Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
Warning:line 5533, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateInstantiateDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp

1//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements C++ template instantiation for declarations.
9//
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTMutationListener.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/DeclVisitor.h"
18#include "clang/AST/DependentDiagnostic.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/PrettyDeclStackTrace.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateInstCallback.h"
31#include "llvm/Support/TimeProfiler.h"
32
33using namespace clang;
34
35static bool isDeclWithinFunction(const Decl *D) {
36 const DeclContext *DC = D->getDeclContext();
37 if (DC->isFunctionOrMethod())
38 return true;
39
40 if (DC->isRecord())
41 return cast<CXXRecordDecl>(DC)->isLocalClass();
42
43 return false;
44}
45
46template<typename DeclT>
47static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
48 const MultiLevelTemplateArgumentList &TemplateArgs) {
49 if (!OldDecl->getQualifierLoc())
50 return false;
51
52 assert((NewDecl->getFriendObjectKind() ||((void)0)
53 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&((void)0)
54 "non-friend with qualified name defined in dependent context")((void)0);
55 Sema::ContextRAII SavedContext(
56 SemaRef,
57 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
58 ? NewDecl->getLexicalDeclContext()
59 : OldDecl->getLexicalDeclContext()));
60
61 NestedNameSpecifierLoc NewQualifierLoc
62 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
63 TemplateArgs);
64
65 if (!NewQualifierLoc)
66 return true;
67
68 NewDecl->setQualifierInfo(NewQualifierLoc);
69 return false;
70}
71
72bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
73 DeclaratorDecl *NewDecl) {
74 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
75}
76
77bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
78 TagDecl *NewDecl) {
79 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
80}
81
82// Include attribute instantiation code.
83#include "clang/Sema/AttrTemplateInstantiate.inc"
84
85static void instantiateDependentAlignedAttr(
86 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
87 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
88 if (Aligned->isAlignmentExpr()) {
89 // The alignment expression is a constant expression.
90 EnterExpressionEvaluationContext Unevaluated(
91 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
92 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
93 if (!Result.isInvalid())
94 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
95 } else {
96 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
97 TemplateArgs, Aligned->getLocation(),
98 DeclarationName());
99 if (Result)
100 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
101 }
102}
103
104static void instantiateDependentAlignedAttr(
105 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
106 const AlignedAttr *Aligned, Decl *New) {
107 if (!Aligned->isPackExpansion()) {
108 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
109 return;
110 }
111
112 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
113 if (Aligned->isAlignmentExpr())
114 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
115 Unexpanded);
116 else
117 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
118 Unexpanded);
119 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")((void)0);
120
121 // Determine whether we can expand this attribute pack yet.
122 bool Expand = true, RetainExpansion = false;
123 Optional<unsigned> NumExpansions;
124 // FIXME: Use the actual location of the ellipsis.
125 SourceLocation EllipsisLoc = Aligned->getLocation();
126 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
127 Unexpanded, TemplateArgs, Expand,
128 RetainExpansion, NumExpansions))
129 return;
130
131 if (!Expand) {
132 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
133 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
134 } else {
135 for (unsigned I = 0; I != *NumExpansions; ++I) {
136 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
137 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
138 }
139 }
140}
141
142static void instantiateDependentAssumeAlignedAttr(
143 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
144 const AssumeAlignedAttr *Aligned, Decl *New) {
145 // The alignment expression is a constant expression.
146 EnterExpressionEvaluationContext Unevaluated(
147 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
148
149 Expr *E, *OE = nullptr;
150 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
151 if (Result.isInvalid())
152 return;
153 E = Result.getAs<Expr>();
154
155 if (Aligned->getOffset()) {
156 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
157 if (Result.isInvalid())
158 return;
159 OE = Result.getAs<Expr>();
160 }
161
162 S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
163}
164
165static void instantiateDependentAlignValueAttr(
166 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
167 const AlignValueAttr *Aligned, Decl *New) {
168 // The alignment expression is a constant expression.
169 EnterExpressionEvaluationContext Unevaluated(
170 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
171 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
172 if (!Result.isInvalid())
173 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
174}
175
176static void instantiateDependentAllocAlignAttr(
177 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
178 const AllocAlignAttr *Align, Decl *New) {
179 Expr *Param = IntegerLiteral::Create(
180 S.getASTContext(),
181 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
182 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
183 S.AddAllocAlignAttr(New, *Align, Param);
184}
185
186static void instantiateDependentAnnotationAttr(
187 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
188 const AnnotateAttr *Attr, Decl *New) {
189 EnterExpressionEvaluationContext Unevaluated(
190 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
191 SmallVector<Expr *, 4> Args;
192 Args.reserve(Attr->args_size());
193 for (auto *E : Attr->args()) {
194 ExprResult Result = S.SubstExpr(E, TemplateArgs);
195 if (!Result.isUsable())
196 return;
197 Args.push_back(Result.get());
198 }
199 S.AddAnnotationAttr(New, *Attr, Attr->getAnnotation(), Args);
200}
201
202static Expr *instantiateDependentFunctionAttrCondition(
203 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
204 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
205 Expr *Cond = nullptr;
206 {
207 Sema::ContextRAII SwitchContext(S, New);
208 EnterExpressionEvaluationContext Unevaluated(
209 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
210 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
211 if (Result.isInvalid())
212 return nullptr;
213 Cond = Result.getAs<Expr>();
214 }
215 if (!Cond->isTypeDependent()) {
216 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
217 if (Converted.isInvalid())
218 return nullptr;
219 Cond = Converted.get();
220 }
221
222 SmallVector<PartialDiagnosticAt, 8> Diags;
223 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
224 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
225 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
226 for (const auto &P : Diags)
227 S.Diag(P.first, P.second);
228 return nullptr;
229 }
230 return Cond;
231}
232
233static void instantiateDependentEnableIfAttr(
234 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
235 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
236 Expr *Cond = instantiateDependentFunctionAttrCondition(
237 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
238
239 if (Cond)
240 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
241 Cond, EIA->getMessage()));
242}
243
244static void instantiateDependentDiagnoseIfAttr(
245 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
246 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
247 Expr *Cond = instantiateDependentFunctionAttrCondition(
248 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
249
250 if (Cond)
251 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
252 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
253 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
254}
255
256// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
257// template A as the base and arguments from TemplateArgs.
258static void instantiateDependentCUDALaunchBoundsAttr(
259 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
260 const CUDALaunchBoundsAttr &Attr, Decl *New) {
261 // The alignment expression is a constant expression.
262 EnterExpressionEvaluationContext Unevaluated(
263 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
264
265 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
266 if (Result.isInvalid())
267 return;
268 Expr *MaxThreads = Result.getAs<Expr>();
269
270 Expr *MinBlocks = nullptr;
271 if (Attr.getMinBlocks()) {
272 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
273 if (Result.isInvalid())
274 return;
275 MinBlocks = Result.getAs<Expr>();
276 }
277
278 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks);
279}
280
281static void
282instantiateDependentModeAttr(Sema &S,
283 const MultiLevelTemplateArgumentList &TemplateArgs,
284 const ModeAttr &Attr, Decl *New) {
285 S.AddModeAttr(New, Attr, Attr.getMode(),
286 /*InInstantiation=*/true);
287}
288
289/// Instantiation of 'declare simd' attribute and its arguments.
290static void instantiateOMPDeclareSimdDeclAttr(
291 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
292 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
293 // Allow 'this' in clauses with varlists.
294 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
295 New = FTD->getTemplatedDecl();
296 auto *FD = cast<FunctionDecl>(New);
297 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
298 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
299 SmallVector<unsigned, 4> LinModifiers;
300
301 auto SubstExpr = [&](Expr *E) -> ExprResult {
302 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
303 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
304 Sema::ContextRAII SavedContext(S, FD);
305 LocalInstantiationScope Local(S);
306 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
307 Local.InstantiatedLocal(
308 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
309 return S.SubstExpr(E, TemplateArgs);
310 }
311 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
312 FD->isCXXInstanceMember());
313 return S.SubstExpr(E, TemplateArgs);
314 };
315
316 // Substitute a single OpenMP clause, which is a potentially-evaluated
317 // full-expression.
318 auto Subst = [&](Expr *E) -> ExprResult {
319 EnterExpressionEvaluationContext Evaluated(
320 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
321 ExprResult Res = SubstExpr(E);
322 if (Res.isInvalid())
323 return Res;
324 return S.ActOnFinishFullExpr(Res.get(), false);
325 };
326
327 ExprResult Simdlen;
328 if (auto *E = Attr.getSimdlen())
329 Simdlen = Subst(E);
330
331 if (Attr.uniforms_size() > 0) {
332 for(auto *E : Attr.uniforms()) {
333 ExprResult Inst = Subst(E);
334 if (Inst.isInvalid())
335 continue;
336 Uniforms.push_back(Inst.get());
337 }
338 }
339
340 auto AI = Attr.alignments_begin();
341 for (auto *E : Attr.aligneds()) {
342 ExprResult Inst = Subst(E);
343 if (Inst.isInvalid())
344 continue;
345 Aligneds.push_back(Inst.get());
346 Inst = ExprEmpty();
347 if (*AI)
348 Inst = S.SubstExpr(*AI, TemplateArgs);
349 Alignments.push_back(Inst.get());
350 ++AI;
351 }
352
353 auto SI = Attr.steps_begin();
354 for (auto *E : Attr.linears()) {
355 ExprResult Inst = Subst(E);
356 if (Inst.isInvalid())
357 continue;
358 Linears.push_back(Inst.get());
359 Inst = ExprEmpty();
360 if (*SI)
361 Inst = S.SubstExpr(*SI, TemplateArgs);
362 Steps.push_back(Inst.get());
363 ++SI;
364 }
365 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
366 (void)S.ActOnOpenMPDeclareSimdDirective(
367 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
368 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
369 Attr.getRange());
370}
371
372/// Instantiation of 'declare variant' attribute and its arguments.
373static void instantiateOMPDeclareVariantAttr(
374 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
375 const OMPDeclareVariantAttr &Attr, Decl *New) {
376 // Allow 'this' in clauses with varlists.
377 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
378 New = FTD->getTemplatedDecl();
379 auto *FD = cast<FunctionDecl>(New);
380 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
381
382 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
383 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
384 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
385 Sema::ContextRAII SavedContext(S, FD);
386 LocalInstantiationScope Local(S);
387 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
388 Local.InstantiatedLocal(
389 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
390 return S.SubstExpr(E, TemplateArgs);
391 }
392 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
393 FD->isCXXInstanceMember());
394 return S.SubstExpr(E, TemplateArgs);
395 };
396
397 // Substitute a single OpenMP clause, which is a potentially-evaluated
398 // full-expression.
399 auto &&Subst = [&SubstExpr, &S](Expr *E) {
400 EnterExpressionEvaluationContext Evaluated(
401 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
402 ExprResult Res = SubstExpr(E);
403 if (Res.isInvalid())
404 return Res;
405 return S.ActOnFinishFullExpr(Res.get(), false);
406 };
407
408 ExprResult VariantFuncRef;
409 if (Expr *E = Attr.getVariantFuncRef()) {
410 // Do not mark function as is used to prevent its emission if this is the
411 // only place where it is used.
412 EnterExpressionEvaluationContext Unevaluated(
413 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
414 VariantFuncRef = Subst(E);
415 }
416
417 // Copy the template version of the OMPTraitInfo and run substitute on all
418 // score and condition expressiosn.
419 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
420 TI = *Attr.getTraitInfos();
421
422 // Try to substitute template parameters in score and condition expressions.
423 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
424 if (E) {
425 EnterExpressionEvaluationContext Unevaluated(
426 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
427 ExprResult ER = Subst(E);
428 if (ER.isUsable())
429 E = ER.get();
430 else
431 return true;
432 }
433 return false;
434 };
435 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
436 return;
437
438 Expr *E = VariantFuncRef.get();
439 // Check function/variant ref for `omp declare variant` but not for `omp
440 // begin declare variant` (which use implicit attributes).
441 Optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
442 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New),
443 VariantFuncRef.get(), TI,
444 Attr.getRange());
445
446 if (!DeclVarData)
447 return;
448
449 E = DeclVarData.getValue().second;
450 FD = DeclVarData.getValue().first;
451
452 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
453 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
454 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
455 if (!VariantFTD->isThisDeclarationADefinition())
456 return;
457 Sema::TentativeAnalysisScope Trap(S);
458 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
459 S.Context, TemplateArgs.getInnermost());
460
461 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
462 New->getLocation());
463 if (!SubstFD)
464 return;
465 QualType NewType = S.Context.mergeFunctionTypes(
466 SubstFD->getType(), FD->getType(),
467 /* OfBlockPointer */ false,
468 /* Unqualified */ false, /* AllowCXX */ true);
469 if (NewType.isNull())
470 return;
471 S.InstantiateFunctionDefinition(
472 New->getLocation(), SubstFD, /* Recursive */ true,
473 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
474 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
475 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
476 SourceLocation(), SubstFD,
477 /* RefersToEnclosingVariableOrCapture */ false,
478 /* NameLoc */ SubstFD->getLocation(),
479 SubstFD->getType(), ExprValueKind::VK_PRValue);
480 }
481 }
482 }
483
484 S.ActOnOpenMPDeclareVariantDirective(FD, E, TI, Attr.getRange());
485}
486
487static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
488 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
489 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
490 // Both min and max expression are constant expressions.
491 EnterExpressionEvaluationContext Unevaluated(
492 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
493
494 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
495 if (Result.isInvalid())
496 return;
497 Expr *MinExpr = Result.getAs<Expr>();
498
499 Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
500 if (Result.isInvalid())
501 return;
502 Expr *MaxExpr = Result.getAs<Expr>();
503
504 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
505}
506
507static ExplicitSpecifier
508instantiateExplicitSpecifier(Sema &S,
509 const MultiLevelTemplateArgumentList &TemplateArgs,
510 ExplicitSpecifier ES, FunctionDecl *New) {
511 if (!ES.getExpr())
512 return ES;
513 Expr *OldCond = ES.getExpr();
514 Expr *Cond = nullptr;
515 {
516 EnterExpressionEvaluationContext Unevaluated(
517 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
518 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs);
519 if (SubstResult.isInvalid()) {
520 return ExplicitSpecifier::Invalid();
521 }
522 Cond = SubstResult.get();
523 }
524 ExplicitSpecifier Result(Cond, ES.getKind());
525 if (!Cond->isTypeDependent())
526 S.tryResolveExplicitSpecifier(Result);
527 return Result;
528}
529
530static void instantiateDependentAMDGPUWavesPerEUAttr(
531 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
532 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
533 // Both min and max expression are constant expressions.
534 EnterExpressionEvaluationContext Unevaluated(
535 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
536
537 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
538 if (Result.isInvalid())
539 return;
540 Expr *MinExpr = Result.getAs<Expr>();
541
542 Expr *MaxExpr = nullptr;
543 if (auto Max = Attr.getMax()) {
544 Result = S.SubstExpr(Max, TemplateArgs);
545 if (Result.isInvalid())
546 return;
547 MaxExpr = Result.getAs<Expr>();
548 }
549
550 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
551}
552
553// This doesn't take any template parameters, but we have a custom action that
554// needs to happen when the kernel itself is instantiated. We need to run the
555// ItaniumMangler to mark the names required to name this kernel.
556static void instantiateDependentSYCLKernelAttr(
557 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
558 const SYCLKernelAttr &Attr, Decl *New) {
559 // Functions cannot be partially specialized, so if we are being instantiated,
560 // we are obviously a complete specialization. Since this attribute is only
561 // valid on function template declarations, we know that this is a full
562 // instantiation of a kernel.
563 S.AddSYCLKernelLambda(cast<FunctionDecl>(New));
564
565 // Evaluate whether this would change any of the already evaluated
566 // __builtin_sycl_unique_stable_name values.
567 for (auto &Itr : S.Context.SYCLUniqueStableNameEvaluatedValues) {
568 const std::string &CurName = Itr.first->ComputeName(S.Context);
569 if (Itr.second != CurName) {
570 S.Diag(New->getLocation(),
571 diag::err_kernel_invalidates_sycl_unique_stable_name);
572 S.Diag(Itr.first->getLocation(),
573 diag::note_sycl_unique_stable_name_evaluated_here);
574 // Update this so future diagnostics work correctly.
575 Itr.second = CurName;
576 }
577 }
578
579 New->addAttr(Attr.clone(S.getASTContext()));
580}
581
582/// Determine whether the attribute A might be relevent to the declaration D.
583/// If not, we can skip instantiating it. The attribute may or may not have
584/// been instantiated yet.
585static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
586 // 'preferred_name' is only relevant to the matching specialization of the
587 // template.
588 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
589 QualType T = PNA->getTypedefType();
590 const auto *RD = cast<CXXRecordDecl>(D);
591 if (!T->isDependentType() && !RD->isDependentContext() &&
592 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
593 return false;
594 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
595 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
596 PNA->getTypedefType()))
597 return false;
598 return true;
599 }
600
601 return true;
602}
603
604void Sema::InstantiateAttrsForDecl(
605 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
606 Decl *New, LateInstantiatedAttrVec *LateAttrs,
607 LocalInstantiationScope *OuterMostScope) {
608 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
609 // FIXME: This function is called multiple times for the same template
610 // specialization. We should only instantiate attributes that were added
611 // since the previous instantiation.
612 for (const auto *TmplAttr : Tmpl->attrs()) {
613 if (!isRelevantAttr(*this, New, TmplAttr))
614 continue;
615
616 // FIXME: If any of the special case versions from InstantiateAttrs become
617 // applicable to template declaration, we'll need to add them here.
618 CXXThisScopeRAII ThisScope(
619 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
620 Qualifiers(), ND->isCXXInstanceMember());
621
622 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
623 TmplAttr, Context, *this, TemplateArgs);
624 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
625 New->addAttr(NewAttr);
626 }
627 }
628}
629
630static Sema::RetainOwnershipKind
631attrToRetainOwnershipKind(const Attr *A) {
632 switch (A->getKind()) {
633 case clang::attr::CFConsumed:
634 return Sema::RetainOwnershipKind::CF;
635 case clang::attr::OSConsumed:
636 return Sema::RetainOwnershipKind::OS;
637 case clang::attr::NSConsumed:
638 return Sema::RetainOwnershipKind::NS;
639 default:
640 llvm_unreachable("Wrong argument supplied")__builtin_unreachable();
641 }
642}
643
644void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
645 const Decl *Tmpl, Decl *New,
646 LateInstantiatedAttrVec *LateAttrs,
647 LocalInstantiationScope *OuterMostScope) {
648 for (const auto *TmplAttr : Tmpl->attrs()) {
649 if (!isRelevantAttr(*this, New, TmplAttr))
650 continue;
651
652 // FIXME: This should be generalized to more than just the AlignedAttr.
653 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
654 if (Aligned && Aligned->isAlignmentDependent()) {
655 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
656 continue;
657 }
658
659 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
660 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
661 continue;
662 }
663
664 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
665 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
666 continue;
667 }
668
669 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
670 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
671 continue;
672 }
673
674 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
675 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
676 continue;
677 }
678
679 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
680 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
681 cast<FunctionDecl>(New));
682 continue;
683 }
684
685 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
686 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
687 cast<FunctionDecl>(New));
688 continue;
689 }
690
691 if (const auto *CUDALaunchBounds =
692 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
693 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
694 *CUDALaunchBounds, New);
695 continue;
696 }
697
698 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
699 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
700 continue;
701 }
702
703 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
704 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
705 continue;
706 }
707
708 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
709 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
710 continue;
711 }
712
713 if (const auto *AMDGPUFlatWorkGroupSize =
714 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
715 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
716 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
717 }
718
719 if (const auto *AMDGPUFlatWorkGroupSize =
720 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
721 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
722 *AMDGPUFlatWorkGroupSize, New);
723 }
724
725 // Existing DLL attribute on the instantiation takes precedence.
726 if (TmplAttr->getKind() == attr::DLLExport ||
727 TmplAttr->getKind() == attr::DLLImport) {
728 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
729 continue;
730 }
731 }
732
733 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
734 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
735 continue;
736 }
737
738 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
739 isa<CFConsumedAttr>(TmplAttr)) {
740 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
741 /*template instantiation=*/true);
742 continue;
743 }
744
745 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
746 if (!New->hasAttr<PointerAttr>())
747 New->addAttr(A->clone(Context));
748 continue;
749 }
750
751 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
752 if (!New->hasAttr<OwnerAttr>())
753 New->addAttr(A->clone(Context));
754 continue;
755 }
756
757 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
758 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
759 continue;
760 }
761
762 assert(!TmplAttr->isPackExpansion())((void)0);
763 if (TmplAttr->isLateParsed() && LateAttrs) {
764 // Late parsed attributes must be instantiated and attached after the
765 // enclosing class has been instantiated. See Sema::InstantiateClass.
766 LocalInstantiationScope *Saved = nullptr;
767 if (CurrentInstantiationScope)
768 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
769 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
770 } else {
771 // Allow 'this' within late-parsed attributes.
772 auto *ND = cast<NamedDecl>(New);
773 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
774 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
775 ND->isCXXInstanceMember());
776
777 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
778 *this, TemplateArgs);
779 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
780 New->addAttr(NewAttr);
781 }
782 }
783}
784
785/// In the MS ABI, we need to instantiate default arguments of dllexported
786/// default constructors along with the constructor definition. This allows IR
787/// gen to emit a constructor closure which calls the default constructor with
788/// its default arguments.
789void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
790 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&((void)0)
791 Ctor->isDefaultConstructor())((void)0);
792 unsigned NumParams = Ctor->getNumParams();
793 if (NumParams == 0)
794 return;
795 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
796 if (!Attr)
797 return;
798 for (unsigned I = 0; I != NumParams; ++I) {
799 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
800 Ctor->getParamDecl(I));
801 DiscardCleanupsInEvaluationContext();
802 }
803}
804
805/// Get the previous declaration of a declaration for the purposes of template
806/// instantiation. If this finds a previous declaration, then the previous
807/// declaration of the instantiation of D should be an instantiation of the
808/// result of this function.
809template<typename DeclT>
810static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
811 DeclT *Result = D->getPreviousDecl();
812
813 // If the declaration is within a class, and the previous declaration was
814 // merged from a different definition of that class, then we don't have a
815 // previous declaration for the purpose of template instantiation.
816 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
817 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
818 return nullptr;
819
820 return Result;
821}
822
823Decl *
824TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
825 llvm_unreachable("Translation units cannot be instantiated")__builtin_unreachable();
826}
827
828Decl *
829TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
830 llvm_unreachable("pragma comment cannot be instantiated")__builtin_unreachable();
831}
832
833Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
834 PragmaDetectMismatchDecl *D) {
835 llvm_unreachable("pragma comment cannot be instantiated")__builtin_unreachable();
836}
837
838Decl *
839TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
840 llvm_unreachable("extern \"C\" context cannot be instantiated")__builtin_unreachable();
841}
842
843Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
844 llvm_unreachable("GUID declaration cannot be instantiated")__builtin_unreachable();
845}
846
847Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
848 TemplateParamObjectDecl *D) {
849 llvm_unreachable("template parameter objects cannot be instantiated")__builtin_unreachable();
850}
851
852Decl *
853TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
854 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
855 D->getIdentifier());
856 Owner->addDecl(Inst);
857 return Inst;
858}
859
860Decl *
861TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
862 llvm_unreachable("Namespaces cannot be instantiated")__builtin_unreachable();
863}
864
865Decl *
866TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
867 NamespaceAliasDecl *Inst
868 = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
869 D->getNamespaceLoc(),
870 D->getAliasLoc(),
871 D->getIdentifier(),
872 D->getQualifierLoc(),
873 D->getTargetNameLoc(),
874 D->getNamespace());
875 Owner->addDecl(Inst);
876 return Inst;
877}
878
879Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
880 bool IsTypeAlias) {
881 bool Invalid = false;
882 TypeSourceInfo *DI = D->getTypeSourceInfo();
883 if (DI->getType()->isInstantiationDependentType() ||
884 DI->getType()->isVariablyModifiedType()) {
885 DI = SemaRef.SubstType(DI, TemplateArgs,
886 D->getLocation(), D->getDeclName());
887 if (!DI) {
888 Invalid = true;
889 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
890 }
891 } else {
892 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
893 }
894
895 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
896 // libstdc++ relies upon this bug in its implementation of common_type. If we
897 // happen to be processing that implementation, fake up the g++ ?:
898 // semantics. See LWG issue 2141 for more information on the bug. The bugs
899 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
900 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
901 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
902 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
903 DT->isReferenceType() &&
904 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
905 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
906 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
907 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
908 // Fold it to the (non-reference) type which g++ would have produced.
909 DI = SemaRef.Context.getTrivialTypeSourceInfo(
910 DI->getType().getNonReferenceType());
911
912 // Create the new typedef
913 TypedefNameDecl *Typedef;
914 if (IsTypeAlias)
915 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
916 D->getLocation(), D->getIdentifier(), DI);
917 else
918 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
919 D->getLocation(), D->getIdentifier(), DI);
920 if (Invalid)
921 Typedef->setInvalidDecl();
922
923 // If the old typedef was the name for linkage purposes of an anonymous
924 // tag decl, re-establish that relationship for the new typedef.
925 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
926 TagDecl *oldTag = oldTagType->getDecl();
927 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
928 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
929 assert(!newTag->hasNameForLinkage())((void)0);
930 newTag->setTypedefNameForAnonDecl(Typedef);
931 }
932 }
933
934 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
935 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
936 TemplateArgs);
937 if (!InstPrev)
938 return nullptr;
939
940 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
941
942 // If the typedef types are not identical, reject them.
943 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
944
945 Typedef->setPreviousDecl(InstPrevTypedef);
946 }
947
948 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
949
950 if (D->getUnderlyingType()->getAs<DependentNameType>())
951 SemaRef.inferGslPointerAttribute(Typedef);
952
953 Typedef->setAccess(D->getAccess());
954
955 return Typedef;
956}
957
958Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
959 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
960 if (Typedef)
961 Owner->addDecl(Typedef);
962 return Typedef;
963}
964
965Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
966 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
967 if (Typedef)
968 Owner->addDecl(Typedef);
969 return Typedef;
970}
971
972Decl *
973TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
974 // Create a local instantiation scope for this type alias template, which
975 // will contain the instantiations of the template parameters.
976 LocalInstantiationScope Scope(SemaRef);
977
978 TemplateParameterList *TempParams = D->getTemplateParameters();
979 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
980 if (!InstParams)
981 return nullptr;
982
983 TypeAliasDecl *Pattern = D->getTemplatedDecl();
984
985 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
986 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
987 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
988 if (!Found.empty()) {
989 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
990 }
991 }
992
993 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
994 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
995 if (!AliasInst)
996 return nullptr;
997
998 TypeAliasTemplateDecl *Inst
999 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1000 D->getDeclName(), InstParams, AliasInst);
1001 AliasInst->setDescribedAliasTemplate(Inst);
1002 if (PrevAliasTemplate)
1003 Inst->setPreviousDecl(PrevAliasTemplate);
1004
1005 Inst->setAccess(D->getAccess());
1006
1007 if (!PrevAliasTemplate)
1008 Inst->setInstantiatedFromMemberTemplate(D);
1009
1010 Owner->addDecl(Inst);
1011
1012 return Inst;
1013}
1014
1015Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1016 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1017 D->getIdentifier());
1018 NewBD->setReferenced(D->isReferenced());
1019 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
1020 return NewBD;
1021}
1022
1023Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1024 // Transform the bindings first.
1025 SmallVector<BindingDecl*, 16> NewBindings;
1026 for (auto *OldBD : D->bindings())
1027 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1028 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1029
1030 auto *NewDD = cast_or_null<DecompositionDecl>(
1031 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1032
1033 if (!NewDD || NewDD->isInvalidDecl())
1034 for (auto *NewBD : NewBindings)
1035 NewBD->setInvalidDecl();
1036
1037 return NewDD;
1038}
1039
1040Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1041 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1042}
1043
1044Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1045 bool InstantiatingVarTemplate,
1046 ArrayRef<BindingDecl*> *Bindings) {
1047
1048 // Do substitution on the type of the declaration
1049 TypeSourceInfo *DI = SemaRef.SubstType(
1050 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1051 D->getDeclName(), /*AllowDeducedTST*/true);
1052 if (!DI)
1053 return nullptr;
1054
1055 if (DI->getType()->isFunctionType()) {
1056 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1057 << D->isStaticDataMember() << DI->getType();
1058 return nullptr;
1059 }
1060
1061 DeclContext *DC = Owner;
1062 if (D->isLocalExternDecl())
1063 SemaRef.adjustContextForLocalExternDecl(DC);
1064
1065 // Build the instantiated declaration.
1066 VarDecl *Var;
1067 if (Bindings)
1068 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1069 D->getLocation(), DI->getType(), DI,
1070 D->getStorageClass(), *Bindings);
1071 else
1072 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1073 D->getLocation(), D->getIdentifier(), DI->getType(),
1074 DI, D->getStorageClass());
1075
1076 // In ARC, infer 'retaining' for variables of retainable type.
1077 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1078 SemaRef.inferObjCARCLifetime(Var))
1079 Var->setInvalidDecl();
1080
1081 if (SemaRef.getLangOpts().OpenCL)
1082 SemaRef.deduceOpenCLAddressSpace(Var);
1083
1084 // Substitute the nested name specifier, if any.
1085 if (SubstQualifier(D, Var))
1086 return nullptr;
1087
1088 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
1089 StartingScope, InstantiatingVarTemplate);
1090 if (D->isNRVOVariable() && !Var->isInvalidDecl()) {
1091 QualType RT;
1092 if (auto *F = dyn_cast<FunctionDecl>(DC))
1093 RT = F->getReturnType();
1094 else if (isa<BlockDecl>(DC))
1095 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1096 ->getReturnType();
1097 else
1098 llvm_unreachable("Unknown context type")__builtin_unreachable();
1099
1100 // This is the last chance we have of checking copy elision eligibility
1101 // for functions in dependent contexts. The sema actions for building
1102 // the return statement during template instantiation will have no effect
1103 // regarding copy elision, since NRVO propagation runs on the scope exit
1104 // actions, and these are not run on instantiation.
1105 // This might run through some VarDecls which were returned from non-taken
1106 // 'if constexpr' branches, and these will end up being constructed on the
1107 // return slot even if they will never be returned, as a sort of accidental
1108 // 'optimization'. Notably, functions with 'auto' return types won't have it
1109 // deduced by this point. Coupled with the limitation described
1110 // previously, this makes it very hard to support copy elision for these.
1111 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var);
1112 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr;
1113 Var->setNRVOVariable(NRVO);
1114 }
1115
1116 Var->setImplicit(D->isImplicit());
1117
1118 if (Var->isStaticLocal())
1119 SemaRef.CheckStaticLocalForDllExport(Var);
1120
1121 return Var;
1122}
1123
1124Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1125 AccessSpecDecl* AD
1126 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
1127 D->getAccessSpecifierLoc(), D->getColonLoc());
1128 Owner->addHiddenDecl(AD);
1129 return AD;
1130}
1131
1132Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1133 bool Invalid = false;
1134 TypeSourceInfo *DI = D->getTypeSourceInfo();
1135 if (DI->getType()->isInstantiationDependentType() ||
1136 DI->getType()->isVariablyModifiedType()) {
1137 DI = SemaRef.SubstType(DI, TemplateArgs,
1138 D->getLocation(), D->getDeclName());
1139 if (!DI) {
1140 DI = D->getTypeSourceInfo();
1141 Invalid = true;
1142 } else if (DI->getType()->isFunctionType()) {
1143 // C++ [temp.arg.type]p3:
1144 // If a declaration acquires a function type through a type
1145 // dependent on a template-parameter and this causes a
1146 // declaration that does not use the syntactic form of a
1147 // function declarator to have function type, the program is
1148 // ill-formed.
1149 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1150 << DI->getType();
1151 Invalid = true;
1152 }
1153 } else {
1154 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1155 }
1156
1157 Expr *BitWidth = D->getBitWidth();
1158 if (Invalid)
1159 BitWidth = nullptr;
1160 else if (BitWidth) {
1161 // The bit-width expression is a constant expression.
1162 EnterExpressionEvaluationContext Unevaluated(
1163 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1164
1165 ExprResult InstantiatedBitWidth
1166 = SemaRef.SubstExpr(BitWidth, TemplateArgs);
1167 if (InstantiatedBitWidth.isInvalid()) {
1168 Invalid = true;
1169 BitWidth = nullptr;
1170 } else
1171 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1172 }
1173
1174 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
1175 DI->getType(), DI,
1176 cast<RecordDecl>(Owner),
1177 D->getLocation(),
1178 D->isMutable(),
1179 BitWidth,
1180 D->getInClassInitStyle(),
1181 D->getInnerLocStart(),
1182 D->getAccess(),
1183 nullptr);
1184 if (!Field) {
1185 cast<Decl>(Owner)->setInvalidDecl();
1186 return nullptr;
1187 }
1188
1189 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1190
1191 if (Field->hasAttrs())
1192 SemaRef.CheckAlignasUnderalignment(Field);
1193
1194 if (Invalid)
1195 Field->setInvalidDecl();
1196
1197 if (!Field->getDeclName()) {
1198 // Keep track of where this decl came from.
1199 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
1200 }
1201 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1202 if (Parent->isAnonymousStructOrUnion() &&
1203 Parent->getRedeclContext()->isFunctionOrMethod())
1204 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1205 }
1206
1207 Field->setImplicit(D->isImplicit());
1208 Field->setAccess(D->getAccess());
1209 Owner->addDecl(Field);
1210
1211 return Field;
1212}
1213
1214Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1215 bool Invalid = false;
1216 TypeSourceInfo *DI = D->getTypeSourceInfo();
1217
1218 if (DI->getType()->isVariablyModifiedType()) {
1219 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1220 << D;
1221 Invalid = true;
1222 } else if (DI->getType()->isInstantiationDependentType()) {
1223 DI = SemaRef.SubstType(DI, TemplateArgs,
1224 D->getLocation(), D->getDeclName());
1225 if (!DI) {
1226 DI = D->getTypeSourceInfo();
1227 Invalid = true;
1228 } else if (DI->getType()->isFunctionType()) {
1229 // C++ [temp.arg.type]p3:
1230 // If a declaration acquires a function type through a type
1231 // dependent on a template-parameter and this causes a
1232 // declaration that does not use the syntactic form of a
1233 // function declarator to have function type, the program is
1234 // ill-formed.
1235 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1236 << DI->getType();
1237 Invalid = true;
1238 }
1239 } else {
1240 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1241 }
1242
1243 MSPropertyDecl *Property = MSPropertyDecl::Create(
1244 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
1245 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
1246
1247 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1248 StartingScope);
1249
1250 if (Invalid)
1251 Property->setInvalidDecl();
1252
1253 Property->setAccess(D->getAccess());
1254 Owner->addDecl(Property);
1255
1256 return Property;
1257}
1258
1259Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1260 NamedDecl **NamedChain =
1261 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1262
1263 int i = 0;
1264 for (auto *PI : D->chain()) {
1265 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
1266 TemplateArgs);
1267 if (!Next)
1268 return nullptr;
1269
1270 NamedChain[i++] = Next;
1271 }
1272
1273 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
1274 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1275 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
1276 {NamedChain, D->getChainingSize()});
1277
1278 for (const auto *Attr : D->attrs())
1279 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1280
1281 IndirectField->setImplicit(D->isImplicit());
1282 IndirectField->setAccess(D->getAccess());
1283 Owner->addDecl(IndirectField);
1284 return IndirectField;
1285}
1286
1287Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1288 // Handle friend type expressions by simply substituting template
1289 // parameters into the pattern type and checking the result.
1290 if (TypeSourceInfo *Ty = D->getFriendType()) {
1291 TypeSourceInfo *InstTy;
1292 // If this is an unsupported friend, don't bother substituting template
1293 // arguments into it. The actual type referred to won't be used by any
1294 // parts of Clang, and may not be valid for instantiating. Just use the
1295 // same info for the instantiated friend.
1296 if (D->isUnsupportedFriend()) {
1297 InstTy = Ty;
1298 } else {
1299 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1300 D->getLocation(), DeclarationName());
1301 }
1302 if (!InstTy)
1303 return nullptr;
1304
1305 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
1306 D->getFriendLoc(), InstTy);
1307 if (!FD)
1308 return nullptr;
1309
1310 FD->setAccess(AS_public);
1311 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1312 Owner->addDecl(FD);
1313 return FD;
1314 }
1315
1316 NamedDecl *ND = D->getFriendDecl();
1317 assert(ND && "friend decl must be a decl or a type!")((void)0);
1318
1319 // All of the Visit implementations for the various potential friend
1320 // declarations have to be carefully written to work for friend
1321 // objects, with the most important detail being that the target
1322 // decl should almost certainly not be placed in Owner.
1323 Decl *NewND = Visit(ND);
1324 if (!NewND) return nullptr;
1325
1326 FriendDecl *FD =
1327 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1328 cast<NamedDecl>(NewND), D->getFriendLoc());
1329 FD->setAccess(AS_public);
1330 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1331 Owner->addDecl(FD);
1332 return FD;
1333}
1334
1335Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1336 Expr *AssertExpr = D->getAssertExpr();
1337
1338 // The expression in a static assertion is a constant expression.
1339 EnterExpressionEvaluationContext Unevaluated(
1340 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1341
1342 ExprResult InstantiatedAssertExpr
1343 = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
1344 if (InstantiatedAssertExpr.isInvalid())
1345 return nullptr;
1346
1347 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
1348 InstantiatedAssertExpr.get(),
1349 D->getMessage(),
1350 D->getRParenLoc(),
1351 D->isFailed());
1352}
1353
1354Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1355 EnumDecl *PrevDecl = nullptr;
1356 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1357 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1358 PatternPrev,
1359 TemplateArgs);
1360 if (!Prev) return nullptr;
1361 PrevDecl = cast<EnumDecl>(Prev);
1362 }
1363
1364 EnumDecl *Enum =
1365 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1366 D->getLocation(), D->getIdentifier(), PrevDecl,
1367 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
1368 if (D->isFixed()) {
1369 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1370 // If we have type source information for the underlying type, it means it
1371 // has been explicitly set by the user. Perform substitution on it before
1372 // moving on.
1373 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1374 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
1375 DeclarationName());
1376 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
1377 Enum->setIntegerType(SemaRef.Context.IntTy);
1378 else
1379 Enum->setIntegerTypeSourceInfo(NewTI);
1380 } else {
1381 assert(!D->getIntegerType()->isDependentType()((void)0)
1382 && "Dependent type without type source info")((void)0);
1383 Enum->setIntegerType(D->getIntegerType());
1384 }
1385 }
1386
1387 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1388
1389 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
1390 Enum->setAccess(D->getAccess());
1391 // Forward the mangling number from the template to the instantiated decl.
1392 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1393 // See if the old tag was defined along with a declarator.
1394 // If it did, mark the new tag as being associated with that declarator.
1395 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1396 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1397 // See if the old tag was defined along with a typedef.
1398 // If it did, mark the new tag as being associated with that typedef.
1399 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1400 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1401 if (SubstQualifier(D, Enum)) return nullptr;
1402 Owner->addDecl(Enum);
1403
1404 EnumDecl *Def = D->getDefinition();
1405 if (Def && Def != D) {
1406 // If this is an out-of-line definition of an enum member template, check
1407 // that the underlying types match in the instantiation of both
1408 // declarations.
1409 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1410 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1411 QualType DefnUnderlying =
1412 SemaRef.SubstType(TI->getType(), TemplateArgs,
1413 UnderlyingLoc, DeclarationName());
1414 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
1415 DefnUnderlying, /*IsFixed=*/true, Enum);
1416 }
1417 }
1418
1419 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1420 // specialization causes the implicit instantiation of the declarations, but
1421 // not the definitions of scoped member enumerations.
1422 //
1423 // DR1484 clarifies that enumeration definitions inside of a template
1424 // declaration aren't considered entities that can be separately instantiated
1425 // from the rest of the entity they are declared inside of.
1426 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1427 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1428 InstantiateEnumDefinition(Enum, Def);
1429 }
1430
1431 return Enum;
1432}
1433
1434void TemplateDeclInstantiator::InstantiateEnumDefinition(
1435 EnumDecl *Enum, EnumDecl *Pattern) {
1436 Enum->startDefinition();
1437
1438 // Update the location to refer to the definition.
1439 Enum->setLocation(Pattern->getLocation());
1440
1441 SmallVector<Decl*, 4> Enumerators;
1442
1443 EnumConstantDecl *LastEnumConst = nullptr;
1444 for (auto *EC : Pattern->enumerators()) {
1445 // The specified value for the enumerator.
1446 ExprResult Value((Expr *)nullptr);
1447 if (Expr *UninstValue = EC->getInitExpr()) {
1448 // The enumerator's value expression is a constant expression.
1449 EnterExpressionEvaluationContext Unevaluated(
1450 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1451
1452 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
1453 }
1454
1455 // Drop the initial value and continue.
1456 bool isInvalid = false;
1457 if (Value.isInvalid()) {
1458 Value = nullptr;
1459 isInvalid = true;
1460 }
1461
1462 EnumConstantDecl *EnumConst
1463 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1464 EC->getLocation(), EC->getIdentifier(),
1465 Value.get());
1466
1467 if (isInvalid) {
1468 if (EnumConst)
1469 EnumConst->setInvalidDecl();
1470 Enum->setInvalidDecl();
1471 }
1472
1473 if (EnumConst) {
1474 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1475
1476 EnumConst->setAccess(Enum->getAccess());
1477 Enum->addDecl(EnumConst);
1478 Enumerators.push_back(EnumConst);
1479 LastEnumConst = EnumConst;
1480
1481 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1482 !Enum->isScoped()) {
1483 // If the enumeration is within a function or method, record the enum
1484 // constant as a local.
1485 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1486 }
1487 }
1488 }
1489
1490 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
1491 Enumerators, nullptr, ParsedAttributesView());
1492}
1493
1494Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1495 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.")__builtin_unreachable();
1496}
1497
1498Decl *
1499TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1500 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.")__builtin_unreachable();
1501}
1502
1503Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1504 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1505
1506 // Create a local instantiation scope for this class template, which
1507 // will contain the instantiations of the template parameters.
1508 LocalInstantiationScope Scope(SemaRef);
1509 TemplateParameterList *TempParams = D->getTemplateParameters();
1510 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1511 if (!InstParams)
1512 return nullptr;
1513
1514 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1515
1516 // Instantiate the qualifier. We have to do this first in case
1517 // we're a friend declaration, because if we are then we need to put
1518 // the new declaration in the appropriate context.
1519 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1520 if (QualifierLoc) {
1521 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
1522 TemplateArgs);
1523 if (!QualifierLoc)
1524 return nullptr;
1525 }
1526
1527 CXXRecordDecl *PrevDecl = nullptr;
1528 ClassTemplateDecl *PrevClassTemplate = nullptr;
1529
1530 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
1531 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1532 if (!Found.empty()) {
1533 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
1534 if (PrevClassTemplate)
1535 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1536 }
1537 }
1538
1539 // If this isn't a friend, then it's a member template, in which
1540 // case we just want to build the instantiation in the
1541 // specialization. If it is a friend, we want to build it in
1542 // the appropriate context.
1543 DeclContext *DC = Owner;
1544 if (isFriend) {
1545 if (QualifierLoc) {
1546 CXXScopeSpec SS;
1547 SS.Adopt(QualifierLoc);
1548 DC = SemaRef.computeDeclContext(SS);
1549 if (!DC) return nullptr;
1550 } else {
1551 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
1552 Pattern->getDeclContext(),
1553 TemplateArgs);
1554 }
1555
1556 // Look for a previous declaration of the template in the owning
1557 // context.
1558 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1559 Sema::LookupOrdinaryName,
1560 SemaRef.forRedeclarationInCurContext());
1561 SemaRef.LookupQualifiedName(R, DC);
1562
1563 if (R.isSingleResult()) {
1564 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1565 if (PrevClassTemplate)
1566 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1567 }
1568
1569 if (!PrevClassTemplate && QualifierLoc) {
1570 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1571 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
1572 << QualifierLoc.getSourceRange();
1573 return nullptr;
1574 }
1575
1576 if (PrevClassTemplate) {
1577 TemplateParameterList *PrevParams
1578 = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters();
1579
1580 // Make sure the parameter lists match.
1581 if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, true,
1582 Sema::TPL_TemplateMatch))
1583 return nullptr;
1584
1585 // Do some additional validation, then merge default arguments
1586 // from the existing declarations.
1587 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
1588 Sema::TPC_ClassTemplate))
1589 return nullptr;
1590 }
1591 }
1592
1593 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1594 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
1595 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
1596 /*DelayTypeCreation=*/true);
1597
1598 if (QualifierLoc)
1599 RecordInst->setQualifierInfo(QualifierLoc);
1600
1601 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1602 StartingScope);
1603
1604 ClassTemplateDecl *Inst
1605 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
1606 D->getIdentifier(), InstParams, RecordInst);
1607 assert(!(isFriend && Owner->isDependentContext()))((void)0);
1608 Inst->setPreviousDecl(PrevClassTemplate);
1609
1610 RecordInst->setDescribedClassTemplate(Inst);
1611
1612 if (isFriend) {
1613 if (PrevClassTemplate)
1614 Inst->setAccess(PrevClassTemplate->getAccess());
1615 else
1616 Inst->setAccess(D->getAccess());
1617
1618 Inst->setObjectOfFriendDecl();
1619 // TODO: do we want to track the instantiation progeny of this
1620 // friend target decl?
1621 } else {
1622 Inst->setAccess(D->getAccess());
1623 if (!PrevClassTemplate)
1624 Inst->setInstantiatedFromMemberTemplate(D);
1625 }
1626
1627 // Trigger creation of the type for the instantiation.
1628 SemaRef.Context.getInjectedClassNameType(RecordInst,
1629 Inst->getInjectedClassNameSpecialization());
1630
1631 // Finish handling of friends.
1632 if (isFriend) {
1633 DC->makeDeclVisibleInContext(Inst);
1634 Inst->setLexicalDeclContext(Owner);
1635 RecordInst->setLexicalDeclContext(Owner);
1636 return Inst;
1637 }
1638
1639 if (D->isOutOfLine()) {
1640 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1641 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1642 }
1643
1644 Owner->addDecl(Inst);
1645
1646 if (!PrevClassTemplate) {
1647 // Queue up any out-of-line partial specializations of this member
1648 // class template; the client will force their instantiation once
1649 // the enclosing class has been instantiated.
1650 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1651 D->getPartialSpecializations(PartialSpecs);
1652 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1653 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1654 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
1655 }
1656
1657 return Inst;
1658}
1659
1660Decl *
1661TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1662 ClassTemplatePartialSpecializationDecl *D) {
1663 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1664
1665 // Lookup the already-instantiated declaration in the instantiation
1666 // of the class template and return that.
1667 DeclContext::lookup_result Found
1668 = Owner->lookup(ClassTemplate->getDeclName());
1669 if (Found.empty())
1670 return nullptr;
1671
1672 ClassTemplateDecl *InstClassTemplate
1673 = dyn_cast<ClassTemplateDecl>(Found.front());
1674 if (!InstClassTemplate)
1675 return nullptr;
1676
1677 if (ClassTemplatePartialSpecializationDecl *Result
1678 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1679 return Result;
1680
1681 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
1682}
1683
1684Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1685 assert(D->getTemplatedDecl()->isStaticDataMember() &&((void)0)
1686 "Only static data member templates are allowed.")((void)0);
1687
1688 // Create a local instantiation scope for this variable template, which
1689 // will contain the instantiations of the template parameters.
1690 LocalInstantiationScope Scope(SemaRef);
1691 TemplateParameterList *TempParams = D->getTemplateParameters();
1692 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1693 if (!InstParams)
1694 return nullptr;
1695
1696 VarDecl *Pattern = D->getTemplatedDecl();
1697 VarTemplateDecl *PrevVarTemplate = nullptr;
1698
1699 if (getPreviousDeclForInstantiation(Pattern)) {
1700 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1701 if (!Found.empty())
1702 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1703 }
1704
1705 VarDecl *VarInst =
1706 cast_or_null<VarDecl>(VisitVarDecl(Pattern,
1707 /*InstantiatingVarTemplate=*/true));
1708 if (!VarInst) return nullptr;
1709
1710 DeclContext *DC = Owner;
1711
1712 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1713 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
1714 VarInst);
1715 VarInst->setDescribedVarTemplate(Inst);
1716 Inst->setPreviousDecl(PrevVarTemplate);
1717
1718 Inst->setAccess(D->getAccess());
1719 if (!PrevVarTemplate)
1720 Inst->setInstantiatedFromMemberTemplate(D);
1721
1722 if (D->isOutOfLine()) {
1723 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1724 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1725 }
1726
1727 Owner->addDecl(Inst);
1728
1729 if (!PrevVarTemplate) {
1730 // Queue up any out-of-line partial specializations of this member
1731 // variable template; the client will force their instantiation once
1732 // the enclosing class has been instantiated.
1733 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1734 D->getPartialSpecializations(PartialSpecs);
1735 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1736 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1737 OutOfLineVarPartialSpecs.push_back(
1738 std::make_pair(Inst, PartialSpecs[I]));
1739 }
1740
1741 return Inst;
1742}
1743
1744Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1745 VarTemplatePartialSpecializationDecl *D) {
1746 assert(D->isStaticDataMember() &&((void)0)
1747 "Only static data member templates are allowed.")((void)0);
1748
1749 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1750
1751 // Lookup the already-instantiated declaration and return that.
1752 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
1753 assert(!Found.empty() && "Instantiation found nothing?")((void)0);
1754
1755 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1756 assert(InstVarTemplate && "Instantiation did not find a variable template?")((void)0);
1757
1758 if (VarTemplatePartialSpecializationDecl *Result =
1759 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1760 return Result;
1761
1762 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
1763}
1764
1765Decl *
1766TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1767 // Create a local instantiation scope for this function template, which
1768 // will contain the instantiations of the template parameters and then get
1769 // merged with the local instantiation scope for the function template
1770 // itself.
1771 LocalInstantiationScope Scope(SemaRef);
1772
1773 TemplateParameterList *TempParams = D->getTemplateParameters();
1774 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1775 if (!InstParams)
1776 return nullptr;
1777
1778 FunctionDecl *Instantiated = nullptr;
1779 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
1780 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
1781 InstParams));
1782 else
1783 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
1784 D->getTemplatedDecl(),
1785 InstParams));
1786
1787 if (!Instantiated)
1788 return nullptr;
1789
1790 // Link the instantiated function template declaration to the function
1791 // template from which it was instantiated.
1792 FunctionTemplateDecl *InstTemplate
1793 = Instantiated->getDescribedFunctionTemplate();
1794 InstTemplate->setAccess(D->getAccess());
1795 assert(InstTemplate &&((void)0)
1796 "VisitFunctionDecl/CXXMethodDecl didn't create a template!")((void)0);
1797
1798 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1799
1800 // Link the instantiation back to the pattern *unless* this is a
1801 // non-definition friend declaration.
1802 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1803 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1804 InstTemplate->setInstantiatedFromMemberTemplate(D);
1805
1806 // Make declarations visible in the appropriate context.
1807 if (!isFriend) {
1808 Owner->addDecl(InstTemplate);
1809 } else if (InstTemplate->getDeclContext()->isRecord() &&
1810 !getPreviousDeclForInstantiation(D)) {
1811 SemaRef.CheckFriendAccess(InstTemplate);
1812 }
1813
1814 return InstTemplate;
1815}
1816
1817Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1818 CXXRecordDecl *PrevDecl = nullptr;
1819 if (D->isInjectedClassName())
1820 PrevDecl = cast<CXXRecordDecl>(Owner);
1821 else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1822 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1823 PatternPrev,
1824 TemplateArgs);
1825 if (!Prev) return nullptr;
1826 PrevDecl = cast<CXXRecordDecl>(Prev);
1827 }
1828
1829 CXXRecordDecl *Record = nullptr;
1830 if (D->isLambda())
1831 Record = CXXRecordDecl::CreateLambda(
1832 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(),
1833 D->isDependentLambda(), D->isGenericLambda(),
1834 D->getLambdaCaptureDefault());
1835 else
1836 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
1837 D->getBeginLoc(), D->getLocation(),
1838 D->getIdentifier(), PrevDecl);
1839
1840 // Substitute the nested name specifier, if any.
1841 if (SubstQualifier(D, Record))
1842 return nullptr;
1843
1844 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1845 StartingScope);
1846
1847 Record->setImplicit(D->isImplicit());
1848 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1849 // the tag decls introduced by friend class declarations don't have an access
1850 // specifier. Remove once this area of the code gets sorted out.
1851 if (D->getAccess() != AS_none)
1852 Record->setAccess(D->getAccess());
1853 if (!D->isInjectedClassName())
1854 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
1855
1856 // If the original function was part of a friend declaration,
1857 // inherit its namespace state.
1858 if (D->getFriendObjectKind())
1859 Record->setObjectOfFriendDecl();
1860
1861 // Make sure that anonymous structs and unions are recorded.
1862 if (D->isAnonymousStructOrUnion())
1863 Record->setAnonymousStructOrUnion(true);
1864
1865 if (D->isLocalClass())
1866 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1867
1868 // Forward the mangling number from the template to the instantiated decl.
1869 SemaRef.Context.setManglingNumber(Record,
1870 SemaRef.Context.getManglingNumber(D));
1871
1872 // See if the old tag was defined along with a declarator.
1873 // If it did, mark the new tag as being associated with that declarator.
1874 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1875 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1876
1877 // See if the old tag was defined along with a typedef.
1878 // If it did, mark the new tag as being associated with that typedef.
1879 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1880 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1881
1882 Owner->addDecl(Record);
1883
1884 // DR1484 clarifies that the members of a local class are instantiated as part
1885 // of the instantiation of their enclosing entity.
1886 if (D->isCompleteDefinition() && D->isLocalClass()) {
1887 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
1888
1889 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
1890 TSK_ImplicitInstantiation,
1891 /*Complain=*/true);
1892
1893 // For nested local classes, we will instantiate the members when we
1894 // reach the end of the outermost (non-nested) local class.
1895 if (!D->isCXXClassMember())
1896 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
1897 TSK_ImplicitInstantiation);
1898
1899 // This class may have local implicit instantiations that need to be
1900 // performed within this scope.
1901 LocalInstantiations.perform();
1902 }
1903
1904 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
1905
1906 return Record;
1907}
1908
1909/// Adjust the given function type for an instantiation of the
1910/// given declaration, to cope with modifications to the function's type that
1911/// aren't reflected in the type-source information.
1912///
1913/// \param D The declaration we're instantiating.
1914/// \param TInfo The already-instantiated type.
1915static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
1916 FunctionDecl *D,
1917 TypeSourceInfo *TInfo) {
1918 const FunctionProtoType *OrigFunc
1919 = D->getType()->castAs<FunctionProtoType>();
1920 const FunctionProtoType *NewFunc
1921 = TInfo->getType()->castAs<FunctionProtoType>();
1922 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
1923 return TInfo->getType();
1924
1925 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
1926 NewEPI.ExtInfo = OrigFunc->getExtInfo();
1927 return Context.getFunctionType(NewFunc->getReturnType(),
1928 NewFunc->getParamTypes(), NewEPI);
1929}
1930
1931/// Normal class members are of more specific types and therefore
1932/// don't make it here. This function serves three purposes:
1933/// 1) instantiating function templates
1934/// 2) substituting friend declarations
1935/// 3) substituting deduction guide declarations for nested class templates
1936Decl *TemplateDeclInstantiator::VisitFunctionDecl(
1937 FunctionDecl *D, TemplateParameterList *TemplateParams,
1938 RewriteKind FunctionRewriteKind) {
1939 // Check whether there is already a function template specialization for
1940 // this declaration.
1941 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
1942 if (FunctionTemplate && !TemplateParams) {
1943 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
1944
1945 void *InsertPos = nullptr;
1946 FunctionDecl *SpecFunc
1947 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
1948
1949 // If we already have a function template specialization, return it.
1950 if (SpecFunc)
1951 return SpecFunc;
1952 }
1953
1954 bool isFriend;
1955 if (FunctionTemplate)
1956 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
1957 else
1958 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1959
1960 bool MergeWithParentScope = (TemplateParams != nullptr) ||
1961 Owner->isFunctionOrMethod() ||
1962 !(isa<Decl>(Owner) &&
1963 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
1964 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
1965
1966 ExplicitSpecifier InstantiatedExplicitSpecifier;
1967 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
1968 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(
1969 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide);
1970 if (InstantiatedExplicitSpecifier.isInvalid())
1971 return nullptr;
1972 }
1973
1974 SmallVector<ParmVarDecl *, 4> Params;
1975 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
1976 if (!TInfo)
1977 return nullptr;
1978 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
1979
1980 if (TemplateParams && TemplateParams->size()) {
1981 auto *LastParam =
1982 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
1983 if (LastParam && LastParam->isImplicit() &&
1984 LastParam->hasTypeConstraint()) {
1985 // In abbreviated templates, the type-constraints of invented template
1986 // type parameters are instantiated with the function type, invalidating
1987 // the TemplateParameterList which relied on the template type parameter
1988 // not having a type constraint. Recreate the TemplateParameterList with
1989 // the updated parameter list.
1990 TemplateParams = TemplateParameterList::Create(
1991 SemaRef.Context, TemplateParams->getTemplateLoc(),
1992 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
1993 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
1994 }
1995 }
1996
1997 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
1998 if (QualifierLoc) {
1999 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2000 TemplateArgs);
2001 if (!QualifierLoc)
2002 return nullptr;
2003 }
2004
2005 // FIXME: Concepts: Do not substitute into constraint expressions
2006 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2007 if (TrailingRequiresClause) {
2008 EnterExpressionEvaluationContext ConstantEvaluated(
2009 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
2010 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
2011 TemplateArgs);
2012 if (SubstRC.isInvalid())
2013 return nullptr;
2014 TrailingRequiresClause = SubstRC.get();
2015 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
2016 return nullptr;
2017 }
2018
2019 // If we're instantiating a local function declaration, put the result
2020 // in the enclosing namespace; otherwise we need to find the instantiated
2021 // context.
2022 DeclContext *DC;
2023 if (D->isLocalExternDecl()) {
2024 DC = Owner;
2025 SemaRef.adjustContextForLocalExternDecl(DC);
2026 } else if (isFriend && QualifierLoc) {
2027 CXXScopeSpec SS;
2028 SS.Adopt(QualifierLoc);
2029 DC = SemaRef.computeDeclContext(SS);
2030 if (!DC) return nullptr;
2031 } else {
2032 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
2033 TemplateArgs);
2034 }
2035
2036 DeclarationNameInfo NameInfo
2037 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2038
2039 if (FunctionRewriteKind != RewriteKind::None)
2040 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2041
2042 FunctionDecl *Function;
2043 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2044 Function = CXXDeductionGuideDecl::Create(
2045 SemaRef.Context, DC, D->getInnerLocStart(),
2046 InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2047 D->getSourceRange().getEnd());
2048 if (DGuide->isCopyDeductionCandidate())
2049 cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate();
2050 Function->setAccess(D->getAccess());
2051 } else {
2052 Function = FunctionDecl::Create(
2053 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2054 D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(),
2055 D->hasWrittenPrototype(), D->getConstexprKind(),
2056 TrailingRequiresClause);
2057 Function->setRangeEnd(D->getSourceRange().getEnd());
2058 }
2059
2060 if (D->isInlined())
2061 Function->setImplicitlyInline();
2062
2063 if (QualifierLoc)
2064 Function->setQualifierInfo(QualifierLoc);
2065
2066 if (D->isLocalExternDecl())
2067 Function->setLocalExternDecl();
2068
2069 DeclContext *LexicalDC = Owner;
2070 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2071 assert(D->getDeclContext()->isFileContext())((void)0);
2072 LexicalDC = D->getDeclContext();
2073 }
2074
2075 Function->setLexicalDeclContext(LexicalDC);
2076
2077 // Attach the parameters
2078 for (unsigned P = 0; P < Params.size(); ++P)
2079 if (Params[P])
2080 Params[P]->setOwningFunction(Function);
2081 Function->setParams(Params);
2082
2083 if (TrailingRequiresClause)
2084 Function->setTrailingRequiresClause(TrailingRequiresClause);
2085
2086 if (TemplateParams) {
2087 // Our resulting instantiation is actually a function template, since we
2088 // are substituting only the outer template parameters. For example, given
2089 //
2090 // template<typename T>
2091 // struct X {
2092 // template<typename U> friend void f(T, U);
2093 // };
2094 //
2095 // X<int> x;
2096 //
2097 // We are instantiating the friend function template "f" within X<int>,
2098 // which means substituting int for T, but leaving "f" as a friend function
2099 // template.
2100 // Build the function template itself.
2101 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
2102 Function->getLocation(),
2103 Function->getDeclName(),
2104 TemplateParams, Function);
2105 Function->setDescribedFunctionTemplate(FunctionTemplate);
2106
2107 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2108
2109 if (isFriend && D->isThisDeclarationADefinition()) {
2110 FunctionTemplate->setInstantiatedFromMemberTemplate(
2111 D->getDescribedFunctionTemplate());
2112 }
2113 } else if (FunctionTemplate) {
2114 // Record this function template specialization.
2115 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2116 Function->setFunctionTemplateSpecialization(FunctionTemplate,
2117 TemplateArgumentList::CreateCopy(SemaRef.Context,
2118 Innermost),
2119 /*InsertPos=*/nullptr);
2120 } else if (isFriend && D->isThisDeclarationADefinition()) {
2121 // Do not connect the friend to the template unless it's actually a
2122 // definition. We don't want non-template functions to be marked as being
2123 // template instantiations.
2124 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2125 }
2126
2127 if (isFriend) {
2128 Function->setObjectOfFriendDecl();
2129 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2130 FT->setObjectOfFriendDecl();
2131 }
2132
2133 if (InitFunctionInstantiation(Function, D))
2134 Function->setInvalidDecl();
2135
2136 bool IsExplicitSpecialization = false;
2137
2138 LookupResult Previous(
2139 SemaRef, Function->getDeclName(), SourceLocation(),
2140 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2141 : Sema::LookupOrdinaryName,
2142 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2143 : SemaRef.forRedeclarationInCurContext());
2144
2145 if (DependentFunctionTemplateSpecializationInfo *Info
2146 = D->getDependentSpecializationInfo()) {
2147 assert(isFriend && "non-friend has dependent specialization info?")((void)0);
2148
2149 // Instantiate the explicit template arguments.
2150 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2151 Info->getRAngleLoc());
2152 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2153 ExplicitArgs, TemplateArgs))
2154 return nullptr;
2155
2156 // Map the candidate templates to their instantiations.
2157 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2158 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2159 Info->getTemplate(I),
2160 TemplateArgs);
2161 if (!Temp) return nullptr;
2162
2163 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2164 }
2165
2166 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2167 &ExplicitArgs,
2168 Previous))
2169 Function->setInvalidDecl();
2170
2171 IsExplicitSpecialization = true;
2172 } else if (const ASTTemplateArgumentListInfo *Info =
2173 D->getTemplateSpecializationArgsAsWritten()) {
2174 // The name of this function was written as a template-id.
2175 SemaRef.LookupQualifiedName(Previous, DC);
2176
2177 // Instantiate the explicit template arguments.
2178 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2179 Info->getRAngleLoc());
2180 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2181 ExplicitArgs, TemplateArgs))
2182 return nullptr;
2183
2184 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2185 &ExplicitArgs,
2186 Previous))
2187 Function->setInvalidDecl();
2188
2189 IsExplicitSpecialization = true;
2190 } else if (TemplateParams || !FunctionTemplate) {
2191 // Look only into the namespace where the friend would be declared to
2192 // find a previous declaration. This is the innermost enclosing namespace,
2193 // as described in ActOnFriendFunctionDecl.
2194 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
2195
2196 // In C++, the previous declaration we find might be a tag type
2197 // (class or enum). In this case, the new declaration will hide the
2198 // tag type. Note that this does does not apply if we're declaring a
2199 // typedef (C++ [dcl.typedef]p4).
2200 if (Previous.isSingleTagDecl())
2201 Previous.clear();
2202
2203 // Filter out previous declarations that don't match the scope. The only
2204 // effect this has is to remove declarations found in inline namespaces
2205 // for friend declarations with unqualified names.
2206 SemaRef.FilterLookupForScope(Previous, DC, /*Scope*/ nullptr,
2207 /*ConsiderLinkage*/ true,
2208 QualifierLoc.hasQualifier());
2209 }
2210
2211 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
2212 IsExplicitSpecialization);
2213
2214 // Check the template parameter list against the previous declaration. The
2215 // goal here is to pick up default arguments added since the friend was
2216 // declared; we know the template parameter lists match, since otherwise
2217 // we would not have picked this template as the previous declaration.
2218 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2219 SemaRef.CheckTemplateParameterList(
2220 TemplateParams,
2221 FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2222 Function->isThisDeclarationADefinition()
2223 ? Sema::TPC_FriendFunctionTemplateDefinition
2224 : Sema::TPC_FriendFunctionTemplate);
2225 }
2226
2227 // If we're introducing a friend definition after the first use, trigger
2228 // instantiation.
2229 // FIXME: If this is a friend function template definition, we should check
2230 // to see if any specializations have been used.
2231 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2232 if (MemberSpecializationInfo *MSInfo =
2233 Function->getMemberSpecializationInfo()) {
2234 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2235 SourceLocation Loc = D->getLocation(); // FIXME
2236 MSInfo->setPointOfInstantiation(Loc);
2237 SemaRef.PendingLocalImplicitInstantiations.push_back(
2238 std::make_pair(Function, Loc));
2239 }
2240 }
2241 }
2242
2243 if (D->isExplicitlyDefaulted()) {
2244 if (SubstDefaultedFunction(Function, D))
2245 return nullptr;
2246 }
2247 if (D->isDeleted())
2248 SemaRef.SetDeclDeleted(Function, D->getLocation());
2249
2250 NamedDecl *PrincipalDecl =
2251 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function);
2252
2253 // If this declaration lives in a different context from its lexical context,
2254 // add it to the corresponding lookup table.
2255 if (isFriend ||
2256 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2257 DC->makeDeclVisibleInContext(PrincipalDecl);
2258
2259 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2260 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2261 PrincipalDecl->setNonMemberOperator();
2262
2263 return Function;
2264}
2265
2266Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2267 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2268 Optional<const ASTTemplateArgumentListInfo *> ClassScopeSpecializationArgs,
2269 RewriteKind FunctionRewriteKind) {
2270 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2271 if (FunctionTemplate && !TemplateParams) {
2272 // We are creating a function template specialization from a function
2273 // template. Check whether there is already a function template
2274 // specialization for this particular set of template arguments.
2275 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2276
2277 void *InsertPos = nullptr;
2278 FunctionDecl *SpecFunc
2279 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2280
2281 // If we already have a function template specialization, return it.
2282 if (SpecFunc)
2283 return SpecFunc;
2284 }
2285
2286 bool isFriend;
2287 if (FunctionTemplate)
2288 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2289 else
2290 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2291
2292 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2293 !(isa<Decl>(Owner) &&
2294 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2295 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2296
2297 // Instantiate enclosing template arguments for friends.
2298 SmallVector<TemplateParameterList *, 4> TempParamLists;
2299 unsigned NumTempParamLists = 0;
2300 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2301 TempParamLists.resize(NumTempParamLists);
2302 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2303 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2304 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
2305 if (!InstParams)
2306 return nullptr;
2307 TempParamLists[I] = InstParams;
2308 }
2309 }
2310
2311 ExplicitSpecifier InstantiatedExplicitSpecifier =
2312 instantiateExplicitSpecifier(SemaRef, TemplateArgs,
2313 ExplicitSpecifier::getFromDecl(D), D);
2314 if (InstantiatedExplicitSpecifier.isInvalid())
2315 return nullptr;
2316
2317 // Implicit destructors/constructors created for local classes in
2318 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2319 // Unfortunately there isn't enough context in those functions to
2320 // conditionally populate the TSI without breaking non-template related use
2321 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2322 // a proper transformation.
2323 if (cast<CXXRecordDecl>(D->getParent())->isLambda() &&
2324 !D->getTypeSourceInfo() &&
2325 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) {
2326 TypeSourceInfo *TSI =
2327 SemaRef.Context.getTrivialTypeSourceInfo(D->getType());
2328 D->setTypeSourceInfo(TSI);
2329 }
2330
2331 SmallVector<ParmVarDecl *, 4> Params;
2332 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2333 if (!TInfo)
2334 return nullptr;
2335 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2336
2337 if (TemplateParams && TemplateParams->size()) {
2338 auto *LastParam =
2339 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2340 if (LastParam && LastParam->isImplicit() &&
2341 LastParam->hasTypeConstraint()) {
2342 // In abbreviated templates, the type-constraints of invented template
2343 // type parameters are instantiated with the function type, invalidating
2344 // the TemplateParameterList which relied on the template type parameter
2345 // not having a type constraint. Recreate the TemplateParameterList with
2346 // the updated parameter list.
2347 TemplateParams = TemplateParameterList::Create(
2348 SemaRef.Context, TemplateParams->getTemplateLoc(),
2349 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2350 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2351 }
2352 }
2353
2354 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2355 if (QualifierLoc) {
2356 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2357 TemplateArgs);
2358 if (!QualifierLoc)
2359 return nullptr;
2360 }
2361
2362 // FIXME: Concepts: Do not substitute into constraint expressions
2363 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2364 if (TrailingRequiresClause) {
2365 EnterExpressionEvaluationContext ConstantEvaluated(
2366 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
2367 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
2368 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext,
2369 D->getMethodQualifiers(), ThisContext);
2370 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
2371 TemplateArgs);
2372 if (SubstRC.isInvalid())
2373 return nullptr;
2374 TrailingRequiresClause = SubstRC.get();
2375 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
2376 return nullptr;
2377 }
2378
2379 DeclContext *DC = Owner;
2380 if (isFriend) {
2381 if (QualifierLoc) {
2382 CXXScopeSpec SS;
2383 SS.Adopt(QualifierLoc);
2384 DC = SemaRef.computeDeclContext(SS);
2385
2386 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2387 return nullptr;
2388 } else {
2389 DC = SemaRef.FindInstantiatedContext(D->getLocation(),
2390 D->getDeclContext(),
2391 TemplateArgs);
2392 }
2393 if (!DC) return nullptr;
2394 }
2395
2396 DeclarationNameInfo NameInfo
2397 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2398
2399 if (FunctionRewriteKind != RewriteKind::None)
2400 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2401
2402 // Build the instantiated method declaration.
2403 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
2404 CXXMethodDecl *Method = nullptr;
2405
2406 SourceLocation StartLoc = D->getInnerLocStart();
2407 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
2408 Method = CXXConstructorDecl::Create(
2409 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2410 InstantiatedExplicitSpecifier, Constructor->isInlineSpecified(), false,
2411 Constructor->getConstexprKind(), InheritedConstructor(),
2412 TrailingRequiresClause);
2413 Method->setRangeEnd(Constructor->getEndLoc());
2414 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
2415 Method = CXXDestructorDecl::Create(
2416 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2417 Destructor->isInlineSpecified(), false, Destructor->getConstexprKind(),
2418 TrailingRequiresClause);
2419 Method->setRangeEnd(Destructor->getEndLoc());
2420 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2421 SemaRef.Context.getCanonicalType(
2422 SemaRef.Context.getTypeDeclType(Record))));
2423 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
2424 Method = CXXConversionDecl::Create(
2425 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2426 Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier,
2427 Conversion->getConstexprKind(), Conversion->getEndLoc(),
2428 TrailingRequiresClause);
2429 } else {
2430 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2431 Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo,
2432 T, TInfo, SC, D->isInlineSpecified(),
2433 D->getConstexprKind(), D->getEndLoc(),
2434 TrailingRequiresClause);
2435 }
2436
2437 if (D->isInlined())
2438 Method->setImplicitlyInline();
2439
2440 if (QualifierLoc)
2441 Method->setQualifierInfo(QualifierLoc);
2442
2443 if (TemplateParams) {
2444 // Our resulting instantiation is actually a function template, since we
2445 // are substituting only the outer template parameters. For example, given
2446 //
2447 // template<typename T>
2448 // struct X {
2449 // template<typename U> void f(T, U);
2450 // };
2451 //
2452 // X<int> x;
2453 //
2454 // We are instantiating the member template "f" within X<int>, which means
2455 // substituting int for T, but leaving "f" as a member function template.
