Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
Warning:line 2171, column 9
Value stored to 'MBBJoined' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name VarLocBasedImpl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
1//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file VarLocBasedImpl.cpp
10///
11/// LiveDebugValues is an optimistic "available expressions" dataflow
12/// algorithm. The set of expressions is the set of machine locations
13/// (registers, spill slots, constants) that a variable fragment might be
14/// located, qualified by a DIExpression and indirect-ness flag, while each
15/// variable is identified by a DebugVariable object. The availability of an
16/// expression begins when a DBG_VALUE instruction specifies the location of a
17/// DebugVariable, and continues until that location is clobbered or
18/// re-specified by a different DBG_VALUE for the same DebugVariable.
19///
20/// The output of LiveDebugValues is additional DBG_VALUE instructions,
21/// placed to extend variable locations as far they're available. This file
22/// and the VarLocBasedLDV class is an implementation that explicitly tracks
23/// locations, using the VarLoc class.
24///
25/// The canonical "available expressions" problem doesn't have expression
26/// clobbering, instead when a variable is re-assigned, any expressions using
27/// that variable get invalidated. LiveDebugValues can map onto "available
28/// expressions" by having every register represented by a variable, which is
29/// used in an expression that becomes available at a DBG_VALUE instruction.
30/// When the register is clobbered, its variable is effectively reassigned, and
31/// expressions computed from it become unavailable. A similar construct is
32/// needed when a DebugVariable has its location re-specified, to invalidate
33/// all other locations for that DebugVariable.
34///
35/// Using the dataflow analysis to compute the available expressions, we create
36/// a DBG_VALUE at the beginning of each block where the expression is
37/// live-in. This propagates variable locations into every basic block where
38/// the location can be determined, rather than only having DBG_VALUEs in blocks
39/// where locations are specified due to an assignment or some optimization.
40/// Movements of values between registers and spill slots are annotated with
41/// DBG_VALUEs too to track variable values bewteen locations. All this allows
42/// DbgEntityHistoryCalculator to focus on only the locations within individual
43/// blocks, facilitating testing and improving modularity.
44///
45/// We follow an optimisic dataflow approach, with this lattice:
46///
47/// \verbatim
48/// ┬ "Unknown"
49/// |
50/// v
51/// True
52/// |
53/// v
54/// ⊥ False
55/// \endverbatim With "True" signifying that the expression is available (and
56/// thus a DebugVariable's location is the corresponding register), while
57/// "False" signifies that the expression is unavailable. "Unknown"s never
58/// survive to the end of the analysis (see below).
59///
60/// Formally, all DebugVariable locations that are live-out of a block are
61/// initialized to \top. A blocks live-in values take the meet of the lattice
62/// value for every predecessors live-outs, except for the entry block, where
63/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64/// function for a block assigns an expression for a DebugVariable to be "True"
65/// if a DBG_VALUE in the block specifies it; "False" if the location is
66/// clobbered; or the live-in value if it is unaffected by the block. We
67/// visit each block in reverse post order until a fixedpoint is reached. The
68/// solution produced is maximal.
69///
70/// Intuitively, we start by assuming that every expression / variable location
71/// is at least "True", and then propagate "False" from the entry block and any
72/// clobbers until there are no more changes to make. This gives us an accurate
73/// solution because all incorrect locations will have a "False" propagated into
74/// them. It also gives us a solution that copes well with loops by assuming
75/// that variable locations are live-through every loop, and then removing those
76/// that are not through dataflow.
77///
78/// Within LiveDebugValues: each variable location is represented by a
79/// VarLoc object that identifies the source variable, the set of
80/// machine-locations that currently describe it (a single location for
81/// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
82/// specifies the location. Each VarLoc is indexed in the (function-scope) \p
83/// VarLocMap, giving each VarLoc a set of unique indexes, each of which
84/// corresponds to one of the VarLoc's machine-locations and can be used to
85/// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
86/// locations, the dataflow analysis in this pass identifies locations by their
87/// indices in the VarLocMap, meaning all the variable locations in a block can
88/// be described by a sparse vector of VarLocMap indicies.
89///
90/// All the storage for the dataflow analysis is local to the ExtendRanges
91/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
92/// in and out lattice values for each block. "OpenRanges" maintains a list of
93/// variable locations and, with the "process" method, evaluates the transfer
94/// function of each block. "flushPendingLocs" installs debug value instructions
95/// for each live-in location at the start of blocks, while "Transfers" records
96/// transfers of values between machine-locations.
97///
98/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
99/// implementation. Instead, unvisited blocks implicitly have all lattice
100/// values set as "Unknown". After being visited, there will be path back to
101/// the entry block where the lattice value is "False", and as the transfer
102/// function cannot make new "Unknown" locations, there are no scenarios where
103/// a block can have an "Unknown" location after being visited. Similarly, we
104/// don't enumerate all possible variable locations before exploring the
105/// function: when a new location is discovered, all blocks previously explored
106/// were implicitly "False" but unrecorded, and become explicitly "False" when
107/// a new VarLoc is created with its bit not set in predecessor InLocs or
108/// OutLocs.
109///
110//===----------------------------------------------------------------------===//
111
112#include "LiveDebugValues.h"
113
114#include "llvm/ADT/CoalescingBitVector.h"
115#include "llvm/ADT/DenseMap.h"
116#include "llvm/ADT/PostOrderIterator.h"
117#include "llvm/ADT/SmallPtrSet.h"
118#include "llvm/ADT/SmallSet.h"
119#include "llvm/ADT/SmallVector.h"
120#include "llvm/ADT/Statistic.h"
121#include "llvm/ADT/UniqueVector.h"
122#include "llvm/CodeGen/LexicalScopes.h"
123#include "llvm/CodeGen/MachineBasicBlock.h"
124#include "llvm/CodeGen/MachineFrameInfo.h"
125#include "llvm/CodeGen/MachineFunction.h"
126#include "llvm/CodeGen/MachineFunctionPass.h"
127#include "llvm/CodeGen/MachineInstr.h"
128#include "llvm/CodeGen/MachineInstrBuilder.h"
129#include "llvm/CodeGen/MachineMemOperand.h"
130#include "llvm/CodeGen/MachineOperand.h"
131#include "llvm/CodeGen/PseudoSourceValue.h"
132#include "llvm/CodeGen/RegisterScavenging.h"
133#include "llvm/CodeGen/TargetFrameLowering.h"
134#include "llvm/CodeGen/TargetInstrInfo.h"
135#include "llvm/CodeGen/TargetLowering.h"
136#include "llvm/CodeGen/TargetPassConfig.h"
137#include "llvm/CodeGen/TargetRegisterInfo.h"
138#include "llvm/CodeGen/TargetSubtargetInfo.h"
139#include "llvm/Config/llvm-config.h"
140#include "llvm/IR/DIBuilder.h"
141#include "llvm/IR/DebugInfoMetadata.h"
142#include "llvm/IR/DebugLoc.h"
143#include "llvm/IR/Function.h"
144#include "llvm/IR/Module.h"
145#include "llvm/InitializePasses.h"
146#include "llvm/MC/MCRegisterInfo.h"
147#include "llvm/Pass.h"
148#include "llvm/Support/Casting.h"
149#include "llvm/Support/Compiler.h"
150#include "llvm/Support/Debug.h"
151#include "llvm/Support/TypeSize.h"
152#include "llvm/Support/raw_ostream.h"
153#include "llvm/Target/TargetMachine.h"
154#include <algorithm>
155#include <cassert>
156#include <cstdint>
157#include <functional>
158#include <queue>
159#include <tuple>
160#include <utility>
161#include <vector>
162
163using namespace llvm;
164
165#define DEBUG_TYPE"livedebugvalues" "livedebugvalues"
166
167STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted")static llvm::Statistic NumInserted = {"livedebugvalues", "NumInserted"
, "Number of DBG_VALUE instructions inserted"}
;
168
169// Options to prevent pathological compile-time behavior. If InputBBLimit and
170// InputDbgValueLimit are both exceeded, range extension is disabled.
171static cl::opt<unsigned> InputBBLimit(
172 "livedebugvalues-input-bb-limit",
173 cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
174 cl::init(10000), cl::Hidden);
175static cl::opt<unsigned> InputDbgValueLimit(
176 "livedebugvalues-input-dbg-value-limit",
177 cl::desc(
178 "Maximum input DBG_VALUE insts supported by debug range extension"),
179 cl::init(50000), cl::Hidden);
180
181/// If \p Op is a stack or frame register return true, otherwise return false.
182/// This is used to avoid basing the debug entry values on the registers, since
183/// we do not support it at the moment.
184static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
185 const MachineInstr &MI,
186 const TargetRegisterInfo *TRI) {
187 if (!Op.isReg())
188 return false;
189
190 const MachineFunction *MF = MI.getParent()->getParent();
191 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
192 Register SP = TLI->getStackPointerRegisterToSaveRestore();
193 Register FP = TRI->getFrameRegister(*MF);
194 Register Reg = Op.getReg();
195
196 return Reg && Reg != SP && Reg != FP;
197}
198
199namespace {
200
201// Max out the number of statically allocated elements in DefinedRegsSet, as
202// this prevents fallback to std::set::count() operations.
203using DefinedRegsSet = SmallSet<Register, 32>;
204
205// The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
206// that represent Entry Values; every VarLoc in the set will also appear
207// exactly once at Location=0.
208// As a result, each VarLoc may appear more than once in this "set", but each
209// range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
210// "true" set (i.e. each VarLoc may appear only once), and the range Location=0
211// is the set of all VarLocs.
212using VarLocSet = CoalescingBitVector<uint64_t>;
213
214/// A type-checked pair of {Register Location (or 0), Index}, used to index
215/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
216/// for insertion into a \ref VarLocSet, and efficiently converted back. The
217/// type-checker helps ensure that the conversions aren't lossy.
218///
219/// Why encode a location /into/ the VarLocMap index? This makes it possible
220/// to find the open VarLocs killed by a register def very quickly. This is a
221/// performance-critical operation for LiveDebugValues.
222struct LocIndex {
223 using u32_location_t = uint32_t;
224 using u32_index_t = uint32_t;
225
226 u32_location_t Location; // Physical registers live in the range [1;2^30) (see
227 // \ref MCRegister), so we have plenty of range left
228 // here to encode non-register locations.
