Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/IRBuilder.h
Warning:line 2676, column 23
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86LowerAMXType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86LowerAMXType.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86LowerAMXType.cpp

1//===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file Pass to transform <256 x i32> load/store
10/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
11/// provides simple operation on x86_amx. The basic elementwise operation
12/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
13/// and only AMX intrinsics can operate on the type, we need transform
14/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
15/// not be combined with load/store, we transform the bitcast to amx load/store
16/// and <256 x i32> store/load.
17///
18/// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
19/// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
20/// because that is necessary for AMX fast register allocation. (In Fast
21/// registera allocation, register will be allocated before spill/reload, so
22/// there is no additional register for amx to identify the step in spill.)
23/// The volatileTileData() will handle this case.
24/// e.g.
25/// ----------------------------------------------------------
26/// | def %td = ... |
27/// | ... |
28/// | "use %td" |
29/// ----------------------------------------------------------
30/// will transfer to -->
31/// ----------------------------------------------------------
32/// | def %td = ... |
33/// | call void @llvm.x86.tilestored64.internal(mem, %td) |
34/// | ... |
35/// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
36/// | "use %td2" |
37/// ----------------------------------------------------------
38//
39//===----------------------------------------------------------------------===//
40//
41#include "X86.h"
42#include "llvm/ADT/PostOrderIterator.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/Analysis/OptimizationRemarkEmitter.h"
45#include "llvm/Analysis/TargetTransformInfo.h"
46#include "llvm/CodeGen/Passes.h"
47#include "llvm/CodeGen/TargetPassConfig.h"
48#include "llvm/CodeGen/ValueTypes.h"
49#include "llvm/IR/DataLayout.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/IRBuilder.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/IntrinsicsX86.h"
55#include "llvm/IR/PatternMatch.h"
56#include "llvm/InitializePasses.h"
57#include "llvm/Pass.h"
58#include "llvm/Target/TargetMachine.h"
59
60using namespace llvm;
61using namespace PatternMatch;
62
63#define DEBUG_TYPE"lower-amx-type" "lower-amx-type"
64
65static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder,
66 BasicBlock *BB) {
67 Function &F = *BB->getParent();
68 Module *M = BB->getModule();
69 const DataLayout &DL = M->getDataLayout();
70
71 Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
72 LLVMContext &Ctx = Builder.getContext();
73 auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
74 unsigned AllocaAS = DL.getAllocaAddrSpace();
75 AllocaInst *AllocaRes =
76 new AllocaInst(V256I32Ty, AllocaAS, "", &F.getEntryBlock().front());
77 AllocaRes->setAlignment(AllocaAlignment);
78 return AllocaRes;
79}
80
81namespace {
82class X86LowerAMXType {
83 Function &Func;
84 TargetMachine *TM = nullptr;
85
86 // In AMX intrinsics we let Shape = {Row, Col}, but the
87 // RealCol = Col / ElementSize. We may use the RealCol
88 // as a new Row for other new created AMX intrinsics.
89 std::map<Value *, Value *> Col2Row;
90
91public:
92 X86LowerAMXType(Function &F, TargetMachine *TargetM) : Func(F), TM(TargetM) {}
93 bool visit();
94 void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
95 void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
96 bool transformBitcast(BitCastInst *Bitcast);
97 std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo);
98 Value *getRowFromCol(Instruction *II, Value *V, unsigned Granularity);
99};
100
101Value *X86LowerAMXType::getRowFromCol(Instruction *II, Value *V,
102 unsigned Granularity) {
103 if (Col2Row.count(V))
104 return Col2Row[V];
105 IRBuilder<> Builder(&*II->getParent()->getFirstInsertionPt());
106 if (auto *I = dyn_cast<Instruction>(V)) {
107 BasicBlock::iterator Iter = I->getIterator();
108 ++Iter;
109 Builder.SetInsertPoint(&*Iter);
110 }
111 ConstantInt *Gran = Builder.getInt16(Granularity);
112 Value *RealRow = Builder.CreateUDiv(V, Gran);
113 Col2Row[V] = RealRow;
114 return RealRow;
115}
116
117std::pair<Value *, Value *> X86LowerAMXType::getShape(IntrinsicInst *II,
118 unsigned OpNo) {
119 Value *Row = nullptr, *Col = nullptr;
120 switch (II->getIntrinsicID()) {
121 default:
122 llvm_unreachable("Expect amx intrinsics")__builtin_unreachable();
123 case Intrinsic::x86_tileloadd64_internal:
124 case Intrinsic::x86_tileloaddt164_internal:
125 case Intrinsic::x86_tilestored64_internal: {
126 Row = II->getArgOperand(0);
127 Col = II->getArgOperand(1);
128 break;
129 }
130 // a * b + c
131 // The shape depends on which operand.
132 case Intrinsic::x86_tdpbssd_internal:
133 case Intrinsic::x86_tdpbsud_internal:
134 case Intrinsic::x86_tdpbusd_internal:
135 case Intrinsic::x86_tdpbuud_internal:
136 case Intrinsic::x86_tdpbf16ps_internal: {
137 switch (OpNo) {
138 case 3:
139 Row = II->getArgOperand(0);
140 Col = II->getArgOperand(1);
141 break;
142 case 4:
143 Row = II->getArgOperand(0);
144 Col = II->getArgOperand(2);
145 break;
146 case 5:
147 Row = II->getArgOperand(2);
148 // FIXME: There is a design bug for AMX shape, which the Col should be
149 // Col/4 if it will be used as Row, but current Greedy RA can't handle
150 // this case well, it may failed if we generate a new Shape definition.
151 // So Let's just do it in O0 first.
152 // Row = Row / 4
153 if (TM->getOptLevel() == CodeGenOpt::None)
154 Row = getRowFromCol(II, Row, 4);
155 Col = II->getArgOperand(1);
156 break;
157 }
158 break;
159 }
160 }
161
162 return std::make_pair(Row, Col);
163}
164
165// %src = load <256 x i32>, <256 x i32>* %addr, align 64
166// %2 = bitcast <256 x i32> %src to x86_amx
167// -->
168// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
169// i8* %addr, i64 %stride64)
170void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
171 Value *Row = nullptr, *Col = nullptr;
172 Use &U = *(Bitcast->use_begin());
173 unsigned OpNo = U.getOperandNo();
174 auto *II = cast<IntrinsicInst>(U.getUser());
175 std::tie(Row, Col) = getShape(II, OpNo);
176 IRBuilder<> Builder(Bitcast);
177 // Use the maximun column as stride.
178 Value *Stride = Builder.getInt64(64);
179 Value *I8Ptr =
180 Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
181 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
182
183 Value *NewInst =
184 Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
185 Bitcast->replaceAllUsesWith(NewInst);
186}
187
188// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
189// %stride);
190// %13 = bitcast x86_amx %src to <256 x i32>
191// store <256 x i32> %13, <256 x i32>* %addr, align 64
192// -->
193// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
194// %stride64, %13)
195void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {
196
197 Value *Tile = Bitcast->getOperand(0);
198 auto *II = cast<IntrinsicInst>(Tile);
199 // Tile is output from AMX intrinsic. The first operand of the
200 // intrinsic is row, the second operand of the intrinsic is column.
201 Value *Row = II->getOperand(0);
202 Value *Col = II->getOperand(1);
203 IRBuilder<> Builder(ST);
204 // Use the maximum column as stride. It must be the same with load
205 // stride.
206 Value *Stride = Builder.getInt64(64);
207 Value *I8Ptr =
208 Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
209 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
210 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
211 if (Bitcast->hasOneUse())
212 return;
213 // %13 = bitcast x86_amx %src to <256 x i32>
214 // store <256 x i32> %13, <256 x i32>* %addr, align 64
215 // %add = <256 x i32> %13, <256 x i32> %src2
216 // -->
217 // %13 = bitcast x86_amx %src to <256 x i32>
218 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
219 // %stride64, %13)
220 // %14 = load <256 x i32>, %addr
221 // %add = <256 x i32> %14, <256 x i32> %src2
222 Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
223 Bitcast->replaceAllUsesWith(Vec);
224}
225
226// transform bitcast to <store, load> instructions.
227bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
228 IRBuilder<> Builder(Bitcast);
229 AllocaInst *AllocaAddr;
230 Value *I8Ptr, *Stride;
231 auto *Src = Bitcast->getOperand(0);
232
233 auto Prepare = [&]() {
234 AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent());
235 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
236 Stride = Builder.getInt64(64);
237 };
238
239 if (Bitcast->getType()->isX86_AMXTy()) {
240 // %2 = bitcast <256 x i32> %src to x86_amx
241 // -->
242 // %addr = alloca <256 x i32>, align 64
243 // store <256 x i32> %src, <256 x i32>* %addr, align 64
244 // %addr2 = bitcast <256 x i32>* to i8*
245 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
246 // i8* %addr2,
247 // i64 64)
248 Use &U = *(Bitcast->use_begin());
249 unsigned OpNo = U.getOperandNo();
250 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
251 if (!II)
252 return false; // May be bitcast from x86amx to <256 x i32>.
253 Prepare();
254 Builder.CreateStore(Src, AllocaAddr);
255 // TODO we can pick an constant operand for the shape.
256 Value *Row = nullptr, *Col = nullptr;
257 std::tie(Row, Col) = getShape(II, OpNo);
258 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
259 Value *NewInst = Builder.CreateIntrinsic(
260 Intrinsic::x86_tileloadd64_internal, None, Args);
261 Bitcast->replaceAllUsesWith(NewInst);
262 } else {
263 // %2 = bitcast x86_amx %src to <256 x i32>
264 // -->
265 // %addr = alloca <256 x i32>, align 64
266 // %addr2 = bitcast <256 x i32>* to i8*
267 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
268 // i8* %addr2, i64 %stride)
269 // %2 = load <256 x i32>, <256 x i32>* %addr, align 64
270 auto *II = dyn_cast<IntrinsicInst>(Src);
271 if (!II)
272 return false; // May be bitcast from <256 x i32> to x86amx.
273 Prepare();
274 Value *Row = II->getOperand(0);
275 Value *Col = II->getOperand(1);
276 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
277 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
278 Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
279 Bitcast->replaceAllUsesWith(NewInst);
280 }
281
282 return true;
283}
284
285bool X86LowerAMXType::visit() {
286 SmallVector<Instruction *, 8> DeadInsts;
287 Col2Row.clear();
288
289 for (BasicBlock *BB : post_order(&Func)) {
290 for (BasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend();
291 II != IE;) {
292 Instruction &Inst = *II++;
293 auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
294 if (!Bitcast)
295 continue;
296
297 Value *Src = Bitcast->getOperand(0);
298 if (Bitcast->getType()->isX86_AMXTy()) {
299 if (Bitcast->user_empty()) {
300 DeadInsts.push_back(Bitcast);
301 continue;
302 }
303 LoadInst *LD = dyn_cast<LoadInst>(Src);
304 if (!LD) {
305 if (transformBitcast(Bitcast))
306 DeadInsts.push_back(Bitcast);
307 continue;
308 }
309 // If load has mutli-user, duplicate a vector load.
310 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
311 // %2 = bitcast <256 x i32> %src to x86_amx
312 // %add = add <256 x i32> %src, <256 x i32> %src2
313 // -->
314 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
315 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
316 // i8* %addr, i64 %stride64)
317 // %add = add <256 x i32> %src, <256 x i32> %src2
318
319 // If load has one user, the load will be eliminated in DAG ISel.
320 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
321 // %2 = bitcast <256 x i32> %src to x86_amx
322 // -->
323 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
324 // i8* %addr, i64 %stride64)
325 combineLoadBitcast(LD, Bitcast);
326 DeadInsts.push_back(Bitcast);
327 if (LD->hasOneUse())
328 DeadInsts.push_back(LD);
329 } else if (Src->getType()->isX86_AMXTy()) {
330 if (Bitcast->user_empty()) {
331 DeadInsts.push_back(Bitcast);
332 continue;
333 }
334 StoreInst *ST = nullptr;
335 for (auto UI = Bitcast->use_begin(), UE = Bitcast->use_end();
336 UI != UE;) {
337 Value *I = (UI++)->getUser();
338 ST = dyn_cast<StoreInst>(I);
339 if (ST)
340 break;
341 }
342 if (!ST) {
343 if (transformBitcast(Bitcast))
344 DeadInsts.push_back(Bitcast);
345 continue;
346 }
347 // If bitcast (%13) has one use, combine bitcast and store to amx store.
348 // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
349 // %stride);
350 // %13 = bitcast x86_amx %src to <256 x i32>
351 // store <256 x i32> %13, <256 x i32>* %addr, align 64
352 // -->
353 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
354 // %stride64, %13)
355 //
356 // If bitcast (%13) has multi-use, transform as below.
357 // %13 = bitcast x86_amx %src to <256 x i32>
358 // store <256 x i32> %13, <256 x i32>* %addr, align 64
359 // %add = <256 x i32> %13, <256 x i32> %src2
360 // -->
361 // %13 = bitcast x86_amx %src to <256 x i32>
362 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
363 // %stride64, %13)
364 // %14 = load <256 x i32>, %addr
365 // %add = <256 x i32> %14, <256 x i32> %src2
366 //
367 combineBitcastStore(Bitcast, ST);
368 // Delete user first.