2456 // Build the function template itself.
2457 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
2458 Method->getLocation(),
2459 Method->getDeclName(),
2460 TemplateParams, Method);
2461 if (isFriend) {
2462 FunctionTemplate->setLexicalDeclContext(Owner);
2463 FunctionTemplate->setObjectOfFriendDecl();
2464 } else if (D->isOutOfLine())
2465 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2466 Method->setDescribedFunctionTemplate(FunctionTemplate);
2467 } else if (FunctionTemplate) {
2468 // Record this function template specialization.
2469 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2470 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2471 TemplateArgumentList::CreateCopy(SemaRef.Context,
2472 Innermost),
2473 /*InsertPos=*/nullptr);
2474 } else if (!isFriend) {
2475 // Record that this is an instantiation of a member function.
2476 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2477 }
2478
2479 // If we are instantiating a member function defined
2480 // out-of-line, the instantiation will have the same lexical
2481 // context (which will be a namespace scope) as the template.
2482 if (isFriend) {
2483 if (NumTempParamLists)
2484 Method->setTemplateParameterListsInfo(
2485 SemaRef.Context,
2486 llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists));
2487
2488 Method->setLexicalDeclContext(Owner);
2489 Method->setObjectOfFriendDecl();
2490 } else if (D->isOutOfLine())
2491 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2492
2493 // Attach the parameters
2494 for (unsigned P = 0; P < Params.size(); ++P)
2495 Params[P]->setOwningFunction(Method);
2496 Method->setParams(Params);
2497
2498 if (InitMethodInstantiation(Method, D))
2499 Method->setInvalidDecl();
2500
2501 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2502 Sema::ForExternalRedeclaration);
2503
2504 bool IsExplicitSpecialization = false;
2505
2506 // If the name of this function was written as a template-id, instantiate
2507 // the explicit template arguments.
2508 if (DependentFunctionTemplateSpecializationInfo *Info
2509 = D->getDependentSpecializationInfo()) {
2510 assert(isFriend && "non-friend has dependent specialization info?")((void)0);
2511
2512 // Instantiate the explicit template arguments.
2513 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2514 Info->getRAngleLoc());
2515 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2516 ExplicitArgs, TemplateArgs))
2517 return nullptr;
2518
2519 // Map the candidate templates to their instantiations.
2520 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2521 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2522 Info->getTemplate(I),
2523 TemplateArgs);
2524 if (!Temp) return nullptr;
2525
2526 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2527 }
2528
2529 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2530 &ExplicitArgs,
2531 Previous))
2532 Method->setInvalidDecl();
2533
2534 IsExplicitSpecialization = true;
2535 } else if (const ASTTemplateArgumentListInfo *Info =
2536 ClassScopeSpecializationArgs.getValueOr(
2537 D->getTemplateSpecializationArgsAsWritten())) {
2538 SemaRef.LookupQualifiedName(Previous, DC);
2539
2540 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2541 Info->getRAngleLoc());
2542 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2543 ExplicitArgs, TemplateArgs))
2544 return nullptr;
2545
2546 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2547 &ExplicitArgs,
2548 Previous))
2549 Method->setInvalidDecl();
2550
2551 IsExplicitSpecialization = true;
2552 } else if (ClassScopeSpecializationArgs) {
2553 // Class-scope explicit specialization written without explicit template
2554 // arguments.
2555 SemaRef.LookupQualifiedName(Previous, DC);
2556 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous))
2557 Method->setInvalidDecl();
2558
2559 IsExplicitSpecialization = true;
2560 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2561 SemaRef.LookupQualifiedName(Previous, Record);
2562
2563 // In C++, the previous declaration we find might be a tag type
2564 // (class or enum). In this case, the new declaration will hide the
2565 // tag type. Note that this does does not apply if we're declaring a
2566 // typedef (C++ [dcl.typedef]p4).
2567 if (Previous.isSingleTagDecl())
2568 Previous.clear();
2569 }
2570
2571 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
2572 IsExplicitSpecialization);
2573
2574 if (D->isPure())
2575 SemaRef.CheckPureMethod(Method, SourceRange());
2576
2577 // Propagate access. For a non-friend declaration, the access is
2578 // whatever we're propagating from. For a friend, it should be the
2579 // previous declaration we just found.
2580 if (isFriend && Method->getPreviousDecl())
2581 Method->setAccess(Method->getPreviousDecl()->getAccess());
2582 else
2583 Method->setAccess(D->getAccess());
2584 if (FunctionTemplate)
2585 FunctionTemplate->setAccess(Method->getAccess());
2586
2587 SemaRef.CheckOverrideControl(Method);
2588
2589 // If a function is defined as defaulted or deleted, mark it as such now.
2590 if (D->isExplicitlyDefaulted()) {
2591 if (SubstDefaultedFunction(Method, D))
2592 return nullptr;
2593 }
2594 if (D->isDeletedAsWritten())
2595 SemaRef.SetDeclDeleted(Method, Method->getLocation());
2596
2597 // If this is an explicit specialization, mark the implicitly-instantiated
2598 // template specialization as being an explicit specialization too.
2599 // FIXME: Is this necessary?
2600 if (IsExplicitSpecialization && !isFriend)
2601 SemaRef.CompleteMemberSpecialization(Method, Previous);
2602
2603 // If there's a function template, let our caller handle it.
2604 if (FunctionTemplate) {
2605 // do nothing
2606
2607 // Don't hide a (potentially) valid declaration with an invalid one.
2608 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2609 // do nothing
2610
2611 // Otherwise, check access to friends and make them visible.
2612 } else if (isFriend) {
2613 // We only need to re-check access for methods which we didn't
2614 // manage to match during parsing.
2615 if (!D->getPreviousDecl())
2616 SemaRef.CheckFriendAccess(Method);
2617
2618 Record->makeDeclVisibleInContext(Method);
2619
2620 // Otherwise, add the declaration. We don't need to do this for
2621 // class-scope specializations because we'll have matched them with
2622 // the appropriate template.
2623 } else {
2624 Owner->addDecl(Method);
2625 }
2626
2627 // PR17480: Honor the used attribute to instantiate member function
2628 // definitions
2629 if (Method->hasAttr<UsedAttr>()) {
2630 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
2631 SourceLocation Loc;
2632 if (const MemberSpecializationInfo *MSInfo =
2633 A->getMemberSpecializationInfo())
2634 Loc = MSInfo->getPointOfInstantiation();
2635 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
2636 Loc = Spec->getPointOfInstantiation();
2637 SemaRef.MarkFunctionReferenced(Loc, Method);
2638 }
2639 }
2640
2641 return Method;
2642}
2643
2644Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2645 return VisitCXXMethodDecl(D);
2646}
2647
2648Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2649 return VisitCXXMethodDecl(D);
2650}
2651
2652Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2653 return VisitCXXMethodDecl(D);
2654}
2655
2656Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2657 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None,
2658 /*ExpectParameterPack=*/ false);
2659}
2660
2661Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2662 TemplateTypeParmDecl *D) {
2663 assert(D->getTypeForDecl()->isTemplateTypeParmType())((void)0);
2664
2665 Optional<unsigned> NumExpanded;
2666
2667 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2668 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2669 assert(TC->getTemplateArgsAsWritten() &&((void)0)
2670 "type parameter can only be an expansion when explicit arguments "((void)0)
2671 "are specified")((void)0);
2672 // The template type parameter pack's type is a pack expansion of types.
2673 // Determine whether we need to expand this parameter pack into separate
2674 // types.
2675 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2676 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2677 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
2678
2679 // Determine whether the set of unexpanded parameter packs can and should
2680 // be expanded.
2681 bool Expand = true;
2682 bool RetainExpansion = false;
2683 if (SemaRef.CheckParameterPacksForExpansion(
2684 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2685 ->getEllipsisLoc(),
2686 SourceRange(TC->getConceptNameLoc(),
2687 TC->hasExplicitTemplateArgs() ?
2688 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2689 TC->getConceptNameInfo().getEndLoc()),
2690 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
2691 return nullptr;
2692 }
2693 }
2694
2695 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2696 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
2697 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
2698 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
2699 D->hasTypeConstraint(), NumExpanded);
2700
2701 Inst->setAccess(AS_public);
2702 Inst->setImplicit(D->isImplicit());
2703 if (auto *TC = D->getTypeConstraint()) {
2704 if (!D->isImplicit()) {
2705 // Invented template parameter type constraints will be instantiated with
2706 // the corresponding auto-typed parameter as it might reference other
2707 // parameters.
2708
2709 // TODO: Concepts: do not instantiate the constraint (delayed constraint
2710 // substitution)
2711 const ASTTemplateArgumentListInfo *TemplArgInfo
2712 = TC->getTemplateArgsAsWritten();
2713 TemplateArgumentListInfo InstArgs;
2714
2715 if (TemplArgInfo) {
2716 InstArgs.setLAngleLoc(TemplArgInfo->LAngleLoc);
2717 InstArgs.setRAngleLoc(TemplArgInfo->RAngleLoc);
2718 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
2719 TemplArgInfo->NumTemplateArgs,
2720 InstArgs, TemplateArgs))
2721 return nullptr;
2722 }
2723 if (SemaRef.AttachTypeConstraint(
2724 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2725 TC->getNamedConcept(), &InstArgs, Inst,
2726 D->isParameterPack()
2727 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2728 ->getEllipsisLoc()
2729 : SourceLocation()))
2730 return nullptr;
2731 }
2732 }
2733 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2734 TypeSourceInfo *InstantiatedDefaultArg =
2735 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2736 D->getDefaultArgumentLoc(), D->getDeclName());
2737 if (InstantiatedDefaultArg)
2738 Inst->setDefaultArgument(InstantiatedDefaultArg);
2739 }
2740
2741 // Introduce this template parameter's instantiation into the instantiation
2742 // scope.
2743 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2744
2745 return Inst;
2746}
2747
2748Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2749 NonTypeTemplateParmDecl *D) {
2750 // Substitute into the type of the non-type template parameter.
2751 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2752 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2753 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2754 bool IsExpandedParameterPack = false;
2755 TypeSourceInfo *DI;
2756 QualType T;
2757 bool Invalid = false;
2758
2759 if (D->isExpandedParameterPack()) {
2760 // The non-type template parameter pack is an already-expanded pack
2761 // expansion of types. Substitute into each of the expanded types.
2762 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
2763 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
2764 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2765 TypeSourceInfo *NewDI =
2766 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2767 D->getLocation(), D->getDeclName());
2768 if (!NewDI)
2769 return nullptr;
2770
2771 QualType NewT =
2772 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2773 if (NewT.isNull())
2774 return nullptr;
2775
2776 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2777 ExpandedParameterPackTypes.push_back(NewT);
2778 }
2779
2780 IsExpandedParameterPack = true;
2781 DI = D->getTypeSourceInfo();
2782 T = DI->getType();
2783 } else if (D->isPackExpansion()) {
2784 // The non-type template parameter pack's type is a pack expansion of types.
2785 // Determine whether we need to expand this parameter pack into separate
2786 // types.
2787 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2788 TypeLoc Pattern = Expansion.getPatternLoc();
2789 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2790 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
2791
2792 // Determine whether the set of unexpanded parameter packs can and should
2793 // be expanded.
2794 bool Expand = true;
2795 bool RetainExpansion = false;
2796 Optional<unsigned> OrigNumExpansions
2797 = Expansion.getTypePtr()->getNumExpansions();
2798 Optional<unsigned> NumExpansions = OrigNumExpansions;
2799 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
2800 Pattern.getSourceRange(),
2801 Unexpanded,
2802 TemplateArgs,
2803 Expand, RetainExpansion,
2804 NumExpansions))
2805 return nullptr;
2806
2807 if (Expand) {
2808 for (unsigned I = 0; I != *NumExpansions; ++I) {
2809 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2810 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2811 D->getLocation(),
2812 D->getDeclName());
2813 if (!NewDI)
2814 return nullptr;
2815
2816 QualType NewT =
2817 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2818 if (NewT.isNull())
2819 return nullptr;
2820
2821 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2822 ExpandedParameterPackTypes.push_back(NewT);
2823 }
2824
2825 // Note that we have an expanded parameter pack. The "type" of this
2826 // expanded parameter pack is the original expansion type, but callers
2827 // will end up using the expanded parameter pack types for type-checking.
2828 IsExpandedParameterPack = true;
2829 DI = D->getTypeSourceInfo();
2830 T = DI->getType();
2831 } else {
2832 // We cannot fully expand the pack expansion now, so substitute into the
2833 // pattern and create a new pack expansion type.
2834 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
2835 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
2836 D->getLocation(),
2837 D->getDeclName());
2838 if (!NewPattern)
2839 return nullptr;
2840
2841 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
2842 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
2843 NumExpansions);
2844 if (!DI)
2845 return nullptr;
2846
2847 T = DI->getType();
2848 }
2849 } else {
2850 // Simple case: substitution into a parameter that is not a parameter pack.
2851 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
2852 D->getLocation(), D->getDeclName());
2853 if (!DI)
2854 return nullptr;
2855
2856 // Check that this type is acceptable for a non-type template parameter.
2857 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
2858 if (T.isNull()) {
2859 T = SemaRef.Context.IntTy;
2860 Invalid = true;
2861 }
2862 }
2863
2864 NonTypeTemplateParmDecl *Param;
2865 if (IsExpandedParameterPack)
2866 Param = NonTypeTemplateParmDecl::Create(
2867 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2868 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2869 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
2870 ExpandedParameterPackTypesAsWritten);
2871 else
2872 Param = NonTypeTemplateParmDecl::Create(
2873 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2874 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2875 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
2876
2877 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
2878 if (AutoLoc.isConstrained())
2879 if (SemaRef.AttachTypeConstraint(
2880 AutoLoc, Param,
2881 IsExpandedParameterPack
2882 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
2883 .getEllipsisLoc()
2884 : SourceLocation()))
2885 Invalid = true;
2886
2887 Param->setAccess(AS_public);
2888 Param->setImplicit(D->isImplicit());
2889 if (Invalid)
2890 Param->setInvalidDecl();
2891
2892 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2893 EnterExpressionEvaluationContext ConstantEvaluated(
2894 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
2895 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
2896 if (!Value.isInvalid())
2897 Param->setDefaultArgument(Value.get());
2898 }
2899
2900 // Introduce this template parameter's instantiation into the instantiation
2901 // scope.
2902 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
2903 return Param;
2904}
2905
2906static void collectUnexpandedParameterPacks(
2907 Sema &S,
2908 TemplateParameterList *Params,
2909 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
2910 for (const auto &P : *Params) {
2911 if (P->isTemplateParameterPack())
2912 continue;
2913 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
2914 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
2915 Unexpanded);
2916 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
2917 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
2918 Unexpanded);
2919 }
2920}
2921
2922Decl *
2923TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
2924 TemplateTemplateParmDecl *D) {
2925 // Instantiate the template parameter list of the template template parameter.
2926 TemplateParameterList *TempParams = D->getTemplateParameters();
2927 TemplateParameterList *InstParams;
2928 SmallVector<TemplateParameterList*, 8> ExpandedParams;
2929
2930 bool IsExpandedParameterPack = false;
2931
2932 if (D->isExpandedParameterPack()) {
2933 // The template template parameter pack is an already-expanded pack
2934 // expansion of template parameters. Substitute into each of the expanded
2935 // parameters.
2936 ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
2937 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
2938 I != N; ++I) {
2939 LocalInstantiationScope Scope(SemaRef);
2940 TemplateParameterList *Expansion =
2941 SubstTemplateParams(D->getExpansionTemplateParameters(I));
2942 if (!Expansion)
2943 return nullptr;
2944 ExpandedParams.push_back(Expansion);
2945 }
2946
2947 IsExpandedParameterPack = true;
2948 InstParams = TempParams;
2949 } else if (D->isPackExpansion()) {
2950 // The template template parameter pack expands to a pack of template
2951 // template parameters. Determine whether we need to expand this parameter
2952 // pack into separate parameters.
2953 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2954 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
2955 Unexpanded);
2956
2957 // Determine whether the set of unexpanded parameter packs can and should
2958 // be expanded.
2959 bool Expand = true;
2960 bool RetainExpansion = false;
2961 Optional<unsigned> NumExpansions;
2962 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
2963 TempParams->getSourceRange(),
2964 Unexpanded,
2965 TemplateArgs,
2966 Expand, RetainExpansion,
2967 NumExpansions))
2968 return nullptr;
2969
2970 if (Expand) {
2971 for (unsigned I = 0; I != *NumExpansions; ++I) {
2972 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2973 LocalInstantiationScope Scope(SemaRef);
2974 TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
2975 if (!Expansion)
2976 return nullptr;
2977 ExpandedParams.push_back(Expansion);
2978 }
2979
2980 // Note that we have an expanded parameter pack. The "type" of this
2981 // expanded parameter pack is the original expansion type, but callers
2982 // will end up using the expanded parameter pack types for type-checking.
2983 IsExpandedParameterPack = true;
2984 InstParams = TempParams;
2985 } else {
2986 // We cannot fully expand the pack expansion now, so just substitute
2987 // into the pattern.
2988 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
2989
2990 LocalInstantiationScope Scope(SemaRef);
2991 InstParams = SubstTemplateParams(TempParams);
2992 if (!InstParams)
2993 return nullptr;
2994 }
2995 } else {
2996 // Perform the actual substitution of template parameters within a new,
2997 // local instantiation scope.
2998 LocalInstantiationScope Scope(SemaRef);
2999 InstParams = SubstTemplateParams(TempParams);
3000 if (!InstParams)
3001 return nullptr;
3002 }
3003
3004 // Build the template template parameter.
3005 TemplateTemplateParmDecl *Param;
3006 if (IsExpandedParameterPack)
3007 Param = TemplateTemplateParmDecl::Create(
3008 SemaRef.Context, Owner, D->getLocation(),
3009 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3010 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3011 else
3012 Param = TemplateTemplateParmDecl::Create(
3013 SemaRef.Context, Owner, D->getLocation(),
3014 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3015 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3016 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3017 NestedNameSpecifierLoc QualifierLoc =
3018 D->getDefaultArgument().getTemplateQualifierLoc();
3019 QualifierLoc =
3020 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
3021 TemplateName TName = SemaRef.SubstTemplateName(
3022 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
3023 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3024 if (!TName.isNull())
3025 Param->setDefaultArgument(
3026 SemaRef.Context,
3027 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3028 D->getDefaultArgument().getTemplateQualifierLoc(),
3029 D->getDefaultArgument().getTemplateNameLoc()));
3030 }
3031 Param->setAccess(AS_public);
3032 Param->setImplicit(D->isImplicit());
3033
3034 // Introduce this template parameter's instantiation into the instantiation
3035 // scope.
3036 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3037
3038 return Param;
3039}
3040
3041Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3042 // Using directives are never dependent (and never contain any types or
3043 // expressions), so they require no explicit instantiation work.
3044
3045 UsingDirectiveDecl *Inst
3046 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
3047 D->getNamespaceKeyLocation(),
3048 D->getQualifierLoc(),
3049 D->getIdentLocation(),
3050 D->getNominatedNamespace(),
3051 D->getCommonAncestor());
3052
3053 // Add the using directive to its declaration context
3054 // only if this is not a function or method.
3055 if (!Owner->isFunctionOrMethod())
3056 Owner->addDecl(Inst);
3057
3058 return Inst;
3059}
3060
3061Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3062 BaseUsingDecl *Inst,
3063 LookupResult *Lookup) {
3064
3065 bool isFunctionScope = Owner->isFunctionOrMethod();
3066
3067 for (auto *Shadow : D->shadows()) {
3068 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3069 // reconstruct it in the case where it matters. Hm, can we extract it from
3070 // the DeclSpec when parsing and save it in the UsingDecl itself?
3071 NamedDecl *OldTarget = Shadow->getTargetDecl();
3072 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
3073 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3074 OldTarget = BaseShadow;
3075
3076 NamedDecl *InstTarget = nullptr;
3077 if (auto *EmptyD =
3078 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) {
3079 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3080 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName());
3081 } else {
3082 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3083 Shadow->getLocation(), OldTarget, TemplateArgs));
3084 }
3085 if (!InstTarget)
3086 return nullptr;
3087
3088 UsingShadowDecl *PrevDecl = nullptr;
3089 if (Lookup &&
3090 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl))
3091 continue;
3092
3093 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow))
3094 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3095 Shadow->getLocation(), OldPrev, TemplateArgs));
3096
3097 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3098 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl);
3099 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
3100
3101 if (isFunctionScope)
3102 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3103 }
3104
3105 return Inst;
3106}
3107
3108Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3109
3110 // The nested name specifier may be dependent, for example
3111 // template <typename T> struct t {
3112 // struct s1 { T f1(); };
3113 // struct s2 : s1 { using s1::f1; };
3114 // };
3115 // template struct t<int>;
3116 // Here, in using s1::f1, s1 refers to t<T>::s1;
3117 // we need to substitute for t<int>::s1.
3118 NestedNameSpecifierLoc QualifierLoc
3119 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3120 TemplateArgs);
3121 if (!QualifierLoc)
3122 return nullptr;
3123
3124 // For an inheriting constructor declaration, the name of the using
3125 // declaration is the name of a constructor in this class, not in the
3126 // base class.
3127 DeclarationNameInfo NameInfo = D->getNameInfo();
3128 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3129 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
3130 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3131 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
3132
3133 // We only need to do redeclaration lookups if we're in a class scope (in
3134 // fact, it's not really even possible in non-class scopes).
3135 bool CheckRedeclaration = Owner->isRecord();
3136 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3137 Sema::ForVisibleRedeclaration);
3138
3139 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
3140 D->getUsingLoc(),
3141 QualifierLoc,
3142 NameInfo,
3143 D->hasTypename());
3144
3145 CXXScopeSpec SS;
3146 SS.Adopt(QualifierLoc);
3147 if (CheckRedeclaration) {
3148 Prev.setHideTags(false);
3149 SemaRef.LookupQualifiedName(Prev, Owner);
3150
3151 // Check for invalid redeclarations.
3152 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
3153 D->hasTypename(), SS,
3154 D->getLocation(), Prev))
3155 NewUD->setInvalidDecl();
3156 }
3157
3158 if (!NewUD->isInvalidDecl() &&
3159 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS,
3160 NameInfo, D->getLocation(), nullptr, D))
3161 NewUD->setInvalidDecl();
3162
3163 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3164 NewUD->setAccess(D->getAccess());
3165 Owner->addDecl(NewUD);
3166
3167 // Don't process the shadow decls for an invalid decl.
3168 if (NewUD->isInvalidDecl())
3169 return NewUD;
3170
3171 // If the using scope was dependent, or we had dependent bases, we need to
3172 // recheck the inheritance
3173 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3174 SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
3175
3176 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3177}
3178
3179Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3180 // Cannot be a dependent type, but still could be an instantiation
3181 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3182 D->getLocation(), D->getEnumDecl(), TemplateArgs));
3183
3184 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation()))
3185 return nullptr;
3186
3187 UsingEnumDecl *NewUD =
3188 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(),
3189 D->getEnumLoc(), D->getLocation(), EnumD);
3190
3191 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D);
3192 NewUD->setAccess(D->getAccess());
3193 Owner->addDecl(NewUD);
3194
3195 // Don't process the shadow decls for an invalid decl.
3196 if (NewUD->isInvalidDecl())
3197 return NewUD;
3198
3199 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3200 // cannot be dependent, and will therefore have been checked during template
3201 // definition.
3202
3203 return VisitBaseUsingDecls(D, NewUD, nullptr);
3204}
3205
3206Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3207 // Ignore these; we handle them in bulk when processing the UsingDecl.
3208 return nullptr;
3209}
3210
3211Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3212 ConstructorUsingShadowDecl *D) {
3213 // Ignore these; we handle them in bulk when processing the UsingDecl.
3214 return nullptr;
3215}
3216
3217template <typename T>
3218Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3219 T *D, bool InstantiatingPackElement) {
3220 // If this is a pack expansion, expand it now.
3221 if (D->isPackExpansion() && !InstantiatingPackElement) {
3222 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3223 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3224 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3225
3226 // Determine whether the set of unexpanded parameter packs can and should
3227 // be expanded.
3228 bool Expand = true;
3229 bool RetainExpansion = false;
3230 Optional<unsigned> NumExpansions;
3231 if (SemaRef.CheckParameterPacksForExpansion(
3232 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
3233 Expand, RetainExpansion, NumExpansions))
3234 return nullptr;
3235
3236 // This declaration cannot appear within a function template signature,
3237 // so we can't have a partial argument list for a parameter pack.
3238 assert(!RetainExpansion &&((void)0)
3239 "should never need to retain an expansion for UsingPackDecl")((void)0);
3240
3241 if (!Expand) {
3242 // We cannot fully expand the pack expansion now, so substitute into the
3243 // pattern and create a new pack expansion.
3244 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3245 return instantiateUnresolvedUsingDecl(D, true);
3246 }
3247
3248 // Within a function, we don't have any normal way to check for conflicts
3249 // between shadow declarations from different using declarations in the
3250 // same pack expansion, but this is always ill-formed because all expansions
3251 // must produce (conflicting) enumerators.
3252 //
3253 // Sadly we can't just reject this in the template definition because it
3254 // could be valid if the pack is empty or has exactly one expansion.
3255 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3256 SemaRef.Diag(D->getEllipsisLoc(),
3257 diag::err_using_decl_redeclaration_expansion);
3258 return nullptr;
3259 }
3260
3261 // Instantiate the slices of this pack and build a UsingPackDecl.
3262 SmallVector<NamedDecl*, 8> Expansions;
3263 for (unsigned I = 0; I != *NumExpansions; ++I) {
3264 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3265 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3266 if (!Slice)
3267 return nullptr;
3268 // Note that we can still get unresolved using declarations here, if we
3269 // had arguments for all packs but the pattern also contained other
3270 // template arguments (this only happens during partial substitution, eg
3271 // into the body of a generic lambda in a function template).
3272 Expansions.push_back(cast<NamedDecl>(Slice));
3273 }
3274
3275 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3276 if (isDeclWithinFunction(D))
3277 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3278 return NewD;
3279 }
3280
3281 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3282 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3283
3284 NestedNameSpecifierLoc QualifierLoc
3285 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3286 TemplateArgs);
3287 if (!QualifierLoc)
3288 return nullptr;
3289
3290 CXXScopeSpec SS;
3291 SS.Adopt(QualifierLoc);
3292
3293 DeclarationNameInfo NameInfo
3294 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
3295
3296 // Produce a pack expansion only if we're not instantiating a particular
3297 // slice of a pack expansion.
3298 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3299 SemaRef.ArgumentPackSubstitutionIndex != -1;
3300 SourceLocation EllipsisLoc =
3301 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3302
3303 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3304 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3305 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
3306 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3307 ParsedAttributesView(),
3308 /*IsInstantiation*/ true, IsUsingIfExists);
3309 if (UD) {
3310 SemaRef.InstantiateAttrs(TemplateArgs, D, UD);
3311 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
3312 }
3313
3314 return UD;
3315}
3316
3317Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3318 UnresolvedUsingTypenameDecl *D) {
3319 return instantiateUnresolvedUsingDecl(D);
3320}
3321
3322Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3323 UnresolvedUsingValueDecl *D) {
3324 return instantiateUnresolvedUsingDecl(D);
3325}
3326
3327Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3328 UnresolvedUsingIfExistsDecl *D) {
3329 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl")__builtin_unreachable();
3330}
3331
3332Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3333 SmallVector<NamedDecl*, 8> Expansions;
3334 for (auto *UD : D->expansions()) {
3335 if (NamedDecl *NewUD =
3336 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
3337 Expansions.push_back(NewUD);
3338 else
3339 return nullptr;
3340 }
3341
3342 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3343 if (isDeclWithinFunction(D))
3344 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3345 return NewD;
3346}
3347
3348Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
3349 ClassScopeFunctionSpecializationDecl *Decl) {
3350 CXXMethodDecl *OldFD = Decl->getSpecialization();
3351 return cast_or_null<CXXMethodDecl>(
3352 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten()));
3353}
3354
3355Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3356 OMPThreadPrivateDecl *D) {
3357 SmallVector<Expr *, 5> Vars;
3358 for (auto *I : D->varlists()) {
3359 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3360 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr")((void)0);
3361 Vars.push_back(Var);
3362 }
3363
3364 OMPThreadPrivateDecl *TD =
3365 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
3366
3367 TD->setAccess(AS_public);
3368 Owner->addDecl(TD);
3369
3370 return TD;
3371}
3372
3373Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3374 SmallVector<Expr *, 5> Vars;
3375 for (auto *I : D->varlists()) {
3376 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3377 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr")((void)0);
3378 Vars.push_back(Var);
3379 }
3380 SmallVector<OMPClause *, 4> Clauses;
3381 // Copy map clauses from the original mapper.
3382 for (OMPClause *C : D->clauselists()) {
3383 auto *AC = cast<OMPAllocatorClause>(C);
3384 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
3385 if (!NewE.isUsable())
3386 continue;
3387 OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause(
3388 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
3389 Clauses.push_back(IC);
3390 }
3391
3392 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3393 D->getLocation(), Vars, Clauses, Owner);
3394 if (Res.get().isNull())
3395 return nullptr;
3396 return Res.get().getSingleDecl();
3397}
3398
3399Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3400 llvm_unreachable(__builtin_unreachable()
3401 "Requires directive cannot be instantiated within a dependent context")__builtin_unreachable();
3402}
3403
3404Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3405 OMPDeclareReductionDecl *D) {
3406 // Instantiate type and check if it is allowed.
3407 const bool RequiresInstantiation =
3408 D->getType()->isDependentType() ||
3409 D->getType()->isInstantiationDependentType() ||
3410 D->getType()->containsUnexpandedParameterPack();
3411 QualType SubstReductionType;
3412 if (RequiresInstantiation) {
3413 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3414 D->getLocation(),
3415 ParsedType::make(SemaRef.SubstType(
3416 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3417 } else {
3418 SubstReductionType = D->getType();
3419 }
3420 if (SubstReductionType.isNull())
3421 return nullptr;
3422 Expr *Combiner = D->getCombiner();
3423 Expr *Init = D->getInitializer();
3424 bool IsCorrect = true;
3425 // Create instantiated copy.
3426 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3427 std::make_pair(SubstReductionType, D->getLocation())};
3428 auto *PrevDeclInScope = D->getPrevDeclInScope();
3429 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3430 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3431 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3432 ->get<Decl *>());
3433 }
3434 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3435 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
3436 PrevDeclInScope);
3437 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3438 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
3439 Expr *SubstCombiner = nullptr;
3440 Expr *SubstInitializer = nullptr;
3441 // Combiners instantiation sequence.
3442 if (Combiner) {
3443 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3444 /*S=*/nullptr, NewDRD);
3445 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3446 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
3447 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3448 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3449 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
3450 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3451 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3452 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3453 ThisContext);
3454 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
3455 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
3456 }
3457 // Initializers instantiation sequence.
3458 if (Init) {
3459 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3460 /*S=*/nullptr, NewDRD);
3461 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3462 cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
3463 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3464 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3465 cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
3466 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3467 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) {
3468 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
3469 } else {
3470 auto *OldPrivParm =
3471 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
3472 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3473 if (IsCorrect)
3474 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
3475 TemplateArgs);
3476 }
3477 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
3478 OmpPrivParm);
3479 }
3480 IsCorrect = IsCorrect && SubstCombiner &&
3481 (!Init ||
3482 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit &&
3483 SubstInitializer) ||
3484 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit &&
3485 !SubstInitializer));
3486
3487 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3488 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
3489
3490 return NewDRD;
3491}
3492
3493Decl *
3494TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3495 // Instantiate type and check if it is allowed.
3496 const bool RequiresInstantiation =
3497 D->getType()->isDependentType() ||
3498 D->getType()->isInstantiationDependentType() ||
3499 D->getType()->containsUnexpandedParameterPack();
3500 QualType SubstMapperTy;
3501 DeclarationName VN = D->getVarName();
3502 if (RequiresInstantiation) {
3503 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3504 D->getLocation(),
3505 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
3506 D->getLocation(), VN)));
3507 } else {
3508 SubstMapperTy = D->getType();
3509 }
3510 if (SubstMapperTy.isNull())
3511 return nullptr;
3512 // Create an instantiated copy of mapper.
3513 auto *PrevDeclInScope = D->getPrevDeclInScope();
3514 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3515 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3516 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3517 ->get<Decl *>());
3518 }
3519 bool IsCorrect = true;
3520 SmallVector<OMPClause *, 6> Clauses;
3521 // Instantiate the mapper variable.
3522 DeclarationNameInfo DirName;
3523 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3524 /*S=*/nullptr,
3525 (*D->clauselist_begin())->getBeginLoc());
3526 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3527 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
3528 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3529 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
3530 cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
3531 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3532 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3533 ThisContext);
3534 // Instantiate map clauses.
3535 for (OMPClause *C : D->clauselists()) {
3536 auto *OldC = cast<OMPMapClause>(C);
3537 SmallVector<Expr *, 4> NewVars;
3538 for (Expr *OE : OldC->varlists()) {
3539 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3540 if (!NE) {
3541 IsCorrect = false;
3542 break;
3543 }
3544 NewVars.push_back(NE);
3545 }
3546 if (!IsCorrect)
3547 break;
3548 NestedNameSpecifierLoc NewQualifierLoc =
3549 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
3550 TemplateArgs);
3551 CXXScopeSpec SS;
3552 SS.Adopt(NewQualifierLoc);
3553 DeclarationNameInfo NewNameInfo =
3554 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
3555 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3556 OldC->getEndLoc());
3557 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3558 OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS,
3559 NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(),
3560 OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs);
3561 Clauses.push_back(NewC);
3562 }
3563 SemaRef.EndOpenMPDSABlock(nullptr);
3564 if (!IsCorrect)
3565 return nullptr;
3566 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3567 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
3568 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
3569 Decl *NewDMD = DG.get().getSingleDecl();
3570 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3571 return NewDMD;
3572}
3573
3574Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3575 OMPCapturedExprDecl * /*D*/) {
3576 llvm_unreachable("Should not be met in templates")__builtin_unreachable();
3577}
3578
3579Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3580 return VisitFunctionDecl(D, nullptr);
3581}
3582
3583Decl *
3584TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3585 Decl *Inst = VisitFunctionDecl(D, nullptr);
3586 if (Inst && !D->getDescribedFunctionTemplate())
3587 Owner->addDecl(Inst);
3588 return Inst;
3589}
3590
3591Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3592 return VisitCXXMethodDecl(D, nullptr);
3593}
3594
3595Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3596 llvm_unreachable("There are only CXXRecordDecls in C++")__builtin_unreachable();
3597}
3598
3599Decl *
3600TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3601 ClassTemplateSpecializationDecl *D) {
3602 // As a MS extension, we permit class-scope explicit specialization
3603 // of member class templates.
3604 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3605 assert(ClassTemplate->getDeclContext()->isRecord() &&((void)0)
3606 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&((void)0)
3607 "can only instantiate an explicit specialization "((void)0)
3608 "for a member class template")((void)0);
3609
3610 // Lookup the already-instantiated declaration in the instantiation
3611 // of the class template.
3612 ClassTemplateDecl *InstClassTemplate =
3613 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3614 D->getLocation(), ClassTemplate, TemplateArgs));
3615 if (!InstClassTemplate)
3616 return nullptr;
3617
3618 // Substitute into the template arguments of the class template explicit
3619 // specialization.
3620 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3621 castAs<TemplateSpecializationTypeLoc>();
3622 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3623 Loc.getRAngleLoc());
3624 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3625 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3626 ArgLocs.push_back(Loc.getArgLoc(I));
3627 if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(),
3628 InstTemplateArgs, TemplateArgs))
3629 return nullptr;
3630
3631 // Check that the template argument list is well-formed for this
3632 // class template.
3633 SmallVector<TemplateArgument, 4> Converted;
3634 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate,
3635 D->getLocation(),
3636 InstTemplateArgs,
3637 false,
3638 Converted,
3639 /*UpdateArgsWithConversion=*/true))
3640 return nullptr;
3641
3642 // Figure out where to insert this class template explicit specialization
3643 // in the member template's set of class template explicit specializations.
3644 void *InsertPos = nullptr;
3645 ClassTemplateSpecializationDecl *PrevDecl =
3646 InstClassTemplate->findSpecialization(Converted, InsertPos);
3647
3648 // Check whether we've already seen a conflicting instantiation of this
3649 // declaration (for instance, if there was a prior implicit instantiation).
3650 bool Ignored;
3651 if (PrevDecl &&
3652 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
3653 D->getSpecializationKind(),
3654 PrevDecl,
3655 PrevDecl->getSpecializationKind(),
3656 PrevDecl->getPointOfInstantiation(),
3657 Ignored))
3658 return nullptr;
3659
3660 // If PrevDecl was a definition and D is also a definition, diagnose.
3661 // This happens in cases like:
3662 //
3663 // template<typename T, typename U>
3664 // struct Outer {
3665 // template<typename X> struct Inner;
3666 // template<> struct Inner<T> {};
3667 // template<> struct Inner<U> {};
3668 // };
3669 //
3670 // Outer<int, int> outer; // error: the explicit specializations of Inner
3671 // // have the same signature.
3672 if (PrevDecl && PrevDecl->getDefinition() &&
3673 D->isThisDeclarationADefinition()) {
3674 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3675 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3676 diag::note_previous_definition);
3677 return nullptr;
3678 }
3679
3680 // Create the class template partial specialization declaration.
3681 ClassTemplateSpecializationDecl *InstD =
3682 ClassTemplateSpecializationDecl::Create(
3683 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
3684 D->getLocation(), InstClassTemplate, Converted, PrevDecl);
3685
3686 // Add this partial specialization to the set of class template partial
3687 // specializations.
3688 if (!PrevDecl)
3689 InstClassTemplate->AddSpecialization(InstD, InsertPos);
3690
3691 // Substitute the nested name specifier, if any.
3692 if (SubstQualifier(D, InstD))
3693 return nullptr;
3694
3695 // Build the canonical type that describes the converted template
3696 // arguments of the class template explicit specialization.
3697 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3698 TemplateName(InstClassTemplate), Converted,
3699 SemaRef.Context.getRecordType(InstD));
3700
3701 // Build the fully-sugared type for this class template
3702 // specialization as the user wrote in the specialization
3703 // itself. This means that we'll pretty-print the type retrieved
3704 // from the specialization's declaration the way that the user
3705 // actually wrote the specialization, rather than formatting the
3706 // name based on the "canonical" representation used to store the
3707 // template arguments in the specialization.
3708 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3709 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
3710 CanonType);
3711
3712 InstD->setAccess(D->getAccess());
3713 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3714 InstD->setSpecializationKind(D->getSpecializationKind());
3715 InstD->setTypeAsWritten(WrittenTy);
3716 InstD->setExternLoc(D->getExternLoc());
3717 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3718
3719 Owner->addDecl(InstD);
3720
3721 // Instantiate the members of the class-scope explicit specialization eagerly.
3722 // We don't have support for lazy instantiation of an explicit specialization
3723 // yet, and MSVC eagerly instantiates in this case.
3724 // FIXME: This is wrong in standard C++.
3725 if (D->isThisDeclarationADefinition() &&
3726 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
3727 TSK_ImplicitInstantiation,
3728 /*Complain=*/true))
3729 return nullptr;
3730
3731 return InstD;
3732}
3733
3734Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3735 VarTemplateSpecializationDecl *D) {
3736
3737 TemplateArgumentListInfo VarTemplateArgsInfo;
3738 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3739 assert(VarTemplate &&((void)0)
3740 "A template specialization without specialized template?")((void)0);
3741
3742 VarTemplateDecl *InstVarTemplate =
3743 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3744 D->getLocation(), VarTemplate, TemplateArgs));
3745 if (!InstVarTemplate)
3746 return nullptr;
3747
3748 // Substitute the current template arguments.
3749 const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo();
3750 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc());
3751 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc());
3752
3753 if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(),
3754 TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs))
3755 return nullptr;
3756
3757 // Check that the template argument list is well-formed for this template.
3758 SmallVector<TemplateArgument, 4> Converted;
3759 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
3760 VarTemplateArgsInfo, false, Converted,
3761 /*UpdateArgsWithConversion=*/true))
3762 return nullptr;
3763
3764 // Check whether we've already seen a declaration of this specialization.
3765 void *InsertPos = nullptr;
3766 VarTemplateSpecializationDecl *PrevDecl =
3767 InstVarTemplate->findSpecialization(Converted, InsertPos);
3768
3769 // Check whether we've already seen a conflicting instantiation of this
3770 // declaration (for instance, if there was a prior implicit instantiation).
3771 bool Ignored;
3772 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3773 D->getLocation(), D->getSpecializationKind(), PrevDecl,
3774 PrevDecl->getSpecializationKind(),
3775 PrevDecl->getPointOfInstantiation(), Ignored))
3776 return nullptr;
3777
3778 return VisitVarTemplateSpecializationDecl(
3779 InstVarTemplate, D, VarTemplateArgsInfo, Converted, PrevDecl);
3780}
3781
3782Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3783 VarTemplateDecl *VarTemplate, VarDecl *D,
3784 const TemplateArgumentListInfo &TemplateArgsInfo,
3785 ArrayRef<TemplateArgument> Converted,
3786 VarTemplateSpecializationDecl *PrevDecl) {
3787
3788 // Do substitution on the type of the declaration
3789 TypeSourceInfo *DI =
3790 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3791 D->getTypeSpecStartLoc(), D->getDeclName());
3792 if (!DI)
3793 return nullptr;
3794
3795 if (DI->getType()->isFunctionType()) {
3796 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3797 << D->isStaticDataMember() << DI->getType();
3798 return nullptr;
3799 }
3800
3801 // Build the instantiated declaration
3802 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3803 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3804 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
3805 Var->setTemplateArgsInfo(TemplateArgsInfo);
3806 if (!PrevDecl) {
3807 void *InsertPos = nullptr;
3808 VarTemplate->findSpecialization(Converted, InsertPos);
3809 VarTemplate->AddSpecialization(Var, InsertPos);
3810 }
3811
3812 if (SemaRef.getLangOpts().OpenCL)
3813 SemaRef.deduceOpenCLAddressSpace(Var);
3814
3815 // Substitute the nested name specifier, if any.
3816 if (SubstQualifier(D, Var))
3817 return nullptr;
3818
3819 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
3820 StartingScope, false, PrevDecl);
3821
3822 return Var;
3823}
3824
3825Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
3826 llvm_unreachable("@defs is not supported in Objective-C++")__builtin_unreachable();
3827}
3828
3829Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
3830 // FIXME: We need to be able to instantiate FriendTemplateDecls.
3831 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
3832 DiagnosticsEngine::Error,
3833 "cannot instantiate %0 yet");
3834 SemaRef.Diag(D->getLocation(), DiagID)
3835 << D->getDeclKindName();
3836
3837 return nullptr;
3838}
3839
3840Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
3841 llvm_unreachable("Concept definitions cannot reside inside a template")__builtin_unreachable();
3842}
3843
3844Decl *
3845TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
3846 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
3847 D->getBeginLoc());
3848}
3849
3850Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
3851 llvm_unreachable("Unexpected decl")__builtin_unreachable();
3852}
3853
3854Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
3855 const MultiLevelTemplateArgumentList &TemplateArgs) {
3856 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
3857 if (D->isInvalidDecl())
3858 return nullptr;
3859
3860 Decl *SubstD;
3861 runWithSufficientStackSpace(D->getLocation(), [&] {
3862 SubstD = Instantiator.Visit(D);
3863 });
3864 return SubstD;
3865}
3866
3867void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
3868 FunctionDecl *Orig, QualType &T,
3869 TypeSourceInfo *&TInfo,
3870 DeclarationNameInfo &NameInfo) {
3871 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual)((void)0);
3872
3873 // C++2a [class.compare.default]p3:
3874 // the return type is replaced with bool
3875 auto *FPT = T->castAs<FunctionProtoType>();
3876 T = SemaRef.Context.getFunctionType(
3877 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
3878
3879 // Update the return type in the source info too. The most straightforward
3880 // way is to create new TypeSourceInfo for the new type. Use the location of
3881 // the '= default' as the location of the new type.
3882 //
3883 // FIXME: Set the correct return type when we initially transform the type,
3884 // rather than delaying it to now.
3885 TypeSourceInfo *NewTInfo =
3886 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
3887 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
3888 assert(OldLoc && "type of function is not a function type?")((void)0);
3889 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
3890 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
3891 NewLoc.setParam(I, OldLoc.getParam(I));
3892 TInfo = NewTInfo;
3893
3894 // and the declarator-id is replaced with operator==
3895 NameInfo.setName(
3896 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
3897}
3898
3899FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
3900 FunctionDecl *Spaceship) {
3901 if (Spaceship->isInvalidDecl())
3902 return nullptr;
3903
3904 // C++2a [class.compare.default]p3:
3905 // an == operator function is declared implicitly [...] with the same
3906 // access and function-definition and in the same class scope as the
3907 // three-way comparison operator function
3908 MultiLevelTemplateArgumentList NoTemplateArgs;
3909 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
3910 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
3911 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
3912 Decl *R;
3913 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
3914 R = Instantiator.VisitCXXMethodDecl(
3915 MD, nullptr, None,
3916 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
3917 } else {
3918 assert(Spaceship->getFriendObjectKind() &&((void)0)
3919 "defaulted spaceship is neither a member nor a friend")((void)0);
3920
3921 R = Instantiator.VisitFunctionDecl(
3922 Spaceship, nullptr,
3923 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
3924 if (!R)
3925 return nullptr;
3926
3927 FriendDecl *FD =
3928 FriendDecl::Create(Context, RD, Spaceship->getLocation(),
3929 cast<NamedDecl>(R), Spaceship->getBeginLoc());
3930 FD->setAccess(AS_public);
3931 RD->addDecl(FD);
3932 }
3933 return cast_or_null<FunctionDecl>(R);
3934}
3935
3936/// Instantiates a nested template parameter list in the current
3937/// instantiation context.
3938///
3939/// \param L The parameter list to instantiate
3940///
3941/// \returns NULL if there was an error
3942TemplateParameterList *
3943TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
3944 // Get errors for all the parameters before bailing out.
3945 bool Invalid = false;
3946
3947 unsigned N = L->size();
3948 typedef SmallVector<NamedDecl *, 8> ParamVector;
3949 ParamVector Params;
3950 Params.reserve(N);
3951 for (auto &P : *L) {
3952 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
3953 Params.push_back(D);
3954 Invalid = Invalid || !D || D->isInvalidDecl();
3955 }
3956
3957 // Clean up if we had an error.
3958 if (Invalid)
3959 return nullptr;
3960
3961 // FIXME: Concepts: Substitution into requires clause should only happen when
3962 // checking satisfaction.
3963 Expr *InstRequiresClause = nullptr;
3964 if (Expr *E = L->getRequiresClause()) {
3965 EnterExpressionEvaluationContext ConstantEvaluated(
3966 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
3967 ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs);
3968 if (Res.isInvalid() || !Res.isUsable()) {
3969 return nullptr;
3970 }
3971 InstRequiresClause = Res.get();
3972 }
3973
3974 TemplateParameterList *InstL
3975 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
3976 L->getLAngleLoc(), Params,
3977 L->getRAngleLoc(), InstRequiresClause);
3978 return InstL;
3979}
3980
3981TemplateParameterList *
3982Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
3983 const MultiLevelTemplateArgumentList &TemplateArgs) {
3984 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
3985 return Instantiator.SubstTemplateParams(Params);
3986}
3987
3988/// Instantiate the declaration of a class template partial
3989/// specialization.
3990///
3991/// \param ClassTemplate the (instantiated) class template that is partially
3992// specialized by the instantiation of \p PartialSpec.
3993///
3994/// \param PartialSpec the (uninstantiated) class template partial
3995/// specialization that we are instantiating.
3996///
3997/// \returns The instantiated partial specialization, if successful; otherwise,
3998/// NULL to indicate an error.
3999ClassTemplatePartialSpecializationDecl *
4000TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4001 ClassTemplateDecl *ClassTemplate,
4002 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4003 // Create a local instantiation scope for this class template partial
4004 // specialization, which will contain the instantiations of the template
4005 // parameters.
4006 LocalInstantiationScope Scope(SemaRef);
4007
4008 // Substitute into the template parameters of the class template partial
4009 // specialization.
4010 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4011 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4012 if (!InstParams)
4013 return nullptr;
4014
4015 // Substitute into the template arguments of the class template partial
4016 // specialization.
4017 const ASTTemplateArgumentListInfo *TemplArgInfo
4018 = PartialSpec->getTemplateArgsAsWritten();
4019 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4020 TemplArgInfo->RAngleLoc);
4021 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
4022 TemplArgInfo->NumTemplateArgs,
4023 InstTemplateArgs, TemplateArgs))
4024 return nullptr;
4025
4026 // Check that the template argument list is well-formed for this
4027 // class template.
4028 SmallVector<TemplateArgument, 4> Converted;
4029 if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
4030 PartialSpec->getLocation(),
4031 InstTemplateArgs,
4032 false,
4033 Converted))
4034 return nullptr;
4035
4036 // Check these arguments are valid for a template partial specialization.
4037 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4038 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
4039 Converted))
4040 return nullptr;
4041
4042 // Figure out where to insert this class template partial specialization
4043 // in the member template's set of class template partial specializations.
4044 void *InsertPos = nullptr;
4045 ClassTemplateSpecializationDecl *PrevDecl
4046 = ClassTemplate->findPartialSpecialization(Converted, InstParams,
4047 InsertPos);
4048
4049 // Build the canonical type that describes the converted template
4050 // arguments of the class template partial specialization.
4051 QualType CanonType
4052 = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
4053 Converted);
4054
4055 // Build the fully-sugared type for this class template
4056 // specialization as the user wrote in the specialization
4057 // itself. This means that we'll pretty-print the type retrieved
4058 // from the specialization's declaration the way that the user
4059 // actually wrote the specialization, rather than formatting the
4060 // name based on the "canonical" representation used to store the
4061 // template arguments in the specialization.
4062 TypeSourceInfo *WrittenTy
4063 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4064 TemplateName(ClassTemplate),
4065 PartialSpec->getLocation(),
4066 InstTemplateArgs,
4067 CanonType);
4068
4069 if (PrevDecl) {
4070 // We've already seen a partial specialization with the same template
4071 // parameters and template arguments. This can happen, for example, when
4072 // substituting the outer template arguments ends up causing two
4073 // class template partial specializations of a member class template
4074 // to have identical forms, e.g.,
4075 //
4076 // template<typename T, typename U>
4077 // struct Outer {
4078 // template<typename X, typename Y> struct Inner;
4079 // template<typename Y> struct Inner<T, Y>;
4080 // template<typename Y> struct Inner<U, Y>;
4081 // };
4082 //
4083 // Outer<int, int> outer; // error: the partial specializations of Inner
4084 // // have the same signature.
4085 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4086 << WrittenTy->getType();
4087 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4088 << SemaRef.Context.getTypeDeclType(PrevDecl);
4089 return nullptr;
4090 }
4091
4092
4093 // Create the class template partial specialization declaration.
4094 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4095 ClassTemplatePartialSpecializationDecl::Create(
4096 SemaRef.Context, PartialSpec->getTagKind(), Owner,
4097 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
4098 ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr);
4099 // Substitute the nested name specifier, if any.
4100 if (SubstQualifier(PartialSpec, InstPartialSpec))
4101 return nullptr;
4102
4103 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4104 InstPartialSpec->setTypeAsWritten(WrittenTy);
4105
4106 // Check the completed partial specialization.
4107 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4108
4109 // Add this partial specialization to the set of class template partial
4110 // specializations.
4111 ClassTemplate->AddPartialSpecialization(InstPartialSpec,
4112 /*InsertPos=*/nullptr);
4113 return InstPartialSpec;
4114}
4115
4116/// Instantiate the declaration of a variable template partial
4117/// specialization.
4118///
4119/// \param VarTemplate the (instantiated) variable template that is partially
4120/// specialized by the instantiation of \p PartialSpec.
4121///
4122/// \param PartialSpec the (uninstantiated) variable template partial
4123/// specialization that we are instantiating.
4124///
4125/// \returns The instantiated partial specialization, if successful; otherwise,
4126/// NULL to indicate an error.
4127VarTemplatePartialSpecializationDecl *
4128TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4129 VarTemplateDecl *VarTemplate,
4130 VarTemplatePartialSpecializationDecl *PartialSpec) {
4131 // Create a local instantiation scope for this variable template partial
4132 // specialization, which will contain the instantiations of the template
4133 // parameters.
4134 LocalInstantiationScope Scope(SemaRef);
4135
4136 // Substitute into the template parameters of the variable template partial
4137 // specialization.
4138 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4139 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4140 if (!InstParams)
4141 return nullptr;
4142
4143 // Substitute into the template arguments of the variable template partial
4144 // specialization.
4145 const ASTTemplateArgumentListInfo *TemplArgInfo
4146 = PartialSpec->getTemplateArgsAsWritten();
4147 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4148 TemplArgInfo->RAngleLoc);
4149 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
4150 TemplArgInfo->NumTemplateArgs,
4151 InstTemplateArgs, TemplateArgs))
4152 return nullptr;
4153
4154 // Check that the template argument list is well-formed for this
4155 // class template.
4156 SmallVector<TemplateArgument, 4> Converted;
4157 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(),
4158 InstTemplateArgs, false, Converted))
4159 return nullptr;
4160
4161 // Check these arguments are valid for a template partial specialization.
4162 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4163 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
4164 Converted))
4165 return nullptr;
4166
4167 // Figure out where to insert this variable template partial specialization
4168 // in the member template's set of variable template partial specializations.
4169 void *InsertPos = nullptr;
4170 VarTemplateSpecializationDecl *PrevDecl =
4171 VarTemplate->findPartialSpecialization(Converted, InstParams, InsertPos);
4172
4173 // Build the canonical type that describes the converted template
4174 // arguments of the variable template partial specialization.
4175 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4176 TemplateName(VarTemplate), Converted);
4177
4178 // Build the fully-sugared type for this variable template
4179 // specialization as the user wrote in the specialization
4180 // itself. This means that we'll pretty-print the type retrieved
4181 // from the specialization's declaration the way that the user
4182 // actually wrote the specialization, rather than formatting the
4183 // name based on the "canonical" representation used to store the
4184 // template arguments in the specialization.
4185 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4186 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
4187 CanonType);
4188
4189 if (PrevDecl) {
4190 // We've already seen a partial specialization with the same template
4191 // parameters and template arguments. This can happen, for example, when
4192 // substituting the outer template arguments ends up causing two
4193 // variable template partial specializations of a member variable template
4194 // to have identical forms, e.g.,
4195 //
4196 // template<typename T, typename U>
4197 // struct Outer {
4198 // template<typename X, typename Y> pair<X,Y> p;
4199 // template<typename Y> pair<T, Y> p;
4200 // template<typename Y> pair<U, Y> p;
4201 // };
4202 //
4203 // Outer<int, int> outer; // error: the partial specializations of Inner
4204 // // have the same signature.
4205 SemaRef.Diag(PartialSpec->getLocation(),
4206 diag::err_var_partial_spec_redeclared)
4207 << WrittenTy->getType();
4208 SemaRef.Diag(PrevDecl->getLocation(),
4209 diag::note_var_prev_partial_spec_here);
4210 return nullptr;
4211 }
4212
4213 // Do substitution on the type of the declaration
4214 TypeSourceInfo *DI = SemaRef.SubstType(
4215 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4216 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4217 if (!DI)
4218 return nullptr;
4219
4220 if (DI->getType()->isFunctionType()) {
4221 SemaRef.Diag(PartialSpec->getLocation(),
4222 diag::err_variable_instantiates_to_function)
4223 << PartialSpec->isStaticDataMember() << DI->getType();
4224 return nullptr;
4225 }
4226
4227 // Create the variable template partial specialization declaration.
4228 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4229 VarTemplatePartialSpecializationDecl::Create(
4230 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
4231 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
4232 DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs);
4233
4234 // Substitute the nested name specifier, if any.
4235 if (SubstQualifier(PartialSpec, InstPartialSpec))
4236 return nullptr;
4237
4238 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4239 InstPartialSpec->setTypeAsWritten(WrittenTy);
4240
4241 // Check the completed partial specialization.
4242 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4243
4244 // Add this partial specialization to the set of variable template partial
4245 // specializations. The instantiation of the initializer is not necessary.
4246 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
4247
4248 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4249 LateAttrs, Owner, StartingScope);
4250
4251 return InstPartialSpec;
4252}
4253
4254TypeSourceInfo*
4255TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4256 SmallVectorImpl<ParmVarDecl *> &Params) {
4257 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4258 assert(OldTInfo && "substituting function without type source info")((void)0);
4259 assert(Params.empty() && "parameter vector is non-empty at start")((void)0);
4260
4261 CXXRecordDecl *ThisContext = nullptr;
4262 Qualifiers ThisTypeQuals;
4263 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4264 ThisContext = cast<CXXRecordDecl>(Owner);
4265 ThisTypeQuals = Method->getMethodQualifiers();
4266 }
4267
4268 TypeSourceInfo *NewTInfo
4269 = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs,
4270 D->getTypeSpecStartLoc(),
4271 D->getDeclName(),
4272 ThisContext, ThisTypeQuals);
4273 if (!NewTInfo)
4274 return nullptr;
4275
4276 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4277 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4278 if (NewTInfo != OldTInfo) {
4279 // Get parameters from the new type info.
4280 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4281 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4282 unsigned NewIdx = 0;
4283 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4284 OldIdx != NumOldParams; ++OldIdx) {
4285 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4286 if (!OldParam)
4287 return nullptr;
4288
4289 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4290
4291 Optional<unsigned> NumArgumentsInExpansion;
4292 if (OldParam->isParameterPack())
4293 NumArgumentsInExpansion =
4294 SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
4295 TemplateArgs);
4296 if (!NumArgumentsInExpansion) {
4297 // Simple case: normal parameter, or a parameter pack that's
4298 // instantiated to a (still-dependent) parameter pack.
4299 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4300 Params.push_back(NewParam);
4301 Scope->InstantiatedLocal(OldParam, NewParam);
4302 } else {
4303 // Parameter pack expansion: make the instantiation an argument pack.
4304 Scope->MakeInstantiatedLocalArgPack(OldParam);
4305 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4306 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4307 Params.push_back(NewParam);
4308 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4309 }
4310 }
4311 }
4312 } else {
4313 // The function type itself was not dependent and therefore no
4314 // substitution occurred. However, we still need to instantiate
4315 // the function parameters themselves.
4316 const FunctionProtoType *OldProto =
4317 cast<FunctionProtoType>(OldProtoLoc.getType());
4318 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4319 ++i) {
4320 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4321 if (!OldParam) {
4322 Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
4323 D, D->getLocation(), OldProto->getParamType(i)));
4324 continue;
4325 }
4326
4327 ParmVarDecl *Parm =
4328 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4329 if (!Parm)
4330 return nullptr;
4331 Params.push_back(Parm);
4332 }
4333 }
4334 } else {
4335 // If the type of this function, after ignoring parentheses, is not
4336 // *directly* a function type, then we're instantiating a function that
4337 // was declared via a typedef or with attributes, e.g.,
4338 //
4339 // typedef int functype(int, int);
4340 // functype func;
4341 // int __cdecl meth(int, int);
4342 //
4343 // In this case, we'll just go instantiate the ParmVarDecls that we
4344 // synthesized in the method declaration.
4345 SmallVector<QualType, 4> ParamTypes;
4346 Sema::ExtParameterInfoBuilder ExtParamInfos;
4347 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
4348 TemplateArgs, ParamTypes, &Params,
4349 ExtParamInfos))
4350 return nullptr;
4351 }
4352
4353 return NewTInfo;
4354}
4355
4356/// Introduce the instantiated function parameters into the local
4357/// instantiation scope, and set the parameter names to those used
4358/// in the template.
4359static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function,
4360 const FunctionDecl *PatternDecl,
4361 LocalInstantiationScope &Scope,
4362 const MultiLevelTemplateArgumentList &TemplateArgs) {
4363 unsigned FParamIdx = 0;
4364 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4365 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
4366 if (!PatternParam->isParameterPack()) {
4367 // Simple case: not a parameter pack.
4368 assert(FParamIdx < Function->getNumParams())((void)0);
4369 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4370 FunctionParam->setDeclName(PatternParam->getDeclName());
4371 // If the parameter's type is not dependent, update it to match the type
4372 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4373 // the pattern's type here. If the type is dependent, they can't differ,
4374 // per core issue 1668. Substitute into the type from the pattern, in case
4375 // it's instantiation-dependent.
4376 // FIXME: Updating the type to work around this is at best fragile.
4377 if (!PatternDecl->getType()->isDependentType()) {
4378 QualType T = S.SubstType(PatternParam->getType(), TemplateArgs,
4379 FunctionParam->getLocation(),
4380 FunctionParam->getDeclName());
4381 if (T.isNull())
4382 return true;
4383 FunctionParam->setType(T);
4384 }
4385
4386 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4387 ++FParamIdx;
4388 continue;
4389 }
4390
4391 // Expand the parameter pack.
4392 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4393 Optional<unsigned> NumArgumentsInExpansion
4394 = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
4395 if (NumArgumentsInExpansion) {
4396 QualType PatternType =
4397 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4398 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4399 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4400 FunctionParam->setDeclName(PatternParam->getDeclName());
4401 if (!PatternDecl->getType()->isDependentType()) {
4402 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg);
4403 QualType T = S.SubstType(PatternType, TemplateArgs,
4404 FunctionParam->getLocation(),
4405 FunctionParam->getDeclName());
4406 if (T.isNull())
4407 return true;
4408 FunctionParam->setType(T);
4409 }
4410
4411 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4412 ++FParamIdx;
4413 }
4414 }
4415 }
4416
4417 return false;
4418}
4419
4420bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4421 ParmVarDecl *Param) {
4422 assert(Param->hasUninstantiatedDefaultArg())((void)0);
4423 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4424
4425 EnterExpressionEvaluationContext EvalContext(
4426 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4427
4428 // Instantiate the expression.
4429 //
4430 // FIXME: Pass in a correct Pattern argument, otherwise
4431 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4432 //
4433 // template<typename T>
4434 // struct A {
4435 // static int FooImpl();
4436 //
4437 // template<typename Tp>
4438 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4439 // // template argument list [[T], [Tp]], should be [[Tp]].
4440 // friend A<Tp> Foo(int a);
4441 // };
4442 //
4443 // template<typename T>
4444 // A<T> Foo(int a = A<T>::FooImpl());
4445 MultiLevelTemplateArgumentList TemplateArgs
4446 = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4447
4448 InstantiatingTemplate Inst(*this, CallLoc, Param,
4449 TemplateArgs.getInnermost());
4450 if (Inst.isInvalid())
4451 return true;
4452 if (Inst.isAlreadyInstantiating()) {
4453 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4454 Param->setInvalidDecl();
4455 return true;
4456 }
4457
4458 ExprResult Result;
4459 {
4460 // C++ [dcl.fct.default]p5:
4461 // The names in the [default argument] expression are bound, and
4462 // the semantic constraints are checked, at the point where the
4463 // default argument expression appears.
4464 ContextRAII SavedContext(*this, FD);
4465 LocalInstantiationScope Local(*this);
4466
4467 FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(
4468 /*ForDefinition*/ false);
4469 if (addInstantiatedParametersToScope(*this, FD, Pattern, Local,
4470 TemplateArgs))
4471 return true;
4472
4473 runWithSufficientStackSpace(CallLoc, [&] {
4474 Result = SubstInitializer(UninstExpr, TemplateArgs,
4475 /*DirectInit*/false);
4476 });
4477 }
4478 if (Result.isInvalid())
4479 return true;
4480
4481 // Check the expression as an initializer for the parameter.
4482 InitializedEntity Entity
4483 = InitializedEntity::InitializeParameter(Context, Param);
4484 InitializationKind Kind = InitializationKind::CreateCopy(
4485 Param->getLocation(),
4486 /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4487 Expr *ResultE = Result.getAs<Expr>();
4488
4489 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4490 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4491 if (Result.isInvalid())
4492 return true;
4493
4494 Result =
4495 ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
4496 /*DiscardedValue*/ false);
4497 if (Result.isInvalid())
4498 return true;
4499
4500 // Remember the instantiated default argument.
4501 Param->setDefaultArg(Result.getAs<Expr>());
4502 if (ASTMutationListener *L = getASTMutationListener())
4503 L->DefaultArgumentInstantiated(Param);
4504
4505 return false;
4506}
4507
4508void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4509 FunctionDecl *Decl) {
4510 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4511 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4512 return;
4513
4514 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4515 InstantiatingTemplate::ExceptionSpecification());
4516 if (Inst.isInvalid()) {
4517 // We hit the instantiation depth limit. Clear the exception specification
4518 // so that our callers don't have to cope with EST_Uninstantiated.
4519 UpdateExceptionSpec(Decl, EST_None);
4520 return;
4521 }
4522 if (Inst.isAlreadyInstantiating()) {
4523 // This exception specification indirectly depends on itself. Reject.
4524 // FIXME: Corresponding rule in the standard?
4525 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4526 UpdateExceptionSpec(Decl, EST_None);
4527 return;
4528 }
4529
4530 // Enter the scope of this instantiation. We don't use
4531 // PushDeclContext because we don't have a scope.
4532 Sema::ContextRAII savedContext(*this, Decl);
4533 LocalInstantiationScope Scope(*this);
4534
4535 MultiLevelTemplateArgumentList TemplateArgs =
4536 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true);
4537
4538 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4539 // here, because for a non-defining friend declaration in a class template,
4540 // we don't store enough information to map back to the friend declaration in
4541 // the template.
4542 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4543 if (addInstantiatedParametersToScope(*this, Decl, Template, Scope,
4544 TemplateArgs)) {
4545 UpdateExceptionSpec(Decl, EST_None);
4546 return;
4547 }
4548
4549 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4550 TemplateArgs);
4551}
4552
4553bool Sema::CheckInstantiatedFunctionTemplateConstraints(
4554 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
4555 ArrayRef<TemplateArgument> TemplateArgs,
4556 ConstraintSatisfaction &Satisfaction) {
4557 // In most cases we're not going to have constraints, so check for that first.
4558 FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
4559 // Note - code synthesis context for the constraints check is created
4560 // inside CheckConstraintsSatisfaction.
4561 SmallVector<const Expr *, 3> TemplateAC;
4562 Template->getAssociatedConstraints(TemplateAC);
4563 if (TemplateAC.empty()) {
4564 Satisfaction.IsSatisfied = true;
4565 return false;
4566 }
4567
4568 // Enter the scope of this instantiation. We don't use
4569 // PushDeclContext because we don't have a scope.
4570 Sema::ContextRAII savedContext(*this, Decl);
4571 LocalInstantiationScope Scope(*this);
4572
4573 // If this is not an explicit specialization - we need to get the instantiated
4574 // version of the template arguments and add them to scope for the
4575 // substitution.
4576 if (Decl->isTemplateInstantiation()) {
4577 InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(),
4578 InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(),
4579 TemplateArgs, SourceRange());
4580 if (Inst.isInvalid())
4581 return true;
4582 MultiLevelTemplateArgumentList MLTAL(
4583 *Decl->getTemplateSpecializationArgs());
4584 if (addInstantiatedParametersToScope(
4585 *this, Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(),
4586 Scope, MLTAL))
4587 return true;
4588 }
4589 Qualifiers ThisQuals;
4590 CXXRecordDecl *Record = nullptr;
4591 if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
4592 ThisQuals = Method->getMethodQualifiers();
4593 Record = Method->getParent();
4594 }
4595 CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
4596 return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs,
4597 PointOfInstantiation, Satisfaction);
4598}
4599
4600/// Initializes the common fields of an instantiation function
4601/// declaration (New) from the corresponding fields of its template (Tmpl).
4602///
4603/// \returns true if there was an error
4604bool
4605TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4606 FunctionDecl *Tmpl) {
4607 New->setImplicit(Tmpl->isImplicit());
4608
4609 // Forward the mangling number from the template to the instantiated decl.
4610 SemaRef.Context.setManglingNumber(New,
4611 SemaRef.Context.getManglingNumber(Tmpl));
4612
4613 // If we are performing substituting explicitly-specified template arguments
4614 // or deduced template arguments into a function template and we reach this
4615 // point, we are now past the point where SFINAE applies and have committed
4616 // to keeping the new function template specialization. We therefore
4617 // convert the active template instantiation for the function template
4618 // into a template instantiation for this specific function template
4619 // specialization, which is not a SFINAE context, so that we diagnose any
4620 // further errors in the declaration itself.
4621 //
4622 // FIXME: This is a hack.
4623 typedef Sema::CodeSynthesisContext ActiveInstType;
4624 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4625 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4626 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4627 if (FunctionTemplateDecl *FunTmpl
4628 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
4629 assert(FunTmpl->getTemplatedDecl() == Tmpl &&((void)0)
4630 "Deduction from the wrong function template?")((void)0);
4631 (void) FunTmpl;
4632 SemaRef.InstantiatingSpecializations.erase(
4633 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4634 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4635 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4636 ActiveInst.Entity = New;
4637 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4638 }
4639 }
4640
4641 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4642 assert(Proto && "Function template without prototype?")((void)0);
4643
4644 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4645 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4646
4647 // DR1330: In C++11, defer instantiation of a non-trivial
4648 // exception specification.
4649 // DR1484: Local classes and their members are instantiated along with the
4650 // containing function.
4651 if (SemaRef.getLangOpts().CPlusPlus11 &&
4652 EPI.ExceptionSpec.Type != EST_None &&
4653 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4654 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4655 !Tmpl->isInLocalScopeForInstantiation()) {
4656 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4657 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4658 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4659 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4660 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4661 NewEST = EST_Unevaluated;
4662
4663 // Mark the function has having an uninstantiated exception specification.
4664 const FunctionProtoType *NewProto
4665 = New->getType()->getAs<FunctionProtoType>();
4666 assert(NewProto && "Template instantiation without function prototype?")((void)0);
4667 EPI = NewProto->getExtProtoInfo();
4668 EPI.ExceptionSpec.Type = NewEST;
4669 EPI.ExceptionSpec.SourceDecl = New;
4670 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4671 New->setType(SemaRef.Context.getFunctionType(
4672 NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
4673 } else {
4674 Sema::ContextRAII SwitchContext(SemaRef, New);
4675 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
4676 }
4677 }
4678
4679 // Get the definition. Leaves the variable unchanged if undefined.
4680 const FunctionDecl *Definition = Tmpl;
4681 Tmpl->isDefined(Definition);
4682
4683 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4684 LateAttrs, StartingScope);
4685
4686 return false;
4687}
4688
4689/// Initializes common fields of an instantiated method
4690/// declaration (New) from the corresponding fields of its template
4691/// (Tmpl).
4692///
4693/// \returns true if there was an error
4694bool
4695TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4696 CXXMethodDecl *Tmpl) {
4697 if (InitFunctionInstantiation(New, Tmpl))
4698 return true;
4699
4700 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
4701 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
4702
4703 New->setAccess(Tmpl->getAccess());
4704 if (Tmpl->isVirtualAsWritten())
4705 New->setVirtualAsWritten(true);
4706
4707 // FIXME: New needs a pointer to Tmpl
4708 return false;
4709}
4710
4711bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4712 FunctionDecl *Tmpl) {
4713 // Transfer across any unqualified lookups.