229 u32_index_t Index;
230
231 /// The location that has an entry for every VarLoc in the map.
232 static constexpr u32_location_t kUniversalLocation = 0;
233
234 /// The first location that is reserved for VarLocs with locations of kind
235 /// RegisterKind.
236 static constexpr u32_location_t kFirstRegLocation = 1;
237
238 /// The first location greater than 0 that is not reserved for VarLocs with
239 /// locations of kind RegisterKind.
240 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
241
242 /// A special location reserved for VarLocs with locations of kind
243 /// SpillLocKind.
244 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
245
246 /// A special location reserved for VarLocs of kind EntryValueBackupKind and
247 /// EntryValueCopyBackupKind.
248 static constexpr u32_location_t kEntryValueBackupLocation =
249 kFirstInvalidRegLocation + 1;
250
251 LocIndex(u32_location_t Location, u32_index_t Index)
252 : Location(Location), Index(Index) {}
253
254 uint64_t getAsRawInteger() const {
255 return (static_cast<uint64_t>(Location) << 32) | Index;
256 }
257
258 template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
259 static_assert(std::is_unsigned<IntT>::value &&
260 sizeof(ID) == sizeof(uint64_t),
261 "Cannot convert raw integer to LocIndex");
262 return {static_cast<u32_location_t>(ID >> 32),
263 static_cast<u32_index_t>(ID)};
264 }
265
266 /// Get the start of the interval reserved for VarLocs of kind RegisterKind
267 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
268 static uint64_t rawIndexForReg(Register Reg) {
269 return LocIndex(Reg, 0).getAsRawInteger();
270 }
271
272 /// Return a range covering all set indices in the interval reserved for
273 /// \p Location in \p Set.
274 static auto indexRangeForLocation(const VarLocSet &Set,
275 u32_location_t Location) {
276 uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
277 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
278 return Set.half_open_range(Start, End);
279 }
280};
281
282// Simple Set for storing all the VarLoc Indices at a Location bucket.
283using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
284// Vector of all `LocIndex`s for a given VarLoc; the same Location should not
285// appear in any two of these, as each VarLoc appears at most once in any
286// Location bucket.
287using LocIndices = SmallVector<LocIndex, 2>;
288
289class VarLocBasedLDV : public LDVImpl {
290private:
291 const TargetRegisterInfo *TRI;
292 const TargetInstrInfo *TII;
293 const TargetFrameLowering *TFI;
294 TargetPassConfig *TPC;
295 BitVector CalleeSavedRegs;
296 LexicalScopes LS;
297 VarLocSet::Allocator Alloc;
298
299 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
300
301 using FragmentInfo = DIExpression::FragmentInfo;
302 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
303
304 /// A pair of debug variable and value location.
305 struct VarLoc {
306 // The location at which a spilled variable resides. It consists of a
307 // register and an offset.
308 struct SpillLoc {
309 unsigned SpillBase;
310 StackOffset SpillOffset;
311 bool operator==(const SpillLoc &Other) const {
312 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
313 }
314 bool operator!=(const SpillLoc &Other) const {
315 return !(*this == Other);
316 }
317 };
318
319 /// Identity of the variable at this location.
320 const DebugVariable Var;
321
322 /// The expression applied to this location.
323 const DIExpression *Expr;
324
325 /// DBG_VALUE to clone var/expr information from if this location
326 /// is moved.
327 const MachineInstr &MI;
328
329 enum class MachineLocKind {
330 InvalidKind = 0,
331 RegisterKind,
332 SpillLocKind,
333 ImmediateKind
334 };
335
336 enum class EntryValueLocKind {
337 NonEntryValueKind = 0,
338 EntryValueKind,
339 EntryValueBackupKind,
340 EntryValueCopyBackupKind
341 } EVKind;
342
343 /// The value location. Stored separately to avoid repeatedly
344 /// extracting it from MI.
345 union MachineLocValue {
346 uint64_t RegNo;
347 SpillLoc SpillLocation;
348 uint64_t Hash;
349 int64_t Immediate;
350 const ConstantFP *FPImm;
351 const ConstantInt *CImm;
352 MachineLocValue() : Hash(0) {}
353 };
354
355 /// A single machine location; its Kind is either a register, spill
356 /// location, or immediate value.
357 /// If the VarLoc is not a NonEntryValueKind, then it will use only a
358 /// single MachineLoc of RegisterKind.
359 struct MachineLoc {
360 MachineLocKind Kind;
361 MachineLocValue Value;
362 bool operator==(const MachineLoc &Other) const {
363 if (Kind != Other.Kind)
364 return false;
365 switch (Kind) {
366 case MachineLocKind::SpillLocKind:
367 return Value.SpillLocation == Other.Value.SpillLocation;
368 case MachineLocKind::RegisterKind:
369 case MachineLocKind::ImmediateKind:
370 return Value.Hash == Other.Value.Hash;
371 default:
372 llvm_unreachable("Invalid kind")__builtin_unreachable();
373 }
374 }
375 bool operator<(const MachineLoc &Other) const {
376 switch (Kind) {
377 case MachineLocKind::SpillLocKind:
378 return std::make_tuple(
379 Kind, Value.SpillLocation.SpillBase,
380 Value.SpillLocation.SpillOffset.getFixed(),
381 Value.SpillLocation.SpillOffset.getScalable()) <
382 std::make_tuple(
383 Other.Kind, Other.Value.SpillLocation.SpillBase,
384 Other.Value.SpillLocation.SpillOffset.getFixed(),
385 Other.Value.SpillLocation.SpillOffset.getScalable());
386 case MachineLocKind::RegisterKind:
387 case MachineLocKind::ImmediateKind:
388 return std::tie(Kind, Value.Hash) <
389 std::tie(Other.Kind, Other.Value.Hash);
390 default:
391 llvm_unreachable("Invalid kind")__builtin_unreachable();
392 }
393 }
394 };
395
396 /// The set of machine locations used to determine the variable's value, in
397 /// conjunction with Expr. Initially populated with MI's debug operands,
398 /// but may be transformed independently afterwards.
399 SmallVector<MachineLoc, 8> Locs;
400 /// Used to map the index of each location in Locs back to the index of its
401 /// original debug operand in MI. Used when multiple location operands are
402 /// coalesced and the original MI's operands need to be accessed while
403 /// emitting a debug value.
404 SmallVector<unsigned, 8> OrigLocMap;
405
406 VarLoc(const MachineInstr &MI, LexicalScopes &LS)
407 : Var(MI.getDebugVariable(), MI.getDebugExpression(),
408 MI.getDebugLoc()->getInlinedAt()),
409 Expr(MI.getDebugExpression()), MI(MI),
410 EVKind(EntryValueLocKind::NonEntryValueKind) {
411 assert(MI.isDebugValue() && "not a DBG_VALUE")((void)0);
412 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&((void)0)
413 "malformed DBG_VALUE")((void)0);
414 for (const MachineOperand &Op : MI.debug_operands()) {
415 MachineLoc ML = GetLocForOp(Op);
416 auto It = find(Locs, ML);
417 if (It == Locs.end()) {
418 Locs.push_back(ML);
419 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
420 } else {
421 // ML duplicates an element in Locs; replace references to Op
422 // with references to the duplicating element.
423 unsigned OpIdx = Locs.size();
424 unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
425 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
426 }
427 }
428
429 // We create the debug entry values from the factory functions rather
430 // than from this ctor.
431 assert(EVKind != EntryValueLocKind::EntryValueKind &&((void)0)
432 !isEntryBackupLoc())((void)0);
433 }
434
435 static MachineLoc GetLocForOp(const MachineOperand &Op) {
436 MachineLocKind Kind;
437 MachineLocValue Loc;
438 if (Op.isReg()) {
439 Kind = MachineLocKind::RegisterKind;
440 Loc.RegNo = Op.getReg();
441 } else if (Op.isImm()) {
442 Kind = MachineLocKind::ImmediateKind;
443 Loc.Immediate = Op.getImm();
444 } else if (Op.isFPImm()) {
445 Kind = MachineLocKind::ImmediateKind;
446 Loc.FPImm = Op.getFPImm();
447 } else if (Op.isCImm()) {
448 Kind = MachineLocKind::ImmediateKind;
449 Loc.CImm = Op.getCImm();
450 } else
451 llvm_unreachable("Invalid Op kind for MachineLoc.")__builtin_unreachable();
452 return {Kind, Loc};
453 }
454
455 /// Take the variable and machine-location in DBG_VALUE MI, and build an
456 /// entry location using the given expression.
457 static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
458 const DIExpression *EntryExpr, Register Reg) {
459 VarLoc VL(MI, LS);
460 assert(VL.Locs.size() == 1 &&((void)0)
461 VL.Locs[0].Kind == MachineLocKind::RegisterKind)((void)0);
462 VL.EVKind = EntryValueLocKind::EntryValueKind;
463 VL.Expr = EntryExpr;
464 VL.Locs[0].Value.RegNo = Reg;
465 return VL;
466 }
467
468 /// Take the variable and machine-location from the DBG_VALUE (from the
469 /// function entry), and build an entry value backup location. The backup
470 /// location will turn into the normal location if the backup is valid at
471 /// the time of the primary location clobbering.
472 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
473 LexicalScopes &LS,
474 const DIExpression *EntryExpr) {
475 VarLoc VL(MI, LS);
476 assert(VL.Locs.size() == 1 &&((void)0)
477 VL.Locs[0].Kind == MachineLocKind::RegisterKind)((void)0);
478 VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
479 VL.Expr = EntryExpr;
480 return VL;
481 }
482
483 /// Take the variable and machine-location from the DBG_VALUE (from the
484 /// function entry), and build a copy of an entry value backup location by
485 /// setting the register location to NewReg.
486 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
487 LexicalScopes &LS,
488 const DIExpression *EntryExpr,
489 Register NewReg) {
490 VarLoc VL(MI, LS);
491 assert(VL.Locs.size() == 1 &&((void)0)
492 VL.Locs[0].Kind == MachineLocKind::RegisterKind)((void)0);
493 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
494 VL.Expr = EntryExpr;
495 VL.Locs[0].Value.RegNo = NewReg;
496 return VL;
497 }
498
499 /// Copy the register location in DBG_VALUE MI, updating the register to
500 /// be NewReg.
