foo. | |||
4986 | ||||
4987 | Because this is used only in specific cases, we don't need to | |||
4988 | check all the things that `on_failure_jump' does, to make | |||
4989 | sure the right things get saved on the stack. Hence we don't | |||
4990 | share its code. The only reason to push anything on the | |||
4991 | stack at all is that otherwise we would have to change | |||
4992 | `anychar's code to do something besides goto fail in this | |||
4993 | case; that seems worse than this. */ | |||
4994 | case on_failure_keep_string_jump: | |||
4995 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | |||
4996 | ||||
4997 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
4998 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | |||
4999 | ||||
5000 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (((void *)0)); ; ; } while (0); | |||
5001 | break; | |||
5002 | ||||
5003 | ||||
5004 | /* Uses of on_failure_jump: | |||
5005 | ||||
5006 | Each alternative starts with an on_failure_jump that points | |||
5007 | to the beginning of the next alternative. Each alternative | |||
5008 | except the last ends with a jump that in effect jumps past | |||
5009 | the rest of the alternatives. (They really jump to the | |||
5010 | ending jump of the following alternative, because tensioning | |||
5011 | these jumps is a hassle.) | |||
5012 | ||||
5013 | Repeats start with an on_failure_jump that points past both | |||
5014 | the repetition text and either the following jump or | |||
5015 | pop_failure_jump back to this on_failure_jump. */ | |||
5016 | case on_failure_jump: | |||
5017 | on_failure: | |||
5018 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | |||
5019 | ||||
5020 | #if defined (WINDOWSNT) && defined (emacs) | |||
5021 | QUIT; | |||
5022 | #endif | |||
5023 | ||||
5024 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
5025 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | |||
5026 | ||||
5027 | /* If this on_failure_jump comes right before a group (i.e., | |||
5028 | the original * applied to a group), save the information | |||
5029 | for that group and all inner ones, so that if we fail back | |||
5030 | to this point, the group's information will be correct. | |||
5031 | For example, in \(a*\)*\1, we need the preceding group, | |||
5032 | and in \(zz\(a*\)b*\)\2, we need the inner group. */ | |||
5033 | ||||
5034 | /* We can't use `p' to check ahead because we push | |||
5035 | a failure point to `p + mcnt' after we do this. */ | |||
5036 | p1 = p; | |||
5037 | ||||
5038 | /* We need to skip no_op's before we look for the | |||
5039 | start_memory in case this on_failure_jump is happening as | |||
5040 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | |||
5041 | against aba. */ | |||
5042 | while (p1 < pend && (re_opcode_t) *p1 == no_op) | |||
5043 | p1++; | |||
5044 | ||||
5045 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | |||
5046 | { | |||
5047 | /* We have a new highest active register now. This will | |||
5048 | get reset at the start_memory we are about to get to, | |||
5049 | but we will have saved all the registers relevant to | |||
5050 | this repetition op, as described above. */ | |||
5051 | highest_active_reg = *(p1 + 1) + *(p1 + 2); | |||
5052 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG((1 << 8) + 1)) | |||
5053 | lowest_active_reg = *(p1 + 1); | |||
5054 | } | |||
5055 | ||||
5056 | DEBUG_PRINT1 (":\n"); | |||
5057 | PUSH_FAILURE_POINT (p + mcnt, d, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (d); ; ; } while (0); | |||
5058 | break; | |||
5059 | ||||
5060 | ||||
5061 | /* A smart repeat ends with `maybe_pop_jump'. | |||
5062 | We change it to either `pop_failure_jump' or `jump'. */ | |||
5063 | case maybe_pop_jump: | |||
5064 | #if defined (WINDOWSNT) && defined (emacs) | |||