4714 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4715 SmallVector<DeclAccessPair, 32> Lookups;
4716 Lookups.reserve(DFI->getUnqualifiedLookups().size());
4717 bool AnyChanged = false;
4718 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4719 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
4720 DA.getDecl(), TemplateArgs);
4721 if (!D)
4722 return true;
4723 AnyChanged |= (D != DA.getDecl());
4724 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
4725 }
4726
4727 // It's unlikely that substitution will change any declarations. Don't
4728 // store an unnecessary copy in that case.
4729 New->setDefaultedFunctionInfo(
4730 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4731 SemaRef.Context, Lookups)
4732 : DFI);
4733 }
4734
4735 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
4736 return false;
4737}
4738
4739/// Instantiate (or find existing instantiation of) a function template with a
4740/// given set of template arguments.
4741///
4742/// Usually this should not be used, and template argument deduction should be
4743/// used in its place.
4744FunctionDecl *
4745Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4746 const TemplateArgumentList *Args,
4747 SourceLocation Loc) {
4748 FunctionDecl *FD = FTD->getTemplatedDecl();
4749
4750 sema::TemplateDeductionInfo Info(Loc);
4751 InstantiatingTemplate Inst(
4752 *this, Loc, FTD, Args->asArray(),
4753 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4754 if (Inst.isInvalid())
4755 return nullptr;
4756
4757 ContextRAII SavedContext(*this, FD);
4758 MultiLevelTemplateArgumentList MArgs(*Args);
4759
4760 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
4761}
4762
4763/// Instantiate the definition of the given function from its
4764/// template.
4765///
4766/// \param PointOfInstantiation the point at which the instantiation was
4767/// required. Note that this is not precisely a "point of instantiation"
4768/// for the function, but it's close.
4769///
4770/// \param Function the already-instantiated declaration of a
4771/// function template specialization or member function of a class template
4772/// specialization.
4773///
4774/// \param Recursive if true, recursively instantiates any functions that
4775/// are required by this instantiation.
4776///
4777/// \param DefinitionRequired if true, then we are performing an explicit
4778/// instantiation where the body of the function is required. Complain if
4779/// there is no such body.
4780void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4781 FunctionDecl *Function,
4782 bool Recursive,
4783 bool DefinitionRequired,
4784 bool AtEndOfTU) {
4785 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function))
2
Assuming the condition is false
3
Assuming 'Function' is not a 'CXXDeductionGuideDecl'
4
Taking false branch
4786 return;
4787
4788 // Never instantiate an explicit specialization except if it is a class scope
4789 // explicit specialization.
4790 TemplateSpecializationKind TSK =
4791 Function->getTemplateSpecializationKindForInstantiation();
4792 if (TSK == TSK_ExplicitSpecialization)
5
Assuming 'TSK' is not equal to TSK_ExplicitSpecialization
6
Taking false branch
4793 return;
4794
4795 // Don't instantiate a definition if we already have one.
4796 const FunctionDecl *ExistingDefn = nullptr;
4797 if (Function->isDefined(ExistingDefn,
7
Assuming the condition is false
8
Taking false branch
4798 /*CheckForPendingFriendDefinition=*/true)) {
4799 if (ExistingDefn->isThisDeclarationADefinition())
4800 return;
4801
4802 // If we're asked to instantiate a function whose body comes from an
4803 // instantiated friend declaration, attach the instantiated body to the
4804 // corresponding declaration of the function.
4805 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition())((void)0);
4806 Function = const_cast<FunctionDecl*>(ExistingDefn);
4807 }
4808
4809 // Find the function body that we'll be substituting.
4810 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4811 assert(PatternDecl && "instantiating a non-template")((void)0);
4812
4813 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4814 Stmt *Pattern = nullptr;
4815 if (PatternDef
8.1
'PatternDef' is null
8.1
'PatternDef' is null
) {
9
Taking false branch
4816 Pattern = PatternDef->getBody(PatternDef);
4817 PatternDecl = PatternDef;
4818 if (PatternDef->willHaveBody())
4819 PatternDef = nullptr;
4820 }
4821
4822 // FIXME: We need to track the instantiation stack in order to know which
4823 // definitions should be visible within this instantiation.
4824 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
10
Assuming the condition is false
11
Taking false branch
4825 Function->getInstantiatedFromMemberFunction(),
4826 PatternDecl, PatternDef, TSK,
4827 /*Complain*/DefinitionRequired)) {
4828 if (DefinitionRequired)
4829 Function->setInvalidDecl();
4830 else if (TSK == TSK_ExplicitInstantiationDefinition) {
4831 // Try again at the end of the translation unit (at which point a
4832 // definition will be required).
4833 assert(!Recursive)((void)0);
4834 Function->setInstantiationIsPending(true);
4835 PendingInstantiations.push_back(
4836 std::make_pair(Function, PointOfInstantiation));
4837 } else if (TSK == TSK_ImplicitInstantiation) {
4838 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4839 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
4840 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4841 << Function;
4842 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4843 if (getLangOpts().CPlusPlus11)
4844 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4845 << Function;
4846 }
4847 }
4848
4849 return;
4850 }
4851
4852 // Postpone late parsed template instantiations.
4853 if (PatternDecl->isLateTemplateParsed() &&
12
Assuming the condition is false
4854 !LateTemplateParser) {
4855 Function->setInstantiationIsPending(true);
4856 LateParsedInstantiations.push_back(
4857 std::make_pair(Function, PointOfInstantiation));
4858 return;
4859 }
4860
4861 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4862 std::string Name;
4863 llvm::raw_string_ostream OS(Name);
4864 Function->getNameForDiagnostic(OS, getPrintingPolicy(),
4865 /*Qualified=*/true);
4866 return Name;
4867 });
4868
4869 // If we're performing recursive template instantiation, create our own
4870 // queue of pending implicit instantiations that we will instantiate later,
4871 // while we're still within our own instantiation context.
4872 // This has to happen before LateTemplateParser below is called, so that
4873 // it marks vtables used in late parsed templates as used.
4874 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4875 /*Enabled=*/Recursive);
4876 LocalEagerInstantiationScope LocalInstantiations(*this);
4877
4878 // Call the LateTemplateParser callback if there is a need to late parse
4879 // a templated function definition.
4880 if (!Pattern
12.1
'Pattern' is null
12.1
'Pattern' is null
&& PatternDecl->isLateTemplateParsed() &&
4881 LateTemplateParser) {
4882 // FIXME: Optimize to allow individual templates to be deserialized.
4883 if (PatternDecl->isFromASTFile())
4884 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
4885
4886 auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
4887 assert(LPTIter != LateParsedTemplateMap.end() &&((void)0)
4888 "missing LateParsedTemplate")((void)0);
4889 LateTemplateParser(OpaqueParser, *LPTIter->second);
4890 Pattern = PatternDecl->getBody(PatternDecl);
4891 }
4892
4893 // Note, we should never try to instantiate a deleted function template.
4894 assert((Pattern || PatternDecl->isDefaulted() ||((void)0)
4895 PatternDecl->hasSkippedBody()) &&((void)0)
4896 "unexpected kind of function template definition")((void)0);
4897
4898 // C++1y [temp.explicit]p10:
4899 // Except for inline functions, declarations with types deduced from their
4900 // initializer or return value, and class template specializations, other
4901 // explicit instantiation declarations have the effect of suppressing the
4902 // implicit instantiation of the entity to which they refer.
4903 if (TSK == TSK_ExplicitInstantiationDeclaration &&
13
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDeclaration
14
Taking false branch
4904 !PatternDecl->isInlined() &&
4905 !PatternDecl->getReturnType()->getContainedAutoType())
4906 return;
4907
4908 if (PatternDecl->isInlined()) {
15
Assuming the condition is false
16
Taking false branch
4909 // Function, and all later redeclarations of it (from imported modules,
4910 // for instance), are now implicitly inline.
4911 for (auto *D = Function->getMostRecentDecl(); /**/;
4912 D = D->getPreviousDecl()) {
4913 D->setImplicitlyInline();
4914 if (D == Function)
4915 break;
4916 }
4917 }
4918
4919 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
4920 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
17
Assuming the condition is false
18
Assuming the condition is false
19
Taking false branch
4921 return;
4922 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
4923 "instantiating function definition");
4924
4925 // The instantiation is visible here, even if it was first declared in an
4926 // unimported module.
4927 Function->setVisibleDespiteOwningModule();
4928
4929 // Copy the inner loc start from the pattern.
4930 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
4931
4932 EnterExpressionEvaluationContext EvalContext(
4933 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
4934
4935 // Introduce a new scope where local variable instantiations will be
4936 // recorded, unless we're actually a member function within a local
4937 // class, in which case we need to merge our results with the parent
4938 // scope (of the enclosing function). The exception is instantiating
4939 // a function template specialization, since the template to be
4940 // instantiated already has references to locals properly substituted.
4941 bool MergeWithParentScope = false;
4942 if (CXXRecordDecl *Rec
20.1
'Rec' is null
20.1
'Rec' is null
= dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
20
Assuming the object is not a 'CXXRecordDecl'
21
Taking false branch
4943 MergeWithParentScope =
4944 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
4945
4946 LocalInstantiationScope Scope(*this, MergeWithParentScope);
4947 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
4948 // Special members might get their TypeSourceInfo set up w.r.t the
4949 // PatternDecl context, in which case parameters could still be pointing
4950 // back to the original class, make sure arguments are bound to the
4951 // instantiated record instead.
4952 assert(PatternDecl->isDefaulted() &&((void)0)
4953 "Special member needs to be defaulted")((void)0);
4954 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember();
4955 if (!(PatternSM == Sema::CXXCopyConstructor ||
4956 PatternSM == Sema::CXXCopyAssignment ||
4957 PatternSM == Sema::CXXMoveConstructor ||
4958 PatternSM == Sema::CXXMoveAssignment))
4959 return;
4960
4961 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
4962 const auto *PatternRec =
4963 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
4964 if (!NewRec || !PatternRec)
4965 return;
4966 if (!PatternRec->isLambda())
4967 return;
4968
4969 struct SpecialMemberTypeInfoRebuilder
4970 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
4971 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
4972 const CXXRecordDecl *OldDecl;
4973 CXXRecordDecl *NewDecl;
4974
4975 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
4976 CXXRecordDecl *N)
4977 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
4978
4979 bool TransformExceptionSpec(SourceLocation Loc,
4980 FunctionProtoType::ExceptionSpecInfo &ESI,
4981 SmallVectorImpl<QualType> &Exceptions,
4982 bool &Changed) {
4983 return false;
4984 }
4985
4986 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
4987 const RecordType *T = TL.getTypePtr();
4988 RecordDecl *Record = cast_or_null<RecordDecl>(
4989 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
4990 if (Record != OldDecl)
4991 return Base::TransformRecordType(TLB, TL);
4992
4993 QualType Result = getDerived().RebuildRecordType(NewDecl);
4994 if (Result.isNull())
4995 return QualType();
4996
4997 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
4998 NewTL.setNameLoc(TL.getNameLoc());
4999 return Result;
5000 }
5001 } IR{*this, PatternRec, NewRec};
5002
5003 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5004 Function->setType(NewSI->getType());
5005 Function->setTypeSourceInfo(NewSI);
5006
5007 ParmVarDecl *Parm = Function->getParamDecl(0);
5008 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5009 Parm->setType(NewParmSI->getType());
5010 Parm->setTypeSourceInfo(NewParmSI);
5011 };
5012
5013 if (PatternDecl->isDefaulted()) {
22
Assuming the condition is false
23
Taking false branch
5014 RebuildTypeSourceInfoForDefaultSpecialMembers();
5015 SetDeclDefaulted(Function, PatternDecl->getLocation());
5016 } else {
5017 MultiLevelTemplateArgumentList TemplateArgs =
5018 getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl);
5019
5020 // Substitute into the qualifier; we can get a substitution failure here
5021 // through evil use of alias templates.
5022 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5023 // of the) lexical context of the pattern?
5024 SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
5025
5026 ActOnStartOfFunctionDef(nullptr, Function);
5027
5028 // Enter the scope of this instantiation. We don't use
5029 // PushDeclContext because we don't have a scope.
5030 Sema::ContextRAII savedContext(*this, Function);
5031
5032 if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope,
24
Assuming the condition is false
25
Taking false branch
5033 TemplateArgs))
5034 return;
5035
5036 StmtResult Body;
5037 if (PatternDecl->hasSkippedBody()) {
26
Assuming the condition is false
27
Taking false branch
5038 ActOnSkippedFunctionBody(Function);
5039 Body = nullptr;
5040 } else {
5041 if (CXXConstructorDecl *Ctor
28.1
'Ctor' is null
28.1
'Ctor' is null
= dyn_cast<CXXConstructorDecl>(Function)) {
28
Assuming 'Function' is not a 'CXXConstructorDecl'
29
Taking false branch
5042 // If this is a constructor, instantiate the member initializers.
5043 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
5044 TemplateArgs);
5045
5046 // If this is an MS ABI dllexport default constructor, instantiate any
5047 // default arguments.
5048 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5049 Ctor->isDefaultConstructor()) {
5050 InstantiateDefaultCtorDefaultArgs(Ctor);
5051 }
5052 }
5053
5054 // Instantiate the function body.
5055 Body = SubstStmt(Pattern, TemplateArgs);
5056
5057 if (Body.isInvalid())
30
Assuming the condition is false
31
Taking false branch
5058 Function->setInvalidDecl();
5059 }
5060 // FIXME: finishing the function body while in an expression evaluation
5061 // context seems wrong. Investigate more.
5062 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5063
5064 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5065
5066 if (auto *Listener = getASTMutationListener())
32
Assuming 'Listener' is null
33
Taking false branch
5067 Listener->FunctionDefinitionInstantiated(Function);
5068
5069 savedContext.pop();
5070 }
5071
5072 DeclGroupRef DG(Function);
5073 Consumer.HandleTopLevelDecl(DG);
5074
5075 // This class may have local implicit instantiations that need to be
5076 // instantiation within this scope.
5077 LocalInstantiations.perform();
5078 Scope.Exit();
5079 GlobalInstantiations.perform();
34
Calling 'GlobalEagerInstantiationScope::perform'
5080}
5081
5082VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5083 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5084 const TemplateArgumentList &TemplateArgList,
5085 const TemplateArgumentListInfo &TemplateArgsInfo,
5086 SmallVectorImpl<TemplateArgument> &Converted,
5087 SourceLocation PointOfInstantiation,
5088 LateInstantiatedAttrVec *LateAttrs,
5089 LocalInstantiationScope *StartingScope) {
5090 if (FromVar->isInvalidDecl())
5091 return nullptr;
5092
5093 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5094 if (Inst.isInvalid())
5095 return nullptr;
5096
5097 MultiLevelTemplateArgumentList TemplateArgLists;
5098 TemplateArgLists.addOuterTemplateArguments(&TemplateArgList);
5099
5100 // Instantiate the first declaration of the variable template: for a partial
5101 // specialization of a static data member template, the first declaration may
5102 // or may not be the declaration in the class; if it's in the class, we want
5103 // to instantiate a member in the class (a declaration), and if it's outside,
5104 // we want to instantiate a definition.
5105 //
5106 // If we're instantiating an explicitly-specialized member template or member
5107 // partial specialization, don't do this. The member specialization completely
5108 // replaces the original declaration in this case.
5109 bool IsMemberSpec = false;
5110 if (VarTemplatePartialSpecializationDecl *PartialSpec =
5111 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar))
5112 IsMemberSpec = PartialSpec->isMemberSpecialization();
5113 else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate())
5114 IsMemberSpec = FromTemplate->isMemberSpecialization();
5115 if (!IsMemberSpec)
5116 FromVar = FromVar->getFirstDecl();
5117
5118 MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList);
5119 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5120 MultiLevelList);
5121
5122 // TODO: Set LateAttrs and StartingScope ...
5123
5124 return cast_or_null<VarTemplateSpecializationDecl>(
5125 Instantiator.VisitVarTemplateSpecializationDecl(
5126 VarTemplate, FromVar, TemplateArgsInfo, Converted));
5127}
5128
5129/// Instantiates a variable template specialization by completing it
5130/// with appropriate type information and initializer.
5131VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5132 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5133 const MultiLevelTemplateArgumentList &TemplateArgs) {
5134 assert(PatternDecl->isThisDeclarationADefinition() &&((void)0)
5135 "don't have a definition to instantiate from")((void)0);
5136
5137 // Do substitution on the type of the declaration
5138 TypeSourceInfo *DI =
5139 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5140 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5141 if (!DI)
5142 return nullptr;
5143
5144 // Update the type of this variable template specialization.
5145 VarSpec->setType(DI->getType());
5146
5147 // Convert the declaration into a definition now.
5148 VarSpec->setCompleteDefinition();
5149
5150 // Instantiate the initializer.
5151 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5152
5153 if (getLangOpts().OpenCL)
5154 deduceOpenCLAddressSpace(VarSpec);
5155
5156 return VarSpec;
5157}
5158
5159/// BuildVariableInstantiation - Used after a new variable has been created.
5160/// Sets basic variable data and decides whether to postpone the
5161/// variable instantiation.
5162void Sema::BuildVariableInstantiation(
5163 VarDecl *NewVar, VarDecl *OldVar,
5164 const MultiLevelTemplateArgumentList &TemplateArgs,
5165 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5166 LocalInstantiationScope *StartingScope,
5167 bool InstantiatingVarTemplate,
5168 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5169 // Instantiating a partial specialization to produce a partial
5170 // specialization.
5171 bool InstantiatingVarTemplatePartialSpec =
5172 isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
5173 isa<VarTemplatePartialSpecializationDecl>(NewVar);
5174 // Instantiating from a variable template (or partial specialization) to
5175 // produce a variable template specialization.
5176 bool InstantiatingSpecFromTemplate =
5177 isa<VarTemplateSpecializationDecl>(NewVar) &&
5178 (OldVar->getDescribedVarTemplate() ||
5179 isa<VarTemplatePartialSpecializationDecl>(OldVar));
5180
5181 // If we are instantiating a local extern declaration, the
5182 // instantiation belongs lexically to the containing function.
5183 // If we are instantiating a static data member defined
5184 // out-of-line, the instantiation will have the same lexical
5185 // context (which will be a namespace scope) as the template.
5186 if (OldVar->isLocalExternDecl()) {
5187 NewVar->setLocalExternDecl();
5188 NewVar->setLexicalDeclContext(Owner);
5189 } else if (OldVar->isOutOfLine())
5190 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5191 NewVar->setTSCSpec(OldVar->getTSCSpec());
5192 NewVar->setInitStyle(OldVar->getInitStyle());
5193 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5194 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5195 NewVar->setConstexpr(OldVar->isConstexpr());
5196 NewVar->setInitCapture(OldVar->isInitCapture());
5197 NewVar->setPreviousDeclInSameBlockScope(
5198 OldVar->isPreviousDeclInSameBlockScope());
5199 NewVar->setAccess(OldVar->getAccess());
5200
5201 if (!OldVar->isStaticDataMember()) {
5202 if (OldVar->isUsed(false))
5203 NewVar->setIsUsed();
5204 NewVar->setReferenced(OldVar->isReferenced());
5205 }
5206
5207 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5208
5209 LookupResult Previous(
5210 *this, NewVar->getDeclName(), NewVar->getLocation(),
5211 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5212 : Sema::LookupOrdinaryName,
5213 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5214 : forRedeclarationInCurContext());
5215
5216 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5217 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5218 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5219 // We have a previous declaration. Use that one, so we merge with the
5220 // right type.
5221 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5222 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
5223 Previous.addDecl(NewPrev);
5224 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
5225 OldVar->hasLinkage()) {
5226 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5227 } else if (PrevDeclForVarTemplateSpecialization) {
5228 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5229 }
5230 CheckVariableDeclaration(NewVar, Previous);
5231
5232 if (!InstantiatingVarTemplate) {
5233 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5234 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5235 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5236 }
5237
5238 if (!OldVar->isOutOfLine()) {
5239 if (NewVar->getDeclContext()->isFunctionOrMethod())
5240 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5241 }
5242
5243 // Link instantiations of static data members back to the template from
5244 // which they were instantiated.
5245 //
5246 // Don't do this when instantiating a template (we link the template itself
5247 // back in that case) nor when instantiating a static data member template
5248 // (that's not a member specialization).
5249 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5250 !InstantiatingSpecFromTemplate)
5251 NewVar->setInstantiationOfStaticDataMember(OldVar,
5252 TSK_ImplicitInstantiation);
5253
5254 // If the pattern is an (in-class) explicit specialization, then the result
5255 // is also an explicit specialization.
5256 if (VarTemplateSpecializationDecl *OldVTSD =
5257 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
5258 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5259 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
5260 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
5261 TSK_ExplicitSpecialization);
5262 }
5263
5264 // Forward the mangling number from the template to the instantiated decl.
5265 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5266 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
5267
5268 // Figure out whether to eagerly instantiate the initializer.
5269 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5270 // We're producing a template. Don't instantiate the initializer yet.
5271 } else if (NewVar->getType()->isUndeducedType()) {
5272 // We need the type to complete the declaration of the variable.
5273 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5274 } else if (InstantiatingSpecFromTemplate ||
5275 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5276 !NewVar->isThisDeclarationADefinition())) {
5277 // Delay instantiation of the initializer for variable template
5278 // specializations or inline static data members until a definition of the
5279 // variable is needed.
5280 } else {
5281 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5282 }
5283
5284 // Diagnose unused local variables with dependent types, where the diagnostic
5285 // will have been deferred.
5286 if (!NewVar->isInvalidDecl() &&
5287 NewVar->getDeclContext()->isFunctionOrMethod() &&
5288 OldVar->getType()->isDependentType())
5289 DiagnoseUnusedDecl(NewVar);
5290}
5291
5292/// Instantiate the initializer of a variable.
5293void Sema::InstantiateVariableInitializer(
5294 VarDecl *Var, VarDecl *OldVar,
5295 const MultiLevelTemplateArgumentList &TemplateArgs) {
5296 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5297 L->VariableDefinitionInstantiated(Var);
5298
5299 // We propagate the 'inline' flag with the initializer, because it
5300 // would otherwise imply that the variable is a definition for a
5301 // non-static data member.
5302 if (OldVar->isInlineSpecified())
5303 Var->setInlineSpecified();
5304 else if (OldVar->isInline())
5305 Var->setImplicitlyInline();
5306
5307 if (OldVar->getInit()) {
5308 EnterExpressionEvaluationContext Evaluated(
5309 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5310
5311 // Instantiate the initializer.
5312 ExprResult Init;
5313
5314 {
5315 ContextRAII SwitchContext(*this, Var->getDeclContext());
5316 Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
5317 OldVar->getInitStyle() == VarDecl::CallInit);
5318 }
5319
5320 if (!Init.isInvalid()) {
5321 Expr *InitExpr = Init.get();
5322
5323 if (Var->hasAttr<DLLImportAttr>() &&
5324 (!InitExpr ||
5325 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5326 // Do not dynamically initialize dllimport variables.
5327 } else if (InitExpr) {
5328 bool DirectInit = OldVar->isDirectInit();
5329 AddInitializerToDecl(Var, InitExpr, DirectInit);
5330 } else
5331 ActOnUninitializedDecl(Var);
5332 } else {
5333 // FIXME: Not too happy about invalidating the declaration
5334 // because of a bogus initializer.
5335 Var->setInvalidDecl();
5336 }
5337 } else {
5338 // `inline` variables are a definition and declaration all in one; we won't
5339 // pick up an initializer from anywhere else.
5340 if (Var->isStaticDataMember() && !Var->isInline()) {
5341 if (!Var->isOutOfLine())
5342 return;
5343
5344 // If the declaration inside the class had an initializer, don't add
5345 // another one to the out-of-line definition.
5346 if (OldVar->getFirstDecl()->hasInit())
5347 return;
5348 }
5349
5350 // We'll add an initializer to a for-range declaration later.
5351 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5352 return;
5353
5354 ActOnUninitializedDecl(Var);
5355 }
5356
5357 if (getLangOpts().CUDA)
5358 checkAllowedCUDAInitializer(Var);
5359}
5360
5361/// Instantiate the definition of the given variable from its
5362/// template.
5363///
5364/// \param PointOfInstantiation the point at which the instantiation was
5365/// required. Note that this is not precisely a "point of instantiation"
5366/// for the variable, but it's close.
5367///
5368/// \param Var the already-instantiated declaration of a templated variable.
5369///
5370/// \param Recursive if true, recursively instantiates any functions that
5371/// are required by this instantiation.
5372///
5373/// \param DefinitionRequired if true, then we are performing an explicit
5374/// instantiation where a definition of the variable is required. Complain
5375/// if there is no such definition.
5376void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5377 VarDecl *Var, bool Recursive,
5378 bool DefinitionRequired, bool AtEndOfTU) {
5379 if (Var->isInvalidDecl())
52
Assuming the condition is false
53
Taking false branch
5380 return;
5381
5382 // Never instantiate an explicitly-specialized entity.
5383 TemplateSpecializationKind TSK =
5384 Var->getTemplateSpecializationKindForInstantiation();
5385 if (TSK == TSK_ExplicitSpecialization)
54
Assuming 'TSK' is not equal to TSK_ExplicitSpecialization
55
Taking false branch
5386 return;
5387
5388 // Find the pattern and the arguments to substitute into it.
5389 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5390 assert(PatternDecl && "no pattern for templated variable")((void)0);
5391 MultiLevelTemplateArgumentList TemplateArgs =
5392 getTemplateInstantiationArgs(Var);
5393
5394 VarTemplateSpecializationDecl *VarSpec =
5395 dyn_cast<VarTemplateSpecializationDecl>(Var);
56
Assuming 'Var' is not a 'VarTemplateSpecializationDecl'
5396 if (VarSpec
56.1
'VarSpec' is null
56.1
'VarSpec' is null
) {
57
Taking false branch
5397 // If this is a static data member template, there might be an
5398 // uninstantiated initializer on the declaration. If so, instantiate
5399 // it now.
5400 //
5401 // FIXME: This largely duplicates what we would do below. The difference
5402 // is that along this path we may instantiate an initializer from an
5403 // in-class declaration of the template and instantiate the definition
5404 // from a separate out-of-class definition.
5405 if (PatternDecl->isStaticDataMember() &&
5406 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5407 !Var->hasInit()) {
5408 // FIXME: Factor out the duplicated instantiation context setup/tear down
5409 // code here.
5410 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5411 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5412 return;
5413 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5414 "instantiating variable initializer");
5415
5416 // The instantiation is visible here, even if it was first declared in an
5417 // unimported module.
5418 Var->setVisibleDespiteOwningModule();
5419
5420 // If we're performing recursive template instantiation, create our own
5421 // queue of pending implicit instantiations that we will instantiate
5422 // later, while we're still within our own instantiation context.
5423 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5424 /*Enabled=*/Recursive);
5425 LocalInstantiationScope Local(*this);
5426 LocalEagerInstantiationScope LocalInstantiations(*this);
5427
5428 // Enter the scope of this instantiation. We don't use
5429 // PushDeclContext because we don't have a scope.
5430 ContextRAII PreviousContext(*this, Var->getDeclContext());
5431 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
5432 PreviousContext.pop();
5433
5434 // This variable may have local implicit instantiations that need to be
5435 // instantiated within this scope.
5436 LocalInstantiations.perform();
5437 Local.Exit();
5438 GlobalInstantiations.perform();
5439 }
5440 } else {
5441 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&((void)0)
5442 "not a static data member?")((void)0);
5443 }
5444
5445 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
58
'Def' initialized here
5446
5447 // If we don't have a definition of the variable template, we won't perform
5448 // any instantiation. Rather, we rely on the user to instantiate this
5449 // definition (or provide a specialization for it) in another translation
5450 // unit.
5451 if (!Def && !DefinitionRequired
60.1
'DefinitionRequired' is false
60.1
'DefinitionRequired' is false
) {
59
Assuming 'Def' is null
60
Assuming pointer value is null
61
Taking true branch
5452 if (TSK == TSK_ExplicitInstantiationDefinition) {
62
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDefinition
63
Taking false branch
5453 PendingInstantiations.push_back(
5454 std::make_pair(Var, PointOfInstantiation));
5455 } else if (TSK == TSK_ImplicitInstantiation) {
64
Assuming 'TSK' is not equal to TSK_ImplicitInstantiation
65
Taking false branch
5456 // Warn about missing definition at the end of translation unit.
5457 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5458 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
5459 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5460 << Var;
5461 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5462 if (getLangOpts().CPlusPlus11)
5463 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5464 }
5465 return;
5466 }
5467 }
5468
5469 // FIXME: We need to track the instantiation stack in order to know which
5470 // definitions should be visible within this instantiation.
5471 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5472 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
66
Assuming the condition is false
67
Taking false branch
5473 /*InstantiatedFromMember*/false,
5474 PatternDecl, Def, TSK,
5475 /*Complain*/DefinitionRequired))
5476 return;
5477
5478 // C++11 [temp.explicit]p10:
5479 // Except for inline functions, const variables of literal types, variables
5480 // of reference types, [...] explicit instantiation declarations
5481 // have the effect of suppressing the implicit instantiation of the entity
5482 // to which they refer.
5483 //
5484 // FIXME: That's not exactly the same as "might be usable in constant
5485 // expressions", which only allows constexpr variables and const integral
5486 // types, not arbitrary const literal types.
5487 if (TSK == TSK_ExplicitInstantiationDeclaration &&
68
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDeclaration
5488 !Var->mightBeUsableInConstantExpressions(getASTContext()))
5489 return;
5490
5491 // Make sure to pass the instantiated variable to the consumer at the end.
5492 struct PassToConsumerRAII {
5493 ASTConsumer &Consumer;
5494 VarDecl *Var;
5495
5496 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5497 : Consumer(Consumer), Var(Var) { }
5498
5499 ~PassToConsumerRAII() {
5500 Consumer.HandleCXXStaticMemberVarInstantiation(Var);
5501 }
5502 } PassToConsumerRAII(Consumer, Var);
5503
5504 // If we already have a definition, we're done.
5505 if (VarDecl *Def = Var->getDefinition()) {
69
Assuming 'Def' is null
70
Taking false branch
5506 // We may be explicitly instantiating something we've already implicitly
5507 // instantiated.
5508 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
5509 PointOfInstantiation);
5510 return;
5511 }
5512
5513 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5514 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
71
Assuming the condition is false
72
Assuming the condition is false
73
Taking false branch
5515 return;
5516 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5517 "instantiating variable definition");
5518
5519 // If we're performing recursive template instantiation, create our own
5520 // queue of pending implicit instantiations that we will instantiate later,
5521 // while we're still within our own instantiation context.
5522 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5523 /*Enabled=*/Recursive);
5524
5525 // Enter the scope of this instantiation. We don't use
5526 // PushDeclContext because we don't have a scope.
5527 ContextRAII PreviousContext(*this, Var->getDeclContext());
5528 LocalInstantiationScope Local(*this);
5529
5530 LocalEagerInstantiationScope LocalInstantiations(*this);
5531
5532 VarDecl *OldVar = Var;
5533 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
74
Called C++ object pointer is null
5534 // We're instantiating an inline static data member whose definition was
5535 // provided inside the class.
5536 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5537 } else if (!VarSpec) {
5538 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
5539 TemplateArgs));
5540 } else if (Var->isStaticDataMember() &&
5541 Var->getLexicalDeclContext()->isRecord()) {
5542 // We need to instantiate the definition of a static data member template,
5543 // and all we have is the in-class declaration of it. Instantiate a separate
5544 // declaration of the definition.
5545 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5546 TemplateArgs);
5547 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
5548 VarSpec->getSpecializedTemplate(), Def, VarSpec->getTemplateArgsInfo(),
5549 VarSpec->getTemplateArgs().asArray(), VarSpec));
5550 if (Var) {
5551 llvm::PointerUnion<VarTemplateDecl *,
5552 VarTemplatePartialSpecializationDecl *> PatternPtr =
5553 VarSpec->getSpecializedTemplateOrPartial();
5554 if (VarTemplatePartialSpecializationDecl *Partial =
5555 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5556 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
5557 Partial, &VarSpec->getTemplateInstantiationArgs());
5558
5559 // Attach the initializer.
5560 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5561 }
5562 } else
5563 // Complete the existing variable's definition with an appropriately
5564 // substituted type and initializer.
5565 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
5566
5567 PreviousContext.pop();
5568
5569 if (Var) {
5570 PassToConsumerRAII.Var = Var;
5571 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
5572 OldVar->getPointOfInstantiation());
5573 }
5574
5575 // This variable may have local implicit instantiations that need to be
5576 // instantiated within this scope.
5577 LocalInstantiations.perform();
5578 Local.Exit();
5579 GlobalInstantiations.perform();
5580}
5581
5582void
5583Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5584 const CXXConstructorDecl *Tmpl,
5585 const MultiLevelTemplateArgumentList &TemplateArgs) {
5586
5587 SmallVector<CXXCtorInitializer*, 4> NewInits;
5588 bool AnyErrors = Tmpl->isInvalidDecl();
5589
5590 // Instantiate all the initializers.
5591 for (const auto *Init : Tmpl->inits()) {
5592 // Only instantiate written initializers, let Sema re-construct implicit
5593 // ones.
5594 if (!Init->isWritten())
5595 continue;
5596
5597 SourceLocation EllipsisLoc;
5598
5599 if (Init->isPackExpansion()) {
5600 // This is a pack expansion. We should expand it now.
5601 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5602 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5603 collectUnexpandedParameterPacks(BaseTL, Unexpanded);
5604 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
5605 bool ShouldExpand = false;
5606 bool RetainExpansion = false;
5607 Optional<unsigned> NumExpansions;
5608 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
5609 BaseTL.getSourceRange(),
5610 Unexpanded,
5611 TemplateArgs, ShouldExpand,
5612 RetainExpansion,
5613 NumExpansions)) {
5614 AnyErrors = true;
5615 New->setInvalidDecl();
5616 continue;
5617 }
5618 assert(ShouldExpand && "Partial instantiation of base initializer?")((void)0);
5619
5620 // Loop over all of the arguments in the argument pack(s),
5621 for (unsigned I = 0; I != *NumExpansions; ++I) {
5622 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5623
5624 // Instantiate the initializer.
5625 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5626 /*CXXDirectInit=*/true);
5627 if (TempInit.isInvalid()) {
5628 AnyErrors = true;
5629 break;
5630 }
5631
5632 // Instantiate the base type.
5633 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5634 TemplateArgs,
5635 Init->getSourceLocation(),
5636 New->getDeclName());
5637 if (!BaseTInfo) {
5638 AnyErrors = true;
5639 break;
5640 }
5641
5642 // Build the initializer.
5643 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
5644 BaseTInfo, TempInit.get(),
5645 New->getParent(),
5646 SourceLocation());
5647 if (NewInit.isInvalid()) {
5648 AnyErrors = true;
5649 break;
5650 }
5651
5652 NewInits.push_back(NewInit.get());
5653 }
5654
5655 continue;
5656 }
5657
5658 // Instantiate the initializer.
5659 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5660 /*CXXDirectInit=*/true);
5661 if (TempInit.isInvalid()) {
5662 AnyErrors = true;
5663 continue;
5664 }
5665
5666 MemInitResult NewInit;
5667 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5668 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5669 TemplateArgs,
5670 Init->getSourceLocation(),
5671 New->getDeclName());
5672 if (!TInfo) {
5673 AnyErrors = true;
5674 New->setInvalidDecl();
5675 continue;
5676 }
5677
5678 if (Init->isBaseInitializer())
5679 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
5680 New->getParent(), EllipsisLoc);
5681 else
5682 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
5683 cast<CXXRecordDecl>(CurContext->getParent()));
5684 } else if (Init->isMemberInitializer()) {
5685 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
5686 Init->getMemberLocation(),
5687 Init->getMember(),
5688 TemplateArgs));
5689 if (!Member) {
5690 AnyErrors = true;
5691 New->setInvalidDecl();
5692 continue;
5693 }
5694
5695 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5696 Init->getSourceLocation());
5697 } else if (Init->isIndirectMemberInitializer()) {
5698 IndirectFieldDecl *IndirectMember =
5699 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
5700 Init->getMemberLocation(),
5701 Init->getIndirectMember(), TemplateArgs));
5702
5703 if (!IndirectMember) {
5704 AnyErrors = true;
5705 New->setInvalidDecl();
5706 continue;
5707 }
5708
5709 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5710 Init->getSourceLocation());
5711 }
5712
5713 if (NewInit.isInvalid()) {
5714 AnyErrors = true;
5715 New->setInvalidDecl();
5716 } else {
5717 NewInits.push_back(NewInit.get());
5718 }
5719 }
5720
5721 // Assign all the initializers to the new constructor.
5722 ActOnMemInitializers(New,
5723 /*FIXME: ColonLoc */
5724 SourceLocation(),
5725 NewInits,
5726 AnyErrors);
5727}
5728
5729// TODO: this could be templated if the various decl types used the
5730// same method name.
5731static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5732 ClassTemplateDecl *Instance) {
5733 Pattern = Pattern->getCanonicalDecl();
5734
5735 do {
5736 Instance = Instance->getCanonicalDecl();
5737 if (Pattern == Instance) return true;
5738 Instance = Instance->getInstantiatedFromMemberTemplate();
5739 } while (Instance);
5740
5741 return false;
5742}
5743
5744static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5745 FunctionTemplateDecl *Instance) {
5746 Pattern = Pattern->getCanonicalDecl();
5747
5748 do {
5749 Instance = Instance->getCanonicalDecl();
5750 if (Pattern == Instance) return true;
5751 Instance = Instance->getInstantiatedFromMemberTemplate();
5752 } while (Instance);
5753
5754 return false;
5755}
5756
5757static bool
5758isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5759 ClassTemplatePartialSpecializationDecl *Instance) {
5760 Pattern
5761 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5762 do {
5763 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5764 Instance->getCanonicalDecl());
5765 if (Pattern == Instance)
5766 return true;
5767 Instance = Instance->getInstantiatedFromMember();
5768 } while (Instance);
5769
5770 return false;
5771}
5772
5773static bool isInstantiationOf(CXXRecordDecl *Pattern,
5774 CXXRecordDecl *Instance) {
5775 Pattern = Pattern->getCanonicalDecl();
5776
5777 do {
5778 Instance = Instance->getCanonicalDecl();
5779 if (Pattern == Instance) return true;
5780 Instance = Instance->getInstantiatedFromMemberClass();
5781 } while (Instance);
5782
5783 return false;
5784}
5785
5786static bool isInstantiationOf(FunctionDecl *Pattern,
5787 FunctionDecl *Instance) {
5788 Pattern = Pattern->getCanonicalDecl();
5789
5790 do {
5791 Instance = Instance->getCanonicalDecl();
5792 if (Pattern == Instance) return true;
5793 Instance = Instance->getInstantiatedFromMemberFunction();
5794 } while (Instance);
5795
5796 return false;
5797}
5798
5799static bool isInstantiationOf(EnumDecl *Pattern,
5800 EnumDecl *Instance) {
5801 Pattern = Pattern->getCanonicalDecl();
5802
5803 do {
5804 Instance = Instance->getCanonicalDecl();
5805 if (Pattern == Instance) return true;
5806 Instance = Instance->getInstantiatedFromMemberEnum();
5807 } while (Instance);
5808
5809 return false;
5810}
5811
5812static bool isInstantiationOf(UsingShadowDecl *Pattern,
5813 UsingShadowDecl *Instance,
5814 ASTContext &C) {
5815 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
5816 Pattern);
5817}
5818
5819static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5820 ASTContext &C) {
5821 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5822}
5823
5824template<typename T>
5825static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5826 ASTContext &Ctx) {
5827 // An unresolved using declaration can instantiate to an unresolved using
5828 // declaration, or to a using declaration or a using declaration pack.
5829 //
5830 // Multiple declarations can claim to be instantiated from an unresolved
5831 // using declaration if it's a pack expansion. We want the UsingPackDecl
5832 // in that case, not the individual UsingDecls within the pack.
5833 bool OtherIsPackExpansion;
5834 NamedDecl *OtherFrom;
5835 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5836 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5837 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
5838 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
5839 OtherIsPackExpansion = true;
5840 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5841 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
5842 OtherIsPackExpansion = false;
5843 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5844 } else {
5845 return false;
5846 }
5847 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5848 declaresSameEntity(OtherFrom, Pattern);
5849}
5850
5851static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5852 VarDecl *Instance) {
5853 assert(Instance->isStaticDataMember())((void)0);
5854
5855 Pattern = Pattern->getCanonicalDecl();
5856
5857 do {
5858 Instance = Instance->getCanonicalDecl();
5859 if (Pattern == Instance) return true;
5860 Instance = Instance->getInstantiatedFromStaticDataMember();
5861 } while (Instance);
5862
5863 return false;
5864}
5865
5866// Other is the prospective instantiation
5867// D is the prospective pattern
5868static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
5869 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
5870 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5871
5872 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
5873 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5874
5875 if (D->getKind() != Other->getKind())
5876 return false;
5877
5878 if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
5879 return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
5880
5881 if (auto *Function = dyn_cast<FunctionDecl>(Other))
5882 return isInstantiationOf(cast<FunctionDecl>(D), Function);
5883
5884 if (auto *Enum = dyn_cast<EnumDecl>(Other))
5885 return isInstantiationOf(cast<EnumDecl>(D), Enum);
5886
5887 if (auto *Var = dyn_cast<VarDecl>(Other))
5888 if (Var->isStaticDataMember())
5889 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
5890
5891 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
5892 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
5893
5894 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
5895 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
5896
5897 if (auto *PartialSpec =
5898 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
5899 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
5900 PartialSpec);
5901
5902 if (auto *Field = dyn_cast<FieldDecl>(Other)) {
5903 if (!Field->getDeclName()) {
5904 // This is an unnamed field.
5905 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
5906 cast<FieldDecl>(D));
5907 }
5908 }
5909
5910 if (auto *Using = dyn_cast<UsingDecl>(Other))
5911 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
5912
5913 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
5914 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
5915
5916 return D->getDeclName() &&
5917 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
5918}
5919
5920template<typename ForwardIterator>
5921static NamedDecl *findInstantiationOf(ASTContext &Ctx,
5922 NamedDecl *D,
5923 ForwardIterator first,
5924 ForwardIterator last) {
5925 for (; first != last; ++first)
5926 if (isInstantiationOf(Ctx, D, *first))
5927 return cast<NamedDecl>(*first);
5928
5929 return nullptr;
5930}
5931
5932/// Finds the instantiation of the given declaration context
5933/// within the current instantiation.
5934///
5935/// \returns NULL if there was an error
5936DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
5937 const MultiLevelTemplateArgumentList &TemplateArgs) {
5938 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
5939 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
5940 return cast_or_null<DeclContext>(ID);
5941 } else return DC;
5942}
5943
5944/// Determine whether the given context is dependent on template parameters at
5945/// level \p Level or below.
5946///
5947/// Sometimes we only substitute an inner set of template arguments and leave
5948/// the outer templates alone. In such cases, contexts dependent only on the
5949/// outer levels are not effectively dependent.
5950static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
5951 if (!DC->isDependentContext())
5952 return false;
5953 if (!Level)
5954 return true;
5955 return cast<Decl>(DC)->getTemplateDepth() > Level;
5956}
5957
5958/// Find the instantiation of the given declaration within the
5959/// current instantiation.
5960///
5961/// This routine is intended to be used when \p D is a declaration
5962/// referenced from within a template, that needs to mapped into the
5963/// corresponding declaration within an instantiation. For example,
5964/// given:
5965///
5966/// \code
5967/// template<typename T>
5968/// struct X {
5969/// enum Kind {
5970/// KnownValue = sizeof(T)
5971/// };
5972///
5973/// bool getKind() const { return KnownValue; }
5974/// };
5975///
5976/// template struct X<int>;
5977/// \endcode
5978///
5979/// In the instantiation of X<int>::getKind(), we need to map the \p
5980/// EnumConstantDecl for \p KnownValue (which refers to
5981/// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
5982/// \p FindInstantiatedDecl performs this mapping from within the instantiation
5983/// of X<int>.
5984NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
5985 const MultiLevelTemplateArgumentList &TemplateArgs,
5986 bool FindingInstantiatedContext) {
5987 DeclContext *ParentDC = D->getDeclContext();
5988 // Determine whether our parent context depends on any of the tempalte
5989 // arguments we're currently substituting.
5990 bool ParentDependsOnArgs = isDependentContextAtLevel(
5991 ParentDC, TemplateArgs.getNumRetainedOuterLevels());
5992 // FIXME: Parmeters of pointer to functions (y below) that are themselves
5993 // parameters (p below) can have their ParentDC set to the translation-unit
5994 // - thus we can not consistently check if the ParentDC of such a parameter
5995 // is Dependent or/and a FunctionOrMethod.
5996 // For e.g. this code, during Template argument deduction tries to
5997 // find an instantiated decl for (T y) when the ParentDC for y is
5998 // the translation unit.
5999 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6000 // float baz(float(*)()) { return 0.0; }
6001 // Foo(baz);
6002 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6003 // it gets here, always has a FunctionOrMethod as its ParentDC??
6004 // For now:
6005 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6006 // whose type is not instantiation dependent, do nothing to the decl
6007 // - otherwise find its instantiated decl.
6008 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
6009 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
6010 return D;
6011 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
6012 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
6013 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6014 isa<OMPDeclareReductionDecl>(ParentDC) ||
6015 isa<OMPDeclareMapperDecl>(ParentDC))) ||
6016 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) {
6017 // D is a local of some kind. Look into the map of local
6018 // declarations to their instantiations.
6019 if (CurrentInstantiationScope) {
6020 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6021 if (Decl *FD = Found->dyn_cast<Decl *>())
6022 return cast<NamedDecl>(FD);
6023
6024 int PackIdx = ArgumentPackSubstitutionIndex;
6025 assert(PackIdx != -1 &&((void)0)
6026 "found declaration pack but not pack expanding")((void)0);
6027 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6028 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6029 }
6030 }
6031
6032 // If we're performing a partial substitution during template argument
6033 // deduction, we may not have values for template parameters yet. They
6034 // just map to themselves.
6035 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
6036 isa<TemplateTemplateParmDecl>(D))
6037 return D;
6038
6039 if (D->isInvalidDecl())
6040 return nullptr;
6041
6042 // Normally this function only searches for already instantiated declaration
6043 // however we have to make an exclusion for local types used before
6044 // definition as in the code:
6045 //
6046 // template<typename T> void f1() {
6047 // void g1(struct x1);
6048 // struct x1 {};
6049 // }
6050 //
6051 // In this case instantiation of the type of 'g1' requires definition of
6052 // 'x1', which is defined later. Error recovery may produce an enum used
6053 // before definition. In these cases we need to instantiate relevant
6054 // declarations here.
6055 bool NeedInstantiate = false;
6056 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
6057 NeedInstantiate = RD->isLocalClass();
6058 else if (isa<TypedefNameDecl>(D) &&
6059 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6060 NeedInstantiate = true;
6061 else
6062 NeedInstantiate = isa<EnumDecl>(D);
6063 if (NeedInstantiate) {
6064 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6065 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6066 return cast<TypeDecl>(Inst);
6067 }
6068
6069 // If we didn't find the decl, then we must have a label decl that hasn't
6070 // been found yet. Lazily instantiate it and return it now.
6071 assert(isa<LabelDecl>(D))((void)0);
6072
6073 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6074 assert(Inst && "Failed to instantiate label??")((void)0);
6075
6076 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6077 return cast<LabelDecl>(Inst);
6078 }
6079
6080 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
6081 if (!Record->isDependentContext())
6082 return D;
6083
6084 // Determine whether this record is the "templated" declaration describing
6085 // a class template or class template partial specialization.
6086 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6087 if (ClassTemplate)
6088 ClassTemplate = ClassTemplate->getCanonicalDecl();
6089 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
6090 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
6091 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
6092
6093 // Walk the current context to find either the record or an instantiation of
6094 // it.
6095 DeclContext *DC = CurContext;
6096 while (!DC->isFileContext()) {
6097 // If we're performing substitution while we're inside the template
6098 // definition, we'll find our own context. We're done.
6099 if (DC->Equals(Record))
6100 return Record;
6101
6102 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
6103 // Check whether we're in the process of instantiating a class template
6104 // specialization of the template we're mapping.
6105 if (ClassTemplateSpecializationDecl *InstSpec
6106 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
6107 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6108 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
6109 return InstRecord;
6110 }
6111
6112 // Check whether we're in the process of instantiating a member class.
6113 if (isInstantiationOf(Record, InstRecord))
6114 return InstRecord;
6115 }
6116
6117 // Move to the outer template scope.
6118 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
6119 if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){
6120 DC = FD->getLexicalDeclContext();
6121 continue;
6122 }
6123 // An implicit deduction guide acts as if it's within the class template
6124 // specialization described by its name and first N template params.
6125 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
6126 if (Guide && Guide->isImplicit()) {
6127 TemplateDecl *TD = Guide->getDeducedTemplate();
6128 // Convert the arguments to an "as-written" list.
6129 TemplateArgumentListInfo Args(Loc, Loc);
6130 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6131 TD->getTemplateParameters()->size())) {
6132 ArrayRef<TemplateArgument> Unpacked(Arg);
6133 if (Arg.getKind() == TemplateArgument::Pack)
6134 Unpacked = Arg.pack_elements();
6135 for (TemplateArgument UnpackedArg : Unpacked)
6136 Args.addArgument(
6137 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
6138 }
6139 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
6140 if (T.isNull())
6141 return nullptr;
6142 auto *SubstRecord = T->getAsCXXRecordDecl();
6143 assert(SubstRecord && "class template id not a class type?")((void)0);
6144 // Check that this template-id names the primary template and not a
6145 // partial or explicit specialization. (In the latter cases, it's
6146 // meaningless to attempt to find an instantiation of D within the
6147 // specialization.)
6148 // FIXME: The standard doesn't say what should happen here.
6149 if (FindingInstantiatedContext &&
6150 usesPartialOrExplicitSpecialization(
6151 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
6152 Diag(Loc, diag::err_specialization_not_primary_template)
6153 << T << (SubstRecord->getTemplateSpecializationKind() ==
6154 TSK_ExplicitSpecialization);
6155 return nullptr;
6156 }
6157 DC = SubstRecord;
6158 continue;
6159 }
6160 }
6161
6162 DC = DC->getParent();
6163 }
6164
6165 // Fall through to deal with other dependent record types (e.g.,
6166 // anonymous unions in class templates).
6167 }
6168
6169 if (!ParentDependsOnArgs)
6170 return D;
6171
6172 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
6173 if (!ParentDC)
6174 return nullptr;
6175
6176 if (ParentDC != D->getDeclContext()) {
6177 // We performed some kind of instantiation in the parent context,
6178 // so now we need to look into the instantiated parent context to
6179 // find the instantiation of the declaration D.
6180
6181 // If our context used to be dependent, we may need to instantiate
6182 // it before performing lookup into that context.
6183 bool IsBeingInstantiated = false;
6184 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
6185 if (!Spec->isDependentContext()) {
6186 QualType T = Context.getTypeDeclType(Spec);
6187 const RecordType *Tag = T->getAs<RecordType>();
6188 assert(Tag && "type of non-dependent record is not a RecordType")((void)0);
6189 if (Tag->isBeingDefined())
6190 IsBeingInstantiated = true;
6191 if (!Tag->isBeingDefined() &&
6192 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6193 return nullptr;
6194
6195 ParentDC = Tag->getDecl();
6196 }
6197 }
6198
6199 NamedDecl *Result = nullptr;
6200 // FIXME: If the name is a dependent name, this lookup won't necessarily
6201 // find it. Does that ever matter?
6202 if (auto Name = D->getDeclName()) {
6203 DeclarationNameInfo NameInfo(Name, D->getLocation());
6204 DeclarationNameInfo NewNameInfo =
6205 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6206 Name = NewNameInfo.getName();
6207 if (!Name)
6208 return nullptr;
6209 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6210
6211 Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
6212 } else {
6213 // Since we don't have a name for the entity we're looking for,
6214 // our only option is to walk through all of the declarations to
6215 // find that name. This will occur in a few cases:
6216 //
6217 // - anonymous struct/union within a template
6218 // - unnamed class/struct/union/enum within a template
6219 //
6220 // FIXME: Find a better way to find these instantiations!
6221 Result = findInstantiationOf(Context, D,
6222 ParentDC->decls_begin(),
6223 ParentDC->decls_end());
6224 }
6225
6226 if (!Result) {
6227 if (isa<UsingShadowDecl>(D)) {
6228 // UsingShadowDecls can instantiate to nothing because of using hiding.
6229 } else if (hasUncompilableErrorOccurred()) {
6230 // We've already complained about some ill-formed code, so most likely
6231 // this declaration failed to instantiate. There's no point in
6232 // complaining further, since this is normal in invalid code.
6233 // FIXME: Use more fine-grained 'invalid' tracking for this.
6234 } else if (IsBeingInstantiated) {
6235 // The class in which this member exists is currently being
6236 // instantiated, and we haven't gotten around to instantiating this
6237 // member yet. This can happen when the code uses forward declarations
6238 // of member classes, and introduces ordering dependencies via
6239 // template instantiation.
6240 Diag(Loc, diag::err_member_not_yet_instantiated)
6241 << D->getDeclName()
6242 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6243 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6244 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
6245 // This enumeration constant was found when the template was defined,
6246 // but can't be found in the instantiation. This can happen if an
6247 // unscoped enumeration member is explicitly specialized.
6248 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6249 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
6250 TemplateArgs));
6251 assert(Spec->getTemplateSpecializationKind() ==((void)0)
6252 TSK_ExplicitSpecialization)((void)0);
6253 Diag(Loc, diag::err_enumerator_does_not_exist)
6254 << D->getDeclName()
6255 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6256 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6257 << Context.getTypeDeclType(Spec);
6258 } else {
6259 // We should have found something, but didn't.
6260 llvm_unreachable("Unable to find instantiation of declaration!")__builtin_unreachable();
6261 }
6262 }
6263
6264 D = Result;
6265 }
6266
6267 return D;
6268}
6269
6270/// Performs template instantiation for all implicit template
6271/// instantiations we have seen until this point.
6272void Sema::PerformPendingInstantiations(bool LocalOnly) {
6273 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6274 while (!PendingLocalImplicitInstantiations.empty() ||
38
Assuming the condition is false
40
Loop condition is true. Entering loop body
6275 (!LocalOnly
38.1
'LocalOnly' is false
38.1
'LocalOnly' is false
&& !PendingInstantiations.empty())) {
39
Assuming the condition is true
6276 PendingImplicitInstantiation Inst;
6277
6278 if (PendingLocalImplicitInstantiations.empty()) {
41
Assuming the condition is false
42
Taking false branch
6279 Inst = PendingInstantiations.front();
6280 PendingInstantiations.pop_front();
6281 } else {
6282 Inst = PendingLocalImplicitInstantiations.front();
6283 PendingLocalImplicitInstantiations.pop_front();
6284 }
6285
6286 // Instantiate function definitions
6287 if (FunctionDecl *Function
43.1
'Function' is null
43.1
'Function' is null
= dyn_cast<FunctionDecl>(Inst.first)) {
43
Assuming field 'first' is not a 'FunctionDecl'
44
Taking false branch
6288 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6289 TSK_ExplicitInstantiationDefinition;
6290 if (Function->isMultiVersion()) {
6291 getASTContext().forEachMultiversionedFunctionVersion(
6292 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6293 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
1
Calling 'Sema::InstantiateFunctionDefinition'
6294 DefinitionRequired, true);
6295 if (CurFD->isDefined())
6296 CurFD->setInstantiationIsPending(false);
6297 });
6298 } else {
6299 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
6300 DefinitionRequired, true);
6301 if (Function->isDefined())
6302 Function->setInstantiationIsPending(false);
6303 }
6304 // Definition of a PCH-ed template declaration may be available only in the TU.
6305 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6306 TUKind == TU_Prefix && Function->instantiationIsPending())
6307 delayedPCHInstantiations.push_back(Inst);
6308 continue;
6309 }
6310
6311 // Instantiate variable definitions
6312 VarDecl *Var = cast<VarDecl>(Inst.first);
45
Field 'first' is a 'VarDecl'
6313
6314 assert((Var->isStaticDataMember() ||((void)0)
6315 isa<VarTemplateSpecializationDecl>(Var)) &&((void)0)
6316 "Not a static data member, nor a variable template"((void)0)
6317 " specialization?")((void)0);
6318
6319 // Don't try to instantiate declarations if the most recent redeclaration
6320 // is invalid.
6321 if (Var->getMostRecentDecl()->isInvalidDecl())
46
Assuming the condition is false
47
Taking false branch
6322 continue;
6323
6324 // Check if the most recent declaration has changed the specialization kind
6325 // and removed the need for implicit instantiation.
6326 switch (Var->getMostRecentDecl()
48
Control jumps to 'case TSK_ImplicitInstantiation:' at line 6339
6327 ->getTemplateSpecializationKindForInstantiation()) {
6328 case TSK_Undeclared:
6329 llvm_unreachable("Cannot instantitiate an undeclared specialization.")__builtin_unreachable();
6330 case TSK_ExplicitInstantiationDeclaration:
6331 case TSK_ExplicitSpecialization:
6332 continue; // No longer need to instantiate this type.
6333 case TSK_ExplicitInstantiationDefinition:
6334 // We only need an instantiation if the pending instantiation *is* the
6335 // explicit instantiation.
6336 if (Var != Var->getMostRecentDecl())
6337 continue;
6338 break;
6339 case TSK_ImplicitInstantiation:
6340 break;
49
Execution continues on line 6343
6341 }
6342
6343 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
6344 "instantiating variable definition");
6345 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
50
Assuming the condition is false
6346 TSK_ExplicitInstantiationDefinition;
6347
6348 // Instantiate static data member definitions or variable template
6349 // specializations.
6350 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
51
Calling 'Sema::InstantiateVariableDefinition'
6351 DefinitionRequired, true);
6352 }
6353
6354 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6355 PendingInstantiations.swap(delayedPCHInstantiations);
6356}
6357
6358void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6359 const MultiLevelTemplateArgumentList &TemplateArgs) {
6360 for (auto DD : Pattern->ddiags()) {
6361 switch (DD->getKind()) {
6362 case DependentDiagnostic::Access:
6363 HandleDependentAccessCheck(*DD, TemplateArgs);
6364 break;
6365 }
6366 }
6367}

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&((void)0)
380 "should not have found a non-externally-declarable previous decl")((void)0);
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 29;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")((void)0);
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&((void)0)
655 "Can only push / pop #pragma stack sentinels!")((void)0);
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)((void)0);
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")((void)0);
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))((void)0);
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)((void)0);
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures) {
1506 OldOverrides = S.FpPragmaStack.CurrentValue;
1507 }
1508 ~FPFeaturesStateRAII() {
1509 S.CurFPFeatures = OldFPFeaturesState;
1510 S.FpPragmaStack.CurrentValue = OldOverrides;
1511 }
1512 FPOptionsOverride getOverrides() { return OldOverrides; }
1513
1514 private:
1515 Sema& S;
1516 FPOptions OldFPFeaturesState;
1517 FPOptionsOverride OldOverrides;
1518 };
1519
1520 void addImplicitTypedef(StringRef Name, QualType T);
1521
1522 bool WarnedStackExhausted = false;
1523
1524 /// Increment when we find a reference; decrement when we find an ignored
1525 /// assignment. Ultimately the value is 0 if every reference is an ignored
1526 /// assignment.
1527 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1528
1529 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1530
1531public:
1532 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1533 TranslationUnitKind TUKind = TU_Complete,
1534 CodeCompleteConsumer *CompletionConsumer = nullptr);
1535 ~Sema();
1536
1537 /// Perform initialization that occurs after the parser has been
1538 /// initialized but before it parses anything.
1539 void Initialize();
1540
1541 /// This virtual key function only exists to limit the emission of debug info
1542 /// describing the Sema class. GCC and Clang only emit debug info for a class
1543 /// with a vtable when the vtable is emitted. Sema is final and not
1544 /// polymorphic, but the debug info size savings are so significant that it is
1545 /// worth adding a vtable just to take advantage of this optimization.
1546 virtual void anchor();
1547
1548 const LangOptions &getLangOpts() const { return LangOpts; }
1549 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1550 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1551
1552 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1553 SourceManager &getSourceManager() const { return SourceMgr; }
1554 Preprocessor &getPreprocessor() const { return PP; }
1555 ASTContext &getASTContext() const { return Context; }
1556 ASTConsumer &getASTConsumer() const { return Consumer; }
1557 ASTMutationListener *getASTMutationListener() const;
1558 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1559 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1560 StringRef Platform);
1561
1562 ///Registers an external source. If an external source already exists,
1563 /// creates a multiplex external source and appends to it.
1564 ///
1565 ///\param[in] E - A non-null external sema source.
1566 ///
1567 void addExternalSource(ExternalSemaSource *E);
1568
1569 void PrintStats() const;
1570
1571 /// Warn that the stack is nearly exhausted.
1572 void warnStackExhausted(SourceLocation Loc);
1573
1574 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1575 /// guaranteed). Produces a warning if we're low on stack space and allocates
1576 /// more in that case. Use this in code that may recurse deeply (for example,
1577 /// in template instantiation) to avoid stack overflow.
1578 void runWithSufficientStackSpace(SourceLocation Loc,
1579 llvm::function_ref<void()> Fn);
1580
1581 /// Helper class that creates diagnostics with optional
1582 /// template instantiation stacks.
1583 ///
1584 /// This class provides a wrapper around the basic DiagnosticBuilder
1585 /// class that emits diagnostics. ImmediateDiagBuilder is
1586 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1587 /// does) and, if the diagnostic comes from inside a template
1588 /// instantiation, printing the template instantiation stack as
1589 /// well.
1590 class ImmediateDiagBuilder : public DiagnosticBuilder {
1591 Sema &SemaRef;
1592 unsigned DiagID;
1593
1594 public:
1595 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1596 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1597 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1598 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1599
1600 // This is a cunning lie. DiagnosticBuilder actually performs move
1601 // construction in its copy constructor (but due to varied uses, it's not
1602 // possible to conveniently express this as actual move construction). So
1603 // the default copy ctor here is fine, because the base class disables the
1604 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1605 // in that case anwyay.
1606 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1607
1608 ~ImmediateDiagBuilder() {
1609 // If we aren't active, there is nothing to do.
1610 if (!isActive()) return;
1611
1612 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1613 // builder itself so it won't emit the diagnostic in its own destructor.
1614 //
1615 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1616 // do its own needless checks to see if the diagnostic needs to be
1617 // emitted. However, because we take care to ensure that the builder
1618 // objects never escape, a sufficiently smart compiler will be able to
1619 // eliminate that code.
1620 Clear();
1621
1622 // Dispatch to Sema to emit the diagnostic.
1623 SemaRef.EmitCurrentDiagnostic(DiagID);
1624 }
1625
1626 /// Teach operator<< to produce an object of the correct type.
1627 template <typename T>
1628 friend const ImmediateDiagBuilder &
1629 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1630 const DiagnosticBuilder &BaseDiag = Diag;
1631 BaseDiag << Value;
1632 return Diag;
1633 }
1634
1635 // It is necessary to limit this to rvalue reference to avoid calling this
1636 // function with a bitfield lvalue argument since non-const reference to
1637 // bitfield is not allowed.
1638 template <typename T, typename = typename std::enable_if<
1639 !std::is_lvalue_reference<T>::value>::type>
1640 const ImmediateDiagBuilder &operator<<(T &&V) const {
1641 const DiagnosticBuilder &BaseDiag = *this;
1642 BaseDiag << std::move(V);
1643 return *this;
1644 }
1645 };
1646
1647 /// A generic diagnostic builder for errors which may or may not be deferred.
1648 ///
1649 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1650 /// which are not allowed to appear inside __device__ functions and are
1651 /// allowed to appear in __host__ __device__ functions only if the host+device
1652 /// function is never codegen'ed.
1653 ///
1654 /// To handle this, we use the notion of "deferred diagnostics", where we
1655 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1656 ///
1657 /// This class lets you emit either a regular diagnostic, a deferred
1658 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1659 /// its constructor, thus simplifying the process of creating these "maybe
1660 /// deferred" diagnostics.
1661 class SemaDiagnosticBuilder {
1662 public:
1663 enum Kind {
1664 /// Emit no diagnostics.
1665 K_Nop,
1666 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1667 K_Immediate,
1668 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1669 /// emit a call stack showing how this function can be reached by an a
1670 /// priori known-emitted function.
1671 K_ImmediateWithCallStack,
1672 /// Create a deferred diagnostic, which is emitted only if the function
1673 /// it's attached to is codegen'ed. Also emit a call stack as with
1674 /// K_ImmediateWithCallStack.
1675 K_Deferred
1676 };
1677
1678 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1679 FunctionDecl *Fn, Sema &S);
1680 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1681 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1682 ~SemaDiagnosticBuilder();
1683
1684 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1685
1686 /// Convertible to bool: True if we immediately emitted an error, false if
1687 /// we didn't emit an error or we created a deferred error.
1688 ///
1689 /// Example usage:
1690 ///
1691 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1692 /// return ExprError();
1693 ///
1694 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1695 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1696 operator bool() const { return isImmediate(); }
1697
1698 template <typename T>
1699 friend const SemaDiagnosticBuilder &
1700 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1701 if (Diag.ImmediateDiag.hasValue())
1702 *Diag.ImmediateDiag << Value;
1703 else if (Diag.PartialDiagId.hasValue())
1704 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1705 << Value;
1706 return Diag;
1707 }
1708
1709 // It is necessary to limit this to rvalue reference to avoid calling this
1710 // function with a bitfield lvalue argument since non-const reference to
1711 // bitfield is not allowed.
1712 template <typename T, typename = typename std::enable_if<
1713 !std::is_lvalue_reference<T>::value>::type>
1714 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1715 if (ImmediateDiag.hasValue())
1716 *ImmediateDiag << std::move(V);
1717 else if (PartialDiagId.hasValue())
1718 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1719 return *this;
1720 }
1721
1722 friend const SemaDiagnosticBuilder &
1723 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1724 if (Diag.ImmediateDiag.hasValue())
1725 PD.Emit(*Diag.ImmediateDiag);
1726 else if (Diag.PartialDiagId.hasValue())
1727 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1728 return Diag;
1729 }
1730
1731 void AddFixItHint(const FixItHint &Hint) const {
1732 if (ImmediateDiag.hasValue())
1733 ImmediateDiag->AddFixItHint(Hint);
1734 else if (PartialDiagId.hasValue())
1735 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1736 }
1737
1738 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1739 return ExprError();
1740 }
1741 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1742 return StmtError();
1743 }
1744 operator ExprResult() const { return ExprError(); }
1745 operator StmtResult() const { return StmtError(); }
1746 operator TypeResult() const { return TypeError(); }
1747 operator DeclResult() const { return DeclResult(true); }
1748 operator MemInitResult() const { return MemInitResult(true); }
1749
1750 private:
1751 Sema &S;
1752 SourceLocation Loc;
1753 unsigned DiagID;
1754 FunctionDecl *Fn;
1755 bool ShowCallStack;
1756
1757 // Invariant: At most one of these Optionals has a value.
1758 // FIXME: Switch these to a Variant once that exists.
1759 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1760 llvm::Optional<unsigned> PartialDiagId;
1761 };
1762
1763 /// Is the last error level diagnostic immediate. This is used to determined
1764 /// whether the next info diagnostic should be immediate.
1765 bool IsLastErrorImmediate = true;
1766
1767 /// Emit a diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1769 bool DeferHint = false);
1770
1771 /// Emit a partial diagnostic.
1772 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1773 bool DeferHint = false);
1774
1775 /// Build a partial diagnostic.
1776 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1777
1778 /// Whether deferrable diagnostics should be deferred.
1779 bool DeferDiags = false;
1780
1781 /// RAII class to control scope of DeferDiags.
1782 class DeferDiagsRAII {
1783 Sema &S;
1784 bool SavedDeferDiags = false;
1785
1786 public:
1787 DeferDiagsRAII(Sema &S, bool DeferDiags)
1788 : S(S), SavedDeferDiags(S.DeferDiags) {
1789 S.DeferDiags = DeferDiags;
1790 }
1791 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1792 };
1793
1794 /// Whether uncompilable error has occurred. This includes error happens
1795 /// in deferred diagnostics.
1796 bool hasUncompilableErrorOccurred() const;
1797
1798 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1799
1800 /// Get a string to suggest for zero-initialization of a type.
1801 std::string
1802 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1803 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1804
1805 /// Calls \c Lexer::getLocForEndOfToken()
1806 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1807
1808 /// Retrieve the module loader associated with the preprocessor.
1809 ModuleLoader &getModuleLoader() const;
1810
1811 /// Invent a new identifier for parameters of abbreviated templates.
1812 IdentifierInfo *
1813 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1814 unsigned Index);
1815
1816 void emitAndClearUnusedLocalTypedefWarnings();
1817
1818 private:
1819 /// Function or variable declarations to be checked for whether the deferred
1820 /// diagnostics should be emitted.
1821 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1822
1823 public:
1824 // Emit all deferred diagnostics.
1825 void emitDeferredDiags();
1826
1827 enum TUFragmentKind {
1828 /// The global module fragment, between 'module;' and a module-declaration.
1829 Global,
1830 /// A normal translation unit fragment. For a non-module unit, this is the
1831 /// entire translation unit. Otherwise, it runs from the module-declaration
1832 /// to the private-module-fragment (if any) or the end of the TU (if not).
1833 Normal,
1834 /// The private module fragment, between 'module :private;' and the end of
1835 /// the translation unit.
1836 Private
1837 };
1838
1839 void ActOnStartOfTranslationUnit();
1840 void ActOnEndOfTranslationUnit();
1841 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1842
1843 void CheckDelegatingCtorCycles();
1844
1845 Scope *getScopeForContext(DeclContext *Ctx);
1846
1847 void PushFunctionScope();
1848 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1849 sema::LambdaScopeInfo *PushLambdaScope();
1850
1851 /// This is used to inform Sema what the current TemplateParameterDepth
1852 /// is during Parsing. Currently it is used to pass on the depth
1853 /// when parsing generic lambda 'auto' parameters.
1854 void RecordParsingTemplateParameterDepth(unsigned Depth);
1855
1856 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1857 RecordDecl *RD, CapturedRegionKind K,
1858 unsigned OpenMPCaptureLevel = 0);
1859
1860 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1861 /// time after they've been popped.
1862 class PoppedFunctionScopeDeleter {
1863 Sema *Self;
1864
1865 public:
1866 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1867 void operator()(sema::FunctionScopeInfo *Scope) const;
1868 };
1869
1870 using PoppedFunctionScopePtr =
1871 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1872
1873 PoppedFunctionScopePtr
1874 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1875 const Decl *D = nullptr,
1876 QualType BlockType = QualType());
1877
1878 sema::FunctionScopeInfo *getCurFunction() const {
1879 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1880 }
1881
1882 sema::FunctionScopeInfo *getEnclosingFunction() const;
1883
1884 void setFunctionHasBranchIntoScope();
1885 void setFunctionHasBranchProtectedScope();
1886 void setFunctionHasIndirectGoto();
1887 void setFunctionHasMustTail();
1888
1889 void PushCompoundScope(bool IsStmtExpr);
1890 void PopCompoundScope();
1891
1892 sema::CompoundScopeInfo &getCurCompoundScope() const;
1893
1894 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1895
1896 /// Retrieve the current block, if any.
1897 sema::BlockScopeInfo *getCurBlock();
1898
1899 /// Get the innermost lambda enclosing the current location, if any. This
1900 /// looks through intervening non-lambda scopes such as local functions and
1901 /// blocks.
1902 sema::LambdaScopeInfo *getEnclosingLambda() const;
1903
1904 /// Retrieve the current lambda scope info, if any.
1905 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1906 /// lambda scope info ignoring all inner capturing scopes that are not
1907 /// lambda scopes.
1908 sema::LambdaScopeInfo *
1909 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1910
1911 /// Retrieve the current generic lambda info, if any.