501 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
502 Register NewReg) {
503 VarLoc VL = OldVL;
504 for (size_t I = 0, E = VL.Locs.size(); I < E; ++I)
505 if (VL.Locs[I] == OldML) {
506 VL.Locs[I].Kind = MachineLocKind::RegisterKind;
507 VL.Locs[I].Value.RegNo = NewReg;
508 return VL;
509 }
510 llvm_unreachable("Should have found OldML in new VarLoc.")__builtin_unreachable();
511 }
512
513 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
514 /// locating it in the specified spill location.
515 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
516 unsigned SpillBase, StackOffset SpillOffset) {
517 VarLoc VL = OldVL;
518 for (int I = 0, E = VL.Locs.size(); I < E; ++I)
519 if (VL.Locs[I] == OldML) {
520 VL.Locs[I].Kind = MachineLocKind::SpillLocKind;
521 VL.Locs[I].Value.SpillLocation = {SpillBase, SpillOffset};
522 return VL;
523 }
524 llvm_unreachable("Should have found OldML in new VarLoc.")__builtin_unreachable();
525 }
526
527 /// Create a DBG_VALUE representing this VarLoc in the given function.
528 /// Copies variable-specific information such as DILocalVariable and
529 /// inlining information from the original DBG_VALUE instruction, which may
530 /// have been several transfers ago.
531 MachineInstr *BuildDbgValue(MachineFunction &MF) const {
532 assert(!isEntryBackupLoc() &&((void)0)
533 "Tried to produce DBG_VALUE for backup VarLoc")((void)0);
534 const DebugLoc &DbgLoc = MI.getDebugLoc();
535 bool Indirect = MI.isIndirectDebugValue();
536 const auto &IID = MI.getDesc();
537 const DILocalVariable *Var = MI.getDebugVariable();
538 NumInserted++;
539
540 const DIExpression *DIExpr = Expr;
541 SmallVector<MachineOperand, 8> MOs;
542 for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
543 MachineLocKind LocKind = Locs[I].Kind;
544 MachineLocValue Loc = Locs[I].Value;
545 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
546 switch (LocKind) {
547 case MachineLocKind::RegisterKind:
548 // An entry value is a register location -- but with an updated
549 // expression. The register location of such DBG_VALUE is always the
550 // one from the entry DBG_VALUE, it does not matter if the entry value
551 // was copied in to another register due to some optimizations.
552 // Non-entry value register locations are like the source
553 // DBG_VALUE, but with the register number from this VarLoc.
554 MOs.push_back(MachineOperand::CreateReg(
555 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
556 : Register(Loc.RegNo),
557 false));
558 MOs.back().setIsDebug();
559 break;
560 case MachineLocKind::SpillLocKind: {
561 // Spills are indirect DBG_VALUEs, with a base register and offset.
562 // Use the original DBG_VALUEs expression to build the spilt location
563 // on top of. FIXME: spill locations created before this pass runs
564 // are not recognized, and not handled here.
565 unsigned Base = Loc.SpillLocation.SpillBase;
566 auto *TRI = MF.getSubtarget().getRegisterInfo();
567 if (MI.isNonListDebugValue()) {
568 DIExpr =
569 TRI->prependOffsetExpression(DIExpr, DIExpression::ApplyOffset,
570 Loc.SpillLocation.SpillOffset);
571 Indirect = true;
572 } else {
573 SmallVector<uint64_t, 4> Ops;
574 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
575 Ops.push_back(dwarf::DW_OP_deref);
576 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
577 }
578 MOs.push_back(MachineOperand::CreateReg(Base, false));
579 MOs.back().setIsDebug();
580 break;
581 }
582 case MachineLocKind::ImmediateKind: {
583 MOs.push_back(Orig);
584 break;
585 }
586 case MachineLocKind::InvalidKind:
587 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc")__builtin_unreachable();
588 }
589 }
590 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
591 }
592
593 /// Is the Loc field a constant or constant object?
594 bool isConstant(MachineLocKind Kind) const {
595 return Kind == MachineLocKind::ImmediateKind;
596 }
597
598 /// Check if the Loc field is an entry backup location.
599 bool isEntryBackupLoc() const {
600 return EVKind == EntryValueLocKind::EntryValueBackupKind ||
601 EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
602 }
603
604 /// If this variable is described by register \p Reg holding the entry
605 /// value, return true.
606 bool isEntryValueBackupReg(Register Reg) const {
607 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
608 }
609
610 /// If this variable is described by register \p Reg holding a copy of the
611 /// entry value, return true.
612 bool isEntryValueCopyBackupReg(Register Reg) const {
613 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
614 usesReg(Reg);
615 }
616
617 /// If this variable is described in whole or part by \p Reg, return true.
618 bool usesReg(Register Reg) const {
619 MachineLoc RegML;
620 RegML.Kind = MachineLocKind::RegisterKind;
621 RegML.Value.RegNo = Reg;
622 return is_contained(Locs, RegML);
623 }
624
625 /// If this variable is described in whole or part by \p Reg, return true.
626 unsigned getRegIdx(Register Reg) const {
627 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
628 if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
629 Locs[Idx].Value.RegNo == Reg)
630 return Idx;
631 llvm_unreachable("Could not find given Reg in Locs")__builtin_unreachable();
632 }
633
634 /// If this variable is described in whole or part by 1 or more registers,
635 /// add each of them to \p Regs and return true.
636 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
637 bool AnyRegs = false;
638 for (auto Loc : Locs)
639 if (Loc.Kind == MachineLocKind::RegisterKind) {
640 Regs.push_back(Loc.Value.RegNo);
641 AnyRegs = true;
642 }
643 return AnyRegs;
644 }
645
646 bool containsSpillLocs() const {
647 return any_of(Locs, [](VarLoc::MachineLoc ML) {
648 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
649 });
650 }
651
652 /// If this variable is described in whole or part by \p SpillLocation,
653 /// return true.
654 bool usesSpillLoc(SpillLoc SpillLocation) const {
655 MachineLoc SpillML;
656 SpillML.Kind = MachineLocKind::SpillLocKind;
657 SpillML.Value.SpillLocation = SpillLocation;
658 return is_contained(Locs, SpillML);
659 }
660
661 /// If this variable is described in whole or part by \p SpillLocation,
662 /// return the index .
663 unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
664 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
665 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
666 Locs[Idx].Value.SpillLocation == SpillLocation)
667 return Idx;
668 llvm_unreachable("Could not find given SpillLoc in Locs")__builtin_unreachable();
669 }
670
671 /// Determine whether the lexical scope of this value's debug location
672 /// dominates MBB.
673 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
674 return LS.dominates(MI.getDebugLoc().get(), &MBB);
675 }
676
677#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
678 // TRI can be null.
679 void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
680 Out << "VarLoc(";
681 for (const MachineLoc &MLoc : Locs) {
682 if (Locs.begin() != &MLoc)
683 Out << ", ";
684 switch (MLoc.Kind) {
685 case MachineLocKind::RegisterKind:
686 Out << printReg(MLoc.Value.RegNo, TRI);
687 break;
688 case MachineLocKind::SpillLocKind:
689 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
690 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
691 << MLoc.Value.SpillLocation.SpillOffset.getScalable()
692 << "x vscale"
693 << "]";
694 break;
695 case MachineLocKind::ImmediateKind:
696 Out << MLoc.Value.Immediate;
697 break;
698 case MachineLocKind::InvalidKind:
699 llvm_unreachable("Invalid VarLoc in dump method")__builtin_unreachable();
700 }
701 }
702
703 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
704 if (Var.getInlinedAt())
705 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
706 else
707 Out << "(null))";
708
709 if (isEntryBackupLoc())
710 Out << " (backup loc)\n";
711 else
712 Out << "\n";
713 }
714#endif
715
716 bool operator==(const VarLoc &Other) const {
717 return std::tie(EVKind, Var, Expr, Locs) ==
718 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
719 }
720
721 /// This operator guarantees that VarLocs are sorted by Variable first.
722 bool operator<(const VarLoc &Other) const {
723 return std::tie(Var, EVKind, Locs, Expr) <
724 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
725 }
726 };
727
728#ifndef NDEBUG1
729 using VarVec = SmallVector<VarLoc, 32>;
730#endif
731
732 /// VarLocMap is used for two things:
733 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
734 /// virtually insert a VarLoc into a VarLocSet.
735 /// 2) Given a LocIndex, look up the unique associated VarLoc.
736 class VarLocMap {
737 /// Map a VarLoc to an index within the vector reserved for its location
738 /// within Loc2Vars.
739 std::map<VarLoc, LocIndices> Var2Indices;
740
741 /// Map a location to a vector which holds VarLocs which live in that
742 /// location.
743 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
744
745 public:
746 /// Retrieve LocIndices for \p VL.
747 LocIndices insert(const VarLoc &VL) {
748 LocIndices &Indices = Var2Indices[VL];
749 // If Indices is not empty, VL is already in the map.
750 if (!Indices.empty())
751 return Indices;
752 SmallVector<LocIndex::u32_location_t, 4> Locations;
753 // LocIndices are determined by EVKind and MLs; each Register has a
754 // unique location, while all SpillLocs use a single bucket, and any EV
755 // VarLocs use only the Backup bucket or none at all (except the
756 // compulsory entry at the universal location index). LocIndices will
757 // always have an index at the universal location index as the last index.
758 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
759 VL.getDescribingRegs(Locations);
760 assert(all_of(Locations,((void)0)
761 [](auto RegNo) {((void)0)
762 return RegNo < LocIndex::kFirstInvalidRegLocation;((void)0)
763 }) &&((void)0)
764 "Physreg out of range?")((void)0);
765 if (VL.containsSpillLocs()) {
766 LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
767 Locations.push_back(Loc);
768 }
769 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
770 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
771 Locations.push_back(Loc);
772 }
773 Locations.push_back(LocIndex::kUniversalLocation);
774 for (LocIndex::u32_location_t Location : Locations) {
775 auto &Vars = Loc2Vars[Location];
776 Indices.push_back(
777 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
778 Vars.push_back(VL);
779 }
780 return Indices;
781 }
782
783 LocIndices getAllIndices(const VarLoc &VL) const {
784 auto IndIt = Var2Indices.find(VL);
785 assert(IndIt != Var2Indices.end() && "VarLoc not tracked")((void)0);
786 return IndIt->second;
787 }
788
789 /// Retrieve the unique VarLoc associated with \p ID.