369 DeadInsts.push_back(ST);
370 DeadInsts.push_back(Bitcast);
371 }
372 }
373 }
374
375 bool C = !DeadInsts.empty();
376
377 for (auto *Inst : DeadInsts)
378 Inst->eraseFromParent();
379
380 return C;
381}
382} // anonymous namespace
383
384static Value *getAllocaPos(BasicBlock *BB) {
385 Module *M = BB->getModule();
386 Function *F = BB->getParent();
387 IRBuilder<> Builder(&F->getEntryBlock().front());
388 const DataLayout &DL = M->getDataLayout();
389 unsigned AllocaAS = DL.getAllocaAddrSpace();
390 Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
391 AllocaInst *AllocaRes =
392 new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
393 BasicBlock::iterator Iter = AllocaRes->getIterator();
394 ++Iter;
395 Builder.SetInsertPoint(&*Iter);
396 Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
397 return I8Ptr;
398}
399
400static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
401 assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!")((void)0);
402 auto *II = cast<IntrinsicInst>(TileDef);
403 assert(II && "Not tile intrinsic!")((void)0);
404 Value *Row = II->getOperand(0);
405 Value *Col = II->getOperand(1);
406
407 BasicBlock *BB = TileDef->getParent();
408 BasicBlock::iterator Iter = TileDef->getIterator();
409 IRBuilder<> Builder(BB, ++Iter);
410 Value *Stride = Builder.getInt64(64);
411 std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};
412
413 Instruction *TileStore =
414 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
415 return TileStore;
416}
417
418static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
419 Value *V = U.get();
420 assert(V->getType()->isX86_AMXTy() && "Not define tile!")((void)0);
421
422 // Get tile shape.
423 IntrinsicInst *II = nullptr;
424 if (IsPHI
13.1
'IsPHI' is true
13.1
'IsPHI' is true
) {
14
Taking true branch
425 Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
15
Assuming 'V' is a 'PHINode'
426 II = cast<IntrinsicInst>(PhiOp);
427 } else {
428 II = cast<IntrinsicInst>(V);
429 }
430 Value *Row = II->getOperand(0);
431 Value *Col = II->getOperand(1);
432
433 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
16
Assuming the object is not a 'Instruction'
17
'UserI' initialized to a null pointer value
434 IRBuilder<> Builder(UserI);
18
Passing null pointer value via 1st parameter 'IP'
19
Calling constructor for 'IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>'
435 Value *Stride = Builder.getInt64(64);
436 std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};
437
438 Value *TileLoad =
439 Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
440 UserI->replaceUsesOfWith(V, TileLoad);
441}
442
443static bool isIncomingOfPHI(Instruction *I) {
444 for (Use &U : I->uses()) {
445 User *V = U.getUser();
446 if (isa<PHINode>(V))
447 return true;
448 }
449 return false;
450}
451
452// Let all AMX tile data become volatile data, shorten the life range
453// of each tile register before fast register allocation.
454namespace {
455class X86VolatileTileData {
456 Function &F;
457
458public:
459 X86VolatileTileData(Function &Func) : F(Func) {}
460 Value *updatePhiIncomings(BasicBlock *BB,
461 SmallVector<Instruction *, 2> &Incomings);
462 void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
463 bool volatileTileData();
464 void volatileTilePHI(PHINode *Inst);
465 void volatileTileNonPHI(Instruction *I);
466};
467
468Value *X86VolatileTileData::updatePhiIncomings(
469 BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
470 Value *I8Ptr = getAllocaPos(BB);
471
472 for (auto *I : Incomings) {
473 User *Store = createTileStore(I, I8Ptr);
474
475 // All its uses (except phi) should load from stored mem.
476 for (Use &U : I->uses()) {
477 User *V = U.getUser();
478 if (isa<PHINode>(V) || V == Store)
479 continue;
480 replaceWithTileLoad(U, I8Ptr);
481 }
482 }
483 return I8Ptr;
484}
485
486void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
487 Value *StorePtr) {
488 for (Use &U : PHI->uses())
489 replaceWithTileLoad(U, StorePtr, true);
13
Calling 'replaceWithTileLoad'
490 PHI->eraseFromParent();
491}
492
493// Smilar with volatileTileNonPHI, this function only handle PHI Nodes
494// and their related AMX intrinsics.
495// 1) PHI Def should change to tileload.
496// 2) PHI Incoming Values should tilestored in just after their def.
497// 3) The mem of these tileload and tilestores should be same.
498// e.g.
499// ------------------------------------------------------
500// bb_dom:
501// ...
502// br i1 %bool.cond, label %if.else, label %if.then
503//
504// if.then:
505// def %t0 = ...
506// ...
507// use %t0
508// ...
509// br label %if.end
510//
511// if.else:
512// def %t1 = ...
513// br label %if.end
514//
515// if.end:
516// %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
517// ...
518// use %td
519// ------------------------------------------------------
520// -->
521// ------------------------------------------------------
522// bb_entry:
523// %mem = alloca <256 x i32>, align 1024 *
524// ...
525// bb_dom:
526// ...
527// br i1 %bool.cond, label %if.else, label %if.then
528//
529// if.then:
530// def %t0 = ...
531// call void @llvm.x86.tilestored64.internal(mem, %t0) *
532// ...
533// %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
534// use %t0` *
535// ...
536// br label %if.end
537//
538// if.else:
539// def %t1 = ...
540// call void @llvm.x86.tilestored64.internal(mem, %t1) *
541// br label %if.end
542//
543// if.end:
544// ...
545// %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
546// use %td
547// ------------------------------------------------------
548void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
549 BasicBlock *BB = PHI->getParent();
550 SmallVector<Instruction *, 2> Incomings;
551
552 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
10
Assuming 'I' is equal to 'E'
11
Loop condition is false. Execution continues on line 559
553 Value *Op = PHI->getIncomingValue(I);
554 Instruction *Inst = dyn_cast<Instruction>(Op);
555 assert(Inst && "We shouldn't fold AMX instrution!")((void)0);
556 Incomings.push_back(Inst);
557 }
558
559 Value *StorePtr = updatePhiIncomings(BB, Incomings);
560 replacePhiDefWithLoad(PHI, StorePtr);
12
Calling 'X86VolatileTileData::replacePhiDefWithLoad'
561}
562
563// Store the defined tile and load it before use.
564// All its users are not PHI.
565// e.g.
566// ------------------------------------------------------
567// def %td = ...
568// ...
569// "use %td"
570// ------------------------------------------------------
571// -->
572// ------------------------------------------------------
573// def %td = ...
574// call void @llvm.x86.tilestored64.internal(mem, %td)
575// ...
576// %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
577// "use %td2"
578// ------------------------------------------------------
579void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
580 BasicBlock *BB = I->getParent();
581 Value *I8Ptr = getAllocaPos(BB);
582 User *Store = createTileStore(I, I8Ptr);
583
584 // All its uses should load from stored mem.
585 for (Use &U : I->uses()) {
586 User *V = U.getUser();
587 assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!")((void)0);
588 if (V != Store)
589 replaceWithTileLoad(U, I8Ptr);
590 }
591}
592
593// Volatile Tile Model:
594// 1) All the uses of tile data comes from tileload in time.
595// 2) All the defs of tile data tilestore into mem immediately.
596// For example:
597// --------------------------------------------------------------------------
598// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
599// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
600// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
601// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
602// call void @llvm.x86.tilestored64.internal(... td) area
603// --------------------------------------------------------------------------
604// 3) No terminator, call or other amx instructions in the key amx area.
605bool X86VolatileTileData::volatileTileData() {
606 bool Changed = false;
607 for (BasicBlock &BB : F) {
608 SmallVector<Instruction *, 2> PHIInsts;
609 SmallVector<Instruction *, 8> AMXDefInsts;
610
611 for (Instruction &I : BB) {
612 if (!I.getType()->isX86_AMXTy())
613 continue;
614 if (isa<PHINode>(&I))
615 PHIInsts.push_back(&I);
616 else
617 AMXDefInsts.push_back(&I);
618 }
619
620 // First we "volatile" the non-phi related amx intrinsics.
621 for (Instruction *I : AMXDefInsts) {
6
Assuming '__begin2' is equal to '__end2'
622 if (isIncomingOfPHI(I))
623 continue;
624 volatileTileNonPHI(I);
625 Changed = true;
626 }
627
628 for (Instruction *I : PHIInsts) {
7
Assuming '__begin2' is not equal to '__end2'
629 volatileTilePHI(dyn_cast<PHINode>(I));
8
Assuming 'I' is a 'PHINode'
9
Calling 'X86VolatileTileData::volatileTilePHI'
630 Changed = true;
631 }
632 }
633 return Changed;
634}
635
636} // anonymous namespace
637
638namespace {
639
640class X86LowerAMXTypeLegacyPass : public FunctionPass {
641public:
642 static char ID;
643
644 X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
645 initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
646 }
647
648 bool runOnFunction(Function &F) override {
649 TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
650
651 X86LowerAMXType LAT(F, TM);
652 bool C = LAT.visit();
653
654 // Prepare for fast register allocation at O0.
655 // Todo: May better check the volatile model of AMX code, not just
656 // by checking Attribute::OptimizeNone and CodeGenOpt::None.
657 if (TM->getOptLevel() == CodeGenOpt::None) {
1
Assuming the condition is true
2
Taking true branch
658 // If Front End not use O0 but the Mid/Back end use O0, (e.g.
659 // "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
660 // sure the amx data is volatile, that is nessary for AMX fast
661 // register allocation.
662 if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
3
Assuming the condition is true
4
Taking true branch
663 X86VolatileTileData VTD(F);
664 C = VTD.volatileTileData() || C;
5
Calling 'X86VolatileTileData::volatileTileData'
665 }
666 }
667
668 return C;
669 }
670
671 void getAnalysisUsage(AnalysisUsage &AU) const override {
672 AU.setPreservesCFG();
673 AU.addRequired<TargetPassConfig>();
674 }
675};
676
677} // anonymous namespace
678
679static const char PassName[] = "Lower AMX type for load/store";
680char X86LowerAMXTypeLegacyPass::ID = 0;
681INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,static void *initializeX86LowerAMXTypeLegacyPassPassOnce(PassRegistry
&Registry) {
682 false)static void *initializeX86LowerAMXTypeLegacyPassPassOnce(PassRegistry
&Registry) {
683INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry);
684INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,PassInfo *PI = new PassInfo( PassName, "lower-amx-type", &
X86LowerAMXTypeLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<X86LowerAMXTypeLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeX86LowerAMXTypeLegacyPassPassFlag
; void llvm::initializeX86LowerAMXTypeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeX86LowerAMXTypeLegacyPassPassFlag
, initializeX86LowerAMXTypeLegacyPassPassOnce, std::ref(Registry
)); }
685 false)PassInfo *PI = new PassInfo( PassName, "lower-amx-type", &
X86LowerAMXTypeLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<X86LowerAMXTypeLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeX86LowerAMXTypeLegacyPassPassFlag
; void llvm::initializeX86LowerAMXTypeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeX86LowerAMXTypeLegacyPassPassFlag
, initializeX86LowerAMXTypeLegacyPassPassOnce, std::ref(Registry
)); }
686
687FunctionPass *llvm::createX86LowerAMXTypePass() {
688 return new X86LowerAMXTypeLegacyPass();
689}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/ConstantFolder.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugInfoMetadata.h"
29#include "llvm/IR/DebugLoc.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/LLVMContext.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/Type.h"
41#include "llvm/IR/Value.h"
42#include "llvm/IR/ValueHandle.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/CBindingWrapping.h"
45#include "llvm/Support/Casting.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <functional>
50#include <utility>
51
52namespace llvm {
53
54class APInt;
55class MDNode;
56class Use;
57
58/// This provides the default implementation of the IRBuilder
59/// 'InsertHelper' method that is called whenever an instruction is created by
60/// IRBuilder and needs to be inserted.
61///
62/// By default, this inserts the instruction at the insertion point.
63class IRBuilderDefaultInserter {
64public:
65 virtual ~IRBuilderDefaultInserter();
66
67 virtual void InsertHelper(Instruction *I, const Twine &Name,
68 BasicBlock *BB,
69 BasicBlock::iterator InsertPt) const {
70 if (BB) BB->getInstList().insert(InsertPt, I);
71 I->setName(Name);
72 }
73};
74
75/// Provides an 'InsertHelper' that calls a user-provided callback after
76/// performing the default insertion.
77class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
78 std::function<void(Instruction *)> Callback;
79
80public:
81 virtual ~IRBuilderCallbackInserter();
82
83 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
84 : Callback(std::move(Callback)) {}
85
86 void InsertHelper(Instruction *I, const Twine &Name,
87 BasicBlock *BB,
88 BasicBlock::iterator InsertPt) const override {
89 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
90 Callback(I);
91 }
92};
93
94/// Common base class shared among various IRBuilders.
95class IRBuilderBase {
96 /// Pairs of (metadata kind, MDNode *) that should be added to all newly
97 /// created instructions, like !dbg metadata.