1912 sema::LambdaScopeInfo *getCurGenericLambda();
1913
1914 /// Retrieve the current captured region, if any.
1915 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1916
1917 /// Retrieve the current function, if any, that should be analyzed for
1918 /// potential availability violations.
1919 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1920
1921 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1922 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1923
1924 /// Called before parsing a function declarator belonging to a function
1925 /// declaration.
1926 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1927 unsigned TemplateParameterDepth);
1928
1929 /// Called after parsing a function declarator belonging to a function
1930 /// declaration.
1931 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1932
1933 void ActOnComment(SourceRange Comment);
1934
1935 //===--------------------------------------------------------------------===//
1936 // Type Analysis / Processing: SemaType.cpp.
1937 //
1938
1939 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1940 const DeclSpec *DS = nullptr);
1941 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1942 const DeclSpec *DS = nullptr);
1943 QualType BuildPointerType(QualType T,
1944 SourceLocation Loc, DeclarationName Entity);
1945 QualType BuildReferenceType(QualType T, bool LValueRef,
1946 SourceLocation Loc, DeclarationName Entity);
1947 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1948 Expr *ArraySize, unsigned Quals,
1949 SourceRange Brackets, DeclarationName Entity);
1950 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1951 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1952 SourceLocation AttrLoc);
1953 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1954 SourceLocation AttrLoc);
1955
1956 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 /// Same as above, but constructs the AddressSpace index if not provided.
1960 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1961 SourceLocation AttrLoc);
1962
1963 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1964
1965 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1966
1967 /// Build a function type.
1968 ///
1969 /// This routine checks the function type according to C++ rules and
1970 /// under the assumption that the result type and parameter types have
1971 /// just been instantiated from a template. It therefore duplicates
1972 /// some of the behavior of GetTypeForDeclarator, but in a much
1973 /// simpler form that is only suitable for this narrow use case.
1974 ///
1975 /// \param T The return type of the function.
1976 ///
1977 /// \param ParamTypes The parameter types of the function. This array
1978 /// will be modified to account for adjustments to the types of the
1979 /// function parameters.
1980 ///
1981 /// \param Loc The location of the entity whose type involves this
1982 /// function type or, if there is no such entity, the location of the
1983 /// type that will have function type.
1984 ///
1985 /// \param Entity The name of the entity that involves the function
1986 /// type, if known.
1987 ///
1988 /// \param EPI Extra information about the function type. Usually this will
1989 /// be taken from an existing function with the same prototype.
1990 ///
1991 /// \returns A suitable function type, if there are no errors. The
1992 /// unqualified type will always be a FunctionProtoType.
1993 /// Otherwise, returns a NULL type.
1994 QualType BuildFunctionType(QualType T,
1995 MutableArrayRef<QualType> ParamTypes,
1996 SourceLocation Loc, DeclarationName Entity,
1997 const FunctionProtoType::ExtProtoInfo &EPI);
1998
1999 QualType BuildMemberPointerType(QualType T, QualType Class,
2000 SourceLocation Loc,
2001 DeclarationName Entity);
2002 QualType BuildBlockPointerType(QualType T,
2003 SourceLocation Loc, DeclarationName Entity);
2004 QualType BuildParenType(QualType T);
2005 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2006 QualType BuildReadPipeType(QualType T,
2007 SourceLocation Loc);
2008 QualType BuildWritePipeType(QualType T,
2009 SourceLocation Loc);
2010 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2011
2012 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2013 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2014
2015 /// Package the given type and TSI into a ParsedType.
2016 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2017 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2018 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2019 static QualType GetTypeFromParser(ParsedType Ty,
2020 TypeSourceInfo **TInfo = nullptr);
2021 CanThrowResult canThrow(const Stmt *E);
2022 /// Determine whether the callee of a particular function call can throw.
2023 /// E, D and Loc are all optional.
2024 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2025 SourceLocation Loc = SourceLocation());
2026 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2027 const FunctionProtoType *FPT);
2028 void UpdateExceptionSpec(FunctionDecl *FD,
2029 const FunctionProtoType::ExceptionSpecInfo &ESI);
2030 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2031 bool CheckDistantExceptionSpec(QualType T);
2032 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2033 bool CheckEquivalentExceptionSpec(
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool CheckEquivalentExceptionSpec(
2037 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2038 const FunctionProtoType *Old, SourceLocation OldLoc,
2039 const FunctionProtoType *New, SourceLocation NewLoc);
2040 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2041 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2042 const PartialDiagnostic &NestedDiagID,
2043 const PartialDiagnostic &NoteID,
2044 const PartialDiagnostic &NoThrowDiagID,
2045 const FunctionProtoType *Superset,
2046 SourceLocation SuperLoc,
2047 const FunctionProtoType *Subset,
2048 SourceLocation SubLoc);
2049 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2050 const PartialDiagnostic &NoteID,
2051 const FunctionProtoType *Target,
2052 SourceLocation TargetLoc,
2053 const FunctionProtoType *Source,
2054 SourceLocation SourceLoc);
2055
2056 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2057
2058 /// The parser has parsed the context-sensitive type 'instancetype'
2059 /// in an Objective-C message declaration. Return the appropriate type.
2060 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2061
2062 /// Abstract class used to diagnose incomplete types.
2063 struct TypeDiagnoser {
2064 TypeDiagnoser() {}
2065
2066 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2067 virtual ~TypeDiagnoser() {}
2068 };
2069
2070 static int getPrintable(int I) { return I; }
2071 static unsigned getPrintable(unsigned I) { return I; }
2072 static bool getPrintable(bool B) { return B; }
2073 static const char * getPrintable(const char *S) { return S; }
2074 static StringRef getPrintable(StringRef S) { return S; }
2075 static const std::string &getPrintable(const std::string &S) { return S; }
2076 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2077 return II;
2078 }
2079 static DeclarationName getPrintable(DeclarationName N) { return N; }
2080 static QualType getPrintable(QualType T) { return T; }
2081 static SourceRange getPrintable(SourceRange R) { return R; }
2082 static SourceRange getPrintable(SourceLocation L) { return L; }
2083 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2084 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2085
2086 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2087 protected:
2088 unsigned DiagID;
2089 std::tuple<const Ts &...> Args;
2090
2091 template <std::size_t... Is>
2092 void emit(const SemaDiagnosticBuilder &DB,
2093 std::index_sequence<Is...>) const {
2094 // Apply all tuple elements to the builder in order.
2095 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2096 (void)Dummy;
2097 }
2098
2099 public:
2100 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2101 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2102 assert(DiagID != 0 && "no diagnostic for type diagnoser")((void)0);
2103 }
2104
2105 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2106 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2107 emit(DB, std::index_sequence_for<Ts...>());
2108 DB << T;
2109 }
2110 };
2111
2112 /// Do a check to make sure \p Name looks like a legal argument for the
2113 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2114 /// is invalid for the given declaration.
2115 ///
2116 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2117 ///
2118 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2119 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2120 const ParsedAttr &AL, bool IsAsync);
2121
2122 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2123 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2124 /// For example, a diagnostic with no other parameters would generally have
2125 /// the form "...%select{incomplete|sizeless}0 type %1...".
2126 template <typename... Ts>
2127 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2128 public:
2129 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2130 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2131
2132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2133 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2134 this->emit(DB, std::index_sequence_for<Ts...>());
2135 DB << T->isSizelessType() << T;
2136 }
2137 };
2138
2139 enum class CompleteTypeKind {
2140 /// Apply the normal rules for complete types. In particular,
2141 /// treat all sizeless types as incomplete.
2142 Normal,
2143
2144 /// Relax the normal rules for complete types so that they include
2145 /// sizeless built-in types.
2146 AcceptSizeless,
2147
2148 // FIXME: Eventually we should flip the default to Normal and opt in
2149 // to AcceptSizeless rather than opt out of it.
2150 Default = AcceptSizeless
2151 };
2152
2153private:
2154 /// Methods for marking which expressions involve dereferencing a pointer
2155 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2156 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2157 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2158 /// `*p`, but need to check that `address of` is called on it. This requires
2159 /// keeping a container of all pending expressions and checking if the address
2160 /// of them are eventually taken.
2161 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2162 void CheckAddressOfNoDeref(const Expr *E);
2163 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2164
2165 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2166 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2167
2168 struct ModuleScope {
2169 SourceLocation BeginLoc;
2170 clang::Module *Module = nullptr;
2171 bool ModuleInterface = false;
2172 bool ImplicitGlobalModuleFragment = false;
2173 VisibleModuleSet OuterVisibleModules;
2174 };
2175 /// The modules we're currently parsing.
2176 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2177
2178 /// Namespace definitions that we will export when they finish.
2179 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2180
2181 /// Get the module whose scope we are currently within.
2182 Module *getCurrentModule() const {
2183 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2184 }
2185
2186 VisibleModuleSet VisibleModules;
2187
2188public:
2189 /// Get the module owning an entity.
2190 Module *getOwningModule(const Decl *Entity) {
2191 return Entity->getOwningModule();
2192 }
2193
2194 /// Make a merged definition of an existing hidden definition \p ND
2195 /// visible at the specified location.
2196 void makeMergedDefinitionVisible(NamedDecl *ND);
2197
2198 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2199
2200 // When loading a non-modular PCH files, this is used to restore module
2201 // visibility.
2202 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2203 VisibleModules.setVisible(Mod, ImportLoc);
2204 }
2205
2206 /// Determine whether a declaration is visible to name lookup.
2207 bool isVisible(const NamedDecl *D) {
2208 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2209 }
2210
2211 /// Determine whether any declaration of an entity is visible.
2212 bool
2213 hasVisibleDeclaration(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2215 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2216 }
2217 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2218 llvm::SmallVectorImpl<Module *> *Modules);
2219
2220 bool hasVisibleMergedDefinition(NamedDecl *Def);
2221 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2222
2223 /// Determine if \p D and \p Suggested have a structurally compatible
2224 /// layout as described in C11 6.2.7/1.
2225 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2226
2227 /// Determine if \p D has a visible definition. If not, suggest a declaration
2228 /// that should be made visible to expose the definition.
2229 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2230 bool OnlyNeedComplete = false);
2231 bool hasVisibleDefinition(const NamedDecl *D) {
2232 NamedDecl *Hidden;
2233 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2234 }
2235
2236 /// Determine if the template parameter \p D has a visible default argument.
2237 bool
2238 hasVisibleDefaultArgument(const NamedDecl *D,
2239 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2240
2241 /// Determine if there is a visible declaration of \p D that is an explicit
2242 /// specialization declaration for a specialization of a template. (For a
2243 /// member specialization, use hasVisibleMemberSpecialization.)
2244 bool hasVisibleExplicitSpecialization(
2245 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2246
2247 /// Determine if there is a visible declaration of \p D that is a member
2248 /// specialization declaration (as opposed to an instantiated declaration).
2249 bool hasVisibleMemberSpecialization(
2250 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2251
2252 /// Determine if \p A and \p B are equivalent internal linkage declarations
2253 /// from different modules, and thus an ambiguity error can be downgraded to
2254 /// an extension warning.
2255 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2256 const NamedDecl *B);
2257 void diagnoseEquivalentInternalLinkageDeclarations(
2258 SourceLocation Loc, const NamedDecl *D,
2259 ArrayRef<const NamedDecl *> Equiv);
2260
2261 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2262
2263 bool isCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2265 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2266 }
2267 bool RequireCompleteType(SourceLocation Loc, QualType T,
2268 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2269 bool RequireCompleteType(SourceLocation Loc, QualType T,
2270 CompleteTypeKind Kind, unsigned DiagID);
2271
2272 bool RequireCompleteType(SourceLocation Loc, QualType T,
2273 TypeDiagnoser &Diagnoser) {
2274 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2275 }
2276 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2277 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2278 }
2279
2280 template <typename... Ts>
2281 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2282 const Ts &...Args) {
2283 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2284 return RequireCompleteType(Loc, T, Diagnoser);
2285 }
2286
2287 template <typename... Ts>
2288 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2289 const Ts &... Args) {
2290 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2291 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2292 }
2293
2294 /// Get the type of expression E, triggering instantiation to complete the
2295 /// type if necessary -- that is, if the expression refers to a templated
2296 /// static data member of incomplete array type.
2297 ///
2298 /// May still return an incomplete type if instantiation was not possible or
2299 /// if the type is incomplete for a different reason. Use
2300 /// RequireCompleteExprType instead if a diagnostic is expected for an
2301 /// incomplete expression type.
2302 QualType getCompletedType(Expr *E);
2303
2304 void completeExprArrayBound(Expr *E);
2305 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2306 TypeDiagnoser &Diagnoser);
2307 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2308
2309 template <typename... Ts>
2310 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2311 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2312 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2313 }
2314
2315 template <typename... Ts>
2316 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2317 const Ts &... Args) {
2318 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2319 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2320 }
2321
2322 bool RequireLiteralType(SourceLocation Loc, QualType T,
2323 TypeDiagnoser &Diagnoser);
2324 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2325
2326 template <typename... Ts>
2327 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2328 const Ts &...Args) {
2329 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2330 return RequireLiteralType(Loc, T, Diagnoser);
2331 }
2332
2333 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2334 const CXXScopeSpec &SS, QualType T,
2335 TagDecl *OwnedTagDecl = nullptr);
2336
2337 QualType getDecltypeForParenthesizedExpr(Expr *E);
2338 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2339 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2340 /// context, such as when building a type for decltype(auto).
2341 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2342 bool AsUnevaluated = true);
2343 QualType BuildUnaryTransformType(QualType BaseType,
2344 UnaryTransformType::UTTKind UKind,
2345 SourceLocation Loc);
2346
2347 //===--------------------------------------------------------------------===//
2348 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2349 //
2350
2351 struct SkipBodyInfo {
2352 SkipBodyInfo()
2353 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2354 New(nullptr) {}
2355 bool ShouldSkip;
2356 bool CheckSameAsPrevious;
2357 NamedDecl *Previous;
2358 NamedDecl *New;
2359 };
2360
2361 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2362
2363 void DiagnoseUseOfUnimplementedSelectors();
2364
2365 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2366
2367 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2368 Scope *S, CXXScopeSpec *SS = nullptr,
2369 bool isClassName = false, bool HasTrailingDot = false,
2370 ParsedType ObjectType = nullptr,
2371 bool IsCtorOrDtorName = false,
2372 bool WantNontrivialTypeSourceInfo = false,
2373 bool IsClassTemplateDeductionContext = true,
2374 IdentifierInfo **CorrectedII = nullptr);
2375 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2376 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2377 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2378 SourceLocation IILoc,
2379 Scope *S,
2380 CXXScopeSpec *SS,
2381 ParsedType &SuggestedType,
2382 bool IsTemplateName = false);
2383
2384 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2385 /// type name has failed in a dependent context. In these situations, we
2386 /// automatically form a DependentTypeName that will retry lookup in a related
2387 /// scope during instantiation.
2388 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2389 SourceLocation NameLoc,
2390 bool IsTemplateTypeArg);
2391
2392 /// Describes the result of the name lookup and resolution performed
2393 /// by \c ClassifyName().
2394 enum NameClassificationKind {
2395 /// This name is not a type or template in this context, but might be
2396 /// something else.
2397 NC_Unknown,
2398 /// Classification failed; an error has been produced.
2399 NC_Error,
2400 /// The name has been typo-corrected to a keyword.
2401 NC_Keyword,
2402 /// The name was classified as a type.
2403 NC_Type,
2404 /// The name was classified as a specific non-type, non-template
2405 /// declaration. ActOnNameClassifiedAsNonType should be called to
2406 /// convert the declaration to an expression.
2407 NC_NonType,
2408 /// The name was classified as an ADL-only function name.
2409 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2410 /// result to an expression.
2411 NC_UndeclaredNonType,
2412 /// The name denotes a member of a dependent type that could not be
2413 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2414 /// convert the result to an expression.
2415 NC_DependentNonType,
2416 /// The name was classified as an overload set, and an expression
2417 /// representing that overload set has been formed.
2418 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2419 /// expression referencing the overload set.
2420 NC_OverloadSet,
2421 /// The name was classified as a template whose specializations are types.
2422 NC_TypeTemplate,
2423 /// The name was classified as a variable template name.
2424 NC_VarTemplate,
2425 /// The name was classified as a function template name.
2426 NC_FunctionTemplate,
2427 /// The name was classified as an ADL-only function template name.
2428 NC_UndeclaredTemplate,
2429 /// The name was classified as a concept name.
2430 NC_Concept,
2431 };
2432
2433 class NameClassification {
2434 NameClassificationKind Kind;
2435 union {
2436 ExprResult Expr;
2437 NamedDecl *NonTypeDecl;
2438 TemplateName Template;
2439 ParsedType Type;
2440 };
2441
2442 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2443
2444 public:
2445 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2446
2447 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2448
2449 static NameClassification Error() {
2450 return NameClassification(NC_Error);
2451 }
2452
2453 static NameClassification Unknown() {
2454 return NameClassification(NC_Unknown);
2455 }
2456
2457 static NameClassification OverloadSet(ExprResult E) {
2458 NameClassification Result(NC_OverloadSet);
2459 Result.Expr = E;
2460 return Result;
2461 }
2462
2463 static NameClassification NonType(NamedDecl *D) {
2464 NameClassification Result(NC_NonType);
2465 Result.NonTypeDecl = D;
2466 return Result;
2467 }
2468
2469 static NameClassification UndeclaredNonType() {
2470 return NameClassification(NC_UndeclaredNonType);
2471 }
2472
2473 static NameClassification DependentNonType() {
2474 return NameClassification(NC_DependentNonType);
2475 }
2476
2477 static NameClassification TypeTemplate(TemplateName Name) {
2478 NameClassification Result(NC_TypeTemplate);
2479 Result.Template = Name;
2480 return Result;
2481 }
2482
2483 static NameClassification VarTemplate(TemplateName Name) {
2484 NameClassification Result(NC_VarTemplate);
2485 Result.Template = Name;
2486 return Result;
2487 }
2488
2489 static NameClassification FunctionTemplate(TemplateName Name) {
2490 NameClassification Result(NC_FunctionTemplate);
2491 Result.Template = Name;
2492 return Result;
2493 }
2494
2495 static NameClassification Concept(TemplateName Name) {
2496 NameClassification Result(NC_Concept);
2497 Result.Template = Name;
2498 return Result;
2499 }
2500
2501 static NameClassification UndeclaredTemplate(TemplateName Name) {
2502 NameClassification Result(NC_UndeclaredTemplate);
2503 Result.Template = Name;
2504 return Result;
2505 }
2506
2507 NameClassificationKind getKind() const { return Kind; }
2508
2509 ExprResult getExpression() const {
2510 assert(Kind == NC_OverloadSet)((void)0);
2511 return Expr;
2512 }
2513
2514 ParsedType getType() const {
2515 assert(Kind == NC_Type)((void)0);
2516 return Type;
2517 }
2518
2519 NamedDecl *getNonTypeDecl() const {
2520 assert(Kind == NC_NonType)((void)0);
2521 return NonTypeDecl;
2522 }
2523
2524 TemplateName getTemplateName() const {
2525 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||((void)0)
2526 Kind == NC_VarTemplate || Kind == NC_Concept ||((void)0)
2527 Kind == NC_UndeclaredTemplate)((void)0);
2528 return Template;
2529 }
2530
2531 TemplateNameKind getTemplateNameKind() const {
2532 switch (Kind) {
2533 case NC_TypeTemplate:
2534 return TNK_Type_template;
2535 case NC_FunctionTemplate:
2536 return TNK_Function_template;
2537 case NC_VarTemplate:
2538 return TNK_Var_template;
2539 case NC_Concept:
2540 return TNK_Concept_template;
2541 case NC_UndeclaredTemplate:
2542 return TNK_Undeclared_template;
2543 default:
2544 llvm_unreachable("unsupported name classification.")__builtin_unreachable();
2545 }
2546 }
2547 };
2548
2549 /// Perform name lookup on the given name, classifying it based on
2550 /// the results of name lookup and the following token.
2551 ///
2552 /// This routine is used by the parser to resolve identifiers and help direct
2553 /// parsing. When the identifier cannot be found, this routine will attempt
2554 /// to correct the typo and classify based on the resulting name.
2555 ///
2556 /// \param S The scope in which we're performing name lookup.
2557 ///
2558 /// \param SS The nested-name-specifier that precedes the name.
2559 ///
2560 /// \param Name The identifier. If typo correction finds an alternative name,
2561 /// this pointer parameter will be updated accordingly.
2562 ///
2563 /// \param NameLoc The location of the identifier.
2564 ///
2565 /// \param NextToken The token following the identifier. Used to help
2566 /// disambiguate the name.
2567 ///
2568 /// \param CCC The correction callback, if typo correction is desired.
2569 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2570 IdentifierInfo *&Name, SourceLocation NameLoc,
2571 const Token &NextToken,
2572 CorrectionCandidateCallback *CCC = nullptr);
2573
2574 /// Act on the result of classifying a name as an undeclared (ADL-only)
2575 /// non-type declaration.
2576 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2577 SourceLocation NameLoc);
2578 /// Act on the result of classifying a name as an undeclared member of a
2579 /// dependent base class.
2580 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2581 IdentifierInfo *Name,
2582 SourceLocation NameLoc,
2583 bool IsAddressOfOperand);
2584 /// Act on the result of classifying a name as a specific non-type
2585 /// declaration.
2586 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2587 NamedDecl *Found,
2588 SourceLocation NameLoc,
2589 const Token &NextToken);
2590 /// Act on the result of classifying a name as an overload set.
2591 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2592
2593 /// Describes the detailed kind of a template name. Used in diagnostics.
2594 enum class TemplateNameKindForDiagnostics {
2595 ClassTemplate,
2596 FunctionTemplate,
2597 VarTemplate,
2598 AliasTemplate,
2599 TemplateTemplateParam,
2600 Concept,
2601 DependentTemplate
2602 };
2603 TemplateNameKindForDiagnostics
2604 getTemplateNameKindForDiagnostics(TemplateName Name);
2605
2606 /// Determine whether it's plausible that E was intended to be a
2607 /// template-name.
2608 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2609 if (!getLangOpts().CPlusPlus || E.isInvalid())
2610 return false;
2611 Dependent = false;
2612 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2613 return !DRE->hasExplicitTemplateArgs();
2614 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2615 return !ME->hasExplicitTemplateArgs();
2616 Dependent = true;
2617 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2618 return !DSDRE->hasExplicitTemplateArgs();
2619 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2620 return !DSME->hasExplicitTemplateArgs();
2621 // Any additional cases recognized here should also be handled by
2622 // diagnoseExprIntendedAsTemplateName.
2623 return false;
2624 }
2625 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2626 SourceLocation Less,
2627 SourceLocation Greater);
2628
2629 void warnOnReservedIdentifier(const NamedDecl *D);
2630
2631 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2632
2633 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2634 MultiTemplateParamsArg TemplateParameterLists);
2635 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2636 QualType &T, SourceLocation Loc,
2637 unsigned FailedFoldDiagID);
2638 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2639 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2640 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2641 DeclarationName Name, SourceLocation Loc,
2642 bool IsTemplateId);
2643 void
2644 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2645 SourceLocation FallbackLoc,
2646 SourceLocation ConstQualLoc = SourceLocation(),
2647 SourceLocation VolatileQualLoc = SourceLocation(),
2648 SourceLocation RestrictQualLoc = SourceLocation(),
2649 SourceLocation AtomicQualLoc = SourceLocation(),
2650 SourceLocation UnalignedQualLoc = SourceLocation());
2651
2652 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2653 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2654 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2655 const LookupResult &R);
2656 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2657 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2658 const LookupResult &R);
2659 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2660 const LookupResult &R);
2661 void CheckShadow(Scope *S, VarDecl *D);
2662
2663 /// Warn if 'E', which is an expression that is about to be modified, refers
2664 /// to a shadowing declaration.
2665 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2666
2667 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2668
2669private:
2670 /// Map of current shadowing declarations to shadowed declarations. Warn if
2671 /// it looks like the user is trying to modify the shadowing declaration.
2672 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2673
2674public:
2675 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2676 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2677 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2678 TypedefNameDecl *NewTD);
2679 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2680 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous);
2683 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2684 LookupResult &Previous, bool &Redeclaration);
2685 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2686 TypeSourceInfo *TInfo,
2687 LookupResult &Previous,
2688 MultiTemplateParamsArg TemplateParamLists,
2689 bool &AddToScope,
2690 ArrayRef<BindingDecl *> Bindings = None);
2691 NamedDecl *
2692 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2693 MultiTemplateParamsArg TemplateParamLists);
2694 // Returns true if the variable declaration is a redeclaration
2695 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2696 void CheckVariableDeclarationType(VarDecl *NewVD);
2697 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2698 Expr *Init);
2699 void CheckCompleteVariableDeclaration(VarDecl *VD);
2700 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2701 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2702
2703 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2704 TypeSourceInfo *TInfo,
2705 LookupResult &Previous,
2706 MultiTemplateParamsArg TemplateParamLists,
2707 bool &AddToScope);
2708 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2709
2710 enum class CheckConstexprKind {
2711 /// Diagnose issues that are non-constant or that are extensions.
2712 Diagnose,
2713 /// Identify whether this function satisfies the formal rules for constexpr
2714 /// functions in the current lanugage mode (with no extensions).
2715 CheckValid
2716 };
2717
2718 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2719 CheckConstexprKind Kind);
2720
2721 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2722 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2723 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2724 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2725 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2726 // Returns true if the function declaration is a redeclaration
2727 bool CheckFunctionDeclaration(Scope *S,
2728 FunctionDecl *NewFD, LookupResult &Previous,
2729 bool IsMemberSpecialization);
2730 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2731 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2732 QualType NewT, QualType OldT);
2733 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2734 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2735 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2736 bool IsDefinition);
2737 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2738 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2739 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2740 SourceLocation Loc,
2741 QualType T);
2742 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2743 SourceLocation NameLoc, IdentifierInfo *Name,
2744 QualType T, TypeSourceInfo *TSInfo,
2745 StorageClass SC);
2746 void ActOnParamDefaultArgument(Decl *param,
2747 SourceLocation EqualLoc,
2748 Expr *defarg);
2749 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2750 SourceLocation ArgLoc);
2751 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2752 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2753 SourceLocation EqualLoc);
2754 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2755 SourceLocation EqualLoc);
2756
2757 // Contexts where using non-trivial C union types can be disallowed. This is
2758 // passed to err_non_trivial_c_union_in_invalid_context.
2759 enum NonTrivialCUnionContext {
2760 // Function parameter.
2761 NTCUC_FunctionParam,
2762 // Function return.
2763 NTCUC_FunctionReturn,
2764 // Default-initialized object.
2765 NTCUC_DefaultInitializedObject,
2766 // Variable with automatic storage duration.
2767 NTCUC_AutoVar,
2768 // Initializer expression that might copy from another object.
2769 NTCUC_CopyInit,
2770 // Assignment.
2771 NTCUC_Assignment,
2772 // Compound literal.
2773 NTCUC_CompoundLiteral,
2774 // Block capture.
2775 NTCUC_BlockCapture,
2776 // lvalue-to-rvalue conversion of volatile type.
2777 NTCUC_LValueToRValueVolatile,
2778 };
2779
2780 /// Emit diagnostics if the initializer or any of its explicit or
2781 /// implicitly-generated subexpressions require copying or
2782 /// default-initializing a type that is or contains a C union type that is
2783 /// non-trivial to copy or default-initialize.
2784 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2785
2786 // These flags are passed to checkNonTrivialCUnion.
2787 enum NonTrivialCUnionKind {
2788 NTCUK_Init = 0x1,
2789 NTCUK_Destruct = 0x2,
2790 NTCUK_Copy = 0x4,
2791 };
2792
2793 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2794 /// a non-trivial C union is used in an invalid context.
2795 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2796 NonTrivialCUnionContext UseContext,
2797 unsigned NonTrivialKind);
2798
2799 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2800 void ActOnUninitializedDecl(Decl *dcl);
2801 void ActOnInitializerError(Decl *Dcl);
2802
2803 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2804 void ActOnCXXForRangeDecl(Decl *D);
2805 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2806 IdentifierInfo *Ident,
2807 ParsedAttributes &Attrs,
2808 SourceLocation AttrEnd);
2809 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2810 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2811 void CheckStaticLocalForDllExport(VarDecl *VD);
2812 void FinalizeDeclaration(Decl *D);
2813 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2814 ArrayRef<Decl *> Group);
2815 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2816
2817 /// Should be called on all declarations that might have attached
2818 /// documentation comments.
2819 void ActOnDocumentableDecl(Decl *D);
2820 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2821
2822 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2823 SourceLocation LocAfterDecls);
2824 void CheckForFunctionRedefinition(
2825 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2828 MultiTemplateParamsArg TemplateParamLists,
2829 SkipBodyInfo *SkipBody = nullptr);
2830 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2831 SkipBodyInfo *SkipBody = nullptr);
2832 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2833 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2834 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2835 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2836 bool isObjCMethodDecl(Decl *D) {
2837 return D && isa<ObjCMethodDecl>(D);
2838 }
2839
2840 /// Determine whether we can delay parsing the body of a function or
2841 /// function template until it is used, assuming we don't care about emitting
2842 /// code for that function.
2843 ///
2844 /// This will be \c false if we may need the body of the function in the
2845 /// middle of parsing an expression (where it's impractical to switch to
2846 /// parsing a different function), for instance, if it's constexpr in C++11
2847 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2848 bool canDelayFunctionBody(const Declarator &D);
2849
2850 /// Determine whether we can skip parsing the body of a function
2851 /// definition, assuming we don't care about analyzing its body or emitting
2852 /// code for that function.
2853 ///
2854 /// This will be \c false only if we may need the body of the function in
2855 /// order to parse the rest of the program (for instance, if it is
2856 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2857 bool canSkipFunctionBody(Decl *D);
2858
2859 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2860 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2861 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2862 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2863 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2864
2865 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2866 /// attribute for which parsing is delayed.
2867 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2868
2869 /// Diagnose any unused parameters in the given sequence of
2870 /// ParmVarDecl pointers.
2871 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2872
2873 /// Diagnose whether the size of parameters or return value of a
2874 /// function or obj-c method definition is pass-by-value and larger than a
2875 /// specified threshold.
2876 void
2877 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2878 QualType ReturnTy, NamedDecl *D);
2879
2880 void DiagnoseInvalidJumps(Stmt *Body);
2881 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2882 SourceLocation AsmLoc,
2883 SourceLocation RParenLoc);
2884
2885 /// Handle a C++11 empty-declaration and attribute-declaration.
2886 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2887 SourceLocation SemiLoc);
2888
2889 enum class ModuleDeclKind {
2890 Interface, ///< 'export module X;'
2891 Implementation, ///< 'module X;'
2892 };
2893
2894 /// The parser has processed a module-declaration that begins the definition
2895 /// of a module interface or implementation.
2896 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2897 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2898 ModuleIdPath Path, bool IsFirstDecl);
2899
2900 /// The parser has processed a global-module-fragment declaration that begins
2901 /// the definition of the global module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2904
2905 /// The parser has processed a private-module-fragment declaration that begins
2906 /// the definition of the private module fragment of the current module unit.
2907 /// \param ModuleLoc The location of the 'module' keyword.
2908 /// \param PrivateLoc The location of the 'private' keyword.
2909 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2910 SourceLocation PrivateLoc);
2911
2912 /// The parser has processed a module import declaration.
2913 ///
2914 /// \param StartLoc The location of the first token in the declaration. This
2915 /// could be the location of an '@', 'export', or 'import'.
2916 /// \param ExportLoc The location of the 'export' keyword, if any.
2917 /// \param ImportLoc The location of the 'import' keyword.
2918 /// \param Path The module access path.
2919 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2920 SourceLocation ExportLoc,
2921 SourceLocation ImportLoc, ModuleIdPath Path);
2922 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2923 SourceLocation ExportLoc,
2924 SourceLocation ImportLoc, Module *M,
2925 ModuleIdPath Path = {});
2926
2927 /// The parser has processed a module import translated from a
2928 /// #include or similar preprocessing directive.
2929 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2930 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// The parsed has entered a submodule.
2933 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2934 /// The parser has left a submodule.
2935 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2936
2937 /// Create an implicit import of the given module at the given
2938 /// source location, for error recovery, if possible.
2939 ///
2940 /// This routine is typically used when an entity found by name lookup
2941 /// is actually hidden within a module that we know about but the user
2942 /// has forgotten to import.
2943 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2944 Module *Mod);
2945
2946 /// Kinds of missing import. Note, the values of these enumerators correspond
2947 /// to %select values in diagnostics.
2948 enum class MissingImportKind {
2949 Declaration,
2950 Definition,
2951 DefaultArgument,
2952 ExplicitSpecialization,
2953 PartialSpecialization
2954 };
2955
2956 /// Diagnose that the specified declaration needs to be visible but
2957 /// isn't, and suggest a module import that would resolve the problem.
2958 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2959 MissingImportKind MIK, bool Recover = true);
2960 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2961 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2962 MissingImportKind MIK, bool Recover);
2963
2964 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2965 SourceLocation LBraceLoc);
2966 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2967 SourceLocation RBraceLoc);
2968
2969 /// We've found a use of a templated declaration that would trigger an
2970 /// implicit instantiation. Check that any relevant explicit specializations
2971 /// and partial specializations are visible, and diagnose if not.
2972 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 PrintingPolicy getPrintingPolicy() const {
2976 return getPrintingPolicy(Context, PP);
2977 }
2978
2979 /// Retrieve a suitable printing policy for diagnostics.
2980 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2981 const Preprocessor &PP);
2982
2983 /// Scope actions.
2984 void ActOnPopScope(SourceLocation Loc, Scope *S);
2985 void ActOnTranslationUnitScope(Scope *S);
2986
2987 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2988 RecordDecl *&AnonRecord);
2989 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2990 MultiTemplateParamsArg TemplateParams,
2991 bool IsExplicitInstantiation,
2992 RecordDecl *&AnonRecord);
2993
2994 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2995 AccessSpecifier AS,
2996 RecordDecl *Record,
2997 const PrintingPolicy &Policy);
2998
2999 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3000 RecordDecl *Record);
3001
3002 /// Common ways to introduce type names without a tag for use in diagnostics.
3003 /// Keep in sync with err_tag_reference_non_tag.
3004 enum NonTagKind {
3005 NTK_NonStruct,
3006 NTK_NonClass,
3007 NTK_NonUnion,
3008 NTK_NonEnum,
3009 NTK_Typedef,
3010 NTK_TypeAlias,
3011 NTK_Template,
3012 NTK_TypeAliasTemplate,
3013 NTK_TemplateTemplateArgument,
3014 };
3015
3016 /// Given a non-tag type declaration, returns an enum useful for indicating
3017 /// what kind of non-tag type this is.
3018 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3019
3020 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3021 TagTypeKind NewTag, bool isDefinition,
3022 SourceLocation NewTagLoc,
3023 const IdentifierInfo *Name);
3024
3025 enum TagUseKind {
3026 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3027 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3028 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3029 TUK_Friend // Friend declaration: 'friend struct foo;'
3030 };
3031
3032 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3033 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3034 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3035 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3036 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3037 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3038 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3039 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3040 SkipBodyInfo *SkipBody = nullptr);
3041
3042 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3043 unsigned TagSpec, SourceLocation TagLoc,
3044 CXXScopeSpec &SS, IdentifierInfo *Name,
3045 SourceLocation NameLoc,
3046 const ParsedAttributesView &Attr,
3047 MultiTemplateParamsArg TempParamLists);
3048
3049 TypeResult ActOnDependentTag(Scope *S,
3050 unsigned TagSpec,
3051 TagUseKind TUK,
3052 const CXXScopeSpec &SS,
3053 IdentifierInfo *Name,
3054 SourceLocation TagLoc,
3055 SourceLocation NameLoc);
3056
3057 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3058 IdentifierInfo *ClassName,
3059 SmallVectorImpl<Decl *> &Decls);
3060 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3061 Declarator &D, Expr *BitfieldWidth);
3062
3063 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3064 Declarator &D, Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS);
3067 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3068 SourceLocation DeclStart, Declarator &D,
3069 Expr *BitfieldWidth,
3070 InClassInitStyle InitStyle,
3071 AccessSpecifier AS,
3072 const ParsedAttr &MSPropertyAttr);
3073
3074 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3075 TypeSourceInfo *TInfo,
3076 RecordDecl *Record, SourceLocation Loc,
3077 bool Mutable, Expr *BitfieldWidth,
3078 InClassInitStyle InitStyle,
3079 SourceLocation TSSL,
3080 AccessSpecifier AS, NamedDecl *PrevDecl,
3081 Declarator *D = nullptr);
3082
3083 bool CheckNontrivialField(FieldDecl *FD);
3084 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3085
3086 enum TrivialABIHandling {
3087 /// The triviality of a method unaffected by "trivial_abi".
3088 TAH_IgnoreTrivialABI,
3089
3090 /// The triviality of a method affected by "trivial_abi".
3091 TAH_ConsiderTrivialABI
3092 };
3093
3094 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3095 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3096 bool Diagnose = false);
3097
3098 /// For a defaulted function, the kind of defaulted function that it is.
3099 class DefaultedFunctionKind {
3100 CXXSpecialMember SpecialMember : 8;
3101 DefaultedComparisonKind Comparison : 8;
3102
3103 public:
3104 DefaultedFunctionKind()
3105 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3106 }
3107 DefaultedFunctionKind(CXXSpecialMember CSM)
3108 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3109 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3110 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3111
3112 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3113 bool isComparison() const {
3114 return Comparison != DefaultedComparisonKind::None;
3115 }
3116
3117 explicit operator bool() const {
3118 return isSpecialMember() || isComparison();
3119 }
3120
3121 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3122 DefaultedComparisonKind asComparison() const { return Comparison; }
3123
3124 /// Get the index of this function kind for use in diagnostics.
3125 unsigned getDiagnosticIndex() const {
3126 static_assert(CXXInvalid > CXXDestructor,
3127 "invalid should have highest index");
3128 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3129 "none should be equal to zero");
3130 return SpecialMember + (unsigned)Comparison;
3131 }
3132 };
3133
3134 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3135
3136 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3137 return getDefaultedFunctionKind(MD).asSpecialMember();
3138 }
3139 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3140 return getDefaultedFunctionKind(FD).asComparison();
3141 }
3142
3143 void ActOnLastBitfield(SourceLocation DeclStart,
3144 SmallVectorImpl<Decl *> &AllIvarDecls);
3145 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3146 Declarator &D, Expr *BitfieldWidth,
3147 tok::ObjCKeywordKind visibility);
3148
3149 // This is used for both record definitions and ObjC interface declarations.
3150 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3151 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3152 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3153
3154 /// ActOnTagStartDefinition - Invoked when we have entered the
3155 /// scope of a tag's definition (e.g., for an enumeration, class,
3156 /// struct, or union).
3157 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3158
3159 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3160 /// Differently from C++, actually parse the body and reject / error out
3161 /// in case of a structural mismatch.
3162 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3163 SkipBodyInfo &SkipBody);
3164
3165 typedef void *SkippedDefinitionContext;
3166
3167 /// Invoked when we enter a tag definition that we're skipping.
3168 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3169
3170 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3171
3172 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3173 /// C++ record definition's base-specifiers clause and are starting its
3174 /// member declarations.
3175 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3176 SourceLocation FinalLoc,
3177 bool IsFinalSpelledSealed,
3178 bool IsAbstract,
3179 SourceLocation LBraceLoc);
3180
3181 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3182 /// the definition of a tag (enumeration, class, struct, or union).
3183 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3184 SourceRange BraceRange);
3185
3186 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3187
3188 void ActOnObjCContainerFinishDefinition();
3189
3190 /// Invoked when we must temporarily exit the objective-c container
3191 /// scope for parsing/looking-up C constructs.
3192 ///
3193 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3194 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3195 void ActOnObjCReenterContainerContext(DeclContext *DC);
3196
3197 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3198 /// error parsing the definition of a tag.
3199 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3200
3201 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3202 EnumConstantDecl *LastEnumConst,
3203 SourceLocation IdLoc,
3204 IdentifierInfo *Id,
3205 Expr *val);
3206 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3207 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3208 QualType EnumUnderlyingTy, bool IsFixed,
3209 const EnumDecl *Prev);
3210
3211 /// Determine whether the body of an anonymous enumeration should be skipped.
3212 /// \param II The name of the first enumerator.
3213 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3214 SourceLocation IILoc);
3215
3216 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3217 SourceLocation IdLoc, IdentifierInfo *Id,
3218 const ParsedAttributesView &Attrs,
3219 SourceLocation EqualLoc, Expr *Val);
3220 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3221 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3222 const ParsedAttributesView &Attr);
3223
3224 /// Set the current declaration context until it gets popped.
3225 void PushDeclContext(Scope *S, DeclContext *DC);
3226 void PopDeclContext();
3227
3228 /// EnterDeclaratorContext - Used when we must lookup names in the context
3229 /// of a declarator's nested name specifier.
3230 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3231 void ExitDeclaratorContext(Scope *S);
3232
3233 /// Enter a template parameter scope, after it's been associated with a particular
3234 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3235 /// in the correct order.
3236 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3237
3238 /// Push the parameters of D, which must be a function, into scope.
3239 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3240 void ActOnExitFunctionContext();
3241
3242 DeclContext *getFunctionLevelDeclContext();
3243
3244 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3245 /// to the function decl for the function being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 FunctionDecl *getCurFunctionDecl();
3248
3249 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3250 /// the method decl for the method being parsed. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 ObjCMethodDecl *getCurMethodDecl();
3253
3254 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3255 /// or C function we're in, otherwise return null. If we're currently
3256 /// in a 'block', this returns the containing context.
3257 NamedDecl *getCurFunctionOrMethodDecl();
3258
3259 /// Add this decl to the scope shadowed decl chains.
3260 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3261
3262 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3263 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3264 /// true if 'D' belongs to the given declaration context.
3265 ///
3266 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3267 /// enclosing namespace set of the context, rather than contained
3268 /// directly within it.
3269 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3270 bool AllowInlineNamespace = false);
3271
3272 /// Finds the scope corresponding to the given decl context, if it
3273 /// happens to be an enclosing scope. Otherwise return NULL.
3274 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3275
3276 /// Subroutines of ActOnDeclarator().
3277 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3278 TypeSourceInfo *TInfo);
3279 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3280
3281 /// Describes the kind of merge to perform for availability
3282 /// attributes (including "deprecated", "unavailable", and "availability").
3283 enum AvailabilityMergeKind {
3284 /// Don't merge availability attributes at all.
3285 AMK_None,
3286 /// Merge availability attributes for a redeclaration, which requires
3287 /// an exact match.
3288 AMK_Redeclaration,
3289 /// Merge availability attributes for an override, which requires
3290 /// an exact match or a weakening of constraints.
3291 AMK_Override,
3292 /// Merge availability attributes for an implementation of
3293 /// a protocol requirement.
3294 AMK_ProtocolImplementation,
3295 /// Merge availability attributes for an implementation of
3296 /// an optional protocol requirement.
3297 AMK_OptionalProtocolImplementation
3298 };
3299
3300 /// Describes the kind of priority given to an availability attribute.
3301 ///
3302 /// The sum of priorities deteremines the final priority of the attribute.
3303 /// The final priority determines how the attribute will be merged.
3304 /// An attribute with a lower priority will always remove higher priority
3305 /// attributes for the specified platform when it is being applied. An
3306 /// attribute with a higher priority will not be applied if the declaration
3307 /// already has an availability attribute with a lower priority for the
3308 /// specified platform. The final prirority values are not expected to match
3309 /// the values in this enumeration, but instead should be treated as a plain
3310 /// integer value. This enumeration just names the priority weights that are
3311 /// used to calculate that final vaue.
3312 enum AvailabilityPriority : int {
3313 /// The availability attribute was specified explicitly next to the
3314 /// declaration.
3315 AP_Explicit = 0,
3316
3317 /// The availability attribute was applied using '#pragma clang attribute'.
3318 AP_PragmaClangAttribute = 1,
3319
3320 /// The availability attribute for a specific platform was inferred from
3321 /// an availability attribute for another platform.
3322 AP_InferredFromOtherPlatform = 2
3323 };
3324
3325 /// Attribute merging methods. Return true if a new attribute was added.
3326 AvailabilityAttr *
3327 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3328 IdentifierInfo *Platform, bool Implicit,
3329 VersionTuple Introduced, VersionTuple Deprecated,
3330 VersionTuple Obsoleted, bool IsUnavailable,
3331 StringRef Message, bool IsStrict, StringRef Replacement,
3332 AvailabilityMergeKind AMK, int Priority);
3333 TypeVisibilityAttr *
3334 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3335 TypeVisibilityAttr::VisibilityType Vis);
3336 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3337 VisibilityAttr::VisibilityType Vis);
3338 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3339 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3340 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3341 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3342 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3343 const AttributeCommonInfo &CI,
3344 bool BestCase,
3345 MSInheritanceModel Model);
3346 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3347 IdentifierInfo *Format, int FormatIdx,
3348 int FirstArg);
3349 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3350 StringRef Name);
3351 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3352 StringRef Name);
3353 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3354 const AttributeCommonInfo &CI,
3355 const IdentifierInfo *Ident);
3356 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3357 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3358 StringRef Name);
3359 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3360 const AttributeCommonInfo &CI);
3361 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3362 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3363 const InternalLinkageAttr &AL);
3364 WebAssemblyImportNameAttr *mergeImportNameAttr(
3365 Decl *D, const WebAssemblyImportNameAttr &AL);
3366 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3367 Decl *D, const WebAssemblyImportModuleAttr &AL);
3368 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3369 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3370 const EnforceTCBLeafAttr &AL);
3371
3372 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3373 AvailabilityMergeKind AMK = AMK_Redeclaration);
3374 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3375 LookupResult &OldDecls);
3376 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3377 bool MergeTypeWithOld);
3378 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3379 Scope *S, bool MergeTypeWithOld);
3380 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3381 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3382 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3383 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3384 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3385 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3386 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3387
3388 // AssignmentAction - This is used by all the assignment diagnostic functions
3389 // to represent what is actually causing the operation
3390 enum AssignmentAction {
3391 AA_Assigning,
3392 AA_Passing,
3393 AA_Returning,
3394 AA_Converting,
3395 AA_Initializing,
3396 AA_Sending,
3397 AA_Casting,
3398 AA_Passing_CFAudited
3399 };
3400
3401 /// C++ Overloading.
3402 enum OverloadKind {
3403 /// This is a legitimate overload: the existing declarations are
3404 /// functions or function templates with different signatures.
3405 Ovl_Overload,
3406
3407 /// This is not an overload because the signature exactly matches
3408 /// an existing declaration.
3409 Ovl_Match,
3410
3411 /// This is not an overload because the lookup results contain a
3412 /// non-function.
3413 Ovl_NonFunction
3414 };
3415 OverloadKind CheckOverload(Scope *S,
3416 FunctionDecl *New,
3417 const LookupResult &OldDecls,
3418 NamedDecl *&OldDecl,
3419 bool IsForUsingDecl);
3420 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3421 bool ConsiderCudaAttrs = true,
3422 bool ConsiderRequiresClauses = true);
3423
3424 enum class AllowedExplicit {
3425 /// Allow no explicit functions to be used.
3426 None,
3427 /// Allow explicit conversion functions but not explicit constructors.
3428 Conversions,
3429 /// Allow both explicit conversion functions and explicit constructors.
3430 All
3431 };
3432
3433 ImplicitConversionSequence
3434 TryImplicitConversion(Expr *From, QualType ToType,
3435 bool SuppressUserConversions,
3436 AllowedExplicit AllowExplicit,
3437 bool InOverloadResolution,
3438 bool CStyle,
3439 bool AllowObjCWritebackConversion);
3440
3441 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3442 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3443 bool IsComplexPromotion(QualType FromType, QualType ToType);
3444 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3445 bool InOverloadResolution,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3448 QualType& ConvertedType, bool &IncompatibleObjC);
3449 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3450 QualType &ConvertedType);
3451 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3452 QualType& ConvertedType);
3453 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3454 const FunctionProtoType *NewType,
3455 unsigned *ArgPos = nullptr);
3456 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3457 QualType FromType, QualType ToType);
3458
3459 void maybeExtendBlockObject(ExprResult &E);
3460 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3461 bool CheckPointerConversion(Expr *From, QualType ToType,
3462 CastKind &Kind,
3463 CXXCastPath& BasePath,
3464 bool IgnoreBaseAccess,
3465 bool Diagnose = true);
3466 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3467 bool InOverloadResolution,
3468 QualType &ConvertedType);
3469 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3470 CastKind &Kind,
3471 CXXCastPath &BasePath,
3472 bool IgnoreBaseAccess);
3473 bool IsQualificationConversion(QualType FromType, QualType ToType,
3474 bool CStyle, bool &ObjCLifetimeConversion);
3475 bool IsFunctionConversion(QualType FromType, QualType ToType,
3476 QualType &ResultTy);
3477 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3478 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3479
3480 bool CanPerformAggregateInitializationForOverloadResolution(
3481 const InitializedEntity &Entity, InitListExpr *From);
3482
3483 bool IsStringInit(Expr *Init, const ArrayType *AT);
3484
3485 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3486 ExprResult Init);
3487 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3488 SourceLocation EqualLoc,
3489 ExprResult Init,
3490 bool TopLevelOfInitList = false,
3491 bool AllowExplicit = false);
3492 ExprResult PerformObjectArgumentInitialization(Expr *From,
3493 NestedNameSpecifier *Qualifier,
3494 NamedDecl *FoundDecl,
3495 CXXMethodDecl *Method);
3496
3497 /// Check that the lifetime of the initializer (and its subobjects) is
3498 /// sufficient for initializing the entity, and perform lifetime extension
3499 /// (when permitted) if not.
3500 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3501
3502 ExprResult PerformContextuallyConvertToBool(Expr *From);
3503 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3504
3505 /// Contexts in which a converted constant expression is required.
3506 enum CCEKind {
3507 CCEK_CaseValue, ///< Expression in a case label.
3508 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3509 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3510 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3511 CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier.
3512 };
3513 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3514 llvm::APSInt &Value, CCEKind CCE);
3515 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3516 APValue &Value, CCEKind CCE,
3517 NamedDecl *Dest = nullptr);
3518
3519 /// Abstract base class used to perform a contextual implicit
3520 /// conversion from an expression to any type passing a filter.
3521 class ContextualImplicitConverter {
3522 public:
3523 bool Suppress;
3524 bool SuppressConversion;
3525
3526 ContextualImplicitConverter(bool Suppress = false,
3527 bool SuppressConversion = false)
3528 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3529
3530 /// Determine whether the specified type is a valid destination type
3531 /// for this conversion.
3532 virtual bool match(QualType T) = 0;
3533
3534 /// Emits a diagnostic complaining that the expression does not have
3535 /// integral or enumeration type.
3536 virtual SemaDiagnosticBuilder
3537 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3538
3539 /// Emits a diagnostic when the expression has incomplete class type.
3540 virtual SemaDiagnosticBuilder
3541 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3542
3543 /// Emits a diagnostic when the only matching conversion function
3544 /// is explicit.
3545 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3546 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3547
3548 /// Emits a note for the explicit conversion function.
3549 virtual SemaDiagnosticBuilder
3550 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3551
3552 /// Emits a diagnostic when there are multiple possible conversion
3553 /// functions.
3554 virtual SemaDiagnosticBuilder
3555 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3556
3557 /// Emits a note for one of the candidate conversions.
3558 virtual SemaDiagnosticBuilder
3559 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3560
3561 /// Emits a diagnostic when we picked a conversion function
3562 /// (for cases when we are not allowed to pick a conversion function).
3563 virtual SemaDiagnosticBuilder diagnoseConversion(
3564 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3565
3566 virtual ~ContextualImplicitConverter() {}
3567 };
3568
3569 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3570 bool AllowScopedEnumerations;
3571
3572 public:
3573 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3574 bool Suppress, bool SuppressConversion)
3575 : ContextualImplicitConverter(Suppress, SuppressConversion),
3576 AllowScopedEnumerations(AllowScopedEnumerations) {}
3577
3578 /// Match an integral or (possibly scoped) enumeration type.
3579 bool match(QualType T) override;
3580
3581 SemaDiagnosticBuilder
3582 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3583 return diagnoseNotInt(S, Loc, T);
3584 }
3585
3586 /// Emits a diagnostic complaining that the expression does not have
3587 /// integral or enumeration type.
3588 virtual SemaDiagnosticBuilder
3589 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3590 };
3591
3592 /// Perform a contextual implicit conversion.
3593 ExprResult PerformContextualImplicitConversion(
3594 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3595
3596
3597 enum ObjCSubscriptKind {
3598 OS_Array,
3599 OS_Dictionary,
3600 OS_Error
3601 };
3602 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3603
3604 // Note that LK_String is intentionally after the other literals, as
3605 // this is used for diagnostics logic.
3606 enum ObjCLiteralKind {
3607 LK_Array,
3608 LK_Dictionary,
3609 LK_Numeric,
3610 LK_Boxed,
3611 LK_String,
3612 LK_Block,
3613 LK_None
3614 };
3615 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3616
3617 ExprResult PerformObjectMemberConversion(Expr *From,
3618 NestedNameSpecifier *Qualifier,
3619 NamedDecl *FoundDecl,
3620 NamedDecl *Member);
3621
3622 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3623 // TODO: make this is a typesafe union.
3624 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3625 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3626
3627 using ADLCallKind = CallExpr::ADLCallKind;
3628
3629 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3630 ArrayRef<Expr *> Args,
3631 OverloadCandidateSet &CandidateSet,
3632 bool SuppressUserConversions = false,
3633 bool PartialOverloading = false,
3634 bool AllowExplicit = true,
3635 bool AllowExplicitConversion = false,
3636 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3637 ConversionSequenceList EarlyConversions = None,
3638 OverloadCandidateParamOrder PO = {});
3639 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3640 ArrayRef<Expr *> Args,
3641 OverloadCandidateSet &CandidateSet,
3642 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3643 bool SuppressUserConversions = false,
3644 bool PartialOverloading = false,
3645 bool FirstArgumentIsBase = false);
3646 void AddMethodCandidate(DeclAccessPair FoundDecl,
3647 QualType ObjectType,
3648 Expr::Classification ObjectClassification,
3649 ArrayRef<Expr *> Args,
3650 OverloadCandidateSet& CandidateSet,
3651 bool SuppressUserConversion = false,
3652 OverloadCandidateParamOrder PO = {});
3653 void AddMethodCandidate(CXXMethodDecl *Method,
3654 DeclAccessPair FoundDecl,
3655 CXXRecordDecl *ActingContext, QualType ObjectType,
3656 Expr::Classification ObjectClassification,
3657 ArrayRef<Expr *> Args,
3658 OverloadCandidateSet& CandidateSet,
3659 bool SuppressUserConversions = false,
3660 bool PartialOverloading = false,
3661 ConversionSequenceList EarlyConversions = None,
3662 OverloadCandidateParamOrder PO = {});
3663 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3664 DeclAccessPair FoundDecl,
3665 CXXRecordDecl *ActingContext,
3666 TemplateArgumentListInfo *ExplicitTemplateArgs,
3667 QualType ObjectType,
3668 Expr::Classification ObjectClassification,
3669 ArrayRef<Expr *> Args,
3670 OverloadCandidateSet& CandidateSet,
3671 bool SuppressUserConversions = false,
3672 bool PartialOverloading = false,
3673 OverloadCandidateParamOrder PO = {});
3674 void AddTemplateOverloadCandidate(
3675 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3676 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3677 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3678 bool PartialOverloading = false, bool AllowExplicit = true,
3679 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3680 OverloadCandidateParamOrder PO = {});
3681 bool CheckNonDependentConversions(
3682 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3683 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3684 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3685 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3686 Expr::Classification ObjectClassification = {},
3687 OverloadCandidateParamOrder PO = {});
3688 void AddConversionCandidate(
3689 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3690 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3691 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3692 bool AllowExplicit, bool AllowResultConversion = true);
3693 void AddTemplateConversionCandidate(
3694 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3695 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3696 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3697 bool AllowExplicit, bool AllowResultConversion = true);
3698 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3699 DeclAccessPair FoundDecl,
3700 CXXRecordDecl *ActingContext,
3701 const FunctionProtoType *Proto,
3702 Expr *Object, ArrayRef<Expr *> Args,
3703 OverloadCandidateSet& CandidateSet);
3704 void AddNonMemberOperatorCandidates(
3705 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3706 OverloadCandidateSet &CandidateSet,
3707 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3708 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3709 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3710 OverloadCandidateSet &CandidateSet,
3711 OverloadCandidateParamOrder PO = {});
3712 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3713 OverloadCandidateSet& CandidateSet,
3714 bool IsAssignmentOperator = false,
3715 unsigned NumContextualBoolArguments = 0);
3716 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3717 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3718 OverloadCandidateSet& CandidateSet);
3719 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3720 SourceLocation Loc,
3721 ArrayRef<Expr *> Args,
3722 TemplateArgumentListInfo *ExplicitTemplateArgs,
3723 OverloadCandidateSet& CandidateSet,
3724 bool PartialOverloading = false);
3725
3726 // Emit as a 'note' the specific overload candidate
3727 void NoteOverloadCandidate(
3728 NamedDecl *Found, FunctionDecl *Fn,
3729 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3730 QualType DestType = QualType(), bool TakingAddress = false);
3731
3732 // Emit as a series of 'note's all template and non-templates identified by
3733 // the expression Expr
3734 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3735 bool TakingAddress = false);
3736
3737 /// Check the enable_if expressions on the given function. Returns the first
3738 /// failing attribute, or NULL if they were all successful.
3739 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3740 ArrayRef<Expr *> Args,
3741 bool MissingImplicitThis = false);
3742
3743 /// Find the failed Boolean condition within a given Boolean
3744 /// constant expression, and describe it with a string.
3745 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3746
3747 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3748 /// non-ArgDependent DiagnoseIfAttrs.
3749 ///
3750 /// Argument-dependent diagnose_if attributes should be checked each time a
3751 /// function is used as a direct callee of a function call.
3752 ///
3753 /// Returns true if any errors were emitted.
3754 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3755 const Expr *ThisArg,
3756 ArrayRef<const Expr *> Args,
3757 SourceLocation Loc);
3758
3759 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3760 /// ArgDependent DiagnoseIfAttrs.
3761 ///
3762 /// Argument-independent diagnose_if attributes should be checked on every use
3763 /// of a function.
3764 ///
3765 /// Returns true if any errors were emitted.
3766 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3767 SourceLocation Loc);
3768
3769 /// Returns whether the given function's address can be taken or not,
3770 /// optionally emitting a diagnostic if the address can't be taken.
3771 ///
3772 /// Returns false if taking the address of the function is illegal.
3773 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3774 bool Complain = false,
3775 SourceLocation Loc = SourceLocation());
3776
3777 // [PossiblyAFunctionType] --> [Return]
3778 // NonFunctionType --> NonFunctionType
3779 // R (A) --> R(A)
3780 // R (*)(A) --> R (A)
3781 // R (&)(A) --> R (A)
3782 // R (S::*)(A) --> R (A)
3783 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3784
3785 FunctionDecl *
3786 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3787 QualType TargetType,
3788 bool Complain,
3789 DeclAccessPair &Found,
3790 bool *pHadMultipleCandidates = nullptr);
3791
3792 FunctionDecl *
3793 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3794
3795 bool resolveAndFixAddressOfSingleOverloadCandidate(
3796 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3797
3798 FunctionDecl *
3799 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3800 bool Complain = false,
3801 DeclAccessPair *Found = nullptr);
3802
3803 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3804 ExprResult &SrcExpr,
3805 bool DoFunctionPointerConverion = false,
3806 bool Complain = false,
3807 SourceRange OpRangeForComplaining = SourceRange(),
3808 QualType DestTypeForComplaining = QualType(),
3809 unsigned DiagIDForComplaining = 0);
3810
3811
3812 Expr *FixOverloadedFunctionReference(Expr *E,
3813 DeclAccessPair FoundDecl,
3814 FunctionDecl *Fn);
3815 ExprResult FixOverloadedFunctionReference(ExprResult,
3816 DeclAccessPair FoundDecl,
3817 FunctionDecl *Fn);
3818
3819 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3820 ArrayRef<Expr *> Args,
3821 OverloadCandidateSet &CandidateSet,
3822 bool PartialOverloading = false);
3823 void AddOverloadedCallCandidates(
3824 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3825 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3826
3827 // An enum used to represent the different possible results of building a
3828 // range-based for loop.
3829 enum ForRangeStatus {
3830 FRS_Success,
3831 FRS_NoViableFunction,
3832 FRS_DiagnosticIssued
3833 };
3834
3835 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3836 SourceLocation RangeLoc,
3837 const DeclarationNameInfo &NameInfo,
3838 LookupResult &MemberLookup,
3839 OverloadCandidateSet *CandidateSet,
3840 Expr *Range, ExprResult *CallExpr);
3841
3842 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3843 UnresolvedLookupExpr *ULE,
3844 SourceLocation LParenLoc,
3845 MultiExprArg Args,
3846 SourceLocation RParenLoc,
3847 Expr *ExecConfig,
3848 bool AllowTypoCorrection=true,
3849 bool CalleesAddressIsTaken=false);
3850
3851 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3852 MultiExprArg Args, SourceLocation RParenLoc,
3853 OverloadCandidateSet *CandidateSet,
3854 ExprResult *Result);
3855
3856 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3857 NestedNameSpecifierLoc NNSLoc,
3858 DeclarationNameInfo DNI,
3859 const UnresolvedSetImpl &Fns,
3860 bool PerformADL = true);
3861
3862 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3863 UnaryOperatorKind Opc,
3864 const UnresolvedSetImpl &Fns,
3865 Expr *input, bool RequiresADL = true);
3866
3867 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3868 OverloadedOperatorKind Op,
3869 const UnresolvedSetImpl &Fns,
3870 ArrayRef<Expr *> Args, bool RequiresADL = true);
3871 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3872 BinaryOperatorKind Opc,
3873 const UnresolvedSetImpl &Fns,
3874 Expr *LHS, Expr *RHS,
3875 bool RequiresADL = true,
3876 bool AllowRewrittenCandidates = true,
3877 FunctionDecl *DefaultedFn = nullptr);
3878 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3879 const UnresolvedSetImpl &Fns,
3880 Expr *LHS, Expr *RHS,
3881 FunctionDecl *DefaultedFn);
3882
3883 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3884 SourceLocation RLoc,
3885 Expr *Base,Expr *Idx);
3886
3887 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3888 SourceLocation LParenLoc,
3889 MultiExprArg Args,
3890 SourceLocation RParenLoc,
3891 bool AllowRecovery = false);
3892 ExprResult
3893 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3894 MultiExprArg Args,
3895 SourceLocation RParenLoc);
3896
3897 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3898 SourceLocation OpLoc,
3899 bool *NoArrowOperatorFound = nullptr);
3900
3901 /// CheckCallReturnType - Checks that a call expression's return type is
3902 /// complete. Returns true on failure. The location passed in is the location
3903 /// that best represents the call.
3904 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3905 CallExpr *CE, FunctionDecl *FD);
3906
3907 /// Helpers for dealing with blocks and functions.
3908 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3909 bool CheckParameterNames);
3910 void CheckCXXDefaultArguments(FunctionDecl *FD);
3911 void CheckExtraCXXDefaultArguments(Declarator &D);
3912 Scope *getNonFieldDeclScope(Scope *S);
3913
3914 /// \name Name lookup
3915 ///
3916 /// These routines provide name lookup that is used during semantic
3917 /// analysis to resolve the various kinds of names (identifiers,
3918 /// overloaded operator names, constructor names, etc.) into zero or
3919 /// more declarations within a particular scope. The major entry
3920 /// points are LookupName, which performs unqualified name lookup,
3921 /// and LookupQualifiedName, which performs qualified name lookup.
3922 ///
3923 /// All name lookup is performed based on some specific criteria,
3924 /// which specify what names will be visible to name lookup and how
3925 /// far name lookup should work. These criteria are important both
3926 /// for capturing language semantics (certain lookups will ignore
3927 /// certain names, for example) and for performance, since name
3928 /// lookup is often a bottleneck in the compilation of C++. Name
3929 /// lookup criteria is specified via the LookupCriteria enumeration.
3930 ///
3931 /// The results of name lookup can vary based on the kind of name
3932 /// lookup performed, the current language, and the translation
3933 /// unit. In C, for example, name lookup will either return nothing
3934 /// (no entity found) or a single declaration. In C++, name lookup
3935 /// can additionally refer to a set of overloaded functions or
3936 /// result in an ambiguity. All of the possible results of name
3937 /// lookup are captured by the LookupResult class, which provides
3938 /// the ability to distinguish among them.
3939 //@{
3940
3941 /// Describes the kind of name lookup to perform.
3942 enum LookupNameKind {
3943 /// Ordinary name lookup, which finds ordinary names (functions,
3944 /// variables, typedefs, etc.) in C and most kinds of names
3945 /// (functions, variables, members, types, etc.) in C++.
3946 LookupOrdinaryName = 0,
3947 /// Tag name lookup, which finds the names of enums, classes,
3948 /// structs, and unions.
3949 LookupTagName,
3950 /// Label name lookup.
3951 LookupLabel,
3952 /// Member name lookup, which finds the names of
3953 /// class/struct/union members.
3954 LookupMemberName,
3955 /// Look up of an operator name (e.g., operator+) for use with
3956 /// operator overloading. This lookup is similar to ordinary name
3957 /// lookup, but will ignore any declarations that are class members.
3958 LookupOperatorName,
3959 /// Look up a name following ~ in a destructor name. This is an ordinary
3960 /// lookup, but prefers tags to typedefs.
3961 LookupDestructorName,
3962 /// Look up of a name that precedes the '::' scope resolution
3963 /// operator in C++. This lookup completely ignores operator, object,
3964 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3965 LookupNestedNameSpecifierName,
3966 /// Look up a namespace name within a C++ using directive or
3967 /// namespace alias definition, ignoring non-namespace names (C++
3968 /// [basic.lookup.udir]p1).
3969 LookupNamespaceName,
3970 /// Look up all declarations in a scope with the given name,
3971 /// including resolved using declarations. This is appropriate
3972 /// for checking redeclarations for a using declaration.
3973 LookupUsingDeclName,
3974 /// Look up an ordinary name that is going to be redeclared as a
3975 /// name with linkage. This lookup ignores any declarations that
3976 /// are outside of the current scope unless they have linkage. See
3977 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3978 LookupRedeclarationWithLinkage,
3979 /// Look up a friend of a local class. This lookup does not look
3980 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3981 LookupLocalFriendName,
3982 /// Look up the name of an Objective-C protocol.
3983 LookupObjCProtocolName,
3984 /// Look up implicit 'self' parameter of an objective-c method.
3985 LookupObjCImplicitSelfParam,
3986 /// Look up the name of an OpenMP user-defined reduction operation.
3987 LookupOMPReductionName,
3988 /// Look up the name of an OpenMP user-defined mapper.
3989 LookupOMPMapperName,
3990 /// Look up any declaration with any name.
3991 LookupAnyName
3992 };
3993
3994 /// Specifies whether (or how) name lookup is being performed for a
3995 /// redeclaration (vs. a reference).
3996 enum RedeclarationKind {
3997 /// The lookup is a reference to this name that is not for the
3998 /// purpose of redeclaring the name.
3999 NotForRedeclaration = 0,
4000 /// The lookup results will be used for redeclaration of a name,
4001 /// if an entity by that name already exists and is visible.
4002 ForVisibleRedeclaration,
4003 /// The lookup results will be used for redeclaration of a name
4004 /// with external linkage; non-visible lookup results with external linkage
4005 /// may also be found.
4006 ForExternalRedeclaration
4007 };
4008
4009 RedeclarationKind forRedeclarationInCurContext() {
4010 // A declaration with an owning module for linkage can never link against
4011 // anything that is not visible. We don't need to check linkage here; if
4012 // the context has internal linkage, redeclaration lookup won't find things
4013 // from other TUs, and we can't safely compute linkage yet in general.
4014 if (cast<Decl>(CurContext)
4015 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4016 return ForVisibleRedeclaration;
4017 return ForExternalRedeclaration;
4018 }
4019
4020 /// The possible outcomes of name lookup for a literal operator.
4021 enum LiteralOperatorLookupResult {
4022 /// The lookup resulted in an error.
4023 LOLR_Error,
4024 /// The lookup found no match but no diagnostic was issued.
4025 LOLR_ErrorNoDiagnostic,
4026 /// The lookup found a single 'cooked' literal operator, which
4027 /// expects a normal literal to be built and passed to it.
4028 LOLR_Cooked,
4029 /// The lookup found a single 'raw' literal operator, which expects
4030 /// a string literal containing the spelling of the literal token.
4031 LOLR_Raw,
4032 /// The lookup found an overload set of literal operator templates,
4033 /// which expect the characters of the spelling of the literal token to be
4034 /// passed as a non-type template argument pack.
4035 LOLR_Template,
4036 /// The lookup found an overload set of literal operator templates,
4037 /// which expect the character type and characters of the spelling of the
4038 /// string literal token to be passed as template arguments.
4039 LOLR_StringTemplatePack,
4040 };
4041
4042 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4043 CXXSpecialMember SM,
4044 bool ConstArg,
4045 bool VolatileArg,
4046 bool RValueThis,
4047 bool ConstThis,
4048 bool VolatileThis);
4049
4050 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4051 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4052 TypoRecoveryCallback;
4053
4054private:
4055 bool CppLookupName(LookupResult &R, Scope *S);
4056
4057 struct TypoExprState {
4058 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4059 TypoDiagnosticGenerator DiagHandler;
4060 TypoRecoveryCallback RecoveryHandler;
4061 TypoExprState();
4062 TypoExprState(TypoExprState &&other) noexcept;
4063 TypoExprState &operator=(TypoExprState &&other) noexcept;
4064 };
4065
4066 /// The set of unhandled TypoExprs and their associated state.
4067 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4068
4069 /// Creates a new TypoExpr AST node.
4070 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4071 TypoDiagnosticGenerator TDG,
4072 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4073
4074 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4075 //
4076 // The boolean value will be true to indicate that the namespace was loaded
4077 // from an AST/PCH file, or false otherwise.
4078 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4079
4080 /// Whether we have already loaded known namespaces from an extenal
4081 /// source.
4082 bool LoadedExternalKnownNamespaces;
4083
4084 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4085 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4086 /// should be skipped entirely.
4087 std::unique_ptr<TypoCorrectionConsumer>
4088 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4089 Sema::LookupNameKind LookupKind, Scope *S,
4090 CXXScopeSpec *SS,
4091 CorrectionCandidateCallback &CCC,
4092 DeclContext *MemberContext, bool EnteringContext,
4093 const ObjCObjectPointerType *OPT,
4094 bool ErrorRecovery);
4095
4096public:
4097 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4098
4099 /// Clears the state of the given TypoExpr.
4100 void clearDelayedTypo(TypoExpr *TE);
4101
4102 /// Look up a name, looking for a single declaration. Return
4103 /// null if the results were absent, ambiguous, or overloaded.
4104 ///
4105 /// It is preferable to use the elaborated form and explicitly handle
4106 /// ambiguity and overloaded.