790 const VarLoc &operator[](LocIndex ID) const {
791 auto LocIt = Loc2Vars.find(ID.Location);
792 assert(LocIt != Loc2Vars.end() && "Location not tracked")((void)0);
793 return LocIt->second[ID.Index];
794 }
795 };
796
797 using VarLocInMBB =
798 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
799 struct TransferDebugPair {
800 MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
801 LocIndex LocationID; ///< Location number for the transfer dest.
802 };
803 using TransferMap = SmallVector<TransferDebugPair, 4>;
804
805 // Types for recording sets of variable fragments that overlap. For a given
806 // local variable, we record all other fragments of that variable that could
807 // overlap it, to reduce search time.
808 using FragmentOfVar =
809 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
810 using OverlapMap =
811 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
812
813 // Helper while building OverlapMap, a map of all fragments seen for a given
814 // DILocalVariable.
815 using VarToFragments =
816 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
817
818 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
819 /// to \p Collected once, in order of insertion into \p VarLocIDs.
820 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
821 const VarLocSet &CollectFrom,
822 const VarLocMap &VarLocIDs);
823
824 /// Get the registers which are used by VarLocs of kind RegisterKind tracked
825 /// by \p CollectFrom.
826 void getUsedRegs(const VarLocSet &CollectFrom,
827 SmallVectorImpl<Register> &UsedRegs) const;
828
829 /// This holds the working set of currently open ranges. For fast
830 /// access, this is done both as a set of VarLocIDs, and a map of
831 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
832 /// previous open ranges for the same variable. In addition, we keep
833 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
834 /// methods act differently depending on whether a VarLoc is primary
835 /// location or backup one. In the case the VarLoc is backup location
836 /// we will erase/insert from the EntryValuesBackupVars map, otherwise
837 /// we perform the operation on the Vars.
838 class OpenRangesSet {
839 VarLocSet::Allocator &Alloc;
840 VarLocSet VarLocs;
841 // Map the DebugVariable to recent primary location ID.
842 SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
843 // Map the DebugVariable to recent backup location ID.
844 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
845 OverlapMap &OverlappingFragments;
846
847 public:
848 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
849 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
850
851 const VarLocSet &getVarLocs() const { return VarLocs; }
852
853 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
854 // This method is needed to get every VarLoc once, as each VarLoc may have
855 // multiple indices in a VarLocMap (corresponding to each applicable
856 // location), but all VarLocs appear exactly once at the universal location
857 // index.
858 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
859 const VarLocMap &VarLocIDs) const {
860 collectAllVarLocs(Collected, VarLocs, VarLocIDs);
861 }
862
863 /// Terminate all open ranges for VL.Var by removing it from the set.
864 void erase(const VarLoc &VL);
865
866 /// Terminate all open ranges listed as indices in \c KillSet with
867 /// \c Location by removing them from the set.
868 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
869 LocIndex::u32_location_t Location);
870
871 /// Insert a new range into the set.
872 void insert(LocIndices VarLocIDs, const VarLoc &VL);
873
874 /// Insert a set of ranges.
875 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
876
877 llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);
878
879 /// Empty the set.
880 void clear() {
881 VarLocs.clear();
882 Vars.clear();
883 EntryValuesBackupVars.clear();
884 }
885
886 /// Return whether the set is empty or not.
887 bool empty() const {
888 assert(Vars.empty() == EntryValuesBackupVars.empty() &&((void)0)
889 Vars.empty() == VarLocs.empty() &&((void)0)
890 "open ranges are inconsistent")((void)0);
891 return VarLocs.empty();
892 }
893
894 /// Get an empty range of VarLoc IDs.
895 auto getEmptyVarLocRange() const {
896 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
897 getVarLocs().end());
898 }
899
900 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
901 auto getRegisterVarLocs(Register Reg) const {
902 return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
903 }
904
905 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
906 auto getSpillVarLocs() const {
907 return LocIndex::indexRangeForLocation(getVarLocs(),
908 LocIndex::kSpillLocation);
909 }
910
911 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
912 /// EntryValueCopyBackupKind.
913 auto getEntryValueBackupVarLocs() const {
914 return LocIndex::indexRangeForLocation(
915 getVarLocs(), LocIndex::kEntryValueBackupLocation);
916 }
917 };
918
919 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
920 /// RegisterKind which are located in any reg in \p Regs. The IDs for each
921 /// VarLoc correspond to entries in the universal location bucket, which every
922 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
923 static void collectIDsForRegs(VarLocsInRange &Collected,
924 const DefinedRegsSet &Regs,
925 const VarLocSet &CollectFrom,
926 const VarLocMap &VarLocIDs);
927
928 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
929 std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
930 if (!VLS)
931 VLS = std::make_unique<VarLocSet>(Alloc);
932 return *VLS.get();
933 }
934
935 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
936 const VarLocInMBB &Locs) const {
937 auto It = Locs.find(MBB);
938 assert(It != Locs.end() && "MBB not in map")((void)0);
939 return *It->second.get();
940 }
941
942 /// Tests whether this instruction is a spill to a stack location.
943 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
944
945 /// Decide if @MI is a spill instruction and return true if it is. We use 2
946 /// criteria to make this decision:
947 /// - Is this instruction a store to a spill slot?
948 /// - Is there a register operand that is both used and killed?
949 /// TODO: Store optimization can fold spills into other stores (including
950 /// other spills). We do not handle this yet (more than one memory operand).
951 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
952 Register &Reg);
953
954 /// Returns true if the given machine instruction is a debug value which we
955 /// can emit entry values for.
956 ///
957 /// Currently, we generate debug entry values only for parameters that are
958 /// unmodified throughout the function and located in a register.
959 bool isEntryValueCandidate(const MachineInstr &MI,
960 const DefinedRegsSet &Regs) const;
961
962 /// If a given instruction is identified as a spill, return the spill location
963 /// and set \p Reg to the spilled register.
964 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
965 MachineFunction *MF,
966 Register &Reg);
967 /// Given a spill instruction, extract the register and offset used to
968 /// address the spill location in a target independent way.
969 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
970 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
971 TransferMap &Transfers, VarLocMap &VarLocIDs,
972 LocIndex OldVarID, TransferKind Kind,
973 const VarLoc::MachineLoc &OldLoc,
974 Register NewReg = Register());
975
976 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
977 VarLocMap &VarLocIDs);
978 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
979 VarLocMap &VarLocIDs, TransferMap &Transfers);
980 bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
981 VarLocMap &VarLocIDs, const VarLoc &EntryVL);
982 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
983 VarLocMap &VarLocIDs, TransferMap &Transfers,
984 VarLocsInRange &KillSet);
985 void recordEntryValue(const MachineInstr &MI,
986 const DefinedRegsSet &DefinedRegs,
987 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
988 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
989 VarLocMap &VarLocIDs, TransferMap &Transfers);
990 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
991 VarLocMap &VarLocIDs, TransferMap &Transfers);
992 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
993 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
994
995 void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
996 VarLocMap &VarLocIDs, TransferMap &Transfers);
997
998 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
999 OverlapMap &OLapMap);
1000
1001 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1002 const VarLocMap &VarLocIDs,
1003 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1004 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1005
1006 /// Create DBG_VALUE insts for inlocs that have been propagated but
1007 /// had their instruction creation deferred.
1008 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1009
1010 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1011
1012public:
1013 /// Default construct and initialize the pass.
1014 VarLocBasedLDV();
1015
1016 ~VarLocBasedLDV();
1017
1018 /// Print to ostream with a message.
1019 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1020 const VarLocMap &VarLocIDs, const char *msg,
1021 raw_ostream &Out) const;
1022};
1023
1024} // end anonymous namespace
1025
1026//===----------------------------------------------------------------------===//
1027// Implementation
1028//===----------------------------------------------------------------------===//
1029
1030VarLocBasedLDV::VarLocBasedLDV() { }
1031
1032VarLocBasedLDV::~VarLocBasedLDV() { }
1033
1034/// Erase a variable from the set of open ranges, and additionally erase any
1035/// fragments that may overlap it. If the VarLoc is a backup location, erase
1036/// the variable from the EntryValuesBackupVars set, indicating we should stop
1037/// tracking its backup entry location. Otherwise, if the VarLoc is primary
1038/// location, erase the variable from the Vars set.
1039void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1040 // Erasure helper.
1041 auto DoErase = [VL, this](DebugVariable VarToErase) {
1042 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1043 auto It = EraseFrom->find(VarToErase);
1044 if (It != EraseFrom->end()) {
1045 LocIndices IDs = It->second;
1046 for (LocIndex ID : IDs)
1047 VarLocs.reset(ID.getAsRawInteger());
1048 EraseFrom->erase(It);
1049 }
1050 };
1051
1052 DebugVariable Var = VL.Var;
1053
1054 // Erase the variable/fragment that ends here.
1055 DoErase(Var);
1056
1057 // Extract the fragment. Interpret an empty fragment as one that covers all
1058 // possible bits.
1059 FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1060
1061 // There may be fragments that overlap the designated fragment. Look them up
1062 // in the pre-computed overlap map, and erase them too.
1063 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1064 if (MapIt != OverlappingFragments.end()) {
1065 for (auto Fragment : MapIt->second) {
1066 VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1067 if (!DebugVariable::isDefaultFragment(Fragment))
1068 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1069 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1070 }
1071 }
1072}
1073
1074void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1075 const VarLocMap &VarLocIDs,
1076 LocIndex::u32_location_t Location) {
1077 VarLocSet RemoveSet(Alloc);
1078 for (LocIndex::u32_index_t ID : KillSet) {
1079 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1080 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1081 EraseFrom->erase(VL.Var);
1082 LocIndices VLI = VarLocIDs.getAllIndices(VL);
1083 for (LocIndex ID : VLI)
1084 RemoveSet.set(ID.getAsRawInteger());
1085 }
1086 VarLocs.intersectWithComplement(RemoveSet);
1087}
1088
1089void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1090 const VarLocMap &Map) {
1091 VarLocsInRange UniqueVarLocIDs;
1092 DefinedRegsSet Regs;
1093 Regs.insert(LocIndex::kUniversalLocation);
1094 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1095 for (uint64_t ID : UniqueVarLocIDs) {
1096 LocIndex Idx = LocIndex::fromRawInteger(ID);
1097 const VarLoc &VarL = Map[Idx];
1098 const LocIndices Indices = Map.getAllIndices(VarL);
1099 insert(Indices, VarL);
1100 }
1101}
1102
1103void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1104 const VarLoc &VL) {
1105 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1106 for (LocIndex ID : VarLocIDs)
1107 VarLocs.set(ID.getAsRawInteger());
1108 InsertInto->insert({VL.Var, VarLocIDs});
1109}
1110
1111/// Return the Loc ID of an entry value backup location, if it exists for the
1112/// variable.