98 SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy;
99
100 /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not
101 /// null. If \p MD is null, remove the entry with \p Kind.
102 void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) {
103 if (!MD) {
104 erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) {
105 return KV.first == Kind;
106 });
107 return;
108 }
109
110 for (auto &KV : MetadataToCopy)
111 if (KV.first == Kind) {
112 KV.second = MD;
113 return;
114 }
115
116 MetadataToCopy.emplace_back(Kind, MD);
117 }
118
119protected:
120 BasicBlock *BB;
121 BasicBlock::iterator InsertPt;
122 LLVMContext &Context;
123 const IRBuilderFolder &Folder;
124 const IRBuilderDefaultInserter &Inserter;
125
126 MDNode *DefaultFPMathTag;
127 FastMathFlags FMF;
128
129 bool IsFPConstrained;
130 fp::ExceptionBehavior DefaultConstrainedExcept;
131 RoundingMode DefaultConstrainedRounding;
132
133 ArrayRef<OperandBundleDef> DefaultOperandBundles;
134
135public:
136 IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
137 const IRBuilderDefaultInserter &Inserter,
138 MDNode *FPMathTag, ArrayRef<OperandBundleDef> OpBundles)
139 : Context(context), Folder(Folder), Inserter(Inserter),
140 DefaultFPMathTag(FPMathTag), IsFPConstrained(false),
141 DefaultConstrainedExcept(fp::ebStrict),
142 DefaultConstrainedRounding(RoundingMode::Dynamic),
143 DefaultOperandBundles(OpBundles) {
144 ClearInsertionPoint();
145 }
146
147 /// Insert and return the specified instruction.
148 template<typename InstTy>
149 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
150 Inserter.InsertHelper(I, Name, BB, InsertPt);
151 AddMetadataToInst(I);
152 return I;
153 }
154
155 /// No-op overload to handle constants.
156 Constant *Insert(Constant *C, const Twine& = "") const {
157 return C;
158 }
159
160 Value *Insert(Value *V, const Twine &Name = "") const {
161 if (Instruction *I = dyn_cast<Instruction>(V))
162 return Insert(I, Name);
163 assert(isa<Constant>(V))((void)0);
164 return V;
165 }
166
167 //===--------------------------------------------------------------------===//
168 // Builder configuration methods
169 //===--------------------------------------------------------------------===//
170
171 /// Clear the insertion point: created instructions will not be
172 /// inserted into a block.
173 void ClearInsertionPoint() {
174 BB = nullptr;
175 InsertPt = BasicBlock::iterator();
176 }
177
178 BasicBlock *GetInsertBlock() const { return BB; }
179 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
180 LLVMContext &getContext() const { return Context; }
181
182 /// This specifies that created instructions should be appended to the
183 /// end of the specified block.
184 void SetInsertPoint(BasicBlock *TheBB) {
185 BB = TheBB;
186 InsertPt = BB->end();
187 }
188
189 /// This specifies that created instructions should be inserted before
190 /// the specified instruction.
191 void SetInsertPoint(Instruction *I) {
192 BB = I->getParent();
193 InsertPt = I->getIterator();
194 assert(InsertPt != BB->end() && "Can't read debug loc from end()")((void)0);
195 SetCurrentDebugLocation(I->getDebugLoc());
196 }
197
198 /// This specifies that created instructions should be inserted at the
199 /// specified point.
200 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
201 BB = TheBB;
202 InsertPt = IP;
203 if (IP != TheBB->end())
204 SetCurrentDebugLocation(IP->getDebugLoc());
205 }
206
207 /// Set location information used by debugging information.
208 void SetCurrentDebugLocation(DebugLoc L) {
209 AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode());
210 }
211
212 /// Collect metadata with IDs \p MetadataKinds from \p Src which should be
213 /// added to all created instructions. Entries present in MedataDataToCopy but
214 /// not on \p Src will be dropped from MetadataToCopy.
215 void CollectMetadataToCopy(Instruction *Src,
216 ArrayRef<unsigned> MetadataKinds) {
217 for (unsigned K : MetadataKinds)
218 AddOrRemoveMetadataToCopy(K, Src->getMetadata(K));
219 }
220
221 /// Get location information used by debugging information.
222 DebugLoc getCurrentDebugLocation() const {
223 for (auto &KV : MetadataToCopy)
224 if (KV.first == LLVMContext::MD_dbg)
225 return {cast<DILocation>(KV.second)};
226
227 return {};
228 }
229
230 /// If this builder has a current debug location, set it on the
231 /// specified instruction.
232 void SetInstDebugLocation(Instruction *I) const {
233 for (const auto &KV : MetadataToCopy)
234 if (KV.first == LLVMContext::MD_dbg) {
235 I->setDebugLoc(DebugLoc(KV.second));
236 return;
237 }
238 }
239
240 /// Add all entries in MetadataToCopy to \p I.
241 void AddMetadataToInst(Instruction *I) const {
242 for (auto &KV : MetadataToCopy)
243 I->setMetadata(KV.first, KV.second);
244 }
245
246 /// Get the return type of the current function that we're emitting
247 /// into.
248 Type *getCurrentFunctionReturnType() const;
249
250 /// InsertPoint - A saved insertion point.
251 class InsertPoint {
252 BasicBlock *Block = nullptr;
253 BasicBlock::iterator Point;
254
255 public:
256 /// Creates a new insertion point which doesn't point to anything.
257 InsertPoint() = default;
258
259 /// Creates a new insertion point at the given location.
260 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
261 : Block(InsertBlock), Point(InsertPoint) {}
262
263 /// Returns true if this insert point is set.
264 bool isSet() const { return (Block != nullptr); }
265
266 BasicBlock *getBlock() const { return Block; }
267 BasicBlock::iterator getPoint() const { return Point; }
268 };
269
270 /// Returns the current insert point.
271 InsertPoint saveIP() const {
272 return InsertPoint(GetInsertBlock(), GetInsertPoint());
273 }
274
275 /// Returns the current insert point, clearing it in the process.
276 InsertPoint saveAndClearIP() {
277 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
278 ClearInsertionPoint();
279 return IP;
280 }
281
282 /// Sets the current insert point to a previously-saved location.
283 void restoreIP(InsertPoint IP) {
284 if (IP.isSet())
285 SetInsertPoint(IP.getBlock(), IP.getPoint());
286 else
287 ClearInsertionPoint();
288 }
289
290 /// Get the floating point math metadata being used.
291 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
292
293 /// Get the flags to be applied to created floating point ops
294 FastMathFlags getFastMathFlags() const { return FMF; }
295
296 FastMathFlags &getFastMathFlags() { return FMF; }
297
298 /// Clear the fast-math flags.
299 void clearFastMathFlags() { FMF.clear(); }
300
301 /// Set the floating point math metadata to be used.
302 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
303
304 /// Set the fast-math flags to be used with generated fp-math operators
305 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
306
307 /// Enable/Disable use of constrained floating point math. When
308 /// enabled the CreateF<op>() calls instead create constrained
309 /// floating point intrinsic calls. Fast math flags are unaffected
310 /// by this setting.
311 void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
312
313 /// Query for the use of constrained floating point math
314 bool getIsFPConstrained() { return IsFPConstrained; }
315
316 /// Set the exception handling to be used with constrained floating point
317 void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
318#ifndef NDEBUG1
319 Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(NewExcept);
320 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((void)0);
321#endif
322 DefaultConstrainedExcept = NewExcept;
323 }
324
325 /// Set the rounding mode handling to be used with constrained floating point
326 void setDefaultConstrainedRounding(RoundingMode NewRounding) {
327#ifndef NDEBUG1
328 Optional<StringRef> RoundingStr = RoundingModeToStr(NewRounding);
329 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((void)0);
330#endif
331 DefaultConstrainedRounding = NewRounding;
332 }
333
334 /// Get the exception handling used with constrained floating point
335 fp::ExceptionBehavior getDefaultConstrainedExcept() {
336 return DefaultConstrainedExcept;
337 }
338
339 /// Get the rounding mode handling used with constrained floating point
340 RoundingMode getDefaultConstrainedRounding() {
341 return DefaultConstrainedRounding;
342 }
343
344 void setConstrainedFPFunctionAttr() {
345 assert(BB && "Must have a basic block to set any function attributes!")((void)0);
346
347 Function *F = BB->getParent();
348 if (!F->hasFnAttribute(Attribute::StrictFP)) {
349 F->addFnAttr(Attribute::StrictFP);
350 }
351 }
352
353 void setConstrainedFPCallAttr(CallBase *I) {
354 I->addAttribute(AttributeList::FunctionIndex, Attribute::StrictFP);
355 }
356
357 void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
358 DefaultOperandBundles = OpBundles;
359 }
360
361 //===--------------------------------------------------------------------===//
362 // RAII helpers.
363 //===--------------------------------------------------------------------===//
364
365 // RAII object that stores the current insertion point and restores it
366 // when the object is destroyed. This includes the debug location.
367 class InsertPointGuard {
368 IRBuilderBase &Builder;
369 AssertingVH<BasicBlock> Block;
370 BasicBlock::iterator Point;
371 DebugLoc DbgLoc;
372
373 public:
374 InsertPointGuard(IRBuilderBase &B)
375 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
376 DbgLoc(B.getCurrentDebugLocation()) {}
377
378 InsertPointGuard(const InsertPointGuard &) = delete;
379 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
380
381 ~InsertPointGuard() {
382 Builder.restoreIP(InsertPoint(Block, Point));
383 Builder.SetCurrentDebugLocation(DbgLoc);
384 }
385 };
386
387 // RAII object that stores the current fast math settings and restores
388 // them when the object is destroyed.
389 class FastMathFlagGuard {
390 IRBuilderBase &Builder;
391 FastMathFlags FMF;
392 MDNode *FPMathTag;
393 bool IsFPConstrained;
394 fp::ExceptionBehavior DefaultConstrainedExcept;
395 RoundingMode DefaultConstrainedRounding;
396
397 public:
398 FastMathFlagGuard(IRBuilderBase &B)
399 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
400 IsFPConstrained(B.IsFPConstrained),
401 DefaultConstrainedExcept(B.DefaultConstrainedExcept),
402 DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
403
404 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
405 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
406
407 ~FastMathFlagGuard() {
408 Builder.FMF = FMF;
409 Builder.DefaultFPMathTag = FPMathTag;
410 Builder.IsFPConstrained = IsFPConstrained;
411 Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
412 Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
413 }
414 };
415
416 // RAII object that stores the current default operand bundles and restores
417 // them when the object is destroyed.
418 class OperandBundlesGuard {
419 IRBuilderBase &Builder;
420 ArrayRef<OperandBundleDef> DefaultOperandBundles;
421
422 public:
423 OperandBundlesGuard(IRBuilderBase &B)
424 : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
425
426 OperandBundlesGuard(const OperandBundlesGuard &) = delete;
427 OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
428
429 ~OperandBundlesGuard() {
430 Builder.DefaultOperandBundles = DefaultOperandBundles;
431 }
432 };
433
434
435 //===--------------------------------------------------------------------===//
436 // Miscellaneous creation methods.
437 //===--------------------------------------------------------------------===//
438
439 /// Make a new global variable with initializer type i8*
440 ///
441 /// Make a new global variable with an initializer that has array of i8 type
442 /// filled in with the null terminated string value specified. The new global
443 /// variable will be marked mergable with any others of the same contents. If
444 /// Name is specified, it is the name of the global variable created.
445 ///
446 /// If no module is given via \p M, it is take from the insertion point basic
447 /// block.
448 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
449 unsigned AddressSpace = 0,
450 Module *M = nullptr);
451
452 /// Get a constant value representing either true or false.
453 ConstantInt *getInt1(bool V) {
454 return ConstantInt::get(getInt1Ty(), V);
455 }
456
457 /// Get the constant value for i1 true.
458 ConstantInt *getTrue() {
459 return ConstantInt::getTrue(Context);
460 }
461
462 /// Get the constant value for i1 false.
463 ConstantInt *getFalse() {
464 return ConstantInt::getFalse(Context);
465 }
466
467 /// Get a constant 8-bit value.
468 ConstantInt *getInt8(uint8_t C) {
469 return ConstantInt::get(getInt8Ty(), C);
470 }
471
472 /// Get a constant 16-bit value.
473 ConstantInt *getInt16(uint16_t C) {
474 return ConstantInt::get(getInt16Ty(), C);
475 }
476
477 /// Get a constant 32-bit value.
478 ConstantInt *getInt32(uint32_t C) {
479 return ConstantInt::get(getInt32Ty(), C);
480 }
481
482 /// Get a constant 64-bit value.
483 ConstantInt *getInt64(uint64_t C) {
484 return ConstantInt::get(getInt64Ty(), C);
485 }
486
487 /// Get a constant N-bit value, zero extended or truncated from
488 /// a 64-bit value.
489 ConstantInt *getIntN(unsigned N, uint64_t C) {
490 return ConstantInt::get(getIntNTy(N), C);
491 }
492
493 /// Get a constant integer value.