4107 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4108 SourceLocation Loc,
4109 LookupNameKind NameKind,
4110 RedeclarationKind Redecl
4111 = NotForRedeclaration);
4112 bool LookupBuiltin(LookupResult &R);
4113 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4114 bool LookupName(LookupResult &R, Scope *S,
4115 bool AllowBuiltinCreation = false);
4116 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4117 bool InUnqualifiedLookup = false);
4118 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4119 CXXScopeSpec &SS);
4120 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4121 bool AllowBuiltinCreation = false,
4122 bool EnteringContext = false);
4123 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4124 RedeclarationKind Redecl
4125 = NotForRedeclaration);
4126 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4127
4128 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4129 UnresolvedSetImpl &Functions);
4130
4131 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4132 SourceLocation GnuLabelLoc = SourceLocation());
4133
4134 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4136 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4137 unsigned Quals);
4138 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4139 bool RValueThis, unsigned ThisQuals);
4140 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4141 unsigned Quals);
4142 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4143 bool RValueThis, unsigned ThisQuals);
4144 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4145
4146 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4147 bool IsUDSuffix);
4148 LiteralOperatorLookupResult
4149 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4150 bool AllowRaw, bool AllowTemplate,
4151 bool AllowStringTemplate, bool DiagnoseMissing,
4152 StringLiteral *StringLit = nullptr);
4153 bool isKnownName(StringRef name);
4154
4155 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4156 enum class FunctionEmissionStatus {
4157 Emitted,
4158 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4159 OMPDiscarded, // Discarded due to OpenMP hostness
4160 TemplateDiscarded, // Discarded due to uninstantiated templates
4161 Unknown,
4162 };
4163 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4164 bool Final = false);
4165
4166 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4167 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4168
4169 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4170 ArrayRef<Expr *> Args, ADLResult &Functions);
4171
4172 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4173 VisibleDeclConsumer &Consumer,
4174 bool IncludeGlobalScope = true,
4175 bool LoadExternal = true);
4176 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4177 VisibleDeclConsumer &Consumer,
4178 bool IncludeGlobalScope = true,
4179 bool IncludeDependentBases = false,
4180 bool LoadExternal = true);
4181
4182 enum CorrectTypoKind {
4183 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4184 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4185 };
4186
4187 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4188 Sema::LookupNameKind LookupKind,
4189 Scope *S, CXXScopeSpec *SS,
4190 CorrectionCandidateCallback &CCC,
4191 CorrectTypoKind Mode,
4192 DeclContext *MemberContext = nullptr,
4193 bool EnteringContext = false,
4194 const ObjCObjectPointerType *OPT = nullptr,
4195 bool RecordFailure = true);
4196
4197 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4198 Sema::LookupNameKind LookupKind, Scope *S,
4199 CXXScopeSpec *SS,
4200 CorrectionCandidateCallback &CCC,
4201 TypoDiagnosticGenerator TDG,
4202 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4203 DeclContext *MemberContext = nullptr,
4204 bool EnteringContext = false,
4205 const ObjCObjectPointerType *OPT = nullptr);
4206
4207 /// Process any TypoExprs in the given Expr and its children,
4208 /// generating diagnostics as appropriate and returning a new Expr if there
4209 /// were typos that were all successfully corrected and ExprError if one or
4210 /// more typos could not be corrected.
4211 ///
4212 /// \param E The Expr to check for TypoExprs.
4213 ///
4214 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4215 /// initializer.
4216 ///
4217 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4218 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4219 ///
4220 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4221 /// it is an acceptable/usable result from a single combination of typo
4222 /// corrections. As long as the filter returns ExprError, different
4223 /// combinations of corrections will be tried until all are exhausted.
4224 ExprResult CorrectDelayedTyposInExpr(
4225 Expr *E, VarDecl *InitDecl = nullptr,
4226 bool RecoverUncorrectedTypos = false,
4227 llvm::function_ref<ExprResult(Expr *)> Filter =
4228 [](Expr *E) -> ExprResult { return E; });
4229
4230 ExprResult CorrectDelayedTyposInExpr(
4231 ExprResult ER, VarDecl *InitDecl = nullptr,
4232 bool RecoverUncorrectedTypos = false,
4233 llvm::function_ref<ExprResult(Expr *)> Filter =
4234 [](Expr *E) -> ExprResult { return E; }) {
4235 return ER.isInvalid()
4236 ? ER
4237 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4238 RecoverUncorrectedTypos, Filter);
4239 }
4240
4241 void diagnoseTypo(const TypoCorrection &Correction,
4242 const PartialDiagnostic &TypoDiag,
4243 bool ErrorRecovery = true);
4244
4245 void diagnoseTypo(const TypoCorrection &Correction,
4246 const PartialDiagnostic &TypoDiag,
4247 const PartialDiagnostic &PrevNote,
4248 bool ErrorRecovery = true);
4249
4250 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4251
4252 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4253 ArrayRef<Expr *> Args,
4254 AssociatedNamespaceSet &AssociatedNamespaces,
4255 AssociatedClassSet &AssociatedClasses);
4256
4257 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4258 bool ConsiderLinkage, bool AllowInlineNamespace);
4259
4260 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4261
4262 void DiagnoseAmbiguousLookup(LookupResult &Result);
4263 //@}
4264
4265 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4266 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4267 ArrayRef<Expr *> SubExprs,
4268 QualType T = QualType());
4269
4270 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4271 SourceLocation IdLoc,
4272 bool TypoCorrection = false);
4273 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4274 SourceLocation Loc);
4275 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4276 Scope *S, bool ForRedeclaration,
4277 SourceLocation Loc);
4278 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4279 Scope *S);
4280 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4281 FunctionDecl *FD);
4282 void AddKnownFunctionAttributes(FunctionDecl *FD);
4283
4284 // More parsing and symbol table subroutines.
4285
4286 void ProcessPragmaWeak(Scope *S, Decl *D);
4287 // Decl attributes - this routine is the top level dispatcher.
4288 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4289 // Helper for delayed processing of attributes.
4290 void ProcessDeclAttributeDelayed(Decl *D,
4291 const ParsedAttributesView &AttrList);
4292 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4293 bool IncludeCXX11Attributes = true);
4294 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4295 const ParsedAttributesView &AttrList);
4296
4297 void checkUnusedDeclAttributes(Declarator &D);
4298
4299 /// Handles semantic checking for features that are common to all attributes,
4300 /// such as checking whether a parameter was properly specified, or the
4301 /// correct number of arguments were passed, etc. Returns true if the
4302 /// attribute has been diagnosed.
4303 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4304 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4305
4306 /// Determine if type T is a valid subject for a nonnull and similar
4307 /// attributes. By default, we look through references (the behavior used by
4308 /// nonnull), but if the second parameter is true, then we treat a reference
4309 /// type as valid.
4310 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4311
4312 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4313 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4314 const FunctionDecl *FD = nullptr);
4315 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4316 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4317 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4318 StringRef &Str,
4319 SourceLocation *ArgLocation = nullptr);
4320 llvm::Error isValidSectionSpecifier(StringRef Str);
4321 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4323 bool checkMSInheritanceAttrOnDefinition(
4324 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4325 MSInheritanceModel SemanticSpelling);
4326
4327 void CheckAlignasUnderalignment(Decl *D);
4328
4329 /// Adjust the calling convention of a method to be the ABI default if it
4330 /// wasn't specified explicitly. This handles method types formed from
4331 /// function type typedefs and typename template arguments.
4332 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4333 SourceLocation Loc);
4334
4335 // Check if there is an explicit attribute, but only look through parens.
4336 // The intent is to look for an attribute on the current declarator, but not
4337 // one that came from a typedef.
4338 bool hasExplicitCallingConv(QualType T);
4339
4340 /// Get the outermost AttributedType node that sets a calling convention.
4341 /// Valid types should not have multiple attributes with different CCs.
4342 const AttributedType *getCallingConvAttributedType(QualType T) const;
4343
4344 /// Process the attributes before creating an attributed statement. Returns
4345 /// the semantic attributes that have been processed.
4346 void ProcessStmtAttributes(Stmt *Stmt,
4347 const ParsedAttributesWithRange &InAttrs,
4348 SmallVectorImpl<const Attr *> &OutAttrs);
4349
4350 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4351 ObjCMethodDecl *MethodDecl,
4352 bool IsProtocolMethodDecl);
4353
4354 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4355 ObjCMethodDecl *Overridden,
4356 bool IsProtocolMethodDecl);
4357
4358 /// WarnExactTypedMethods - This routine issues a warning if method
4359 /// implementation declaration matches exactly that of its declaration.
4360 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4361 ObjCMethodDecl *MethodDecl,
4362 bool IsProtocolMethodDecl);
4363
4364 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4365
4366 /// CheckImplementationIvars - This routine checks if the instance variables
4367 /// listed in the implelementation match those listed in the interface.
4368 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4369 ObjCIvarDecl **Fields, unsigned nIvars,
4370 SourceLocation Loc);
4371
4372 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4373 /// remains unimplemented in the class or category \@implementation.
4374 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4375 ObjCContainerDecl* IDecl,
4376 bool IncompleteImpl = false);
4377
4378 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4379 /// which must be implemented by this implementation.
4380 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4381 ObjCContainerDecl *CDecl,
4382 bool SynthesizeProperties);
4383
4384 /// Diagnose any null-resettable synthesized setters.
4385 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4386
4387 /// DefaultSynthesizeProperties - This routine default synthesizes all
4388 /// properties which must be synthesized in the class's \@implementation.
4389 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4390 ObjCInterfaceDecl *IDecl,
4391 SourceLocation AtEnd);
4392 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4393
4394 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4395 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4396 /// declared in class 'IFace'.
4397 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4398 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4399
4400 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4401 /// backs the property is not used in the property's accessor.
4402 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4403 const ObjCImplementationDecl *ImplD);
4404
4405 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4406 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4407 /// It also returns ivar's property on success.
4408 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4409 const ObjCPropertyDecl *&PDecl) const;
4410
4411 /// Called by ActOnProperty to handle \@property declarations in
4412 /// class extensions.
4413 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4414 SourceLocation AtLoc,
4415 SourceLocation LParenLoc,
4416 FieldDeclarator &FD,
4417 Selector GetterSel,
4418 SourceLocation GetterNameLoc,
4419 Selector SetterSel,
4420 SourceLocation SetterNameLoc,
4421 const bool isReadWrite,
4422 unsigned &Attributes,
4423 const unsigned AttributesAsWritten,
4424 QualType T,
4425 TypeSourceInfo *TSI,
4426 tok::ObjCKeywordKind MethodImplKind);
4427
4428 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4429 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4430 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4431 ObjCContainerDecl *CDecl,
4432 SourceLocation AtLoc,
4433 SourceLocation LParenLoc,
4434 FieldDeclarator &FD,
4435 Selector GetterSel,
4436 SourceLocation GetterNameLoc,
4437 Selector SetterSel,
4438 SourceLocation SetterNameLoc,
4439 const bool isReadWrite,
4440 const unsigned Attributes,
4441 const unsigned AttributesAsWritten,
4442 QualType T,
4443 TypeSourceInfo *TSI,
4444 tok::ObjCKeywordKind MethodImplKind,
4445 DeclContext *lexicalDC = nullptr);
4446
4447 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4448 /// warning) when atomic property has one but not the other user-declared
4449 /// setter or getter.
4450 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4451 ObjCInterfaceDecl* IDecl);
4452
4453 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4454
4455 void DiagnoseMissingDesignatedInitOverrides(
4456 const ObjCImplementationDecl *ImplD,
4457 const ObjCInterfaceDecl *IFD);
4458
4459 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4460
4461 enum MethodMatchStrategy {
4462 MMS_loose,
4463 MMS_strict
4464 };
4465
4466 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4467 /// true, or false, accordingly.
4468 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4469 const ObjCMethodDecl *PrevMethod,
4470 MethodMatchStrategy strategy = MMS_strict);
4471
4472 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4473 /// or protocol against those declared in their implementations.
4474 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4475 const SelectorSet &ClsMap,
4476 SelectorSet &InsMapSeen,
4477 SelectorSet &ClsMapSeen,
4478 ObjCImplDecl* IMPDecl,
4479 ObjCContainerDecl* IDecl,
4480 bool &IncompleteImpl,
4481 bool ImmediateClass,
4482 bool WarnCategoryMethodImpl=false);
4483
4484 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4485 /// category matches with those implemented in its primary class and
4486 /// warns each time an exact match is found.
4487 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4488
4489 /// Add the given method to the list of globally-known methods.
4490 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4491
4492 /// Returns default addr space for method qualifiers.
4493 LangAS getDefaultCXXMethodAddrSpace() const;
4494
4495private:
4496 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4497 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4498 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4499
4500 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4501 /// optionally warns if there are multiple signatures.
4502 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4503 bool receiverIdOrClass,
4504 bool instance);
4505
4506public:
4507 /// - Returns instance or factory methods in global method pool for
4508 /// given selector. It checks the desired kind first, if none is found, and
4509 /// parameter checkTheOther is set, it then checks the other kind. If no such
4510 /// method or only one method is found, function returns false; otherwise, it
4511 /// returns true.
4512 bool
4513 CollectMultipleMethodsInGlobalPool(Selector Sel,
4514 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4515 bool InstanceFirst, bool CheckTheOther,
4516 const ObjCObjectType *TypeBound = nullptr);
4517
4518 bool
4519 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4520 SourceRange R, bool receiverIdOrClass,
4521 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4522
4523 void
4524 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4525 Selector Sel, SourceRange R,
4526 bool receiverIdOrClass);
4527
4528private:
4529 /// - Returns a selector which best matches given argument list or
4530 /// nullptr if none could be found
4531 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4532 bool IsInstance,
4533 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4534
4535
4536 /// Record the typo correction failure and return an empty correction.
4537 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4538 bool RecordFailure = true) {
4539 if (RecordFailure)
4540 TypoCorrectionFailures[Typo].insert(TypoLoc);
4541 return TypoCorrection();
4542 }
4543
4544public:
4545 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4546 /// unit are added to a global pool. This allows us to efficiently associate
4547 /// a selector with a method declaraation for purposes of typechecking
4548 /// messages sent to "id" (where the class of the object is unknown).
4549 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4550 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4551 }
4552
4553 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4554 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4555 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4556 }
4557
4558 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4559 /// pool.
4560 void AddAnyMethodToGlobalPool(Decl *D);
4561
4562 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4563 /// there are multiple signatures.
4564 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4565 bool receiverIdOrClass=false) {
4566 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4567 /*instance*/true);
4568 }
4569
4570 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4571 /// there are multiple signatures.
4572 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4573 bool receiverIdOrClass=false) {
4574 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4575 /*instance*/false);
4576 }
4577
4578 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4579 QualType ObjectType=QualType());
4580 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4581 /// implementation.
4582 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4583
4584 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4585 /// initialization.
4586 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4587 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4588
4589 //===--------------------------------------------------------------------===//
4590 // Statement Parsing Callbacks: SemaStmt.cpp.
4591public:
4592 class FullExprArg {
4593 public:
4594 FullExprArg() : E(nullptr) { }
4595 FullExprArg(Sema &actions) : E(nullptr) { }
4596
4597 ExprResult release() {
4598 return E;
4599 }
4600
4601 Expr *get() const { return E; }
4602
4603 Expr *operator->() {
4604 return E;
4605 }
4606
4607 private:
4608 // FIXME: No need to make the entire Sema class a friend when it's just
4609 // Sema::MakeFullExpr that needs access to the constructor below.
4610 friend class Sema;
4611
4612 explicit FullExprArg(Expr *expr) : E(expr) {}
4613
4614 Expr *E;
4615 };
4616
4617 FullExprArg MakeFullExpr(Expr *Arg) {
4618 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4619 }
4620 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4621 return FullExprArg(
4622 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4623 }
4624 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4625 ExprResult FE =
4626 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4627 /*DiscardedValue*/ true);
4628 return FullExprArg(FE.get());
4629 }
4630
4631 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4632 StmtResult ActOnExprStmtError();
4633
4634 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4635 bool HasLeadingEmptyMacro = false);
4636
4637 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4638 void ActOnAfterCompoundStatementLeadingPragmas();
4639 void ActOnFinishOfCompoundStmt();
4640 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4641 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4642
4643 /// A RAII object to enter scope of a compound statement.
4644 class CompoundScopeRAII {
4645 public:
4646 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4647 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4648 }
4649
4650 ~CompoundScopeRAII() {
4651 S.ActOnFinishOfCompoundStmt();
4652 }
4653
4654 private:
4655 Sema &S;
4656 };
4657
4658 /// An RAII helper that pops function a function scope on exit.
4659 struct FunctionScopeRAII {
4660 Sema &S;
4661 bool Active;
4662 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4663 ~FunctionScopeRAII() {
4664 if (Active)
4665 S.PopFunctionScopeInfo();
4666 }
4667 void disable() { Active = false; }
4668 };
4669
4670 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4671 SourceLocation StartLoc,
4672 SourceLocation EndLoc);
4673 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4674 StmtResult ActOnForEachLValueExpr(Expr *E);
4675 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4676 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4677 SourceLocation DotDotDotLoc, ExprResult RHS,
4678 SourceLocation ColonLoc);
4679 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4680
4681 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4682 SourceLocation ColonLoc,
4683 Stmt *SubStmt, Scope *CurScope);
4684 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4685 SourceLocation ColonLoc, Stmt *SubStmt);
4686
4687 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4688 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4689 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4690 Stmt *SubStmt);
4691
4692 class ConditionResult;
4693 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4694 SourceLocation LParenLoc, Stmt *InitStmt,
4695 ConditionResult Cond, SourceLocation RParenLoc,
4696 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4697 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4698 SourceLocation LParenLoc, Stmt *InitStmt,
4699 ConditionResult Cond, SourceLocation RParenLoc,
4700 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4701 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4702 SourceLocation LParenLoc, Stmt *InitStmt,
4703 ConditionResult Cond,
4704 SourceLocation RParenLoc);
4705 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4706 Stmt *Switch, Stmt *Body);
4707 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4708 ConditionResult Cond, SourceLocation RParenLoc,
4709 Stmt *Body);
4710 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4711 SourceLocation WhileLoc, SourceLocation CondLParen,
4712 Expr *Cond, SourceLocation CondRParen);
4713
4714 StmtResult ActOnForStmt(SourceLocation ForLoc,
4715 SourceLocation LParenLoc,
4716 Stmt *First,
4717 ConditionResult Second,
4718 FullExprArg Third,
4719 SourceLocation RParenLoc,
4720 Stmt *Body);
4721 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4722 Expr *collection);
4723 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4724 Stmt *First, Expr *collection,
4725 SourceLocation RParenLoc);
4726 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4727
4728 enum BuildForRangeKind {
4729 /// Initial building of a for-range statement.
4730 BFRK_Build,
4731 /// Instantiation or recovery rebuild of a for-range statement. Don't
4732 /// attempt any typo-correction.
4733 BFRK_Rebuild,
4734 /// Determining whether a for-range statement could be built. Avoid any
4735 /// unnecessary or irreversible actions.
4736 BFRK_Check
4737 };
4738
4739 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4740 SourceLocation CoawaitLoc,
4741 Stmt *InitStmt,
4742 Stmt *LoopVar,
4743 SourceLocation ColonLoc, Expr *Collection,
4744 SourceLocation RParenLoc,
4745 BuildForRangeKind Kind);
4746 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4747 SourceLocation CoawaitLoc,
4748 Stmt *InitStmt,
4749 SourceLocation ColonLoc,
4750 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4751 Expr *Cond, Expr *Inc,
4752 Stmt *LoopVarDecl,
4753 SourceLocation RParenLoc,
4754 BuildForRangeKind Kind);
4755 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4756
4757 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4758 SourceLocation LabelLoc,
4759 LabelDecl *TheDecl);
4760 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4761 SourceLocation StarLoc,
4762 Expr *DestExp);
4763 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4764 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4765
4766 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4767 CapturedRegionKind Kind, unsigned NumParams);
4768 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4769 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4770 CapturedRegionKind Kind,
4771 ArrayRef<CapturedParamNameType> Params,
4772 unsigned OpenMPCaptureLevel = 0);
4773 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4774 void ActOnCapturedRegionError();
4775 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4776 SourceLocation Loc,
4777 unsigned NumParams);
4778
4779 struct NamedReturnInfo {
4780 const VarDecl *Candidate;
4781
4782 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4783 Status S;
4784
4785 bool isMoveEligible() const { return S != None; };
4786 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4787 };
4788 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4789 NamedReturnInfo getNamedReturnInfo(
4790 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4791 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4792 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4793 QualType ReturnType);
4794
4795 ExprResult
4796 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4797 const NamedReturnInfo &NRInfo, Expr *Value,
4798 bool SupressSimplerImplicitMoves = false);
4799
4800 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4801 Scope *CurScope);
4802 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4803 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4804 NamedReturnInfo &NRInfo,
4805 bool SupressSimplerImplicitMoves);
4806
4807 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4808 bool IsVolatile, unsigned NumOutputs,
4809 unsigned NumInputs, IdentifierInfo **Names,
4810 MultiExprArg Constraints, MultiExprArg Exprs,
4811 Expr *AsmString, MultiExprArg Clobbers,
4812 unsigned NumLabels,
4813 SourceLocation RParenLoc);
4814
4815 void FillInlineAsmIdentifierInfo(Expr *Res,
4816 llvm::InlineAsmIdentifierInfo &Info);
4817 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4818 SourceLocation TemplateKWLoc,
4819 UnqualifiedId &Id,
4820 bool IsUnevaluatedContext);
4821 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4822 unsigned &Offset, SourceLocation AsmLoc);
4823 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4824 SourceLocation AsmLoc);
4825 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4826 ArrayRef<Token> AsmToks,
4827 StringRef AsmString,
4828 unsigned NumOutputs, unsigned NumInputs,
4829 ArrayRef<StringRef> Constraints,
4830 ArrayRef<StringRef> Clobbers,
4831 ArrayRef<Expr*> Exprs,
4832 SourceLocation EndLoc);
4833 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4834 SourceLocation Location,
4835 bool AlwaysCreate);
4836
4837 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4838 SourceLocation StartLoc,
4839 SourceLocation IdLoc, IdentifierInfo *Id,
4840 bool Invalid = false);
4841
4842 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4843
4844 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4845 Decl *Parm, Stmt *Body);
4846
4847 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4848
4849 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4850 MultiStmtArg Catch, Stmt *Finally);
4851
4852 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4853 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4854 Scope *CurScope);
4855 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4856 Expr *operand);
4857 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4858 Expr *SynchExpr,
4859 Stmt *SynchBody);
4860
4861 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4862
4863 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4864 SourceLocation StartLoc,
4865 SourceLocation IdLoc,
4866 IdentifierInfo *Id);
4867
4868 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4869
4870 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4871 Decl *ExDecl, Stmt *HandlerBlock);
4872 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4873 ArrayRef<Stmt *> Handlers);
4874
4875 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4876 SourceLocation TryLoc, Stmt *TryBlock,
4877 Stmt *Handler);
4878 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4879 Expr *FilterExpr,
4880 Stmt *Block);
4881 void ActOnStartSEHFinallyBlock();
4882 void ActOnAbortSEHFinallyBlock();
4883 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4884 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4885
4886 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4887
4888 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4889
4890 /// If it's a file scoped decl that must warn if not used, keep track
4891 /// of it.
4892 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4893
4894 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4895 /// whose result is unused, warn.
4896 void DiagnoseUnusedExprResult(const Stmt *S);
4897 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4898 void DiagnoseUnusedDecl(const NamedDecl *ND);
4899
4900 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4901 /// variable.
4902 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4903
4904 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4905 /// statement as a \p Body, and it is located on the same line.
4906 ///
4907 /// This helps prevent bugs due to typos, such as:
4908 /// if (condition);
4909 /// do_stuff();
4910 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4911 const Stmt *Body,
4912 unsigned DiagID);
4913
4914 /// Warn if a for/while loop statement \p S, which is followed by
4915 /// \p PossibleBody, has a suspicious null statement as a body.
4916 void DiagnoseEmptyLoopBody(const Stmt *S,
4917 const Stmt *PossibleBody);
4918
4919 /// Warn if a value is moved to itself.
4920 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4921 SourceLocation OpLoc);
4922
4923 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4924 /// _Nonnull one.
4925 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4926 SourceLocation Loc);
4927
4928 /// Warn when implicitly casting 0 to nullptr.
4929 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4930
4931 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4932 return DelayedDiagnostics.push(pool);
4933 }
4934 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4935
4936 typedef ProcessingContextState ParsingClassState;
4937 ParsingClassState PushParsingClass() {
4938 ParsingClassDepth++;
4939 return DelayedDiagnostics.pushUndelayed();
4940 }
4941 void PopParsingClass(ParsingClassState state) {
4942 ParsingClassDepth--;
4943 DelayedDiagnostics.popUndelayed(state);
4944 }
4945
4946 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4947
4948 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4949 const ObjCInterfaceDecl *UnknownObjCClass,
4950 bool ObjCPropertyAccess,
4951 bool AvoidPartialAvailabilityChecks = false,
4952 ObjCInterfaceDecl *ClassReceiver = nullptr);
4953
4954 bool makeUnavailableInSystemHeader(SourceLocation loc,
4955 UnavailableAttr::ImplicitReason reason);
4956
4957 /// Issue any -Wunguarded-availability warnings in \c FD
4958 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4959
4960 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4961
4962 //===--------------------------------------------------------------------===//
4963 // Expression Parsing Callbacks: SemaExpr.cpp.
4964
4965 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4966 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4967 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4968 bool ObjCPropertyAccess = false,
4969 bool AvoidPartialAvailabilityChecks = false,
4970 ObjCInterfaceDecl *ClassReciever = nullptr);
4971 void NoteDeletedFunction(FunctionDecl *FD);
4972 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4973 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4974 ObjCMethodDecl *Getter,
4975 SourceLocation Loc);
4976 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4977 ArrayRef<Expr *> Args);
4978
4979 void PushExpressionEvaluationContext(
4980 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4981 ExpressionEvaluationContextRecord::ExpressionKind Type =
4982 ExpressionEvaluationContextRecord::EK_Other);
4983 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4984 void PushExpressionEvaluationContext(
4985 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4986 ExpressionEvaluationContextRecord::ExpressionKind Type =
4987 ExpressionEvaluationContextRecord::EK_Other);
4988 void PopExpressionEvaluationContext();
4989
4990 void DiscardCleanupsInEvaluationContext();
4991
4992 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4993 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4994
4995 ExprResult CheckUnevaluatedOperand(Expr *E);
4996 void CheckUnusedVolatileAssignment(Expr *E);
4997
4998 ExprResult ActOnConstantExpression(ExprResult Res);
4999
5000 // Functions for marking a declaration referenced. These functions also
5001 // contain the relevant logic for marking if a reference to a function or
5002 // variable is an odr-use (in the C++11 sense). There are separate variants
5003 // for expressions referring to a decl; these exist because odr-use marking
5004 // needs to be delayed for some constant variables when we build one of the
5005 // named expressions.
5006 //
5007 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5008 // should usually be true. This only needs to be set to false if the lack of
5009 // odr-use cannot be determined from the current context (for instance,
5010 // because the name denotes a virtual function and was written without an
5011 // explicit nested-name-specifier).
5012 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5013 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5014 bool MightBeOdrUse = true);
5015 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5016 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5017 void MarkMemberReferenced(MemberExpr *E);
5018 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5019 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5020 unsigned CapturingScopeIndex);
5021
5022 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5023 void CleanupVarDeclMarking();
5024
5025 enum TryCaptureKind {
5026 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5027 };
5028
5029 /// Try to capture the given variable.
5030 ///
5031 /// \param Var The variable to capture.
5032 ///
5033 /// \param Loc The location at which the capture occurs.
5034 ///
5035 /// \param Kind The kind of capture, which may be implicit (for either a
5036 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5037 ///
5038 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5039 /// an explicit lambda capture.
5040 ///
5041 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5042 /// captures or diagnose errors. If false, this routine merely check whether
5043 /// the capture can occur without performing the capture itself or complaining
5044 /// if the variable cannot be captured.
5045 ///
5046 /// \param CaptureType Will be set to the type of the field used to capture
5047 /// this variable in the innermost block or lambda. Only valid when the
5048 /// variable can be captured.
5049 ///
5050 /// \param DeclRefType Will be set to the type of a reference to the capture
5051 /// from within the current scope. Only valid when the variable can be
5052 /// captured.
5053 ///
5054 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5055 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5056 /// This is useful when enclosing lambdas must speculatively capture
5057 /// variables that may or may not be used in certain specializations of
5058 /// a nested generic lambda.
5059 ///
5060 /// \returns true if an error occurred (i.e., the variable cannot be
5061 /// captured) and false if the capture succeeded.
5062 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5063 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5064 QualType &CaptureType,
5065 QualType &DeclRefType,
5066 const unsigned *const FunctionScopeIndexToStopAt);
5067
5068 /// Try to capture the given variable.
5069 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5070 TryCaptureKind Kind = TryCapture_Implicit,
5071 SourceLocation EllipsisLoc = SourceLocation());
5072
5073 /// Checks if the variable must be captured.
5074 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5075
5076 /// Given a variable, determine the type that a reference to that
5077 /// variable will have in the given scope.
5078 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5079
5080 /// Mark all of the declarations referenced within a particular AST node as
5081 /// referenced. Used when template instantiation instantiates a non-dependent
5082 /// type -- entities referenced by the type are now referenced.
5083 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5084 void MarkDeclarationsReferencedInExpr(Expr *E,
5085 bool SkipLocalVariables = false);
5086
5087 /// Try to recover by turning the given expression into a
5088 /// call. Returns true if recovery was attempted or an error was
5089 /// emitted; this may also leave the ExprResult invalid.
5090 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5091 bool ForceComplain = false,
5092 bool (*IsPlausibleResult)(QualType) = nullptr);
5093
5094 /// Figure out if an expression could be turned into a call.
5095 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5096 UnresolvedSetImpl &NonTemplateOverloads);
5097
5098 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5099 /// conversion.
5100 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5101
5102 /// Conditionally issue a diagnostic based on the current
5103 /// evaluation context.
5104 ///
5105 /// \param Statement If Statement is non-null, delay reporting the
5106 /// diagnostic until the function body is parsed, and then do a basic
5107 /// reachability analysis to determine if the statement is reachable.
5108 /// If it is unreachable, the diagnostic will not be emitted.
5109 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5110 const PartialDiagnostic &PD);
5111 /// Similar, but diagnostic is only produced if all the specified statements
5112 /// are reachable.
5113 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5114 const PartialDiagnostic &PD);
5115
5116 // Primary Expressions.
5117 SourceRange getExprRange(Expr *E) const;
5118
5119 ExprResult ActOnIdExpression(
5120 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5121 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5122 CorrectionCandidateCallback *CCC = nullptr,
5123 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5124
5125 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5126 TemplateArgumentListInfo &Buffer,
5127 DeclarationNameInfo &NameInfo,
5128 const TemplateArgumentListInfo *&TemplateArgs);
5129
5130 bool DiagnoseDependentMemberLookup(LookupResult &R);
5131
5132 bool
5133 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5134 CorrectionCandidateCallback &CCC,
5135 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5136 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5137
5138 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5139 IdentifierInfo *II);
5140 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5141
5142 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5143 IdentifierInfo *II,
5144 bool AllowBuiltinCreation=false);
5145
5146 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5147 SourceLocation TemplateKWLoc,
5148 const DeclarationNameInfo &NameInfo,
5149 bool isAddressOfOperand,
5150 const TemplateArgumentListInfo *TemplateArgs);
5151
5152 /// If \p D cannot be odr-used in the current expression evaluation context,
5153 /// return a reason explaining why. Otherwise, return NOUR_None.
5154 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5155
5156 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5157 SourceLocation Loc,
5158 const CXXScopeSpec *SS = nullptr);
5159 DeclRefExpr *
5160 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5161 const DeclarationNameInfo &NameInfo,
5162 const CXXScopeSpec *SS = nullptr,
5163 NamedDecl *FoundD = nullptr,
5164 SourceLocation TemplateKWLoc = SourceLocation(),
5165 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5166 DeclRefExpr *
5167 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5168 const DeclarationNameInfo &NameInfo,
5169 NestedNameSpecifierLoc NNS,
5170 NamedDecl *FoundD = nullptr,
5171 SourceLocation TemplateKWLoc = SourceLocation(),
5172 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5173
5174 ExprResult
5175 BuildAnonymousStructUnionMemberReference(
5176 const CXXScopeSpec &SS,
5177 SourceLocation nameLoc,
5178 IndirectFieldDecl *indirectField,
5179 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5180 Expr *baseObjectExpr = nullptr,
5181 SourceLocation opLoc = SourceLocation());
5182
5183 ExprResult BuildPossibleImplicitMemberExpr(
5184 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5185 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5186 UnresolvedLookupExpr *AsULE = nullptr);
5187 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5188 SourceLocation TemplateKWLoc,
5189 LookupResult &R,
5190 const TemplateArgumentListInfo *TemplateArgs,
5191 bool IsDefiniteInstance,
5192 const Scope *S);
5193 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5194 const LookupResult &R,
5195 bool HasTrailingLParen);
5196
5197 ExprResult
5198 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5199 const DeclarationNameInfo &NameInfo,
5200 bool IsAddressOfOperand, const Scope *S,
5201 TypeSourceInfo **RecoveryTSI = nullptr);
5202
5203 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5204 SourceLocation TemplateKWLoc,
5205 const DeclarationNameInfo &NameInfo,
5206 const TemplateArgumentListInfo *TemplateArgs);
5207
5208 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5209 LookupResult &R,
5210 bool NeedsADL,
5211 bool AcceptInvalidDecl = false);
5212 ExprResult BuildDeclarationNameExpr(
5213 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5214 NamedDecl *FoundD = nullptr,
5215 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5216 bool AcceptInvalidDecl = false);
5217
5218 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5219 DeclarationNameInfo &SuffixInfo,
5220 ArrayRef<Expr *> Args,
5221 SourceLocation LitEndLoc,
5222 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5223
5224 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5225 PredefinedExpr::IdentKind IK);
5226 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5227 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5228
5229 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5230 SourceLocation LParen,
5231 SourceLocation RParen,
5232 TypeSourceInfo *TSI);
5233 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5234 SourceLocation LParen,
5235 SourceLocation RParen,
5236 ParsedType ParsedTy);
5237
5238 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5239
5240 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5241 ExprResult ActOnCharacterConstant(const Token &Tok,
5242 Scope *UDLScope = nullptr);
5243 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5244 ExprResult ActOnParenListExpr(SourceLocation L,
5245 SourceLocation R,
5246 MultiExprArg Val);
5247
5248 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5249 /// fragments (e.g. "foo" "bar" L"baz").
5250 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5251 Scope *UDLScope = nullptr);
5252
5253 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5254 SourceLocation DefaultLoc,
5255 SourceLocation RParenLoc,
5256 Expr *ControllingExpr,
5257 ArrayRef<ParsedType> ArgTypes,
5258 ArrayRef<Expr *> ArgExprs);
5259 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5260 SourceLocation DefaultLoc,
5261 SourceLocation RParenLoc,
5262 Expr *ControllingExpr,
5263 ArrayRef<TypeSourceInfo *> Types,
5264 ArrayRef<Expr *> Exprs);
5265
5266 // Binary/Unary Operators. 'Tok' is the token for the operator.
5267 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5268 Expr *InputExpr);
5269 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5270 UnaryOperatorKind Opc, Expr *Input);
5271 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5272 tok::TokenKind Op, Expr *Input);
5273
5274 bool isQualifiedMemberAccess(Expr *E);
5275 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5276
5277 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5278 SourceLocation OpLoc,
5279 UnaryExprOrTypeTrait ExprKind,
5280 SourceRange R);
5281 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5282 UnaryExprOrTypeTrait ExprKind);
5283 ExprResult
5284 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5285 UnaryExprOrTypeTrait ExprKind,
5286 bool IsType, void *TyOrEx,
5287 SourceRange ArgRange);
5288
5289 ExprResult CheckPlaceholderExpr(Expr *E);
5290 bool CheckVecStepExpr(Expr *E);
5291
5292 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5293 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5294 SourceRange ExprRange,
5295 UnaryExprOrTypeTrait ExprKind);
5296 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5297 SourceLocation OpLoc,
5298 IdentifierInfo &Name,
5299 SourceLocation NameLoc,
5300 SourceLocation RParenLoc);
5301 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5302 tok::TokenKind Kind, Expr *Input);
5303
5304 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5305 Expr *Idx, SourceLocation RLoc);
5306 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5307 Expr *Idx, SourceLocation RLoc);
5308
5309 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5310 Expr *ColumnIdx,
5311 SourceLocation RBLoc);
5312
5313 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5314 Expr *LowerBound,
5315 SourceLocation ColonLocFirst,
5316 SourceLocation ColonLocSecond,
5317 Expr *Length, Expr *Stride,
5318 SourceLocation RBLoc);
5319 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5320 SourceLocation RParenLoc,
5321 ArrayRef<Expr *> Dims,
5322 ArrayRef<SourceRange> Brackets);
5323
5324 /// Data structure for iterator expression.
5325 struct OMPIteratorData {
5326 IdentifierInfo *DeclIdent = nullptr;
5327 SourceLocation DeclIdentLoc;
5328 ParsedType Type;
5329 OMPIteratorExpr::IteratorRange Range;
5330 SourceLocation AssignLoc;
5331 SourceLocation ColonLoc;
5332 SourceLocation SecColonLoc;
5333 };
5334
5335 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5336 SourceLocation LLoc, SourceLocation RLoc,
5337 ArrayRef<OMPIteratorData> Data);
5338
5339 // This struct is for use by ActOnMemberAccess to allow
5340 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5341 // changing the access operator from a '.' to a '->' (to see if that is the
5342 // change needed to fix an error about an unknown member, e.g. when the class
5343 // defines a custom operator->).
5344 struct ActOnMemberAccessExtraArgs {
5345 Scope *S;
5346 UnqualifiedId &Id;
5347 Decl *ObjCImpDecl;
5348 };
5349
5350 ExprResult BuildMemberReferenceExpr(
5351 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5352 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5353 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5354 const TemplateArgumentListInfo *TemplateArgs,
5355 const Scope *S,
5356 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5357
5358 ExprResult
5359 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5360 bool IsArrow, const CXXScopeSpec &SS,
5361 SourceLocation TemplateKWLoc,
5362 NamedDecl *FirstQualifierInScope, LookupResult &R,
5363 const TemplateArgumentListInfo *TemplateArgs,
5364 const Scope *S,
5365 bool SuppressQualifierCheck = false,
5366 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5367
5368 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5369 SourceLocation OpLoc,
5370 const CXXScopeSpec &SS, FieldDecl *Field,
5371 DeclAccessPair FoundDecl,
5372 const DeclarationNameInfo &MemberNameInfo);
5373
5374 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5375
5376 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5377 const CXXScopeSpec &SS,
5378 const LookupResult &R);
5379
5380 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5381 bool IsArrow, SourceLocation OpLoc,
5382 const CXXScopeSpec &SS,
5383 SourceLocation TemplateKWLoc,
5384 NamedDecl *FirstQualifierInScope,
5385 const DeclarationNameInfo &NameInfo,
5386 const TemplateArgumentListInfo *TemplateArgs);
5387
5388 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5389 SourceLocation OpLoc,
5390 tok::TokenKind OpKind,
5391 CXXScopeSpec &SS,
5392 SourceLocation TemplateKWLoc,
5393 UnqualifiedId &Member,
5394 Decl *ObjCImpDecl);
5395
5396 MemberExpr *
5397 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5398 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5399 ValueDecl *Member, DeclAccessPair FoundDecl,
5400 bool HadMultipleCandidates,
5401 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5402 ExprValueKind VK, ExprObjectKind OK,
5403 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5404 MemberExpr *
5405 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5406 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5407 ValueDecl *Member, DeclAccessPair FoundDecl,
5408 bool HadMultipleCandidates,
5409 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5410 ExprValueKind VK, ExprObjectKind OK,
5411 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5412
5413 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5414 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5415 FunctionDecl *FDecl,
5416 const FunctionProtoType *Proto,
5417 ArrayRef<Expr *> Args,
5418 SourceLocation RParenLoc,
5419 bool ExecConfig = false);
5420 void CheckStaticArrayArgument(SourceLocation CallLoc,
5421 ParmVarDecl *Param,
5422 const Expr *ArgExpr);
5423
5424 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5425 /// This provides the location of the left/right parens and a list of comma
5426 /// locations.
5427 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5428 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5429 Expr *ExecConfig = nullptr);
5430 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5431 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5432 Expr *ExecConfig = nullptr,
5433 bool IsExecConfig = false,
5434 bool AllowRecovery = false);
5435 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5436 MultiExprArg CallArgs);
5437 enum class AtomicArgumentOrder { API, AST };
5438 ExprResult
5439 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5440 SourceLocation RParenLoc, MultiExprArg Args,
5441 AtomicExpr::AtomicOp Op,
5442 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5443 ExprResult
5444 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5445 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5446 Expr *Config = nullptr, bool IsExecConfig = false,
5447 ADLCallKind UsesADL = ADLCallKind::NotADL);
5448
5449 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5450 MultiExprArg ExecConfig,
5451 SourceLocation GGGLoc);
5452
5453 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5454 Declarator &D, ParsedType &Ty,
5455 SourceLocation RParenLoc, Expr *CastExpr);
5456 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5457 TypeSourceInfo *Ty,
5458 SourceLocation RParenLoc,
5459 Expr *Op);
5460 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5461
5462 /// Build an altivec or OpenCL literal.
5463 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5464 SourceLocation RParenLoc, Expr *E,
5465 TypeSourceInfo *TInfo);
5466
5467 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5468
5469 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5470 ParsedType Ty,
5471 SourceLocation RParenLoc,
5472 Expr *InitExpr);
5473
5474 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5475 TypeSourceInfo *TInfo,
5476 SourceLocation RParenLoc,
5477 Expr *LiteralExpr);
5478
5479 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5480 MultiExprArg InitArgList,
5481 SourceLocation RBraceLoc);
5482
5483 ExprResult BuildInitList(SourceLocation LBraceLoc,
5484 MultiExprArg InitArgList,
5485 SourceLocation RBraceLoc);
5486
5487 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5488 SourceLocation EqualOrColonLoc,
5489 bool GNUSyntax,
5490 ExprResult Init);
5491
5492private:
5493 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5494
5495public:
5496 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5497 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5498 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5499 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5500 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5501 Expr *LHSExpr, Expr *RHSExpr);
5502 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5503 UnresolvedSetImpl &Functions);
5504
5505 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5506
5507 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5508 /// in the case of a the GNU conditional expr extension.
5509 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5510 SourceLocation ColonLoc,
5511 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5512
5513 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5514 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5515 LabelDecl *TheDecl);
5516
5517 void ActOnStartStmtExpr();
5518 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5519 SourceLocation RPLoc);
5520 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5521 SourceLocation RPLoc, unsigned TemplateDepth);
5522 // Handle the final expression in a statement expression.
5523 ExprResult ActOnStmtExprResult(ExprResult E);
5524 void ActOnStmtExprError();
5525
5526 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5527 struct OffsetOfComponent {
5528 SourceLocation LocStart, LocEnd;
5529 bool isBrackets; // true if [expr], false if .ident
5530 union {
5531 IdentifierInfo *IdentInfo;
5532 Expr *E;
5533 } U;
5534 };
5535
5536 /// __builtin_offsetof(type, a.b[123][456].c)
5537 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5538 TypeSourceInfo *TInfo,
5539 ArrayRef<OffsetOfComponent> Components,
5540 SourceLocation RParenLoc);
5541 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5542 SourceLocation BuiltinLoc,
5543 SourceLocation TypeLoc,
5544 ParsedType ParsedArgTy,
5545 ArrayRef<OffsetOfComponent> Components,
5546 SourceLocation RParenLoc);
5547
5548 // __builtin_choose_expr(constExpr, expr1, expr2)
5549 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5550 Expr *CondExpr, Expr *LHSExpr,
5551 Expr *RHSExpr, SourceLocation RPLoc);
5552
5553 // __builtin_va_arg(expr, type)
5554 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5555 SourceLocation RPLoc);
5556 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5557 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5558
5559 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5560 // __builtin_COLUMN()
5561 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5562 SourceLocation BuiltinLoc,
5563 SourceLocation RPLoc);
5564
5565 // Build a potentially resolved SourceLocExpr.
5566 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5567 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5568 DeclContext *ParentContext);
5569
5570 // __null
5571 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5572
5573 bool CheckCaseExpression(Expr *E);
5574
5575 /// Describes the result of an "if-exists" condition check.
5576 enum IfExistsResult {
5577 /// The symbol exists.
5578 IER_Exists,
5579
5580 /// The symbol does not exist.
5581 IER_DoesNotExist,
5582
5583 /// The name is a dependent name, so the results will differ
5584 /// from one instantiation to the next.
5585 IER_Dependent,
5586
5587 /// An error occurred.
5588 IER_Error
5589 };
5590
5591 IfExistsResult
5592 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5593 const DeclarationNameInfo &TargetNameInfo);
5594
5595 IfExistsResult
5596 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5597 bool IsIfExists, CXXScopeSpec &SS,
5598 UnqualifiedId &Name);
5599
5600 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5601 bool IsIfExists,
5602 NestedNameSpecifierLoc QualifierLoc,
5603 DeclarationNameInfo NameInfo,
5604 Stmt *Nested);
5605 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5606 bool IsIfExists,
5607 CXXScopeSpec &SS, UnqualifiedId &Name,
5608 Stmt *Nested);
5609
5610 //===------------------------- "Block" Extension ------------------------===//
5611
5612 /// ActOnBlockStart - This callback is invoked when a block literal is
5613 /// started.
5614 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5615
5616 /// ActOnBlockArguments - This callback allows processing of block arguments.
5617 /// If there are no arguments, this is still invoked.
5618 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5619 Scope *CurScope);
5620
5621 /// ActOnBlockError - If there is an error parsing a block, this callback
5622 /// is invoked to pop the information about the block from the action impl.
5623 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5624
5625 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5626 /// literal was successfully completed. ^(int x){...}
5627 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5628 Scope *CurScope);
5629
5630 //===---------------------------- Clang Extensions ----------------------===//
5631
5632 /// __builtin_convertvector(...)
5633 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5634 SourceLocation BuiltinLoc,
5635 SourceLocation RParenLoc);
5636
5637 //===---------------------------- OpenCL Features -----------------------===//
5638
5639 /// __builtin_astype(...)
5640 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5641 SourceLocation BuiltinLoc,
5642 SourceLocation RParenLoc);
5643 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5644 SourceLocation BuiltinLoc,
5645 SourceLocation RParenLoc);
5646
5647 //===---------------------------- C++ Features --------------------------===//
5648
5649 // Act on C++ namespaces
5650 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5651 SourceLocation NamespaceLoc,
5652 SourceLocation IdentLoc, IdentifierInfo *Ident,
5653 SourceLocation LBrace,
5654 const ParsedAttributesView &AttrList,
5655 UsingDirectiveDecl *&UsingDecl);
5656 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5657
5658 NamespaceDecl *getStdNamespace() const;
5659 NamespaceDecl *getOrCreateStdNamespace();
5660
5661 NamespaceDecl *lookupStdExperimentalNamespace();
5662
5663 CXXRecordDecl *getStdBadAlloc() const;
5664 EnumDecl *getStdAlignValT() const;
5665
5666private:
5667 // A cache representing if we've fully checked the various comparison category
5668 // types stored in ASTContext. The bit-index corresponds to the integer value
5669 // of a ComparisonCategoryType enumerator.
5670 llvm::SmallBitVector FullyCheckedComparisonCategories;
5671
5672 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5673 CXXScopeSpec &SS,
5674 ParsedType TemplateTypeTy,
5675 IdentifierInfo *MemberOrBase);
5676
5677public:
5678 enum class ComparisonCategoryUsage {
5679 /// The '<=>' operator was used in an expression and a builtin operator
5680 /// was selected.
5681 OperatorInExpression,
5682 /// A defaulted 'operator<=>' needed the comparison category. This
5683 /// typically only applies to 'std::strong_ordering', due to the implicit
5684 /// fallback return value.
5685 DefaultedOperator,
5686 };
5687
5688 /// Lookup the specified comparison category types in the standard
5689 /// library, an check the VarDecls possibly returned by the operator<=>
5690 /// builtins for that type.
5691 ///
5692 /// \return The type of the comparison category type corresponding to the
5693 /// specified Kind, or a null type if an error occurs
5694 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5695 SourceLocation Loc,
5696 ComparisonCategoryUsage Usage);
5697
5698 /// Tests whether Ty is an instance of std::initializer_list and, if
5699 /// it is and Element is not NULL, assigns the element type to Element.
5700 bool isStdInitializerList(QualType Ty, QualType *Element);
5701
5702 /// Looks for the std::initializer_list template and instantiates it
5703 /// with Element, or emits an error if it's not found.
5704 ///
5705 /// \returns The instantiated template, or null on error.
5706 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5707
5708 /// Determine whether Ctor is an initializer-list constructor, as
5709 /// defined in [dcl.init.list]p2.
5710 bool isInitListConstructor(const FunctionDecl *Ctor);
5711
5712 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5713 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5714 SourceLocation IdentLoc,
5715 IdentifierInfo *NamespcName,
5716 const ParsedAttributesView &AttrList);
5717
5718 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5719
5720 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5721 SourceLocation NamespaceLoc,
5722 SourceLocation AliasLoc,
5723 IdentifierInfo *Alias,
5724 CXXScopeSpec &SS,
5725 SourceLocation IdentLoc,
5726 IdentifierInfo *Ident);
5727
5728 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5729 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5730 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5731 const LookupResult &PreviousDecls,
5732 UsingShadowDecl *&PrevShadow);
5733 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5734 NamedDecl *Target,
5735 UsingShadowDecl *PrevDecl);
5736
5737 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5738 bool HasTypenameKeyword,
5739 const CXXScopeSpec &SS,
5740 SourceLocation NameLoc,
5741 const LookupResult &Previous);
5742 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5743 const CXXScopeSpec &SS,
5744 const DeclarationNameInfo &NameInfo,
5745 SourceLocation NameLoc,
5746 const LookupResult *R = nullptr,
5747 const UsingDecl *UD = nullptr);
5748
5749 NamedDecl *BuildUsingDeclaration(
5750 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5751 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5752 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5753 const ParsedAttributesView &AttrList, bool IsInstantiation,
5754 bool IsUsingIfExists);
5755 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5756 SourceLocation UsingLoc,
5757 SourceLocation EnumLoc,
5758 SourceLocation NameLoc, EnumDecl *ED);
5759 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5760 ArrayRef<NamedDecl *> Expansions);
5761
5762 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5763
5764 /// Given a derived-class using shadow declaration for a constructor and the
5765 /// correspnding base class constructor, find or create the implicit
5766 /// synthesized derived class constructor to use for this initialization.
5767 CXXConstructorDecl *
5768 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5769 ConstructorUsingShadowDecl *DerivedShadow);
5770
5771 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5772 SourceLocation UsingLoc,
5773 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5774 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5775 const ParsedAttributesView &AttrList);
5776 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5777 SourceLocation UsingLoc,
5778 SourceLocation EnumLoc, const DeclSpec &);
5779 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5780 MultiTemplateParamsArg TemplateParams,
5781 SourceLocation UsingLoc, UnqualifiedId &Name,
5782 const ParsedAttributesView &AttrList,
5783 TypeResult Type, Decl *DeclFromDeclSpec);
5784
5785 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5786 /// including handling of its default argument expressions.
5787 ///
5788 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5789 ExprResult
5790 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5791 NamedDecl *FoundDecl,
5792 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5793 bool HadMultipleCandidates, bool IsListInitialization,
5794 bool IsStdInitListInitialization,
5795 bool RequiresZeroInit, unsigned ConstructKind,
5796 SourceRange ParenRange);
5797
5798 /// Build a CXXConstructExpr whose constructor has already been resolved if
5799 /// it denotes an inherited constructor.
5800 ExprResult
5801 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5802 CXXConstructorDecl *Constructor, bool Elidable,
5803 MultiExprArg Exprs,
5804 bool HadMultipleCandidates, bool IsListInitialization,
5805 bool IsStdInitListInitialization,
5806 bool RequiresZeroInit, unsigned ConstructKind,
5807 SourceRange ParenRange);
5808
5809 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5810 // the constructor can be elidable?
5811 ExprResult
5812 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5813 NamedDecl *FoundDecl,
5814 CXXConstructorDecl *Constructor, bool Elidable,
5815 MultiExprArg Exprs, bool HadMultipleCandidates,
5816 bool IsListInitialization,
5817 bool IsStdInitListInitialization, bool RequiresZeroInit,
5818 unsigned ConstructKind, SourceRange ParenRange);
5819
5820 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5821
5822
5823 /// Instantiate or parse a C++ default argument expression as necessary.
5824 /// Return true on error.
5825 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5826 ParmVarDecl *Param);
5827
5828 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5829 /// the default expr if needed.
5830 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5831 FunctionDecl *FD,
5832 ParmVarDecl *Param);
5833
5834 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5835 /// constructed variable.
5836 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5837
5838 /// Helper class that collects exception specifications for
5839 /// implicitly-declared special member functions.
5840 class ImplicitExceptionSpecification {
5841 // Pointer to allow copying
5842 Sema *Self;
5843 // We order exception specifications thus:
5844 // noexcept is the most restrictive, but is only used in C++11.
5845 // throw() comes next.
5846 // Then a throw(collected exceptions)
5847 // Finally no specification, which is expressed as noexcept(false).
5848 // throw(...) is used instead if any called function uses it.
5849 ExceptionSpecificationType ComputedEST;
5850 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5851 SmallVector<QualType, 4> Exceptions;
5852
5853 void ClearExceptions() {
5854 ExceptionsSeen.clear();
5855 Exceptions.clear();
5856 }
5857
5858 public:
5859 explicit ImplicitExceptionSpecification(Sema &Self)
5860 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5861 if (!Self.getLangOpts().CPlusPlus11)
5862 ComputedEST = EST_DynamicNone;
5863 }
5864
5865 /// Get the computed exception specification type.
5866 ExceptionSpecificationType getExceptionSpecType() const {
5867 assert(!isComputedNoexcept(ComputedEST) &&((void)0)
5868 "noexcept(expr) should not be a possible result")((void)0);
5869 return ComputedEST;
5870 }
5871
5872 /// The number of exceptions in the exception specification.
5873 unsigned size() const { return Exceptions.size(); }
5874
5875 /// The set of exceptions in the exception specification.
5876 const QualType *data() const { return Exceptions.data(); }
5877
5878 /// Integrate another called method into the collected data.
5879 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5880
5881 /// Integrate an invoked expression into the collected data.
5882 void CalledExpr(Expr *E) { CalledStmt(E); }
5883
5884 /// Integrate an invoked statement into the collected data.
5885 void CalledStmt(Stmt *S);
5886
5887 /// Overwrite an EPI's exception specification with this
5888 /// computed exception specification.
5889 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5890 FunctionProtoType::ExceptionSpecInfo ESI;
5891 ESI.Type = getExceptionSpecType();
5892 if (ESI.Type == EST_Dynamic) {
5893 ESI.Exceptions = Exceptions;
5894 } else if (ESI.Type == EST_None) {
5895 /// C++11 [except.spec]p14:
5896 /// The exception-specification is noexcept(false) if the set of
5897 /// potential exceptions of the special member function contains "any"
5898 ESI.Type = EST_NoexceptFalse;
5899 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5900 tok::kw_false).get();
5901 }
5902 return ESI;
5903 }
5904 };
5905
5906 /// Evaluate the implicit exception specification for a defaulted
5907 /// special member function.
5908 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5909
5910 /// Check the given noexcept-specifier, convert its expression, and compute
5911 /// the appropriate ExceptionSpecificationType.
5912 ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr,
5913 ExceptionSpecificationType &EST);
5914
5915 /// Check the given exception-specification and update the
5916 /// exception specification information with the results.
5917 void checkExceptionSpecification(bool IsTopLevel,
5918 ExceptionSpecificationType EST,
5919 ArrayRef<ParsedType> DynamicExceptions,
5920 ArrayRef<SourceRange> DynamicExceptionRanges,
5921 Expr *NoexceptExpr,
5922 SmallVectorImpl<QualType> &Exceptions,
5923 FunctionProtoType::ExceptionSpecInfo &ESI);
5924
5925 /// Determine if we're in a case where we need to (incorrectly) eagerly
5926 /// parse an exception specification to work around a libstdc++ bug.
5927 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5928
5929 /// Add an exception-specification to the given member function
5930 /// (or member function template). The exception-specification was parsed
5931 /// after the method itself was declared.
5932 void actOnDelayedExceptionSpecification(Decl *Method,
5933 ExceptionSpecificationType EST,
5934 SourceRange SpecificationRange,
5935 ArrayRef<ParsedType> DynamicExceptions,
5936 ArrayRef<SourceRange> DynamicExceptionRanges,
5937 Expr *NoexceptExpr);
5938
5939 class InheritedConstructorInfo;
5940
5941 /// Determine if a special member function should have a deleted
5942 /// definition when it is defaulted.
5943 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5944 InheritedConstructorInfo *ICI = nullptr,
5945 bool Diagnose = false);
5946
5947 /// Produce notes explaining why a defaulted function was defined as deleted.
5948 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5949
5950 /// Declare the implicit default constructor for the given class.
5951 ///
5952 /// \param ClassDecl The class declaration into which the implicit
5953 /// default constructor will be added.
5954 ///
5955 /// \returns The implicitly-declared default constructor.
5956 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5957 CXXRecordDecl *ClassDecl);
5958
5959 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5960 /// defining this constructor as the default constructor.
5961 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5962 CXXConstructorDecl *Constructor);
5963
5964 /// Declare the implicit destructor for the given class.
5965 ///
5966 /// \param ClassDecl The class declaration into which the implicit
5967 /// destructor will be added.
5968 ///
5969 /// \returns The implicitly-declared destructor.
5970 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5971
5972 /// DefineImplicitDestructor - Checks for feasibility of
5973 /// defining this destructor as the default destructor.
5974 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5975 CXXDestructorDecl *Destructor);
5976
5977 /// Build an exception spec for destructors that don't have one.
5978 ///
5979 /// C++11 says that user-defined destructors with no exception spec get one
5980 /// that looks as if the destructor was implicitly declared.
5981 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5982
5983 /// Define the specified inheriting constructor.
5984 void DefineInheritingConstructor(SourceLocation UseLoc,
5985 CXXConstructorDecl *Constructor);
5986
5987 /// Declare the implicit copy constructor for the given class.
5988 ///
5989 /// \param ClassDecl The class declaration into which the implicit
5990 /// copy constructor will be added.
5991 ///
5992 /// \returns The implicitly-declared copy constructor.
5993 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5994
5995 /// DefineImplicitCopyConstructor - Checks for feasibility of
5996 /// defining this constructor as the copy constructor.
5997 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5998 CXXConstructorDecl *Constructor);
5999
6000 /// Declare the implicit move constructor for the given class.
6001 ///
6002 /// \param ClassDecl The Class declaration into which the implicit
6003 /// move constructor will be added.
6004 ///
6005 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6006 /// declared.
6007 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6008
6009 /// DefineImplicitMoveConstructor - Checks for feasibility of
6010 /// defining this constructor as the move constructor.
6011 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6012 CXXConstructorDecl *Constructor);
6013
6014 /// Declare the implicit copy assignment operator for the given class.
6015 ///
6016 /// \param ClassDecl The class declaration into which the implicit
6017 /// copy assignment operator will be added.
6018 ///
6019 /// \returns The implicitly-declared copy assignment operator.
6020 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6021
6022 /// Defines an implicitly-declared copy assignment operator.
6023 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6024 CXXMethodDecl *MethodDecl);
6025
6026 /// Declare the implicit move assignment operator for the given class.
6027 ///
6028 /// \param ClassDecl The Class declaration into which the implicit
6029 /// move assignment operator will be added.
6030 ///
6031 /// \returns The implicitly-declared move assignment operator, or NULL if it
6032 /// wasn't declared.
6033 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6034
6035 /// Defines an implicitly-declared move assignment operator.
6036 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6037 CXXMethodDecl *MethodDecl);
6038
6039 /// Force the declaration of any implicitly-declared members of this
6040 /// class.
6041 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6042
6043 /// Check a completed declaration of an implicit special member.
6044 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6045
6046 /// Determine whether the given function is an implicitly-deleted
6047 /// special member function.
6048 bool isImplicitlyDeleted(FunctionDecl *FD);
6049
6050 /// Check whether 'this' shows up in the type of a static member
6051 /// function after the (naturally empty) cv-qualifier-seq would be.
6052 ///
6053 /// \returns true if an error occurred.
6054 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6055
6056 /// Whether this' shows up in the exception specification of a static
6057 /// member function.
6058 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6059
6060 /// Check whether 'this' shows up in the attributes of the given
6061 /// static member function.
6062 ///
6063 /// \returns true if an error occurred.
6064 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6065
6066 /// MaybeBindToTemporary - If the passed in expression has a record type with
6067 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6068 /// it simply returns the passed in expression.
6069 ExprResult MaybeBindToTemporary(Expr *E);
6070
6071 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6072 /// invocation.
6073 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6074
6075 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6076 QualType DeclInitType, MultiExprArg ArgsPtr,
6077 SourceLocation Loc,
6078 SmallVectorImpl<Expr *> &ConvertedArgs,
6079 bool AllowExplicit = false,
6080 bool IsListInitialization = false);
6081
6082 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6083 SourceLocation NameLoc,
6084 IdentifierInfo &Name);
6085
6086 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6087 Scope *S, CXXScopeSpec &SS,
6088 bool EnteringContext);
6089 ParsedType getDestructorName(SourceLocation TildeLoc,
6090 IdentifierInfo &II, SourceLocation NameLoc,
6091 Scope *S, CXXScopeSpec &SS,
6092 ParsedType ObjectType,
6093 bool EnteringContext);
6094
6095 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6096 ParsedType ObjectType);
6097
6098 // Checks that reinterpret casts don't have undefined behavior.
6099 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6100 bool IsDereference, SourceRange Range);
6101
6102 // Checks that the vector type should be initialized from a scalar
6103 // by splatting the value rather than populating a single element.
6104 // This is the case for AltiVecVector types as well as with
6105 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6106 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6107
6108 /// ActOnCXXNamedCast - Parse
6109 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6110 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6111 tok::TokenKind Kind,
6112 SourceLocation LAngleBracketLoc,
6113 Declarator &D,
6114 SourceLocation RAngleBracketLoc,
6115 SourceLocation LParenLoc,
6116 Expr *E,
6117 SourceLocation RParenLoc);
6118
6119 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6120 tok::TokenKind Kind,
6121 TypeSourceInfo *Ty,
6122 Expr *E,
6123 SourceRange AngleBrackets,
6124 SourceRange Parens);
6125
6126 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6127 ExprResult Operand,
6128 SourceLocation RParenLoc);
6129
6130 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6131 Expr *Operand, SourceLocation RParenLoc);
6132
6133 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6134 SourceLocation TypeidLoc,
6135 TypeSourceInfo *Operand,
6136 SourceLocation RParenLoc);
6137 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6138 SourceLocation TypeidLoc,
6139 Expr *Operand,
6140 SourceLocation RParenLoc);
6141
6142 /// ActOnCXXTypeid - Parse typeid( something ).
6143 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6144 SourceLocation LParenLoc, bool isType,
6145 void *TyOrExpr,
6146 SourceLocation RParenLoc);
6147
6148 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6149 SourceLocation TypeidLoc,
6150 TypeSourceInfo *Operand,
6151 SourceLocation RParenLoc);
6152 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6153 SourceLocation TypeidLoc,
6154 Expr *Operand,
6155 SourceLocation RParenLoc);
6156
6157 /// ActOnCXXUuidof - Parse __uuidof( something ).
6158 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6159 SourceLocation LParenLoc, bool isType,
6160 void *TyOrExpr,
6161 SourceLocation RParenLoc);
6162
6163 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6164 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6165 tok::TokenKind Operator,
6166 SourceLocation EllipsisLoc, Expr *RHS,
6167 SourceLocation RParenLoc);
6168 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6169 SourceLocation LParenLoc, Expr *LHS,
6170 BinaryOperatorKind Operator,
6171 SourceLocation EllipsisLoc, Expr *RHS,
6172 SourceLocation RParenLoc,
6173 Optional<unsigned> NumExpansions);
6174 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6175 BinaryOperatorKind Operator);
6176
6177 //// ActOnCXXThis - Parse 'this' pointer.
6178 ExprResult ActOnCXXThis(SourceLocation loc);
6179
6180 /// Build a CXXThisExpr and mark it referenced in the current context.
6181 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6182 void MarkThisReferenced(CXXThisExpr *This);
6183
6184 /// Try to retrieve the type of the 'this' pointer.
6185 ///
6186 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6187 QualType getCurrentThisType();
6188
6189 /// When non-NULL, the C++ 'this' expression is allowed despite the
6190 /// current context not being a non-static member function. In such cases,
6191 /// this provides the type used for 'this'.
6192 QualType CXXThisTypeOverride;
6193
6194 /// RAII object used to temporarily allow the C++ 'this' expression
6195 /// to be used, with the given qualifiers on the current class type.
6196 class CXXThisScopeRAII {
6197 Sema &S;
6198 QualType OldCXXThisTypeOverride;
6199 bool Enabled;
6200
6201 public:
6202 /// Introduce a new scope where 'this' may be allowed (when enabled),
6203 /// using the given declaration (which is either a class template or a
6204 /// class) along with the given qualifiers.
6205 /// along with the qualifiers placed on '*this'.
6206 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6207 bool Enabled = true);
6208
6209 ~CXXThisScopeRAII();
6210 };
6211
6212 /// Make sure the value of 'this' is actually available in the current
6213 /// context, if it is a potentially evaluated context.
6214 ///
6215 /// \param Loc The location at which the capture of 'this' occurs.
6216 ///
6217 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6218 /// capture list.
6219 ///
6220 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6221 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6222 /// This is useful when enclosing lambdas must speculatively capture
6223 /// 'this' that may or may not be used in certain specializations of
6224 /// a nested generic lambda (depending on whether the name resolves to
6225 /// a non-static member function or a static function).
6226 /// \return returns 'true' if failed, 'false' if success.
6227 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6228 bool BuildAndDiagnose = true,
6229 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6230 bool ByCopy = false);
6231
6232 /// Determine whether the given type is the type of *this that is used
6233 /// outside of the body of a member function for a type that is currently
6234 /// being defined.
6235 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6236
6237 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6238 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6239
6240
6241 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6242 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6243
6244 ExprResult
6245 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6246 SourceLocation AtLoc, SourceLocation RParen);
6247
6248 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6249 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6250
6251 //// ActOnCXXThrow - Parse throw expressions.
6252 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6253 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6254 bool IsThrownVarInScope);
6255 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6256
6257 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6258 /// Can be interpreted either as function-style casting ("int(x)")
6259 /// or class type construction ("ClassType(x,y,z)")
6260 /// or creation of a value-initialized type ("int()").
6261 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6262 SourceLocation LParenOrBraceLoc,
6263 MultiExprArg Exprs,
6264 SourceLocation RParenOrBraceLoc,
6265 bool ListInitialization);
6266
6267 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6268 SourceLocation LParenLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenLoc,
6271 bool ListInitialization);
6272
6273 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6274 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6275 SourceLocation PlacementLParen,
6276 MultiExprArg PlacementArgs,
6277 SourceLocation PlacementRParen,
6278 SourceRange TypeIdParens, Declarator &D,
6279 Expr *Initializer);
6280 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens,
6285 QualType AllocType,
6286 TypeSourceInfo *AllocTypeInfo,
6287 Optional<Expr *> ArraySize,
6288 SourceRange DirectInitRange,
6289 Expr *Initializer);
6290
6291 /// Determine whether \p FD is an aligned allocation or deallocation
6292 /// function that is unavailable.
6293 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6294
6295 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6296 /// function that is unavailable.
6297 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6298 SourceLocation Loc);
6299
6300 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6301 SourceRange R);
6302
6303 /// The scope in which to find allocation functions.
6304 enum AllocationFunctionScope {
6305 /// Only look for allocation functions in the global scope.
6306 AFS_Global,
6307 /// Only look for allocation functions in the scope of the
6308 /// allocated class.
6309 AFS_Class,
6310 /// Look for allocation functions in both the global scope
6311 /// and in the scope of the allocated class.
6312 AFS_Both
6313 };
6314
6315 /// Finds the overloads of operator new and delete that are appropriate
6316 /// for the allocation.
6317 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6318 AllocationFunctionScope NewScope,
6319 AllocationFunctionScope DeleteScope,
6320 QualType AllocType, bool IsArray,
6321 bool &PassAlignment, MultiExprArg PlaceArgs,
6322 FunctionDecl *&OperatorNew,
6323 FunctionDecl *&OperatorDelete,
6324 bool Diagnose = true);
6325 void DeclareGlobalNewDelete();
6326 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6327 ArrayRef<QualType> Params);
6328
6329 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6330 DeclarationName Name, FunctionDecl* &Operator,
6331 bool Diagnose = true);
6332 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6333 bool CanProvideSize,
6334 bool Overaligned,
6335 DeclarationName Name);
6336 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6337 CXXRecordDecl *RD);
6338
6339 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6340 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6341 bool UseGlobal, bool ArrayForm,
6342 Expr *Operand);
6343 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6344 bool IsDelete, bool CallCanBeVirtual,
6345 bool WarnOnNonAbstractTypes,
6346 SourceLocation DtorLoc);
6347
6348 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6349 Expr *Operand, SourceLocation RParen);
6350 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6351 SourceLocation RParen);
6352
6353 /// Parsed one of the type trait support pseudo-functions.
6354 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6355 ArrayRef<ParsedType> Args,
6356 SourceLocation RParenLoc);
6357 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6358 ArrayRef<TypeSourceInfo *> Args,
6359 SourceLocation RParenLoc);
6360
6361 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6362 /// pseudo-functions.
6363 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6364 SourceLocation KWLoc,
6365 ParsedType LhsTy,
6366 Expr *DimExpr,
6367 SourceLocation RParen);
6368
6369 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 TypeSourceInfo *TSInfo,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6376 /// pseudo-functions.
6377 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6378 SourceLocation KWLoc,
6379 Expr *Queried,
6380 SourceLocation RParen);
6381
6382 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6383 SourceLocation KWLoc,
6384 Expr *Queried,
6385 SourceLocation RParen);
6386
6387 ExprResult ActOnStartCXXMemberReference(Scope *S,
6388 Expr *Base,
6389 SourceLocation OpLoc,
6390 tok::TokenKind OpKind,
6391 ParsedType &ObjectType,
6392 bool &MayBePseudoDestructor);
6393
6394 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 const CXXScopeSpec &SS,
6398 TypeSourceInfo *ScopeType,
6399 SourceLocation CCLoc,
6400 SourceLocation TildeLoc,
6401 PseudoDestructorTypeStorage DestroyedType);
6402
6403 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6404 SourceLocation OpLoc,
6405 tok::TokenKind OpKind,
6406 CXXScopeSpec &SS,
6407 UnqualifiedId &FirstTypeName,
6408 SourceLocation CCLoc,
6409 SourceLocation TildeLoc,
6410 UnqualifiedId &SecondTypeName);
6411
6412 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6413 SourceLocation OpLoc,
6414 tok::TokenKind OpKind,
6415 SourceLocation TildeLoc,
6416 const DeclSpec& DS);
6417
6418 /// MaybeCreateExprWithCleanups - If the current full-expression
6419 /// requires any cleanups, surround it with a ExprWithCleanups node.
6420 /// Otherwise, just returns the passed-in expression.
6421 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6422 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6423 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6424
6425 MaterializeTemporaryExpr *
6426 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6427 bool BoundToLvalueReference);
6428
6429 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6430 return ActOnFinishFullExpr(
6431 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6432 }
6433 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6434 bool DiscardedValue, bool IsConstexpr = false);
6435 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6436
6437 // Marks SS invalid if it represents an incomplete type.
6438 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6439 // Complete an enum decl, maybe without a scope spec.
6440 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6441 CXXScopeSpec *SS = nullptr);
6442
6443 DeclContext *computeDeclContext(QualType T);
6444 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6445 bool EnteringContext = false);
6446 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6447 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6448
6449 /// The parser has parsed a global nested-name-specifier '::'.
6450 ///
6451 /// \param CCLoc The location of the '::'.
6452 ///
6453 /// \param SS The nested-name-specifier, which will be updated in-place
6454 /// to reflect the parsed nested-name-specifier.