1113llvm::Optional<LocIndices>
1114VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1115 auto It = EntryValuesBackupVars.find(Var);
1116 if (It != EntryValuesBackupVars.end())
1117 return It->second;
1118
1119 return llvm::None;
1120}
1121
1122void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1123 const DefinedRegsSet &Regs,
1124 const VarLocSet &CollectFrom,
1125 const VarLocMap &VarLocIDs) {
1126 assert(!Regs.empty() && "Nothing to collect")((void)0);
1127 SmallVector<Register, 32> SortedRegs;
1128 append_range(SortedRegs, Regs);
1129 array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1130 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1131 auto End = CollectFrom.end();
1132 for (Register Reg : SortedRegs) {
1133 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1134 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1135 // live in Reg.
1136 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1137 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1138 It.advanceToLowerBound(FirstIndexForReg);
1139
1140 // Iterate through that half-open interval and collect all the set IDs.
1141 for (; It != End && *It < FirstInvalidIndex; ++It) {
1142 LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1143 const VarLoc &VL = VarLocIDs[ItIdx];
1144 LocIndices LI = VarLocIDs.getAllIndices(VL);
1145 // For now, the back index is always the universal location index.
1146 assert(LI.back().Location == LocIndex::kUniversalLocation &&((void)0)
1147 "Unexpected order of LocIndices for VarLoc; was it inserted into "((void)0)
1148 "the VarLocMap correctly?")((void)0);
1149 Collected.insert(LI.back().Index);
1150 }
1151
1152 if (It == End)
1153 return;
1154 }
1155}
1156
1157void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1158 SmallVectorImpl<Register> &UsedRegs) const {
1159 // All register-based VarLocs are assigned indices greater than or equal to
1160 // FirstRegIndex.
1161 uint64_t FirstRegIndex =
1162 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1163 uint64_t FirstInvalidIndex =
1164 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1165 for (auto It = CollectFrom.find(FirstRegIndex),
1166 End = CollectFrom.find(FirstInvalidIndex);
1167 It != End;) {
1168 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1169 // which register and add it to UsedRegs.
1170 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1171 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&((void)0)
1172 "Duplicate used reg")((void)0);
1173 UsedRegs.push_back(FoundReg);
1174
1175 // Skip to the next /set/ register. Note that this finds a lower bound, so
1176 // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1177 // guaranteed to move on to the next register (or to end()).
1178 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1179 It.advanceToLowerBound(NextRegIndex);
1180 }
1181}
1182
1183//===----------------------------------------------------------------------===//
1184// Debug Range Extension Implementation
1185//===----------------------------------------------------------------------===//
1186
1187#ifndef NDEBUG1
1188void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1189 const VarLocInMBB &V,
1190 const VarLocMap &VarLocIDs,
1191 const char *msg,
1192 raw_ostream &Out) const {
1193 Out << '\n' << msg << '\n';
1194 for (const MachineBasicBlock &BB : MF) {
1195 if (!V.count(&BB))
1196 continue;
1197 const VarLocSet &L = getVarLocsInMBB(&BB, V);
1198 if (L.empty())
1199 continue;
1200 SmallVector<VarLoc, 32> VarLocs;
1201 collectAllVarLocs(VarLocs, L, VarLocIDs);
1202 Out << "MBB: " << BB.getNumber() << ":\n";
1203 for (const VarLoc &VL : VarLocs) {
1204 Out << " Var: " << VL.Var.getVariable()->getName();
1205 Out << " MI: ";
1206 VL.dump(TRI, Out);
1207 }
1208 }
1209 Out << "\n";
1210}
1211#endif
1212
1213VarLocBasedLDV::VarLoc::SpillLoc
1214VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1215 assert(MI.hasOneMemOperand() &&((void)0)
1216 "Spill instruction does not have exactly one memory operand?")((void)0);
1217 auto MMOI = MI.memoperands_begin();
1218 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1219 assert(PVal->kind() == PseudoSourceValue::FixedStack &&((void)0)
1220 "Inconsistent memory operand in spill instruction")((void)0);
1221 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1222 const MachineBasicBlock *MBB = MI.getParent();
1223 Register Reg;
1224 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1225 return {Reg, Offset};
1226}
1227
1228/// Try to salvage the debug entry value if we encounter a new debug value
1229/// describing the same parameter, otherwise stop tracking the value. Return
1230/// true if we should stop tracking the entry value, otherwise return false.
1231bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1232 OpenRangesSet &OpenRanges,
1233 VarLocMap &VarLocIDs,
1234 const VarLoc &EntryVL) {
1235 // Skip the DBG_VALUE which is the debug entry value itself.
1236 if (MI.isIdenticalTo(EntryVL.MI))
1237 return false;
1238
1239 // If the parameter's location is not register location, we can not track
1240 // the entry value any more. In addition, if the debug expression from the
1241 // DBG_VALUE is not empty, we can assume the parameter's value has changed
1242 // indicating that we should stop tracking its entry value as well.
1243 if (!MI.getDebugOperand(0).isReg() ||
1244 MI.getDebugExpression()->getNumElements() != 0)
1245 return true;
1246
1247 // If the DBG_VALUE comes from a copy instruction that copies the entry value,
1248 // it means the parameter's value has not changed and we should be able to use
1249 // its entry value.
1250 Register Reg = MI.getDebugOperand(0).getReg();
1251 auto I = std::next(MI.getReverseIterator());
1252 const MachineOperand *SrcRegOp, *DestRegOp;
1253 if (I != MI.getParent()->rend()) {
1254
1255 // TODO: Try to keep tracking of an entry value if we encounter a propagated
1256 // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1257 // does not indicate the parameter modification.)
1258 auto DestSrc = TII->isCopyInstr(*I);
1259 if (!DestSrc)
1260 return true;
1261
1262 SrcRegOp = DestSrc->Source;
1263 DestRegOp = DestSrc->Destination;
1264 if (Reg != DestRegOp->getReg())
1265 return true;
1266
1267 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1268 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1269 if (VL.isEntryValueCopyBackupReg(Reg) &&
1270 // Entry Values should not be variadic.
1271 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1272 return false;
1273 }
1274 }
1275
1276 return true;
1277}
1278
1279/// End all previous ranges related to @MI and start a new range from @MI
1280/// if it is a DBG_VALUE instr.
1281void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1282 OpenRangesSet &OpenRanges,
1283 VarLocMap &VarLocIDs) {
1284 if (!MI.isDebugValue())
1285 return;
1286 const DILocalVariable *Var = MI.getDebugVariable();
1287 const DIExpression *Expr = MI.getDebugExpression();
1288 const DILocation *DebugLoc = MI.getDebugLoc();
1289 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1290 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&((void)0)
1291 "Expected inlined-at fields to agree")((void)0);
1292
1293 DebugVariable V(Var, Expr, InlinedAt);
1294
1295 // Check if this DBG_VALUE indicates a parameter's value changing.
1296 // If that is the case, we should stop tracking its entry value.
1297 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1298 if (Var->isParameter() && EntryValBackupID) {
1299 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1300 if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
1301 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";do { } while (false)
1302 MI.print(dbgs(), /*IsStandalone*/ false,do { } while (false)
1303 /*SkipOpers*/ false, /*SkipDebugLoc*/ false,do { } while (false)
1304 /*AddNewLine*/ true, TII))do { } while (false);
1305 OpenRanges.erase(EntryVL);
1306 }
1307 }
1308
1309 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1310 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1311 MO.isCImm();
1312 })) {
1313 // Use normal VarLoc constructor for registers and immediates.
1314 VarLoc VL(MI, LS);
1315 // End all previous ranges of VL.Var.
1316 OpenRanges.erase(VL);
1317
1318 LocIndices IDs = VarLocIDs.insert(VL);
1319 // Add the VarLoc to OpenRanges from this DBG_VALUE.
1320 OpenRanges.insert(IDs, VL);
1321 } else if (MI.memoperands().size() > 0) {
1322 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?")__builtin_unreachable();
1323 } else {
1324 // This must be an undefined location. If it has an open range, erase it.
1325 assert(MI.isUndefDebugValue() &&((void)0)
1326 "Unexpected non-undef DBG_VALUE encountered")((void)0);
1327 VarLoc VL(MI, LS);
1328 OpenRanges.erase(VL);
1329 }
1330}
1331
1332// This should be removed later, doesn't fit the new design.
1333void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1334 const VarLocSet &CollectFrom,
1335 const VarLocMap &VarLocIDs) {
1336 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1337 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1338 // in Reg.
1339 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1340 uint64_t FirstInvalidIndex =
1341 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1342 // Iterate through that half-open interval and collect all the set IDs.
1343 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1344 It != End && *It < FirstInvalidIndex; ++It) {
1345 LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1346 Collected.push_back(VarLocIDs[RegIdx]);
1347 }
1348}
1349
1350/// Turn the entry value backup locations into primary locations.
1351void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1352 OpenRangesSet &OpenRanges,
1353 VarLocMap &VarLocIDs,
1354 TransferMap &Transfers,
1355 VarLocsInRange &KillSet) {
1356 // Do not insert entry value locations after a terminator.
1357 if (MI.isTerminator())
1358 return;
1359
1360 for (uint32_t ID : KillSet) {
1361 // The KillSet IDs are indices for the universal location bucket.
1362 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1363 const VarLoc &VL = VarLocIDs[Idx];
1364 if (!VL.Var.getVariable()->isParameter())
1365 continue;
1366
1367 auto DebugVar = VL.Var;
1368 Optional<LocIndices> EntryValBackupIDs =
1369 OpenRanges.getEntryValueBackup(DebugVar);
1370
1371 // If the parameter has the entry value backup, it means we should
1372 // be able to use its entry value.