494 ConstantInt *getInt(const APInt &AI) {
495 return ConstantInt::get(Context, AI);
496 }
497
498 //===--------------------------------------------------------------------===//
499 // Type creation methods
500 //===--------------------------------------------------------------------===//
501
502 /// Fetch the type representing a single bit
503 IntegerType *getInt1Ty() {
504 return Type::getInt1Ty(Context);
505 }
506
507 /// Fetch the type representing an 8-bit integer.
508 IntegerType *getInt8Ty() {
509 return Type::getInt8Ty(Context);
510 }
511
512 /// Fetch the type representing a 16-bit integer.
513 IntegerType *getInt16Ty() {
514 return Type::getInt16Ty(Context);
515 }
516
517 /// Fetch the type representing a 32-bit integer.
518 IntegerType *getInt32Ty() {
519 return Type::getInt32Ty(Context);
520 }
521
522 /// Fetch the type representing a 64-bit integer.
523 IntegerType *getInt64Ty() {
524 return Type::getInt64Ty(Context);
525 }
526
527 /// Fetch the type representing a 128-bit integer.
528 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
529
530 /// Fetch the type representing an N-bit integer.
531 IntegerType *getIntNTy(unsigned N) {
532 return Type::getIntNTy(Context, N);
533 }
534
535 /// Fetch the type representing a 16-bit floating point value.
536 Type *getHalfTy() {
537 return Type::getHalfTy(Context);
538 }
539
540 /// Fetch the type representing a 16-bit brain floating point value.
541 Type *getBFloatTy() {
542 return Type::getBFloatTy(Context);
543 }
544
545 /// Fetch the type representing a 32-bit floating point value.
546 Type *getFloatTy() {
547 return Type::getFloatTy(Context);
548 }
549
550 /// Fetch the type representing a 64-bit floating point value.
551 Type *getDoubleTy() {
552 return Type::getDoubleTy(Context);
553 }
554
555 /// Fetch the type representing void.
556 Type *getVoidTy() {
557 return Type::getVoidTy(Context);
558 }
559
560 /// Fetch the type representing a pointer to an 8-bit integer value.
561 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
562 return Type::getInt8PtrTy(Context, AddrSpace);
563 }
564
565 /// Fetch the type representing a pointer to an integer value.
566 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
567 return DL.getIntPtrType(Context, AddrSpace);
568 }
569
570 //===--------------------------------------------------------------------===//
571 // Intrinsic creation methods
572 //===--------------------------------------------------------------------===//
573
574 /// Create and insert a memset to the specified pointer and the
575 /// specified value.
576 ///
577 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
578 /// specified, it will be added to the instruction. Likewise with alias.scope
579 /// and noalias tags.
580 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
581 MaybeAlign Align, bool isVolatile = false,
582 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
583 MDNode *NoAliasTag = nullptr) {
584 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
585 TBAATag, ScopeTag, NoAliasTag);
586 }
587
588 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
589 bool isVolatile = false, MDNode *TBAATag = nullptr,
590 MDNode *ScopeTag = nullptr,
591 MDNode *NoAliasTag = nullptr);
592
593 /// Create and insert an element unordered-atomic memset of the region of
594 /// memory starting at the given pointer to the given value.
595 ///
596 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
597 /// specified, it will be added to the instruction. Likewise with alias.scope
598 /// and noalias tags.
599 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
600 uint64_t Size, Align Alignment,
601 uint32_t ElementSize,
602 MDNode *TBAATag = nullptr,
603 MDNode *ScopeTag = nullptr,
604 MDNode *NoAliasTag = nullptr) {
605 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
606 Align(Alignment), ElementSize,
607 TBAATag, ScopeTag, NoAliasTag);
608 }
609
610 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
611 Value *Size, Align Alignment,
612 uint32_t ElementSize,
613 MDNode *TBAATag = nullptr,
614 MDNode *ScopeTag = nullptr,
615 MDNode *NoAliasTag = nullptr);
616
617 /// Create and insert a memcpy between the specified pointers.
618 ///
619 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
620 /// specified, it will be added to the instruction. Likewise with alias.scope
621 /// and noalias tags.
622 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
623 MaybeAlign SrcAlign, uint64_t Size,
624 bool isVolatile = false, MDNode *TBAATag = nullptr,
625 MDNode *TBAAStructTag = nullptr,
626 MDNode *ScopeTag = nullptr,
627 MDNode *NoAliasTag = nullptr) {
628 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
629 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
630 NoAliasTag);
631 }
632
633 CallInst *CreateMemTransferInst(
634 Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
635 MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
636 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
637 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
638
639 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
640 MaybeAlign SrcAlign, Value *Size,
641 bool isVolatile = false, MDNode *TBAATag = nullptr,
642 MDNode *TBAAStructTag = nullptr,
643 MDNode *ScopeTag = nullptr,
644 MDNode *NoAliasTag = nullptr) {
645 return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
646 SrcAlign, Size, isVolatile, TBAATag,
647 TBAAStructTag, ScopeTag, NoAliasTag);
648 }
649
650 CallInst *
651 CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
652 MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false,
653 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
654 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
655
656 /// Create and insert an element unordered-atomic memcpy between the
657 /// specified pointers.
658 ///
659 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
660 ///
661 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
662 /// specified, it will be added to the instruction. Likewise with alias.scope
663 /// and noalias tags.
664 CallInst *CreateElementUnorderedAtomicMemCpy(
665 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
666 uint32_t ElementSize, MDNode *TBAATag = nullptr,
667 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
668 MDNode *NoAliasTag = nullptr);
669
670 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
671 MaybeAlign SrcAlign, uint64_t Size,
672 bool isVolatile = false, MDNode *TBAATag = nullptr,
673 MDNode *ScopeTag = nullptr,
674 MDNode *NoAliasTag = nullptr) {
675 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
676 isVolatile, TBAATag, ScopeTag, NoAliasTag);
677 }
678
679 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
680 MaybeAlign SrcAlign, Value *Size,
681 bool isVolatile = false, MDNode *TBAATag = nullptr,
682 MDNode *ScopeTag = nullptr,
683 MDNode *NoAliasTag = nullptr);
684
685 /// \brief Create and insert an element unordered-atomic memmove between the
686 /// specified pointers.
687 ///
688 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
689 /// respectively.
690 ///
691 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
692 /// specified, it will be added to the instruction. Likewise with alias.scope
693 /// and noalias tags.
694 CallInst *CreateElementUnorderedAtomicMemMove(
695 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
696 uint32_t ElementSize, MDNode *TBAATag = nullptr,
697 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
698 MDNode *NoAliasTag = nullptr);
699
700 /// Create a vector fadd reduction intrinsic of the source vector.
701 /// The first parameter is a scalar accumulator value for ordered reductions.
702 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
703
704 /// Create a vector fmul reduction intrinsic of the source vector.
705 /// The first parameter is a scalar accumulator value for ordered reductions.
706 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
707
708 /// Create a vector int add reduction intrinsic of the source vector.
709 CallInst *CreateAddReduce(Value *Src);
710
711 /// Create a vector int mul reduction intrinsic of the source vector.
712 CallInst *CreateMulReduce(Value *Src);
713
714 /// Create a vector int AND reduction intrinsic of the source vector.
715 CallInst *CreateAndReduce(Value *Src);
716
717 /// Create a vector int OR reduction intrinsic of the source vector.
718 CallInst *CreateOrReduce(Value *Src);
719
720 /// Create a vector int XOR reduction intrinsic of the source vector.
721 CallInst *CreateXorReduce(Value *Src);
722
723 /// Create a vector integer max reduction intrinsic of the source
724 /// vector.
725 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
726
727 /// Create a vector integer min reduction intrinsic of the source
728 /// vector.
729 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
730
731 /// Create a vector float max reduction intrinsic of the source
732 /// vector.
733 CallInst *CreateFPMaxReduce(Value *Src);
734
735 /// Create a vector float min reduction intrinsic of the source
736 /// vector.
737 CallInst *CreateFPMinReduce(Value *Src);
738
739 /// Create a lifetime.start intrinsic.
740 ///
741 /// If the pointer isn't i8* it will be converted.
742 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
743
744 /// Create a lifetime.end intrinsic.
745 ///
746 /// If the pointer isn't i8* it will be converted.
747 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
748
749 /// Create a call to invariant.start intrinsic.
750 ///
751 /// If the pointer isn't i8* it will be converted.
752 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
753
754 /// Create a call to Masked Load intrinsic
755 CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask,
756 Value *PassThru = nullptr, const Twine &Name = "");
757
758 /// Create a call to Masked Store intrinsic
759 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
760 Value *Mask);
761
762 /// Create a call to Masked Gather intrinsic
763 CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment,
764 Value *Mask = nullptr, Value *PassThru = nullptr,
765 const Twine &Name = "");
766
767 /// Create a call to Masked Scatter intrinsic
768 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
769 Value *Mask = nullptr);
770
771 /// Create an assume intrinsic call that allows the optimizer to
772 /// assume that the provided condition will be true.
773 ///
774 /// The optional argument \p OpBundles specifies operand bundles that are
775 /// added to the call instruction.
776 CallInst *CreateAssumption(Value *Cond,
777 ArrayRef<OperandBundleDef> OpBundles = llvm::None);
778
779 /// Create a llvm.experimental.noalias.scope.decl intrinsic call.
780 Instruction *CreateNoAliasScopeDeclaration(Value *Scope);
781 Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) {
782 return CreateNoAliasScopeDeclaration(
783 MetadataAsValue::get(Context, ScopeTag));
784 }
785
786 /// Create a call to the experimental.gc.statepoint intrinsic to
787 /// start a new statepoint sequence.
788 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
789 Value *ActualCallee,
790 ArrayRef<Value *> CallArgs,
791 Optional<ArrayRef<Value *>> DeoptArgs,
792 ArrayRef<Value *> GCArgs,
793 const Twine &Name = "");
794
795 /// Create a call to the experimental.gc.statepoint intrinsic to
796 /// start a new statepoint sequence.
797 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
798 Value *ActualCallee, uint32_t Flags,
799 ArrayRef<Value *> CallArgs,
800 Optional<ArrayRef<Use>> TransitionArgs,
801 Optional<ArrayRef<Use>> DeoptArgs,
802 ArrayRef<Value *> GCArgs,
803 const Twine &Name = "");
804
805 /// Conveninence function for the common case when CallArgs are filled
806 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
807 /// .get()'ed to get the Value pointer.
808 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
809 Value *ActualCallee, ArrayRef<Use> CallArgs,
810 Optional<ArrayRef<Value *>> DeoptArgs,
811 ArrayRef<Value *> GCArgs,
812 const Twine &Name = "");
813
814 /// Create an invoke to the experimental.gc.statepoint intrinsic to
815 /// start a new statepoint sequence.
816 InvokeInst *
817 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
818 Value *ActualInvokee, BasicBlock *NormalDest,
819 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
820 Optional<ArrayRef<Value *>> DeoptArgs,
821 ArrayRef<Value *> GCArgs, const Twine &Name = "");
822
823 /// Create an invoke to the experimental.gc.statepoint intrinsic to
824 /// start a new statepoint sequence.
825 InvokeInst *CreateGCStatepointInvoke(
826 uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
827 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
828 ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs,
829 Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
830 const Twine &Name = "");
831
832 // Convenience function for the common case when CallArgs are filled in using
833 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
834 // get the Value *.
835 InvokeInst *
836 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
837 Value *ActualInvokee, BasicBlock *NormalDest,
838 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
839 Optional<ArrayRef<Value *>> DeoptArgs,
840 ArrayRef<Value *> GCArgs, const Twine &Name = "");
841
842 /// Create a call to the experimental.gc.result intrinsic to extract
843 /// the result from a call wrapped in a statepoint.
844 CallInst *CreateGCResult(Instruction *Statepoint,
845 Type *ResultType,
846 const Twine &Name = "");
847
848 /// Create a call to the experimental.gc.relocate intrinsics to
849 /// project the relocated value of one pointer from the statepoint.
850 CallInst *CreateGCRelocate(Instruction *Statepoint,
851 int BaseOffset,
852 int DerivedOffset,
853 Type *ResultType,
854 const Twine &Name = "");
855
856 /// Create a call to the experimental.gc.pointer.base intrinsic to get the
857 /// base pointer for the specified derived pointer.
858 CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = "");
859
860 /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get
861 /// the offset of the specified derived pointer from its base.
862 CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = "");
863
864 /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale
865 /// will be the same type as that of \p Scaling.
866 Value *CreateVScale(Constant *Scaling, const Twine &Name = "");
867
868 /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...>
869 Value *CreateStepVector(Type *DstType, const Twine &Name = "");
870
871 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
872 /// type.
873 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
874 Instruction *FMFSource = nullptr,
875 const Twine &Name = "");
876
877 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
878 /// first type.
879 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
880 Instruction *FMFSource = nullptr,
881 const Twine &Name = "");
882
883 /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If
884 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
885 /// the intrinsic.
886 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
887 ArrayRef<Value *> Args,
888 Instruction *FMFSource = nullptr,
889 const Twine &Name = "");
890
891 /// Create call to the minnum intrinsic.
892 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
893 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
894 }
895
896 /// Create call to the maxnum intrinsic.
897 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
898 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
899 }
900
901 /// Create call to the minimum intrinsic.
902 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
903 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
904 }
905
906 /// Create call to the maximum intrinsic.