6455 ///
6456 /// \returns true if an error occurred, false otherwise.
6457 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6458
6459 /// The parser has parsed a '__super' nested-name-specifier.
6460 ///
6461 /// \param SuperLoc The location of the '__super' keyword.
6462 ///
6463 /// \param ColonColonLoc The location of the '::'.
6464 ///
6465 /// \param SS The nested-name-specifier, which will be updated in-place
6466 /// to reflect the parsed nested-name-specifier.
6467 ///
6468 /// \returns true if an error occurred, false otherwise.
6469 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6470 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6471
6472 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6473 bool *CanCorrect = nullptr);
6474 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6475
6476 /// Keeps information about an identifier in a nested-name-spec.
6477 ///
6478 struct NestedNameSpecInfo {
6479 /// The type of the object, if we're parsing nested-name-specifier in
6480 /// a member access expression.
6481 ParsedType ObjectType;
6482
6483 /// The identifier preceding the '::'.
6484 IdentifierInfo *Identifier;
6485
6486 /// The location of the identifier.
6487 SourceLocation IdentifierLoc;
6488
6489 /// The location of the '::'.
6490 SourceLocation CCLoc;
6491
6492 /// Creates info object for the most typical case.
6493 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6494 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6495 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6496 CCLoc(ColonColonLoc) {
6497 }
6498
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, QualType ObjectType)
6501 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6502 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6503 }
6504 };
6505
6506 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6507 NestedNameSpecInfo &IdInfo);
6508
6509 bool BuildCXXNestedNameSpecifier(Scope *S,
6510 NestedNameSpecInfo &IdInfo,
6511 bool EnteringContext,
6512 CXXScopeSpec &SS,
6513 NamedDecl *ScopeLookupResult,
6514 bool ErrorRecoveryLookup,
6515 bool *IsCorrectedToColon = nullptr,
6516 bool OnlyNamespace = false);
6517
6518 /// The parser has parsed a nested-name-specifier 'identifier::'.
6519 ///
6520 /// \param S The scope in which this nested-name-specifier occurs.
6521 ///
6522 /// \param IdInfo Parser information about an identifier in the
6523 /// nested-name-spec.
6524 ///
6525 /// \param EnteringContext Whether we're entering the context nominated by
6526 /// this nested-name-specifier.
6527 ///
6528 /// \param SS The nested-name-specifier, which is both an input
6529 /// parameter (the nested-name-specifier before this type) and an
6530 /// output parameter (containing the full nested-name-specifier,
6531 /// including this new type).
6532 ///
6533 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6534 /// error recovery. In this case do not emit error message.
6535 ///
6536 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6537 /// are allowed. The bool value pointed by this parameter is set to 'true'
6538 /// if the identifier is treated as if it was followed by ':', not '::'.
6539 ///
6540 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6541 ///
6542 /// \returns true if an error occurred, false otherwise.
6543 bool ActOnCXXNestedNameSpecifier(Scope *S,
6544 NestedNameSpecInfo &IdInfo,
6545 bool EnteringContext,
6546 CXXScopeSpec &SS,
6547 bool ErrorRecoveryLookup = false,
6548 bool *IsCorrectedToColon = nullptr,
6549 bool OnlyNamespace = false);
6550
6551 ExprResult ActOnDecltypeExpression(Expr *E);
6552
6553 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6554 const DeclSpec &DS,
6555 SourceLocation ColonColonLoc);
6556
6557 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6558 NestedNameSpecInfo &IdInfo,
6559 bool EnteringContext);
6560
6561 /// The parser has parsed a nested-name-specifier
6562 /// 'template[opt] template-name < template-args >::'.
6563 ///
6564 /// \param S The scope in which this nested-name-specifier occurs.
6565 ///
6566 /// \param SS The nested-name-specifier, which is both an input
6567 /// parameter (the nested-name-specifier before this type) and an
6568 /// output parameter (containing the full nested-name-specifier,
6569 /// including this new type).
6570 ///
6571 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6572 /// \param TemplateName the template name.
6573 /// \param TemplateNameLoc The location of the template name.
6574 /// \param LAngleLoc The location of the opening angle bracket ('<').
6575 /// \param TemplateArgs The template arguments.
6576 /// \param RAngleLoc The location of the closing angle bracket ('>').
6577 /// \param CCLoc The location of the '::'.
6578 ///
6579 /// \param EnteringContext Whether we're entering the context of the
6580 /// nested-name-specifier.
6581 ///
6582 ///
6583 /// \returns true if an error occurred, false otherwise.
6584 bool ActOnCXXNestedNameSpecifier(Scope *S,
6585 CXXScopeSpec &SS,
6586 SourceLocation TemplateKWLoc,
6587 TemplateTy TemplateName,
6588 SourceLocation TemplateNameLoc,
6589 SourceLocation LAngleLoc,
6590 ASTTemplateArgsPtr TemplateArgs,
6591 SourceLocation RAngleLoc,
6592 SourceLocation CCLoc,
6593 bool EnteringContext);
6594
6595 /// Given a C++ nested-name-specifier, produce an annotation value
6596 /// that the parser can use later to reconstruct the given
6597 /// nested-name-specifier.
6598 ///
6599 /// \param SS A nested-name-specifier.
6600 ///
6601 /// \returns A pointer containing all of the information in the
6602 /// nested-name-specifier \p SS.
6603 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6604
6605 /// Given an annotation pointer for a nested-name-specifier, restore
6606 /// the nested-name-specifier structure.
6607 ///
6608 /// \param Annotation The annotation pointer, produced by
6609 /// \c SaveNestedNameSpecifierAnnotation().
6610 ///
6611 /// \param AnnotationRange The source range corresponding to the annotation.
6612 ///
6613 /// \param SS The nested-name-specifier that will be updated with the contents
6614 /// of the annotation pointer.
6615 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6616 SourceRange AnnotationRange,
6617 CXXScopeSpec &SS);
6618
6619 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6620
6621 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6622 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6623 /// After this method is called, according to [C++ 3.4.3p3], names should be
6624 /// looked up in the declarator-id's scope, until the declarator is parsed and
6625 /// ActOnCXXExitDeclaratorScope is called.
6626 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6627 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6628
6629 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6630 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6631 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6632 /// Used to indicate that names should revert to being looked up in the
6633 /// defining scope.
6634 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6635
6636 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6637 /// initializer for the declaration 'Dcl'.
6638 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6639 /// static data member of class X, names should be looked up in the scope of
6640 /// class X.
6641 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6642
6643 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6644 /// initializer for the declaration 'Dcl'.
6645 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6646
6647 /// Create a new lambda closure type.
6648 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6649 TypeSourceInfo *Info,
6650 bool KnownDependent,
6651 LambdaCaptureDefault CaptureDefault);
6652
6653 /// Start the definition of a lambda expression.
6654 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6655 SourceRange IntroducerRange,
6656 TypeSourceInfo *MethodType,
6657 SourceLocation EndLoc,
6658 ArrayRef<ParmVarDecl *> Params,
6659 ConstexprSpecKind ConstexprKind,
6660 Expr *TrailingRequiresClause);
6661
6662 /// Number lambda for linkage purposes if necessary.
6663 void handleLambdaNumbering(
6664 CXXRecordDecl *Class, CXXMethodDecl *Method,
6665 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6666
6667 /// Endow the lambda scope info with the relevant properties.
6668 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6669 CXXMethodDecl *CallOperator,
6670 SourceRange IntroducerRange,
6671 LambdaCaptureDefault CaptureDefault,
6672 SourceLocation CaptureDefaultLoc,
6673 bool ExplicitParams,
6674 bool ExplicitResultType,
6675 bool Mutable);
6676
6677 /// Perform initialization analysis of the init-capture and perform
6678 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6679 /// not being used to initialize a reference.
6680 ParsedType actOnLambdaInitCaptureInitialization(
6681 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6682 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6683 return ParsedType::make(buildLambdaInitCaptureInitialization(
6684 Loc, ByRef, EllipsisLoc, None, Id,
6685 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6686 }
6687 QualType buildLambdaInitCaptureInitialization(
6688 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6689 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6690 Expr *&Init);
6691
6692 /// Create a dummy variable within the declcontext of the lambda's
6693 /// call operator, for name lookup purposes for a lambda init capture.
6694 ///
6695 /// CodeGen handles emission of lambda captures, ignoring these dummy
6696 /// variables appropriately.
6697 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6698 QualType InitCaptureType,
6699 SourceLocation EllipsisLoc,
6700 IdentifierInfo *Id,
6701 unsigned InitStyle, Expr *Init);
6702
6703 /// Add an init-capture to a lambda scope.
6704 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6705
6706 /// Note that we have finished the explicit captures for the
6707 /// given lambda.
6708 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6709
6710 /// \brief This is called after parsing the explicit template parameter list
6711 /// on a lambda (if it exists) in C++2a.
6712 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6713 ArrayRef<NamedDecl *> TParams,
6714 SourceLocation RAngleLoc,
6715 ExprResult RequiresClause);
6716
6717 /// Introduce the lambda parameters into scope.
6718 void addLambdaParameters(
6719 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6720 CXXMethodDecl *CallOperator, Scope *CurScope);
6721
6722 /// Deduce a block or lambda's return type based on the return
6723 /// statements present in the body.
6724 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6725
6726 /// ActOnStartOfLambdaDefinition - This is called just before we start
6727 /// parsing the body of a lambda; it analyzes the explicit captures and
6728 /// arguments, and sets up various data-structures for the body of the
6729 /// lambda.
6730 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6731 Declarator &ParamInfo, Scope *CurScope);
6732
6733 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6734 /// is invoked to pop the information about the lambda.
6735 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6736 bool IsInstantiation = false);
6737
6738 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6739 /// was successfully completed.
6740 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6741 Scope *CurScope);
6742
6743 /// Does copying/destroying the captured variable have side effects?
6744 bool CaptureHasSideEffects(const sema::Capture &From);
6745
6746 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6747 /// diagnostic is emitted.
6748 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6749 const sema::Capture &From);
6750
6751 /// Build a FieldDecl suitable to hold the given capture.
6752 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6753
6754 /// Initialize the given capture with a suitable expression.
6755 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6756 SourceLocation ImplicitCaptureLoc,
6757 bool IsOpenMPMapping = false);
6758
6759 /// Complete a lambda-expression having processed and attached the
6760 /// lambda body.
6761 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6762 sema::LambdaScopeInfo *LSI);
6763
6764 /// Get the return type to use for a lambda's conversion function(s) to
6765 /// function pointer type, given the type of the call operator.
6766 QualType
6767 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6768 CallingConv CC);
6769
6770 /// Define the "body" of the conversion from a lambda object to a
6771 /// function pointer.
6772 ///
6773 /// This routine doesn't actually define a sensible body; rather, it fills
6774 /// in the initialization expression needed to copy the lambda object into
6775 /// the block, and IR generation actually generates the real body of the
6776 /// block pointer conversion.
6777 void DefineImplicitLambdaToFunctionPointerConversion(
6778 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6779
6780 /// Define the "body" of the conversion from a lambda object to a
6781 /// block pointer.
6782 ///
6783 /// This routine doesn't actually define a sensible body; rather, it fills
6784 /// in the initialization expression needed to copy the lambda object into
6785 /// the block, and IR generation actually generates the real body of the
6786 /// block pointer conversion.
6787 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6788 CXXConversionDecl *Conv);
6789
6790 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6791 SourceLocation ConvLocation,
6792 CXXConversionDecl *Conv,
6793 Expr *Src);
6794
6795 /// Check whether the given expression is a valid constraint expression.
6796 /// A diagnostic is emitted if it is not, false is returned, and
6797 /// PossibleNonPrimary will be set to true if the failure might be due to a
6798 /// non-primary expression being used as an atomic constraint.
6799 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6800 bool *PossibleNonPrimary = nullptr,
6801 bool IsTrailingRequiresClause = false);
6802
6803private:
6804 /// Caches pairs of template-like decls whose associated constraints were
6805 /// checked for subsumption and whether or not the first's constraints did in
6806 /// fact subsume the second's.
6807 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6808 /// Caches the normalized associated constraints of declarations (concepts or
6809 /// constrained declarations). If an error occurred while normalizing the
6810 /// associated constraints of the template or concept, nullptr will be cached
6811 /// here.
6812 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6813 NormalizationCache;
6814
6815 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6816 SatisfactionCache;
6817
6818public:
6819 const NormalizedConstraint *
6820 getNormalizedAssociatedConstraints(
6821 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6822
6823 /// \brief Check whether the given declaration's associated constraints are
6824 /// at least as constrained than another declaration's according to the
6825 /// partial ordering of constraints.
6826 ///
6827 /// \param Result If no error occurred, receives the result of true if D1 is
6828 /// at least constrained than D2, and false otherwise.
6829 ///
6830 /// \returns true if an error occurred, false otherwise.
6831 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6832 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6833 bool &Result);
6834
6835 /// If D1 was not at least as constrained as D2, but would've been if a pair
6836 /// of atomic constraints involved had been declared in a concept and not
6837 /// repeated in two separate places in code.
6838 /// \returns true if such a diagnostic was emitted, false otherwise.
6839 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6840 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6841
6842 /// \brief Check whether the given list of constraint expressions are
6843 /// satisfied (as if in a 'conjunction') given template arguments.
6844 /// \param Template the template-like entity that triggered the constraints
6845 /// check (either a concept or a constrained entity).
6846 /// \param ConstraintExprs a list of constraint expressions, treated as if
6847 /// they were 'AND'ed together.
6848 /// \param TemplateArgs the list of template arguments to substitute into the
6849 /// constraint expression.
6850 /// \param TemplateIDRange The source range of the template id that
6851 /// caused the constraints check.
6852 /// \param Satisfaction if true is returned, will contain details of the
6853 /// satisfaction, with enough information to diagnose an unsatisfied
6854 /// expression.
6855 /// \returns true if an error occurred and satisfaction could not be checked,
6856 /// false otherwise.
6857 bool CheckConstraintSatisfaction(
6858 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6859 ArrayRef<TemplateArgument> TemplateArgs,
6860 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6861
6862 /// \brief Check whether the given non-dependent constraint expression is
6863 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6864 /// verdict if successful, emits a diagnostic and returns true if an error
6865 /// occured and satisfaction could not be determined.
6866 ///
6867 /// \returns true if an error occurred, false otherwise.
6868 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6869 ConstraintSatisfaction &Satisfaction);
6870
6871 /// Check whether the given function decl's trailing requires clause is
6872 /// satisfied, if any. Returns false and updates Satisfaction with the
6873 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6874 /// an error occured and satisfaction could not be determined.
6875 ///
6876 /// \returns true if an error occurred, false otherwise.
6877 bool CheckFunctionConstraints(const FunctionDecl *FD,
6878 ConstraintSatisfaction &Satisfaction,
6879 SourceLocation UsageLoc = SourceLocation());
6880
6881
6882 /// \brief Ensure that the given template arguments satisfy the constraints
6883 /// associated with the given template, emitting a diagnostic if they do not.
6884 ///
6885 /// \param Template The template to which the template arguments are being
6886 /// provided.
6887 ///
6888 /// \param TemplateArgs The converted, canonicalized template arguments.
6889 ///
6890 /// \param TemplateIDRange The source range of the template id that
6891 /// caused the constraints check.
6892 ///
6893 /// \returns true if the constrains are not satisfied or could not be checked
6894 /// for satisfaction, false if the constraints are satisfied.
6895 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6896 ArrayRef<TemplateArgument> TemplateArgs,
6897 SourceRange TemplateIDRange);
6898
6899 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6900 /// unsatisfied.
6901 /// \param First whether this is the first time an unsatisfied constraint is
6902 /// diagnosed for this error.
6903 void
6904 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6905 bool First = true);
6906
6907 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6908 /// unsatisfied.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 // ParseObjCStringLiteral - Parse Objective-C string literals.
6914 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6915 ArrayRef<Expr *> Strings);
6916
6917 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6918
6919 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6920 /// numeric literal expression. Type of the expression will be "NSNumber *"
6921 /// or "id" if NSNumber is unavailable.
6922 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6923 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6924 bool Value);
6925 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6926
6927 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6928 /// '@' prefixed parenthesized expression. The type of the expression will
6929 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6930 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6931 /// "const char *" or C structure with attribute 'objc_boxable'.
6932 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6933
6934 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6935 Expr *IndexExpr,
6936 ObjCMethodDecl *getterMethod,
6937 ObjCMethodDecl *setterMethod);
6938
6939 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6940 MutableArrayRef<ObjCDictionaryElement> Elements);
6941
6942 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6943 TypeSourceInfo *EncodedTypeInfo,
6944 SourceLocation RParenLoc);
6945 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6946 CXXConversionDecl *Method,
6947 bool HadMultipleCandidates);
6948
6949 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6950 SourceLocation EncodeLoc,
6951 SourceLocation LParenLoc,
6952 ParsedType Ty,
6953 SourceLocation RParenLoc);
6954
6955 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6956 ExprResult ParseObjCSelectorExpression(Selector Sel,
6957 SourceLocation AtLoc,
6958 SourceLocation SelLoc,
6959 SourceLocation LParenLoc,
6960 SourceLocation RParenLoc,
6961 bool WarnMultipleSelectors);
6962
6963 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6964 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6965 SourceLocation AtLoc,
6966 SourceLocation ProtoLoc,
6967 SourceLocation LParenLoc,
6968 SourceLocation ProtoIdLoc,
6969 SourceLocation RParenLoc);
6970
6971 //===--------------------------------------------------------------------===//
6972 // C++ Declarations
6973 //
6974 Decl *ActOnStartLinkageSpecification(Scope *S,
6975 SourceLocation ExternLoc,
6976 Expr *LangStr,
6977 SourceLocation LBraceLoc);
6978 Decl *ActOnFinishLinkageSpecification(Scope *S,
6979 Decl *LinkageSpec,
6980 SourceLocation RBraceLoc);
6981
6982
6983 //===--------------------------------------------------------------------===//
6984 // C++ Classes
6985 //
6986 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6987 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6988 const CXXScopeSpec *SS = nullptr);
6989 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6990
6991 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6992 SourceLocation ColonLoc,
6993 const ParsedAttributesView &Attrs);
6994
6995 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
6996 Declarator &D,
6997 MultiTemplateParamsArg TemplateParameterLists,
6998 Expr *BitfieldWidth, const VirtSpecifiers &VS,
6999 InClassInitStyle InitStyle);
7000
7001 void ActOnStartCXXInClassMemberInitializer();
7002 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7003 SourceLocation EqualLoc,
7004 Expr *Init);
7005
7006 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7007 Scope *S,
7008 CXXScopeSpec &SS,
7009 IdentifierInfo *MemberOrBase,
7010 ParsedType TemplateTypeTy,
7011 const DeclSpec &DS,
7012 SourceLocation IdLoc,
7013 SourceLocation LParenLoc,
7014 ArrayRef<Expr *> Args,
7015 SourceLocation RParenLoc,
7016 SourceLocation EllipsisLoc);
7017
7018 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7019 Scope *S,
7020 CXXScopeSpec &SS,
7021 IdentifierInfo *MemberOrBase,
7022 ParsedType TemplateTypeTy,
7023 const DeclSpec &DS,
7024 SourceLocation IdLoc,
7025 Expr *InitList,
7026 SourceLocation EllipsisLoc);
7027
7028 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7029 Scope *S,
7030 CXXScopeSpec &SS,
7031 IdentifierInfo *MemberOrBase,
7032 ParsedType TemplateTypeTy,
7033 const DeclSpec &DS,
7034 SourceLocation IdLoc,
7035 Expr *Init,
7036 SourceLocation EllipsisLoc);
7037
7038 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7039 Expr *Init,
7040 SourceLocation IdLoc);
7041
7042 MemInitResult BuildBaseInitializer(QualType BaseType,
7043 TypeSourceInfo *BaseTInfo,
7044 Expr *Init,
7045 CXXRecordDecl *ClassDecl,
7046 SourceLocation EllipsisLoc);
7047
7048 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7049 Expr *Init,
7050 CXXRecordDecl *ClassDecl);
7051
7052 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7053 CXXCtorInitializer *Initializer);
7054
7055 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7056 ArrayRef<CXXCtorInitializer *> Initializers = None);
7057
7058 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7059
7060
7061 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7062 /// mark all the non-trivial destructors of its members and bases as
7063 /// referenced.
7064 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7065 CXXRecordDecl *Record);
7066
7067 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7068 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7069 /// class. In the Microsoft C++ ABI, this is done any time a class's
7070 /// destructor is referenced.
7071 void MarkVirtualBaseDestructorsReferenced(
7072 SourceLocation Location, CXXRecordDecl *ClassDecl,
7073 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7074
7075 /// Do semantic checks to allow the complete destructor variant to be emitted
7076 /// when the destructor is defined in another translation unit. In the Itanium
7077 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7078 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7079 /// of the checks performed when emitting a regular destructor.
7080 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7081 CXXDestructorDecl *Dtor);
7082
7083 /// The list of classes whose vtables have been used within
7084 /// this translation unit, and the source locations at which the
7085 /// first use occurred.
7086 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7087
7088 /// The list of vtables that are required but have not yet been
7089 /// materialized.
7090 SmallVector<VTableUse, 16> VTableUses;
7091
7092 /// The set of classes whose vtables have been used within
7093 /// this translation unit, and a bit that will be true if the vtable is
7094 /// required to be emitted (otherwise, it should be emitted only if needed
7095 /// by code generation).
7096 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7097
7098 /// Load any externally-stored vtable uses.
7099 void LoadExternalVTableUses();
7100
7101 /// Note that the vtable for the given class was used at the
7102 /// given location.
7103 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7104 bool DefinitionRequired = false);
7105
7106 /// Mark the exception specifications of all virtual member functions
7107 /// in the given class as needed.
7108 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7109 const CXXRecordDecl *RD);
7110
7111 /// MarkVirtualMembersReferenced - Will mark all members of the given
7112 /// CXXRecordDecl referenced.
7113 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7114 bool ConstexprOnly = false);
7115
7116 /// Define all of the vtables that have been used in this
7117 /// translation unit and reference any virtual members used by those
7118 /// vtables.
7119 ///
7120 /// \returns true if any work was done, false otherwise.
7121 bool DefineUsedVTables();
7122
7123 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7124
7125 void ActOnMemInitializers(Decl *ConstructorDecl,
7126 SourceLocation ColonLoc,
7127 ArrayRef<CXXCtorInitializer*> MemInits,
7128 bool AnyErrors);
7129
7130 /// Check class-level dllimport/dllexport attribute. The caller must
7131 /// ensure that referenceDLLExportedClassMethods is called some point later
7132 /// when all outer classes of Class are complete.
7133 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7134 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7135
7136 void referenceDLLExportedClassMethods();
7137
7138 void propagateDLLAttrToBaseClassTemplate(
7139 CXXRecordDecl *Class, Attr *ClassAttr,
7140 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7141 SourceLocation BaseLoc);
7142
7143 /// Add gsl::Pointer attribute to std::container::iterator
7144 /// \param ND The declaration that introduces the name
7145 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7146 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7147
7148 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7149 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7150
7151 /// Add [[gsl::Pointer]] attributes for std:: types.
7152 void inferGslPointerAttribute(TypedefNameDecl *TD);
7153
7154 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7155
7156 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7157 /// conditions that are needed for the attribute to have an effect.
7158 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7159
7160 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7161 Decl *TagDecl, SourceLocation LBrac,
7162 SourceLocation RBrac,
7163 const ParsedAttributesView &AttrList);
7164 void ActOnFinishCXXMemberDecls();
7165 void ActOnFinishCXXNonNestedClass();
7166
7167 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7168 unsigned ActOnReenterTemplateScope(Decl *Template,
7169 llvm::function_ref<Scope *()> EnterScope);
7170 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7171 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7172 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7173 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7174 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7175 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7176 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7177 CachedTokens &Toks);
7178 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7179 bool IsInsideALocalClassWithinATemplateFunction();
7180
7181 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7182 Expr *AssertExpr,
7183 Expr *AssertMessageExpr,
7184 SourceLocation RParenLoc);
7185 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7186 Expr *AssertExpr,
7187 StringLiteral *AssertMessageExpr,
7188 SourceLocation RParenLoc,
7189 bool Failed);
7190
7191 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7192 SourceLocation FriendLoc,
7193 TypeSourceInfo *TSInfo);
7194 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7195 MultiTemplateParamsArg TemplateParams);
7196 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7197 MultiTemplateParamsArg TemplateParams);
7198
7199 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7200 StorageClass& SC);
7201 void CheckConstructor(CXXConstructorDecl *Constructor);
7202 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7203 StorageClass& SC);
7204 bool CheckDestructor(CXXDestructorDecl *Destructor);
7205 void CheckConversionDeclarator(Declarator &D, QualType &R,
7206 StorageClass& SC);
7207 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7208 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7209 StorageClass &SC);
7210 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7211
7212 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7213
7214 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7215 CXXSpecialMember CSM);
7216 void CheckDelayedMemberExceptionSpecs();
7217
7218 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7219 DefaultedComparisonKind DCK);
7220 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7221 FunctionDecl *Spaceship);
7222 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7223 DefaultedComparisonKind DCK);
7224
7225 //===--------------------------------------------------------------------===//
7226 // C++ Derived Classes
7227 //
7228
7229 /// ActOnBaseSpecifier - Parsed a base specifier
7230 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7231 SourceRange SpecifierRange,
7232 bool Virtual, AccessSpecifier Access,
7233 TypeSourceInfo *TInfo,
7234 SourceLocation EllipsisLoc);
7235
7236 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7237 SourceRange SpecifierRange,
7238 ParsedAttributes &Attrs,
7239 bool Virtual, AccessSpecifier Access,
7240 ParsedType basetype,
7241 SourceLocation BaseLoc,
7242 SourceLocation EllipsisLoc);
7243
7244 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7245 MutableArrayRef<CXXBaseSpecifier *> Bases);
7246 void ActOnBaseSpecifiers(Decl *ClassDecl,
7247 MutableArrayRef<CXXBaseSpecifier *> Bases);
7248
7249 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7250 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7251 CXXBasePaths &Paths);
7252
7253 // FIXME: I don't like this name.
7254 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7255
7256 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7257 SourceLocation Loc, SourceRange Range,
7258 CXXCastPath *BasePath = nullptr,
7259 bool IgnoreAccess = false);
7260 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7261 unsigned InaccessibleBaseID,
7262 unsigned AmbiguousBaseConvID,
7263 SourceLocation Loc, SourceRange Range,
7264 DeclarationName Name,
7265 CXXCastPath *BasePath,
7266 bool IgnoreAccess = false);
7267
7268 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7269
7270 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7271 const CXXMethodDecl *Old);
7272
7273 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7274 /// covariant, according to C++ [class.virtual]p5.
7275 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7276 const CXXMethodDecl *Old);
7277
7278 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7279 /// spec is a subset of base spec.
7280 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7281 const CXXMethodDecl *Old);
7282
7283 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7284
7285 /// CheckOverrideControl - Check C++11 override control semantics.
7286 void CheckOverrideControl(NamedDecl *D);
7287
7288 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7289 /// not used in the declaration of an overriding method.
7290 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7291
7292 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7293 /// overrides a virtual member function marked 'final', according to
7294 /// C++11 [class.virtual]p4.
7295 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7296 const CXXMethodDecl *Old);
7297
7298
7299 //===--------------------------------------------------------------------===//
7300 // C++ Access Control
7301 //
7302
7303 enum AccessResult {
7304 AR_accessible,
7305 AR_inaccessible,
7306 AR_dependent,
7307 AR_delayed
7308 };
7309
7310 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7311 NamedDecl *PrevMemberDecl,
7312 AccessSpecifier LexicalAS);
7313
7314 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7315 DeclAccessPair FoundDecl);
7316 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7317 DeclAccessPair FoundDecl);
7318 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7319 SourceRange PlacementRange,
7320 CXXRecordDecl *NamingClass,
7321 DeclAccessPair FoundDecl,
7322 bool Diagnose = true);
7323 AccessResult CheckConstructorAccess(SourceLocation Loc,
7324 CXXConstructorDecl *D,
7325 DeclAccessPair FoundDecl,
7326 const InitializedEntity &Entity,
7327 bool IsCopyBindingRefToTemp = false);
7328 AccessResult CheckConstructorAccess(SourceLocation Loc,
7329 CXXConstructorDecl *D,
7330 DeclAccessPair FoundDecl,
7331 const InitializedEntity &Entity,
7332 const PartialDiagnostic &PDiag);
7333 AccessResult CheckDestructorAccess(SourceLocation Loc,
7334 CXXDestructorDecl *Dtor,
7335 const PartialDiagnostic &PDiag,
7336 QualType objectType = QualType());
7337 AccessResult CheckFriendAccess(NamedDecl *D);
7338 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7339 CXXRecordDecl *NamingClass,
7340 DeclAccessPair Found);
7341 AccessResult
7342 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7343 CXXRecordDecl *DecomposedClass,
7344 DeclAccessPair Field);
7345 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7346 Expr *ObjectExpr,
7347 Expr *ArgExpr,
7348 DeclAccessPair FoundDecl);
7349 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7350 DeclAccessPair FoundDecl);
7351 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7352 QualType Base, QualType Derived,
7353 const CXXBasePath &Path,
7354 unsigned DiagID,
7355 bool ForceCheck = false,
7356 bool ForceUnprivileged = false);
7357 void CheckLookupAccess(const LookupResult &R);
7358 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7359 QualType BaseType);
7360 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7361 DeclAccessPair Found, QualType ObjectType,
7362 SourceLocation Loc,
7363 const PartialDiagnostic &Diag);
7364 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7365 DeclAccessPair Found,
7366 QualType ObjectType) {
7367 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7368 SourceLocation(), PDiag());
7369 }
7370
7371 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7372 const MultiLevelTemplateArgumentList &TemplateArgs);
7373 void PerformDependentDiagnostics(const DeclContext *Pattern,
7374 const MultiLevelTemplateArgumentList &TemplateArgs);
7375
7376 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7377
7378 /// When true, access checking violations are treated as SFINAE
7379 /// failures rather than hard errors.
7380 bool AccessCheckingSFINAE;
7381
7382 enum AbstractDiagSelID {
7383 AbstractNone = -1,
7384 AbstractReturnType,
7385 AbstractParamType,
7386 AbstractVariableType,
7387 AbstractFieldType,
7388 AbstractIvarType,
7389 AbstractSynthesizedIvarType,
7390 AbstractArrayType
7391 };
7392
7393 bool isAbstractType(SourceLocation Loc, QualType T);
7394 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7395 TypeDiagnoser &Diagnoser);
7396 template <typename... Ts>
7397 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7398 const Ts &...Args) {
7399 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7400 return RequireNonAbstractType(Loc, T, Diagnoser);
7401 }
7402
7403 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7404
7405 //===--------------------------------------------------------------------===//
7406 // C++ Overloaded Operators [C++ 13.5]
7407 //
7408
7409 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7410
7411 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7412
7413 //===--------------------------------------------------------------------===//
7414 // C++ Templates [C++ 14]
7415 //
7416 void FilterAcceptableTemplateNames(LookupResult &R,
7417 bool AllowFunctionTemplates = true,
7418 bool AllowDependent = true);
7419 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7420 bool AllowFunctionTemplates = true,
7421 bool AllowDependent = true,
7422 bool AllowNonTemplateFunctions = false);
7423 /// Try to interpret the lookup result D as a template-name.
7424 ///
7425 /// \param D A declaration found by name lookup.
7426 /// \param AllowFunctionTemplates Whether function templates should be
7427 /// considered valid results.
7428 /// \param AllowDependent Whether unresolved using declarations (that might
7429 /// name templates) should be considered valid results.
7430 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7431 bool AllowFunctionTemplates = true,
7432 bool AllowDependent = true);
7433
7434 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7435 /// Whether and why a template name is required in this lookup.
7436 class RequiredTemplateKind {
7437 public:
7438 /// Template name is required if TemplateKWLoc is valid.
7439 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7440 : TemplateKW(TemplateKWLoc) {}
7441 /// Template name is unconditionally required.
7442 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7443
7444 SourceLocation getTemplateKeywordLoc() const {
7445 return TemplateKW.getValueOr(SourceLocation());
7446 }
7447 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7448 bool isRequired() const { return TemplateKW != SourceLocation(); }
7449 explicit operator bool() const { return isRequired(); }
7450
7451 private:
7452 llvm::Optional<SourceLocation> TemplateKW;
7453 };
7454
7455 enum class AssumedTemplateKind {
7456 /// This is not assumed to be a template name.
7457 None,
7458 /// This is assumed to be a template name because lookup found nothing.
7459 FoundNothing,
7460 /// This is assumed to be a template name because lookup found one or more
7461 /// functions (but no function templates).
7462 FoundFunctions,
7463 };
7464 bool LookupTemplateName(
7465 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7466 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7467 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7468 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7469
7470 TemplateNameKind isTemplateName(Scope *S,
7471 CXXScopeSpec &SS,
7472 bool hasTemplateKeyword,
7473 const UnqualifiedId &Name,
7474 ParsedType ObjectType,
7475 bool EnteringContext,
7476 TemplateTy &Template,
7477 bool &MemberOfUnknownSpecialization,
7478 bool Disambiguation = false);
7479
7480 /// Try to resolve an undeclared template name as a type template.
7481 ///
7482 /// Sets II to the identifier corresponding to the template name, and updates
7483 /// Name to a corresponding (typo-corrected) type template name and TNK to
7484 /// the corresponding kind, if possible.
7485 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7486 TemplateNameKind &TNK,
7487 SourceLocation NameLoc,
7488 IdentifierInfo *&II);
7489
7490 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7491 SourceLocation NameLoc,
7492 bool Diagnose = true);
7493
7494 /// Determine whether a particular identifier might be the name in a C++1z
7495 /// deduction-guide declaration.
7496 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7497 SourceLocation NameLoc,
7498 ParsedTemplateTy *Template = nullptr);
7499
7500 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7501 SourceLocation IILoc,
7502 Scope *S,
7503 const CXXScopeSpec *SS,
7504 TemplateTy &SuggestedTemplate,
7505 TemplateNameKind &SuggestedKind);
7506
7507 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7508 NamedDecl *Instantiation,
7509 bool InstantiatedFromMember,
7510 const NamedDecl *Pattern,
7511 const NamedDecl *PatternDef,
7512 TemplateSpecializationKind TSK,
7513 bool Complain = true);
7514
7515 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7516 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7517
7518 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7519 SourceLocation EllipsisLoc,
7520 SourceLocation KeyLoc,
7521 IdentifierInfo *ParamName,
7522 SourceLocation ParamNameLoc,
7523 unsigned Depth, unsigned Position,
7524 SourceLocation EqualLoc,
7525 ParsedType DefaultArg, bool HasTypeConstraint);
7526
7527 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7528 TemplateIdAnnotation *TypeConstraint,
7529 TemplateTypeParmDecl *ConstrainedParameter,
7530 SourceLocation EllipsisLoc);
7531 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7532 TemplateIdAnnotation *TypeConstraint,
7533 TemplateTypeParmDecl *ConstrainedParameter,
7534 SourceLocation EllipsisLoc,
7535 bool AllowUnexpandedPack);
7536
7537 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7538 DeclarationNameInfo NameInfo,
7539 ConceptDecl *NamedConcept,
7540 const TemplateArgumentListInfo *TemplateArgs,
7541 TemplateTypeParmDecl *ConstrainedParameter,
7542 SourceLocation EllipsisLoc);
7543
7544 bool AttachTypeConstraint(AutoTypeLoc TL,
7545 NonTypeTemplateParmDecl *ConstrainedParameter,
7546 SourceLocation EllipsisLoc);
7547
7548 bool RequireStructuralType(QualType T, SourceLocation Loc);
7549
7550 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7551 SourceLocation Loc);
7552 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7553
7554 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7555 unsigned Depth,
7556 unsigned Position,
7557 SourceLocation EqualLoc,
7558 Expr *DefaultArg);
7559 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7560 SourceLocation TmpLoc,
7561 TemplateParameterList *Params,
7562 SourceLocation EllipsisLoc,
7563 IdentifierInfo *ParamName,
7564 SourceLocation ParamNameLoc,
7565 unsigned Depth,
7566 unsigned Position,
7567 SourceLocation EqualLoc,
7568 ParsedTemplateArgument DefaultArg);
7569
7570 TemplateParameterList *
7571 ActOnTemplateParameterList(unsigned Depth,
7572 SourceLocation ExportLoc,
7573 SourceLocation TemplateLoc,
7574 SourceLocation LAngleLoc,
7575 ArrayRef<NamedDecl *> Params,
7576 SourceLocation RAngleLoc,
7577 Expr *RequiresClause);
7578
7579 /// The context in which we are checking a template parameter list.
7580 enum TemplateParamListContext {
7581 TPC_ClassTemplate,
7582 TPC_VarTemplate,
7583 TPC_FunctionTemplate,
7584 TPC_ClassTemplateMember,
7585 TPC_FriendClassTemplate,
7586 TPC_FriendFunctionTemplate,
7587 TPC_FriendFunctionTemplateDefinition,
7588 TPC_TypeAliasTemplate
7589 };
7590
7591 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7592 TemplateParameterList *OldParams,
7593 TemplateParamListContext TPC,
7594 SkipBodyInfo *SkipBody = nullptr);
7595 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7596 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7597 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7598 ArrayRef<TemplateParameterList *> ParamLists,
7599 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7600 bool SuppressDiagnostic = false);
7601
7602 DeclResult CheckClassTemplate(
7603 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7604 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7605 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7606 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7607 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7608 TemplateParameterList **OuterTemplateParamLists,
7609 SkipBodyInfo *SkipBody = nullptr);
7610
7611 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7612 QualType NTTPType,
7613 SourceLocation Loc);
7614
7615 /// Get a template argument mapping the given template parameter to itself,
7616 /// e.g. for X in \c template<int X>, this would return an expression template
7617 /// argument referencing X.
7618 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7619 SourceLocation Location);
7620
7621 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7622 TemplateArgumentListInfo &Out);
7623
7624 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7625
7626 void NoteAllFoundTemplates(TemplateName Name);
7627
7628 QualType CheckTemplateIdType(TemplateName Template,
7629 SourceLocation TemplateLoc,
7630 TemplateArgumentListInfo &TemplateArgs);
7631
7632 TypeResult
7633 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7634 TemplateTy Template, IdentifierInfo *TemplateII,
7635 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7636 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7637 bool IsCtorOrDtorName = false, bool IsClassName = false);
7638
7639 /// Parsed an elaborated-type-specifier that refers to a template-id,
7640 /// such as \c class T::template apply<U>.
7641 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7642 TypeSpecifierType TagSpec,
7643 SourceLocation TagLoc,
7644 CXXScopeSpec &SS,
7645 SourceLocation TemplateKWLoc,
7646 TemplateTy TemplateD,
7647 SourceLocation TemplateLoc,
7648 SourceLocation LAngleLoc,
7649 ASTTemplateArgsPtr TemplateArgsIn,
7650 SourceLocation RAngleLoc);
7651
7652 DeclResult ActOnVarTemplateSpecialization(
7653 Scope *S, Declarator &D, TypeSourceInfo *DI,
7654 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7655 StorageClass SC, bool IsPartialSpecialization);
7656
7657 /// Get the specialization of the given variable template corresponding to
7658 /// the specified argument list, or a null-but-valid result if the arguments
7659 /// are dependent.
7660 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7661 SourceLocation TemplateLoc,
7662 SourceLocation TemplateNameLoc,
7663 const TemplateArgumentListInfo &TemplateArgs);
7664
7665 /// Form a reference to the specialization of the given variable template
7666 /// corresponding to the specified argument list, or a null-but-valid result
7667 /// if the arguments are dependent.
7668 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7669 const DeclarationNameInfo &NameInfo,
7670 VarTemplateDecl *Template,
7671 SourceLocation TemplateLoc,
7672 const TemplateArgumentListInfo *TemplateArgs);
7673
7674 ExprResult
7675 CheckConceptTemplateId(const CXXScopeSpec &SS,
7676 SourceLocation TemplateKWLoc,
7677 const DeclarationNameInfo &ConceptNameInfo,
7678 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7679 const TemplateArgumentListInfo *TemplateArgs);
7680
7681 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7682
7683 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7684 SourceLocation TemplateKWLoc,
7685 LookupResult &R,
7686 bool RequiresADL,
7687 const TemplateArgumentListInfo *TemplateArgs);
7688
7689 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 const DeclarationNameInfo &NameInfo,
7692 const TemplateArgumentListInfo *TemplateArgs);
7693
7694 TemplateNameKind ActOnTemplateName(
7695 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7696 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7697 TemplateTy &Template, bool AllowInjectedClassName = false);
7698
7699 DeclResult ActOnClassTemplateSpecialization(
7700 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7701 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7702 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7703 MultiTemplateParamsArg TemplateParameterLists,
7704 SkipBodyInfo *SkipBody = nullptr);
7705
7706 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7707 TemplateDecl *PrimaryTemplate,
7708 unsigned NumExplicitArgs,
7709 ArrayRef<TemplateArgument> Args);
7710 void CheckTemplatePartialSpecialization(
7711 ClassTemplatePartialSpecializationDecl *Partial);
7712 void CheckTemplatePartialSpecialization(
7713 VarTemplatePartialSpecializationDecl *Partial);
7714
7715 Decl *ActOnTemplateDeclarator(Scope *S,
7716 MultiTemplateParamsArg TemplateParameterLists,
7717 Declarator &D);
7718
7719 bool
7720 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7721 TemplateSpecializationKind NewTSK,
7722 NamedDecl *PrevDecl,
7723 TemplateSpecializationKind PrevTSK,
7724 SourceLocation PrevPtOfInstantiation,
7725 bool &SuppressNew);
7726
7727 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7728 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7729 LookupResult &Previous);
7730
7731 bool CheckFunctionTemplateSpecialization(
7732 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7733 LookupResult &Previous, bool QualifiedFriend = false);
7734 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7735 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7736
7737 DeclResult ActOnExplicitInstantiation(
7738 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7739 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7740 TemplateTy Template, SourceLocation TemplateNameLoc,
7741 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7742 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7743
7744 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7745 SourceLocation TemplateLoc,
7746 unsigned TagSpec, SourceLocation KWLoc,
7747 CXXScopeSpec &SS, IdentifierInfo *Name,
7748 SourceLocation NameLoc,
7749 const ParsedAttributesView &Attr);
7750
7751 DeclResult ActOnExplicitInstantiation(Scope *S,
7752 SourceLocation ExternLoc,
7753 SourceLocation TemplateLoc,
7754 Declarator &D);
7755
7756 TemplateArgumentLoc
7757 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7758 SourceLocation TemplateLoc,
7759 SourceLocation RAngleLoc,
7760 Decl *Param,
7761 SmallVectorImpl<TemplateArgument>
7762 &Converted,
7763 bool &HasDefaultArg);
7764
7765 /// Specifies the context in which a particular template
7766 /// argument is being checked.
7767 enum CheckTemplateArgumentKind {
7768 /// The template argument was specified in the code or was
7769 /// instantiated with some deduced template arguments.
7770 CTAK_Specified,
7771
7772 /// The template argument was deduced via template argument
7773 /// deduction.
7774 CTAK_Deduced,
7775
7776 /// The template argument was deduced from an array bound
7777 /// via template argument deduction.
7778 CTAK_DeducedFromArrayBound
7779 };
7780
7781 bool CheckTemplateArgument(NamedDecl *Param,
7782 TemplateArgumentLoc &Arg,
7783 NamedDecl *Template,
7784 SourceLocation TemplateLoc,
7785 SourceLocation RAngleLoc,
7786 unsigned ArgumentPackIndex,
7787 SmallVectorImpl<TemplateArgument> &Converted,
7788 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7789
7790 /// Check that the given template arguments can be be provided to
7791 /// the given template, converting the arguments along the way.
7792 ///
7793 /// \param Template The template to which the template arguments are being
7794 /// provided.
7795 ///
7796 /// \param TemplateLoc The location of the template name in the source.
7797 ///
7798 /// \param TemplateArgs The list of template arguments. If the template is
7799 /// a template template parameter, this function may extend the set of
7800 /// template arguments to also include substituted, defaulted template
7801 /// arguments.
7802 ///
7803 /// \param PartialTemplateArgs True if the list of template arguments is
7804 /// intentionally partial, e.g., because we're checking just the initial
7805 /// set of template arguments.
7806 ///
7807 /// \param Converted Will receive the converted, canonicalized template
7808 /// arguments.
7809 ///
7810 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7811 /// contain the converted forms of the template arguments as written.
7812 /// Otherwise, \p TemplateArgs will not be modified.
7813 ///
7814 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7815 /// receive true if the cause for the error is the associated constraints of
7816 /// the template not being satisfied by the template arguments.
7817 ///
7818 /// \returns true if an error occurred, false otherwise.
7819 bool CheckTemplateArgumentList(TemplateDecl *Template,
7820 SourceLocation TemplateLoc,
7821 TemplateArgumentListInfo &TemplateArgs,
7822 bool PartialTemplateArgs,
7823 SmallVectorImpl<TemplateArgument> &Converted,
7824 bool UpdateArgsWithConversions = true,
7825 bool *ConstraintsNotSatisfied = nullptr);
7826
7827 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7828 TemplateArgumentLoc &Arg,
7829 SmallVectorImpl<TemplateArgument> &Converted);
7830
7831 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7832 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7833 QualType InstantiatedParamType, Expr *Arg,
7834 TemplateArgument &Converted,
7835 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7836 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7837 TemplateParameterList *Params,
7838 TemplateArgumentLoc &Arg);
7839
7840 ExprResult
7841 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7842 QualType ParamType,
7843 SourceLocation Loc);
7844 ExprResult
7845 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7846 SourceLocation Loc);
7847
7848 /// Enumeration describing how template parameter lists are compared
7849 /// for equality.
7850 enum TemplateParameterListEqualKind {
7851 /// We are matching the template parameter lists of two templates
7852 /// that might be redeclarations.
7853 ///
7854 /// \code
7855 /// template<typename T> struct X;
7856 /// template<typename T> struct X;
7857 /// \endcode
7858 TPL_TemplateMatch,
7859
7860 /// We are matching the template parameter lists of two template
7861 /// template parameters as part of matching the template parameter lists
7862 /// of two templates that might be redeclarations.
7863 ///
7864 /// \code
7865 /// template<template<int I> class TT> struct X;
7866 /// template<template<int Value> class Other> struct X;
7867 /// \endcode
7868 TPL_TemplateTemplateParmMatch,
7869
7870 /// We are matching the template parameter lists of a template
7871 /// template argument against the template parameter lists of a template
7872 /// template parameter.
7873 ///
7874 /// \code
7875 /// template<template<int Value> class Metafun> struct X;
7876 /// template<int Value> struct integer_c;
7877 /// X<integer_c> xic;
7878 /// \endcode
7879 TPL_TemplateTemplateArgumentMatch
7880 };
7881
7882 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7883 TemplateParameterList *Old,
7884 bool Complain,
7885 TemplateParameterListEqualKind Kind,
7886 SourceLocation TemplateArgLoc
7887 = SourceLocation());
7888
7889 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7890
7891 /// Called when the parser has parsed a C++ typename
7892 /// specifier, e.g., "typename T::type".
7893 ///
7894 /// \param S The scope in which this typename type occurs.
7895 /// \param TypenameLoc the location of the 'typename' keyword
7896 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7897 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7898 /// \param IdLoc the location of the identifier.
7899 TypeResult
7900 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7901 const CXXScopeSpec &SS, const IdentifierInfo &II,
7902 SourceLocation IdLoc);
7903
7904 /// Called when the parser has parsed a C++ typename
7905 /// specifier that ends in a template-id, e.g.,
7906 /// "typename MetaFun::template apply<T1, T2>".
7907 ///
7908 /// \param S The scope in which this typename type occurs.
7909 /// \param TypenameLoc the location of the 'typename' keyword
7910 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7911 /// \param TemplateLoc the location of the 'template' keyword, if any.
7912 /// \param TemplateName The template name.
7913 /// \param TemplateII The identifier used to name the template.
7914 /// \param TemplateIILoc The location of the template name.
7915 /// \param LAngleLoc The location of the opening angle bracket ('<').
7916 /// \param TemplateArgs The template arguments.
7917 /// \param RAngleLoc The location of the closing angle bracket ('>').
7918 TypeResult
7919 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7920 const CXXScopeSpec &SS,
7921 SourceLocation TemplateLoc,
7922 TemplateTy TemplateName,
7923 IdentifierInfo *TemplateII,
7924 SourceLocation TemplateIILoc,
7925 SourceLocation LAngleLoc,
7926 ASTTemplateArgsPtr TemplateArgs,
7927 SourceLocation RAngleLoc);
7928
7929 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7930 SourceLocation KeywordLoc,
7931 NestedNameSpecifierLoc QualifierLoc,
7932 const IdentifierInfo &II,
7933 SourceLocation IILoc,
7934 TypeSourceInfo **TSI,
7935 bool DeducedTSTContext);
7936
7937 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7938 SourceLocation KeywordLoc,
7939 NestedNameSpecifierLoc QualifierLoc,
7940 const IdentifierInfo &II,
7941 SourceLocation IILoc,
7942 bool DeducedTSTContext = true);
7943
7944
7945 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7946 SourceLocation Loc,
7947 DeclarationName Name);
7948 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7949
7950 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7951 bool RebuildTemplateParamsInCurrentInstantiation(
7952 TemplateParameterList *Params);
7953
7954 std::string
7955 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7956 const TemplateArgumentList &Args);
7957
7958 std::string
7959 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7960 const TemplateArgument *Args,
7961 unsigned NumArgs);
7962
7963 //===--------------------------------------------------------------------===//
7964 // C++ Concepts
7965 //===--------------------------------------------------------------------===//
7966 Decl *ActOnConceptDefinition(
7967 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7968 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7969
7970 RequiresExprBodyDecl *
7971 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7972 ArrayRef<ParmVarDecl *> LocalParameters,
7973 Scope *BodyScope);
7974 void ActOnFinishRequiresExpr();
7975 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7976 concepts::Requirement *ActOnTypeRequirement(
7977 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7978 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7979 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7980 SourceLocation NoexceptLoc);
7981 concepts::Requirement *
7982 ActOnCompoundRequirement(
7983 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7984 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7985 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7986 concepts::ExprRequirement *
7987 BuildExprRequirement(
7988 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7989 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7990 concepts::ExprRequirement *
7991 BuildExprRequirement(
7992 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7993 bool IsSatisfied, SourceLocation NoexceptLoc,
7994 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7995 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
7996 concepts::TypeRequirement *
7997 BuildTypeRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
7999 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8000 concepts::NestedRequirement *
8001 BuildNestedRequirement(
8002 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8003 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8004 RequiresExprBodyDecl *Body,
8005 ArrayRef<ParmVarDecl *> LocalParameters,
8006 ArrayRef<concepts::Requirement *> Requirements,
8007 SourceLocation ClosingBraceLoc);
8008
8009 //===--------------------------------------------------------------------===//
8010 // C++ Variadic Templates (C++0x [temp.variadic])
8011 //===--------------------------------------------------------------------===//
8012
8013 /// Determine whether an unexpanded parameter pack might be permitted in this
8014 /// location. Useful for error recovery.
8015 bool isUnexpandedParameterPackPermitted();
8016
8017 /// The context in which an unexpanded parameter pack is
8018 /// being diagnosed.
8019 ///
8020 /// Note that the values of this enumeration line up with the first
8021 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8022 enum UnexpandedParameterPackContext {
8023 /// An arbitrary expression.
8024 UPPC_Expression = 0,
8025
8026 /// The base type of a class type.
8027 UPPC_BaseType,
8028
8029 /// The type of an arbitrary declaration.
8030 UPPC_DeclarationType,
8031
8032 /// The type of a data member.
8033 UPPC_DataMemberType,
8034
8035 /// The size of a bit-field.
8036 UPPC_BitFieldWidth,
8037
8038 /// The expression in a static assertion.
8039 UPPC_StaticAssertExpression,
8040
8041 /// The fixed underlying type of an enumeration.
8042 UPPC_FixedUnderlyingType,
8043
8044 /// The enumerator value.
8045 UPPC_EnumeratorValue,
8046
8047 /// A using declaration.
8048 UPPC_UsingDeclaration,
8049
8050 /// A friend declaration.
8051 UPPC_FriendDeclaration,
8052
8053 /// A declaration qualifier.
8054 UPPC_DeclarationQualifier,
8055
8056 /// An initializer.
8057 UPPC_Initializer,
8058
8059 /// A default argument.
8060 UPPC_DefaultArgument,
8061
8062 /// The type of a non-type template parameter.
8063 UPPC_NonTypeTemplateParameterType,
8064
8065 /// The type of an exception.
8066 UPPC_ExceptionType,
8067
8068 /// Partial specialization.
8069 UPPC_PartialSpecialization,
8070
8071 /// Microsoft __if_exists.
8072 UPPC_IfExists,
8073
8074 /// Microsoft __if_not_exists.
8075 UPPC_IfNotExists,
8076
8077 /// Lambda expression.
8078 UPPC_Lambda,
8079
8080 /// Block expression.
8081 UPPC_Block,
8082
8083 /// A type constraint.
8084 UPPC_TypeConstraint,
8085
8086 // A requirement in a requires-expression.
8087 UPPC_Requirement,
8088
8089 // A requires-clause.
8090 UPPC_RequiresClause,
8091 };
8092
8093 /// Diagnose unexpanded parameter packs.
8094 ///
8095 /// \param Loc The location at which we should emit the diagnostic.
8096 ///
8097 /// \param UPPC The context in which we are diagnosing unexpanded
8098 /// parameter packs.
8099 ///
8100 /// \param Unexpanded the set of unexpanded parameter packs.
8101 ///
8102 /// \returns true if an error occurred, false otherwise.
8103 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8104 UnexpandedParameterPackContext UPPC,
8105 ArrayRef<UnexpandedParameterPack> Unexpanded);
8106
8107 /// If the given type contains an unexpanded parameter pack,
8108 /// diagnose the error.
8109 ///
8110 /// \param Loc The source location where a diagnostc should be emitted.
8111 ///
8112 /// \param T The type that is being checked for unexpanded parameter
8113 /// packs.
8114 ///
8115 /// \returns true if an error occurred, false otherwise.
8116 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8117 UnexpandedParameterPackContext UPPC);
8118
8119 /// If the given expression contains an unexpanded parameter
8120 /// pack, diagnose the error.
8121 ///
8122 /// \param E The expression that is being checked for unexpanded
8123 /// parameter packs.
8124 ///
8125 /// \returns true if an error occurred, false otherwise.
8126 bool DiagnoseUnexpandedParameterPack(Expr *E,
8127 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8128
8129 /// If the given requirees-expression contains an unexpanded reference to one
8130 /// of its own parameter packs, diagnose the error.
8131 ///
8132 /// \param RE The requiress-expression that is being checked for unexpanded
8133 /// parameter packs.
8134 ///
8135 /// \returns true if an error occurred, false otherwise.
8136 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8137
8138 /// If the given nested-name-specifier contains an unexpanded
8139 /// parameter pack, diagnose the error.
8140 ///
8141 /// \param SS The nested-name-specifier that is being checked for
8142 /// unexpanded parameter packs.
8143 ///
8144 /// \returns true if an error occurred, false otherwise.
8145 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8146 UnexpandedParameterPackContext UPPC);
8147
8148 /// If the given name contains an unexpanded parameter pack,
8149 /// diagnose the error.
8150 ///
8151 /// \param NameInfo The name (with source location information) that
8152 /// is being checked for unexpanded parameter packs.
8153 ///
8154 /// \returns true if an error occurred, false otherwise.
8155 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8156 UnexpandedParameterPackContext UPPC);
8157
8158 /// If the given template name contains an unexpanded parameter pack,
8159 /// diagnose the error.
8160 ///
8161 /// \param Loc The location of the template name.
8162 ///
8163 /// \param Template The template name that is being checked for unexpanded
8164 /// parameter packs.
8165 ///
8166 /// \returns true if an error occurred, false otherwise.
8167 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8168 TemplateName Template,
8169 UnexpandedParameterPackContext UPPC);
8170
8171 /// If the given template argument contains an unexpanded parameter
8172 /// pack, diagnose the error.
8173 ///
8174 /// \param Arg The template argument that is being checked for unexpanded
8175 /// parameter packs.
8176 ///
8177 /// \returns true if an error occurred, false otherwise.
8178 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8179 UnexpandedParameterPackContext UPPC);
8180
8181 /// Collect the set of unexpanded parameter packs within the given
8182 /// template argument.
8183 ///
8184 /// \param Arg The template argument that will be traversed to find
8185 /// unexpanded parameter packs.
8186 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8187 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8188
8189 /// Collect the set of unexpanded parameter packs within the given
8190 /// template argument.
8191 ///
8192 /// \param Arg The template argument that will be traversed to find
8193 /// unexpanded parameter packs.
8194 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8195 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8196
8197 /// Collect the set of unexpanded parameter packs within the given
8198 /// type.
8199 ///
8200 /// \param T The type that will be traversed to find
8201 /// unexpanded parameter packs.
8202 void collectUnexpandedParameterPacks(QualType T,
8203 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8204
8205 /// Collect the set of unexpanded parameter packs within the given
8206 /// type.
8207 ///
8208 /// \param TL The type that will be traversed to find
8209 /// unexpanded parameter packs.
8210 void collectUnexpandedParameterPacks(TypeLoc TL,
8211 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8212
8213 /// Collect the set of unexpanded parameter packs within the given
8214 /// nested-name-specifier.
8215 ///
8216 /// \param NNS The nested-name-specifier that will be traversed to find
8217 /// unexpanded parameter packs.
8218 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8219 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8220
8221 /// Collect the set of unexpanded parameter packs within the given
8222 /// name.
8223 ///
8224 /// \param NameInfo The name that will be traversed to find
8225 /// unexpanded parameter packs.
8226 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8227 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8228
8229 /// Invoked when parsing a template argument followed by an
8230 /// ellipsis, which creates a pack expansion.
8231 ///
8232 /// \param Arg The template argument preceding the ellipsis, which
8233 /// may already be invalid.
8234 ///
8235 /// \param EllipsisLoc The location of the ellipsis.
8236 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8237 SourceLocation EllipsisLoc);
8238
8239 /// Invoked when parsing a type followed by an ellipsis, which
8240 /// creates a pack expansion.
8241 ///
8242 /// \param Type The type preceding the ellipsis, which will become
8243 /// the pattern of the pack expansion.
8244 ///
8245 /// \param EllipsisLoc The location of the ellipsis.
8246 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8247
8248 /// Construct a pack expansion type from the pattern of the pack
8249 /// expansion.
8250 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8251 SourceLocation EllipsisLoc,
8252 Optional<unsigned> NumExpansions);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 QualType CheckPackExpansion(QualType Pattern,
8257 SourceRange PatternRange,
8258 SourceLocation EllipsisLoc,
8259 Optional<unsigned> NumExpansions);
8260
8261 /// Invoked when parsing an expression followed by an ellipsis, which
8262 /// creates a pack expansion.
8263 ///
8264 /// \param Pattern The expression preceding the ellipsis, which will become
8265 /// the pattern of the pack expansion.
8266 ///
8267 /// \param EllipsisLoc The location of the ellipsis.
8268 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8269
8270 /// Invoked when parsing an expression followed by an ellipsis, which
8271 /// creates a pack expansion.
8272 ///
8273 /// \param Pattern The expression preceding the ellipsis, which will become
8274 /// the pattern of the pack expansion.
8275 ///
8276 /// \param EllipsisLoc The location of the ellipsis.
8277 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8278 Optional<unsigned> NumExpansions);
8279
8280 /// Determine whether we could expand a pack expansion with the
8281 /// given set of parameter packs into separate arguments by repeatedly
8282 /// transforming the pattern.
8283 ///
8284 /// \param EllipsisLoc The location of the ellipsis that identifies the
8285 /// pack expansion.
8286 ///
8287 /// \param PatternRange The source range that covers the entire pattern of
8288 /// the pack expansion.
8289 ///
8290 /// \param Unexpanded The set of unexpanded parameter packs within the
8291 /// pattern.
8292 ///
8293 /// \param ShouldExpand Will be set to \c true if the transformer should
8294 /// expand the corresponding pack expansions into separate arguments. When
8295 /// set, \c NumExpansions must also be set.
8296 ///
8297 /// \param RetainExpansion Whether the caller should add an unexpanded
8298 /// pack expansion after all of the expanded arguments. This is used
8299 /// when extending explicitly-specified template argument packs per
8300 /// C++0x [temp.arg.explicit]p9.
8301 ///
8302 /// \param NumExpansions The number of separate arguments that will be in
8303 /// the expanded form of the corresponding pack expansion. This is both an
8304 /// input and an output parameter, which can be set by the caller if the
8305 /// number of expansions is known a priori (e.g., due to a prior substitution)
8306 /// and will be set by the callee when the number of expansions is known.
8307 /// The callee must set this value when \c ShouldExpand is \c true; it may
8308 /// set this value in other cases.
8309 ///
8310 /// \returns true if an error occurred (e.g., because the parameter packs
8311 /// are to be instantiated with arguments of different lengths), false
8312 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8313 /// must be set.
8314 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8315 SourceRange PatternRange,
8316 ArrayRef<UnexpandedParameterPack> Unexpanded,
8317 const MultiLevelTemplateArgumentList &TemplateArgs,
8318 bool &ShouldExpand,
8319 bool &RetainExpansion,
8320 Optional<unsigned> &NumExpansions);
8321
8322 /// Determine the number of arguments in the given pack expansion
8323 /// type.
8324 ///
8325 /// This routine assumes that the number of arguments in the expansion is
8326 /// consistent across all of the unexpanded parameter packs in its pattern.
8327 ///
8328 /// Returns an empty Optional if the type can't be expanded.
8329 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8330 const MultiLevelTemplateArgumentList &TemplateArgs);
8331
8332 /// Determine whether the given declarator contains any unexpanded
8333 /// parameter packs.
8334 ///
8335 /// This routine is used by the parser to disambiguate function declarators
8336 /// with an ellipsis prior to the ')', e.g.,
8337 ///
8338 /// \code
8339 /// void f(T...);
8340 /// \endcode
8341 ///
8342 /// To determine whether we have an (unnamed) function parameter pack or
8343 /// a variadic function.
8344 ///
8345 /// \returns true if the declarator contains any unexpanded parameter packs,
8346 /// false otherwise.
8347 bool containsUnexpandedParameterPacks(Declarator &D);
8348
8349 /// Returns the pattern of the pack expansion for a template argument.
8350 ///
8351 /// \param OrigLoc The template argument to expand.
8352 ///
8353 /// \param Ellipsis Will be set to the location of the ellipsis.
8354 ///
8355 /// \param NumExpansions Will be set to the number of expansions that will
8356 /// be generated from this pack expansion, if known a priori.
8357 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8358 TemplateArgumentLoc OrigLoc,
8359 SourceLocation &Ellipsis,
8360 Optional<unsigned> &NumExpansions) const;
8361
8362 /// Given a template argument that contains an unexpanded parameter pack, but
8363 /// which has already been substituted, attempt to determine the number of
8364 /// elements that will be produced once this argument is fully-expanded.
8365 ///
8366 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8367 /// avoid actually expanding the pack where possible.
8368 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8369
8370 //===--------------------------------------------------------------------===//
8371 // C++ Template Argument Deduction (C++ [temp.deduct])
8372 //===--------------------------------------------------------------------===//
8373
8374 /// Adjust the type \p ArgFunctionType to match the calling convention,
8375 /// noreturn, and optionally the exception specification of \p FunctionType.
8376 /// Deduction often wants to ignore these properties when matching function
8377 /// types.
8378 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8379 bool AdjustExceptionSpec = false);
8380
8381 /// Describes the result of template argument deduction.
8382 ///
8383 /// The TemplateDeductionResult enumeration describes the result of
8384 /// template argument deduction, as returned from
8385 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8386 /// structure provides additional information about the results of
8387 /// template argument deduction, e.g., the deduced template argument
8388 /// list (if successful) or the specific template parameters or
8389 /// deduced arguments that were involved in the failure.
8390 enum TemplateDeductionResult {
8391 /// Template argument deduction was successful.
8392 TDK_Success = 0,
8393 /// The declaration was invalid; do nothing.
8394 TDK_Invalid,
8395 /// Template argument deduction exceeded the maximum template
8396 /// instantiation depth (which has already been diagnosed).
8397 TDK_InstantiationDepth,
8398 /// Template argument deduction did not deduce a value
8399 /// for every template parameter.
8400 TDK_Incomplete,
8401 /// Template argument deduction did not deduce a value for every
8402 /// expansion of an expanded template parameter pack.
8403 TDK_IncompletePack,
8404 /// Template argument deduction produced inconsistent
8405 /// deduced values for the given template parameter.
8406 TDK_Inconsistent,
8407 /// Template argument deduction failed due to inconsistent
8408 /// cv-qualifiers on a template parameter type that would
8409 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8410 /// but were given a non-const "X".
8411 TDK_Underqualified,
8412 /// Substitution of the deduced template argument values
8413 /// resulted in an error.
8414 TDK_SubstitutionFailure,
8415 /// After substituting deduced template arguments, a dependent
8416 /// parameter type did not match the corresponding argument.
8417 TDK_DeducedMismatch,
8418 /// After substituting deduced template arguments, an element of
8419 /// a dependent parameter type did not match the corresponding element
8420 /// of the corresponding argument (when deducing from an initializer list).
8421 TDK_DeducedMismatchNested,
8422 /// A non-depnedent component of the parameter did not match the
8423 /// corresponding component of the argument.
8424 TDK_NonDeducedMismatch,
8425 /// When performing template argument deduction for a function
8426 /// template, there were too many call arguments.
8427 TDK_TooManyArguments,
8428 /// When performing template argument deduction for a function
8429 /// template, there were too few call arguments.
8430 TDK_TooFewArguments,
8431 /// The explicitly-specified template arguments were not valid
8432 /// template arguments for the given template.
8433 TDK_InvalidExplicitArguments,
8434 /// Checking non-dependent argument conversions failed.
8435 TDK_NonDependentConversionFailure,
8436 /// The deduced arguments did not satisfy the constraints associated
8437 /// with the template.
8438 TDK_ConstraintsNotSatisfied,
8439 /// Deduction failed; that's all we know.
8440 TDK_MiscellaneousDeductionFailure,
8441 /// CUDA Target attributes do not match.
8442 TDK_CUDATargetMismatch
8443 };
8444
8445 TemplateDeductionResult
8446 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8447 const TemplateArgumentList &TemplateArgs,
8448 sema::TemplateDeductionInfo &Info);
8449
8450 TemplateDeductionResult
8451 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8452 const TemplateArgumentList &TemplateArgs,
8453 sema::TemplateDeductionInfo &Info);
8454
8455 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8456 FunctionTemplateDecl *FunctionTemplate,
8457 TemplateArgumentListInfo &ExplicitTemplateArgs,
8458 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8459 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8460 sema::TemplateDeductionInfo &Info);
8461
8462 /// brief A function argument from which we performed template argument
8463 // deduction for a call.
8464 struct OriginalCallArg {
8465 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8466 unsigned ArgIdx, QualType OriginalArgType)
8467 : OriginalParamType(OriginalParamType),
8468 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8469 OriginalArgType(OriginalArgType) {}
8470
8471 QualType OriginalParamType;
8472 bool DecomposedParam;
8473 unsigned ArgIdx;
8474 QualType OriginalArgType;
8475 };
8476
8477 TemplateDeductionResult FinishTemplateArgumentDeduction(
8478 FunctionTemplateDecl *FunctionTemplate,
8479 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8480 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8481 sema::TemplateDeductionInfo &Info,
8482 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8483 bool PartialOverloading = false,
8484 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8485
8486 TemplateDeductionResult DeduceTemplateArguments(
8487 FunctionTemplateDecl *FunctionTemplate,
8488 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8489 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8490 bool PartialOverloading,
8491 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8492
8493 TemplateDeductionResult
8494 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8495 TemplateArgumentListInfo *ExplicitTemplateArgs,
8496 QualType ArgFunctionType,
8497 FunctionDecl *&Specialization,
8498 sema::TemplateDeductionInfo &Info,
8499 bool IsAddressOfFunction = false);
8500
8501 TemplateDeductionResult
8502 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8503 QualType ToType,
8504 CXXConversionDecl *&Specialization,
8505 sema::TemplateDeductionInfo &Info);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 TemplateArgumentListInfo *ExplicitTemplateArgs,
8510 FunctionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info,
8512 bool IsAddressOfFunction = false);
8513
8514 /// Substitute Replacement for \p auto in \p TypeWithAuto
8515 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8516 /// Substitute Replacement for auto in TypeWithAuto
8517 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8518 QualType Replacement);
8519 /// Completely replace the \c auto in \p TypeWithAuto by
8520 /// \p Replacement. This does not retain any \c auto type sugar.
8521 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8522 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8523 QualType Replacement);
8524
8525 /// Result type of DeduceAutoType.
8526 enum DeduceAutoResult {
8527 DAR_Succeeded,
8528 DAR_Failed,
8529 DAR_FailedAlreadyDiagnosed
8530 };
8531
8532 DeduceAutoResult
8533 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8534 Optional<unsigned> DependentDeductionDepth = None,
8535 bool IgnoreConstraints = false);
8536 DeduceAutoResult
8537 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8538 Optional<unsigned> DependentDeductionDepth = None,
8539 bool IgnoreConstraints = false);
8540 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8541 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8542 bool Diagnose = true);
8543
8544 /// Declare implicit deduction guides for a class template if we've
8545 /// not already done so.
8546 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8547 SourceLocation Loc);
8548
8549 QualType DeduceTemplateSpecializationFromInitializer(
8550 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8551 const InitializationKind &Kind, MultiExprArg Init);
8552
8553 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8554 QualType Type, TypeSourceInfo *TSI,
8555 SourceRange Range, bool DirectInit,
8556 Expr *Init);
8557
8558 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8559
8560 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8561 SourceLocation ReturnLoc,
8562 Expr *&RetExpr, AutoType *AT);
8563
8564 FunctionTemplateDecl *getMoreSpecializedTemplate(
8565 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8566 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8567 unsigned NumCallArguments2, bool Reversed = false);
8568 UnresolvedSetIterator
8569 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8570 TemplateSpecCandidateSet &FailedCandidates,
8571 SourceLocation Loc,
8572 const PartialDiagnostic &NoneDiag,
8573 const PartialDiagnostic &AmbigDiag,
8574 const PartialDiagnostic &CandidateDiag,
8575 bool Complain = true, QualType TargetType = QualType());
8576
8577 ClassTemplatePartialSpecializationDecl *
8578 getMoreSpecializedPartialSpecialization(
8579 ClassTemplatePartialSpecializationDecl *PS1,
8580 ClassTemplatePartialSpecializationDecl *PS2,
8581 SourceLocation Loc);
8582
8583 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8584 sema::TemplateDeductionInfo &Info);
8585
8586 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8587 VarTemplatePartialSpecializationDecl *PS1,
8588 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8589
8590 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8591 sema::TemplateDeductionInfo &Info);
8592
8593 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8594 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8595
8596 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8597 unsigned Depth, llvm::SmallBitVector &Used);
8598
8599 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8600 bool OnlyDeduced,
8601 unsigned Depth,
8602 llvm::SmallBitVector &Used);
8603 void MarkDeducedTemplateParameters(
8604 const FunctionTemplateDecl *FunctionTemplate,
8605 llvm::SmallBitVector &Deduced) {
8606 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8607 }
8608 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8609 const FunctionTemplateDecl *FunctionTemplate,
8610 llvm::SmallBitVector &Deduced);
8611
8612 //===--------------------------------------------------------------------===//
8613 // C++ Template Instantiation
8614 //
8615
8616 MultiLevelTemplateArgumentList
8617 getTemplateInstantiationArgs(NamedDecl *D,
8618 const TemplateArgumentList *Innermost = nullptr,
8619 bool RelativeToPrimary = false,
8620 const FunctionDecl *Pattern = nullptr);
8621
8622 /// A context in which code is being synthesized (where a source location
8623 /// alone is not sufficient to identify the context). This covers template
8624 /// instantiation and various forms of implicitly-generated functions.