1373 if (!EntryValBackupIDs)
1374 continue;
1375
1376 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1377 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
1378 EntryVL.Locs[0].Value.RegNo);
1379 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1380 Transfers.push_back({&MI, EntryValueIDs.back()});
1381 OpenRanges.insert(EntryValueIDs, EntryLoc);
1382 }
1383}
1384
1385/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1386/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1387/// new VarLoc. If \p NewReg is different than default zero value then the
1388/// new location will be register location created by the copy like instruction,
1389/// otherwise it is variable's location on the stack.
1390void VarLocBasedLDV::insertTransferDebugPair(
1391 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1392 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1393 const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1394 const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1395
1396 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1397 LocIndices LocIds = VarLocIDs.insert(VL);
1398
1399 // Close this variable's previous location range.
1400 OpenRanges.erase(VL);
1401
1402 // Record the new location as an open range, and a postponed transfer
1403 // inserting a DBG_VALUE for this location.
1404 OpenRanges.insert(LocIds, VL);
1405 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator")((void)0);
1406 TransferDebugPair MIP = {&MI, LocIds.back()};
1407 Transfers.push_back(MIP);
1408 };
1409
1410 // End all previous ranges of VL.Var.
1411 OpenRanges.erase(VarLocIDs[OldVarID]);
1412 switch (Kind) {
1413 case TransferKind::TransferCopy: {
1414 assert(NewReg &&((void)0)
1415 "No register supplied when handling a copy of a debug value")((void)0);
1416 // Create a DBG_VALUE instruction to describe the Var in its new
1417 // register location.
1418 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1419 ProcessVarLoc(VL);
1420 LLVM_DEBUG({do { } while (false)
1421 dbgs() << "Creating VarLoc for register copy:";do { } while (false)
1422 VL.dump(TRI);do { } while (false)
1423 })do { } while (false);
1424 return;
1425 }
1426 case TransferKind::TransferSpill: {
1427 // Create a DBG_VALUE instruction to describe the Var in its spilled
1428 // location.
1429 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1430 VarLoc VL = VarLoc::CreateSpillLoc(
1431 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1432 ProcessVarLoc(VL);
1433 LLVM_DEBUG({do { } while (false)
1434 dbgs() << "Creating VarLoc for spill:";do { } while (false)
1435 VL.dump(TRI);do { } while (false)
1436 })do { } while (false);
1437 return;
1438 }
1439 case TransferKind::TransferRestore: {
1440 assert(NewReg &&((void)0)
1441 "No register supplied when handling a restore of a debug value")((void)0);
1442 // DebugInstr refers to the pre-spill location, therefore we can reuse
1443 // its expression.
1444 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1445 ProcessVarLoc(VL);
1446 LLVM_DEBUG({do { } while (false)
1447 dbgs() << "Creating VarLoc for restore:";do { } while (false)
1448 VL.dump(TRI);do { } while (false)
1449 })do { } while (false);
1450 return;
1451 }
1452 }
1453 llvm_unreachable("Invalid transfer kind")__builtin_unreachable();
1454}
1455
1456/// A definition of a register may mark the end of a range.
1457void VarLocBasedLDV::transferRegisterDef(
1458 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1459 TransferMap &Transfers) {
1460
1461 // Meta Instructions do not affect the debug liveness of any register they
1462 // define.
1463 if (MI.isMetaInstruction())
1464 return;
1465
1466 MachineFunction *MF = MI.getMF();
1467 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1468 Register SP = TLI->getStackPointerRegisterToSaveRestore();
1469
1470 // Find the regs killed by MI, and find regmasks of preserved regs.
1471 DefinedRegsSet DeadRegs;
1472 SmallVector<const uint32_t *, 4> RegMasks;
1473 for (const MachineOperand &MO : MI.operands()) {
1474 // Determine whether the operand is a register def.
1475 if (MO.isReg() && MO.isDef() && MO.getReg() &&
1476 Register::isPhysicalRegister(MO.getReg()) &&
1477 !(MI.isCall() && MO.getReg() == SP)) {
1478 // Remove ranges of all aliased registers.
1479 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1480 // FIXME: Can we break out of this loop early if no insertion occurs?
1481 DeadRegs.insert(*RAI);
1482 } else if (MO.isRegMask()) {
1483 RegMasks.push_back(MO.getRegMask());
1484 }
1485 }
1486
1487 // Erase VarLocs which reside in one of the dead registers. For performance
1488 // reasons, it's critical to not iterate over the full set of open VarLocs.
1489 // Iterate over the set of dying/used regs instead.
1490 if (!RegMasks.empty()) {
1491 SmallVector<Register, 32> UsedRegs;
1492 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1493 for (Register Reg : UsedRegs) {
1494 // Remove ranges of all clobbered registers. Register masks don't usually
1495 // list SP as preserved. Assume that call instructions never clobber SP,
1496 // because some backends (e.g., AArch64) never list SP in the regmask.
1497 // While the debug info may be off for an instruction or two around
1498 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1499 // still a better user experience.
1500 if (Reg == SP)
1501 continue;
1502 bool AnyRegMaskKillsReg =
1503 any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1504 return MachineOperand::clobbersPhysReg(RegMask, Reg);
1505 });
1506 if (AnyRegMaskKillsReg)
1507 DeadRegs.insert(Reg);
1508 }
1509 }
1510
1511 if (DeadRegs.empty())
1512 return;
1513
1514 VarLocsInRange KillSet;
1515 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1516 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1517
1518 if (TPC) {
1519 auto &TM = TPC->getTM<TargetMachine>();
1520 if (TM.Options.ShouldEmitDebugEntryValues())
1521 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
1522 }
1523}
1524
1525bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1526 MachineFunction *MF) {
1527 // TODO: Handle multiple stores folded into one.
1528 if (!MI.hasOneMemOperand())
1529 return false;
1530
1531 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1532 return false; // This is not a spill instruction, since no valid size was
1533 // returned from either function.
1534
1535 return true;
1536}
1537
1538bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1539 MachineFunction *MF, Register &Reg) {
1540 if (!isSpillInstruction(MI, MF))
1541 return false;
1542
1543 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1544 if (!MO.isReg() || !MO.isUse()) {
1545 Reg = 0;
1546 return false;
1547 }
1548 Reg = MO.getReg();
1549 return MO.isKill();
1550 };
1551
1552 for (const MachineOperand &MO : MI.operands()) {
1553 // In a spill instruction generated by the InlineSpiller the spilled
1554 // register has its kill flag set.
1555 if (isKilledReg(MO, Reg))
1556 return true;
1557 if (Reg != 0) {
1558 // Check whether next instruction kills the spilled register.
1559 // FIXME: Current solution does not cover search for killed register in
1560 // bundles and instructions further down the chain.
1561 auto NextI = std::next(MI.getIterator());
1562 // Skip next instruction that points to basic block end iterator.
1563 if (MI.getParent()->end() == NextI)
1564 continue;
1565 Register RegNext;
1566 for (const MachineOperand &MONext : NextI->operands()) {
1567 // Return true if we came across the register from the
1568 // previous spill instruction that is killed in NextI.
1569 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1570 return true;
1571 }
1572 }
1573 }
1574 // Return false if we didn't find spilled register.
1575 return false;
1576}
1577
1578Optional<VarLocBasedLDV::VarLoc::SpillLoc>
1579VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1580 MachineFunction *MF, Register &Reg) {
1581 if (!MI.hasOneMemOperand())
1582 return None;
1583
1584 // FIXME: Handle folded restore instructions with more than one memory
1585 // operand.
1586 if (MI.getRestoreSize(TII)) {
1587 Reg = MI.getOperand(0).getReg();
1588 return extractSpillBaseRegAndOffset(MI);
1589 }
1590 return None;
1591}
1592
1593/// A spilled register may indicate that we have to end the current range of
1594/// a variable and create a new one for the spill location.
1595/// A restored register may indicate the reverse situation.
1596/// We don't want to insert any instructions in process(), so we just create
1597/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1598/// It will be inserted into the BB when we're done iterating over the
1599/// instructions.
1600void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1601 OpenRangesSet &OpenRanges,
1602 VarLocMap &VarLocIDs,
1603 TransferMap &Transfers) {
1604 MachineFunction *MF = MI.getMF();
1605 TransferKind TKind;
1606 Register Reg;
1607 Optional<VarLoc::SpillLoc> Loc;
1608
1609 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();)do { } while (false);
1610
1611 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1612 // written to, then close the variable location. The value in memory
1613 // will have changed.
1614 VarLocsInRange KillSet;
1615 if (isSpillInstruction(MI, MF)) {
1616 Loc = extractSpillBaseRegAndOffset(MI);
1617 for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1618 LocIndex Idx = LocIndex::fromRawInteger(ID);
1619 const VarLoc &VL = VarLocIDs[Idx];
1620 assert(VL.containsSpillLocs() && "Broken VarLocSet?")((void)0);
1621 if (VL.usesSpillLoc(*Loc)) {
1622 // This location is overwritten by the current instruction -- terminate
1623 // the open range, and insert an explicit DBG_VALUE $noreg.
1624 //
1625 // Doing this at a later stage would require re-interpreting all
1626 // DBG_VALUes and DIExpressions to identify whether they point at
1627 // memory, and then analysing all memory writes to see if they
1628 // overwrite that memory, which is expensive.
1629 //
1630 // At this stage, we already know which DBG_VALUEs are for spills and
1631 // where they are located; it's best to fix handle overwrites now.
1632 KillSet.insert(ID);
1633 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1634 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1635 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1636 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1637 Transfers.push_back({&MI, UndefLocIDs.back()});
1638 }
1639 }
1640 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1641 }
1642
1643 // Try to recognise spill and restore instructions that may create a new
1644 // variable location.
1645 if (isLocationSpill(MI, MF, Reg)) {
1646 TKind = TransferKind::TransferSpill;
1647 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();)do { } while (false);
1648 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)do { } while (false)
1649 << "\n")do { } while (false);
1650 } else {
1651 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1652 return;
1653 TKind = TransferKind::TransferRestore;
1654 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();)do { } while (false);
1655 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)do { } while (false)
1656 << "\n")do { } while (false);
1657 }
1658 // Check if the register or spill location is the location of a debug value.