907 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
908 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
909 }
910
911 /// Create a call to the arithmetic_fence intrinsic.
912 CallInst *CreateArithmeticFence(Value *Val, Type *DstType,
913 const Twine &Name = "") {
914 return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr,
915 Name);
916 }
917
918 /// Create a call to the experimental.vector.extract intrinsic.
919 CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx,
920 const Twine &Name = "") {
921 return CreateIntrinsic(Intrinsic::experimental_vector_extract,
922 {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr,
923 Name);
924 }
925
926 /// Create a call to the experimental.vector.insert intrinsic.
927 CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec,
928 Value *Idx, const Twine &Name = "") {
929 return CreateIntrinsic(Intrinsic::experimental_vector_insert,
930 {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx},
931 nullptr, Name);
932 }
933
934private:
935 /// Create a call to a masked intrinsic with given Id.
936 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
937 ArrayRef<Type *> OverloadedTypes,
938 const Twine &Name = "");
939
940 Value *getCastedInt8PtrValue(Value *Ptr);
941
942 //===--------------------------------------------------------------------===//
943 // Instruction creation methods: Terminators
944 //===--------------------------------------------------------------------===//
945
946private:
947 /// Helper to add branch weight and unpredictable metadata onto an
948 /// instruction.
949 /// \returns The annotated instruction.
950 template <typename InstTy>
951 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
952 if (Weights)
953 I->setMetadata(LLVMContext::MD_prof, Weights);
954 if (Unpredictable)
955 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
956 return I;
957 }
958
959public:
960 /// Create a 'ret void' instruction.
961 ReturnInst *CreateRetVoid() {
962 return Insert(ReturnInst::Create(Context));
963 }
964
965 /// Create a 'ret <val>' instruction.
966 ReturnInst *CreateRet(Value *V) {
967 return Insert(ReturnInst::Create(Context, V));
968 }
969
970 /// Create a sequence of N insertvalue instructions,
971 /// with one Value from the retVals array each, that build a aggregate
972 /// return value one value at a time, and a ret instruction to return
973 /// the resulting aggregate value.
974 ///
975 /// This is a convenience function for code that uses aggregate return values
976 /// as a vehicle for having multiple return values.
977 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
978 Value *V = UndefValue::get(getCurrentFunctionReturnType());
979 for (unsigned i = 0; i != N; ++i)
980 V = CreateInsertValue(V, retVals[i], i, "mrv");
981 return Insert(ReturnInst::Create(Context, V));
982 }
983
984 /// Create an unconditional 'br label X' instruction.
985 BranchInst *CreateBr(BasicBlock *Dest) {
986 return Insert(BranchInst::Create(Dest));
987 }
988
989 /// Create a conditional 'br Cond, TrueDest, FalseDest'
990 /// instruction.
991 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
992 MDNode *BranchWeights = nullptr,
993 MDNode *Unpredictable = nullptr) {
994 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
995 BranchWeights, Unpredictable));
996 }
997
998 /// Create a conditional 'br Cond, TrueDest, FalseDest'
999 /// instruction. Copy branch meta data if available.
1000 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1001 Instruction *MDSrc) {
1002 BranchInst *Br = BranchInst::Create(True, False, Cond);
1003 if (MDSrc) {
1004 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
1005 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
1006 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
1007 }
1008 return Insert(Br);
1009 }
1010
1011 /// Create a switch instruction with the specified value, default dest,
1012 /// and with a hint for the number of cases that will be added (for efficient
1013 /// allocation).
1014 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1015 MDNode *BranchWeights = nullptr,
1016 MDNode *Unpredictable = nullptr) {
1017 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1018 BranchWeights, Unpredictable));
1019 }
1020
1021 /// Create an indirect branch instruction with the specified address
1022 /// operand, with an optional hint for the number of destinations that will be
1023 /// added (for efficient allocation).
1024 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1025 return Insert(IndirectBrInst::Create(Addr, NumDests));
1026 }
1027
1028 /// Create an invoke instruction.
1029 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1030 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1031 ArrayRef<Value *> Args,
1032 ArrayRef<OperandBundleDef> OpBundles,
1033 const Twine &Name = "") {
1034 InvokeInst *II =
1035 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles);
1036 if (IsFPConstrained)
1037 setConstrainedFPCallAttr(II);
1038 return Insert(II, Name);
1039 }
1040 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1041 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1042 ArrayRef<Value *> Args = None,
1043 const Twine &Name = "") {
1044 InvokeInst *II =
1045 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args);
1046 if (IsFPConstrained)
1047 setConstrainedFPCallAttr(II);
1048 return Insert(II, Name);
1049 }
1050
1051 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1052 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1053 ArrayRef<OperandBundleDef> OpBundles,
1054 const Twine &Name = "") {
1055 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1056 NormalDest, UnwindDest, Args, OpBundles, Name);
1057 }
1058
1059 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1060 BasicBlock *UnwindDest,
1061 ArrayRef<Value *> Args = None,
1062 const Twine &Name = "") {
1063 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1064 NormalDest, UnwindDest, Args, Name);
1065 }
1066
1067 /// \brief Create a callbr instruction.
1068 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1069 BasicBlock *DefaultDest,
1070 ArrayRef<BasicBlock *> IndirectDests,
1071 ArrayRef<Value *> Args = None,
1072 const Twine &Name = "") {
1073 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1074 Args), Name);
1075 }
1076 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1077 BasicBlock *DefaultDest,
1078 ArrayRef<BasicBlock *> IndirectDests,
1079 ArrayRef<Value *> Args,
1080 ArrayRef<OperandBundleDef> OpBundles,
1081 const Twine &Name = "") {
1082 return Insert(
1083 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1084 OpBundles), Name);
1085 }
1086
1087 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1088 ArrayRef<BasicBlock *> IndirectDests,
1089 ArrayRef<Value *> Args = None,
1090 const Twine &Name = "") {
1091 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1092 DefaultDest, IndirectDests, Args, Name);
1093 }
1094 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1095 ArrayRef<BasicBlock *> IndirectDests,
1096 ArrayRef<Value *> Args,
1097 ArrayRef<OperandBundleDef> OpBundles,
1098 const Twine &Name = "") {
1099 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1100 DefaultDest, IndirectDests, Args, Name);
1101 }
1102
1103 ResumeInst *CreateResume(Value *Exn) {
1104 return Insert(ResumeInst::Create(Exn));
1105 }
1106
1107 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1108 BasicBlock *UnwindBB = nullptr) {
1109 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1110 }
1111
1112 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1113 unsigned NumHandlers,
1114 const Twine &Name = "") {
1115 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1116 Name);
1117 }
1118
1119 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1120 const Twine &Name = "") {
1121 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1122 }
1123
1124 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1125 ArrayRef<Value *> Args = None,
1126 const Twine &Name = "") {
1127 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1128 }
1129
1130 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1131 return Insert(CatchReturnInst::Create(CatchPad, BB));
1132 }
1133
1134 UnreachableInst *CreateUnreachable() {
1135 return Insert(new UnreachableInst(Context));
1136 }
1137
1138 //===--------------------------------------------------------------------===//
1139 // Instruction creation methods: Binary Operators
1140 //===--------------------------------------------------------------------===//
1141private:
1142 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1143 Value *LHS, Value *RHS,
1144 const Twine &Name,
1145 bool HasNUW, bool HasNSW) {
1146 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1147 if (HasNUW) BO->setHasNoUnsignedWrap();
1148 if (HasNSW) BO->setHasNoSignedWrap();
1149 return BO;
1150 }
1151
1152 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1153 FastMathFlags FMF) const {
1154 if (!FPMD)
1155 FPMD = DefaultFPMathTag;
1156 if (FPMD)
1157 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1158 I->setFastMathFlags(FMF);
1159 return I;
1160 }
1161
1162 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
1163 Value *R, const Twine &Name) const {
1164 auto *LC = dyn_cast<Constant>(L);
1165 auto *RC = dyn_cast<Constant>(R);
1166 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
1167 }
1168
1169 Value *getConstrainedFPRounding(Optional<RoundingMode> Rounding) {
1170 RoundingMode UseRounding = DefaultConstrainedRounding;
1171
1172 if (Rounding.hasValue())
1173 UseRounding = Rounding.getValue();
1174
1175 Optional<StringRef> RoundingStr = RoundingModeToStr(UseRounding);
1176 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((void)0);
1177 auto *RoundingMDS = MDString::get(Context, RoundingStr.getValue());
1178
1179 return MetadataAsValue::get(Context, RoundingMDS);
1180 }
1181
1182 Value *getConstrainedFPExcept(Optional<fp::ExceptionBehavior> Except) {
1183 fp::ExceptionBehavior UseExcept = DefaultConstrainedExcept;
1184
1185 if (Except.hasValue())
1186 UseExcept = Except.getValue();
1187
1188 Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(UseExcept);
1189 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((void)0);
1190 auto *ExceptMDS = MDString::get(Context, ExceptStr.getValue());
1191
1192 return MetadataAsValue::get(Context, ExceptMDS);
1193 }
1194
1195 Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1196 assert(CmpInst::isFPPredicate(Predicate) &&((void)0)
1197 Predicate != CmpInst::FCMP_FALSE &&((void)0)
1198 Predicate != CmpInst::FCMP_TRUE &&((void)0)
1199 "Invalid constrained FP comparison predicate!")((void)0);
1200
1201 StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1202 auto *PredicateMDS = MDString::get(Context, PredicateStr);
1203
1204 return MetadataAsValue::get(Context, PredicateMDS);
1205 }
1206
1207public:
1208 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1209 bool HasNUW = false, bool HasNSW = false) {
1210 if (auto *LC = dyn_cast<Constant>(LHS))
1211 if (auto *RC = dyn_cast<Constant>(RHS))
1212 return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
1213 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
1214 HasNUW, HasNSW);
1215 }
1216
1217 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1218 return CreateAdd(LHS, RHS, Name, false, true);
1219 }
1220
1221 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1222 return CreateAdd(LHS, RHS, Name, true, false);
1223 }
1224
1225 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1226 bool HasNUW = false, bool HasNSW = false) {
1227 if (auto *LC = dyn_cast<Constant>(LHS))
1228 if (auto *RC = dyn_cast<Constant>(RHS))
1229 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
1230 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
1231 HasNUW, HasNSW);
1232 }
1233
1234 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1235 return CreateSub(LHS, RHS, Name, false, true);
1236 }
1237
1238 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1239 return CreateSub(LHS, RHS, Name, true, false);
1240 }
1241
1242 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1243 bool HasNUW = false, bool HasNSW = false) {
1244 if (auto *LC = dyn_cast<Constant>(LHS))
1245 if (auto *RC = dyn_cast<Constant>(RHS))
1246 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1247 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1248 HasNUW, HasNSW);
1249 }
1250
1251 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1252 return CreateMul(LHS, RHS, Name, false, true);
1253 }
1254
1255 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1256 return CreateMul(LHS, RHS, Name, true, false);
1257 }
1258
1259 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1260 bool isExact = false) {
1261 if (auto *LC = dyn_cast<Constant>(LHS))
1262 if (auto *RC = dyn_cast<Constant>(RHS))
1263 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1264 if (!isExact)
1265 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1266 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1267 }
1268
1269 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1270 return CreateUDiv(LHS, RHS, Name, true);
1271 }
1272
1273 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1274 bool isExact = false) {
1275 if (auto *LC = dyn_cast<Constant>(LHS))
1276 if (auto *RC = dyn_cast<Constant>(RHS))
1277 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1278 if (!isExact)
1279 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1280 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1281 }
1282
1283 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1284 return CreateSDiv(LHS, RHS, Name, true);
1285 }
1286
1287 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1288 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1289 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1290 }
1291
1292 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1293 if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
1294 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1295 }
1296
1297 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1298 bool HasNUW = false, bool HasNSW = false) {
1299 if (auto *LC = dyn_cast<Constant>(LHS))
1300 if (auto *RC = dyn_cast<Constant>(RHS))
1301 return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
1302 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1303 HasNUW, HasNSW);
1304 }
1305
1306 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1307 bool HasNUW = false, bool HasNSW = false) {
1308 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1309 HasNUW, HasNSW);
1310 }
1311
1312 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1313 bool HasNUW = false, bool HasNSW = false) {
1314 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1315 HasNUW, HasNSW);
1316 }
1317
1318 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1319 bool isExact = false) {
1320 if (auto *LC = dyn_cast<Constant>(LHS))
1321 if (auto *RC = dyn_cast<Constant>(RHS))
1322 return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
1323 if (!isExact)
1324 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1325 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1326 }
1327
1328 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1329 bool isExact = false) {
1330 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1331 }
1332
1333 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1334 bool isExact = false) {
1335 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1336 }
1337
1338 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1339 bool isExact = false) {
1340 if (auto *LC = dyn_cast<Constant>(LHS))
1341 if (auto *RC = dyn_cast<Constant>(RHS))
1342 return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
1343 if (!isExact)
1344 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1345 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1346 }
1347
1348 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1349 bool isExact = false) {
1350 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1351 }
1352
1353 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1354 bool isExact = false) {
1355 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1356 }
1357
1358 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1359 if (auto *RC = dyn_cast<Constant>(RHS)) {
1360 if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne())
1361 return LHS; // LHS & -1 -> LHS
1362 if (auto *LC = dyn_cast<Constant>(LHS))
1363 return Insert(Folder.CreateAnd(LC, RC), Name);
1364 }
1365 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1366 }
1367
1368 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1369 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1370 }
1371
1372 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1373 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1374 }
1375
1376 Value *CreateAnd(ArrayRef<Value*> Ops) {
1377 assert(!Ops.empty())((void)0);
1378 Value *Accum = Ops[0];
1379 for (unsigned i = 1; i < Ops.size(); i++)
1380 Accum = CreateAnd(Accum, Ops[i]);
1381 return Accum;
1382 }
1383
1384 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1385 if (auto *RC = dyn_cast<Constant>(RHS)) {
1386 if (RC->isNullValue())
1387 return LHS; // LHS | 0 -> LHS
1388 if (auto *LC = dyn_cast<Constant>(LHS))
1389 return Insert(Folder.CreateOr(LC, RC), Name);
1390 }
1391 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1392 }
1393
1394 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1395 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1396 }
1397
1398 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1399 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1400 }
1401
1402 Value *CreateOr(ArrayRef<Value*> Ops) {
1403 assert(!Ops.empty())((void)0);
1404 Value *Accum = Ops[0];
1405 for (unsigned i = 1; i < Ops.size(); i++)
1406 Accum = CreateOr(Accum, Ops[i]);
1407 return Accum;
1408 }
1409
1410 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1411 if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
1412 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1413 }
1414
1415 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1416 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1417 }
1418
1419 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1420 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1421 }
1422
1423 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1424 MDNode *FPMD = nullptr) {
1425 if (IsFPConstrained)
1426 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1427 L, R, nullptr, Name, FPMD);
1428
1429 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1430 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1431 return Insert(I, Name);
1432 }
1433
1434 /// Copy fast-math-flags from an instruction rather than using the builder's
1435 /// default FMF.