5065 | QUIT; | |||
5066 | #endif | |||
5067 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
5068 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | |||
5069 | { | |||
5070 | register unsigned char *p2 = p; | |||
5071 | ||||
5072 | /* Compare the beginning of the repeat with what in the | |||
5073 | pattern follows its end. If we can establish that there | |||
5074 | is nothing that they would both match, i.e., that we | |||
5075 | would have to backtrack because of (as in, e.g., `a*a') | |||
5076 | then we can change to pop_failure_jump, because we'll | |||
5077 | never have to backtrack. | |||
5078 | ||||
5079 | This is not true in the case of alternatives: in | |||
5080 | `(a|ab)*' we do need to backtrack to the `ab' alternative | |||
5081 | (e.g., if the string was `ab'). But instead of trying to | |||
5082 | detect that here, the alternative has put on a dummy | |||
5083 | failure point which is what we will end up popping. */ | |||
5084 | ||||
5085 | /* Skip over open/close-group commands. | |||
5086 | If what follows this loop is a ...+ construct, | |||
5087 | look at what begins its body, since we will have to | |||
5088 | match at least one of that. */ | |||
5089 | while (1) | |||
5090 | { | |||
5091 | if (p2 + 2 < pend | |||
5092 | && ((re_opcode_t) *p2 == stop_memory | |||
5093 | || (re_opcode_t) *p2 == start_memory)) | |||
5094 | p2 += 3; | |||
5095 | else if (p2 + 6 < pend | |||
5096 | && (re_opcode_t) *p2 == dummy_failure_jump) | |||
5097 | p2 += 6; | |||
5098 | else | |||
5099 | break; | |||
5100 | } | |||
5101 | ||||
5102 | p1 = p + mcnt; | |||
5103 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | |||
5104 | to the `maybe_finalize_jump' of this case. Examine what | |||
5105 | follows. */ | |||
5106 | ||||
5107 | /* If we're at the end of the pattern, we can change. */ | |||
5108 | if (p2 == pend) | |||
5109 | { | |||
5110 | /* Consider what happens when matching ":\(.*\)" | |||
5111 | against ":/". I don't really understand this code | |||
5112 | yet. */ | |||
5113 | p[-3] = (unsigned char) pop_failure_jump; | |||
5114 | DEBUG_PRINT1 | |||
5115 | (" End of pattern: change to `pop_failure_jump'.\n"); | |||
5116 | } | |||
5117 | ||||
5118 | else if ((re_opcode_t) *p2 == exactn | |||
5119 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | |||
5120 | { | |||
5121 | register unsigned int c | |||
5122 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |||
5123 | ||||
5124 | if ((re_opcode_t) p1[3] == exactn) | |||
5125 | { | |||
5126 | if (!(multibyte /* && (c != '\n') */ | |||
5127 | && BASE_LEADING_CODE_P (c)(0)) | |||
5128 | ? c != p1[5] | |||
5129 | : (STRING_CHAR (&p2[2], pend - &p2[2])(*(&p2[2])) | |||
5130 | != STRING_CHAR (&p1[5], pend - &p1[5])(*(&p1[5])))) | |||
5131 | { | |||
5132 | p[-3] = (unsigned char) pop_failure_jump; | |||
5133 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |||
5134 | c, p1[5]); | |||
5135 | } | |||
5136 | } | |||
5137 | ||||
5138 | else if ((re_opcode_t) p1[3] == charset | |||
5139 | || (re_opcode_t) p1[3] == charset_not) | |||
5140 | { | |||
5141 | int not = (re_opcode_t) p1[3] == charset_not; | |||
5142 | ||||
5143 | if (multibyte /* && (c != '\n') */ | |||
5144 | && BASE_LEADING_CODE_P (c)(0)) | |||
5145 | c = STRING_CHAR (&p2[2], pend - &p2[2])(*(&p2[2])); | |||
5146 | ||||
5147 | /* Test if C is listed in charset (or charset_not) | |||
5148 | at `&p1[3]'. */ | |||
5149 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
5150 | { | |||
5151 | if (c < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F) * BYTEWIDTH8 | |||
5152 | && p1[5 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8))) | |||
5153 | not = !not; | |||
5154 | } | |||
5155 | else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3])((&p1[3])[1] & 0x80)) | |||