1659 auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1660 if (TKind == TransferKind::TransferSpill)
1661 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1662 else if (TKind == TransferKind::TransferRestore)
1663 TransferCandidates = OpenRanges.getSpillVarLocs();
1664 for (uint64_t ID : TransferCandidates) {
1665 LocIndex Idx = LocIndex::fromRawInteger(ID);
1666 const VarLoc &VL = VarLocIDs[Idx];
1667 unsigned LocIdx;
1668 if (TKind == TransferKind::TransferSpill) {
1669 assert(VL.usesReg(Reg) && "Broken VarLocSet?")((void)0);
1670 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('do { } while (false)
1671 << VL.Var.getVariable()->getName() << ")\n")do { } while (false);
1672 LocIdx = VL.getRegIdx(Reg);
1673 } else {
1674 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&((void)0)
1675 "Broken VarLocSet?")((void)0);
1676 if (!VL.usesSpillLoc(*Loc))
1677 // The spill location is not the location of a debug value.
1678 continue;
1679 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('do { } while (false)
1680 << VL.Var.getVariable()->getName() << ")\n")do { } while (false);
1681 LocIdx = VL.getSpillLocIdx(*Loc);
1682 }
1683 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1684 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1685 MLoc, Reg);
1686 // FIXME: A comment should explain why it's correct to return early here,
1687 // if that is in fact correct.
1688 return;
1689 }
1690}
1691
1692/// If \p MI is a register copy instruction, that copies a previously tracked
1693/// value from one register to another register that is callee saved, we
1694/// create new DBG_VALUE instruction described with copy destination register.
1695void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1696 OpenRangesSet &OpenRanges,
1697 VarLocMap &VarLocIDs,
1698 TransferMap &Transfers) {
1699 auto DestSrc = TII->isCopyInstr(MI);
1700 if (!DestSrc)
1701 return;
1702
1703 const MachineOperand *DestRegOp = DestSrc->Destination;
1704 const MachineOperand *SrcRegOp = DestSrc->Source;
1705
1706 if (!DestRegOp->isDef())
1707 return;
1708
1709 auto isCalleeSavedReg = [&](Register Reg) {
1710 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1711 if (CalleeSavedRegs.test(*RAI))
1712 return true;
1713 return false;
1714 };
1715
1716 Register SrcReg = SrcRegOp->getReg();
1717 Register DestReg = DestRegOp->getReg();
1718
1719 // We want to recognize instructions where destination register is callee
1720 // saved register. If register that could be clobbered by the call is
1721 // included, there would be a great chance that it is going to be clobbered
1722 // soon. It is more likely that previous register location, which is callee
1723 // saved, is going to stay unclobbered longer, even if it is killed.
1724 if (!isCalleeSavedReg(DestReg))
1725 return;
1726
1727 // Remember an entry value movement. If we encounter a new debug value of
1728 // a parameter describing only a moving of the value around, rather then
1729 // modifying it, we are still able to use the entry value if needed.
1730 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1731 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1732 LocIndex Idx = LocIndex::fromRawInteger(ID);
1733 const VarLoc &VL = VarLocIDs[Idx];
1734 if (VL.isEntryValueBackupReg(SrcReg)) {
1735 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();)do { } while (false);
1736 VarLoc EntryValLocCopyBackup =
1737 VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1738 // Stop tracking the original entry value.
1739 OpenRanges.erase(VL);
1740
1741 // Start tracking the entry value copy.
1742 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1743 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1744 break;
1745 }
1746 }
1747 }
1748
1749 if (!SrcRegOp->isKill())
1750 return;
1751
1752 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1753 LocIndex Idx = LocIndex::fromRawInteger(ID);
1754 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?")((void)0);
1755 VarLoc::MachineLocValue Loc;
1756 Loc.RegNo = SrcReg;
1757 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1758 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1759 TransferKind::TransferCopy, MLoc, DestReg);
1760 // FIXME: A comment should explain why it's correct to return early here,
1761 // if that is in fact correct.
1762 return;
1763 }
1764}
1765
1766/// Terminate all open ranges at the end of the current basic block.
1767bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1768 OpenRangesSet &OpenRanges,
1769 VarLocInMBB &OutLocs,
1770 const VarLocMap &VarLocIDs) {
1771 bool Changed = false;
1772 LLVM_DEBUG({do { } while (false)
1773 VarVec VarLocs;do { } while (false)
1774 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);do { } while (false)
1775 for (VarLoc &VL : VarLocs) {do { } while (false)
1776 // Copy OpenRanges to OutLocs, if not already present.do { } while (false)
1777 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";do { } while (false)
1778 VL.dump(TRI);do { } while (false)
1779 }do { } while (false)
1780 })do { } while (false);
1781 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1782 Changed = VLS != OpenRanges.getVarLocs();
1783 // New OutLocs set may be different due to spill, restore or register
1784 // copy instruction processing.
1785 if (Changed)
1786 VLS = OpenRanges.getVarLocs();
1787 OpenRanges.clear();
1788 return Changed;
1789}
1790
1791/// Accumulate a mapping between each DILocalVariable fragment and other
1792/// fragments of that DILocalVariable which overlap. This reduces work during
1793/// the data-flow stage from "Find any overlapping fragments" to "Check if the
1794/// known-to-overlap fragments are present".
1795/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1796/// fragment usage.
1797/// \param SeenFragments Map from DILocalVariable to all fragments of that
1798/// Variable which are known to exist.
1799/// \param OverlappingFragments The overlap map being constructed, from one
1800/// Var/Fragment pair to a vector of fragments known to overlap.
1801void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1802 VarToFragments &SeenFragments,
1803 OverlapMap &OverlappingFragments) {
1804 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1805 MI.getDebugLoc()->getInlinedAt());
1806 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1807
1808 // If this is the first sighting of this variable, then we are guaranteed
1809 // there are currently no overlapping fragments either. Initialize the set
1810 // of seen fragments, record no overlaps for the current one, and return.
1811 auto SeenIt = SeenFragments.find(MIVar.getVariable());
1812 if (SeenIt == SeenFragments.end()) {
1813 SmallSet<FragmentInfo, 4> OneFragment;
1814 OneFragment.insert(ThisFragment);
1815 SeenFragments.insert({MIVar.getVariable(), OneFragment});
1816
1817 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1818 return;
1819 }
1820
1821 // If this particular Variable/Fragment pair already exists in the overlap
1822 // map, it has already been accounted for.
1823 auto IsInOLapMap =
1824 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1825 if (!IsInOLapMap.second)
1826 return;
1827
1828 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1829 auto &AllSeenFragments = SeenIt->second;
1830
1831 // Otherwise, examine all other seen fragments for this variable, with "this"
1832 // fragment being a previously unseen fragment. Record any pair of
1833 // overlapping fragments.
1834 for (auto &ASeenFragment : AllSeenFragments) {
1835 // Does this previously seen fragment overlap?
1836 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1837 // Yes: Mark the current fragment as being overlapped.
1838 ThisFragmentsOverlaps.push_back(ASeenFragment);
1839 // Mark the previously seen fragment as being overlapped by the current
1840 // one.
1841 auto ASeenFragmentsOverlaps =
1842 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1843 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&((void)0)
1844 "Previously seen var fragment has no vector of overlaps")((void)0);
1845 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1846 }
1847 }
1848
1849 AllSeenFragments.insert(ThisFragment);
1850}
1851
1852/// This routine creates OpenRanges.
1853void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1854 VarLocMap &VarLocIDs, TransferMap &Transfers) {
1855 transferDebugValue(MI, OpenRanges, VarLocIDs);
1856 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
1857 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1858 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1859}
1860
1861/// This routine joins the analysis results of all incoming edges in @MBB by
1862/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1863/// source variable in all the predecessors of @MBB reside in the same location.
1864bool VarLocBasedLDV::join(
1865 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1866 const VarLocMap &VarLocIDs,
1867 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1868 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1869 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n")do { } while (false);
1870
1871 VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1872
1873 // For all predecessors of this MBB, find the set of VarLocs that
1874 // can be joined.
1875 int NumVisited = 0;
1876 for (auto p : MBB.predecessors()) {
1877 // Ignore backedges if we have not visited the predecessor yet. As the
1878 // predecessor hasn't yet had locations propagated into it, most locations
1879 // will not yet be valid, so treat them as all being uninitialized and
1880 // potentially valid. If a location guessed to be correct here is
1881 // invalidated later, we will remove it when we revisit this block.
1882 if (!Visited.count(p)) {
1883 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()do { } while (false)
1884 << "\n")do { } while (false);
1885 continue;
1886 }
1887 auto OL = OutLocs.find(p);
1888 // Join is null in case of empty OutLocs from any of the pred.
1889 if (OL == OutLocs.end())
1890 return false;
1891
1892 // Just copy over the Out locs to incoming locs for the first visited
1893 // predecessor, and for all other predecessors join the Out locs.
1894 VarLocSet &OutLocVLS = *OL->second.get();
1895 if (!NumVisited)
1896 InLocsT = OutLocVLS;
1897 else
1898 InLocsT &= OutLocVLS;
1899
1900 LLVM_DEBUG({do { } while (false)
1901 if (!InLocsT.empty()) {do { } while (false)
1902 VarVec VarLocs;do { } while (false)
1903 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);do { } while (false)
1904 for (const VarLoc &VL : VarLocs)do { } while (false)
1905 dbgs() << " gathered candidate incoming var: "do { } while (false)
1906 << VL.Var.getVariable()->getName() << "\n";do { } while (false)
1907 }do { } while (false)
1908 })do { } while (false);
1909
1910 NumVisited++;
1911 }
1912
1913 // Filter out DBG_VALUES that are out of scope.
1914 VarLocSet KillSet(Alloc);
1915 bool IsArtificial = ArtificialBlocks.count(&MBB);
1916 if (!IsArtificial) {
1917 for (uint64_t ID : InLocsT) {
1918 LocIndex Idx = LocIndex::fromRawInteger(ID);
1919 if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1920 KillSet.set(ID);
1921 LLVM_DEBUG({do { } while (false)
1922 auto Name = VarLocIDs[Idx].Var.getVariable()->getName();do { } while (false)
1923 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";do { } while (false)
1924 })do { } while (false);
1925 }
1926 }
1927 }
1928 InLocsT.intersectWithComplement(KillSet);
1929
1930 // As we are processing blocks in reverse post-order we
1931 // should have processed at least one predecessor, unless it
1932 // is the entry block which has no predecessor.