1436 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1437 const Twine &Name = "") {
1438 if (IsFPConstrained)
1439 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1440 L, R, FMFSource, Name);
1441
1442 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1443 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
1444 FMFSource->getFastMathFlags());
1445 return Insert(I, Name);
1446 }
1447
1448 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1449 MDNode *FPMD = nullptr) {
1450 if (IsFPConstrained)
1451 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1452 L, R, nullptr, Name, FPMD);
1453
1454 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1455 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1456 return Insert(I, Name);
1457 }
1458
1459 /// Copy fast-math-flags from an instruction rather than using the builder's
1460 /// default FMF.
1461 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1462 const Twine &Name = "") {
1463 if (IsFPConstrained)
1464 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1465 L, R, FMFSource, Name);
1466
1467 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1468 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
1469 FMFSource->getFastMathFlags());
1470 return Insert(I, Name);
1471 }
1472
1473 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1474 MDNode *FPMD = nullptr) {
1475 if (IsFPConstrained)
1476 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1477 L, R, nullptr, Name, FPMD);
1478
1479 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1480 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1481 return Insert(I, Name);
1482 }
1483
1484 /// Copy fast-math-flags from an instruction rather than using the builder's
1485 /// default FMF.
1486 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1487 const Twine &Name = "") {
1488 if (IsFPConstrained)
1489 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1490 L, R, FMFSource, Name);
1491
1492 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1493 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
1494 FMFSource->getFastMathFlags());
1495 return Insert(I, Name);
1496 }
1497
1498 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1499 MDNode *FPMD = nullptr) {
1500 if (IsFPConstrained)
1501 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1502 L, R, nullptr, Name, FPMD);
1503
1504 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1505 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1506 return Insert(I, Name);
1507 }
1508
1509 /// Copy fast-math-flags from an instruction rather than using the builder's
1510 /// default FMF.
1511 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1512 const Twine &Name = "") {
1513 if (IsFPConstrained)
1514 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1515 L, R, FMFSource, Name);
1516
1517 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1518 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
1519 FMFSource->getFastMathFlags());
1520 return Insert(I, Name);
1521 }
1522
1523 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1524 MDNode *FPMD = nullptr) {
1525 if (IsFPConstrained)
1526 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1527 L, R, nullptr, Name, FPMD);
1528
1529 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1530 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1531 return Insert(I, Name);
1532 }
1533
1534 /// Copy fast-math-flags from an instruction rather than using the builder's
1535 /// default FMF.
1536 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1537 const Twine &Name = "") {
1538 if (IsFPConstrained)
1539 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1540 L, R, FMFSource, Name);
1541
1542 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1543 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
1544 FMFSource->getFastMathFlags());
1545 return Insert(I, Name);
1546 }
1547
1548 Value *CreateBinOp(Instruction::BinaryOps Opc,
1549 Value *LHS, Value *RHS, const Twine &Name = "",
1550 MDNode *FPMathTag = nullptr) {
1551 if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
1552 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1553 if (isa<FPMathOperator>(BinOp))
1554 setFPAttrs(BinOp, FPMathTag, FMF);
1555 return Insert(BinOp, Name);
1556 }
1557
1558 Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1559 assert(Cond2->getType()->isIntOrIntVectorTy(1))((void)0);
1560 return CreateSelect(Cond1, Cond2,
1561 ConstantInt::getNullValue(Cond2->getType()), Name);
1562 }
1563
1564 Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1565 assert(Cond2->getType()->isIntOrIntVectorTy(1))((void)0);
1566 return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()),
1567 Cond2, Name);
1568 }
1569
1570 CallInst *CreateConstrainedFPBinOp(
1571 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1572 const Twine &Name = "", MDNode *FPMathTag = nullptr,
1573 Optional<RoundingMode> Rounding = None,
1574 Optional<fp::ExceptionBehavior> Except = None);
1575
1576 Value *CreateNeg(Value *V, const Twine &Name = "",
1577 bool HasNUW = false, bool HasNSW = false) {
1578 if (auto *VC = dyn_cast<Constant>(V))
1579 return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
1580 BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
1581 if (HasNUW) BO->setHasNoUnsignedWrap();
1582 if (HasNSW) BO->setHasNoSignedWrap();
1583 return BO;
1584 }
1585
1586 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1587 return CreateNeg(V, Name, false, true);
1588 }
1589
1590 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1591 return CreateNeg(V, Name, true, false);
1592 }
1593
1594 Value *CreateFNeg(Value *V, const Twine &Name = "",
1595 MDNode *FPMathTag = nullptr) {
1596 if (auto *VC = dyn_cast<Constant>(V))
1597 return Insert(Folder.CreateFNeg(VC), Name);
1598 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1599 Name);
1600 }
1601
1602 /// Copy fast-math-flags from an instruction rather than using the builder's
1603 /// default FMF.
1604 Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1605 const Twine &Name = "") {
1606 if (auto *VC = dyn_cast<Constant>(V))
1607 return Insert(Folder.CreateFNeg(VC), Name);
1608 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr,
1609 FMFSource->getFastMathFlags()),
1610 Name);
1611 }
1612
1613 Value *CreateNot(Value *V, const Twine &Name = "") {
1614 if (auto *VC = dyn_cast<Constant>(V))
1615 return Insert(Folder.CreateNot(VC), Name);
1616 return Insert(BinaryOperator::CreateNot(V), Name);
1617 }
1618
1619 Value *CreateUnOp(Instruction::UnaryOps Opc,
1620 Value *V, const Twine &Name = "",
1621 MDNode *FPMathTag = nullptr) {
1622 if (auto *VC = dyn_cast<Constant>(V))
1623 return Insert(Folder.CreateUnOp(Opc, VC), Name);
1624 Instruction *UnOp = UnaryOperator::Create(Opc, V);
1625 if (isa<FPMathOperator>(UnOp))
1626 setFPAttrs(UnOp, FPMathTag, FMF);
1627 return Insert(UnOp, Name);
1628 }
1629
1630 /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1631 /// Correct number of operands must be passed accordingly.
1632 Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1633 const Twine &Name = "", MDNode *FPMathTag = nullptr);
1634
1635 //===--------------------------------------------------------------------===//
1636 // Instruction creation methods: Memory Instructions
1637 //===--------------------------------------------------------------------===//
1638
1639 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1640 Value *ArraySize = nullptr, const Twine &Name = "") {
1641 const DataLayout &DL = BB->getModule()->getDataLayout();
1642 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1643 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1644 }
1645
1646 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1647 const Twine &Name = "") {
1648 const DataLayout &DL = BB->getModule()->getDataLayout();
1649 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1650 unsigned AddrSpace = DL.getAllocaAddrSpace();
1651 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1652 }
1653
1654 /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1655 /// converting the string to 'bool' for the isVolatile parameter.
1656 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1657 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1658 }
1659
1660 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1661 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1662 }
1663
1664 LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1665 const Twine &Name = "") {
1666 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
1667 }
1668
1669 // Deprecated [opaque pointer types]
1670 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
char *Name)
1671 const char *Name),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
char *Name)
1672 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
char *Name)
1673 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
char *Name)
{
1674 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1675 }
1676
1677 // Deprecated [opaque pointer types]
1678 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
Twine &Name = "")
1679 const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
Twine &Name = "")
1680 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
Twine &Name = "")
1681 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, const
Twine &Name = "")
{
1682 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1683 }
1684
1685 // Deprecated [opaque pointer types]
1686 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool
isVolatile, const Twine &Name = "")
1687 bool isVolatile,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool
isVolatile, const Twine &Name = "")
1688 const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool
isVolatile, const Twine &Name = "")
1689 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool
isVolatile, const Twine &Name = "")
1690 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateLoad(Value *Ptr, bool
isVolatile, const Twine &Name = "")
{
1691 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, isVolatile,
1692 Name);
1693 }
1694
1695 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1696 return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
1697 }
1698
1699 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1700 const char *Name) {
1701 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1702 }
1703
1704 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1705 const Twine &Name = "") {
1706 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1707 }
1708
1709 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1710 bool isVolatile, const Twine &Name = "") {
1711 if (!Align) {
1712 const DataLayout &DL = BB->getModule()->getDataLayout();
1713 Align = DL.getABITypeAlign(Ty);
1714 }
1715 return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
1716 }
1717
1718 // Deprecated [opaque pointer types]
1719 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const char *Name)
1720 MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const char *Name)
1721 const char *Name),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const char *Name)
1722 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const char *Name)
1723 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const char *Name)
{
1724 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1725 Align, Name);
1726 }
1727 // Deprecated [opaque pointer types]
1728 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const Twine &Name = "")
1729 MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const Twine &Name = "")
1730 const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const Twine &Name = "")
1731 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const Twine &Name = "")
1732 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, const Twine &Name = "")
{
1733 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1734 Align, Name);
1735 }
1736 // Deprecated [opaque pointer types]
1737 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
1738 MaybeAlign Align,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
1739 bool isVolatile,[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
1740 const Twine &Name = ""),[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
1741 "Use the version that explicitly specifies the "[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
1742 "loaded type instead")[[deprecated("Use the version that explicitly specifies the "
"loaded type instead")]] LoadInst *CreateAlignedLoad(Value *
Ptr, MaybeAlign Align, bool isVolatile, const Twine &Name
= "")
{
1743 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1744 Align, isVolatile, Name);
1745 }
1746
1747 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1748 bool isVolatile = false) {
1749 if (!Align) {
1750 const DataLayout &DL = BB->getModule()->getDataLayout();
1751 Align = DL.getABITypeAlign(Val->getType());
1752 }
1753 return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
1754 }
1755 FenceInst *CreateFence(AtomicOrdering Ordering,
1756 SyncScope::ID SSID = SyncScope::System,
1757 const Twine &Name = "") {
1758 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1759 }
1760
1761 AtomicCmpXchgInst *
1762 CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align,
1763 AtomicOrdering SuccessOrdering,
1764 AtomicOrdering FailureOrdering,
1765 SyncScope::ID SSID = SyncScope::System) {
1766 if (!Align) {
1767 const DataLayout &DL = BB->getModule()->getDataLayout();
1768 Align = llvm::Align(DL.getTypeStoreSize(New->getType()));
1769 }
1770
1771 return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering,
1772 FailureOrdering, SSID));
1773 }
1774
1775 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr,
1776 Value *Val, MaybeAlign Align,
1777 AtomicOrdering Ordering,
1778 SyncScope::ID SSID = SyncScope::System) {
1779 if (!Align) {
1780 const DataLayout &DL = BB->getModule()->getDataLayout();
1781 Align = llvm::Align(DL.getTypeStoreSize(Val->getType()));
1782 }
1783
1784 return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID));
1785 }
1786
1787 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList
, const Twine &Name = "")
1788 Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList
, const Twine &Name = "")
1789 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList
, const Twine &Name = "")
1790 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList
, const Twine &Name = "")
{
1791 return CreateGEP(Ptr->getType()->getScalarType()->getPointerElementType(),
1792 Ptr, IdxList, Name);
1793 }
1794
1795 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1796 const Twine &Name = "") {
1797 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1798 // Every index must be constant.