5156 | CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3])do { int count; unsigned char *range_table = (&(&p1[3 ])[2 + ((&p1[3])[1] & 0x7F)]); do { do { (count) = *( range_table) & 0377; (count) += ((signed char) (*((range_table ) + 1))) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3 ); for (p = (range_table); p < range_table_end; p += 2 * 3 ) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p) [2] << 16)); } while (0); do { (range_end) = ((p + 3)[0 ] | ((p + 3)[1] << 8) | ((p + 3)[2] << 16)); } while (0); if (range_start <= ((c)) && ((c)) <= range_end ) { ((not)) = !((not)); break; } } } while (0); } while (0); | |||
5157 | ||||
5158 | /* `not' is equal to 1 if c would match, which means | |||
5159 | that we can't change to pop_failure_jump. */ | |||
5160 | if (!not) | |||
5161 | { | |||
5162 | p[-3] = (unsigned char) pop_failure_jump; | |||
5163 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
5164 | } | |||
5165 | } | |||
5166 | } | |||
5167 | else if ((re_opcode_t) *p2 == charset) | |||
5168 | { | |||
5169 | if ((re_opcode_t) p1[3] == exactn) | |||
5170 | { | |||
5171 | register unsigned int c = p1[5]; | |||
5172 | int not = 0; | |||
5173 | ||||
5174 | if (multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
5175 | c = STRING_CHAR (&p1[5], pend - &p1[5])(*(&p1[5])); | |||
5176 | ||||
5177 | /* Test if C is listed in charset at `p2'. */ | |||
5178 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
5179 | { | |||
5180 | if (c < CHARSET_BITMAP_SIZE (p2)((p2)[1] & 0x7F) * BYTEWIDTH8 | |||
5181 | && (p2[2 + c / BYTEWIDTH8] | |||
5182 | & (1 << (c % BYTEWIDTH8)))) | |||
5183 | not = !not; | |||
5184 | } | |||
5185 | else if (CHARSET_RANGE_TABLE_EXISTS_P (p2)((p2)[1] & 0x80)) | |||
5186 | CHARSET_LOOKUP_RANGE_TABLE (not, c, p2)do { int count; unsigned char *range_table = (&(p2)[2 + ( (p2)[1] & 0x7F)]); do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start , range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table ); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3)[1] << 8 ) | ((p + 3)[2] << 16)); } while (0); if (range_start <= ((c)) && ((c)) <= range_end) { ((not)) = !((not)) ; break; } } } while (0); } while (0); | |||
5187 | ||||
5188 | if (!not) | |||
5189 | { | |||
5190 | p[-3] = (unsigned char) pop_failure_jump; | |||
5191 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
5192 | } | |||
5193 | } | |||
5194 | ||||
5195 | /* It is hard to list up all the character in charset | |||
5196 | P2 if it includes multibyte character. Give up in | |||
5197 | such case. */ | |||
5198 | else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2)((p2)[1] & 0x80)) | |||
5199 | { | |||
5200 | /* Now, we are sure that P2 has no range table. | |||
5201 | So, for the size of bitmap in P2, `p2[1]' is | |||
5202 | enough. But P1 may have range table, so the | |||
5203 | size of bitmap table of P1 is extracted by | |||
5204 | using macro `CHARSET_BITMAP_SIZE'. | |||
5205 | ||||
5206 | Since we know that all the character listed in | |||
5207 | P2 is ASCII, it is enough to test only bitmap | |||
5208 | table of P1. */ | |||
5209 | ||||
5210 | if ((re_opcode_t) p1[3] == charset_not) | |||
5211 | { | |||
5212 | int idx; | |||
5213 | /* We win if the charset_not inside the loop lists | |||
5214 | every character listed in the charset after. */ | |||
5215 | for (idx = 0; idx < (int) p2[1]; idx++) | |||
5216 | if (! (p2[2 + idx] == 0 | |||
5217 | || (idx < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F) | |||
5218 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | |||
5219 | break; | |||
5220 | ||||
5221 | if (idx == p2[1]) | |||
5222 | { | |||
5223 | p[-3] = (unsigned char) pop_failure_jump; | |||
5224 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
5225 | } | |||
5226 | } | |||
5227 | else if ((re_opcode_t) p1[3] == charset) | |||