8625 struct CodeSynthesisContext {
8626 /// The kind of template instantiation we are performing
8627 enum SynthesisKind {
8628 /// We are instantiating a template declaration. The entity is
8629 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8630 TemplateInstantiation,
8631
8632 /// We are instantiating a default argument for a template
8633 /// parameter. The Entity is the template parameter whose argument is
8634 /// being instantiated, the Template is the template, and the
8635 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8636 /// specified.
8637 DefaultTemplateArgumentInstantiation,
8638
8639 /// We are instantiating a default argument for a function.
8640 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8641 /// provides the template arguments as specified.
8642 DefaultFunctionArgumentInstantiation,
8643
8644 /// We are substituting explicit template arguments provided for
8645 /// a function template. The entity is a FunctionTemplateDecl.
8646 ExplicitTemplateArgumentSubstitution,
8647
8648 /// We are substituting template argument determined as part of
8649 /// template argument deduction for either a class template
8650 /// partial specialization or a function template. The
8651 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8652 /// a TemplateDecl.
8653 DeducedTemplateArgumentSubstitution,
8654
8655 /// We are substituting prior template arguments into a new
8656 /// template parameter. The template parameter itself is either a
8657 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8658 PriorTemplateArgumentSubstitution,
8659
8660 /// We are checking the validity of a default template argument that
8661 /// has been used when naming a template-id.
8662 DefaultTemplateArgumentChecking,
8663
8664 /// We are computing the exception specification for a defaulted special
8665 /// member function.
8666 ExceptionSpecEvaluation,
8667
8668 /// We are instantiating the exception specification for a function
8669 /// template which was deferred until it was needed.
8670 ExceptionSpecInstantiation,
8671
8672 /// We are instantiating a requirement of a requires expression.
8673 RequirementInstantiation,
8674
8675 /// We are checking the satisfaction of a nested requirement of a requires
8676 /// expression.
8677 NestedRequirementConstraintsCheck,
8678
8679 /// We are declaring an implicit special member function.
8680 DeclaringSpecialMember,
8681
8682 /// We are declaring an implicit 'operator==' for a defaulted
8683 /// 'operator<=>'.
8684 DeclaringImplicitEqualityComparison,
8685
8686 /// We are defining a synthesized function (such as a defaulted special
8687 /// member).
8688 DefiningSynthesizedFunction,
8689
8690 // We are checking the constraints associated with a constrained entity or
8691 // the constraint expression of a concept. This includes the checks that
8692 // atomic constraints have the type 'bool' and that they can be constant
8693 // evaluated.
8694 ConstraintsCheck,
8695
8696 // We are substituting template arguments into a constraint expression.
8697 ConstraintSubstitution,
8698
8699 // We are normalizing a constraint expression.
8700 ConstraintNormalization,
8701
8702 // We are substituting into the parameter mapping of an atomic constraint
8703 // during normalization.
8704 ParameterMappingSubstitution,
8705
8706 /// We are rewriting a comparison operator in terms of an operator<=>.
8707 RewritingOperatorAsSpaceship,
8708
8709 /// We are initializing a structured binding.
8710 InitializingStructuredBinding,
8711
8712 /// We are marking a class as __dllexport.
8713 MarkingClassDllexported,
8714
8715 /// Added for Template instantiation observation.
8716 /// Memoization means we are _not_ instantiating a template because
8717 /// it is already instantiated (but we entered a context where we
8718 /// would have had to if it was not already instantiated).
8719 Memoization
8720 } Kind;
8721
8722 /// Was the enclosing context a non-instantiation SFINAE context?
8723 bool SavedInNonInstantiationSFINAEContext;
8724
8725 /// The point of instantiation or synthesis within the source code.
8726 SourceLocation PointOfInstantiation;
8727
8728 /// The entity that is being synthesized.
8729 Decl *Entity;
8730
8731 /// The template (or partial specialization) in which we are
8732 /// performing the instantiation, for substitutions of prior template
8733 /// arguments.
8734 NamedDecl *Template;
8735
8736 /// The list of template arguments we are substituting, if they
8737 /// are not part of the entity.
8738 const TemplateArgument *TemplateArgs;
8739
8740 // FIXME: Wrap this union around more members, or perhaps store the
8741 // kind-specific members in the RAII object owning the context.
8742 union {
8743 /// The number of template arguments in TemplateArgs.
8744 unsigned NumTemplateArgs;
8745
8746 /// The special member being declared or defined.
8747 CXXSpecialMember SpecialMember;
8748 };
8749
8750 ArrayRef<TemplateArgument> template_arguments() const {
8751 assert(Kind != DeclaringSpecialMember)((void)0);
8752 return {TemplateArgs, NumTemplateArgs};
8753 }
8754
8755 /// The template deduction info object associated with the
8756 /// substitution or checking of explicit or deduced template arguments.
8757 sema::TemplateDeductionInfo *DeductionInfo;
8758
8759 /// The source range that covers the construct that cause
8760 /// the instantiation, e.g., the template-id that causes a class
8761 /// template instantiation.
8762 SourceRange InstantiationRange;
8763
8764 CodeSynthesisContext()
8765 : Kind(TemplateInstantiation),
8766 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8767 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8768 DeductionInfo(nullptr) {}
8769
8770 /// Determines whether this template is an actual instantiation
8771 /// that should be counted toward the maximum instantiation depth.
8772 bool isInstantiationRecord() const;
8773 };
8774
8775 /// List of active code synthesis contexts.
8776 ///
8777 /// This vector is treated as a stack. As synthesis of one entity requires
8778 /// synthesis of another, additional contexts are pushed onto the stack.
8779 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8780
8781 /// Specializations whose definitions are currently being instantiated.
8782 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8783
8784 /// Non-dependent types used in templates that have already been instantiated
8785 /// by some template instantiation.
8786 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8787
8788 /// Extra modules inspected when performing a lookup during a template
8789 /// instantiation. Computed lazily.
8790 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8791
8792 /// Cache of additional modules that should be used for name lookup
8793 /// within the current template instantiation. Computed lazily; use
8794 /// getLookupModules() to get a complete set.
8795 llvm::DenseSet<Module*> LookupModulesCache;
8796
8797 /// Get the set of additional modules that should be checked during
8798 /// name lookup. A module and its imports become visible when instanting a
8799 /// template defined within it.
8800 llvm::DenseSet<Module*> &getLookupModules();
8801
8802 /// Map from the most recent declaration of a namespace to the most
8803 /// recent visible declaration of that namespace.
8804 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8805
8806 /// Whether we are in a SFINAE context that is not associated with
8807 /// template instantiation.
8808 ///
8809 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8810 /// of a template instantiation or template argument deduction.
8811 bool InNonInstantiationSFINAEContext;
8812
8813 /// The number of \p CodeSynthesisContexts that are not template
8814 /// instantiations and, therefore, should not be counted as part of the
8815 /// instantiation depth.
8816 ///
8817 /// When the instantiation depth reaches the user-configurable limit
8818 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8819 // FIXME: Should we have a similar limit for other forms of synthesis?
8820 unsigned NonInstantiationEntries;
8821
8822 /// The depth of the context stack at the point when the most recent
8823 /// error or warning was produced.
8824 ///
8825 /// This value is used to suppress printing of redundant context stacks
8826 /// when there are multiple errors or warnings in the same instantiation.
8827 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8828 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8829
8830 /// The template instantiation callbacks to trace or track
8831 /// instantiations (objects can be chained).
8832 ///
8833 /// This callbacks is used to print, trace or track template
8834 /// instantiations as they are being constructed.
8835 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8836 TemplateInstCallbacks;
8837
8838 /// The current index into pack expansion arguments that will be
8839 /// used for substitution of parameter packs.
8840 ///
8841 /// The pack expansion index will be -1 to indicate that parameter packs
8842 /// should be instantiated as themselves. Otherwise, the index specifies
8843 /// which argument within the parameter pack will be used for substitution.
8844 int ArgumentPackSubstitutionIndex;
8845
8846 /// RAII object used to change the argument pack substitution index
8847 /// within a \c Sema object.
8848 ///
8849 /// See \c ArgumentPackSubstitutionIndex for more information.
8850 class ArgumentPackSubstitutionIndexRAII {
8851 Sema &Self;
8852 int OldSubstitutionIndex;
8853
8854 public:
8855 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8856 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8857 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8858 }
8859
8860 ~ArgumentPackSubstitutionIndexRAII() {
8861 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8862 }
8863 };
8864
8865 friend class ArgumentPackSubstitutionRAII;
8866
8867 /// For each declaration that involved template argument deduction, the
8868 /// set of diagnostics that were suppressed during that template argument
8869 /// deduction.
8870 ///
8871 /// FIXME: Serialize this structure to the AST file.
8872 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8873 SuppressedDiagnosticsMap;
8874 SuppressedDiagnosticsMap SuppressedDiagnostics;
8875
8876 /// A stack object to be created when performing template
8877 /// instantiation.
8878 ///
8879 /// Construction of an object of type \c InstantiatingTemplate
8880 /// pushes the current instantiation onto the stack of active
8881 /// instantiations. If the size of this stack exceeds the maximum
8882 /// number of recursive template instantiations, construction
8883 /// produces an error and evaluates true.
8884 ///
8885 /// Destruction of this object will pop the named instantiation off
8886 /// the stack.
8887 struct InstantiatingTemplate {
8888 /// Note that we are instantiating a class template,
8889 /// function template, variable template, alias template,
8890 /// or a member thereof.
8891 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8892 Decl *Entity,
8893 SourceRange InstantiationRange = SourceRange());
8894
8895 struct ExceptionSpecification {};
8896 /// Note that we are instantiating an exception specification
8897 /// of a function template.
8898 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8899 FunctionDecl *Entity, ExceptionSpecification,
8900 SourceRange InstantiationRange = SourceRange());
8901
8902 /// Note that we are instantiating a default argument in a
8903 /// template-id.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 TemplateParameter Param, TemplateDecl *Template,
8906 ArrayRef<TemplateArgument> TemplateArgs,
8907 SourceRange InstantiationRange = SourceRange());
8908
8909 /// Note that we are substituting either explicitly-specified or
8910 /// deduced template arguments during function template argument deduction.
8911 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8912 FunctionTemplateDecl *FunctionTemplate,
8913 ArrayRef<TemplateArgument> TemplateArgs,
8914 CodeSynthesisContext::SynthesisKind Kind,
8915 sema::TemplateDeductionInfo &DeductionInfo,
8916 SourceRange InstantiationRange = SourceRange());
8917
8918 /// Note that we are instantiating as part of template
8919 /// argument deduction for a class template declaration.
8920 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8921 TemplateDecl *Template,
8922 ArrayRef<TemplateArgument> TemplateArgs,
8923 sema::TemplateDeductionInfo &DeductionInfo,
8924 SourceRange InstantiationRange = SourceRange());
8925
8926 /// Note that we are instantiating as part of template
8927 /// argument deduction for a class template partial
8928 /// specialization.
8929 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8930 ClassTemplatePartialSpecializationDecl *PartialSpec,
8931 ArrayRef<TemplateArgument> TemplateArgs,
8932 sema::TemplateDeductionInfo &DeductionInfo,
8933 SourceRange InstantiationRange = SourceRange());
8934
8935 /// Note that we are instantiating as part of template
8936 /// argument deduction for a variable template partial
8937 /// specialization.
8938 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8939 VarTemplatePartialSpecializationDecl *PartialSpec,
8940 ArrayRef<TemplateArgument> TemplateArgs,
8941 sema::TemplateDeductionInfo &DeductionInfo,
8942 SourceRange InstantiationRange = SourceRange());
8943
8944 /// Note that we are instantiating a default argument for a function
8945 /// parameter.
8946 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8947 ParmVarDecl *Param,
8948 ArrayRef<TemplateArgument> TemplateArgs,
8949 SourceRange InstantiationRange = SourceRange());
8950
8951 /// Note that we are substituting prior template arguments into a
8952 /// non-type parameter.
8953 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8954 NamedDecl *Template,
8955 NonTypeTemplateParmDecl *Param,
8956 ArrayRef<TemplateArgument> TemplateArgs,
8957 SourceRange InstantiationRange);
8958
8959 /// Note that we are substituting prior template arguments into a
8960 /// template template parameter.
8961 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8962 NamedDecl *Template,
8963 TemplateTemplateParmDecl *Param,
8964 ArrayRef<TemplateArgument> TemplateArgs,
8965 SourceRange InstantiationRange);
8966
8967 /// Note that we are checking the default template argument
8968 /// against the template parameter for a given template-id.
8969 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8970 TemplateDecl *Template,
8971 NamedDecl *Param,
8972 ArrayRef<TemplateArgument> TemplateArgs,
8973 SourceRange InstantiationRange);
8974
8975 struct ConstraintsCheck {};
8976 /// \brief Note that we are checking the constraints associated with some
8977 /// constrained entity (a concept declaration or a template with associated
8978 /// constraints).
8979 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8980 ConstraintsCheck, NamedDecl *Template,
8981 ArrayRef<TemplateArgument> TemplateArgs,
8982 SourceRange InstantiationRange);
8983
8984 struct ConstraintSubstitution {};
8985 /// \brief Note that we are checking a constraint expression associated
8986 /// with a template declaration or as part of the satisfaction check of a
8987 /// concept.
8988 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8989 ConstraintSubstitution, NamedDecl *Template,
8990 sema::TemplateDeductionInfo &DeductionInfo,
8991 SourceRange InstantiationRange);
8992
8993 struct ConstraintNormalization {};
8994 /// \brief Note that we are normalizing a constraint expression.
8995 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8996 ConstraintNormalization, NamedDecl *Template,
8997 SourceRange InstantiationRange);
8998
8999 struct ParameterMappingSubstitution {};
9000 /// \brief Note that we are subtituting into the parameter mapping of an
9001 /// atomic constraint during constraint normalization.
9002 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9003 ParameterMappingSubstitution, NamedDecl *Template,
9004 SourceRange InstantiationRange);
9005
9006 /// \brief Note that we are substituting template arguments into a part of
9007 /// a requirement of a requires expression.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 concepts::Requirement *Req,
9010 sema::TemplateDeductionInfo &DeductionInfo,
9011 SourceRange InstantiationRange = SourceRange());
9012
9013 /// \brief Note that we are checking the satisfaction of the constraint
9014 /// expression inside of a nested requirement.
9015 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9016 concepts::NestedRequirement *Req, ConstraintsCheck,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// Note that we have finished instantiating this template.
9020 void Clear();
9021
9022 ~InstantiatingTemplate() { Clear(); }
9023
9024 /// Determines whether we have exceeded the maximum
9025 /// recursive template instantiations.
9026 bool isInvalid() const { return Invalid; }
9027
9028 /// Determine whether we are already instantiating this
9029 /// specialization in some surrounding active instantiation.
9030 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9031
9032 private:
9033 Sema &SemaRef;
9034 bool Invalid;
9035 bool AlreadyInstantiating;
9036 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9037 SourceRange InstantiationRange);
9038
9039 InstantiatingTemplate(
9040 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9041 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9042 Decl *Entity, NamedDecl *Template = nullptr,
9043 ArrayRef<TemplateArgument> TemplateArgs = None,
9044 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9045
9046 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9047
9048 InstantiatingTemplate&
9049 operator=(const InstantiatingTemplate&) = delete;
9050 };
9051
9052 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9053 void popCodeSynthesisContext();
9054
9055 /// Determine whether we are currently performing template instantiation.
9056 bool inTemplateInstantiation() const {
9057 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9058 }
9059
9060 void PrintContextStack() {
9061 if (!CodeSynthesisContexts.empty() &&
9062 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9063 PrintInstantiationStack();
9064 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9065 }
9066 if (PragmaAttributeCurrentTargetDecl)
9067 PrintPragmaAttributeInstantiationPoint();
9068 }
9069 void PrintInstantiationStack();
9070
9071 void PrintPragmaAttributeInstantiationPoint();
9072
9073 /// Determines whether we are currently in a context where
9074 /// template argument substitution failures are not considered
9075 /// errors.
9076 ///
9077 /// \returns An empty \c Optional if we're not in a SFINAE context.
9078 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9079 /// template-deduction context object, which can be used to capture
9080 /// diagnostics that will be suppressed.
9081 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9082
9083 /// Determines whether we are currently in a context that
9084 /// is not evaluated as per C++ [expr] p5.
9085 bool isUnevaluatedContext() const {
9086 assert(!ExprEvalContexts.empty() &&((void)0)
9087 "Must be in an expression evaluation context")((void)0);
9088 return ExprEvalContexts.back().isUnevaluated();
9089 }
9090
9091 /// RAII class used to determine whether SFINAE has
9092 /// trapped any errors that occur during template argument
9093 /// deduction.
9094 class SFINAETrap {
9095 Sema &SemaRef;
9096 unsigned PrevSFINAEErrors;
9097 bool PrevInNonInstantiationSFINAEContext;
9098 bool PrevAccessCheckingSFINAE;
9099 bool PrevLastDiagnosticIgnored;
9100
9101 public:
9102 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9103 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9104 PrevInNonInstantiationSFINAEContext(
9105 SemaRef.InNonInstantiationSFINAEContext),
9106 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9107 PrevLastDiagnosticIgnored(
9108 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9109 {
9110 if (!SemaRef.isSFINAEContext())
9111 SemaRef.InNonInstantiationSFINAEContext = true;
9112 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9113 }
9114
9115 ~SFINAETrap() {
9116 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9117 SemaRef.InNonInstantiationSFINAEContext
9118 = PrevInNonInstantiationSFINAEContext;
9119 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9120 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9121 PrevLastDiagnosticIgnored);
9122 }
9123
9124 /// Determine whether any SFINAE errors have been trapped.
9125 bool hasErrorOccurred() const {
9126 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9127 }
9128 };
9129
9130 /// RAII class used to indicate that we are performing provisional
9131 /// semantic analysis to determine the validity of a construct, so
9132 /// typo-correction and diagnostics in the immediate context (not within
9133 /// implicitly-instantiated templates) should be suppressed.
9134 class TentativeAnalysisScope {
9135 Sema &SemaRef;
9136 // FIXME: Using a SFINAETrap for this is a hack.
9137 SFINAETrap Trap;
9138 bool PrevDisableTypoCorrection;
9139 public:
9140 explicit TentativeAnalysisScope(Sema &SemaRef)
9141 : SemaRef(SemaRef), Trap(SemaRef, true),
9142 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9143 SemaRef.DisableTypoCorrection = true;
9144 }
9145 ~TentativeAnalysisScope() {
9146 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9147 }
9148 };
9149
9150 /// The current instantiation scope used to store local
9151 /// variables.
9152 LocalInstantiationScope *CurrentInstantiationScope;
9153
9154 /// Tracks whether we are in a context where typo correction is
9155 /// disabled.
9156 bool DisableTypoCorrection;
9157
9158 /// The number of typos corrected by CorrectTypo.
9159 unsigned TyposCorrected;
9160
9161 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9162 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9163
9164 /// A cache containing identifiers for which typo correction failed and
9165 /// their locations, so that repeated attempts to correct an identifier in a
9166 /// given location are ignored if typo correction already failed for it.
9167 IdentifierSourceLocations TypoCorrectionFailures;
9168
9169 /// Worker object for performing CFG-based warnings.
9170 sema::AnalysisBasedWarnings AnalysisWarnings;
9171 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9172
9173 /// An entity for which implicit template instantiation is required.
9174 ///
9175 /// The source location associated with the declaration is the first place in
9176 /// the source code where the declaration was "used". It is not necessarily
9177 /// the point of instantiation (which will be either before or after the
9178 /// namespace-scope declaration that triggered this implicit instantiation),
9179 /// However, it is the location that diagnostics should generally refer to,
9180 /// because users will need to know what code triggered the instantiation.
9181 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9182
9183 /// The queue of implicit template instantiations that are required
9184 /// but have not yet been performed.
9185 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9186
9187 /// Queue of implicit template instantiations that cannot be performed
9188 /// eagerly.
9189 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9190
9191 class GlobalEagerInstantiationScope {
9192 public:
9193 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9194 : S(S), Enabled(Enabled) {
9195 if (!Enabled) return;
9196
9197 SavedPendingInstantiations.swap(S.PendingInstantiations);
9198 SavedVTableUses.swap(S.VTableUses);
9199 }
9200
9201 void perform() {
9202 if (Enabled) {
35
Assuming field 'Enabled' is true
36
Taking true branch
9203 S.DefineUsedVTables();
9204 S.PerformPendingInstantiations();
37
Calling 'Sema::PerformPendingInstantiations'
9205 }
9206 }
9207
9208 ~GlobalEagerInstantiationScope() {
9209 if (!Enabled) return;
9210
9211 // Restore the set of pending vtables.
9212 assert(S.VTableUses.empty() &&((void)0)
9213 "VTableUses should be empty before it is discarded.")((void)0);
9214 S.VTableUses.swap(SavedVTableUses);
9215
9216 // Restore the set of pending implicit instantiations.
9217 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9218 assert(S.PendingInstantiations.empty() &&((void)0)
9219 "PendingInstantiations should be empty before it is discarded.")((void)0);
9220 S.PendingInstantiations.swap(SavedPendingInstantiations);
9221 } else {
9222 // Template instantiations in the PCH may be delayed until the TU.
9223 S.PendingInstantiations.swap(SavedPendingInstantiations);
9224 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9225 SavedPendingInstantiations.begin(),
9226 SavedPendingInstantiations.end());
9227 }
9228 }
9229
9230 private:
9231 Sema &S;
9232 SmallVector<VTableUse, 16> SavedVTableUses;
9233 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9234 bool Enabled;
9235 };
9236
9237 /// The queue of implicit template instantiations that are required
9238 /// and must be performed within the current local scope.
9239 ///
9240 /// This queue is only used for member functions of local classes in
9241 /// templates, which must be instantiated in the same scope as their
9242 /// enclosing function, so that they can reference function-local
9243 /// types, static variables, enumerators, etc.
9244 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9245
9246 class LocalEagerInstantiationScope {
9247 public:
9248 LocalEagerInstantiationScope(Sema &S) : S(S) {
9249 SavedPendingLocalImplicitInstantiations.swap(
9250 S.PendingLocalImplicitInstantiations);
9251 }
9252
9253 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9254
9255 ~LocalEagerInstantiationScope() {
9256 assert(S.PendingLocalImplicitInstantiations.empty() &&((void)0)
9257 "there shouldn't be any pending local implicit instantiations")((void)0);
9258 SavedPendingLocalImplicitInstantiations.swap(
9259 S.PendingLocalImplicitInstantiations);
9260 }
9261
9262 private:
9263 Sema &S;
9264 std::deque<PendingImplicitInstantiation>
9265 SavedPendingLocalImplicitInstantiations;
9266 };
9267
9268 /// A helper class for building up ExtParameterInfos.
9269 class ExtParameterInfoBuilder {
9270 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9271 bool HasInteresting = false;
9272
9273 public:
9274 /// Set the ExtParameterInfo for the parameter at the given index,
9275 ///
9276 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9277 assert(Infos.size() <= index)((void)0);
9278 Infos.resize(index);
9279 Infos.push_back(info);
9280
9281 if (!HasInteresting)
9282 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9283 }
9284
9285 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9286 /// ExtParameterInfo array we've built up.
9287 const FunctionProtoType::ExtParameterInfo *
9288 getPointerOrNull(unsigned numParams) {
9289 if (!HasInteresting) return nullptr;
9290 Infos.resize(numParams);
9291 return Infos.data();
9292 }
9293 };
9294
9295 void PerformPendingInstantiations(bool LocalOnly = false);
9296
9297 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9298 const MultiLevelTemplateArgumentList &TemplateArgs,
9299 SourceLocation Loc, DeclarationName Entity,
9300 bool AllowDeducedTST = false);
9301
9302 QualType SubstType(QualType T,
9303 const MultiLevelTemplateArgumentList &TemplateArgs,
9304 SourceLocation Loc, DeclarationName Entity);
9305
9306 TypeSourceInfo *SubstType(TypeLoc TL,
9307 const MultiLevelTemplateArgumentList &TemplateArgs,
9308 SourceLocation Loc, DeclarationName Entity);
9309
9310 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9311 const MultiLevelTemplateArgumentList &TemplateArgs,
9312 SourceLocation Loc,
9313 DeclarationName Entity,
9314 CXXRecordDecl *ThisContext,
9315 Qualifiers ThisTypeQuals);
9316 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9317 const MultiLevelTemplateArgumentList &Args);
9318 bool SubstExceptionSpec(SourceLocation Loc,
9319 FunctionProtoType::ExceptionSpecInfo &ESI,
9320 SmallVectorImpl<QualType> &ExceptionStorage,
9321 const MultiLevelTemplateArgumentList &Args);
9322 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9323 const MultiLevelTemplateArgumentList &TemplateArgs,
9324 int indexAdjustment,
9325 Optional<unsigned> NumExpansions,
9326 bool ExpectParameterPack);
9327 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9328 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 SmallVectorImpl<QualType> &ParamTypes,
9331 SmallVectorImpl<ParmVarDecl *> *OutParams,
9332 ExtParameterInfoBuilder &ParamInfos);
9333 ExprResult SubstExpr(Expr *E,
9334 const MultiLevelTemplateArgumentList &TemplateArgs);
9335
9336 /// Substitute the given template arguments into a list of
9337 /// expressions, expanding pack expansions if required.
9338 ///
9339 /// \param Exprs The list of expressions to substitute into.
9340 ///
9341 /// \param IsCall Whether this is some form of call, in which case
9342 /// default arguments will be dropped.
9343 ///
9344 /// \param TemplateArgs The set of template arguments to substitute.
9345 ///
9346 /// \param Outputs Will receive all of the substituted arguments.
9347 ///
9348 /// \returns true if an error occurred, false otherwise.
9349 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9350 const MultiLevelTemplateArgumentList &TemplateArgs,
9351 SmallVectorImpl<Expr *> &Outputs);
9352
9353 StmtResult SubstStmt(Stmt *S,
9354 const MultiLevelTemplateArgumentList &TemplateArgs);
9355
9356 TemplateParameterList *
9357 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9358 const MultiLevelTemplateArgumentList &TemplateArgs);
9359
9360 bool
9361 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9362 const MultiLevelTemplateArgumentList &TemplateArgs,
9363 TemplateArgumentListInfo &Outputs);
9364
9365
9366 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9367 const MultiLevelTemplateArgumentList &TemplateArgs);
9368
9369 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9370 /// an implicit 'operator=='.
9371 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9372 FunctionDecl *Spaceship);
9373
9374 ExprResult SubstInitializer(Expr *E,
9375 const MultiLevelTemplateArgumentList &TemplateArgs,
9376 bool CXXDirectInit);
9377
9378 bool
9379 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9380 CXXRecordDecl *Pattern,
9381 const MultiLevelTemplateArgumentList &TemplateArgs);
9382
9383 bool
9384 InstantiateClass(SourceLocation PointOfInstantiation,
9385 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9386 const MultiLevelTemplateArgumentList &TemplateArgs,
9387 TemplateSpecializationKind TSK,
9388 bool Complain = true);
9389
9390 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9391 EnumDecl *Instantiation, EnumDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK);
9394
9395 bool InstantiateInClassInitializer(
9396 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9397 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9398
9399 struct LateInstantiatedAttribute {
9400 const Attr *TmplAttr;
9401 LocalInstantiationScope *Scope;
9402 Decl *NewDecl;
9403
9404 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9405 Decl *D)
9406 : TmplAttr(A), Scope(S), NewDecl(D)
9407 { }
9408 };
9409 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9410
9411 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9412 const Decl *Pattern, Decl *Inst,
9413 LateInstantiatedAttrVec *LateAttrs = nullptr,
9414 LocalInstantiationScope *OuterMostScope = nullptr);
9415
9416 void
9417 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9423
9424 bool usesPartialOrExplicitSpecialization(
9425 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9426
9427 bool
9428 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9429 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9430 TemplateSpecializationKind TSK,
9431 bool Complain = true);
9432
9433 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9434 CXXRecordDecl *Instantiation,
9435 const MultiLevelTemplateArgumentList &TemplateArgs,
9436 TemplateSpecializationKind TSK);
9437
9438 void InstantiateClassTemplateSpecializationMembers(
9439 SourceLocation PointOfInstantiation,
9440 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9441 TemplateSpecializationKind TSK);
9442
9443 NestedNameSpecifierLoc
9444 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9445 const MultiLevelTemplateArgumentList &TemplateArgs);
9446
9447 DeclarationNameInfo
9448 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9449 const MultiLevelTemplateArgumentList &TemplateArgs);
9450 TemplateName
9451 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9452 SourceLocation Loc,
9453 const MultiLevelTemplateArgumentList &TemplateArgs);
9454 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9455 TemplateArgumentListInfo &Result,
9456 const MultiLevelTemplateArgumentList &TemplateArgs);
9457
9458 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9459 ParmVarDecl *Param);
9460 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9461 FunctionDecl *Function);
9462 bool CheckInstantiatedFunctionTemplateConstraints(
9463 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9464 ArrayRef<TemplateArgument> TemplateArgs,
9465 ConstraintSatisfaction &Satisfaction);
9466 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9467 const TemplateArgumentList *Args,
9468 SourceLocation Loc);
9469 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9470 FunctionDecl *Function,
9471 bool Recursive = false,
9472 bool DefinitionRequired = false,
9473 bool AtEndOfTU = false);
9474 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9475 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9476 const TemplateArgumentList &TemplateArgList,
9477 const TemplateArgumentListInfo &TemplateArgsInfo,
9478 SmallVectorImpl<TemplateArgument> &Converted,
9479 SourceLocation PointOfInstantiation,
9480 LateInstantiatedAttrVec *LateAttrs = nullptr,
9481 LocalInstantiationScope *StartingScope = nullptr);
9482 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9483 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9484 const MultiLevelTemplateArgumentList &TemplateArgs);
9485 void
9486 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9487 const MultiLevelTemplateArgumentList &TemplateArgs,
9488 LateInstantiatedAttrVec *LateAttrs,
9489 DeclContext *Owner,
9490 LocalInstantiationScope *StartingScope,
9491 bool InstantiatingVarTemplate = false,
9492 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9493
9494 void InstantiateVariableInitializer(
9495 VarDecl *Var, VarDecl *OldVar,
9496 const MultiLevelTemplateArgumentList &TemplateArgs);
9497 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9498 VarDecl *Var, bool Recursive = false,
9499 bool DefinitionRequired = false,
9500 bool AtEndOfTU = false);
9501
9502 void InstantiateMemInitializers(CXXConstructorDecl *New,
9503 const CXXConstructorDecl *Tmpl,
9504 const MultiLevelTemplateArgumentList &TemplateArgs);
9505
9506 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9507 const MultiLevelTemplateArgumentList &TemplateArgs,
9508 bool FindingInstantiatedContext = false);
9509 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 // Objective-C declarations.
9513 enum ObjCContainerKind {
9514 OCK_None = -1,
9515 OCK_Interface = 0,
9516 OCK_Protocol,
9517 OCK_Category,
9518 OCK_ClassExtension,
9519 OCK_Implementation,
9520 OCK_CategoryImplementation
9521 };
9522 ObjCContainerKind getObjCContainerKind() const;
9523
9524 DeclResult actOnObjCTypeParam(Scope *S,
9525 ObjCTypeParamVariance variance,
9526 SourceLocation varianceLoc,
9527 unsigned index,
9528 IdentifierInfo *paramName,
9529 SourceLocation paramLoc,
9530 SourceLocation colonLoc,
9531 ParsedType typeBound);
9532
9533 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9534 ArrayRef<Decl *> typeParams,
9535 SourceLocation rAngleLoc);
9536 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9537
9538 Decl *ActOnStartClassInterface(
9539 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9540 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9541 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9542 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9543 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9544 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9545 const ParsedAttributesView &AttrList);
9546
9547 void ActOnSuperClassOfClassInterface(Scope *S,
9548 SourceLocation AtInterfaceLoc,
9549 ObjCInterfaceDecl *IDecl,
9550 IdentifierInfo *ClassName,
9551 SourceLocation ClassLoc,
9552 IdentifierInfo *SuperName,
9553 SourceLocation SuperLoc,
9554 ArrayRef<ParsedType> SuperTypeArgs,
9555 SourceRange SuperTypeArgsRange);
9556
9557 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9558 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9559 IdentifierInfo *SuperName,
9560 SourceLocation SuperLoc);
9561
9562 Decl *ActOnCompatibilityAlias(
9563 SourceLocation AtCompatibilityAliasLoc,
9564 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9565 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9566
9567 bool CheckForwardProtocolDeclarationForCircularDependency(
9568 IdentifierInfo *PName,
9569 SourceLocation &PLoc, SourceLocation PrevLoc,
9570 const ObjCList<ObjCProtocolDecl> &PList);
9571
9572 Decl *ActOnStartProtocolInterface(
9573 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9574 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9575 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9576 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9577
9578 Decl *ActOnStartCategoryInterface(
9579 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9580 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9581 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9582 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9583 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9584 const ParsedAttributesView &AttrList);
9585
9586 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9587 IdentifierInfo *ClassName,
9588 SourceLocation ClassLoc,
9589 IdentifierInfo *SuperClassname,
9590 SourceLocation SuperClassLoc,
9591 const ParsedAttributesView &AttrList);
9592
9593 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9594 IdentifierInfo *ClassName,
9595 SourceLocation ClassLoc,
9596 IdentifierInfo *CatName,
9597 SourceLocation CatLoc,
9598 const ParsedAttributesView &AttrList);
9599
9600 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9601 ArrayRef<Decl *> Decls);
9602
9603 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9604 IdentifierInfo **IdentList,
9605 SourceLocation *IdentLocs,
9606 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9607 unsigned NumElts);
9608
9609 DeclGroupPtrTy
9610 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9611 ArrayRef<IdentifierLocPair> IdentList,
9612 const ParsedAttributesView &attrList);
9613
9614 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9615 ArrayRef<IdentifierLocPair> ProtocolId,
9616 SmallVectorImpl<Decl *> &Protocols);
9617
9618 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9619 SourceLocation ProtocolLoc,
9620 IdentifierInfo *TypeArgId,
9621 SourceLocation TypeArgLoc,
9622 bool SelectProtocolFirst = false);
9623
9624 /// Given a list of identifiers (and their locations), resolve the
9625 /// names to either Objective-C protocol qualifiers or type
9626 /// arguments, as appropriate.
9627 void actOnObjCTypeArgsOrProtocolQualifiers(
9628 Scope *S,
9629 ParsedType baseType,
9630 SourceLocation lAngleLoc,
9631 ArrayRef<IdentifierInfo *> identifiers,
9632 ArrayRef<SourceLocation> identifierLocs,
9633 SourceLocation rAngleLoc,
9634 SourceLocation &typeArgsLAngleLoc,
9635 SmallVectorImpl<ParsedType> &typeArgs,
9636 SourceLocation &typeArgsRAngleLoc,
9637 SourceLocation &protocolLAngleLoc,
9638 SmallVectorImpl<Decl *> &protocols,
9639 SourceLocation &protocolRAngleLoc,
9640 bool warnOnIncompleteProtocols);
9641
9642 /// Build a an Objective-C protocol-qualified 'id' type where no
9643 /// base type was specified.
9644 TypeResult actOnObjCProtocolQualifierType(
9645 SourceLocation lAngleLoc,
9646 ArrayRef<Decl *> protocols,
9647 ArrayRef<SourceLocation> protocolLocs,
9648 SourceLocation rAngleLoc);
9649
9650 /// Build a specialized and/or protocol-qualified Objective-C type.
9651 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9652 Scope *S,
9653 SourceLocation Loc,
9654 ParsedType BaseType,
9655 SourceLocation TypeArgsLAngleLoc,
9656 ArrayRef<ParsedType> TypeArgs,
9657 SourceLocation TypeArgsRAngleLoc,
9658 SourceLocation ProtocolLAngleLoc,
9659 ArrayRef<Decl *> Protocols,
9660 ArrayRef<SourceLocation> ProtocolLocs,
9661 SourceLocation ProtocolRAngleLoc);
9662
9663 /// Build an Objective-C type parameter type.
9664 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9665 SourceLocation ProtocolLAngleLoc,
9666 ArrayRef<ObjCProtocolDecl *> Protocols,
9667 ArrayRef<SourceLocation> ProtocolLocs,
9668 SourceLocation ProtocolRAngleLoc,
9669 bool FailOnError = false);
9670
9671 /// Build an Objective-C object pointer type.
9672 QualType BuildObjCObjectType(QualType BaseType,
9673 SourceLocation Loc,
9674 SourceLocation TypeArgsLAngleLoc,
9675 ArrayRef<TypeSourceInfo *> TypeArgs,
9676 SourceLocation TypeArgsRAngleLoc,
9677 SourceLocation ProtocolLAngleLoc,
9678 ArrayRef<ObjCProtocolDecl *> Protocols,
9679 ArrayRef<SourceLocation> ProtocolLocs,
9680 SourceLocation ProtocolRAngleLoc,
9681 bool FailOnError = false);
9682
9683 /// Ensure attributes are consistent with type.
9684 /// \param [in, out] Attributes The attributes to check; they will
9685 /// be modified to be consistent with \p PropertyTy.
9686 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9687 SourceLocation Loc,
9688 unsigned &Attributes,
9689 bool propertyInPrimaryClass);
9690
9691 /// Process the specified property declaration and create decls for the
9692 /// setters and getters as needed.
9693 /// \param property The property declaration being processed
9694 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9695
9696
9697 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9698 ObjCPropertyDecl *SuperProperty,
9699 const IdentifierInfo *Name,
9700 bool OverridingProtocolProperty);
9701
9702 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9703 ObjCInterfaceDecl *ID);
9704
9705 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9706 ArrayRef<Decl *> allMethods = None,
9707 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9708
9709 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9710 SourceLocation LParenLoc,
9711 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9712 Selector GetterSel, Selector SetterSel,
9713 tok::ObjCKeywordKind MethodImplKind,
9714 DeclContext *lexicalDC = nullptr);
9715
9716 Decl *ActOnPropertyImplDecl(Scope *S,
9717 SourceLocation AtLoc,
9718 SourceLocation PropertyLoc,
9719 bool ImplKind,
9720 IdentifierInfo *PropertyId,
9721 IdentifierInfo *PropertyIvar,
9722 SourceLocation PropertyIvarLoc,
9723 ObjCPropertyQueryKind QueryKind);
9724
9725 enum ObjCSpecialMethodKind {
9726 OSMK_None,
9727 OSMK_Alloc,
9728 OSMK_New,
9729 OSMK_Copy,
9730 OSMK_RetainingInit,
9731 OSMK_NonRetainingInit
9732 };
9733
9734 struct ObjCArgInfo {
9735 IdentifierInfo *Name;
9736 SourceLocation NameLoc;
9737 // The Type is null if no type was specified, and the DeclSpec is invalid
9738 // in this case.
9739 ParsedType Type;
9740 ObjCDeclSpec DeclSpec;
9741
9742 /// ArgAttrs - Attribute list for this argument.
9743 ParsedAttributesView ArgAttrs;
9744 };
9745
9746 Decl *ActOnMethodDeclaration(
9747 Scope *S,
9748 SourceLocation BeginLoc, // location of the + or -.
9749 SourceLocation EndLoc, // location of the ; or {.
9750 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9751 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9752 // optional arguments. The number of types/arguments is obtained
9753 // from the Sel.getNumArgs().
9754 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9755 unsigned CNumArgs, // c-style args
9756 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9757 bool isVariadic, bool MethodDefinition);
9758
9759 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9760 const ObjCObjectPointerType *OPT,
9761 bool IsInstance);
9762 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9763 bool IsInstance);
9764
9765 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9766 bool inferObjCARCLifetime(ValueDecl *decl);
9767
9768 void deduceOpenCLAddressSpace(ValueDecl *decl);
9769
9770 ExprResult
9771 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9772 Expr *BaseExpr,
9773 SourceLocation OpLoc,
9774 DeclarationName MemberName,
9775 SourceLocation MemberLoc,
9776 SourceLocation SuperLoc, QualType SuperType,
9777 bool Super);
9778
9779 ExprResult
9780 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9781 IdentifierInfo &propertyName,
9782 SourceLocation receiverNameLoc,
9783 SourceLocation propertyNameLoc);
9784
9785 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9786
9787 /// Describes the kind of message expression indicated by a message
9788 /// send that starts with an identifier.
9789 enum ObjCMessageKind {
9790 /// The message is sent to 'super'.
9791 ObjCSuperMessage,
9792 /// The message is an instance message.
9793 ObjCInstanceMessage,
9794 /// The message is a class message, and the identifier is a type
9795 /// name.
9796 ObjCClassMessage
9797 };
9798
9799 ObjCMessageKind getObjCMessageKind(Scope *S,
9800 IdentifierInfo *Name,
9801 SourceLocation NameLoc,
9802 bool IsSuper,
9803 bool HasTrailingDot,
9804 ParsedType &ReceiverType);
9805
9806 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9807 Selector Sel,
9808 SourceLocation LBracLoc,
9809 ArrayRef<SourceLocation> SelectorLocs,
9810 SourceLocation RBracLoc,
9811 MultiExprArg Args);
9812
9813 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9814 QualType ReceiverType,
9815 SourceLocation SuperLoc,
9816 Selector Sel,
9817 ObjCMethodDecl *Method,
9818 SourceLocation LBracLoc,
9819 ArrayRef<SourceLocation> SelectorLocs,
9820 SourceLocation RBracLoc,
9821 MultiExprArg Args,
9822 bool isImplicit = false);
9823
9824 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9825 bool isSuperReceiver,
9826 SourceLocation Loc,
9827 Selector Sel,
9828 ObjCMethodDecl *Method,
9829 MultiExprArg Args);
9830
9831 ExprResult ActOnClassMessage(Scope *S,
9832 ParsedType Receiver,
9833 Selector Sel,
9834 SourceLocation LBracLoc,
9835 ArrayRef<SourceLocation> SelectorLocs,
9836 SourceLocation RBracLoc,
9837 MultiExprArg Args);
9838
9839 ExprResult BuildInstanceMessage(Expr *Receiver,
9840 QualType ReceiverType,
9841 SourceLocation SuperLoc,
9842 Selector Sel,
9843 ObjCMethodDecl *Method,
9844 SourceLocation LBracLoc,
9845 ArrayRef<SourceLocation> SelectorLocs,
9846 SourceLocation RBracLoc,
9847 MultiExprArg Args,
9848 bool isImplicit = false);
9849
9850 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9851 QualType ReceiverType,
9852 SourceLocation Loc,
9853 Selector Sel,
9854 ObjCMethodDecl *Method,
9855 MultiExprArg Args);
9856
9857 ExprResult ActOnInstanceMessage(Scope *S,
9858 Expr *Receiver,
9859 Selector Sel,
9860 SourceLocation LBracLoc,
9861 ArrayRef<SourceLocation> SelectorLocs,
9862 SourceLocation RBracLoc,
9863 MultiExprArg Args);
9864
9865 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9866 ObjCBridgeCastKind Kind,
9867 SourceLocation BridgeKeywordLoc,
9868 TypeSourceInfo *TSInfo,
9869 Expr *SubExpr);
9870
9871 ExprResult ActOnObjCBridgedCast(Scope *S,
9872 SourceLocation LParenLoc,
9873 ObjCBridgeCastKind Kind,
9874 SourceLocation BridgeKeywordLoc,
9875 ParsedType Type,
9876 SourceLocation RParenLoc,
9877 Expr *SubExpr);
9878
9879 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9880
9881 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9882
9883 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9884 CastKind &Kind);
9885
9886 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9887 QualType DestType, QualType SrcType,
9888 ObjCInterfaceDecl *&RelatedClass,
9889 ObjCMethodDecl *&ClassMethod,
9890 ObjCMethodDecl *&InstanceMethod,
9891 TypedefNameDecl *&TDNDecl,
9892 bool CfToNs, bool Diagnose = true);
9893
9894 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9895 QualType DestType, QualType SrcType,
9896 Expr *&SrcExpr, bool Diagnose = true);
9897
9898 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9899 bool Diagnose = true);
9900
9901 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9902
9903 /// Check whether the given new method is a valid override of the
9904 /// given overridden method, and set any properties that should be inherited.
9905 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9906 const ObjCMethodDecl *Overridden);
9907
9908 /// Describes the compatibility of a result type with its method.
9909 enum ResultTypeCompatibilityKind {
9910 RTC_Compatible,
9911 RTC_Incompatible,
9912 RTC_Unknown
9913 };
9914
9915 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9916 ObjCMethodDecl *overridden);
9917
9918 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9919 ObjCInterfaceDecl *CurrentClass,
9920 ResultTypeCompatibilityKind RTC);
9921
9922 enum PragmaOptionsAlignKind {
9923 POAK_Native, // #pragma options align=native
9924 POAK_Natural, // #pragma options align=natural
9925 POAK_Packed, // #pragma options align=packed
9926 POAK_Power, // #pragma options align=power
9927 POAK_Mac68k, // #pragma options align=mac68k
9928 POAK_Reset // #pragma options align=reset
9929 };
9930
9931 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9932 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9933 PragmaClangSectionAction Action,
9934 PragmaClangSectionKind SecKind, StringRef SecName);
9935
9936 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9937 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9938 SourceLocation PragmaLoc);
9939
9940 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9941 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9942 StringRef SlotLabel, Expr *Alignment);
9943
9944 enum class PragmaAlignPackDiagnoseKind {
9945 NonDefaultStateAtInclude,
9946 ChangedStateAtExit
9947 };
9948
9949 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9950 SourceLocation IncludeLoc);
9951 void DiagnoseUnterminatedPragmaAlignPack();
9952
9953 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9954 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9955
9956 /// ActOnPragmaMSComment - Called on well formed
9957 /// \#pragma comment(kind, "arg").
9958 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9959 StringRef Arg);
9960
9961 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9962 /// pointers_to_members(representation method[, general purpose
9963 /// representation]).
9964 void ActOnPragmaMSPointersToMembers(
9965 LangOptions::PragmaMSPointersToMembersKind Kind,
9966 SourceLocation PragmaLoc);
9967
9968 /// Called on well formed \#pragma vtordisp().
9969 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9970 SourceLocation PragmaLoc,
9971 MSVtorDispMode Value);
9972
9973 enum PragmaSectionKind {
9974 PSK_DataSeg,
9975 PSK_BSSSeg,
9976 PSK_ConstSeg,
9977 PSK_CodeSeg,
9978 };
9979
9980 bool UnifySection(StringRef SectionName, int SectionFlags,
9981 NamedDecl *TheDecl);
9982 bool UnifySection(StringRef SectionName,
9983 int SectionFlags,
9984 SourceLocation PragmaSectionLocation);
9985
9986 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9987 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9988 PragmaMsStackAction Action,
9989 llvm::StringRef StackSlotLabel,
9990 StringLiteral *SegmentName,
9991 llvm::StringRef PragmaName);
9992
9993 /// Called on well formed \#pragma section().
9994 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
9995 int SectionFlags, StringLiteral *SegmentName);
9996
9997 /// Called on well-formed \#pragma init_seg().
9998 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
9999 StringLiteral *SegmentName);
10000
10001 /// Called on #pragma clang __debug dump II
10002 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10003
10004 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10005 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10006 StringRef Value);
10007
10008 /// Are precise floating point semantics currently enabled?
10009 bool isPreciseFPEnabled() {
10010 return !CurFPFeatures.getAllowFPReassociate() &&
10011 !CurFPFeatures.getNoSignedZero() &&
10012 !CurFPFeatures.getAllowReciprocal() &&
10013 !CurFPFeatures.getAllowApproxFunc();
10014 }
10015
10016 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10017 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10018 PragmaFloatControlKind Value);
10019
10020 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10021 void ActOnPragmaUnused(const Token &Identifier,
10022 Scope *curScope,
10023 SourceLocation PragmaLoc);
10024
10025 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10026 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10027 SourceLocation PragmaLoc);
10028
10029 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10030 SourceLocation Loc);
10031 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10032
10033 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10034 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10035 SourceLocation PragmaLoc,
10036 SourceLocation WeakNameLoc);
10037
10038 /// ActOnPragmaRedefineExtname - Called on well formed
10039 /// \#pragma redefine_extname oldname newname.
10040 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10041 IdentifierInfo* AliasName,
10042 SourceLocation PragmaLoc,
10043 SourceLocation WeakNameLoc,
10044 SourceLocation AliasNameLoc);
10045
10046 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10047 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10048 IdentifierInfo* AliasName,
10049 SourceLocation PragmaLoc,
10050 SourceLocation WeakNameLoc,
10051 SourceLocation AliasNameLoc);
10052
10053 /// ActOnPragmaFPContract - Called on well formed
10054 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10055 /// \#pragma clang fp contract
10056 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10057
10058 /// Called on well formed
10059 /// \#pragma clang fp reassociate
10060 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10061
10062 /// ActOnPragmaFenvAccess - Called on well formed
10063 /// \#pragma STDC FENV_ACCESS
10064 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10065
10066 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10067 void ActOnPragmaFPExceptions(SourceLocation Loc,
10068 LangOptions::FPExceptionModeKind);
10069
10070 /// Called to set constant rounding mode for floating point operations.
10071 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10072
10073 /// Called to set exception behavior for floating point operations.
10074 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10075
10076 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10077 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10078 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10079
10080 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10081 void AddMsStructLayoutForRecord(RecordDecl *RD);
10082
10083 /// PushNamespaceVisibilityAttr - Note that we've entered a
10084 /// namespace with a visibility attribute.
10085 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10086 SourceLocation Loc);
10087
10088 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10089 /// add an appropriate visibility attribute.
10090 void AddPushedVisibilityAttribute(Decl *RD);
10091
10092 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10093 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10094 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10095
10096 /// FreeVisContext - Deallocate and null out VisContext.
10097 void FreeVisContext();
10098
10099 /// AddCFAuditedAttribute - Check whether we're currently within
10100 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10101 /// the appropriate attribute.
10102 void AddCFAuditedAttribute(Decl *D);
10103
10104 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10105 SourceLocation PragmaLoc,
10106 attr::ParsedSubjectMatchRuleSet Rules);
10107 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10108 const IdentifierInfo *Namespace);
10109
10110 /// Called on well-formed '\#pragma clang attribute pop'.
10111 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10112 const IdentifierInfo *Namespace);
10113
10114 /// Adds the attributes that have been specified using the
10115 /// '\#pragma clang attribute push' directives to the given declaration.
10116 void AddPragmaAttributes(Scope *S, Decl *D);
10117
10118 void DiagnoseUnterminatedPragmaAttribute();
10119
10120 /// Called on well formed \#pragma clang optimize.
10121 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10122
10123 /// Get the location for the currently active "\#pragma clang optimize
10124 /// off". If this location is invalid, then the state of the pragma is "on".
10125 SourceLocation getOptimizeOffPragmaLocation() const {
10126 return OptimizeOffPragmaLocation;
10127 }
10128
10129 /// Only called on function definitions; if there is a pragma in scope
10130 /// with the effect of a range-based optnone, consider marking the function
10131 /// with attribute optnone.
10132 void AddRangeBasedOptnone(FunctionDecl *FD);
10133
10134 /// Adds the 'optnone' attribute to the function declaration if there
10135 /// are no conflicts; Loc represents the location causing the 'optnone'
10136 /// attribute to be added (usually because of a pragma).
10137 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10138
10139 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10140 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10141 bool IsPackExpansion);
10142 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10143 bool IsPackExpansion);
10144
10145 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10146 /// declaration.
10147 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10148 Expr *OE);
10149
10150 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10151 /// declaration.
10152 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10153 Expr *ParamExpr);
10154
10155 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10156 /// declaration.
10157 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10158
10159 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10160 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10161 StringRef Annot, MutableArrayRef<Expr *> Args);
10162
10163 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10164 /// declaration.
10165 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10166 Expr *MaxThreads, Expr *MinBlocks);
10167
10168 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10169 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10170 bool InInstantiation = false);
10171
10172 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10173 ParameterABI ABI);
10174
10175 enum class RetainOwnershipKind {NS, CF, OS};
10176 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10177 RetainOwnershipKind K, bool IsTemplateInstantiation);
10178
10179 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10180 /// attribute to a particular declaration.
10181 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10182 Expr *Min, Expr *Max);
10183
10184 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10185 /// particular declaration.
10186 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10187 Expr *Min, Expr *Max);
10188
10189 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10190
10191 //===--------------------------------------------------------------------===//
10192 // C++ Coroutines TS
10193 //
10194 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10195 StringRef Keyword);
10196 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10197 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10198 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10199
10200 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10201 bool IsImplicit = false);
10202 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10203 UnresolvedLookupExpr* Lookup);
10204 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10205 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10206 bool IsImplicit = false);
10207 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10208 bool buildCoroutineParameterMoves(SourceLocation Loc);
10209 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10210 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10211 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10212 SourceLocation FuncLoc);
10213 /// Check that the expression co_await promise.final_suspend() shall not be
10214 /// potentially-throwing.
10215 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10216
10217 //===--------------------------------------------------------------------===//
10218 // OpenMP directives and clauses.
10219 //
10220private:
10221 void *VarDataSharingAttributesStack;
10222
10223 struct DeclareTargetContextInfo {
10224 struct MapInfo {
10225 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10226 SourceLocation Loc;
10227 };
10228 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10229 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10230
10231 /// The 'device_type' as parsed from the clause.
10232 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10233
10234 /// The directive kind, `begin declare target` or `declare target`.
10235 OpenMPDirectiveKind Kind;
10236
10237 /// The directive location.
10238 SourceLocation Loc;
10239
10240 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10241 : Kind(Kind), Loc(Loc) {}
10242 };
10243
10244 /// Number of nested '#pragma omp declare target' directives.
10245 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10246
10247 /// Initialization of data-sharing attributes stack.
10248 void InitDataSharingAttributesStack();
10249 void DestroyDataSharingAttributesStack();
10250 ExprResult
10251 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10252 bool StrictlyPositive = true,
10253 bool SuppressExprDiags = false);
10254 /// Returns OpenMP nesting level for current directive.
10255 unsigned getOpenMPNestingLevel() const;
10256
10257 /// Adjusts the function scopes index for the target-based regions.
10258 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10259 unsigned Level) const;
10260
10261 /// Returns the number of scopes associated with the construct on the given
10262 /// OpenMP level.
10263 int getNumberOfConstructScopes(unsigned Level) const;
10264
10265 /// Push new OpenMP function region for non-capturing function.
10266 void pushOpenMPFunctionRegion();
10267
10268 /// Pop OpenMP function region for non-capturing function.
10269 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10270
10271 /// Analyzes and checks a loop nest for use by a loop transformation.
10272 ///
10273 /// \param Kind The loop transformation directive kind.
10274 /// \param NumLoops How many nested loops the directive is expecting.
10275 /// \param AStmt Associated statement of the transformation directive.
10276 /// \param LoopHelpers [out] The loop analysis result.
10277 /// \param Body [out] The body code nested in \p NumLoops loop.
10278 /// \param OriginalInits [out] Collection of statements and declarations that
10279 /// must have been executed/declared before entering the
10280 /// loop.
10281 ///
10282 /// \return Whether there was any error.
10283 bool checkTransformableLoopNest(
10284 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10285 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10286 Stmt *&Body,
10287 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10288 &OriginalInits);
10289
10290 /// Helper to keep information about the current `omp begin/end declare
10291 /// variant` nesting.
10292 struct OMPDeclareVariantScope {
10293 /// The associated OpenMP context selector.
10294 OMPTraitInfo *TI;
10295
10296 /// The associated OpenMP context selector mangling.
10297 std::string NameSuffix;
10298
10299 OMPDeclareVariantScope(OMPTraitInfo &TI);
10300 };
10301
10302 /// Return the OMPTraitInfo for the surrounding scope, if any.
10303 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10304 return OMPDeclareVariantScopes.empty() ? nullptr
10305 : OMPDeclareVariantScopes.back().TI;
10306 }
10307
10308 /// The current `omp begin/end declare variant` scopes.
10309 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10310
10311 /// The current `omp begin/end assumes` scopes.
10312 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10313
10314 /// All `omp assumes` we encountered so far.
10315 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10316
10317public:
10318 /// The declarator \p D defines a function in the scope \p S which is nested
10319 /// in an `omp begin/end declare variant` scope. In this method we create a
10320 /// declaration for \p D and rename \p D according to the OpenMP context
10321 /// selector of the surrounding scope. Return all base functions in \p Bases.
10322 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10323 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10324 SmallVectorImpl<FunctionDecl *> &Bases);
10325
10326 /// Register \p D as specialization of all base functions in \p Bases in the
10327 /// current `omp begin/end declare variant` scope.
10328 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10330
10331 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10332 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10333
10334 /// Can we exit an OpenMP declare variant scope at the moment.
10335 bool isInOpenMPDeclareVariantScope() const {
10336 return !OMPDeclareVariantScopes.empty();
10337 }
10338
10339 /// Given the potential call expression \p Call, determine if there is a
10340 /// specialization via the OpenMP declare variant mechanism available. If
10341 /// there is, return the specialized call expression, otherwise return the
10342 /// original \p Call.
10343 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10344 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10345 SourceLocation RParenLoc, Expr *ExecConfig);
10346
10347 /// Handle a `omp begin declare variant`.
10348 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10349
10350 /// Handle a `omp end declare variant`.
10351 void ActOnOpenMPEndDeclareVariant();
10352
10353 /// Checks if the variant/multiversion functions are compatible.
10354 bool areMultiversionVariantFunctionsCompatible(
10355 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10356 const PartialDiagnostic &NoProtoDiagID,
10357 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10358 const PartialDiagnosticAt &NoSupportDiagIDAt,
10359 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10360 bool ConstexprSupported, bool CLinkageMayDiffer);
10361
10362 /// Function tries to capture lambda's captured variables in the OpenMP region
10363 /// before the original lambda is captured.
10364 void tryCaptureOpenMPLambdas(ValueDecl *V);
10365
10366 /// Return true if the provided declaration \a VD should be captured by
10367 /// reference.
10368 /// \param Level Relative level of nested OpenMP construct for that the check
10369 /// is performed.
10370 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10371 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10372 unsigned OpenMPCaptureLevel) const;
10373
10374 /// Check if the specified variable is used in one of the private
10375 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10376 /// constructs.
10377 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10378 unsigned StopAt = 0);
10379 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10380 ExprObjectKind OK, SourceLocation Loc);
10381
10382 /// If the current region is a loop-based region, mark the start of the loop
10383 /// construct.
10384 void startOpenMPLoop();
10385
10386 /// If the current region is a range loop-based region, mark the start of the
10387 /// loop construct.
10388 void startOpenMPCXXRangeFor();
10389
10390 /// Check if the specified variable is used in 'private' clause.
10391 /// \param Level Relative level of nested OpenMP construct for that the check
10392 /// is performed.
10393 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10394 unsigned CapLevel) const;
10395
10396 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10397 /// for \p FD based on DSA for the provided corresponding captured declaration
10398 /// \p D.
10399 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10400
10401 /// Check if the specified variable is captured by 'target' directive.
10402 /// \param Level Relative level of nested OpenMP construct for that the check
10403 /// is performed.
10404 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10405 unsigned CaptureLevel) const;
10406
10407 /// Check if the specified global variable must be captured by outer capture
10408 /// regions.
10409 /// \param Level Relative level of nested OpenMP construct for that
10410 /// the check is performed.
10411 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10412 unsigned CaptureLevel) const;
10413
10414 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10415 Expr *Op);
10416 /// Called on start of new data sharing attribute block.
10417 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10418 const DeclarationNameInfo &DirName, Scope *CurScope,
10419 SourceLocation Loc);
10420 /// Start analysis of clauses.
10421 void StartOpenMPClause(OpenMPClauseKind K);
10422 /// End analysis of clauses.
10423 void EndOpenMPClause();
10424 /// Called on end of data sharing attribute block.
10425 void EndOpenMPDSABlock(Stmt *CurDirective);
10426
10427 /// Check if the current region is an OpenMP loop region and if it is,
10428 /// mark loop control variable, used in \p Init for loop initialization, as
10429 /// private by default.
10430 /// \param Init First part of the for loop.
10431 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10432
10433 // OpenMP directives and clauses.
10434 /// Called on correct id-expression from the '#pragma omp
10435 /// threadprivate'.
10436 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10437 const DeclarationNameInfo &Id,
10438 OpenMPDirectiveKind Kind);
10439 /// Called on well-formed '#pragma omp threadprivate'.
10440 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10441 SourceLocation Loc,
10442 ArrayRef<Expr *> VarList);
10443 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10444 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10445 ArrayRef<Expr *> VarList);
10446 /// Called on well-formed '#pragma omp allocate'.
10447 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10448 ArrayRef<Expr *> VarList,
10449 ArrayRef<OMPClause *> Clauses,
10450 DeclContext *Owner = nullptr);
10451
10452 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10453 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10454 OpenMPDirectiveKind DKind,
10455 ArrayRef<StringRef> Assumptions,
10456 bool SkippedClauses);
10457
10458 /// Check if there is an active global `omp begin assumes` directive.
10459 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10460
10461 /// Check if there is an active global `omp assumes` directive.
10462 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10463
10464 /// Called on well-formed '#pragma omp end assumes'.
10465 void ActOnOpenMPEndAssumesDirective();
10466
10467 /// Called on well-formed '#pragma omp requires'.
10468 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10469 ArrayRef<OMPClause *> ClauseList);
10470 /// Check restrictions on Requires directive
10471 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10472 ArrayRef<OMPClause *> Clauses);
10473 /// Check if the specified type is allowed to be used in 'omp declare
10474 /// reduction' construct.
10475 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10476 TypeResult ParsedType);
10477 /// Called on start of '#pragma omp declare reduction'.
10478 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10479 Scope *S, DeclContext *DC, DeclarationName Name,
10480 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10481 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10482 /// Initialize declare reduction construct initializer.
10483 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10484 /// Finish current declare reduction construct initializer.
10485 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10486 /// Initialize declare reduction construct initializer.
10487 /// \return omp_priv variable.
10488 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10489 /// Finish current declare reduction construct initializer.
10490 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10491 VarDecl *OmpPrivParm);
10492 /// Called at the end of '#pragma omp declare reduction'.
10493 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10494 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10495
10496 /// Check variable declaration in 'omp declare mapper' construct.
10497 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10498 /// Check if the specified type is allowed to be used in 'omp declare
10499 /// mapper' construct.
10500 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10501 TypeResult ParsedType);
10502 /// Called on start of '#pragma omp declare mapper'.
10503 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10504 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10505 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10506 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10507 Decl *PrevDeclInScope = nullptr);
10508 /// Build the mapper variable of '#pragma omp declare mapper'.
10509 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10510 QualType MapperType,
10511 SourceLocation StartLoc,
10512 DeclarationName VN);
10513 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10514 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10515
10516 /// Called on the start of target region i.e. '#pragma omp declare target'.
10517 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10518
10519 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10520 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10521
10522 /// Called once a target context is completed, that can be when a
10523 /// '#pragma omp end declare target' was encountered or when a
10524 /// '#pragma omp declare target' without declaration-definition-seq was
10525 /// encountered.
10526 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10527
10528 /// Searches for the provided declaration name for OpenMP declare target
10529 /// directive.
10530 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10531 CXXScopeSpec &ScopeSpec,
10532 const DeclarationNameInfo &Id);
10533
10534 /// Called on correct id-expression from the '#pragma omp declare target'.
10535 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10536 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10537 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10538
10539 /// Check declaration inside target region.
10540 void
10541 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10542 SourceLocation IdLoc = SourceLocation());
10543 /// Finishes analysis of the deferred functions calls that may be declared as
10544 /// host/nohost during device/host compilation.
10545 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10546 const FunctionDecl *Callee,
10547 SourceLocation Loc);
10548 /// Return true inside OpenMP declare target region.
10549 bool isInOpenMPDeclareTargetContext() const {
10550 return !DeclareTargetNesting.empty();
10551 }
10552 /// Return true inside OpenMP target region.
10553 bool isInOpenMPTargetExecutionDirective() const;
10554
10555 /// Return the number of captured regions created for an OpenMP directive.
10556 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10557
10558 /// Initialization of captured region for OpenMP region.
10559 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10560
10561 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10562 /// an OpenMP loop directive.
10563 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10564
10565 /// End of OpenMP region.
10566 ///
10567 /// \param S Statement associated with the current OpenMP region.
10568 /// \param Clauses List of clauses for the current OpenMP region.
10569 ///
10570 /// \returns Statement for finished OpenMP region.
10571 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10572 StmtResult ActOnOpenMPExecutableDirective(
10573 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10574 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10575 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10576 /// Called on well-formed '\#pragma omp parallel' after parsing
10577 /// of the associated statement.
10578 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10579 Stmt *AStmt,
10580 SourceLocation StartLoc,
10581 SourceLocation EndLoc);
10582 using VarsWithInheritedDSAType =
10583 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10584 /// Called on well-formed '\#pragma omp simd' after parsing
10585 /// of the associated statement.
10586 StmtResult
10587 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10588 SourceLocation StartLoc, SourceLocation EndLoc,
10589 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10590 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10591 /// the associated statement.
10592 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10593 Stmt *AStmt, SourceLocation StartLoc,
10594 SourceLocation EndLoc);
10595 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10596 /// and the associated statement.
10597 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10598 Stmt *AStmt, SourceLocation StartLoc,
10599 SourceLocation EndLoc);
10600 /// Called on well-formed '\#pragma omp for' after parsing
10601 /// of the associated statement.
10602 StmtResult
10603 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10604 SourceLocation StartLoc, SourceLocation EndLoc,
10605 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10606 /// Called on well-formed '\#pragma omp for simd' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp sections' after parsing
10613 /// of the associated statement.
10614 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10615 Stmt *AStmt, SourceLocation StartLoc,
10616 SourceLocation EndLoc);
10617 /// Called on well-formed '\#pragma omp section' after parsing of the
10618 /// associated statement.
10619 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10620 SourceLocation EndLoc);
10621 /// Called on well-formed '\#pragma omp single' after parsing of the
10622 /// associated statement.
10623 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10624 Stmt *AStmt, SourceLocation StartLoc,
10625 SourceLocation EndLoc);
10626 /// Called on well-formed '\#pragma omp master' after parsing of the
10627 /// associated statement.
10628 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10629 SourceLocation EndLoc);
10630 /// Called on well-formed '\#pragma omp critical' after parsing of the
10631 /// associated statement.
10632 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10633 ArrayRef<OMPClause *> Clauses,
10634 Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp parallel for' after parsing
10637 /// of the associated statement.
10638 StmtResult ActOnOpenMPParallelForDirective(
10639 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10640 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10641 /// Called on well-formed '\#pragma omp parallel for simd' after
10642 /// parsing of the associated statement.
10643 StmtResult ActOnOpenMPParallelForSimdDirective(
10644 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10645 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10646 /// Called on well-formed '\#pragma omp parallel master' after
10647 /// parsing of the associated statement.
10648 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10649 Stmt *AStmt,
10650 SourceLocation StartLoc,
10651 SourceLocation EndLoc);
10652 /// Called on well-formed '\#pragma omp parallel sections' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp task' after parsing of the
10659 /// associated statement.
10660 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt, SourceLocation StartLoc,
10662 SourceLocation EndLoc);
10663 /// Called on well-formed '\#pragma omp taskyield'.
10664 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10665 SourceLocation EndLoc);
10666 /// Called on well-formed '\#pragma omp barrier'.
10667 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskwait'.
10670 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp taskgroup'.
10673 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10674 Stmt *AStmt, SourceLocation StartLoc,
10675 SourceLocation EndLoc);
10676 /// Called on well-formed '\#pragma omp flush'.
10677 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10678 SourceLocation StartLoc,
10679 SourceLocation EndLoc);
10680 /// Called on well-formed '\#pragma omp depobj'.
10681 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10682 SourceLocation StartLoc,
10683 SourceLocation EndLoc);
10684 /// Called on well-formed '\#pragma omp scan'.
10685 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10686 SourceLocation StartLoc,
10687 SourceLocation EndLoc);
10688 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10689 /// associated statement.
10690 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10691 Stmt *AStmt, SourceLocation StartLoc,
10692 SourceLocation EndLoc);
10693 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10694 /// associated statement.
10695 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10696 Stmt *AStmt, SourceLocation StartLoc,
10697 SourceLocation EndLoc);
10698 /// Called on well-formed '\#pragma omp target' after parsing of the
10699 /// associated statement.
10700 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10701 Stmt *AStmt, SourceLocation StartLoc,
10702 SourceLocation EndLoc);
10703 /// Called on well-formed '\#pragma omp target data' after parsing of
10704 /// the associated statement.
10705 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10706 Stmt *AStmt, SourceLocation StartLoc,
10707 SourceLocation EndLoc);
10708 /// Called on well-formed '\#pragma omp target enter data' after
10709 /// parsing of the associated statement.
10710 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10711 SourceLocation StartLoc,
10712 SourceLocation EndLoc,
10713 Stmt *AStmt);
10714 /// Called on well-formed '\#pragma omp target exit data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target parallel' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10723 Stmt *AStmt,
10724 SourceLocation StartLoc,
10725 SourceLocation EndLoc);
10726 /// Called on well-formed '\#pragma omp target parallel for' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelForDirective(
10729 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10730 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10731 /// Called on well-formed '\#pragma omp teams' after parsing of the
10732 /// associated statement.
10733 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10734 Stmt *AStmt, SourceLocation StartLoc,
10735 SourceLocation EndLoc);
10736 /// Called on well-formed '\#pragma omp cancellation point'.
10737 StmtResult
10738 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10739 SourceLocation EndLoc,
10740 OpenMPDirectiveKind CancelRegion);
10741 /// Called on well-formed '\#pragma omp cancel'.
10742 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10743 SourceLocation StartLoc,
10744 SourceLocation EndLoc,
10745 OpenMPDirectiveKind CancelRegion);
10746 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10747 /// associated statement.
10748 StmtResult
10749 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10750 SourceLocation StartLoc, SourceLocation EndLoc,
10751 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10752 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10753 /// the associated statement.
10754 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10755 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10756 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10757 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10758 /// associated statement.
10759 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10760 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10761 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10762 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10763 /// the associated statement.
10764 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10765 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10766 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10767 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10768 /// parsing of the associated statement.
10769 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10770 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10771 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10772 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10773 /// parsing of the associated statement.
10774 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10775 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10776 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10777 /// Called on well-formed '\#pragma omp distribute' after parsing
10778 /// of the associated statement.
10779 StmtResult
10780 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10781 SourceLocation StartLoc, SourceLocation EndLoc,
10782 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp target update'.
10784 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10785 SourceLocation StartLoc,
10786 SourceLocation EndLoc,
10787 Stmt *AStmt);
10788 /// Called on well-formed '\#pragma omp distribute parallel for' after
10789 /// parsing of the associated statement.
10790 StmtResult ActOnOpenMPDistributeParallelForDirective(
10791 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10792 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10793 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10794 /// after parsing of the associated statement.
10795 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10796 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10797 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10798 /// Called on well-formed '\#pragma omp distribute simd' after
10799 /// parsing of the associated statement.
10800 StmtResult ActOnOpenMPDistributeSimdDirective(
10801 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10802 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10803 /// Called on well-formed '\#pragma omp target parallel for simd' after
10804 /// parsing of the associated statement.
10805 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10806 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10807 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10808 /// Called on well-formed '\#pragma omp target simd' after parsing of
10809 /// the associated statement.
10810 StmtResult
10811 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10812 SourceLocation StartLoc, SourceLocation EndLoc,
10813 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10815 /// the associated statement.
10816 StmtResult ActOnOpenMPTeamsDistributeDirective(
10817 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10818 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10819 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10820 /// of the associated statement.
10821 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10822 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10823 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10824 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10825 /// after parsing of the associated statement.