1933 assert((NumVisited || MBB.pred_empty()) &&((void)0)
1934 "Should have processed at least one predecessor")((void)0);
1935
1936 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1937 bool Changed = false;
1938 if (ILS != InLocsT) {
1939 ILS = InLocsT;
1940 Changed = true;
1941 }
1942
1943 return Changed;
1944}
1945
1946void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
1947 VarLocMap &VarLocIDs) {
1948 // PendingInLocs records all locations propagated into blocks, which have
1949 // not had DBG_VALUE insts created. Go through and create those insts now.
1950 for (auto &Iter : PendingInLocs) {
1951 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1952 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1953 VarLocSet &Pending = *Iter.second.get();
1954
1955 SmallVector<VarLoc, 32> VarLocs;
1956 collectAllVarLocs(VarLocs, Pending, VarLocIDs);
1957
1958 for (VarLoc DiffIt : VarLocs) {
1959 // The ID location is live-in to MBB -- work out what kind of machine
1960 // location it is and create a DBG_VALUE.
1961 if (DiffIt.isEntryBackupLoc())
1962 continue;
1963 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
1964 MBB.insert(MBB.instr_begin(), MI);
1965
1966 (void)MI;
1967 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();)do { } while (false);
1968 }
1969 }
1970}
1971
1972bool VarLocBasedLDV::isEntryValueCandidate(
1973 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
1974 assert(MI.isDebugValue() && "This must be DBG_VALUE.")((void)0);
1975
1976 // TODO: Add support for local variables that are expressed in terms of
1977 // parameters entry values.
1978 // TODO: Add support for modified arguments that can be expressed
1979 // by using its entry value.
1980 auto *DIVar = MI.getDebugVariable();
1981 if (!DIVar->isParameter())
1982 return false;
1983
1984 // Do not consider parameters that belong to an inlined function.
1985 if (MI.getDebugLoc()->getInlinedAt())
1986 return false;
1987
1988 // Only consider parameters that are described using registers. Parameters
1989 // that are passed on the stack are not yet supported, so ignore debug
1990 // values that are described by the frame or stack pointer.
1991 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
1992 return false;
1993
1994 // If a parameter's value has been propagated from the caller, then the
1995 // parameter's DBG_VALUE may be described using a register defined by some
1996 // instruction in the entry block, in which case we shouldn't create an
1997 // entry value.
1998 if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
1999 return false;
2000
2001 // TODO: Add support for parameters that have a pre-existing debug expressions
2002 // (e.g. fragments).
2003 if (MI.getDebugExpression()->getNumElements() > 0)
2004 return false;
2005
2006 return true;
2007}
2008
2009/// Collect all register defines (including aliases) for the given instruction.
2010static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2011 const TargetRegisterInfo *TRI) {
2012 for (const MachineOperand &MO : MI.operands())
2013 if (MO.isReg() && MO.isDef() && MO.getReg())
2014 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2015 Regs.insert(*AI);
2016}
2017
2018/// This routine records the entry values of function parameters. The values
2019/// could be used as backup values. If we loose the track of some unmodified
2020/// parameters, the backup values will be used as a primary locations.
2021void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2022 const DefinedRegsSet &DefinedRegs,
2023 OpenRangesSet &OpenRanges,
2024 VarLocMap &VarLocIDs) {
2025 if (TPC) {
2026 auto &TM = TPC->getTM<TargetMachine>();
2027 if (!TM.Options.ShouldEmitDebugEntryValues())
2028 return;
2029 }
2030
2031 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2032 MI.getDebugLoc()->getInlinedAt());
2033
2034 if (!isEntryValueCandidate(MI, DefinedRegs) ||
2035 OpenRanges.getEntryValueBackup(V))
2036 return;
2037
2038 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();)do { } while (false);
2039
2040 // Create the entry value and use it as a backup location until it is
2041 // valid. It is valid until a parameter is not changed.
2042 DIExpression *NewExpr =
2043 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2044 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
2045 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2046 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2047}
2048
2049/// Calculate the liveness information for the given machine function and
2050/// extend ranges across basic blocks.
2051bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
2052 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n")do { } while (false);
2053
2054 if (!MF.getFunction().getSubprogram())
2055 // VarLocBaseLDV will already have removed all DBG_VALUEs.
2056 return false;
2057
2058 // Skip functions from NoDebug compilation units.
2059 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2060 DICompileUnit::NoDebug)
2061 return false;
2062
2063 TRI = MF.getSubtarget().getRegisterInfo();
2064 TII = MF.getSubtarget().getInstrInfo();
2065 TFI = MF.getSubtarget().getFrameLowering();
2066 TFI->getCalleeSaves(MF, CalleeSavedRegs);
2067 this->TPC = TPC;
2068 LS.initialize(MF);
2069
2070 bool Changed = false;
2071 bool OLChanged = false;
2072 bool MBBJoined = false;
2073
2074 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
2075 OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2076 OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2077 // Ranges that are open until end of bb.
2078 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
2079 VarLocInMBB InLocs; // Ranges that are incoming after joining.
2080 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
2081 // spills, copies and restores).
2082
2083 VarToFragments SeenFragments;
2084
2085 // Blocks which are artificial, i.e. blocks which exclusively contain
2086 // instructions without locations, or with line 0 locations.
2087 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2088
2089 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2090 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2091 std::priority_queue<unsigned int, std::vector<unsigned int>,
2092 std::greater<unsigned int>>
2093 Worklist;
2094 std::priority_queue<unsigned int, std::vector<unsigned int>,
2095 std::greater<unsigned int>>
2096 Pending;
2097
2098 // Set of register defines that are seen when traversing the entry block
2099 // looking for debug entry value candidates.
2100 DefinedRegsSet DefinedRegs;
2101
2102 // Only in the case of entry MBB collect DBG_VALUEs representing
2103 // function parameters in order to generate debug entry values for them.
2104 MachineBasicBlock &First_MBB = *(MF.begin());
2105 for (auto &MI : First_MBB) {
2106 collectRegDefs(MI, DefinedRegs, TRI);
2107 if (MI.isDebugValue())
2108 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2109 }
2110
2111 // Initialize per-block structures and scan for fragment overlaps.
2112 for (auto &MBB : MF)
2113 for (auto &MI : MBB)
2114 if (MI.isDebugValue())
2115 accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2116
2117 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2118 if (const DebugLoc &DL = MI.getDebugLoc())
2119 return DL.getLine() != 0;
2120 return false;
2121 };
2122 for (auto &MBB : MF)
2123 if (none_of(MBB.instrs(), hasNonArtificialLocation))
2124 ArtificialBlocks.insert(&MBB);
2125
2126 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,do { } while (false)
2127 "OutLocs after initialization", dbgs()))do { } while (false);
2128
2129 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2130 unsigned int RPONumber = 0;
2131 for (MachineBasicBlock *MBB : RPOT) {
2132 OrderToBB[RPONumber] = MBB;
2133 BBToOrder[MBB] = RPONumber;
2134 Worklist.push(RPONumber);
2135 ++RPONumber;
2136 }
2137
2138 if (RPONumber > InputBBLimit) {
2139 unsigned NumInputDbgValues = 0;
2140 for (auto &MBB : MF)
2141 for (auto &MI : MBB)
2142 if (MI.isDebugValue())
2143 ++NumInputDbgValues;
2144 if (NumInputDbgValues > InputDbgValueLimit) {
2145 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()do { } while (false)
2146 << " has " << RPONumber << " basic blocks and "do { } while (false)
2147 << NumInputDbgValuesdo { } while (false)
2148 << " input DBG_VALUEs, exceeding limits.\n")do { } while (false);
2149 return false;
2150 }
2151 }
2152
2153 // This is a standard "union of predecessor outs" dataflow problem.
2154 // To solve it, we perform join() and process() using the two worklist method
2155 // until the ranges converge.
2156 // Ranges have converged when both worklists are empty.
2157 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2158 while (!Worklist.empty() || !Pending.empty()) {
2159 // We track what is on the pending worklist to avoid inserting the same
2160 // thing twice. We could avoid this with a custom priority queue, but this
2161 // is probably not worth it.
2162 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2163 LLVM_DEBUG(dbgs() << "Processing Worklist\n")do { } while (false);
2164 while (!Worklist.empty()) {
2165 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2166 Worklist.pop();
2167 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2168 ArtificialBlocks);
2169 MBBJoined |= Visited.insert(MBB).second;
2170 if (MBBJoined) {
2171 MBBJoined = false;
Value stored to 'MBBJoined' is never read
2172 Changed = true;
2173 // Now that we have started to extend ranges across BBs we need to
2174 // examine spill, copy and restore instructions to see whether they
2175 // operate with registers that correspond to user variables.
2176 // First load any pending inlocs.
2177 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2178 for (auto &MI : *MBB)
2179 process(MI, OpenRanges, VarLocIDs, Transfers);
2180 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2181
2182 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,do { } while (false)
2183 "OutLocs after propagating", dbgs()))do { } while (false);
2184 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,do { } while (false)
2185 "InLocs after propagating", dbgs()))do { } while (false);
2186
2187 if (OLChanged) {
2188 OLChanged = false;
2189 for (auto s : MBB->successors())
2190 if (OnPending.insert(s).second) {
2191 Pending.push(BBToOrder[s]);
2192 }
2193 }
2194 }
2195 }
2196 Worklist.swap(Pending);
2197 // At this point, pending must be empty, since it was just the empty
2198 // worklist
2199 assert(Pending.empty() && "Pending should be empty")((void)0);
2200 }
2201
2202 // Add any DBG_VALUE instructions created by location transfers.
2203 for (auto &TR : Transfers) {
2204 assert(!TR.TransferInst->isTerminator() &&((void)0)
2205 "Cannot insert DBG_VALUE after terminator")((void)0);
2206 MachineBasicBlock *MBB = TR.TransferInst->getParent();
2207 const VarLoc &VL = VarLocIDs[TR.LocationID];
2208 MachineInstr *MI = VL.BuildDbgValue(MF);
2209 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2210 }
2211 Transfers.clear();
2212
2213 // Deferred inlocs will not have had any DBG_VALUE insts created; do
2214 // that now.
2215 flushPendingLocs(InLocs, VarLocIDs);
2216
2217 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()))do { } while (false);
2218 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()))do { } while (false);
2219 return Changed;
2220}
2221
2222LDVImpl *
2223llvm::makeVarLocBasedLiveDebugValues()
2224{
2225 return new VarLocBasedLDV();
2226}