5228 | { | |||
5229 | int idx; | |||
5230 | /* We win if the charset inside the loop | |||
5231 | has no overlap with the one after the loop. */ | |||
5232 | for (idx = 0; | |||
5233 | (idx < (int) p2[1] | |||
5234 | && idx < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F)); | |||
5235 | idx++) | |||
5236 | if ((p2[2 + idx] & p1[5 + idx]) != 0) | |||
5237 | break; | |||
5238 | ||||
5239 | if (idx == p2[1] | |||
5240 | || idx == CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F)) | |||
5241 | { | |||
5242 | p[-3] = (unsigned char) pop_failure_jump; | |||
5243 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
5244 | } | |||
5245 | } | |||
5246 | } | |||
5247 | } | |||
5248 | } | |||
5249 | p -= 2; /* Point at relative address again. */ | |||
5250 | if ((re_opcode_t) p[-1] != pop_failure_jump) | |||
5251 | { | |||
5252 | p[-1] = (unsigned char) jump; | |||
5253 | DEBUG_PRINT1 (" Match => jump.\n"); | |||
5254 | goto unconditional_jump; | |||
5255 | } | |||
5256 | /* Note fall through. */ | |||
5257 | ||||
5258 | ||||
5259 | /* The end of a simple repeat has a pop_failure_jump back to | |||
5260 | its matching on_failure_jump, where the latter will push a | |||
5261 | failure point. The pop_failure_jump takes off failure | |||
5262 | points put on by this pop_failure_jump's matching | |||
5263 | on_failure_jump; we got through the pattern to here from the | |||
5264 | matching on_failure_jump, so didn't fail. */ | |||
5265 | case pop_failure_jump: | |||
5266 | { | |||
5267 | /* We need to pass separate storage for the lowest and | |||
5268 | highest registers, even though we don't care about the | |||
5269 | actual values. Otherwise, we will restore only one | |||
5270 | register from the stack, since lowest will == highest in | |||
5271 | `pop_failure_point'. */ | |||
5272 | unsigned dummy_low_reg, dummy_high_reg; | |||
5273 | unsigned char *pdummy; | |||
5274 | const char *sdummy; | |||
5275 | ||||
5276 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | |||
5277 | POP_FAILURE_POINT (sdummy, pdummy,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; } | |||
| ||||
5278 | dummy_low_reg, dummy_high_reg,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; } | |||
5279 | reg_dummy, reg_dummy, reg_info_dummy){ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; }; | |||
5280 | } | |||
5281 | /* Note fall through. */ | |||
5282 | ||||
5283 | ||||
5284 | /* Unconditionally jump (without popping any failure points). */ | |||
5285 | case jump: | |||
5286 | unconditional_jump: | |||
5287 | #if defined (WINDOWSNT) && defined (emacs) | |||
5288 | QUIT; | |||
5289 | #endif | |||
5290 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); /* Get the amount to jump. */ | |||
5291 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | |||
5292 | p += mcnt; /* Do the jump. */ | |||
5293 | DEBUG_PRINT2 ("(to 0x%x).\n", p); | |||
5294 | break; | |||
5295 | ||||
5296 | ||||
5297 | /* We need this opcode so we can detect where alternatives end | |||
5298 | in `group_match_null_string_p' et al. */ | |||
5299 | case jump_past_alt: | |||
5300 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | |||
5301 | goto unconditional_jump; | |||
5302 | ||||
5303 | ||||
5304 | /* Normally, the on_failure_jump pushes a failure point, which | |||
5305 | then gets popped at pop_failure_jump. We will end up at | |||
5306 | pop_failure_jump, also, and with a pattern of, say, `a+', we | |||
5307 | are skipping over the on_failure_jump, so we have to push | |||
5308 | something meaningless for pop_failure_jump to pop. */ | |||
5309 | case dummy_failure_jump: | |||
5310 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | |||
5311 | /* It doesn't matter what we push for the string here. What | |||
5312 | the code at `fail' tests is the value for the pattern. */ | |||