1799 size_t i, e;
1800 for (i = 0, e = IdxList.size(); i != e; ++i)
1801 if (!isa<Constant>(IdxList[i]))
1802 break;
1803 if (i == e)
1804 return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
1805 }
1806 return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
1807 }
1808
1809 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *>
IdxList, const Twine &Name = "")
1810 Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *>
IdxList, const Twine &Name = "")
1811 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *>
IdxList, const Twine &Name = "")
1812 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *>
IdxList, const Twine &Name = "")
{
1813 return CreateInBoundsGEP(
1814 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1815 Name);
1816 }
1817
1818 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1819 const Twine &Name = "") {
1820 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1821 // Every index must be constant.
1822 size_t i, e;
1823 for (i = 0, e = IdxList.size(); i != e; ++i)
1824 if (!isa<Constant>(IdxList[i]))
1825 break;
1826 if (i == e)
1827 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
1828 Name);
1829 }
1830 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
1831 }
1832
1833 Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
1834 if (auto *PC = dyn_cast<Constant>(Ptr))
1835 if (auto *IC = dyn_cast<Constant>(Idx))
1836 return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
1837 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1838 }
1839
1840 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
1841 const Twine &Name = "") {
1842 if (auto *PC = dyn_cast<Constant>(Ptr))
1843 if (auto *IC = dyn_cast<Constant>(Idx))
1844 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
1845 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1846 }
1847
1848 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const
Twine &Name = "")
1849 Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const
Twine &Name = "")
1850 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const
Twine &Name = "")
1851 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const
Twine &Name = "")
{
1852 return CreateConstGEP1_32(
1853 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0,
1854 Name);
1855 }
1856
1857 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1858 const Twine &Name = "") {
1859 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1860
1861 if (auto *PC = dyn_cast<Constant>(Ptr))
1862 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1863
1864 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1865 }
1866
1867 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1868 const Twine &Name = "") {
1869 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1870
1871 if (auto *PC = dyn_cast<Constant>(Ptr))
1872 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1873
1874 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1875 }
1876
1877 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1878 const Twine &Name = "") {
1879 Value *Idxs[] = {
1880 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1881 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1882 };
1883
1884 if (auto *PC = dyn_cast<Constant>(Ptr))
1885 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1886
1887 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1888 }
1889
1890 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1891 unsigned Idx1, const Twine &Name = "") {
1892 Value *Idxs[] = {
1893 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1894 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1895 };
1896
1897 if (auto *PC = dyn_cast<Constant>(Ptr))
1898 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1899
1900 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1901 }
1902
1903 Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1904 const Twine &Name = "") {
1905 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1906
1907 if (auto *PC = dyn_cast<Constant>(Ptr))
1908 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1909
1910 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1911 }
1912
1913 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const
Twine &Name = "")
1914 Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const
Twine &Name = "")
1915 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const
Twine &Name = "")
1916 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const
Twine &Name = "")
{
1917 return CreateConstGEP1_64(
1918 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0,
1919 Name);
1920 }
1921
1922 Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1923 const Twine &Name = "") {
1924 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1925
1926 if (auto *PC = dyn_cast<Constant>(Ptr))
1927 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1928
1929 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1930 }
1931
1932 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0
, const Twine &Name = "")
1933 Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0
, const Twine &Name = "")
1934 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0
, const Twine &Name = "")
1935 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0
, const Twine &Name = "")
{
1936 return CreateConstInBoundsGEP1_64(
1937 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0,
1938 Name);
1939 }
1940
1941 Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1942 const Twine &Name = "") {
1943 Value *Idxs[] = {
1944 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1945 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1946 };
1947
1948 if (auto *PC = dyn_cast<Constant>(Ptr))
1949 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1950
1951 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1952 }
1953
1954 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t
Idx1, const Twine &Name = "")
1955 Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t
Idx1, const Twine &Name = "")
1956 const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t
Idx1, const Twine &Name = "")
1957 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t
Idx1, const Twine &Name = "")
{
1958 return CreateConstGEP2_64(
1959 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0,
1960 Idx1, Name);
1961 }
1962
1963 Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1964 uint64_t Idx1, const Twine &Name = "") {
1965 Value *Idxs[] = {
1966 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1967 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1968 };
1969
1970 if (auto *PC = dyn_cast<Constant>(Ptr))
1971 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1972
1973 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1974 }
1975
1976 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0
, uint64_t Idx1, const Twine &Name = "")
1977 Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0,[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0
, uint64_t Idx1, const Twine &Name = "")
1978 uint64_t Idx1, const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0
, uint64_t Idx1, const Twine &Name = "")
1979 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0
, uint64_t Idx1, const Twine &Name = "")
{
1980 return CreateConstInBoundsGEP2_64(
1981 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, Idx0,
1982 Idx1, Name);
1983 }
1984
1985 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1986 const Twine &Name = "") {
1987 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1988 }
1989
1990 LLVM_ATTRIBUTE_DEPRECATED([[deprecated("Use the version with explicit element type instead"
)]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine
&Name = "")
1991 Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = ""),[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine
&Name = "")
1992 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine
&Name = "")
{
1993 return CreateConstInBoundsGEP2_32(
1994 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, 0, Idx,
1995 Name);
1996 }
1997
1998 /// Same as CreateGlobalString, but return a pointer with "i8*" type
1999 /// instead of a pointer to array of i8.
2000 ///
2001 /// If no module is given via \p M, it is take from the insertion point basic
2002 /// block.
2003 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
2004 unsigned AddressSpace = 0,
2005 Module *M = nullptr) {
2006 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
2007 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
2008 Constant *Indices[] = {Zero, Zero};
2009 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
2010 Indices);
2011 }
2012
2013 //===--------------------------------------------------------------------===//
2014 // Instruction creation methods: Cast/Conversion Operators
2015 //===--------------------------------------------------------------------===//
2016
2017 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
2018 return CreateCast(Instruction::Trunc, V, DestTy, Name);
2019 }
2020
2021 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
2022 return CreateCast(Instruction::ZExt, V, DestTy, Name);
2023 }
2024
2025 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
2026 return CreateCast(Instruction::SExt, V, DestTy, Name);
2027 }
2028
2029 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
2030 /// the value untouched if the type of V is already DestTy.
2031 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
2032 const Twine &Name = "") {
2033 assert(V->getType()->isIntOrIntVectorTy() &&((void)0)
2034 DestTy->isIntOrIntVectorTy() &&((void)0)
2035 "Can only zero extend/truncate integers!")((void)0);
2036 Type *VTy = V->getType();
2037 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2038 return CreateZExt(V, DestTy, Name);
2039 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2040 return CreateTrunc(V, DestTy, Name);
2041 return V;
2042 }
2043
2044 /// Create a SExt or Trunc from the integer value V to DestTy. Return
2045 /// the value untouched if the type of V is already DestTy.
2046 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
2047 const Twine &Name = "") {
2048 assert(V->getType()->isIntOrIntVectorTy() &&((void)0)
2049 DestTy->isIntOrIntVectorTy() &&((void)0)
2050 "Can only sign extend/truncate integers!")((void)0);
2051 Type *VTy = V->getType();
2052 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2053 return CreateSExt(V, DestTy, Name);
2054 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2055 return CreateTrunc(V, DestTy, Name);
2056 return V;
2057 }
2058
2059 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
2060 if (IsFPConstrained)
2061 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
2062 V, DestTy, nullptr, Name);
2063 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
2064 }
2065
2066 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
2067 if (IsFPConstrained)
2068 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
2069 V, DestTy, nullptr, Name);
2070 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
2071 }
2072
2073 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2074 if (IsFPConstrained)
2075 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
2076 V, DestTy, nullptr, Name);
2077 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
2078 }
2079
2080 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2081 if (IsFPConstrained)
2082 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
2083 V, DestTy, nullptr, Name);
2084 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
2085 }
2086
2087 Value *CreateFPTrunc(Value *V, Type *DestTy,
2088 const Twine &Name = "") {
2089 if (IsFPConstrained)
2090 return CreateConstrainedFPCast(
2091 Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
2092 Name);
2093 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
2094 }
2095
2096 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
2097 if (IsFPConstrained)
2098 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
2099 V, DestTy, nullptr, Name);
2100 return CreateCast(Instruction::FPExt, V, DestTy, Name);
2101 }
2102
2103 Value *CreatePtrToInt(Value *V, Type *DestTy,
2104 const Twine &Name = "") {
2105 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
2106 }
2107
2108 Value *CreateIntToPtr(Value *V, Type *DestTy,
2109 const Twine &Name = "") {
2110 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
2111 }
2112
2113 Value *CreateBitCast(Value *V, Type *DestTy,
2114 const Twine &Name = "") {
2115 return CreateCast(Instruction::BitCast, V, DestTy, Name);
2116 }
2117
2118 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
2119 const Twine &Name = "") {
2120 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
2121 }
2122
2123 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
2124 const Twine &Name = "") {
2125 if (V->getType() == DestTy)
2126 return V;
2127 if (auto *VC = dyn_cast<Constant>(V))
2128 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
2129 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
2130 }
2131
2132 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
2133 const Twine &Name = "") {
2134 if (V->getType() == DestTy)
2135 return V;
2136 if (auto *VC = dyn_cast<Constant>(V))
2137 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
2138 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
2139 }
2140
2141 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
2142 const Twine &Name = "") {
2143 if (V->getType() == DestTy)
2144 return V;
2145 if (auto *VC = dyn_cast<Constant>(V))
2146 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
2147 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
2148 }
2149
2150 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
2151 const Twine &Name = "") {
2152 if (V->getType() == DestTy)
2153 return V;
2154 if (auto *VC = dyn_cast<Constant>(V))
2155 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2156 return Insert(CastInst::Create(Op, V, DestTy), Name);
2157 }
2158
2159 Value *CreatePointerCast(Value *V, Type *DestTy,
2160 const Twine &Name = "") {
2161 if (V->getType() == DestTy)
2162 return V;
2163 if (auto *VC = dyn_cast<Constant>(V))
2164 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2165 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2166 }
2167
2168 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2169 const Twine &Name = "") {
2170 if (V->getType() == DestTy)
2171 return V;
2172
2173 if (auto *VC = dyn_cast<Constant>(V)) {
2174 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2175 Name);
2176 }
2177
2178 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2179 Name);
2180 }
2181
2182 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2183 const Twine &Name = "") {
2184 if (V->getType() == DestTy)
2185 return V;
2186 if (auto *VC = dyn_cast<Constant>(V))
2187 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2188 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2189 }
2190
2191 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2192 const Twine &Name = "") {
2193 if (V->getType() == DestTy)
2194 return V;
2195 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2196 return CreatePtrToInt(V, DestTy, Name);
2197 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2198 return CreateIntToPtr(V, DestTy, Name);
2199
2200 return CreateBitCast(V, DestTy, Name);
2201 }
2202
2203 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2204 if (V->getType() == DestTy)
2205 return V;
2206 if (auto *VC = dyn_cast<Constant>(V))
2207 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2208 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2209 }
2210
2211 CallInst *CreateConstrainedFPCast(
2212 Intrinsic::ID ID, Value *V, Type *DestTy,
2213 Instruction *FMFSource = nullptr, const Twine &Name = "",
2214 MDNode *FPMathTag = nullptr,
2215 Optional<RoundingMode> Rounding = None,
2216 Optional<fp::ExceptionBehavior> Except = None);
2217
2218 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2219 // compile time error, instead of converting the string to bool for the
2220 // isSigned parameter.
2221 Value *CreateIntCast(Value *, Type *, const char *) = delete;
2222
2223 //===--------------------------------------------------------------------===//
2224 // Instruction creation methods: Compare Instructions
2225 //===--------------------------------------------------------------------===//
2226
2227 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2228 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2229 }
2230
2231 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2232 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2233 }
2234
2235 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2236 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2237 }
2238
2239 Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2240 return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2241 }
2242
2243 Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2244 return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2245 }
2246
2247 Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2248 return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2249 }
2250
2251 Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2252 return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2253 }
2254
2255 Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2256 return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2257 }
2258
2259 Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2260 return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2261 }
2262
2263 Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2264 return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2265 }
2266
2267 Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2268 MDNode *FPMathTag = nullptr) {
2269 return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2270 }
2271
2272 Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2273 MDNode *FPMathTag = nullptr) {
2274 return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2275 }
2276
2277 Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2278 MDNode *FPMathTag = nullptr) {
2279 return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2280 }
2281
2282 Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2283 MDNode *FPMathTag = nullptr) {
2284 return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2285 }
2286
2287 Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2288 MDNode *FPMathTag = nullptr) {
2289 return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2290 }
2291
2292 Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2293 MDNode *FPMathTag = nullptr) {
2294 return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2295 }
2296
2297 Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2298 MDNode *FPMathTag = nullptr) {
2299 return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2300 }
2301
2302 Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2303 MDNode *FPMathTag = nullptr) {
2304 return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2305 }
2306
2307 Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2308 MDNode *FPMathTag = nullptr) {
2309 return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2310 }
2311
2312 Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2313 MDNode *FPMathTag = nullptr) {
2314 return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2315 }
2316
2317 Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2318 MDNode *FPMathTag = nullptr) {
2319 return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2320 }
2321
2322 Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2323 MDNode *FPMathTag = nullptr) {
2324 return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2325 }
2326
2327 Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2328 MDNode *FPMathTag = nullptr) {
2329 return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2330 }
2331
2332 Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2333 MDNode *FPMathTag = nullptr) {
2334 return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2335 }
2336
2337 Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2338 const Twine &Name = "") {
2339 if (auto *LC = dyn_cast<Constant>(LHS))
2340 if (auto *RC = dyn_cast<Constant>(RHS))
2341 return Insert(Folder.CreateICmp(P, LC, RC), Name);
2342 return Insert(new ICmpInst(P, LHS, RHS), Name);
2343 }
2344
2345 // Create a quiet floating-point comparison (i.e. one that raises an FP
2346 // exception only in the case where an input is a signaling NaN).