10826 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10827 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10828 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10829 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10830 /// after parsing of the associated statement.
10831 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10832 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10833 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10834 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10835 /// associated statement.
10836 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10837 Stmt *AStmt,
10838 SourceLocation StartLoc,
10839 SourceLocation EndLoc);
10840 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10841 /// of the associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10843 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10844 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10845 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10846 /// after parsing of the associated statement.
10847 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10848 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10849 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10850 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10851 /// simd' after parsing of the associated statement.
10852 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10853 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10854 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10855 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10856 /// parsing of the associated statement.
10857 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10858 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10859 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10860 /// Called on well-formed '\#pragma omp interop'.
10861 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10862 SourceLocation StartLoc,
10863 SourceLocation EndLoc);
10864 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10865 // /associated statement.
10866 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10867 Stmt *AStmt, SourceLocation StartLoc,
10868 SourceLocation EndLoc);
10869 /// Called on well-formed '\#pragma omp masked' after parsing of the
10870 // /associated statement.
10871 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10872 Stmt *AStmt, SourceLocation StartLoc,
10873 SourceLocation EndLoc);
10874
10875 /// Checks correctness of linear modifiers.
10876 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10877 SourceLocation LinLoc);
10878 /// Checks that the specified declaration matches requirements for the linear
10879 /// decls.
10880 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10881 OpenMPLinearClauseKind LinKind, QualType Type,
10882 bool IsDeclareSimd = false);
10883
10884 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10885 /// the associated method/function.
10886 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10887 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10888 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10889 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10890 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10891
10892 /// Checks '\#pragma omp declare variant' variant function and original
10893 /// functions after parsing of the associated method/function.
10894 /// \param DG Function declaration to which declare variant directive is
10895 /// applied to.
10896 /// \param VariantRef Expression that references the variant function, which
10897 /// must be used instead of the original one, specified in \p DG.
10898 /// \param TI The trait info object representing the match clause.
10899 /// \returns None, if the function/variant function are not compatible with
10900 /// the pragma, pair of original function/variant ref expression otherwise.
10901 Optional<std::pair<FunctionDecl *, Expr *>>
10902 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10903 OMPTraitInfo &TI, SourceRange SR);
10904
10905 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10906 /// the associated method/function.
10907 /// \param FD Function declaration to which declare variant directive is
10908 /// applied to.
10909 /// \param VariantRef Expression that references the variant function, which
10910 /// must be used instead of the original one, specified in \p DG.
10911 /// \param TI The context traits associated with the function variant.
10912 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10913 OMPTraitInfo &TI, SourceRange SR);
10914
10915 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10916 Expr *Expr,
10917 SourceLocation StartLoc,
10918 SourceLocation LParenLoc,
10919 SourceLocation EndLoc);
10920 /// Called on well-formed 'allocator' clause.
10921 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10922 SourceLocation StartLoc,
10923 SourceLocation LParenLoc,
10924 SourceLocation EndLoc);
10925 /// Called on well-formed 'if' clause.
10926 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10927 Expr *Condition, SourceLocation StartLoc,
10928 SourceLocation LParenLoc,
10929 SourceLocation NameModifierLoc,
10930 SourceLocation ColonLoc,
10931 SourceLocation EndLoc);
10932 /// Called on well-formed 'final' clause.
10933 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation EndLoc);
10936 /// Called on well-formed 'num_threads' clause.
10937 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10938 SourceLocation StartLoc,
10939 SourceLocation LParenLoc,
10940 SourceLocation EndLoc);
10941 /// Called on well-formed 'safelen' clause.
10942 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10943 SourceLocation StartLoc,
10944 SourceLocation LParenLoc,
10945 SourceLocation EndLoc);
10946 /// Called on well-formed 'simdlen' clause.
10947 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10948 SourceLocation LParenLoc,
10949 SourceLocation EndLoc);
10950 /// Called on well-form 'sizes' clause.
10951 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10952 SourceLocation StartLoc,
10953 SourceLocation LParenLoc,
10954 SourceLocation EndLoc);
10955 /// Called on well-form 'full' clauses.
10956 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10957 SourceLocation EndLoc);
10958 /// Called on well-form 'partial' clauses.
10959 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10960 SourceLocation LParenLoc,
10961 SourceLocation EndLoc);
10962 /// Called on well-formed 'collapse' clause.
10963 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10964 SourceLocation StartLoc,
10965 SourceLocation LParenLoc,
10966 SourceLocation EndLoc);
10967 /// Called on well-formed 'ordered' clause.
10968 OMPClause *
10969 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10970 SourceLocation LParenLoc = SourceLocation(),
10971 Expr *NumForLoops = nullptr);
10972 /// Called on well-formed 'grainsize' clause.
10973 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10974 SourceLocation LParenLoc,
10975 SourceLocation EndLoc);
10976 /// Called on well-formed 'num_tasks' clause.
10977 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10978 SourceLocation LParenLoc,
10979 SourceLocation EndLoc);
10980 /// Called on well-formed 'hint' clause.
10981 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10982 SourceLocation LParenLoc,
10983 SourceLocation EndLoc);
10984 /// Called on well-formed 'detach' clause.
10985 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10986 SourceLocation LParenLoc,
10987 SourceLocation EndLoc);
10988
10989 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10990 unsigned Argument,
10991 SourceLocation ArgumentLoc,
10992 SourceLocation StartLoc,
10993 SourceLocation LParenLoc,
10994 SourceLocation EndLoc);
10995 /// Called on well-formed 'default' clause.
10996 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
10997 SourceLocation KindLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'proc_bind' clause.
11002 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'order' clause.
11008 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'update' clause.
11014 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019
11020 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11021 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11022 SourceLocation StartLoc, SourceLocation LParenLoc,
11023 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11024 SourceLocation EndLoc);
11025 /// Called on well-formed 'schedule' clause.
11026 OMPClause *ActOnOpenMPScheduleClause(
11027 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11028 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11029 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11030 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11031
11032 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11033 SourceLocation EndLoc);
11034 /// Called on well-formed 'nowait' clause.
11035 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11036 SourceLocation EndLoc);
11037 /// Called on well-formed 'untied' clause.
11038 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'mergeable' clause.
11041 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'read' clause.
11044 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'write' clause.
11047 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'update' clause.
11050 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'capture' clause.
11053 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'seq_cst' clause.
11056 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'acq_rel' clause.
11059 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'acquire' clause.
11062 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'release' clause.
11065 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'relaxed' clause.
11068 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070
11071 /// Called on well-formed 'init' clause.
11072 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11073 bool IsTarget, bool IsTargetSync,
11074 SourceLocation StartLoc,
11075 SourceLocation LParenLoc,
11076 SourceLocation VarLoc,
11077 SourceLocation EndLoc);
11078
11079 /// Called on well-formed 'use' clause.
11080 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc, SourceLocation EndLoc);
11083
11084 /// Called on well-formed 'destroy' clause.
11085 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11086 SourceLocation LParenLoc,
11087 SourceLocation VarLoc,
11088 SourceLocation EndLoc);
11089 /// Called on well-formed 'novariants' clause.
11090 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11091 SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation EndLoc);
11094 /// Called on well-formed 'nocontext' clause.
11095 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11096 SourceLocation StartLoc,
11097 SourceLocation LParenLoc,
11098 SourceLocation EndLoc);
11099 /// Called on well-formed 'filter' clause.
11100 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11101 SourceLocation LParenLoc,
11102 SourceLocation EndLoc);
11103 /// Called on well-formed 'threads' clause.
11104 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11105 SourceLocation EndLoc);
11106 /// Called on well-formed 'simd' clause.
11107 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'nogroup' clause.
11110 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'unified_address' clause.
11113 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115
11116 /// Called on well-formed 'unified_address' clause.
11117 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11118 SourceLocation EndLoc);
11119
11120 /// Called on well-formed 'reverse_offload' clause.
11121 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11122 SourceLocation EndLoc);
11123
11124 /// Called on well-formed 'dynamic_allocators' clause.
11125 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11126 SourceLocation EndLoc);
11127
11128 /// Called on well-formed 'atomic_default_mem_order' clause.
11129 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11130 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11131 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11132
11133 OMPClause *ActOnOpenMPVarListClause(
11134 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11135 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11136 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11137 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11138 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11139 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11140 SourceLocation ExtraModifierLoc,
11141 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11142 ArrayRef<SourceLocation> MotionModifiersLoc);
11143 /// Called on well-formed 'inclusive' clause.
11144 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11145 SourceLocation StartLoc,
11146 SourceLocation LParenLoc,
11147 SourceLocation EndLoc);
11148 /// Called on well-formed 'exclusive' clause.
11149 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11150 SourceLocation StartLoc,
11151 SourceLocation LParenLoc,
11152 SourceLocation EndLoc);
11153 /// Called on well-formed 'allocate' clause.
11154 OMPClause *
11155 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc, SourceLocation ColonLoc,
11157 SourceLocation LParenLoc, SourceLocation EndLoc);
11158 /// Called on well-formed 'private' clause.
11159 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11160 SourceLocation StartLoc,
11161 SourceLocation LParenLoc,
11162 SourceLocation EndLoc);
11163 /// Called on well-formed 'firstprivate' clause.
11164 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11165 SourceLocation StartLoc,
11166 SourceLocation LParenLoc,
11167 SourceLocation EndLoc);
11168 /// Called on well-formed 'lastprivate' clause.
11169 OMPClause *ActOnOpenMPLastprivateClause(
11170 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11171 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11172 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11173 /// Called on well-formed 'shared' clause.
11174 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11175 SourceLocation StartLoc,
11176 SourceLocation LParenLoc,
11177 SourceLocation EndLoc);
11178 /// Called on well-formed 'reduction' clause.
11179 OMPClause *ActOnOpenMPReductionClause(
11180 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11181 SourceLocation StartLoc, SourceLocation LParenLoc,
11182 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11183 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11184 const DeclarationNameInfo &ReductionId,
11185 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11186 /// Called on well-formed 'task_reduction' clause.
11187 OMPClause *ActOnOpenMPTaskReductionClause(
11188 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11189 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11190 CXXScopeSpec &ReductionIdScopeSpec,
11191 const DeclarationNameInfo &ReductionId,
11192 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11193 /// Called on well-formed 'in_reduction' clause.
11194 OMPClause *ActOnOpenMPInReductionClause(
11195 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11196 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11197 CXXScopeSpec &ReductionIdScopeSpec,
11198 const DeclarationNameInfo &ReductionId,
11199 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11200 /// Called on well-formed 'linear' clause.
11201 OMPClause *
11202 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11203 SourceLocation StartLoc, SourceLocation LParenLoc,
11204 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11205 SourceLocation ColonLoc, SourceLocation EndLoc);
11206 /// Called on well-formed 'aligned' clause.
11207 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11208 Expr *Alignment,
11209 SourceLocation StartLoc,
11210 SourceLocation LParenLoc,
11211 SourceLocation ColonLoc,
11212 SourceLocation EndLoc);
11213 /// Called on well-formed 'copyin' clause.
11214 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation EndLoc);
11218 /// Called on well-formed 'copyprivate' clause.
11219 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11220 SourceLocation StartLoc,
11221 SourceLocation LParenLoc,
11222 SourceLocation EndLoc);
11223 /// Called on well-formed 'flush' pseudo clause.
11224 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11225 SourceLocation StartLoc,
11226 SourceLocation LParenLoc,
11227 SourceLocation EndLoc);
11228 /// Called on well-formed 'depobj' pseudo clause.
11229 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11230 SourceLocation LParenLoc,
11231 SourceLocation EndLoc);
11232 /// Called on well-formed 'depend' clause.
11233 OMPClause *
11234 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11235 SourceLocation DepLoc, SourceLocation ColonLoc,
11236 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11237 SourceLocation LParenLoc, SourceLocation EndLoc);
11238 /// Called on well-formed 'device' clause.
11239 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11240 Expr *Device, SourceLocation StartLoc,
11241 SourceLocation LParenLoc,
11242 SourceLocation ModifierLoc,
11243 SourceLocation EndLoc);
11244 /// Called on well-formed 'map' clause.
11245 OMPClause *
11246 ActOnOpenMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11247 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11248 CXXScopeSpec &MapperIdScopeSpec,
11249 DeclarationNameInfo &MapperId,
11250 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11251 SourceLocation MapLoc, SourceLocation ColonLoc,
11252 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11253 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11254 /// Called on well-formed 'num_teams' clause.
11255 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11256 SourceLocation LParenLoc,
11257 SourceLocation EndLoc);
11258 /// Called on well-formed 'thread_limit' clause.
11259 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11260 SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'priority' clause.
11264 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11265 SourceLocation LParenLoc,
11266 SourceLocation EndLoc);
11267 /// Called on well-formed 'dist_schedule' clause.
11268 OMPClause *ActOnOpenMPDistScheduleClause(
11269 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11270 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11271 SourceLocation CommaLoc, SourceLocation EndLoc);
11272 /// Called on well-formed 'defaultmap' clause.
11273 OMPClause *ActOnOpenMPDefaultmapClause(
11274 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11276 SourceLocation KindLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'to' clause.
11278 OMPClause *
11279 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11280 ArrayRef<SourceLocation> MotionModifiersLoc,
11281 CXXScopeSpec &MapperIdScopeSpec,
11282 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11283 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11284 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11285 /// Called on well-formed 'from' clause.
11286 OMPClause *
11287 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11288 ArrayRef<SourceLocation> MotionModifiersLoc,
11289 CXXScopeSpec &MapperIdScopeSpec,
11290 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11291 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11292 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11293 /// Called on well-formed 'use_device_ptr' clause.
11294 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11295 const OMPVarListLocTy &Locs);
11296 /// Called on well-formed 'use_device_addr' clause.
11297 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11298 const OMPVarListLocTy &Locs);
11299 /// Called on well-formed 'is_device_ptr' clause.
11300 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11301 const OMPVarListLocTy &Locs);
11302 /// Called on well-formed 'nontemporal' clause.
11303 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11304 SourceLocation StartLoc,
11305 SourceLocation LParenLoc,
11306 SourceLocation EndLoc);
11307
11308 /// Data for list of allocators.
11309 struct UsesAllocatorsData {
11310 /// Allocator.
11311 Expr *Allocator = nullptr;
11312 /// Allocator traits.
11313 Expr *AllocatorTraits = nullptr;
11314 /// Locations of '(' and ')' symbols.
11315 SourceLocation LParenLoc, RParenLoc;
11316 };
11317 /// Called on well-formed 'uses_allocators' clause.
11318 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11319 SourceLocation LParenLoc,
11320 SourceLocation EndLoc,
11321 ArrayRef<UsesAllocatorsData> Data);
11322 /// Called on well-formed 'affinity' clause.
11323 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation ColonLoc,
11326 SourceLocation EndLoc, Expr *Modifier,
11327 ArrayRef<Expr *> Locators);
11328
11329 /// The kind of conversion being performed.
11330 enum CheckedConversionKind {
11331 /// An implicit conversion.
11332 CCK_ImplicitConversion,
11333 /// A C-style cast.
11334 CCK_CStyleCast,
11335 /// A functional-style cast.
11336 CCK_FunctionalCast,
11337 /// A cast other than a C-style cast.
11338 CCK_OtherCast,
11339 /// A conversion for an operand of a builtin overloaded operator.
11340 CCK_ForBuiltinOverloadedOp
11341 };
11342
11343 static bool isCast(CheckedConversionKind CCK) {
11344 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11345 CCK == CCK_OtherCast;
11346 }
11347
11348 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11349 /// cast. If there is already an implicit cast, merge into the existing one.
11350 /// If isLvalue, the result of the cast is an lvalue.
11351 ExprResult
11352 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11353 ExprValueKind VK = VK_PRValue,
11354 const CXXCastPath *BasePath = nullptr,
11355 CheckedConversionKind CCK = CCK_ImplicitConversion);
11356
11357 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11358 /// to the conversion from scalar type ScalarTy to the Boolean type.
11359 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11360
11361 /// IgnoredValueConversions - Given that an expression's result is
11362 /// syntactically ignored, perform any conversions that are
11363 /// required.
11364 ExprResult IgnoredValueConversions(Expr *E);
11365
11366 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11367 // functions and arrays to their respective pointers (C99 6.3.2.1).
11368 ExprResult UsualUnaryConversions(Expr *E);
11369
11370 /// CallExprUnaryConversions - a special case of an unary conversion
11371 /// performed on a function designator of a call expression.
11372 ExprResult CallExprUnaryConversions(Expr *E);
11373
11374 // DefaultFunctionArrayConversion - converts functions and arrays
11375 // to their respective pointers (C99 6.3.2.1).
11376 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11377
11378 // DefaultFunctionArrayLvalueConversion - converts functions and
11379 // arrays to their respective pointers and performs the
11380 // lvalue-to-rvalue conversion.
11381 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11382 bool Diagnose = true);
11383
11384 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11385 // the operand. This function is a no-op if the operand has a function type
11386 // or an array type.
11387 ExprResult DefaultLvalueConversion(Expr *E);
11388
11389 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11390 // do not have a prototype. Integer promotions are performed on each
11391 // argument, and arguments that have type float are promoted to double.
11392 ExprResult DefaultArgumentPromotion(Expr *E);
11393
11394 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11395 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11396 /// we don't have xvalues there.
11397 ExprResult TemporaryMaterializationConversion(Expr *E);
11398
11399 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11400 enum VariadicCallType {
11401 VariadicFunction,
11402 VariadicBlock,
11403 VariadicMethod,
11404 VariadicConstructor,
11405 VariadicDoesNotApply
11406 };
11407
11408 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11409 const FunctionProtoType *Proto,
11410 Expr *Fn);
11411
11412 // Used for determining in which context a type is allowed to be passed to a
11413 // vararg function.
11414 enum VarArgKind {
11415 VAK_Valid,
11416 VAK_ValidInCXX11,
11417 VAK_Undefined,
11418 VAK_MSVCUndefined,
11419 VAK_Invalid
11420 };
11421
11422 // Determines which VarArgKind fits an expression.
11423 VarArgKind isValidVarArgType(const QualType &Ty);
11424
11425 /// Check to see if the given expression is a valid argument to a variadic
11426 /// function, issuing a diagnostic if not.
11427 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11428
11429 /// Check whether the given statement can have musttail applied to it,
11430 /// issuing a diagnostic and returning false if not. In the success case,
11431 /// the statement is rewritten to remove implicit nodes from the return
11432 /// value.
11433 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11434
11435private:
11436 /// Check whether the given statement can have musttail applied to it,
11437 /// issuing a diagnostic and returning false if not.
11438 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11439
11440public:
11441 /// Check to see if a given expression could have '.c_str()' called on it.
11442 bool hasCStrMethod(const Expr *E);
11443
11444 /// GatherArgumentsForCall - Collector argument expressions for various
11445 /// form of call prototypes.
11446 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11447 const FunctionProtoType *Proto,
11448 unsigned FirstParam, ArrayRef<Expr *> Args,
11449 SmallVectorImpl<Expr *> &AllArgs,
11450 VariadicCallType CallType = VariadicDoesNotApply,
11451 bool AllowExplicit = false,
11452 bool IsListInitialization = false);
11453
11454 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11455 // will create a runtime trap if the resulting type is not a POD type.
11456 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11457 FunctionDecl *FDecl);
11458
11459 /// Context in which we're performing a usual arithmetic conversion.
11460 enum ArithConvKind {
11461 /// An arithmetic operation.
11462 ACK_Arithmetic,
11463 /// A bitwise operation.
11464 ACK_BitwiseOp,
11465 /// A comparison.
11466 ACK_Comparison,
11467 /// A conditional (?:) operator.
11468 ACK_Conditional,
11469 /// A compound assignment expression.
11470 ACK_CompAssign,
11471 };
11472
11473 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11474 // operands and then handles various conversions that are common to binary
11475 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11476 // routine returns the first non-arithmetic type found. The client is
11477 // responsible for emitting appropriate error diagnostics.
11478 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11479 SourceLocation Loc, ArithConvKind ACK);
11480
11481 /// AssignConvertType - All of the 'assignment' semantic checks return this
11482 /// enum to indicate whether the assignment was allowed. These checks are
11483 /// done for simple assignments, as well as initialization, return from
11484 /// function, argument passing, etc. The query is phrased in terms of a
11485 /// source and destination type.
11486 enum AssignConvertType {
11487 /// Compatible - the types are compatible according to the standard.
11488 Compatible,
11489
11490 /// PointerToInt - The assignment converts a pointer to an int, which we
11491 /// accept as an extension.
11492 PointerToInt,
11493
11494 /// IntToPointer - The assignment converts an int to a pointer, which we
11495 /// accept as an extension.
11496 IntToPointer,
11497
11498 /// FunctionVoidPointer - The assignment is between a function pointer and
11499 /// void*, which the standard doesn't allow, but we accept as an extension.
11500 FunctionVoidPointer,
11501
11502 /// IncompatiblePointer - The assignment is between two pointers types that
11503 /// are not compatible, but we accept them as an extension.
11504 IncompatiblePointer,
11505
11506 /// IncompatibleFunctionPointer - The assignment is between two function
11507 /// pointers types that are not compatible, but we accept them as an
11508 /// extension.
11509 IncompatibleFunctionPointer,
11510
11511 /// IncompatiblePointerSign - The assignment is between two pointers types
11512 /// which point to integers which have a different sign, but are otherwise
11513 /// identical. This is a subset of the above, but broken out because it's by
11514 /// far the most common case of incompatible pointers.
11515 IncompatiblePointerSign,
11516
11517 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11518 /// c/v/r qualifiers, which we accept as an extension.
11519 CompatiblePointerDiscardsQualifiers,
11520
11521 /// IncompatiblePointerDiscardsQualifiers - The assignment
11522 /// discards qualifiers that we don't permit to be discarded,
11523 /// like address spaces.
11524 IncompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11527 /// changes address spaces in nested pointer types which is not allowed.
11528 /// For instance, converting __private int ** to __generic int ** is
11529 /// illegal even though __private could be converted to __generic.
11530 IncompatibleNestedPointerAddressSpaceMismatch,
11531
11532 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11533 /// nested pointer types, and the qualifiers other than the first two
11534 /// levels differ e.g. char ** -> const char **, but we accept them as an
11535 /// extension.
11536 IncompatibleNestedPointerQualifiers,
11537
11538 /// IncompatibleVectors - The assignment is between two vector types that
11539 /// have the same size, which we accept as an extension.
11540 IncompatibleVectors,
11541
11542 /// IntToBlockPointer - The assignment converts an int to a block
11543 /// pointer. We disallow this.
11544 IntToBlockPointer,
11545
11546 /// IncompatibleBlockPointer - The assignment is between two block
11547 /// pointers types that are not compatible.
11548 IncompatibleBlockPointer,
11549
11550 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11551 /// id type and something else (that is incompatible with it). For example,
11552 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11553 IncompatibleObjCQualifiedId,
11554
11555 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11556 /// object with __weak qualifier.
11557 IncompatibleObjCWeakRef,
11558
11559 /// Incompatible - We reject this conversion outright, it is invalid to
11560 /// represent it in the AST.
11561 Incompatible
11562 };
11563
11564 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11565 /// assignment conversion type specified by ConvTy. This returns true if the
11566 /// conversion was invalid or false if the conversion was accepted.
11567 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11568 SourceLocation Loc,
11569 QualType DstType, QualType SrcType,
11570 Expr *SrcExpr, AssignmentAction Action,
11571 bool *Complained = nullptr);
11572
11573 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11574 /// enum. If AllowMask is true, then we also allow the complement of a valid
11575 /// value, to be used as a mask.
11576 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11577 bool AllowMask) const;
11578
11579 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11580 /// integer not in the range of enum values.
11581 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11582 Expr *SrcExpr);
11583
11584 /// CheckAssignmentConstraints - Perform type checking for assignment,
11585 /// argument passing, variable initialization, and function return values.
11586 /// C99 6.5.16.
11587 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11588 QualType LHSType,
11589 QualType RHSType);
11590
11591 /// Check assignment constraints and optionally prepare for a conversion of
11592 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11593 /// is true.
11594 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11595 ExprResult &RHS,
11596 CastKind &Kind,
11597 bool ConvertRHS = true);
11598
11599 /// Check assignment constraints for an assignment of RHS to LHSType.
11600 ///
11601 /// \param LHSType The destination type for the assignment.
11602 /// \param RHS The source expression for the assignment.
11603 /// \param Diagnose If \c true, diagnostics may be produced when checking
11604 /// for assignability. If a diagnostic is produced, \p RHS will be
11605 /// set to ExprError(). Note that this function may still return
11606 /// without producing a diagnostic, even for an invalid assignment.
11607 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11608 /// in an audited Core Foundation API and does not need to be checked
11609 /// for ARC retain issues.
11610 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11611 /// conversions necessary to perform the assignment. If \c false,
11612 /// \p Diagnose must also be \c false.
11613 AssignConvertType CheckSingleAssignmentConstraints(
11614 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11615 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11616
11617 // If the lhs type is a transparent union, check whether we
11618 // can initialize the transparent union with the given expression.
11619 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11620 ExprResult &RHS);
11621
11622 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11623
11624 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11625
11626 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11627 AssignmentAction Action,
11628 bool AllowExplicit = false);
11629 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11630 const ImplicitConversionSequence& ICS,
11631 AssignmentAction Action,
11632 CheckedConversionKind CCK
11633 = CCK_ImplicitConversion);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const StandardConversionSequence& SCS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK);
11638
11639 ExprResult PerformQualificationConversion(
11640 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11641 CheckedConversionKind CCK = CCK_ImplicitConversion);
11642
11643 /// the following "Check" methods will return a valid/converted QualType
11644 /// or a null QualType (indicating an error diagnostic was issued).
11645
11646 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11647 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11648 ExprResult &RHS);
11649 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11650 ExprResult &RHS);
11651 QualType CheckPointerToMemberOperands( // C++ 5.5
11652 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11653 SourceLocation OpLoc, bool isIndirect);
11654 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11655 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11656 bool IsDivide);
11657 QualType CheckRemainderOperands( // C99 6.5.5
11658 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11659 bool IsCompAssign = false);
11660 QualType CheckAdditionOperands( // C99 6.5.6
11661 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11662 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11663 QualType CheckSubtractionOperands( // C99 6.5.6
11664 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11665 QualType* CompLHSTy = nullptr);
11666 QualType CheckShiftOperands( // C99 6.5.7
11667 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11668 BinaryOperatorKind Opc, bool IsCompAssign = false);
11669 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11670 QualType CheckCompareOperands( // C99 6.5.8/9
11671 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11672 BinaryOperatorKind Opc);
11673 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11674 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11675 BinaryOperatorKind Opc);
11676 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11677 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11678 BinaryOperatorKind Opc);
11679 // CheckAssignmentOperands is used for both simple and compound assignment.
11680 // For simple assignment, pass both expressions and a null converted type.
11681 // For compound assignment, pass both expressions and the converted type.
11682 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11683 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11684
11685 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11686 UnaryOperatorKind Opcode, Expr *Op);
11687 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11688 BinaryOperatorKind Opcode,
11689 Expr *LHS, Expr *RHS);
11690 ExprResult checkPseudoObjectRValue(Expr *E);
11691 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11692
11693 QualType CheckConditionalOperands( // C99 6.5.15
11694 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11695 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11696 QualType CXXCheckConditionalOperands( // C++ 5.16
11697 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11698 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11699 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11700 ExprResult &RHS,
11701 SourceLocation QuestionLoc);
11702 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11703 bool ConvertArgs = true);
11704 QualType FindCompositePointerType(SourceLocation Loc,
11705 ExprResult &E1, ExprResult &E2,
11706 bool ConvertArgs = true) {
11707 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11708 QualType Composite =
11709 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11710 E1 = E1Tmp;
11711 E2 = E2Tmp;
11712 return Composite;
11713 }
11714
11715 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11716 SourceLocation QuestionLoc);
11717
11718 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11719 SourceLocation QuestionLoc);
11720
11721 void DiagnoseAlwaysNonNullPointer(Expr *E,
11722 Expr::NullPointerConstantKind NullType,
11723 bool IsEqual, SourceRange Range);
11724
11725 /// type checking for vector binary operators.
11726 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11727 SourceLocation Loc, bool IsCompAssign,
11728 bool AllowBothBool, bool AllowBoolConversion);
11729 QualType GetSignedVectorType(QualType V);
11730 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11731 SourceLocation Loc,
11732 BinaryOperatorKind Opc);
11733 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11734 SourceLocation Loc);
11735
11736 /// Type checking for matrix binary operators.
11737 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11738 SourceLocation Loc,
11739 bool IsCompAssign);
11740 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11741 SourceLocation Loc, bool IsCompAssign);
11742
11743 bool isValidSveBitcast(QualType srcType, QualType destType);
11744
11745 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11746
11747 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11748 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11749 bool isLaxVectorConversion(QualType srcType, QualType destType);
11750
11751 /// type checking declaration initializers (C99 6.7.8)
11752 bool CheckForConstantInitializer(Expr *e, QualType t);
11753
11754 // type checking C++ declaration initializers (C++ [dcl.init]).
11755
11756 /// ReferenceCompareResult - Expresses the result of comparing two
11757 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11758 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11759 enum ReferenceCompareResult {
11760 /// Ref_Incompatible - The two types are incompatible, so direct
11761 /// reference binding is not possible.
11762 Ref_Incompatible = 0,
11763 /// Ref_Related - The two types are reference-related, which means
11764 /// that their unqualified forms (T1 and T2) are either the same
11765 /// or T1 is a base class of T2.
11766 Ref_Related,
11767 /// Ref_Compatible - The two types are reference-compatible.
11768 Ref_Compatible
11769 };
11770
11771 // Fake up a scoped enumeration that still contextually converts to bool.
11772 struct ReferenceConversionsScope {
11773 /// The conversions that would be performed on an lvalue of type T2 when
11774 /// binding a reference of type T1 to it, as determined when evaluating
11775 /// whether T1 is reference-compatible with T2.
11776 enum ReferenceConversions {
11777 Qualification = 0x1,
11778 NestedQualification = 0x2,
11779 Function = 0x4,
11780 DerivedToBase = 0x8,
11781 ObjC = 0x10,
11782 ObjCLifetime = 0x20,
11783
11784 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11785 };
11786 };
11787 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11788
11789 ReferenceCompareResult
11790 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11791 ReferenceConversions *Conv = nullptr);
11792
11793 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11794 Expr *CastExpr, CastKind &CastKind,
11795 ExprValueKind &VK, CXXCastPath &Path);
11796
11797 /// Force an expression with unknown-type to an expression of the
11798 /// given type.
11799 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11800
11801 /// Type-check an expression that's being passed to an
11802 /// __unknown_anytype parameter.
11803 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11804 Expr *result, QualType &paramType);
11805
11806 // CheckMatrixCast - Check type constraints for matrix casts.
11807 // We allow casting between matrixes of the same dimensions i.e. when they
11808 // have the same number of rows and column. Returns true if the cast is
11809 // invalid.
11810 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11811 CastKind &Kind);
11812
11813 // CheckVectorCast - check type constraints for vectors.
11814 // Since vectors are an extension, there are no C standard reference for this.
11815 // We allow casting between vectors and integer datatypes of the same size.
11816 // returns true if the cast is invalid
11817 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11818 CastKind &Kind);
11819
11820 /// Prepare `SplattedExpr` for a vector splat operation, adding
11821 /// implicit casts if necessary.
11822 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11823
11824 // CheckExtVectorCast - check type constraints for extended vectors.
11825 // Since vectors are an extension, there are no C standard reference for this.
11826 // We allow casting between vectors and integer datatypes of the same size,
11827 // or vectors and the element type of that vector.
11828 // returns the cast expr
11829 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11830 CastKind &Kind);
11831
11832 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11833 SourceLocation LParenLoc,
11834 Expr *CastExpr,
11835 SourceLocation RParenLoc);
11836
11837 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11838
11839 /// Checks for invalid conversions and casts between
11840 /// retainable pointers and other pointer kinds for ARC and Weak.
11841 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11842 QualType castType, Expr *&op,
11843 CheckedConversionKind CCK,
11844 bool Diagnose = true,
11845 bool DiagnoseCFAudited = false,
11846 BinaryOperatorKind Opc = BO_PtrMemD
11847 );
11848
11849 Expr *stripARCUnbridgedCast(Expr *e);
11850 void diagnoseARCUnbridgedCast(Expr *e);
11851
11852 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11853 QualType ExprType);
11854
11855 /// checkRetainCycles - Check whether an Objective-C message send
11856 /// might create an obvious retain cycle.
11857 void checkRetainCycles(ObjCMessageExpr *msg);
11858 void checkRetainCycles(Expr *receiver, Expr *argument);
11859 void checkRetainCycles(VarDecl *Var, Expr *Init);
11860
11861 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11862 /// to weak/__unsafe_unretained type.
11863 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11864
11865 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11866 /// to weak/__unsafe_unretained expression.
11867 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11868
11869 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11870 /// \param Method - May be null.
11871 /// \param [out] ReturnType - The return type of the send.
11872 /// \return true iff there were any incompatible types.
11873 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11874 MultiExprArg Args, Selector Sel,
11875 ArrayRef<SourceLocation> SelectorLocs,
11876 ObjCMethodDecl *Method, bool isClassMessage,
11877 bool isSuperMessage, SourceLocation lbrac,
11878 SourceLocation rbrac, SourceRange RecRange,
11879 QualType &ReturnType, ExprValueKind &VK);
11880
11881 /// Determine the result of a message send expression based on
11882 /// the type of the receiver, the method expected to receive the message,
11883 /// and the form of the message send.
11884 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11885 ObjCMethodDecl *Method, bool isClassMessage,
11886 bool isSuperMessage);
11887
11888 /// If the given expression involves a message send to a method
11889 /// with a related result type, emit a note describing what happened.
11890 void EmitRelatedResultTypeNote(const Expr *E);
11891
11892 /// Given that we had incompatible pointer types in a return
11893 /// statement, check whether we're in a method with a related result
11894 /// type, and if so, emit a note describing what happened.
11895 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11896
11897 class ConditionResult {
11898 Decl *ConditionVar;
11899 FullExprArg Condition;
11900 bool Invalid;
11901 bool HasKnownValue;
11902 bool KnownValue;
11903
11904 friend class Sema;
11905 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11906 bool IsConstexpr)
11907 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11908 HasKnownValue(IsConstexpr && Condition.get() &&
11909 !Condition.get()->isValueDependent()),
11910 KnownValue(HasKnownValue &&
11911 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11912 explicit ConditionResult(bool Invalid)
11913 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11914 HasKnownValue(false), KnownValue(false) {}
11915
11916 public:
11917 ConditionResult() : ConditionResult(false) {}
11918 bool isInvalid() const { return Invalid; }
11919 std::pair<VarDecl *, Expr *> get() const {
11920 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11921 Condition.get());
11922 }
11923 llvm::Optional<bool> getKnownValue() const {
11924 if (!HasKnownValue)
11925 return None;
11926 return KnownValue;
11927 }
11928 };
11929 static ConditionResult ConditionError() { return ConditionResult(true); }
11930
11931 enum class ConditionKind {
11932 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11933 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11934 Switch ///< An integral condition for a 'switch' statement.
11935 };
11936
11937 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11938 Expr *SubExpr, ConditionKind CK);
11939
11940 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11941 SourceLocation StmtLoc,
11942 ConditionKind CK);
11943
11944 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11945
11946 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11947 SourceLocation StmtLoc,
11948 ConditionKind CK);
11949 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11950
11951 /// CheckBooleanCondition - Diagnose problems involving the use of
11952 /// the given expression as a boolean condition (e.g. in an if
11953 /// statement). Also performs the standard function and array
11954 /// decays, possibly changing the input variable.
11955 ///
11956 /// \param Loc - A location associated with the condition, e.g. the
11957 /// 'if' keyword.
11958 /// \return true iff there were any errors
11959 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11960 bool IsConstexpr = false);
11961
11962 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11963 /// found in an explicit(bool) specifier.
11964 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11965
11966 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11967 /// Returns true if the explicit specifier is now resolved.
11968 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11969
11970 /// DiagnoseAssignmentAsCondition - Given that an expression is
11971 /// being used as a boolean condition, warn if it's an assignment.
11972 void DiagnoseAssignmentAsCondition(Expr *E);
11973
11974 /// Redundant parentheses over an equality comparison can indicate
11975 /// that the user intended an assignment used as condition.
11976 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11977
11978 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11979 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11980
11981 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11982 /// the specified width and sign. If an overflow occurs, detect it and emit
11983 /// the specified diagnostic.
11984 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11985 unsigned NewWidth, bool NewSign,
11986 SourceLocation Loc, unsigned DiagID);
11987
11988 /// Checks that the Objective-C declaration is declared in the global scope.
11989 /// Emits an error and marks the declaration as invalid if it's not declared
11990 /// in the global scope.
11991 bool CheckObjCDeclScope(Decl *D);
11992
11993 /// Abstract base class used for diagnosing integer constant
11994 /// expression violations.
11995 class VerifyICEDiagnoser {
11996 public:
11997 bool Suppress;
11998
11999 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12000
12001 virtual SemaDiagnosticBuilder
12002 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12003 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12004 SourceLocation Loc) = 0;
12005 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12006 virtual ~VerifyICEDiagnoser() {}
12007 };
12008
12009 enum AllowFoldKind {
12010 NoFold,
12011 AllowFold,
12012 };
12013
12014 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12015 /// and reports the appropriate diagnostics. Returns false on success.
12016 /// Can optionally return the value of the expression.
12017 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12018 VerifyICEDiagnoser &Diagnoser,
12019 AllowFoldKind CanFold = NoFold);
12020 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12021 unsigned DiagID,
12022 AllowFoldKind CanFold = NoFold);
12023 ExprResult VerifyIntegerConstantExpression(Expr *E,
12024 llvm::APSInt *Result = nullptr,
12025 AllowFoldKind CanFold = NoFold);
12026 ExprResult VerifyIntegerConstantExpression(Expr *E,
12027 AllowFoldKind CanFold = NoFold) {
12028 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12029 }
12030
12031 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12032 /// the correct width, and that the field type is valid.
12033 /// Returns false on success.
12034 /// Can optionally return whether the bit-field is of width 0
12035 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12036 QualType FieldTy, bool IsMsStruct,
12037 Expr *BitWidth, bool *ZeroWidth = nullptr);
12038
12039private:
12040 unsigned ForceCUDAHostDeviceDepth = 0;
12041
12042public:
12043 /// Increments our count of the number of times we've seen a pragma forcing
12044 /// functions to be __host__ __device__. So long as this count is greater
12045 /// than zero, all functions encountered will be __host__ __device__.
12046 void PushForceCUDAHostDevice();
12047
12048 /// Decrements our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. Returns false if the count is 0
12050 /// before incrementing, so you can emit an error.
12051 bool PopForceCUDAHostDevice();
12052
12053 /// Diagnostics that are emitted only if we discover that the given function
12054 /// must be codegen'ed. Because handling these correctly adds overhead to
12055 /// compilation, this is currently only enabled for CUDA compilations.
12056 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12057 std::vector<PartialDiagnosticAt>>
12058 DeviceDeferredDiags;
12059
12060 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12061 /// key in a hashtable, both the FD and location are hashed.
12062 struct FunctionDeclAndLoc {
12063 CanonicalDeclPtr<FunctionDecl> FD;
12064 SourceLocation Loc;
12065 };
12066
12067 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12068 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12069 /// same deferred diag twice.
12070 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12071
12072 /// An inverse call graph, mapping known-emitted functions to one of their
12073 /// known-emitted callers (plus the location of the call).
12074 ///
12075 /// Functions that we can tell a priori must be emitted aren't added to this
12076 /// map.
12077 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12078 /* Caller = */ FunctionDeclAndLoc>
12079 DeviceKnownEmittedFns;
12080
12081 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12082 /// context is "used as device code".
12083 ///
12084 /// - If CurContext is a __host__ function, does not emit any diagnostics
12085 /// unless \p EmitOnBothSides is true.
12086 /// - If CurContext is a __device__ or __global__ function, emits the
12087 /// diagnostics immediately.
12088 /// - If CurContext is a __host__ __device__ function and we are compiling for
12089 /// the device, creates a diagnostic which is emitted if and when we realize
12090 /// that the function will be codegen'ed.
12091 ///
12092 /// Example usage:
12093 ///
12094 /// // Variable-length arrays are not allowed in CUDA device code.
12095 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12096 /// return ExprError();
12097 /// // Otherwise, continue parsing as normal.
12098 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12099 unsigned DiagID);
12100
12101 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12102 /// context is "used as host code".
12103 ///
12104 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12105 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12106
12107 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12108 /// context is "used as device code".
12109 ///
12110 /// - If CurContext is a `declare target` function or it is known that the
12111 /// function is emitted for the device, emits the diagnostics immediately.
12112 /// - If CurContext is a non-`declare target` function and we are compiling
12113 /// for the device, creates a diagnostic which is emitted if and when we
12114 /// realize that the function will be codegen'ed.
12115 ///
12116 /// Example usage:
12117 ///
12118 /// // Variable-length arrays are not allowed in NVPTX device code.
12119 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12120 /// return ExprError();
12121 /// // Otherwise, continue parsing as normal.
12122 SemaDiagnosticBuilder
12123 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12124
12125 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12126 /// context is "used as host code".
12127 ///
12128 /// - If CurContext is a `declare target` function or it is known that the
12129 /// function is emitted for the host, emits the diagnostics immediately.
12130 /// - If CurContext is a non-host function, just ignore it.
12131 ///
12132 /// Example usage:
12133 ///
12134 /// // Variable-length arrays are not allowed in NVPTX device code.
12135 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12136 /// return ExprError();
12137 /// // Otherwise, continue parsing as normal.
12138 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12139 unsigned DiagID, FunctionDecl *FD);
12140
12141 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12142 FunctionDecl *FD = nullptr);
12143 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12144 const PartialDiagnostic &PD,
12145 FunctionDecl *FD = nullptr) {
12146 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12147 }
12148
12149 /// Check if the expression is allowed to be used in expressions for the
12150 /// offloading devices.
12151 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12152
12153 enum CUDAFunctionTarget {
12154 CFT_Device,
12155 CFT_Global,
12156 CFT_Host,
12157 CFT_HostDevice,
12158 CFT_InvalidTarget
12159 };
12160
12161 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12162 /// function.
12163 ///
12164 /// Use this rather than examining the function's attributes yourself -- you
12165 /// will get it wrong. Returns CFT_Host if D is null.
12166 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12167 bool IgnoreImplicitHDAttr = false);
12168 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12169
12170 enum CUDAVariableTarget {
12171 CVT_Device, /// Emitted on device side with a shadow variable on host side
12172 CVT_Host, /// Emitted on host side only
12173 CVT_Both, /// Emitted on both sides with different addresses
12174 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12175 };
12176 /// Determines whether the given variable is emitted on host or device side.
12177 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12178
12179 /// Gets the CUDA target for the current context.
12180 CUDAFunctionTarget CurrentCUDATarget() {
12181 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12182 }
12183
12184 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12185
12186 // CUDA function call preference. Must be ordered numerically from
12187 // worst to best.
12188 enum CUDAFunctionPreference {
12189 CFP_Never, // Invalid caller/callee combination.
12190 CFP_WrongSide, // Calls from host-device to host or device
12191 // function that do not match current compilation
12192 // mode.
12193 CFP_HostDevice, // Any calls to host/device functions.
12194 CFP_SameSide, // Calls from host-device to host or device
12195 // function matching current compilation mode.
12196 CFP_Native, // host-to-host or device-to-device calls.
12197 };
12198
12199 /// Identifies relative preference of a given Caller/Callee
12200 /// combination, based on their host/device attributes.
12201 /// \param Caller function which needs address of \p Callee.
12202 /// nullptr in case of global context.
12203 /// \param Callee target function
12204 ///
12205 /// \returns preference value for particular Caller/Callee combination.
12206 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12207 const FunctionDecl *Callee);
12208
12209 /// Determines whether Caller may invoke Callee, based on their CUDA
12210 /// host/device attributes. Returns false if the call is not allowed.
12211 ///
12212 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12213 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12214 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12215 const FunctionDecl *Callee) {
12216 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12217 }
12218
12219 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12220 /// depending on FD and the current compilation settings.
12221 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12222 const LookupResult &Previous);
12223
12224 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12225 /// and current compilation settings.
12226 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12227
12228public:
12229 /// Check whether we're allowed to call Callee from the current context.
12230 ///
12231 /// - If the call is never allowed in a semantically-correct program
12232 /// (CFP_Never), emits an error and returns false.
12233 ///
12234 /// - If the call is allowed in semantically-correct programs, but only if
12235 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12236 /// be emitted if and when the caller is codegen'ed, and returns true.
12237 ///
12238 /// Will only create deferred diagnostics for a given SourceLocation once,
12239 /// so you can safely call this multiple times without generating duplicate
12240 /// deferred errors.
12241 ///
12242 /// - Otherwise, returns true without emitting any diagnostics.
12243 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12244
12245 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12246
12247 /// Set __device__ or __host__ __device__ attributes on the given lambda
12248 /// operator() method.
12249 ///
12250 /// CUDA lambdas by default is host device function unless it has explicit
12251 /// host or device attribute.
12252 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12253
12254 /// Finds a function in \p Matches with highest calling priority
12255 /// from \p Caller context and erases all functions with lower
12256 /// calling priority.
12257 void EraseUnwantedCUDAMatches(
12258 const FunctionDecl *Caller,
12259 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12260
12261 /// Given a implicit special member, infer its CUDA target from the
12262 /// calls it needs to make to underlying base/field special members.
12263 /// \param ClassDecl the class for which the member is being created.
12264 /// \param CSM the kind of special member.
12265 /// \param MemberDecl the special member itself.
12266 /// \param ConstRHS true if this is a copy operation with a const object on
12267 /// its RHS.
12268 /// \param Diagnose true if this call should emit diagnostics.
12269 /// \return true if there was an error inferring.
12270 /// The result of this call is implicit CUDA target attribute(s) attached to
12271 /// the member declaration.
12272 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12273 CXXSpecialMember CSM,
12274 CXXMethodDecl *MemberDecl,
12275 bool ConstRHS,
12276 bool Diagnose);
12277
12278 /// \return true if \p CD can be considered empty according to CUDA
12279 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12280 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12281 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12282
12283 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12284 // case of error emits appropriate diagnostic and invalidates \p Var.
12285 //
12286 // \details CUDA allows only empty constructors as initializers for global
12287 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12288 // __shared__ variables whether they are local or not (they all are implicitly
12289 // static in CUDA). One exception is that CUDA allows constant initializers
12290 // for __constant__ and __device__ variables.
12291 void checkAllowedCUDAInitializer(VarDecl *VD);
12292
12293 /// Check whether NewFD is a valid overload for CUDA. Emits
12294 /// diagnostics and invalidates NewFD if not.
12295 void checkCUDATargetOverload(FunctionDecl *NewFD,
12296 const LookupResult &Previous);
12297 /// Copies target attributes from the template TD to the function FD.
12298 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12299
12300 /// Returns the name of the launch configuration function. This is the name
12301 /// of the function that will be called to configure kernel call, with the
12302 /// parameters specified via <<<>>>.
12303 std::string getCudaConfigureFuncName() const;
12304
12305 /// \name Code completion
12306 //@{
12307 /// Describes the context in which code completion occurs.
12308 enum ParserCompletionContext {
12309 /// Code completion occurs at top-level or namespace context.
12310 PCC_Namespace,
12311 /// Code completion occurs within a class, struct, or union.
12312 PCC_Class,
12313 /// Code completion occurs within an Objective-C interface, protocol,
12314 /// or category.
12315 PCC_ObjCInterface,
12316 /// Code completion occurs within an Objective-C implementation or
12317 /// category implementation
12318 PCC_ObjCImplementation,
12319 /// Code completion occurs within the list of instance variables
12320 /// in an Objective-C interface, protocol, category, or implementation.
12321 PCC_ObjCInstanceVariableList,
12322 /// Code completion occurs following one or more template
12323 /// headers.
12324 PCC_Template,
12325 /// Code completion occurs following one or more template
12326 /// headers within a class.
12327 PCC_MemberTemplate,
12328 /// Code completion occurs within an expression.
12329 PCC_Expression,
12330 /// Code completion occurs within a statement, which may
12331 /// also be an expression or a declaration.
12332 PCC_Statement,
12333 /// Code completion occurs at the beginning of the
12334 /// initialization statement (or expression) in a for loop.
12335 PCC_ForInit,
12336 /// Code completion occurs within the condition of an if,
12337 /// while, switch, or for statement.
12338 PCC_Condition,
12339 /// Code completion occurs within the body of a function on a
12340 /// recovery path, where we do not have a specific handle on our position
12341 /// in the grammar.
12342 PCC_RecoveryInFunction,
12343 /// Code completion occurs where only a type is permitted.
12344 PCC_Type,
12345 /// Code completion occurs in a parenthesized expression, which
12346 /// might also be a type cast.
12347 PCC_ParenthesizedExpression,
12348 /// Code completion occurs within a sequence of declaration
12349 /// specifiers within a function, method, or block.
12350 PCC_LocalDeclarationSpecifiers
12351 };
12352
12353 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12354 void CodeCompleteOrdinaryName(Scope *S,
12355 ParserCompletionContext CompletionContext);
12356 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12357 bool AllowNonIdentifiers,
12358 bool AllowNestedNameSpecifiers);
12359
12360 struct CodeCompleteExpressionData;
12361 void CodeCompleteExpression(Scope *S,
12362 const CodeCompleteExpressionData &Data);
12363 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12364 bool IsParenthesized = false);
12365 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12366 SourceLocation OpLoc, bool IsArrow,
12367 bool IsBaseExprStatement,
12368 QualType PreferredType);
12369 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12370 QualType PreferredType);
12371 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12372 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12373 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12374 const VirtSpecifiers *VS = nullptr);
12375 void CodeCompleteBracketDeclarator(Scope *S);
12376 void CodeCompleteCase(Scope *S);
12377 /// Determines the preferred type of the current function argument, by
12378 /// examining the signatures of all possible overloads.
12379 /// Returns null if unknown or ambiguous, or if code completion is off.
12380 ///
12381 /// If the code completion point has been reached, also reports the function
12382 /// signatures that were considered.
12383 ///
12384 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12385 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12386 SourceLocation OpenParLoc);
12387 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12388 SourceLocation Loc,
12389 ArrayRef<Expr *> Args,
12390 SourceLocation OpenParLoc);
12391 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12392 CXXScopeSpec SS,
12393 ParsedType TemplateTypeTy,
12394 ArrayRef<Expr *> ArgExprs,
12395 IdentifierInfo *II,
12396 SourceLocation OpenParLoc);
12397 void CodeCompleteInitializer(Scope *S, Decl *D);
12398 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12399 /// expressions in the initializer list seen so far and \p D is the current
12400 /// Designation being parsed.
12401 void CodeCompleteDesignator(const QualType BaseType,
12402 llvm::ArrayRef<Expr *> InitExprs,
12403 const Designation &D);
12404 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12405
12406 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12407 bool IsUsingDeclaration, QualType BaseType,
12408 QualType PreferredType);
12409 void CodeCompleteUsing(Scope *S);
12410 void CodeCompleteUsingDirective(Scope *S);
12411 void CodeCompleteNamespaceDecl(Scope *S);
12412 void CodeCompleteNamespaceAliasDecl(Scope *S);
12413 void CodeCompleteOperatorName(Scope *S);
12414 void CodeCompleteConstructorInitializer(
12415 Decl *Constructor,
12416 ArrayRef<CXXCtorInitializer *> Initializers);
12417
12418 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12419 bool AfterAmpersand);
12420 void CodeCompleteAfterFunctionEquals(Declarator &D);
12421
12422 void CodeCompleteObjCAtDirective(Scope *S);
12423 void CodeCompleteObjCAtVisibility(Scope *S);
12424 void CodeCompleteObjCAtStatement(Scope *S);
12425 void CodeCompleteObjCAtExpression(Scope *S);
12426 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12427 void CodeCompleteObjCPropertyGetter(Scope *S);
12428 void CodeCompleteObjCPropertySetter(Scope *S);
12429 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12430 bool IsParameter);
12431 void CodeCompleteObjCMessageReceiver(Scope *S);
12432 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12433 ArrayRef<IdentifierInfo *> SelIdents,
12434 bool AtArgumentExpression);
12435 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12436 ArrayRef<IdentifierInfo *> SelIdents,
12437 bool AtArgumentExpression,
12438 bool IsSuper = false);
12439 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12440 ArrayRef<IdentifierInfo *> SelIdents,
12441 bool AtArgumentExpression,
12442 ObjCInterfaceDecl *Super = nullptr);
12443 void CodeCompleteObjCForCollection(Scope *S,
12444 DeclGroupPtrTy IterationVar);
12445 void CodeCompleteObjCSelector(Scope *S,
12446 ArrayRef<IdentifierInfo *> SelIdents);
12447 void CodeCompleteObjCProtocolReferences(
12448 ArrayRef<IdentifierLocPair> Protocols);
12449 void CodeCompleteObjCProtocolDecl(Scope *S);
12450 void CodeCompleteObjCInterfaceDecl(Scope *S);
12451 void CodeCompleteObjCSuperclass(Scope *S,
12452 IdentifierInfo *ClassName,
12453 SourceLocation ClassNameLoc);
12454 void CodeCompleteObjCImplementationDecl(Scope *S);
12455 void CodeCompleteObjCInterfaceCategory(Scope *S,
12456 IdentifierInfo *ClassName,
12457 SourceLocation ClassNameLoc);
12458 void CodeCompleteObjCImplementationCategory(Scope *S,
12459 IdentifierInfo *ClassName,
12460 SourceLocation ClassNameLoc);
12461 void CodeCompleteObjCPropertyDefinition(Scope *S);
12462 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12463 IdentifierInfo *PropertyName);
12464 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12465 ParsedType ReturnType);
12466 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12467 bool IsInstanceMethod,
12468 bool AtParameterName,
12469 ParsedType ReturnType,
12470 ArrayRef<IdentifierInfo *> SelIdents);
12471 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12472 SourceLocation ClassNameLoc,
12473 bool IsBaseExprStatement);
12474 void CodeCompletePreprocessorDirective(bool InConditional);
12475 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12476 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12477 void CodeCompletePreprocessorExpression();
12478 void CodeCompletePreprocessorMacroArgument(Scope *S,
12479 IdentifierInfo *Macro,
12480 MacroInfo *MacroInfo,
12481 unsigned Argument);
12482 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12483 void CodeCompleteNaturalLanguage();
12484 void CodeCompleteAvailabilityPlatformName();
12485 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12486 CodeCompletionTUInfo &CCTUInfo,
12487 SmallVectorImpl<CodeCompletionResult> &Results);
12488 //@}
12489
12490 //===--------------------------------------------------------------------===//
12491 // Extra semantic analysis beyond the C type system
12492
12493public:
12494 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12495 unsigned ByteNo) const;
12496
12497private:
12498 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12499 const ArraySubscriptExpr *ASE=nullptr,
12500 bool AllowOnePastEnd=true, bool IndexNegated=false);
12501 void CheckArrayAccess(const Expr *E);
12502 // Used to grab the relevant information from a FormatAttr and a
12503 // FunctionDeclaration.
12504 struct FormatStringInfo {
12505 unsigned FormatIdx;
12506 unsigned FirstDataArg;
12507 bool HasVAListArg;
12508 };
12509
12510 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12511 FormatStringInfo *FSI);
12512 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12513 const FunctionProtoType *Proto);
12514 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12515 ArrayRef<const Expr *> Args);
12516 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12517 const FunctionProtoType *Proto);
12518 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12519 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12520 ArrayRef<const Expr *> Args,
12521 const FunctionProtoType *Proto, SourceLocation Loc);
12522
12523 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12524 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12525
12526 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12527 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12528 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12529 VariadicCallType CallType);
12530
12531 bool CheckObjCString(Expr *Arg);
12532 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12533
12534 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12535 unsigned BuiltinID, CallExpr *TheCall);
12536
12537 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12538 CallExpr *TheCall);
12539
12540 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12541
12542 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12543 unsigned MaxWidth);
12544 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12545 CallExpr *TheCall);
12546 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12547 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12548 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12549 CallExpr *TheCall);
12550 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12551 bool WantCDE);
12552 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12553 CallExpr *TheCall);
12554
12555 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12556 CallExpr *TheCall);
12557 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12558 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12559 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12560 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12561 CallExpr *TheCall);
12562 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12565 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12566 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12567 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12568 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12569 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12570 ArrayRef<int> ArgNums);
12571 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12572 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12573 ArrayRef<int> ArgNums);
12574 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12580 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12581 CallExpr *TheCall);
12582
12583 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12584 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12585 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12586 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12587 bool SemaBuiltinComplex(CallExpr *TheCall);
12588 bool SemaBuiltinVSX(CallExpr *TheCall);
12589 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12590 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12591
12592public:
12593 // Used by C++ template instantiation.
12594 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12595 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12596 SourceLocation BuiltinLoc,
12597 SourceLocation RParenLoc);
12598
12599private:
12600 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12601 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12602 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12603 bool SemaBuiltinAssume(CallExpr *TheCall);
12604 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12605 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12606 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12607 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12608 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12609 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12610 AtomicExpr::AtomicOp Op);
12611 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12612 bool IsDelete);
12613 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12614 llvm::APSInt &Result);
12615 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12616 int High, bool RangeIsError = true);
12617 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12618 unsigned Multiple);
12619 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12620 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12621 unsigned ArgBits);
12622 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12623 unsigned ArgBits);
12624 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12625 int ArgNum, unsigned ExpectedFieldNum,
12626 bool AllowName);
12627 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12628 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12629
12630 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12631
12632 // Matrix builtin handling.
12633 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12634 ExprResult CallResult);
12635 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12636 ExprResult CallResult);
12637 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12638 ExprResult CallResult);
12639
12640public:
12641 enum FormatStringType {
12642 FST_Scanf,
12643 FST_Printf,
12644 FST_NSString,
12645 FST_Strftime,
12646 FST_Strfmon,
12647 FST_Kprintf,
12648 FST_FreeBSDKPrintf,
12649 FST_OSTrace,
12650 FST_OSLog,
12651 FST_Syslog,
12652 FST_Unknown
12653 };
12654 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12655
12656 bool FormatStringHasSArg(const StringLiteral *FExpr);
12657
12658 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12659
12660private:
12661 bool CheckFormatArguments(const FormatAttr *Format,
12662 ArrayRef<const Expr *> Args,
12663 bool IsCXXMember,
12664 VariadicCallType CallType,
12665 SourceLocation Loc, SourceRange Range,
12666 llvm::SmallBitVector &CheckedVarArgs);
12667 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12668 bool HasVAListArg, unsigned format_idx,
12669 unsigned firstDataArg, FormatStringType Type,
12670 VariadicCallType CallType,
12671 SourceLocation Loc, SourceRange range,
12672 llvm::SmallBitVector &CheckedVarArgs);
12673
12674 void CheckAbsoluteValueFunction(const CallExpr *Call,
12675 const FunctionDecl *FDecl);
12676
12677 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12678
12679 void CheckMemaccessArguments(const CallExpr *Call,
12680 unsigned BId,
12681 IdentifierInfo *FnName);
12682
12683 void CheckStrlcpycatArguments(const CallExpr *Call,
12684 IdentifierInfo *FnName);
12685
12686 void CheckStrncatArguments(const CallExpr *Call,
12687 IdentifierInfo *FnName);
12688
12689 void CheckFreeArguments(const CallExpr *E);
12690
12691 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12692 SourceLocation ReturnLoc,
12693 bool isObjCMethod = false,
12694 const AttrVec *Attrs = nullptr,
12695 const FunctionDecl *FD = nullptr);
12696
12697public:
12698 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12699
12700private:
12701 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12702 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12703 void CheckForIntOverflow(Expr *E);
12704 void CheckUnsequencedOperations(const Expr *E);
12705
12706 /// Perform semantic checks on a completed expression. This will either
12707 /// be a full-expression or a default argument expression.
12708 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12709 bool IsConstexpr = false);
12710
12711 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12712 Expr *Init);
12713
12714 /// Check if there is a field shadowing.
12715 void CheckShadowInheritedFields(const SourceLocation &Loc,
12716 DeclarationName FieldName,
12717 const CXXRecordDecl *RD,
12718 bool DeclIsField = true);
12719
12720 /// Check if the given expression contains 'break' or 'continue'
12721 /// statement that produces control flow different from GCC.
12722 void CheckBreakContinueBinding(Expr *E);
12723
12724 /// Check whether receiver is mutable ObjC container which
12725 /// attempts to add itself into the container
12726 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12727
12728 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12729
12730 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12731 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12732 bool DeleteWasArrayForm);
12733public:
12734 /// Register a magic integral constant to be used as a type tag.
12735 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12736 uint64_t MagicValue, QualType Type,
12737 bool LayoutCompatible, bool MustBeNull);
12738
12739 struct TypeTagData {
12740 TypeTagData() {}
12741
12742 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12743 Type(Type), LayoutCompatible(LayoutCompatible),
12744 MustBeNull(MustBeNull)
12745 {}
12746
12747 QualType Type;
12748
12749 /// If true, \c Type should be compared with other expression's types for
12750 /// layout-compatibility.
12751 unsigned LayoutCompatible : 1;
12752 unsigned MustBeNull : 1;
12753 };
12754
12755 /// A pair of ArgumentKind identifier and magic value. This uniquely
12756 /// identifies the magic value.
12757 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12758
12759private:
12760 /// A map from magic value to type information.
12761 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12762 TypeTagForDatatypeMagicValues;
12763
12764 /// Peform checks on a call of a function with argument_with_type_tag
12765 /// or pointer_with_type_tag attributes.
12766 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12767 const ArrayRef<const Expr *> ExprArgs,
12768 SourceLocation CallSiteLoc);
12769
12770 /// Check if we are taking the address of a packed field
12771 /// as this may be a problem if the pointer value is dereferenced.
12772 void CheckAddressOfPackedMember(Expr *rhs);
12773
12774 /// The parser's current scope.
12775 ///
12776 /// The parser maintains this state here.
12777 Scope *CurScope;
12778
12779 mutable IdentifierInfo *Ident_super;
12780 mutable IdentifierInfo *Ident___float128;
12781
12782 /// Nullability type specifiers.
12783 IdentifierInfo *Ident__Nonnull = nullptr;
12784 IdentifierInfo *Ident__Nullable = nullptr;
12785 IdentifierInfo *Ident__Nullable_result = nullptr;
12786 IdentifierInfo *Ident__Null_unspecified = nullptr;
12787
12788 IdentifierInfo *Ident_NSError = nullptr;
12789
12790 /// The handler for the FileChanged preprocessor events.
12791 ///
12792 /// Used for diagnostics that implement custom semantic analysis for #include
12793 /// directives, like -Wpragma-pack.
12794 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12795
12796protected:
12797 friend class Parser;
12798 friend class InitializationSequence;
12799 friend class ASTReader;
12800 friend class ASTDeclReader;
12801 friend class ASTWriter;
12802
12803public:
12804 /// Retrieve the keyword associated
12805 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12806
12807 /// The struct behind the CFErrorRef pointer.
12808 RecordDecl *CFError = nullptr;
12809 bool isCFError(RecordDecl *D);
12810
12811 /// Retrieve the identifier "NSError".
12812 IdentifierInfo *getNSErrorIdent();
12813
12814 /// Retrieve the parser's current scope.
12815 ///
12816 /// This routine must only be used when it is certain that semantic analysis
12817 /// and the parser are in precisely the same context, which is not the case
12818 /// when, e.g., we are performing any kind of template instantiation.
12819 /// Therefore, the only safe places to use this scope are in the parser
12820 /// itself and in routines directly invoked from the parser and *never* from
12821 /// template substitution or instantiation.
12822 Scope *getCurScope() const { return CurScope; }
12823
12824 void incrementMSManglingNumber() const {
12825 return CurScope->incrementMSManglingNumber();
12826 }
12827
12828 IdentifierInfo *getSuperIdentifier() const;
12829 IdentifierInfo *getFloat128Identifier() const;
12830
12831 Decl *getObjCDeclContext() const;
12832
12833 DeclContext *getCurLexicalContext() const {
12834 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12835 }
12836
12837 const DeclContext *getCurObjCLexicalContext() const {
12838 const DeclContext *DC = getCurLexicalContext();
12839 // A category implicitly has the attribute of the interface.
12840 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12841 DC = CatD->getClassInterface();
12842 return DC;
12843 }
12844
12845 /// Determine the number of levels of enclosing template parameters. This is
12846 /// only usable while parsing. Note that this does not include dependent
12847 /// contexts in which no template parameters have yet been declared, such as
12848 /// in a terse function template or generic lambda before the first 'auto' is
12849 /// encountered.
12850 unsigned getTemplateDepth(Scope *S) const;
12851
12852 /// To be used for checking whether the arguments being passed to
12853 /// function exceeds the number of parameters expected for it.
12854 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12855 bool PartialOverloading = false) {
12856 // We check whether we're just after a comma in code-completion.
12857 if (NumArgs > 0 && PartialOverloading)
12858 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12859 return NumArgs > NumParams;
12860 }
12861
12862 // Emitting members of dllexported classes is delayed until the class
12863 // (including field initializers) is fully parsed.
12864 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12865 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12866
12867private:
12868 int ParsingClassDepth = 0;
12869
12870 class SavePendingParsedClassStateRAII {
12871 public:
12872 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12873
12874 ~SavePendingParsedClassStateRAII() {
12875 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&((void)0)
12876 "there shouldn't be any pending delayed exception spec checks")((void)0);
12877 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&((void)0)
12878 "there shouldn't be any pending delayed exception spec checks")((void)0);
12879 swapSavedState();
12880 }
12881
12882 private:
12883 Sema &S;
12884 decltype(DelayedOverridingExceptionSpecChecks)
12885 SavedOverridingExceptionSpecChecks;
12886 decltype(DelayedEquivalentExceptionSpecChecks)
12887 SavedEquivalentExceptionSpecChecks;
12888
12889 void swapSavedState() {
12890 SavedOverridingExceptionSpecChecks.swap(
12891 S.DelayedOverridingExceptionSpecChecks);
12892 SavedEquivalentExceptionSpecChecks.swap(
12893 S.DelayedEquivalentExceptionSpecChecks);
12894 }
12895 };
12896
12897 /// Helper class that collects misaligned member designations and
12898 /// their location info for delayed diagnostics.
12899 struct MisalignedMember {
12900 Expr *E;
12901 RecordDecl *RD;
12902 ValueDecl *MD;
12903 CharUnits Alignment;
12904
12905 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12906 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12907 CharUnits Alignment)
12908 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12909 explicit MisalignedMember(Expr *E)
12910 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12911
12912 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12913 };
12914 /// Small set of gathered accesses to potentially misaligned members
12915 /// due to the packed attribute.
12916 SmallVector<MisalignedMember, 4> MisalignedMembers;
12917
12918 /// Adds an expression to the set of gathered misaligned members.
12919 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment);
12921
12922public:
12923 /// Diagnoses the current set of gathered accesses. This typically
12924 /// happens at full expression level. The set is cleared after emitting the
12925 /// diagnostics.
12926 void DiagnoseMisalignedMembers();
12927
12928 /// This function checks if the expression is in the sef of potentially
12929 /// misaligned members and it is converted to some pointer type T with lower
12930 /// or equal alignment requirements. If so it removes it. This is used when
12931 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12932 /// void*).
12933 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12934
12935 /// This function calls Action when it determines that E designates a
12936 /// misaligned member due to the packed attribute. This is used to emit
12937 /// local diagnostics like in reference binding.
12938 void RefersToMemberWithReducedAlignment(
12939 Expr *E,
12940 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12941 Action);
12942
12943 /// Describes the reason a calling convention specification was ignored, used
12944 /// for diagnostics.
12945 enum class CallingConventionIgnoredReason {
12946 ForThisTarget = 0,
12947 VariadicFunction,
12948 ConstructorDestructor,
12949 BuiltinFunction
12950 };
12951 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12952 /// context is "used as device code".
12953 ///
12954 /// - If CurLexicalContext is a kernel function or it is known that the
12955 /// function will be emitted for the device, emits the diagnostics
12956 /// immediately.
12957 /// - If CurLexicalContext is a function and we are compiling
12958 /// for the device, but we don't know that this function will be codegen'ed
12959 /// for devive yet, creates a diagnostic which is emitted if and when we
12960 /// realize that the function will be codegen'ed.
12961 ///
12962 /// Example usage:
12963 ///
12964 /// Diagnose __float128 type usage only from SYCL device code if the current
12965 /// target doesn't support it
12966 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12967 /// S.getLangOpts().SYCLIsDevice)
12968 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12969 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12970 unsigned DiagID);
12971
12972 /// Check whether we're allowed to call Callee from the current context.
12973 ///
12974 /// - If the call is never allowed in a semantically-correct program
12975 /// emits an error and returns false.
12976 ///
12977 /// - If the call is allowed in semantically-correct programs, but only if
12978 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12979 /// and when the caller is codegen'ed, and returns true.
12980 ///
12981 /// - Otherwise, returns true without emitting any diagnostics.
12982 ///
12983 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12984 /// codegen'ed yet.
12985 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12986};
12987
12988/// RAII object that enters a new expression evaluation context.
12989class EnterExpressionEvaluationContext {
12990 Sema &Actions;
12991 bool Entered = true;
12992
12993public:
12994 EnterExpressionEvaluationContext(
12995 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
12996 Decl *LambdaContextDecl = nullptr,
12997 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
12998 Sema::ExpressionEvaluationContextRecord::EK_Other,
12999 bool ShouldEnter = true)
13000 : Actions(Actions), Entered(ShouldEnter) {
13001 if (Entered)
13002 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13003 ExprContext);
13004 }
13005 EnterExpressionEvaluationContext(
13006 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13007 Sema::ReuseLambdaContextDecl_t,
13008 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13009 Sema::ExpressionEvaluationContextRecord::EK_Other)
13010 : Actions(Actions) {
13011 Actions.PushExpressionEvaluationContext(
13012 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13013 }
13014
13015 enum InitListTag { InitList };
13016 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13017 bool ShouldEnter = true)
13018 : Actions(Actions), Entered(false) {
13019 // In C++11 onwards, narrowing checks are performed on the contents of
13020 // braced-init-lists, even when they occur within unevaluated operands.
13021 // Therefore we still need to instantiate constexpr functions used in such
13022 // a context.
13023 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13024 Actions.getLangOpts().CPlusPlus11) {
13025 Actions.PushExpressionEvaluationContext(
13026 Sema::ExpressionEvaluationContext::UnevaluatedList);
13027 Entered = true;
13028 }
13029 }
13030
13031 ~EnterExpressionEvaluationContext() {
13032 if (Entered)
13033 Actions.PopExpressionEvaluationContext();
13034 }
13035};
13036
13037DeductionFailureInfo
13038MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13039 sema::TemplateDeductionInfo &Info);
13040
13041/// Contains a late templated function.
13042/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13043struct LateParsedTemplate {
13044 CachedTokens Toks;
13045 /// The template function declaration to be late parsed.
13046 Decl *D;
13047};
13048
13049template <>
13050void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13051 PragmaMsStackAction Action,
13052 llvm::StringRef StackSlotLabel,
13053 AlignPackInfo Value);
13054
13055} // end namespace clang
13056
13057namespace llvm {
13058// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13059// SourceLocation.
13060template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13061 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13062 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13063
13064 static FunctionDeclAndLoc getEmptyKey() {
13065 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13066 }
13067
13068 static FunctionDeclAndLoc getTombstoneKey() {
13069 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13070 }
13071
13072 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13073 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13074 FDL.Loc.getHashValue());
13075 }
13076
13077 static bool isEqual(const FunctionDeclAndLoc &LHS,
13078 const FunctionDeclAndLoc &RHS) {
13079 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13080 }
13081};
13082} // namespace llvm
13083
13084#endif