5313 | PUSH_FAILURE_POINT (0, 0, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (0); ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (0); ; ; } while (0); | |||
5314 | goto unconditional_jump; | |||
5315 | ||||
5316 | ||||
5317 | /* At the end of an alternative, we need to push a dummy failure | |||
5318 | point in case we are followed by a `pop_failure_jump', because | |||
5319 | we don't want the failure point for the alternative to be | |||
5320 | popped. For example, matching `(a|ab)*' against `aab' | |||
5321 | requires that we match the `ab' alternative. */ | |||
5322 | case push_dummy_failure: | |||
5323 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | |||
5324 | /* See comments just above at `dummy_failure_jump' about the | |||
5325 | two zeroes. */ | |||
5326 | PUSH_FAILURE_POINT (0, 0, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (0); ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (0); ; ; } while (0); | |||
5327 | break; | |||
5328 | ||||
5329 | /* Have to succeed matching what follows at least n times. | |||
5330 | After that, handle like `on_failure_jump'. */ | |||
5331 | case succeed_n: | |||
5332 | EXTRACT_NUMBER (mcnt, p + 2)do { (mcnt) = *(p + 2) & 0377; (mcnt) += ((signed char) ( *((p + 2) + 1))) << 8; } while (0); | |||
5333 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | |||
5334 | ||||
5335 | assert (mcnt >= 0); | |||
5336 | /* Originally, this is how many times we HAVE to succeed. */ | |||
5337 | if (mcnt > 0) | |||
5338 | { | |||
5339 | mcnt--; | |||
5340 | p += 2; | |||
5341 | STORE_NUMBER_AND_INCR (p, mcnt)do { do { (p)[0] = (mcnt) & 0377; (p)[1] = (mcnt) >> 8; } while (0); (p) += 2; } while (0); | |||
5342 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | |||
5343 | } | |||
5344 | else if (mcnt == 0) | |||
5345 | { | |||
5346 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | |||
5347 | p[2] = (unsigned char) no_op; | |||
5348 | p[3] = (unsigned char) no_op; | |||
5349 | goto on_failure; | |||
5350 | } | |||
5351 | break; | |||
5352 | ||||
5353 | case jump_n: | |||
5354 | EXTRACT_NUMBER (mcnt, p + 2)do { (mcnt) = *(p + 2) & 0377; (mcnt) += ((signed char) ( *((p + 2) + 1))) << 8; } while (0); | |||
5355 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | |||
5356 | ||||
5357 | /* Originally, this is how many times we CAN jump. */ | |||
5358 | if (mcnt) | |||
5359 | { | |||
5360 | mcnt--; | |||
5361 | STORE_NUMBER (p + 2, mcnt)do { (p + 2)[0] = (mcnt) & 0377; (p + 2)[1] = (mcnt) >> 8; } while (0); | |||
5362 | goto unconditional_jump; | |||
5363 | } | |||
5364 | /* If don't have to jump any more, skip over the rest of command. */ | |||
5365 | else | |||
5366 | p += 4; | |||
5367 | break; | |||
5368 | ||||
5369 | case set_number_at: | |||
5370 | { | |||
5371 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |||
5372 | ||||
5373 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
5374 | p1 = p + mcnt; | |||
5375 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
5376 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | |||
5377 | STORE_NUMBER (p1, mcnt)do { (p1)[0] = (mcnt) & 0377; (p1)[1] = (mcnt) >> 8 ; } while (0); | |||
5378 | break; | |||
5379 | } | |||
5380 | ||||
5381 | case wordbound: | |||
5382 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |||
5383 | ||||
5384 | /* We SUCCEED in one of the following cases: */ | |||
5385 | ||||
5386 | /* Case 1: D is at the beginning or the end of string. */ | |||
5387 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2)) | |||
5388 | break; | |||
5389 | else | |||
5390 | { | |||
5391 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
5392 | is the character at D, and S2 is the syntax of C2. */ | |||
5393 | int c1, c2, s1, s2; | |||
5394 | int pos1 = PTR_TO_OFFSET (d - 1)0; | |||
5395 | int charpos; | |||