2347 // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2348 Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2349 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2350 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2351 }
2352
2353 Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2354 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2355 return CmpInst::isFPPredicate(Pred)
2356 ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
2357 : CreateICmp(Pred, LHS, RHS, Name);
2358 }
2359
2360 // Create a signaling floating-point comparison (i.e. one that raises an FP
2361 // exception whenever an input is any NaN, signaling or quiet).
2362 // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2363 Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2364 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2365 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2366 }
2367
2368private:
2369 // Helper routine to create either a signaling or a quiet FP comparison.
2370 Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2371 const Twine &Name, MDNode *FPMathTag,
2372 bool IsSignaling);
2373
2374public:
2375 CallInst *CreateConstrainedFPCmp(
2376 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2377 const Twine &Name = "", Optional<fp::ExceptionBehavior> Except = None);
2378
2379 //===--------------------------------------------------------------------===//
2380 // Instruction creation methods: Other Instructions
2381 //===--------------------------------------------------------------------===//
2382
2383 PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2384 const Twine &Name = "") {
2385 PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2386 if (isa<FPMathOperator>(Phi))
2387 setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2388 return Insert(Phi, Name);
2389 }
2390
2391 CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2392 ArrayRef<Value *> Args = None, const Twine &Name = "",
2393 MDNode *FPMathTag = nullptr) {
2394 CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2395 if (IsFPConstrained)
2396 setConstrainedFPCallAttr(CI);
2397 if (isa<FPMathOperator>(CI))
2398 setFPAttrs(CI, FPMathTag, FMF);
2399 return Insert(CI, Name);
2400 }
2401
2402 CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2403 ArrayRef<OperandBundleDef> OpBundles,
2404 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2405 CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2406 if (IsFPConstrained)
2407 setConstrainedFPCallAttr(CI);
2408 if (isa<FPMathOperator>(CI))
2409 setFPAttrs(CI, FPMathTag, FMF);
2410 return Insert(CI, Name);
2411 }
2412
2413 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None,
2414 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2415 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2416 FPMathTag);
2417 }
2418
2419 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2420 ArrayRef<OperandBundleDef> OpBundles,
2421 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2422 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2423 OpBundles, Name, FPMathTag);
2424 }
2425
2426 CallInst *CreateConstrainedFPCall(
2427 Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2428 Optional<RoundingMode> Rounding = None,
2429 Optional<fp::ExceptionBehavior> Except = None);
2430
2431 Value *CreateSelect(Value *C, Value *True, Value *False,
2432 const Twine &Name = "", Instruction *MDFrom = nullptr);
2433
2434 VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2435 return Insert(new VAArgInst(List, Ty), Name);
2436 }
2437
2438 Value *CreateExtractElement(Value *Vec, Value *Idx,
2439 const Twine &Name = "") {
2440 if (auto *VC = dyn_cast<Constant>(Vec))
2441 if (auto *IC = dyn_cast<Constant>(Idx))
2442 return Insert(Folder.CreateExtractElement(VC, IC), Name);
2443 return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2444 }
2445
2446 Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2447 const Twine &Name = "") {
2448 return CreateExtractElement(Vec, getInt64(Idx), Name);
2449 }
2450
2451 Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2452 const Twine &Name = "") {
2453 if (auto *VC = dyn_cast<Constant>(Vec))
2454 if (auto *NC = dyn_cast<Constant>(NewElt))
2455 if (auto *IC = dyn_cast<Constant>(Idx))
2456 return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
2457 return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2458 }
2459
2460 Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2461 const Twine &Name = "") {
2462 return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2463 }
2464
2465 Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2466 const Twine &Name = "") {
2467 SmallVector<int, 16> IntMask;
2468 ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
2469 return CreateShuffleVector(V1, V2, IntMask, Name);
2470 }
2471
2472 LLVM_ATTRIBUTE_DEPRECATED(Value *CreateShuffleVector(Value *V1, Value *V2,[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector
(Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine
&Name = "")
2473 ArrayRef<uint32_t> Mask,[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector
(Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine
&Name = "")
2474 const Twine &Name = ""),[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector
(Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine
&Name = "")
2475 "Pass indices as 'int' instead")[[deprecated("Pass indices as 'int' instead")]] Value *CreateShuffleVector
(Value *V1, Value *V2, ArrayRef<uint32_t> Mask, const Twine
&Name = "")
{
2476 SmallVector<int, 16> IntMask;
2477 IntMask.assign(Mask.begin(), Mask.end());
2478 return CreateShuffleVector(V1, V2, IntMask, Name);
2479 }
2480
2481 /// See class ShuffleVectorInst for a description of the mask representation.
2482 Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
2483 const Twine &Name = "") {
2484 if (auto *V1C = dyn_cast<Constant>(V1))
2485 if (auto *V2C = dyn_cast<Constant>(V2))
2486 return Insert(Folder.CreateShuffleVector(V1C, V2C, Mask), Name);
2487 return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2488 }
2489
2490 /// Create a unary shuffle. The second vector operand of the IR instruction
2491 /// is poison.
2492 Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
2493 const Twine &Name = "") {
2494 return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name);
2495 }
2496
2497 Value *CreateExtractValue(Value *Agg,
2498 ArrayRef<unsigned> Idxs,
2499 const Twine &Name = "") {
2500 if (auto *AggC = dyn_cast<Constant>(Agg))
2501 return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
2502 return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2503 }
2504
2505 Value *CreateInsertValue(Value *Agg, Value *Val,
2506 ArrayRef<unsigned> Idxs,
2507 const Twine &Name = "") {
2508 if (auto *AggC = dyn_cast<Constant>(Agg))
2509 if (auto *ValC = dyn_cast<Constant>(Val))
2510 return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
2511 return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2512 }
2513
2514 LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2515 const Twine &Name = "") {
2516 return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2517 }
2518
2519 Value *CreateFreeze(Value *V, const Twine &Name = "") {
2520 return Insert(new FreezeInst(V), Name);
2521 }
2522
2523 //===--------------------------------------------------------------------===//
2524 // Utility creation methods
2525 //===--------------------------------------------------------------------===//
2526
2527 /// Return an i1 value testing if \p Arg is null.
2528 Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2529 return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
2530 Name);
2531 }
2532
2533 /// Return an i1 value testing if \p Arg is not null.
2534 Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2535 return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
2536 Name);
2537 }
2538
2539 /// Return the i64 difference between two pointer values, dividing out
2540 /// the size of the pointed-to objects.
2541 ///
2542 /// This is intended to implement C-style pointer subtraction. As such, the
2543 /// pointers must be appropriately aligned for their element types and
2544 /// pointing into the same object.
2545 Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "");
2546
2547 /// Create a launder.invariant.group intrinsic call. If Ptr type is
2548 /// different from pointer to i8, it's casted to pointer to i8 in the same
2549 /// address space before call and casted back to Ptr type after call.
2550 Value *CreateLaunderInvariantGroup(Value *Ptr);
2551
2552 /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2553 /// different from pointer to i8, it's casted to pointer to i8 in the same
2554 /// address space before call and casted back to Ptr type after call.
2555 Value *CreateStripInvariantGroup(Value *Ptr);
2556
2557 /// Return a vector value that contains the vector V reversed
2558 Value *CreateVectorReverse(Value *V, const Twine &Name = "");
2559
2560 /// Return a vector splice intrinsic if using scalable vectors, otherwise
2561 /// return a shufflevector. If the immediate is positive, a vector is
2562 /// extracted from concat(V1, V2), starting at Imm. If the immediate
2563 /// is negative, we extract -Imm elements from V1 and the remaining
2564 /// elements from V2. Imm is a signed integer in the range
2565 /// -VL <= Imm < VL (where VL is the runtime vector length of the
2566 /// source/result vector)
2567 Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
2568 const Twine &Name = "");
2569
2570 /// Return a vector value that contains \arg V broadcasted to \p
2571 /// NumElts elements.
2572 Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
2573
2574 /// Return a vector value that contains \arg V broadcasted to \p
2575 /// EC elements.
2576 Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
2577
2578 /// Return a value that has been extracted from a larger integer type.
2579 Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2580 IntegerType *ExtractedTy, uint64_t Offset,
2581 const Twine &Name);
2582
2583 Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2584 unsigned Dimension, unsigned LastIndex,
2585 MDNode *DbgInfo);
2586
2587 Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2588 MDNode *DbgInfo);
2589
2590 Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2591 unsigned Index, unsigned FieldIndex,
2592 MDNode *DbgInfo);
2593
2594private:
2595 /// Helper function that creates an assume intrinsic call that
2596 /// represents an alignment assumption on the provided pointer \p PtrValue
2597 /// with offset \p OffsetValue and alignment value \p AlignValue.
2598 CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2599 Value *PtrValue, Value *AlignValue,
2600 Value *OffsetValue);
2601
2602public:
2603 /// Create an assume intrinsic call that represents an alignment
2604 /// assumption on the provided pointer.
2605 ///
2606 /// An optional offset can be provided, and if it is provided, the offset
2607 /// must be subtracted from the provided pointer to get the pointer with the
2608 /// specified alignment.
2609 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2610 unsigned Alignment,
2611 Value *OffsetValue = nullptr);
2612
2613 /// Create an assume intrinsic call that represents an alignment
2614 /// assumption on the provided pointer.
2615 ///
2616 /// An optional offset can be provided, and if it is provided, the offset
2617 /// must be subtracted from the provided pointer to get the pointer with the
2618 /// specified alignment.
2619 ///
2620 /// This overload handles the condition where the Alignment is dependent
2621 /// on an existing value rather than a static value.
2622 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2623 Value *Alignment,
2624 Value *OffsetValue = nullptr);
2625};
2626
2627/// This provides a uniform API for creating instructions and inserting
2628/// them into a basic block: either at the end of a BasicBlock, or at a specific
2629/// iterator location in a block.
2630///
2631/// Note that the builder does not expose the full generality of LLVM
2632/// instructions. For access to extra instruction properties, use the mutators
2633/// (e.g. setVolatile) on the instructions after they have been
2634/// created. Convenience state exists to specify fast-math flags and fp-math
2635/// tags.
2636///
2637/// The first template argument specifies a class to use for creating constants.
2638/// This defaults to creating minimally folded constants. The second template
2639/// argument allows clients to specify custom insertion hooks that are called on
2640/// every newly created insertion.
2641template <typename FolderTy = ConstantFolder,
2642 typename InserterTy = IRBuilderDefaultInserter>
2643class IRBuilder : public IRBuilderBase {
2644private:
2645 FolderTy Folder;
2646 InserterTy Inserter;
2647
2648public:
2649 IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2650 MDNode *FPMathTag = nullptr,
2651 ArrayRef<OperandBundleDef> OpBundles = None)
2652 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2653 Folder(Folder), Inserter(Inserter) {}
2654
2655 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2656 ArrayRef<OperandBundleDef> OpBundles = None)
2657 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2658
2659 explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2660 MDNode *FPMathTag = nullptr,
2661 ArrayRef<OperandBundleDef> OpBundles = None)
2662 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2663 FPMathTag, OpBundles), Folder(Folder) {
2664 SetInsertPoint(TheBB);
2665 }
2666
2667 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2668 ArrayRef<OperandBundleDef> OpBundles = None)
2669 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2670 FPMathTag, OpBundles) {
2671 SetInsertPoint(TheBB);
2672 }
2673
2674 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
2675 ArrayRef<OperandBundleDef> OpBundles = None)
2676 : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter,
20
Called C++ object pointer is null
2677 FPMathTag, OpBundles) {
2678 SetInsertPoint(IP);
2679 }
2680
2681 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
2682 MDNode *FPMathTag = nullptr,
2683 ArrayRef<OperandBundleDef> OpBundles = None)
2684 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2685 FPMathTag, OpBundles), Folder(Folder) {
2686 SetInsertPoint(TheBB, IP);
2687 }
2688
2689 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
2690 MDNode *FPMathTag = nullptr,
2691 ArrayRef<OperandBundleDef> OpBundles = None)
2692 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2693 FPMathTag, OpBundles) {
2694 SetInsertPoint(TheBB, IP);
2695 }
2696
2697 /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
2698 /// or FastMathFlagGuard instead.
2699 IRBuilder(const IRBuilder &) = delete;
2700
2701 InserterTy &getInserter() { return Inserter; }
2702};
2703
2704// Create wrappers for C Binding types (see CBindingWrapping.h).
2705DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast
<IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const
IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef
>(const_cast<IRBuilder<>*>(P)); }
2706
2707} // end namespace llvm
2708
2709#endif // LLVM_IR_IRBUILDER_H