5396 | ||||
5397 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
5398 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
5399 | #ifdef emacs | |||
5400 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
5401 | UPDATE_SYNTAX_TABLE (charpos); | |||
5402 | #endif | |||
5403 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
5404 | #ifdef emacs | |||
5405 | UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); | |||
5406 | #endif | |||
5407 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
5408 | ||||
5409 | if (/* Case 2: Only one of S1 and S2 is Sword. */ | |||
5410 | ((s1 == Sword1) != (s2 == Sword1)) | |||
5411 | /* Case 3: Both of S1 and S2 are Sword, and macro | |||
5412 | WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |||
5413 | || ((s1 == Sword1) && WORD_BOUNDARY_P (c1, c2)(0))) | |||
5414 | break; | |||
5415 | } | |||
5416 | goto fail; | |||
5417 | ||||
5418 | case notwordbound: | |||
5419 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |||
5420 | ||||
5421 | /* We FAIL in one of the following cases: */ | |||
5422 | ||||
5423 | /* Case 1: D is at the beginning or the end of string. */ | |||
5424 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2)) | |||
5425 | goto fail; | |||
5426 | else | |||
5427 | { | |||
5428 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
5429 | is the character at D, and S2 is the syntax of C2. */ | |||
5430 | int c1, c2, s1, s2; | |||
5431 | int pos1 = PTR_TO_OFFSET (d - 1)0; | |||
5432 | int charpos; | |||
5433 | ||||
5434 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
5435 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
5436 | #ifdef emacs | |||
5437 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
5438 | UPDATE_SYNTAX_TABLE (charpos); | |||
5439 | #endif | |||
5440 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
5441 | #ifdef emacs | |||
5442 | UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); | |||
5443 | #endif | |||
5444 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
5445 | ||||
5446 | if (/* Case 2: Only one of S1 and S2 is Sword. */ | |||
5447 | ((s1 == Sword1) != (s2 == Sword1)) | |||
5448 | /* Case 3: Both of S1 and S2 are Sword, and macro | |||
5449 | WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |||
5450 | || ((s1 == Sword1) && WORD_BOUNDARY_P (c1, c2)(0))) | |||
5451 | goto fail; | |||
5452 | } | |||
5453 | break; | |||
5454 | ||||
5455 | case wordbeg: | |||
5456 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | |||
5457 | ||||
5458 | /* We FAIL in one of the following cases: */ | |||
5459 | ||||
5460 | /* Case 1: D is at the end of string. */ | |||
5461 | if (AT_STRINGS_END (d)((d) == end2)) | |||
5462 | goto fail; | |||
5463 | else | |||
5464 | { | |||
5465 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
5466 | is the character at D, and S2 is the syntax of C2. */ | |||
5467 | int c1, c2, s1, s2; | |||
5468 | int pos1 = PTR_TO_OFFSET (d)0; | |||
5469 | int charpos; | |||
5470 | ||||
5471 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
5472 | #ifdef emacs | |||
5473 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
5474 | UPDATE_SYNTAX_TABLE (charpos); | |||
5475 | #endif | |||
5476 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
5477 | ||||
5478 | /* Case 2: S2 is not Sword. */ | |||
5479 | if (s2 != Sword1) | |||
5480 | goto fail; | |||
5481 | ||||
5482 | /* Case 3: D is not at the beginning of string ... */ | |||
5483 | if (!AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
5484 | { | |||
5485 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
5486 | #ifdef emacs | |||
5487 | UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1); | |||
5488 | #endif | |||
5489 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
5490 | ||||
5491 | /* ... and S1 is Sword, and WOR |